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Siberian Dogs in the Snow |Lg}g-l9lllbyEranzMarc

fff hen we decided to go to exffemes in this issue oI Quantum (see A.L. Rosenthal's article on page 8), all kinds of extremes sprang
W to mind. As we enter the cold season in the Northem Hemisphere/ extremes of temperature were at the forefront. And when
we're almost blinded by a field of snow, we perceive white as one extreme of a continuum of color (whether we think of it as all colors
combined or removed, depending on the medium). Franz Marc {1880-1916) touches on these extremes in his expressive portrait of
his sheepdog Russi, seen from two angles.

Marc spent much o{ his brief career painting animals. (His life was cut short near Verdun during World War I.) He developed a
profound nature mysticism that, combined with an tuge toward abstraction and a symbolism of colors, tended to produce intensely
colored canvases o{ animal and vegetable life. Marc believed this was the best way to express the conflicts and resolutions of natural
forces that civilization shields from us or teaches us to ignore.

Some elements of his later style are absent from Siberian Dogs in the Snow-mlost obviously, the color symbolism. At this point
in his development Marc was more concemed with the interaction o{ color and light. h a letter to a {ellow artist, Marc described
how the painting arose out of an experiment in the use of a prism to clao.lfu tonal relationships.
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For the Scottish engineer and instrument
maker fames Watt, the 1780s were a very
productive decade. Fifteen years earlier, while
working on a Newcomen steam engine, he
greatly improved its efficiency by adding a
separate condenser chamber. But in l78l a
business partner urged him to invent a rotary
steam engine for use in com, malt/ and cotton
mills, and Watt went to work. In that vear he
devised the sun-and-planet gear, which al-
lowed a shaft to produce two revolutions for
each stroke of the engine. In 1782 he patented
the double-acting engine, in which the piston
pulled as well as pushed. This engine required
a new method of rigidly connecting the pis-
ton, engaged in linear motioq to another part,
engaged jn rotary motion. So in 1784 he came
up with the required linearizing device. Watt
considered this "one of the most ingenious,
simple pieces of mechanism I have contrived,,
and it's the subiect of "Making the Crooked
Straight" on page 20. In 1 788 he added a cen-
trifugal govemor to automatically control the
speed of the engine, and with his invention of
the pressure gauge in 17 9O, theW att engine
was all but ready to make its dramatic contri-
bution to the Industrial Revolution.

For a look at a cleaner, quieter device at the
forefront of modem technology, tum to ,,Liglrt-

ning in a Cryst al" onpage 12.
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And news of a partnership

FtrSE ARE EXCITING TIMES we live rr, and more of
us than ever before are finding ourselves on planes
heading to or from Mosc ow. Quantum staff will be
spending a week in the Soviet caprtal, planning future

issues and working to improve the logistics of ourbihem-
ispheric production.

One recent visitor to the USSR was Lynn Arthur Steen,
who teaches mathematics at St. Olaf College in Minne-
sota and sewes as a member of the Mathematical Sciences
Education Board of the National Research Council. Dur-
inghis week-long stay he investigated the Soviet approach
to math education. What follows are Professor Steen's
impressions and thoughts about math and science educa-
tion in the two countries, which both students and
teachers will no doubt find of interest.

In the past few years Americans have learned quite a bit about the
Sorriet Union. We know that their economy is deteriorating, national stri{e
is increasing and their mfitary empire is crumbling. We can also see that
the USSR is seeking to integrate itself into the world economy and expand
contacts in all areas.

One thing America did not learn from news coverage o{ recent US-
Soviet relations, however, is how the USSR has managed to produce so
many talented mathematicians and scientists, who shocked us with
Spumik and continue to impress us in oll,mpiads and scientfic exchanges.

The answer lies in one of the Soviet Union's best-kqlt secrets: a system of
mathematics education that produced a radition of excellence in research
that is as good as any produced in Westem countries.

Even as Gorbachev was touring the United States this past spring, a

small delegation of US mathematicians visited Moscow at the invitation of
Yevgeny Velikhov of the Soviet Academy of Sciences to explore means of
cooperation in mathematics education. The invitation was especially
timely, since math and science education in the United States is currendy
under siege.

Many parallels between mathematics education in the Soviet Union
and in the US can be seeq but the differences are more striking. The US can
leam much from both the similarities and the differences.

)ust as President Bush has laid out national goals for mathematics and
science education for the United States, so Gorbachev has established a

commission to improve mathematics education in the Soviet Union. The
emphasis irr the USSR is to increase the role of computers in education at
all Ievels.

In the Soviet Union, iust as in the United States, tlere is great uneven-
ness from school to school, and from teacher to teacher, in the quality of
mathematics education. Both nations have responded with similar inter-
ventions: special high schools for math and science and university-based
enrichment programs for students who can benefit Irom greater chal-
lenges.

Both countries debate how best to deploy limited resources {or math
education. Consewatives (mostly university professors) prefer programs

that nurture highly talented students, wherever they canbe formd; reform-
ers seek to "raise the water table" by improving mathematics education Ior
everybody.

In one important area, however, there is a striking contrast between the
US practice and the Soviet tradition: testing. US students go through
sixteen years o{ short-answer, multiple-choice tests in mathematics,
beginning with number facts in prirnary school and continuing right
through a multiple-choice Graduate Remrd Exam administered to college
seniors. Lr the USS\ mathematics tests are often given in oral or written
(essay) form, smulating the type oI environment in which mathematical
ideas are used in &e working world.

Bite-sized test items eviscerate education as surely as TV sound bites
trivialize politics. In contrast, open-ended tests requiring holistic re-
sponses encurage higher-order thinking and creative problem solving.

Students in the USSR leam from their experience with school tests to
think before answering. US students instead train {or rapid response, leam-
ing how to take tests rather than how to solve problems. [r Soviet schools

tests are used as an intrinsic part o{ the curriculum, and the teacher's re-
sponses focus on each individual student in order to prevent failure.

The mathematics curriculum in the USSR is, for the most paft, more
forrnal and traditional than that becoming common irr the United States.
The mathematical tools of academia predominate; those oI the state or
business ({or instance, statistics, discrete mathematics) are almost invis-
ible. So in this respect US schools appear better attuned to the real needs o{
sociery.

But we have a lot to learn from the USSR in the area oI testing. Tests
should be part oI the ctmiculum-an opportuniry to leam and be taught-
not separate from it. They should enable students to reveal what they can
dq oot merely what they don't know or can't quickly recall. ff we are to be
number one in mathematics and science, as President Bush has urged we
need tests that measure what's important, not iust what's easy and cheap
to grade.

As part of NSTA's efforts to reform the scopg sequence/
and coordination of secondary science education in this
count4/, we are developing a prototype interactive digital
video disk teaching system for high-level ability assess-
ment. Rather than requiring students to recall isolated
facts about phenomena, this exciting technology will
allow measurement of a student's understanding of scien-
tific concepts. The interactive optical disk may prove to be
an important element in a new approach to teaching and
testing.

I'M HAPPY TO ANNOUNCE that Quantum has en-
tered into an agreement with the intemational publisher
Springer-Verlag which is based in Heidelberg, Germany,
and has offices in New York, Tokyo, London, and else-
where. The National Science Teachers Association will
retain editorial control over Quantumt and our working
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relationship with Qriantum Bureau
in Moscow will remain the same.
Springer will handle our printing, sub-
scriptions, and mailing; NSTA and
Springer will both engage in promo-
tion and solicitation of advertisements.

As part of the agreement/ Quan-
tum wlll be published bimonthly
throughout the year beginning with
the September/October 1991 issue, sb
those who have subscribed at full
price (as opposed to the introductory
price of $9.95) will receive six issues,
not four. Those who renew will, of
course/ receive six issues peryear.

Wewelcome Springerto the Quan-
tumventlxe. We are confident that
the impressive resources of Springer-
Verlag will help make Quantum avatT-

able wherever English is spoken or
taught in schools. With that kind of
exposure/ Quantum is more Likely to
attract hrgh-quality submissions, and
our readers will share in the excite-
ment of being part of an intemational
experience.

-BillG. Aldridge

Be a lactol' in lhe

OUANTUM
squalioll!

Have you written an article that
you think belongs in Quantum!
Do you have an unusual topic that
students would find fun and chal-
lenging? Do you know of anyone
who would make a great Quan-
tum author? Write to us andwe'll
send you the editorial guidelines
for prospective Quantum contribu-
tors. Scientists and teachers in
any country are invited to submit
material, but it must be written in
colloquial English and at a level
appropriate for Quantum's pre-
dominantly high school reader-
ship.

Send your inquiries to:

Managing Editor
Quantum

17 42 Connecticut Avenue NW
Washington, DC 2OOO9-ll7l

THE STUDENT MAGAZINE OF MATH AND SCIENCE
A pubkcation of the National Science Teachers Association NSZA)

e) Quantum Bureau of the USSR Academy of Sciences
in coniunctionwith

the American Association of Physics Teachers (AAPT)
d the National Council of Teachers of Mathematics (NCTM)

Publisher
Bill G. Aldridge, Executive Director, NSTA

USSR editor in chief
Yuri Ossipyan

Vice President, USSR Academy of Sciences

US editor in chief for physics
Sheldon Lee Glashow

Nobel Larreate, Harvard University

US editor in chief for mathematics

Managing editor
Timothy Weber

Production editor
Elisabeth Tobia

Intern ation al consultant
Edward Lozansky

Advertising dfuector
Paul Kuntzler

William P. Thurston Dfuector of NSTApublications
Fields Medalist, Princeton University Phyllis Marcuccio

US aduisoryboad
Bernard V. Khoury, Executive Officer, AAPT
|ames D. Gates, Executive Director, NCTM

Lida K. Barrett, Dean, College of Arts and Sciences, Mississippi State University, MS
George Berzsenyi, Pro{essor of Mathematics, Rose-Hulman Institute of Techlology, IN

Arthur Eisenkraft, Science Department Chair, Fox Lane High School, NY
lrdy Eranz, Professor of Physics, West Virginia University, WV

Donald F. Holcomb, Professor of Physics, Comell Universit, NIY
Margaret ). Kenney, Associate Professor of Mathematics, Boston College, MA

Larry D. Kirkpatrick, Professor of Physics, Montana State University, MT
Robert Resnick, Pro{essor of Physics, Rensselaer Polytechnic krstitute, NY
Mark E. Saul, Computer Consultant/Coordinator, Bronxville School, NY

Barbara I. Stott, Mathematics Teacher, Riverdale High Schoof LA

USSR aduisoryboad
Sergey Krotov, Chairman, Quantum Bureau

Victor Borovishki, Depury Editor in Chie{, Kvant magazine
Alexander Buzdin, Professor of Physics, Moscow State University

Alexey Sosinsky, Professor o{ Mathematics, Moscow Electronic Machine Design lnstitute

Quantum (ISSN 1 048-8820) contains authorized English-language transla-
tions from Kvant, a physics and mathematics magazine published by the
Academy of Sciences of the USSR and the Academy of Pedagogical Sciences
of the USSR, as well as original material in English. Copyright O 1990
National Science Teachers Association. Subscription price for one year (six
issues): individual, $18; student, $14; institution/llbrary, $28; foreign, $26.
Bulk subscriptions for students 20-49 copies, $ 12 each; 50 + copies, $ 10
each. Correspondence about sub-
scriptions, advertising, and editorial
matters should be addresse d to Quan-
tumt 1742 Connecticut Avenue
NW, Washington, DC 20009-ll7l.

This project was supported, in part,
by the

National Science Foundation
Opinions exprsssgd are thosg o{ the authors
and not ngcessarily those ol the Foundation

OUAIITUltil



Tomahaullr lhl'ouuinU made

No, it's not "all in the wrist",

byV, A. Davydov

HEN I WAS A BOY, BACK
in the 1960s, my friends and I
were fascinated by the novels
of |ames Fennimore Cooper

and others. We dreamed of the adven-
turous life among the Indian tribes of
North America. Making a lasso out of
a clothesline, we tried to catch a bush,
a tree branch/ or even an unfortunate
cat chancing to emerge from the base-
ment to doze in the sun. But most of
all we envied the skill with which
Indians wielded their menacing
weapon-the tomahawk.

|ust about every author of "krdian"
novels devotes some pages'to the
wonderful art of tomahawk throwing.
Our interest in the problem was kept
at a fever pitch by the movies. At that
time Indian films were very popular,
and their heroes never missed a chance
to throw a tomahawk. Take the fol-
lowing scene. An Indian tribe decides
to punish a paleface. He's tied up and

<<-:_s_6E

thrown against the wall of his bunga-
low, and each Indian throws his toma-
hawk at him. The last tomahawk
cuts the rope, and when the uncon-
scious victim slides to the ground the
moviegoers see the outline of a hu-
man body formed by tomahawks stuck
in the wall. After the film was over
everyone was eager if not to master
hatchet throwing (we realized that it
was beyond the capacity of a paleface
boy) then at least to understand the
technique Native Americans used to
throw tomahawks.

The younger generation isn't as

interested anymore in "Indian ques-
tions." My own childrerl for instance,

r'ii

4 1w 2.30 3. 30 !.f"> L 2n'

q.8C u.ev 7 50 8.50

"The axe cleaved the air in front of
Heyward, and cutting some of flowing

ringlets of Alice, buried itself and quivered
in the tree above her head."

-James 
Fennimore Cooper, The Last of
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can't tell a Huron from a Comanche
and hardly know who Osceola was.
Nevertheless, they're still impressed
by the fanustic ability of NortJr American
natives in rnanipulating their tradi-
tional weapon.

The basic idea behind the theory of
hatchet throwing was bom when we
started hiking regularly. Finding a dry
tree trunk near our campsite (and
there are lots of dead trees in our
forests), we'd try to hit it with a hatchet.
We immediately discovered an inter-
esting fact: i{ the person throwing the
hatchet stands at a certain distance
from the tree, the probability that the
hatchet will stick in the tree (and not
fali back after the hitting the tree with
the butt or handle) suddenly increases.
Only a little practice was needed to
ensure that you'd hit the target tree,
say, ahundredtimes out of ahundred-
provided, of course, you were stand-
ing at the proper distance. My at-
tempts to understand this phenome-
non led me to formulate a model,
which I'11now try to explain. You'll
see that in order to master tomahawk
throwing, you don't have to be an
Indian. What's really needed is skill
in estimating distances. Once you
know how to do that, the rest is a
cinch.

So let's take a look at the model.
The problem is obviously divided into
two parts. First, you have to be able to
at least hit apole or a tree trunkwith
a hatchet; second, you have to hit it
with the cutting edge and not the butt
or handle. I'11 assume you can man-
age the first problem on your own.

While throwing, you move your
hand in the following way. The arm
holding the hatchet rotates at the
elbowwith an angularvelocity rrl and
the throw takes place when the veloc-
ity of the hatchet's center of mass is
dirested.lrDri zontally. Strictly speak-
ing, i{ we want the hatchet to hit a
certain spot on the pole, its direction
at the moment of release might be
something other than horizontal. But

> we've posed a more modest problem:
g how to embed the tomahawk in a
q vertical pole at any spot whatsoever.
E [r this case we can ignore the effect of
E- gravity. In an actual experiment the
E point of impact would be lower.

Lr this modei we also assume (and
this is veryimportantlthat thehand
doesn't give the hatchet any addi-
tional rotation. Try it yourself and
you'l1 see that it's practically impos-
sible to add rotation to the toma-
hawk's motion by moving your palm.
You can only release the tomahawk
and let it move freely.

Let's introduce the following para-
meters (see the figure on the facing
page): l is the distance from the arm's
center of rotation (the elbow) to point
B on the handle where we hold the
tomahawk; a is the distance from
point B topoint 71,[ which is the center
of the hatchet's mass; o( is the angle
between the arm and the handle. The
angle o can have different values, but
it's easier to *rrow wh en a = nl2. The
velocity of the hatchet's center of
mass is then described by the follow-
ing equation:

,=o\fo\1.
Now let's define the angular veloc-

ity of rotation of a thrown tomahawk.
The simplest way to do that is to shift
to a reference system that moves with
the hatchet's center of mass with
velocity v. Point M of this reference
system (the center of mass) doesn't
move, whereas point B (like every
other point of the tomahawk) rotates
around Mi the velocity u of point B is
at any moment directed perpendicu-
larly to the handle and equals rora,
where rrru is the angular velocity of
rotation o{ the flying tomahawk. hr a
stationary reference system the ve-
locity roi of point B at the moment of
release is directed perpendicularly to
/-that is, along the handle. So

Lt=0) a=
B

Substituting

,=r\/ ,r?*P,
we get

ABa = (Da ,

0u=0

-that is, a fiying tomahawk rotates
with an angular velocity ro equal to
the angularvelocity of the hand dur-
ing the throw. This conclusion is

valid even if angle o( isn't n/2. In spite
of its simplicity, this result is very im-
portant. It means that the ratio of the
translational velocity of the toma-
hawk's center of mass to its angular
velocity of rotation doesn't depend on
the "force of the throw" (the momen-
tum transferred to the hatchet at the
moment of release) and equals

t..)o'+ l'

This means that the distance I cov-
ered by a flying hatchet afterlfull
rotations also doesn't depend on the
t}rowing force. Since the time needed
{or n rotations is equal to Znnf a, we
get the following fistance:

L,=2finv/ a2 + 12 .

This is realTy aremarkable conclu-
sion: there's a range of distances 2,,
and to make a successful throw you
have to position yourself at the fol-
lowing distance from the target:

L,+ arctan(*)J ,'.V
(the second term arisingbecause the
hatchet's handle makes an angle of
xc tan(l1 al a the vertical at the moment
of release).

Now let's estimate the magnitude
of the elementary "euantum" Ir-
that is, the distance covered by the
hatchet after one full turn. Let 1 :
33 cm, a : 20 cm (measurements
taken from my own arm and my own
ca4renter's hatchet). The calculation
givesusl, :2.42m. Soif Ithrowmy
hatchet from a distance of 2.82 m
(don't forget to add the arc tangent
term to l,), it hits the target after one
full tum.

My experience has shown that,
with hardly any practice, you can hit

,r=V
(r)

)
- (co/)-

OUAITITUlli|/IIATURI



the target from a distarice of Lrand Lr.
Mastering the subsequent "quantum
levels" is more difficult, but many
friends of mine were able to hit a tree
trunk {rom a'distance of In (more than
10 meters).

"This is all very nice," you may be
thinking. "But an Indian can hit his
target from other distances as well,
not just from those equal to 1,. How
do you explain that?"

It seems to be quite simple. There's
aparameter zr in ourmodel that can be
easily altered: all you have to do is
shift the palm of your hand to another
position on the tomahawk's handle.
This shift modifies the whole range of
throwing distances. It also changes
the location of point B, which results
in a "blurrin g" of Ln"levels" and the
appearance of a "zonal structure." klside
each of the zones we can adiust point
B (that is, the value of the parameter a)

to a position ensuring a successful
throw. But we can do more than that.
If the tomahawk shandle is longenouglr,
we can get the zones colresponding to
adjacent leveis I, and I,*, to overlap.

Let's estimate the handle lengh b for
which the nth level I, equais the
(n + I )th level corresponding to the
minimum possible distance a*n from
point B to the center of mass M. This
condition gives us the following equa-
tion:

znnt/ P * t] =2n(n+D17 *
My experience has shown that it's

hard to throw the hatchet if a is less
than l0 cm. So let's assume thata-,.
equals 10 cm. Solving the last equa-
tion, we get

(2n+ l) 12 + (n+ 1)'oi,,,

An examination of this equation shows
that the longest handle is needed to
ensure the overlap of the first and
second zones-that is, for n = I.
Substitutingl:33 cfl, d*in: l0 cm,
andn : 1, we get ahandle length of b
= 50 cm. Overlap of the second and
third zones (n:2lris achieved if the
tomahawk's handle is 40 cm long,
and so on. So to be able to hit any
target from any distance, b has to be

rather large. That's why hrdian toma-
hawks have such long handles!

Actually, though, even shorter handles

will do: the hatchet can hit the tree
trunk at either the upper or lower part
of the cutting edge, which brings the
boundaries of the zones still closer.
My experience suggests that a handle
length of about 50 cm is quite suffi-
cient.

Our model shows that there's no
difficulty in mastering the art of toma-
hawk throwing. You just have to be "

able to judge the distance to the target
and hold the hatchet at the right place.

A good idea is to cut marks on the
handle showing the respective target
distances.

But how do ieal Indians throw
tomahawks? It's quite possible they
do it just the way I've described. Or
maybe they know how to give the
tomahawk an additional rotation with
a flip of the hand? I have no idea, since
I've never met a single Native Ameri-
can. I certainly hope that I will some-
day, and that I won't pass up the
opportunity to learn more secrets of
this remarkable art.

Tomahawk throwing is an excit-
ing sport. Maybe in the not-so-distant
future its practitioners will organize
an association and sponsor tourna-
ments. And-who knows-maybe
one day this sport will even be in-
cluded in the Olympic Gamesl O

Does your library have

Quantum ?
If not, talk to your hbrarianl

Qttantttm is a rcsource that bclongs
in every high schot-r1 and collegc library.
"Highly recommended."-lib ra4' lour -

ndl
See page 55 ior subscription infor-

mation.
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which with its Woods
Hole crew discovered

The Story of Alvin
VICTORIA A. KAHARL
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an unimagined world
filled with bizarre crea-

tures, black smokers, and
thermal vents-not to men-

tion the HMS Titanic. Now, in
Water Baby, Victoria Kaharl
provides a riveting, warts-and-
all portrait of the scientists and
colorful crew who dove to the
bottom of the sea ln Alvin.
$21.95, 348 pp.
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BRAINTEASERS

Just lol' IhE lun ol il
Problems offered for your enjoyment

by G A. Halperin, V.V. Proizvolov,'N.n. Rodina,
L.M. Salakhov, and L.A. Steingraz

816
Is the pattern shown in figure 1 symmetrical?

o
o
N
G
Z
E
6

=EU
a:

817
You have two red balls, two blue ones, two green/ two
yellow, and two white. A number of balls of different
colors areplaced on the leftpan of abalance while the
otherballs of the same colors are put on the right one.
The balance tips to the left. If you exchange any pair of
balls of the same color, however, the balance either tips
to the right or stays even. How many balls are there on
the balance?

81B
Move a single match in each row of figure 2 to get a true
equality.

Vsflf, fVfflJ ,

\/fl.=$f,+VflflJ,
V[flryflJ+Vfru FisureZ

819
A square is cut into a number of rectangles in such a
way that nopoint of the square is a commonvertex o{
four rectangles. Prove that the number of points of the
square that are the vertices of rectangles is even.

820
A steel ball floats in mercury. Will the depth of immer-
sion increase or decrease as the temperature dses? O

SOLUTIONS ON PAGE 59
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0oinUIo exll'elno$

Sometimes an "end run" is more direct than
a "dive up the middle"

byA. L. Rosenthal

I F YOU WANT TO ACQUIRE

! some skill in solvingmathemati-
! cal problems, you should try to
I master the more or iess common
approaches, techniques, and methods
of mathematical reasoning. Here's
one verygeneral approach, which we'Il
call the "extremity rule."

The extremity rule can be suc-
cinctly stated in {our words: "Con-
sider the exffeme case!" This is actu-
ally a recommendation to consider an
object having extreme-or as mathe-
maticians say, "extremal"-proper-
ties. If we're considering a set of
points on a straight line, the rule tells
us to focus our attention on the ex-
reme left or extreme right point of the
set. If the problem concerns a set of
numbers, the extremity rule recom-
mends that we consider its maxi-
mum and minimum. Here are some
examples.l

Problem l. A set of points Mis
given in a plane such that each point
in M is the center of an interval con-
necting a pair of points in M. Prove
that setMis infinite.

A good way to statr is to consider a
simpler but similar problem. So be-
fore doingproblem I let's try this one.

Problem 2. A set of points M is
given on a straightline suchthat each
point in M is the center of an interval
corurccting two other points belong-
ing to M. Prcve that set M is infinite.

lOther examples of applying the rule
can be found in recent issues of
Quantum-for instance, in problems
MiO and Mls.-Ed.

Let's assume that M is a finite set
and apply the extremity rule. If Mis
finite, it has extreme points-the ex-
treme ldt and the exteme rigfrr Consider

one of them-for instance, the left
one-and denote it by A. Point A is an
extreme one and, consequently, can't
lie inside the interval connecting two
other points of the set M. The contra-
diction proves that M isn't a finite set.

There's another solution to the same
problem, also based on the extremity
rule. Assuming again that M is a
finite set, consider the lengths of inter-
vals connectingpairs of points inM.
This set of numbers is finite. Apply-
ing our n-rlg consider the longest inter-
vd. BC. Clearly, there are no points of
Moutside BC; otherwisg therewould
be longer intervals. Therefore, all the
points of M lie on the intervai BC,
which implies that neither B nor C
satisfies the above condition-again a

contradiction.
Now let's return to problem 1.

Assuming that M is a finite seg apply
the extremity rule this way. Fix an
orientation of the plane and consider
the extreme left point of set M. If there
are several "extremeleft" points, choose

the lowest one. You can easily see

that this point (denotedby A) can't lie
within an interval connecting two
points of M. Lrdeed, i{ such aninterval
exists one of its ends is either to the
left of point A or on the same vertical
line with A but below it. Both situ-
ations contradict the choice of point
A.

As withproblemZ, thete's another
approach here. Consider the set of dis-
tances between pairs of points of M. II
set M is finite, there is only a finite
number of paired distances, so that
the largest among them can be found.
Let it be the fistance between points
A and B. But point B is the center of an
interval CD whose ends, according to
our assumption, belong to M (fig. 1).

Now it's easy to prove that either AD
orAC is longer than,4-B (do it yourself,
making use of the fact that the me-
dian m drawn to one of the triangle's
sides is less than half the sum of the
two other sides).

4,

A_D
Figure 1

Problem 3. The squarcs of aninfi-
nite chessboard arc markedby naw-
rul numberc in such a way that each
number is equal to the arithmetic
mean of the four adi acent numberc-
the uppe4 loweL rigfit, and left ones.

Prove that all the numberc written on
the chessboard are ec1ual.

The extremity rule is helpful here
in one of its variations: "Consider the
smallest number!" Among the num-
bers written on the chessboard there's
the smallest one. This is easy to
prove. Let k be one of the numbers. If
I is one of the numbers on the chess-

board, then I is the minimum num-
ber (since there are no natural num-
bers less than 1). ff 1 isn't on the
chessboard, see whether 2 is on it. If it
is, then 2 is the smallest number.
Otherwisg look for 3, and so on. [r no
more than k steps the smallest num-
ber will be iound. Denote it by m arrd i
the square in which it's written by P. E
Denote the numbers in the adjacent :
squares by a, b, c, and d (tig.2l. Ac- !
cordingtoourcondition,m=(a+b + i
c+dll4,ora+b+c+d=4m.Because i
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a

b tn d

c

Figure 2

of the choice of mwe have a > m, b >
mt c > mt d > m. If at least one of these
ineclualities is a strict one/ we get d +

b + c + d > 4m,contradicting the as-
sumption. This means a = b : c = d =
m.

So if a square of the chessboard
contains the smallest number m,then
the four adjacent squares also contain
m. By moving to an adjacent square
again and again, we can travel from
square P to any other square on the
chessboard. Therefore, all the num-
bers on the chessboard are equal to m.

Problem 4. A number of rooks are
placed on annby n chessboard so
that the following condition is ob-
served: if a squarc of the chessboard
is free, the total number of rooks
standing on the horizontal and vefti-
cal lines crossing this square is not
less than n. Prove that there are at
leastn2/2 rooks on the chessboard.

This is a tough problem. But a
skillful application of the extremity
rule dramatically simplifies the situ-
ation. Consider a line on the chess-
board (which may be either vertical or
horizontal) with the least number of
rooks on it. There may be several
such lines "equally loaded" with rooks.
In that case, choose any one of them.
Let this line be a horizontal one (or
else rotate the chessboard 90 degrees).

Denote the number of rooks on this
horizontal linebyk. If k> nf 2,there
are no fewer than nfL rooks on each of
n horizontals, and the chessboard
contains at least n2fZrooks.

Now let k be less than n 12. There
arc n -k unoccupied squares on the
chosen horizontal, and each vertical
linepassing through afree square on
that line contains, according to the
statement of the problem, no less

than n - k rooks, so that all n - k
vertical lines contain no fewer than
(n - kl' rooks. The remaining k verti-
cals contain no fewer than k rooks
each (because of the choice of the
number k). So the total number of
rooks on the chessboard is no less
than (n - kl' * k2. It remains to be
proved that (n -kl' * k2 > n2f 2. This
can be done in various ways-for in-
stance/

I t n-kt2 + k2l - " = " - 2nk + 2k2Lr22

=z(+- rrr+ r?\
\4 )

=z(L-rt'>0.\2 .)

If n is an even number, there's a
pattern that satisfies the condition
and contains precisely n2/2 rooks: the
rooks are all standing on black sqrxres
(or all on white ones). If n is odd, it's
impossible to position n2/2 rooks in
such a way as to satisfy the statement
of the problem since nzf2 isn't an
integer, but there rs a pattem contain-
ing (n' + t)/2 rooks: one rook is placed
in one of the corner squares and the
others are placed on squares of the
same color.

The next problem is also solved by
the extremity rule.

Problem 5. Anumber of poin* are
given in a plane. noL all contained in
one straight line. Prove that there
exists a cfucle passingtfuouglt tfuee of
them that contains none of the given
points inside.

Drawing all possible circles through
triples of given points, we get a set of
circles (some of which may coincide).
We have to prove that atleast one of
them doesn't encircle any of the given
points. The extremity rule tells us to
consider the smallest circle, but fig-
ure 3 shows that one of the given
points mayremain inside such a circle.
Aithough we can get a solution this
way (see exercise 2 below), we'll do
something different. Let's try to solve
a simpler problem first: let's find a
circle passing through traar of the given
points that doesn't contain any of the
given points. Measure the distances
between each pair of points and use
the extremity rule in the form "Con-
sider the smallest one!"-that is, take

a pair of points A xd B *rat are closest
to each other. It's easy to show that
the circle constructedwidr the interval
AB as a fiameter satisfies the follow-
ing condition: the distance to any of
the other ln - 2l given points from
either A or B is no less than AB, so
each of the remainin1ln-zlpoints is
located outside the circle. Now draw
circles through A, B, and each of the
other (n - 2) points and choose the
smallest among them (prompted again
by the extremity rule). Let it be the
circle passing through A, B, and C.
This is the circle we're looking for,
since any circle going through A, B,
and a point C' lyrng inside the shaded
"sick1e" (fig. a) is smaller than the
circle passing through A, B, and C
(prove it yourself).

Problem 6. You arc given n lines ln
> 3) in a plane, no two of which are
parallel and no tfuee of which have a
point in common. The lines cut the
plane into severul rcgions. Prove that
for any line at least one of the regions
adiacent to it is a triangJe.

Let 1, be one of the lines. Applying
the extremity rule, choose from among

10 Irt0lltllllBtR/[tct]'4BtR I 980



the intersection points'a point P lying
at the shortest distance from.1,.

Denote the lines intersecting at P
by lrandlrand consider the triangle
formedby 1r,1, andlr(hg. 5). No other
line intersects this triangle (otherwise
there would be an intersection point
Q on either lror lrthat is closer to 1,

thanPis).

Figure 5

Problem 7 . Ptove that there ore no
nafitral numberc x, y, z, t that satisfy
the equationxz +yz :3(22 +u21.

Let's assume that the equation can
be solved. Consider a solution for
whichx2 + y2 takes the least value (if
there are several such sets of four
numbers, take any of them). Denote
the four numbers by a, b, c, d. -Ihe
equation a2 + W:3(C + d)implies that
a2 + b2 isa multiple of 3. But az + b2 is
divisible by 3 if and only i{ both a and
b are divisible by 3 because the scluare
of a number that isn't a multiple of 3
always leaves a remainder of 1 when
divided by three.

Consequently, a:3m, b:3n, so
that

a2 + bz = 9m2 + 9nz :31c2 + dzl.

Dividing the last equality by three, we
get

c2 + dz :31m2 + n2l.

So we've found four natural numbers
c, d, m, n that satisfy the given equa-
tion such that

c2+d2<az+bz,

contradicting the choice of a, b, c, d.
Problem 8. You are givennlines (n

> 3) in a plane. Any two lines inter-
sect, and at least three of the lines
pass through each intersection point.
Prove that all the lines intercect at

one and the same potnt.
Let J be one of the lines. If not all

the lines intersect at one point, then
there's at least one intersection point
that doesn't lie on L Choose from
among such points the point M clos-
est to 1. There are at least tlrree lines 7,,

lr lrthatpass through M. These lines
intersect 7 at points At, 42/ Ar. Let A,
lie between A, anda, (fiS. 6). The
statement of the problem implies that
besides 1and7, at least one more line
passes through Ar. It has to intersect
one of the intervals MA, or MA, at
some point N. Then Nlies closer to J

than M does, which contradicts the
choice of M.

A further development of the ex-
tremity rule is the "orderingrule,"
which reads: "Arrange the elements
of your set any old way-in increas-
ing decreasing, or any other orderl"

Problem 9. Seven musfuoom gath-
erurs collected 100 mushrooms, but
no two of them picked the same ntsmber
of mushrooms. Prove that ther e arc
three people who together picked at
least 50 musfuooms.

Write down the people's names/
putting the most productive gatherer
first and working down the list to the
least productive. It's clear that we
should consider the persons with the
three highest ratings since they gath-
ered more mushrooms than any other
group of three. Let's prove that their
joint totai is at least 50 mushrooms. If
the third person on the list picked 16
mushrooms ormore, then the second
has at least 17 and the first at least 18
mushrooms. Altogether they collected
at least 16 + 17 + lB :51 mushrooms.
If the person in third place collected
no more than 15 mushrooms, the rest
of the gatherers (in positions four throug!
seven) collected at most 14 + 13 + 12 +

11 : 50 mushroomq which again leaves
at least 50 mushrooms for the first
three.

Now it's time for you to try your
hand at "going to extremes"l

Exercises
1. There are n2 integers arranged in at nby

n table in such away that for each zero the
sum of the numbers in the corresponding row
and column is at least n. Prove that the sum
of alln numbersis atleastn2 f 2.

2. (a) There is a point D inside a circle
circumscribed around a triangle ABC such
that the radius of the circumcircle is not
greater than the radii of the circles ABD,
BCD , CAD. Prove that the triangle ABC is
acutg D is its orthocenter {the common point
of its altitudes), and the radii of the four circles
are equal.

ib) Find another solution to problem 5 in
this article, startingwith the choice of the
smallest circle passing through three of the
given points.

3. You are given n points (n > 3) in a plane.
Each line passing through a pair o{ the points
contains at least one more given point. Prove
that all the n points lie on a single line.

4. Find all triples of natural numbets xt yt z
suchthatx+y + z=xyz.

5. Irrove that in any tetrahedron there is an
edge forming acute angles with all the edges
emerging from its end points.

6. A number of checkers are placed on a
checkerboard. A move can take any o{ them
to one of the fow adjacent squares (rather than
along the diagonal, as is usually the case).
After several moves all the checkers retum to
their initial positions and each of them has
been to all the squares of the checkerboard
exactly once. Prove that there was a moment
when none of the checkers was positioned on
its initial square.

7. Solve the following system of equations:

.r +ir =rl .I 2 l',
v +r-=rl

.r +,r =,t] .115

r +,r =.r'1.l5r
r-+r =rl-'5 -'1 ''t'

8. A cube is broken down into smaller
cubes. Prove that at least twoequal cubes
emerge from this process.

9. In a certain country all distances be-
tween airports are different. An airplane took
o{f from each airport and headed for the
nearest one. Prove (a) that no more than 5
airplanes arrived at each airport; (b) that iI the
number of airports is odd, then there was an
airport at which none of the airplanes
landed. CI

HINTS AND SOLUTIONS ON PAGE 60
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Figure 6
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liUhlninu in a cry$lal

How the LED grew up to be a laser

byYury R. Nosov

I F YOU ASK AN EXPERT IN
! electronics-an engineer, a scien-
I tist, or the head of an electronics
I ao*prry-wnat snows tne most
promise in this area, eight out of ten
will answer: electronic optics.

The old idea of using light signals
for information transfer instead of
electricity (as is the case in traditional
microelectronics) turned out to be a
very fruitful one. The marriage of
electronics and optics may improve
the operational parameters of com-
puter equipment: operating speed would
be increased by a factor of hundreds or
thousands, and it would be more reli-
able, noise-free, and miniature.

This was already weil understood
in the 1960s. So why do most of the
potential advances envisaged here still
await realization? Wel1, there are
quite a number of hurdles to over-
come. In order to "hamess" light we
have to be able to handle it as easily as

electric current. We must be able to
amplify and transform light signals,
transmit them from one location to
another without significant loss, de-
velop recording and storage devices.
But first of alt we have to leam how to
generate them. Whatever the impor-
tance of the other elements o{ an
electronic optics system/ the basic
component is the light generator. It's
the alpha and the omega of the sys-
tem. Of cource, an ordinary light bulb
is of no use here. The source must be
at least as small, reliable, and long-
lasting as conventional transistors and
integrated circuits.

The natural place to look for a solu-
tion was semiconductor technology.

Ilts diods fiatUlotryed

Let's briefly review the situation in
this area as it was thirty years ago. At
that time the main concern of semi-
conductor science was to satisfy the
needs of transistorized instrumenta-
tion. The whole future of electronics
seemed to depend totally on their
development. The first transistors
were made of germanium, but it was
clear that better
results couldbe ob-
tained by using
silicon or the then
new semiconduc-
torgallium arserride
(GaAs). The "sili-
conway" quickiy
achieved success
and since 1950 it
has mnstitutedthe
mainstream of
microelectronics.

The gallium
arsenide rarsistors,
however, persis-
tently refused to
appear. Millions
spent on develop-
ing perfect GaAs
monocrystals muld
almost have been
written off as a
complete loss, but
...sometimesa
loss turns into a
realfind. Andsoit

p-n
transition

Distance from the surface of ctystal

was in the gallium arsenide "dead-
lock." Hope still glimmered, and
then it glimmered in the literal sense
of the word.

In 1956 it was discovered that elec-
tric current passing through GaAs
diodes causes them to emitlight! So
the first light-emitting diode (LED)
appeared. Physicists and engineers
started to scrutinize the effect. It was
immediately established that the
semiconductor crystal of an LED did
not heat up, which meant that the
radiation was caused by luminescencg
the phenomenori known as "cold
radiation."

The operating principle of the lighr
emitting diode was quicldy explained.
The GaAs crystal oi the diode isn't
homogeneous. Its different regions
vary in their properties. By introduc-
ing different kinds of impurities, you
can enrich one o{ the crystal's halves
(the left one in figure 1) with mobile
electrons and deprive the other half of
them. The energy of the electrons is
higher on the right and drops sharply
at the boundary, called the "p-ntran-
sition" (which plays an exceptionally
important role in semiconductor elec-
tronics). This energy barrier "prohib-

Figure 1
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its" electrons from croising the p-n
transition from left to right " atw7ll"
But if an extemal voltage is applied to
the crystal, the barrier lowers a bit and
some of the elbctrons are injected into
the right half-that is, they're injected
from the emitter to the base. It's in the
vicinity of the p-n transition that our
phenomenon takes place. After get-.
ting to the right side, the electrons fall
from the mobile state into the bound
one and lose the acquired energy. The
lost energy may be emitted as a quan-
tum of radiation, the photon. In this
way a light-emitting diode transforms
the energy of electric current into
radiation energy!

It's as if a heavy stone were first
rolled to the top of a mountain and
then fell into an abyss. Hitting the
rocky bottom of the abyss, the stone
produces a spark. The height of the
mountain determines the color of the
spark: the greater the energy gap E"
between the mobile and bound stateS
of an electron, the greater the energy
of the quantum and the shorter the
wavelength of the emitted light. With
an increase of E", the color of the radia-
tion shifts to the blue-violet end of
the spectrum. When a sufficiently
strong current passes through the diode,
the "stone fall" becomes so intense
that separate "sparks" merge into a
continuous glow.

Of course, a metaphor never coin-
cides perfectly with the phenomenon
it's meant to clarify. The true quan-
tum picture of electron transition that
causes photon generation can't be
reduced to any otherprocess. Actu-
ally, once it's understood, the picture
becomes as simple and clear as any
other physical process (in any case, no
more complicated than the fall of a
real stone in real mountains).

A litlle colon, ilea$e. . .

Lr the years under discussion here,
the theory of luminescence was al-
ready weil developed, which made it
possible not only to calculate the pro-
cesses in crystals with known proper-
ties but also to predict new effects.
And there certainly was something to
calculate and predict here.

The problem was, the first GaAs
light-emitting diodes radiated in the

infrared band of invisible wavelengths.
Of course, infrared light can be regis-
tered by various photodetectors and
has numerous technical applications.
Sfill, it seemed like a nice idea to have
diodes emit light the human eye could
see, since the eye is our main instru-
ment for apprehending the world. Why
not light-emitting diodes that glow in
all the colors of the rainbow, bright
and clear? To achieve this one had to
find semiconductors with energy gaps
greater than that of gallium arsenide.
As usual when the physical mecha-
nisms are understood and the prob-
lem is precisely formulated, the means
of solving it were readily found.

Soonr no one was surprised to see
gallium phosphide LEDs emitting
intense red or green light, depending
on the type of impurities introduced
into the crystal. A triple compound of
gallium, affi enig and phosphorous made
it possible to obtain any wavelength
from dark-red to orange or almost
yellow. Silicon carbide emitted yei-
low-green and pale blue light, though
very faintly. Only blue light, like
Maeterlinck's evasive blue bird, couldn't
be captured by the scientists. The
brightest were the red light-emitting
diodes, so it was under a "crimson
sail" that electronic optics sailed into
technology and into our daily life.

Numerous instruments use arays
of LEDs positioned in a speci{ic order
on a panel. By selectively tuming on
appropriate light-emitting diodes in
the aruay, one can generate a digit,
letter, or graph. This naturally led to
the following thought: why cut the
semiconductor plate into individual
little crystals and then bring them all
back together again in an array of
LEDs? Lr responsg character-slmthe-
sizing indicaton appeared on the scene-
plastic casings enclosing several crys-
ta1s, ora single ong with severalpoints
that light up independently of one
another.

Light-emitting diodes and numeric
displays began to be produced com-

llt's easy to say "soon" nowadays,
but that "soon" meant almost a decade
of elaborate analytical studies, hard
work on slmthesizing superpure
semiconductors, development of new
equipment and technologles . . .

mercially at the end of the 1960s and
were quickly put to use in a broad
range of applications. Worldwide
production approaches 10 billion pieces

a yeart. These bright-red glowworms
and numerals can be found in elec-
tronic watches and pocket calcula-
tors, on laboratory and industrial in-
strument panels, in the keys and but-
tons of radio and electronic equip-
ment, in the cockpits of airplahes and
submarines . . . just about everywhere.

It's true, the use of light-emitting
diodes is restricted by the short dis-
tance required between the display
and the user's eye. But there is already
talk about using superintense LEDs
in automobiles as taillights. Of coursg
it'll be a long time before light-emit-
ting diodes liglrt our homes-although,
given the rapid advance of technol-
ogy/ we shouldn't be too rash in our
predictions.

Unfillor colnpulgl' dtlly
It's time to catch our breath and

illm up. Everythrng I've talked about
so far has to do with the use of llght-
emitting diodes to display informa-
tion, numerical or otherwise. They
turn the electrical impulses of com-
puter-generated information into a

visually perceived image that is quickly
and easily apprehended by the user.
Undoubtedly, such devices are of the
utmost importance. But this is oniy
one area in which electronic optics
can (and should) help information
science. What about processing, ffans-
mitting, and storing in-formation? Can
a light-emitting diode be of any help in
these areas? Alas, the bright rainbow
of colors seems to fade here . . .

The first stumbling block, as I al-
ready mentioned, is the low intensity
of the light emitted by LEDs. Even if
it can be perceived by the human eye,
it's not always detected by a light-
sensitive device (especially if it's 1o-

cated at a distance from the LED).
Another problem is that the radiation
of light-emitting diodes isn't mono-
chromatic. We'll look at the quantita-
tive side of the matterlateri the cru-
cial point here is that the emission
bandwidths are too broad for use in
many electronic optics devices.

Finally, and most important of alf
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light-emitting diodes radiate almost
homogeneously in all directions. It's
impossibie to concentrate its energy
in a sharply focused beam. They're of
no use in performing the simplest
task in electronics-sending a signal
from point A to point B. The greater
part of the emitted energy is not only
uselessly squandered, it irradiates the
surrounding space and may even jarh
other sources. The ligfrt-emitting diode
is a careless chatterbox incapable of
keeping a secret. It's obviously not
suitable for use in information sci-
ence, where all operational features
must be precise and trustworthy and
where each bit of information must
use only the amount of energy it actu-
ally needs.

Fortunateiy, there's a good altema-
tive to the light-emitting diode as a
radiating source. It's the laser, which
emits intensg almost monochromatrc,
very focused light. Let's digress for a
moment and look at the quantitative
side of laser operation.

Its directionality is characterized
by a solid angle cr containing the beams
generated by the source; if the beams
diverge, symmetrically deviating from
a certain axis (the direction of emis-
sion), this divergence is measured in
radians, or degrees and minutes as in
conventional plane geometry.

There are no strictly monochro-
matic waves in nature. Any light
source always has some range of color,
orwavelength. Quantitatively, this
range is descril:ed by the notion of
monochrom aticity, which is defined
as the ratio of the bandwidth of the
wavelengths of the generated radiation
A), to the wavelength \ of the center
of the band: the smaller A),p", the bet-
ter the operational features of the la-
ser. A good example is the typical
helium-neon laser, for which cr < 1'
and Ai./i.o < 0.000001.

Such a light source would be quite
suitable for computational electronic
optics were it not for the fact that the
helium-neon laser has a glass dis-
charge tube almost half a meterlong
and a high-voltage power supply unit
weighing several kilograms. Now
place beside it an integrated circuit
the sLe of a postage stamp containing
about a million transistors and requir-

ing only 5 voits of power. Are these
two units compatible? Obviously not!
And, indeed/ numerous attempts to
use conventional lasers in microelec-
tronic mmputer devices came to naugfrt.
As the Russian saying has it, "You
can't hitch a bull and a doe to the same
wagon."

Obviously, there's only one way to
make lasers and microcircuits com-
patible: make both of them semicon-
ductors.

The hil'th ola ltetlt lassr
The story of the semiconductor

diode laser is tlpical of scientific dis-
coveries in the 20th century. After the
solid-body (ruby) and gas (helium-neon)
lasers were almost simultaneously
invented in 1960, scientists predicted
that a semiconductor laser could be
made as well. It was expected that,
like other semiconductor devices, it
would be small, cheap, durable, resis-
tant to outside influences, flexible in
its parameters, and useful in a wide
range of applications. It was cluite a
chailenge to create such a device, and
leading laboratories throughout the
world vied with each other to catch
this "beautiJul butterfly." Theoreti-
cians were able to describe the desired
quantum structure of the crystals,
thus narrowing the list of potential
candidates. The butterfly's fate was
sealed. On the eve of 1963, almost si-
multaneously, the first semiconduc-
tor lasers were created in the US and
USSR.

The pioneering semiconductor was
again gallium arsenide. The only
difference was that it contained more
impurity elements, which createda
greater number of free electrons. Af-
ter the p-n transition is achieved on a
sheet of gallium arsenide, the large
piece is broken with a scalpel into tiny
rectangular crystals. The sheet splits
strictly along its crystaliographic planes,
so that the opposite facets of the crys-
tals are parallel and highly reflective.
These two mirrors form a resonator/
which is necessary for the laser feed-
back effect. The crystal's lower facet
is then soldered to a massive copper
substrate (to increase heat transfer),
and a second, thinner electrode is
connected to its upper facet.

When an electric current is ap-
plied, the crystal starts to emit infra-
red liglrt as a fufrt-emitting diode does-
weakly and in ail directions. But as

soon as the current reaches a certain
value (called the threshold current),
the picture changes dramatically: the
radiation power suddenly jumps and
intense light is emitted from the strips
on the side facets where the p-ntrat
sition plane ihtersects the resonator's
facets. A spectral analysis of the rafia-
tion revealed that this phenomenon'
resulted in the substantial narrowing
of the band of generated wavelengths.
There was no longer any doubt-it
was a laser!

The operating principle was ex-
plained without much delay. As with
light-emitting diodes, the external
voltage applied to the crystal "drives"
electrons up the "enetgy bartier,"
except that this barrier is a bit higher
and the number of electrons much
greater than in a light-emltting diode.
The electrons gather near the p-n
transition, creating a so-called active
zone. "Fa1ling from the barier," they
give rise to quanta of radiation (that is,
photons). It's at this point that the
analogy with light-emitting diodes
breaks down. The light wave propa-
gating along the p-n ffansition plane
is reflected off the mirrored faces of
the crystal and, repeatedly passing
through the active zone, forces more
electrons to "drop from the barrier." It
turns out that a huge quantity of
electrons simultaneously and identi-
cally undergo the prescribed quantum
transition (shown by the two-headed
arrow in figrre 1). As a resulg the laser
beam has a high degree of monochro-
maticity and a specifically determined
polarization. Because of the way it is
created, such radiation is called stimu-
lated or induced radiation, whereas
the radiation of a light-emitting diode
is spontaneous (random in its direc-
tion, polarization, and, to a certain
extent, wavelength).

Anolfim prohlem $urlnoultled
The new device aroused great in-

terest. It seemed obvious that funda-
mental changes were about to begin
in electronic optics. But time passed
and there was no serious application
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of the new laser. The initiai euphoria
gave way to bewildered disappoint-
ment.

The laser operated only at low,
"nitrogen" te?nperatures (-1 96'C) and
only if the external cuffent was sup-
plied in short, infrequent impulses.
Even then, its lifetime was exceed-
ingly brief-several dozen hours at
most. If it was operated in any other
manner, it would immediately over-
heat andfail completely. It also tumed
outthat its degree of mono
was only marginally better than that
of light-emitting diodes, by a factor of
merely i0 to 20 (LXl)".= 0.005 com-
pared to 0.05 for an LED), and it was
still far worse than that of a gas laser
(by a factor of thousands). hr its direc-
tionality (o = 30o), the semiconductor
laser seemed like just an improved
light-emitting diode. "What kind of
laser is this?1." frustrated electronic
optics engineers might have exclaimed.
Gradually experiments with the new
device gave way to renewed specula-
tion about the sunny prospects of
" ideal" electronic optics.

The worst part of it was that the
semiconductor lasels drawbacks were
provided with a rigorous and appar-
ently insurmountable theoretical basis.
The electrons injected into the thin
active zone weren't willing to stay
there but scattered all over the crystal.
The same thing happened with the
light wave. Instead of contributing to
the laser effect, the lost electrons and
quanta only caused useless overheat-
ing of the crystal. What couldmake
the mobile charge carriers (electrons)
and light radiation (photons) stay in a
specific area of.the crystal? You can't
put a shield or a miror inside what is,
a{ter aLl, a monocrystal, in which all
the atoms are positioned in an ideal
predetermined order. When research-
ers began their chase after the "beau-
tiftrl butterfly," somehow none of this
ever came up. Now it began to look as

if the butterfly was destined for a jar of
formaldehyde in a museum of physics
curiosities.

But the nimble human mind once
again emerged triumphant. And what
did it come up with? Heterostruc-
tures. If some of the gallium atoms in
a gallium arsenide crystal are replaced

with aluminum atoms/ the structure
of the crystal lattice isn't changed
because the atoms of the two ele-
ments are so similar in their physical
properties. But this results in the
creation of a new semiconductor,
gallium-aluminum arsenide, with a
larger energy gap than that of pure
gallium arsenide. The area between
the two semiconductors inside a single
monocrystal is called a heteroiunc-
tion. In addition to the energy barrier
it also includes an opticalbarrierbe-
cause the two semiconductors have
different refractive indexes. The ac-
tive zone has a higher refractive index
and, sandwiched between heteroboun-
daries, makes an ideal trap for elec-
trons as well as awaveguideforlight
beams.

tttflhsr reliltslneltls

"Her Majesty Technology" took
over from here. In virtually no time at
all scientists learned how to set up
pairs of heterojunctions parallel to
each other inside a monocrystal and
separated by the fantastically precise
distance of a few atomic layers. The
threshold curent was lowered to sev-
eral dozen milliamperes, the upper
iimit for the laser's operating tem-
perature reached 100"C, and acceler-
ated aging tests showed that the new
laser diodes should last several dec-
ades. And so the renaissance of the
semiconductor laser began. The in-
dustry was flooded with inventions
and discoveries. You want to lower
the threshold current? Okay-sand-
wich the active zone between hetero-
junctions not only above and below
but also between two other hetero-
junctions on the sides. The microfil-
ament of the active semiconductor
can then be excited by a current of
only 1 mA! You want to narrow the
spectrum of emitted wavelengths? |ust
give one of the heteroboundaries a
wavy shape. The resonator's selectiv-
ity increases sharply, and the degree of
monochromaticity reaches vahres typical
for gas lasers. To increase monochro-
maticity even more/ use a structure
with two "coupled" crystals lfi1.2l.

Heterolasers are now manufactured
by the millions eachyear, and their
use has displaced our enffenched no-

tions in many areas of technology. A
fiber optic mmmunication line is capable

of transmitting all30 volumes of the
Great Soviet Encyclopedia in digital
{orm in a single second! A desktop
CD ROM (read-on1y memory) unit
can "hold" more than a million books.
Optical integrated circuits using hetero-
lasers are being deveioped with a view
to creating supercomputers that will
be thousands of times as productive as

the current models.

"[iUHltinu"?

The title of this article included the
word "lightning." Why? Because the
current density in light-emitting di-
odes and semiconductor diode lasers
may be several times (and sometimes
scores of times) greater than that in a
lightning discharge. Scores of "micro-
lightning" discharges flash in our
crystals, but they're under human
control; instead of bringing destruc-
tion, they breathe life into electronic
optics.

This area is now on the flont line of
solid-state physics. Equipment has
already been developed that's capable
of growing multilayered semiconduc-
tor structures whose composition and
properties vary in each monatomic
layer. Such structures make it pos-
sible to control almost every electron
in the lattice: one can be "planted" in
a "quantum well," another can be

"walled up" inside a "quantum box,"
another can be set free to "warrder"
over the whole crystal . . . But it's
much more thrilling to carry out such
projects with your own hands than to
write about them. If you don't believe
me-try it yourseif! O
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QUANTUM SMILES

Physics lol' Iools

Need we say "Kids, donT try this at home . . ."?!

by V.F, Yakovlev

O TELL YOU THE TRUTH, I had a difficult time at
the university. That's probably why I'm especially
infuriated by all those remarks in textbooks on
physics and mathematics that go: "It is well known

that . . .," "Simple calculation readily yields . . .," "One carr
easily see . . . ." Where is it well known from? Why is the
calculation simple? Usually, for me, it was very dif{icult
and sometimes even impossible! Such remarks not only
mislead students but also contribute very effectively to the
development of an inferiority complex.

Isn't theirpurpose really to mask the authors'incompe-
tence? I mean, good students will find their way through
a text even i{ it's fullof mistakes. I'm sure that if someone
had forced me to write a textbook for differential analysis
without any access to lecture notes or books on the
subject, Euclid or Archimedes could have understood
what I was trying to say. It's very easy to write textbooks
for clever people. Even fools can handle that. To write a
textbook for people of more middling talent-now that's a
challenge. But what a noble task it is!

|ust imagine: "Quantum mechanics for the feeble-
minded, " "Differential calculus for utter {ools. " Books
like that would suely top any best-seller list! You'd have
to litter the text with remarks like "One can barely derive
from this . . ./' "Itis very difficult to understandthat . . .,,,

and so on. The readers who got through all this would glow
with enthusiasm.

Now you can easily understand my triumph when,
reading the book Matter, Eath, Heavenby the famous
physicist George Gamow (published in the US in 1959), I
came across a reference to another book published in 1908
in St. Petersburg (now Leningradlunder the title (accord-
ing to Gamow) Physics for Fools. I was on the verge o{
jumping out of my chair and shouting " Eur eka ! " in the
llbrary reading room. Unfortunately, my joy was short-
lived since Gamow failed to mention the author's name.

A{ter a long and tedious search in many catalogues and
reference works, I finally found the book. Its title page
reads:

Published by
The Society for the Encouragement of Stupidity

New Physics Without Instruments

A Complete Description oi Popular Experiments
Easily Performed At Home

The Best Leisure for
Persons Longing for Physics and Astronomy

Compiled from the Latest Sources and Discoveries

by
Sergey Olympov

The author's name was a pseudonym/ and only after
more searching in libraries did I find his real name: Sergey
Maximovich.

Mr. Maximovich was bom in St. Petersburg in 1876. In
the 1930s he was still living in Leningrad and was em-
ployed at the State hrstitute of Geodesics and Cartography,
working on aerial photography and the physics of light-
sensitive materials. He also studied how to measure
various characteristics of photographic materials (there's a
branch of physics called "sensitometry" or "photographic
metrology'/).

Sergey Maximovich was an extremely ingenious per-
son with artistic talent, as you can see from his drawings
that follow and the explanatory notes he wrote for them.
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Figure 1

Thermal expansion.

"All bodies get longer when heat is applied. So, for ex-

ample, rails are always made shorter than necessary. The
following experiment can be performed by anyone at
home.

"Have an older and more forgiving member of the
family lie down on a cold stove so that his feet touch a wail
while his head touches a stack of books positioned at the
edge of the stove. Make a fire in the stove. Soon you'llsee
that, as the temperature rises, your relative will stretch
andpush the stack of books with his head until they fall on
the floor. The nature of this phenomenon is pretty
obvious, but let's continue the experiment anyway. As
the temperature increases even more, the phenomenon
enters its next phase: your relative will begin to deform
untii, finatly, he jumps up and runs away. This is an excep-
tionally convincing demonstration of the law known in
the scientific community as the'transformation of heat
into motion.'

"If you immediately place your relative on a red-hot
stove, he might enter a spheroidal state and the experi-
ment willfail."

Figure 2
A simple electrical machine.

"Experiments with large electrical machines are not
cheap and are not without danger. But anyone can build
such a machine from simple household items.

"Ask a friend to sit on a two-gallon bottle and have him
hold a fork in his hand. Rub rubber galoshes with a fox coat
and bnng it toward the fork. Soon you'll hear a character-
istic hissing sound, and your friend's nose will start to emit
long, bright sparks (which are especially impressive in the

dark). With this simple instrument you can carry out all
the experiments described in physics textbooks-you can
charge a Leyden jar, lisht a small light bulb, and even nm
a sewing machine.

"From time to time it's useful to grease your friend and
the bottle with a thin layer of warm petroleum jelly."

Figure 3
Electrolysis.

"What could be more durable than a gold watch? The
eternal glittering of the noble metal, the motion o{ its
hands as if personifying Time itsel{----everything suggests
stability and perpetuity. But, in actual fact, that's not the
way it is. Take a particularly massive gold watch with an
anchor escapement and carefully lower it into a big
ceramic cup containing a mixture of nitric and hydrochlo-
ric acids. By the next morning the watch will have
disappeared---only the crystal and dial will remain. They
should be taken out, rinsed with water, dried, and stored in
absorbant cotton. Don't worry about the watch: in
Nature, nothing is lost! Pour the greenish liquid into a
bottle with a tightly fittrng cork and store it in a dark place.

"Our next volume, Chemistry Without Instruments,l
will include detailed instructions on how to get the watch
back. The reader must have already guessed that this is
done with the help of that wizard of the 20th century,
Electricity. The machine described in the second experi-
ment wi1l be of inestimable help here."2

Figure 4
Refraction.

" 'What are you doing?!'your hostess will probably
exclaim in horror when she sees you approach a mirror
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with an uplifted stick. 'You'll break the mirror!'
"Nothing of the sort. From the laws of optics you know

that the angle of incidence is related to the angle of
refraction by a specific formula-you only have to hit the
mirror with the end of the stick such that this relation is
satisfied. The stick breaks with no consequences for the
mirror-to no small surprise on the part of those present.

"A regular pane of glass (not a mirror) wou1d, of course,
have been smashed to bits."

dozeneggs ready to be hatched. Upon returning to the
room/ put the eggs upon a chair and under it, unobserved
by the others, put abuming kerosene lamp, hiding it under
your frock coat. The latent heat3 of the kerosene rapidly
develops the chicks, and they'Il soon announce their
arrival into this world with their hrppy cheeping. The
only thing you have to be careful about is not to crush the
"bb".

@

Figure 5
Propagation of sound.

"It's known that sound propagates in a solid body along
its surface. A very interesting experiment is based on this
phenomenon. Put a thin-walled tin pot on a volunteer's
head and then shoot at it with a pistol, machine gun/ or
mortar. To the person under the pot, the deafening shots
will sound like the snapping of your fingers."

Figure 6
Man on eggs. (Toward a physiology of btuds)

"This experiment never fails to create a great sensation,
especially among those running households. 'Who can
hatch a chicken in a quarter of an hour?'

"Throwing a triumphant glance at the silent gathering
go to the chicken coop, find a brood hen, and collect two

lWhich never appeare d.-Auth.

2During World War tr the French Nobel Prize-winner folio.
Curie dissolved his gold Nobel medal according to nearly the
same technique in order to save it Irom the Nazis. He kept
the bottle with the solution throughout the Nazi occupation,
and after the liberation of France used electricity to extract
the dissolved gold. |olio-Curie sent it to Sweden and obtained
a new Nobel medal.-Auth.

Figure 7
I nterf ercnc e and dffi action.

"Attach a sheet of white paper to a wall (a marble wall
is preferable) and illuminate it with a candle. Now light
another at, of course, a strictly determined distance from
the first. You'd expect there to be more lighg but as it tums
out the sheet of paper gets darker. This is the phenomenon
of interference, which the great Newton called the'golden
key of Providence:' "

3A pun in the original-skrytaya teplota could be
translated literally as "hidden warrnth." 

-Ed.

o
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IUIakinU lhe croolted sll'aiUht

lnversors and Watt's steam engine

byYury Solovyov

Ftr,N STEAM ENCINES AND
steam pumps were invented,
the theory of articulatedmecha-
nisms-systems of rigid links

connected by hinges in such away
that the motion of one or more links is
transformed into the motion of other
links-began its rapid development.
For almost a hundred years progress in
this area was determined by the prob-
lem faced by the English mechanical
engineer |ames Watt ( 1 736-1 8 19) in
his attempts to improve his steam
engine.

Watt's original design is schemati-
cally shown in figure 1. He put a
piston inside a steam cylindea where
it could move back and forth. The
piston was connected to a rod passing
through the top cover of the cylinder.
The rod was rigidly fastened to the
piston and could, therefore, perform
only linear motion. A rocker arm AF
was attached to a hinge on top of the
ptJ)ar OP, and the hinge Fcoupled the
connecting rod,EE with the rocker,4I. This connecting rod was, in turn,

attached to the crankshaft QE by the
hinge E. A flywheel was attached to
the crankshaft.

If one could connect the head H of
the piston rod to the rocker AF, the
motion of the piston would be directly
transformed into rotation of the fly-
wheel. But point H is in linear motion
whereas point E makes a circular arc
with radius OA andcenter at point O.
Consequently, it's impossible to con-
nectpoints H andA rigidlywithout
breaking the machine.

So this was Watt's problem: to
develop a linearizing mechanism that
would drive point Halong a straight
line and point A along anarc. Watt
solved it by devising an articulated
mechanism that drove point H along
a curve having a small deviation from
a straight line.

Many scientists subsequently de-

veloped linkages that drove point H
with a smaller deviation, but it wasn't
until the 1850s that a technique for
drivingpoint Hexacdy along a straight
line was fiscovered.steam cyLhdcr
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Watlb simple Iineal'hing mecfianhm
Here is Watt's reasoning. Consider

two rockers AO and BO' rotating
around fixed centers O and O'. If the
ends A and B of the rockers AO and
BO' are hinged to a segment AB,
which Watt called a "shackle," a point
of the shackle undergoes a motion
very close to linear (fi1.2l. Lr order io

define the most suitable position of
the fixed center O' andthe length of
the rocker BO', consider three posi-
tions of the rocker OA lfig.3): the
middle OA andthe two extremes OA'
and OA' ' . There should be a point m

of the shackle that stays on the same
straight line MN in all three positions.
Watt took as that line the perpendicu-
larto the segment OA passingthrough
the midpoint of the altitude SA of the
circular segment A' AA".

Take a shackle ab of fixedlength
and choose apoint m on it (fig. a). The
arcs drawn from points A', A, arrd A"
with radius am intersect the straight
line MN at points m', m, afld m",
yrelding three positions of point m of
the shaclde (fig. 31. Plotting on the ex-
tensions of A'm', Am, and A'tm"
segments equal to mb, we get three

oto
ba

Figure 4

positions at the otherendof the shackle
denoted by B', B, xrd.B". These t}ree
points define a circumference passing
through them. To find its centerwe
drop perpendiculars to the centers of
the segments B'B and BB", which
meet at point o'. The center o' de-
fines the length of the second rocker
BO'=B'O':B"O'.

Connecting the end
b of the shackle with
end B of the rocker by
a hinge ensures that at
least in the middle and
at the two extreme po-
sitions of the rocker
OA the point m of the
shackle stays on the
straight line MN.

Watt hoped that,
movrngfrom m'tom",
point m of the shaclde
would experience only
a small deviation from
a straight line. He was
right: the trajectory is
indeed quite close to a
straight line, the pre-
cise traiectory being a
sixth-order curve look-
ing like an elongated
figure eight (fig. 5).

Watl's parfllhlouraln

Watt had one more problem. In
addition to the rod driving the piston
of the steam cylinder, he had to pro-
vide a linear trajectory for another rod
attached to the piston of a pump used
to fill the condenser (fig. 6). Watt
modified his mechanism so that it in-
cluded two points, each of them moving
approximately along a straight line.

Figure 6.

Extend the rod OA (frC.7) and then
complete the parallel ogram ABCD .

Plotting the suaiglrt line througlr points
O and m, denote by n the intersection
of this line and CD. Point n then

moves along a curve similar to that of
point m and, consequently, also has a
small deviation from a straight line.
Since the steam cylinder is higher
than the pump cylinder, Watt attached
the head of the steam piston rod at
point n, which has a greater ampli-
tude, while the head of the pump's rod
was attached at m.

Figure 6 is a schematic drawing of a
steam engine with Watt's parallelo-
gram as it appeared lr.L784.

Watt himself considered the dis-
covery of linearizing mechanisms his
greatest scientific achievement (and
not the govemor now bearing his namg
which is the comerstone of automatic
control theory).

Chely$lteffi linearizing lnecltalti$ln

A number of remarkable linear-
izing mechanisms were inventedby
P. Chebyshev, the outstanding Rus-
sian mathematician and mechanical
engineer. He used his theory of func-
tions with the least deviation from
zero, developed in 1858. I won't go
into the details of his theory here, but
I'll describe one of the most practical
Chebyshev mechanisms.

This mechanism (fig. 8) consists of
a link,43 with a hinge C at its center.
The second link OC equal to ABl2is
attached to the hinge, so that OC :

Figure B
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AC:rc. Theotherend Oof OC isat-
tached to an immobile hinge O. Point
A is attached to a third link DA at-
tached to an immobile hinge D. If

o, -OC+C.A+AD . oC = AC = BC.
J

thenpoint B of the Chebyshevmecha-
nism describes a curve mPn, thepor
tion mn of which has a very small de-
viation foom a straight line. Chebyshev
showed that the maximum deviation
of the curve fragment mn from a line
parallel to OD is given by the formuia

where r : AB, a = ZAD. It's a very
small value indeed. For example, for
AC: OC =BC --lzinches (81.3 cm),
OD = 25 inches (53.5 cm), DA : ll
inches (27.9 cml, we get 6 = 0.032 inch
(0.081 cm).

ftiuol'ous lineanizinU lnechalthtns
A[ the lineanzng articu]ation mecha-

nisms I've described so far are approxi-
mate: a straight line is approximated
by a suitable curve. The theory of
rigorous linearizing mechanisms is
based on an important geometrical
transformation called "inversion. "

T2 l-tgure I
Consider a circle with center P and

radius r (fig. 9). Take a point M lying,
for example, outside the circle. Plot
tangents MTrand MTrand find the
point M' where chord T rTrintersects
the line PM. Theright triangle PMT,
yields

PM.PM':r2. (1)

Conversely, for each point M'lying
inside the circle, we can easily find
the corresponding outer point M.

Points M and M lylngon the same
ray radiating from the center P of a
circle of radius r are called inverses of

each other with respect to this circle if
their distances from the center satisfy
equation (1). It's obvious that the
inverse of a point lying on the circum-
ference coincides with the point and
that there is no inverse of the center.

A transformation that produces an
inverse M' for each point M is called
an inversion with respect to the given
circle. The circle itseif is called the
circle of inversion, and its center is
said to be the pole of inversion. The
square of its radius is the degree of in-
vercion.

An inversion defines (the center P
being the sole exception) a one-to-one
transformation of the points of the
plane. The relation between points
and their inverses is a reciprocal one:
i{ M' corresponds to M, then M corre-
sponds to M. Eachpoint of the circle
of inversion is a fixed point.

Let's take a look at one property of
inversion that's very important for
our pulposes.

THroRErvr 1. A straight line that
does not contain the pole of inversion
is mapped by inversion into the circle
passing through the pole.

Pnoor. LetA be the projection of
the pole of inversion on the given line
(fig. 10), B an arbitrary point of this
7ine, A' andB'inverses of points A and
B. By definition, PA . PA' = PB . PB', or
PA:PB : PB''.PA'. This relation en-
sures that triangles PAB md PB'A' are
similar. Since angle PAB is a right
ong angle PB'A' is also right. So point
B' lies on the circle with diameter
PA', whtch is what we set out to
prove.

The reciprocal property of inver-
sion immediately yields another as-
sertion.

Trnonran 2. A circle passing t}rouglr
the pole of inversion is mapped by in-

version onto a straight line perpen-
dicular to the line through the pole of
inversion and the center of the circle.

So, i{ we could design a mechanism
that applies inversion, rotational motion
would be transformed precisely into
linear motion. Mechanisms that make
use of inversion are called "inver-
SOIS.,,

Peaucellier's inuel'sor
In 1854 the French engineer A.

Peaucellier constructed the following
inversor. Fourlinks of the same lengh
are connected by hinges to form a
rhombus AB CD ({ig. 1 1 ). Two other
links of equal length BO andDO, but
longer than the sides of the rhombus,
are attached to opposite vertices of the
rhombus. Hinges are put at points B,
O,andD.

D

Tsronnm 3. For any position of
Peaucellier's inversor, the product of
lengths AO and OC is a constant
value.

PRoor. Denote the length of the
long links by m, so that

OB:OD:M,

and the length of the short links by n,
so that

AB:BC:CD:DA:N.

Nowplot the diagonals of th.rho--
bus. One of them will pass through
point O (since the vertices of isosce-
les triangles DOB, DAB, and DCB
witha commonbase BD belongto the
same straight line). Let OA : r, OC =
p. Considering the triangle OBM, we
have

BIW : mz - OI\IP. l2l

22

4-
9l 

r-d ) { 2r+0 I

Figure 9
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The triangle BCMytelds

BIrrP:nz-CItvP. (3)

Subtracting (3) from (2), we get

m2_n2 : 1M2_CMI
: (oM+ CMI()M- CMI
: OC.OA,

or

p . r: m2 _nz,

which means that the product

p .r: OC .OA

doesn't change when OC and OA
vary, and our proo{ is done.

Consequently, if point O is fixed
andpoint A moves along a curve, then
point C follows the image of that
curve under inversion. So if point A
moves along a circle passing through
the pole of inversion, point C moves
along a straight line. (It tums out that
Chebyshev's student Lipkin at St.
Petersburg University devised this same
inversor independently rn l\72.l

Let's look at one more inversor
before we leave the subject.

llarl's inuel'sol'

Soon after the appearance of Peaucel
lier's inversor an English mathemati-
cian and mechanical engineer named
Hart constructed an inversor based on
an antiparallelogram. A quadrilateral
ABCD is called an antiparallelogram
(fig. 12) if its opposite sides are equal
and two of them (sides 43 and CD in
fig. l2l intersect each other. The fact
that a hinged antiparallelogram pro-
duces inversion stems {rom the fol-
lowing two theorems.

THronrm 4. For any antiparallelo-
gram the product of its diagonals DB
arrd AC (fig. 13 ) is a constant value.

Pnoor. We'llbegin by denoting the
relationships

AB:DC=m, AD:BC=n.

Take a segment BLparallelto AD and
draw a circular arc with centerB and
radius BI. This arc passes through
point C since

BL: DA: BC.

Now draw the line AM tangentto this
arc. Its square equals the product of
the secant and its outer segment.
Consequently,

Arw: AL.AC: DB .AC. (41

Considering thetnangle ABM wehave

A]W =AB2-BML
= AB2-BC2
: yf-nz.

Comparing this with (4), we get

DB .AC : mz -nz = constxrlt,

as asserted.

DB

Trnonrnn 5. Choose any two equal
sides o{ a hinged antiparallelogram
and fix a point on a thtd side. Draw a
straight line through this point paral-
1el to the diagonals o{ the antiparalle-
logram. The product of the distances
from the fixed point to the intersec-
tions of the line with the chosen sides
remains the same for all positions of
the antiparallelogram.

Pnoop. [n the notations of figure t4
the product in question is one of the
following four: MN. NQ, MN. NP,
PQ. PM, PQ . QN. A1l these products
are evidently equa1. It's therefore suf-

AC
Figure 14

ficient to mnsider the produa 1lO/ . NQ,
where the point Nis fixed. The simi-
larity of triangles,Anz0/ and,4DB yields

MN=BD.N
AB.

wtrile the similarity of triangles ABC
and NBQ implies

NO = AC .BN'' AB'

Multiplying these equalities we get

MN NO = BD ' AC .AN'q: .

AB'

The ratio IAN . BNll AB2 is a constant
since all its terms are constant val-
ues. The product BD . AC is a con-
stant by theorem 4. Consequently,

MN.NQ: constant.

This is how Hart's inversor works.
Taking any of the above four points as

the pole of inversion, we move the
second point along a circle passing
through the first point, Then the third
point traces a straight line. CI
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HOW DO YOU FIGURE?

ChalleltUe$ in physics and lnath

tlllath Physics

Ml6
Vitus vercus bactefium. A colony of n
bacteria is invaded by a single virus.
During the first minute it kills one
bacterium and then divides into two
new viruses; at the same time each of
the remaining bacteria also divides
into two. During the next minute
each of the two newly born viruses
kills a bacterium and then both vi-
ruses and all the remaining bacteria
divide again, and so on. Will this
colony live infinitely long or will it
eventually perish? (R. Kovtun)

Ml7
All isosceles. On straight lines AB
and BC containing two sides of a
parallelogram ABCD points H andK
are chosen so that the triangles KAB
and HCB are isosceles (KA : AB, HC
: CB; see figure 1). Prove that the
triangle KDH is also isosceles. (V.
Gutenmacher)

Figure 1

M1B
Numismatics. At a trial 14 coins
were produced as physical evidence.
An expertfound sevenof them counter-
feit and the other seven genuine, and
he knows which are which. But the

iudge knows only that the counterfeit
coins all weigh the same, as do the
genuine ones; and, in addition, that
the iatter are heavier than the former.
How can the expert convince the judge

of the correctness of his expertise by
three weighings on a pan balance? (R.

Freiwald)

M19
Summing chords. A number o{ chords
are drawn in a circle of radius 1 so that
each diameter crosses no more than k
chords. Prove that the sum of the
lengths of all the chords is less than
lrk. (A. Kolotov)

M20
Internal depreciation. (a) When a

number Nis multipliedby 8, the sum
S(N) of its digits can decrease (for
examplg S(75): 12, whereas S(B . 75)
: 5(500) = 6). Prove that it can't
decrease by a factor of more than B. In
other words, prove that

s(81v) > 1
s(M 8

for any natural N.
(b) what are the other natural numbers

k for which a positive co can be found
such that

s(kD_
S(1V) 

-k

for any natural M What's the greatest
suitable value of cofor agiven k? (I.
Bemstein)

P16
High-slepping hoop. Aring of radius
R rolling along a horizontal surface
with velocity v hits a step of height,h
(l .. R). The collision is absolutely
inelastic. What will the velocity of
the ring be after it "climbs" the step?
At what minimumvelocity can the
ring climb the step? (There is no
slippage.)

P17
Air strain. TWo weightless pistons
connected by a thin weightless sring
of length 1 (fig. 2l are positioned in two
cylinders with cross sections S, and
Sr. The spacebetween the pistons is
filled with water. Find the strain on
the string if each vessel opens up into
the atmosphere. (The density of wa-
ter is p. 

)

Figure 2

P1B
A warm impression. A coin is pressed

tightly against a frost-encrusted win-
dow. The ice under the coin first
starts to melt along the edge and only
later under the center of the coin.
Why is that?

&

I

l==
==[

,s2
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P19
Through thick and thin. In I B 15 the
English scientist Children staged the
following set of experiments. Two
platinumwires of the same lenghbut
different diameters were connected to
the Volt battery. In the first experi-
ment the wires were connected in
series, whereas in the second the
connection was parallel. In the first
case only the thin wire was heated,
and in the second the hot wire was the
thick one.

For almost 25 years scientists were
unable to explain why. Maybe you
can come up with the answer in a bit
less time!

(Hint: assume that the quantity of
heat radiated by the conductor into
the surroundings is proportional to
the conductols surface area and to the
temperature difference between the
conductor and the surroundings.)

P20
Water specs. What eyeglasses should
be prescribed for a person whose eye-
sight is normal under water? O

SOLUTIONS ON PAGE 57

Science and
Math Events:

Connecting
and
Competing

When you are trying to build student
interest and enthusiasm in math and

science, few resources can match the
excitement generated by science clubs

and competitions. But how do you get
your high-school students involved? And
how do you keep them involved? Wth
plans for successful fairs, details on 25

national and international contests, and

commentary by 89 prize-winning
scientists, this new publication prepares

you and your students for
connecting and competing in the 1990s.

#PB-47, 1990, 196 pp. $7.00

All orders of $25 or less must be prepald,
Orders over $25 must include a purchase order.
All orders must include a postage and handling
feeol $2. No credits or refunds for retums.
Send order to, Publications Sales, NSTA, 1742
Connecticut Ave. NW, Washington, D.C. 90009.
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Backissue$ol OUANTUM areattailails

You may order copies of the lanuary (premier) and May issues of
Quantum. (Sorry, the September/October issue is sold out.)

Single copies: $S
2-19 copies: $4lea
2C-/9 copies: $3/ea
50 or more: $Zlea

Send your order to:

Quantum
17 42 Connecticut Ave. NW

Washington, DC 20009
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These and 400 other top corporations "grow their own" engineers, managers, and
corporate executives at GMI...

"Closely coupled" cooperative education - GMI's unique partnership with major
corporations - provldes extraordinary opponunltles for high ability students.

Learn and Earn during paid co-op work experlences. GMI students average $56,000 in
co-op earnings over the live-year program (range 935,000 - 975,000).

DEGREE PROGBAMS
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Mechanical
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GMI Engineering and Management lnstitute
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GETTING TO KNOW

The nalul'al logarilhm

What's so "natL)ral" about 2.71828... anyway?

by Bill G Aldridge

OU KNOW WHAT A LOCA-
rithm is-it's just another word
for an exponent that represents a
number. You choose a base-for

instance, 10-and, by assigning an
exponent & you can represent the
number a in the form log,on : x (or
more commonly 1g n). The interest-
ing thing about numbers in logarith-
mic form is how calculations are
simplified.

The great mathematician Laplace
(1749-1827 ) said, "The invention of
logarithms shortens calculations ex-
tending over months to just a few days
and thereby, as it were, doubles the
li{e-span of the calculators." (Back in
those days, calculator = person.l To
take a simple example, to multiply
two numbers loganthmically, you just
add their exponents. What's 5,673
times 1,347? Referring to a table of
common (that is, base 10) logarithms,
we find that 1g 5673 :3.75381 and
1g 1347 :3.12937. Or.r multiplication

problem then becomes 103 75381 times
10312e37. Adding the exponents/ we get
10688318. Working backward in the 1og

table, we find that i{ 19 n = 6.88318, n
equals approximately 7.6415 times
106, or 7 ,641 ,5OO . If we multiplied it
out the long way, we'd get 7,641,531.
As you can see/ the use of logarithms
produces approximations because tables
of logs are carried out only to a certain
number of decimal places. For most
purposes/ thougfr, the precision achieved
is perfectly adequate.

Maybe that didn't look like much
of a simplification, but the impor-
tance of logarithms and their iaws in
performing complicated calculations-
for instance, those involving roots-
was immense. I say "was" because
pocket calculators now perform in
fractions of a secondwhat used to take
hours or days, even with logarithms.
But other, more important uses of the
logarithm persist in science, math,
and engineering.

Base l0logarithms arose out of our
number system/ based as it is on the
number 10. All logarithmic relation-
ships that occur in the natural world,
though, have a different base. Because

of that, such logarithms are called
"r,at::lral." Unlike the "gommon"
base, the natural base is a transcen-
dental number. Now, does that sound
"rratvral" to you?

The number is designated e, arrdrt
is usuallywritten as the rational ap-
proximation 2.7 1828... .

Although I used natural logarithms
in high school and college and had
derived the value of e mathemati-
cally, I never really knew where it
came from. You can find a derivation
o{ e in many math texts, but it's
always presented as an abstraction.
That always bothered me.

Finally, long after leaving schoof I
decided to work through for myself to
see how e canbe deduced from an
actual process in the natural world. I

u

c
c

20

Another case of e at work: early cleavage of a fertilized starfish egg (magnified 100x)
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could have chosen radioactive decay,
or the discharge of a capacitor in an
electrical circuit, or the abstract con-
cept of entropy in statistical therno-
dynamics. My specialty happens to
be physics, but I decided to use a
biologrcal phenomenon in my pwsuit
of e.

The hiology ol hac[mial grotllh
I looked at the growth of staphylo-

coccus bacteria in what is called a
selective culture medium (Staphylo-
coccus 110 agar). This bacterium has
a diameter of 0.5 to 1.5 micrometers
and splits every 20 minutes or so. It
does this in the nutrient culture, and
the process is called transvercebinary
fission. The process goes like this: A
newly formed cell undergoes a grad-
ua1 increase in volume, as it prepares
for cell division. After some time it
forms a septum that ultimately di-
vides the enlarged cell into two identrcal
daughter cells. Cellular components
are divided equally between the two
developing cells. Each of the daughter
cells then begins to increase in vol-
ume in preparation for the next divi-
sion cycle. Each time the ceils divide
the population doubles.

The generation time, defined as

the time it takes the population to
double, varies from 20 minutes to
several days, depending on the species
of organism and the culture in which
it grows. The generation time can be
found just by watching a few cells
divide, using the average time needed
to divide as your estimate of the gen-
eration time. (You'd need a micro-
scope to do this, which I didn't have
handy, so I got all this from a book.)

It turns out that actual bacterial
growth is exponential (doubling each
20 minutes) only for a certain period of
time. At first the bacteria must adjust
to the medium (lag timel; then the
growth is exponential; then it levels
off to a stationary period, when all of
the nutrient has been used; finally,
the cells begin to die, and the curve
drops. I restricted myself to the phase
of exponential growth.

If we started our culture with drrgh
ter cells a1l of the same size, just after
they have formed, we could observe
them dividing in a synchronous fash-

ion, at least for a while, until they
began to get out of phase. But if we
iust select a random sample of the
bacteria, some are ready to divide,
others have just started to grow, and
still others are at some point in the
growth phase. Since the bacteria are
in various stages, a given bacterium
mlght divide 

^t 
afly time. If there are

enough bacteria, cell division in this
asynchronous mode occurs almost

. Ilookedinto this growh
pattem because it ful{ills the assump-
tions needed for the math.

Tle matfiemalic$ 0l bactet'ial Urowth
Each bacterium divides into two

bacteia after a certain period of time.
Each of these two daughters grows
and then each one divides into two
morg and the process continues for as
long as there is nutrient and space
available for new cells. If we start
with 5,000 bacteria, and the genera-
tion time is 20 minutes, how many
will there be intwo hours? Let's say
we start at 8:00 o'clock. At 8:20, we
have 10,000 bacteria; at9:40, we have
20,O00t at 9'.00, we have 40,000; at
9:20, wehave 80,000, at9:4o, we have
160,000, and at 10:00, two hours later,
our population of 5,000 bacteria has
increased to 320,000. How many
wouldwe have at the end of the next
two hours?

Next, I tried to find an equation
that describes the relationship between
the time t required for a certain number
N of bacteria to be produced from a
smal1 initial number A{n. (We can
assume that we're starting with so
many bacteria and at such different
stages of growth that cell division is
occurring randomly and continuously. )

I could then divide the time t into a

large number n of small intervals,
each having the same size Af. Because
each interval is At long and there are n
of them all together, the total time t is
gven by t = n&L Since the interval lt
is iust the total time divided by the
number of intervals, we have the
expression Lt: tf n.

During any time intervaf ANof the
cells divide. Suppose that the time
interval At is 0.01 second and we get a
certain number of divisions in that
0.01 second. If the interval is in-

creased to/ say/ 0.02 or 0.03 second,
the number of cells ANproduced in
that interval is also greaterby afactor
of two or tlrree. If we provide twice as

many cells at the beginning of that
time intewal, then there will also be
twice as many cells produced. In
other words the number of cells AN
that divide during the time interval At
is proportional to that time interval
and to the number of cells Npresent
when the interval stafts. I expressed
this relationship mathematically by
the proportion

AN-NAr.

This proportion means, for example,
that i{ At or Nis doubled, the number
of cells that can divide doubles. If
either factor is halved, only half as
many cells can divide.

Writing the proportionality as an
equation by including a proportional-
ity constant k, I got

AN:kNAr.

I've said there is an extremely large
number n of these very small time
intervals At. The increase in the num-
ber of bacteria ANgiven by this equa-
tion can be used for each of several
time intervals. For the first interval,

AN:kNo^r,

where N, the mrmber of bacteriapres-
ent at the beginning of the first inter-
val, is merely the number of cells with
which we started.

The number of bacteria at the end
of the first interval is No + AN. But if
the value of lN from the previous
equation is used, this total must be N0
+ kNoAt. If we factorout {, we have
just {(1 + kAt) for the number of
bacteria at the end of the first time
interval. Let's call that mrmber N,. So

Nr=No(1+kAr).

Now I had to find the number of
bacteria at the end of the second time
interval. The increase ANagain had to
be proportional to the number N, of
bacteria I started with in that interval
and the length of the interval. Again,
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usins k as a constant of proportional-
ity, we have the equation

AN=kN,Ar

for the increase in the number of
bacteria during the second interval.
The total number of bacteria present
at the end of the second interval is
obviously the number present when '

it satedplus theincrease-N, + kly',At.
Stating it as an equation, at the end of
the second interval we have

Nr=N, +kN,Ar.

Factoring out N1, we get

AL=N1(1+kAt).

Since I had already found the number
of bacteria at the end of the first interval
N, interms of the startingnumber N,
I simply replaced N, in this equation
with that number, which gives

N,: t1%(I +kAt)l{I +kLtl,

or more simply,

Nr=1%(1+At)2.

By now I'm sure you've caught on
and know what my next task was: to
find the number otbacteia atthe end
of the third time interval. I started
with N, so that the increase is given
by

AN:kNr^r.

Asbeforg thenumber N, at the endof
the third time interval is givenby N, +
AN-what we started with plus the
increase. Sowehave

AIr: N, + kNrAt,

and factoring out N2 we get

AIr=Nr(1+kAt).

Replacing AI, by the value we had in
terms of No, wenowhave

N. - tNr( 1 + kAt)'z1( 1 + kLtl,

or more simply

AI.=Nr(1+ftAt)3.

You see thepattem thatresults from
these steps, and maybe you're boredby
them. But we're on the verge of gener-

alizingthe result, and that's always
fun.

If we continue to look at the num-
ber ofbacteria at the end of successive
time intervals, the total at the end of
each interval is equal to the number
present at the end of the preceding
interval times the quantity (1+ kAt).
When we do the various substitutions
for the starting numbers, back to the
initial amount/ we'll have, at the end
of n time intervals,

At:Nr(1+kAt)".

The quantity N, is thetotalmrmberof
bacteiathat have been produced after
a time t has elapsed. There were n
intervals of size At each making up
that time t. So t = aAt and Lt = tln.
(Sorry if this seems like beating a dead

horsg but I'm e4posing all the steps in
my thinking, inciuding the ones we
usually iust buzz past.)

I used this value o{At in my equa-
tionforN,. Ithengot

You'll notice that the quantity (I + ktl
n)" is a binomial that can be e4panded
in a binomial series, grving

(r.*\=r+nl

. .,(kttil2+n\n- l)-
2l

* n(n - D(n - DGt!!)3 + ... .
3!

If we've made At small enough, avery
large number n of time intervals is
involved. We want the value of the
terms of this binomial orpansion when
r is very large. From elementary
calculus I knew how to "take the
limit of this expression as n approaches
infiniry" which is written

, kt)
is(r * ,,' '

Lr the limit, as n becomes infinitely
large, the binomial series simplifies

considerably. This is because all fac-
tors involving n, like n(n - llln -21,
become simple exponentials of n-in
this case, simply n3. As such, they are

all canceledby identicalpowers of n in
the denominator of the quantity
(ktlnl, which is always raised to the
same power. So, in the limit, our
particuiar binomial expansion is just

,,,., (kt)2 (kr)3,, (kt)'t-rKt-r 2l-t 3! -...- *1 
.

Lr this limiting case, the number N, of
bacteria after time t is then grven by

,,=rr[ t*r,*$*$. .#]
Suppose we let kt equal I in this
series. Then for m = B the series
becomes

t+t+1+126
1ll

T-T24 t20 720

l1
T-T-T... .s040 40320

or, in decimal form,

1 + 1 + 0.5 + 0. l6(KS(fi7 + O.Ml6(f,6(fi7
+ 0.0083333333 + 0.0013888889 +

0.0001984127 + 0.000O248016 + ... .

When I added these numbers, I got
2.71828- . Eurekal (Or is it deid vu?l

A ltaily lilfle nonl'wmliru Gor$hltl...
What's more interesting is that when

we let kt : 2, the value of this expan-
sion is 7.389056..., which is iust
(2.71828...!'z.If kt:3,the sum of this
series becomes the cube of 2.71828...,
and so on. This endless, noffepeating
decimal number we get as a base for
thg exponential isn't even a rational
number. So let's cal,rt e. (That's nice
and irrational, isnlt it?) Its valug to 15

places, is 2.71828 1828459Q46. Then
our equation for the number of bacte-
ria after some time t becomes quite
simple:

N=Atro'.

Now if we de{ine (which someone
already had) the natwallogarithm x
"the exponent needed on e togive a
certain result," we can write this

a.

?1

n,=No(l.yI
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exponential expression as abase e

logarithm. (|ust as base l0logarithms
are abbreviated to "Ig," baseeloga-
rithms are shortened to "ln."l Writing
our equation for bacterial growth in
logarithmic form, we get

kt: ln (N/No),

orinterms of the time

t: lrlkl ln (N/N.).

This ecluation tells us how long it
takes to produce Nbacteria when we
start with No of them. To use this
equation, you would need a table oi

natural logarithms. But these are
readily available in books and on almost
all electronic calculators.

Needless to sar lwas quitepleased
when all my calculations worked out
correctly and I discovered for myself
the connection between the base of
the natural logarithm, 2.71828... , and
a naixalphenomenon. But nothing
would have "cli cked " if I haul'-t admitted
to mysel{ that something was "stuck."
So i{ something doesn't seem to make
sense to you, don't be afraid-or
ashamed-to work it out for yourself,
no matterhowtrivialit might seem to

someone else.
In the meantime, here are a few

problems that involve working with
e. (And maybe one of you can tell me:
why "e"?tl

Exercises
1. Suppose you know the generation time

l. for a given bacterium-say, 20 minutes.
Find the constant of proportionaLity J<.

2. Starting with l0 bacteria and the same
generation time as above, how long will it
take to get 1,000,000?

3. Prove that e is not the rational number.
27t,8}tls9,sso. o

SOLUTIONS ON PAGE 63

Readerswrite...

From Richard G. Brown of Phillips
Exeter Academy: "I enjoyed the'Bo-
tanical Geometry' article in your
September/October 1990 issue. Your
reference to Napoleon's triangle re-
minded me of the special relationship
posed in the problem below. Some
years ago/ a geometry ciass and I dis-
covered this relationship. Ourproo{
used vectors."

Problem: ABC is an arbitrary tri-
angle with equilateral triangles built
on its sides as shown. X,Y, and Z are
centroids of these equilateral triangles.

IXYZ is known as Napoleon's triangle
and is equilateral.) The problem is to
discover a relationship involving the
centroids of triangles ABC , XYZ, and
DEF.

,\

Dan Schroeder
Astrcnomer and Phpicist
Hubble Space Telescope Research

Team Member
Beloit College Graduate and Professor

/\nlv one scientist who's not
\J "ifilirt".I 

with a major
research university was on
NASAs team that built the
recently launched S l-billion
space telescope. He's Dan
Schroeder, who went from
Kiel, Wisconsin (population
3,087) to Beloit College (pop-
ulation 1,100) and the top of
his profession. A world-class
researcher, he's also a great
teacher, three times voted
Beloit College's "Teacher
of the Yeari'He's just one
reason that this historic
Wisconsin school ranks
among America's top 50
undergraduate colleges in
producing graduate scientists
and is a place young men
and women learn to reach
for the stars.

Beloit
College

The Results Speak For Themselve6.

Circle No. 17 on Readers Service Card
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MATH EMATI CAL SU RPR I SES

Play il auaill . r ,

andagain...

by John Conway

Olt l08g
When I was a littie boy, my father taught me some-

thing that rcally puzzled me. You start with a three-
digit number lsay, 37 91, reverse it lto 97 31, and take the
dilference:

973
- 379

s94

Then you reverse that, arrd add:

594
+ 495
1089

We get 1089. What's so surprising about that? Well, the
surprising thing my Dad said, is that you always get

that same answer: 1089.

Well, he wasn't quite right. If you start with a num-
ber whose first and last digrts are equal {say, 585), you'll
getzero:

But itis true thatyou'llalways get either0 or 1089. Can
you explain why?

0n $174
The Indian mathematician Kaprekar discovered what

to my mind is a more surprising result of this kind. You
start with any four-digit number whose digits aren't all
equaf arrange its digits to form both the largest and the
smallest numbers you can, and take their difference:

4321
- 1234

3089

1{0llriltBtR/[tct]lllBtR 1 $90

Then you just keep on doing that same thing, and quite
a strange thing happens:

4321 9830 944t 9972 7731 5s43 8730 Bs32 7641

- t234 -0389 -rM9 -2799 -1377 -34s6 -0378 -23s8 -t467
3oB9 944t 7992 7173 5354 3087 8352 6174 6174

AJter a time, the answer you get is always Kaprekar's
maglc number 5174,which, as you can see/ leads imme-
diately to itself. Can you show that this indeed always
happens?

0tt 153
It seems a bit arti{iciai to work with a fixed number

of digits, so here's something that works with arbitrarily
large numbers. Start with any positive multiple of 3 and
repeatedly replace it with the sum of the cubes of its dig-

its. Why do you always get to the magic number 1 53 ?

It helps to know the cubes of the ten digits:

03 : 0, 13 : I, 23= 8, 33 :27, 43 -- 64, 53 : 125,
53 :216, 73:343, 83 = 512, 93 =729.

An example:

999999 -> 5 .729 = 4374,
437 4 -> 64 + 27 + 343 + 64 : 498,
498-> 64 +729 + 512 = 1305,
1305-> l+27 +0+ 125:153,
153 -> 1 + 125 +27 = 153 ...

On BAI$
Here's a digital game I invented that contains an un-

solved problem. I call it "RATS," which is an acronltn
for reverse, add, then sort. You take any positive num-
ber, reverse it, add the result to the original, then sort
the digits of the answer in increasing order, deleting any
initial zeros. You just keep on doing that, and watch
what happens:

58s 000
- 585 + 000
000 000
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3 6 t2 33' 55 t23 444 888

a6n$5632r444888
5 t2 33 66 t32 444 888 t776

1677 3489 We always get to four zeros, and often surprisingly
7761 9843 quickly. Canyouprovethis? Whathappensifyoutake
943813332 three numbers instead of four, or indeed any other num-

ber of numbers?
12333, 44ss6 (000)111 222 444 8BB 1577
33321 65544 trt 222 444 888 776r
45554 110100 222 444 8BB 1775 9438

andwe'reina cycle.

Lots of other numbers give cycles, but some don,t-
for instance, the number 1 starts off a sequence that gets
larger and larger:

77 t45 668 1345 6677
77 54t 866 543t 7766

154 686 1534 677614443

13444 5s778 r3334s 566677 t333444
44431 B77ss 543331 776665 4443331
5787s t43s33 576675 t443343 s77577s

5s57777 t233344s 55666677 133333444
77775ss 5443332t 77555666 44433333t

r334s432 66765766 144333343 s77666775

5s5567777 t2333334444 s5656567777
7777665ss 44443333321 77775666655

t334434432 56776667765 133443334432

t23333334444 ss6655557777 t233333334444
444433333321 77775555665s 444433333332t

56775566775s 1334433334432 5677665667765 ...

and now altemate numbers arevery similar, but
credsing in length.

Now here's the unsolvedproblem. Every number
that we've tried (and we/ve tried all numbers with fewer
than 15 distsl) either gets into a cycle or enters this par-
ticular sequence. Does this continue forever? We don't
know.

0n 0,0,0,ll

A umy lny$tgl'iou$ $erusltce
I endwith aproblem that I don't expect many of you

to solve completely. What's the rule that govems the
sequence of digit-sequences

1

11

2t
lztL
tt22t
3t22tl
t3tt2221
LIl32r32tl
3rI3tztrL31221
| 
.32t 

| 3 I I t23 | | 3 | 1221 1

and how rapidly does the length of the nth sequence
tend to in-finity?

The first half of the question is easy-if you can't do
it yourself, ask somebody younger than you are for some
help. The second half is quite surprising. O

SOLUTIONS ON PAGE 63

{ar

t2 4 B 16

12 4I 5t
24 8 1677

Here's a slightly more mathematical problem. Start ,t-4
withanyfour-*ho1"rr,r*bersa, b, c, d.ind,rcplace . !',
themwiththe differenceof.aandb,b andc, c andd, d XA
a:nd a. Repeat this process and watch: .{/fr

598 67 13

93 31 54 8

62 23 46 85
39 23 39 L3
t6 L6 15 t6
0000
0000
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CONTEST

$hapes and shes
Specifically, convex polygons with integer stdes inscribed in a

circle of integer radius

by George Berzsenyi

I T'S NOT DIFFICULT TO SEE

I that ii la, b, c) is a Pythagorean

I lil:f jtY' ;? :X'lil iiHl-,":' ffil
triangle with sides 2a, 2b, 2c,as well
as the quadrangles with two sides of
Length2a and two sides of length 2b,
are inscribable in a circle of radius c.

Since there are well-known methods
for the generation of Ilthagorean trples,
it's easy to characterize all such tri-
angles and quadrangles.

This month's problem asks the
more general question: What other
convex polygons with integer sides
can be inscribed in a circle of integer
radius? Notice that we may not even
be done with triangles and rectangles,
so an easier version of the problem is
to address that issue. At the other
extreme/ we may wish to remove the
restriction of convexity.

This problem is a natural exten-
sion of Problem 557 in the February

19Bi issue of the now defunct joumal
Mathematics Student, whose Com-
petition Comer I edited for three years.

During that time an average of 69
solutions were submitted to the 102
problems posed-and problem 557 got
its fair share. The problem asked for
polygons with three sides o{ lengh a

and three of length b, inscribed in a
circle of radius r, with a, b, and r
integers. In solving the problem, the
students were led to the Diophantine
equation a2 + b2 + ab :3r2, whose
solutions yield all of the hexagons
with the desired properties. Some
participants of the Competition Cor-
ner also studied hexagons with four
sides of length a andtwo of length b
(inscribed in a circle of radius r) and
found that they can be obtained by
solving yet another Diophantine
equation, az +br:2r2. Bothof these
equations yield in{initely many solu-
tions, which can be found by standard

methods. Are these the only hexa'
gons with integer sides inscribable in
a circle of integer radius? This ques-
tion never arose. As a minor puzzle,I
leave it to you to decipher what must
be the lengths of the sides of the
polygons in figures 1, 2, and 3, given
that they can be inscribed in circles of
radii 5, 7, and9, respectively.

Please send your solutions to these
problems to Quantum, 1742 Con-
necticut Avenue NW, Washington/
DC 20009. The best results will be
acknowiedged, and their authors will
receive free subscriptions to Quan-
tum for one year and/or book prizes.

Alsircs altd sstlett$

[r the May 1990 issue of Quantum
I asked whether the Roseberry Con-
jecture, "A11 positive integers that are

not multiples of 5 have an integer
multiple consisting of 6's and 7's onlry,"

is true. Solutions were submitted by

CONTIIIUED ON PACE 45

Figure 1 Figure 2 Figure 3
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CONTEST

llleull'inos and $tlperltotla$
"When shall the stars be blown about the sky

Like the sparks blown out of a smithy, and die?"
-William 

Butler Yeats,

by Arthur Eisenkraft and

"The Secret Rose"

Larry D. Kirkpatrick

HESUPERNOVA 1987APRO-
vided us with a personal view of
a dying star and kindled new
interest rr the in{ant field of neutrino

astronomy. The neutrino was origi-
nally proposed to " saye" the laws of
conservation of energy and momen-
tum in beta decay. If a neutron de-
cayed into a proton and an electron,
the conservation laws required that
the electron have a well-defined ki-
netic energy in the center of mass
system. Experiments showed, how-
ever, that the electrons exhibited a
spectrum of kinetic energies ranging
from zero to the predicted vaiue.

In 1930 Wolfgang Pauli proposed
that a third particle was involved in
beta decay. To agree with the sonser-
vation laws, the neutrino had to be
neutral and have a very small rest
mass, possibly zero. It took 26 years
for the neutrino to be discovered be-
cause it interacm so weaHy with m;rtter-
on average only one in atrillionneu-
trinos wouid be stopped in passing
through the Earth. In spite of this
extremely weak interactiorl it's now
known that there are three different
types of neutrino: one paired with the
electron, one with the muon, and one
with the tau.

Although the mass of these neutri-
nos may be zero, this has not been
confirmed. Since measuring devices
can never be perfect, the best we can
do is set an upper limit on the masses
of the neutrinos. At present the mass
of the electron neutrino is known to
be less than 18 electron volts (eV),

where the mass is expressed in its
energy equivalent. The experimental
limits on the other neutrino masses
are not as 1ow. The masses of the
muon and tau neutrinos may be as
high as 250 keVandS5 MeV, respec-
tively. So any experiment that could
place more restricti.ve limits would be
welcome. Such an opportunity was
provided by supemova 1987A, which
occurred relatively close to Earth at a
distance o{ 170,000 light years. After
the observation of the supernova,
experimentalists examined the data
taken by several experiments *tatwere
running at the time and discovered a
number of neutrino events.

[r order to see how the observation
of these neutrinos can help us deter-
mine their mass, let's consider the

Photo court*y ofNASA

following simplified situation. As-
sume that the supernova emits an
extremely short burst of electron
neutrinos and that neutrinos with an
energy of 15 MeV arrive at the detec-
tors 15 seconds after the anival of 7.5-
MeV neutrinos. What mass must the
neutrinos have to account for the time
delay in their anival?

Please send your solutions to Quan-
tum, 1742 Connecticut Avenue NW,
Washington, DC 20009. The best
solutions will be published in Quan-
tum arrd their creators will receive
free subscriptions for one year.

CONTINUED ON PAGE 45
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Euclid himself referred to his algorithm as ',constant
subtraction of the smaller from the larger" lElements,
Book 7, Proposition 2). This "repetitive subtraction,,
algorithm is the subject of our story.

Let's look at an example of how the algorithmworks.
Let(m, nl =(20,12lr. Writing out the consecutivepairs of
numbers from right to left, we get the following chain:

(4, 4 ) <- (8, 4 )<- (8, L21 4- 12, , 12) .

This means that the GCD of (2O,l2l:4. Applying the
same procedure to the pair (5, 3 ) we get

(1, 1) <-(2, L) <-(2, 3) <-(5, 3).

You can see that each number in the second chain equals
the corresponding number in the first chain divided by 4.

Now try to answer the {ollowing question.
Problem 1. Let d- the GCD of (M,N). We'llsaym=

M/d andn:N /d. What's the GCD of (m, n) t How is the
action of Euclid's algorithm on the pair (Vf N7 similar to
its action on the pair (m, n) !

From now on we'Il limit ourselves to pafus (m, nl f.or
which the GCD = 1. We'll call such pairs "simple pairs.,,

ilm ffinealo0y olsimple pairs

Let's look at another example. Applying Euclid,s
algorithm to the simple pair (3, 4)we get

(1, 1)<-(2, 1) <-(3, 1) <-(3,.4).
A portion of this chain coincides with a portion of the
chain f or th e pair (5, 3l,so we can j oin them together:

4(3' 1)<-(3' 4)
(1, L) <- (2 , 1)

Rtr, 3)<-(5, 3).
We can add another simple pafi (3,21, and the picture gets
more complicated:

LOOKING BACK

0enealo$ical lhrss$
A method of generating Pythagorean triples rooted in Euclid's

algorithm for the greatest common divisor

by A,A. Panov

UR STORY IS ABOUT MATHEMATICAL
classics-Euclid's algorithm and Pythagorean triples.
Euclid's algorithm is described in his Elements
(about 300 r.c.)but was surely known long before

that date. The history of Pythagorean triples can be traced
even further back. A remarkable monument of human
culture is a Babylonian clay cuneiform tablet that lists
fifteen Pythagorean triples. The tablet dates from about
1500 s.c.1

Shaking the dust off these ancient notions, we,ll talk
about them using the "language of trees.', This language
is convenient for solving a number of equations and
clarifies the relation between Euclid's algorithm and a
method of constructing Pythagorean triples proposed re-
cently by a British mathematician.

Hulid's algonlhm
Euclid's algorithm finds the greatest sommon divisor

(GCDI of two natural numbers.

Let(m, nlbeapair of positive integers:
lll if m = n, then d =m = n is the greatest common

divisor of rz and ni if. m { n,go to step 2);
(2) replace the larger of the numbers m and n with

the difference after subtraction by the smaller and go
back to step (1).

Maybe you're more familiar with another version of
step 2:

(2'l repLace the larger number by the remainder
after division by the smaller and go back to step (1).

It's a matter of tastg really.
Problem O.Provethat algorithms (1), (2) and (1), (2')

both yield the same result. (Hint: diuision is equivalent
to r ep e ated subtr action. )

rNow a part of the Plimpton Collection in the Butler
Library at Columbia University.-Ed.
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E
(2, 7)//a \

\,r, 3) < (5, j)
' \' 

17, 2) <- (3, 2)

This suggests that there may be a general pattem uniting
all simple pairs. How do we find it? We could just add
more simple pairs. But sooner or later we'd realsze that the
right question to ask is this: for anysimple pair (-, nl,
what are the other pairs whose arrows are aimed at this
one?

Problem 2. Prove that if Euclid's algorithm produces an
anow from the p afu fM, N/ to the pair (m, n), then either M
: frr+ 11, N: n, ozM: m, N= m+ n.

This problem suggests that we have to introduce two
transformations t, arrd trthat tum the pairr lm, n) into

tr(m,nl:(m+n,nl,

trlm,nl=lm,m+nl. (1)

We can now proceed in reverse order. Starting from the
pair (1, 1) and appiying the transformations t, md tr(shown
by upward and downward arrows, respectively), we get
two new pairs (2, 1) and (1, 2). We apply the transforma-
tions to each of them, and so on.

Each pair now gives rise to two new pairs, and this
process can be continued to infinity. As expected, figure 1

contains all the preceding chains as pieces of itself, but
with all the arrows reversed.

Figure 1

Problem 3. Prove that any pair (m, n) in figwe 1 is a
simple one.

Problem 4. Prcve that every simple pair shows up in
ftgure 1 and that it occws only once.

After these problems it's quite natural to cail the
pattem shown in figure I the genealogical tree of simple
pairs.

Problem 5. Let the pair (m, n) lie on the genealogical
tee in figure 1. There is a unique path connecting it to the
fir st p atu ( 1, 1 ). Show that moving alon g this p ath in th e
dtuection of the pair (1,1) is equivalent to applying Eu-
clid's algorithm to the pair (m, n)

So the genealogical tree contains all simple pairs. And
Euclid's algorithm is applied by moving from the pairs
(-, ,l against the arrows.

Equation)fl=12
Now let's change the subiect and try to find all integer

solutions lX,Y, Z) of the equation

xY: z. l2l

We'llbe interested only in positive X, Y, Z. (Example:
x:3,Y:12,2:6.1

At first glance it seems there's nothing to talk about.
For a given Zwe just have to break down the number Z llirta
two factors. So for each Z the number of solutions can be
computed quite easily.

problem 6.FixZandlet z= por',p;., ...,pi, be the
expansion of Z into prime factors. Prove that the number
of solutions of equation (2) is equalto (2a,+ 1)(2ar+ 1) ...
(2ar+ 1).

I'd advocate another approach, though.
Problem 7 . Let (X, Y, Z) b e a solution of equation (2) ;

prcve that for any d > 0 the triple (dX, dY, dZ) is also a

solution. Let (X"Y,Z)be a solution of equation (2) andlet
the GCD of (\Y) equal il prove that (X/d,Y ld,Zld) is also
a solution of equation (2) and that the GCD of (Xld, Y /d)
is 1.

So in order to find all solutions of equation (2)we can
consider only those triples (X, Y, Zl for which the GCD of
(X, Y)equals 1. We'llcall them "primitive solutions." All
other solutions are obtained from primitive solutions by
simple multiplication.

Problem 8. Let (X, Y, Z) be a primitive solution of
equation (2). Prove that there is a simple pafu (m, n) such
thatx:m2,Y:n2,2=rrrn.

It's now clear that relations

'X:m2,Y=n2,2--mn (3)

define a one-to-one correspondence between simple pairs
(m, nl andprimitive solutions (X,Y, Zl of equation (2).

This means we can make full use of our preceding
results about simple pairs. For examplg by using relations

{3 ) we can replace each simple pair (m, n ) in figure I with
the corresponding primitive solution (X, Y, Zl. The
resulting tree might naturally be called the genealogical
tree of primitive solutions of equation (2). It contains all
primitive solutions without exception.

There is, however, a more direct and convenient way to
build up such a tree.

t,. t tt) j

/s.l,l) zlla./ Y'/ --'
(-'l" )r (e//4/21 <r,, , ,l /' 't (9//g//1J <

i'tl ra ,, >p\9t/S) 4,
(r,rrr)v 

\(q's") 'i1'rtt'ol1
'1,,,i.,, 1 /atrz).,(JS/t/o)<o o,'7)-A""llffrffi

38
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Problem 9. Let a silnplepair (m,n) anesponduia (3)to
the solution (X,Y, Z). Denote the solution conesponding
to the pair tr(m, n) = (m + n, n) by T ,(X, Y, Z) and the
solution corresponding to the pafu tr(m, n) : (m, m + n) by
T2(x,Y,Z).,Provethat

TI(X,Y,Z): (X*Y + 2Z,Y,Y +Z),

T r(X,Y, Z) : (X,X + Y + 2Z,X+ Z).
\

The upshot is that the genealogical tree shown in figure
2 is directly generated by the transformations T, andTr.
We startwiththeobvious solution (1, 1, 1 ) andapplythe
transformations. The upward affow corresponds to 7,
while the downward arrow denotes f.

Figure 2 is quite impressive and gives us a clear idea of
the structure of the set of all primitive solutions of
equation (2). But as I mentioned earlier, equation XY : ?
can be solved by a simpler approach. So 1et's move on to a
more interesting example.

Pyfiauorean Fhles
Consider the equation

* +Y:22.

Its positive integer solutions (X, Y, Zl are called Pythago-
rean triples. The first such triple is, of course, (3, 4, 5). Our
goal is to construct a genealogical tree of Pythagorean
triples similar to the tree in figure 2. How do we do that?
Following the same approach as for the equation XY : Z,
we have to (a) single out primitive triples from among all
Pythagorean triples; (b) write out the relations X: Xlm, nl,
Y = Y(m, nl, Z : Z(m, nl for primitive Pythagorean triples
similar to relations (3); and (c) make the genealogical tree
for pairs (m, nl andreplace (m, n) withthe corresponding
triple (Xlm, nl, Y(m, nl, Z(m, nl).

Steps (a) and (b) have been known for a long time. I'11
give the necessary facts here without any comments or
proofs.

A Pythagorean triple (X, Y, Zl is called primitive if the
GCD of (X, Y) equals l,Xis odd, and Yis even. Thetriple
(3,4,5l1, for example, is primitive.

It's known that for any Ilthagorean triple (x, y, zl therc
exists a unique primitive Pythagorean triple (X, Y, Zl and
a unique natural number d such that either (x, y, zl =
(dX, dY, dZl or (r, y, zl = (dY, dX, dZl. Sohaving a list of
all primitive trythagorean triples makes it possible to list
all the other Pythagorean triples as wel1.

A pair of integers (-, rl is called primitive if m > n,
n > 0, the GCD of (m, nl is 1, and the numbers m, nhave
different parities (drat is, one of them is even and the other
odd). The pair (2,1), for example, is primitive.

It's also known that the relations

X = mz -n2,Y:Zmn, Z = m2 + n2 l4l

define a one-to-one correspondence between the set of all

primitive pairs and the set of all primitive Pythagorean
triples. For example, the pair (2,ll generates the triple (3,
4,51.

As for step (c) of our program, it has recently been carried
out by the British mathematician A. Hail.

Tlte geltoalogy ol Pyfiagonean Fhhs
In a brief note published in 1970 in the Mathematical

Gazette, Hall proposed the {ollowing technique for con-
structing a genealogical tree {or primitive pairs and primi-
tive Ijrthagorean tiples. He introduced three transformations
t't,tr:.

trlm,nl: (2m-n, ml,

tr(m,nl=(2m+n,ml,

tr(m,nl:(-*2n,nl.
By means of these transformations, starting from the pair
12, ll, the genealogical tree is built. Here the upward
direction coresponds to transformation t,, the horizontal
direction to transformatiottt, and the downward direc-
tion to transformation t .

Problem 10. Let apair (^,r) ueatethe Pythagorean
tnple (X, Y , Z) by means of relatiorn (4). Designate the Py-
thagorean triple generated by the pair t r(m, n) as T ,(X, Y ,
Z), the ttiple generated by tr(m, n) as T ,6, Y, Z), and the
triple generated by the pair tr(rn, n) as T ,(X, Y , Z). Prove
that

T1(X,Y,Z)= (X-2Y + 22,2X-Y +22,2X-2Y +32),

T r(X,Y,Z) : (X + 2Y + 22,2X + Y + 22, 2X+ 2Y + 3Z),

T{X Y, Z) : (-X+ 2Y + 22,-2X + Y + 2ZQX + 2Y + 3Z)

Now usirig the transformations Tt, T2t Talet's plot the
genealogical tree starting with the triple (3, 4, 5).

Hall's remarkable result is that the tree in figure 3
contains all primitive pairs without exceptioq so the ge-
nealogical tree in figure 4 contains all primitive Pythago-
rean triples without exception.

The next series of problems proves this fact.
Problem ll . Prove that all the pairs shown in figure 3

arc primitive. This will show that all the triples in figwe
4 are primitive Py,thagorean triples.

The transformations tl, tz, t'make it possible to move
along the tree in {igure 3 in the direction of the affows.
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L t)"L /
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Now we'll find out how to move along the tree in the
opposite direction.

u,(M, N) = (N, -M+ 2N/,

ur(M, N/ = (N, M-2N,),

ur(M, N,): /M-2N, N,).

The trans{ormations ut, uz, uemake it possible to move
along the tree shown in figure 3 against the arrows. They
carry out a peculiar Euclidian algolithm for primitive
pairs, allowing a descent from an arbitrary primitive pair
(m, n) to the initialpair (2, 1 ).

Each pair (m, nl rnfigure 3 is approached by exactly one

arow. For the transformations ull u, urthis coresponds
to the following fact.

Problem 13. Let apair (M,N)beprimitive and (M, N)
* (2, 1). Prove that only one of the three pafus (m, n) =
u,(M, N/, i= 1,2,3, is primitive. In addition, m + n <

M+N.
And, finally, the concluding problem.
Problem !4. Provethat eachprimitivepafu is contained

inthe genealogicaltree showninfigure 3 only once and
that the same holds for the primitive Pythagorean triples
shovvn in figure 4.

0fim Snealo$ins
In 197 8 the Scandinavian mathematical iournal Nor-

mat published an article by E. Selmer. In this paper he
showed that there are two other genealogical trees con-
taining all Pythagorean triples without either exception or
repetition (fig.5).

The first tree is built by using the transformations

T.(X,Y, Zl: lzx -Y + Z,ZX +2Y + 22,2X + Y + 3Zl,

TLIX,Y,Zl:lzx +Y + Z,2X-2Y +22,2'X-Y +321,

T.(X,Y, Zl =(2X +Y -2,-2X +2Y +22,-2X +Y +321.

The second tree is obtained from

TtlX,Y, Zl = (X -ZY + 22,2X-Y + 22,2'X -2Y + 3Zl,

Tz(X, Y, Zl = (2X + Y + Z, 2X -2Y + 22,2X -Y + 3Zl,

T zlx, Y, Zl = (- 2X + 3Y + 3 Z, - 5X + 2Y + 5 Z, - 6X + 3Y + 7 Zl.

esting new facts continue to be discovered.

$ummiru ul
Now a number of questions should at least be asked, il

not answered. For instancg why does the genealogical tree

fork into two branches for XY: 7 andinto three branches

for P + Y = Z2?. Next question: we've given three
genealogical trees for the equation )P + Y = 7, but only one

for XY : Z; are there any other trees for these equations?

Finally, how were the transformations T, Tz, Trgenerat-
ing Pythagorean triples found?

The genealogical tree fo r XY = ? was constructed by
directly applying Euclid's algorithm and looks sufficiently
well motivated, which apparently isn't the case for the
equation )P + Y : Z. These two equations arg however,
related. hrdeed, writing equation Y + V = Z :.r:,the form
3 - P : Y, we can break down the left side into two
factors: (Z - Xl(Z + X) = 12. Substituting U : Z - X,
V : Z + X,W : Y, we arrive at the equation W: I4P. So

there is a substitution that reduces the equation P + Y =

Zz to the eqttationXY = 22.
A number of equations can be dealt with in the same

way-that is, by finding a substitution that reduces them
to theformXY = V. Exarnples are the equations P +Y:
27 and * + 3Y : 7. You might try to construct
genealogical trees for these equations as well.

Another remarkable equation should also be men-
tioned-Markov's equation:

P +Y + 7:3XYZ.

It has the property we're already used to: all its solutions,
except the two obvious ones (1, 1, 1) and (2,1, Ll, are

organized into a genealogical tree. (We make use of the fact
that if a triple (X,Y, Zl solves Markov's equation, then the
triple (3Y Z - X, Y, Zl is also a solution. ) This tree is quite
similar to the genealogical tree for the equation XY = Z. ls
there anything cormecting the two equations? What other
equations have similar properties?

There's a lot here to think about. O

Problem L2. Let (M, N/ = t,(m, n), where t,is one of the
transformations t, t, tr. Pi:ove that (m, n) : u,(M, N/, Pythagorean triples have atfiacted the attention of
wheru transformaii# J, are defined by mathematicians for thousands of years. Butwe can see

that the subiect certainly hasn't been e>rhausted, and inter-
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1989 NobelLaureate in chemistryThomasR. Gech, recognizedlorhisRNAresearchwhich mayprovide
a new tool lor gene technology, with potential t0 create a new delense against viral inlections.

You may be surprised to leam that Thomas

R. Cech, the biochemist who shared the

1989 Nobel Prize in chemistry, is an honors

graduate of Grinnell College.

Robert Noyce, the co-inventor of the

integrated circuit and the father ofthe Infor-
mation Age, also graduated with honors

from Grinnell College.

In fact, Grinnell College is one of 48

small liberal-arts colleges that historically

have produced the greatest number of sci-

entists in America. Grinnell and these other

small colleges compare favorably with ma-
jor research universities, showing a higher
per-capita production of graduates with
science degrees . The small colleges comprise

five of the top 10 and 13 of the top 20

baccalaureate institutions in the proportion

of graduates eaming Ph.D.s.

Election to the National Academy of
Sciences is anhonor secondonly toreceiving

the Nobel Prize. Six of the top 10 member-

producing institutions, 1 1 of the top 20, and

15 of the top 25 come from that group of 48

small liberal-arts colleges.

The sciences do not exist in a vacuum in
the larger world. Nor do they at Grinnell.

The college's open cumiculum encourages

science students to take courses in other

areas.

Students who wish to focus their study

may engage in scientific research, usually in
a one{o-one relationship, under the direc-

tion of a Grinnell College faculty member.

Undergraduate student researchers often be-

come the authors of scientific papers with
their professors at Grinnell College.

Circle No. 15 on Readers Service Card

For more information,
please write or Gall:

0ffice of Admission

Grinnell College

P.0. Box 805

Grinnell, Iowa 50112-0807 '
(515) 269-3600

FAX-(515) 269-4800
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AT THE BLACKBOARD

An incident olt the tl'ain

Nothing out of Agatha Christie, but a mystery of sorts

by Carlo Camerlingo (ltaly) and Andrey Varlamov

OT SO LONG ACO THE
authors of these lines had to re-
tum from Venice to Naples on
an upress train. The train moved

very fast (its velocity was approxi-
mately 150 km/h) and landscapes that
looked like paintings by the Renais-
sance masters flitted by as we looked
out the window. In exact agreement
with its canvas-bound versions, the
terrain was hilly, andwe sometimes
flew over abridge or dove into a tun-
nel. In one of the especially long
tunnels between Bologna and Florence,

we suddenly f.elt a dull pain in our
ears/ as happens with passengers in
airplanes taking off or landing. It was
clearfrom extemal signs that the same
sensation came over all of our fellow
travellers: they all tumed their heads,

trying to get rid of the unpleasant
feeling. But when the train finally
burst from the narrow tunnel the un-
pleasantness passed, and only one of
us, who wasn't used to such surprises
on the railways, was interested in the
origin of this phenomenon. Since it
was evidently corurected with the pres-

sure difference, we began a iively dis-
cussion of the possible physical causes.

At first glance it seemed to us that the
air pressure in the gap between the
tunnel walls and the train had in-
creased in comparison with the at-
mospheric pressure/ but there were
qualitative reasons to expect the op-
posite effect as well. In such matters
mathematics is the best judge, so we
attempted to find some numerical an-
swer to the problem. Soon the expla-
nation was ready and it came down to
this.
, Let's consider a train with a cross-
sectional area S. that moves at veloc-
ity vrinalong tunnel with a cross-sec-
tional area So. First of alf let's switch
to the inertial coordinate system asso-

ciatedwith the train. We'lltake the
air flow as stationary and laminar, and
we'll ignore its viscosity. The move-
ment of the tunnel walls relative to
the train need not be taken into ac-
count in this case-because of the
absence of viscosity, it doesn't inJlu-
ence the air flow. We'llalso consider
the train sufficiently long so thatwe

can ignore turbulence at the front and
rear carst and the air pressure in the
tunnel will be taken as steady and
constant along the entire surface of
the train.

So by gradually eliminating minor
details, we've moved from the actual
movement of the train to a simplified
physical model that we can try to
describe mathematically. Here goes.

We have a long tube (formerly the
tunnel) and a cylinder with stream-
lined ends (formerly the train)nestled
in it coaxiaily. Airpasses through this
tube-away from the train (the cross
section A-A in the figure) the air
pressure po equals the atmospheric
pressure and the velocity of the air
flow v, is equal to the veiocity of the
train before it entered our system of
calculation (but with the opposite sign).

Let's examine a certain cross section
B-B (just in case, we place B-B fiar

from the ends of the train so our as-

sumptions will actually bear out). We'll
denote the air pressure in this cross
section as p, and the air velocity as vB.

These values can be linked with v,
andpoby means o{the Bemoulli equa-

tion:

- ,P"u-^ -P'l' [lpa+ Z =po+ 2, t'r

where p is the density of the air.
Equation (1)has two unknowns, pu

and v* so to determine p, we need
another relation. This is provided by
the condition of the conservation air
mass that flows through any cross
section of the tube in aunit of time:
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p%So : pvu(So - S,). (21

This ecluation expresses the fact that
the air mass can neither appear nor
disappearWhile it flows through the
tube. It's usually called the condition
of flow continuity.

As you probably noticed, we took
the air density in equations (1) and (2)

to be constant. This assumption is
valid as long as the air velocities in
fifferent cross sections of the tube are
much less than the mean square ve-
Iocity of chaotic molecular motion;
it's iust this velocity that determines
the characteristic time required to
establish mean gas density on the
macroscopic scale.

Getting rid of velocity vu in equa-
tion ( 1 ) by means of equation (21, we
get

pr,ll s^ Y I
Pa= Po-7Liq=,J -,l F)

The air density p can be expressed in
terms oI po by the Mendeleyev-
Clapeyron equation: p = pdLlRT. Afiter

ient for the discussion to follow (sub-
stituting plRT : ylv,2l:

Now it's time to stop and think a
little about this. We calculated the
pressurenear the traininside the tunnel.
But our ears ached not because of the
pressure itself but because of its change
in comparison with the pressurep"'
when the train is in the open air.t Wa
can easily determine this outside pres-
sure directly from equation (6), notic-
ing that the open air can be considered
a tunnel with a cross-sectional area
So -, oo. So we have

This result was sufficiently evident
without any calculation. It's interest-
ing to observe that the relative pres-
sure difference is

L,p_Pa-Po__y(\f[f t Y I
po po 2\r,/Ll---Ls. s,)-tl.tll
From this expression we can see that
when the train is entering the tunnel
the pressure near it decreases, con-
trary to what we mayhave thought at
first.

Now let's estimate the magnitude
of this effect. As we mentioned ear-
lier, vr: 150 km/h , v": I,200 km/h,
and for narrow railroad tunnels the
ratio S./So can be estimated as 1/4 (in
our tunnel there were two sets of
rails). So

^h=-(+)(*i(f -t)=-w'
lWe should point out two

circumstances here. First, there is the
so-called Weber-Hefner law in
biophysics, which says that any change
in an extemal effect is apprehended by
the body only when the relative change
exceeds a certain threshold value.
Second, if it so happens the tunnel is
long enough, the body is able to adapt to
the new conditions and the unpleasant
sensation disappears. At the exit from
the tunnef however, it bothers you
again.

This value seems pretty small, but if
we take into account that po :
10s N/m2 and take the area of the
eardrum to be o = 1 cm2, we get an
excess force M : Apo = 0. I N, which
may tum out to be quite noticeable.

So it seems the effect is explained,
and we can call it quits. But some-
thing worried us about this last equa-
tion. Namely, from expression (7)it
follows that even in the case of a
normal velocity for an ordinary train
% << % (this combination of velocities
is constantly encountered in aerody-
namics andis calledthe Mach num-
ber), in sufficiently narrow tunnels
the value ltpl rnay reach and even
exceed the normal pressure po! Clearly,
within the framework of our assump-
tions we're getting the absurd result
that the pressure between the walls of
the narrow tunnel and the train be-
comes negative!

But wait a minute! Maybe there's
a breaking point in our result beyond
which it ceases to be vaiid , . . Let's
look at our findings a bit more closely.

If lApl=po, then

,,( S )'rl o l-' "'[ffi'1=t'and so

v,So=v.(So-S,).

Comparing the last equation with
equation (2), we begin to understand
the situation. If Lp reaches ps, the
velocity of air flowing in the gap be-
tween the train and the walls of such
a narow tunnel tums out to be of the
order of the speed of sound, and we
can't speak of laminar air flowhere.2
So the corect condition for applying
equation (7) is not merely v, << v, but
the more rigid requirement

, ((, rso-E) .., ,. .s[ 
So )

It's evident that for real trains and
tunnels this condition is always met.
Nevertheless, our investigation into
the iimited applicability of equation
( 7) isn't just an empty mathematical
exercise. A physicist must always

2That is, the smooth flow becomes
turbulent.

n^:,,{ -l(il[t,:, I-,]] .,

rr'= rl11rr(so)

,,{,-l(i,[[*.1]]

this substitution, we have

Pa=P'{ #ttq\l 'i) $t

kr this expression there is a combina-
tion of parameters , pv,zf RT, that is
evidently dimensionless. So the value
@f 1p1'r' has the physical dimension-
ality of velocity. It's easy to recognize
in it the mean square velocity of cha-
otic molecular motion (with an accu-
racy to one power). But in our aerody-
namical problem another physical char-
acteristic of gas is importanl the ve-
locity of sound propagation v" in it.
This value is determined by the same
combination of temperature and
molecular mass as the mean square
velocity of molecular motion, but the
numerical value of v, depends addi-
tionally on the so-called adiabatic index
y, a characteristic number for every
gas of the order of 1 (for air, y: l.4ll:

,,=ff,. (s)

Under normal conditiong v,= 1,2ffi
km/h. Using equation (5) we can
rewrite the pressure expression (4) in
final form, one that will be conven-

OllAI{Tlllt|/AT TIII BI.ACI(BOARI 43



recognize the limits of the validity of
any result obtained. But another rea-
son for taking it seriously in our case
is a quite practical one. [r the last few
decades fundtrmentally new forms of
transportation, including high-speed
trains, have been discussed more and
more. One type of train moves on a
magnetic cushion producedby a powerft:l
superconducting magnet. (Such ve-
hicles already exist. At last report, a
prototype magiev (magnetic levita-
tion) train in |apan can carry 20 pas-
sengers alongT km of test track at a
maximum speed of 516 km/h-that's
almost hal{ the speed of sound!) Since
the vehicle hovers above the metal
rails, resistance to its movement is
determined solely by its aerodynamic
properties.

The next step in developing this
means of transportation was the idea
of-believe it or not-enclosing the
train in ahermetically sealed tube and
reducing the pressure by pumping air
out! You see how close this problem
is to the one that captivated us. But
here the physicists and engineers en-
counter the much more complex case

in which v, 
= 

v, and So - S, .. Sr. The
air flow here is far from laminar, and
the air temperature changes consid-
erably as the train moves. Modem sci-
ence doesn't have the answers to all
the questions generated in the pursuit
of solutions to these problems. But
even our simple estimate allows us,
in principlg to estimate the threshold
where such effects become impor-
tant.

We'd like to leave you with a few
questions about physics that might
pop up on a train ride.

1. Why do the windows rattle when
you're racing along at a nice clip and
another fast train passes you going in
the opposite direction? Is the force re-
sponsible for shaking the windows
directed inward or outward?

2. Why does the noise from a mov-
ing train increase considerably when
it enters a tunnel?

3. Which of the two rails of a rail
line built along a meridian is worn
down faster in the Northern Hemi-
sphere? Southem Hemisphere? Cl

Edmund Scientific Brings New Technology lnto Your Classroom

NCE CLASSROOM VIDEO
MICROSCOPY SYSTEM
o Very Affordable System Compatible
For Use With Your Existing Equipment
Video microscopy demonstrations have become both a popular and a
very successfulway to involve your students and to achieve maximum
visual impact. Students can view the same image simultaneously-

and, with a simple pointer, student
attention can be directed to differ-
ent interest points on the monitor
image, assuring comprehensive
observation.

CLASSROOM VIDEO
MICROSCOPY SYSTEM
Featuring a special dual{ube version
of our graduate student microscope,
this system provides dramatic
results. Economically priced, only
$2,2s8 (#ED5289)

INDIVIDUAL COMPONENTS
lf you already own video equipment or microscopes, you can save
by buying only the components needed. With our system the critical
component is the Deluxe Relay Lens which replaces the mrcro-
scope eyepiece- lt is compatible with any video camera that accepts
a standard "C" mount. Costs only $195 (#ED37,820).
Write or call lor our FREE 188 page catalog lor complete details.
For technical help contact Bill Shonleber at 1-609-573-6259.

Send us your school hids, you will be pleased with ou prices and services.
SERVING EDUCATORS SINCE 1942

G ff F#n tlr,*F,gJ fl }} i [,-.',c,g; Tel. l-609-573-6250
Fax.1-609-573-6295

Circle No, 18on Readers Service Card

Wanted! Women in
science and math
Clare Boothe Luce Scholarships for Women

at Marymount University
can help you pay the way.

Undergraduate study in:
Biology

Computer Science
Mathematics

Physical Science

For eligibility and application information, call
(800) 548-7638 . (703) 284-1s00

Marymount S University
2807 N. Glebe Road . Arlington, Ya. 222074299
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CONTINUED FROM PAGE 35

W[en days are monfis
We received a number of correct

solutions to the contest problem in
the May 1990 issue asking how long a
day u'ould be when the length of a day
is equal to the length of the month.
The solution we present here is very
similar to one by Earle Wallingford of
Bozetnart, MT. Similar solutions were
submittedby Steve Fung (TX), fason
|acobs (NY), and Mark Rosebeny (KY).

Each will receive a free subscrip-
tion to Quantum for one year.

In our solution, we first compare
the angular momenta of the Moon
revolving around the Earth, now and
at the time when the length of the day
is equal to the length of the month.
We then turn our attention to the
comparison of the Earth's angular
momenta at these times as it spins on
its axis. Finally, we apply the law of
conservation of angular momentum
to solve the problem.

As |ason |acobs pointed out, the
assumption that the Moon's orbit is
in the plane of the Earth's equator
means that allof the angular momen-
tum vectors point in the same direc-
tion and we need only work with their
magnitudes. The angular momentum
I- of the Moon due to its orbit about
the Earth is given by

L*r= M^R?*,?,
mi

L =M R24.-mf "'*"^fTt

where M- is the mass of the Moon, R_
is theradius of theMoon's orbit, and
T *, and T, are the Moon's initial and
final orbital periods. Taking the ratio
of the two expressions, we get

L " R2^Tnf_ mf mt

L*i 4,',
It's important to realize that since

the Moon is in orbit, it must obey
Kepler's third law, which tells us that
the square of the period is propor-
tional to the cube of the radius. This
can be derived by recognizing that the
gravitational force of the Earth pro-
vides the centripetal force on the Moon.

This gives us an expression for the
ratio of the initial andfinal radii and
allows us to write the ratio of the
angular momenta in terms of a ratio o{
the periods:

4t

graphically, you plot each side of the
ecluation for various assumed values
of T, and find where the two curves
intersect.

This problem was inspired by a
statement rn Explorution of the Uni-
v er s e (Sth ed, 1 98 7) by Abell, Morri-
son, and Wolff that the period would
be47 days. O

Arthur Eisenloaft is the chatu of the science
depafiment and physics teacher at Fox
Lane High School in Bedford, NY. Larry
D. Kirkpatrick is a professor of physics at
Montana State University in Bozeman.
Drs. Eisenkraft and Kfukpatick serue as
academic dfuectors for the US Physics
Team that competes in the International
Physics Olympiad.

CONTINUED FROM PAGE 34

DavidWatson (NY), Tim Kokesh (OK),
Tim Hollebeek (PA), Kiran Kedlaya
(MD), Brian Platt (UT), |ohn Stafford
(NCL Sergey tevin (RI), Andrew Dittrner
(VA), Peter Kramer (N|), |ohn Cle-
mens (IL), and Mark Roseberry (KY),
after whom the conjecture was named
and who is presently a freshman at
Rose-Hulman. Each of them approached
the probiem somewhat differently;
unfornrnately, space limitations don't
allow a complete reproduction of their
results. Most of them treated the case
of n :2k separately by constructing
(via mathematical induction) a k-digit
multiple of n consisting entirely of 6's
andT's. (The sameprocedure canbe
applied to otherpairs of digits ithey're
of different p arityl. Then, to resolve
the case oI n : m(Zkl,where m is odd
and not a multiple of 5, they concate-
nated the multiple of 2fr obtained ear-
lier with itself an appropriate number
of times. This "appropriate number"
can be shown to be less than or equal
to mbyyet another clever application
of the pigeonhole principle (see Quan-
tum I an. 1990 and Sept./Oct. L99Ol.
Congratulations to all of the success-
ful students named above. O

George Berzsenyi is the chair of the
Dqotunent of Mathenatics m Rcxe-Hulman
Institute of Technology inTerue Haute,
IN.

L (rYr (Tt
nl I /l mi I llL tr lr lr l'tnt \ ilil/ I ' ,nr,

We now obtain the ratio of the
initial L", and fir,al L", angular mo-
menta of the Earth spinning on its
axis in terms of the mass M of the
Earth, the radius R 

"of 
theBaith, and

the Earth's initial T, andfrnal T,rota-
tional oeriods:

2nI_ei 
7",,

. 2nl
1) --ef T,

(where I: (2151M"R,,2[ which yields
LT
4_ ei

LT
etf

The conservation of angular momen-
tum cannowbewritten as

L *L =L +I-mi ei mf ef

1

/TF T
=L I t +L ''ini\T ) "i T\ lnt/ I

Solving for the ratio of the initial
angular momenta of the Moon ahd
Earth, we get

2M,RIr*

= 4.08 .

Notice that we only need to know the
ratios of the masses, periods, and radii
to get the numericai value. If all times
are expressed in terms of current Earth
days, we get

4

5.087-l=135t'.f f '

which can be soived with graphical or
numerical techniques to obtain avalue
of T,:53 days. To solve the problem

Tt-"
T

I(r)li l-r\.. I

5M R2Tmmei

L
mt

L.
et
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IN YOUR HEAD

UUhy are lhe chee$B holes

rtotlnd?

Maybe you've forgoften you ever
wondered

by Sergey Krotov

. . . in the middle of this place was a lmge oak-uee, *rd f -- k" np of tlp
tu, there came a loucl buzzng-noise.

Wfu nie-the-Pmhvtdawnatthefwtof theuee,p:thishudbewemhis
pavwandbegannthinl<

First of all he said n himself : ""That buzing-notse means something.
You don't get a buzing-noise Eke that, iust buzzng and fudng without
its meaning something. If there's a buzins-noise, somebody' s making a
buzing noire,, and the only rcann for making a buzing-noise thct I 14Dw
of nbmuseyou'reabu."

Then he thoufitt anothu long time, and s aid: * And the only r enson for
betng a bee that I l<nw of is makng honey."

And then he got up, and said:' And the onb reasrn for makinghoney is
rc as I un eat it" Sohebegan n climb the au.

A. A. Milne,'Winnie-the-P ooh"

AVE YOU EVER THOUGHT
why Winnie-the-Pooh is so lov-
able? Maybe because he reminds
us of ourselves when we were

little and asked so many silly ques-
tions (silly to grownups, anyway) and
wanted the answers right away. But
it's good to ask questions at any age.
And it's especially useful when you're
ieaming physics. Let's try it together
and maybe you'll see it the same way
Ido.

Have you ever come across the
faty tale "Two Greedy Little Bears"?
I'1l never forget the colorful drawings
of a cheese wheel vanishing before
your eyes. The cheesewas covered
with a bright-red coating and was
awfully "holey" inside. The holes
were per{ectly round and practically
identical in size. Years have passed

since then, but only recently did I
figure out that this hole-ridden struc-
ture of cheese is due to one of the most
fundamental laws of nature-Pascal's
iaw. I'11 r'emind you what it says:

" Pressure applied to a liquid or gas is
transmitted equally to all its parts."
The leading role here is played by
pressure. So let's discuss this notion
first.

Do you remember the sadfairy tale
"Gray Neck Swan," inwhich acrafty
fox crawls onto a frozen pond where
Gray Neck is swimming? Aware of
the danger of breaking the thin ice, the
fox sprawls on the surface, stretching
out as much as it can. The force acting
on the ice doesn't depend on the body's
position, right? The fox isn't any
lighterwhen it lies down than when it
stands up, is it? Isn't there a contra-

diction here? Not at all. As it turns
out, what matters is the surface area
affected by the force of pressure. If the
area of contact between the fox and
the ice is increased, the force bending
the ice is reduced and the fox moves
on it safely. (The fox was cra{ty and
knew all this.) To describe this and
many otherphenomena it's not enough
to know only the overall force o{pres-
sure (the force with which bodies in
contact affect each other); we have to
know the force applied to each unit
area of the contacting surface. It's this
force that's ca11ed the "pressure."

Can you think of another tale in
which everything (from the physical
point of view) depends on pressure?
It's Hans Christian Andersen's "Prin-
cess and the Pea." Why did a dried pea

in her bed make the princess so un-
comfortable? Again, it's all a matter
of pressure. Obviously, both with and
without the pea the overall force hold-
ing the princess on her bed is the
same. But if a protruding object ap-
pears on the bed, the pressure at this
point increases sharply, which imme-
diately spoils the princess's mood.
She could even develop insomnia.
Surely you don't need to be a princess
to detect a hard pea in your bed. Even
a shepherd can do that. But to feel a
pea through several layers of down
mattresses (there were twelve of them
in the story) requires a genuine royal
sensibility.

So the pressure is defined as the
ratio of the force acting perpendicu-
larly to a surface to the total area of the
surface. But Pascal's law apparently
involves another kind of pressure-
the pressure inside a liquid or a gas.

All the points inside a liquid some-
how "know" that it is being com-
pressed from outside. hr otherwords,
pressure applied to the outer surface of
the liquid is transmitted from point to
point equally in all directions. And
this is, iafact, an essential property of
a liquid. That's how it's "constructed."

Let's discuss this fact in a bit more
detail. Take a soft spring-for in-
stance, a spring from an air gun. I{ you
lay it on atable, the distance between
adjacent coils is the same along the
entire lengh of the spring. But if you
stand it upright, the coils start to "fa1l
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down" (because of theforce of grav-
ity), moving closer together. Eventu-
al1y, di{ferent sections of the spring
will be compressed to varying de-
grees: the lower the coils, the smaller
the distance between them. What's
going on here? The mutual fisplace-
ments of the coils produce elastic
forces in the spring. The lower the
coils, the greater the portion of the
spring's weight they carry and, conse-
quently/ the greater the compression
they receive. So the pressure in vari-
ous sections of the spring is different.
If you want to visualize the pressure
pattem inside a body, squeeze a foam
sponge in your hand. Some parts of
the sponge get compressed, while the
others get stretched. The greater the
compression at a specific point, the
smaller the pores. So we can estimate
the intemal pressure in a springby the
distance between adjacent coils, and
in a sponge by the pore size.

Unlike solid bodies, both liquid
and gas are usually subjected to com-
pression only. If an impermeable
casing is filled with a liquid and then
compressed, the liquid is compressed
equally throughout the entire volume
(we ignore gravityl, and we can't dis-
tinguish one point inside the con-
tainer from another. It's important
that regardless of the shape of the
outer surface, the pressure is trans-
mitted equally from any point to all
adjacent points.

Lr order to make this idea more ob-
vious, I'm afraid I'm going to have to
dredge up some memories that are
probabiy not among your happiest.
I'm talking about injections. Yes,
"shots." No doubt you remember
that before making an injection the
doctor presses the syringe piston and
healing liquid squirts out of the needle.
Imagine now that sommne has pirnched
small holes all over the surface of the
syringe and stuck needles in them.
The resulting object would resemble
a porcupine. If we now press the
piston of the syringe-porcupine, the
jets spurting out of needles positioned
at rhe same height will be identical.
This is because the licluid's behavior
is governed by Pascal's law. The
liquid is pushed out of holes posi-
tioned at the same height with the

same force. For holes positioned at
different heights, we have to take into
account the force of hydrostatic pres-
sure.

To compare the elastic properties
of a liquidwith those of a solidbody,
let's take another example. Mentally
put a spring inside a narrow container
(so that the diameter of the spring
coincides with the inner diameter of
the container) and fill another con-
tainer of the same size with water.
Now imagine that the walls of both
containers suddenly disappear. What
happens to the spring and the water?
The spring stays where it was as if
nothing had happened. The water
flies off in all directions like a popped
soap bubble. Why? Because liquids
and solid bodies have different ways of
transmitting pressure. A sprilg trans-
mits the pressure along its length
only, practically speaking, while the
water transmits it equally in all direc-
tions: up, down, and sideways, inac-
cordance with Pascal's law.

It just so happens that a similar
scenario was observed by Pascal him-
self when he discovered the law. His
classic experiment was simjlar to our
mental experiment with the syringe.
True, in Pascal's experiment the walls
of the container (a barrel) didn't disap-
pear, they were broken. The shape of
the resulting "fountains" dependS on
the pressure in various parts of the
liquid. Now we can easily explain the
" actiorr" of a down mattress. It's like
a heap of little springs oriented ran-
domly relative to one another. Each
spring transmits the pressure along its
lengh but, because of the chaotic po-
sitioning the pressure exerted by the
pea is transmitted to . . . But I don't
want to deprive you of the fun of
finding the right answer. I'11just tell
that in spite of all your exertions and
attempts, royal intuition enabled the
princess to unerringly discover any

dirty trick, even i-f it was perpetrated
by some big shot who knows a little
physics.

And now the time has come to
answer the main question of this ar-
ticle. (You haven't forgotten it, have
you?) Let's briefly review how cheese
is made--or, to be more precise, how
holes in cheese are made. First, the
cheese "dough" is prepared. Then it's
compressed at high pressure and put
in special molds. The wheeis of cheese
are taken out of themolds and left in
a warm place for ripening. This is
when the process of "fermentation"
begins. Carbon dioxide gas is created
inside the compressed dough. This
results in the formation of bubbles.
The more carbon dioxide, the larger
the bubbles. (Don't forget that at this
stage the inside of the future cheese is
a soft, homogeneous mass.)

When the cheese gets harder, the
pattem of the intemal "breathing" of
the fermenting cheese is recorded by
the carbon dioxidebubbles. As for the
shape of the cavities, because of Pas-

cal's Iaw thepressure inside thebubbles
is transmitted equally in all directions
since the dough resembles a liquid in
its elastic properties. So the bubbles
acquire a strictly spherical shape.
Violation of this nrlewouldhave meant
that there were areas of greater rigdity
or/ conversely, cavities inside the
cheese. The harder the cheese, the
less the bubbles inside blow up, so the
holes are smaller. Some varieties of
cheese are made without compres-
sion at the beginning of the process;
carbon dioxide is released into cavi-
ties already present in the dough. As
a result, you get an irregular pattem of
frozenbubbles whose harmony can
be urderstood only by a cheese expert.

So you see how many small ques-
tions we had to ask ourselves to an-
swer a single big one: "Why does
cheese have roundholes?" O

" Hallo, Pcnh" said Rabbit
" Hallo, Rabbit" said Pcnh drenmily.
" Did you mal<e tlnt song up ! "
"WeIl, I sot of made it up," said Pooh. "It isn't Brain " he went on

Irumbh"'becauseYatlknwWhy,RabbiAhnitamest)npsomdimes."
A.A. Milne, "The House at Paoh Comer"
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Florida Institute of Gchnology has everything you'd o<pect
from a university. Including a lot of degrees - both in and
out of the classroom.

For example, we offer more than 121 degree programs, ftom
A.S. to Ph.D., specializing in Science, Engineering,
Business, Psychology and Aviation. Our modem campus is

located on Floridds famous Space Coast, in the heart of one
of Americds fastest-growing business areas.

No*, add an annual average temperature of 7 5 degrees,
miles of clean, uncrowded beaches, and every water spoft
you can think of, and you know why students prefer EIT
For more facts about EIT,, the Univenity with all those
degrees, call TOLL FREE 1-800-352-8324,1N FLORIDA
1-800-3484636.

Florida Institute of Technology
MELBOURNE
150 West University Blvd., Melbourne, FL 32901
Circle No.7 on Beaders Service Card

Florida lnstitute
oJ Tech,
earned its
?TET; T ,,

by degrees,
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The Sky's IVof the Limit!

The year 1992 has been declared the International Space Year (ISE by the United Nations. Scientists from many counhies
will meet atvarious conferences, seminars, and symposiums to discuss the future of international cooperation in space. We
hope there will'be many new agreements on joint projects, including perhaps one about ajoint Mars mission. All these projects
will need marry new researchers. Many of them will be among those who are presenfly going to high school. For this reason
work with youth has been an imporbant part of the ISY. One of the projects r-rnder development is the 1992 International Space
Olympiad in Washington, DC.

Summer study in the USSR and US
To prepare for this olyrnpiad, several American and Soviet

organizations, including the magazines Kuantand Qtwtfum,
the US International Space Year Association, the Soviet
Aerospace Society "Union," the National Science Teachers As-
sociation, and the International Educational Network, have
decided to organize an Intemational Summer Institute in the
summer of 199 1 in the United States and the Soviet Union.
The program will feature advanced classes in mathemailcs,
physics, biologr, and other space-related subjects; lectures
Sr prominent scientists; trips to major scientific laboratories;
sports and recreation; and marry cultural activities.

NofuL lnneote Steldan Glastaw oJ Hanxtd UniDers@ instructs
participafis in a preuious lrttematianal Educatiortal Nehtork
sut'rwer camp.

Three-stage competition
Sixtystudents fromthe US and 6Ofrom the USSRwillbe

selected, and we expect that students from other countries
will also be interested in participating. The selection process
will be based on the results of a three-stage competition. The
questions for the first round are printed below. The second
round will also be by correspondence and will include two
math and two physics problems related to space. A total of
300 students will be invited to participate in the third round,
which will be given at local universities or schools in the
presence of the organZers' representatives.

Three-week program
The winners will participate in either the American or the

Soviet part of the program, which will each last three weeks.
The American session will take place July 1-21, 1991, while
the Soviet session will take place August t-2 1, 1 99 l. Each
sessionwill feafure two weeks of study and one week of kavel
in the host country. The winners of the competition, depend-
ing on their total score, will receive scholarship prizes and
anrards that will cover all or part of the program costs.

To enter the competition, please fill out the form and mail
it, along with your answers to the questions printed below,
poshnarked no later than December 31, 1990, to:

Dr. Edward Lozansky, President
lnternational Educational Network

3001 VeazeyTerrace, NW
Washington, DC 20008

(Telephone: 202 362-7 855)

Yes, !am :nterested in the 1991 lnternational Summer lnstitute!

First nameLast name
addressHome

Ciiy - State_ Zip_Birthdate. Sex_
Home phone ( Parent's office phone (_)
School name
School address

Phone (-)-
NameofmathorScienceteacherWhoCanrecommendyoU(printfirstandlaStname)

Please answer the following questions:

1. When was the ftust manned space ship launchedl Who piloted this ship!
2. Who was the first man on the moon!
3. Name oJl American and Soviet women who have been in space.
4. Wfite a short essay explaining why you would like to participate in this program.
5. Could you vwite this essay with a ball point pen while orbiting the Earth! Explain.

Teachers are encouraged to copy this page and distribute it to potential participants.



HAPPENINGS

lllh Tourltamenl ol Toums

The latest problems from this friendly intercity rivalry

HE TOURNAMENT OF
Towns, an intemational compe-
tition in mathematical problem
solving, continues to grow in

popularity. You may have read about
it in the first issue of Quantum (lant-
ary l99O[ Wel1, here are the problems
from the last tournament, held in
spring of this year. We hope you find
them attractive and instructive. If
you do, join the Toumament of Towns!
Write to N. Konstantinov, USSR, 103006,
Moscow K-6, Gorkogo 3211, Kvant
magazine. (Ourphone number is 095
250-411 1, and our fax number is 095
2st-5ss7.)

Junior U'ades (agss lS lo 10
O-level (beginners)

1. For every natural n prove the
equality

2. Two circles c ard dare plotted on
the plang one outside the other. Pornts
C and D are the most distant points of
these circles. Two smaller circles are
constructed inside c and d: the first
circle touches c and the two tangents
drawn from C to d; the second touches
d and the two tangents from D to c.
Prove that the smaller circles are equal.

3. Is it possible to compose a 3x3x3
cube out of twenty-seven 1xlx1 cubes,
9 of which are red, 9 blue, and 9 white,
so that the iittle cubes in each row
(parallel to an edge of the big cube) are
of two different colors?

4. Lr a set of 61 coins that look alikg
2 corns are counterfeit and the rest are

genuine. The counterfeit coins wetgh
the same but their weight differs from
that of a genuine coin. How can one
tell whether a counterfeit coin is heav-
ier or lighter than a genuine one by
three weighings on a pan balance?
(It's notnecessary to identifythe counter-
feit coins.)

A-level (main variant)
5. Find the maximum number of

parts into which the plane Oxy canbe
divided by 10 graphs of diffornt quadratic
functions of theformy : ax2 +bx+ c.

6. A square is rotated 45o about its
center. The sides of the rotated square
divide each side of the initial one in
the ratio a:b:a lwhichis easy to calcu-
late). Take ar,arbitrary convex quad-
rilateral, divide its sides in the same
ratio a:b'.a, and construct a new quad-
rilateral whose sides pass through the
corresponding pairs of division points
like the sides of the rotated square
described above. Prove that two such
quadrilaterals have equal areas.

7. Fifteen elephants stand in a row.
Their weights are expressed by inte-
ger numbers of kilograms. The sum
of the weight of each elephant (except
the last one) and the doubled weight of
the elephant to its right is exactiy 15
metric tons. Find theweight of each
elephant.

8. Let ABCD be a rhombus, P a
point on its side BC. The circle pass-
ing through A, B, P meets line BD
again at point Q, and the circle pass-
ing through C, P, Qmeets BD agarr at
point R. Prove that A, R, and P lie on
one straight line.

9. Findthenumberof pairs (m,n)of
positive integerg both not greater than

1,000, such that
m , t^,m-ll

,*t(v z\ 
n

(recall that2lt2 = 1.414213...1.
10. Let's call a collection of natural

numbers "basic" if their sum is 200,
and every positive integer not greater
than 200 can be represented as a sum
of some numbers from the collection,
the representation being unique up to
the order of summands. (A trivial
basic collection consists of 200 units.)

(a) Find a nontrivial example.
(b) How many different basic col-

lections are there?

Senior Urade$ (aUes 15 altd older')

O-level (beginners)
I 1. Construct a triangle given its

two sides if it's known that the me-
dian drawn from their common ver-
tex divides the angle between them in
the ratio 1:2.

12. Prove that (a) {"or any n:4k + I
lk:0, I,2, ...) there exist n odd natural
numbers whose sum is equal to their
product; (b) for any other natural n
such a set of odd numbers does not
exist.

13. (a) Some vertices of a dodecahe-
dron must be marked so that each face
contains a markedvertex. What is the
smallest number of marked vertices
for which this is possible?

(b) The same question for an icosahe-
dron.

(Recall that a dodecahedron has 12
pentangular faces meeting three at
each vertex; an icosahedron has 20
triangular faces meeting five at each
vertex.)

14. Substitute 103 for 61 in prob-
lem 4.

r, I r? 11_ _1f_
I r+2+ ...* 

" 
) * \r*,..*,') - .

f I lf rli . _(,-l- _11* 
[,,-t *, )*\n ) = ztt \ ' ' tr )'
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AJevel (main variant)
15. Prove that for all natural n there

exists a polynomi a1, Plxl divisible by
(x- 1)" such that its degree is less than
2,'andall.of its coefficients are equal to
1,0, or-1.

16. Substitute 500 {or 200 in prob-
lem 10.

LT.Either p or q guests are expected
to visit a birthday party, p and q ar€
coprimes. What is the smallest number
of slices (not necessarily equal) into

which a birthday cake must be cut in
advance so that in both cases every
guest gets an equal share of the cake?

18. Let ABcDbeatapezoid, Hthe
midpoint of its base AB, and AC = BC.
Let a line l passing through H cut line
AD atP andlineBD at Q. Provethat
the angles ACP and QCB are equal or
their sum equals 180".

19. Does there exist a convexpoly-
hedron having a triangular section (by
a plane not passing through the verti-

ces), each vertex of which is a meeting
of (alno less than 5 faces? (b) exactly 5
faces?

20. A scluare sheet of paper with
side c is covered with blots, each of
area less than 1, so that any straight
line parallel to the edges of the sheet
crosses one blot at most. Prove that
the total area of the blots is less than a.

SOLUTIONS ON PAGE 61

HAPPENINGS

A]lS[lllE-AI[lll[-USA[llIO-I[UlO

ls this just alphabet soup to you?

I F THE ACROI{YMS IN THE TITLE aren't familiar to

I ,o.r, your school may not be as progressive as you would

I like to believe, and it needs your helpl More specifi-
I cally, you should find out who's in charge of mathe-
matical competitions at your high school, call that per-
son's attention to this article, and make absolutely certain
she/he follows up on it. Our country is in dire need of
future scientists, mathematicians, and engineers-they're
sitting in our classrooms, waiting for encouragement to
develop their talents toward such careers. But firsg they
need to be recognized. 

.fhe competitions listed in the title
will help you in that task, so please take advantage of the
opportunities they offer.

A{ter identifying these competitions, I'll briefly de-
scribe them. For more details, you should contact Dr.
Walter E. Mientka, the Executive Director of the Ameri-
can Mathematics Competitions/ at the Department of
Mathematics and Statistics, lJniversity of Nebraska, Lin-
coln, NE 68508-0322. His telephone number is 402 472-
2257. Walter is a staunch supporter of mathematics
education at all levels, and he is one of the nicest gentle-
men in mathematical circles, whom I strongly recom-
mend to all of my readers. It should also be noted that all
these competitions are sponsored not only by the Mathe-
matical Association of America but also by the following
organizations: Society of Actuaries, Mu Alpha Theta,
Nationai Council of Teachers of Mathematics, Casualty
Actrurial Sociery American Statistical Association, American
Mathematical Association of Two-Year Colleges, Ameri-
can Mathematical Society.

Ills]ul[ = Alnel'italt lligh School ttlla[htlnaftic$ Emminafiion

This is a multiple-choice examination; the students are
given 90 minutes to solve 30 problems. The 42nd annual
AHSME will be administered at the high schools on
Tuesday, February 26,1991; the deadline for registration is
December 7, L990, but late registrations (within reason)
are usually accepted. Last year over 394,000 students from
6,411 schools participated in the AHSME. These are im-
pressive numbers, but there is much room for well-
deserved growth. The main purpose of the AHSME is to
discover talented students, so it should be administered at
every high school in the US. The $15 registration fee
entitles each school making a report on three or more
students to one copy of the Solutions Pamphleg anlrrtra'
mural Award (pin or medal ), and a Summary of Rewards
and Awards. The Examinations are sold in bundles of 10

for $7.50 per bundle.

AI[tlII = American lnuitational lltlat[emaths txaminaflion

Students who score at least 100 on the AHSME are
automatically invited to the AIME, which consists of 15

answer-orientedproblems, with each corect answer being
an integer between 0 and999. Unlike the AHSME, there's
no penalty for wrong answers. It's also administered at the
high schoois. The number of participants varies from year
to yeat t depending on the difficulty of the AHSME. The
AIME is a three-hour examination, and there is no charge
for participating in it.
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ll$AIuI0 = USA lttlafiemaflical0lympiad
Based on a weight ed average, the top-scoring students of the AHSME/

AIME are invited to the USAMO, which is also administered at the high
schools. The time limit in the USAM) is Sv2hours; the students are expected
to provide complete answers to five problems within that time. Generally,
about 150 students take part in the USAMO, whose eight winners are
properly recognized in splendid ceremonies in Washingoq DC, eachyear'.

llltl0 = lnlmnational lltlafiemathal 0lympiad
The IMO was started in 1959; the US has been participating in it since

1975. Atthe 3lst IMo, held in 1990 in Beiiing, china, a total of 54 countries
participated, most of them with complete teams of six members. The
students usually have 4vzhows on each of two consecutive days to solve six
problems, each worth 7 points. With 174 points, the US team finished in
third place this year.

As outlined above, the first stage in this pyramid of mathematical com-
petitions is the AHSME. without entering this examination, nobody can
advance to the higher levels. Most capable students can only benefit from
the excellent problem-solving activities generated by these competitions.
There areffrany more than 400,000 of them-that is to say, you-in this
great country of ours. My own estimate i.s about 100 times that figure!

-George 
Berzsenyi

Bulletin Board
[ompulel' Ittilot' lor cahulus

Broderbund Software has released
its tutoring program Calculus for
IBM/Tandy computers with Micro-
soft Windows. Previously available
only for the Macintosh, the program
can serve as an extension of class-
work, a refresher course/ or a private
nttor. Calculus brings abstract mathe-
matical formulas to life via a special
module which anirrutes, demonsffates
and explains the sequence of opera-
tions required to solve basic calculus
problems. Since theprogram moves
at the student's own pace, it's equally
useful for those who need tutoring as
for those who want to accelerate their
learning. The program requires an
EM/Tandy (or compatible) computer
with 540K of memory and a hard disk.
A mouse is recommended. For inJor-
mation on ordering write Broderbund
Software, Inc., 17 Paul Drive, San
Rafael, CA94903-2101, or call4LS
492-3200.

"$ienlilic Amet'icalt Fl'oilier$"
prE1IlErEs

System premiered "Scienti-fic Ameri-
can Frontiers," a series provided to
students through a coordinated school
outreach program. Underwritten by
CTE Corporation, Scientific Ameri-
can Frontiers will air one hour per
month until February L99I, offering
innovativg amusing inlormativg and
unusual science features. The season
premier featured roller coaster tech-
nology, among other topics. Teachers
may videotape the show and create
their own science video library with
the available SAF classroom materi-
als. Scientific American Frontiers is
produced in association with Scien-
tific American magazine, and replaces
the PBS series "Discover: The World
of Science." For information on how
to receive the free classroom materi-
als, call toll {ree 800 523-5948, or write
on school letterhead to Scientific
American Frontiers Schooi Program,
10 North Main Street, Yard1ey, PA
19067-9986.

Comluler [ail h mafir

If you are working toward a career
in any math-related science, you may

be intereste d in Mathematica, W olf-
ram Research's general system for
doing mathematics by computer.
Designed for the Macintosh, Mathe-
matica allows students to perform
with ease the computational tasks
required in mathematics, engineer-
ing, statistics, physics, chemistry,
economics-any coursework that
involves mathematical computation.
The system will help students in alge-
bra, integration, differentiation, ma-
trices, and many other numerical
computations, givurg the student more
time to delve into the conceptual is-
sues of the problems.

Wolfram Research is now offering
Mathematica to students at the re-
duced rate of $139 172% off the retail
price). Students who take advantage
of this special offerwill receive Stephen
Wolfram's bmk Mnthematica: A Sysam

for Doing Mathematics by Computer,
as well as user manuals and an rnstal-
lation guide. Four megabytes of RAM
are recommended. For more in{orma-
tion, or to receive an orderform, call
tollfree 800 441-MATH16284l. C

tltl[ot$ lappming?
Summer study... competitions ... new
books ... ongorng activities ... clubs and
associations ... free samples ... contests .

whatever it is, if you think it's of interest to
Quantum readers, let us know about it!

Help us fill Happenings and the Bulletin
Board with short news items, firsthand re-
ports, and announcements of upcomrng
events,

trrlltal$ m yoff lnittd?
Write to usl We wantto knowwhat you
lhinkol Quantum. What do you like the
most? What would you like to see more
of? And, yes-what don't you like about
Quanfum? We wantto make it even bet-
ter, but we need your help.

lttlhalb our address?
Quantum

17 42 Conneclicut Avenue NW
Washington, DC 20009

Be a laclor in the
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mforyou.

If you enjoy EolVirig problems like
this, why noti.consider o coreer in
sviotion cnfflsdrospoce? You'll
be chollen$ed with complex
problems which require crect[ve
solutions,

Aviotion offers mony diverse fields
r,:rushich qequire o strong scientific
educotion.

An Embry-Riddle educotion.

Embry:fIl dle,,,pqclgrcrms include
oerosp$Cbr,engifipe1ing; electricol

; I S,g$ifi$,siffngiiiiffisineering,,phyiics,
.:rigybiiHsp'n0inqgii{tg},ovj'otion,,

It won't be

You'll
ond the oppo
thon 25,000
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An Introduction to
Mechonics, Book I

Isaac Newton really believed
that moving objects continue
at a constant speed in a
straight line? Do your
students? This manual was
created to help teachers
introduce the sometimes
daunting subject of Newtonian
mechanics to students in the
middle grades. The 27
activities presented here use

readily available materials to
give students visual, aural,
and tactile evidence to combat
their misconceptions. And the
teacher-created and tested
modules are fun: Marble races,

a tractor-pull using toy cars,
fettucini carpentry, and film
container cannons will make
teachers and students look
forward to class. Readings for
teachers, a guide for workshop
leaders, and a master
materials list follow the
activities, making this manual
useful for inservice
workshops. (grades 6-10)

#PB-39, 1989, 157 pp. $16.50

Al[ orders of $25 or less must be

prepaid. Orders over $25 must include
a purchase order. All orders must
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NSTA, 1742 ConnecticutAve. NW,

Washinglton, D.C. 20009.
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dowels, ond tope, students ore en-
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described fundomentols of flight
ond see how they work.
Whether or not oerodynomics is

new to your sfudents, these proiects
give them the tools to onswer
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most fr,ln!
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Ml6
The colony will perish. LetV,and B r'
be the numbers of viruses andbacteria
t minutes afterinfection. Then V,_, =
2V, and B t . | 

: 2lB,-V,). For the ratio of
these quantities we have B,_rf V,,, =
B,lV,- t; thereforg BlV,:n-t(BJV.
: n). So the last bacterium will be
killed during the nth minute.

Ml7
The plainest solution to this very
simple problem is to show that tri-
anfleAKD:triangle CDHIAD = CH,
AH = DC, angleDAH: angleDCHI.
To be stricg however, a more detailed
consideration of the equality of angles
in different cases is needed (see figure
1).

Figure 1

A solution that's valid for all cases
at once andgives us some supplemen-
ary information involves vectors. Denote
by R the rotation of an arbitrary vector
through angle o: angle HCB (evi-
dently, o = angle BAK, too). Then
vectorDK : DA + AK : BC + R(AD) =
R(CH)+ R(DC): R(CH + DC): R(DH)
(fig.2l. Therefore, DK : DH and,
moreover/ anfle IIDK = cr, which means
that triangle D.F11( is similar to both
triangle CHB andtriangle ABK.

Finally, a thfud solution, using line
reflections, shouldbe mentioned. The
diagonal AC is symmetrical to seg-
ments DH and DK with respect to
midperpendiculars of the sides CD
andDA, respectively . So DH = AC =
DR.

,f,
H

C

SOLUTIONS

Ml8
II c, cr, ...t c7 are the counterfeit coins
andg,, g2r ...r gTatethegenuine ones,
then the order of weighings can be as
follows:

lst weighing: c, against g,;

2ndweighing: g1, c2, c, against c,,
o o.6Zt 63,

Srdweighing: g1, g2, gs, c4,c5, c6, c,
against c, c2, cs, ga, g5, g5, g7.

Each time the set of coins men-
tioned first tums out to be lighter, and
so it contains more counterfeit coins
than the second set. This leads suc-
cessively to the conclusion that the
coins (1)-c,, (21 c, co @l c, co c, c, Are
counterfeit.

The method is easily gen eralized:
to confirm that a given n coins are
counter{eit and the other n are genu-
ine, we need no more than logrn + I
weighings (the notation log, stands
{or the greatest integer function}. this
mode of expertise is very economical
(only 10 weighinp are required for n:
1,000), though we can't prove it to be
optimum. It would be interesting to
prove that the minimal number of
weighings grows unboundedly (or to
refute it).

Ml9
A diameter crosses a chord if and only
i{ one of its ends lies on the minor arc
subtendedby the chord. If it does, the
other end lies on the arc symmetrical
to the first with respect to the center of
the circle (flg. 3). Consider such pairs
of arcs for all the given chords. If the

total length of the chords is not less
thanl:'/l., the total length of all the arcs
is greater than2rk, J< times the lengh
of the circumference. So there exists
a point on the circumference covered
with more than k arcs. The diameter
drawn from this point will intersect at
leastk + I chords.

It's easy to construct a set of chords
that satisfies the condition of total
Iength arbitrarily close to nk: we can
approximate half the circumference
with a set of disjoint chords (fig.  ) and
take each of themk times.

M20
(a) Notice first that S(8 . L25l: S(1,0001

= L : 5(12511 18. We'll need the follow-
ing properties of the function S(A):

(1)s(A + B)ss(Al+ s(B),

|21 
S(4+ ... + A,) < S(A,) + ... * S(A,l

(3ls(nAl3ns(Al,
(41s(ABls s(A)s(B).

To verify (1) it suffices to inspect
theveryprocessof addition of AarrdB
digit by digit. Property (21follows
from (1) by inductiorl (3) is a particu-
lar case of (2). Finally, if A: a,lO" +
an_ 110"-1 + ... + au theq by (21and(31,

Figure 3

Figure 4

5t

Figure 2
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S(AB) < S(a,B)* ... + S(aoB) < a,S{B) +
... + aoS(B): s(A)s(B).

Now the required inequality is quite
easy to prove:

s(1v) : s(1,000N)
= s(12s .8N)s s(12s)s(BN)
:8s(8N).

(b) k must be of the form 25s, then
co: I lS(2o5,). The estimation for k :
25q almost reproduces that of case (a):

s(N) : S(10'.4N)s S(2a5fsftru)
= s(kN)/co.

Since, forN:2q5',

S(kN) : S(10'.41 : 1 = coS(N),

the value l/S(N) for cocan't be in-
creased.

It remains to show that for k =

2, . 5,1 . Q, where Q is coprime with
10 (and Q , 1), the ratio S(l<N/S(lV) can
be made arbitrarily small. We can
consider k: Q because S(kN)s S(QN)
.S(2's01.

First let's find a number m such
that l0- - 1 is a multiple of Q. (Evi-
dently, there exist two numbers in
this form, 10'- 1 and 10'- 1, s > t,
having equal remainders modulo Q;
their difference 10'( 10"-'- I ) is divis-
ible by Q; we can take m = s - t.l
Denote (10- - l/Q by R; then for any
natural n

R,:(10-'-1)/Q
= R(10-t, t) + 10-h 2) + ... + 10- + 1).

Now let N, = R, + l. Then S(N,)> ("
- 1)R, sinceR < 10-- l,andS(Q{)=
S(QA, + Q) : S(10"* + Q- 1) : 1 +
s(a - i) : s(O). Final1y, s(ON")/s(N")
s S(Q)/(n - 1)R -, 0 whenn -> m.

Physics

P16
Since the collision of the ring with the
step is absolutely inelastic, the ring's
momentum changes after the co.lii-
sion. The step acts on the ring along
its radius R (fig. 5). During the colli-

sion the proiection of the ring's
momentum on the axis OX (going
along R) drops to zero. The projection
of the momentum on the axis OY

doesn't change. After the collision
the ring's total momentum becomes
equal in absolute value to mvsin cr,

and its velocity vsin cr : v[(a - h)/R]
(see figure 5). Now let's make use of
the energy conservation law. Imme-
diately after the collision the kinetic
energy of the ring is

n ffiv2 (R-D2
2R

The factor 2 appears because of rota-
tional movement.

A{ter climbing the step, the ring
acquires the potenti al energy mgh
and kinetic energy 2lmvozl2l. So

*r'(R- h\2 l
= trrgfi _l nIvi.

R

The velocity of the ring after it
"climbs" the step/ therefore, is

vn=

The minimum velocity v* at which
the ring can still cLimb the step corre-
sponds tovo:0; that is,

'h=

from which we get

R
'*'= *\t/ sh '

P17
Denote the pressure of the liquid act-
ing on the bigger piston (having the
area S,) by p and the atmospheric
pressure bypo. Then the total force
acting on the piston upward is equal
to F, : S,p, while the force acting on
the samepiston downwardis the sum
of the string tension Tand the force of

the atmospheric pressure F,' = poS,.

Since the piston is in equfibrium, we
can write

S,p: S,po + T.

A similar equation holds for the
lower piston: the tension force 7 and
the force of the atmospheric presswe
Fr' : pn'Sract upwar{ while the water
pressure F, : p'sractsdownward. The
water pressure p' on the lower piston
is higher than that acting on the upper
piston by afactor of pg/. Since the
lower piston is also in equilibrium,
then

T + posr: (p + pgJ)Sr.

Solving both equations simultaneously
we get 

. s,s,
I=P815-5'

A good way to verify the answer is to
substitute exffeme values of the para-
meters. Let S, -, S,. In this case
T -> m. hrdeed, the whole structure
remains in equilibrium because of the
pressure of the water on the ring with
area S, - S, on the upper piston. When
S, -, S, the pressure on the ring tends
to infinity so that the string tension
also tends to infinity.

Thus, when S, : S, we get an infi-
nite value for 7. But such a limiting
transition is impossible. We've as-
sumed that the system remains in
equilibrium. Actually, for S, : S, there
is no equilibrium since the system of
pistons falls with a corstant acceleration
g. The tension of the string is then
equal to zero. This is a good example
of how careful we should be with lim-
iting transitions in physics. We should
always make sure that such a transi-
tion doesn't alter the phenomenon.

Pl8
Wamed by the hand pressing it against

the frosty window, the coin warms
andmelts the ice under it. Since the
edge of the coin is slightly thicker
than its body, the arcaof contact at
first is primarily along its circumfer-
ence. The rest of the coin is separated
from the window by a thin layer of air.
The thermal conductivity of the air is
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much less than that of the metal. So
the ice along the circum{erence is the
first to melt. After the ice under the
edge melts enough, the rest of the coin
comes into contactwith the ice, which
then starts to melt under the entire
area of the coin.

P19
Consider the case of the connection irt
series first. The current in this circuit
is rt

I - ---:!- _RiRz'

where Uis the voltage difference in
the circuit, R, = pllf nr12) is the resis-
tance of the thin wire (of radius z,), R,
: p(Uru]) is the resistance of the thicli
wire (of radius rr).

The power released by the curent
on each of the resistances is equal to N
= PR-that is,

N: U' n
' ,o, *Rr'12-'t'

-,2
lrr. = __9 

, R, .

' 1R,+ R r)z 
2

[r the stationary regime-that is, when
the temperature of the wires no longer
changes-each of the wires releases
power eclual to M = ks(T- 7o) into the
surroundings, where k is the propor-
tionality factor, s:2ruLis the surface
area of the wire, T is the wire tempera-
ture, and 7o is the temperature of the
surroundings. [r the stationary regime
M:N-thatis, ',

-2
_-Rr = k2nr,t (T 

r-To) .
(Rr +R2)'

:!-Rr= k2nrrl(Tr-To) .

(Rr +R2)-

where T, *d Trarcthetemperatures
of the thin and thick wires, respec-
tively. Dividing the first equality by
the second, we get

Since r, > r, and R, > R, we get T r- To
> Tz-To, or Tr> Tr.

Consider now the case of connec-
tion in parallel. The voltage drop on
the resistance R, and R, is then the

same, and the power released on each
of themis

N =U"-'1 R'
I

rfN =a2R
.2

Proceeding as we did in the first
case, in the stationary regime we get

rfz= k2nrtl(TaTo) ,

1

rf
fr- = k2nrrl(Tr-To) ,

2

from which we obtain
T-T R r1022
Tr-To R, rt'

Substituting R, : p(llnrr2) and R, :
p(llnrr2l, we arrive at the relation

T-T rr o=_1 ( I -T-T r.'
202

orTr<Tr.
So in the first case the thin wire

heats up; in the second case, the thick
one.

P20
Plot the track of a light beam from an
inlinitely distant source through the
eye. The beam is subjected to two
refractions on the two surfaces of the
eye's lens (fig. 6). According to the law
of refraction,

contact with air than when it's in
contact with water. If under water the
image of a distant object is projected
on the retina, the image of the same
obiect in the air will fall in front of the
retina. So it turns out the person is
nearsighted.

Bl'aintea$Er'$

816
No, it isnt qrmmetrical. Notice that
turning one of the stars upside down
gives us a figure with central q/rnme-
try lfis.7l.

Figure 7

817
First, notice that each ball on the left
pan is heavier than the ball of the
same color on the right (otherwise
there's a ball on the le{t that's lighter
than the ball of the same color on the
righg and we can then exchange them
without tipping the balance). If there
are no less than three bails on each
side, we could exchange the pair of
balls with minimum mass dilferences
without affecting the balance. So
there are at most two balls on each
side. Obviously, there can be one ball
in each pan. Two balls are also pos-
sible provided that the mass differ-
ence for each pair of balls o{ the same
color is the same.

818
See figure B.

819
Four vertices are at the corners of the
square. Each of the vertices inside the
square is a common vertex o{ exactly
two rectangies. Let n be the number

sin cx nz

ri,.,B=4'

T,-To R, ,2

T.-Tn R, 
"

where n, is the absolute refractive
index of the first medium (water or
url, nrthe absolute refractive index of
the lens.

lnls lormula suggests that lt xl
decreases (that is, if water is replaced

This formula suggests that if

with air), angle B decreases as well.
This means that after refraction on
the outer surface of the lens, the beam
will go lower when the eye is in

lens

5g

Figure 6 retina
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ff=fln+Vfilfl ,

:V[=l[:V{[[ 
,

V[f,=/F-MffiI /
_ 17=11-Bl)

Figure B

of rectangles into which the square is
crltt m the number of points of the
square that are common vertices of
exacdy fi,vo rectang[es. The toul number
of vertices for all the rectangles can
now be calculated in two ways. On
one side it's eqralto 4n, on the other
4 + 2m. So m = 2{n - ll, which is an
even number. Adding the {our cor-
ners of the square we get m + 4, which
is also even.

820
The thermal expansion of mercuryis
greater than that of steef so the force
pushing the ball upward decreases
and the ball sinks lower.

EoinU to Brll'Elng$

1. The solution to this problem is
similar to that for problem 4 in this
article.

2.lallf the radius of the circum-
circle of triangle ABD isn't smaller
than the radius of the circumcircle of
triangle ABC, thenpoint H doesn't
belongto the "double sector" (fig. 9)

delimitedby the smaller arc AB of.the
ctrcle ABC and the arc s1'mmetrical to
it with resp ect to AB. We can easily
see that the circles symmetrical to
circle ABC with respect to the three
sides of triangle ABC havea common

poin! theofllrocenter Hof ABC. -tlis
implies that the three "double sec-
tors" built on each of the sides of ABC
have a unique common point. It lies
inside the circumscribed circle only i{
triangle ABC is acute, and then it
coincides with point H (fig. 9). If the
triangle isn't acute the common point
coincides with the vertex of its non-
acute (that is, either right or acute)
angle (fig. 10).

Figure 10

(b) If the smallest circle passing
throughpoints A, B, C contains some
other given point D inside ig then the
solution to problem (a) implies that D
is the orthocenter of the acute tri-
angle ABC. Therefore, any of the
circles circumscrihd around the (obtuse!)

triangles ABD, BCD, or CAD pro-
vides a solution.

3. The solution to this problem is
similar to that for problem B in the
article.

4. Answer: l. 2. 3 : I +2+3. Ifx
is the largest of the numbers sought,
then xyz : x + y + z < 3x-that is, yz <
3. AIl that's left is to work out all the
possibilities: yz:1 . 1, 1 .2,1 . 3.

5. Take the longest edge.

6. Consider the position of the checkss
one move before the first checker
retums to its starting place.

7. Answer: Xr : xz= Xe: xq:xs = 0
or 2. First let's show that all x, arc
equal. Under the assumption that
this rsnt the case, choose the largest x,
and if it isn't unique, take the largest

4 for which xitt. Xi(we assume that x.
= xr). Because of the symmetry of the
system we can assume that this is the
number x,. Subtracting the fifth equa-

tion from the fourth, we arrive at a
contradiction: O > xo- x, : xrz - x] > O.

So x, : xz= xe: Xq: Xs: x, where x
satisfies the equation 2x: *.

8. Let Q, be the smallest cube from
the breakdown that touches the sur-
face of the original cube, Q, the small-
est cube adjacent to the face of Q,
parallel to its outer face F, Q. the
smallest cube adiacent to the face of
the cube Q, parallel to F, and so on.
We get a sequence of cubes that get
smaller and smaller, the last of which
is adiacent to the face of the original
cubeparallel to F. This contradicts
the choice of the cube Q, .

9. (a) Let's assume that airplanes
flewfrom 6 airports to airport O. Take
the two (A and B) for which the angle
AOB is the smallest. Then angle
AOB < 50", which implies that one of
the distances AO or BO is greater than
AB, which is impossible.

(b)Use the "ordering rule." Let's
assume that at least one plane landed
at each airport. Then for any airport
A, there is a chain of airports 41, Ay ...,

where each A,*, stands for one of the
airports from which the plane flew to
A,. It's easy to see that the chain has
to close up: a plane from A, will fly to
a certannairport A,-that is, A,: At. If"

n is greater that2, we get a contradic-
tion: ArA,r. A4, < ... . An_rA,. A,A,
. ArAr. So n :2 and the set of airports
breaks down into pairs, which is
impossible with an odd number of
airports.

lhleido$GoIE

1. At midnight the velocity of the
Earth's rotation is added to its orbital
velocity, whereas at midday it's sub-
tracted.

2. It moves faster in the winter in
the Northern Hemisphere, since in
this season the Earth passes its perihe-
lion.

3. Satum's ring isn't a solid body.
4. Acceleration caused by the Sun

is approximately the same for both
the Earth and the Moon. The two of
them form a single system revolving
around its center of mass, which, in
tum, revolves around the Sun.

5. No, because (unlike the case of a
circular orbit) the force of gravity al-

80 il0lIftllBtR/0rcrltllBtR I 090



temately performs posltive and nega-
tive work, so the planet or satellite
keeps speeding up and slowing down.

6. No satellite can hover over such a
reglon because its orbital plane has to
go through the center of the Earth.

7. No-the Earth and the Moon
revolve around different centers of
attraction.

8. No additional speed is needed
since bodies in the equatoiil.zone are
akeady in orbit.

9. The force is eclual to that with
which the table acts on the Earth-
that is, with a force equivalent to the
table's weight.

10. In spite of air resistance the
velocity of the satellite increases.
Although friction reduces the me-
chanical energy of the satellite, only
some of its potential energy is trans-
formed into heat; the rest is trans-
formed into kinetic energy.

The mental microexperiment.
Neither weight nor weightlessness
has anything to do with the collision.
The principal role is played by mass
and velocity. So when you're working
in outer spacg be carefirl not to bump
into your spacecraft.

Toul'nalneilol

Toums

1. The identity can be proved either
by directly opening the brackets (note
that each fraction L lk, k : 1,2, ..., n,
appears in exactlyk brackets on the
Ieft side), or by induction on n.

2. Let r" and r, be the radius of
circles c and d arrd CD : 1 (fig. 11).

Notice that the dilationwith center C
and scale factor2rJl takes the ctcle d
into the given smaller circle inside c;
and so the radius of the latter equals
2r"roll.

Figure 12

3. Yes, it's possible. An example is
shown in figure 12 (the eight cubes
that are out of view are red).

4. Put aside one coin and divide the
rest into three equal piles of coins.
Two of them, say A and B, will neces-
sarily weigh the samg and two weryh
ings are sufficient to identify them
and determine whether the third pile
C is fuhter or heavier. Then pile A (or
B) is divided in two and the halves are
weighed against each other. If they
balancg the coins )n A are all genuine
and pile C conains one or both munter-
feit coins; if they don't , A and B each
contain one counterfeit coin and C is
entfuely genuine.

5. The maximum number of parts is
10,001 = 1002+ 1. Considerthenth
graph G, added to n - 1 graphs G1t ...t
G,_, abeady drawn. The number of
pafts of the plane that are split in two
by G, equals the number of arcs inter-
cepted on G, by Gt, ..., Gn_1 (includrrg
two infinite arcs). So it doesn't exceed
2n - I lthere are at most 2(n- ll points
where G, intersects G,, ..., G, _ ).
Finally, recall that I + 3 + ... + (2n - ll
=n2.

6. The second quadrilateral is a
parallelogram whose sides are parallel
to the diagonals d, andd, of the first

'rB 
= a:b:a

KL -KtLrAC AC

' =*''
AB

_ a+b
2a+b

one; the lengths of the sides are (a + bll
(2a + b)times those of the correspond-
ing diagonals (fu. 131. For the squares,
alb = t12ttz = (a + bllpa + b). So the
areas of both quadrilaterals are equal
to (ll2ldrdrsin o, o being the angle be-
tweend, andd,

7. The elephants weigh 5 metric
tons each. LetWobe the weight in
kilograms of the kth elephant from
the right and do= Wr,- 5,000 > -5,000.
Then2d o + d o*, : 0,which yields do :
(-2lo-'d,If diO,thend, > 1(d, isan
integer) arrd dro:2"d, < -5,000, i{ dl
< 0, then similarly d,, < 5,000. It
follows that dr= 0, do:0, andWo=
5,000 for allk.

B. Use the equality of angles in-
scribed in the same arc and qrmmetry
of the rhombus with respect to its
diagonal BD to prove successively
that angles BAP, BQP, RCB, md RAB
are equal. A nice point of the proof is
to show that R lies between B and Q;
this canbe derived from the equalities
QP = QA:Qc,whichmeansthat Q
is the point of circle CPQ most distant
fromPC.

0 1 2 3 4707
Figure 14

9. The number of pairs is 1,705.
The idea is to interpret the given
inequalities in terms of the coordi-
nate plane. A pair (n, ml satisfies
them i{ and only if the line y = 212xhx
between the lines y: mxlb + 1)and y
: (- * llxln-that is, intersects the
square cett {(5 yl: n < x < n + l, m <y
< m + 1) (fig. 14). To count up the
number of such squares for 0 < n <

1,000, 0 < m < 1,000, notice that it's
equal to the number of intersections
of the line y = 2t\x vu11t}1the lines x = 1,

8t

Figure 11

Figure 13
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2, ..., L,00of21t2ll,\Nlytz:500 . 1.414

= 7071 afldy = 2,3, ...,1,000, which
yields 707 + 999 : 1,706. (Compare
this with the solution to problem 5.)

10. Anybasic collection arranged
in increasing order has the following
form:

(b) The smallest numberpossible is
6.

For examples, see.figure 15. Since
any vertex of a dodecahedron belongs
to 3 of its 12 faces, the number 4 :
l2l 3 in(a) is minimal. In case (b) the
reasoning is somewhat more sophis-

Plotp + q points on a plane, p of
them forp equal parts of cake, q for q
equal parts. |oin the pairs ofpoints
corresponding to the parts that have a

comrnon slice of the given partition in
them. The points and junctures are
called the vertices and edges of the
graph, respectively. Each edge is re-
lated to its own slice of cake, so the
number of slices isn't less than the
number of edges. On the other hand,
every two vertices are connected by a
chain of edges with each other. (If
they aren't, there is a connected sub-
set of the vertices, which aren't joined
to any vertex outside the subset. This
corresponds to a part of cake that can
be distributed either among k < p
guests in the first case/ or among -l < q
guests in the second case. Bttkf p I
llqfor coprime p ar:d q) It remains to
notice that a connected graph with p +
qverticeshasatleastp + q-l edges.

18. Let the line AB meet CP at M
and CQ at N, and the line PQ meet
CD at E (fig.l7l. It suffices to show
that MH :HN. By the obvious simi-
larities of triangles APH and DPE and
triangles BQH ard DQE, the follow-
ing equalities hold:

MHIAH:CEIDE:NHlBH.

Since AH : BH, wehave MH : NH.
To obtain a solution with no calcu-

lations at all, consider a central projec-
tion of the figure onto a planep pass-
ing through AB froma center O such
that the plane OCD is parallel top.

19. Yes, in both cases-such poly-
gons exist.

(a) A triangular prism with two

ll, l, ..., l, p+\, p+I, ..., p+\, (p+ll lq+ll, ..., (p+ll(q+ll, ...1,

Lp times_A_q times / times j/

wherep, e, r, ...are arbitrary natural
numbers. The total of such a collec-
tionis N: (p * 1)(q+ 1)(r+ 1) ... - 1. For
N: 200 thenumber N+ 1 : 2,01 = 3 . 67
has only two prime factors. That's
why in this case there are only three
basic collections: the trivial one (p =
200), the collection 11,1,3,3, ...,3}lp:
2, q :561, and the collection ll, L, ..., l,
67 , 671 lp : 56, ct :2l,.

11. The median of a triangle divides
it into pafts of eclual area. Expressing
the equality of areas in terms of the
sides a arrdb, the median m between
them, the angle ybetween a andm,
and the angle 2ybetween m and b, we
obtain the equation amstny = bmstn2y,
which gives us cosy: af2b. Given a
and b we can thus construct T.

12. (a)We may take, for example,
the numbers 2k + 1,3, and a1lthe rest
equalto l.

(b) The sum of n required odd inte-
gers must be equal to their product. So

n is odd, according to the condition n
: 4k + 3, Let m be the number of these
integers having the remainder 3 mod-
ulo 4 (the rest have the reminder 1).

Then the sum and the product of all n
integers have the same remainders
modulo 4 as 2m- | and (-1)*, respec-
tively. But this is impossible: for an
even m the first remainder is 3, the
second is 1; for an odd m they are 1 and
3, respectively.

13. (a) The smallest number pos-
sible is 4.

ticated(asimple
estimate 20/5
:4 won't suf-
fice).

Consider 6 pairs of opposite verti-
ces (like A and B in figure 16) of an
icosahedron. If the number of marked
vertices is less than 6, then one of the
pairs (A, B) would be unmarked, and
one of the vertices of the palr (say , A)
would be joined by an edge to no more
than two marked vertices, C and D.
So among the 5 faces adjacent to A
there couldbe at most 2. 2 = 4 faces
having a marked vertex, C or D. This
leaves at least one face unmarked.

14. The solution to problem 4 works
with 6k + 1 coins for any natural k, 103
:6.17+I.

15. This is the polynomial

(x-D (x2-l)... (r2" -l) .

15. The answer to (blis 3. Substi-
tute 500 for 200 in the solution to
problem 10 and notice that 501 also
has only 2 prime factorc: 5Ol :3 . 167.

17. The smallest number of slices
is p + q - t. Dividing the cake into p
equal parts by p - 1 parallel cuts and
into q * 1 cuts parallel to the first ones,
we get the required partition into
b - ll * (q- 1)* I: p * q- I slices. To
prove that this number can't be di-
minished, let's represent any parti-
tion in question by a graph.Figure 15
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icosahedrons (fig. 1 5b) erected on its
bases satisfies all the conditions ex-
cept convexity. But the icosahedral
bulbs can easily be "flattened" by
stretchrng and contracting their edges.

(b) Change the prism in the ex-
ample above to the polyhedron shown
in figure 18 and "flatterl'the icosahe-
dral bulbs so that the faces adjacent to
the shaded triangles become the ex-
tensions of the latter to form 6 quad-
rangular faces of a new polyhedron.
Its top view is shown in figure I 9.

2D.I-ntS< lbetheareaof oneof the
blots, x and y the lengths of its projec-
tions onto the perpendicular sides of
the square; then S < Stl2 < xy s
(x + yll2. Adding up these inequali-
ties for all the blots and tai<ing into ac-
count the fact that projections of dif-
ferent blots are disjoin! we determine
that the total area of the blot is less
than(a + allZ: a.

lllalul'al lo$anithm

1. We have t : ( 1/k) ln (N/{). The
generation time, 20 minutes, is how
long it takes to double the populatiorl
orN/{:2. So t":(1lklln2. Sincer_
: 20 min, 20 m"in : lLlkl ln 2, k !
Ln 2 I 2Omin. Using a calculator, we
get ln 2 = O.693l,so that k = 0.693U20

min: 0.0347 (to three significant fig-
ures).

2. Five hours and thirty-two min-
utes.

3. The rational number 27l,8}ll
99,99O has rhe v alue 2.7 18281 828 1 828...,
where 1828 repeats infinitely many
times. We need only show that the
diglt in the tenth decimal place isn't 1.

This requires use of the binomial ex-
pansion for kt = L and acalculator or
computer th at car, carry t 1 or 12 sig-
nificant digits. But you'llneed to be
very clever to evaluate the m = 12 case.
An ordinary calculator lacks the nec-
essary precision.

lUlatlt $tlrpri$B$

1089.II a, b, c are the decimal digits
of the largerof the two numbers that
you take the dif{erence of, then the
digits of the difference are a - c - l, 9,
lO+ c-a. Butthesumof 100(a-c- 1)

+ 90 + (10 + c-aland 100(10 + c-al +

90+(a-c-llis 1089.
6174.11 abcd is the largest number

you can form with the four drg;ts a, b,
c, d, then dcba is the smallesq and the
difference between these two num-
bers is 999(a - dl + 9O(b - c). Since both
a - d and b - c aresingle-digit num-
bers, this leaves at most 100 cases to
check, and we'11 leave the rest of the
problem to you. (In fact, there are
other ways to reduce the work still
further.)

153. Any five-digit number is at
least 10000, but the sum of the cubes
of its digits is less than five times 1000

= 5000, so that our operation decreases
it. In the sameway tyou can see that
the operation decreases longer num-
bers even more. So you need only
check numbers with at most four
digits. Once again, there are ways to
reduce the work a bit further, but this
time there almost inevitably remains
quite a lot of sheer checking to be
done.

0, 0, 0,0. Here there's a very nice
argument. |ust look at whether the
numbers you started with are even (E)

orodd(O). Forexample,

either O,E,E, E or E, O, O, O

yields
then
and then
and finally

O, E, E, O;
O, E, o, E,

O, O, O, O,
E, E, E, E.

Every pattern of odds and evens ap-
pears here (up to cyciic rearrange-
ment), and so we see that after at most
four turns all the numbers will be
even. Then after four more tums
they'll be multiples of 4, and four
turns later they'llbe multiples of B,

and so on. But since the numbers
aren't getting any bigger, the only way
they can end up being divisible by a
very large power of 2 is by being iden-
tically zero.

It turns out that the same thing
happers whenwer the number of starting
numbers is any power of 2, but in all
other cases there are starting pattems
that don't ultimately end in zeros.

1, 11, 21, 1211, etc. What's the rule
here? You just read each sequence
aloud in a suitable way, and you'll get
the next one. For example, the first
sequence consists of one "ot1e," so the
second sequenceis "one one." This
consists of two "ofle," so the next
sequence is "two one," which in tum
may be described as one " two," orle
" one," and so leads to "one two one
oner" and so on.

The problem about the rate of gror,wh
is much harder. I proved some time
ago that each of the later sequences is
about 1.303577259034295391257
099 tr2r5255r8907 30702s046s940 ...

times as long as the one before it,
where the approximation gets better
and better for later and later sequences.
This mysterious number is the largest
solution of the equation

f : y7t - fe -2*8 - *7 + 2*6 + Zfs +
*-#-*-t',i-:6-P +2# +Sfl
+ 3xs6 _ 2x55 _ 10xs4 _ 3xs3 _ 2xs2 + 6x5t
+ 6xs0 + fe +g*8 _3*7 _7*6 _g'4.s _

8xa + 10xa + 6* + 81t -5x40 -lZf +

7# -7fl +7# + # -3# + 10f +:P
_6x3t _2x3o _10I.2e _3*8 +2*7 +g*6
_3*5 +14724_B*3_7izt +9x20 +3x1e
_4x18 _ 10x17 _ 7xt6 + l2xls +7xta +ZxB

-l2xt2-4x11 -2xto +5f + x7 -7* +7f
-4*+12*-6*+3x-6.
(Thanks to Ilan Vardi for his accurate recom-
putation of this number and its defining equa-
tion.)

Figure 19
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Roolr tlel'$u$ kniUhl

5. Rh6+
5. Re6
7. Kd7
8. Rh6!

Ks7
Kf8!
Kf7

6.

7. Kd6!
8. Kd7
9. Re3
10. Rd3
11. Kd6
12. Rf3+
13. KcS
14. Re3
15. Re2

Na7+
KfB
Nbs
Nd4
Nc2
KT7

Ks6
Nel
Nc2

1. Rh4 NcS+
2. Kd7 Nb6+
3. Kc6 NcS
4. Rh7+ Kf6!

Towin.

The computer that studied it indi-
cated these initial moves:

tln this installment of Checkmate!
the algebraic method of notation is used,
in which only the piece and its
destination are gpv en.-Ed.

1. Ke5 Na4
2. Rh7+ KeS
3. Kd6 Nb5

64

Kingdoms lost because of a horse

by Yevgeny Gik

HIS CORRELAIION OF FORCES,

rook vs. knight, is theoretically a
wash. But iI the horse strays a bit
too far irom its king, its fate

hangs by a thread. It's interesting that
computers have had a great deal of
success in this sort of endgame. In
particular, a machine has found a
record-setting position in which the
rook, given the best possible play by
both sides, takes the knight in the
twenty-seventh move-white: Kcl,
RfB; black: Ka3, Ne2.l

Let's look at an interesting 6tude.

A. Ropnin,7987
To win.

The main variation of the solution
is this:

The author of the study supple-
ments it with a number of additional
variations. Here's the longest:

Now let's look at the following
position.

4. RhB+ Kf7

There's no need to go any fi.rrther-
we now have before us the 6tude of
Kopnin we just lookedat. Sowe can
say that the machine constructed a

more mmplicated study than the famor:s

composer of chess problems!
If a win is possible in the battle

between rook and knight, the com-
puter will always find it. But a human
being is capable of working through
such endgames. Let's take a look at
three interesting examples from the
play of grandmasters.

Neiman-Steinitz
(Baden-Baden, 7870)

The first Chess King'efficiently
finishes the game:

1.

2. Ndl
Re4!

Or 2. Ng2 Kf5 3. Kf7 rg4 4.K[6
Pte2; 2.Nc2 Kd5 3. Na3 Kc5 4. Kf7 Kb4
5. Nb1 Re2, andit's all over.

".*N N NE

NIf**NN
sSN".*N*N

i *...N *.N
..".N ..oN N

sNs
N o.*NN'\\\N

*NN
"*N

.sN **N m N-*s\s\*s$s*
*tNN *.N N 

"*N
**tNN *.N N 

"*,N
*-NN \\N o*N i

*"N N..N S **N

*oN*N*.*.*oNo**t'
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3. W7

After3. Ke8 Rf3!, whitewouldbein
avise:4.Nb2Rb3.

3. Rf3
4. Kg6

There's no saving the horse even
with 4. Nb2 Kd5 s.Ks6 (5. Na4 Rh3) 5.

...Kd4 5.Kg5Rfl 7.Kg4Rbl 8.Na4
Rb4.

Black resigns.

Karpov-Ftacnik
(Salonika,7988)

This was the last game of the Chess
Olympiad. Although the USSR team
was assured of victory, it was impor-
tant for the former world champion to
win in order to take first place on his
board. Almost up to the very end the
Czech grandmaster defended himself
precisely, but as soon as the rook-ys.-
lcright endgame appeared on theboard,
he made afatd.mistake.

83. ... Nc4?

The correct movewouldhave been
83. ... Na4!, and in a roundabout way-
b}-dl -0. (e3) or c5-d3-the knight would

have been reunited with his king.

84. Rf3+! Kg4

Now, as in a real 6tude, two echo-
variations arise. One was actually
played out, and in the other the basic
idea is realized in the form of a link-
age: 84...Kg2 85. Rc3!Nd2 (85. ...
Nb6 86. Rb3 Na4 87. Kds) 86. Rc2.

8s. Rd3! Kgs

These replies are no better: 85. ...

Nb2 85. Rd2!Nc4 87. Rd4, q5.... Nb5
86. Rb3.

86. Kds Nb6+

Another trap for the knight: 85. ...

Nb2 87.Rd2Na4 88.Rc2Nb6 89.Kd6
Ki5 90.RcS+I(f6 91.Rc5Na4 92.Kd5
Kfs 93. Kd4Nb2 94. Rcl Ke5 95. Rbl
Na4 95. Rb4.

8. Rd3+ Kh2
9. Rd4

4. Ke5
s. Kss Kd4
6. Ks4 Rfl
7. Nb2 Rbl
8. Na4 Rb4

The horse is agoner.

87. Ke5
88. Ke4!
89. Rd8!
90. Rd4
91. Ke5
92. Ke6
93. Kd7

Black resigrs.

Nc4+
Nb6
Nc4
Kb6
NcB
Na7

B o golyub ov-Rub enstein
(SanRemo,7930)

1. Nc4+

It's not hard to convince ourselves
that 1. ... Kg2 won't save black.

2. Kd3 Nb2+

The knight isn't able to join up
with his king, and 2. ... Nd5 won't
help either: 3. Rds Ne8 4. Kd4Nf6 5.

Rf5 NeB 6. KcS.

3. KA Nc4

For3. ... Kg2, the response 4. Rh4! is
decisive; here's another variation: 3.
... Na4 4. fu5+ Kh2 5. Kf2 Kh3 5. Kf3
Khz 7.Rg2+ Kh3 B. Rc2 Nb6 9. Rc6.

4. Rc5 Nd6
s. Kf3 Kh2
6. Rd5 Nc4
7. r<12 Kh3

o
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"Tlwre are ofip doy : when I go ?,en dtebaics I lefiril fiKenyon .

-Stephen 
Cannichael, Kenyon Ckxs of 19 67,

professcn of matr,rrry, May o Medrcal School

or mar-ry science stuclents, the sma1l
college's emph:rsis Lln strLlng teacher-
:luJcrrt rr],rlr,,l).1Irl. an!l,rl.l(,nunitl(> tr,
participate in 

- 
an.l be recognizecl firr 

-solid research u'ith tacuLtl, members are
pon'er1ir11r- appealing. There is also the

promi-se of :Lcce.-r t() s()fhisticatcr'1 cqr-ripment irncl
instrlrmclltirtion th:lt the sn-r:rl1 collcgc provirlcs.

T1-rese .1n:rlities, :rs r.r'ell as its renou,rr as :r
prernier Liber.rl arts ancl sciences institution, make
Kenr'.rr-r College ar-r icleal choice fcrr str.rclents who
plan t,l, flLrslrc cLluc:rtion :rncl carccrs in t1-re

science-s. Frorn 1980 to 1990, :rn ilverage of 24
percent ,.rf Kenv,rn seniols :rnnua11-v u,ere itu,iLrclecl
.lcgrees in the natural sciences 

- 
brology, chemis-

tn., rrrathemirtics, physics, ar-r,,I psvcholog),. That is
more than three tirnes the nation:rL :rver:rge of 7

perccnt. Ar-rc1 fuLh, 75 percer-rt of the CoiLege's
sciencc gr :1.lu:rtcs plu suc irclr'irnccd stuclics.

Suclr resr-rlts rvould not be possible rvithotrt
factrLrl' rnembers dediciited to teaching, ancl
Keny'on's are am.rng the rnost able ar-rc'l cornmitted
ar tl'r-v sna11 college. But because they believe
leaming is not confinecl to tl-re classroon-i, the1, 11r,,

actrvelv rnvolve thernselves ar-rc] their students in
rcsc:rrch projects. Current11,, those projects are
sp,rnsorecl bt, sLrch prestigious organizations as the
National Instrtutes of Health ancl the Nirtional
Scier-rce For-rntlation.

Together, stutlents :rnrl f:rculty rnembers in the
scicnces crc:rtc :rn excitir-rg irtmosphere at Kenyon
for studv in the natural sciences. Botl-r find d-re

c:rmirrarlerie ancl sense of sl-rarec'l pultrrose potent
stirnuli for leaming irnd u,orkins at the pe:rk oi tl-reir
cap:rbilities.

For more infolmation on ,science -.tr,r.lr'at
Kcnyon College, and on speci:rl sc1-roiilrships ior
screncc stlrclcnts, plc:rsc ['ritc or ca11,

OfficeofAdmissioru ffi
Ransom Hall ffi
Kenyon College
Gambier, Ohio
43072.9623
800-84B-2468
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