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The Sacrament of the Last Supper (1955) by Salvador Dali

he name Salvador Dali (1904-1989) tends to conjure up minutely detailed dreamlike images, visual tricks, and philosophical
statements in paint. Maybe you've seen “The Persistence of Memory,” with its ominously bleak landscape and strangely limp
watches, or other beautiful but unnerving pictures by this Spanish Surrealist.

So it may come as a surprise that many of Dali’s most important paintings during two decades in the prime of his life—1950 to
1970—were concerned with religious themes. “The Sacrament of the Last Supper” is a modern treatment of a traditional theme—
you might find it interesting to compare this vision of the scene with Leonardo da Vinci’s or Tintoretto’s (both of which can be found
in recent editions of the Encyclopaedia Britannica in the article “Visual Arts, Western”).

One curious aspect of Dali’s painting is the use made of the “golden section,” a proportion that has been considered aesthetically
pleasing since antiquity. The Renaissance mathematician Lucas Pacioli defined this ratio as the division of a line so that the shorter
part is to the longer as the longer is to the whole (approximately 8 to 13). His treatise was entitled Divina proportione, and so the
name “divine proportion” came to be applied to this ratio as well.

After you've read more about the golden section in the Kaleidoscope, come back to Gallery Q and see if you can figure out how
Dali used this technical device in his painting.
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When you read about the eccentric 18th-
century English scientist Henry Cavendish,
whose rumpled silhouette graces our cover,
you're simply amazed at how much he antici-
pated. This is a way of describing discoveries
that remained unknown and were rediscovered
by others: Cavendish’s work in electrostatics
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“anticipated” Coulomb’s, his work on the D E PA RT M E N T S

capacity of condensers “anticipated” Fara-
day’s, and so on. While some scientists seem
in a rush to publish even dubious results,
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Looking Back

Cavendish represents the opposite extreme. ] 8 E ““lESI The m odest .
A brilliant experimenter, he all too often was Benrranging sums @CXPBIHE ?Hhtﬂlls t, Henry
g avendis

content to hide hislight under a bushel bas-
ket. It’s said he detested competition and
cared not a whit for fame, but it could be
argued that he simply wasn’t on good terms
with the human race! He died a wealthy man,
yet curiously enough he didn’t leave a penny
to science (an “oversight” corrected by his
descendants, as you’ll see when you read the
portrait of Cavendish in Looking Back, page
41).

Here’s a shocking bit of anticipation: to
establish how electrical potential is related to
current (which he found to be directly propor-
tional, as would George Simon Ohm years
later), Cavendish used his own body as a
meter! He would grab the ends of the elec-
trodes and estimate the strength of the cur-
rent by feeling how far up his arms the shock
went: fingers, wrists, elbows . .. Now that’s
hands-on science!
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You may be surprised to learn that Thomas
R. Cech, the biochemist who shared the
1989 Nobel Prize in chemistry, is an honors
graduate of Grinnell College.

Robert Noyce, the co-inventor of the
integrated circuit and the father of the Infor-
mation Age, also graduated with honors
from Grinnell College.

In fact, Grinnell College is one of 48
small liberal-arts colleges that historically
have produced the greatest number of sci-
entists in America. Grinnell and these other
small colleges compare favorably with ma-
jor research universities, showing a higher
per-capita production of graduates with
science degrees. The small colleges comprise
five of the top 10 and 13 of the top 20
baccalaureate institutions in the proportion
of graduates earning Ph.D.s.

1989 Nobel Laureate inchemistry ThomasR. Cech, recognized forhisRNAresearchwhichmayprovide

a new tool for gene technology, with potential to create a new defense against viral infections.

Election to the National Academy of
Sciencesis anhonor second only toreceiving
the Nobel Prize. Six of the top 10 member-
producing institutions, 11 of the top 20, and
15 of the top 25 come from that group of 48
small liberal-arts colleges.

The sciences do not exist in a vacuum in
the larger world. Nor do they at Grinnell.
The college’s open curriculum encourages
science students to take courses in other
areas.

Students who wish to focus their study
may engage in scientific research, usually in
a one-to-one relationship, under the direc-
tion of a Grinnell College faculty member.
Undergraduate student researchers often be-
come the authors of scientific papers with
their professors at Grinnell College.

Circle No. 15 on Readers Service Card

For more information,
please write or call:

Office of Admission
Grinnell College

P.O. Box 805

Grinnell, Iowa 50112-0807
(515) 269-3600
FAX-(515) 269-4300
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Have you written an article that you
think belongs in Quantum? Do you
have an unusual topic that students
would find fun and challenging? Do
you know of anyone who would make
a great Quantum author? Write to us
and we’ll send you the editorial guide-
lines for prospective Quantum con-
tributors. Scientists and teachers in
any country are invited to submit ma-
terial, but it must be written in collo-
quial English and at a level appropri-
ate for Quantum’s predominantly high
school readership.

Send your inquiries to:

Managing Editor
Quantum
1742 Connecticut Avenue NW
Washington, DC 20009-1171
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Youmay order copies of the
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Single copies: ~ $5
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1742 Connecticut Ave. NW
Washington, DC 20009
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“There are often darys when I go back
to the basics | lecrned at Kenyon.”

—Stephen Carmichael, Kenyon Class of 1967,
professor of anatomy, Mayo Medical School

-5

or many science students, the small
college’s emphasis on strong teacher-
student relationships and opportunities to
participate in — and be recognized for —
solid research with faculty members are
powerfully appealing. There is also the
promise of access to sophisticated equipment and
instrumentation that the small college provides.

These qualities, as well as its renown as a
premier liberal arts and sciences institution, make
Kenyon College an ideal choice for students who
plan to pursue education and careers in the
sciences. From 1980 to 1990, an average of 24
percent of Kenyon seniors annually were awarded
degrees in the natural sciences — biology, chemis-
try, mathematics, physics, and psychology. That is
more than three times the national average of 7
percent. And fully 75 percent of the College’s
science graduates pursue advanced studies.

Such results would not be possible without
faculty members dedicated to teaching, and
Kenyon's are among the most able and committed
at any small college. But because they believe
learning is not confined to the classroom, they also
actively involve themselves and their students in
research projects. Currently, those projects are
sponsored by such prestigious organizations as the
National Institutes of Health and the National
Science Foundation.

Together, students and faculty members in the
sciences create an exciting atmosphere at Kenyon
for study in the natural sciences. Both find the
camaraderie and sense of shared purpose potent
stimuli for leamning and working at the peak of their
capabilities.

For more information on science study at
Kenyon College, and on special scholarships for
science students, please write or call:

Office of Admissions
Ransom Hall
Kenyon College
Gambier, Ohio
43022-9623
800-848-2468

Kenyon physics major Aaron Glatzer (left) consults with Associate Professor of

Mathematics James White on his research, which involves building electronic circuits to ‘Kel I 0' I ( Ol le e
imitate neurons and neural networks.
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Happy New Yea!

| made a resolution: to learn Russian!

T’SBEEN A LONG TIME SINCE

I had to make a concentrated effort

to learn something new—actually,

not since college. For those of us
who teach or work as I do in an admin-
istrative job, we don’t always appreci-
ate the difficulties and stresses that
studentsfacein learning under pres-
sures of time and high expectations.
This is especially true of those of you
who read Quantum, since you’re
probably under more pressure than
most students. Well, my young friends,
I am joining you in your learning
miseries and pleasures. I'm trying to
learn Russian, and I have only until
July 27, 1991, to achieve my now
public, self-imposed deadline for speak-
ing, reading, and writing Russian at
some reasonable level of literacy.

In my three trips to Moscow, I've
always feltinadequate and helpless,
not knowing even one word of Rus-
sian. Our Russian colleagues have
always provided interpreters and trans-
portation, but there’s a limit on the
extent to which we should impose
ourselves on their generosity. Also,
almost all of my friends there speak
English. Sowhy don’t we learn Rus-
sian?

I've purchased audio tapes, books,
and other materials, and I'm spending
my substantial travel time on air-
planes listening to the tapes and
muttering incomprehensible Russian
sounds (I hope), while my fellow trav-
elers shake their heads in dismay or
express their curiosity. I've asked our
consultant Ed Lozansky to purchase
books that are used by children in the
USSR at the preschool age and in

grades 14 of their schools. Ithought
that by starting where young children
start, maybe it will be easier to learn
the language. For a person who has
studied such wonderful and advanced
topics as quantum electrodynamics
and theory of functions of a complex
variable and integral equations, it’s a
pleasantly humbling experience to be
struggling to do what young Russian
children manage with great ease.

Actually, it’s really fun to be en-
gaged in learning something new at
my age, and I intend to achieve my
goal. Our Russian friends, of course,
will have to judge the extent to which
Isucceed. I've also sent Russian lan-
guage tapes to NSTA’s president, Bon-
nie Brunkhorst, to our president-elect,
Lynn Glass, and to the chairman of
our international committee, John
Penick. By this column, I am putting
a little gentle pressure on them to
make a similar effort, so that all of us
have at least tried to prepare ourselves
for July.

And why July? That’s when we're
holding the first Russian—-American
science education convention, which
will take place at Moscow State Uni-
versity. More than 200 Americans
have already signed up for the con-
vention, and we expect that number
to increase to the planned 500-600.
An equal number of Russian science
teachers will be there, so it will be a
fine opportunity to learn about sci-
ence education from each other and to
gain many new friends.

If you've never considered learning
Russian, you should do so. I've only
been at this task for two weeks or so,

QUANTUM/PUBLISHER'S

but it’s very interesting, although at
times difficult. One of the features of
the Russian language that I really like
and find helpful is the alphabet and
the sounds associated with each let-
ter. Many of the Cyrillic letters are
from the Greek alphabet, which, as
you know, you learn in mathemat-
ics—for instance, 7, p, . Other letters
are common to the English alphabet.
But most importantly, the phonetic
sounds for the letters are almost al-
ways the same from word to word, so
it’s quite easy to sound out words. I've
already found that I can spell a Rus-
sianword in CyrillicwhenThear the
sounds. Being able to spell the word or
sound it out will be very helpful as I try
to learn to read the language. Allin
all, studying Russian is fun, but some-
timesit’s discouraging whenIforget
things I just learned. Also, some
Russian sounds aren’t used in Eng-
lish, so you have to get your lazy
mouth to try some new gymnastics,
which can be quite a challenge.

When I skip ahead in the textbooks
or look at the grammar rules, or when
I try toread a copy of Kvant given to
me by our Soviet colleagues, I realize
how far I have to go. When you're a
student, looking ahead like that can
be very intimidating. Yet we can't let
that discourage us. We have to just
takeit day by day, one part at atime,
and sooner or later, with hard work
and perseverance, we find ourselves
there at the end of that complicated
material where we thought we’d never
be. We almost wonder how we got
there. (Almost.)

It’s in this spirit that I'm going to
learn Russian, and it’s in this spirit
that you should keep studying and
learning mathematics and science.
You'll be surprised someday at how
much you were able to learn. Keep at
it. By the way, go ahead and learn a
language or two—and why not let
Russian be one of them?

We at Quantum wish all our read-
ers the best in 1991. May it be peace-
ful and prosperous for all of us, all over
the world.

—Bill G. Aldridge
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Diamon latticéwork

The fearful symmetry of crystalline structures

by R. V. Galiulin

HIS ARTICLE IS DEDICATED
to two anniversaries: the cen-
tenary of the prominent Russian
mathematician B. N. Delone
(1890-1980), who made a decisive
contribution to mathematical crys-
tallography, and the centenary of this

B JANUARY/FEBRUARY

branch of mathematics itself, which
was born when the pioneering work
of E. S. Fyodorov and A. Schoenflies
was published in 1891.

The extraordinary geometric per-
fection of crystals has amazed the
human mind since time immemo-
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CRYSTAL-CLEAR MATHEMATICS

rial. Our ancestors saw them as either
the creations of angels or the products
of subterranean evil forces. The first
attempt to provide a scientific expla-
nation of crystalline form was given
by Johannes Kepler in his work “On
Hexagonal Snowflakes” (1611). Kepler
suggested that the shape of snow-
flakes (crystals of ice) is due to the
special positioning of the particles
composing the crystal. Three centu-
ries later it was finally established
that the properties of crystals are due
to the special arrangement of atoms in
space similar to the patterns we ob-
serve in kaleidoscopes. These types of
arrangement were classifiedin 1891
by E. S. Fyodorov (1853-1919), a Rus-
sian scientist and founder of modern
crystallography. The regular forms of
crystalline polyhedrons are easily
explained within the framework of
his classification.

From the geometrical point of view
the positioning of atoms in space is
defined by the system of points corre-
sponding to their centers. So the
problem can be formulated like this:
what are the geometric conditions
that distinguish systems of points with
“crystalline structure” from all other
systems? Since our goal is to find the
reasons for regularity in the position-
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ing of real atoms in real crystals, spe-
cial attention should be paid to physi-
cal motivation. The simplest geo-
metric property of a system of points
corresponding to atomic centers in
any atomic array (and not only in
crystals) is its discreteness.

DiscreTeNess ConpiTiON . The
distance between any two points of
the system is greater than a fixed
valuer.

The physical meaning of this con-
dition is obvious. The tendency of
atoms to spread uniformly in space
can be expressed by the following
restriction on the corresponding sys-
tem of points.

CovieriNng Conprtion.  The dis-
tance from any point in space to the
nearest point of the system is less
than a fixed value R.

The name of this condition stems
from the following fact: if a system of
points complies with it, the set of
spheres of radius R with centers at
these points covers the whole space.
(Prove it!) The discreteness condition
doesn’t allow the points of the system
to be spread too densely, while the
covering condition outlaws too thin a
distribution. Taken together, they
ensure the approximately homogene-
ous distribution of points in space.
Systems of points satisfying both
conditions simultaneously are called
Delone systems after B. N. Delone, !
the Russian geometer who first intro-
duced them.

The simplest example of a Delone
system (in a plane) is provided by a set
of nodes on an infinite sheet of graph
paper. Similar systems play an excep-
tionally important role in crystallog-
raphy, and later we’ll consider them
in more detail. This system can be
used to obtain a Delone system of a
more general type by giving each node
an arbitrary shift not greater than, say,
one third of the distance between
adjacent nodes (fig. 1).

Exercise 1. Prove that such a system of
points satisfies both the discreteness and
covering conditions; find the corresponding
valuesofrand R.

Delone systems provide the most

"Pronounced “deh-law-NAY.”—Ed.
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Figure 1

general geometric model of distribu-
tion of atoms in any atomic structure.
So any theorem about these systems
can be interpreted as a property of the
structure itself. This makes the the-
ory of Delone systems especially
important in various applications. But
the general theory of Delone systems
(which is still in its early stages) isn't
the subject of our story. We'll con-
sider only particular cases: systems
describing the position of the centers
of atoms in crystal structures. Such
systems are distinguished by the pri-
mary geometrical property of crystals:
their symmetry.

What is symmetry? Intuitively,
it’s not difficult to distinguish a sym-
metric pattern from a nonsymmetric
one. A symmetric body can always be
divided into equal parts, sometimes
in many different ways. This property
alone, however, isn’t enough to guar-
antee symmetry in the pattern. A
heap of bricks isn’t symmetric though
it consists of identical bricks. Even
the brick wall in figure 2a doesn’t
appear very symmetrical, especially
when compared to the bricks in figure
2b. To make the intuitively felt differ-
ence between the two walls clearer,
consider the bricks surrounding any
one of them. In figure 2b any two
bricks have identical surroundings,
whereas in figure 2a this is true only
forthebricksin the same row.

By the “equality” of two figures we
mean here that one of them can be
superimposed onto the other after an
isometry—that is, any transformation
of the plane that preserves the dis-
tance between any two points. An
isometry that takes a figure or a pat-
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tern into itself is called its symmetry,
and a figure or pattern that allows at
least one symmetry (other than iden-
tity) is said to be symmetric.

For instance, the masonry in figure
2a goes into itself only if translated
along the rows by a number of brick
lengths, while the masonry in figure
2b allows many other symmetries:
vertical translations, half-turns, and
also line reflections followed by trans-
lations along the reflection axis. (Find
all of them!) So both patterns are
symmetric, though the second one is
“more symmetric” than the first.

Exercise 2. (a) Find all symmetries of a
regular n-gon. (b) Prove that a cube has 48
symmetries (includingreflections) and find
them.

The set of all symmetries of an
object together with the operation of
their composition is called the sym-

Figure 2
Brick walls: (a) less symmetric, (b)
more Ssymmetric.
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metry group of this object. Thisisa
very important notion in mathemat-
ics, lying at the boundary between
geometry and algebra.

So one way of ensuring that a De-
lone system describes a crystal is to
require that it be symmetrical. An-
other way to describe them is to use
the “equal surrounding” notion—that
is, join an arbitrary point A of a Delone
system to all its other points (fig. 3).
You get an infinite set of intervals
called the global star of point A. In the
general case global stars of different
points are not equal to (congruent
with)each other. If there are at least
two points with congruent global stars,
however, the system is symmetrical.
The converse statementis also true:
any symmetrical Delone system has
points with the same global stars. So
the congruence of global stars for at
least two points is a necessary and
sufficient condition for a Delone sys-
tem to have a symmetry.

Exercise 3. Prove that any symmetrical
Delone system has an infinite number of pairs
of points with congruent global stars.

Exercise 4. Construct a Delone system in
the plane that fits onto itself after rotation
through (a) 90° (b) 60¢.

Exercise 5. Prove that if the rotation through
angle o is a symmetry of a plane figure, the
rotation through the angle no (where n is any
integer) around the same center is also a sym-
metry. If the figure is a Delone system, the
ratio o/t must be a rational number.

Nevertheless, it is not true that any
symmetric Delone system corresponds
to a system of atomic centers in a
crystalline structure. The symmetry
of crystals is a special one. For ex-
ample, there are no regular dodecahe-
drons, or icosahedrons, or any polyhe-
drons with symmetry axes of the fifth

F

Figure 3 !

Part of a symmetric Delone system. Its
only nonidentical symmetry
transformation is the reflection in line 1.
Points A and B have congruent global
stars.

8 JANUARY/FEBRUARY

Crystal structure according to R. ].
Hatiy.

order (thatis, takenintoitself aftera
rotation through 27/5 around this axis)
among the crystalline polyhedrons.
Why are crystals so picky about the
shapes they take?

In 1783 R.J. Hatiy, a French abbot
and mineralogist, suggested that a
crystal is made of equal parallel par-
ticles touching one another along their
entire facets (fig. 4). In 1824 L. A.
Seeber, a professor of physics at Freiburg
(and a student of great Carl Friedrich
Gauss), proposed that Haiiy’s polyhe-
drons be replaced with their centers of
massin order to explain the thermal
expansion of crystals. Such systems
of points have been called lattices.

More precisely, a lattice is defined
asthesetof all points having integer
coordinates with respect to an arbi-
trary (not necessarily rectangular)
coordinate system (fig. 5a-5¢). The
points of the lattice are called nodes.
Each coordinate system defines a unique
lattice. The converse statement is not
true: there are an infinite number of
ways to choose a coordinate system
determining a given lattice (fig. 5b).
One can easily check that each lattice
satisfies both the discreteness and the
covering conditions and is, therefore,
a Delone system.

Let’s prove they’re symmetrical.
The following lemma holds.

Latmice Lemma . A lattice goes into
itself under a parallel translation along
the vector connecting any two of its
nodes as well as under the central
symmetry with respect to any node.

1891

To prove the first statement, notice
that for any pair of nodes A and B of
the lattice, vector AB has integer coor-
dinates (sinceit’s equal to the differ-
ence between the respective coordi-
nates of points A and B). A transfor-
mation along this vector is equivalent
to adding integers (coordinates of the
vector) to the coordinates of each node.
The resulting coordinates are again
integers. So each node matches a
node of the same lattice. I'll leave it to
you to come up with a proof for the
case of central symmetry.

It’s the lattice structure of crystals
that makes their symmetry so spe-
cial. Any spatial lattice can (in an
infinite number of ways) be divided
into an infinite number of congruent
and parallel plane sublattices (fig. 5c).
It’s usually assumed that the planes of
all the faces of a crystal contain the
plane sublattices of one and the same
three-dimensional lattice. Plane sublat-
tices of a three-dimensional lattice
related by symmetry transformations
are identical in their structure. When
a crystal grows, all its faces corre-
sponding to such plane sublattices
grow similarly, so that the symmetry
of the crystal repeats the symmetry of
the lattice.

de

Figure 5

Types of lattices: (a) one-dimensional,
(b) two-dimensional (plane), (c) three-
dimensional. Arrows show the base
vectors of coordinate systems defining
the lattices.




Figure 6

Now we'll prove that no crystal has
a symmetry axis of the fifth order.
Let’s assume that such a crystal ex-
ists. Then thelattice corresponding
to it also has a fifth-order axis I. Draw
a plane perpendicular to I through any
node and choose a node A in it that is
nearest to I (the existence of such a
node follows immediately from the
discreteness condition). Since the
lattice fits ontoitself after arotation
through any angle that is a multiple of
21/5 around the axis [, all the images
of point A under those rotations are
also nodes of the lattice. They form a
regular pentagon ABCDE (fig. 6). If we
now shift the lattice along the vector
AB, then (according to the lattice lemma)
node E fits onto a node N lying inside
the pentagon closer tothan A, thus
contradicting the choice of A.

Exercise 6. Construct lattices with sym-
metry axes of the second, third, fourth, and
sixth orders. Prove that no lattice has a
symmetry axis of an order higher than six.

It should be pointed out that fifth-
order symmetry axes are quite com-
mon in the realms of plants and small

Figure 7

Tourmaline crystal.
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Boris Nikolayevich Delone (1890-1980) was a famous Russian mathe-
matician. He got his family name—Delone—from his French great-great-
grandfather, the Marquis de Launay. This Marquis de Launay was the gover-
nor of the Bastille on July 14, 1789, when a furious mob marched against the
royal fortress on the first day of what was to become the French Revolution.
The governor and his small garrison bravely resisted but eventually surren-
dered to the overwhelming opposing forces after being promised a pardon and
immunity. The promise, however,
was easier to give than to honor, and
the marquis was later massacred by
the mob while being escorted through
the streets of Paris.

His son, Pierre de Launay, en-
tered on a military career, served as
an officerin Napoleon’s army, took
part in Napoleon’s Russian campaign,
and, after being taken prisoner, stayed
in Russia for the rest of his life.

The classic work of his worthy de-
scendent on the theory of third-order
Diophantine equations, which Delone
wrote when he was still quite young,
marked a breakthrough in number
theory, the greatest achievement
since the renowned work of Euler and
Lagrange on second-order  Dio-
phantine equations. He also obtained
profound and important results in al-
gebra, geometry, and the application
of mathematics in crystallography.
“Because of his constant preoccupation with crystals,” Delone used to say, “a
crystallographer is, in his intuition, already a geometer.”

Delone enjoyed spending his time with young students and organized the
first mathematical olympiads for high school students in the USSR. He had an
exceptionally wide range of interests. One of his childhood friends in Kiev was
Igor Sikorsky, the renowned aircraft designer. They built gliders together, and
Delone flew them. He was also a famous mountain climber, and a mountain
summit in the USSR bears the name “Delone peak.”

The last years of his long and exceptionally fruitful life were clouded by the
tragic story of his grandson, Vadim Delone, a talented poet. Vadim was an
active member of the human rights movement and was one of the seven
people who in August 1968 made a desperate attempt to stage a demonstra-
tion in Moscow’s Red Square to protest the Soviet invasion of Czechoslova-
kia. All of them were arrested and convicted. After serving his sentence,
Vadim Delone emigrated back to France. He died in Paris, butat much a
earlier age than his great-great-great-great-grandfather.

The wheel of history had taken an ironic turn.
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organisms (viruses). In the vivid words
of N.B. Belov (1891-1982), afamous
Soviet crystallographer: “For small
organisms, a fifth-order axisis a spe-
cial tool in their struggle for survival,
safeguarding them from crystalliza-
tion and fossilization, the first step
toward which would have been the

‘capture’ of the organism by a crystal
lattice.”

But not all the facts known about
crystals fit the lattice model. For
example, there are crystalline polyhe-
drons like those of the precious stone
tourmaline (fig. 7) that have no central
symmetry, whereas the lattice lemma
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implies that all lattices have central
symmetry. To cover such phenom-
ena it was necessary to expand the
palette of allowable distributions of
particles in space. In 1879 L. Sohncke,
an eminent German crystallographer,
suggested that particles in crystals are
organized in regular systems.

A Delone system is called “regu-
lar” if it looks the same from any point
in the system—that s, if global stars
of all points in the system are congru-
ent (fig. 8a-8¢). If you were asleep and
were taken from one point in a regular
system to another, you wouldn’t no-
tice any change upon waking up. In
other words, any point in a regular
system can be taken into any other by
a symmetry transformation of the whole
system. The symmetry groups of
three-dimensional regular systems are
called Fyodorov or spatial crystallo-
graphic groups. There are 230 Fyodorov
groups. (On a plane there are only 17
crystallographic groups.) It is these
groups that describe the distributions
of atoms in crystal structures that
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Figure 8

Regular systems of points: (a) one-
dimensional, (b) two-dimensional, (c)
decomposition of a regular system into
lattices.

10

JANUARY/FEBRUARY

Figure 9

Structure of fluorite, composed of two
different regular systems (the gray dots
are fluorine atoms, black are calcium).

were mentioned at the beginning of
this article.

Exercise 7. The plane can be paved with
congruent regular triangles without gaps or
overlaps. Prove that their vertices form a
regular (plane) Delone system and describe all
its symmetries. Do the same for squares and
regular hexagons. Are all these systems
lattices?

The lattice lemma implies that
any lattice is a regular system. The
converse is not true, but it can be
shown that any regular system is
composed of congruent parallel sublat-
tices (fig. 8c). Anoutline of the proof
of this fact (which is not at all simple)
was given by E. S. Fyodorov in his clas-
sic book Principles of the Study of
Figures, which he began working on
when he was only 16 years old. The
proof was completed by A. Schoenflies,
butit was so complicated thatin the
first edition of his work on symmetry
of crystal structures (1891) he placed it
at the very end of the book in order not
to scare readers away.

At the beginning of this century
experimental evidence confirmed that
atoms in crystals form one or several
regular structures with a common
Fyodorov group (fig. 9). But these
observations didn’t explain why at-
oms in crystals are arranged in an
ordered way. They only reflect the
fact that such an ordering does exist.
This was pointed out by the founder of
Soviet crystallography, A. V. Shubnikov
(1887-1970): “We have a good under-
standing of the way in which crystals
are built, but the question of why are
they built in such a way has never
been seriously considered.”

1981

Imagine a growing crystal at a stage
when the next atom gets included
into its structure. What causes this
atom to occupy its strictly predeter-
mined place? In order not to break the
system’s regularity (in the sense of the
definition given above) this atom should
“know” and “take into account” the
positions of all the other atoms, in-
cluding the most distant ones. It's
much more natural to require that for
any atom, all the atoms lying at a rela-
tively small distance from it (this
distance defined by the effective range
of chemical forces) form the same
surrounding system. The fact is that
even such aloose condition ensures
that the system is regular! The fol-
lowing theorem is valid.

LocaL THeorem . If all the points
of a Delone system have “equal sur-
roundings” within a sphere of radius
kR, where k = 4 for a plane system and
k=10foraspatial one, the systemis
regular. (Recall that R is the parame-
ter given by the covering condition).

This theorem was proved by B. N.
Delone and his colleagues. There are
good reasons to suggest that one can
take k = 4 in the three-dimensional
case as well, but no proof of this has
yet been given.

The fundamental importance of
the local theorem lies in the fact that
the “equal surroundings” domain in
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Figure 10

Structure of (a) diamond, (b) lonsdalite.




its statement is approximately the
same as the effective range of chemi-
cal forces acting between atoms. So
the regular structure of crystals can be
explained in terms of chemical inter-
action between the atoms.

Now we can formulate the third
natural condition that (together with
the discreteness and the covering
conditions) distinguishes regular Delone
systems.

LocaL EquaLiry Conpition . All
the points of a system have equal sur-
roundings within a sphere of radius
10R. (Recall that the number 10 can
probably be replaced with 4.)

Let’s take a diamond crystal as an
example. What happens if the equal
surroundings domain gets smaller?

The closest neighbors to each car-
bon atom in a diamond structure are
four other carbon atoms forming a
regular tetrahedron (fig. 10a). This is
in good agreement with the structure
of carbon’s electron shell, which is
capable of providing four equivalent
bonds. The same surrounding struc-
ture (the four closest atoms forming a
regular tetrahedron) is observed in
another modification of carbon—lonsdal-
ite (fig. 10b), the microcrystals of which
have thus far been found only in the
craters of large meteorites.

So what's the difference between

b

Figure 11
Second coordinate spheres in (a)
diamond, (b) lonsdalite.

the structures of diamonds and lonsdal-
ite? In diamonds the atoms lying on
the second sphere surrounding the
initial atom (called the second coordi-
nate sphere) form an Archimedean
cubic octahedron—a cube with trun-
cated corners (fig. 11a). In the lonsdal-
ite structure the atoms of the second
coordinate sphere form a so-called
hexagonal cubic octahedron, which
can be obtained from the Archimedean
cubic octahedron by rotating its lower
half through 180° (fig. 11b). Under the

7
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condition that carbon atoms have equal
surroundings on both the first and
second coordinate spheres, the result-
ing crystal structure is one of these
two pure types of monocrystals.

If carbon atoms are capable of es-
tablishing bonds only within the first
coordinate sphere (that is, of forming
regular tetrahedrons), then mixed struc-
tures can arise in which diamond
layers are sandwiched between layers
of lonsdalite. This happens in so-
called twins (fig. 12), in which two
diamond crystals are connected to
each other by a layer of lonsdalite.

Figure 12

Of course, the problem of the for-
mation of crystal structures is far from
being completely solved. Here I've
merely tried to show the important
role played by mathematics in a prob-
lem that might have been thought to
reside squarely in the realm of physi-
cal chemistry.
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\Vave watching

“When you throw stones in the water, pay attention to the rings

produced; otherwise this habit would be a mere waste of time.”
—K. Prutkov, Fruits of Meditation

by L. Aslamazov and |. Kikoyin

HAT IS A WAVE? EVERY-

one understands the word

“wave” and, in most cases,

knows that it’s related to some
kind of motion. Throw a pebble into
the water and you’ll see waves run-
ningalong the surface. Butifawave
runs into a floating branch, the mo-
tion of the branch has nothing in
common with the propagation of the
wave. Instead of moving with the
wave it oscillates, bobbing up and
down. So what is it that’s actually
moving when a wave propagates? Let’s
look at some examples.

Some historians claim that Eliza-
beth, Empress of Russia and daughter
of Tsar Peter the Great, expressed the
royal desire that the solemn moment
of her coronation be marked by can-
non fire from the Peter and Paul for-
tress in St. Petersburg. But the law
prescribed that Russian tsars be crowned
in the Assumption Cathedral of the
Moscow Kremlin. Nowadays there’s
no problem in sending any informa-
tion from Moscow to Leningrad: you
send aradio signal at the moment of
coronation from Moscow and the gun
isfired in St. Petersburg (now Lenin-
grad). In the 18th century, however,
one had to find another way of telling
the gunners that the patriarch had just
laid the crown on the empress’s head.

And a solution was found. Along
the entire length of the Moscow-
St. Petersburg road (about 650 kilo-
meters), from the cathedral to the for-
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tress, a line of soldiers was drawn up,
one in direct sight of the other {about
100 meters). You can readily compute
that the whole chain consisted of
about 6,500 soldiers. Each soldier was
given a small flag, which he had to
raise the moment he saw the signal
from his neighbor. At the moment of
coronation the first soldier raised his
flag, then the second, then the third,
and so on. A person’s reaction time is
several tenths of a second, so the
message reached St. Petersburg in 10
to 20 minutes.

What actually moved from Moscow
to St. Petersburg? Each soldier re-
mained in place. The only move he
made was to wave the flag. A scientist
would say that by raising or lowering
his hand, each soldier for a short time
changed his state. It is this change
that moved along the line.

A change of state propagating in
space is called a wave.

The year 1905 in Russia was marked
by strikes that started in St. Peters-

Figure 1
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burg. The newspapers wrote that “a
wave of strikes swept through Russia
and reached the most distant regions
of the empire.” What moved in this
case was the state when workers stop
their work at industrial plants and put
forward political and economic de-
mands.

Another example is the way ru-
mors spread. A rumor started by one
person can quickly spread over a whole
city. The time it takes is much shorter
than that needed for this person to
visit (or phone) all the city’s inhabi-
tants. Rumormongers can remain
motionless. What moves is the state
of being informed.

But enough of news and rumors—
let’s look at a physical example. Some
billiard balls are lined up on a billiard
table (fig. 1a). Another ball hits the
string in the direction of the string’s
axis. After impact the moving ball
stops, while the last ball in the string
jumps away (fig. 1b). Although the
momentum is transferred to the first
ball in the chain, the ball that moves is
the last one. Itis a wave of deforma-
tion that propagates along the chain.
At the moment of impact the first ball
gets compressed, thereby deforming
the neighboring ball, which in turn
deforms the next one, and so on. Each
ball is subjected to equal elasticity
forces on both sides acting in opposite
directions (fig. 1¢) and, therefore, stays
at rest. The only exception is the last
ball, which is acted upon from one
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Figure 2

direction only. The resulting nonzero
force gives an impulse to the last ball
in the chain, setting it in motion.

Deformation waves propagating in
elastic media are called acoustic waves.
So what we actually got by hittinga
string of balls was an acoustic wave.
This kind of wave can propagate in
any other elastic body. For instance, if
you strike a fixed rigid rod (fig. 2a) with
a hammer on one end, a deformation
(acoustic) wave starts propagating along
the rod. After reaching the other end
of the rod, the wave sets the ball
hangingnext toitin motion (fig. 2b).
Using a piston instead of a hammer,
We can excite an acoustic wave in a
liquid or a gas.

Let’s examine the propagation of
an acoustic wave in an elastic body in
more detail. First, what does the
velocity of the wave depend on? Let's
start with a simple model.

Think of a string of balls of mass m
connected by springs with rigidity k
(fig. 3). The balls are small compared
to the distance between them, and the
mass of the springs is negligible com-
pared to the mass of the balls. Actu-
ally, it’s the same string of billiard
balls we just looked at—we've merely
separated their inertia (mass) and elas-
ticity (rigidity).

This model is close to the actual
situation in solids. In a crystal lattice,
atoms are positioned in such a way
that the vector sum of forces applied
to each atom by the rest of atoms is

zero in the equilibrium state. But if an
atom is displaced from its equilib-
rium position, it starts to “feel” at-
traction and repulsion forces similar
to elasticity forces.!

Let’s give animpulse to one of the
balls—for instance, the first one on
the left—in the direction of the string
by giving it a kick. The wave of elastic
deformation runs along the string until
it reaches the right end. But the last
ballis connected toits neighborby a
spring that makes it impossible for it
to go away. The stretched spring
forces it to go back, and the ball,
because of its inertia, compresses the
spring again. The deformation wave
now starts moving from right to left as
if reflected at the end of the string.
Then it reflects from the left end
again, and so on. The reflected waves
complicate the picture, so let’s ana-
lyze an “endless” string (that is, a
string without ends). This can be
made by connecting a large number of
balls in aring (fig. 4). Alongsuch an
endless string a wave of elastic defor-
mation goes in circles without any
reflections until its energy dissipates
and it dies away.

Now push one of the balls from its
equilibrium position (for instance, in
the clockwise direction) and set it
free. Because of the action of the
attached springs the ball starts a peri-
odic motion in space, which is called
oscillation.

Oscillations play an important role
in nature and engineering. Oscilla-
tory motion can be encountered in
clock pendulums; the motors in elec-
tric devices are driven by alternating
current; the succession of day and
night, as well as that of the seasons of
the year, can also be regarded as oscil-
latory processes caused by the motion
of the Earth. All rotating mecha-
nisms cause vibration in their founda-
tions, which must be taken into ac-
count in designing them.

The simplest type of oscillation is
simple harmonic motion. Insimple
harmonic motion the displacement

Figure 3
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of a body from its position of rest
varies in time according to the for-
mula

o =o,sin(2nt/T)
= 0, Sin2nvt

= 0, SInt,

where o is the angular deviation of a
ball from its position of rest. Any
simple harmonic motion is described
by two parameters: maximum dis-
placement {amplitude) o, and the period
T (the time interval between two
successive equivalent phases of mo-
tion). The frequency v is the number
of complete oscillations performed in

Figure 4

a unit of time, and the cyclic fre-
quency w=2nv is introduced to sim-
plify the mathematical description.
The number ¢ = ot defining the posi-
tion of the ball at time ¢ is called the
phase angle of the oscillation.

Consider the following example.
A ball makes a complete oscillation
cycle over an interval of time T=4s
and at the initial moment is at the
position of rest. The maximum dis-
placement of the ball is o, = 0.1 rad.
Then in simple harmonic motion its
displacement from the position of rest
is given by the formula

o= O.lsin(nt/Zj.

!Attraction forces predominate at
large interatomic distances, but when
atoms approach each other they’re
subjected to repulsion (quantum
mechanics prohibits atoms from
penetrating each other). Only at a
certain (equilibrium) distance (about the
size of an atom) the resultant force
acting between atoms is zero.



For t, = 1 s, the phase angle is equal
tog, =n/2;fort,=2s,it's,=m;fort,
=3s,wehave, = 3n/2 and so on.

The frequency of oscillation (and,
consequently, the period and cyclic
frequency) depends on the properties
of the system. For example, the cyclic
frequency of an oscillating ball of mass
m attached to a spring with r1g1d1ty k,
is equal to

k
0
%=Nm- 1)
(See the appendix to this article.)

Oscillations can propagate in space.
For instance, the balls in our string
repeat the oscillations of the first,
each of them with a certain delay.
Each successive ball reaches the state
of maximum displacement from the
position of rest somewhat later than
the preceding one. Similarly, when
the first ball gets back to the position
of rest, the next oneis still displaced
and comes to the position of rest only
after a certain delay.

This delay can be described in
mathematical terms by using the concept
of a phase shift. The angular displace-
ment of the nth ball is given by the
following expression:

o, =o,,sin{m(t-At ))
= o, sin(wt — A@ ).

The value Ap_ = wAt, is called the
phase shift (At _is the delay time in the
oscillation of the nth ball). In our
example every ball in the string un-
dergoes a simple harmonic motion.
The amplitude of oscillations o, and
the cyclic frequency  are the same for
all the balls, but their phase shift Ap,
differs. The greater the distance to the
nth ball, the longer the delay and, con-
sequently, the greater the phase shift.
Figure 5 shows three graphs of os-
cillations having phase shifts Ag, =
a jr
Ap=mn/8

Ap~I5n/8

Figure 5

n/8, Ag, =, and Ag, = 15m/8 with re-
spect to the oscillations plotted as a
broken line. In the first case, the

phase shift is small and the balls oscil-
late almost synchronously. They are

“said to be almost in phase. In the

second, there is a complete disagree-
ment between the oscillations: the
maximum displacement of one ball
corresponds to the maximum but
opposite displacement of the other. In
this case, the balls are said to oscillate
in a counterphase mode. In the third
case, the phase shift is close to 2mand,
as the figure shows, the balls again
oscillate almost synchronously—that
is, almost in phase. This is to be
expectedsince 2nis the period of the
sine function (that is, oscillations with
a phase shift equal to a multiple of 2x
coincide).

Since the phase shift of a ball in-
creases with distance, there is a dis-
tance at which the phase shift equals
2. Balls separated by that distance,
called the wavelength A, oscillate in
unison.

How many wavelengths can fit
into our string? Since the ends of the
string are joined together (the string is
actually aring!), the number is obvi-
ously aninteger. Thisisbecause the
motions of the first and last balls must
coincide (since they are actually one
and the same ball). If the string’s
length is L (L = Na, where a is the
distance between a pair of neighbor-
ing balls in the state of rest and N is the
number of balls), the longest wave
that can propagate along the string has
the wavelength A = L.

The length of the next, shorter
wave is A, = L/2; the length of the third
one A, = L/3; and so on. What's the
shortest wavelength that can go around
the ring?

The shorter the wavelength, the
greater the phase shift between the
adjacent balls. The maximum “disor-
der” occurs when the phase shift be-
tween neighboring balls is n. The two
balls then oscillate in counterphase
(fig. 6), and the corresponding wave-
lengthish_ . =2a.

Let’s calculate the frequency of
oscillations corresponding to the
minimum wavelength (and thus esti-
mate the velocity of the wave propa-

Figure 6

gation along our string). If the oscilla-
tion of a ball in the string is described
by the function

0, = o, sinwt,

then the oscillation of the preceding
ball satisfies the expression

o, =0,sin(ot+7),

n

and that of thenextone

o, =0,sinfowt—T).
From the motion of the strings’ ends
we canreadily obtain their deforma-
tion as a function of time. Hooke’s
law (F = kx) makes it possible to
evaluate the elasticity force acting on
the middle ball. The resultant force is

F =kx, (sin(wt-m)-sinwt
+sin(wt + 1) - sinwt)

= —4kx, sinot,

where x,, = Ro,, is the maximum
linear displacement of the ball from
the position of rest (R is the radius of
the ring). The middle ball moves as if
attached to a single spring with a
rigidity four times that of a real spring,
Substituting k = 4k into formula (1),
we get the frequency o = 2(k/m)"? for
the shortest wavelength (A_. = 2a)
that can travel around the ring. This is
the maximum frequency of oscilla-
tions for a closed string of balls.

There is also a maximum frequency
for atomic oscillations in real solids.

What's the speed of the wave mo-
tion? The period corresponding to the
oscillation frequency wis T=2m/m. A
wave propagating with velocity v covers
the length I = vT = 2nv/o over an
interval of time T. This length is
equal to the wavelength since the
oscillations separated by time T are
synchronized. Thus,
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A=vT=2nv/w,

and so
_ho_2 Jk

o nNom

And what’s the wave velocity and
the oscillation frequency for waves
with larger wavelengths? We can get
the answer the same way (though the
problem is a bit more complicated):
The oscillation frequency decreases
as the wavelength increases, while
the wave velocity increases, albeit
more slowly than the wavelength.
For longer waves (A >> a) the speed
becomes almost constant, approach-
ing the value of

V. =an\] L
0 m’

So our result gives a good approxima-
tion of the wave velocity for other
wavelengths as well.

Let’s get back to oscillations in
solids. What does the speed of acous-
tic waves depend on? The analogy
with the string of balls shows that the
velocity depends on the elastic prop-
erties of the medium, the mass of the
atoms constituting the substance, and
the interatomic distances. A decrease
in interatomic distance or an increase
in the atom mass results in a higher
density p of the substance. In our
model the rigidity k can be considered
proportional to Young’s modulus E.
The exact expression for the speed of
sound propagating in a solid body is

[E
v=,/=.
p

For instance, this formula gives a value
of v = 5,000 m/s. This is almost a
miracle! A very simple model ex-
plains the propagation of sound in
elastic bodies.

Oscillations of other physical val-
ues can also propagate in space. Peri-
odic variation in electric strength and
magnetic induction is described as
the propagation of an electromagnetic
wave. Other examples are tempera-
ture waves, magnetization waves
(induction oscillations of a magnetic
field in a medium), and so on. In a
manner of speaking, the entire house
of modern physics is riddled with
different kinds of waves.

v
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Figure 7

Appendix

Imagine a spring winding around a rod AB
that is positioned along the diameter of a
circle (fig. 7). One end of the spring is attached
to a ball and the other to the rod’s end A. The
ball can slide along the rod, and its position of
rest coincides with point O. The ring is set in
rotation in the horizontal plane with a con-
stant angular velocity w;,. The ball then
deviates from the center. Denoting its dis-
placement by r, we have (by Hooke’s law) a
force F = kr acting on the ball in the direction
of the point O. By Newton’s second law this
force provides centrifugal acceleration a_=
ol

24 _
mojr=kr.

So the ball is in a stable position when the
rotation velocity is

(,00 = Pk

Therefore, the projection of the ball’s ve-
locity on a fixed axis is in simple harmonic
motion, with the cyclic frequency equal to
the angular rotation rate. For example, x =
rsinw,t. Soforaball of mass mattachedtoa
spring with rigidity k, the frequency of the
simple harmonic motion is given by the for-

mula
o =\ 2
o Nm-
Exercises

1. For those of you who haven’t experi-
enced a “wave” in the stands at a sporting
event, here’s a good way to get a feel for what
awave is. Have a number of your friends stand
in a ring hand in hand. Let one of them squat
down and then stand up again, the person on
the right repeating the motion after a certain
delay, and so on. What does the speed of this
wave depend on?

2. The length of an elevated power line is
3,000 km. The frequency of the voltage is 50
Hz. By what fraction of the oscillation period
do the phases at the input and the output of
the line differ? What is the corresponding
phase shift?

3. Evaluate the collision time ¢ of steel
balls with diameter d = 0.01 m. The density of
steel p = 7.8 - 10° kg/m?, Young's modulus E =
210" N/m?2.

4. The eminent Sovietphysicist P. L. Ka-
pitsa used the following setup to obtain strong

1981

magnetic fields. The rotor of a generator
rotating in the magnetic field of the stator was
abruptly stopped, resulting in high voltage
induction. The rotor was connected to a coil
having a small resistance. The powerful
impulse of the electric current created a
magnetic field inside the coil with flux den-
sity of about 30 T (a record at the time). Why
was the coil (which contained a sample whose
properties under strong magnetic fields had to
be investigated) placed far from the genera-
tor? Evaluate the minimum distance I be-
tween the generator and the coil if the experi-
ment lasted At = 0.01 s and the laboratory had
a concrete floor.

5. A model of carbon dioxide gas (CO,)
consists of three balls connected by two springs.
In the position of rest both springs are lying
along the same line. The model can perform
different types of motions (shown in figure 8).
Calculate the ratio of their frequencies. [@)

Figure 8
SOLUTIONS ON PAGE 54

New from
NSTA!

Science and
Math Events:

Connecting
and
Competing

When you are trying to build student
interest and enthusiasm in math and
science, few resources can match the
excitement generated by science clubs
and competitions. But how do you get
your high-school students involved? And
how do you keep them involved? With
plans for successful fairs, details on 25
national and international contests, and
commentary by 89 prize-winning
scientists, this new publication prepares
you and your students for

connecting and competing in the 1990s.
#PB-47, 1990, 196 pp. $7.00

All orders of $25 or less must be prepaid.
Orders over $25 must include a purchase order.
All orders must include a postage and handling
fee of $2. No credlits or refunds for returns.

Send order to: Publications Sales, NSTA, 1742
Connecticut Ave. NW, Washington, D.C. 20009.

D

[ |

&

~

onSST 1SILf JO ATaAT[ap 10f SHIIM O - |7 MOJ[D SDI]]

AT LIONBLTILISRAA “AARNL ONLIOAN, TDNOOL LIS &

SLITLILE )Y

s/ |

v,

INaaa)



Methods of Motion

An Introduction to
Mechanics, Book 1

Isaac Newton really believed
that moving objects continue
at a constant speed in a
straight line? Do your
students? This manual was
created to help teachers
introduce the sometimes
daunting subject of Newtonian
mechanics to students in the
middle grades. The 27
activities presented here use
readily available materials to
give students visual, aural,
and tactile evidence to combat
their misconceptions. And the
teacher-created and tested
modules are fun: Marble races,
a tractor-pull using toy cars,
fettucini carpentry, and film
container cannons will make
teachers and students look
forward to class. Readings for
teachers, a guide for workshop
leaders, and a master
materials list follow the
activities, making this manual
useful for inservice
workshops. (grades 6-10)
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CONTEST

Rearranging sums

For what values of n and k is it possible to rearrange
thesum 1+ 2+ 3+ ... + ninto k equal summands?

by George Berzsenyi

N THE FIRST ROUND OF THIS year’s USA Mathe-
matical Talent Search (see page 58 of the Sept./Oct.
1990 issue of Quantum for details), I posed a very
special case of the above problem with k = 5. Most of the
over 250 contestants responded to the challenge and
provedthatifn=5morn=5m-1, where misapositive
integer greater than or equal to 2, then it is indeed possible
to partition the set {1, 2, ..., nn} into five subsets whose ele-
ments have the same sum. Two of the figures illustrating
this article provide a geometric interpretation of the case
m=2;form>2, oneproceeds inductively.

I T

I

Our first challenge is to treat the more general case of
k = p, where p is a prime number. That is, determine the
possible values of n for which one can partition the set
{1, 2,3, ..., n}into p subsets whose elements have the
same sum. There are at least two different inductive
procedures that can be applied; it may also be of interest to
study their geometric interpretations.

Our second challenge is to treat the case of k = pg, where
pand q are primes. The third figure illustrates the case of
p=2, q =3, n=15,while the fourth figure should be viewed
as an invitation to a yet more general question: what must
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be the dimensions of a rectangle that can be tiled by rec-
tangles of width 1 andlength 1,2,3,...,n?
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You may also wish to consult a recently published
research article entitled “Disjoint Subsets of Integers Hav-
ing a Constant Sum” (Discrete Mathematics 82 (1990),
7-11), in which a related result is established along with
yet another generalization. I am indebted to my colleagues
Gary Sherman (who called this article to my attention),
Roger Lautzenheiser, and Bart Goddard for insightful dis-
cussions of such problems.

Please send your solutions to these problems to Quan-
tum, 1742 Connecticut Avenue NW, Washington, DC
20009. The best results will be acknowledged, and their
authors will receive free subscriptions to Quantum for
one year and/or book prizes.

The successful solvers of these problems are also en-
couraged to present their findings at conferences (such as
the Eighth Annual Rose-Hulman Conference on Under-
graduate Mathematics, to be held March 15-16, 1991), in
publications (such as the Journal of Undergraduate
Mathematics, Pi Mu Epsilon Journal, and Kenyon Quar-
terly), and at science fairs and talent searches (such as the
Westinghouse Science Talent Search). Talso encourage
you to communicate with one another. @




.CONTEST

What the Seesaw taugnt

“The balance distinguisheth not between gold and lead.”
—Q@George Herbert, “Jacula Prudtum”

by Arthur Eisenkraft and Larry D. Kirkpatrick

EMEMBER THE FIRST TIME YOU played on a

seesaw? You balanced on one end, your friend

balanced on the other. With small kicks off the

ground the seesaw tilted one way and then the other.
At times, you may have even threatened not to let your
friend down as you gloried in the power of your position.
Another, quieter way of playing with the seesaw is to try
tobalance perfectly. Youand your friend position your-
selves so that the

clockwise torques must equal the counterclockwise torques.
We can write this as

counterclockwise ~  clockwise /

1 Albert — %2 Marie®

If Marie has 3/4 the weight of Albert, her moment arm

(distance from the pivot) must be 4/3 times the moment
arm of Albert.

seesaw balances. Albert Marie If you know
If you lean back, |/ > X your weight, you
the seesaw tilts. can guess some-
Lean forward and A/ one else’s by bal-
you can get it to k d 1 d, ! ancing on a see-

retum. How long
can you keep it
balanced?

The seesaw is a very good place to begin a study of forces
and torques. The forces make the seesaw move up or
down. The torques make itrotate about the pivot in the
middle. Since the entire seesaw never leaves the ground,
we can be sure that the “up” forces equal the “down”
forces. If Albert and Marie are on the two sides of the
seesaw (fig. 1), their weight plus the weight of the seesaw
(“down” forces) must equal the force of the support on the
seesaw (“up” force).

Figure 1

We can write this as
down Fup’
WAlbert + WMaric + Wsccsaw = Fsupport'

Torque is like a “turning force.” The greater the force, the
greater the torque. Similarly, the longer the moment arm,
the greater the torque. On our seesaw, the moment arm

can be chosen as the

saw and measur-

ing distances. Give

itatry and let us
know how successful you were.

By applying these physical principles you can learn a
great balancingact! Take anylongrod. A meterstick, a
baseball bat, or a curtain rod will all do well. Cradle the
stick on the edges of your two hands. Move your hands
slowly together. Your two hands will meet at a point—the
same point at which the stick can be balanced. We call this
position the center of mass. Will it work if your hands start
at different locations? Sure it will. Will it work if we add
an extra mass to one side of the stick? Sure it will. As the
hands slide closer together, one hand always seems to
move more easily than the other. The contest problem for
this issue is to describe why this works.

A second contest problem is offered for those of you
who have some extra physics under your belt or some extra
time to work on your physics problem-solving skills. In
this problem, a uniform stick is resting on two fixed

pivot to the weight. ¢

When Albert and
Marie are perfectly

distance from the
&

(See figure 2.) The stick’s
center of mass is

balanced, there’s no
rotation and so the

Figure 2 2d

cylinders that rotate
P with equal velocities
p in opposite directions.
! somewhat displaced
with respect to the

CONTINUED ON PAGE 26
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MATHEMATICAL PERSONALITIES

A talk with protessor I. M. Gelfand

A student and teacher who followed his own interests and instincts

Recorded by V. S. Retakh and A. B. Sosinsky

ISRAEL MOISEYEVICH GELFAND is
one of the greatest living
mathematicians. He’s the author of
around 500 works—books and articles
not only on mathematics per se but
also on mathematical physics, cell
biology and neurobiology, and
applications in medicine, seismology,
and other areas. Gelfand is a member
of the Soviet Academy of Sciences,
the US National Academy of
Sciences, the American Academy of
Arts and Sciences, the London Royal
Society in England, the French
Academy of Science, the Royal
Swedish Academy, and many other
foreign academies. He has received
honorary doctorates from Oxford,
Paris, Harvard, and many other
universities. He has also received
such distinguished prizes as the Kyoto
Prize, the Wolf Prize, and the Wigner
Medal.

For some 45 years now, first-year
students and famous scholars have
gathered on Monday evenings at
Moscow University for Gelfand’s
renowned mathematics seminar.
Several generations of outstanding
mathematicians have been nurtured
by this seminar.

Gelfand founded the Mathematics
Correspondence School, which has
students throughout the Soviet Union,
and is the chairman of its governing
committee. The main goal of this
school is to reach out and help those
students who are practically deprived
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of mathematical literature and contact
with scholars. These are generally
students who live outside of Moscow,
Leningrad, and other big cities where
there is access to good books and
good mathematicians. Created 25
years ago, this correspondence school
was the first such school in the Soviet
Union and served as an example for
other correspondence schools that
followed.

Interviewers from our sister
magazine Kvant planned this
conversation with professor Gelfand in
the usual way—that is, by proposing
guestions that would be of interest to

both Gelfand and Kvant's student
readers. Gelfand glanced at the list of
questions and said they were very
interesting but he didn’t consider
himself competent enough to answer
them.

“You see,” he said, “l don’tthink |
have the right to impose my opinions
onyourreaders. ltwould be betterif|
just tell what | was doing
mathematically at their age—13to 17
yearsold. 'mnotsurelcanrecall
now all the problems | was working on
at that time, but the problems I'll talk
about | remember very well.”

And now—I. M. Gelfand’s story.

Professor I. M. Gelfand at home in Boston, October 1989.

1881
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NE OF GRAHAM GREENE’S NOVELS is called

The Loser Takes All. My mathematical experience

was such a wonderful and happy one, for many years

it seemed to be the realization of Greene’s title. Why
was I so fortunate? Briefly stated: first, I didn’t study at a
university (or any institution of higher learning, for that
matter); second, because of certain difficulties in my
family life I found myself in Moscow without parents, and
jobless, at sixteen and a half years of age.

I'll try to illustrate the meaning of the expression “the
loser takes all” with the help of another English writer,
Somerset Maugham. The hero of the story, a church
sexton, suffers a misfortune: during certification of church
personnel it comes to light that he’s illiterate, and so he’s
fired. He starts selling cigarettes, then buys a tobacco
stand, then several others, and ends up making a brilliant
careerin commerce. Hebecomes therichest maninthe
city. He becomes the city’s mayor.
Someone comes to interview him—
just as you're doing now—and he ex-
plains to the journalist that he’s illiter-
ate. The stupefied journalist exclaims,
“What heights you could have attained
if you had been literate!” Without a
pause the mayor replies, “I'd have been
a sexton.”

So in February 1930, at sixteen and a
half, I came to Moscow to live with my
distant relatives, and I was often unem-
ployed. Itried many temporary jobs, but
mostly I went to the Lenin Library and
“pulled together” all the knowledge I
didn’t get in school and in the technical
trainingIdidn’t finish. AtthelibraryI
met university students and started going
to seminars. At 18 I was already teach-
ing, and at 19 T found myself in graduate
school. The rest of my mathematical
career proceeded quite normally, taking
the usual track for mathematicians.

Butit’s not this part of my life that1
want to talk about. I want to tell your
readers about the earlier period. I'd like
to do this for two reasons. First, it's my
deeply held conviction that mathemati-
cal ability in most future professional
mathematicians appears precisely at that
time—at 13 to 16 years of age. (Of
course, there are exceptions—some who
develop earlier, some later, at 20 to 30
and even 40—among very strong mathe-
maticians.) Second, this early period
formed my style of doing mathematics.
The subject of my studies varied, of
course, but the artistic form of mathe-
matics that took root at this time be-
came the basis of my taste in choosing
problems that continue to attract me

Receiving an honorary doctorate at Oxford University in 1973.

right up to the present time. Without an understanding of
this motivation, I think it’s impossible to make head or tail
of the seeming illogic of my ways of working and the
choice of themes in my work. In the light of this
motivating force, however, they actually come together
sequentially and logically.

The first thing I remember happened when I was
around 12. Tunderstood then that there are problems in
geometry that can’t be solved algebraically. Idrewup a
table of ratios of the length of the chord to the length of the
arc in increments of 5 degrees. Only much later did Ilearmn
that there are such things as trigonometric (not algebraic!)
functions and that, in essence, I was drawing up trigono-
metric tables.

At about this time I was working through a book of
problems in elementary algebra. Ihad no accompanying
textbook, I didn’t know the theory, but sometimes I had to
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solve some pretty tough problems, using formulas that I
didn’t know at the time. When I couldn’t figure out how
to solve a certain problem, I'd look at the answer, and I
learned how to reconstruct methods of solving problems
from the way.they’re set up and from the answers given. In
particular, I understood then, and remembered for the rest
of my life, that you can master a subject by solving
problems and that there’s nothing wrong with looking at
the answer since we always have a hypothesis about the
answer while we're working on any problem. Doing
research in mathematics is similar to solving problems in
which something about the answer is known. This is the
difference between working in mathematics and training
for university entrance exams (which is necessary as well,
of course).

At the age of 12 or 13 I turned my attention to geometry
problems in which there was often aright triangle with
sides 3, 4, 5 and even with sides 5, 12, 13. T wanted to find
all right triangles with integer sides, and I derived a general
formula for their sides. That s, I found all Pythagorean
triples.! (Of course, I didn’t know the term at the time.)
Unfortunately, I don’t remember how I did it.

Iworked at mathematics when I'was sick and when I
was on vacation. Even now I can’t help noticing how
much strong students manage to do when they stay home
because of illness. And so I would keep my own sons home
a few extra days after they got better.

In the geometry textbook we used, some theorems were
given as problems. I got my hands on anotebook (not an
easy thing in those days) and wrote out the statement of a
theorem on each page. Over the course of the summerl
covered almost all the pages with proofs. That’s how I
learned to write out my mathematical work.

I'll skip over a stretch here. I'll mention only the book
by Davydov on algebra in which you can find clever ways
of solving problems about maxima and minima by means
of elementary techniques (that is, without using differen-
tial calculus). For example: given a + b, find the maximum
of ab; for a given perimeter, find the rectangle with the
maximum area; find the maximum of the product of
nonnegative numbers a,a,...a , given theirsum a, + a, + ...
+a ; little squares are cut out of a square with a given side
and abox is made out of the remainder—what size must
the little squares be for the volume of the box to be
maximal?

Combinatorics and Newton’s binomial formula made
a great impression on me, and I thought about them for a
long time.

I lived in a small town with only one school. My
mathematics teacher was a kind but stern-looking man by
the name of Titarenko. He had a huge Cossack mous-
tache. Thaven’t met a better teacher, although I knew
more than he did and he knew it. He liked me a lot and

1See “Genealogical Threes” in the Nov./Dec. 1990 issue of
Quantum —Ed.
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Lecturing at the Massachusettes Institute of Technology
(MIT) in 1989.

encouraged me in every way. Offering encouragement is
a teacher’s most important job, isn’t it?

There was a definite lack of mathematical books. Isaw
ads for books on higher mathematics and figured higher
mathematics must be pretty interesting. My parents
couldn’t order these books—they didn’t have the money.
But once again I was lucky. At the age of 15 I was taken to
Odessa to have my appendix taken out. I told my parents
I wouldn’t go to the hospital until they bought me a book
on higher mathematics. My parents agreed and bought me
the textbook on higher mathematics written by Belyayev
in Ukrainian for use in technical institutes. But they only
had enough money for the first part, which was about
differential calculus and analytical geometry in the plane.

I was lucky that I didn’t start with a full-fledged
university course. This was a very elementary book. You
can judge the level of Belyayev’s book by its introduc-
tion—in particular, it says there are three kinds of func-
tions: analytical, as defined by formulas; empirical, as
defined by tables; and correlational. Ididn’t find out about
correlational functions until many years later, from a
student who was studying probability theory.

On the third day after the operation I picked up the book
and read it, alternating it with novels by Emile Zola, for
nine days. (In those days you’d stay in the hospital for
twelve days after an appendectomy.) That was enough
time for me to finish Belyayev’s book.

I took away two remarkable ideas from this book. First,
any geometric problem in the plane and in space can be
written as formulas. (IThad suspected this earlier.) Talso
learned about the existence of some remarkable figures—
the ellipse, for example.

The second idea turned my world view upside down.
This idea is the fact that there’s a formula for calculating
the sine: sin x = x—x%/3! + x°/5! — ... . Before this I thought
there are two types of mathematics, algebraic and geomet-
ric, and that geometric mathematics is basically “tran-
scendental” relative to algebraic mathematics—that is, in
geometry there are some notions that can’t be expressed by
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formulas. Consider, for example, the formula for circum-
ference—it contains the “geometric” number ; or, say,
the sine—it’s defined in a completely geometric way.

When I discovered that the sine can be expressed
algebraically as a series, a barrier came tumbling down,
and mathematics became one. To this day I see the various
branches of mathematics, together with mathematical
physics, as a unified whole.

Of course, I became convinced that problems of the
extreme are solved automatically (that is, by means of an
exact algorithm). Although they lose their charm, you
havein your hands a powerful tool (calculus) for solving
them.

Studying differential calculus I learned that there is also
integral calculus, which has to do with areas and volumes.
But what it consisted of, Thadnoidea—Ididn’t have the
second volume of Belyayev’s textbook!

Now’s a good time to mention another problem I recall.
The next autumn we studied the volumes of solids of
revolution at school. A classmate of mine, D. P. Milman,
who later became a famous mathematician, brought the
following problem to my attention: find the volume of a
body formed by therotation of a circle aboutits tangent.
To solve it I divided the circle into strips. Then I calculated
the differences of the volumes of the corresponding cylin-
ders obtained by rotation. Finally, I found the sum of these
differences. This brought me face to face with the need to
find the sum

COS @ +cos 20 +coS3Q + ... + COS NQY. (1)

The rest, as usual, was a mixture of inventiveness and
stupidity. I passed over an elementary solution based on
standard trigonometry, using instead the formula

€'® = cos @ +1sin Q.

(This formula is called Euler’s formula, but I didn’t know
that.) I got this formula from the power series for sin x,
cos x, and ¢¥, which had made a deep impression on me. It
remained for me to find the sum of the geometric progression
e+ e+ and, from that, to derive the sum (1), whichI
did.

This problem led to my habit of thinking about a
problem even after I'd solved it. And T came up with some-
thing else: I moved the circle away from the line and
understood that rotation produces a body that looks like
the rubber cushion my friend’s hemorrhoidal grandfather
used to sit on. Knowing the radius r of a circle and the
distance d from its center to the line, [used the method
described above to determine the volume of the solid of
revolution, 2n%2d. I was stunned by the simplicity of this
formula. Irewrote it in the form 72 - 2nd and understood
that if we cut the rubber cushion and pull it into a cylinder
whose side equals the length of the trajectory formed by
the center of the circle, then the volume of the cylinder
would be the same. A similarfactis true for the areaofa
surface, and I understood that it was not by chance. What

will happen if we rotate some other figure instead of a
circle—for example, a triangle?

In this case the volume of the solid of revolution
coincides with the volume of a prism whose base is a
triangle and whose height equals the length of the trajec-
tory formed by the common intersection of the medians of
the triangle. From a physics book I knew that this point is
the triangle’s center of mass. Seeing what happens when
a section is rotated, I understood that the center of a circle
isits center of mass as well.

I found a general definition of the center of mass in some
textbook on the strength of materials—I have no idea
whereIgotaholdofit. Notonly didlimmediately start
rotating various figures, I'd move them along various
curves and calculate the volumes of the bodies obtained
and their surface areas. The rigor of the thinking was
important here. I was very proud that I could find the
center of mass of a half circumference (half circle) and of a
half disk (half of the interior of a circle) given the volume
of aball and the area of its surface.

AndIwas lucky yet again. An extraordinarily well-
educated man (in my opinion at the time) came to our
town. He had graduated from the Odessa Pedagogical
Institute in physics and math. Among the books he
brought with him were Kagan’s Theory of Determinants
and Hvolson’s Course in Physics. Kagan’s book was useful
and detailed. It even contained a chapter on determinants
of infinite order.

I should also mention the biology textbook by Filip-
penko, the well-known biologist from the school of the
famous geneticist N. K. Koltsov. This was a fine book, and
it naturally influenced my work in biology some 15 or 20
years later.

But to get back to mathematics. T was still interested in
problems of areas and volumes. Ibegan with a calculation
of the area under the segment between two points of a
parabola. This problem reduces to a calculation of the sum
12422+ ...+ n? whichIdid easily.

Then Iwanted to find the area under the curve y = x#,
wherep=2,3,4,...; thatis, tofindthesum § =17+ 27+ ...
+ n? for every positive integer p.

By analogy with the formula

_nn+ D Q2n+ D

- ‘ ,

I decided that S, is a polynomial in n of degree p + 1. Ididn't
notice that to find the area under the curve it’s sufficient to
know only the first coefficient of the polynomial S, so1
started searching for the entire polynomial. This turned
out to be quite interesting. First of all, [ generalized the
problem: instead of x” I considered f{x) and started looking
for the sum

2
2422+, +n2

S,=A1)+fl2)+ ...+ fln).

Let F(x) be a function such that F'(x] = f{x). From Taylor’s
formula we get
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ra,

F-FD =+

2! 3! T
FH-F) =p+ L2, D

’ 2! 3!
F(n+1)—F(n):f(n)+‘]m+@+‘...

2! 3!

I added these equalities and got

5, .5

F(n+1)~F(1):SO+2—!+§+...,

where S is the sum that interested me and

S, =F(1)+f(2)+...+ fn),
S, = 1) +£7(2) + ...+ f'{1), ...

Then I wrote the following system:

Sl Sz S3
Fn+ D) -F(D=8 +—+—="+—+ ...,
021 31 4!
. . SZ S%
j<n+1)—f(1):Sl+E+§+...,

This is an infinite system with an infinite number of
unknownvariables S, S, S,, .... AsImentioned earlier,
Kagan’s book touched on determinants of infinite order, so

I'was able touse Cramer’s rule to find Sy

Fln+1)-F1) 1/20 1/3t 1/4!..
flm+ 1)-A1) 1 120 1/3!..
fln+1)=f(1) 0 1  1/2!..

I expanded the determinant in the numerator of this
“fraction” in the elements of the first column and the
corresponding minors and got

Sy=By{F(n + 1)~ F(1))+ B,(fln + 1]~ f{L))
+B,(f(n+1)-f(1))+..., (2)

where B = 1, B, B,, ... are numerical determinants of
infinite order. The expression I got is called the Euler-Maclmrin
formula, but of course I didn’t know that. To calculate this
expression I needed to know the coefficients B, B, B,, ... .
To do this, T used arguments that would now be called
“functorials.” Taking advantage of the fact that the
coefficients B,, B, ... don’t depend on £, I picked a function
f such that the left part of the system formed a geometric
progression (which I knew how to sum). The function f{x]
= e suits this purpose. Inserting it into formula (2) (I'll
leave the intermediate steps for you to work out!), I got
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_ o
(e*—1)°

That is, I got the power series for the numbers I was af-

ter. (These numbers B, B,, B,, ... are called Bernoulli num-

bers, and the polynomial S, for fix) = x* is called Bernoulli’s

polynomial.)

I remember two other problems from this period. The
first arose out of the problem in our book of algebra
problems: express x,*+ x,2 and x? + x,° via the coefficients
of a quadratic equation with the roots x, and x,. A natural
generalization of this problem leads to another: express
the sum x2 + ... + x,2 and the sum x> + ... + x * via the
coefficients of the equation x"+ a x*'+ ...+ a, =0, where
X, ..., X, are roots of this equation. At this point Bezout’s
theorem helped me, which I knew from Davydov’s book.
I went further and posed a more general problem for
myself: express the sum of kth degrees of the roots of an
algebraic equation of nth degree via the coefficients of this
equation. I managed to solve this problem (the solution is
known as Newton’s formula).

The second problem I solved at that time arose when I
discovered that the number cos ix is real because

BO+0LBl +ocBZ+

cosix =1 +)2C—2!+§+ e
I pondered this unexpected fact and came up with the
following general theorem: every even real-valued func-
tion takes real values on the imaginary axis.

To prove this I had to refine the notion of a “function.”
I thought about what to call a function and arrived at this
definition: a function is the sum of a convergent power
series. After this, the proof of the theorem is almost self-
evident.

This problem was probably the last one I thought about
before I came to Moscow. Isolved it in the summer of
1929. The next six months were very difficult for my
family and me. Mathematics was far from my mind.

The next period of my studies in Moscow was no longer
“pure experimentation.” In Moscow I was exposed to
many completely different influences, and my develop-
ment no longer drifted on its own course. At this time, as
I mentioned earlier, I studied independently in the Lenin
Library and lived on occasional earnings from odd jobs. For
a while I actually worked behind a check-out desk at the
library. I met mathematics students from the university.
One of them told me that expressions of the form f(n + 1)
- fin), which greatly interested me, were part of a whole
science called the theory of finite differences. He told me
Thad to read Norlund’s book Differenzenkalkiil on this
topic. It was in German, but I mastered it with the help of
a dictionary.

I started going to university seminars, and there I found
myself under intense psychological stress. Idiscovered
that my style of doing mathematics wasn’t good for
anything. New breezes were blowing in mathematics—
new demands for rigorous proofs, great interest in the
theory of functions of a real variable. (Today this level of



rigor and this particular theory are
considered old-fashioned and obso-
lete, but at the time. . .)

Then I realized it’s very important
that a function doesn’t have to be
continuous, thata continuous func-
tion doesn’t have to be differentiable,
that a differentiable function doesn’t
have to be twice differentiable, and so
on; that even if a function has deriva-
tives of all orders, the Taylor series for
this function isn’t necessarily conver-
gent, and that even if it is, its sum
doesn’t necessarily coincide with the
value of the function! If this coinci-
dence takes place, the function is
called analytic, and this class of func-
tions (so the devotees of the real-
variable function theory maintained)
is so narrow that it lies outside the
bounds of mainstream mathematics.
And these were the only functions I'd
been looking at!

Under the pressure of this point of
view, I read the “modern, rigorous”
textbook on analysis by Vallee Poussin.
It’s similar to the texts currently used
at Moscow University by students of
mathematics and mechanics, but better.
So I sympathize with those first-year
students who are allowed to experi-
ence the beauties of mathematical
analysis only after a year’s probation,
a sort of trial by the fire of its “rigorous
foundation.”

Buteven hereIwaslucky. Ibegan
reading I. I. Privalov’s remarkable book
on the theory of functions of a com-
plex variable. While reading this book
I understood why, for the function f{x)
=1/(1 +x?), the Taylor seriesis diver-
gentat x = 1 even though its graph is
continuous. (As amatter of fact, the
corresponding complex function has
apeculiarity for x = 1). After the first
100 pages I felt a fresh wind. I discov-
ered that if acomplex function hasa
first derivative, it has derivatives of all
orders, and then the Taylor series
converges at the value of this function
in some domain. Everything fell into
place, and harmony was restored.

I raced through Gourvits and Cour-
ant’s book on the theory of functions
of a complex variable. I was mostly

CONTINUED ON PAGE 26
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CONTINUED FROM PAGE 25

impressed by the chapters on elliptic
functions written by Gourvits. And
once again fashion made a fool of
me—this branch of mathematics was
considered obsolete. The theory of
elliptic functions was looked down
on as “barely extended trigonome-
try.” Many years would pass before
this area once again became a focal
point of mathematicians’ attention.

I gained a lot from the university
seminars. Meeting with mathemati-
cians of every stripe, I was able to
compare my romantic, antiquated (that
is, unfashionable) views of mathe-
matics with what was actually hap-
pening then. I studied with many
remarkable mathematicians and con-
tinue to try to learn this way.

A little later I read—studied in
great depth, really—a remarkable book
by Courant and Hilbert called Meth-
ods of Mathematical Physics. Tun-
derstood then the need to read basic
works. Here it’s important not to
regret the time spent thinking about
the very foundations of a theory. The
work of Herman Weyl (1925) on the
representations of classical groups
belongs to that category. But, unfor-
tunately, we didn’t have access to
even older fundamental works by Cayley,
Schur, and other authors of the “pre-
Hilbert period.”

Ilearned alot from L. G. Shnirel-
man, M. A. Lavrentiev, L. A. Luster-
nick, I. G. Petrovsky, A. I. Plesner,
and even more from Andrey
Nikolayevich Kolmogorov.? In par-
ticular, I learned from him that a true
mathematician nowadays must be a
philosopher of nature.

But my story has turned into the
standard scientific biography. This
genre is usually very misleading. A
true scientific biography is simply a
collection of the scientist’s works.
One’s own impressions about one’s
works are no more significant than
the impressions of any other reader.
Andsoit’stimelended my tale. [@)

For more on A. N. Kolmogorov, see
the Innovators department in the Jan.
1990 issue of Quantum.—Ed.
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point midway between the cylinders.
If the distance between the cylinders
is 2d, the stick has a weight w and
length 1, and the coefficient of friction
between each cylinder and the stick is
L, describe how the stick moves.
Please send your solutions to Quan-
tum, 1742 Connecticut Avenue NW,
Washington, DC 20009. The best
solutions will be acknowledged in
Quantum and their creators will re-
ceive free subscriptions for one year.

Click, click, click

We were disappointed that we re-
ceived no correct solutions to this
contest problem. We are confident
that our readers could have solved
part A. Don't get discouraged. If you
can answer part A but not part B or C,
send us a note anyway. Your solu-
tions will help us judge what you
might like to see.

In the Contest Problem involving
Newton'’s toy you were asked to find
the mass of amiddle ball so that the
velocity of the small ball will be great-
est in a three-ball collision. Applying
the laws of conservation of energy
and momentum to the first collision,
we have my, = mV + m,v,,
(1/2)m v > (I/Z)m v,/ {1/2)m v,

Solvrng for v in the first equation
and substituting in the second equa-
tion, we arrive at 0 = - Zmlvlvz’ +
m,v,”+ mv,"”. Solving for v,’, we find
thatv2 =0andv,’=2myv /(m +m,).
We ignore the solutron v, = O since
this corresponds to the case of no
collision. Since the second collision
is similar to the first, we can write
down the relevant equation immediately:

=2m,v,'/(m, + m,). Combining
the last two equations, we get
4m RN

” 21
v prc)

’ (m1+m2)(mz+m3) (]')

To find when the value of m, for
which v,” will be a maximum, we
can take the derivative of v,” w1th
respect tom, and setit equal to zero.
The solutron is that the mass m,
should be the geometric mean of the
other masses. Specifically,

1991

7712 =, ml 1713 . (2)

For those of you who aren’t knowl-
edgeable about calculus, we suggest
that you take arbitrary values for m
and m, (thatis, m =1andm, = 100)
and plot a graph of v, Versus m, for
different values of m,. You'll find
that the graph reaches apeak where
m, = 10, as predicted by equation (2).

Part B of the problem is an exten-
sion of this solution to a collision of
five balls. In this case, the masses of
the balls follow the relation m,/m, =

m,/m,=m,/m,=m,/m, PartC of the
problem asks about the middle mass
given a coefficient of restitution e.
You may be surprised to find out that
the ratio of masses is the same, inde-
pendent of ¢, and is therefore the
same solution asin part A.

Burt Lowry, our colleague from
Whitman High School in Bethesda,
Maryland, was quick to point out
that other collision possibilities exist
mathematically in the Newton toy
that obey energy and momentum
conservation. These never occur because
the masses are independent. One ball
always hits a second ball. The incom-
ing ball never “sees” a ball of twice
the mass, but rather sees a single-
mass ball. This probably explains the
importance of always leaving a small
space between the balls when you
build one of these toys. Q

@Jes your library have N
Quantum?

If not, talk to your librarian!

Quantum is a resource that be-
longs in every high school and
college library. “Highly recom-
mended.”—Library Journal

See page 40 for subscription in-
formation.
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by degrees.

Florida Institute of Technology has everything you'd expect
from a university. Including a lot of degrees — both in and
out of the classroom.

For example, we offer more than 121 degree programs, from
A.S. to Ph.D,, specializing in Science, Engineering,
Business, Psychology and Aviation. Our modern campus is
located on Florida’s famous Space Coast, in the heart of one
of America’s fastest-growing business areas.

Now, add an annual average temperature of 75 degrees,
miles of clean, uncrowded beaches, and every water sport
you can think of, and you know why students prefer FIT.

For more facts about EIT., the University with all those
degrees, call TOLL FREE 1-800-352-8324, IN FLORIDA
1-800-348-4636.

Florida Institute of Technology

MELBOURNE
150 West University Blvd., Melbourne, FL 32901
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BRAINTEASERS

Justiorthe funofit

Problems offered for your enjoyment by S. Genkin,
A. Domashenko, D. Fomin, and V. Proizvolov
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' Bobby added together three consecutive integers, then the three next numbers,
and multiplied one sum by the other. Could the product be equal to

111,111,111¢

In figure 1 a spiral made of 35 matchsticks is wound clockwise. Shift four
matches to rewind it counterclockwise.

You can do either of two things to a number written on the blackboard: you can
double it, or you can erase the last digit. How can you get 14 starting from 458
by using these two operations?

"Two parallel diagonals are drawn in a regular octagon (fig. 2). Prove that the area
of the rectangle thus obtained is half the area of the entire octagon.

& "”’%F—J;{if;‘gi—; iy

Figure 2

-
B B25
g The smoke we see consists of small particles of unburned fuel. Each of the
g particles is much heavier than air. So why do they fly upward?
s ! d
B T 14 B s Do you have a brainteaser for Quantum? Send it to Managing Editor, Quantum, 1742
) ilf A1 Eli=a Connecticut Ave. NW, Washington, DC 20009.
2 SWERS ON PAGE 53
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AT THE BLACKBOARD

Gircumeircles to the rescuel

A technique for certain traditional problems

T'S WELL KNOWN THAT THE
angular value of an arc is equal to
the value of the central angle it sub-
tends and is twice the value of the
inscribed angle it subtends. In solving
problems in plane geometry, it’s often
useful to draw the circle circumscribed
about a triangle or a quadrangle. The
properties I mentioned above can then
be formulated in the following way.

B C

A
Figure 1

L. If a quadrangle ABCD is cyclic—
that is, if it can be inscribed in a circle
(fig. 1)—then angle ABD = angle ACD,
angle ABC +angle ADC = 180° (also,
angle DBC = angle DAC, angle ADB
=angle ACB, angle BAC = angle
BDC, angle BCD + angle
BAD =180v).

IL. Ifpoints Band
C are on the same
side of a straight
line AD and angle
ABD = angle ACD
or angle ABC +
angle ADC = 180°,
then quadrangle
ABCD is cyclic (see
figure 1).

I11. If triangles
ABC and AOC lie
on the same side

Nl

N
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by D.F.lzaak

of the line AC and O is the circum-
center of triangle ABC, then angle
AOC =2angle ABC |fig. 2).

IV. If triangles ABC and AOC lie on
the same side of the line AC, OA =
OC, and angle AOC =2 angle ABC,
then O is the circumcenter of triangle
ABC (see figure 2).

Here are some examples of how
these properties can
make it a lot easier to 2 N
solve some rather com- (/ 7

. . Ly
plicated problems in (v
which the degree val-
ues of both the given
angles and the angles in
question are integers.

Example 1. A triangle
ABC is given in which
angle A = 70°, angle
B =50°. Point M
lies in-

1891

A

Figure 2 ¢

side the triangle and angle MAC =
angle MCA = 40°. Find angle BMC.
Solution. Since angle AMC =
100° = 2 angle B and MA = MC,
then, according to property IV,

M is the circumcenter of triangle
ABC [fig. 3). So, by property I,
angle BMC =2 angle A = 140°.
Example 2. Triangle ABC

is constructed such that AB

= AC, angle BAC = 40°.

Point M lies outside triangle

ABC but inside angle ABC

~ suchthatangle AMB -

~ 30°, angle BMC = 20°

¢y [(fig4) Findangle ABM.

AOUBA| AabBleg Ag 1y



A B
Figure 3

Solution. Property IV implies that
point A is the center of the circum-
circle of triangle BCM. So AB=AM
and angle ABM = angle AMB = 30°.

This problem can be generalized to
refer to any triangle ABC in which AB
— AC, angle BAC =2 angle BMC, angle
AMB = o. In such a triangle, angle
ABM =oq.

B C
Figure 4

Example 3. Triangle ABC is con-
structed such that AB = BC, angle
ABC = 80°. Point M lies inside the
triangle and angle MAC = 10°, angle
MCA =30°. Findangle BMC (fig. 5).

Solution. Angles BAC and BCA
are both equal to 50°. Let O be the
circumcenter of triangle AMC. Then,
according to property I, angle AOM =
60°, and so triangle AOM is equilateral.
BO is the perpendicular bisector of
segment AC (since AB = BC and AO =
OC). Right triangles ABK and AOK
are congruent since angle OAK = 60°-
10° = 50° = angle BAK. Consequently,
AB = AO; and taking into account
that AO =AM, wehave AB=AM. In
an isosceles triangle ABM, angles ABM
and AMB are equal to (180°-40°)/2. =
70°. Finally, angle BMC = 360° - 140°
—70° = 150° (see figure 5).

B

Figure 5

I'll leave you with five more prob-
lems for you to tackle on your own.

Problems

1.Inatriangle ABC angle A = 50°,
angle B = 60°. Points D and E are
chosen on sides AB and BC, respec-
tively, such that angle DCA = angle
EAC =30°. Find angle CDE.

2.Inatriangle ABC angle A = 30°,
angle B=80°. Point M lies inside the
triangle and angle MAC = 10°, angle
MCA =30°. Find angle BMC.

3.Inatriangle ABC angle A =20°,
angle C =30°. Point K lies inside the
triangle and angle KAC = angle KCA =
10°. Findangle BKC.

4.1n a triangle ABC AB = BC, angle
C = 40°. Outside triangle ABC but
inside angle BAC a point M is taken
such that angle AMC = 50°, angle
ABM = angle ACM. Find angle BCM.

5.Inatriangle ABC angle A = 84°,
angle C = 78°. Points D and E lie on
sides AB and BC such that angle ACD
= 48°, angle CAE = 63°. Find angle
CDE. 0
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HOW DO YOU FIGURE?

~ Ghallenges in physics and math

Math
M21

Square root of seven. A regular hexa-
gon with side 1 is drawn on the plane.
Construct a segment of length 7'
using only a straightedge. (A. Aliayev)

Wire cube. What's the shortest length
of a piece of wire that can be bent so as
to make the framework of a cube with
an edge 10 cm long? (The wire can
pass the same edge twice, can be bent
through 90° or 180°, but can’t be bro-
ken.)

M23

Patches on jeans. A pair of jeans with
atotal area of 1 have five patches on
them. The area of each patch is not
less than 1/2. Prove that there are two
patches such that the area of their
common part is not less than 1/5. (E.
Dynkin)

M24

Power calculating. To find the value
of x® given x, you need three arithme-
tic operations: X’=x-x, x'=x*- x>, x5 =
x* x* to find x'° five operations will
do: the first three of them are the
same, then x* - x° = x'¢, and x'6/x = x.
Prove that (a) x'°% can be foundin 12
operations (multiplications and divi-
sions); (b) x” for any positive integer n
can be found in no more than (3/2)
log,n + 1 operations. (E. Belaga)

M25

Figure 1
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Figure 2

Equilateral triangle and pentagon. Prove
that from any convex equilateral pen-
tagon (which isn’t necessarily regular)
it’s possible to cut out an equilateral
triangle, one of whose sides coincides
with a side of the pentagon (fig. 1). (S.

Konyagin)
Pysics

Fox and dog. A fox running along a
straight line with velocity v, was chased
by a dog whose velocity v, was con-
stant in absolute value and always
directed at the fox. When the velocities
v, and v, were perpendicular to each
other, the distance between the fox
and the dog was I. What was the dog’s
acceleration at that moment? (L Slo-

bodetsky)

P22

Floating vessels. A large number of
cylindrical vessels containing water
are immersed in one another so that
each vessel floats in the next one. The
bottom area of the smallest vessel is
s,, which is much smaller than that of
the largest vessel. A volume of water
v, is added to the smallest vessel.
What is the difference between the
old and the new positions of the bot-
tom of the smallest vessel with re-
spect to the ground? (All the vessels
continue to float.) (S. Krotov)

1981

Right or left! Two connected vessels
are of the shape shown infigure2. In
what direction will the water flow if
one of the vessels gets heated?

Double-size battery. A lamp con-
nected to a battery glows for three
hours, then the battery runs down.
Anotherbattery is made of the same
materials but is twice as large as the
original one (in length, width, and
height). How long will the new bat-
tery last if connected to the same
lamp? (The internal resistance of the
battery is much less than the lamp’s
resistance.) (K. Bedov)

P25

Whispering gallery. The phenome-
non of a “whispering gallery” is well
known in architectural acoustics. In
large cathedrals (for example, in St.
Peter’s Basilica in Rome) tourists are
invited to visit a circular gallery at the
base of the main dome. A word spo-

Side view Cupola

Figure 3




ken quietly at point A (fig. 3) of the
gallery is distinctly heard at point B if
the speaker looks along the wall. If,
however, the speaker looks directly at
point B, the-listener hears nothing.
How can you explain this?

At point A a poorly directed acous-
tic source emits a relatively loud impulse
of duration t. What'’s the duration of
the impulse received at point B? (The
gallery’s diameter is d.) (B. Klyachin)
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~ Walking on water

The curious ways we all, creatures great

nouen| Aabieg Ag Ly

and small, get around

by K. Bogdanov

E’'RE USED TO DIVIDING

creatures into those that live

in water and those that live on

land. Several types of insects,
however, spend just about their entire
lives on the air-water interface. One
of them is the water strider.

This insect skates swiftly along the
water’s surface like human skaters on
ice. Its long legs are splayed widely
and support a long, thin body.

The upper layer of water has a high
surface tension, which provides a reli-
able “skating rink” for the water strider.
If it runs into an area with substan-
tially lower surface tension, the in-
sect sinks into the water and help-
lessly flounders in it. Such an area can
be created by a few drops of hexane on
the surface of the water. The surface
tension of hexane (if it’s in contact
with air) is 6 = 18 mN/m, just about
one fourth that of water (70 mN/m).
(Close observation, however, reveals
that water striders can unerringly tell
an “acceptable” surface from a dan-
gerous one. If a few drops of water fall
on a smooth surface, they rush to the
shore and wait until the water calms
down again.)

Let's try to estimate the water strider’s
buoyancy. The insect is a little more
than five millimeters long. It has two
pairs of long legs keeping it on the
surface and a pair of shorter legs, whose
main use is to manipulate its prey.
The mass of a big water strider doesn’t

exceed 0.05 g. The force of surface
tension supporting the insect on the
surface can be estimated from the
product 6, L, where L is the contour
length of the distorted surface. The
equality mg = o L (the floating condi-
tion) yields L equal to 0.5 mN/70 mN
-m™ =7.1] mm. And what do we have
in reality?

Look at figure 1, which gives two
views of the leg—water contact area.
The secret of the amazing ability of
this insect to skate along the water’s
surface is in the ends of its legs. They’re
densely covered with water-repellent
hair. Since a water strider has only six
legs, the maximum length of the contour
line, to which the force of surface
tension (T) acts perpendicularly, is
about 12 mm.

It’s interesting that in conflict situ-
ations some insects that live on the
water eject a jet of liquid with a sur-
face tension lower than that of water.
As they flee, they leave behind a kind
of “no-man’s land” in which their
pursuers sink and start to drown.

Figure 1
Two views of a water strider’s leg on the
water’s surface.

Those fearlss "window cinbers”

How can a fly walk up and down
the vertical surface of a windowpane?
This question intrigued the great 17th-
century scientist Robert Hooke, who
supposed it was because of tiny nails
thatflieshave atthe ends of theirsix
legs. (In 1665 Hooke gave a detailed
description of these nails in his book
Micrography.) This explanation seems
quite reasonable for walking on a rough
surface. But in the case of smooth
glass, this approach leaves something
to be desired.

British scientists used the most
advanced scientific equipment to
demonstrate that the ability of flies to
walk on an extremely smooth surface
also is related to surface tension. The
scientists discovered that there is hair
growing between the nails at the end
of each leg. The hair forms a dense
brush, and each separate hair ends in a
disk-shaped suction cup with an area
of2-102m?2.

An examination of a fly’s footprints
on a clean surface revealed that their
shape is identical to that of the suc-
tion cups. The footprints don’t evapo-
rate, and a chemical analysis of their
content showed them to be fats. Of
course, a fat is usually a very slippery
substance, but in this case it facili-
tates the adhesion of the hair to the
glass. This is because the surface
tension of the fatis high. If a fly’s legs
are “defatted” by immersing them
briefly in hexane, the fly temporarily
loses its ability to walk on a glass
surface.

To measure the force keeping a fly
on a horizontal pane of glass, scien-
tists tied one to a special scale and
measured the force needed to lift it. A
fly weighs about 0.72 mN. When it
stands on only four legs, a force of
1.03 mN is enough to lift it up, but
when the fly stands on all six legs, a
greater force is necessary—2.4 mN.
This experiment reveals that the coupling
force derives mainly from surface tension.
(If the force is plotted as a function of
the number of legs in contact with the
surface, it turns out to be a nonlinear
dependence, perhaps because there
are a different number of hairs on a
fly’s fore and hind feet.)
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That's using your head

If you've never had a chance to
travel to Africa or South Asia, you've
surely seen on TV or in the movies
how women there carry huge loads on
their heads. Sometimes the load’s
weight is 70% of a human being's.
Sometimes the help of two men is
needed to lift such a load onto the
woman’s head. But once the load is
there the woman easily carries it away.
Why is it easier to carry a load on your
head than to lift it upwards?

The loss of energy by a man or
woman performing some work can be
measured by the oxygen consump-
tion rate. One liter of consumed
oxygen corresponds to 20.1 k] of ex-
pended energy. Experiments with
volunteers have demonstrated that
the oxygen consumption increases in
proportion to the weight of the load if
the load is carried in the usual way (on
the carrier’s back). For instance, if the
weight is equal to 50% of the carrier’s
own weight, the energy consumption
isincreased by 50%. The same situ-
ation was observed when untrained
persons were asked to carry loads on
their heads.

You can imagine how surprised the
scientists were when they found that
African women carrying a load equal
to 50% of their weight increased their
oxygen consumption by only 30%!
How did they do that? Further obser-
vation provided the answer.

A woman going home with a ves-
sel on her head filled to the brim with
water is a common sight in Africa.
However puzzling it may seem, the
water never gets spilled. This means
there is no (or almost no) vertical
acceleration. Consequently, the cen-
ter of mass of a woman carrying water
doesn’t oscillate in the vertical direc-
tion.

It’s known that normal walking
causes anoticeable displacement of
the body’s center of mass. Figure 2
shows two consecutive phases of
walking. Assuming that the leg coming
into contact with the road isn’t bent
(is straight at the knee joint), the cen-
ter of mass is at its lowest point when
both legs touch the ground. The high-
est point of the center of mass is
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Figure 2
The curve followed by the center of
mass as a person walks.

reached when the leg standing on the
ground is in the vertical position. This
suggests that the center of mass moves
along a circular arc whose radius is
equal to the length of the leg, periodi-
cally going up and down several centi-
meters.

Of course, this up and down move-
ment of the center of mass is utterly
useless, but it consumes energy. The
way we're accustomed to walking
may be compared to an inexperienced
driver alternately pressing the brake
and gas pedals, trying to maintain a
constant velocity and using up a lot
more gas in the process.

Unlike Europeans, many Africans
and South Asians developed a walk-
ing style that keeps their center of
mass at a constant level, thus sub-
stantially reducing their energy con-
sumption.

And now for Some aerabics

Maybe you've come across a lesson
in your physics textbook in which
two pendulums are suspended from
the same crossbar. If you kick one of
them, it starts oscillating alone, but
after several cycles the other begins to
move synchronously with the first. A
similar phenomenon can be observed
in the body of a running animal when
two “pendulums” interact—the peri-
odic motion of the animal as a whole
and thatofitslungs.

Figure 3 shows a kangaroo’s lung
“pendulum.” It operates in the fol-
lowing way: during inhalation, when
the lungs fill with air, the abdomen’s
center of mass shifts to the left; during

1981

exhalation it moves to the right. The
elastic properties of the diaphragm
and other tissues are depicted in the
drawing as a spring, and the organs
damping the oscillations are shown as
a shock absorber. Thus, the abdomi-
nal organs act as a kind of piston,
oscillating in phase with the breath-
ing.

Obviously the energy consump-
tion of a running animal is minimal
when inertial forces caused in its body
by its periodic acceleration and decel-
eration help (rather than hinder) the
breathing process. Such thinking leads
us to suggest that the breathing rate
should be close to the animal’s stride
frequency.

Special experiments performed with
kangaroos, horses, rabbits, and dogs
verified this idea. It was found that
the most convenient ratio of stride
frequency to breathing rate (especially
at a brisk gallop) is 1:1. In humans this
relationship is more complicated,
covering a range of values (4:1, 3:1, 2:1,
1:1, 5:2, 3:2), although the ratio 2:1
seems most likely.

The apparent independence of the
human breathingraterelative to the
speed of running may be explained by
the vertical position of the body. In
humans breathing is accompanied by
vertical displacement of the abdomi-
nal organs, whereas inertial forces act
in the horizontal direction. So the
“breath pendulum” in humans is af-
fected by inertial forces much less
than that in animals.

Going back to the textbook experi-
ment with the two pendulums, we

Figure 3
The “breath pendulum” in an animal’s
body simulated by a sliding piston

attached to a spring and shock
absorber.
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Figure 4

Distribution of pressure in a fluid
flowing around a symmetrical drop-
shaped body. (Since the variation in
presstire is always proportional to pv?/2,
it can be expressed in dimensionless
units 2p/pv2.)

notice that induced oscillations of the
second pendulum have the maximum
amplitude if both of them have the
same period of oscillation. So we can
expect that the natural oscillations of
the breath pendulum should be close
tothe stride rate. And experimental
evidence supports this conjecture.
Experiments with dogs have shown
that the frequency of natural oscilla-
tions of the breath pendulum was
about 4 Hz, and the frequency of strides
when the dogsran ata gallopwas 3.2
Hz.

Since the frequency of natural
oscillations of the breath pendulum is
constant for a given animal, the stride
rate should be kept constant to mini-
mize energy consumption even if the
speed varies. Indeed, both four-legged
and two-legged animals (for instance,
the kangaroo) keep their gallop rate
constant, while the length of their
strides can vary by a factor of two or
three.

Bernoull is for the birds

According to Bernoulli’s principle
(pv?/2 + p = constant, where p is the
density of a gas or liquid, v is the linear
velocity of its motion, and p is the
pressure) a variation in the velocity of
a flow alters the pressure inside the
flow. This is a direct consequence of
the law of conservation of mechanical
energy, since pv?/2 is numerically equal
to the kinetic energy of the fluid and p

is the potential energy of its compres-
sion (the pressure energy).

Bernoulli’s principle predicts that
if a body moves inside a fluid (or a fluid
flows around it in a streamlined flow),
the pressure in the fluid adjacent to
the body is different at different points
of the flow. Figure 4 illustrates this
variation for a drop-shaped body.

At points where the fluid encoun-
ters the body (point A), its velocity
falls and the pressure in the fluid
increases. Moving further along the
body’s contour, the fluid accelerates
and in some areas adjacent to the body
(point B) it moves with a greater veloc-
ity than that of the rest of the flow,
which by Bernoulli’s principle is ac-
companied by a decrease in pres-
sure. So high pressure affecting the
part of the body facing the flow tends
to compress the body, and the low
pressure in the vicinity of its sides
tends to flatten it.

People have been able to make
effective use of Bernoulli’s principle.
Figure 5 shows the cross section of an
airplane wing, Let’s consider the motion
of two air particles. Suppose the par-
ticles were close to one another before
striking the wing’s leading edge. Then
they separate and travel along the
upper and lower parts of the wing,
respectively, until they finally meet
at the rear edge. Particle A, however,
makes a longer trip than particle B,
which means that the average veloc-
ity of the first particle is greater. So, by
Bernoulli’s principle, the average pres-
sure on top of the wing is lower than
that under it. It is this pressure differ-
ence that accounts for the upward lift
force (which, of course, depends on
the surface area and shape of the wing).

How is Bernoulli’s principle used
in the animal world? The most vivid
example is the soaring flight of birds.
Although the aerodynamics of such
flight isn’t completely understood even
now, its main features are similar to
that of the human imitation, the air-

Figure 5

Air flow around an airplane wing.

plane. But nature has many more
mysteries that can be unraveled by
means of Bernoulli’s principle.

Most of you surely know that a
squid uses jet power to get away from
apredator, expelling water out of its
mantle cavity. Butit’sonlyrecently
that scientists understood how the
cavity fills with water.

Figure 6 presents a schematic view
of asquid and shows the direction of
its motion caused by the jet of water
expelled from the tube (siphon) near
the mollusk’s head. The inlet valves
through which water enters the mantle
cavity are in the middle of the ani-
mal’s side.
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Figure 6

Distribution of water pressure around
the body of a moving squid and the
squid’s cross section.

All our notions about the drop in
pressure of a fluid flowing around a
body can be readily applied to the
squid. The water pressure is lowest at
the middle of a swimming squid, near
the mantle cavity (see figure 6). The
inlet valves are located farther back so
that the pressure there is greater than
the average pressure inside the mantle
cavity. It is this drop in pressure that
causes the water to be drawn into the
cavity. '

The extent to which Bernoulli’s
principle contributes to the mecha-
nism by which the mantle cavity fills
with water has been evaluated by
numerical modeling. The pressure
gradient (that is, the variation in pres-
sure over unit length) given by Ber-
noulli’s law depends on the squid’s
velocity and is responsible for 50% to
90% of the water intake when its
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Figure 7
Distribution of pressure around the
body of a swimming fish.

velocity increases from 3 to 9 meters
per second. This indicates that Ber-
noulli’s principle is indeed very im-
portant in the squid’s activity, since
normally its velocity ranges from 5 to
10 meters per second.

But of all animals, perhaps fish
make the most effective use of Ber-
noulli’s principle. The long course of
evolution optimized their bodies to
such an extent that the total drop in
pressure near the middle of a swim-
ming fish just about equals the in-

7). Scientists believe that a significant
drop in pressure near a fish’s heart
may help the heart’s activity, since
lower pressure in the heart’s ven-
tricles must increase the influx of
blood.

Not only that, a fish’s body is built
in such a way that there’s an area
where pressure doesn’t depend on the
velocity of motion and always equals
the hydrostatic pressure. This is where
a fish’s eyes are located. So the eyes—
the organs with the least protection
against deformation—never experience
the increase in water pressure caused
by an increase in its swimming speed.

Some species of beetles are known
to spend most of their life under wa-
ter. In so doing they breathe air from
a bubble they always carry with them.
Potamodytes tuberosus, which lives
in the rivers of West Africa, is one
such “submarine” beetle. Usually
this beetle, together with its attached
air bubble, anchors itself to a stone
lying in flowing water. As soon as the
beetle finds itself in still (standing)
water, the bubble starts to shrink and

hours. This forces the beetle to look
for another bubble. So, when it finds a
bubble, the beetle prefers to stay in
flowing water.

The fact that the air bubble is more
stable in flowing water can also be
explained by Bernoulli’s principle. The
pressure of the water flowing around
the bubble, elongated in the direction
of the flow, is less than the hydrostatic
pressure along almost the entire length
of its surface. So the air pressure
inside the bubble in flowing water is
lower than that in still water. If a
beetle is in a shallow place, the air
pressure inside the bubble is below
the atmospheric pressure, so that the
air dissolved in the water (at atmos-
pheric pressure) tends to enter the
bubble and it starts expanding.

Even at a depth of several centime-
ters an air bubble often remains
stable despite the hydrostatic pres-
sure that works against it. Calcula-
tions show that for a bubble to be
stable at a depth of 1 cm, the velocity
of the water flow should be greater
than 1 m/s; at 4 cm, the flow should be

crease in front (compare figures 4 and ~ disappears completelyinacoupleof faster than 2 m/s. (@] j
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LOOKING BACK

The modest experimentalist
Henry Gavendish

Are unpublished results like a tree falling in the woods?

HE NAME HENRY CAVEN-

dish is associated with a multi-

tude of discoveries that didn't

become known until long after
they had been made. The personality
of the man, who dedicated hisentire
life to the natural sciences, has at-
tracted the attention of physicists,
historians of science, and psycholo-
gists for many years.

A scion of the noble family of the
Duke of Devonshire, Cavendish was
bom October 10, 1731, in Nice, where
his mother was living at the time on
the advice of her doctors. Her health
was delicate, and the birth of her
children strained it even more. Lady
Cavendish died shortly after the birth
of her second son, when her first son
Henry was two years old. At the age of
eleven, Henry was sent to one of the
best public schools in London, and in
1749 he entered Cambridge Univer-
sity, which he left in 1753 without
taking a degree. It has been argued
that he left Cambridge because of his
painful shyness and fear of examina-
tions. .

Cavendish travelled for some time
with his younger brother throughout
Europe, and then settled in London, in
his father’s house. Sir Charles Cav-
endish deserves special attention. He
was a noble, though not very rich,
man who was primarily interested in
the natural sciences. For many years
Sir Charles had been a member of the
Royal Society, and for some time he
was its vice president. His scientific
interests were mainly concentrated
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in the field of electricity, which was
fashionable at the time. The Ameri-
can scientist and statesman Benjamin
Franklin wrote about Cavendish sen-
ior: “It is to be wished that this noble
philosopher would communicate more
of his experiments to the world, as he
makes many and with great accu-
racy.”

It's not unlikely that father and son
performed some experiments together,
and Cavendish’s interest in science
was greatly influenced by his father.
But from the documents that have
been preserved, it’s clear that Henry
performed the majority of the most
important experiments on his own.

QUANTUM/LOOKING BACK

The range of Cavendish’s work is
80 broad that it’s difficult to assign
him a particular place in science. During
his lifetime he was famous as a chem-
ist. Because of his pioneering work on
gases, Cavendish is sometimes called
the father of the chemistry of gases.
He was the first to determine the
nature of hydrogen as a separate gas, to
verify that air is a mixture of oxygen
and nitrogen, and to demonstrate that
water consists of oxygen and hydro-
gen. He studied electrical phenom-
ena in chemistry and found that nitric
acid is generated by electric sparks in
humid air.

During one of his electrochemical
experiments Cavendish obtained in-
ert gases from the air. He did this by
letting electric sparks pass through
oxygen-enriched air in a U-shaped
glass tube. Both ends of the tube
remained unsealed and each was dipped
in a vessel containing a solution of
caustic soda. Two metal wires, at-
tached to the contacts of a machine
that produced electricity by friction,
passed through the solutions and in-
side the tube with the gas. When the
machine was started (it was Cavendish’s
servant who actually rotated the disk],
sparks ran between the ends of the
wires and generated nitric acid, which
was absorbed by the solutions. By
manipulating the mixture of air and
oxygen, it was possible to decrease the
volume of gas inside the tube. But, as
Cavendish mentioned in his labora-
tory journal, a small bubble of gas still
remained despite all his effort. This
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discovery remained unknown until
the end of the nineteenth century,
when two British scientists, Rayleigh
and Ramsay, successfully applied it to
obtain inert gases from the air and
study them.

Many chemical problems studied
by Cavendish were also studied by his
contemporaries Lavoisier, Watt, and
Priestley. But Cavendish always aimed
at a rigorous quantitative examina-
tion. For example, he not only proved
the existence of hydrogen, he also
found that this gasislighter than air
by a factor of eleven. Using the eudi-
ometer (an instrument he modified
specifically for this purpose), he stud-
ied the volumetric proportions among
air, hydrogen, and water generated
when such a mixture explodes.

It’s often alleged that Cavendish
devoted all his life to experimental
science but never published any re-
sults. This is an exaggeration. It’s
true that, for reasons that aren’t en-

tirely clear, Cavendish seldom pub-
lished his scientific findings. When
he did, it was often long after the
experiments were conducted, and this
led to disputes about who made a
discovery first. At any rate, a dozen or
s0 of his papers in physics and chem-
istry were published in the Philo-
sophical Transactions of the Royal
Society of London. Cavendish had
been a member of the society since
1760 and actively participated on a
number of its committees. He took
part in its meetings and dinners and
helped G. Banks, the president of the
Royal Society, in his work. Contem-
poraries said that Cavendish was re-
luctant to get into arguments, perhaps
because of his high-pitched voice. The
eminent English physicist and chem-
ist Sir Humphry Davy wrote that
Cavendish’s main passion was a dis-
interested search for the truth and
that fame and publicity repelled him.

Besides chemistry, Cavendish was
interested in ge-
ology. He made
several journeys
across England to
study the regional

variations in its
geology. During

came interested in
metallurgical proc-
esses, whose im-
provement re-
quired a knowledge
of physics and
chemistry.

Figure 1

(a) The apparatus used by Cavendish to determine the
density of the Earth. The whole apparatus is contained in an
outer casing C, which preserves it from air flows caused by
movement of the experimentalist; P and P'are pulleys for
rotating the beam B from which the two large balls W and
W' are suspended; F (broken line) is an inner casing
protecting the torsion balance from drafts and temperature
changes; A is a thumbscrew for adjusting the torsion
balance; 1 is a torsion wire; t is a torsion rod steadied by
wires w supporting two small balls x and x' at the ends; L

and L' are lamps; T and T' are telescopes.

b. Aviewof the system of balls from above. The arrows

Cavendish was
acquainted with
the most impor-
tant English sci-
entists of his time:
Priestly, Davy,
Watt, Young. His
scientific activity
continued almost
up to his death,
which came after
ashortillness on
February 24, 1810.
His last paper had
to do with astro-
nomical instru-
ments.

indicate the movement of the small balls x and x'.
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these trips he be-

One paper by Cavendish that ac-
quired widespread fame during his
lifetime presents his work in deter-
mining the mean density of the Earth.
It was published in 1798, and nowa-
days the experiment described in that
paper is known as the Cavendish
experiment. The question of deter-
mining the Earth’s density arose be-
cause calculations of the Earth’s de-
formation caused by its rotation, as-
suming that its density is constant,
led to a disagreement with data from
geophysical observations. Newton
himself had suggested that the den-
sity of the Earth’s inner layers could
be six times that of water. But all
attempts to obtain an agreement be-
tween calculation and observation
failed. An exact quantitative experi-
ment was needed.

Before the Cavendish experiment
attempts had been made to determine
the density of the Earth by observing
the deflection of a pendulum caused
by the attraction of a mountain. But
the method involved a lot of errors and
uncertainties, and Cavendish rejected
it. Instead, he used—and substan-
tially improved—an instrument in-
vented by the English scientist John
Mitchell.

The aim of the experiment was to
determine the period of torsional os-
cillations of a rod with two light balls
at its ends. The rod was suspended at
its middle by a silver-plated copper
wire (fig. 1). The period and amplitude
of oscillations of the system depend
on the attraction exerted on the balls
attached to the ends of the rod by two
larger balls outside. This attraction is
caused by gravitation. Using some
mathematics (and Cavendish was an
expert mathematician), one can find
the constant of gravity G through the
measured values of the period and
amplitude of oscillations. Next, one
can find the mean density of the Earth
by using the mean radius of the Earth
and the gravitational acceleration g
(whose values can be found from geo-
physical measurements). In fact,
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The Cavendish Laboratory at Cambridge

University (from a photograph taken just before the
turn of the century). Over the years many
outstanding physicists have worked there,
including Nobel laureates Lord Rayleigh, Sir Joseph
John Thomson, Ernest Rutherford, Sir William
Henry Bragg and Sir William L. Bragg, Charles T. R.
Wilson, Sir James Chadwick, George Thomson, Sir

Nevill F. Mott, and Pyotr Kapitsa.
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The important thing, of course, is to
determine the fundamental constant
G by using the data obtained in the
laboratory, not to find the geophysical
quantity D. So the Cavendish experi-
ment is generally considered an ex-
periment for determining G.

Cavendish showed great experimen-
tal ingenuity in constructing such an
apparatus that the distance between
the small and the large balls could be
changed by an observer at a distance.
This reduced the influence of extrane-
ous factors on the results of the ex-
periment. The use of a telescope for
takingreadings off the apparatus en-
abled him to make very exact meas-
urements of the displacement of the
balls (down to 1/20 inch).

To reduce experimental error Cav-
endish devised a special method of
measurement, which he performed
by observing the arm of the rod. He
wrote in his paper: “I observe three
successive extreme points of a vibra-
tion, and take the mean between the
first and third of these points, as the
extreme point of vibration in one di-
rection, and then assume the mean
between this and the second extreme
as the point of rest . . ..” In this way he
was able to determine the deflection
of the rod from some middle position;

or, to put it another way, to
find the amplitude of the
oscillations. To determine
the time, or period, of oscil-
lation, he proceeded as fol-
lows: “I observe the two
extreme points of a vibra-
tion, and also the times at
which the arm arrives at
two given divisions between
these extremes, taking care,
as well as I can guess, that
the divisions shall be on
different sides of the middle
point, and very far from it. I
then compute the middle
point of the vibration, and
by proportion, find the time
atwhich the arm comes to
this middle point. Ithen,
after a number of vibrations,
repeat this operation, and
divide the interval of time, between
the coming of the arm to these middle
points, by the number of vibrations,
which gives the time of one vibra-
tion.”

To determine the mean density of
the Earth, Cavendish performed sev-
enteen series of measurements. Ac-
cording to his data the ratio of the
density of the Earth to that of water
equals 5.48.

The experiments were highly ap-
preciated by contemporary scientists.
In 1820 the eminent French mathe-
matician and physicist Laplace wrote:
“On examining with the most scru-
pulous attention the apparatus of
Monsieur Cavendish and all his ex-
periments made with the precision
and thoughtfulness that are charac-
teristic of this excellent physicist, I
see no objection to his result, which
assigns 5.48 as the value of the mean
density of the Earth.”

At present the mean density of the
Earth is taken to be 5.517 g/cm?. A
modernized version of Cavendish’s
torsion balance is still used for physi-
cal measurements,

The scientific heritage of Henry
Cavendish isn’t confined to the ex-
periments and discoveries described
above. Cavendish obtained impor-
tant results in studying heat phenom-
ena as well. He determined the spe-
cific heat of various substances, stud-
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ied the process of melting, and discov-
ered the phenomenon of latent heat of
melting. Cavendish also performed
important experiments in electricity
and magnetism, some of which be-
came known because of the efforts of
James Clerk Maxwell.

The story of how they came to be
published is interesting in its own
right. In 1861 William Cavendish, the
Duke of Devonshire, was elected
chancellor of Cambridge University.
The duke had graduated from Cam-
bridge and had shown some talent in
mathematics. In 1870 he suggested
that a physics laboratory be built at
the university, and he created a spe-
cial fund to that effect. In 1871 a
laboratory named after its founder,
the Cavendish Laboratory, was estab-
lished. In accordance with the recom-
mendations of the eminent scientists
Stokes, Rayleigh, and Thomson, the
position of Cavendish Professor was
offered to the great physicist James
Clerk Maxwell. He accepted the offer
and actively turned to building the
laboratory, which was completed in
three years. The Duke of Devonshire
also placed Cavendish’s manuscripts
in Maxwell’s hands, and Maxwell agreed
to look them over. Maxwell was
amazed by what he read. It turned out
that Cavendish had discovered Ohm’s
law long before Ohm, had studied the
conductivity of solutions, and had

Cavendish constructed special
measuring devices for almost all of his
experiments, taking into account
convenience of use as well as precision
of measurement. He made this very
precise thermometer for studying the
thermal properties of substances. In its
appearance the apparatus isn't all that
different from modern high-precision
thermometers.
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made very precise measurements of
capacitance. Maxwell devoted great
care to publication of the manuscripts
and even repeated some of the
experiments himself. Cavendish’s
manuscripts were finally published
in 1879, just a few months before
Maxwell died.

Did scientists acquire a better
understanding of Cavendish’s work
from this publication? This simple
enumeration speaks volumes about
the immense amount of information
contained in it. He was the first to
give an accurate definition of electri-
cal capacitance and used the capaci-
tance of a prescribed size as a unit of
capacitance; he studied the depend-
ence of the conductivity of aqueous
saline solutions on concentration and
temperature; and he predicted the laws
of direct current long before Ohm.

Cavendish also found that the re-
pulsion (or attraction) of electrical charges
depends on distance, a discovery made
more than 10 years before Coulomb.
Maxwell found the paper describing
Cavendish’s apparatus and measure-
ment procedure, and it seems that the
paper had been prepared for publica-
tion. This experiment is of particular
interest because all modern tests of
Coulomb’s law are based on the method
proposed by Cavendish.

Here’s how Cavendish described
his experiment: “Itook aglobe 12.1
inches in diameter and suspended it
by a solid stick of glass run through
the middle of it as an axis, and covered
with sealing-wax to make it a more
perfect non-conductor of electricity. I

Figure 4
Cavendish’s sketch for his experiment
with the globe and two hemispheres.
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then inclosed this globe between two
hollow pasteboard hemispheres 13.3
inches in diameter, and about 1/20 of
an inch thick, in such manner that
there could hardly be less than 1/10 of
an inch distance between the globe
and the inner surface of the hemi-
spheres in any part, the two hemi-
spheres being applied to each other so
as to form a complete sphere, and the
edges made to fit as close as possible,
notches being cutin each of them so
as to form holes for the stick of glass to
pass through. By this meansIhadan
inner globe included within an hol-
low globe in such a manner that there
was no communication by which the
electricity could pass from one to the
other. Ithen made a communication
between them by a piece of wire run
through one of the hemispheres and
touching the inner globe, a piece of
silk string being fastened to the end of
the wire, by which I could draw it out
at pleasure.

“Having done this I electrified the
hemispheres by means of a wire
communicating with the positive side
of a Leyden vial, and then having
withdrawn this wire, immediately drew
out the wire which made a communi-
cation between the inner globe and
the outer one, which, as it was drawn
away by a silk string, could not dis-
charge the electricity either of the
globe or hemispheres. I then instantly
separated the two hemispheres, tak-
ing care in doing it that they should
not touch the inner globe and applied
a pair of small pith balls, suspended by
fine linen threads, to the inner globe,
to see whether it was at all over or
undercharged.”

Except for the very last phrase, the
description looks very modern! Be-
cause Cavendish accepted Franklin’s
theory of electricity, he used the terms
“over” or “undercharged” body, which
simply means “electrified body.”

One can easily show that if the
inner globe is charged after the de-
scribed procedure was used, then the
electrical interaction between point
charges doesn’t obey the law 1/r2.
Cavendish invented a special means
of making measurements more accu-
rate. He even calculated possible ex-
perimental error and decided that if
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the law of electrical force is
1
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then
g<1/50.

Maxwell was so excited by this
experiment that he asked his assis-
tant to repeat it using a more sensitive
electrometer to determine if the inner
globe has any charge or not.

The result of this test was g <
1/21600. The progress of this physical
experiment might be illustrated by
the fact that modem tests give g < (2.7
+3.1). 107

And to think that all these results
found by Cavendish had remained
unpublished! Some of his experi-
ments were conducted anew. In most
cases Cavendish’s results turned out
to be very accurate.

Interest in the scientific legacy of
Henry Cavendish hasn’t diminished.
In 1927 a new edition of his papers,
which contained some previously
unpublished material, was published
by Cambridge University Press. And
again there was a sensation: his
measurements of the Earth’s mag-
netic field gave new data for the mag-
netic history of the Earth. It turned
out that Cavendish had put forward
the idea of energy conservation and
considered the quantity correspond-
ing to the potential energy. Again
there were lamentations that Cav-
endish’s results had been unknown
for more than one hundred years. Not
only his results but the problems them-
selves were largely unknown to his
contemporaries, and quite often they
constituted the program of research
that was conducted throughout the
nineteenth century.

So acquaintance with the scien-
tific work of Henry Cavendish amazes
and bewilders us by the scope of his
imagination and the accuracy of his
experiments. Even though many of
his results were obtained anew by
other scientists, who are rightly con-
sidered the authors of these discover-
ies, Cavendish’s work has an impor-
tance all its own. @




HAPPENINGS

Bulletin board

Careers in hiophysics

The Biophysical Society is offering a 20-page full color
brochure called “Careers in Biophysics.” Designed for
high school and college students, the booklet discusses
opportunities for those interested in the physics and
physical chemistry of biological processes, making great
use of quantitative measurements and analysis. Biophysi-
cists work in universities, industry, medical centers,
research institutes, and government, using the methods of
mathematics, physics, chemistry, and biology to study
how living organisms func-
tion.

A 22-minute videotape is
also available for a small fee. It
shows a table discussion by
three scientists and two stu-
dents. To obtain information
on the video, or to receive a
free brochure, write to Emily
Gray, Administrative Direc-
tor, Biophysical Society, 9650
Rockville Pike, Bethesda, MD
20814, or call 301 530-7114.

Brandeis Summen Odyssey

For those students entering grades 10-12 who are inter-
ested in an academic experience that combines science
and interdisciplinary studies with social and recreational
activities, Brandeis University offers its Summer Odys-
sey. Two programs are available: the Academic Study
Program, which offers students one innovative course in
such scientific fields as biotechnology or astronomy, and
one complementary course in areas such as creative
writing or politics; and the Science Research Internship,
which allows students to serve as research apprentices in
laboratories at Brandeis University, working closely with
faculty members on frontier research topics in such areas
as computer science, physics, and psychology. Students in
both programs take part in workshops, recreational field
trips, and cultural outings during the course of the session.

This year the Science Research Internships are con-
ductedfrom June 23 to August 16. The Academic Study
Program takes place July 7 to August 3. Application
deadlines are April 15 and May 15, respectively. For more

information on the Summer Odyssey programs, costs, and
financial aid availability, contact Jane Schoenfeld, Assis-
tant Provost, Summer Odyssey, Brandeis University, PO
Box 9110, Waltham, MA 02254-9110, or call 617 736-2113.

Program in Mathematics for Young Scientists (PROMYS)

Boston University and the National Science Founda-
tion offer a PROMYS for students entering grades 10-12.
Through their intensive efforts to solve a large assortment
of challenging problems in number theory, the partici-
pants practice the art of mathematical discovery—nu-
merical exploration, formulation and critique of conjec-
tures, and techniques of proof and generalization. More
experienced participants may also study algebra, combi-
natorics, and the theory of algebraic curves. Special
lectures by outside speakers offer a broad view of mathe-
matics and its role in the sciences. Fach participant will
also belong to a problem-solving group that meets with a
professional mathematician three times a week.

This year’s program runs from June 30 to August 10.
Admissions decisions will be based on the following
criteria: applicants’ solutions to a set of challenging
problems included with the application packet, teacher
recommendations, high school transcripts, and student
essays explaining their interest in the program. Applica-
tions will be accepted from March 1 to June 15, and
financial aid is available. For more information or an
application packet, write to PROMYS, Department of
Mathematics, Boston University, 111 Cummington Street,
Boston, MA 02215, or call 617 353-2560.

Principles of Science in a kit

Edmund Scientific Company has introduced a new line
of five kits that can be assembled into actual working
models, allowing young scientists a greater understanding
of science principles. Kits come complete with parts and
instructions for making these projects: a working water
pump, an air speed/direction anemometer, a light-flashing
railroad signal, an electricity-producing generator, and a
working motor. Kitsretail from $12.95 each. For more
information, write to Edmund Scientific Company, De-
partment 11B1,E999, Edscorp Building, Barrington, NJ
08007.

—Compiled by Elisabeth Tobia
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MATHEMATICAL SURPRISES

Galendar calculations

The "Doomsday” rule

by John Conway

ERE’'SANEASY WAY TO REMEMBER the entire
calendar for any particular year.
You first find out on what day of the week the last
day of February falls. I call this particular day of the
week the “Doomsday” for the year. For example, in 1991,
February has 28 days, and since February 28, 1991, is a
Thursday, we shall say

in 1991, “Doomsday” is “Thursday.”
Now the date that is four weeks eatlier than February 28 is
“February 0” = January 31,

and so in 1991 (or any other year that isn’t a leap year| the
last day of January is also a “Doomsday.”

Leaving leap years aside for the moment, let’s move on
to the later months in the year. We can think of February
28 as “March 0,” so that the date exactly five weeks later
is “March 35" = April 4, so that

the fourth day of the fourth month is a Doomsday, and
similarly:

the sixth day of the sixth month is a Doomsday,

the eighth day of the eighth month is a Doomsday,

the tenth day of the tenth month is a Doomsday, and
finally

the twelfth day of the twelfth month is a Doomsday.

Why do these dates all fall on the same day of the week?
The reason is that the interval between any two adjacent
ones is two months and two days, which amounts to 30 +
31 +2 = 63 days, since it happens that one of the months has
30 days and the other has 31. And of course 63 days = nine
weeks.

Some people (including me) have difficulty remember-
ing (for instance) just which month is the eighth month of
the year. I recommend that such people repeat the
following refrain:

“April the fourth, June the sixth, August the eighth,
October the tenth, December the twelfth,”

which serves the double purpose of reminding us both that
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August (say) is the eighth month and that August the
eighth is a Doomsday in that month.

What about Doomsdays in the odd-numbered months
other thanJanuary? The ruleis thatin the nth month, if
nis odd, the n + 4th or n - 4th day is a Doomsday, namely
the nn + 4th day in a long odd month (31 days| but the n—4th
day in a short odd month (30 days). You don’t have to pause
to work out which months are long and which short if you
just

remEMBER that
SeptEMBER and
NovEMBER

are the only short odd months. The Doomsday Table
summarizes all this:

Month Doomsday Mnemonic
January 31 or32 “last”
February 28 or 29 last
March 7 3 long
April 4 4 even
May 9 5long
June 6 6 even
July 11 7 long
August 8 8 even
September 5 9 short
October 10 10 even
November 7 11 short
December 12 12 even

The entries for January and February differ from the
others in that they are affected by the leap year phenome-
non. The Doomsday for February is by definition its last
day—thatis, the 28th or 29th depending on whether the
year is an ordinary year or a leap year. The Doomsday we
pick for January is correspondingly the 31st or 32nd.
Although, of course, the “32nd of January” is actually in
February, we prefer to pretend thatin leap years January
has 32 days, so that we’re taking the “last” day of January.

If you want to become an adept, you should now
memorize this table. It's a good idea to find a like-minded
friend to practice with: one of you names months at
random, the other responds with the corresponding Dooms-
days. After a time you should go on to name the other
Doomsdays in these months, which of course are found by



adding and subtracting multiples of 7 from those given.
For instance,

“First Doomsday in July!” “the FourthofJuly” (11-7);
“Last Doomsday in December!” “December26” (12 +
14);

“Doomsday in mid-August!” “August 15”7 (8+ 7).

The first of these examples is easily remembered by
Americans!

Now you can go out and startle your friends by telling
them the day of the week for any given date in 1991. What
you do when faced with a given date is to quickly figure out
a nearby Doomsday (Thursday in 1991) and express that
date as a few days “on” (after) or “off” (before| that
Doomsday. The rest is easy.

Examples:

June 9= “3on” (June 6)= 3on Thursday = Sunday;
Christmas day (Dec. 25) = “1 off” (Dec. 26) = 1 off
Thursday = Wednesday.

Just how does one work out that “3 on Thursday” is
Sunday? English-speaking readers might find my mne-
monics (memory devices) helpful:

NUNday, ONEday, TWOsday, TREBLESday,
FOURSday, FIVEday, SIXerday, SE’ENday

for SUNday, MONday, TUESday, WEDNESday,
THURSday, FRIday, SATurday, SUNday.

These help identify the days of the week with numbers,
and so it becomes trivial to see that “3 on FOURSday” is
“SE’ENday.”

Doomstays in othier years

If you have learned all this, you might like to know how
to work out dates in others years as well. To find any
Doomsday in a give century, all you need to know is what
the Doomsday was for the century year. For example,

1900 = Wednesday,

and how Doomsday changes from year to year. The rule is
that Doomsday normally advances by one day a year, but
by an additional day in leap years. It follows that as 12 years
in a century roll by, Doomsday advances by 12 + 3 days,
since three of those years will be leap years. Since thisis
one day more than two weeks, we see that, as far as
Doomsday is concemed,

“Adozenyearsis butoneday.”

This gives us an easy rule to find the Doomsday for any
year in any century. Add together the century day, the
number of whole dozens thereafter, the remainder, and
the number of fours in the remainder, casting out mul-
tiples of 7 whenever you like. For example, for 1991 we say

“Wednesday, 7 dozen, 7, and 1 equals Thursday,”

because we can ignore those 7’s, and because Doomsday in
1900 was a Wednesday, “91” is 7 dozen and 7,” and there
is just one “4” in the last “7.” For the year 1969 we should
say

“Wednesday, 5 dozen, 9, and 2 = Wednesday + 2 = Friday,”

because we can cancel 5 + 9 = 14, and because 69 is “5 dozen
and 9,” and there are two 4’sin 9.

In practice it’s best to combine this calculation with the
calculation within the given year, as in this example:

“What day of the week was August 10, 194627
“2 on Wednesday, 3 dozen, 10, and 2 = Wednesday + 3
= Saturday.”

This is because August 10 is “2 on” a Doomsday, and we
can cancel 2 + 10 + 2 = 14 days. You'd be wise to assemble
all the things to be added before trying to add any of them
since there will probably be lots of cancellations, which
will mean that in the end you hardly have to add anything!

Doomsdays in other centuries

Our last table gives all the Doomsdays you are likely to
need for the “century years”:

Julian Doomsdays

Gregorian Doomsdays

000 700 1400 Sunday

100 800 1500 Saturday 1600 2000 2400 Tuesday
200 900 1600 Friday 1700 2100 2500 Sunday
300 1000 1700 Thursday 1800 2200 2600 Friday
400 1100 1800 Wed. 1500 1900 2300 2700 Wed.
500 1200 1900 Tuesday

600 1300 2000 Monday

In actual fact there was no “year 0,” since 1 B.C. was
immediately followed by 1 A.D. Tjustremember thatin
the Julian system the multiples of 700 were Sundays, and
moving a century backwards adds one day. In the Gregor-
iansystem, Iremember that 1900 was a Wednesday and
that each century backwards to 1600 adds two days, while
the entire period is 400 years.

In the Julian system, as instituted by Julius Caesar,
every multiple of 4 was a leap year. In the Gregorian
system, instituted by Pope Gregory IV, the multiples of
100 are not leap years unless they’re also multiples of 400.
The Julian system was used up to October 4, 1582, in Italy,
France, and Spain; September 2, 1752, in Britain (and the
North American colonies); and 1919 in Russia. So, for
example, January 1, 1901, was

“2off Wednesday, Odozen, 0, and 1 = Tuesday”

in America, but
“2off Tuesday, 0,0, 1= Monday”

in Russia. (@
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QUANTUM SMILES

The Simplicity of mathematics

T THE END OF THE 1940s the great mathematician
John von Neumann gave a report on the future of
computers. He told his listeners that mathematics
was only a very small and very simple part of life. The
shuffling and coughing in the hall indicated that the audi-
ence wasn'’t in complete agreement. Sensing this, von
Neumann added, “If you don’t believe that mathematics
is simple, it’s only because you don’t realize how compli-

cated life is.”

HE WASHINGTON POST re-
cently introduced a new column
called “Why Things Are,” con-
sisting of questions we’ve all
thought of but were afraid (or too pru-
dent) to ask. Amongsuch queries as
“Why do we remember the middle
names of assassins?”, “Why are some
quarters red?”, and, of course, “Why is
this columnhere?”, Joel Achenbach

48

And troglodyte fractions

Thig justin...

poses the following question of inter-
est to all of us who think about physi-
cal laws (or at least obey them
conscientiously): Why do objects fall
at the same rate toward the Earth
regardless of their weight?

““You would think,” writes Achen-
bach, “that Marlon ‘The Refrigerator’
Brando, if dropped from the top of the
Empire State Building, would hit the
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ECENT ARCHAEOLOGICAL FINDINGS reveal
that an understanding of fractions as parts of the
whole had arisen way back in the Stone Age, when
none of our hearty ancestors could manage to eat an
entire wooly mammoth. When the mammoths became
extinct and there were only little animals to hunt, frac-
tions were no longer needed and gradually fell out of use.

ground before a paper clip that was
dropped simultaneously.” Asyou all
know from your elementary physics
textbook, add the condition of avac-
uum and you can safely predict the
two objects will land at the same
time.

Now, there’s a skeptic in every
classroom (and certainly several out
in readerland), so Achenbach proposes



an experiment: “Pick up a paper clip.
Now pick up Marlon Brando. Marlon
Brando is definitely heavier. What do
we mean by ‘heavier’? We mean that,
holding the 300-pound Oscar-winning
actor by the lapels, we can detect that
he is subject to greater gravitational
force. But Brando has another distinct
feature: He is hard to move. The more
massive an object, the greater the
force needed to move it from a state of
rest. This is true whether you are
rolling someone down the sidewalk
or dropping him from a skyscraper.

“The hard thing to realize is that
the objects don’t fall ‘because there’s
nothingunderneath them.” Objects
fall because they are being moved by
gravity. You do not, in fact, ‘drop’
Marlon Brando; you just place him in
a point in space. Since there is no
structure to support him, gravity can
move him without encumbrance.

“The point here is that heaviness is
a two-sided coin. As you get heavier,
gravity pulls harder, but it is also that
much harder to budge you. So weight
doesn’t make you fall faster or slower.
That's your answer.”

Unfortunately, Achenbach couldn’t
leave well enough alone. He went on
to elaborate: “Theoretically, if you
had unbelievably sensitive instruments,
and if you dropped Marlon Brando and
the paper clip in separate experiments
instead of simultaneously, you might
be able to show that the cinematic
giant hit the ground a fraction of a
microsecond more quickly than the
paper clip. This is because the star of
‘The Godfather’ exerts his own gravi-
tational attraction and pulls the Earth
toward him as he descends. So does
the paper clip, but not as dramatically.
This is worthless cogitation, though.
Gravity is the weakest of the four
known forces in the universe (except
perhaps on Mondays) and even the
porcine Brando exerts an infinitesi-
mally slight pull.”

His point about gravity on Monday
mornings is certainly well taken. But
an alert reader named Michael Page
fired off a letter to the editor taking
issue with the very last phrase. “Three
cheers for the new column ‘Why Things
Are,”” he writes. “While I enjoyed
most of the questions and answers,

particularly the two on physics, I am
compelled to note that one statement
violates Newton’s third law of mo-
tion.”

When Achenbach says that Mar-
lon Brando exerts only an infinitesi-
mally slight pull on the Earth, he
“destroys a fundamental and beauti-
ful symmetry in nature: that forces
come in equal and opposite pairs; that
every action has an equal and opposite
reaction; that no matter how hard you
try, you can’t lift yourself and the

chair you're sitting in by pulling on
the sides of the chair. Indeed, by using
a bathroom scale and Newton’s third
law, we can easily measure the strength
of Brando’s gravitational pull on the
Earth. It isn’t infinitesimal; it’s about
300 pounds!”

Perhaps Achenbach could have spared
himself the irritation of a nettling
letter by specifying the scale he used
in so blithely dismissing the gravita-
tional pull of this great, albeit cosmi-
cally rather small, actor. @
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ANSWERS, HINTS, SOLUTIONS

Math

Two possible constructions are shown
in figure 1. We leave it to you to show
that the dark segments are indeed 72
long.

Figure 1
M22

The answer is 150 cm. Figure 2 shows
how to make the required cube out of
apiece of wire this long. Let’s prove
that a shorter wire won’t do.

Figure 2

Consider first the framework of a
cube made so that the wire begins,
ends, and is bent only at the vertices of
the cube. Let’s count the number of
segments of the wire that join adja-
cent vertices (each of them is 10 cm
long). The number of segments issu-

ing from any vertex is obviously not
less than 3. Moreover, if a vertex isn't
an end point of the wire, then the
corresponding number of segments is
even (it's twice the number of times
the wire passes through this vertex),
so it’s not less than 4. A cube has 8
vertices and at most 2 of them can be
the end points of the wire; therefore,
the sum of the number of segments
issuing from each vertex is not less
than 2 -3 + 6 -4 = 30. In this sum each
segment is counted twice because it
has two ends. Thus, the number of
segmentsisnotlessthan 15, and the
length of the wire is not less than 150
cm.

Now consider an arbitrary wire cube.
We're going to get rid of bends that are
interior to the edges and bring the
ends and turns of the wire to some
vertices without extending the wire.
By the end of these transformations
we'll get a framework of the sort con-
sidered above, so the original piece of
wire had tobe atleast 150 cm long.

The transformations can be per-
formed edge by edge. Skipping the
details, we just show in figure 3 (top
row] five essentially different patterns
of a portion of wire between two neigh-
boring vertices of the cube. In the
middle row you see the process of
transformation, and at the bottom,
the results. (V. Dubrovsky)

Let x, be the area of the part of the
jeans that is covered by exactly k
patches, k=0, 1, ...,5. Thenthearea
of thejeansis

Ap=Xg+X + X, + X, + X, + X, =1,

the sum of the areas of patches is

A =x +2x,+3x,+4x,+5x,25/2

(of course, the area of the n-fold inter-
section of patches is counted here n
times), and the sum of the areas of the
10 paired intersections is equal to

A,=x,+3x,+6X, + 10x,

(the factors 1, 3, 6, and 10 here are the
numbers of pairs of patches chosen
from?2, 3,4, and 5 patches). Since

A,>-3x,-X, + X, +3X,+ 5x,+ 7X,
=2A -3A,>2,

at least one of 10 possible paired inter-
sections has an area not less than 2/10
- 1/5.

To tackle more general questions
of this sort, one should use the so-
called formula of inclusions and ex-
clusions: if A is the sum of the areas
of some figures and A, is the sum of
the areas of their k-fold intersections
(k =2, 3, ..), then the area of their
union equals A - A, + A, - ... (N.
Vasilyev)

The main tool needed to solve this
problem is the calculation of x* for
n = 2%in k multiplications:

Ak
X=xx,x*=x2-x2 ..., xr =x

in the course of which we also obtain
all the powers
sz "

m=1, .., k-1. Evidently 2% is the
highest exponent of x that can be
reached in k operations, so x” for an
arbitrary n can’t be found in less than
log,n operations.

(a) Based on the representation x'*®
=x1024/(x16. x8), we can proceed as fol-

=T el S ¥

) C

Ml

=N "

a b
Figure 3
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lows: find the values of x"forn=2, 4,
8,16, ...,1024 =2 in 10 multiplica-
tions and then complete the calcula-
tion with one more multiplication
and division. It can be proved that 12
is the minimum number of opera-
tions needed to obtain x'%%°, though
the rough estimate given above yields
10 as the lower bound for this number
(log,1000 = 9.96...). '

(b) Multiplications and divisions of
powers of x are reduced to additions
and subtractions of their exponents.
So it suffices to prove that, starting
with the number 1, we can obtain
any positive integer n in no more than
(3/2) log,n + 1 additions or subtrac-
tions. We'll describe two methods of
calculating nn based on the binary number
system. The shorter of the two will
give us the desired estimation.

It's known that any positive integer
ncanbeuniquely represented in the
form

—g.90l 91 .
n=a,-2%+a, -2'+..+a,-2+a, (1)

where g, isOor 1fork=0,1, ...
=1. Thenotation

1-1, 4,

(n),=aa, ...a,
is the binary representation of n. Let
s(n) be the number of nonzero terms
in the sum (1}—that is, s(n)=a,+ a, | +
e H

The first method is to calculate all
these terms in  additions (1 + 1 =2,
2+2=4,..,2"1+2-1 =2 and then
add them up, which will take s(n)-1
more additions. The total number of
operations according to this method
isN,=1+s[n)-1.

The second method is to find first
the complement 77 of n with respect to
2]+ 1:

7 =21_n
=242 4 +1-n+1
=(l-a)-2'+(1-aq, ) 2!

+.o.(l-a))+1.

As we already know, it will take [+
s(11) -1 additions. Now we need one
more addition to obtain 2+ = 21 + 27(2]
has been found in the course of calculating
1), and one subtraction: n=2/*!-17.
Since s(l) < (l—a)+(1-a,_ ) +..+

(1-ay) +1=1+2-s(n), here the total
number of operations equals

N,=1+sn)+1<2l-s(n)+3.

The smaller of the numbers N, and
N, doesn’t exceed half of their sum:

(N, +N,)/2 <(3/2)]+1.

It remains tonotice that/<log,n.

Of course, replacing the smaller of
the numbers N, and N, with (3/2)
log,n + 1, we usually lose accuracy in
the estimation: in problem (a), x!%%0
was obtained by the second method in
N =12 operations, when (3/2) log,1000
+ 1 =15.95. Moreover, sometimes
neither of our methods is the shortest
possible. For example, x!°%° can be
found in 9 multiplications (think how!),
though from (170), = 10101010 and
(170), = (86), = 1010110 it follows that
1=7, sln)= s{n) =4 for n =170, and so the
first method needs N, = 10 and the
second N, = 12 operations. (E. Belaga)

Suppose that for some convex equilat-
eral pentagon ABCDE the statement
of the problem isn’t true. We can
assume that all the sides of the penta-
gon are of length 1 and AD is its
longest diagonal. In figure 4,

2, =AB+CD < AO + OB + CO + OD
-AC+BD <2AD,

so AD > 1. Since side AD is the longest
oneintriangle ABD (AD > BD, AD >
AB = 1), the opposite angle ABD is
greater than 60° because it’s greater
than the other two angles of the tri-
angle. If angle BAD were also greater
than (or equal to) 60°, then the equilat-
eral triangle constructed on AB would
go in triangle ABD and all the more in
the pentagon. This would contradict
our initial supposition, so angle BAD
c

Figure 4
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< 60°, which means that point B is
located on the arc BB, of angle meas-
ure 60°, radius 1, and center A (ends B,
and B, excluded; see figure 5). Simi-
larly, thelocus of point Cis the open
arc C,C, with center D, congruent
with B B,. The arcs intersect because
AD <AE+ED=2.
B> Co

Cy B; B

Figure 5

To complete the proof, let’s show
that the distance between any two
points B and C of our open arcs is less
than 1 (in contradiction to the as-
sumption that BC, like the other sides
of ABCDE, isoflength 1).

Fix B and let C slide along the arc
C,C, (fig. 6). By the law of cosines for
triangle BDC, BC increases with the
increase of angle BDC, so BC < BC, or
BC<BC,.

G,

c, D
Figure 6

The same is true for the segment
BC,(i=1,2)asitslides along the arc
B B,: its maximum length is achieved
when B coincides with B, or B,. Thus,
the segment BC is shorter than one of
the segments B,C, (i, k = 1,2). But the
lengths of all these segments are obvi-
ously less than 1.

This solution can be developed further
to prove the statement of the problem
for any convex equilateral polygon
with an odd number of sides. But for
polygons with an even number of
sides, the statement is false: sucha
polygon can be made arbitrarily nar-
row by moving its two opposite verti-
ces apart. (N. Vasilyev, V. Dubrovsky)

HINTS, SOLUTIONS 01




Physics

Since the absolute value of the dog’s
velocity is constant but its direction is
different at different moments, its ac-
celeration is perpendicular to the ve-
locity. The trajectory of any material
point over a short period of time can be
approximated by the arc of a circle.
The dog’s acceleration is then equal to
the centrifugal acceleration

a=

w‘I\J<:I\J

>

where R is the radius of the circle
approximating the real trajectory of
the running dog.

v At

= 1;71

ey
-_?V

1

|
|
1
1
|
:
|

Figdre 7

Consider now the displacement of
the dog over a short interval of time At.
During this time the vector of the
dog’s velocity rotates by an angle o
such that o.= v,At/R (fig. 7). On the
other hand, over the same interval of
time the fox covers the distance v At =
od, since the vector of the dog’s veloc-
ity is constantly aimed at the fox.
Consequently, v,At/R = v At/l. And so

1%
R=-21
1%

and

Consider the floating condition of any
of the vessels: the force of gravity
actingon this vessel is compensated
by the difference between the inside
and outside pressure. Soboth before
and after the addition of water into
any vessel, the difference between the
outer and inner water levels remains
the same. This means that the posi-
tion of all the water levels remains
fixed with respect to the ground.

02
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Thus, the water level in the small-
est vessel doesn’t change with respect
to the ground. Consequently, the
bottom of this vessel goes down by the
distance

h=2,
0

that is, by the height of the added layer
of water.

P23

Whichever vessel gets heated, the water
flows to the right. Let the right vessel
be the one heated. Then the water in
it expands, acquiring a greater vol-
ume. If the vessel were cylindrical
(fig. 8) the water pressure at the bot-
tom wouldn’t have changed, since the
decrease in water density would have
been compensated by an increase in
the water level. This follows from the
fact that the total force of pressure
applied to the bottom equals the weight
of the water contained in the vessel.
On the other hand, it's equal to the
product F = pS, where p is the pressure
at the bottom and S is the bottom area.
Since neither the weight nor the bot-
tom area alters upon heating up, the
pressure at the bottom of a cylindrical
vessel doesn’t change.

Figure 8

In a conical vessel the same de-
crease in water density is accompa-
nied by a smaller increase in the water
level. There are two reasons for this.
First, the conical vessel contains less
liquid, so the variation in its volume is
also less. Second, the expanding wa-
ter fills the volume shaded in the
tigure, whose upper level is lower. So
the pressure at the bottom decreases.
At equilibrium the pressure of the
connecting tube must be the same, so
the liquid starts flowing from left to

right.

1991

The case in which the left vessel is
the one heatedis treated in the same
way. The pressure at the bottom
increases upon being heated, which
means water again starts to flow from
left to right.

Since the electromotive force (EMF)
of a chemical battery is determined
only by its chemical composition, the
EMF of the second battery is the same
as that of the first. Denote it by E, the
lamp’s resistance by R, and the inter-
nal resistance of the battery by r. Then
the total power released in the first
battery circuit is P, = E*(R + 1)), and in
the second battery circuit it’s P, =
E’/(R + r)). Since r, << R (and,
consequently, z, << R}, we have

A chemical source of current per-
forms work, releasing the energy stored
in its chemical components. The
larger version contains 2° = 8 times the
reagents in the original, so at the same
power level it’s capable of producing
eight times the work of the first. This
implies that the lamp connected to
the bigger battery will glow for 24
hours.

P25

Imagine a directed sound source placed
at point A (this corresponds to the
case of a speaking person). Then,
strictly speaking, of all the beams
directed at point B only one beam
reaches this point (fig. 9a). The rest of
the beams arrive at other points close
to B. If, however, the same beams are
emitted from point A along the gal-
lery’s wall, several beams end up at
point B (fig. 9b). So it’s much more

Figure 9a




Figure 9b

efficient to speak along the wall so
that the sound “glides” along the whis-
pering gallery.

If an undirected intensive acoustic
source is placed at point A, the sound
can reach point B along many routes.
The shortest way is the straight line
AB. The signal traveling by this route
arrives at point B first, the propagation
time being

T= e

where v is the speed of sound. Then
the two signals that were reflected
once from the wall arrive at point B
(from the left and from the right—see
figure 9c). They are followed by sig-
nals that underwent two, three, or
more reflections off the wall. The last
to arrive will be the two signals emit-
ted from A practically along the tan-
gent to the gallery wall at point A in
two opposite directions. Each of them
will be reflected from the wall many,
many times and cover a route that’s
practically half the gallery’s circum-
ference; the time they take to arrive
will equal

L md2 _md
v 2y
The difference between the propaga-
tion times of the first and the last
signals is
At= r—ro=ﬁl(ﬂ—1j.

vi2

This is how long the duration 7, of the
acoustic signal emitted at point A is
prolonged when heard at point B. Con-
sequently, the duration 7, of the signal
detected at point B is

T2=‘CI+A‘C=11+%(§—1).

Figure 9¢

It’s interesting that for any other pair
of emission and detection points, the
time increment A is greater. (Prove it
yourself!)

Brainteasers

B21

No, he can’t. One of the two triples of
numbers must contain an even num-
ber and two odd ones. Their sum is
even, so the product of the two sums
must be even.

See figure 10.

Figure 10

If we denote by D and E the operations
of doubling and erasing, then one of
the possible sequences of operations
isD,E E,D,D,D,E, D, resulting in
the sequence of numbers 458, 916, 91,
9,18,36,72,7,14.

Figure 11

QUANTUM/ANSWERS,

See figure 11, in which equal figures
have the same color.

B25

Unburned particles (smoke) are lifted
by an upward flow of hot air. When
the surrounding air cools down, the
particles begin to drop and eventually
settle to the ground.

Gircumeircles

1. Angle CDE = 40°. Hint: see
figure 12. AK = KB, so angle ABK =
20°; angle KDE = angle KBE = 60° - 20°

= 40°.
B
K
A C

Figure 12

2. Angle BMC = 110°. Hint: see fig-
ure 13. Triangle BOC is equilateral,
BM is the perpendicular bisector of
OC;angle BMC = 180°-30°-40°.

B
A
vc
Figure 13

3. Angle BKC = 60°. Hint: see
figure 14. Triangle AOB is equilateral,
OK is the perpendicular bisector of
AC, BK is the perpendicular bisector

of AO.
C
B
KN
A

Figure 14

4. Angle BCM = 80°. Hint: accord-
ing to property IV, point B is the

HINTS, SOLUTIONS 03




circumcenter of triangle AMC (draw a
picture). Denoting angle BCM by x,
we can find from isosceles triangle
BCM that angle MBC = 180° - 2x;
angle ABM'=280°-2x; angle ACM =x
+40°. The condition that angle ABM
=angle ACMimplies that x = 80°.

5. Angle CDE = 81°. Hint: see
figure 15. If O is the circumcenter of
triangle CDE, then triangle DOE is
equilateral, OA is the perpendicular
bisector of CD, triangles AOE and
ADE are congruent, and angle CDO =
angle EAO = 21°, so that angle CDE =
60°+21°=81°.

B

&

Y

Figure 15 A

Kaleidoscope

l.t=(1+212/2)2=2.914...

2. Construct aright triangle ABC
with right angle at A, AB=1, AC =
1/2, mark point D on the extension
of BC so that CD = CA =1/2. Then
BD=r.

3. See figure 16. Also prove that
each rectangle left after cutting off the
next square is a “golden” one and that
the diagonals in the figure meet at
right angles at the point of intersec-
tion of all these golden rectangles.

Figure 16

4. Obviously quadrangle AEDN (see
figure 2 in the Kaleidoscope) is a thom-
bus, so segments AN, ND, and all the
sides of the pentagon are of equal

04 JANUARY/FEBRUARY

Figure 17

length. In addition, triangles ACD,
DNC, BNM, and ODF are all similar
to one another. Soitfollows that all
theratiosin question are equal. The
equality AC:AN = AN:NC means by
definition that N divides AC in the
golden ratio 1. The last equality in the
problem follows from, say, triangle
ODF, in which OD = OF=t-DF and
angle DOF = /5.

5.Thearea of the cuboid’s surface
isequal to 2{t+ 1/t+ 1- 1/1) =47, the di-
ameter of the sphere equals 2, so the
area of its surface equals 4.

\Vaves

1. The wave speed depends on the
time delay mentioned.

2. At = T/Z, A(p=TC.

3. Estimate the collision time as
the time 1 necessary for the deforma-
tion wave (sound wave) to travel the
distance of the ball’s diameter:

-9 a2 100,
v E

4. When the rotor is stopped abruptly,
a deformation wave starts to propa-
gate along the concrete floor and at
some pointreaches the coil with the
sample under investigation. To en-
sure that it doesn’t affect the meas-
urement, one must take care that the
wave reaches the sample only after
the experimentis over. The electro-
magnetic field travels at the speed of
light, which is much greater than the
speed of the deformation wave (which
is a sound wave). We can assume that
the magnetic field in the sample is
created instantaneously. So the mini-
mum distance between the generator
and the coil equals I = vAt = 50 m

1981

(where v = 500 m/s is the speed of
sound in concrete).

5. Denote the rigidity of the springs
by k, the mass of an oxygen atom by
M, and the mass of a carbon atom by m
(m/M = 12/16). For case (a) the oxygen
atoms oscillate about the immobile
carbon atom synchronously. There-
fore, their frequency is

k

®, =\ 27

For oscillations of type (b) the car-
bon atom is affected by two forces
equal tom in absolute value and act-
ingin the same direction. If the ball
representing the carbon atom is split
into two equal parts, their movements
are identical, both of them having the
same acceleration, speed, and coordi-
nates. So the problem is reduced to
finding the oscillation frequency of
two balls of mass M and m/2 con-
nected by a spring.

The system oscillates about its
immobile center of mass located at a
distance I’ = Im/{m + 2M) from the ball
of mass M (where I is the spring’s
length in the undeformed state).

So we can assume that the oxygen
atom (the ball of mass M) is connected
to the center of mass by a spring of
length I’. The rigidity of this part of
the spring is greater than the rigidity
of the whole spring,

o K _k(m+2M)
!’ m :
and the oscillation frequency of the
ball of mass M connected to the spring
of rigidity k’ equals

= K _ |km+2M)
wb_\/;_ mM

Thus, the desired frequency ratio is

m _ 3
\/(m-i-QM) N 11

O)b

Corrections

Maybe you were sharp enough to
catch these errors in the November/
December issue:

p- 20, col. 2: It is obviously point A
that “makes a circular arc with radius



OA and center at point O,” not point
E.

p- 28, col. 1: A “k” was dropped
from in front of the At in the middle of
the column.

p- 28, col. 3: Each instance of the
intermediate term “(kt}”/m!” should
be followed by three dots: ... + (kt}*/m!
T e e

p-30,col. 1 and 2: 4321 - 1234 =
3087, not 3089; when you do the
Kaprekar transformations, you reach
the magic number 6174 in just two
more steps. (The error jumped out at
our advisory board member Peg Ken-
ney because it takes at most seven
subtractions to arrive at 6174; the
incorrect initial subtraction led to a
total of eight steps.)

p-51, col. 1: Our publishing soft-
ware mysteriously dropped a denomi-
nator “2"” in the displayed equation.

p. 57, col. 2: For “logn + 1” read
“[log,n] + 1,” and for “log,” in the next
lineread “[-]” (thatis, the expression
in brackets stands for the greatest
integer function).

p. 61, col. 2: To render the solution
in black and white, it’s necessary to
pretend that black stands for “blue”
and cross-hatching stands for “red.”

Finally, to encourage good spelling,
we acknowledge the typo in column 2
of page 2!
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TOY STORE

A collapsible Sadlle

Now all you need is a collapsible horse

ITH THIS ARTICLE WE

inaugurate a new department—

Quantum’s Toy Store! We

hope you enjoy building the
models and wrestling with the puzzles
we plan to offer in this space at the
back of the magazine.

Those of you who have been with
us from the start probably remember
the brilliant article by Dmitry Fuchs
in the very first issue of Quantum
(Jan. 1990). Fuchs told us about sur-
faces obtained by bending a sheet of
paper. Such a surface can be sliced

Figure 1

by Vladimir Dubrovsky

into a family of straight lines, or “rul-
ings,” and is, therefore, a ruled sur-
face. There are, however, ruled sur-
faces that can’t be obtained by bend-
ingasheetof paper. These were also
mentioned in Fuchs's article, and one
of them appeared anew in the May
issue in connection with—population
genetics! :

Now we'll teach you how to mak
a model of this beautifully curved
surface out of plain cardboard or stiff
construction paper. You can see the
finished product in figure 1.

The model is assembled from two
sets of parallel “slices” that interlock
by means of slits cut in them. To
prepare the components of our model,
take seven paper rectangles shaped as
in figure 2, cut them along the oblique
lines in congruent halves, and slice
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Figure 2

the trapezoids thus obtained parallel
to their bases. The left halves of the
rectangles make up one set of slices,
theright ones make up the otherset.
Our model, for aesthetic reasons, was
made slightly nonsymmetrical, so if
you want to reproduce it be sure to
adhere strictly to the shapes and rela-
tive sizes in the figure. (Of course, you
can choose to redesign it on your
own.) When the slices are meshed,
their oblique edges form a saddlelike
surface, which mathematicians call a
hyperbolic paraboloid. Because it's
such a refined shape created by the
simplest construction elements (straight
rods), this surface is often used in
architecture. But an architect design-
ing a saddle roof must be careful: if the
rods are fixed so that they can turn at
their joints, the whole lattice becomes
mobile, even collapsible. This inter-
esting property is perfectly well ob-
served in our model. You can fold it up
and spread it out again, and if you glue
its two opposite bottom corners in-
side a cardboard folder, you'll get a
nice collapsible toy.

The name of the surface deserves
some comment. Why the hyperbola
and parabola? Let’s derive the coordi-
nate equation of our saddle. We can
choose the coordinates so that the
slices of our model are parallel to the
xz-and yz-planes; the x-axis belongs
to one family of rulings and the y-axis

together with the line I = {(x, y, z):
x =1, y = z} belongs to the other
family (fig. 3). The entire first family
of rulings consists of all the lines
parallel to the xz-plane and intersect-
ing the y-axisandline l. Let P(x, y, z)
be an arbitrary point of the surface, A
and B the points where the ruling of
the first family that passes through P
meets the y-axis and line 1. It follows
from the equations of I that the coordi-
natesof Bare(1,y,y). f P, and B, are
the projections of P and B onto the xy-
plane, then by the similarity of triangles
APP, and ABB, we have PP :BB, =
AP:AB,, or z[y = x/1. We then get the
equation

Z=Xy. (1)

Figure 3
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Cutting the surface by the planes
x = aand y = a, we can verify at once
that it really has two families of linear
rulings: {x=a,z=ay}and{y=aq, z=ax}.
The cross section by the horizontal
plane z = a yields a curve {xy = a, z= g}
in which you surely recognize a hy-
perbola (when a # 0). Finally, consider
avertical plane y = ax, a # 0. It cuts our
surface along the curve whose projec-
tion onto the xz-plane has the equation
z = ax* (substitute ax for y in equation
(1)). So the projection, and thus the
curve itself, is a parabola. Now find
these curves on your model! (Indeed,
it’s more difficult not to find them,
since any cross section of a hyperbolic
paraboloid that isn't a ruling or pair of
rulings is either a hyperbola or a parab-
ola. Can you prove that?) (o]
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