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GALLERY O

',t ;hagton (Chester Dale Collection)@NCA

Tlte Sacrantent of the Last Supper i 1955 ) br Sailai, ,r D.--

f he namc Salvetlor l)ali (1904 1989) tends to coniure up minutely detarlecl dreamlikc imagcs. r rs,-.,, ::.-:^. ,::r.i ::---r- '>-.rhical

I statcmurts in |;1i111. Maybe yoLi/ve seen "The Pcrsistcncc of Mcmory," with its ominously'ble.rli iar.lsc::- ::: j- >:r'.r:ri.-'. L--np

watches, or other beautitul but unncnring pictures by this Spanish Surrealist.
So it rliry come as :r surprise that rnany oi Dali's 111ost in-rpoftant paintings cluring two decades in the pdrle of hrs -iie-LliL,, :..

1970-were concemed with religious thcn-rcs. "Thc Sacrament of the Last Supper" is a modem treatmcnt oi a tradrtron,rl tircm.-
you rnigl-rt find it intcresting to compilre tlis vision of the scene with Leonardo da Vinci's or Tintoretto's iboth oi rvllch can be iound
in recent eclitions of the Enc)rclopipdiLt Britannit:a in the articlc "Visual Arts, Wcstem").

Onc curious aspcct of Dali's painting is the use rnzrde o{ the "golden scction," a proportion that has been considered aesthetically
plcasing sincc antiquity. Thc Rcnaissance lnathematician Lucas Pacioll defined this raticl as t1-re division of a line so that the shorter
part is to tlrc lcxrger as thc longcr is to the',vho1e (approxiu-rately 8 to 13). His trcatise was entitled Divintt proportione, and so the
nar-r-rc "divir-rc proportion" came to be applied to this ratro as wcll.

After you'vc rcad more about the golclen scct:ion ir-r the Kaleidoscope, come back to Ga1lcry Q and scc if you can fig'urc out how
Dali usccl this tcchnical device in his painting.

I
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When you read about the eccentric 18th-
century EngLish scientist Henry Cavendish,
whose rumpled silhouette graces our cover/
you're simply amazed at how much he antici
pated. This is a way of describing discoveries
that remained unknown and were rediscovered
by others: Cavendish's work in electrostatics
"anticipated" Coulomb's, his work on the
capacity of condensers "anticipated" Fara-
day's, and so on. While some scientists seem
in a rush to publish even dubious results,
Cavendish represents the opposite extreme.
A brilliant experimenter, he all too often was
content to hide his light under a bushel bas-
ket. It's said he detested competition and
cared not a whit for fame, but it could be
argued that he simply wasn't on good terms
with the human race! He died a wealthy man,
yet curiously enough he didn't leave a penny
to science (an "oversight" corrected by his
descendants, as you'll see when you read the
portrait of Cavendish in Looking Back, page

4tl.
Here's a shocking bit o{ anticipation: to

establish how electrical potential is related to
curent (which he found to be direcdy propor-
tional, as would George Simon Ohm years
later), Cavenfish used his own body as a
meter! He would grab the ends o{ the elec-
trodes and estimate the strength of the cur-
rent by feeling how far up his arms the shock
went: fingers, wrists, elbows . . . Now that's
hands-on science!
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You may be surprised to leam that Thomas

R. Cech, the biochemist who shared the

1989 Nobel Prize in chemistry, is an honors

graduate of Grinnell College.

Robert Noyce, the co-inventor of the

integrated circuit and the father ofthe Infor-
mation Age, also graduated with honors

from Grinnell College.

In fact, Grinnell College is one of 48

small liberal-arts colleges that historically
have produced the greatest number of sci-

entists in America. Grinnell and these other

small colleges comparc favorably with ma-
jor research universities, showing a higher
per-capita production of graduates with
science degrees. The small colleges comprise

five of the top 10 and 13 of the top 20

baccalaureate institutions in the proportion

of graduates eaming Ph.D.s.

1989 Nobel Laureate in chemislryTlomas R. Cech , recog n ized f or h is RNA research which may provide
a new tool l0r gene lechnology, with polential l0 create a new defense against viral inlections.

Election to the National Academy of
Sciences is anhonorsecond only toreceiving

the Nobel Prize. Six of the top 10 member-

producing in$itutions, 1 1 ofthe top 20, and

15 ofthe top 25 come from that group of48
small liberal-arts colleges.

The sciences do not exist in a vacuum in
the larger world. Nor do they at Grinnell.
The college's open cuniculum encourages

science students to take courses in other

areas.

Students who wish to focus their study

may engage in scientific research, usually in
a one-to-one relationship, under the direc-
tion of a Grinnell College faculty member.

Undergraduate student researchers often be-

come the authors of scientific papers with
their professors at Grinnell College.

Circle No. 15 on Readers Service Card

For more information,
please write or call:

Office of Admission

Grinnell College

P.0. Box 805

Grinnell, Iowa 501 1 2-0807

(s15) 269-3600

FAX-(515) 269-4800
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Have you written an article that you
thinkbelongs rn Qunntum? Do you
have an unusual topic that students
would find fun and challenging? Do
you know of anyone who would make
a great Qunntum author? Write to us

and we'll send you the editorial guide-

lines for prospective Quantum con-
tributors. Scientists and teachers in
any counfly are invited to submitma-
terial, but it must be written in collo-
quial English and at a level appropri-
ate for Qumtum' s predominantly high
school readership.

Send your inquiries to:

Managing Editor
Quantum

l7 42 Connecticut Avenue NW
Washington, DC 20009 -l 17 I
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Wdayswhenlgo ?,*1,
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-Stephen 
Cmnichnel, Kerryon Clnss of 19 67,

professcn of ananrny, May o Medicd School

or lnirny science stlillerlt:. the smal1
college's empl-rasis rrn strong teacher-
student relat ion sl-r Lp. .,rn!l opportunities tcr
participate in 

- 
ar-r:l 1.6 1sg11g1i7s1l fo1 

-solid research witl-r tacultv members are
power{ullv irppealLnq. There is aLso the

frrrrni\('.rf acce.- r,,' ll I r-trr.rteJ cquipnicnr rrn.l
instrumcntation th.rr il-rc- :nirlI collegc provides.

Thesc qualtLe.. .i. ri-e11 as its renown :ls a
premier liber:rl art. al.l .cLences institurion, make
Kenyon Collese an rleirl choice frrr students u,ho
pLirn to pursue erlllc.rtlrrn dnd careers in the
sciences. From 1'l:" rrr 1!96, an average of24
percent oi Ke r-i,,.'n senrors anmraLly were a*,arded
degrees in the :rriLrral sciences 

- 
brologv, chemis-

try', In,rtlrcrr ' . '. plrr.ie., anJ p.1 ch,,l,,gr. That rs

more than t1rcL. rilres the natior-ra1 average of 7
percent. .\ni:ri11r 75 percent of the College's
science gr.r.:11.r:.s pursue :rdvanced studies.

Sucl-, rc.uks rrouLd not be possible r.vithout
factrltv urcir:.rs .le.-1ic:rtecl to teachir-rg, and
Kenv.rr-r'. -r:- .rrLrng rhe most able ancl committed
at anr' .rn...1i c,,L1ege. But bec:luse they believe
learnin: :: :r!,r cLrniined to the classroom, they also
active-'.r :l--', .',,.-e thernselr,cs irnc'l their studenti in
re:crrr.i- ::. r-.r:. Currentll,, those projects :rre
sf.rrn!.':r:l :,. .uch prcstigious ,.rganiraii.,ns as the
\.rtLr,n-r- in.i :..r:e . ..i Health and thc N:rtional
Scrence F.,unlli:;,r-r.

Toqether. .rlr;lenrs :rnd faculty rnembers in the
:cie nccs are.ltc a1l ercLtLr-rg atmosphere at Kenyon
trr :ruilv in the narr-iral scLences. Both find tl"re
cirmaraJerie an.i sen.c .,f .hared pulpose potent
stur-rulr for Learring ar-rJ n.,rkins ut the peak of their
capahilrties.

For more infirrmatr,.r'r Lrn science str-rdy at
Kenyon College, anll .n .;.ecial schol:rrships for
science stuclents, l.le,rse ,i-nte rrr call:

Office ofAdmissiorx
Ransom Hall
Kenyon College
Gambier, Ohio
43022.9623
800-848-2468
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]lappylllewYeal'!

I made a resolution: to learn Russian!

I T'S BEENA LONG TIME SINCE
I t nra to make a concentrated efiort

I to lerm something new-actually,
I not since college. For those of us
who teach orwork asI do inan admin-
isffative job, we don't always appreci-
ate the difficulties and stresses that
students f ace in learning under pres-
sures of time and high expectations.
This is especially true of those of you
who read Quantum, since you're
probably under more pressure than
most students. Well, my young friends,
I am joining you in your learning
miseries and pleasures. I'm trying to
learn Russian, and I have only until
luly 27, 1991, to achieve my now
public, self-imposed deadline for speak-

ing, reading, and writing Russian at
some reasonable level of literacy.

In my three trips to Moscow, I've
always felt inadequate and helpless,
not knowing even one word of Rus-
sian. Our Russian colleagues have
always provided interpreters and trans-
portation, but there's a limit on the
extent to which we should impose
ourselves on their generosity. Also,
almost all of my friends there speak
English. So why don'twe learn Rus-
sian?

I've purchased audio tapes, books,
and other materials, and I'm spending
my substantial travel time on air-
planes listening to the tapes and
muttering incomprehensible Russian
sounds (I hope), while my fellow trav-
elers shake their heads in dismay or
express their curiosity. I've asked our
consultant Ed Lozansky to purchase
books that are used by children in the
USSR at the preschool age and in

grades 1-4 of their schools. I thought
that by starting where young children
start, maybe it will be easier to learn
the language. For a person who has
studied such wonderful and advanced
topics as quantum electrodynamics
and theory of functions of a complex
variable and integral ecluations, it's a

pleasantly humbling experience to be
struggling to do what young Russian
children manage with great ease.

Actually, it's really fun to be en-
gaged in learning something new at
my age, and I intend to achieve my
goa1. Our Russian friends, of course,
wiil have to iudge the extent to which
I succeed. I've also sent Russian lan-
guage tapes to NSTA's presideng Bon-
nie Brunkhorst, to our president:elect,
Lynn Glass, and to the chairman of
our internationai committee, |ohn
Penick. By this column, I am putting
a little gentle pressure on them to
make a similar effort, so that allof us
have at least tried to prepare ourselves
for |u1y.

And why |uly? That's when we're
holding the f irst Russian-American
science education convention, which
will take place at Moscow State Uni-
versity. More than 200 Americans
have already signed up for the con-
vention, and we expect that number
to increase to the planned 500-600.
An equal number of Russian science
teachers will be there, so it will be a
fine opportunity to learn about sci-
ence education from each other and to
gain many new friends.

If you've never considered leaming
Russian, you should do so. I've only
been at this task for two weeks or so,

but it's very interesting, although at
times difficult. One of the {eatures o{
the Russian language that I really Iike
and find helpful is the alphabet and
the sounds associated with each let-
ter. Many of the Cyrillic letters are
from the Greek alphabet, which, as

you know, you learn in mathemat-
ics-{or instancet IEt p, f. Other letters
are common to the English alphabet.
But most importantly, the phonetic
sounds for the letters are almost al-
ways the same from word to word, so
it's quite easy to sound out words. I've
already found that I can spell a Rus-
sian word in Cyrillic when I hear the
sounds. Being able to spell the word or
sound it out willbe veryhelpiul as I try
to leam to read the language. All in
all, studying Russian is fun, but some-
times it's discouragingwhen I forget
things I just learned. Also, some
Russian sounds arert't used in Eng-
lish, so you have to get yow Lazy

mouth to try some new gymnastics,
which can be quite a challenge.

When I skip ahead in the textbooks
or look at the grammar rules, or when
I try to read acopy of Kvantgiven to
me by our Soviet colleagues, Irealize
how far I have to go. When you're a
student, looking ahead like that can
be very intimidating. Yet we can't 1et

that discourage us. We have to iust
take it day by day, one part at a tim e,

and sooner orlatet, with hard work
and perseve rar,ce I we f ind ourselves
there at the end of that complicated
material where we thought we'dnever
be. We almost wonder how we got
there. lAlmost.l

It's in this spirit that I'm going to
learn Russian, and it's in this spirit
that you should keep studying and
learning mathematics and science.
You'llbe surprised someday at how
much you were able to leam. Keep at
it. By the way, go ahead and learn a

language or two-and why not let
Russian be one of them?

We at Quanrum wish allour read-
ersthebestin 1991. May itbepeace-
ful and prosperous for all of us, all over
the world.

BillG. Aldridge

C Ho\bl trl f o fran t
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The fearful symmetry of crystalline structures

by R. V. Galiulin

[iamoltd latlicetnlork

HIS ARTICLE IS DEDICAIED
to two anniversaries: the cen-
tenary of the prominent Russian
mathematician B. N. Delone

(1890-1980), who made a decisive
contribution to mathematical crys-
tallography, and the centenary of this

\

\
,\

I

*
(

branch of mathematics itself, which
was born when the pioneering work
of E. S. Fyodorov and A. Schoenflies
was published in 1891.

The extraordinary geometric per-
fection of crystals has amazed the
human mind since time immemo-

rial. Our ancestors saw them as either
the creations of angels or the products
of subterranean evil forces. The first
attempt to provide a scienti{ic expla-
nation of crystalline form was given
by |ohannes Kepler in his work "On
Hexagonal Snowflakes" ( 161 1 ). Kepler
suggested that the shape of snow-
flakes (crystals of ice) is due to the
special positioning of the particles
composing the crystal. Three centu-
ries later it was finally established
that the properties oi crystals are due
to the special arrangement of atoms rn
space similar to the patterns we ob-
serve in kaleidoscopes. These types of
arrangement were classified ln 1891
by E. S. Fyodorov (1853-1919), a Rus-
sian scientist and founder o{ modem
crystallography. The regular fonns of
cry.sta11ine polyhedrons are easily
erplained within the framework of
his ciassilicatron.

From the geometncal pornt of view
the positioning of atoms in space is
defined b1 the s)'stem of poilts core-
sponding ro therr centers. So the
problem can be ionnulated Like this:
u'hat are the geometrrc conditions
that distrngrush systems of points with
"crystalline structure" from all other
systems? Since our goal is to find the
reasons ior regularity in the position-

o
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x
3
o

h
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ing of real atoms in real crystals, spe-

cial attention should be paid to physi
cal motivation. The simplest geo-
metric property of a system of points
correspondi:ng to atomic centers in
any atomic array land not only in
crystals) is its discreteness.

DrscnnrpNrss CoNnntou . The
distancebetween any two points of
the system is greatu than a fixetl
value t.

The physical meaning of this con-
dition is obvious. The tendency of
atoms to spread uniformly in space
can be expressed by the following
restriction on the corresponding sys-
tem of points.

Covrnrltc CoNorrroN . The dis-
tancefuom any pointin spaceto the
nearest point of the system is less
than a fixed value R.

The name of this condition stems
from the following fact iJ a system of
points complies with it, the set of
spheres of radius R with centers at
these points covers the whole space.
(Prove it!) The discreteness condition
doesn't al1ow the points of the system
to be spread too densely, while the
covering condition outlaws too thin a

distribution. Taken together, they
ensure the approximately homogene-
ous distribution of points in space.
Systems of points satisfying both
conditions simultaneously are cal1ed

Delone systems after B. N. Delone,l
the Russian geometer who first intro-
duced them.

The simplest example of a Delone
system (in a plane) is provided by a set

of nodes on an in{inite sheet of graph
paper. Similar systems play an excep-

tionally important role in crystallog-
raphy, and later we'11 consider them
in more detail. This system can be
used to obtain a Delone system of a
more general type by gving each node
an arbitrary shjJt not greater than, say,

one third of the distance between
adjacent nodes (fig. 1).

Exercise 1. Prove that such a system of
points satisfies both the discreteness and
covering conditions; find the corresponding
values ofz and R.

Delone systems provide the most

Figure 1

general geometric model of distribu-
tion of atoms in any atomic structure.
So any theorem about these systems
can be interpreted as a property of the
structure itself. This makes the the-
ory of Delone systems especially
important in various applications. But
the general theory of Delone systems
(which is still in its early stages) isn't
the subject of our story. We'llcon-
sider only particular cases: systems
describing the position of the centers
of atoms in crystal structures. Such
systems are distinguished by the pri-
mary geometrical property of crystals:
their symmetry.

What is symmetry? Intuitively,
it's not difficult to distinguish a sym-
metric pattem from a nonsymmetlic
one. A symmetric body can always be
divided into equal parts, sometimes
in many different ways. This properry
alone, however, isn't enough to guar-
antee symmetry in the pattern. A
heap of bricks isn't syrnmetric though
it consists of identical bricks. Even
the brick wall in figure 2a doesn't
appear very symmetrical, especially
when compared to the bricks in figue
2b. To make the intuitively felt differ-
ence between the two walls clearer,
consider the bricks surrounding any
one of them. In figure 2b any two
bricks have identical surroundings,
whereas in figure 2a this is true only
for thebricks in the same row.

By the "equaLity" of two figrres we
mean here that one of them can be
superimposed onto the other after an
is ometry 

-that 
is, any transf ormation

of the plane that preserves the dis-
tance between any two points. An
isometry that takes a figure or apat-

tem into itself is called its symmetry
and a figure or pattern that allows at
least one syrnmetry (other than iden-
tity)is said to be sgnmetric.

For instance, the masonry in figure
2a goes into itself only if translated
along the rows by a number of brick
lengths, while the masonry in figure
2b allows many other symmetries:
vertical translations, half-turns, and
also line reflections followedby trans-
lations along the reflection axis. (Find

all of them!) So both patterns are
sl,rnmetric, though the second one is
"more symmetric" than the first.

Exercise 2. {a) Find all symmetries of a

regularn-gon. (b) Prove that a cube has 48
symmetries {including re{lections) and find
them.

The set of all symmetries of an
object together with the operation of
their composition is called the sym-

Figure 2
Brick walls: (a) less symmetic, (b)
more symmetric.
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metry group of this obiect. This is a
very important notion in mathemat-
ics, lying at the boundary between
geometry and algebra.

So one way of ensuring th at aDe-
lone system describes a crystal is to
require that it be symmetrical. An-
otherway to describe them is to use
the "equal surrounding" notion-that
is, join an arbitrary point A of a Delone
system to all its other points (fig. 3).
You get an infinite set of intervals
called the g/obal star of point A. kr the
general case global stars of different
points are not equal to (congruent
with) each other. If there are at least
two points with congruent global stars,
however, the system is symmetrical.
The converse statement is also true:
any symmetrical Delone system has
points with the same global stars. So
the congruence of global stars for at
least two points is a necessary and
sufficient condition for a Delone sys-
tem to have a symmetry.

Exercise 3. Prove that any symmetrical
Delone system has an infinite number of pairs
of points with congruent global stars.

Exercise 4. Construct a Delone system in
the plane that fits onto itsel{ after rotation
through {a)90'{b)60".

Exercise 5. Irrove that if the rotation t}rough
angle cr is a symmetry o{ a plane figure, the
rotation through the angle ncx, (where n is any
integer) around the same center is also a s1,rn-
metry. If the figure is a Delone system, the
ratio o/n must be a rational number.

Nevertheless, it is not true that any
syrnmetric Delone system coresponds
to a system of atomic centers in a
crystalline structure. The symmetry
of crystals is a special one. For ex-
amplg there are no regular dodecahe-
drons, or icosahedrons, or any polyhe-
drons with symmetry axes of the fifth

Pttrt of a symntetilc Delone systetx. /ts
only nonidentical symmetry
transforntatirm is the reflection in line L

Points A and B have congntent global
srdls.

Crystal sftucture according to R. l.
Haiy.

order (that is, taken into itself after a
rotation through 2nl5 arotrfithis axis)
among the crystalline polyhedrons.
Why are crystals so picky about the
shapes they take?

In 1783 R. ). Hariy, a French abbot
and mineralogist, suggested that a
crystal is made of equal parallel par-
ticles touching one another along their
entire facets ({ig. al. In 1824 L. A.
Seeber, a professor of physics at Freibrug
(and a student of great Carl Friedrich
Gauss), proposed that Hatiy's polyhe-
drons be replaced with their centers of
mass in order to explain the thermal
expansion of crystals. Such systems
of points have been called lattices.

More precisely, a lattice is defined
as the set of all points having integer
coordinates with respect to an arbi-
trary (not necessarily rectangular)
coordinate system (fig. 5a-5c). The
points of the lattice are called nodes.
Each coordinate system defines aunique
lattice. The converse statement is not
true: there are an infinite number of
ways to choose a coordinate system
determining a given lattice (fig. 5b).
One can easily check that each lattice
satisfies both the discreteness and the
covering conditions and is, therefore,
a Delone system.

Let's prove they're symmetrical.
The following lemma holds.

LarncE LErurrm . A lattice goes into
i*elf utder a parallelaanslation along
thevector connecting any two of its
nodes as well as under the cental
symmetry with respect to any node.

To prove the first statement/ notice
that for arly pair of nodes A andB of
the lattice, vector AB has integer coor-
dinates (since it's equal to the differ-
ence between the respective coordi-
nates of points A and B). A transfor-
mation along this vector is equivalent
to adding integers (coordinates of the
vector) to the coordinates of each node.
The resulting coordinates are again
integers. So each node matches a
node of the same lattice. I'll leave it to
you to come up with a proof for the
case of central syrnmetry.

It's the lattice structure of crystals
that makes their symmetry so spe-
ciaI. Any spatial lattice can (in an
infinite number of ways) be divided
into an in{inite number of congruent
and parallel plane sublattices (fig. 5c).
It's usually assumed that the planes of
all the faces of a crystal contain the
plane sublattices of one and the same
three-dimensional lattice. Plane sublat-
tices of a three-dimensional lattice
related by slnnmetry transformations
are identical in their structure. When
a crystal grows/ all its faces corre-
sponding to such plane sublattices
grow similarly, so that the symmetry
of the crystal repeats the symmetry of
the lattice.
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Figure 5
T1ryes of lattices: (a) one-dimensional,
(b) two-dimensional (plane), (c) tfuee-
dimensional. Auows show the base
vectors of coordinate systems defning
the lattices.
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Figure 4

Figure 3
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Boris Nikolayevich Delone (1890-1980)was a famous Russian mathe-
matician. He got his family name-Delone-f rom his French great-great-
grandfather, the Marquis de Launay. This Marquis de Launay was the gover-

nor of the Bastille on July 14,1789, when a furious mob marched against the
royal foftress on the first day of what was to become the French Revolution.
The governor and his small garrison bravely resisted but eventually surren-
dered to the overuhelming opposing forces after being promised a pardon and
immunity. The promise, however,
was easier to give than to honor, and
the marquis was later massacred by
the mob while being escorled through
the streets of Paris.

His son, Pierre de Launay, en-
tered on a military career, serued as
an officer in Napoleon's army, took
part in Napoleon's Russian campaign,

and, after being taken pnsoner, stayed

in Russia for the rest of his life.

The classic work of his worthy de-
scendent on the theory of third-order
Diophantine equations, which Delone
wrote when he was still quite young,

marked a breakthrough in number
theory, the greatest achievement
since the renowned wok of Euler and
Lagrange on second-order Dio-
phantine equations. He also obtained
profound and impoftant results in al-
gebra, geometry, and the application
of mathematics in crystallography.
"Because of his constant preoccupation with crystals," Delone used to say, "a

crystallographer is, in his intuition, already a geometer."

Delone enjoyed spending his time with young students and organized the
first mathematical olympiads for high school students in the USSR. He had an

exceptionally wide range of interests. One of his childhood friends in Kiev was

lgor Sikorsky, the renowned aircraft designer. They built gliders together, and

Delone flew them. He was also a famous mountain climber, and a mountain

summit in the USSR bears the name "Delone peak."

The last years of his long and exceptionally fruitful life were clouded by the

tragic story of his grandson, Vadim Delone, a talented poet. Vadim was an

active member of the human rights movement and was one of the seven
people who in August 1968 made a desperate attempt to stage a demonstra-
tion in Moscow's Red Square to protest the Soviet invasion of Czechoslova-
kia. All of them were arrested and convicted. After serving his sentence,
Vadim Delone emigrated back to France. He died in Paris, but at much a
earlier age than his great-great-great-great-grandfather.

The wheel of history had taken an ironic turn.

Figure 6

Now we'll prove that no crystal has

a symmetry axis of the fifth order.
Let's assume that such a crystal ex-
ists. Then the lattice corresponding
to it also has a fifth-order axis J. Draw
a plane perpendicular to 1 through any
node and choose a node A in it that is
nearest to I (the existence of such a
node follows immediately from the
discreteness condition). Since the
lattice fits onto itself after a rotation
through any angle that is a multiple of
Znf 5 aroundthe axis 1, all the images
ofpoint A under those rotations are
also nodes of the lattice. Th"y form a

regularpentagon ABCDE (fig.5). If we
now shilt the lattice along the vector
AB, then (acmrdirlg to the lattice lemma)
node E fits onto a node Nlyrng inside
the pentagon closer to I thanA, thus
contradicting the choice of A.

Exercise 6. Construct lattices with sym-
metry axes of the second, third, fourth, and
sixth orders. Prove that no lattice has a
symmetry axis of an order higher than six.

It should be pointed out that fifth-
order symmetry axes are quite com-
mon in the realms of plants and small

Figure 7
Towmaline crystaL.

organisms (viruses). hr the vividwords
of N. B. Belov (1891-198211, afamous
Soviet crystallographer: "For small
organisms, a fifth-order axis is a spe-
cial tool in their struggle for survival,
saf eguarding them f rom cry stalbza-
tion and fossilization, the first step
toward which would have been the

'captute' of the organism by a crystal
lattice."

But not all the facts known about
crystals fit the lattice model. For
example, there are crystalline polyhe-
drons like those of the precious stone
tourmaline (fig. 7) that have no cenffal
syrnmetry/ whereas the lattice lemma
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implies that all latticbs have central
symmetry. To cover such phenom-
ena it was necess ary to expand the
palette of allowable distributions of
particles in space. krl979 L. Sohncke,
an eminent German crystallographer,
suggested that particles in crystals are
organized in rcgular systems.

A Delone system is called "regu-
Ix" rt itlooks the same from any point
in the system-that is, if global stars
of a1l points in the system are congru-
ent (fig. Sa-Bc). If you were asleep and
were taken from one point in a regular
system to another/ you wouldn't no-
tice any change upon waking up. In
other words/ any point in a regular
system can be taken into any other by
a symmetry transformation of the whole
system. The symmetry groups of
three-dimensional regular systems are
called Fyodorov or spatial uystallo-
graphic groups. There are 230 Fyodorov
groups. (On aplane there are only 17

crystallographic groups.) It is these
goups that describe the distributions
of atoms in crystal structures that

Figure 9
Structwe of fluorite, composed of two
different rugular systems (the gray dots
arc fluorine atoms, black arc calcium).

were mentioned at the beginning of
this article.

Exetcise 7. The plane can be paved with
congruent regular triangles without gaps or
overlaps. Prove that their vertices form a

regular (plane) Delone system and describe all
its sltnmetries. Do the same for squares and
regular hexagons. Are all these systems
lattices?

The lattice lemma implies that
any lattice is a regular system. The
converse is not true, but it can be
shown that any regular system is
composed of congruent parallel sublat-
tices (fig. 8c). An outline of theproof
of this fact (which is not at all simpie)
was given by E. S. Fyodorov in his clas-

sic book Principles of the Study of
Figures, which he began working on
whenhewas only l6yearc old. The
proof was completed by A. Schoenflies,
but it was so complicated that in the
first edition of his work on symmetry
of crystal structures (1891) he placed it
at the very end of the book in order not
to scare readers away.

At the beginning of this century
experimental evidence confirmed that
atoms in crystals form one or several
regular structures with a common
Fyodorov group (fis. 9). But these
observations didn't explain why at-
oms in crystals are affanged in an
ordered way. They only reflect the
fact that such an ordering does exist.
This was pointed out by the founder of
Soviet crystallogaphy, A V. Shubnikov
(1887-i970): "We have a good under-
standing of the way in which crystals
are built, but the question of why are

they built in such a way has never
been seriously considered."

Imagine a growlng crystal at a stage
when the next atom gets included
into its structure. What causes this
atom to occupy its strictly predeter-
mined place? hr order not to break the
system's regularity (in the sense of the
definition given above) this atom should
"know" and "take into account" the
positions of all the other atoms, in-
cluding the most distant ones. It's
much more natural to require that for
arly atorr,t all the atoms lying at a rela-
tively small distance from it (this"
distance defined by the effective range
of chemical forces) form the same
surrounding system. The fact is that
even such a loose condition ensures
that the system is regular! The fol-
lowing theorem is valid.

Locer Tnronru . If all thepoints
of aDelonesystamhave "equal sur-
roundings" within a sphere of radius
kR,wherek:4for aplane system and
k = 10 for a spatial one, the system is
regulat (Recall that R is the parame-
ter given by the covering condition).

This theorem was proved by B. N.
Delone and his colleagues. There are
good reasons to suggest that one can
take k = 4 in the three-dimensional
case as well, but no proof of this has
yet been given.

The fundamental importance of
the local theorem lies in the fact that
the "equal surroundings" domain in

Figure 10
Structwe of (a) diamond, (b)lonsdalite.

oa OO

Figure 8
Regular systems of points: (a) one-
dimensional, (b ) two- dimensional, ( c)
decomposition of a regular system into
lattices.
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its statement is appioximately the
same as the effective range of chemi-
ca1 forces acting between atoms. So

the regular structure of crystals can be
explained in terms of chemical inter-
action between the atoms.

Now we can formulate the third
natural condition that (together with
the discreteness and the covering
conditions) distinguishes regular Delone
systems.

Locer Eeuer,rrv CoxnrrroN. A77

thepoints of a systemhave equal sur-
roundings within a sphere of radius
10R. (Recall that the number 10 can
probably be replaced with 4.)

Let's take a diamond crystal as an
example. What happens if the equal
surrounfings domain gets smaller?

The closest neighbors to each car-
bon atom in a diamond structure are
four other carbon atoms forming a
regular tetrahedron (fig. 10a). This is
in good agreement with the structure
of carbon's electron shell, which is
capable of providing f our equivalent
bonds. The same surrounding struc-
ture (the four closest atoms forming a
regular tetrahedron) is observed in
another modification of carbon--1onsdal-
ite (fu. 10b), the microcrystals of which
have thus far been found only in the
craters of large meteorites.

So what's the difference between

Frgure r r

Second coordinate spheres in (a)
diamond, (b ) lonsd al i t e.

the structures of diamonds and lonsdal-
ite? In diamonds the atoms lying on
the second sphere surrounding the
initial atom (called the second coordi-
nate sphere) form an Archimedean
cubic octahedron-a cube with trun-
cated comers (fig. 11a). hr the lonsdal-
ite structure the atoms of the second
coordinate sphere form a so-called
hexagonal cubic octahedron, which
can be obtained from the Archimedean
cubic octahedron by rotating its lower
half through 180" (fig. I 1b). Under the

condition that carbon atoms have equal
surroundings on both the first and
second coordinate spheres, the result-
ing crystal structure is one of these
two pure types of monocrystals.

If carbon atoms are capable of es-
tabLishing bonds only within the first
coordinate sphere (that is, of forming
regular tetrahedrons), then mixed struc-
tures can arise in which diamond
layers are sandwiched between layers
of lonsdalite. This happens in so-
called twins (fig. l2l, in which two"
diamond crystals are connected to
each other by a layer of lonsdalite.

Figure 12

Of course, the problem of the for-
mation of crysta1 structures is far from
being completely solved. Here I've
merely tried to show the important
role played by mathematics in a prob-
lem that might have been thought to
reside squarely in the realm of physi
cal chemistry. o
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"When you throw stones in the water, pay attention to the rings
produced; otherwise this habit would be a mere waste of time."

-K. Prutkor4 Fruits of Meditation

by L. Aslamazov and l. Kikoyin

HAT IS A WAVE? EVERY-
one understands the word
"waye" and, in most cases,
knows that it's related to some

kind of motion. Throw a pebble into
the water and you'll see waves run-
ning along the surface. But if a wave
runs into a floating branch, the mo-
tion of the branch has nothing in
common with the propagation of the
wave. Instead of moving with the
wave it oscillates, bobbing up and
down. So what is it that's actually
moving when a wave propagates? Let's
look at some examples.

Some historians claim thatEliza-
beth, Empress of Russia and daughter
of Tsar Peter the Great, expressed the
royal desire that the solemn moment
of her coronation be marked by can-
non fire from the Peter and Paul for-
tress in St. Petersburg. But the law
prescribed that Russian tsars be crowned
in the Assumption Cathedral of the
Moscow Kremlin. Nowadays there's
no problem in sending any informa-
tion from Moscow to Leningrad: you
send a radio signal at the moment of
coronation from Moscow and the gun
is fired in St. Petersburg (now Lenin-
grad). In the lBth century, however,
one had to find another way of telling
the gunners that the patriarch had just
laid the crown on the empress's head.

And a solution was found. Along
the entire length of the Moscow-
St. Petersburgroad (about 650 kilo-
meters), frorn the cathedral to the for-

tress, a line of soldiers was drawn up,
one in direct sight of the other (about
100 meters). You can readily compute
that the whole chain consisted of
about 5,500 soldiers. Each soldierwas
given a small flag, which he had to
raise the moment he saw the signal
from his neighbor. At the moment of
coronation the first soldier raised his
fiag, then the second, then the third,
and so on. A person's reaction time is
several tenths of a second, so the
message reached St. Petersburg in 10
to 20 minutes.

What actually moved from Moscow
to St. Petersburg? Each soldier re-
mained in place. The only move he
made was to wave the flag. A scientist
would say that by raising or lowering
his hand, each soldier for a short time
changed his state. It is this change
that moved along the line.

A change of state propagating in
space is called a wave.

The year 1905 in Russia was marked
by strikes that started in St. Peters-

burg. The newspapers wrote that " a
wave of strikes swept through Russia
and reached the most distant regions
of the empire." What moved in this
case was the state when workers stop
their work at industrial plants and put
forward political and economic de-
mands.

Another example is the way ru-
mors spread. A rumor started by one
person can quicldy spread over awhole
city. The time it takes is much shorter
than that needed for this person to
visit (or phone) all the city's inhabi-
tants. Rumormongers can remain
motionless. What moves is the state
of being informed.

But enough of news and rumors-
1et's look at aphysical example. Some
billiard bails are lined up on a billiard
table (fig. 1a). Another ball hits the
string in the direction of the string's
axis. A{ter impact the moving ball
stops, while the last ball in the string
jumps away (fig. 1b). Although the
momentum is transferred to the first
ball in the chain, the ball *rat moves is
the last one. It is a waveof deforma-
tion that propagates along the chain.
At the moment of impact the first bali
gets compressed, thereby deforming
the neighboring ball, which in turn
deforms the next one, and so on. Each
ball is subjected to equal elasticity
{orces on both sides acting in opposite
directions (fig. lc) and, therefore, stays
at rest. The only exception is the last
ball, which is acted upon from one
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Figure 2

direction on1y. The resulting nonzero
force gives an impulse to the last ball
in the chain, setting it in motion.

Deformation waves propagating in
elastic media are called acoustic waves.
So what we actually got by hitting a

string of balls was an acoustic wave.
This kind of wave can propagate in
any other elastic body. For instance, if
you strike a fixed rigid rod (frg. 2a) \^dth
a hammer on one end, a deformation
(acoustic) wave stafts propagating along
the rod. A-fter reac,hing the other end
of the rod, the wave sets the ball
hangingnext to it in motion (fig.2b).
Using apiston instead of a hammer,
we can excite an acoustic wave in a
liquid or a gas.

Let's examine the propagation of
an acoustic wave in an elastic body in
more detail. First, what does the
velocity of the wave depend on? Let's
start with a simple model.

Think of a string of balls of mass m
connected by springs with rigidityk
(fig. 3). The balls are small compared
to the distance between them, and the
mass of the springs is negligible com-
pared to the mass of the balls. Actu-
ally, it's the same string of billiard
balls we just looked 41-1gs/ys merely
separated their inertia (mass) and elas-
ricity (rigidity).

This model is close to the actual
situation in solids. In a crystal lattice,
atoms are positioned in such away
that the vector sum of forces applied
to each atom by the rest of atoms is

zerointhe ecluilibrium state. But if an
atom is displaced from its equilib-
rium position, it starts to "feel" at-
traction and repulsion forces similar
to elasticity forces. l

Let's give an impulse to one of the
baiis-for instance, the first one on
the left--in the direction of the string
by gtving it a kick. The wave of elastic
deformation runs along the string until
it reaches the right end. But the last
ball is connected to its neighborby a
spring that makes it impossible for it
to go away. The stretched spring
forces it to go back, and the ba1l,
because of its inerti4 compresses the
spring again. The deformation wave
now stafts moving from right to left as

if reflected at the end of the string.
Then it reflects from the left end
again, and so on. The reflected waves
complicate the picture, so let's ana-
lyze an "endless" string (that is, a
string without ends). This can be
made by connecting alxge number of
balls in a ring (fig. 4), Along such an
endless string a wave of elastic defor-
mation goes in circles without any
reflections until its energy dissipates
and it dies away.

Now push one of the balls from its
equilibrium position (for instance, in
the clockwise direction) and set it
free. Because of the action of the
attached springs the ball starts a.peri-
odic motion in space, which is called
oscillation.

Oscillations play an important role
in nature and engineering. Oscilla-
tory motion can be encountered in
clock pendulums; the motors in elec-
tric devices are driven by altemating
curreflt; the succession of day and
night, as well as that of the seasons of
the year, can also be regarded as oscil-
latory processes caused by the motion
of the Earth. A11 rotating mecha-
nisms cause vibration in their founda-
tions, which must be taken into ac-
count in designing them.

The simplest tlpe of oscillation is
simple harmonic motion. In simple
harmonic motion the displacement

of a body from its position of rest
varies in time according to the for-
mula

u =u*srr,(2ntlT)

:oMsin2rvt

: cx,Msinot/

where o is the angular deviation of a
ball from its position of rest. Any
simple harmonic motion is described
by two parameters: maximum dis-
placemurt (amplitude) u* arrd the period
7 (the time interval between two
successive equivalent phases of mo-
tion). The frequency v is the number
of complete oscillations performed in

Figure 4

a unit of time, and the cyclic fre-
quency o = 2rv is introduced to sim-
plify the mathematical description.
The number g = ot defining the posi-
tion of the ball at time t is cailed the
phase angle of the oscillation.

Consider the foliowing example.
Aball makes a complete oscillation
cycle over an interual of time T :4 s

and at the initial moment is at the
position of rest. The maximum dis-
placement of the ball is o, = 0.1 rad.
Then in simple harmonic motion its
displacement from the position of rest
is given by the formula

o: 0.lsin(nrl2).

lAttraction {orces predominate at
large interatomic distances, but when
atoms approach each other they're
subjected to repulsion (quantum
mechanics prohibits atoms from
penetrating each other). Only at a
certain (equilibrium) distance (about the
size of an atom) the resultant force
acting between atoms is zero.

m

Figure 3
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For t, = 1 s, the Phase angle is equal
to er : nf 2; for tz= 2 s, it's g, = n; for tu
:3 s, we haveqr:3xf 2; and so on.

The frequency of oscillation (and,

consequently, the period and cyclic
frequency) depends on the properties
of the system. For example, the cyclic
frequency of an oscillating ba[ of mass
m attachedto a spring with rigidity ko
is equal to

(See the appendix to this article.)
Oscillations can propagate in space.

For instance, the balls in our string
repeat the oscillations of the first,
each of them with a certain delay.
Each successive ball reaches the state
of maximum displacement from the
position of rest somewhat later than
the preceding one. Similarly, when
the first ball gets back to the position
of rest, the next one is still displaced
and comes to the position of rest only
alter a certain delay.

This delay can be described in
mathematical terms byusing the concrpt
of a phase shjft. The angular displace-
ment of the nth ball is given by the
following expression:

u, : o*sin(rrl(t-Ar,))

: orsin(rot - Ag,).

The value Arpn = coAt, is called the
phase shift (At, is the delay time in the
oscillation of the nth ball). In our
example every ball in the string un-
dergoes a simple harmonic motion.
The amplitude of oscillations cx* and
the cyclic frequency ro are the same for
allthe balls, but their phase shi{t Ag,
diffs1r. The greater the fistance to the
nth balt the longer the delay and, con-
sequentl, the greater the phase shift.

Figure 5 shows three graphs of os-
cillations having phase shifts Arp, :

nf B, Lgr:rc, andAq. :l1nl9 withre-
spect to the oscillations plotted as a
broken line. In the first case, the
phase shift is small and the balls oscil-
late almost sltrchronously. They are
said to be almost in phase. In the
second, there is a complete disagree-
ment between the oscillations: the
maximum displacement of one ball
corresponds to the maximum but
opposite displacement of the other. hr
this case, the balls are said to oscillate
in a counterphase mode. In the third
case, the phase shi-ft is close to 2n and,

as the figure shows, the balls again
oscillate almost slmchronously-that
is, almost in phase. This is to be
expected since 2n is the period of the
sine function (that is, oscillations with
a phase shi{t equal to a multiple of 2n
coincide).

Since the phase shift of a ball in-
creases with distance, there is a dis-
tance at which the phase shi-ft ecluals
2r. Balls separated by that distance,
called the wavelength 1., oscillate in
unison.

How many wavelengths can fit
into our string? Since the ends of the
string are joined together (the string is
actually aringl), the number is obvi-
ously an integer. This is because the
motions of the first and last balls must
coincide (since they are actually one
and the same ball). If the string's
length is I (I : Na, where a is the
distance between apair of neighbor-
rng ba[s in the state of rest and Nis the
number of balls), the longest wave
that can propagate along the string has
thewavelength\=I.

The length of the next, shorter
wave is \: f lZ, the length of the third
one l"u : Ll3; and so on. What's the
shortest wavelength that cango around
the ring?

The shorter the wavelength, the
greater the phase shift between the
adjacent balls. The maximum "disor-
der" occurs when the phase shift be-
tween neighboringballs is rc. The two
balls then oscillate in counterphase
(fig. 5), and the correspondingwave-
lengthis L^rn:2a.

Let's calculate the frequency of
oscillations corresponding to the
minimum wavelength (and thus esti
mate the velocity of the wave propa-

Figure 6

gation along our string). If the oscilla-
tion of a ball in the string is described
by the function

g.: crMsino)t/

then the oscillation of the preceding
ball satisfies the expression

cr,,, : clr,*sir1(at + n),

and that of the next one

cr,*, : cr*sirl(<rlt - n).

From the motion of the strings' ends
we canreadily obtain their deforma-
tion as a function of time. Hooke's
law (F : kx) makes it possible to
evaluate the elasticity force acting on
the middle ball. The resultant force is

F : kx*(sin(rot -n) - sinrrlt
+ sin(rot + n) - sinrrlt)

= -4kxnsinrot,

where x* : Rcr* is the maximum
linear displacement of the ball from
the position of rest (R is the radius of
the ring). The middle ball moves as if
attached to a single spring with a
rigidity four times that of a real spdng.
Substituting ko:4k into formula (1),

we get the frequenc\ a:2lklmlttz foy

the shortest wavelength ()"^r,: 2a)
that can ffavel around the ring. This is
the maximum frequency of oscilla-
tions for a closed string of balls.

Thereis also amaximum frequency
for atomic oscillations inEeal solids.

What's the speed of the wave mo-
tion? The period corresponding to the
oscillation frequency ro is 7: 2nla. A
wave propagating with velocity v covels
the length I : vT : 2nvf a over an
interval of time T. This length is
equal to the wavelength since the
oscillations separated by time T are
slmchronized. Thus,

(1)

7Er-l5nl8

Figure 5
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?y=vT:Znvf a,

and so

l,ro 2y=-=-a
2n TE

And whatls the wave velocity and
the oscillation frequency for waves
with larger wavelengths? We can get
the answer the same way (though the
problem is a bit more complicated):
The oscillation frequency decreases
as the wavelength increases, while
the wave velocity increases, albeit
more slowly than the wavelength.
For longer waves 0" r, al the speed
becomes almost constant/ approach-
ing the value of

v =a0

So our result gives a good approxima-
tion of the wave velocity for other
wavelengths as well.

Let's get back to oscillations in
solids. What does the speed of acous-
tic waves depend on? The analogy
with the string of balls shows that the
velocity depends on the elastic prop-
erties of the medium, the mass of the
atoms constituting the substance, and
the interatomic distances. A decrease
in interatomic distance or an increase
in the atom mass results in a higher
density p of the substance. In our
model the rigidity k can be considered
proportional to Young's modulus E.
The exact expression for the speed of
sound propagating in a solid body is

TE'=v;'
For instance, this formula gives a value
of v = 5,000 m/s. This is almost a

miracle! A very simple model ex-
plains the propagation of sound in
elastic bodies.

Oscillations of other physical val-
ues can also propagate in space. Peri-
odic variation in electric strength and
magnetic induction is described as

the propagation of an electromagnetic
wave. Other examples are tempera-
ture waves I magnetization waves
(induction oscillations of a magnetic
field in a medium), and so on. In a
manner of speaking the entire house
of modern physics is riddled with
different kinds of waves.

Figure 7

Appendix
Imagine a spring winding around arod AB

that is positioned along the diameter of a
circle (fig. 7). One end of the spring is attached
to a ball and the other to the rod's end A. The
ball can slide along the rod, and its position of
rest coincides with point O. The rirg is set in
rotation in the horizontal plane with a con-
stant angular velocity roo. The ball then
deviates {rom the center. Denoting its dis-
placement by r, we have (by Hooke's law) a
Iorce F = kS acting on the ball in the direction
of the point O. By Newton's second law this
{orce provides centrifugal acceleration c" =
aozr:

mao2t =kot.

So the ball is in a stable position when the
rotation velocity is

magnetic fields. The rotor of a generator
rotating in the magnetic field of the stator was
abruptly stopped, resulting in high voltage
induction. The rotor was connected to a coil
having a small resistance. The powerful
impulse of the electric curent created a

magnetic{ield inside the coil with flux den-
sity oi about 30 T (a record at the time). Why
was the coil (which contained a sample whose
properties under strong magnetic fields had to
be investigated) placed far from the genera-
tor? Evaluate the minimum distance 1be-
tween the generator and the coil if the experi-
ment lasted at = 0.01 s and the laboratory had
a concrete floor.

5. A model o{ carbon dioxide gas {COr)
mnsists o{ three balls connectedby two springs.
In the position of rest both springs are lying
along the same line. The model can perform
different types of motions (shown in figure 8).

Calculate the ratio of their frequencies. Q

Figure 8
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Therefore, the projection of the ball's ve-

locity on a fixed axis is in simple harmonic
motion, with the cyclic frequency equal to
the angular rotation rate. For example, x =
zsin<oot. So for aball of mass m attached to a
spring with rigidity ko, the frequency of the
simple harmonic motion is given by the for-
mula

Exercises
1. For those of you who haven't experi-

enced a "wa.ve" in the stands at a sporting
event, here's a good way to get a feel for what
a wave is. Have a m.rmber of yourfriends stand
in a ringhand in hand. Let one of them squat
down and then stand up rgain, the person on
the right repeating the motion after a certain
delay, and so on. What does the speed of this
wave depend on?

2. The length of an elevated power line is
3,000 km. The frequency of the voltage is 50
Hz. By what fraction of the oscillation period
do the phases at the input and the output of
the line differ? What is the corresponding
phase shift?

3. Evaluate the collision time t o{ steel
balls with diameter d = 0.01 m. The density of
steel p = 7.8 ' 103 kg/m3, Young's modulus E =
2. l0rI N/m2.

4. The eminent Sovietphysicist P. L. Ka-
pitsa used the following setup to obtain strong
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Science and
Math Events:

Connecting
and
Competing

When you are trying to build student
interest and enthusiasm in math and

science, few resources can match the
excitement generated by science clubs

and competitions. But how do you get

your high-school students involved? And
how do you keep them involved? With
plans for successful fairs, details on 25

national and international contests, and

commentary by 89 prize-winhing

scientists, this new publication prepares

you and your students for
connecting and competing in the 1990s.
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All orders of $25 or less must be prepaid.
Orders over $95 must include a purchase order.
All orders must include a postage and handling
fee of $9. No crzdits or refunds for returns.
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lvlethods of lvlotion
An Introduction to
Mechanics, Booh 1

Isaac Newton really believed
that moving objects continue
at a constant speed in a
straight line? Do your
students? This manual was

created to help teachers
introduce the sometimes
daunting subject of Newtonian
mechanics to students in the
middle grades. The 27
activities presented here use

readily available materials to
give students visual, aural,
and tactile evidence to combat
their misconceptions. And the
teacher-created and tested
modules are fun: Marble races,

a tractor-pull using toy cars,
fettucini carpentry, and film
container cannons will make

teachers and students look
forward to class. Readings for
teachers, a guide for workshop
leaders, and a master
materials list follow the
activities, making this manual
useful for inservice
workshops. (grades 6-10)

#PB-39, 1 989, 157 pp. $16.50

All orders of $25 or less must be

prepaid. Orders over $25 must include
a purchase order. All orders must
include a postage and handling fee of

$2. No credits or refunds for returns.
Send order to: Special Publications,
NSTA, 1742 ConnecticutAve. NW,
Washington, D.C. 20009.
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the richest habitats on Earth.

Rain Forest Facts:
. Nearly two percent of the world's rain

forests are lost annually.
. One quarter o[ all drug store purcha'ses -
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percent of all species. South American @ '

rain forests support more than 30,000
species of higher plants.

. In 1987-88, 1.5 square miles of the
Amazon Basin were destroyed per hour.

$29.95,2OO pp.,2l0 color photographs and maps

At better bookstores or call TOLL FREE 1 -800-451 -7556
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CONTEST

Hearraltuinu $tlln$

For what values of n and k is it possible to rearrange
the sum 1 + 2 + 3 + ... + n into kequal summands?

by George Berzsenyi

I NTHE FIRST ROUND OF THIS year'sUSAMathe-

I matical Talent Search (see page 5B of the Sept./Oct.

I 1990 issue of Quantum for details), I posed avery
f special case of the aboveproblemwith k:5. Most of the
over 250 contestants responded to the challenge and
provedthat lf n = 5m or n : 5m- 1, wherem is apositive
integer greater than or equal to 2, then it is indeedpossible
to partition the set 11,2, ..., n) into five subsets whose ele-
ments have the same sum. Two of the figures illustrating
this article provide a geometric interpretation of the case
m =2;form>2, one proceeds inductively.

Our first challenge is to treat the more general case of
k = p, where p is a prime number. That is, determine the
possible values of n for which one can partition the set

ll , 2, 3, ... , nl into p subsets whose elements have the
same sum. There are at least two different inductive
procedures that can be applied; it may also be of interest to
study their geometric interpretations.

Our second challenge is to treat the case oI k: pq, where
p and q are primes. The third figure illustrates the case of
p : 2, q = 3, n = 15, while the fourth figure should be viewed
as an invitation to a yet more general cluestion: what must

be the dimensions of a rectangle that can be tiled by rec-
tangles of width 1 and length I ,2,3, ... , n7

You may also wish to consult a recently published
research article entitled "Disjoint Subsets of Lrtegers Hav-
ing a Constant Sum" (Discrete Mathematics 82ll990l,
7-11), in which a related result is established along with
yet another generalization. I am indebted to my colleagues
Gary Sherman (who called this article to my attention),
Roger Lautzenheiser, and Bart Goddard for insightful dis-
cussions of such problems.

Please send your solutions to these problems to Quan-
tum,1742 Connecticut Avenue NW, Washington, DC
2O0O9. The best results will be acknowledged, and their
authors will receive free subscriptions to Qbantum for
one year and/or book prizes.

The successful solvers of these problems are also en-
couraged to present their findings at con{erences (such as

the Eighth Annual Rose-Hulman Conference on Under-
graduate Mathematics, to be held March 15*16,199111, in
publications (such as the lournal of Underytaduate
Mathematics, Pi Mu Epsilon lournal, and Kenyon Quar
terly), ardat science fairs and talent searches (such as the
Westinghouse Science Talent Search). I also encourage
you to communicate with one another. O
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CONTEST

ttUhal IhB$ee$atnllauUht

"The balance distrnguisheth not between gold and lead."

-George 
Herbert, "Jacula Prudtum"

by Arthur Eisenkraft and Larry D. Kirkpatrick

EMEMBER THE FIRST TIME YOU played on a
seesaw? You balanced on one end, your friend
balanced on the other. With small kicks off the
ground the seesaw tilted one way and then the other.

At times, you may have even threatened not to let your
friend down as you gloried in the power of your position.
Another, quieter way olplaying with the seesaw is to try
to balance perfectly. You and your friend position your-
selves so that the
seesaw balances.
If you lean back,
the seesaw tilts.
kanforwardand
you can get it to
rctum. Howlong
can you keep it

Albert

balanced?
The seesaw is a very good place to begin a study of forces

and torclues. The forces make the seesaw move up or
down. The torques make it rotate about the pivot in the
middle. Since the entire seesaw never leaves the ground,
we can be sure that the "up" forces equal the "down"
forces. If Albert and Marie are on the two sides of the
seesaw (fig. 1), their weight plus the weight of the seesaw
("down" forces) must equal the force of the support on the
seesaw ("up" force).

We canwrite this as

Fdor, = Frp,

W.,, +W-. +W :F
AlDert lvlane Seesaw suppon

Torque is like a "tuming force." The greater the forcg the
greatet the torque. Similarly, the longer the moment arm,
the greater the torque. On our seesaw, thq moment arm
can be chosen as the
distance from the
pivot to the weight.
When Albert and
Marie are perfectly
balanced, there's no
rotation and so the

Figure 1

clockwise torques must equal the counterclockwise torques.

We can write this as

Tcounterclockwise = Tclocl*ise I
d, .W 

ororn: dz.W *^,:".

If Marie has 314 the weight of Albert, her moment arm
(distance from the pivot) must be al3 times the moment

Marie arm of Albert.
If you know

yourweight, you
can guess some-
one else's by bal-
ancing on a see-
saw and measur-
ingdlsunces. Give
it a try and let us

know how successful you were.
By applying these physical principles you can learn a

great balancing act ! Take any long rod. A meter stick, a
baseball bat, or a curtain rod will all do well. Cradle the
stick on the edges of your two hands. Move your hands
slowly together. Your two hands will meet at apoint-the
same point at which the stick can be balanced. We call this
position the center of mass. Wi1l it work i{ your hands start
at different locations? Sure it will. Will it work if we add
an exffa mass to one side of the stick? Sure it wil1. As the
hands slide closer together, one hand always seems to
move more easily than the other. The contest problem for
this issue is to describe why this works.

A second contest problem is offered for those of you
who have some exffa physics under your belt or some extra
time to work on your physics problem-solving skills. In
this problem, a uniform stick is resting on two fixed

cylinders that rotate
with eclualvelocities
in opposite directions.
(See figure 2.) The stick's
center of mass is
somewhat displaced
with respect to the

CONTINUED ONPAGE26

Figure 2
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Alalkwilh pl'ole$$or l. [Ul,0elland

A student and teacher who followed his own interests and instincts

Recorded by V. S. Retakh and A. B. Sosinsky

ISRAEL MOISEYEVICH GELFAND is

one of the greatest living
mathematicians. He's the author of
around 500 works-books and articles
not only on mathematics perse but

also on mathematical physics, cell
biology and neurobiology, and
applications in medicine, seismology,
and other areas. Gelfand is a member
of the Soviet Academy of Sciences,
the US National Academy of
Sciences, the American Academy of
Arts and Sciences, the London Royal
Society in England, the French
Academy of Science, the Royal
Swedish Academy, and many other
foreign academies. He has received
honorary doctorates from Oxford,
Paris, Harvard, and many other
universities. He has also received
such distinguished prizes as the Kyoto
Prize, the Woll Prize, and the Wigner
Medal.

For some 45 years now, first-year
students and famous scholars have
gathered on Monday evenings at
Moscow Universityfor Gelfand's
renowned mathematics seminar.
Several generations of outstanding
mathematicians have been nuftured
by this seminar.

Gelfand founded the Mathematics
Correspondence School, which has
students throughout the Soviet Union,
and is the chairman of its governing
committee. The main goal of this
school is to reach out and help those
students who are practically deprived

of mathematical literature and contact
with scholars. These are generally
students who live outside of Moscow,
Leningrad, and other big cities where
there is access to good books and
good mathematicians. Created 25
years ago, this correspondence school
was the first such school in the Soviet
Union and serued as an example for
other correspondence schools that
followed.

lnteruiewers from our sister
magazine Kvanf planned this
conversation with professor Gelfand in

the usual way-that is, by proposing
questions that would be of interest to

both Gelfand and Kvants student
readers. Gelfand glanced at the list of
questions and said they were very
interesting but he didn't consider
himself competent enough to answer
them.

"You see," he said, "l don't think I

have the right to impose my opinions
on your readers. ltwould be better if I

just tell what I was doing
mathematically at their age-13 to 17
years old. l'm not sure I can recall
now allthe problems I was working on
at that time, but the problems l'll talk
about I remember very well."

And now-|. M. Gelfand's story.
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Prcfessor L M. Gelfand at home in Boston, October 1989.
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NE OF GRAHAM GREENE'S NOVELS is called
The Loser Takes All. My mathematical experience
was such a wonderful and happy one, for many years
it seemed to be the realtzationof Greene's title. Why

was I so fortunate? Briefly stated: first, I didn't study at a
university (or any institution of higher leaming, for that
matter); second, because of certain difficulties in my
family life I found myself in Moscow without parents, and

iobless, at sixteen and a haU years of age.

I'11 try to illustrate the meaning of the expression "the
loser takes all" with the help of another English writer,
Somerset Maugham. The hero of the story, a church
sexton, suffers a misfortune: during certiJication of church
personnel it comes to light that he's illiterate, and so he's
fired. He starts selling cigarettes, then buys a tobacco
stand, then several othets, and ends up making a brilliant
career in commerce. He becomes the richest man in the
city. He becomes the city's mayor.
Someone comes to interview him-
just as you're doing now-and he ex-
plains to the joumalist that he's illiter-
ate. The stupefied joumalist exclaims,
"What heights you could have attained
if you had been literate!" Without a
pause the mayor replies, "I'd have been
a sexton."

So in February 1930, at sixteen and a
half, I came to Moscow to live with my
distant relatives, and I was often unem-
ployed. I tried many temporary jobs, but
mostly I went to the Lenin Library and
"pulled together" allthe knowledge I
didn't get in school and in the technical
training I didn't finish. At the library I
met university students and started going
to seminars. At 18 I was already teach-
rng, and at 19I found myself in graduate
school. The rest of my mathematical
career proceeded quite normally, takmg
the usual track for mathematicians.

But it's not this part of my life that I
want to talk about. I want to tell your
readers about the earlier period. I'd like
to do this for two reasons. First, it's my
deeply held conviction that mathemati-
cal ability in most future professional
mathematicians appears precisely at that
time-at 13 to 15 years of age. (Of
course/ there are exceptions-some who
develop earlier, some later, at 20 to 30
and even 4O-among very strong mathe-
maticians.) Second, this early period
formed my style of doing mathematics.
The subject of my studies varied, of
course/ but the artistic form of mathe-
matics that took root at this time be-
came the basis of my taste in choosing
problems that continue to attract me

right up to the present time. Without an understanding of
this motivation, I think it's impossible to make head or tail
of the seeming illogic of my ways of working and the
choice of themes in my work. In the light of this
motivating force, however, they actually come together
sequentially and logically.

The first thing I remember happened when I was
around 12. I understood then that there are problems in
geometry that can't be solved algebraically. I drew up a
table of ratios of the length of the chord to the lengh of the
arc in increments of 5 degrees. Only much later did I leam
that there are such things as trigonometric (not algebraic!)
functions and that, in essence, I was drawing up trigono-
metric tables.

At about this time I was working through a book of
problems in elementary algebra. I had no accompanying
textbook, I didn't lcrow the theory but sometimes I had to

'+e
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ti
solve some pretty tough problems, using formulas that I
didn't know at the time. When I couldn't figure out how
to solve a certain problem, I'd look at the answer, and I
leamed how to reconstruct methods of solving problems
from the way.they're set up and from the answers grven. Lr
pafticular, I understood then, and remembered for the rest
of my life, that you can master a subject by solving
problems and that there's nothing wrong with looking at
the answer sincewe always have a hypothesis about the
answer while we're working on any problem. Doing
research in mathematics is similar to solving problems in
which something about the answer is known. This is the
diJference between working in mathematics and training
for university enftance exams (which is necessary as well,
of course).

At the age of.l2 or 13 I tumed my attention to geometry
problems in which there was often a right triangle with
sides 3, 4, 5 artd even with sides 5, 12, L3. I wanted to find
all right triangles with integer sides, and I derived a general
formula for their sides. That is, I found all Pythagorean
triples.t (Of course,I didn't know the term at the time.)
Unfortunately, I don't remember how I did it.

I worked at mathematics when I was sick and when I
was on vacation. Even now I can't help noticing how
much strong students manage to do when they stay home
because of ilhress. And so I would keep my own sons home
a few extra days a{ter they got better.

hr the geometry textbook we used, some theorems were
given as problems. I got my hands on a notebook (not an
easy thing in those days) and wrote out the statement of a
theorem on each page. Over the course of the summer I
covered almost all the pages with proofs. That's how I
leamed to write out my mathematical work.

I'11 skip over a stretch here. I'll mention only the book
by Davydov on algebra in which you can find clever ways
of solving problems about maxima and minima by means
of elementary techniques (that is, without using differen-
tial calculus). For example: given a + b, find themaximum
of ab; [or a given perimeter, find the rectangle with the
maximum area; find the maximum of the product of
nonnegative numbers arar...a,t given their surn a1 + az+ ...
+ d,, litt1e squares are cut out of a square with a given side
andabox is made out of the remainder-what size must
the little squares be for the volume of the box to be
maximal?

Combinatorics and Newton's binomial formula made
a great impression on me, and I thought about them for a
long time.

I lived in a small town with only one school. My
mathematics teacher was a kind but stem-looking man by
the name of Titarenko. He had a huge Cossack mous-
tache. I haven't met a better teacher, although I knew
more than he did and he knew it. He liked me a lot and

lSee "Genealogical Threes" in the Nov./Dec. 1990 issue of
Quantum.-Ed.

Lectwing at the Massachusettes lnstitute of Technology
(MIT)in 1989.

encouraged me in every way. Offering encouragement is
a teacher's most important job, isn't it?

There was a definite lack of mathematical books. I saw
ads for books on higher mathematics and figured higher
mathematics must be pretty interesting. My parents
couldn't order these books-they didn't have the money.
But once again I was lucky. At the age of 15 I was taken to
Odessa to have my appendix taken out. I told my parents
I wouldn't go to the hospital until they bought me a book
on higher mathematics. My parents agreed and bought me
the textbook on higher mathematics written by Belyayev
in Ukrainian for use in technical institutes. But they only
had enough money for the first part, which was about
differential calculus and analytical geometry in the plane.

I was lucky that I didn't start with a full-fledged
university course. This was ayery elementarybook. You
can iudge the levei of Belyayev's book by its introduc-
tion-in particular, it says there are three kinds of func-
tions: analytical, as defined by formulas; empirical, as

defined by tables; and correlational. I didn't find out about
correlational functions until many years later, from a

student who was studying probability theory.
On the third day after the operation I picked up the book

and read it, alternating it with novels by Emile Zola, for
nine days. (In those days you'd stay in the hospital for
twelve days after an appendectomy.) That was enough
time for me to finish Belyayev's book.

I took away two remarkable ideas from this book. Firsg
any geometric problem in the plane and in space can be
written as formulas. (I had suspected this earlier. ) I also
leamed about the existence of some remarkabie figures-
the ellipse, for example.

The second idea turned myworldview upside down.
This idea is the fact that there's a formula for calculating
the sine: sin x= x-*13! + xsf 5! -... . Before this I thought
there are two types of mathematics, algebraic and geomet-
ric, and that geometric mathematics is basically " trart-
scendental" relative to algebraic mathematics-that is, in
geometry there are some notions that can't be expressed by
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formulas. Consider,{or example, the formula for circum-
{erence-it contains the "geometric" numbet fi; or,sz\,
the sine-it's defined in a completely geometric way.

When I discovered that the sine can be expressed
algebraically as a series , abamer came tumbling down,
and mathematics became one. To this day I see the various
branches of mathematics, together with mathematical
physics, as a uni{ied whole.

Of course, I became convinced that problems of the
extreme are solved automatically (that is, by means of an
exact algorithm). Although they lose their charm, you
have in your hands a powerful tool (calculus ) for solving
them.

Studying differential calculus I leamed that there is also
integral calculus, which has to do with areas and volumes.
But what it consisted of, I had no idea-I didn't have the
second volume of Belyayev's textbookl

Now's a good time to mention another problem I recall.
The next autumn we studied the volumes of solids of
revolution at school. A classmate of mine, D. P. Milman,
who later became a famous mathematician, brought the
following problem to my attention: find the volume of a
body formed by the rotation of a circle about its tangent.
To solve it I divided the circle into strips. Then I calculated
the differences of the volumes of the corresponding cylin-
ders obtained by rotation. Finally, I found the sum of these
differences. This brought me face to face with the need to
find the sum

cos q + cos 2rp + cos 39 + ... + cos nq. (l 
)

The rest, as usual, was a mixture of inventiveness and
stupidity. I passed over an elementary solution based on
standard trigonometry, using instead the formula

aja : cos <p + i sin q.

(This formula is called Euler's formula, but I didn't know
that. ) I got this formula from the power series for sin x,
cos x, and er, which had made a deep impression on me. It
remained for me to find the sum of the geometric progression

eiq + e2iq + ... and, from that, to derive the sum ( 1 ), which I
did.

This problem led to my habit of thinking about a

problem even after I'd solved it. And I came up with some-
thing else: I moved the circle away from the line and
understood that rotation produces a body that looks like
the rubber cushion my friend's hemorrhoidal grandfather
used to sit on. Knowing the radius r of a circle and the
distance d from its center to the line, I used the method
described above to determine the volume of the solid of
revolution, 2nz&d.I was stunned by the simplicity of this
formula. I rewrote it in the form n? .2nd andunderstood
that if we cut the rubber cushion and pull it into a cylinder
whose side equals the length of the trajectory formed by
the center of the circle, then the volume of the cylinder
would be the same. A similar fact is true for the area of a
surface, and I understood that it was not by chance. What

will happen if we rotate some other figure instead of a
circle-for example, a triangle?

In this case the volume of the solid of revolution
coincides with the volume of a prism whose base is a
triangle and whose height equals the length of the trajec-
tory formedby the common intersection of the medians of
the triangle. From a physics book I knew that this point is
the triangle's center of mass. Seeing what happens when
a section is rotated, I understood that the center of a circle
is its center of mass as well.

I found a general definition of the center of mass in some
textbook on the strength of materials-I have no idea
where I got a hold of it. Not only did I immediately star{
rotating various figures, I'd move them along various
curves and calculate the volumes of the bodies obtained
and their surface areas. The rigor of the thinking was
important here. I was very proud that I could find the
center of mass of a half circum{erence (half circle) and of a
half disk (hal{ of the interior of a circle) given the volume
of a ball and the area of its surface.

And I was lucky yet again. An extraordinarily well-
educated man (in my opinion at the time) came to our
town. He had graduated from the Odessa Pedagogical
Institute in physics and math. Among the books he
brought with him were Kagan's Theory of Determinants
and Hvolson's Course in Physics. Kagan's book was useful
and detailed. It even contained a chapter on determinants
of inJinite order.

I should also mention the biology textbook by Filip-
penko, the well-known biologist from the school of the
famous geneticist N. K. Koltsov. This was a fine book, and
it naturally inJluenced my work in biology some 15 or 20
years later.

But to get back to mathematics. I was still interested in
problems o{ areas and volumes. I began with a calculation
of the area under the segment between two points of a
parabola. This problem reduces to a calculation of the sum
12 + 22 + ... + nz, which I did easily.

Then I wanted to find the area under the curve y: xr,
wherep = 2,3,4,...; that is, to find the sum Sn: lp + 2p + ...

+ nP for every positive integer p.
By analogy with the formula

12+22+...+n2= n(n+ l) Qn+ l)

I decided that So is a pollnomial in n of degree p + 1. I didn't
notice that to find the area under the curve it's sufficient to
know only the first coefficient of the polynomial So, so I
started searching for the entire polynomial. This tumed
out to be quite interesting. First of all, I generalized the
problem: instead of rc I considered flx) and started looking
for the sum

so: l(1) + fl2l + ...* f(nl.

Let F(x)be a function such that F'{xl = /(x). From Taylor's
formula we get
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F(D - F(l) =/( 1 ) +l'!t) +f"!it) +... .

r-(3)- F()) =ft)t+J 
t2t 

-l'"(2t Lt J -t'L'-.t\L't 
l: ll 

f ....

F( n+ I t - F < n, = 1", n, aLl!' +f!/" *" 2t 3!
I added these equalities and got

F(n+l)-F(l)=S +1r!*.o 2l 3!

where So is the sum that interestedme and

s, : /( 1 ) + f'(21 + ... + f' (nl,
52= F'll + f '(2l'+ ... + f"ln), ... .

Then I wrote the following system:

F(n+1) - F( 1, = ro *|. *. *.

f(n+t)-f,t)=S,+;.,.*.

f'tn+lt -f'( [)=52.]i.

This is an infinite system with an infinite number of
unknown variables S0, S, 52, ... . As I mentioned earlier,
Kagan's book touched on determinants of infinite order, so
I was able to use Cramer's rule to find So:

Bo + cx,B1 * a.Br* ... = (e" - l)
That is, I got the power series for the numbers I was af-
ter. (These numbers Bu B t, 82,... are called Bernoulli num-
bers, andthepolynomiai So for flx) =;e is called Bemoulli's
polynomial.)

I remember two other problems from this period. The
first arose out of the problem in our book of algebra
problems: express xrz + xrz and x,3 + xr3 viathe coefficients
of a cluadratic equ.ation with the roots x1 and xr. A natural
generalizatron of this problem leads to another: express
the sum Xr' * ... + xr2 and the sum r,'* ... + xr3 via the
coefficients of the equation x" + a rx!-t + ... * a n 

:0, where
xt, ... t xnare roots of this equation. At this point Bezout's
theorem helped me, which I knew from Davydov's book.
I went further and posed a more general problem for
myself : express the sum of kth degrees of the roots of an
algebraic equation of nth degree via the coefficients of this
equation. I managed to solve this problem (the solution is
known as Newton's formula).

The second problem I solved at that time arose when I
discovered that the number cos ir is real because

coslx= 1+

I pondered this unexpected fact and came up with the
following general theorem: every even rcal-valued func-
tion takes rcal values on the imaginary axis.

To prove this I had to refine the notion of a "function."
I thought about what to call a function and arrived at this
definition: a function is the sum of a convergent power
series. After this, the proof of the theorem is almost self-
evident.

This problem was probably the last one I thought about
before I came to Moscow. I solved it in the summer of
1929. The next six months were very difficult for my
familyandme. Mathematics was farfrommymind.

The next period of my studies in Moscow was no longer
"pure experimentation." In Moscow I was exposed to
many completely different inJluences, and my develop-
ment no longer dri{ted on its own course. At this time, as
I mentioned earlier,I studied independently in the Lenin
Library and lived on occasional eamings from odd jobs. For
a while I actually worked behind a check-out desk at the
library. I met mathematics students from the university.
One of them told me that expressions of the form f(n + ll
-/(n), which greatly interested me, were part of a whoie
science called the theory of finite differences. He told me
I had to read Norlun d'sbookDiff erenzenkalkiJ on this
topic. It was in German, but I mastered it with the help of
a dictionary.

I started going to university seminars, and there I found
myself under intense psychological stress. I discovered
that my style of doing mathematics wasn't good {or
anything. New breezes were blowing in mathematics-
new demands for rigorous proofs, great interest in the
theory o{ functions of arealvariable. (Today this level of

.r2 -t4+-+...lr ,4t

F(n + 1)-F(1) tlzt

f(n + Il -f(tl 1

f 'ln + ll -f '(l) 0

u3t rl4!...

rl2t rl3! ...

t rlzt ...

so=
1

I expanded the determinant in the numerator of this
" fiaction" in the elements of the {irst column and the
corresponding minors and got

Sr: Bo(F(n + 1)- F(t )) + B,lfb + t )-l(1))+Br(f'(n+Ll-/(tll+..., (zl

where Bo: l, 81, 82,... are numerical determinants of
inlinite order. The orpression I got is called the Eulu-Maclaurin
formula, but of course I didn't know that. To calculate this
expression I needed to know the coefficients B, B' 82t ... .

To do this, I used arguments that would now be called
"functorials." Taking advantage of the fact that the
coefficients Bs, 81, ... don't depend on /, I picked a function
/such that the left part of the system formed a geometric
progression (which I knew how to sum). The function flx)
= effi suits this purpose. Inserting it into formula (2) (I'11

leave the intermediate steps for you to work out!), I got
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rigor and this particular theory are
considered old-fashioned and obso-
lete, but at the time . . .)

Then I reahzedit's very important
that a function doesn't have to be
continuous, that a continuous func-
tion doesn't have to be differentiable,
that a di{ferentiable function doesn't
have to be twice differentiable, and so

on; that even i{ a function has deriva-
tives of all orders, the Taylor series for
this function isn't necessarily conver-
gent, and that even if it is, its sum
doesn't necessarily coincide with the
value of the function! If this coinci-
dence takes place, the function is
called analytic, and this class of func-
tions (so the devotees of the real-
variable function theory maintained)
is so narrow that it lies outside the
bounds of mainstream mathematics.
And these were the only functions I'd
been looking at!

Under the pressure of this point of
view, I read the "modern, rigorous"
textbook on analysis by Vallee Poussin.

It's similar to the texts curently used
at Moscow University by students of
mathematics and mechanics, but better.
So I sympathize with those first-year
students who are allowed to experi-
ence the beauties of mathematical
analysis only after ayear's probation,
a sort of trial by the fire of its "rigorous
foundation."

But even here I was lucky. I began
reading I. I. Privalov's remarkable book
on the theory of functions of a com-
plex variable. While reading this book
I understood why, for the function flx)
: I lll + *1, the Taylor series is diver-
gent at x: 1 even though its graph is
continuous. (As amatterof fact, the
corresponding complex function has
a peculiarity for x =i). After the first
100 pages I felt a fresh wind. I discov-
ered that if a complex function has a
first derivativg it has derivatives of all
orders, and then the Taylor series
converges at the value of this frrnction
in some domain. Everything fell into
place, and harmony was restored.

I raced through Gourvits and Cour-
ant's book on the theory of functions
of a complexvariable. I was mostly

CONT/NUED ON PAGE 26
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ann,ral prizrcs rn specilic predetermined fields like physics, chemistry, economicq
or mathematics. lnstead there are three broad categories: advanced technology,
basicsciences,andcreativeartandmoralsciences. Eachyearaspecific{ieldisbaSiCsCienCeS,andCreativeat,tandmoralsclenCeS. l'.achyearaSpeClflclletcl 15

selected from each of the three categories, and a laureate is then chosen from thar
field. For instance, the 1986 Kyoto Prize in basic sciences was awarded in bioiogy,
in 1i87-in Eanh sciences andastrophysics, and so on. You see that to get a Kyoto
Prizifor amathematician is rnuchmore di{ficult.since it's not awarded every
y r. L M. Gelfand received the Kyoto Prize in 1989 when the field chosen in basic

scienCes was rnathematics.*'a".ir."r-".#i,iIi 
tr.r""fa r* mentiored here is the Fields Medal. At the I 924

Intemational Corrgress in Torontq a resolution was adopted that two gold medals

should be awarded at each internationai mathematical congress, held every four
years. foo{essor }. D. Fields, a Cenadian mat}-rematician who was secretary of thc
i924 consess, later donated funds establisfung the medals, which were named in
his honorl Fidd6 r^/ished that the awards be open to the entire world and recognize

both existing work and the promise o{ future development, so the medals are

restricted to mathematicians not over the age of forty. In I966 the number oi
medals &at coutd be awarded at each international congress was increased to four
in lightlof the'ffit,erypirrsion of rnathematical rese#ch iii the w*rld.

' A{tet the Kyato ttrize awar ',r,wextwlr)'Itotel{*ll' Cetf{rnd'qikx with lapanos*
math an aticians ( N owmb er I 989 ).
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impressed by the chapters on elliptic
functions written by Gourvits. And
once again fashion made a fool of
me-this branch of mathematics was
considered obsolete. The theory of
elliptic functions was looked down
on as "barely extended trigonome-
fry." Many years would pass before
this area once again became afocal
point of mathematicians' attention.

I gained a lot from the university
seminars. Meeting with mathemati-
cians of every stripe, I was abie to
compare my romantic, antiquated (*rat
is, unfashionable) views of mathe-
matics with what was actually hap-
pening then. I studied with many
remarkable mathematicians and con-
tinue to try to leam this way.

A little later I read-studied in
great depth, really-a remarkable book
by Courant and Hilbert called Meth-
ods of Mathematical Physics. I un-
derstood then the need to read basic
works. Here it's important not to
re$et the time spent thinking about
the very foundations of a theory. The
workof HermanWeyl ll925l onthe
representations of classical groups
belongs to that category. But, un{or-
tunately, we didn't have access to
even older frlndamerrtal works fu Cayley,
Schur, and other authors of the "pre-
Hilbert period."

l learned a lot from L. G. Shnirel-
man, M. A. Lavrentiev, L. A. Luster-
nick, I. G. Petrovsky, A. I. Plesner,
and even more from Andrey
Nikolayevich Kolmogorov.z In par-
ticular,I leamed from him that a true
mathematician nowadays must be a
philosopher of nature.

But my story has turned into the
standard scientificbiography. This
genre is usually very misleading. A
true scientific biography is simply a
collection of the scientist's works.
One's own impressions about one's
works are no more significant than
the impressions of any other reader.
Andso it's timelendedmytale. Q

2For more on A. N. Kolmogorov, see
the Innovators department in the fan.
1990 issue of Quantum.-Ed.
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point midway between the cylinders.
If the distance between the cylinders
is 2d, the stick has a weight w and
lengh l, and the coefficient of friction
between each cylinder and the stick is
p, describe how the stick moves.

Please send your solutions to Quan-
tum, 1742 Connecticut Avenue NW,
Washington, DC 20009. The best
solutions will be acknowledged in
Quantumand their creators will re-
ceive free subscriptions for one year.

Clic[ clid{, clhk
We were disappointed that we re-

ceived no corect solutions to this
contest problem. We are confident
that our readers could have solved
part A. Don't get discouraged. If you
can answer part A but not part B or C,
send us a note anyway. Your solu-
tions will help us judge what you
mlght like to see.

hr the Contest Problem involving
Newton's toy you were asked to find
the mass of a middleball so that the
velocity of the small ball will be great-

est in a three-bali collision. Applyrng
the laws of conservation of energy
and momentum to the fust collision,
we have rr7rv, : mrvr' + mrv2',
(I f 2lm rv rz 

: ll f 2lm rv r'z + (l f 2lmrv r'2.
Solving for v,' in the fust equatlon

and substituting in the second equa-
tion, we arrive at 0 : -2mrvrvr' +

mrvr'z + mrvr'z. Solving for vr', we find
that v r' = 0 and vz' : 2m rv rf (m, + mrl.
We ignore the solution vz' : 0 since
this corresponds to the case of no
coilision. Since the second collision
is similar to the first, we can write
dovm the relevant eclr-ration immediately
vr" :2'mrvr'l(mr* m"). Combining
the last two equations, we get

,]
lntmvt2l

*r,.) (1)

To find when the value of mr lor
which vr" will be a maximum, we
can take the derivative of vr" with
respect to m, and set it equal to zero.
The solution is that the mass m,
should be the geometric mean of the
other masses. Specifically,

l2ltn=
2

For those of you who aren't knowl-
edgeable about calculus, we suggest
that you take arbitrary values for m,
andmr(that is, mr= | andmr: 100)
and plot a graph of v, versus mrfor
different values of m, You'll find
that the graph reaches a peak where
mz: lO, as predictedby equation (2).

Part B of the problem is an exten-
sion of this solution to a collision of
five balls. In this case, the masses of
the balls follow the relation mrf mr:
mJ-r: mrf mo: -Jmr. Part C of the
problem asks about the middle mass
given a coefficient of restitution e.

You may be surprised to find out that
the ratio of masses is the same, inde-
pendent of e, and is therefore the
same solution as inpart A.

Burt Lowry, our colleague from
Whitman High School in Bethesda,
Maryland, was quick to point out
that other collision possibilities exist
mathematically in the Newton toy
that obey energy and momentum
mnservation These never occurbecause
the masses are independent. One ball
always hits a second ball. The incom-
ing ball never "sees" a ball of twice
the mass, but rather sees a single-
mass ball. This probably explains the
importance of always leaving a small
space between the balis when you
build one of these toys. O
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BRAINTEASERS

Jusl lol' the lun ol it!

Problems offered for your enjoyment by S. Genkin,
A. Domashenko, D. Fomin, and V. Proizvolov

,' 821
I Bobby added together three consecutive integers, then the three next numbers,

and multiplied one sum by the other. Could the product be eclual to
111'111'111? 

fl- 
@r*-=r**@

ft

tl ^.*edEa q

Pit'ra*r"t a spiral made of 35 matchsticks is wound clockwise. Shift four f ? fl: n fl n
matches to rewind it counterclockwise. ll ll I U [] [.i

,&P;*** tu***n{822 "lL * r* { .

flj=*L$ p

Figure 1

823
You can do either of two things to a number written on the blackboard: you can
double it, or you can erase the last figit. How can you get 14 starting from 458
by using these two operations?

824
Two parallel diagonals are drawn in a regular octagon {h5.2). Prove that the area
of the rectangle thus'obtained is hal{ the area of the entire octagon.

o
6
N
dz
!
6

=cU
!

Figure 2

825
The smoke we see consists of small particles of unburned fuel. Each of the
particles is much heavier than air. So why do they fly upward?

Do you have a brainteaser for Quantum3 Send it to Managing Editor, Qluar'turn, 1742
Connecticut Ave. NW, Washington, DC 20009.
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AT THE BLACKBOARD I
I

Circumcircles Io IhE re$Gue!

A technique for certain traditional problems

by D. F. lzaak

of the hne AC and O is the circum-
center of triangle ABC, then angle
AO C : 2 angle AB C (fis. 21.

IV. If riangles ABC and AOC lie on
the same side of the line AC, OA:
OC, and angle AOC :2 angle ABC,
then O is the circumcenter of triangle FigUfe
ABC (see figure 2).

Here are some examples of how

2

angleA=70o,ang1e

, such that angle AMB :
, .,,.,. 30o, angle BMC = 20']lfl'rsIJ*L . -' "t. .. " . ill;:,r'.' u* (fig.a). FindangleABM.

I T'S WELL KNOWN THAT THE

I angular value of an arc is equal to

I the value of the central angle it sub-
I tends and is twice the value of the
inscribed angle it subtends. h solving
problems in plane geometry it's often
usefi.rl to draw the circle circumscribed
about a triangle or a quadrangle. The
properties I mentioned above can then
be formulated in the following way.

Figure 1

I. If a quadrangle ABCD is cyciic-
that is, if it can be inscribed in a circle
(fig. i )--then an$e ABD = angle ACD,
angleABC + angleADC: 1B0o (also,
angle DBC : angle DAC, angle ADB
: angle ACB, angle BAC : mgle
BDC, angle BCD + angle
BAD = 180").

II.If points B arid

C are on the same
side of a straight
ltne AD and angle
ABD:anf,eACD
or angle ABC +

anfle ADC: 180',
then cluadrangle
ABCD isryclic(see
figure 1).

III. If triangles
ABC andAaChe
on the same side

these properties can side the triangle and angle MAC =

make it a lot easier to 4)- mgle MCA = 40". Find angle BMC.
solvesomerathercom- i'tl- Solution. Since angle AMC:
plicated problems in '' r 100" = 2 angle B and MA = MC,
which the degree val- then, according to property IV,
ues of both the given M is the circumcenter of triangle
angles and the angles in ABC lhg.3). So, by properry III,
question are integers. anfle BMC = 2 angle A = I4A".

Examplel.Atriangle Example2.Tnan{eABC
ABC rsgiven in which is constructed such that AB
angle A = 70", angle : AC, angle BAC = 4Oo.

B = 50". Point M PorntMliesoutsidetriarUle

+

{ :s' _rr

{
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Figure 3

Solution. Property IV implies that
point A is the center of the circum-
circle of triangle BCM. So AB = AM
and angle A BM = angle AMB : 30'.

This problem can be generalized to
refer to any triangle ABC in which AB
= AC, anfle BAC = 2 anfle BMC, mgle
AMB : or. In such a triangle, angle
ABM: u.

Figure 4

Example 3. Triangle ABC is con-
structed such that AB = BC, angle
ABC :80". Point M lies inside the
triangle and angle MAC = 10o, angle
MC A = 30'. Find angle B MC (fig. 51.

Solution. Angles BAC and BCA
are both equal to 50". Let O be the
circumcenter of triangle AMC. Then,
according to properry III, anf,e AOM:
Ao, afld so triangle AOM is equilateral.
BO is the perpendicular bisector of
segment AC (since AB : BC and AO :
OC). Right triangles AB K and AOK
are congruent since angle OAK:50'-
10": 50o: angle BAK. Consequentl,
AB : AO j and taking into account
that AO = AM,we haveAB : AM. In
an isosceles urangle ABM, angles ABM
and AMB are equal to ( 1 80" - 401 I 2 :
70". Finally, angle BMC:350" - 140"

-7O' :150'(see figure 5).

I'11 leave you with five more prob-
lems foryou to tackle onyour own.

Problems
1 . In a triangle ABC angle A : 50o,

angle B = 60o. Points D and E are
chosen on sides AB andBC, respec-
tively, such that angleDCA = angle
EAC :30o. Find angle CDE.

2. In a triangle AB C angle A : 30o,

angle B : B0o. PointMlies inside the
triangle and angle MAC = 10o, angle
MCA : 30". Find angle BMC.

3. In a triangle AB C angle A : 20o,

angle C : 30". Point K lies inside the
triangle and angle KAC : angle KCA =

10". FindangleBKC.
4.Inatriangle ABC AB: BC,arfle

C :40'. Outside triangle ABCbfi
inside angle BAC a point M is taken
such that angle AMC = 50o, angle
ABM : angle ACM. Fnd angle BCM.

5. In a triangle ABC angle A = 84' ,
angle C : 78". Points D and E lie on
sides-4-B andBC suchthat anfleACD
: 48o, angle CAE = 63". Find angle
cDE. O

SOLUTIONS ON PAGE 53

33

A Spncrer Precr non
Neruner ScmNcrs

o Small university setting with close
contact between students and high
qualiry faculry.

o Excellent preparation for careers in
research science, medicine, and
teaching.

o Collaborative research between
faculry and undergraduates
encouraged.

o Strong liberal arts program for a

we ll,rounded education with
suhtantial focus on scientific study.

For information, contact:
Dean of Admissions
Campus Box 8378
Deland, Florida 327 20.37 7 t
or call (904) 82271Co

Urder gr aduate Study in Biolurig,
Cllemistry, Physics, Mathemati c s,

and Conputer Science

Circle No. 23 on Readers Service Card

Edmund Scientific Brings New Technology lnto Your Classroom

NCE CLASSROOM VIDEO
MICROSCOPY SYSTEM
o Very Affordable System Compatible
For Use With Your Existing Equipment
Video microscopy demonstrations have become both a popularand a
very successf ul vriay to involve your students and to achieve maximumvery successf ul way to involve your students and to achieve maximum
visual impact. Students,can view the same image simultaneously-

and, with a simple pointer, student

INDIVIDUAL COMPONENTS
lf you already own video equipment or microscopes, you can save
by buying only the components needed. With our system the critical
componenl is the Deluxe Relay Lens which replaces the micro-
scope eyepiece. lt is compatible with any video camera that accepts
a standard "C" mount. Costs only $195 (#ED32820),
Write or call for our FREE 188 page catalog for complete details.
For technical help contact Bill Shonleber at 1-609-573-6259.

Send us your school bids, you will be pleased with our prices and seruices.
SERVING EDUCATORS SINCE 1942

G S E*9,flt g,[ $,-s,sir n],',r# *fi g;

and, with a simple pointer,
attention can be directed to differ-
ent interest points on the monitor
image. assuring comprehensive
observation.

CLASSROOM VIDEO
MICROSCOPY SYSTEM
Featuring a special dualtube version
of our graduate student microscope,
this system provides dramatic
results. Economically priced, only
$2,2s8 (#ED5289).

Tel. 1-609-573-6250
Fax 1-609-573-6295

Circle No.24 on Readers Service Card

Figure 5

^a"
AY\

IUAIt,ITUllll/AI THt BI.ACI(BOARO



HOW DO YOU FIGURE?

Challeltuo$ in phy$ics and tnalh

tlllAIh
M21
Square root of seven. A regular hexa-
gon with side I is drawn on the plane.
Construct a segment of length 7tlz
using only a straightedge. (A. Aliayev)

M22
Wfue cube. What's the shortest length
of a piece of wire that can be bent so as

to make the framework of a cube with
an edge 10 cm long? (The wire can
pass the same edge twice, can be bent
through 90" or 1 80o, but can't be bro-
ken.)

M23
Patches on jeans. A pair of jeans with
a total areaol t have five patches on
them. The area of each patch is not
less than lfZ. Provethat there are t\,vo
patches such that the area of their
common part is not less than 1/5. (E.

Dynkin)

M24
Power calculating. To find the value
of t' given x, you need three arithme-
tic operations: >,2: x. x, * = * . *, f =
*.{; to find xr5 five operations wiil
do: the first three of them are the
same, then # . # = xt6, arrd xr6 f x: xrs.
Prove that (a)x1000.can be found in 12
operations (multiplications and divi-
sions); (b) x" for any positive integer n
can be found in no more than (312)
logrn + 1 operations. (E. Belaga)

M25

Figure

34

Figure 2

Equilateral aiangJe and pmagon [1nve
that from any convex ecluilateral pen-
tagon (which isn't necessarily regular)
it's possible to cut out an equilateral
triangle, one of whose sides coincides
with a side of the pentagon (fig. 1). (S.

Konyagin)

Plrysics
P21
Fox and dog. Afox running along a
straight line with velocity vlwas chased
by a dog whose velocity y2 was con-
stant in absolute value and always
directed at the fox. When the veiocities
v, and v rw ere perpendicular to ea ch
other, the distance between the {ox
and the dogwas 1. What was the dog's
acceleration at thatmoment? (I. Slo-
bodetsky)

P22
Floatingvessels. A large number of
cylindricai vessels containing water
are immersedin one another so that
each vessel floats in the next one. The
bottom area of the smallest vessel is
s, which is much smaller than that of
the largest vessel. A volume of water
vn is added to the smallest vessel.
What is the dlfference between the
old and the new positions of the bot-
tom of the smallest vessel with re-
spect to the ground? (A11the vessels
continue to float.) (S. Krotov)

P23
Rigfit or leftl TWo connected vessels
are of the shape shown in figure 2. In
what direction will the water flow if
one of the vessels gets heated?

P24
Double-size battery. A iamp con-
nected to a battery glows for three
hours, then the battery runs down.
Anotherbattery is made of the same
materials but is twice as large as the
original one (in length, width, and
height). How longwill the new bat-
tery last if connected to the same
lamp? (The intemal resistance of the
battery is much less than the lamp's
resistance.) (K. Bedov)

P25
Whispering gallery. The phenome-
non of a "whispering gallery" is well
known in architectural acoustics. In
large cathedrals (for example, in St.
Peter's Basilica in Rome) tourists are
invited to visit a circular gallery at the
base of the main dome. A word spo-

JAIIlJARY/IIBRUARY 1$91

Figure 3



ken cluietly at point A (fig. 3) of the
gallery is distinctly heard at point B if
the speaker looks along the wall. ff,
however, the speaker looks directly at
point B, the.listener hears nothing.
How can you explain this?

At point A a poorly directed acous-
tic source emits a relatively loud impuJse

of duration t. What's the duration of
the impulse received at point B? (The
gallery's diameter is d.) (B. Klyachin)

SOLUTIONS ON PAGE 50
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Those leal'le$$ "tltiltdotlt clilnhel's"

WalkinUolttntaler
The curious ways we all, creatures great
and small, get around

by K. Bogdanov

E'RE USED TO DIVIDINC
creatures into those that live
in water and those that live on
Iand. Several types of insects,

however, spend iust about their entire
lives on the air-water interface. One
of them is the water strider.

This insect skates swiftly along the
water's surface like human skaters on
ice. Its long legs are splayed widely
and support a long thin body.

The upper layer of water has a high
surface tensiorl which provides a reli-
able "skating rinl<" for the water strider.
If it runs into an area with substan-
tially lower surface tension, the in-
sect sinks into the water and help-
lesslyflounders in it. Such arL area car,
be created by a few drops of hexane on
the surface of the water. The surface
tension of hexane (if it's in contact
with air)is o: 18 mN/m, just about
one fourth that of water (70 mN/m).
(Close observation, however, reveals
that water striders can unerringly tel1
an " acceptable" surface from a dan-
gerous one. If a few drops o{ water fall
on a smooth surface, they rush to the
shore and wait until the water calms
down again.)

l,et s tryto estimate thewater stridels
buoyancy. The insect is a little more
than five millimeters long. It has two
pairs of long legs keeping it on the
surface and apair of shorter legs, whose
main use is to manipulate its prey.
The mass of abigwater strider doesn't

exceed 0.05 g. The force of surface
tension supporting the insect on the
surface can be estimated from the
product o*I, where I is the contour
length of the distorted surface. The
equality mg : o*L (the floating condi-
tion)yields I equal to 0.5 mN/70 mN
.mj 

= 7.1 mm. And what do we have
in reality?

Look at figure 1, which gives two
views of the ieg-watet corLtact area.
The secret of the amazingability of
this insect to skate along the water's
surface is in the ends of its legs. They're
densely covered with water-repellent
hair. Since awater strider has only six
lep, the maximum length of the mntour
line, to which the force of surface
tension (7) acts perpendicularly, is
about 12 mm.

It's interesting that in conflict situ-
ations some insects that live on the
water eject a jet of liquid with a sur-
face tension lower than that of water.
As they flee, they leave behind a kind
of "no-man's land" in which their
pursuers sink and start to drown.

Figure 1 "-*-
Two views of a water stider's 1eg on the
water's surface.

How can a fly walk up and down
the vertical surface of a windowpane?
This question intrigued the great 17th-
century scientist Robert Hooke, who
supposed it was because of tiny nails
that flies have at the ends of their six
legs. (In 1665 Hooke gaye a detailed
description of these nails in his book
Micrography.) This e>cplanation seems
quite reasonable for walking on a rough
surface. But in the case of smooth
glass, this approach leaves something
to be desired.

British scientists used the most
advanced scientific equipment to
demonstrate that the ability of flies to
walk on an extremely smooth surface
also is related to surface tension. The
scientists discovered that there is hair
growlng between the nails at the end
of each leg. The hair forms a dense
brosh, and each separate hair ends in a
disk-shaped suction cup with art area
of 2.10-r2m2.

An examination of a fly's footprints
on a clean surface revealed that their
shape is identical to that of the suc-
tion cups. The footprints don't evapo-
rate, and a chemical analysis of their
content showed them to be fats. Of
course, a fat is usually ayery slippery
substance, but in this case it facili-
tates the adhesion of the hair to the
glass. This is because the surface
tension of the fat is high. If a fly's legs
are " defatted" by immersing them
briefly in hexane, the f1y temporarily
loses its ability to walk on a glass
surface.

To measure the force keeping a fly
on a horizontal pane of glass, scien-
tists tied one to a special scale and
measured the force needed to lift it. A
fly weighs about 0.72 mN. When it
stands on only four legs, a force of
1.03 mN is enough to lift it up, but
when the fly stands on all six legs, a
greater force is necessary-2.4 mN.
fhis orperimerrt reveals that the mupling
force derives mainlyfinm sudace tersion.
(If the force is plotted as a function of
the number of legs in contact with the
surface, it tums out to be a nonlinear
dependence, perhaps because there
are a different number of hairs on a
fly's fore and hind feet.)
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That's tlsiltu youl' head

If you've never had a chance to
travel to A{rica or South Asia, you've
surely seeri on TV or in the movies
how women there carry huge loads on
their heads. Sometimes the load's
weight is 70% of a human being's.
Sometimes the help of two men is
needed to lift such a load onto the
woman's head. But once the load is
there the woman easily carries it away.
Why is it easier to car4/ a load on your
head than to lift it upwards?

The loss of energy by a man or
woman performing some work can be
measured by the oxygen consump-
tion rate. One liter of consumed
oxygen corresponds to 20.1 kf of ex-
pended energy. Experiments with
volunteers have demonstrated that
the oxygen consumption increases in
proportion to the weight of the load i{
the load is carried in the usual way (on

the carrier's back). For instancg i{ the
weight is eclual to 50% of the carrier's
own weight, the energy consumption
is increasedby 50%. The same situ-
ation was observed when untrained
persons were asked to carry loads on
their heads.

You can imagine how surprised the
scientists were when they found that
African women carrying a load equal
to 5oo/o of their weight increased their
oxygen consumption by only 30%!
How did they do that? Further obser-
vation provided the answer.

Awoman going home with aves-
sel on her head filled to the brim with
water is a common sight in Africa.
Howeverpuzzlingit may seem, the
water never gets spilled. This means
there is no (or almost no) vertical
acceleration. Consequently, the cen-
ter of mass of a woman carryring water
doesn't oscillate in the vertical direc-
tion.

It's known that normal walking
causes a noticeable displacement of
the body's center of mass. Figure 2
shows two consecutive phases of
walking. Assummg that the leg coming
into contact with the road isn't bent
(is straight at the knee joint), the cen-
ter of mass is at its lowest point when
both legs touch the gror.rnd. The high-
est point of the center of mass is

Figure 2
The cuwe followed by the center of
mass as a person waks.

reached when the leg standing on the
ground is in the vertical position. This
suggests that the center of mass moves
along a circular arc whose radius is
eclual to the length of the leg periodi-
cally going up and down several centi-
meters.

Of course, this up and down move-
ment of the center of mass is utterly
useless, but it consumes energy. The
way we're accustomed to walking
may be compared to an inexperienced
driver alternately pressing the brake
and gas pedals, trying to maintain a
constant velocity and using up a lot
more gas in the process.

Unlike Europeans, many Africans
and South Asians developed a walk-
ing style that keeps their center of
mass at a constant level, thus sub-
stantially reducing their energy con-
sumption.

And nowlol' some asrohhs
Maybe you've come across a lesson

in your physics textbook in which
two pendulums are suspended from
the same crossbar. If you kick one of
them, it starts oscillating alone, but
after several cycles the other begins to
move synchronously with the first. A
similar phenomenon can be observed
in the body of a running animal when
two "pendulums" interact-the peri-
odic motion of the animal as a whole
and that of its lungs.

Figure 3 shows a kangaroo's lung
"pendulum." It operates in the fol-
lowing way: duringinhalation, when
the lungs fill with air, the abdomen's
center of mass shifts to the lefq during

exhalation it moves to the right. The
elastic properties of the diaphragm
and other tissues are depicted in the
drawing as a spring, and the organs
damprng the oscillations are shown as

a shock absorber. Thus, the abdomi-
nal organs act as a kind of piston,
oscillating inphase with the breath-
ing.

Obviously the energy consump-
tion of a running animal is minimal
when inertial forces caused in its body
by its periodic acceleration and decel'-
eration help (rather than hinder) the
breathing process. Such thinking leads
us to suggest that the breathing rate
should be close to the animal's stride
frequency.

Special experiments performed with
kangaroos, horses, rabbits, and dogs
verified this idea. It was found that
the most convenient ratio of stride
frecluency to breathing rate (especially
at a brisk gallop) is 1:1. In humans this
relationship is more complicated,
covering a range of values (4:1, 3'.1,2'.1,
l:1, 5:2,3:2), although the rutio 2:I
seems most likely.

The apparent independence of the
human breathing rate relative to the
speed of running may be explained by
the vertical position of the body. In
humans breathing is accompanied by
vertical displacement o{ the abdomi-
nal organs, whereas inertial forces act
in the horizontal direction. So the
"ltreathpendulum" in humans is af-
fected by inertial forces much less
than that in animals.

Going back to the textbook experi-
ment with the two pendulums, we

&'
t:3.

'inr:!rf!.k --...:_::
'* rflrl*rn--.:r . .'r :i

_ alrlirli. ::-r_ !., : ...-.ru"i**.*_-
'*a:t:.

:::r.

/
tti(/.)

E"^,,.^ Dr r9urr, \,
The "fueath pendulum" in an animal's
body slmulated by a sliding piston
attached to a spring and shock
absorber.
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is the potential energy of its compres-
sion (the pressure energy).

Bernoulli's principle predicts that
if a body moves inside a fluid (or a fluid
flows around it in a streamlined flow),
the pressure in the fluid adjacent to
the body is different at di-fferent points
of the flow. Figure 4 illustrates this
variation for a drop-shaped body.

At points where the fluid encoun-
ters the body (point A), its velocity
falls and the pressure in the fluid
increases. Moving further along the
body's contour, the fluid accelerates
and in some areas adjacentto the body
(point B) it moves with a greater veloc-
ity than that of the rest of the f1ow,
which by Bernoulli's principle is ac-
companied by a decrease in pres-
sure. So high pressure affecting the
part of the body facing the flow tends
to compress the body, and the low
pressure in the vicinity of its sides
tends to flatten it.

People have been able to make
ef{ective use of Bemoulli's principle.
Figure 5 shows the cross section of an
airplane wrng. Let's consider the motion
of two air particles. Suppose the par-
ticles were close to one another before
striking the wing's leading edge. Then
they separate and travel along the
upper and lower parts of the wing,
respectively, until they finally meet
at the rear edge. Particle A, however,
makes a longer trip than partrcle B,
which means that the average veloc-
ity of the first particle is greater. So, by
Bemoulli's principle, the average pres-

sure on top of the wing is lower than
that under it. It is this pressure differ-
ence that accounts for the upward li{t
force (which, of course, depends on
the surface area and shape of the wing).

How is Bernoulli's principle used
in the animal world? The most vivid
example is the soaring flight of birds.
Although the aerodynamics of such
flight isn't completely understood even
now, its main features are similar to
that of the human imitation, the air-

Figure 5
Afuflow arcund an aiqlanewing.

plane. But nature has many more
mysteries that can be unraveled by
means of Bemouili's principle.

Most of you surely know that a
squid uses jet power to get away from
apredator, expelling water out of its
mantle cavity. But it's only recently
that scientists understood how the
cavity fills with water.

Figure 5 presents a schematic view
of a squid and shows the direction of
its motion causedby the jet of water
expelled from the tube (siphon) near
the mollusk's head. The inlet valves
throughwhich water enters the mande
cavity are in the middle of the ani-
mal's side.

52uils *bsih
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Figure 6
Disftibution of water pressute around
the body of a moving squid andthe
squid's uoss section.

All our notions about the drop in
pressure of a fluid flowing around a

body can be readily applied to the
squid. The water pressure is lowest at
the middle of a swimming squid, near
the mantle cavity (see figure 6). The
inlet valves are located farther back so
that the pressure there is greater than
the average pressue inside the mantle
cavity. It is this drop in pressure that
causes the water to be drawn into the
cavity.

The extent to which Bemoulli's
principle contributes to the mecha-
nism by which the mantle cavity fills
with water has been evaluated by
numerical modeling. The pressure
gradient (that is, the variation in pres-

sure over unit length) given by Ber-
noulli's law depends on the squid's
velocity and is responsible for 5O%" to
90% of the water intake when its

A>'

Figure 4
Distibution of presswe in a fluid
flowing around a symmetrical drop-
shaped body. (Since the variation in
prcssure is always propofiional to pv2/2,
it canbe expressed in dimensionless
units 2p/pv2.)

notice that induced oscillations of the
second pendulum have the maximum
amplitude if both of them have the
same period of oscillation. So we can
expect that the natural oscillations of
the breath pendulum should be close
to the stride rate. And experimental
evidence supports this conjecture.
Experiments with dogs have shown
that the frequency of natural oscilla-
tions of the breath pendulum was
abott4llz, and the frequency of strides
when the dogs ran at agallop was 3.2
Hz.

Since the frequency of natural
oscillations of the breath pendulum is
constant for a given anim4 the stride
rate should be kept constant to mini-
mize energy consumption even i{ the
speed varies. Indeed, both four-legged
and two-legged animals (for instance,
the kangaroo) keep their gallop rate
constant, while the length of their
strides canvaryby afactor of two or
three.

Bel'noulliis lon fie hil'ds

According to Bemoulli's principle
bf 12 + p = constant, where p is the
density of a gas or liquid, vis the linear
velocity of its motion, and p is the
pressure) a variation in the velocity of
a flow alters the pressure inside the
flow. This is a direct consequence of
the law of conservation of mechanical
energy, snce ptP 12 isnumerically equal
to the kinetic energy of the fluid andp
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Figure 7
Distrlbution of pressute arcund the
body of a swimmingfish.

velocity increases from 3 to 9 meters
per second. This indicates that Ber-
noulli's principle is indeed very im-
portant in the scluid's activity, since
normally its velocity ranges from 5 to
10 meters per second.

But of all animals, perhaps fish
make the most effective use of Ber-
noulli's principle. The long course of
evolution optimized their bodies to
such an extent that the total drop in
pressure near the middle of a swim-
ming fish just about equals the in-
crease in front (compare figures 4 and

7). Scientists believe that a significant
drop in pressure tTear a fish's heart
may help the heart's activity/ since
lower pressure in the heart's ven-
tricles must increase the influx of
blood.

Not only that, afish's body is built
in such a way that there's at area
where pressure doesn't depend on the
velocity of motion and always equals
the hydrostatic pressure. This is where
a fish's eyes are located. So the eyes-
the organs with the least protection
against deformation-never experience
the increase in water pressure caused
by an increase in its swimming speed.

Some species of beetles are known
to spend most of their life under wa-
ter. hr so doing they breathe air from
a bubble they always carry with them.
P otamodytes tub ero sus, which lives
in the rivers of West Ahica, is one
such "submarirre" beetle. Usually
this beetle, together with its attached
air bubble, anchors itself to a stone
lyinginflowingwater. As soon as the
beetle finds itself in still (standing)
water, the bubble starts to shrink and
disappears completelyin a couple of

hours. This forces thebeetle to look
for another bubble. So, when it finds a
bubble, the beetle prefers to stay in
flowing water.

The fact that the airbubble is more
stable in flowing water can also be
orplained by Bemoulli's principle. The
pressure of the water flowing around
the bubble, elongated in the direction
of the flow, is less than the hydrostatic
pressure along almost the entire length
of its surface. So the air pressure
inside the bubble in flowing water is
lower than that in still water. If a
beetle is in a shallow place, the air
pressure inside the bubble is below
the atmospheric pressure, so that the
air dissolved in the water (at atmos-
pheric pressure) tends to enter the
bubble and it starts expanding.

Even at a depth of several centime-
ters an air bubble often remains
stable despite the hydrostatic pres-
sure that works against it. Calcula-
tions show that for a bubble to be
stable at a depth of 1 cm, the velocity
of the water flow should be greater
than I m/s; at4cnr, theflowshouldbe
faster than 2rnls.
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LOOKING BACK

The modesl eltpet'imentalisl,

]lenl'y Cauendish

Are unpublished results like a tree falling in the woods?

HE NAME HENRY CAVEN-
dish is associated with a multi-
tude of discoveries that didn't
become known until long after

they had been made. The personality
of theman, who dedicatedhis entire
life to the natural sciences, has at-
tracted the attention of physicists,
historians of science, and psycholo-
gists for many years.

A scion of the noble family of the
Duke of Devonshire, Cavendish was
bom October 10,1731, in Nicg where
his mother was living at the time on
the advice of her doctors. Her health
was delicate, and the birth of her
children strained it even more. Lady
Cavendish died shortly after the birth
of her second son, when her first son
Henry was two years old. At the age of
eleven, Henry was sent to one of the
best public schools in London, and in
17 49 he entered Cambridge Univer-
sity, which he left in 1753 without
taking a degree. It has been argued
that he left Cambridge because of his
painful shlmess and fear of examina-
tions.

Cavendish travelled for some time
with his younger brother throughout
Europe, and then settled in Londorl in
his father's house. Sir Charles Cav-
endish deserves special attention. He
was a noble, though not very rich,
man who was primarily interested in
the natural sciences. For many years
Sir Charles had been a member of the
Royal Society, and for some time he
was its vice president. His scientific
interests were mainly concentrated

by S. Filonovich

in the field of electricity, which was
fashionable at the time. TheAmeri-
can scientist and statesman Beniamin
Franklin wrote about Cavendish sen-
ior: "It is to be wished that this noble
philosopher would communicate more
of his experiments to the world, as he
makes many and with great accu-
tacy."

It's not 
"olikely 

that father and son
performed some experiments together,
and Cavendish's interest in science
was greatly influenced by his father.
But from the documents that have
been preserved, it's clear that Henry
performed the majority of the most
important experiments on his own.

The range of Cavendish's work is
so broad that it's difficult to assign
him a particularplace in science. During
his lifetime he was famous as a chem-
ist. Because of his pioneering work on
gases, Cavendish is sometimes called
the father of the chemistry of gases.

He was the first to determine the
nature of hydrogen as a separate gas/ to
verify that air is a mixture of oxygen
and nitrogen, and to demonstrate that
water consists of oxygen and hydro-
gen. He studied electrical phenom-
ena in chemistry and found that nitric
acid is generated by electric sparks in
humid air.

During one of his electrochemical
experiments Cavendish obtained in-
ert gases from the air. He did this by
letting electric sparks pass through
oxygen-enriched air in a U-shaped
glass tube. Both ends of the tube
remained unsealed and each was dipped
in a vessel containing a solution of
caustic soda. Two metal wires, at-
tached to the contacts of a machine
that produced electricity by friction,
passed through the solutions and in-
side the tube with the gas. When the
machine was started (it was Cavendish's
servant who actually rotated the disk),
sparks ran between the ends of the
wires and generated nitric acid, which
was absorbed by the soiutions. By
manipulating the mixture of air and
o).ygen, it was possible to decrease the
volume of gas inside the tube. But, as

Cavendish mentioned in his labora-
tory joumal, a small bubble of gas stil1
remained despite all his effort. This
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discovery remained unknown until
the end of the nineteenth century,
when two British scientists, Rayteigh
and Ramsay, successfirlly applied it to
obtain inerf gases from the air and
study them.

Many chemical problems studied
by Cavendish were also studied by his
contemporaries Lavoisi er, W att, and
Iiriesdey. But Cavendish always aimed
at a rigorous quantitative examina-
tion. For example, he not only proved
the existence of hydrogen, he also
found that this gas is lighter than air
by a{actor of eleven. Using the eudi-
ometer (an instrument he modified
speci{ica1ly for this purpose), he stud-
ied the volumetric proportions among
air, hydrogen, and water generated
when such a mixture explodes.

It's often alleged that Cavendish
devoted a1lhis life to experimental
science but never published any te-
sults. This is an exaggeration. It's
true that, for reasons that aren't en-

tirely clear, Cavendish seldom pub-
lished his scientific findings. When
he did, it was often long after the
experiments were conducted, and this
led to disputes about who made a
discovery first. At any rate, a dozen or
so of his papers in physics and chem-
istry were published in the Philo-
sophical Transactions of the Royal
Society of London. Cavendish had
been a member of the society since
176O and actively participated on a

number of its committees. He took
part in its meetings and dinners and
helped G. Banks, the president of the
Royal Society, in his work. Contem-
poraries said that Cavendish was re-
luctant to get into arguments/ perhaps
because of his high-pitched voice. The
eminent English physicist and chem-
ist Sir Humphry Davy wrote that
Cavendish's mainpassionwas a dis-
interested search for the truth and
that fame and publicity repelled him.

Besides chemistry, Cavendish was
interested in ge-

ology. He made
several journeys
across England to
study the regional
variations in its
geology. During
these trips he be-
came interested in
metallurgical proc-

esses, whose im-
provement re-
quiredalcrowledge
of physics and
chemistry.

Cavendish was
acquainted with
the most impor-
tant English sci-
entists of his time:
Priestly, Davy,
Watt, Young. His
scientific activity
continued almost
up to his death,
which came after
a short illness on
February24, 1810.

His last paper had
to do with astro-
nomical instru-
ments.

One paper by Cavendish that ac-
quired widespread fame during his
lifetime presents his work in deter-
mining the mean density of the Earth.
It was published in1798, and nowa-
days the experiment described in that
paper is known as the Cavendish
experiment. The question of deter-
mining the Earth's density arose be-
cause calculations of the Earth's de-
formation caused by its rotation, as-
suming that its density is constant,
led to a disagreement with data frorn
geophysical observations. Newton
himself had suggested that the den-
sity of the Earth's inner layers could
be six times that of water. But all
attempts to obtain an agreement be-
tween calculation and observation
failed. An exact quantitative experi-
ment was needed.

Before the Cavendish experiment
attempts had been made to determine
the density of the Earth by observing
the deflection of a pendulum caused
by the attraction of a mountain. But
the method involved a lot of errors and
uncertainties, and Cavendish rejected
it. Instead, he used-and substan-
tially improved-an instrument in-
vented by the English scientist |ohn
Mitchell.

The aim of the experiment was to
determine the period of torsional os-
cillations of a rod with two light balls
at its ends. The rod was suspended at
its middle by a silver-plated copper
wire (fig. 1). The period and amplitude
of oscillations of the system depend
on the attraction exerted on the balls
attached to the ends of the rod by two
larger balls outside. This attraction is
caused by gravitation. Using some
mathematics (and Cavendish was an
expert mathematician), one can find
the constant of gravity G through the
measured values of the period and
amplitude of oscillatigng. Next, one
can find the mean density of the Earth
by usrrg the mean radius of the Earth
and the gravitational acceleration g
(whose values can be found from geo-
physical measurements). In fact,

CM
6- i'

R"
E

where M: $l3lnR.3D is the mass of
the Earth. So

b

W
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Figure 1

(a) The apparutus used by Cavendish to determine the
density of the Earth. The whole apparatus is contained in an
outer casing C, which presewes it from ail flows caused by
movement of the experimentalist; P andP'arc pulleys for
rotating the beam B from which the two large balls W and
W' are suspended; F (broken line) is an inner casing
prctecting the torcion balance ftom drafts and temperuture
changes; A is a thumbscrew for adjusting the torsion
balance; I is a torsion wbe; r is a tofiion rod steadied by
wires w supporting two small b alls x and x' at the ends;L
and L' are lamps; T and T' are telescopes.
b. A view of the sy s t em of b alls fu om ab ov e. Th e arr ow s
indicate the movement of the small balls x and x' ,
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Figure 2
The Cavendish Laboratory at Cambridge
[Jnivercity ('t'rom a photograph taken iust before the
twn of the century). Over theyea6 many
outstanding physicists have worked there,
including Nobellaweates Lord Rayleigh, Sir [oseph
lohn Thomson, Ernest Ruthedord, Sir William

or/ to put it another way, to
{ind the amplitude of the
oscillations. To determine
the time, or period, of oscil-
lation, he proceeded as fol-
lows: "I observe the two
extreme points of a vibra-
tion, and also the times at
which the arm arrives at
two given divisions berween
these extremes, taking carg
as well as I can guess, that
the divisions shall be on
different sides of the middle
poing and very far from it. I
then compute the middle
point of the vibration, and
byproponion, find the time
at which the arm comes to

ied the process of melting, and discov-
ered the phenomenon of latent heat of
melting. Cavendish also performed
important experiments in electricity
and magnetism, some of which be-
came known because of the efforts of
|ames Clerk Maxwell.

The story of how they came to be
published is interesting in its own
right. In 1851 William Cavendish, the
Duke of Devonshire, was elected
chancellor of Cambridge University.
The duke had graduated from Cam-
bridge and had shown some talent in
mathematics. In 1870 he suggested
that a physics laboratory be built at
the university, and he created a spe-
cial fund to that effect. In 1871 a

laboratory named after its founder,
the Cavendish Laboratory was estab-

Iished. In accordance with the recom-
mendations of the eminent scientists
Stokes, Rayleigh, and Thomson, the
position of Cavendish Professor was
offered to the great physicist |ames
Clerk Maxwell. He accepted the offer
and actively turned to building the
lab or atory, which was completed in
three years. The Duke of Devonshire
also placed Cavendish's manuscripts
in Maxr,rrell's hands, and Maxrarell agreed

to look them over. Maxweli was
amazed by what he read. It tumed out
that Cavendish had discovered Ohm's
law long before Ohm, had studied the
conductivity of solutions, and had

C av endish constructed sp acial
measuring deuices for almost all of his
expeiments, taking into account
convenience of use as well as precision
of measurement. He made this very
precise thermometer for Studying the
thermal properties of substances. In its
appearance the apparutus isn't all that
dif fercnt from modern high-precision
thermometers.

Henry Bragg and Stu William L. Bragg, Chailes T. R. this middle point. I then,
Wilson, Sir lames Chadwick, George Thomson, Sit after a number of vibrations,
Nevill F. Mott, and Pyotr Kapitsa, repeat this operation, and

divide the interval of time, between
the coming of the arm to these middle
points, by the number of vibrations,

The important thing, of course, is to which gives the time of one vibra-
determine the fundamental constant tion."
G by using the data obtained in the To determine the mean density o{
laboratory not to find the geophysical the Earth, Cavendish performed sev-
quantify D. So the Cavendish experi- enteen series of measurements. Ac-
ment is generally considered an ex- cording to his data the ratio of the
periment for determining G. density of the Earth to that of water

Cavendish showedgreatexperimen- equals 5.48.
tal ingenuity in constructing such an The experiments were highly ap-
apparatus that the distance between preciated by contemporary scientists.
the small and the large balls could be In 1820 the eminent French mathe-
changed by an observer at a distance. matician and physicist Laplace wrote:
This reduced the influence of exffane- "On examining with the most scru-
ous factors on the results of the ex- pulous attention the apparatus of
periment. The use of a telescope for Monsieur Cavendish and all his ex-
taking readings off the apparatus en- periments made with the precision
abled him to make very exact meas- and thoughtfulness that are charac-
urements of the displacement of the teristic of this excellent physicist, I
balls (down to 1/20 inch). see no objection to his result, which

To reduce experimental error Cav- assigns 5.48 as the value of the mean
endish devised a special method of density of the Earth."
measurement, which he performed At present the mean density of the
by observing the arm of the rod. He Earth is taken to be 5.517 g/cm3. A
wrote in his paper: "I observe three modemized version of Cavendish's
successive extreme points of a vibra- torsion balance is still used for physi
tion, and take the mean between the cal measurements.
first and third of these points, as the The scientific heritage of Henry
extremepointof vibrationinonedi- Cavendish isn't confined to the ex-
rection, and then assume the mean periments and discoveries described
between this and the second extreme above. Cavendish obtained impor-
as the point of rest . . . ." In this way he tant results in studying heat phenom-
was able to determine the deflection ena as well. He determined the spe-
of the rod from some middle position; cific heat of various substances, stud-
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made very precise measurements o{
capacitance. Maxwell devoted great
care to publication of the manuscripts
and even repeated some of the
experimen(s himself. Cavendish's
manuscripts were finally published
in 1879, just a few months before
Maxrarell died.

Did scientists acquire a better
understanding of Cavendish's work
from this publication? This simple
enumeration speaks volumes about
the immense amount of inJormation
contained in it. He was the first to
glve an accutate definition of electri-
calcapacitance and used the capaci-
tance of a prescribed size as a unit of
capacitance; he studied the depend-
ence of the conductivity of aqueous
saline solutions on concentration and
temperature; and he predicted the laws
of direct current iong before Ohm.

Cavendish also found that the re-
pulsion (or attraction) o{ electrical charges

depends on distancg a discovery made
more than 10 years before Coulomb.
Maxwell found the paper describing
Cavendish's apparatus and measure-
ment procedure, and it seems that the
paper had been prepared for publica-
tion. This experiment is of particular
interest because all modern tests of
Coulomb's 1aw are based on the method
proposed by Cavendish.

Here's how Cavendish described
his experiment: "I took a globe 12.1
inches in diameter and suspended it
by a solid stick of glass run through
the middle of it as an axis, and covered
with sealing-wax to make it a more
perfect non-conductor of electricity. I

Figure 4
Cavendish's sketch for his experiment
with the globe and two hemispheres.

then inclosed this globe between two
hollow pasteboard hemispheres 13.3
inches in diameter, and about ll20 o{
an inch thick, in such manner that
there could hardly be less than 1/10 of
an inch distance between the globe
and the inner sur(ace of the hemi-
spheres in any part, the two hemi-
spheres being applied to each other so
as to form a complete sphere, and the
edges made to fit as close as possible,
notches being cut in each of them so
as to form holes for the stick of glass to
pass through. By this means I had an
inner globe included within an hol-
low globe in such a manner that there
was no communication by which the
electricity could pass from one to the
other. I then made a communication
between them by a piece of wire run
through one of the hemispheres and
touching the inner globe, a piece of
silk string being fastened to the end of
the wire, by which I could draw it out
at pleasure.

"Having done this I electrified the
hemispheres by means of a wire
communicating with the positive side
of a Leyden vial, and then having
withdrawn this wire, irnrnediately drew
out the wire which made a communi-
cation between the inner globe and
the outer one, which, as it was drawn
awayby a silk string, could not dis-
charge the electricity either o{ the
globe or hemispheres. I then instantly
separated the two hemispheres, tak-
ing care in doing it that they should
not touch the inner globe and applied
apailr of sma11 pith balls, suspended by
fine linen threads, to the inner globe,
to see whether it was at all over or
undercharged."

Except for the very last phrase, the
description looks very modern! Be-
cause Cavendish accepted Franldin's
theory of electriciry he used the terms
"over" or "undercharged" body, which
simply means "electri{ied body."

One can easily show that i{ the
inner globe is charged after the de-
scribed procedure was used, then the
electrical interaction between point
charges doesn't obey the law llP.
Cavendish invented a special means
of making measurements more accu-
rate. He even calculated possible ex-
perimental error and decided that if

the law of electrical force is

,- |, )_, "r
then

q < 1150.

Maxwell was so excited by this
experiment that he asked his assis-
tant to repeat it using a more sensitive
electrometer to determine if the inner
giobe has any charge or not.

The result of this test was q <

1121600. The progress of this physical
experiment might be illustrated by
the fact that modem tests give cI. (2.7

r3.1). 1O16!

Andto think that all these results
found by Cavendish had remained
unpublished! Some of his experi-
ments were conducted anew. [r most
cases Cavendish's results turned out
tobevery accurate.

Interest in the scientific legacy of
Henry Cavendish hasn't diminished.
In 1927 a new edition of his papers,
which contained some previously
nnpublished rnateial, was published
by Cambridge University Press. And
again there was a sensation: his
measurements of the Earth's mag-
netic field gave new datafor the mag-
netic history of the Earth. It turned
out that Cavendish hadput forward
the idea of energy conservation and
considered the quantity correspond-
ing to the potential energy. Again
there were lamentations that Cav-
endish's results had been unknown
for more than one hundred years. Not
onlyhis results but theproblems them-
selves were largely unknown to his
contemporaries, and cluite often they
constituted the program of research
that was conducted throughout the
nineteenth century.

So acquaintance witl.r the scien-
tific work of Henry Cavendish arnmes
and bewilders us by the scope of his
imagination and the accuracy of his
experiments. Even though many of
his results were obtained anew by
other scientists, who are rightly con-
sidered the authors of these discover-
ies, Cavendish's work has an impor-

,J5
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HAPPENINGS

Bullelilt hoal'd

[aneers in hiophysics

The Biophysical Society is offering a2}-page full color
brochure called "Careers in Biophysics." Designed for
high school and college students, the booklet discusses
opportunities for those interested in the physics and
physical chemistry of biological processes, making great
use of quantitative measurements and analysis. Biophysi
cists work in universities, industry, medical centers,
research institutes, and govemment, using the methods of
mathematics, physics, chemistry, andbiology to study
how living organisms func-
tion.

A 22-minute videotape is
also available for a small fee. It
shows a tabie discussion by
three scientists and two stu-
dents. To obtain information
on the video, or to receive a
free brochure, write to Emily
Gray, Administrative Direc-
tor, Biophysical Society, 9650
Rockville Pike, Bethesda, MD
20814, or call 301 530-71 14.

Blandeh Summer 0dy$$ey

For those students entering grades 10-12 who are inter-
ested in an academic experience that combines science
and interdisciplinary studies with social and recreational
activities, Brandeis University offers its Summer Odys-
sey. Two programs are available: the Academic Study
Program, which offers students one innovative course in
such scientific fields as biotechnology or astronomy, and
one complementary course in areas such as creative
writing or politics; and the Science Research hrtemship,
which allows students to serve as research apprentices in
laboratories at Brandeis University, working closely with
f.aculty members on frontier research topics in such areas
as computer sciencg physics, and psychology. Students in
both programs take part in workshops, recreational field
trips, and cultural outings during the course of the session.

This year the Science Research Intemships are con-
ducted from |une 23 to August 16. The Academic Study
Program takes place lu,ly 7 to August 3. Application
deadlines are April 15 and May 15, respectively. For more

inJormation on the Summer Odyssey programs/ costs/ and
financial aid availability, contact |ane Schoen{e1d, Assis-
tant Provost, Summer Odyssey, Brandeis University, PO
Box9110, Waltham, MA02254-9110, or callSlT 736-2113.

Prouram in ]ulailemalics l0r Y0ung Suimlists 0R0]tllYS)

BostonUniversity and the National Science Founda-
tion offer a PROMYS for students entering grades 10-12.
Through their intensive efforts to solve a large assoftment
of challenging problems in number theory, the partici-
pants practice the art of mathematicai discovery-nu-
merical exploration, formulation and critique of conjec-
tures, andtechniques of proof and generalization. More
experienced participants may also study algebra, combi-
natorics, and the theory of algebraic curves. Special
lectures by outside speakers offer a broad view of mathe-
matics and its role in the sciences. Each participant will
also belong to a problem-solving group that meets with a
professional mathematician three times a week.

This year's program runs from |une 30 to August 10.
Admissions decisions will be based on the following
criteria: applicants'solutions to a set of challenging
problems included with the application packet, teacher
recommendations, high school transcripts, and student
essays explaining their interest in the program. Applica-
tions will be accepted from March I to |une 15, and
financial aid is available. For more in{ormation or an
application packet, write to PROMYS, Department of
Mathematics, Boston Universiry 111 Cummington Street,
Boston, MA 02215, or call 6L7 353-2560.

Princhhs olschnce in a kit

Edmund Scientific Company has introduced a new line
of five kits that can be assembled into actual working
models, allowing young scientists a greater understanding
of science principles. Kits come complete with parts and
instructions for making these projects: a working water
pump, an air speed/direction anemometer, a light-flashing
railroad signal, an electricity-producing generator, and a
workingmotor. Kits retail from $12.95 each. For more
information, write to Edmund Scienti{ic Company, De-
partment llBL,E999, Edscorp Building, Barrington, N|
08007.

-C omp il ed by Eli s ab eth T obia

450 lJA ir rll lll/lrAP P t it I il G $



MATH EMATI CAL SU RPR ISES

Calendal' calculalions
The "Doomsday" rule

by John Conway

ERE'S ANEASYWAYTO REMEMBER the entire
calendar for any particular year.

You first find out on what day of the week the last
day of February falls. I call this particular day of the

week the "Doomsday" for the year. For examplg ln l99l,
February has 28 days, and since February 28, 1991, is a
Thursday, we shall say

in 1991, "Doomsday" is "Thursday."

Now the date that is four weeks earlier than Februarv 28 is

"February 0" : lanuary 31,

and so in 1991 (or any other year that isn't a leap year) the
last day of |anuary is also a "Doomsday."

Leaving leap years aside for the moment, let's move on
to the later months in the year. We can think of February
28 as "March 0," so that the date exactly five weeks later
is "March 3 5" : AprlI4, so that

the fourth day of the fourth month is a Doomsday, and
similarly:
the sixth day of the sixth month is a Doomsday,
the eighth day of the eighthmonthis a Doomsday,
the tenth day of the tenth month is a Doomsday, and
finally
the twelfth day of the twelfth month is a Doomsday.

Why do these dates all fall on the same day of the week?
The reason is that the interval between any two adjacent
ones is two months and two days, which amounts to 30 +
3l +2:63 days, since it happens that one of the months has
30 days and the other has 31. And of course 63 days : nine
weeks.

Some people (including me) have difficulty remember-
ing (for instance) just which month is the eighth month of
the year. I recommend that such people repeat the
following refrain:

" April the f ourth, lune the sixth, August the eighth,
October the tenth, December the twelfth,"

which serves the double purpose of reminding us both that

August (say) is the eighth month and that August the
eighth is a Doomsday in that month.

What about Doomsdays in the odd-numbered months
other than I anrtary? The rule is that in the nth month, if
n is odd, the n + 4th or n - 4th day is a Doomsday, namely
the n + 4th day in a long odd month (3 1 days) but the n - 4th
day in a short odd month (30 days). You don't have to pause
to work out which months are long and which short if you
just

TenEMBER that
SeptEMBER and
NovEMBER

are the only short odd months. The Doomsday Tabie
summarizes all this:

Month Doomsday Mnemonic
Iarruary 3L or 32 "last"
February 28 or29 last
March 7 3long
April 4 4 even
May 9 Slong
fune 6 6 even
I..ly 11 7long
August 8 B even
September 5 9 short
October 10 10 even
November 7 11 short
December 12 12 even

The entries lorlanuary and February differ from the
others in that they are affected by the leap year phenome-
non. The Doomsday for February is by definition its last
day-that is, the 28th or 29th depending on whether the
year is an ordinary year or aleap year. The Dbomsday we
pick for lanuary is correspondingly the 3lst or 32nd.
Although, of course, the "32nd of lanuary" is actually in
February, we prefer to pretend that in leap years )anuary
has 32 days, so that we're taking the "last" day oIlaruary.

If you want to become an adept, you should now
memorize this table. It's a good idea to find a like-minded
friend to practice with: one of you names months at
random, the other responds with the corresponding Dooms-
days. After a time you should go on to name the other
Doomsdays in these months, which of course are found by
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adding and subtracting multiples of 7 from those given.
For instance,

" Fir st D ooms day in luly ! "'" the F ourth of luly" ( 1 1 - 7 ) ;
" Last D oorls day in D ecemb er l " " D ecemb er 26" ( 1 2 +

14),
"'Doomsday in mid-August!'" "August 15" (B + 7)

The first of these examples is easily remembered by
Americans!

Now you can go out and startle your friends by telling
them the day of the week for any given date in 1991. What
you do when faced with a given date is to quickly figure out
a nearby Doomsday (Thursday in 1991) and express that
date as a few days "on" lafterl or "off" (before) that
Doomsday. The rest is easy.

Examples:

lune9: "3on" (lune6)= 3onThursday= Sunday;
Christmas day (Dec. 25): '1 off" (Dec. 26) = 1 off

Thursday: Wednesday.

|ust how does one work out that " 3 on Thursday" is
Sunday? English-speaking readers might find my mne-
monics (memory devices) helpful:

NUN day, ONEday, TW O sday, TREBLES day,
FOURSday, FIVEday, SlXerday, SE'EN day

for SUNday, MONday, TUESday, WEDNESday,
THURSday, FRIday, SATurday, SUNday.

These help identify the days of the week with numbers,
and so it becomes trivial to see that "3 on FOURSday" is
,,SE'ENdAY."

[oomsdays in ofim year$

If you have learned aIl this, you might like to know how
to work out dates in others years as well. To find any
Doomsday in a give century, a1l you need to know is what
the Doomsday was for the century year. For example,

1900:Wednesday,

and how Doomsday changes {rom year to year. The rule is
that Doomsday normally advances by one day ayear,btt
by an additional day in leap years. It follows that as l2years
in a century roll by, Doomsday advances by 12 + 3 days,
since three of those years will be leap years. Since this is
one day more than two weeks, we see that, as far as
Doomsday is concemed,

"A dozenyears isbut one day."

This gives us an easy rule to find the Doomsday for any
year in any century. Add together the century day, the
number of whole dozens thereafter, the remainder, and
the number of fours in the remainder, casting out mul-
tiples of 7 wheneveryou like. For example, for l99l we say

"Wednesday, 7 dozen, 7, and 7 equals Thursday,"

because we can lgnore those 7's, and because Doomsday in
1900 was a Wednesday, "91" is "7 dozen and7," and there
isiustone tt4t' ir:rthelast "7." Fortheyear 1959weshould
say

"Wednesday, 5 dozen, 9, and 2: Wednesday + 2: Friday,"

because we can cancel 5 + 9 : 14, and because 59 is " 5 dozen
arrd9 ," and there are two 4's tn9 .

In practice it's best to combine this calculation with the
calculation within the given yeatt as in this example:

"What day of theweekwas August 10, 1946!"
"2 onWednesday, 3 dozen, L0, and 2 = Wednesday + 3
: Saturday."

This is because August 10 is "2 on" a Doomsday, and we
can cancel 2 + lO + 2: 14 days. You'd be wise to assemble
all the things to be added before trying to add any of them
since there will probably be lots of cancellations, which
will mean that in the end you hardly have to add anlthingl

Doomsdays in ofier celtlttriss
Our last table gives al1the Doomsdays you are likely to

need for the "centuq, years":

Iulian Doomsdays
000 700 1400 Sunday
100 800 1500 Saturday
2W 900 1600 Friday
300 1000 1700 Thursdav
400 1100 1800 Wed.
500 1200 1900 Tuesday

600 1300 2000 Monday

Gregorian Doomsdays

1600 2000 2400 Tuesday
1700 2100 2500 Sunday
1800 2200 2600 Friday

1s00 1900 2300 2700 Wed.

In actual fact there was no "year0," since I B.C. was
immediatelyfollowedby I A.D. I justrememberthatin
the |ulian system the multiples of 700 were Sundays, and
moving a century backwards adds one day. hr the Gregor-
ian system, I remember that 1900 was a Wednes day and
that each century backwards to 1600 adds rwo days, while
the entire period is 400 years.

In the |ulian system, as instituted by |ulius Caesar,
every multiple of 4 was a leap year. In the Gregorian
system, instituted by Pope Gregory IV, the multiples of
100 are not leap years unless they're also multiples of 400.
The |ulian system was used up to October 4, 1582, in Italy,
France, and Spain; September 2, 1752, in Britain (and the
North American colonies); and l9l9 in Russia. So, for
example, laruary 1, 1901, was

"2 off Wednesday,0 dozen,0, and 1:Tuesday"

in America, but

"2 off Tuesday,0,0, 1: Monday"

in Russia.
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QUANTUM SMILES

The simplicity ol lnalhemalics

And trog lodyte fractions

T TFm, END OF TFIE 1940s the great mathematician
|ohn von Neumann gave a report on the future of
computers. He told his listeners that mathematics
was only a very small and very simple part of life. The

shuffling and coughing in the hall indicated that the audi
ence wasn't in complete agreement. Sensing this, von
Neumann added, "If you don't believe that mathematics
is simple, it's only because you don'trealtze how compli-
cated li{e is."

poses the following question of inter-
est to all of us who think about physi
ca1 laws (or at least obey them
conscientiously): Why do obiects fall
at the same rate toward the Eath
regardless of their weight?

"Youwould think," writes Achen-
bach, " that Marlon'The Refrigerator'
Brando, if dropped from the top of the
Empire State Building, would hit the

ECENT ARCHAEOLOGICAL FINDINGS reveal
that an understanding of fractions as parts of the
whole had arisen way back in the Stone Age, when
none of our hearty ancestors could manage to eat an

entire wooly mammoth. When the mammoths became
extinct and there were only little animals to hunt, frac-
tions were no longer needed and gradually fell out of use.

o
n
D
o
o
J
o
-c
a

This iusl ill . . .

HE WASHINGTON POST re-
centiy introduced a new column
called "Why Things Are, " con-
sisting of questions we've all

thought of but were afraid (or too pru-
dent) to ask. Among such queries as

"Why do we remember the middle
narnes of assassins? " , "Why are some
quarters ted?", and, of course, "Why is
this column here? " , |oelAchenbach

ground before a paper clip that was
dropped simultaneously." As you all
know from your elementary physics
textbook, add the condition of a vac-
uum and you can safely predict the
two objects will land at the same
time.

Now, there's a skeptic in every
classroom (and certainly several out
in readerland), so Achenbach proposes
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an experiment: "Pick up a paper clip.
Now pick up Marlon Brando. Marlon
Brando is definitely heavier. What do
we mean by 'heavter'? We mean that,
holding the 300-pound Oscar-winning
actor by the lapels, we can detect that
he is subject to greater gravitational
force. But Brando has another distinct
featurs He ishardto move. Themore
massive an object, the greater the
force needed to move it from a state of
rest. This is true whether you are
rolling someone down the sidewalk
or dropping him from a skyscraper.

"The hard thing to rcalize is that
the objects don't fall'because there's
nothing underneath them.' Objects
fall because they are beingmovedby
gravity. You do not, in fact,'drop'
Marlon Brando; you just place him in
a point in space. Since there is no
structure to support him, gravity can
move him without encumbrance.

"The point here is that heaviness is
a two-sided coin. As you get heavier,
gravity pulls harder, but it is also that
much harder to budge you. So weight
doesn't make you fall faster or slower.
That's your answer."

Unforrunately, Achenbach couldn't
leave well enough alone. He went on
to elaborate: "Theoreticaliy, if you
had unbelievably sensitive instruments,
andif you droppedMarlonBrando and
the paper clip in separate experiments
instead of simultaneously, you might
be able to show that the cinematic
giant hit the ground a fraction of a
microsecond more quickly than the
paper clip. This is because the star of
'The Godfather'exerts his own gravi-
tational atffaction andpulls the Earth
toward him as he descends. So does
the paper clip, but not as dramatically.
This is worthless cogitation, though.
Gravity is the weakest of the four
known {orces in the universe (except
perhaps on Mondays) and even the
porcine Brando exerts an infinitesi-
mally slight pull."

His point about gravity on Monday
momings is certainly well taken. But
an alert reader named Michael Page
fired off a letter to the editor taking
issue with the very last phrase. "Three
cheers for the new column TVhy Thinp
Are,"' he writes. "While I enjoyed
most of the questions and answers/

particularly the two on physics, I am
compelled to note that one statement
violates Newton's third law of mo-
tion."

When Achenbach says that Mar-
lon Brando exerts only an infinitesi-
mally slight pu11 on the Earth, he
"destroys a fundamental and beauti-
ful symmetry in nature: that forces
come in eclual and opposite pairs; that
every action has an equal and opposite
reactiory that no matter how hard you
try, you can't lift yourself and the

chair you're sitting in by pulling on
the sides of the chair. hrdeed, by using
a bathroom scale and Newton's third
1aw, we can easilymeasure the strength
of Brando's gravitational puli on the
Earth. It isn't infinitesimal; it's about
300 pounds!"

Perhaps Achenbach muld have spared

himself the irritation of a nettling
letter by specifying the scale he used
in so blithely dismissing the gravita-
tional pull of this great, albeit cosmi-
cally rather small, actor. O

Circle No. 12 on Readers Service Card

IUAIIITllttl/OUAIt.ITU llll S]lll I I-TS 4g

ShouldUgu
tn

They are!

These and 400 other top corporations "grow their own" engineers, managers, and
corporate executives at GMl...

"Closely coupled" cooperative education - GMI's unique partnership with major
corporatlons - provides extraordinary opportunitles for high ability students.

Learn and Earn during paid co-op work experiences. GMI studenls average $56,000 in
co-op earnings over the tive-year program (range $35,000 - $75,000).

DEGBEE PROGRAMS

Engineering

Electrical
lndustrial

Manufacturing Systems
Mechanical

Management

Accounting
General Management

lnformation Systems
Marketing

For more inlormation call:

GMI Engineering and Management lnstitute
1700 West Third Avenue

Flint, Michigan 48504

1-800-955-4464 l-313-762-7865

fuiloyfr'
E[6[EEI

,,"**,"",

@

XEROX@
@

FF
W



Two possible constructions are shown
in figure 1. We leave it to you to show
that the dark segments are indeed 712

long.

Figure 1

M22
The answer is 150 cm. Figure 2 shows
how to make the required cube out of
a piece of wire this long. Let's prove
that a shorter wire won't do.

Figure

Consider first the framework of a
cube made so that the wire begins,
ends, and is bent only at the vertices of
the cube. Let's count the number of
segments of the wire that join adja-
cent vertices (each of them is 10 cm
long). The number of segments issu-

ANSWERS, HINTS, SOLUTIONS

ing from any vertex is obviously not
less than 3. Moreover, if a vertex isn't
an end point of the wire, then the
corresponding number of segments is
even (it's twice the number of times
the wire passes through this vertex),
so it's not less than 4. A cube has B

vertices and at most 2 of them can be
the end points o{ the wire; therefore,
the sum of the number of segments
issuing from each vertex is not less
than2. 3 + 6 . 4 : 30. hr this sum each
segment is counted twice because it
has two ends. Thus, the number of
segments is not less than 15, and the
length of the wire is not less than 150
cm.

Now corsideran arbitrarywire cube.
We're going to get rid of bends that are
interior to the edges and bring the
ends and turns of the wire to some
vertices without extending the wire.
By the end of these transformations
we'll get a framework of the sort con-
sidered above, so the original piece of
wire had to be at least 150 cm long.

The transformations can be per-
formed edge by edge. Skipping the
details, we just show in figure 3 (top
row) five essentially different pattems
of aportion of wire between two neiglr-
boring vertices of the cube. In the
middle row you see the process of
transformation, and at the bottom,
the results. (V. Dubrovsky)

M23
Let xo be the area of the part of the
jeans that is covered by exactiy k
patches, k : O, l, ..., 5. Then the area
o{ the jeans is

Ao= Xo+ Xt + Xz+ X3 + X4 + Xr: l,

the sum of the areas ofpatches is

A, = xt+Zxr+ 3xr+ 4xo+ Sxr> 5f 2

(of course, the area of the n-fold inter-
section of patches is counted here n
times), and the sum of the areas of the
10 paired intersections is equal to

(the factors I,3,6, and 10 here are the
numbers of pairs of patches chosen
from2, 3, 4, and Spatches). Since

Ar> -Bxo-xt+ xz+ 3xr+ Sxo+ 7x,
=24_-34^>2.

I \)- '

at least one of 10 possible paired inter-
sections has an area not less than 2/10
= rls.

To tackle more general questions
of this sort/ one should use the so-
calledformula of inclusions and ex-
clusions: i-f A, is the sum of the areas
of some figures andAois the sum of
the areas of their k-fo1d intersections
(k:2,3, ...), then the area of their
union equals Ar- Ar* Ar-... . (N.
Vasilyev)

M24
The main tool needed to solve this
problem is the calculation aIx" for
n : 2k in k multiplications:

x2 = x. x, f = *. *,..., x2* * x2'-' . x2",

in the course of which we also obtain
all the powers

a1il

m: l, ..., k - 1. Evidently 2ft is the
highest exponent of x that can be
reached in k operations/ so x" for an
arbitrary n carr'tbe {ound in less than
logrn operations.

(a)Based on the representation xrm
: ytoz+ 

f (yre . x8), we can proceed as fol-

tUlatlt

M21

-= 
----

-
,-

Figure 3
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lows: find the values o{ x" for n:2, 4,

B,16, ... ,1024 = f,to ir, 10 multiplica-
tions and then complete the calcula-
tion with one more multiplication
and division.. It can be proved that 12

is the minimum number of opera-
tions needed to obtain x1000, though
the rough estimate given above yields
10 as the lower bourd for this number
(logri000 :9.96...1.

(b) Multiplications and divisions of
powers of x are reduced to additions
and subtractions of their exponents.
So it suffices to prove that, starting
with the number 1, we can obtain
any positive integer ninno morethan
(312) logrn + 1 additions or subtrac-
tlons. We'll describe two methods of
calculatng n based on the binary mrnber
system. The shorter of the two will
give us the desired estimation.

It's known that any positive integer
n can be uniquely represented in the
form

n= at.2t + ar-r.21-r +...+ ar'2+ ao, (ll

where ao is 0 or I for k = 0, 1, ... ,7-1, a,
: 1. The notation

lnlr: ara,_r...ao

isthebinary representation of. n. Let
s(nlbe the number of nonzero terms
in the sum (1[-that is, s(n) = at+ aLl+
,,,+ ao.

The first method is to calculate all
these terms in I additions (1 + I = 2,

2 + 2 = 4, . .. , 2'-t + 21-t :21) and then
add them up, which will take s(n)- 1

more additions. The total number of
operations according to this method
isN,=1+s(n)-1.

The second methodis to findfirst
the complementEof n with respect to
)1+1.

i :2t*' -n
=21 +21-t +...+l -n+l
= {L - a) .21 + ll - a,_rl .21-,

+... (1-ao)+ 1.

Aswe alreadykrow, itwill ake J+
s(fi') - 1 additions. Now we need one
more addition to obtain 2/.t :21 +21121

has been found in the course of calculating
il, andone subtraction: n : )1+r -a.
Since s(fi') < (t - a,l + (l - a,_,) * ... *

It- arl + L : I + 2 - sln), here the total
number of operations equals

N, : I * s(fr) + 1 <21- slnl + 3.

The smaller of the numbers N, and
Al doesn't exceed haU of their sum:

(N, +N,)/2 sl3l2l1+t.

Itremains to notice thatl <logrn.
Of course, replacing the smaller of

the numbers N, and N, with (3/2)

logrn + l, we usually lose accuracy in
the estimation: in problem (a), xtooo

was obtained by the second method in
N: 12 operations, when (3/2)logr1000
+ 1 = 15.95. Moreover, sometimes
neither of our methods is the shortest
possible. For example/ x1000 can be
found in 9 multiplications (think how!),
t@ugh from (170)r: 10101010 and
llT}lr: (86), = 1010110 it follows that
1:7, sln)= s(F:l:4forn: 17Q andsothe
first method needs Nl : 10 and the
second Nz= 12 operations. (E. Belaga)

M25
Suppose that for some convex equilat-
eral pentagon ABCDE the statement
of the problem isn't true. We can
assume that allthe sides of the penta-
gon are of length I and AD is its
longest diagonal. hr figure 4,

2:AB+CD <AO+OB+CO+OD
=AC+BD<ZAD,

s AD > 1. Since side,4D is the longest
oneintriangleABD (AD > BD,AD >

AB = ll, the opposite angle ABD rs

gteater than 60" because it's greater
than the other two angles of the tri-
angle. If angle BAD were also greater

than (or equal to) 60o, then the equilat-
eral triangle constructed on AB wouid
go in triangle ABD andall the more in
the pentagon. This would contradict
our initial supposition, so angle BAD

c

< 50o, which means that point B is
located on the arc BrBrof angle meas-
ure 60o, radius 1, and center A (ends B,
andBrexcluded; see figure 5). Simi-
larly, the locus of point C is the open
arc CrCrwith center D, congruent
with B,Br. The arcs intersect because

AD <AE + ED:2.
Uz C2

m,C1 Bt

Figure 5

To complete the proof, let's show
that the distance between any two
points B and C of our open arcs is less

than 1 (in contradiction to the as-

sumption that BC,like the other sides

oI AB CD E,is of length I ).
Fix B and let C slide along the arc

CrCrlfis.6). By the law of cosines for
triangle BDC, BC increases with the
increase of angle BDC, so BC < BC ror
BC <8C2.

c1

Figure 6

The same is true for the segment
BCtli:1,2) as it slides along the arc
B,Br: its maximum length is achieved
when B coincides with B, or Br. Thus,
the segnent BC is shorter than one of
the segments BoC,li, k: 1,2ll. But the
lengths of all these segments are obvi-
ously less than 1.

This solution canbe devei@further
to prove the statement of the problem
for any convex equilateral polygon
with an oddnumber of sides. But for
polygons with an even number of
sides, the statement is false: such a
polygon can be made arbitrarily nar-
row by moving its two opposite verti-
ces apart. (N. Vasilyev, V. Dubrovsky)
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Physics

P21
Since the absolute value of the dog's
velocity is constant but its direction is
different at different moments/ its ac-
celeration is perpendicular to the ve-
locity. The trajectory of arry materidl
point over a short period of time canbe
approximated by the arc o{ a circle.
The dog's acceleration is then equal to
the centrifugal acceleration

v)
t)---

R
where R is the radius of the circle
approximating the real trajectory of
the running dog.

Figure 7

Consider now the displacement of
the dog over a short interval of time At.
During this time the vector of the
dog's velocity rotates by an angle u
such that a = vz\tlR (fi1.7). On the
other hand, over the same interval of
time the fox covers the distance v,At:
od, since the vector of the dog's veloc-
ity is constantly aimed at the fox.
Consequently, vltl R = v At fi. And so

n=\ tv
I

and
vvt2a= 

, '

P22
Consider the floating condition of any
of the vessels: the force of gravity
acting on this vessel is compensated
by the difference between the inside
and outside pressure. So both before
and after the addition of water into
any vessef the difference between the
outer and inner water levels remains
the same. This means that theposi-
tion of all the water levels remains
fixed with respect to the ground.

Thus, the water level in the small-
est vessel doesn't change with respect
to the ground. Consequently, the
bottom of this vessel goes down by the
distance

v,0

'= %'
that is, by the height of the added layer
of water.

WEchever vessel gets heated, the water
flows to the right. Let the right vessel
be the one heated. Then the water in
it expands, acquiring a greater vol-
ume. If the vessel were cylindrical
(fig. 8) the water pressure at the bot-
tom wouldn't have changed, since the
decrease in water density would have
been compensated by an increase in
the water level. This follows {rom the
fact that the total force of pressure
applied to the bottom equals the weight
of the water contained in the vessel.
On the other hand, it's equal to the
product F : pS, where p is the pressure
at the bottom and S is the bottom area.

Since neither the weight nor the bot-
tom area alters upon heating up, the
presswe at the bottom of a cylindrical
vessel doesn't change.

Figure B

In a coni.cal vessel the same de-
crease in water density is accompa-
nied by a smaller increase in the water
leve1. There are two reasons for this.
First, the conical vessel contains less
liqui{ so the variation in its volume is
also less. Second, the expanding wa-
ter fills the volume shaded in the
figure, whose upper level is lower. So

the pressure at the bottom decreases.
At equilibrium the pressure of the
connecting tube must be the same, so
the liquid starts flowing {rom left to
rght.

The case Lq which the left vessel is
the one heatedis treated in the same
way. The pressure at the bottom
increases upon being heated, which
means watepgain starts to flow from
left to right.

P24
Since the electromotive force (EMF)
of a chemicalbattery is determined
only by its chemical compositiorl the
EMF of the second battery is the same
as that of the first. Denote it by E, the
lamp's resistance by R, and the inter-
nal resistance of the battery by r. Then
the total power released in the first
battery circuit is Pr: EzllR + r,), and in
the second battery circuit rt's P, =
EzllR + rrl. Since r, << R (and,
consequently, 1, .. R), we have

P r= Pr=

A chemical source of current per-
forms wor\ releasing the energy stored
in its chemical components. The
larger version contains 23 : B times the
rcagents in the original, so at the same
power level it's capable o{ producing
eight times the work o{ the first. This
implies that the lamp connected to
the bigger battery will glow fior 24
hours.

P25
Imagine a direcud sound source placed
at point A (this corresponds to the
case of a speaking person). Then,
strictly speaking, of all the beams
directed at point B only one beam
reaches this point {fig.9al. The rest of
the beams arive at other points close
tD B. II, however, the same beams are
emitted from point A along the gal-
lery's wall, several beams end up at
point B (fig. 9b). So it's much more

E2
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Figure 9b

efficient to speak along the wall so
that the sound "glides" along the whis-
pering gallery.

II Nt undirecred intensive acoustic
source is placed at point A, the sound
can reach point B along many routes.
The shortest way is the straight line
AB. The signai travelingby this route
arives at point B firsq the propagation
time being

dx:i,
where vis the speed of sound. Then
the two signals that were reflected
once from the wall arrive at point B
(from the left and from the right-see
figure 9c). They are followedby sig-
nals that underwent two, three, or
more reflections off the wall. The last
to arrive will be the two signals emit-
tedfromA practically along the tan-
gent to the gallery wall at point A in
two opposite directions. Each of them
will be reflected from the wall many,
many times and cover a route that's
practically half the ga}lery's circum-
ference; the time they take to arrive
will equal

The difference between the propaga-
tion times of the first and the last
signals is

At= t-

This is how long the duration c, of the
acoustic signal emitted at pointA is
prolonged when heard at point B. Con-
sequently, the duration t, of the sigral
detected at point B is

It's interesting that for any other pair
of emission and detection points, the
time increment At is greater. (Prove it
yourself!)

Bl'aintea$er$

821
No, he cant. One of the two triples of
numbers must contain an even nurn-
ber and two odd ones. Their sum is
even, so the product of the two sums
must be even.

824
See figure 1 1, in which equal figures
have the same color.

825
Unburned particles (smoke) are li{ted
by an upward flow of hot air. When
the surrounding air cools down, the
particles begin to drop and eventually
settle to the ground.

Sircumdncles

1. Angle CDE :40o. Hint: see
figure 12. AK: KB, so angleABK=
2A'; mfle KDE: xryle WE:50"-20'
= 40'.

FiEure

- _ndl2 _trd!- v 2v

822
See figure 10.

823
If we denoteby D and E the operations
of doubling and erasing, then one of
the possible sequences o{ operations
is D, E, E, D, D, D, E, D, resulting in
the sequence of numbers 458,916,91,
9,18,36,72,7,14.

2.Angle BMC:110". Hint seefig-
ure 13. Triangle BOC is ec1uilateral,
BM is the perpendicular bisector of
O C i angle BMC : IB0' -30" - 40".

Figure

3. Angle BKC :60". Hint: see
figue 14. Triangle AOB rs equilateral,
OK is the perpendicular bisector of
AC, BK is the perpendicular bisector
of AO.

C,l(t . \To=r[:-l]

*4l,t-,)v\2 )

A
Figure 14

4.Angle BCM:80o. Hint accord-
ing to property fV, point B is the

53

Xr:1!r+ At: t,
Figure
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B

cfucumcenter of triraigleAMC (drawa
pr.cture). Denoting an gle BC Mby x,
we can find {rom isosceles triangle
BCM that angle MBC = 180. - 2x;
angleABM'=280'-2x; angle ACM =x
+ 4On. The condition that angle ABM
: angle AC Mimplies that x : B0o.

5. Angle CDE = 81". Hint: see
figure 15. If O is the circumcenter of
triangle CDE, then triangle DOEis
equilateral, OA is the perpendicular
bisector oI CD, triangles AOE and
ADE are congruent/ andangle CDO:
anf,e EAO = 21o, so that angle CDE:
50o+21o=81o.

C

Figure .15

1. n= ( I + 21 tz f 2]r2 = 2.914...
2. Construct a right triangleABC

with right angle at A, AB : l, AC :
Lf 2, markpoint D on the extension
of BC so that CD : CA: ll2. Then
BD:,C,

3. See figure 16. Also prove that
each rectangle left after cutting off the
next square is a "golden" one and that
the diagonals in the figure meet at
right angles at the point of intersec-
tion of all these golden rectangles.

Figure 16

4. Obviously quadrangle.AEDN (see

frgwe 2 in the Kaleidoscope) is a rhom-
bus, so segments AN, ND, and all the
sides of the pentagon are of equal

lhleido$copo ltUaues

Figure 17

length. In addition, triangles ACD,
DNC , BNM, and ODF are all similar
to one another. So it follows that all
the ratios in question are equal. The
equality AC:AN : AN:NC means by
definition that N divides AC in the
golden ratio t. The last equality in the
probiem follows from, say, triangle
ODF, in whtch OD : OF : r, . DF and
angle DOF : nl\.

5. The area of the cuboid's surface
is equal to 2(r + lf t +'c . lf !:4r, the di-
ameter of the sphere equals 2, so the
areaot its surface equals 4rc.

1. The wave speed depends on the
time delay mentioned.

2. Lt=Tl2; L<p:x.
3. Estimate the collision time as

the time x necessary for the deforma-
tion wave (sound wave) to travel the
distance of the ball's diameter:

d .r;r -i - ol "r- lo-6s .

4. When the rotor is stoppedabruptly,
a deformation wave starts to propa-
gate along the concrete fioor and at
somepoint reaches the coilwith the
sample under investigation. To en-
sure that it doesn't affect the meas-
urement/ one must take care that the
wave reaches the sample only after
the experiment is over. The electro-
magnetic field travels at the speed of
lighg which is much greatil than the
speed of the deformation wave (which
is a sound wave). We can assume that
the magnetic field in the sample is
created instantaneously. So the mini-
mum distance between the generator
and the coil equals I : vLt: 50 m

(where v : 500 m/s is the speed of
sound in concrete).

5. Denote the rigidity of the springs
by k, the mass of an oxygen atom by
l\,t and the mass of a carbon atom by m
(mlM: 12116). For case (a) the oxygen
atoms oscillate about the immobile
carbon atom s),nchronously. There-
fore, their frequency is

fk
'r= \ U'

For oscillations o{ type (b ) the caf-
bon atom is a{fected by two forces
equal to m in absolutevalue andact-
ing in the same direction. If the ball
representing the carbon atom is split
into two equal pafts, their movements
are identical, both of them having the
same acceleratiorl speed, and coordi-
nates. So the problem is reduced to
finding the oscillation frecluency of
two bails of mass M and mf2 con-
nected by a spring.

The system oscillates about its
immobile center of mass located at a
distance I : lm l{m + 2M) fuomthe ball
of mass M (where 1 is the spring's
length in the undeformed state).

So we can assurne that the oxygen
atom (the ball of mass M) is connected
to the center of mass by a spring of
length 7'. The rigidity of this part of
the spring is greater than the rigidity
of the whole spring

1., _kl _k1m+21t4)'\t'm
and the oscillation frequency of the
ball of mass M connected to the spring
of rigifity k' equals

lk' l*@+2a(t) =. i-= r 1-*b \rl M \ mM
Thus, the desired frequency ratio is

(D

0)
b

aaaaaaaaaaaaaaaaa

Conrections
Maybeyouwere sharp enough to

catch these errors in the November/
December issue:

p. 20, col. 2: It is obviouslypoint A
that "makes a circular arc with radius
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OA arrd center at point O," not point
E.

p.28, col. l: A"k" was dropped
foom in foont of the At in the middle of
the column.

p. 28, col. 3: Each instance of the
intermediate term 'tlktl*f mt" should
be followedby three dots: ... + (l<tf lml

p. 30, col. I and2: 4321 - 1234 =

3087, not 3089; when you do the
Kaprekar transformations, you reach
the magic number 6174 injust two
more steps. (The error jumped out at
our advisory board member Peg Ken-
ney because it takes at most seven
subtractions to ardve at 5174j the
incorrect initial subtraction led to a
total of eight steps.)

p. 51, col. 1: Our publishing soft-
ware mysteriously dropped a denomi-
ltator "2" in the displayed equation.

p.57,col,2: For "logrn + l" read
"llogrn) + 1," and for "logr" in the next
line read "[.] " (that is, the expression
in brackets stands for the greatest
integer function).

p. 61, col. 2: To render the solution
in black and white, it's necessary to
pretend that black stands for "blue"
and cross-hatching stands for "red."

Finally, to encourage good spelling
we acknowledge the tlpo in column 2.':-:l'............. 

o
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TOY STORE

A cullapsihle saddle

Now all you need is a collapsible horse

by Vladimir Dubrovsky

into a family of straight lines, or "rul-
ings," and is, therefore, a ruled sur-
face. There are, however, ruled sur-
faces that can't be obtained by bend-
ing a sheet of paper. These were also
mentioned in Fuchs's articlg and one
of them appeared anew in the May
issue in connection with-population
genetics!

Now we'll teach you how to make
a model of this beautifully curved
surface out of plain cardboard or sti-{f
construction paper. You can see the
finished product in figure l.

The model is assembled from two
sets of parallel "slices" that interlock
by means of slits cut in them. To
prepare the components of our modef
take seven paper rectangles shaped as

in figure 2, cut them along the oblique
lines in congruent halves, and slice

ITH THIS ARTICLE WE
inaugurate a new deparanent-
Quantum's Toy Store! We
hope you enjoy building the

models and wrestling with the puzzles
we plan to offer in this space at the
back of the magazine.

Those of you who have been with
us from the start probably remember
the brilliant article by Dmitry Fuchs
in the very first issue o{ Quantum
(|an. 1990). Fuchs told us about sur-
faces obtained by bending a sheet of
paper. Such a surface can be sliced

Figure 1
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Figure 2

the trapezoids thus obtained parallel
to their bases. The left halves of the
rectangles make up one set of slices,
the right ones make up the other set.
Our model, for aesthetic reasons/ was
made slightly nonsymmetrical, so if
you want to reproduce it be sure to
adhere strictly to thg shapes and rela-
tive sizes in the figure. (Of course, you
can choose to redesign it on your
own.) When the slices are meshed,
their obliclue edges form a saddlelike
surface, which mathematicians cail a

hyp erb olic p ar ab oloid. Because it's
such a refined shape created by the
simplest construction elements (straight

rods), this surface is often used in
architecture. But an architect design-
ing a saddle roof must be carefr-rl if the
rods are fixed so that they can tum at
their joints, the whole lattice becomes
mobile, even collapsible. This inter-
esting property is perfectly well ob-
served in our model. You can fold it up
and spread it out again, and i{ you glue

its two opposite bottom corners in-
side a cardboard folder, you'll get a
nice collapsible toy.

The name of the surface deserves
some comment. Why the hyperbola
and parabola? Let's derive the coordi-
nate equation of our saddle. We can
choose the coordinates so that the
slices of our model are parallel to the
xz- andyz-planes; the x-axis belongs
to one family of rulings and the y-axis

together with the line 1 : l(x, y, zl:
x : l, y = zl belongs to the other
family (fig. 3). The entire fust family
of rulings consists of all the lines
parallel to the xz-plarre and intersect-
ing the y-axis and line J. Let P(x, y, zl
be an arbitrary point of the sur{ace, A
and B the points where the ruling of
the first family that passes through P

meets the y-axis and line J. It follows
from the equations of I that the coordi-
nates of B arell,y,y).If PrandBrare
the proiections of P and B onto tkie xy-
plane, then by the similarity of triangles
APP, and ABBrwehave PPr:BBr:
AP IAB t, or zfy =x/1. We then get the
ecluation

7:Y\7 Il I
l-/

Cutting the surface by the planes
r : a and 1': d, we can veri{y at once
that rt rea11y has two familics of linear
nrLings: \r : tt, z= ry') and \y = tt, z = txl.
The cross section by the horizontal
plane : : a f ielcls a curue \4' : tt, z = a\

rn u.hich 1-ou surel.v recognize a hy-
pelbola lrvhen a I 01. Fhally, consider
a venical piane 1'= Lr<t Ll t' 0. It cuts our
suriace along the curve rvhose projec-

tlon onto thc :z-p1ane has the equation
Z: tD{ ,sLLbstitutc "x ior 1 rn eqr.ration
( 1 I ) . So the pro jection, and thus the
curve i.tse1f, is a parabola. Now find
these curves on your model! (Indeed,

it's rnore difficult not to iind them,
since any cross section of a hlperbolic
paraboloid that isn't a ruling or pair of
rulir1qs is either a hlperbola or a parab-

ola. Can you prove that?) O

5l

(l,xyl

Figure 3
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