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Siberian Dogs in the Snow (1909-1911) by Franz Marc '

hen we decided to go to extremes in this issue of Quantum (see A.L. Rosenthal’s article on page 8), all kinds of extremes sprang

to mind. As we enter the cold season in the Northern Hemisphere, extremes of temperature were at the forefront. And when é
we're almost blinded by a field of snow, we perceive white as one extreme of a continuum of color (whether we think of it as all colors
combined or removed, depending on the medium). Franz Marc (1880-1916) touches on these extremes in his expressive portrait of
his sheepdog Russi, seen from two angles.

Marc spent much of his brief career painting animals. (His life was cut short near Verdun during World War I.) He developed a
profound nature mysticism that, combined with an urge toward abstraction and a symbolism of colors, tended to produce intensely
colored canvases of animal and vegetable life. Marc believed this was the best way to express the conflicts and resolutions of natural
forces that civilization shields from us or teaches us to ignore.

Some elements of his later style are absent from Siberian Dogs in the Snow—most obviously, the color symbolism. At this point
in his development Marc was more concerned with the interaction of color and light. In a letter to a fellow artist, Marc described
how the painting arose out of an experiment in the use of a prism to clarify tonal relationships.
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For the Scottish engineer and instrument
maker James Watt, the 1780s were a very
productive decade. Fifteen years earlier, while
working on a Newcomen steam engine, he
greatly improved its efficiency by adding a
separate condenser chamber. Butin 1781 a
business partner urged him to invent a rotary
steam engine for use in corn, malt, and cotton
mills, and Watt went to work. In that year he
devised the sun-and-planet gear, which al-
lowed a shaft to produce two revolutions for
each stroke of the engine. In 1782 he patented
the double-acting engine, in which the piston
pulled as well as pushed. This engine required
anew method of rigidly connecting the pis-
ton, engaged in linear motion, to another part,
engaged in rotary motion. So in 1784 he came
up with the required linearizing device. Watt
considered this “one of the most ingenious,
simple pieces of mechanism I have contrived,”
and it’s the subject of “Making the Crooked
Straight” on page 20. In 1788 he added a cen-
trifugal governor to automatically control the
speed of the engine, and with his invention of
the pressure gauge in 1790, the Watt engine
was all but ready to make its dramatic contri-
bution to the Industrial Revolution.

For alook at a cleaner, quieter device at the
forefront of modem technology, turn to “Light-
ninginaCrystal” on page 12.
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Notes of a traveller

And news of a partnership

HESE ARE EXCITING TIMES we live in, and more of

us than ever before are finding ourselves on planes

headingto orfrom Moscow. Quantum staff will be

spending a week in the Soviet capital, planning future
issues and working to improve the logistics of our bihem-
ispheric production.

One recent visitor to the USSR was Lynn Arthur Steen,
who teaches mathematics at St. Olaf College in Minne-
sota and serves as a member of the Mathematical Sciences
Education Board of the National Research Council. Dur-
ing his week-long stay he investigated the Soviet approach
to math education. What follows are Professor Steen’s
impressions and thoughts about math and science educa-
tion in the two countries, which both students and
teachers will no doubt find of interest.

In the past few years Americans have learned quite a bit about the
Soviet Union. We know that their economy is deteriorating, national strife
is increasing, and their military empire is crumbling. We can also see that
the USSR is seeking to integrate itself into the world economy and expand
contacts in all areas.

One thing America did not learn from news coverage of recent US-
Soviet relations, however, is how the USSR has managed to produce so
many talented mathematicians and scientists, who shocked us with
Sputnik and continue to impress us in olympiads and scientific exchanges.
The answer lies in one of the Soviet Union’s best-kept secrets: a system of
mathematics education that produced a tradition of excellence in research
that is as good as any produced in Western countries.

Even as Gorbachev was touring the United States this past spring, a
small delegation of US mathematicians visited Moscow at the invitation of
Yevgeny Velikhov of the Soviet Academy of Sciences to explore means of
cooperation in mathematics education. The invitation was especially
timely, since math and science education in the United States is currently
under siege.

Many parallels between mathematics education in the Soviet Union
and in the US can be seen, but the differences are more striking. The US can
learn much from both the similarities and the differences.

Just as President Bush has laid out national goals for mathematics and
science education for the United States, so Gorbachev has established a
commission to improve mathematics education in the Soviet Union. The
emphasis in the USSR is to increase the role of computers in education at
all levels.

In the Soviet Union, just as in the United States, there is great uneven-
ness from school to school, and from teacher to teacher, in the quality of
mathematics education. Both nations have responded with similar inter-
ventions: special high schools for math and science and university-based
enrichment programs for students who can benefit from greater chal-
lenges.

Both countries debate how best to deploy limited resources for math
education. Conservatives (mostly university professors) prefer programs
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that nurture highly talented students, wherever they can be found; reform-
ers seek to “raise the water table” by improving mathematics education for
everybody.

In one important area, however, there is a striking contrast between the
US practice and the Soviet tradition: testing. US students go through
sixteen years of short-answer, multiple-choice tests in mathematics,
beginning with number facts in primary school and continuing right
through a multiple-choice Graduate Record Exam administered to college
seniors. In the USSR, mathematics tests are often given in oral or written
(essay) form, emulating the type of environment in which mathematical
ideas are used in the working world.

Bite-sized test items eviscerate education as surely as TV sound bites
trivialize politics. In contrast, open-ended tests requiring holistic re-
sponses encurage higher-order thinking and creative problem solving.

Students in the USSR learn from their experience with school tests to
think before answering. US students instead train for rapid response, learn-
ing how to take tests rather than how to solve problems. In Soviet schools
tests are used as an intrinsic part of the curriculum, and the teacher’s re-
sponses focus on each individual student in order to prevent failure.

The mathematics curriculum in the USSR is, for the most part, more
formal and traditional than that becoming common in the United States.
The mathematical tools of academia predominate; those of the state or
business (for instance, statistics, discrete mathematics) are almost invis-
ible. So in this respect US schools appear better attuned to the real needs of
society.

Butwehavealot tolearn from the USSR in the area of testing. Tests
should be part of the curriculum—an opportunity to learn and be taught—
not separate from it. They should enable students to reveal what they can
do, not merely what they don’t know or can’t quickly recall. If we are to be
number one in mathematics and science, as President Bush has urged, we
need tests that measure what’s important, not just what’s easy and cheap
to grade.

As part of NSTA’s efforts to reform the scope, sequence,
and coordination of secondary science education in this
country, we are developing a prototype interactive digital
video disk teaching system for high-level ability assess-
ment. Rather than requiring students to recall isolated
facts about phenomena, this exciting technology will
allow measurement of a student’s understanding of scien-
tific concepts. The interactive optical disk may prove to be
an important element in a new approach to teaching and
testing.

I'M HAPPY TO ANNOUNCE that Quantum has en-
tered into an agreement with the international publisher
Springer-Verlag, which is based in Heidelberg, Germany,
and has offices in New York, Tokyo, London, and else-
where. The National Science Teachers Association will
retain editorial control over Quantum, and our working
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relationship with Quantum Bureau
in Moscow will remain the same.
Springer will handle our printing, sub-
scriptions, and mailing; NSTA and
Springer will both engage in promo-
tion and solicitation of advertisements.
As part of the agreement, Quan-
tum will be published bimonthly
throughout the year beginning with
the September/October 1991 issue, so
those who have subscribed at full
price (as opposed to the introductory
price of $9.95) will receive six issues,
not four. Those who renew will, of
course, receive six issues per year.
We welcome Springer to the Quan-
tum venture. We are confident that
the impressive resources of Springer-
Verlag will help make Quantum avail-
able wherever English is spoken or
taught in schools. With that kind of
exposure, Quantum is more likely to
attract high-quality submissions, and
our readers will share in the excite-
ment of being part of an international
experience.
—Bill G. Aldridge
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by V. A. Davydov

HEN I WAS A BOY, BACK
in the 1960s, my friends and I
were fascinated by the novels
of James Fennimore Cooper
and others. We dreamed of the adven-
turous life among the Indian tribes of
North America. Making a lasso out of
a clothesline, we tried to catch a bush,
a tree branch, or even an unfortunate
cat chancing to emerge from the base-
ment to doze in the sun. But most of
all we envied the skill with which
Indians wielded their menacing
weapon—the tomahawk.

Just about every author of “Indian”
novels devotes some pages ‘to the
wonderful art of tomahawk throwing.
Our interest in the problem was kept
at a fever pitch by the movies. At that
time Indian films were very popular,
and their heroes never missed a chance
to throw a tomahawk. Take the fol-
lowing scene. An Indian tribe decides
to punish a paleface. He’s tied up and

thrown against the wall of his bunga-
low, and each Indian throws his toma-
hawk at him. The last tomahawk
cuts the rope, and when the uncon-
scious victim slides to the ground the
moviegoers see the outline of a hu-
man body formed by tomahawks stuck
in the wall. After the film was over
everyone was eager if not to master
hatchet throwing (we realized that it
was beyond the capacity of a paleface
boy) then at least to understand the
technique Native Americans used to
throw tomahawks.

The younger generation isn’t as
interested anymore in “Indian ques-
tions.” My own children, for instance,

2.40 A L IS N i
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“The axe cleaved the airin front of
Heyward, and cutting some of flowing
ringlets of Alice, buried itself and quivered
inthe tree above her head.”
—James Fennimore Cooper, The Last of
the Mohicans

8 NOVEMBER/DECEMBER 1890

CUTTING-EDGE PHYSICS

Tomahawi throwing mate easy

No, its not “all in the wrist”. . . Y 4
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can’t tell a Huron from a Comanche
and hardly know who Osceola was.
Nevertheless, they’re still impressed
by the fantastic ability of North American
natives in manipulating their tradi-
tional weapon.

The basic idea behind the theory of
hatchet throwing was born when we
started hiking regularly. Finding a dry
tree trunk near our campsite (and
there are lots of dead trees in our
forests), we’d try to hit it with a hatchet.
We immediately discovered an inter-
esting fact: if the person throwing the
hatchet stands at a certain distance
from the tree, the probability that the
hatchet will stick in the tree (and not
fall back after the hitting the tree with
the butt or handle) suddenly increases.
Only a little practice was needed to
ensure that you’d hit the target tree,
say, a hundred times out of a hundred—
provided, of course, you were stand-
ing at the proper distance. My at-
tempts to understand this phenome-
non led me to formulate a model,
which I'll now try to explain. You'll
see that in order to master tomahawk
throwing, you don’t have to be an
Indian. What’s really needed is skill
in estimating distances. Once you
know how to do that, the rest is a
cinch.

So let’s take a look at the model.
The problem is obviously divided into
two parts. First, you have to be able to
atleasthitapoleoratree trunk with
a hatchet; second, you have to hit it
with the cutting edge and not the butt
or handle. I'll assume you can man-
age the first problem on your own.

While throwing, you move your
hand in the following way. The arm
holding the hatchet rotates at the
elbow with an angular velocity m, and
the throw takes place when the veloc-
ity of the hatchet’s center of mass is
directed horizontally. Strictly speak-
ing, if we want the hatchet to hit a
certain spot on the pole, its direction
at the moment of release might be
something other than horizontal. But
we've posed a more modest problem:
how to embed the tomahawk in a
vertical pole at any spot whatsoever.
In this case we can ignore the effect of
gravity. In an actual experiment the
point of impact would be lower.

In this model we also assume (and
thisis very important) that the hand
doesn’t give the hatchet any addi-
tional rotation. Try it yourself and
you'll see that it’s practically impos-
sible to add rotation to the toma-
hawk’s motion by moving your palm.
You can only release the tomahawk
and let it move freely.

Let’s introduce the following para-
meters (see the figure on the facing
page): Iis the distance from the arm’s
center of rotation (the elbow) to point
B on the handle where we hold the
tomahawk; a is the distance from
point B to point M, which is the center
of the hatchet’s mass; o is the angle
between the arm and the handle. The
angle o can have different values, but
it’s easier to throw when a.=n/2. The
velocity of the hatchet’s center of
mass is then described by the follow-
ing equation:

v=oV @+

Now let’s define the angular veloc-
ity of rotation of a thrown tomahawk.
The simplest way to do that is to shift
to a reference system that moves with
the hatchet’s center of mass with
velocity v. Point M of this reference
system (the center of mass) doesn’t
move, whereas point B (like every
other point of the tomahawk) rotates
around M; the velocity u of point B is
at any moment directed perpendicu-
larly to the handle and equals o,
where ®, is the angular velocity of
rotation of the flying tomahawk. In a
stationary reference system the ve-
locity !l of point B at the moment of
release is directed perpendicularly to
I—thatis, along the handle. So

u=wa=\ vz—(u)l)z.

Substituting
v=oV @+,
we get
wa=oa,
0. =0

—thatis, aflying tomahawk rotates
with an angular velocity o equal to
the angular velocity of the hand dur-
ing the throw. This conclusion is

valid even if angle o isn’t 7t/2. In spite
of its simplicity, this result is very im-
portant. It means that the ratio of the
translational velocity of the toma-
hawk’s center of mass to its angular
velocity of rotation doesn’t depend on
the “force of the throw” (the momen-
tum transferred to the hatchet at the
moment of release) and equals

é =V @+,
This means that the distance L, cov-
ered by a flying hatchet after n full
rotations also doesn’t depend on the
throwing force. Since the time needed
for n rotations is equal to 2nn/m, we
get the following distance:

L=2mV @ +1.

This is really a remarkable conclu-
sion: there’s arange of distances L ,
and to make a successful throw you
have to position yourself at the fol-
lowing distance from the target:

L, + arctan (é) a2+

(the second term arising because the
hatchet’s handle makes an angle of
arc tan(I/a) to the vertical at the moment
of release).

Now let’s estimate the magnitude
of the elementary “quantum” L —
that is, the distance covered by the
hatchet after one full turn. Let I =
33 c¢cm, a = 20 cm (measurements
taken from my own arm and my own
carpenter’s hatchet). The calculation
givesus L =2.42m. SoifIthrow my
hatchet from a distance of 2.82 m
(don’t forget to add the arc tangent
term to L, it hits the target after one
full tumn.

My experience has shown that,
with hardly any practice, you can hit
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the target from a distance of L, and L,.
Mastering the subsequent “quantum
levels” is more difficult, but many
friends of mine were able to hit a tree
trunk from a'distance of L, (more than
10 meters).

“This is all very nice,” you may be
thinking. “But an Indian can hit his
target from other distances as well,
notjust from thoseequalto L . How
do you explain that?”

It seems to be quite simple. There’s
a parameter a in our model that can be
easily altered: all you have to do is
shift the palm of your hand to another
position on the tomahawk’s handle.
This shift modifies the whole range of
throwing distances. It also changes
the location of point B, which results
ina “blurring” of L, “levels” and the
appearance of a “zonal structure.” Inside
each of the zones we can adjust point
B (that is, the value of the parameter a)
to a position ensuring a successful
throw. But we can do more than that.
If the tomahawk’s handle is long enough,
we can get the zones corresponding to
adjacent levels L and L__| to overlap.

Let’s estimate the handle length b for
which the nth level L equals the
(n + 1)thlevel corresponding to the
minimum possible distance a__from
point B to the center of mass M. This
condition gives us the following equa-
tion:

2tnV P+ b2 =2 (n+1)y/ l2+aiin .

My experience has shown that it’s
hard to throw the hatchet if a is less
than 10cm. Solet’sassumethata_,
equals 10 cm. Solving the last equa-
tion, we get

_ 1\/ o 2 5
b—ﬁf Cn+ ) I'+ (n+1) a. .

An examination of this equation shows
that the longest handle is needed to
ensure the overlap of the first and
second zones—that is, for n = 1.
Substituting/=33cm, a_, =10cm,
andn=1,wegetahandlelengthof b
=60 cm. Overlap of the second and
third zones (n = 2) is achieved if the
tomahawk’s handle is 40 cm long,
and so on. So to be able to hit any
target from any distance, b has to be

Journey to the bottom

of the sea

of Alvin
VICTORIA A. KAHARL 521.95, 348 pp.

WATER BABY

The Story

The star of modern
» oceanography has
» been Alvin, the
world’s first deep-
diving submarine,
which with its Woods
Hole crew discovered
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filled with bizarre crea-
tures, black smokers, and
thermal vents—not to men-
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rather large. That's why Indian toma-
hawks have such long handles!

Actually, though, even shorter handles
will do: the hatchet can hit the tree
trunk at either the upper or lower part
of the cutting edge, which brings the
boundaries of the zones still closer.
My experience suggests that a handle
length of about 50 cm is quite suffi-
cient.

Our model shows that there’s no
difficulty in mastering the art of toma-
hawk throwing. Youjust have to be
able to judge the distance to the target
and hold the hatchet at the right place.
A good idea is to cut marks on the
handle showing the respective target
distances.

But how do real Indians throw
tomahawlks? It’s quite possible they
do it just the way I've described. Or
maybe they know how to give the
tomahawk an additional rotation with
a flip of the hand? Thave no idea, since
I've never met a single Native Ameri-
can. Icertainly hope that I will some-
day, and that I won’t pass up the
opportunity to learn more secrets of
this remarkable art.

Tomahawk throwing is an excit-
ing sport. Maybe in the not-so-distant
future its practitioners will organize
an association and sponsor tourna-
ments. And—who knows—maybe
one day this sport will even be in-
cluded in the Olympic Games! (@]
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Art by Edward Nazarov

BRAINTEASERS

Justfor the fun of it

Problems offered for your enjoyment
by G.A. Halperin, V.V, Proizvolov, N.A. Rodina,
L.M. Salakhov, and L.A. Steingraz
B16 B18

Is the pattern shown in figure 1 symmetrical? Move asingle match in each row of figure 2 to get a true
equality.

V=Il4=\IlI,
Vi=]i==\ill,
VI VI cove-

B19

Asquareis cutinto anumber of rectangles in such a
way thatno point of the square is a common vertex of
four rectangles. Prove that the number of points of the
square that are the vertices of rectangles is even.

Figure 1
B17

You have two red balls, two blue ones, two green, two
yellow, and two white. A number of balls of different
colors are placed on the left pan of abalance while the
otherballs of the same colors are put on the right one.
The balance tips to the left. If you exchange any pair of
balls of the same color, however, the balance either tips
totheright orstays even. How many balls are there on
the balance?

Asteel ball floats in mercury. Will the depth of immer-
sion increase or decrease as the temperature rises? O

SOLUTIONS ON PAGE 59
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MATH TO THE MAX

Going to extremes

Sometimes an “end run” is more direct than

a “dive up the middle”

by A.L.Rosenthal

F YOU WANT TO ACQUIRE

some skill in solving mathemati-

cal problems, you should try to

master the more or less common
approaches, techniques, and methods
of mathematical reasoning. Here’s
one very general approach, which we'll
call the “extremity rule.”

The extremity rule can be suc-
cinctly stated in four words: “Con-
sider the extreme case!” This is actu-
ally a recommendation to consider an
object having extreme—or as mathe-
maticians say, “extremal”’—proper-
ties. If we're considering a set of
points on a straight line, the rule tells
us to focus our attention on the ex-
treme left or extreme right point of the
set. If the problem concerns a set of
numbers, the extremity rule recom-
mends that we consider its maxi-
mum and minimum. Here are some
examples.!

Problem 1. A set of points M is
given in a plane such that each point
in Mis the center of an interval con-
necting a pair of points in M. Prove
that set M is infinite.

A good way to start is to consider a
simpler but similar problem. So be-
fore doing problem 1 let’s try this one.

Problem 2. A set of points M is
given on a straight line such that each
point in M is the center of an interval
connecting two other points belong-
ing to M. Prove that set M is infinite.

1Other examples of applying the rule
can be found in recent issues of
Quantum—for instance, in problems
M10 and M15.—Ed.
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Let’s assume that M is a finite set
and apply the extremity rule. If M is
finite, it has extreme points—the ex-
treme left and the extreme right. Consider
one of them—for instance, the left
one—and denote it by A. Point A isan
extreme one and, consequently, can’t
lie inside the interval connecting two
other points of the set M. The contra-
diction proves that M isn't a finite set.

There’s another solution to the same
problem, also based on the extremity
rule. Assuming again that M is a
finite set, consider the lengths of inter-
vals connecting pairs of points in M.
This set of numbersisfinite. Apply-
ing our rule, consider the longest inter-
val BC. Clearly, there are no points of
M outside BC; otherwise, there would
be longer intervals. Therefore, all the
points of M lie on the interval BC,
which implies that neither B nor C
satisfies the above condition—again a
contradiction.

Now let’s return to problem 1.
Assuming that M is a finite set, apply
the extremity rule this way. Fix an
orientation of the plane and consider
the extreme left point of set M. If there
are several “extreme left” points, choose
the lowest one. You can easily see
that this point (denoted by A) can’t lie
within an interval connecting two
points of M. Indeed, if such an interval
exists one of its ends is either to the
left of point A or on the same vertical
line with A but below it. Both situ-
ations contradict the choice of point
A.

1980

As with problem 2, there’s another
approach here. Consider the set of dis-
tances between pairs of points of M. If
set M is finite, there is only a finite
number of paired distances, so that
the largest among them can be found.
Let it be the distance between points
A and B. But point B is the center of an
interval CD whose ends, according to
our assumption, belong to M (fig. 1).
Now it’s easy to prove that either AD
or AC is longer than AB (do it yourself,
making use of the fact that the me-
dian m drawn to one of the triangle’s
sidesis less than half the sum of the
two other sides).

AI

Figure 1

Problem 3. The squares of an infi-
nite chessboard are marked by natu-
ral numbers in such a way that each
number is equal to the arithmetic
mean of the four adjacent numbers—
the upper, lower, right, and left ones.
Prove that all the numbers written on
the chessboard are equal.

The extremity rule is helpful here
in one of its variations: “Consider the
smallest number!” Among the num-
bers written on the chessboard there’s
the smallest one. This is easy to
prove. Let k be one of the numbers. If
1 is one of the numbers on the chess-
board, then 1 is the minimum num-
ber (since there are no natural num-
bers less than 1). If 1 isn’t on the
chessboard, sece whether 2 is on it. If it
is, then 2 is the smallest number.
Otherwise, look for 3, and so on. In no
more than k steps the smallest num-
ber will be found. Denote it by m and
the square in which it’s written by P.
Denote the numbers in the adjacent
squares by q, b, ¢, and d (fig. 2). Ac-
cording toour condition, m=(a+b +
c+d)/4,ora+b+c+d=4m. Because

Art by Leonid Tishkov
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Figure 2

of the choiceof mwehavea>m, b>
m, c>m,d>m. If at least one of these
inequalitiesisastrictone, we geta +
b+c+d> 4m, contradicting the as-
sumption. Thismeansa=b=c=d=
m.

So if a square of the chessboard
contains the smallest number m, then
the four adjacent squares also contain
m. By moving to an adjacent square
again and again, we can travel from
square P to any other square on the
chessboard. Therefore, all the num-
bers on the chessboard are equal to m.

Problem 4. A number of rooks are
placed on an n by n chessboard so
that the following condition is ob-
served: if a square of the chessboard
is free, the total number of rooks
standing on the horizontal and verti-
cal lines crossing this square is not
less than n. Prove that there are at
least n?/2 rooks on the chessboard.

This is a tough problem. But a
skillful application of the extremity
rule dramatically simplifies the situ-
ation. Consider a line on the chess-
board (which may be either vertical or
horizontal)with the least number of
rooks on it. There may be several
such lines “equally loaded” with rooks.
In that case, choose any one of them.
Let this line be a horizontal one (or
else rotate the chessboard 90 degrees).
Denote the number of rooks on this
horizontal lineby k. If k> n/2, there
are no fewer than n/2 rooks on each of
n horizontals, and the chessboard
contains at least n?/2 rooks.

Now let k beless thann/2. There
are n - k unoccupied squares on the
chosen horizontal, and each vertical
line passing through a free square on
that line contains, according to the
statement of the problem, no less
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than n — k rooks, so that all n — k
vertical lines contain no fewer than
(n — kP rooks. The remaining k verti-
cals contain no fewer than k rooks
each (because of the choice of the
number k). So the total number of
rooks on the chessboard is no less
than (n — k)* + k. It remains to be
proved that (n — k)* + kK* > n*/2. This
can be done in various ways—for in-
stance,

2 2
[(r=b?+ k7] = Z-= - = 2nk + 27

2
=2("Z—nk+k2)

=2(§—ka20.

If n is an even number, there’s a
pattern that satisfies the condition
and contains precisely n?/2 rooks: the
rooks are all standing on black squares
(or all on white ones). If nisodd, it’s
impossible to position n*/2 rooks in
such a way as to satisfy the statement
of the problem since n?/2 isn’t an
integer, but there is a pattern contain-
ing (n* + 1)/2 rooks: one rook is placed
in one of the corner squares and the
others are placed on squares of the
same color.

The next problem is also solved by
the extremity rule.

Problem 5. A number of points are
given in a plane, not all contained in
one straight line. Prove that there
exists a circle passing through three of
them that contains none of the given
points inside.

Drawing all possible circles through
triples of given points, we get a set of
circles (some of which may coincide).
We have to prove that at least one of
them doesn’t encircle any of the given
points. The extremity rule tells us to
consider the smallest circle, but fig-
ure 3 shows that one of the given
points may remain inside such a circle.
Although we can get a solution this
way (see exercise 2 below), we’ll do
something different. Let’s try to solve
a simpler problem first: let’s find a
circle passing through two of the given
points that doesn’t contain any of the
given points. Measure the distances
between each pair of points and use
the extremity rule in the form “Con-
sider the smallest one!”’—that is, take
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Figure 3

a pair of points A and B that are closest
to each other. It’s easy to show that
the circle constructed with the interval
AB as a diameter satisfies the follow-
ing condition: the distance to any of
the other (n — 2) given points from
either A or B is no less than AB, so
each of the remaining (n - 2) points is
located outside the circle. Now draw
circles through A, B, and each of the
other (n — 2) points and choose the
smallest among them (prompted again
by the extremity rule). Let it be the
circle passing through A, B, and C.
This is the circle we’re looking for,
since any circle going through A, B,
and a point C’ lying inside the shaded
“sickle” (fig. 4) is smaller than the
circle passing through A, B, and C
(prove it yourself).

o
“ - i,

Figure 4

Problem 6. You are given n lines (n
> 3) in a plane, no two of which are
parallel and no three of which have a
point in common. The lines cut the
plane into several regions. Prove that
for any Iine at least one of the regions
adjacent to it is a triangle.

Let 1, be one of the lines. Applying
the extremity rule, choose from among



the intersection points a point P lying
at the shortest distance from I .

Denote the lines intersecting at P
by 1, and I, and consider the triangle
formed by 1 , 1, and [ (fig. 5). No other
line mtersects this triangle (otherwise
there would be an intersection point
Qon either I, or I, that is closer to L
than Pis).

0,
Figure 5

Problem 7. Prove that there are no
natural numbers X, 'y, z, u that satisfy
the equation x>+ y* =3(z* + u?).

Let’s assume that the equation can
be solved. Consider a solution for
which x? + y? takes the least value (if
there are several such sets of four
numbers, take any of them). Denote
the four numbers by g, b, ¢, d. The
equation a? + b? = 3(c* + d?) implies that
a’+ btisamultiple of 3. But a? + btis
divisible by 3 if and only if both a and
b are divisible by 3 because the square
ofanumber thatisn’t amultiple of 3
alwaysleavesaremainder of 1 when
divided by three.

Consequently, a =3m, b = 3n, so
that

a’+b*=9m>+9n? = 3(c* + d*).

Dividing the last equality by three, we

get
¢+ d = 3[m? + n?).

So we've found four natural numbers

c,d, m, nthat satisfy the given equa-

tion such that

A+d*<a*+ b,

contradicting the choice of a, b, ¢, d.

Problem 8. You are given n lines (n
> 3)inaplane. Any two lines inter-
sect, and at least three of the lines
pass through each intersection point.
Prove that all the lines intersect at

one and the same point.

Let I be one of the lines. If not all
thelinesintersect at one point, then
there’s at least one intersection point
that doesn’t lie on I. Choose from
among such points the point M clos-
estto I There are at least three lines J,
I, I, that pass through M. These lines
intersect [at points A, A, A,. Let A,
lie between A, and A (flg 6) The
statement of the problern implies that
besides Jand ], at least one more line
passes through A . It has to intersect
one of the 1ntervals MA, or MA, at
some point N. Then N hes closer 1 to 1
than M does, which contradicts the
choice of M.

Figure 6

A further development of the ex-
tremity rule is the “ordering rule,”
which reads: “Arrange the elements
of your set any old way—in increas-
ing, decreasing, or any other order!”

Problem 9. Seven mushroom gath-
erers collected 100 mushrooms, but
no two of them picked the same number
of mushrooms. Prove that there are
three people who together picked at
least 50 mushrooms.

Write down the people’s names,
putting the most productive gatherer
first and working down the list to the
least productive. It’s clear that we
should consider the persons with the
three highest ratings since they gath-
ered more mushrooms than any other
group of three. Let’s prove that their
joint total is at least 50 mushrooms. If
the third person on the list picked 16
mushrooms or more, then the second
has at least 17 and the first at least 18
mushrooms. Altogether they collected
at least 16 + 17 + 18 = 51 mushrooms.
If the person in third place collected
no more than 15 mushrooms, the rest
of the gatherers (in positions four through
seven) collected at most 14 + 13 + 12 +

11 = 50 mushrooms, which again leaves
at least 50 mushrooms for the first
three.

Now it’s time for you to try your
hand at “going to extremes”!

Exercises

1. There are 12? integers arranged in an n by
n table in such a way that for each zero the
sum of the numbers in the corresponding row
and columnisatleast n. Prove that the sum
of allnnumbersisatleast n?/2.

2. (a) There is a point D inside a circle
circumscribed around a triangle ABC such
that the radius of the circumcircle is not
greater than the radii of the circles ABD,
BCD, CAD. Prove that the triangle ABC is
acute, D is its orthocenter (the common point
of its altitudes), and the radii of the four circles
are equal.

(b) Find another solution to problem 5 in
this article, starting with the choice of the
smallest circle passing through three of the
given points.

3. You are given n points (n > 3) in a plane.
Each line passing through a pair of the points
contains at least one more given point. Prove
thatall the npointslie on asingle line.

4. Find all triples of natural numbers x, y, z
suchthatx+y+z=xyz.

5. Prove that in any tetrahedron there is an
edge forming acute angles with all the edges
emerging from its end points.

6. A number of checkers are placed on a
checkerboard. A move can take any of them
to one of the four adjacent squares (rather than
along the diagonal, as is usually the case).
After several moves all the checkers return to
their initial positions and each of them has
been to all the squares of the checkerboard
exactly once. Prove that there was a moment
when none of the checkers was positioned on
its initial square.

7. Solve the following system of equations:

x1+x2:x§,
x2+x3=xi,
X +x —xi
X +x5—x§
X +x —x%

8. A cube is broken down into smaller
cubes. Prove that at least two.equal cubes
emerge from this process.

9. In a certain country all distances be-
tween airports are different. An airplane took
off from each airport and headed for the
nearest one. Prove (a) that no more than 5
airplanes arrived at each airport; (b) that if the
number of airports is odd, then there was an
airport at which none of the airplanes
landed.

HINTS AND SOLUTIONS ON PAGE 60
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FRONT-LINE PHYSICS

- Lightning In a crystal

Howthe LED grew up to be alaser

g

AOWALY Aniwq Ag 1y

by Yury R. Nosov

F YOU ASK AN EXPERT IN

electronics—an engineer, a scien-

tist, or the head of an electronics

company—what shows the most
promisein this area, eight out of ten
will answer: electronic optics.

The old idea of using light signals
for information transfer instead of
electricity (as is the case in traditional
microelectronics) turned out to be a
very fruitful one. The marriage of
electronics and optics may improve
the operational parameters of com-
puter equipment: operating speed would
be increased by a factor of hundreds or
thousands, and it would be more reli-
able, noise-free, and miniature.

This was already well understood
in the 1960s. So why do most of the
potential advances envisaged here still
await realization? Well, there are
quite a number of hurdles to over-
come. In order to “harness” light we
have to be able to handle it as easily as
electric current. We must be able to
amplify and transform light signals,
transmit them from one location to
another without significant loss, de-
velop recording and storage devices.
But first of all, we have to learn how to
generate them. Whatever the impor-
tance of the other elements of an
electronic optics system, the basic
component is the light generator. It's
the alpha and the omega of the sys-
tem. Of course, an ordinary light bulb
is of no use here. The source must be
at least as small, reliable, and long-
lasting as conventional transistors and
integrated circuits.

The natural place to look for a solu-
tion was semiconductor technology.

The diode that glowed

Let’s briefly review the situation in
this area as it was thirty years ago. At
that time the main concern of semi-
conductor science was to satisfy the
needs of transistorized instrumenta-
tion. The whole future of electronics
seemed to depend totally on their
development. The first transistors
were made of germanium, but it was
clear that better
results could be ob-
tained by using
silicon or the then
new semiconduc-
tor gallium arsenide
(GaAs). The “sili-
con way” quickly
achieved success
and since 1960 it

A%

Free
electrons

was in the gallium arsenide “dead-
lock.” Hope still glimmered, and
then it glimmered in the literal sense
of the word.

In 1956 it was discovered that elec-
tric current passing through GaAs
diodes causes them toemit light! So
the first light-emitting diode (LED)
appeared. Physicists and engineers
started to scrutinize the effect. It was
immediately established that the
semiconductor crystal of an LED did
not heat up, which meant that the
radiation was caused by luminescence,
the phenomenon known as “cold
radiation.”

The operating principle of the light-
emitting diode was quickly explained.
The GaAs crystal of the diode isn’t
homogeneous. Its different regions
vary in their properties. By introduc-
ing different kinds of impurities, you
can enrich one of the crystal’s halves
(the left one in figure 1) with mobile
electrons and deprive the other half of
them. The energy of the electrons is
higher on the right and drops sharply
at the boundary, called the “p-n tran-
sition” (which plays an exceptionally
important role in semiconductor elec-
tronics). This energy barrier “prohib-

p—n Figure 1

transition

_h ‘

has constituted the
mainstream of
microelectronics.

The gallium
arsenide transistors,
however, persis-
tently refused to
appear. Millions
spent on develop-
ing perfect GaAs

Energy of electrons

N

D

Photons

Photons g
——

\

ASSSS

monocrystals could
almost have been
written off as a
complete loss, but

Bound
@ electrons

. .. sometimes a
loss turns into a

real find. Andsoit

Distance from the surface of crystal
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its” electrons from crossing the p—n
transition from left to right “at will.”
But if an external voltage is applied to
the crystal, the barrier lowers a bit and
some of the electrons are injected into
the right half—that is, they’re injected
from the emitter to the base. It’s in the
vicinity of the p—n transition that our
phenomenon takes place. After get-
ting to the right side, the electrons fall
from the mobile state into the bound
one and lose the acquired energy. The
lost energy may be emitted as a quan-
tum of radiation, the photon. In this
way a light-emitting diode transforms
the energy of electric current into
radiation energy!

It’s as if a heavy stone were first
rolled to the top of a mountain and
then fell into an abyss. Hitting the
rocky bottom of the abyss, the stone
produces a spark. The height of the
mountain determines the color of the
spark: the greater the energy gap E,
between the mobile and bound states
of an electron, the greater the energy
of the quantum and the shorter the
wavelength of the emitted light. With
an increase of E , the color of the radia-
tion shifts to the blue-violet end of
the spectrum. When a sufficiently
strong current passes through the diode,
the “stone fall” becomes so intense
that separate “sparks” merge into a
continuous glow.

Of course, a metaphor never coin-
cides perfectly with the phenomenon
it’s meant to clarify. The true quan-
tum picture of electron transition that
causes photon generation can’t be
reduced to any other process. Actu-
ally, once it’s understood, the picture
becomes as simple and clear as any
other physical process (in any case, no
more complicated than the fall of a
real stone in real mountains).

Alittle color, please...

In the years under discussion here,
the theory of luminescence was al-
ready well developed, which made it
possible not only to calculate the pro-
cesses in crystals with known proper-
ties but also to predict new effects.
And there certainly was something to
calculate and predict here.

The problem was, the first GaAs
light-emitting diodes radiated in the
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infrared band of invisible wavelengths.
Of course, infrared light can be regis-
tered by various photodetectors and
has numerous technical applications.
Still, it seemed like a nice idea to have
diodes emit light the human eye could
see, since the eye is our main instru-
ment for apprehending the world. Why
not light-emitting diodes that glow in
all the colors of the rainbow, bright
and clear? To achieve this one had to
find semiconductors with energy gaps
greater than that of gallium arsenide.
As usual when the physical mecha-
nisms are understood and the prob-
lem is precisely formulated, the means
of solving it were readily found.

Soon'! no one was surprised to see
gallium phosphide LEDs emitting
intense red or green light, depending
onthe type of impuritiesintroduced
into the crystal. A triple compound of
gallium, arsenic, and phosphorous made
itpossible to obtain any wavelength
from dark-red to orange or almost
yellow. Silicon carbide emitted yel-
low-green and pale blue light, though
very faintly. Only blue light, like
Maeterlinck’s evasive blue bird, couldn’t
be captured by the scientists. The
brightest were the red light-emitting
diodes, so it was under a “crimson
sail” that electronic optics sailed into
technology and into our daily life.

Numerous instruments use arrays
of LEDs positioned in a specific order
on a panel. By selectively turing on
appropriate light-emitting diodes in
the array, one can generate a digit,
letter, or graph. This naturally led to
the following thought: why cut the
semiconductor plate into individual
little crystals and then bring them all
back together again in an array of
LEDs? In response, character-synthe-
sizing indicators appeared on the scene—
plastic casings enclosing several crys-
tals, or a single one, with several points
that light up independently of one
another.

Light-emitting diodes and numeric
displays began to be produced com-

1It's easy to say “soon” nowadays,
but that “soon” meant almost a decade
of elaborate analytical studies, hard
work on synthesizing superpure
semiconductors, development of new
equipment and technologies . . .
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mercially at the end of the 1960s and
were quickly put to use in a broad
range of applications. Worldwide
production approaches 10 billion pieces
a year! These bright-red glowworms
and numerals can be found in elec-
tronic watches and pocket calcula-
tors, on laboratory andindustrial in-
strument panels, in the keys and but-
tons of radio and electronic equip-
ment, in the cockpits of airplanes and
submarines . . . just about everywhere.

It’s true, the use of light-emitting
diodes is restricted by the short dis-
tance required between the display
and the user’s eye. But there is already
talk about using superintense LEDs
in automobiles as taillights. Of course,
it’ll be along time before light-emit-
ting diodes light our homes—although,
given the rapid advance of technol-
ogy, we shouldn’t be too rash in our
predictions.

Unfit for computer duty

It’s time to catch our breath and
sum up. Everything I've talked about
so far has to do with the use of light-
emitting diodes to display informa-
tion, numerical or otherwise. They
turn the electrical impulses of com-
puter-generated information into a
visually perceived image that is quickly
and easily apprehended by the user.
Undoubtedly, such devices are of the
utmostimportance. But thisisonly
one area in which electronic optics
can (and should) help information
science. What about processing, trans-
mitting, and storing information? Can
a light-emitting diode be of any help in
these areas? Alas, the bright rainbow
of colors seems to fade here.. ..

The first stumbling block, as I al-
ready mentioned, is the low intensity
of the light emitted by LEDs. Even if
it can be perceived by the human eye,
it’s not always detected by a light-
sensitive device (especially if it’s lo-
cated at a distance from the LED).
Another problem is that the radiation
of light-emitting diodes isn’t mono-
chromatic. We'll look at the quantita-
tive side of the matter later; the cru-
cial point here is that the emission
bandwidths are too broad for use in
many electronic optics devices.

Finally, and most important of all,



light-emitting diodes radiate almost
homogeneously in all directions. It’s
impossible to concentrate its energy
in a sharply focused beam. They're of
no use in performing the simplest
task in electronics—sending a signal
from point A to point B. The greater
part of the emitted energy is not only
uselessly squandered, it irradiates the
surrounding space and may even jam
other sources. The light-emitting diode
is a careless chatterbox incapable of
keeping a secret. It’s obviously not
suitable for use in information sci-
ence, where all operational features
must be precise and trustworthy and
where each bit of information must
use only the amount of energy it actu-
ally needs.

Fortunately, there’s a good alterna-
tive to the light-emitting diode as a
radiating source. It’s the laser, which
emits intense, almost monochromatic,
very focused light. Let’s digress fora
moment and look at the quantitative
side of laser operation.

Its directionality is characterized
by a solid angle o containing the beams
generated by the source; if the beams
diverge, symmetrically deviating from
a certain axis (the direction of emis-
sion), this divergence is measuredin
radians, or degrees and minutes as in
conventional plane geometry.

There are no strictly monochro-
matic waves in nature. Any light
source always has some range of color,
orwavelength. Quantitatively, this
range is described by the notion of
monochromaticity, which is defined
as the ratio of the bandwidth of the
wavelengths of the generated radiation
AL to the wavelength A, of the center
of the band: the smaller AL/A, the bet-
ter the operational features of the la-
ser. A good example is the typical
helium-neon laser, for which ot < 1'
and AL/A, < 0.000001.

Such a light source would be quite
suitable for computational electronic
optics were it not for the fact that the
helium-neon laser has a glass dis-
charge tube almost half ameterlong
and a high-voltage power supply unit
weighing several kilograms. Now
place beside it an integrated circuit
the size of a postage stamp containing
about a million transistors and requir-

ing only 5 volts of power. Are these
two units compatible? Obviously not!
And, indeed, numerous attempts to
use conventional lasers in microelec-
tronic computer devices came to naught.
As the Russian saying has it, “You
can’t hitch a bull and a doe to the same
wagon.”

Obviously, there’s only one way to
make lasers and microcircuits com-
patible: make both of them semicon-
ductors.

The hirthof anew laser

The story of the semiconductor
diode laser is typical of scientific dis-
coveries in the 20th century. After the
solid-body (ruby) and gas (helium-neon)
lasers were almost simultaneously
invented in 1960, scientists predicted
that a semiconductor laser could be
made as well. It was expected that,
like other semiconductor devices, it
would be small, cheap, durable, resis-
tant to outside influences, flexible in
its parameters, and useful in a wide
range of applications. It was quite a
challenge to create such a device, and
leading laboratories throughout the
world vied with each other to catch
this “beautiful butterfly.” Theoreti-
cians were able to describe the desired
quantum structure of the crystals,
thus narrowing the list of potential
candidates. The butterfly’s fate was
sealed. On the eve of 1963, almost si-
multaneously, the first semiconduc-
tor lasers were created in the US and
USSR.

The pioneering semiconductor was
again gallium arsenide. The only
difference was that it contained more
impurity elements, which created a
greater number of free electrons. Af-
ter the p—n transition is achieved on a
sheet of gallium arsenide, the large
piece is broken with a scalpel into tiny
rectangular crystals. The sheet splits
strictly along its crystallographic planes,
so that the opposite facets of the crys-
tals are parallel and highly reflective.
These two mirrors form a resonator,
which is necessary for the laser feed-
back effect. The crystal’s lower facet
is then soldered to a massive copper
substrate (to increase heat transfer),
and a second, thinner electrode is
connected to its upper facet.

When an electric current is ap-
plied, the crystal starts to emit infra-
red light as a light-emitting diode does—
weakly and in all directions. But as
soon as the current reaches a certain
value (called the threshold current),
the picture changes dramatically: the
radiation power suddenly jumps and
intense light is emitted from the strips
on the side facets where the p-n tran-
sition plane intersects the resonator’s
facets. A spectral analysis of the radia-
tionrevealed that this phenomenon
resulted in the substantial narrowing
of the band of generated wavelengths.
There was no longer any doubt—it
was a laser!

The operating principle was ex-
plained without much delay. As with
light-emitting diodes, the external
voltage applied to the crystal “drives”
electrons up the “energy barrier,”
except that this barrier is a bit higher
and the number of electrons much
greater than in a light-emitting diode.
The electrons gather near the p-n
transition, creating a so-called active
zone. “Falling from the barrier,” they
give rise to quanta of radiation (that is,
photons). It's at this point that the
analogy with light-emitting diodes
breaks down. The light wave propa-
gating along the p-n transition plane
is reflected off the mirrored faces of
the crystal and, repeatedly passing
through the active zone, forces more
electrons to “drop from the barrier.” It
turns out that a huge quantity of
electrons simultaneously and identi-
cally undergo the prescribed quantum
transition (shown by the two-headed
arrow in figure 1). As aresult, the laser
beam has a high degree of monochro-
maticity and a specifically determined
polarization. Because of the way it is
created, such radiation is called stimu-
lated or induced radiation, whereas
the radiation of a light-emitting diode
is spontaneous (random in its direc-
tion, polarization, and, to a certain
extent, wavelength).

Another problem Surmounted

The new device aroused great in-
terest. It seemed obvious that funda-
mental changes were about to begin
in electronic optics. But time passed
and there was no serious application
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of the new laser. The initial euphoria
gave way to bewildered disappoint-
ment.

The laser operated only at low,
“nitrogen” temperatures (—196°C) and
only if the external current was sup-
plied in short, infrequent impulses.
Even then, its lifetime was exceed-
ingly brief—several dozen hours at
most. If it was operated in any other
mannet, it would immediately over-
heat and fail completely. It also tumed
out that its degree of monochromaticity
was only marginally better than that
of light-emitting diodes, by a factor of
merely 10 to 20 (AL/A,= 0.005 com-
pared to 0.05 for an LED), and it was
still far worse than that of a gas laser
(by a factor of thousands). In its direc-
tionality (o = 30°), the semiconductor
laser seemed like just an improved
light-emitting diode. “What kind of
laser is this?!” frustrated electronic
optics engineers might have exclaimed.
Gradually experiments with the new
device gave way to renewed specula-
tion about the sunny prospects of
“ideal” electronic optics.

The worst part of it was that the
semiconductor laser’s drawbacks were
provided with a rigorous and appar-
ently insurmountable theoretical basis.
The electrons injected into the thin
active zone weren’t willing to stay
there but scattered all over the crystal.
The same thing happened with the
light wave. Instead of contributing to
the laser effect, the lost electrons and
quanta only caused useless overheat-
ing of the crystal. What could make
the mobile charge carriers (electrons)
and light radiation (photons) stay in a
specific area of the crystal? You can’t
put a shield or a mirror inside what is,
afterall, amonocrystal, in which all
the atoms are positioned in an ideal
predetermined order. When research-
ers began their chase after the “beau-
tiful butterfly,” somehow none of this
ever came up. Now it began to look as
if the butterfly was destined for a jar of
formaldehyde in a museum of physics
curiosities.

But the nimble human mind once
again emerged triumphant. And what
did it come up with? Heterostruc-
tures. If some of the gallium atoms in
a gallium arsenide crystal are replaced
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with aluminum atoms, the structure
of the crystal lattice isn’t changed
because the atoms of the two ele-
ments are so similar in their physical
properties. But this results in the
creation of a new semiconductor,
gallium-aluminum arsenide, with a
larger energy gap than that of pure
gallium arsenide. The area between
the two semiconductors inside a single
monocrystal is called a heterojunc-
tion. In addition to the energy barrier
italsoincludes an optical barrier be-
cause the two semiconductors have
different refractive indexes. The ac-
tive zone has a higher refractive index
and, sandwiched between heteroboun-
daries, makes an ideal trap for elec-
trons as well as a waveguide for light
beams.

Further refinements

“Her Majesty Technology” took
over from here. In virtually no time at
all scientists learned how to set up
pairs of heterojunctions parallel to
each otherinside a monocrystal and
separated by the fantastically precise
distance of afew atomic layers. The
threshold current was lowered to sev-
eral dozen milliamperes, the upper
limit for the laser’s operating tem-
perature reached 100°C, and acceler-
ated aging tests showed that the new
laser diodes should last several dec-
ades. And so the renaissance of the
semiconductor laser began. The in-
dustry was flooded with inventions
and discoveries. You want to lower
the threshold current? Okay—sand-
wich the active zone between hetero-
junctions not only above and below
but also between two other hetero-
junctions on the sides. The microfil-
ament of the active semiconductor
can then be excited by a current of
only 1 mA! You want tonarrow the
spectrum of emitted wavelengths? Just
give one of the heteroboundaries a
wavy shape. The resonator’s selectiv-
ity increases sharply, and the degree of
monochromaticity reaches values typical
for gas lasers. To increase monochro-
maticity even more, use a structure
with two “coupled” crystals (fig. 2).

Heterolasers are now manufactured
by the millions each year, and their
use has displaced our entrenched no-
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tions in many areas of technology. A
fiber optic communication line is capable
of transmitting all 30 volumes of the
Great Soviet Encyclopediain digital
form in a single second! A desktop
CD ROM (read-only memory) unit
can “hold” more than a million books.
Optical integrated circuits using hetero-
lasers are being developed with a view
to creating supercomputers that will
be thousands of times as productive as
the current models.

“Lightning"?

The title of this article included the
word “lightning.” Why? Because the
current density in light-emitting di-
odes and semiconductor diode lasers
may be several times (and sometimes
scores of times) greater than that in a
lightning discharge. Scores of “micro-
lightning” discharges flash in our
crystals, but they’re under human
control; instead of bringing destruc-
tion, they breathe life into electronic
optics.

This area is now on the front line of
solid-state physics. Equipment has
already been developed that’s capable
of growing multilayered semiconduc-
tor structures whose composition and
properties vary in each monatomic
layer. Such structures make it pos-
sible to control almost every electron
in the lattice: one can be “planted” in
a “quantum well,” another can be
“‘walled up” inside a “quantum box,”
another can be set free to “wander”
over the whole crystal . . . But it’s
much more thrilling to carry out such
projects with your own hands than to
write about them. If you don't believe
me—try it yourself! Q]

Figure 2
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Physics for fools

Need we say “Kids, don'ttrythisathome..."?!

by V.F. Yakovlev

O TELL YOU THE TRUTH, I had a difficult time at

the university. That’s probably why I'm especially

infuriated by all those remarks in textbooks on

physics and mathematics that go: “It is well known
that . ..,” “Simple calculation readily yields . . .,” “One can
easily see . ...” Where is it well known from? Why is the
calculation simple? Usually, for me, it was very difficult
and sometimes even impossible! Such remarks not only
mislead students but also contribute very effectively to the
development of an inferiority complex.

Isn’t their purpose really to mask the authors’ incompe-
tence? I'mean, good students will find their way through
a text even if it’s full of mistakes. I'm sure that if someone
had forced me to write a textbook for differential analysis
without any access to lecture notes or books on the
subject, Euclid or Archimedes could have understood
what I was trying to say. It’s very easy to write textbooks
for clever people. Even fools can handle that. Towritea
textbook for people of more middling talent—now that’s a
challenge. But what anoble task it is!

Just imagine: “Quantum mechanics for the feeble-
minded,” “Differential calculus for utter fools.” Books
like that would surely top any best-seller list! You'd have
to litter the text with remarks like “One can barely derive
from this .. .,” “It is very difficult to understand that . . .,”
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and so on. The readers who got through all this would glow
with enthusiasm.

Now you can easily understand my triumph when,
reading the book Matter, Earth, Heaven by the famous
physicist George Gamow (published in the US in 1959), I
came across a reference to another book published in 1908
in St. Petersburg (now Leningrad) under the title (accord-
ing to Gamow) Physics for Fools. I'was on the verge of
jumping out of my chair and shouting “Eureka!” in the
library reading room. Unfortunately, my joy was short-
lived since Gamow failed to mention the author’s name.

After a long and tedious search in many catalogues and
reference works, I finally found the book. Its title page
reads:

Published by
The Society for the Encouragement of Stupidity

New Physics Without Instruments

A Complete Description of Popular Experiments
Easily Performed At Home

The Best Leisure for
Persons Longing for Physics and Astronomy

Compiled from the Latest Sources and Discoveries

by
Sergey Olympov

The author’s name was a pseudonym, and only after
more searching in libraries did I find his real name: Sergey
Maximovich.

Mr. Maximovich was born in St. Petersburg in 1876. In
the 1930s he was still living in Leningrad and was em-
ployed at the State Institute of Geodesics and Cartography,
working on aerial photography and the physics of light-
sensitive materials. He also studied how to measure
various characteristics of photographic materials (there’s a
branch of physics called “sensitometry” or “photographic
metrology”).

Sergey Maximovich was an extremely ingenious per-
son with artistic talent, as you can see from his drawings
that follow and the explanatory notes he wrote for them.
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Figure 1
Thermal expansion.

“All bodies get longer when heat is applied. So, for ex-
ample, rails are always made shorter than necessary. The
following experiment can be performed by anyone at
home.

“Have an older and more forgiving member of the
family lie down on a cold stove so that his feet touch a wall
while his head touches a stack of books positioned at the
edge of the stove. Make a fire in the stove. Soon you'll see
that, as the temperature rises, your relative will stretch
and push the stack of books with his head until they fall on
the floor. The nature of this phenomenon is pretty
obvious, but let’s continue the experiment anyway. As
the temperature increases even more, the phenomenon
enters its next phase: yourrelative will begin to deform
until, finally, he jumps up and runs away. This is an excep-
tionally convincing demonstration of the law known in
the scientific community as the ‘transformation of heat
into motion.’

“If you immediately place your relative on a red-hot
stove, he might enter a spheroidal state and the experi-
ment will fail.”

Figure 2
A simple electrical machine.

“Experiments with large electrical machines are not
cheap and are not without danger. But anyone can build
such a machine from simple household items.

“Ask a friend to sit on a two-gallon bottle and have him
hold a fork in his hand. Rub rubber galoshes with a fox coat
and bring it toward the fork. Soon you'll hear a character-
istic hissing sound, and your friend’s nose will start to emit
long, bright sparks (which are especially impressive in the
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dark). With this simple instrument you can carry out all
the experiments described in physics textbooks—you can
charge a Leyden jar, light a small light bulb, and even run
a sewing machine.

“From time to time it’s useful to grease your friend and
the bottle with a thin layer of warm petroleum jelly.”

Figure 3
Electrolysis.

“What could be more durable than a gold watch? The
eternal glittering of the noble metal, the motion of its
hands as if personifying Time itself—everything suggests
stability and perpetuity. But, in actual fact, that’s not the
way it is. Take a particularly massive gold watch with an
anchor escapement and carefully lower it into a big
ceramic cup containing a mixture of nitric and hydrochlo-
ric acids. By the next morning the watch will have
disappeared—only the crystal and dial will remain. They
should be taken out, rinsed with water, dried, and stored in
absorbant cotton. Don’t worry about the watch: in
Nature, nothing is lost! Pour the greenish liquid into a
bottle with a tightly fitting cork and store it in a dark place.

“Qur next volume, Chemistry Without Instruments,’
will include detailed instructions on how to get the watch
back. The reader must have already guessed that thisis
done with the help of that wizard of the 20th century,
Electricity. The machine described in the second experi-
ment will be of inestimable help here.””?

Figure 4
Refraction.

“ "What are you doing?!” your hostess will probably
exclaim in horror when she sees you approach a mirror



with an uplifted stick. ‘You'll break the mirror!’

“Nothing of the sort. From the laws of optics you know
that the angle of incidence is related to the angle of
refraction by a specific formula—you only have to hit the
mirror with the end of the stick such that this relation is
satisfied. The stick breaks with no consequences for the
mirror—to no small surprise on the part of those present.

" A regular pane of glass (not a mirror) would, of course,
have been smashed to bits.”

Figure 5
Propagation of sound.

“It’s known that sound propagates in a solid body along
its surface. A very interesting experiment is based on this
phenomenon. Putathin-walled tin pot on a volunteer’s
head and then shoot at it with a pistol, machine gun, or
mortar. To the person under the pot, the deafening shots
will sound like the snapping of your fingers.”

Figure 6
Man on eggs. (Toward a physiology of birds)

“This experiment never fails to create a great sensation,
especially among those running households. “Who can
hatch a chickenin a quarter of an hour?’

“Throwing a triumphant glance at the silent gathering,
go to the chicken coop, find abrood hen, and collect two

'Which never appeared.—Auth.

“During World War I the French Nobel Prize-winner Jolio-
Curie dissolved his gold Nobel medal according to nearly the
same technique in order to save it from the Nazis. He kept
the bottle with the solution throughout the Nazi occupation,
and after the liberation of France used electricity to extract
the dissolved gold. Jolio-Curie sent it to Sweden and obtained
anew Nobel medal.—Auth.

dozen eggs ready to be hatched. Upon returning to the
room, put the eggs upon a chair and under it, unobserved
by the others, put a burning kerosene lamp, hiding it under
yourfrock coat. The latent heat? of the kerosene rapidly
develops the chicks, and they’ll soon announce their
arrival into this world with their happy cheeping. The
only thing you have to be careful about is not to crush the

eggs.”

Figure 7
Interference and diffraction.

“Attach a sheet of white paper to a wall (a marble wall
ispreferable) and illuminate it with a candle. Now light
another at, of course, a strictly determined distance from
the first. You'd expect there to be more light, but as it turns
out the sheet of paper gets darker. This is the phenomenon
of interference, which the great Newton called the ‘golden
key of Providence.” ” @

3A pun in the original—skrytaya teplota could be
translated literally as “hidden warmth.”—Ed.
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Making the crooked straigit

Inversors and Watts steam engine

by Yury Solovyov

HEN STEAM ENGINES AND

steam pumps were invented,

the theory of articulated mecha-

nisms—systems of rigid links
connected by hinges in such a way
that the motion of one or more links is
transformed into the motion of other
links—began its rapid development.
For almost a hundred years progress in
this area was determined by the prob-
lem faced by the English mechanical
engineer James Watt (1736-1819)in
his attempts to improve his steam
engine.

Watt’s original design is schemati-
cally shown in figure 1. He put a
piston inside a steam cylinder, where
it could move back and forth. The
piston was connected to a rod passing
through the top cover of the cylinder.
The rod was rigidly fastened to the
piston and could, therefore, perform
only linear motion. A rocker arm AF
was attached to a hinge on top of the
pillar OP, and the hinge F coupled the
connecting rod FE with the rocker AF.
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piston rod ®)

P Figure 1

steam cylinder
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This connecting rod was, in turn,
attached to the crankshaft QE by the
hinge E. A flywheel was attached to
the crankshaft.

If one could connect the head H of
the piston rod to the rocker AF, the
motion of the piston would be directly
transformed into rotation of the fly-
wheel. But point H is in linear motion
whereas point E makes a circular arc
with radius OA and center at point O.
Consequently, it’s impossible to con-
nect points H and A rigidly without
breaking the machine.

1990
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So this was Watt’s problem: to
develop a linearizing mechanism that
would drive point H along a straight
line and point A along an arc. Watt
solved it by devising an articulated
mechanism that drove point H along
a curve having a small deviation from
a straight line.

Many scientists subsequently de-
veloped linkages that drove point H
with a smaller deviation, but it wasn’t
until the 1860s that a technique for
driving point H exactly along a straight
line was discovered.




Watts simple linearizing mechanism

Here is Watt’s reasoning. Consider
two rockers AO and BO’ rotating
aroundfixed centers O and O’. If the
ends A and B of the rockers AO and
BO’ are hinged to a segment AB,
which Watt called a “shackle,” a point
of the shackle undergoes a motion
very close to linear (fig, 2). In order to

Figure 2

0

define the most suitable position of
the fixed center O’ and the length of
the rocker BO’, consider three posi-
tions of the rocker OA (fig. 3): the
middle OA and the two extremes OA’
and OA”. There shouldbe a pointm

of the shackle that stays on the same
straight line MN in all three positions.
Watt took as that line the perpendicu-
lar to the segment OA passing through
the midpoint of the altitude SA of the
circular segment A’AA”.

Take a shackle ab of fixed length
and choose a point m on it (fig. 4). The
arcs drawn from points A’, A, and A”
with radius am intersect the straight
line MN at points m’, m, and m”’,
yielding three positions of point m of
the shackle (fig. 3). Plotting on the ex-
tensions of A'm’, Am, and A"m"
segments equal to mb, we get three

@ < ®
b a
Figure 4

positions at the other end of the shackle
denoted by B, B, and B”. These three
points define a circumference passing
through them. Tofind its center we
drop perpendiculars to the centers of
the segments B’B and BB’”, which
meet at point O’. The center O’ de-
fines the length of the second rocker
BO’'=B'O’=B"0".
Connecting the end
b of the shackle with
end B of the rocker by
a hinge ensures that at
least in the middle and
at the two extreme po-
sitions of the rocker
OA the point m of the
shackle stays on the
straight line MN.
Watt hoped that, m
moving from m’ to m”,
point m of the shackle
would experience only
a small deviation from
a straight line. He was
right: the trajectory is
indeed quite close to a
straight line, the pre-
cise trajectory being a
sixth-order curve look-
ing like an elongated
figure eight (fig. 5).

Watt's parallelogram

Watt had one more problem. In
addition to the rod driving the piston
of the steam cylinder, he had to pro-
vide a linear trajectory for another rod
attached to the piston of a pump used
to fill the condenser (fig. 6). Watt
modified his mechanism so that it in-
cluded two points, each of them moving
approximately along a straight line.

mH

Figure 5

Figure 6

Extend the rod OA (fig. 7) and then
complete the parallelogram ABCD.
Plotting the straight line through points
O and m, denote by n the intersection
of this line and CD. Point nn then

Figure 7

moves along a curve similar to that of
point m and, consequently, also has a
small deviation from a straight line.
Since the steam cylinder is higher
than the pump cylinder, Watt attached
the head of the steam piston rod at
point n, which has a greater ampli-
tude, while the head of the pump’s rod
was attached at m.

Figure 6 is a schematic drawing of a
steam engine with Watt’s parallelo-
gram as it appeared in 1784.

Watt himself considered the dis-
covery of linearizing mechanisms his
greatest scientific achievement (and
not the governor now bearing his name,
which is the cornerstone of automatic
control theory).

Chebystev's lineanizing mechanism

A number of remarkable linear-
izingmechanisms were invented by
P. Chebyshev, the outstanding Rus-
sian mathematician and mechanical
engineer. He used his theory of func-
tions with the least deviation from
zero, developed in 1858. I'won’t go
into the details of his theory here, but
I'll describe one of the most practical
Chebyshev mechanisms.

This mechanism (fig. 8) consists of
a link AB with a hinge C at its center.
The second link OC equal to AB/2 is
attached to the hinge, so that OC =
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AC = BC. The otherend O of OC is at-
tached to an immobile hinge O. Point
A is attached to a third link DA at-
tached to animmobile hinge D. If

_OC+CA+AD
3

then point B of the Chebyshev mecha-

oD , OC=AC=BC,

nism describes a curve mPn, the por-

tion mn of which has a very small de-
viation from a straight line. Chebyshev
showed that the maximum deviation
of the curve fragment mn from a line
parallel to OD is given by the formula

3
l[ Jg()‘—(t) 2r+a) +w— Al g(r—u) (2r+a) J,

2 122r+a)’

where r = AB, a = 2AD. It’s a very
small value indeed. For example, for
AC=0C=BC=32inches(81.3cm),
OD =25 inches (63.5 cm), DA = 11
inches (27.9 cm), we get 8 = 0.032 inch
(0.081 cm).

Rigorous linearizing mechanisms

All the linearizing ar ticulation mecha-
nisms I've described so far are approxi-
mate: a straight line is approximated
by a suitable curve. The theory of
rigorous linearizing mechanisms is
based on an important geometrical
transformation called “inversion.”

T

T Figure 9

Consider a circle with center P and
radius r (fig. 9). Take a point M lying,
for example, outside the circle. Plot
tangents MT, and MT, and find the
point M’ where chord T, T, intersects
the line PM. The right triangle PMT,
yields

PM . PM’ = 2. (1)
Conversely, for each point M’ lying
inside the circle, we can easily find
the corresponding outer point M.

Points M and M’ lying on the same
ray radiating from the center P of a
circle of radius r are called inverses of
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each other with respect to this circle if
their distances from the center satisfy
equation (1). It’s obvious that the
inverse of a point lying on the circum-
ference coincides with the point and
that there is no inverse of the center.

A transformation that produces an
inverse M’ for each point M is called
an inversion with respect to the given
circle. The circle itself is called the
circle of inversion, and its center is
said to be the pole of inversion. The
square of its radius is the degree of in-
version.

An inversion defines (the center P
being the sole exception) a one-to-one
transformation of the points of the
plane. The relation between points
and their inverses is a reciprocal one:
if M corresponds to M, then M corre-
sponds to M’. Each point of the circle
of inversion is a fixed point.

Let’s take a look at one property of
inversion that’s very important for
our purposes.

Tueorem 1. A straight line that
does not contain the pole of inversion
is mapped by inversion into the circle
passing through the pole.

Proor. Let A be the projection of
the pole of inversion on the given line
(fig. 10), B an arbitrary point of this
line, A’ and B’ inverses of points A and
B. By definition, PA - PA’= PB - PB’, or
PA:PB = PB":PA’. This relation en-
sures that triangles PAB and PB’A’ are
similar. Since angle PAB is a right
one, angle PB’A’ is also right. So point
B’ lies on the circle with diameter
PA’, which is what we set out to
prove.

1

Figure 10

The reciprocal property of inver-
sion immediately yields another as-
sertion.

THeorem 2. A circle passing through
the pole of inversion is mapped by in-
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version onto a straight line perpen-
dicular to the line through the pole of
inversion and the center of the circle.

So, if we could design a mechanism
that applies inversion, rotational motion
would be transformed precisely into
linear motion. Mechanisms that make
use of inversion are called “inver-
sors.”

Peaucellier's inversop

In 1864 the French engineer A.
Peaucellier constructed the following
inversor. Four links of the same length
are connected by hinges to form a
rhombus ABCD (fig. 11). Two other
links of equal length BO and DO, but
longer than the sides of the rhombus,
are attached to opposite vertices of the
rhombus. Hinges are put at points B,
O,andD.

Figure 11

Taeorem 3. For any position of
Peaucellier’s inversor, the product of
lengths AO and OC is a constant
value.

Proor. Denote the length of the
longlinks by m, so that

OB=0D=m,

and the length of the short links by n,
so that

AB=BC=CD=DA=n.

Now plot the diagonals of the rhom-
bus. One of them will pass through
point O (since the vertices of isosce-
les triangles DOB, DAB, and DCB
with a common base BD belong to the
same straight line). Let OA =1, OC =
p. Considering the triangle OBM, we
have

BM?=m?- OM>. (2)



The triangle BCM yields
BM2=n®-CM-. (3)
Subtracting (3) from (2), we get

m?-n? = OM?-CM?
=(OM + CM)[OM-CM)
=0C - OA,

or

p-r=m’-n?
which means that the product
p-r=0C-0OA

doesn’t change when OC and OA
vary, and our proof is done.

Consequently, if point O is fixed
and point A moves along a curve, then
point C follows the image of that
curve under inversion. So if point A
moves along a circle passing through
the pole of inversion, point C moves
along a straight line. (It turms out that
Chebyshev’s student Lipkin at St.
Petersburg University devised this same
inversor independently in 1872.)

Let’s look at one more inversor
before we leave the subject.

Hart's inversor

Soon after the appearance of Peaucel-
lier’s inversor an English mathemati-
cian and mechanical engineer named
Hart constructed an inversor based on
an antiparallelogram. A quadrilateral
ABCD is called an antiparallelogram
(fig. 12)ifits opposite sides are equal
and two of them (sides AB and CD in
fig. 12) intersect each other. The fact
thatahinged antiparallelogram pro-
duces inversion stems from the fol-
lowing two theorems.

D B

Figure 12
A c

THeoREM 4. For any antiparallelo-
gram the product of its diagonals DB
and AC (fig. 13)is a constant value.

Proor. We'll begin by denoting the
relationships

AB=DC=m, AD=BC=n.
Take a segment BL parallel to AD and
draw acircular arc with center Band
radius BL. This arc passes through
point C since

BL=DA=BC.

Now draw the line AM tangent to this
arc. Tts square equals the product of
the secant and its outer segment.
Consequently,
AM?=AL-AC=DB-AC. |(4)
Considering the triangle ABM we have
AM? = AB> - BMP

= AB>- BC?

=m>-n>
Comparing this with (4), we get

DB-AC =m?-n?=constant,

as asserted.

D B

A — C

Figure 13

THeOREM 5. Choose any two equal
sides of a hinged antiparallelogram
and fix a point on a third side. Draw a
straight line through this point paral-
lel to the diagonals of the antiparalle-
logram. The product of the distances
from the fixed point to the intersec-
tions of the line with the chosen sides
remains the same for all positions of
the antiparallelogram.

Proor. In the notations of figure 14
the product in question is one of the
following four: MN - NQ, MN - NP,
PQ - PM, PQ - QN. All these products
are evidently equal. It’s therefore suf-

Figure 14

ficient to consider the product MN - NQ,
where the point N is fixed. The simi-
larity of triangles AMN and ADB yields

MN = BD - M,
AB
while the similarity of triangles ABC
and NBQ implies
BN
NQ=AC -—.
0 AB
Multiplying these equalities we get
AN-BN
AB’
The ratio (AN - BN)/AB? is a constant
since all its terms are constant val-

ues. The product BD - AC is a con-
stant by theorem 4. Consequently,

MN -NQ =BD - AC-

MN - NQ = constant.

This is how Hart’s inversor works.
Taking any of the above four points as
the pole of inversion, we move the
second point along a circle passing
through the first point. Then the third
point traces a straight line. Q
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Ghallenges in physics and math

Math
M16

Virus versus bacterium. A colony of n
bacteria is invaded by a single virus.
During the first minute it kills one
bacterium and then divides into two
new viruses; at the same time each of
the remaining bacteria also divides
into two. During the next minute
each of the two newly born viruses
kills a bacterium and then both vi-
ruses and all the remaining bacteria
divide again, and so on. Will this
colony live infinitely long or will it
eventually perish? (R. Kovtun)

All isosceles. On straight lines AB
and BC containing two sides of a
parallelogram ABCD points H and K
are chosen so that the triangles KAB
and HCB areisosceles(KA=AB, HC
= CB; see figure 1). Prove that the
triangle KDH is also isosceles. (V.
Gutenmacher)

Figure 1
M18

Numismatics. At a trial 14 coins
were produced as physical evidence.
An expert found seven of them counter-
feit and the other seven genuine, and
he knows which are which. But the
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judge knows only that the counterfeit
coins all weigh the same, as do the
genuine ones; and, in addition, that
the latter are heavier than the former.
How can the expert convince the judge
of the correctness of his expertise by
three weighings on a pan balance? (R.
Freiwald)

M19

Summing chords. A number of chords
are drawn in a circle of radius 1 so that
each diameter crosses no more than k
chords. Prove that the sum of the
lengths of all the chords is less than
nk. (A. Kolotov)

Internal depreciation. (a) When a
number N is multiplied by 8, the sum
S(N) of its digits can decrease (for
example, S(75) = 12, whereas S(8 - 75)
= S(600) = 6). Prove that it can’t
decrease by a factor of more than 8. In
other words, prove that

SEN) 1
SNy 8
for any natural N.
(b) What are the other natural numbers
k for which a positive ¢, can be found
such that

SN g

N
for any natural N? What's the greatest
suitable value of ¢, for a given k? (L.
Bernstein)
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Physics

High-stepping hoop. A ring of radius
R rolling along a horizontal surface
with velocity v hits a step of height h
(h << R). The collision is absolutely
inelastic. What will the velocity of
the ring be after it “climbs” the step?
At what minimum velocity can the
ring climb the step? (There is no

slippage.)

P17

Air strain. Two weightless pistons
connected by a thin weightless string
of length 1 (fig. 2) are positioned in two
cylinders with cross sections S, and
S,. The space between the pistons is
filled with water. Find the strain on
the string if each vessel opens up into
the atmosphere. (The density of wa-
terisp.)

S

=
I

1

Figure 2
P18

A warm impression. A coin is pressed
tightly against a frost-encrusted win-
dow. The ice under the coin first
starts to melt along the edge and only
later under the center of the coin.
Why is that?




YE]J(;%gh thick and thin. In 1815 the
English scientist Children staged the
following set of experiments. Two
platinum wires of the same length but
different diameters were connected to
the Volt battery. In the first experi-
ment the wires were connected in
series, whereas in the second the
connection was parallel. In the first
case only the thin wire was heated,
and in the second the hot wire was the
thick one.

For almost 25 years scientists were
unable to explain why. Maybe you
can come up with the answerin abit
less time!

(Hint: assume that the quantity of
heat radiated by the conductor into
the surroundings is proportional to
the conductor’s surface area and to the
temperature difference between the
conductor and the surroundings.)

P20

Water specs. What eyeglasses should
be prescribed for a person whose eye-
sight is normal under water? @

SOLUTIONS ON PAGE 57

Science and
Math Events:

Connecting
and
Competing

When you are trying to build student
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excitement generated by science clubs
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national and international contests, and
commentary by 89 prize-winning
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GETTING TOKNOW . ..

The natural logarithm

What's so “natural” about 2.71828... anyway?

OU KNOW WHAT A LOGA-

rithm is—it’s just another word

for an exponent that represents a

number. You choose a base—for
instance, 10—and, by assigning an
exponent x, you can represent the
number n in the form log, .n = x (or
more commonlylg n). Theinterest-
ing thing about numbers in logarith-
mic form is how calculations are
simplified.

The great mathematician Laplace
(1749-1827)said, “The invention of
logarithms shortens calculations ex-
tending over months to just a few days
and thereby, as it were, doubles the
life-span of the calculators.” (Back in
those days, calculator = person.) To
take a simple example, to multiply
two numbers logarithmically, you just
add their exponents. What's 5,673
times 1,347? Referring to a table of
common (that is, base 10) logarithms,
we find that 1g 5673 = 3.75381 and
lg 1347 = 3.12937. Our multiplication

by Bill G. Aldridge

problem then becomes 1037>%! times
10312%, Adding the exponents, we get
10688318 Working backward in the log
table, we find that if g n = 6.88318, n
equals approximately 7.6415 times
106, or 7,641,500. If we multiplied it
out the long way, we’d get 7,641,531.
As you can see, the use of logarithms
produces approximations because tables
of logs are carried out only to a certain
number of decimal places. For most
purposes, though, the precision achieved
is perfectly adequate.

Maybe that didn’t look like much
of a simplification, but the impor-
tance of logarithms and their laws in
performing complicated calculations—
for instance, those involving roots—
was immense. Isay “was” because
pocket calculators now perform in
fractions of a second what used to take
hours or days, even with logarithms.
But other, more important uses of the
logarithm persist in science, math,
and engineering.

Base 10 logarithms arose out of our
number system, based asitison the
number 10. All logarithmic relation-
ships that occur in the natural world,
though, have a different base. Because
of that, such logarithms are called
“natural.” Unlike the “common”
base, the natural base is a transcen-
dental number. Now, does that sound
“matural” to you?

The number is designated e, and it
isusually written as the rational ap-
proximation 2.71828... .

Although T used natural logarithms
in high school and college and had
derived the value of e mathemati-
cally, I never really knew where it
came from. You can find a derivation
of e in many math texts, but it's
always presented as an abstraction.
That always bothered me.

Finally, long after leaving school, T
decided to work through for myself to
see how e can be deduced from an
actual process in the natural world. 1

Another case of e at work: early cleavage of a fertilized starfish egg (magnified 100x).
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could have chosen radioactive decay,
or the discharge of a capacitor in an
electrical circuit, or the abstract con-
cept of entropy in statistical thermo-
dynamics.. My specialty happens to
be physics, but I decided to use a
biological phenomenon in my pursuit
ofe.

The biology of hacterial growth

Ilooked at the growth of staphylo-
coccus bacteria in what is called a
selective culture medium (Staphylo-
coccus 110 agar). This bacterium has
adiameterof 0.5 to 1.5 micrometers
and splits every 20 minutes or so. It
does this in the nutrient culture, and
the process is called transverse binary
fission. The process goes like this: A
newly formed cell undergoes a grad-
ual increase in volume, as it prepares
for cell division. After some time it
forms a septum that ultimately di-
vides the enlarged cell into two identical
daughter cells. Cellular components
are divided equally between the two
developing cells. Each of the daughter
cells then begins to increase in vol-
ume in preparation for the next divi-
sion cycle. Each time the cells divide
the population doubles.

The generation time, defined as
the time it takes the population to
double, varies from 20 minutes to
several days, depending on the species
of organism and the culture in which
it grows. The generation time can be
found just by watching a few cells
divide, using the average time needed
to divide as your estimate of the gen-
eration time. (You’d need a micro-
scope to do this, which I didn’t have
handy, soIgotall this from a book.)

It turns out that actual bacterial
growth is exponential (doubling each
20 minutes) only for a certain period of
time. At first the bacteria must adjust
to the medium (lag time); then the
growth is exponential; then it levels
off toastationary period, when all of
the nutrient has been used; finally,
the cells begin to die, and the curve
drops. Irestricted myself to the phase
of exponential growth.

If we started our culture with daugh-
ter cells all of the same size, just after
they have formed, we could observe
them dividing in a synchronous fash-

ion, at least for a while, until they
began to get out of phase. But if we
just select a random sample of the
bacteria, some are ready to divide,
others have just started to grow, and
still others are at some point in the
growthphase. Since the bacteriaare
in various stages, a given bacterium
might divide at any time. If there are
enough bacteria, cell division in this
asynchronous mode occurs almost
continuously. Ilooked into this growth
pattern because it fulfills the assump-
tions needed for the math.

The mathematics of bacterial growth

Each bacterium divides into two
bacteria after a certain period of time.
Each of these two daughters grows
and then each one divides into two
more, and the process continues for as
long as there is nutrient and space
available for new cells. If we start
with 5,000 bacteria, and the genera-
tion time is 20 minutes, how many
will there be in two hours? Let’s say
we start at 8:00 o’clock. At 8:20, we
have 10,000 bacteria; at 8:40, we have
20,000; at 9:00, we have 40,000; at
9:20, we have 80,000; at 9:40, we have
160,000, and at 10:00, two hours later,
our population of 5,000 bacteria has
increased to 320,000. How many
would we have at the end of the next
two hours?

Next, I tried to find an equation
that describes the relationship between
the time ¢ required for a certain number
N of bacteria to be produced from a
small initial number N,. (We can
assume that we’re starting with so
many bacteria and at such different
stages of growth that cell division is
occurring randomly and continuously.)
I could then divide the time t into a
large number n of small intervals,
each having the same size At. Because
each interval is At long and there are n
of them all together, the total time ¢ is
given by t = nAt. Since the interval At
is just the total time divided by the
number of intervals, we have the
expression At = t/n.

During any time interval, AN of the
cells divide. Suppose that the time
interval At is 0.01 second and we get a
certain number of divisions in that
0.01 second. If the interval is in-
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creased to, say, 0.02 or 0.03 second,
the number of cells AN produced in
that interval is also greater by a factor
of two or three. If we provide twice as
many cells at the beginning of that
time interval, then there will also be
twice as many cells produced. In
other words the number of cells AN
that divide during the time interval At
is proportional to that time interval
and to the number of cells N present
when the interval starts. Iexpressed
this relationship mathematically by
the proportion

AN ~ NAt.

This proportion means, for example,
that if At or N is doubled, the number
of cells that can divide doubles. If
either factor is halved, only half as
many cells can divide.

Writing the proportionality as an
equation by including a proportional-
ity constant k, I got

AN = kNAt.

I've said there is an extremely large
number n of these very small time
intervals At. The increase in the num-
ber of bacteria AN given by this equa-
tion can be used for each of several
time intervals. For the first interval,

AN=EkNAt,

where N, the number of bacteria pres-
ent at the beginning of the first inter-
val, is merely the number of cells with
which we started.

Thenumberof bacteria at theend
of the firstinterval is N + AN. But if
the value of AN from the previous
equation is used, this total must be N,
+ kN At. If we factor out N, we have
just N,(1 + kAt) for the number of
bacteria at the end of the first time
interval. Let’s call that number N,. So

N, =N,(1 +kAt).

Now I had to find the number of
bacteria at the end of the second time
interval. The increase AN again had to
be proportional to the number N, of
bacteria I started with in that interval
and the length of the interval. Again,
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using k as a constant of proportional-
ity, we have the equation

AN=kN, At

for the increase in the number of
bacteria during the second interval.
The total number of bacteria present
at the end of the second interval is

obviously the number present when -

it started plus the increase—N, + kN At.
Stating it as an equation, at the end of
the second interval we have

N,=N, +kN At.
Factoring out N,, we get
N,=N,(1 + kAt).

Since I had already found the number
of bacteria at the end of the first interval
N, in terms of the starting number N,
I simply replaced N, in this equation
with that number, which gives

N, =[N,(1 +kAt)](1 + kAt),
or more simply,
N,=N,(1 +AtP.

By now I'm sure you've caught on
and know what my next task was: to
find the number of bacteria at the end
of the third time interval. I started
with N, so that the increaseis given

by
AN=EKkN,At.

As before, the number N, at the end of
the third time interval is given by N, +
AN—what we started with plus the
increase. Sowehave

N, =N, +KkN,At,
and factoring out N, we get

N, =N,(1 +kAt).

Replacing N, by the value we had in
terms of N, wenow have

N, =[N(1+KkAtP|(1+KaAt),

or more simply

28 NOVEMBER/DECEMBER

N, =N,(1 +KkAtp.

You see the pattemn that results from
these steps, and maybe you're bored by
them. But we're on the verge of gener-
alizing the result, and that’s always
fun.

If we continue to look at the num-
ber of bacteria at the end of successive
time intervals, the total at the end of
each interval is equal to the number
present at the end of the preceding
interval times the quantity (1 + kAt).
When we do the various substitutions
for the starting numbers, back to the
initial amount, we’ll have, at the end
of n time intervals,

N, = N,(1+KAt),

The quantity N, is the total number of
bacteria that have been produced after
a time t has elapsed. There were n
intervals of size At each making up
that time t. So t = nAt and At = t/n.
(Sorry if this seems like beating a dead
horse, but I'm exposing all the steps in
my thinking, including the ones we
usually just buzz past.)

Tused this value of At in my equa-
tionfor N . Ithen got

M= (14 4)

You'll notice that the quantity (1 + kt/
n)? is a binomial that can be expanded
in a binomial series, giving

(1+8 =140k

Ckt!n)?

+nln—1 T

(kt/n)?
3! v

If we’ve made At small enough, a very
large number n of time intervals is
involved. We want the value of the
terms of this binomial expansion when
n is very large. From elementary
calculus I knew how to “take the
limit of this expression as n approaches
infinity,” which is written

s kt
tim (1+ 47
In the limit, as n becomes infinitely
large, the binomial series simplifies

+nln—-1D -2

1980

considerably. This is because all fac-
tors involving n, like n(n - 1)(n - 2),
become simple exponentials of n—in
this case, simply n®. As such, they are
all canceled by identical powers of nin
the denominator of the quantity
(kt/n), which is always raised to the
same power. So, in the limit, our
particular binomial expansion is just

2 3 m
1 +k,+M+Q_<Q+ +@— .
2! 3! m!
In this limiting case, the number N_ of
bacteria after time t is then given by

2 3 m
_ (k) (kt)” (k)
Nn—N0{1+kt+ I R B

Suppose we let kt equal 1 in this
series. Then for m = 8 the series
becomes

1 1
I+1+-+-
2 6
1 1 1
+—+—+
24 120
1 1

ot ———t... .
5040 40320
or, in decimal form,

720

1+ 1 +05+0.1666666667 +0.0416666667
+ 0.0083333333 + 0.0013888889 +
0.0001984127 + 0.0000248016 + ... .

When I added these numbers, I got
2.71828.... Eureka! (Oris it déja vu?)

A hany litle nonrepeating constant ...

What’s more interesting is that when
welet kt =2, the value of this expan-
sion is 7.389056..., which is just
(2.71828...)2. If kt = 3, the sum of this
series becomes the cube of 2.71828...,
and so on. This endless, nonrepeating
decimal number we get as a base for
the exponential isn’t even a rational
number. Solet’s call it e. (That’s nice
and irrational, isn’t it?) Its value, to 16
places, is 2.718281828459046. Then
our equation for the number of bacte-
ria after some time t becomes quite
simple:

N=N,.

Now if we define (which someone
already had) the natural logarithm as
“the exponent needed on e to give a
certain result,” we can write this



exponential expression as a base e
logarithm. (Just as base 10 logarithms
are abbreviated to “lg,” base e loga-
rithms are shortened to “In.”) Writing
our equation for bacterial growth in
logarithmic form, we get

kt =In (N/N,),
orintermsof the timet
t=(1/k) In (N/N,).

This equation tells us how long it
takes to produce N bacteria when we
start with N, of them. To use this
equation, you would need a table of

Readers write . . .

From Richard G. Brown of Phillips
Exeter Academy: “Ienjoyed the ‘Bo-
tanical Geometry’ article in your
September/October 1990 issue. Your
reference to Napoleon’s triangle re-
minded me of the special relationship
posed in the problem below. Some
years ago, a gecometry class and I dis-
covered thisrelationship. Our proof
used vectors.”

Problem: ABC is an arbitrary tri-
angle with equilateral triangles built
onitssidesasshown. X, Y, and Z are
centroids of these equilateral triangles.
(XYZ is known as Napoleon’s triangle
and is equilateral.) The problem is to
discover a relationship involving the
centroids of triangles ABC, XYZ, and
DEF.

natural logarithms. But these are
readily available in books and on almost
all electronic calculators.

Needless to say, I was quite pleased
when all my calculations worked out
correctly andIdiscovered for myself
the connection between the base of
the natural logarithm, 2.71828... , and
a natural phenomenon. But nothing
would have “clicked” if Thadn’t admitted
to myself that something was “stuck.”
So if something doesn’t seem to make
sense to you, don’t be afraid—or
ashamed—to work it out for yourself,
no matter how trivial it might seem to

someone else.

In the meantime, here are a few
problems that involve working with
e. (And maybe one of you can tell me:
why “e”?!)

Exercises

1. Suppose you know the generation time
t, for a given bacterium—say, 20 minutes.
Find the constant of proportionality k.

2. Starting with 10 bacteria and the same
generation time as above, how long will it
take to get 1,000,000?

3. Prove that e is not the rational number
271,801/99,990.

SOLUTIONS ON PAGE 63
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MATHEMATICAL SURPRISES

Play itagain. ..

andagain. ..

by John Conway

0n 1089

WhenIwasalittle boy, my father taught me some-
thing that really puzzled me. You start with a three-
digit number (say, 379), reverse it (to 973), and take the
difference:

973
- 379
594

Then you reverse that, and add:

594
+495
1089

We get 1089. What’s so surprising about that? Well, the
surprising thing, my Dad said, is that you always get
that same answer: 1089.

Well, he wasn’t quite right. If you start with anum-
ber whose first and last digits are equal (say, 585), you'll
get zero:

585 000
- 585  + 000
000 000

Butitis true that you'll always get either 0 or 1089. Can
you explain why?

On 6174

The Indian mathematician Kaprekar discovered what
tomy mindis a more surprising result of this kind. You
start with any four-digit number whose digits aren’t all
equal, arrange its digits to form both the largest and the
smallest numbers you can, and take their difference:

4321
- 1234
3089

30 NOVEMBER/DECEMBER 1990

Then you just keep on doing that same thing, and quite
a strange thing happens:

4321 9830 9441 9972 7731 6543 8730 8532 7641
- 1234 -0389 - 1449 -2799 - 1377 -3456 - 0378 -2358 - 1467
3089 9441 7992 7173 6354 3087 8352 6174 6174

After a time, the answer you get is always Kaprekar’s
magic number 6174, which, as you can see, leads imme-
diately to itself. Can you show that this indeed always
happens?

On 153

It seems a bit artificial to work with a fixed number
of digits, so here’s something that works with arbitrarily
large numbers. Start with any positive multiple of 3 and
repeatedly replace it with the sum of the cubes of its dig-
its. Why do you always get to the magic number 1537

It helps to know the cubes of the ten digits:

0°=0, 13=1, 2°=8, 3%=27, 4 =64, 5°=125,
6°=216, 7°=343, 8%=512, 9°=729

An example:

999999 —>6-729=4374,

4374 —> 64 +27 +343 + 64 =498,
498 —> 64 + 729 +512=1305,
1305—>1+27+0+125=153,
153 —>1+125+27=153 ...

On RATS

Here’s a digital game I invented that contains an un-
solved problem. I call it “RATS,” which is an acronym
for reverse, add, then sort. You take any positive num-
ber, reverse it, add the result to the original, then sort
the digits of the answer in increasing order, deleting any
initial zeros. You just keep on doing that, and watch
what happens:



1677 3489

3 6 12 33 66 123 444 888

3 6 21 33 66 321 444 888 7761 9843
6 12 33 66 132 444 8881776 943813332
12333 44556  (000)111 222 444 888 1677
33321 65544 111 222 444 888 7761
45654 110100 222 444 888 1776 9438

andwe’reinacycle.

Lots of other numbers give cycles, but some don’t—
for instance, the number 1 starts off a sequence that gets
larger and larger:

1 2 4 8 16 77 145 668 1345 6677
12 4 8 6l 77 541 866 5431 7766
2 4 8 16 77 154 6861534 677614443
13444 55778 133345 666677 1333444
44431 87755 543331 776666 4443331
57875 143533 676676 1443343 5776775
5567777 12333445 66666677 133333444
7777655 54433321 77666666 444333331
13345432 66766766 144333343 577666775
556667777 12333334444 55666667777
777766655 44443333321 77776666655
1334434432 56776667765 133443334432
123333334444 556666667777 1233333334444
444433333321 _777766666655 4444333333321

567766667765 1334433334432 5677666667765 ...

and now alternate numbers are very similar, but in-
creasing in length.

Now here’s the unsolved problem. Every number
that we’ve tried (and we've tried all numbers with fewer
than 15 digits!) either gets into a cycle or enters this par-
ticular sequence. Does this continue forever? We don’t
know.

0n0,0,0,0

Here's a slightly more mathematical problem. Start
with any four whole numbers g, b, ¢, d and replace

We always get to four zeros, and often surprisingly

quickly. Canyouprove this? What happens if you take

three numbers instead of four, or indeed any other num-
ber of numbers?

A very mysterious sequence

Iend with a problem thatIdon’t expect many of you
to solve completely. What's the rule that governs the
sequence of digit-sequences

1

11

21

1211

11221

312211

13112221

1113213211
31131211131221
13211311123113112211

and how rapidly does the length of the nth sequence
tend to infinity?

The first half of the question is easy—if you can’t do
it yourself, ask somebody younger than you are for some
help. The second half is quite surprising.

SOLUTIONS ON PAGE 63

S

them with the difference of aand b, band ¢, cand d, d )

and a. Repeat this process and watch:

2 A// .

5 98 67 13 N
93 31 54 8 AW
62 23 46 85

39 23 39 23
16 16 16 16
0 0 0 0O

0 0 o0 o0

L {
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CONTEST

Stianes and sizes

Specifically, convex polygons with integer sides inscribed in a

T'S NOT DIFFICULT TO SEE

that if (a, b, ¢) is a Pythagorean

triple (that is, positive integers such

that a® + b? = ¢?), then the right
triangle with sides 24, 2b, 2¢, as well
as the quadrangles with two sides of
length 2a and two sides of length 2b,
are inscribablein a circle of radius c.
Since there are well-known methods
for the generation of Pythagorean triples,
it’s easy to characterize all such tri-
angles and quadrangles.

This month’s problem asks the
more general question: What other
convex polygons with integer sides
canbeinscribed in a circle of integer
radius? Notice that we may not even
be done with triangles and rectangles,
s0 an easier version of the problem is
to address that issue. At the other
extreme, we may wish to remove the
restriction of convexity.

This problem is a natural exten-
sion of Problem 557 in the February

Figure 1
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circle of integer radius

by George Berzsenyi

1981 issue of the now defunct journal
Mathematics Student, whose Com-
petition Comer I edited for three years.
During that time an average of 69
solutions were submitted to the 102
problems posed—and problem 557 got
its fair share. The problem asked for
polygons with three sides of length a
and three of length b, inscribed in a
circle of radius r, with a, b, and r
integers. In solving the problem, the
students were led to the Diophantine
equation a®> + b> + ab = 3%, whose
solutions yield all of the hexagons
with the desired properties. Some
participants of the Competition Cor-
ner also studied hexagons with four
sides of length a and two of length b
(inscribed in a circle of radius r) and
found that they can be obtained by
solving yet another Diophantine
equation, a® + br = 2r%. Both of these
equations yield infinitely many solu-
tions, which can be found by standard

Figure 2

1980

methods. Are these the only hexa-
gons with integer sides inscribable in
acircle of integer radius? This ques-
tion never arose. As a minor puzzle, I
leave it to you to decipher what must
be the lengths of the sides of the
polygonsin figures 1, 2, and 3, given
that they can be inscribed in circles of
radii 5, 7, and 9, respectively.

Please send your solutions to these
problems to Quantum, 1742 Con-
necticut Avenue NW, Washington,
DC 20009. The best results will be
acknowledged, and their authors will
receive free subscriptions to Quan-
tum for one year and/or book prizes.

At sixes and sevens

In the May 1990 issue of Quantum
I asked whether the Roseberry Con-
jecture, “All positive integers that are
not multiples of 5 have an integer
multiple consisting of 6’s and 7’s only,”
is true. Solutions were submitted by

CONTINUED ON PAGE 45
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CONTEST

Neutrinos and Supernovas

“When shall the stars be blown about the sky,

Like the sparks blown out of a smithy, and die?”
—William Butler Yeats, “The Secret Rose”

by Arthur Eisenkraft and Larry D. Kirkpatrick

HE SUPERNOVA 1987A PRO-
vided us with a personal view of
a dying star and kindled new
interest in the infant field of neutrino
astronomy. The neutrino was origi-
nally proposed to “save” the laws of
conservation of energy and momen-
tum in beta decay. If a neutron de-
cayed into a proton and an electron,
the conservation laws required that
the electron have a well-defined ki-
netic energy in the center of mass
system. Experiments showed, how-
ever, that the electrons exhibited a
spectrum of kinetic energies ranging
from zero to the predicted value.

In 1930 Wolfgang Pauli proposed
that a third particle was involved in
beta decay. To agree with the conser-
vation laws, the neutrino had to be
neutral and have a very small rest
mass, possibly zero. It took 26 years
for the neutrino to be discovered be-
cause it interacts so weakly with matter—
onaverage only onein atrillion neu-
trinos would be stopped in passing
through the Earth. In spite of this
extremely weak interaction, it’s now
known that there are three different
types of neutrino: one paired with the
electron, one with the muon, and one
with the tau.

Although the mass of these neutri-
nos may be zero, this has not been
confirmed. Since measuring devices
cannever be perfect, the best we can
do is set an upper limit on the masses
of the neutrinos. At present the mass
of the electron neutrino is known to
be less than 18 electron volts (eV),

where the mass is expressed in its
energy equivalent. The experimental
limits on the other neutrino masses
are not as low. The masses of the
muon and tau neutrinos may be as
high as 250 keV and 35 MeV, respec-
tively. So any experiment that could
place more restrictive limits would be
welcome. Such an opportunity was
provided by supernova 1987A, which
occurred relatively close to Earth at a
distance of 170,000 light years. After
the observation of the supernova,
experimentalists examined the data
taken by several experiments that were
running at the time and discovered a
number of neutrino events.

In order to see how the observation
of these neutrinos can help us deter-
mine their mass, let’s consider the

Photo courtesy of NASA

following simplified situation. As-
sume that the supernova emits an
extremely short burst of electron
neutrinos and that neutrinos with an
energy of 15 MeV arrive at the detec-
tors 15 seconds after the arrival of 7.5-
MeV neutrinos. What mass must the
neutrinos have to account for the time
delay in their arrival?

Please send your solutions to Quan-
tum, 1742 Connecticut Avenue NW,
Washington, DC 20009. The best
solutions will be published in Quan-
tum and their creators will receive
free subscriptions for one year.

CONTINUED ON PAGE 45
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LOOKING BACK

Gienealogical threes

A method of generating Pythagorean triples rooted in Euclid’s
algorithm for the greatest common divisor

by A.A. Panov

UR STORY IS ABOUT MATHEMATICAL

classics—Euclid’s algorithm and Pythagorean triples.

Euclid’s algorithm is described in his Elements

(about 300 B.c.) but was surely known long before
that date. The history of Pythagorean triples can be traced
even further back. A remarkable monument of human
culture is a Babylonian clay cuneiform tablet that lists
fifteen Pythagorean triples. The tablet dates from about
1500 B.c.!

Shaking the dust off these ancient notions, we’ll talk
about them using the “language of trees.” This language
is convenient for solving a number of equations and
clarifies the relation between Euclid’s algorithm and a
method of constructing Pythagorean triples proposed re-
cently by a British mathematician.

Euclid’s algoritim

Euclid’s algorithm finds the greatest common divisor
(GCD) of two natural numbers.

Let(m, n)be a pair of positive integers:

(1)if m =n, thend =m =nis the greatest common
divisor of m and n; if m # nn, go to step 2);

(2) replace the larger of the numbers m and n with
the difference after subtraction by the smaller and go
back to step (1).

Maybe you’re more familiar with another version of
step 2:

(2’) replace the larger number by the remainder
after division by the smaller and go back to step (1).

It’s a matter of taste, really.

Problem 0. Prove that algorithms (1), (2) and (1), (2’)
both yield the same result. (Hint: division is equivalent
to repeated subtraction.)

'Now a part of the Plimpton Collection in the Butler
Library at Columbia University.—Ed.

Euclid himself referred to his algorithm as “constant
subtraction of the smaller from the larger” (Elements,
Book 7, Proposition 2). This “repetitive subtraction”
algorithm is the subject of our story.

Let’slook at an example of how the algorithm works.
Let(m, n)=(20, 12). Writing out the consecutive pairs of
numbers from right to left, we get the following chain:

(4, 4)<—(8, 4)<— (8, 12)<— (20, 12).

This means that the GCD of (20, 12) = 4. Applying the
same procedure to the pair (5, 3) we get

(1, 1)<—(2, 1) €<—(2, 3) <—(5, 3).

You can see that each number in the second chain equals
the corresponding number in the first chain divided by 4.

Now try to answer the following question.

Problem 1. Let d = the GCD of (M, N). We’ll saym =
M/dandn=N/d. What’sthe GCD of (m, n)¢! How is the
action of Euclid’s algorithm on the pair (M, N) similar to
its action on the pair (m, n)?

From now on we’'ll limit ourselves to pairs (m, n) for
which the GCD = 1. We'll call such pairs “simple pairs.”

The genealogy of simple pairs

Let’s look at another example. Applying Euclid’s
algorithm to the simple pair (3, 4) we get

(1, 1)<—(2, 1) <—(3, 1) <—(3, 4).

A portion of this chain coincides with a portion of the
chain for the pair (5, 3), so we can join them together:

3) <—(5, 3).

We can add another simple pair (3, 2), and the picture gets
more complicated:

QUANTUM/LOOKING BACK 317



This suggests that there may be a general pattern uniting
all simple pairs. How do we find it? We could just add
more simple pairs. But sooner or later we'd realize that the
right question to ask is this: for any simple pair (m, n),
what are the other pairs whose arrows are aimed at this
one?

Problem 2. Prove that if Euclid’s algorithm produces an
arrow from the pair (M, N) to the pair (m, n), then either M
=m+n N=norM=m, N=m+n.

This problem suggests that we have tointroduce two
transformations ¢, and ¢, that turn the pair (m, n) into

tl(mr H) = (m +11, H),
t,(m,n)=(m, m+n). (1)

We can now proceed in reverse order. Starting from the
pair (1, 1) and applying the transformations ¢, and ¢, (shown
by upward and downward arrows, respectively), we get
twonew pairs(2, 1)and (1, 2). We apply the transforma-
tions to each of them, and so on.

Each pair now gives rise to two new pairs, and this
process can be continued to infinity. As expected, figure 1
contains all the preceding chains as pieces of itself, but
with all the arrows reversed.

Figure 1

Problem 3. Prove that any pair (m, n) in figure 1 is a
simple one.

Problem 4. Prove that every simple pair shows up in
figure 1 and that it occurs only once.

After these problems it’s quite natural to call the
pattern shown in figure 1 the genealogical tree of simple
pairs.

Problem 5. Let the pair (m, n) lie on the genealogical
tree in figure 1. There is a unique path connecting it to the
first pair (1, 1). Show that moving along this path in the
direction of the pair (1,1) is equivalent to applying Eu-
clid’s algorithm to the pair (m, n).

So the genealogical tree contains all simple pairs. And
Euclid’s algorithm is applied by moving from the pairs
(m, n)against the arrows.

38 NOVEMBER/DECEMBER 1980

Equation XY =1
Now let’s change the subject and try to find all integer
solutions (X, Y, Z) of the equation

XY=22 2)

We'll be interested only in positive X, Y, Z. (Example:
X=3,Y=12,Z=6.

At first glance it seems there’s nothing to talk about.
For a given Z we just have to break down the number Z into
two factors. So for each Z the number of solutions can be
computed quite easily.

Problem 6. FixZandlet Z=p|.py,....p, be the
expansion of Z into prime factors. Prove that the number
of solutions of equation (2) isequalto (2a,+ 1)(2a,+1)...
(2a,+ 1).

I'd advocate another approach, though.

Problem 7. Let (X, Y, Z) be a solution of equation (2);
prove that for any d > 0 the triple (dX, dY, dZ) is also a
solution. Let (X, Y, Z) be a solution of equation (2) and let
the GCD of (X, Y) equal d; prove that (X/d, Y/d, Z/d) is also
a solution of equation (2) and that the GCD of (X/d, Y/d)
is 1.

Soin order to find all solutions of equation (2) we can
consider only those triples (X, Y, Z) for which the GCD of
(X, Y) equals 1. We'll call them “primitive solutions.” All
other solutions are obtained from primitive solutions by
simple multiplication.

Problem 8. Let (X, Y, Z) be a primitive solution of
equation (2). Prove that there is a simple pair (m, n) such
thatX=m? Y=n?Z=mn.

It’s now clear that relations

X=m?Y=n*Z=mn (3)

define a one-to-one correspondence between simple pairs
(m, n) and primitive solutions (X, Y, Z) of equation (2).

This means we can make full use of our preceding
results about simple pairs. For example, by using relations
(3)we canreplace each simple pair (m, n)in figure 1 with
the corresponding primitive solution (X, Y, Z). The
resulting tree might naturally be called the genealogical
tree of primitive solutions of equation (2). It contains all
primitive solutions without exception.

There is, however, a more direct and convenient way to
buildupsuchatree.

o1 )/7(16, 784
# “4, 75 ulid > 0,%7) T,
/ \(t/ 9,4} ;’(Q_r/9//.§:}
(1 ,,) i ~ (4,25,10)7,
1.
S, 4,10
' /7(/ i <4 }i
(Mx} 345,508
; 16,9, 1207
. \(7/9/3 /( S }:
Figure 2 Rl )2,



Problem 9. Let a simple pair (m, n) correspond via (3) to
the solution (X, Y, Z). Denote the solution corresponding
to the pair t,(m, n) = (m + n, n) by T,(X, Y, Z) and the
solution corresponding to the pair t,(m, n) = (m, m + n) by
T,(X,Y,Z).-Prove that

T(X,Y,Z)=(X+Y+2Z,Y,Y+2Z),
T,(X,Y,Z)=(X,X+Y+2Z,X+7Z).

The upshot is that the genealogical tree shown in figure
2 is directly generated by the transformations T, and T,.
We start with the obvioussolution (1, 1, 1)and apply the
transformations. The upward arrow corresponds to Zy
while the downward arrow denotes T,.

Figure 2 is quite impressive and gives us a clear idea of
the structure of the set of all primitive solutions of
equation (2). But as I mentioned earlier, equation XY = 22
can be solved by a simpler approach. So let’s move on to a
more interesting example.

Pythagorean triples

Consider the equation
X2+ Y =272

Its positive integer solutions (X, Y, Z) are called Pythago-
rean triples. The first such triple is, of course, (3, 4, 5). Our
goal is to construct a genealogical tree of Pythagorean
triples similar to the tree in figure 2. How do we do that?
Following the same approach as for the equation XY = 22,
we have to (a) single out primitive triples from among all
Pythagorean triples; (b) write out the relations X = X(m, n),
Y = Y(m, n), Z = Z|m, n) for primitive Pythagorean triples
similar to relations (3); and (c) make the genealogical tree
for pairs (m, n) and replace (m, n) with the corresponding
triple (X(m, n), Y(m, n), Z(m, n)).

Steps (a) and (b) have been known for a long time. I'l]
give the necessary facts here without any comments or
proofs.

A Pythagorean triple (X, Y, Z) is called primitive if the
GCDof(X, Y)equals 1, Xisodd, and Yiseven. The triple
(3, 4, 5), for example, is primitive.

It's known that for any Pythagorean triple (x, y, z) there
exists a unique primitive Pythagorean triple (X, Y, Z) and
a unique natural number d such that either (x, y, z) =
(dX, dY,dZ)or(x,y,z)=(dY,dX,dZ). Sohavingalist of
all primitive Pythagorean triples makes it possible to list
all the other Pythagorean triples as well.

A pair of integers (m, n) is called primitive if m > n,
n> 0, the GCD of (m, n)is 1, and the numbers m, n have
different parities (that is, one of them is even and the other
odd). The pair (2, 1), for example, is primitive.

It’s also known that the relations

X=m?-n?Y=2mn,Z=m?+n? (4)

define a one-to-one correspondence between the set of all

primitive pairs and the set of all primitive Pythagorean
triples. For example, the pair (2, 1) generates the triple (3,
4,5).

As for step (c) of our program, it has recently been carried
out by the British mathematician A. Hall.

The genealogy of Pythiagorean triples

In a brief note published in 1970 in the Mathematical
Gazette, Hall proposed the following technique for con-
structing a genealogical tree for primitive pairs and primi-
tive Pythagorean triples. He introduced three transformations

s By o

tl(m/ H) = (Zm -1, m)/
t,(m,n)=(2m +n, m),
t,(m, n)={m+2n, n).

By means of these transformations, starting from the pair
(2, 1), the genealogical tree is built. Here the upward
direction corresponds to transformation t,, the horizontal
direction to transformation t,, and the downward direc-
tion to transformation t,.

Problem 10. Let a pair (m, n) create the Pythagorean
triple (X, Y, Z) by means of relations (4). Designate the Py-
thagorean triple generated by the pair t (m, n) as T (X, Y,
Z), the triple generated by t,(m, n) as T,(X, Y, Z), and the
triple generated by the pair t,(m, n) as T,(X, Y, Z). Prove
that

T,(X,Y,Z)=(X-2Y+2Z, 2X-Y +2Z, 2X - 2Y +3Z),
T,(X,Y,Z) = (X+2Y +2Z, 2X+Y + 2Z, 2X + 2Y + 3Z),
TX Y, Z)= (-X+ 2Y+ 2Z,-2X + Y + 2Z,-2X + 2Y + 3Z)

Now using the transformations T, T,, T, let’s plot the
genealogical tree starting with the triple (3, 4, 5).

Hall’s remarkable result is that the tree in figure 3
contains all primitive pairs without exception; so the ge-
nealogical tree in figure 4 contains all primitive Pythago-
rean triples without exception.

The next series of problems proves this fact.

Problem 11. Prove that all the pairs shown in figure 3
are primitive. This will show that all the triples in figure
4 are primitive Pythagorean triples.

The transformations t,, t,, t, make it possible to move
along the tree in figure 3 in the direction of the arrows.

TS

(3/_2)_/-> (8,2).=3

/ o t2,2) E}

, - 8 V) W 2
@t =>(52) Zs (42,85 2
) ; ™S (g2) 2>

( ¥4 22

Figures e gt
g (6,1) =3
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(512,13) — 59579 F
/1 = (4}),2:!’,53/’:?
: (89,90,89) 2
(3,45) — (24,2029) 25, 110/1”/"
(72,36, 89
N (33,%,69%
_ (15,8, 12) (€5, 22,9%)23
Figure 4 S5, 12,393
Now we'll find out how to move along the tree in the
opposite direction.
Problem 12. Let (M, N) t(m, n), where t, is one of the
transformations t,, t,, t,. Prove that (m, n) u (M, N),
where transformations v, are defined by

u,(M,N) = (N,-M+2N),
u,(M,N) = (N, M-2NJ,

u,(M,N)=(M-2N, N).

The transformations u,, u,, u, make it possible to move
along the tree shown in figure 3 against the arrows. They
carry out a peculiar Euclidian algorithm for primitive
pairs, allowing a descent from an arbitrary primitive pair
(m, n)to the initial pair (2, 1).

Fach pair (m, n) in figure 3 is approached by exactly one
arrow. For the transformations u,, u,, u, this corresponds
to the following fact.

Problem 13. Let a pair (M, N) be primitive and (M, N)
# (2, 1). Prove that only one of the three pairs (m, n) =
(M, N),i=1,2, 3, is primitive. In addition, m+n <
M+ N.

And, finally, the concluding problem.

Problem 14. Prove that each primitive pair is contained
inthe genealogical tree shown in figure 3 only once and
that the same holds for the primitive Pythagorean triples
shown in figure 4.

Other genealogies

In 1978 the Scandinavian mathematical journal Nor-
mat published an article by E. Selmer. In this paper he
showed that there are two other genealogical trees con-
taining all Pythagorean triples without either exception or
repetition (fig. 5).

514,19%

(7,24,45) $(¢3,,14,6/§ 7 (24,25 =
(13,84, 8)% Em1 » 65 12,39) %
7 [9,50,89% 7 \(55, 24972
(34,5] (158,17 a/!!’/i/ﬂ)’i"? ~ (33,5650
5 \»*(zf w3, //.s’j >(15 7/1?/—> ($5,49 2%
L, 1,60,61)3> s 28,53%
(62,13 L (35/ 12,395 (33,40, 89)%
>, 1//,4//)»# @1,40,29) > (51,60,00%
= {m.u/m/ =8
Figure 5
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The first tree is built by using the transformations

T(X,Y,Z)=(2X-Y+Z,2X+2Y+2Z,2X +Y+3Z),
T,X, Y, Z)=(2X + Y +Z,2X-2Y +2Z,2X - Y +3Z),
T(X,Y,Z)=(2X+Y-Z,-2X+2Y+2Z,~2X +Y+32).

The second tree is obtained from

T(X,Y,Z)=(X-2Y+2Z,2X~Y +2Z,2X-2Y+3Z),
T,X,Y,Z)=(2X+Y+Z,2X-2Y+2Z,2X - Y +3Z),
TX, Y, Z)= -2X +3Y +3Z,-6X +2Y +6Z,~6X +3Y +7Z)

Pythagorean triples have attracted the attention of
mathematicians for thousands of years. But we can see
that the subject certainly hasn’t been exhausted, and inter-
esting new facts continue to be discovered.

Summing up

Now a number of questions should at least be asked, if
not answered. For instance, why does the genealogical tree
fork into two branches for XY = Z? and into three branches
for X* + Y2 = Z22 Next question: we've given three
genealogical trees for the equation X? + Y2 = Z2 but only one
for XY = Z%; are there any other trees for these equations?
Finally, how were the transformations T, T,, T, generat-
ing Pythagorean triples found?

The genealogical tree for XY = Z? was constructed by
directly applying Euclid’s algorithm and looks sufficiently
well motivated, which apparently isn’t the case for the
equation X* + Y2 = Z2. These two equations are, however,
related. Indeed, writing equation X? + Y = Z2 in the form

- X? = Y2, we can break down the left side into two
factors: (Z - X)(Z + X) = Y>. Substituting U = Z - X,
V = Z + X, W=, we arrive at the equation UV = W2 So
there is a substitution that reduces the equation X? + Y> =
Z*tothe equation XY =22

A number of equations can be dealt with in the same
way—that is, by finding a substitution that reduces them
to the form XY = Z2. Examples are the equations X* + Y2 =
272 and X + 32 = Z%. You might try to construct
genealogical trees for these equations as well.

Another remarkable equation should also be men-
tioned—Markov’s equation:

X2+ Y2+ Z22=3XYZ.

It has the property we're already used to: all its solutions,
except the two obvious ones (1,1, 1) and (2, 1, 1), are
organized into a genealogical tree. (We make use of the fact
that if a triple (X, Y, Z) solves Markov’s equation, then the
triple (3YZ-X, Y, Z)isalsoasolution.) This treeis quite
similar to the genealogical tree for the equation XY = Z% Is
there anything connecting the two equations? What other
equations have similar properties?

There’s a lot here to think about. Q)



You may be surprised to learn that Thomas
R. Cech, the biochemist who shared the
1989 Nobel Prize in chemistry, is an honors
graduate of Grinnell College.

Robert Noyce, the co-inventor of the
integrated circuit and the father of the Infor-
mation Age, also graduated with honors
from Grinnell College.

In fact, Grinnell College is one of 48
small liberal-arts colleges that historically
have produced the greatest number of sci-
entists in America. Grinnell and these other
small colleges compare favorably with ma-
jor research universities, showing a higher
per-capita production of graduates with
science degrees. The small colleges comprise
five of the top 10 and 13 of the top 20
baccalaureate institutions in the proportion
of graduates earning Ph.D.s.

1989 Nobel Laureate inchemistry ThomasR. Cech, recognized forhis RNAresearchwhich mayprovide

a new tool for gene technology, with potential to create a new defense against viral infections.

Election to the National Academy of
Sciences is anhonor second only toreceiving
the Nobel Prize. Six of the top 10 member-
producing institutions, 11 of the top 20, and
15 of the top 25 come from that group of 48
small liberal-arts colleges.

The sciences do not exist in a vacuum in
the larger world. Nor do they at Grinnell.
The college’s open curriculum encourages
science students to take courses in other
areas.

Students who wish to focus their study
may engage in scientific research, usually in
a one-to-one relationship, under the direc-
tion of a Grinnell College faculty member.
Undergraduate student researchers often be-
come the authors of scientific papers with
their professors at Grinnell College.
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AT THE BLACKBOARD

An incident on the train

Nothing out of Agatha Christie, but a mystery of sorts

by Carlo Camerlingo (ltaly) and Andrey Varlamov

OT SO LONG AGO THE

authors of these lines had to re-

turn from Venice to Naples on

an express train. The train moved
very fast (its velocity was approxi-
mately 150 km/h) and landscapes that
looked like paintings by the Renais-
sance masters flitted by as we looked
out the window. In exact agreement
with its canvas-bound versions, the
terrain was hilly, and we sometimes
flew over a bridge or dove into a tun-
nel. In one of the especially long
tunnels between Bologna and Florence,
we suddenly felt a dull pain in our
ears, as happens with passengers in
airplanes taking off or landing. It was
clear from external signs that the same
sensation came over all of our fellow
travellers: they all turned their heads,
trying to get rid of the unpleasant
feeling. But when the train finally
burst from the narrow tunnel the un-
pleasantness passed, and only one of
us, who wasn’t used to such surprises
on the railways, was interested in the
origin of this phenomenon. Since it
was evidently connected with the pres-

sure difference, we began a lively dis-
cussion of the possible physical causes.
At first glance it seemed to us that the
air pressure in the gap between the
tunnel walls and the train had in-
creased in comparison with the at-
mospheric pressure, but there were
qualitative reasons to expect the op-
posite effect as well. In such matters
mathematics is the best judge, so we
attempted to find some numerical an-
swer to the problem. Soon the expla-
nation was ready and it came down to
this.

Let’s consider a train with a cross-
sectional area S, that moves at veloc-
ity v, in a long tunnel with a cross-sec-
tional area S, First of all, let’s switch
to the inertial coordinate system asso-
ciated with the train. We'll take the
air flow as stationary and laminar, and
we’ll ignore its viscosity. The move-
ment of the tunnel walls relative to
the train need not be taken into ac-
count in this case—because of the
absence of viscosity, it doesn’t influ-
ence the air flow. We'll also consider
the train sufficiently longso that we
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can ignore turbulence at the front and
rear cars, and the air pressure in the
tunnel will be taken as steady and
constant along the entire surface of
the train.

So by gradually eliminating minor
details, we've moved from the actual
movement of the train to a simplified
physical model that we can try to
describe mathematically. Here goes.

We have along tube (formerly the
tunnel) and a cylinder with stream-
lined ends (formerly the train) nestled
in it coaxially. Air passes through this
tube—away from the train (the cross
section A-A in the figure) the air
pressure p, equals the atmospheric
pressure and the velocity of the air
flow v, is equal to the velocity of the
train before it entered our system of
calculation (but with the opposite sign).
Let’s examine a certain cross section
B-B (just in case, we place B-B far
from the ends of the train so our as-
sumptions will actually bear out). We'll
denote the air pressure in this cross
section as p, and the air velocity as v,
These values can be linked with v,
and p, by means of the Bernoulli equa-
tion:

v 2
L TR LY (1)
2 02
where p is the density of the air.
Equation (1) has two unknowns, p,
and v,, so to determine p, we need
another relation. This is provided by
the condition of the conservation air
mass that flows through any cross
section of the tube in a unit of time:

bpt



PV.S, = pve(S, = S,). (2)

This equation expresses the fact that
the air mass can neither appear nor
disappear while it flows through the
tube. It’s usually called the condition
of flow continuity.

Asyouprobablynoticed, we took
the air density in equations (1) and (2|
to be constant. This assumption is
valid as long as the air velocities in
different cross sections of the tube are
much less than the mean square ve-
locity of chaotic molecular motion;
it’s just this velocity that determines
the characteristic time required to
establish mean gas density on the
macroscopic scale.

Gettingrid of velocity v, in equa-
tion (1) by means of equation (2), we
get

v S
]} o

The air density p can be expressed in
terms of p, by the Mendeleyev—
Clapeyron equation: p = pu/RT. After
this substitution, we have

wi (S
el

In this expression there is a combina-
tion of parameters, v ?/RT, that is
evidently dimensionless. So the value
(RT/w)'? has the physical dimension-
ality of velocity. It’s easy to recognize
in it the mean square velocity of cha-
otic molecular motion (with an accu-
racy to one power). But in our aerody-
namical problem another physical char-
acteristic of gas is important: the ve-
locity of sound propagation v, in it.
This value is determined by the same
combination of temperature and
molecular mass as the mean square
velocity of molecular motion, but the
numerical value of v, depends addi-
tionally on the so-called adiabatic index
Y, a characteristic number for every
gasof the order of 1 (for air, y=1.41):

N 5

NI 5]

Under normal conditions, v, = 1,200
km/h. Using equation (5) we can
rewrite the pressure expression (4) in
final form, one that will be conven-

ient for the discussion to follow (sub-
stituting u/RT = y/v2):

enl 2]

Now it’s time to stop and think a
little about this. We calculated the
pressure near the train inside the tunnel.
But our ears ached not because of the
pressure itself but because of its change
in comparison with the pressure D/
when the train is in the open air.! We
can easily determine this outside pres-
sure directly from equation (6), notic-
ing that the open air can be considered
a tunnel with a cross-sectional area
S, —> 00. Sowehave

py = lim p, ()

S oo
_I(ET 1
V. s
2\ 1- lim =

S, S,

:po - |

This result was sufficiently evident
without any calculation. It’s interest-
ing to observe that the relative pres-
sure difference is

Aﬁzﬁz_z(ﬁﬂ[ 5 Il} 7)
PO pU 2 V.s‘ SO_Sf

From this expression we can see that
when the train is entering the tunnel
the pressure near it decreases, con-
trary to what we may have thought at
first.

Now let’s estimate the magnitude
of this effect. Aswe mentioned ear-
lier, v, =150 km/h, v, = 1,200 km/h,
and for narrow railroad tunnels the
ratio S /S canbeestimatedas 1/4 (in
our tunnel there were two sets of
rails). So

()

"We should point out two
circumstances here. First, there is the
so-called Weber—Hefner law in
biophysics, which says that any change
in an external effect is apprehended by
the body only when the relative change
exceeds a certain threshold value.
Second, if it so happens the tunnel is
long enough, the body is able to adapt to
the new conditions and the unpleasant
sensation disappears. At the exit from
the tunnel, however, it bothers you
again.

QUANTUM/AT THE BLACKBOARD

This value seems pretty small, but if
we take into account that p, =
10° N/m? and take the area of the
eardrum to be 6 = 1 cm?, we get an
excess force AF=Apo=0.1 N, which
may turm out to be quite noticeable.

So it seems the effect is explained,
and we can call it quits. But some-
thing worried us about this last equa-
tion. Namely, from expression (7)it
follows that even in the case of a
normal velocity for an ordinary train
v, << v, (this combination of velocities
is constantly encountered in aerody-
namics and is called the Mach num-
ber), in sufficiently narrow tunnels
the value |Apl may reach and even
exceed the normal pressure p,! Clearly,
within the framework of our assump-
tions we're getting the absurd result
that the pressure between the walls of
the narrow tunnel and the train be-
comes negative!

But wait a minute! Maybe there’s
a breaking point in our result beyond
which it ceases to be valid . . . Let’s
look at our findings a bit more closely.

IfIApl=p,, then

V(S-S

vS,=v[S,-S,).

Comparing the last equation with
equation (2), we begin tounderstand
the situation. If Ap reaches p,, the
velocity of air flowing in the gap be-
tween the train and the walls of such
a narrow tunnel turns out to be of the
order of the speed of sound, and we
can’tspeak of laminar air flow here 2
So the correct condition for applying
equation (7) is not merely v, << v_ but
the more rigid requirement

S-S
vt((vs[ 2 t]. :
SO

It’s evident that for real trains and
tunnels this condition is always met.
Nevertheless, our investigation into
the limited applicability of equation
(7)isn’tjust an empty mathematical
exercise. A physicist must always

1 2

n

and so

*That is, the smooth flow becomes
turbulent.
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recognize the limits of the validity of
any result obtained. But another rea-
son for taking it seriously in our case
is a quite practical one. In the last few
decades fundamentally new forms of
transportation, including high-speed
trains, have been discussed more and
more. One type of train moves on a

magnetic cushion produced by a powerful

superconducting magnet. {Such ve-
hicles already exist. Atlastreport, a
prototype maglev (magnetic levita-
tion) train in Japan can carry 20 pas-
sengers along 7 km of test track at a
maximum speed of 516 km/h—that’s
almost half the speed of sound!) Since
the vehicle hovers above the metal
rails, resistance to its movement is
determined solely by its aerodynamic
properties.

The next step in developing this
means of transportation was the idea
of—Dbelieve it or not—enclosing the
train in a hermetically sealed tube and
reducing the pressure by pumping air
out! You see how close this problem
is to the one that captivated us. But
here the physicists and engineers en-
counter the much more complex case
inwhichv =zv _and§ -S,<<S,. The
airflow hereis far from laminar, and
the air temperature changes consid-
erably as the train moves. Modem sci-
ence doesn’t have the answers to all
the questions generated in the pursuit
of solutions to these problems. But
even our simple estimate allows us,
in principle, to estimate the threshold
where such effects become impor-
tant.

We'd like to leave you with a few
questions about physics that might
pop up ona trainride.

1. Why do the windows rattle when
you're racing along at anice clip and
another fast train passes you going in
the opposite direction? Is the force re-
sponsible for shaking the windows
directed inward or outward?

2. Why does the noise from a mov-
ing train increase considerably when
it enters a tunnel?

3. Which of the two rails of a rail
line built along a meridian is worn
down faster in the Northern Hemi-
sphere? Southern Hemisphere? (@]
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CONTINUED FROM PAGE 35
When days are months

We received a number of correct
solutions to the contest problem in
the May 1990 issue asking how long a
day would be when the length of a day
is equal to the length of the month.
The solution we present here is very

similar to one by Earle Wallingford of

Bozeman, MT. Similar solutions were
submitted by Steve Fung (TX), Jason
Jacobs (NY), and Mark Roseberry (KY).

Each will receive a free subscrip-
tion to Quantum for one year.

In our solution, we first compare
the angular momenta of the Moon
revolving around the Earth, now and
at the time when the length of the day
is equal to the length of the month.
We then turn our attention to the
comparison of the Earth’s angular
momenta at these times as it spins on
its axis. Finally, we apply the law of
conservation of angular momentum
to solve the problem.

As Jason Jacobs pointed out, the
assumption that the Moon’s orbit is
in the plane of the Earth’s equator
means that all of the angular momen-
tum vectors point in the same direc-
tion and we need only work with their
magnitudes. The angular momentum
L _ofthe Moon due toits orbit about
the Earth is given by

L =M R 2T

mi mmiT
mi

ey
Lm = MmRmf T
p
where M, is the mass of the Moon, R_
istheradius of the Moon’s orbit, and
T_.and T, are the Moon’s initial and

final orbital periods. Taking the ratio
of the two expressions, we get

2
L’f_ﬂfﬂ
L 2 T

mi Rmi f

It’s important to realize that since
the Moon is in orbit, it must obey
Kepler’s third law, which tells us that
the square of the period is propor-
tional to the cube of the radius. This
can be derived by recognizing that the
gravitational force of the Earth pro-
vides the centripetal force on the Moon.

This gives us an expression for the
ratio of the initial and final radii and
allows us to write the ratio of the
angular momenta in terms of a ratio of
the periods:

4 1

L. (T.VT (T
mf_ | _f mi_ | _f
L {T j T [T I
mi mi f mi

We now obtain the ratio of the
initial L and final L, angular mo-
menta of the Earth spinning on its
axis in terms of the mass M, of the
Earth, theradius R, of the Earth, and
the Earth’s initial T and final T, rota-
tional periods:

L 2
el T.
L 2
o T

,
(where I = (2/5)M R ?), which yields

Lm, Tf

The conservation of angular momen-
tum can now be written as

Lml, + Lez_ = me + Lef

1

T T
=k (=L ep -2,
mi Tmi ei Tf

Solving for the ratio of the initial
angular momenta of the Moon and
Earth, we get

..
Lmi _?f
ei i *_ !
T,
2
SM,RT.
2MRT |
=4.08 .

Notice that we only need to know the
ratios of the masses, periods, and radii
to get the numerical value. If all times
are expressed in terms of current Earth
days, we get
4
_ 3
5.08Tf -1= 1.357‘}0 ,

which can be solved with graphical or
numerical techniques to obtain a value
of T;= 53 days. Tosolve the problem

graphically, you plot each side of the
equation for various assumed values
of T, and find where the two curves
intersect.

This problem was inspired by a
statement in Exploration of the Uni-
verse(5thed., 1987) by Abell, Morri-
son, and Wolff that the period would
be 47 days. @

Arthur Eisenkeaft is the chair of the science
department and physics teacher at Fox
Lane High School in Bedford, NY. Larry
D. Kirkpatrick is a professor of physics at
Montana State University in Bozeman.
Drs. Eisenkraft and Kirkpatrick serve as
academic directors for the US Physics
Team that competes in the International
Physics Olympiad.

CONTINUED FROM PAGE 34

David Watson (NY), Tim Kokesh (OK),
Tim Hollebeek (PA), Kiran Kedlaya
(MD), Brian Platt (UT), John Stafford
(NC), Sergey Levin (RI), Andrew Dittmer
(VA), Peter Kramer (NJ), John Cle-
mens (IL), and Mark Roseberry (KY),
after whom the conjecture was named
and who is presently a freshman at
Rose-Hulman. Each of them approached
the problem somewhat differently;
unfortunately, space limitations don’t
allow a complete reproduction of their
results. Most of them treated the case
of n = 2k separately by constructing
(via mathematical induction) a k-digit
multiple of n consisting entirely of 6's
and 7’s. (The same procedure can be
applied to other pairs of digits if they’re
of different parity). Then, toresolve
the case of n = m(2%), where mis odd
and not a multiple of 5, they concate-
nated the multiple of 2% obtained ear-
lier with itself an appropriate number
of times. This “appropriate number”
can be shown to be less than or equal
to m by yet another clever application
of the pigeonhole principle (see Quan-
tum Jan. 1990 and Sept./Oct. 1990).
Congratulations to all of the success-
ful students named above. @

George Berzsenyi is the chair of the
Department of Mathematics at Rose-Hulman
Institute of Technology in Terre Haute,
IN.
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INYOUR HEAD

Why are the cheese holes
round?

Maybe you've forgotten you ever
wondered . . .

by Sergey Krotov

... nthe middle of this place was a large oak-tree, and, from the top of the

tree, there came a loud buzzing-noise.

Winnie-the-Pooh sat down at the foot of the tree, put his head between his

paws and began to think.

First of all he said to himself: “That buzzing-noise means something.
You don'’t get a buzzing-noise like that, just buzzing and buzzing, without
its meaning something. If there’s a buzzing-noise, somebody’s making a
buzzing-noise, and the only reason for making a buzzing-noise that I know

of is because you're a bee.”

Then he thought another Iong time, and said: “And the only reason for
being a bee that 1 know of is making honey.”

And then he got up, and said: “And the only reason for making honey is
soas I caneatit.” So he began to climb the tree.

AVE YOU EVER THOUGHT

why Winnie-the-Pooh is so lov-

able? Maybe because he reminds

us of ourselves when we were
little and asked so many silly ques-
tions (silly to grownups, anyway) and
wanted the answersright away. But
it’s good to ask questions at any age.
And it’s especially useful when you're
learning physics. Let’s try it together
and maybe youw’ll see it the same way
Ido.

Have you ever come across the
fairy tale “Two Greedy Little Bears”?
I'll never forget the colorful drawings
of a cheese wheel vanishing before
your eyes. The cheese was covered
with a bright-red coating and was
awfully “holey” inside. The holes
were perfectly round and practically
identical in size. Years have passed
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A.A. Milne, “Winnie-the-Pooh”

since then, but only recently did I
figure out that this hole-ridden struc-
ture of cheese is due to one of the most
fundamental laws of nature—Pascal’s
law. T'll remind you what it says:
“Pressure applied toaliquid or gas is
transmitted equally to all its parts.”
The leading role here is played by
pressure. So let’s discuss this notion
first.

Do you remember the sad fairy tale
“Gray Neck Swan,” in which a crafty
fox crawls onto a frozen pond where
Gray Neck is swimming? Aware of
the danger of breaking the thin ice, the
fox sprawls on the surface, stretching
out as much as it can. The force acting
on the ice doesn’t depend on the body’s
position, right? The fox isn’t any
lighter when it lies down than when it
stands up, is it? Isn’t there a contra-
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diction here? Notatall. Asitturns
out, what mattersis the surface area
affected by the force of pressure. If the
area of contact between the fox and
the ice is increased, the force bending
theiceis reduced and the fox moves
on it safely. (The fox was crafty and
knew all this.) To describe this and
many other phenomena it’s not enough
to know only the overall force of pres-
sure (the force with which bodies in
contact affect each other); we have to
know the force applied to each unit
area of the contacting surface. It’s this
force that’s called the “pressure.”

Can you think of another tale in
which everything (from the physical
point of view) depends on pressure?
It’s Hans Christian Andersen’s “Prin-
cess and the Pea.” Why did a dried pea
in her bed malke the princess so un-
comfortable? Again, it’sall amatter
of pressure. Obviously, both with and
without the pea the overall force hold-
ing the princess on her bed is the
same. But if a protruding object ap-
pears on the bed, the pressure at this
point increases sharply, which imme-
diately spoils the princess’s mood.
She could even develop insomnia.
Surely you don’t need to be a princess
to detect a hard pea in your bed. Even
a shepherd can do that. But to feel a
pea through several layers of down
mattresses (there were twelve of them
in the story) requires a genuine royal
sensibility.

So the pressure is defined as the
ratio of the force acting perpendicu-
larly to a surface to the total area of the
surface. But Pascal’s law apparently
involves another kind of pressure—
the pressure inside a liquid or a gas.
All the points inside a liquid some-
how “know” that it is being com-
pressed from outside. In other words,
pressure applied to the outer surface of
the liquid is transmitted from point to
point equally in all directions. And
this is, in fact, an essential property of
aliquid. That’s how it’s “constructed.”

Let’s discuss this fact in a bit more
detail. Take a soft spring—for in-
stance, a spring from an air gun. If you
lay it on a table, the distance between
adjacent coils is the same along the
entire length of the spring. But if you
stand it upright, the coils start to “fall

Art by Dmitry Krymov






down” (because of the force of grav-
ity), moving closer together. Eventu-
ally, different sections of the spring
will be compressed to varying de-
grees: the lower the coils, the smaller
the distance between them. What's
going on here? The mutual displace-
ments of the coils produce elastic
forces in the spring. The lower the
coils, the greater the portion of the
spring’s weight they carry and, conse-
quently, the greater the compression
theyreceive. Sothe pressure in vari-
ous sections of the spring is different.
If you want to visualize the pressure
pattern inside a body, squeeze a foam
sponge in your hand. Some parts of
the sponge get compressed, while the
others get stretched. The greater the
compression at a specific point, the
smaller the pores. So we can estimate
the internal pressure in a spring by the
distance between adjacent coils, and
inasponge by the pore size.

Unlike solid bodies, both liquid
and gas are usually subjected to com-
pression only. If an impermeable
casing is filled with a liquid and then
compressed, the liquid is compressed
equally throughout the entire volume
(weignore gravity), and we can’t dis-
tinguish one point inside the con-
tainer from another. It’s important
that regardless of the shape of the
outer surface, the pressure is trans-
mitted equally from any point to all
adjacent points.

In order to make this idea more ob-
vious, I'm afraid I'm going to have to
dredge up some memories that are
probably not among your happiest.
I'm talking about injections. Yes,
“shots.” No doubt you remember
that before making an injection the
doctor presses the syringe piston and
healing liquid squirts out of the needle.
Imagine now that someone has punched
small holes all over the surface of the
syringe and stuck needles in them.
The resulting object would resemble
a porcupine. If we now press the
piston of the syringe-porcupine, the
jets spurting out of needles positioned
at the same height will be identical.
This is because the liquid’s behavior
is governed by Pascal’s law. The
liquid is pushed out of holes posi-
tioned at the same height with the
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same force. For holes positioned at
different heights, we have to take into
account the force of hydrostatic pres-
sure.

To compare the elastic properties
of aliquid with those of a solid body,
let’s take another example. Mentally
put a spring inside a narrow container
(so that the diameter of the spring
coincides with the inner diameter of
the container) and fill another con-
tainer of the same size with water.
Now imagine that the walls of both
containers suddenly disappear. What
happens to the spring and the water?
The spring stays where it was as if
nothing had happened. The water
flies off in all directions like a popped
soap bubble. Why? Because liquids
and solid bodies have different ways of
transmitting pressure. A spring trans-
mits the pressure along its length
only, practically speaking, while the
water transmits it equally in all direc-
tions: up, down, and sideways, in ac-
cordance with Pascal’s law.

It just so happens that a similar
scenario was observed by Pascal him-
self when he discovered the law. His
classic experiment was similar to our
mental experiment with the syringe.
True, in Pascal’s experiment the walls
of the container (a barrel) didn’t disap-
pear, they were broken. The shape of
the resulting “fountains” depends on
the pressure in various parts of the
liquid. Now we can easily explain the
“action” of a down mattress. It’s like
a heap of little springs oriented ran-
domly relative to one another. Each
spring transmits the pressure along its
length but, because of the chaotic po-
sitioning, the pressure exerted by the
peais transmitted to... ButIdon't
want to deprive you of the fun of
finding the right answer. I'll just tell
that in spite of all your exertions and
attempts, royal intuition enabled the
princess to unerringly discover any

“Hallo, Pooh,” said Rabbit.

dirty trick, even if it was perpetrated
by some big shot who knows a little
physics.

And now the time has come to
answer the main question of this ar-
ticle. (You haven't forgotten it, have
you?) Let’s briefly review how cheese
is made—or, to be more precise, how
holes in cheese are made. First, the
cheese “dough” is prepared. Then it’s
compressed at high pressure and put
in special molds. The wheels of cheese
are taken out of the molds and leftin
a warm place for ripening. This is
when the process of “fermentation”
begins. Carbon dioxide gas is created
inside the compressed dough. This
results in the formation of bubbles.
The more carbon dioxide, the larger
the bubbles. (Don’t forget that at this
stage the inside of the future cheese is
a soft, homogeneous mass.)

When the cheese gets harder, the
pattemn of the internal “breathing” of
the fermenting cheese is recorded by
the carbon dioxide bubbles. As for the
shape of the cavities, because of Pas-
cal’s law the pressure inside the bubbles
is transmitted equally in all directions
since the dough resembles a liquid in
its elastic properties. So the bubbles
acquire a strictly spherical shape.
Violation of this rule would have meant
that there were areas of greater rigidity
or, conversely, cavities inside the
cheese. The harder the cheese, the
less the bubbles inside blow up, so the
holes are smaller. Some varieties of
cheese are made without compres-
sion at the beginning of the process;
carbon dioxide is released into cavi-
ties already present in the dough. As
aresult, you get an irregular pattem of
frozen bubbles whose harmony can
be understood only by a cheese expert.

Soyou see how many small ques-
tions we had to ask ourselves to an-
swer a single big one: “Why does
cheese have round holes?” (@)

“Hallo, Rabbit,” said Pooh dreamily.

“Did you make that song up?”

“Well I sort of made it up,” said Pooh. “Itisn’t Brain,” he went on
humbly, “because You Know Why, Rabbit; but it comes to me sometimes.”
A.A. Milne, “The House at Pooh Cormer”
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academic reputation
by degrees.

Florida Institute of Technology has everything you'd expect
from a university. Including a lot of degrees — both in and
out of the classroom.

For example, we offer more than 121 degree programs, from
A.S. to Ph.D,, specializing in Science, Engineering,
Business, Psychology and Aviation. Our modern campus is
located on Florida's famous Space Coast, in the heart of one
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Now, add an annual average temperature of 75 degrees,
miles of clean, uncrowded beaches, and every water sport
you can think of, and you know why students prefer EIT.

For more facts about EIT., the University with all those
degrees, call TOLL FREE 1-800-352-8324, IN FLORIDA
1-800-348-4636.

Florida Institute of Technology
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150 West University Blvd., Melbourne, FL 32901
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The Sky’s Not the Limit!

The year 1992 has been declared the International Space Year (ISY) by the United Nations. Scientists from many countries
will meet at various conferences, seminars, and symposiums to discuss the future of international cooperation in space. We
hope there will be many new agreements on joint projects, including perhaps one about a joint Mars mission. All these projects
will need many new researchers. Many of them will be among those who are presently going to high school. For this reason
work with youth has been an important part of the ISY. One of the projects under development is the 1992 International Space

Olympiad in Washington, DC.

Summer study in the USSR and US

To prepare for this olympiad, several American and Soviet
organizations, including the magazines Kvant and Quantum,
the US International Space Year Association, the Soviet
Aerospace Society “Union,” the National Science Teachers As-
sociation, and the International Educational Network, have
decided to organize an International Summer Institute in the
summer of 1991 in the United States and the Soviet Union.
The program will feature advanced classes in mathematics,
physics, biology, and other space-related subjects; lectures
by prominent scientists; trips to major scientific laboratories;
sports and recreation; and many cultural activities.

Nobel Laureate Sheldon Glashow of Harvard University instructs

participants in a previous International Educational Networlk
summer camp.

Three-stage competition

Sixty students from the US and 60 from the USSR will be
selected, and we expect that students from other countries
will also be interested in participating. The selection process
will be based on the results of a three-stage competition. The
questions for the first round are printed below. The second
round will also be by correspondence and will include two
math and two physics problems related to space. A total of
300 students will be invited to participate in the third round,
which will be given at local universities or schools in the
presence of the organizers’ representatives.

Three-week program

The winners will participate in either the American or the
Soviet part of the program, which will each last three weeks.
The American session will take place July 1-21, 1991, while
the Soviet session will take place August 1-21, 1991. Each
session will feature two weeks of study and one week of travel
in the host country. The winners of the competition, depend-
ing on their total score, will receive scholarship prizes and
awards that will cover all or part of the program costs.

To enter the competition, please fill out the form and mail
it, along with your answers to the questions printed below,
postmarked no later than December 31, 1990, to:

Dr. Edward Lozansky, President
International Educational Network
3001 Veazey Terrace, NW
Washington, DC 20008
(Telephone: 202 362-7855)

Yes, | am interested in the 1991 International Summer Institute!

Last name First name
Home address
City State Zip Birthdate Sex
Home phone ( ) Parent's office phone ( )
School name
School address
Phone ( )

Name of math or science teacher who can recommend you

Please answer the following questions:

(print first and last name)

1. When was the first manned space ship launched?! Who piloted this ship?

2. Who was the first man on the moon!?

3. Name all American and Soviet women who have been in space.
4. Write a short essay explaining why you would Iike to participate in this program.
5. Could you write this essay with a ball point pen while orbiting the Earth! Explain.

Teachers are encouraged to copy this page and distribute it to potential participants.



HAPPENINGS

11th Tournament of Towns

The latest problems from this friendly intercity rivalry

HE TOURNAMENT OF

Towns, an international compe-

tition in mathematical problem

solving, continues to grow in
popularity. You may have read about
it in the first issue of Quantum (Janu-
ary 1990). Well, here are the problems
from the last tournament, held in
spring of this year. We hope you find
them attractive and instructive. If
you do, join the Tournament of Towns!
Write to N. Konstantinov, USSR, 103006,
Moscow K-6, Gorkogo 32/1, Kvant
magazine. {Our phone number is 095
250-4111, and our fax number is 095
251-5557.)

Junior graes (ages 13 to 15)

O-level (beginners)
1. For every natural n prove the
equality

1 1 1 1
(1+§+...+ﬁj+(§+...+ﬁjz+

1 1]Z 1Y _ 1 1
+(E+ﬁ +(ﬁ)—2n—(l+—+...+ﬁ).

2. Two circles ¢ and d are plotted on
the plane, one outside the other. Points
C and D are the most distant points of
these circles. Two smaller circles are
constructed inside c and d: the first
circle touches ¢ and the two tangents
drawn from C to d; the second touches
d and the two tangents from D to c.
Prove that the smaller circles are equal.

3.Is it possible to compose a 3x3x3
cube out of twenty-seven 1x1x1 cubes,
9 of which are red, 9 blue, and 9 white,
so that the little cubes in each row
(parallel to an edge of the big cube| are
of two different colors?

4.In a set of 61 coins that look alike,
2 coins are counterfeit and the rest are

genuine. The counterfeit coins weigh
the same but their weight differs from
that of a genuine coin. How can one
tell whether a counterfeit coin is heav-
ier or lighter than a genuine one by
three weighings on a pan balance?
(It's not necessary to identify the counter-
feit coins.)

A-level (main variant)

5. Find the maximum number of
parts into which the plane Oxy can be
divided by 100 graphs of different quadratic
functions of the form y = ax®+ bx + c.

6. A squareisrotated 45°about its
center. The sides of the rotated square
divide each side of the initial one in
the ratio a:b:a (which is easy to calcu-
late). Take an arbitrary convex quad-
rilateral, divide its sides in the same
ratio a:b:a, and construct a new quad-
rilateral whose sides pass through the
corresponding pairs of division points
like the sides of the rotated square
described above. Prove that two such
quadrilaterals have equal areas.

7. Fifteen elephants stand in a row.
Their weights are expressed by inte-
ger numbers of kilograms. The sum
of the weight of each elephant (except
the last one) and the doubled weight of
the elephant toitsrightisexactly 15
metric tons. Find the weight of each
elephant.

8. Let ABCD be a thombus, P a
point on its side BC. The circle pass-
ing through A, B, P meets line BD
again at point Q, and the circle pass-
ing through C, P, Q meets BD again at
pointR. Provethat A, R, and Plieon
one straight line.

9. Find the number of pairs (m, n) of
positive integers, both not greater than

QUANTUM/HAPPENINGS

1,000, such that
m ( NE) ( mf 1

n+1 n
(recall that 217 = 1.414213...).

10. Let’s call a collection of natural
numbers “basic” if their sum is 200,
and every positive integer not greater
than 200 can be represented as a sum
of some numbers from the collection,
the representation being unique up to
the order of summands. (A trivial
basic collection consists of 200 units.)

(a) Find a nontrivial example.

(b) How many different basic col-
lections are there?

Senior grades (ages 15 and older)

O-level (beginners)

11. Construct a triangle given its
two sides if it’s known that the me-
dian drawn from their common ver-
tex divides the angle between them in
the ratio 1:2.

12. Prove that (a)foranyn=4k + 1
(k=0,1,2,..) there exist n odd natural
numbers whose sum is equal to their
product; (b) for any other natural n
such a set of odd numbers does not
exist.

13. (a) Some vertices of a dodecahe-
dron must be marked so that each face
contains a marked vertex. What is the
smallest number of marked vertices
for which this is possible?

(b) The same question for an icosahe-
dron.

(Recall that a dodecahedron has 12
pentangular faces meeting three at
each vertex; an icosahedron has 20
triangular faces meeting five at each
vertex.)

14. Substitute 103 for 61 in prob-
lem 4.

01




A-level (main variant)

15. Prove that for all natural n there
exists a polynomial P(x) divisible by
(x — 1) such that its degree is less than
27 and all of its coefficients are equal to
1,0, or-1.

16. Substitute 500 for 200 in prob-
lem 10.

17. Either p or g guests are expected
to visit a birthday party; p and g are
coprimes. What is the smallest number
of slices (not necessarily equal) into

which a birthday cake must be cut in
advance so that in both cases every
guest gets an equal share of the cake?

18. Let ABCD be a trapezoid, H the
midpoint of its base AB, and AC = BC.
Let a line I passing through H cut line
AD atPandline BD at Q. Prove that
the angles ACP and QCB are equal or
their sum equals 180°.

19. Does there exist a convex poly-
hedron having a triangular section (by
a plane not passing through the verti-

ces), each vertex of which is a meeting
of (a) no less than 5 faces? (b) exactly 5
faces?

20. A square sheet of paper with
side a is covered with blots, each of
area less than 1, so that any straight
line parallel to the edges of the sheet
crosses one blot at most. Prove that
the total area of the blots is less than a.

SOLUTIONS ON PAGE 61

... HAPPENINGS

AHSME—AIME—USAMO—IMO

[s this just alphabet soup to you?

F THE ACRONYMS IN THE TITLE aren’t familiar to

you, your school may not be as progressive as you would

like to believe, and it needs your help! More specifi-

cally, you should find out who's in charge of mathe-
matical competitions at your high school, call that per-
son’s attention to this article, and make absolutely certain
she/he follows up on it. Our country is in dire need of
future scientists, mathematicians, and engineers—they’re
sittingin our classrooms, waiting for encouragement to
develop their talents toward such careers. But first, they
need to be recognized. The competitions listed in the title
will help you in that task, so please take advantage of the
opportunities they offer.

After identifying these competitions, I'll briefly de-
scribe them. For more details, you should contact Dr.
Walter E. Mientka, the Executive Director of the Ameri-
can Mathematics Competitions, at the Department of
Mathematics and Statistics, University of Nebraska, Lin-
coln, NE 68508-0322. His telephone number is 402 472-
2257. Walter is a staunch supporter of mathematics
education at all levels, and he is one of the nicest gentle-
men in mathematical circles, whom I strongly recom-
mend to all of my readers. It should also be noted that all
these competitions are sponsored not only by the Mathe-
matical Association of America but also by the following
organizations: Society of Actuaries, Mu Alpha Theta,
National Council of Teachers of Mathematics, Casualty
Actuarial Society, American Statistical Association, American
Mathematical Association of Two-Year Colleges, Ameri-
can Mathematical Society.

92 NOVEMBER/DECEMBER 1980

AHSME = American High School Mathematics Examination

This is a multiple-choice examination; the students are
given 90 minutes to solve 30 problems. The 42nd annual
AHSME will be administered at the high schools on
Tuesday, February 26, 1991; the deadline for registration is
December 7, 1990, but late registrations (within reason)
are usually accepted. Last year over 394,000 students from
6,411 schools participated in the AHSME. These are im-
pressive numbers, but there is much room for well-
deserved growth. The main purpose of the AHSME is to
discover talented students, so it should be administered at
every high school in the US. The $15 registration fee
entitles each school making a report on three or more
students to one copy of the Solutions Pamphlet, an Intra-
mural Award (pin ormedal), and a Summary of Rewards
and Awards. The Examinations are sold in bundles of 10
for $7.50 per bundle.

AIME = American Invitational Mathematics Examination

Students who score at least 100 on the AHSME are
automatically invited to the AIME, which consists of 15
answer-oriented problems, with each correct answer being
an integer between 0 and 999. Unlike the AHSME, there’s
no penalty for wrong answers. It’s also administered at the
high schools. The number of participants varies from year
toyear, depending on the difficulty of the AHSME. The
AIME is a three-hour examination, and there is no charge
for participating in it.



USAMO = USA Mathematical Olympiad

Based on a weighted average, the top-scoring students of the AHSME/
AIME are invited to the USAMO, which is also administered at the high
schools. The time limit in the USAMO is 3% hours; the students are expected
to provide complete answers to five problems within that time. Generally,
about 150 students take part in the USAMO, whose eight winners are
properly recognized in splendid ceremonies in Washington, DC, each year.

MO = Internationial Mathematical Olympiad

The IMO was started in 1959; the US has been participating in it since
1975. At the 31st IMO, held in 1990 in Beijing, China, a total of 54 countries
participated, most of them with complete teams of six members. The
students usually have 4} hours on each of two consecutive days to solve six
problems, each worth 7 points. With 174 points, the US team finished in
third place this year.

As outlined above, the first stage in this pyramid of mathematical com-
petitions is the AHSME. Without entering this examination, nobody can
advance to the higher levels. Most capable students can only benefit from
the excellent problem-solving activities generated by these competitions.
There are many more than 400,000 of them—that is to say, you—in this

great country of ours. My own estimate is about 100 times that figure!

—George Berzsenyi

Bulletin Board

Computer tutor for calculus

Broderbund Software has released
its tutoring program Calculus for
IBM/Tandy computers with Micro-
soft Windows. Previously available
only for the Macintosh, the program
can serve as an extension of class-
work, arefresher course, oraprivate
tutor. Calculus brings abstract mathe-
matical formulas to life via a special
module which animates, demonstrates
and explains the sequence of opera-
tions required to solve basic calculus
problems. Since the program moves
at the student’s own pace, it’s equally
useful for those who need tutoring as
for those who want to accelerate their
learning. The program requires an
IBM/Tandy (or compatible) computer
with 640K of memory and a hard disk.
A mouse is recommended. For infor-
mation on ordering, write Broderbund
Software, Inc., 17 Paul Drive, San
Rafael, CA 94903-2101, or call 415
492-3200.

“Scientific American Frontiers”

[remieres
In October the Public Broadcasting

System premiered “Scientific Ameri-
can Frontiers,” a series provided to
students through a coordinated school
outreach program. Underwritten by
GTE Corporation, Scientific Ameri-
can Frontiers will air one hour per
month until February 1991, offering
innovative, amusing, informative, and
unusual science features. The season
premier featured roller coaster tech-
nology, among other topics. Teachers
may videotape the show and create
their own science video library with
the available SAF classroom materi-
als. Scientific American Frontiers is
produced in association with Scien-
tific American magazine, and replaces
the PBS series “Discover: The World
of Science.” For information on how
to receive the free classroom materi-
als, call toll free 800 523-5948, or write
on school letterhead to Scientific
American Frontiers School Program,
10 North Main Street, Yardley, PA
19067-9986.

Computer path to math

If you are working toward a career
in any math-related science, you may

be interested in Mathematica, Wolf-
ram Research’s general system for
doing mathematics by computer.
Designed for the Macintosh, Mathe-
matica allows students to perform
with ease the computational tasks
required in mathematics, engineer-
ing, statistics, physics, chemistry,
economics—any coursework that
involves mathematical computation.
The system will help students in alge-
bra, integration, differentiation, ma-
trices, and many other numerical
computations, giving the student more
time to delve into the conceptual is-
sues of the problems.

Wolfram Research is now offering
Mathematica to students at the re-
duced rate of $139 (72% off the retail
price). Students who take advantage
of this special offer will receive Stephen
Wolfram’s book Mathematica: A System
for Doing Mathematics by Computer,
as well as user manuals and an instal-
lation guide. Four megabytes of RAM
are recommended. For more informa-
tion, or toreceive an order form, call
toll free 800 441-MATH (6284). [@)

" What's happening? A

Summer study ... competitions ... new
books ... ongoing activities ... clubs and
associations ... free samples ... contests ...
whatever it is, if you think it's of interest to
Quantum readers, let us know about it!
Help us fill Happenings and the Bulletin
Board with short news items, firsthand re-
ports, and announcements of upcoming
events.

What's on your mind?

Write to us! We want to know what you
think of Quantum. What do you like the
most? What would you like to see more
of? And, yes—what don't you like about
Quantum? We want to make it even bet-
ter, but we need your help.

What's our address?

Quantum
1742 Connecticut Avenue NW
Washington, DC 20009

Beafactorinthe
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| Learn. Lead. Serve.

Over 70 undergraduate The nation’s leading A university which challenges
and 60 graduate programs Catholic university in its students, faculty, and

of study. Our student-to- federally sponsored  alumni to make a difference.
teacher ratio is 17 to 1 research in the scien- Our teachers are respected
and most classes have ces and engineering. and committed to educa-
fewer than 25 students. _tion for more

Excellence in science and , than a
engineering is our tradition. B career.
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Methods of Motion

An Introduction to
Mechanics, Book 1

Isaac Newton really believed
that moving objects continue
at a constant speed in a
straight line? Do your
students? This manual was
created to help teachers
introduce the sometimes
daunting subject of Newtonian
mechanics to students in the
middle grades. The 27
activities presented here use
readily available materials to
give students visual, aural,
and tactile evidence to combat
their misconceptions. And the
teacher-created and tested
modules are fun: Marble races,
a tractor-pull using toy cars,
fettucini carpentry, and film
container cannons will make
teachers and students look
forward to class. Readings for
teachers, a guide for workshop
leaders, and a master
materials list follow the
activities, making this manual
useful for inservice
workshops. (grades 6-10)

#PB-39, 1989, 157 pp. $16.50

All orders of $25 or less must be
prepaid. Orders over $25 must include
a purchase order. All orders must
include a postage and handling fee of
$2. No credits or refunds for returns.
Send order to: Special Publications,
NSTA, 1742 Connecticut Ave. NW,
Washington, D.C. 20009.

Learning with

NSTA

Turning the World

ORDERS: 800-PRS-ISBN (777-4726)

InSide Out By Robert Ehrlich

AND 174 OTHER SIMPLE PHYSICS DEMONSTRATIONS

ORDER FROM YOUR BOOKSELLER OR FROM

Princeton University Press

ORDER DEPT,, 3175 PRINCETON PIKE, ¢ LAWRENCEVILLE, NJ 08648

Here is a book filled
with physics demonstrations
that are amazingly simple,
often playful, and always
instructive. Each of the
175 demonstrations uses
inexpensive, everyday items—
rubber balls, a plastic ruler,
Styrofoam cups, string, etc.—
and each is very clearly
described. Intended for science
teachers, from middle school
to college level, this is also a
great book for students who
| want to experiment (and learn)
on their own.
Paper: $14.95 ISBN 0-691-02395-6
Shipping: $2.75 for 1st book;
50 cents each additional book.

VISA, Mastercard, and American
Express accepted by mail or phone.

Circle No. 2 on Readers Service Card

Flights of Imagination
An Introduction to Aerodynamics

students the excitement of seeing
science in action. These 18 revised
and updated projects provide stu-
dents with a hands-on approach for
investigating the laws of aerody-
namics. With trash bags, string,
dowels, and tape, students are en-
couraged to try out the clearly-
described fundamentals of flight
and see how they work.

Whether or not aerodynamics is
new to your students, these projects
give them the tools fo answer
questions for themselves, which is

always the best way to learn—and the
most fun!

PB61, 56 pp., $ 7.00, middle through high
school. 1989 Revised Edition.

T
All orders of $25 or less o
must be prepaid. 2l )
Orders over $25 must >

include a purchase
order. All orders must
include a postage and
handling fee of $2. No
credits or refunds for
returns. Send order to:
Publications Sales,
NSTA, 1742 Connecti-
cut Ave. NW,
Washington, D.C.
20009.

Learning with ~~>=

The National Science
Teachers Association

o6
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Math

The colony will perish. Let V,and B,
be the numbers of viruses and bacteria
t minutes after infection. Then V,,
2V,and B, | =2(B,- V). For the ratio of
these quantities we have B, IV, =
B/V,-1; therefore, B/V, = nl t(BO/V
=n). So the last bacterium will be
killed during the nth minute.

M17

The plainest solution to this very
simple problem is to show that tri-
angle AKD = triangle CDH (AD = CH,
AH=DC, angle DAH = angle DCH).
To be strict, however, a more detailed
consideration of the equality of angles
in different cases is needed (see figure

F|gure 1

A solution that’s valid for all cases
at once and gives us some supplemen-
tary information involves vectors. Denote
by R the rotation of an arbitrary vector
through angle o = angle HCB (evi-
dently, o = angle BAK, too). Then
vectorDK=DA + AK=BC + R(AD| =
R|CH) + RIDC) = R(CH + DC) = R(DH]
(fig. 2). Therefore, DK = DH and,
moreover, angle HDK = ¢, which means
that triangle DHK is similar to both
triangle CHB and triangle ABK.

Finally, a third solution, using line
reflections, should be mentioned. The
diagonal AC is symmetrical to seg-
ments DH and DK with respect to
midperpendiculars of the sides CD
and DA, respectively. So DH=AC =
DK.

M18

Itc, c,, ..., ¢, are the counterfeit coins
andg, g,, .., &, are the genuine ones,
then the order of weighings can be as
follows:

1st weighing: c, against g ;

2nd weighing: g, c,, c, againstc,,
8y &4i
3rdweighing: g,, 8, 8., ¢, ¢, ¢, c

47 51 Y6l Y7
agalnSt CII 92 3/ g4/ gs/ gﬁl g7

Each time the set of coins men-
tioned first turns out to be lighter, and
S0 it contains more counterfeit coins
than the second set. This leads suc-
cessively to the conclusion that the
coins (1) ¢, 2) ¢,, c,, 3) ¢, c,, Cy, C, are
counterfeit.

The methodis easily generalized:
to confirm that a given n coins are
counterfeit and the other n are genu-
ine, we need no more than log,n + 1
welghmgs (the notation log, stands
for the greatest integer function). This
mode of expertise is very economical
(only 10 weighings are required for n =
1,000), though we can’t prove it to be
optimum. It would be interesting to
prove that the minimal number of
weighings grows unboundedly (or to
refute it).

M19

A diameter crosses a chord if and only
if one of its ends lies on the minor arc
subtended by the chord. If it does, the
other end lies on the arc symmetrical
to the first with respect to the center of
the circle (fig. 3). Consider such pairs
of arcs for all the given chords. If the

total length of the chords is not less
than nik, the total length of all the arcs
is greater than 2ntk, k times the length
of the circumference. So there exists
a point on the circumference covered
with more than k arcs. The diameter
drawn from this point will intersect at
least k + 1 chords.

It’s easy to construct a set of chords
that satisfies the condition of total
length arbitrarily close to tk: we can
approximate half the circumference
with a set of disjoint chords (fig. 4) and
take each of them k times.

M20

(a) Notice first that S(8 - 125) = S(1,000)
=1=5(125)/8. We'llneed the follow-
ing properties of the function S(A):

(1)S[A +B)< S(A)+ S(B),
(2) SIA +..+ A )< SA)+..
(3)S(nA)<nS(A),

(4) S[AB) < S|A)S(B.

.+ S(A),

To verify (1) it suffices to inspect
the very process of addition of A and B
digit by digit. Property (2) follows
from (1) by induction, (3) is a particu-
lar case of (2). Finally,if A = a 10" +
a, 10"+ ...+ a, then, by (2) and (3),

Figure 3

Figure 4
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S(AB)<S(a, B)+ ...+ S(a,B)<a S(B)+
..+a,S(B)=S|A)S(B).

Now the required inequality is quite
easy to prove:

S(N) = S(1,000N)
- §(125 - 8N) < S(125)S(8N]
- 8S(8N).

(b) k must be of the form 275¢; then
¢, =1/8(245%). The estimation for k =
2754 almost reproduces that of case (a):

SIN) = S(107*4N] < S(25)S(kN)
- S(kNJ/c,.

Since, for N=2957,
S(kN)=S$[1079) =1 = ¢,S(N),

the value 1/S(N) for ¢, can’t be in-
creased.

It remains to show that for k =
2r. 54 . Q, where Q is coprime with
10 (and Q > 1), the ratio S(kN)/S(N) can
be made arbitrarily small. We can
consider k = Q because S(kN) < S|QN)
. §[2759).

First let’s find a number m such
that 10 — 1 is a multiple of Q. (Evi-
dently, there exist two numbers in
this form, 10°-1 and 10' -1, s > ¢,
havingequal remainders modulo Q;
their difference 104105~ 1) is divis-
ible by Q; we can take m = s - t.)
Denote (10™ - 1)/Q by R; then for any
natural n

R, =(10"-1)/Q
— R107#+0 + 10722 4 4+ 107 + 1),

Nowlet N =R_+1. Then SN ) >(n
—1)R, since R < 10m-1,and S(QN ) =
SIQR + Q) =S[10"+ Q1) =1+
SIQ-"1) - S(Q. Finally, S|QN,S(N,)
<S(Q)/{n-1)R —> 0 whenn—> oo.

Physics

Since the collision of the ring with the
step is absolutely inelastic, the ring’s
momentum changes after the colli-
sion. The step acts on the ringalong
its radius R (fig. 5). During the colli-
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sion the projection of the ring’s
momentum on the axis OX (going
along R) drops to zero. The projection
of the momentum on the axis OY

Figure 5

doesn’t change. After the collision
the ring’s total momentum becomes
equal in absolute value to mvsin o,
and its velocity vsin o. = v[(R - h)/R]
(see figure 5). Now let’s make use of
the energy conservation law. Imme-
diately after the collision the kinetic
energy of the ring is

mv? (R—h)’

2 R
The factor 2 appears because of rota-
tional movement.

After climbing the step, the ring
acquires the potential energy mgh
and kinetic energy 2 (mv,%/2). So

2

mv2(R—h)”
R

The velocity of the ring after it
“climbs” the step, therefore, is

2
_ |2 R=H)
v, =AY z gh.

The minimum velocity v__ at which
the ring can still climb the step corre-
sponds tov, =0; thatis,

2
| R=h
Vi O VYariin R gh=0,

from which we get

__R
R AR

= mgh + mvfl )

L
min

P17

Denote the pressure of the liquid act-
ing on the bigger piston (having the
area S|) by p and the atmospheric
pressure by p,. Then the total force
acting on the piston upward is equal
to F, = S p, while the force acting on
the same piston downward is the sum
of the string tension T and the force of

1880

the atmospheric pressure F,' =p,S,.
Since the piston is in equilibrium, we
can write

Sp=8p,+T.

A similar equation holds for the
lower piston: the tension force T and
the force of the atmospheric pressure
E, =p,'S, act upward, while the water
pressure F, = p'S, acts downward. The
water pressure p’ on the lower piston
is higher than that acting on the upper
piston by a factor of pgl. Since the
lower piston is also in equilibrium,
then

T+p,S,=p+pgl)S,.

Solving both equations simultaneously

we get
S8,
T=pgl :
§,-S,

A good way to verify the answer is to
substitute extreme values of the para-
meters. Let S, —> S,. In this case
T —> 0. Indeed, the whole structure
remains in equilibrium because of the
pressure of the water on the ring with
area S, — S, on the upper piston. When
S,—> §, the pressure on the ring tends
to infinity so that the string tension
also tends to infinity.

Thus, when S, = S, we get an infi-
nite value for T. But such alimiting
transition is impossible. We've as-
sumed that the system remains in
equilibrium. Actually, for S, = S, there
is no equilibrium since the system of
pistons falls with a constant acceleration
g. The tension of the string is then
equal to zero. This is a good example
of how careful we should be with lim-
iting transitions in physics. We should
always make sure that such a transi-
tion doesn’t alter the phenomenon.

Warmed by the hand pressing it against
the frosty window, the coin warms
and melts the ice under it. Since the
edge of the coin is slightly thicker
than its body, the area of contact at
first is primarily along its circumfer-
ence. The rest of the coin is separated
from the window by a thin layer of air.
The thermal conductivity of the air is



much less than that of the metal. So
the ice along the circumference is the
first tomelt. After the ice under the
edge melts enough, the rest of the coin
comes into contact with the ice, which
then starts to melt under the entire
area of the coin.

P19

Consider the case of the connection in
series first. The current in this circuit
is
I'= U ,
R +R
1%

where U is the voltage difference in
the circuit, R, = p(I/nz,?) is the resis-
tance of the thin wire (of radius r), R,
= pll/nzr,?) is the resistance of the thick
wire (of radius r,).

The power released by the current
on each of the resistances is equal to N
= PR—that is,

N =—U

S R
I(Q+&f

1

2
Ny = £ 2R,
(R, +R)

In the stationary regime—that is, when
the temperature of the wires no longer
changes—each of the wires releases
power equal to N’ = ks(T- T,) into the
surroundings, where k is the propor-
tionality factor, s = 2mzl is the surface
area of the wire, T'is the wire tempera-
ture, and T}, is the temperature of the
surroundings. In the stationary regime
N’ = N—that s,

U2
—Rl = k2nr1/(Tl —TO) ;
(R +R)

1 2

UZ
Esz = kznrzl(T;To) ,
(R[+R2)

where T, and T, are the temperatures
of the thin and thick wires, respec-
tively. Dividing the first equality by
the second, we get
T1 - T0 _ i . r
T,-T, R, T,
Sincer,>r,andR, >R, wegetT,- T,
>Ty—T, 0t T > T,,
Consider now the case of connec-

tionin parallel. The voltage drop on
the resistance R, and R, is then the

58]

&

same, and the power released on each
of themis

Y%
M_E7
1
n=U
2 R

2
Proceeding as we did in the first
case, in the stationary regime we get

2

U _
=k (T =T,
1
U
o=k (T-T),

R,
from which we obtain
"l R n
— r"
Tz To Rl 1

Substituting R, = p(l/nr?) and R, =
p(l/mz?), we arrive at the relation

Tl—T0:ﬁ<1
— r ’
Tz To 2

orT, 2T,

So in the first case the thin wire
heats up; in the second case, the thick
one.

Plot the track of a light beam from an
infinitely distant source through the
eye. The beam is subjected to two
refractions on the two surfaces of the
eye’s lens (fig. 6). According to the law
of refraction,

: F
s1n O 12
=0

sinf 1,

where n, is the absolute refractive
index of the first medium (water or
air), n, the absolute refractive index of
the lens.

This formula suggests that if n,
decreases (that is, if water is replaced
with air), angle B decreases as well.
This means that after refraction on
the outer surface of the lens, the beam
will go lower when the eye is in

retina

Figure 6

contact with air than when it’s in
contact with water. If under water the
image of a distant objectis projected
on the retina, the image of the same
object in the air will fall in front of the
retina. So it turns out the person is
nearsighted.

Brainteasers

B16

No, it isn’t symmetrical. Notice that
turning one of the stars upside down
gives us a figure with central symme-
try (fig. 7).

Figure 7

B17

First, notice that each ball on the left
pan is heavier than the ball of the
same color on the right (otherwise
there’s a ball on the left that’s lighter
than the ball of the same color on the
right, and we can then exchange them
without tipping the balance). If there
are no less than three balls on each
side, we could exchange the pair of
balls with minimum mass differences
without affecting the balance. So
there are at most two balls on each
side. Obviously, there can be one ball
in each pan. Two balls are also pos-
sible provided that the mass differ-
ence for each pair of balls of the same
color is the same.

B18

See figure 8.

B19

Four vertices are at the corners of the
square. Each of the vertices inside the
square is a common vertex of exactly
tworectangles. Let n be thenumber
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X= [0,
==V,
VBH Fi=vim s

, (7=11-8l)
Figure 8

of rectangles into which the square is
cut, m the number of points of the
square that are common vertices of
exactly two rectangles. The total number
of vertices for all the rectangles can
now be calculated in two ways. On
onesideit’s equal to4n, on the other
4 +2m. Som=2(n-1), whichis an
even number. Adding the four cor-
ners of the square we get m + 4, which
is also even.

The thermal expansion of mercury is
greater than that of steel, so the force
pushing the ball upward decreases
and the ball sinks lower.

Going to extremes

1. The solution to this problem is
similar to that for problem 4 in this
article.

2. (a) If the radius of the circum-
circle of triangle ABD isn’t smaller
than the radius of the circumcircle of
triangle ABC, then point H doesn’t
belong to the “double sector” (fig. 9)
delimited by the smaller arc AB of the
circle ABC and the arc symmetrical to
it with respect to AB. We can easily
see that the circles symmetrical to
circle ABC with respect to the three
sides of triangle ABC have a common

Figure 9
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point, the orthocenter H of ABC. This
implies that the three “double sec-
tors” built on each of the sides of ABC
have a unique common point. Itlies
inside the circumscribed circle only if
triangle ABC is acute, and then it
coincides with point H (fig. 9). If the
triangle isn’t acute the common point
coincides with the vertex of its non-
acute (that is, either right or acute)
angle (fig. 10).

Figure 10

(b) If the smallest circle passing
through points A, B, C contains some
other given point D inside it, then the
solution to problem (a) implies that D
is the orthocenter of the acute tri-
angle ABC. Therefore, any of the
circles circumscribed around the (obtuse!)
triangles ABD, BCD, or CAD pro-
vides a solution.

3. Thesolution to this problem is
similar to that for problem 8 in the
article.

4.Answer: 1-2.3=1+2+3. Ifx
is the largest of the numbers sought,
then xyz=x+y+z<3x—thatis, yz<
3. All that’s left is to work out all the
possibilities; yz=1-1,1-2,1-3.

5. Take the longest edge.

6. Consider the position of the checkers
one move before the first checker
returns to its starting place.

7.Answer: x, =x,=x,=X,=X,=0
or 2. First let’s show that all x, are
equal. Under the assumption that
this isn’t the case, choose the largest x,
and, if it isn’t unique, take the largest
x,for which x| < x, (we assume that x;
= x,). Because of the symmetry of the
system we can assume that this is the
number x,. Subtracting the fifth equa-
tion from the fourth, we arrive at a
contradiction: 0 > x,-x, = x>-x,2>0.

1980

Sox, =x,=%,=X,=X, =X wherex
sat1sfles the equatlon 2X x>,

8. Let Q, be the smallest cube from
the breakdown that touches the sur-
face of the original cube, Q, the small-
est cube adjacent to the face of Q,
parallel to its outer face F, Q, the
smallest cube adjacent to the face of
the cube Q, parallel to F, and so on.
We get a sequence of cubes that get
smaller and smaller, the last of which
is adjacent to the face of the original
cube parallel to F. This contradicts
the choiceof thecube Q.

9. (a) Let’s assume that airplanes
flew from 6 airports to airport O. Take
the two (A and B) for which the angle
AOB is the smallest. Then angle
AOB < 60°, which implies that one of
the distances AO or BO is greater than
AB, which is impossible.

(b) Use the “ordering rule.” Let’s
assume that at least one plane landed
at each airport. Then for any airport
A, there is a chain of airports A, A,, ...,
whereeach A stands for one of the
airports from which the plane flew to
A.. It’s easy to see that the chain has
to close up: a plane from A, will fly to
a certain airport A —thatis, A = A . If
n is greater than 2, we get a contradic-
tion: AA <AA <.<A A <AA
<AA,. So n= 2 and the set of airports
breaks down into pairs, which is
impossible with an odd number of
airports.

Kaleidoscope

1. At midnight the velocity of the
Earth’s rotation is added to its orbital
velocity, whereas at midday it’s sub-
tracted.

2. It moves faster in the winter in
the Northern Hemisphere, since in
this season the Farth passes its perihe-
lion.

3. Saturn’s ring isn’t a solid body.

4. Acceleration caused by the Sun
is approximately the same for both
the Earth and the Moon. The two of
them form a single system revolving
around its center of mass, which, in
turn, revolves around the Sun.

5. No, because (unlike the case of a
circular orbit) the force of gravity al-




ternately performs positive and nega-
tive work, so the planet or satellite
keeps speeding up and slowing down.

6. No satellite can hover over such a
region because its orbital plane has to
go through the center of the Earth.

7. No—the Earth and the Moon
revolve around different centers of
attraction.

8. No additional speed is needed
since bodies in the equatorial zone are
already in orbit.

9. The force is equal to that with
which the table acts on the Earth—
that is, with a force equivalent to the
table’s weight.

10. In spite of air resistance the
velocity of the satellite increases.
Although friction reduces the me-
chanical energy of the satellite, only
some of its potential energy is trans-
formed into heat; the rest is trans-
formed into kinetic energy.

The mental microexperiment.
Neither weight nor weightlessness
has anything to do with the collision.
The principal role is played by mass
and velocity. So when you're working
in outer space, be careful not to bump
into your spacecraft.

Tournament of
Towns

1. The identity can be proved either
by directly opening the brackets (note
that each fraction 1/k, k=1,2, ..., n,
appears in exactly k brackets on the
left side), or by induction on n.

2. Let r, and r, be the radius of
circles c and d and CD = I (fig. 11).

[ N—F
=<

Figure 11

Notice that the dilation with center C
and scale factor 2r /I takes the circle d
into the given smaller circle inside c;
and so the radius of the latter equals
2rr /L

Figure 12

3. Yes, it’s possible. An example is
shown in figure 12 (the eight cubes
thatare outof view arered).

4. Put aside one coin and divide the
rest into three equal piles of coins.
Two of them, say A and B, will neces-
sarily weigh the same, and two weigh-
ings are sufficient to identify them
and determine whether the third pile
C is lighter or heavier. Then pile A (or
B is divided in two and the halves are
weighed against each other. If they
balance, the coins in A are all genuine
and pile C contains one or both counter-
feit coins; if they don’t, A and B each
contain one counterfeit coin and C is
entirely genuine.

5. The maximum number of parts is
10,001 = 100* + 1. Consider the nth
graph G addedton-1graphs G, ...,
G,_, already drawn. The number of
parts of the plane that are split in two
by G, equals the number of arcs inter-
ceptedon G by G, .., G__| (including
two infinite arcs). So it doesn’t exceed
2n -1 (there are at most 2(n — 1) points
where G intersects G, ..., G, _ ).
Finally, recallthat1+3 +...+(2n-1)
=117,

6. The second quadrilateral is a
parallelogram whose sides are parallel
to the diagonals d, and d, of the first

AK}:KleszBza:b:a

ﬁ:KlLl
AC AC
KIB
" AB
_a+b
2a+b
Figure 13

one; the lengths of the sides are (a + b)/
(2a + b) times those of the correspond-
ing diagonals (fig. 13). For the squares,
a/b=1/2'"2=(a + b)/(2a + b). So the
areas of both quadrilaterals are equal
to (1/2)d,d,sin o, o being the angle be-
tweend, andd,.

7. The elephants weigh 5 metric
tons each. Let W, be the weight in
kilograms of the kth elephant from
the right and d, = W, — 5,000 > -5,000,
Then2d, +d, =0, whichyieldsd, =
(<2)'d,. Ifd,> 0, thend >1(d, isan
integer) and d, =-21%d, <-5,000; if d,
< 0, then similarly d ; < 5,000. It
follows that d, =0,d, =0,and W, =
5,000 for all k.

8. Use the equality of angles in-
scribed in the same arc and symmetry
of the thombus with respect to its
diagonal BD to prove successively
that angles BAP, BQP, RCB, and RAB
are equal. A nice point of the proof is
to show that R lies between B and Q;
this can be derived from the equalities
QP=QA=QC,whichmeansthat Q
is the point of circle CPQ most distant
from PC.

m
1000
=V
|
]
4
3
2
1 n
0 1 2 3 4 707 708
Figure 14

9. The number of pairs is 1,706.
The idea is to interpret the given
inequalities in terms of the coordi-
nate plane. A pair (n, m) satisfies
them if and only if the line y = 22x lies
between the lines y = mx/[n + 1) and y
= (m + 1)x/n—that is, intersects the
squarecell{(x,y): n<x<n+1,m<y
<m + 1} (fig. 14). To count up the
number of such squares for 0 < n <
1,000, 0 < m < 1,000, notice that it’s
equal to the number of intersections
of the line y = 2'2x with the lines x= 1,
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2, ., 1,000/212 (1,000/2 = 500 - 1.414
=707)and y =2, 3, ..., 1,000, which
yields 707 + 999 = 1,706. (Compare
this with the solution to problem 5.

10. Any basic collection arranged
in increasing order has the following
form:

(b) The smallest number possible is
6.

For examples, see figure 15. Since
any vertex of a dodecahedron belongs
to 3 of its 12 faces, the number 4 =
12/3 in (a) is minimal. In case (b) the
reasoning is somewhat more sophis-

wherep, g, 1, ... are arbitrary natural
numbers. The total of such a collec-
tionis N=(p+1)g+ 1)z +1)..-1. For
N =200 the number N+1=201=3-67
has only two prime factors. That’s
why in this case there are only three
basic collections: the trivial one (p=
200), the collection {1, 1, 3,3, .., 3} (p=
2, g = 66), and the collection (1, 1, ..., 1,
67,67} (p=66,q=2).

11. The median of a triangle divides
it into parts of equal area. Expressing
the equality of areas in terms of the
sides a and b, the median m between
them, the angle ybetween a and m,
and the angle 2y between m and b, we
obtain the equation amsiny= bmsin2y,
which gives us cosy=a/2b. Given a
and b we can thus constructy.

12. (a) We may take, for example,
the numbers 2k + 1, 3, and all the rest
equal to 1.

(b) The sum of n required odd inte-
gers must be equal to their product. So
nis odd, according to the condition n
=4k +3. Let m be the number of these
integers having the remainder 3 mod-
ulo 4 (the rest have the reminder 1).
Then the sum and the product of all n
integers have the same remainders
modulo4as2m-1and(-1)", respec-
tively. But thisisimpossible: for an
even m the first remainder is 3, the
second is 1; for an odd m they are 1 and
3, respectively.

13. (a) The smallest number pos-

L > ﬁiﬂ
D&

Figure 15
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ticated (a simple
{1,1,.., 1, p+1,p+1, ..., p+1, [p+1)(g+1), ..., (p+1)ig+1), ..}, | estimate 20/5
\ ptimes_\ gtimes_ /\ - rtimes =4 won't suf-
fice).

Figure 16

Consider 6 pairs of opposite verti-
ces (like A and B in figure 16) of an
icosahedron. If the number of marked
vertices is less than 6, then one of the
pairs (A, B) would be unmarked, and
one of the vertices of the pair (say, A)
would be joined by an edge to no more
than two marked vertices, C and D.
So among the 5 faces adjacent to A
there could be at most 2 - 2 = 4 faces
having a marked vertex, C or D. This
leaves at least one face unmarked.

14. The solution to problem 4 works
with 6k + 1 coins for any natural k; 103
=6-17+1.

15. This is the polynomial

=D (x2=1) ... (227'=1).

16. The answer to (b)is 3. Substi-
tute 500 for 200 in the solution to
problem 10 and notice that 501 also
has only 2 prime factors: 501 =3 - 167.

17. The smallestnumber of slices
is p+ g - 1. Dividing the cake into p
equal parts by p — 1 parallel cuts and
into g — 1 cuts parallel to the first ones,
we get the required partition into
p-1)+(g-1)+1=p+qg-1slices. To
prove that this number can’t be di-
minished, let’s represent any parti-
tion in question by a graph.

1990

Plot p + g points on a plane, p of
them for p equal parts of cake, gforg
equal parts. Join the pairs of points
corresponding to the parts that have a
common slice of the given partition in
them. The points and junctures are
called the vertices and edges of the
graph, respectively. Each edge is re-
lated to its own slice of cake, so the
number of slices isn’t less than the
number of edges. On the other hand,
every two vertices are connected by a
chain of edges with each other. (If
they aren’t, there is a connected sub-
set of the vertices, which aren’t joined
to any vertex outside the subset. This
corresponds to a part of cake that can
be distributed either among k < p
guests in the first case, or among I < g
guests in the second case. But k/p #
I/q for coprime p and ¢.) It remains to
notice that a connected graph with p +
gvertices has atleastp + g -1 edges.

D C E

18. Let the line AB meet CPat M
and CQ at N, and the line PQ meet
CD at E (fig.17). It suffices to show
that MH = HN. By the obvious simi-
larities of triangles APH and DPE and
triangles BQH and DQE, the follow-
ing equalities hold:

MH/AH=CE/DE = NH/BH.

Since AH = BH, we have MH = NH.

To obtain a solution with no calcu-
lations at all, consider a central projec-
tion of the figure onto a plane p pass-
ing through AB from a center O such
that the plane OCD is parallel top.

19. Yes, in both cases—such poly-
gons exist.

(a) A triangular prism with two




icosahedrons (fig. 15b) erected onits
bases satisfies all the conditions ex-
cept convexity. But the icosahedral
bulbs can easily be “flattened” by
stretching and contracting their edges.

~
™
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Figure 18

(b) Change the prism in the ex-
ample above to the polyhedron shown
in figure 18 and “flatten” the icosahe-
dral bulbs so that the faces adjacent to
the shaded triangles become the ex-
tensions of the latter to form 6 quad-
rangular faces of a new polyhedron.
Its top view isshown in figure 19.

Figure 19

20. Let S < 1 be the area of one of the
blots, x and y the lengths of its projec-
tions onto the perpendicular sides of
the square; then § < §'2 < xy <
(x + y)/2. Adding up these inequali-
ties for all the blots and taking into ac-
count the fact that projections of dif-
ferent blots are disjoint, we determine
that the total area of the blot is less
than (a +a)/2 = a.

Natural logarithm

1.Wehavet=(1/k)In(N/N). The
generation time, 20 minutes, is how
long it takes to double the population,
orN/N_=2. So t,=(1/k)In2. Since t,
=20 min, 20 min = (1/k) In 2, k =
In 2/20 min. Usinga calculator, we
get In2 = 0.6931, so that k = 0.6931/20

min = 0.0347 (to three significant fig-
ures).

2. Five hours and thirty-two min-
utes.

3. The rational number 271,801/
99,990 has the value 2.7182818281828...,
where 1828 repeats infinitely many
times. We need only show that the
digit in the tenth decimal place isn’t 1.
This requires use of the binomial ex-
pansion for kt = 1 and a calculator or
computer that can carry 11 or 12 sig-
nificant digits. But you'llneed to be
very clever to evaluate the m = 12 case.
An ordinary calculator lacks the nec-
essary precision.

Math surprises

1089.1f a, b, ¢ are the decimal digits
of thelarger of the two numbers that
you take the difference of, then the
digits of the difference are a-c—1, 9,
10 + c—a. But the sum of 100{a-c—1)
+90+(10+c-a)and 100(10 + c—a) +
90 +(a-c—-1)is 1089.

6174.1f abed is the largest number
you can form with the four digits a, b,
¢, d, then dcba is the smallest, and the
difference between these two num-
bers is 999(a— d) + 90(b- ¢). Since both
a—d and b - ¢ are single-digit num-
bers, thisleaves at most 100 cases to
check, and we’ll leave the rest of the
problem to you. (In fact, there are
other ways to reduce the work still
further.)

153. Any five-digit number is at
least 10000, but the sum of the cubes
of its digits is less than five times 1000
= 5000, so that our operation decreases
it. In the same way, you can see that
the operation decreases longer num-
bers even more. So you need only
check numbers with at most four
digits. Once again, there are ways to
reduce the work a bit further, but this
time there almost inevitably remains
quite a lot of sheer checking to be
done.

0, 0, 0, 0. Here there’s a very nice
argument. Just look at whether the
numbers you started with are even (E)
orodd(O). Forexample,

either O,E,E,EorE, O, 0,0

yields O,EE, O;
then O,E, O,E,
and then 0

and finally E, EE,

Every pattern of odds and evens ap-
pears here (up to cyclic rearrange-
ment), and so we see that after at most
four turns all the numbers will be
even. Then after four more turns
they’ll be multiples of 4, and four
turns later they’ll be multiples of 8,
and so on. But since the numbers
aren't getting any bigger, the only way
they can end up being divisible by a
very large power of 2 is by being iden-
tically zero.

It turns out that the same thing
happens whenever the number of starting
numbers is any power of 2, but in all
other cases there are starting patterns
that don’t ultimately end in zeros.

1,11, 21, 1211, etc. What's the rule
here? You just read each sequence
aloud in a suitable way, and you’ll get
the next one. For example, the first
sequence consists of one “one,” so the
second sequence is “one one.” This
consists of two “one,” so the next
sequence is “two one,” which in turn
may be described as one “two,” one
“one,” and so leads to “one two one
one,” and so on.

The problem about the rate of growth
is much harder. I proved some time
ago that each of the later sequences is
about 1.303577269034296391257
09911215255189073070250465940 ...
times as long as the one before it,
where the approximation gets better
and better for later and later sequences.
This mysterious number is the largest
solution of the equation

f=x"1—x% -2x%8 —x57 + 2x%6 + 2x65 +
x#_x®_x2 _x0 _xD_x¥ 4 2xB 4+ 5x7
+3x°0—2x5 — 10x°* — 3x%3 — 2x°2 + 6x5!
+6x°0 + x* +9x* — 3x* — Tx*6 — 8x*5 —
8x* +10x® + 6x2 + 8x" —5xY - 12x¥ +
7x8 —7x7 + 7x% + x® -3x% + 10x3 + x2
—6x31 - 2x30 - 10x%° — 3x28 + 2.x27 + 9x26
—3x% ¢+ 14x* - 8x2 - 7x*! + 9x%0 4+ 3x19
—4x® —10xY7 - 7x%6 + 12x%5 + 7xM + 2xB
—12x2 4x"1 _2x0 4 5x° + X - 7x0 + 7x°
—4x*+ 12x3 - 6x> + 3x - 6.

(Thanks to Ilan Vardi for his accurate recom-
putation of this number and its defining equa-
tion.)
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CHECKMATE!

Rook versus Knight

Kingdoms lost because of a horse

by Yevgeny Gik
HIS CORRELATION OF FORCES, 5. Rhé6+ Kg7 4. Rh8+ Kf7
rook vs. knight, is theoretically a 6. Reb Kf8!
wash. But if the horse strays a bit 7. Kd7 Kf7 There’s no need to go any further—
too far from its king, its fate 8. Rhé! we now have before us the étude of
hangs by a thread. It’s interesting that Kopnin we just looked at. Sowe can
computers have had a great deal of The author of the study supple- say that the machine constructed a
success in this sort of endgame. In  ments it with a number of additional more complicated study than the famous
particular, a2 machine has found a variations. Here’s the longest: composer of chess problems!
record-setting position in which the If a win is possible in the battle
rook, given the best possible play by 6. .. Na7+ between rook and knight, the com-
both sides, takes the knight in the 7. Kde! Kf8 puter will always find it. But a human
twenty-seventh move—white: Kcl, 8. Kd7 Nb5 being is capable of working through
Rf8; black: Ka3, Ne2.! 9. Re3 Nd4 such endgames. Let’s take a look at
Let’s look at an interesting étude. 10. Rd3 Nc2 three interesting examples from the
&* \\\\\ \\\ ‘5“ 11. Kd6 Ki7 play of grandmasters.
AR\ 12. RB+  Keb —
AN NN 13. K¢5  Nel N N & N
NN VBN ke N ST
& B N N 15. Re2 A\ N
NN NN AN AN
N N DN N MEOER
° \\\ \\\‘\ \\\Q\ § Now let’s look at the following &\\§ &\\\Q § :\\\\\
N N R N spl N N N N RN
N X N N position. \ N \ N &
NN N N\ x\\\\\\\@\\i\\\\\\ ﬁ\\\ \\\\\ O
, M DD DD NN
A. Kopnin, 1987 x\ N N \\Q R
To win. B \& \\\Q \\\\ \s\\ Neiman—Steinitz
N MDA (Baden-Baden, 1870)
The main variation of the solution \\\\ \‘ g\ &\\
is this: §\\\ &\\ Q\% \\N The first Chess King' efficiently
N N N N ini :
L mha e \§\ & &\\ \\\\\\ finishes the game
2. Kd7 Nb6+ To win. 1. .. Re4!
3. Kcb Nc8 2. NdI
4. Rh7+ Ki6! The computer that studied it indi-
cated these initial moves: Or 2. Ng2 Kf5 3. Kf7 Kg4 4.Kf6
'In this installment of Checkmate! Re2; 2. Nc2 Kd5 3 }\IaB Kc5 4. Kf7 K4
the algebraic method of notation is used, 1. Ke5 Nad 5.NblRe2,andit’sall over.
in which only the piece and its 2. Rh7+ Ke8
destination are given.—Ed. 3. Kd6 Nb6 2. .. Rf4+
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3. Kg7

After 3. Ke8 Rf3!, white would be in
avise: 4. Nb2 Rb3.

3. . Rf3
4. Kgb6

There’s no saving the horse even
with 4. Nb2 Kd5 5. Kg6 (5. Nad Rb3) 5.
...Kd4 6. Kg5Rfl 7.Kg4Rb1 8. Na4
Rb4.

Kg5
Kg4
Nb2
Na4

©NoNT R

Bogolyubov—Rubenstein
(San Remo, 1930)

| R Nc4+

It’s not hard to convince ourselves
that 1. ... Kg2 won’t save black.
2. Kd3 Nb2+
The knight isn’t able to join up
with his king, and 2. ... Nd6 won’t
help either: 3. Rd5 Ne8 4. Kd4 Nf6 5.
Rf5Ne8 6.Kc5.
3. Ke2 Nc4
For 3. ... Kg2, the response 4. Rh4! is
decisive; here’s another variation: 3.

... Na4 4.Rg5+ Kh2 5.Kf2 Kh3 6.Kf3
Kh2 7.Rg2+Kh3 8. Rc2 Nb6 9. Rcé6.

4. Rc5 Nd6
5. Kf3 Kh2
6. Rd5 Nc4
7. Kf2 Kh3

8. Rd3+ Kh2
9. Rd4
Black resigns.

M
N N

Karpov—Ftacnik
(Salonika, 1988)

This was the last game of the Chess
Olympiad. Although the USSR team
was assured of victory, it was impor-
tant for the former world champion to
winin order to take first place on his
board. Almost up to the very end the

have been reunited with his king.

84. Rf3+!  Kgd
Now, as in areal étude, two echo-
variations arise. One was actually
played out, and in the other the basic
ideais realized in the form of a link-
age: 84 ...Kg2 85.Rc3! Nd2 (85. ...
Nb6 86.Rb3 Na4 87.Kd5) 86.Rc2.
85. Rd3!  Kg5
These replies are no better: 85. ...
NDb2 86.Rd2! Nc4 87.Rd4; 85. ... Nb6
86. Rb3.
86. Kd5 Nb6+
Another trap for the knight: 86. ...
Nb2 87.Rd2 Na4 88.Rc2 Nb6 89.Kd6
Kf5 90. Re5+ Kf6 91. Re6 Nad 92. Kd5

Kf5 93.Kd4 Nb2 94. Rcl Ke6 95. Rbl
Na4 96.Rb4.

Czech grandmaster defended himself 87. Ke5 Nc4+
precisely, but as soon as the rook-vs.- 88. Ked! Nbé6
knight endgame appeared on the board, 89. Rd8! Nc4
he made a fatal mistake. 90. Rd4 Kb6
91. Keb5 Nc8
83. ... Nc4? 92. Keb Na7
93. Kd7
The correct move would have been
83. ... Na4!, and in a roundabout way— Black resigns. (]
b2-d1-£2 (e3) or c¢5-d3—the knight would
7 D
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“There are often darys when I go back
to the basics I learned at Kerryon.”

—Stephen Carmichael, Kenyon Class of 1967,
professor of anatomy, Mayo Medical School

or many science students, the small
college’s emphasis on strong teacher-
student relationships and opportunities to
participate in — and be recognized for —
solid research with faculty members are
powerfully appealing. There is also the
promise of access to sophisticated equipment and
instrumentation that the small college provides.

These qualities, as well as its renown as a
premier liberal arts and sciences institution, make
Kenyon College an ideal choice for students who
plan to pursue education and careers in the
sciences. From 1980 to 1990, an average of 24
percent of Kenyon seniors annually were awarded
degrees in the natural sciences — biology, chemis-
try, mathematics, physics, and psychology. That is
more than three times the national average of 7
percent. And fully 75 percent of the College’s
science graduates pursue advanced studies.

Such results would not be possible without
faculty members dedicated to teaching, and
Kenyon's are among the most able and committed
at any small college. But because they believe
learning is not confined to the classroom, they also
actively involve themselves and their students in
research projects. Currently, those projects are
sponsored by such prestigious organizations as the
National Institutes of Health and the National
Science Foundation.

Together, students and faculty members in the
sciences create an exciting atmosphere at Kenyon
for study in the natural sciences. Both find the
camaraderie and sense of shared purpose potent
stimuli for learning and working at the peak of their
capabilities.

For more information on science study at
Kenyon College, and on special scholarships for
science students, please write or call:

Office of Admissions
Ransom Hall
Kenyon College
Gambier, Ohio
43022-9623
800-848-2468

Kenyon physics major Aaron Glatzer (left) consults with Associate Professor of

Mathematics James White on his research, which involves building electronic circuits to I(el I Ol l ( Ol le e
imitate neurons and neural networks.
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