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The Musician (1914) bff Louis Marcoussis

he Polish painter Louis Casimir Ladislas Marcoussis (1883-1941)

was one of the group of artists in Paris who were exploring new
possibilities of spatial representation in the second decade of this
century. The movement eventually came to be called “Cubism,”
and its practitioners included some of the most illustrious names
of modern art. Some Cubists, Marcoussis among them, saw
themselves as obeying a severe discipline, one inspired directly by
mathematical laws. Others, like Pablo Picasso and Georges
Braque, saw a greater role for the individual imagination and
denied being “Cubists” at all. Cubists, they felt, simply adhered
to a strict set of compositional rules.

Labels aside, it’s apparent that Marcoussis wasn’t content to
produce an objectively “realistic” image of a musician playing his
instrument. After all, that’s what cameras are for. As a self-
conscious painter, Marcoussis was able to use fractured planes,
skewed angles, and jumbled shapes to create a sense of rhythm
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and motion. (Some Cubists would present multiple sides of a
three-dimensional object simultaneously, mixing “points of view”
in a single “snapshot,” to suggest another dimension—time.)
Other aspects of the painting, though, suggest restraint and
discipline: the narrow range of colors used, the way much of the
painting seems to radiate from a single point, the sense of
architecture in the placement of the gray slabs.

Many artists have been profoundly affected by the new theories
in physics that have bubbled up into the public consciousness
throughout the 20th century. And many of them have been
fascinated by music and frequently used musicians as their
subjects. No doubt you've come across discussions of the more
traditional physics and mathematics of music—columns of
vibrating airt, the relationship of string length to pitch, and so on.
But what about the music of physicists? For a lighthearted peek
into that relatively unexplored area, see page 54.
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Maybe you saw it on the news a while
back: a perfectly sane-looking man div-
ing headfirst off a bridge, elastic straps
attached to his ankles and nothing but
water to look at on the way down. From
that height, at that speed, it looked
about as inviting as a sheet of concrete.
He was wired for sound (he carried a tiny
video camera on his back as well), and
the sounds he emitted during his flight
were remarkable in their variety and
intensity. When his fall was success-
fully broken by the ankle straps, his
relief was apparent in his shouts and
laughter.
This man was, in fact, an Australian
e television reporter, and he was investi-
gating a new sport that has sprouted
down under. New as a sport, anyway.
It's actually based on a ceremonial prac-
tice that can be seen on the islands of
Vanuatu, which is the subject of “Tak-
ing a Flying Leap” on page 10. (And the
gentleman in the long coat on our cover,
calmly making calculations—just who
is he?!)
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A good question

—its worth a thousand routine answers

T QUANTUM WE'RE CON-

tinually questioning what we do.

We're a rather new magazine, so

that’s to be expected, but T hope
we keep this self-critical attitude as
we grow older. If youdon’t mind, I'd
like to draw you into our questioning
mode . ..

Do you think you’re intelligent?
Doyouknow physics or math pretty
well? Have you thought much about
what it means to “know” something?
I have a good friend who has carefully
probed for genuine understanding of
physics among young people who have
studied it. His observations suggest
that true knowledge and understand-
ing are frequently elusive.

Knowing a fact or how to solve a
particular class of problem isn’t enough.
How do you know the “fact”? Why do
you believe it? And, as for the prob-
lem, do you merely know a procedure
that can unquestionably (and unques-
tioningly) be followed to arrive at a
solution? Or, instead, can you iden-
tify the relevant laws, or principles,
and definitions and use them in a
correct and efficient approach to the
problem?

Can you understand the difference
between facts, data, or observations
and inferences? How is a theory or
model created, and what makes one
better than another?

The point, of course, is this. It’s not
what you profess to know that’s im-
portant. How do you know some-
thing? Why do you believe it? How
would you find out? That’s what’s
really important. Iregret that we, as
teachers, haven’t emphasized the abil-
ity to ask good questions and think

things through. Too often we've taught
and tested for facts and information.
As my friend has observed, there al-
most seems to be a “destructive collu-
sion between students and teachers—
a collusion in which students agree to
accept bad teaching provided they are
given bad examinations.” What do
you think?

We publish Quantum for you. Itis
meant to be challenging, as well as
entertaining, and should demonstrate
what it means to think about a prob-
lem, think about a solution, think

about assumptions, think about alter-
natives—in short, to think. It’s dedi-
cated to the proposition that thinking
is enjoyable.

Can you read most of what is printed
in Quantum, and do you understand
what you are reading? You probably
can’t just say “yes” or “no” to that
question. Is some of it easy? Does
some of it require careful study while
you fill in details left out of the article?
Is some material simply too hard?

We aim Quantum mainly at young
people who would answer “yes” to all
of these questions. These young people
would be among our nation’s best and
brightest. But we need to know for
sure that we haven’t aimed either too
high or too low. Again, what do you
think? We don’t have a Letters to the
Editor column, but we do read and
think about every letter we get.

So write a letter and tell us if Quan-
tum is interesting, challenging, and
mostly comprehensible to you. If it
isn’t, tell us exactly what you think
we could do to make it more nearly
what you’d like.

—Bill G. Aldridge

Turning the World

Ins ide OUt By Robert Ehrlich

AND 174 OTHER SIMPLE PHYSICS DEMONSTRATIONS

ORDERS: 800-PRS-ISBN (777-4726)

ORDER FROM YOUR BOOKSELLER OR FROM

Princeton University Press

ORDER DEPT,, 3175 PRINCETON PIKE, « LAWRENCEVILLE, Nj 08648

Here is a book filled
with physics demonstrations
that are amazingly simple,
often playful, and always
instructive. Each of the
175 demonstrations uses
inexpensive, everyday items—
rubber balls, a plastic ruler,
Styrofoam cups, string, etc.—
and each is very clearly
described. Intended for science
teachers, from middle school
to college level, this is also a
great book for students who
want to experiment (and learn)
on their own.
Paper: $14.95 ISBN 0-691-02395-6
Shipping: $2.75 for 1st book;
50 cents each additional book.

VISA, Mastercard, and American
Express accepted by mail or phone.
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equation!

Have you written an article that you
think belongs in Quantum? Do you
have an unusual topic that students
would find fun and challenging? Do
you know of anyone who would make
a great Quantum author? Write to us
and we’ll send you the editorial guide-
lines for prospective Quantum con-
tributors. Scientists and teachers in
any country are invited to submit ma-
terial, but it must be written in collo-
quial English and at a level appropri-
ate for Quantum’s predominantly high
school readership.

Send your inquiries to:

Managing Editor
Quantum
1742 Connecticut Avenue NW
Washington, DC 20009-1171

A NATIONAL COMPETITION FOR HIGH SCHOOL
STUDENTS AND TEACHERS

SUDETQUEST

SuperQuest challenges students at any high school in
the country to design an original science project for in-
vestigation on some of the fastest computers available.
There is virtually no limitto the range thiese projects can
take, from the design of traffic light cycles to the
clocking of a black hole in space. SuperQuest is hosted
by the Cornell Theory Center in Ithaca, New York.

‘Entering teams consist of one teacher-coach and three
to four students from grades 7-12. You must register

your intentto apply no later than March 1, 1991; full ap-
plications with project descriptions are due April 12,
1991. Winning teams come to Cornell (expenses paid)
in July 1991 for the SuperQuest Summer Institute for
three weeks of training on the IBM ES/3090 600J
supercomputers. Stipends for winners are $3,000 for
teachers and $1,000 for students. In the fall, each
winning team will receive IBM workstation configura-
tions and continued access to the supercomputers.

The potential of supercomputing is as great as your
imagination and curiosity. If you can think of a compu-
tational problem that needs to be solved, the IBM ES/
3090 600J supercomputers can help you solve it!

FOR AN APPLICATION BOOKLET AND
MORE INFORMATION ON SUPERQUEST CALL

1-607-255-4859
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Enter the Ninth Annual
Duracell/NSTA Scholarship Competition

TO ENTER: e Obtain official entry form and rules by writing to the address below.
® Design and build a battery-powered device.
® Submit an essay, wiring diagram, photos of the project and a completed entry
form by January 25, 1991.

Atlanta.

o 1990 second-place winner Albert Huntington at the Duracell booth in

® Your student in grades 9-12 could win ¢ All entrants receive a Duracell Designer
- a $10,000 College Scholarship! Athletic Bag.
¢ Over $30,000 in prizes are awarded @ Teachers win too!
each year to 41 winners: —First Place: One Personal Computer
—First Place: One $10,000 Award —Second Place: Five Laptop Computers
—Second Place: Five $3,000 Awards —Third Place: Ten $50 Gift Certificates for NSTA
—Third Place: Ten $500 Awards Publications
—Fourth Place: 25 $100 Cash Awards ® For more information and entry kits
® The top six winners, their parents and write to:
teachers will be flown to Houston for an Duracell/NSTA Scholarship Competition
Awards Ceremony at the NSTA National 1742 Connecticut Ave., NW
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EATING HUMBLE PI

Delusion or fraud?

Jossing a needle and counting crossings to
calculate m—and the suspicious results of a

certain Lazzarini

by A.N. Zaydel

S THERE AN EXPERIMENTAL
way to determine the value of n? Of
course there is: take a thread, measure
the circumference of a circle with a
lnown diameter, and divide that amount

8 SEPTEMBER/OCTOBER

by the diameter. There is also, how-
ever, a completely different way. We
can get an approximate value of t by
using a needle . . . and a touch of
probability theory. This approach was

1880

invented by the French naturalist G.L.L.
Buffon (1707-1788). Later Buffon'’s
original experiment was repeated time
and again to confirm or refute some
conclusions of probability theory (or,
to be more precise, their applicability).
This resulted in an amusing incident,
which I'm about to relate. But first I'll
describe the experiment.

Butfon's experiment

To do Buffon’s experiment you need
a needle and a horizontal surface ruled
by a grid of parallel equidistant lines.
The distance h between the lines and
thelength Jof theneedle (fig. 1) must
satisfy the relation I < h. Toss the
needle above the surface, each time
giving it a little flip so that it falls
freely from a height of about 50-60 cm
and lands at random angles relative to
the lines. After each toss write down
whether the needle does or does not
intersect one of the parallel lines (fig.
la and fig. 1b, respectively) and calcu-

Art by Leonid Tishkov



late the frequency of such “crossings”—
that is, the ratio of the number of
throws m resulting in intersection to
the total number of throws n. You’ll
soon see that as the number of tosses
in our experiment increases, the fre-
quency scarcely changes. Not only
that, if we perform many trials con-
sisting of many tosses, the frequency
of crossings is approximately the same
for every trial.

This property of frequency “stabili-
zation” (along with the unpredictabil-
ity of the result of each individual
throw) is a characteristic feature of all
experiments in probability theory. A
certain number p (0 < p < 1) is assigned
to each outcome of such an experi-
ment and is called its probability. This
number simply expresses the likeli-
hood of this outcome in the experi-
ment. The probability is the value
around which the frequency of the
outcome oscillates in an experiment
of sufficiently long duration. So the
approximate value of a probability can
be obtained empirically by calculat-
ing the corresponding frequency. (The
precise mathematical formulation of
how the experimental frequency tends
to a certain limiting value, or proba-
bility, is given by the law of large num-
bers, proved in its simplest form by
Jacob Bernoulli 300 years ago.) On the
other hand, probability theory makes
it possible in most cases to calculate a
probability theoretically by examin-
ing experimental conditions.

Later we'll show how Buffon’s prob-
lem—that is, how to find the probability
p that the needle will intersect a line—
is solved. The result is really quite
amazing: p = (2/n)(I/h)! Since the

frequency of intersections m/n is ap-

‘Figurei’

proximately equal to this probability,
we can approximate n by using the
equation

o (1)

If 1= h, we can simply say that 1t is
approximately equal to twice the total
number of tosses divided by the num-
ber of crossings.

What the experiments showed

The accuracy of the approximation
in equation (1) depends on the number
of tosses n. At first glance it seems
that by increasing the number of tosses
we can obtain the value of n to any
desired precision. Try to carry out
such an experiment and you'll see that
it’s quite easy to obtain the value 3.1
for . But the next decimal, 4, is much
harder to get. In the 19th century,
when probability theory was often
regarded as a semiempirical science,
such experiments were of great value
and were scrupulously

equation (1), we must be able to pre-
cisely measure h and I (or rather, their
ratio). This can be done only by actu-
ally measuring both values. Errors in
measurement will surely affect the
accuracy of m. Let’s estimate the
magnitude of the error. Suppose the
needle is 50 mm long, which we’ll
take to be equal to the distance be-
tween the lines. Using ordinary meas-
uring devices—for instance, a slide
gage or vernier calipers—we can meas-
ure both lengths to an accuracy of 0.1
mm (0.2 %).!

Making use of more sophisticated
instrumentation, we can measure all
the lengths to an accuracy of 0.01
mm. At that point we’ve pretty much
reached the practical limit—it’s nearly
impossible to reduce the error to
0.001 mm because a variation in the
needle’s or the surface’s temperature
of only 1 or 2 degrees results in a
variation of about 0.001 mm in the
measured distances. Deformation of
the needle caused by its collision with

staged by many scien- Number  Experimental
tists. A table from Name Year  oftosses value of p
B.V. Gnedenko’s text-

book on probability

(which is well known Wolf 1850 5000 3.1596
and widely used in the Smith 1855 3204 3.1553
Soviet Union) is given Fox 1894 1120 3.1419
here by way of illus- Lazzarini 1901 3408 3.1415929
tration. (The names

of the scientists in- True value of

volved in the needle to the seventh decimal place: 3.1415927
throwing are listed in

the first column.)

Compare the experimental results
with the true value of n. The values in
the first two lines differ from & by
0.01-0.02. The value obtained by Fox
is greater than « by only 0.0003.
This is an amazing result. But
the value obtained by Lazzarini
is only 0.0000002 over the true
value. This is a miracle! (Or so it
seems.)

The inevitabity of error

What astonishes us and, to be
frank, makes us skeptical of the
result of the last experiment?
Several things. First, the accu-
racy of the measurements. To
obtain the precise value of & from

the surface, wear at its tips, deforma-
tion of the surface itself—all these
factors make it quite unreasonable to
try to achieve a level of experimental
error of 0.001 mm. Even without a
more detailed evaluation, we can still
say with assurance that the experi-
ment can’t determine the value of &t to
an accuracy better than 0.2-0.02%.

'For a small number of tosses
(approximately 0.1-0.2% of the total
number of tosses) the distance from the
needle’s tip to the line will be less than
0.1 mm. Inthis case thenakedeyecan’t
discern whether there is an intersection.
This may also contribute to the resulting
error, although this contribution is
smaller than that caused by other
sources of experimental error.

QUANTUM/FEATURE 1



This means that with conventional
measuring devices the best we can
expect to obtain is 7t = 3.141 + 0.006. If
the experiment is conducted with the
utmost rigor, we might hope to get n=
3.1416 + 0.0006. Wanting to derive
the value of & in this experiment to
eight decimal places is like trying to
weigh amatch on arailroad scale. In
both cases, the instruments are too
crude.

In any measurement we should
evaluate the accuracy first and then
reduce the result of the calculation to
the corresponding number of decimal
places. If in measuring a value A we
get A =2.474329, and the accuracy of
the measuring device is 1%, we should
write A = 2.47, dropping all the subse-
quent digits, which merely reflect the
accuracy of our computing device.
(Even ordinary calculators now dis-
play 6 to 8 decimal places.) By writing
all the decimal places obtained, we
overrate the accuracy of the experi-
ment and thereby report a misleading
result.

There is, however, no use in trying
to increase the accuracy of our mea-
surements. It's quite sufficient to
measure the needle’s length to 0.1
mm. That’s because the accuracy of
determining nis already limited by a
completely different, “probabilistic”
circumstance—the impossibility of
performing enough tosses to ensure
that the approximating equation (1)
holds with a relative error of less than
0.01! There’s a way of estimating the
rate at which the difference Im/n—-pl
decreases as the number of tosses in-
creases. It turns out that to increase
the accuracy of the approximate equal-
ity m/n = p by a factor of N, we have to
increase the number of tosses by a
factor of N 2. In other words, the error
is inversely proportional to the square
root of the number of tosses. A de-
tailed examination of Buffon’s experi-
ment shows that for h = ], the accuracy
o that can reliably be expected for ©
after n tosses is given by the formula

NV

If we demand that o be less than
0.02, we should be prepared, accord-
ingtoequation (2), to toss the needle

8 SEPTEMBER/OCTOBER

nearly 12,000 times. The experiments
listed in the table (except for Fox's)
involve only 3,000 to 5,000 throws.
According to equation (2), the result-
ing o is somewhat higher then—about
0.025-0.030, which is in good agree-
ment with the results of Wolf and
Smith. Aboutthesamelevel of error
occurs when the needle’s length is
measured to an accuracy of 0.1 mm.
So there’s no need to strive for greater
accuracy in these measurements: it’s
useless to measure the length of the
needle to an accuracy of 0.001% if the
limitation imposed by the number of
tosses results in an overall error of
0.2-0.3%.

Choosing a number of tosses be-
tween 3,000 and 5,000 makes good
sense. One toss might take about 5
seconds (try to toss a needle faster]. An
experiment consisting of 10,000 tosses
would take approximately 14 hours—
two full working days. If we want to
obtain results 10 times as precise, it'll
take 100 times as long—200 days
(according to the “1/n'? law”), which
is too long for such an experiment. In
order to obtain the Lazzarini result,
whose accuracy was 0.0000002, we
would have to throw the needle for
about 4 million years! (And this result
could have been obtained only if the
length measurements were made to
an absolutely unreal level of accu-
racy.) So, starting his experiment in
1901 and throwing the needle until
now, Lazzarini would have been as far
from his published result as he was on
the first day.

There’s one more source of experi-
mental error in Buffon’s experiment.
For the probability of intersections to
equal the theoretical value of p = 21/
nth, we must ensure that all the needle’s
positions with respect to the lines
upon the surface are absolutely equiva-
lent—that is, that none of them has an
intrinsic tendency to occur more of-
ten than the others. (A more precise
formulation of this condition is given
below.) Inareal experimentit’s very
unlikely that this could be achieved.

So there are ample grounds for
concluding that the number of deci-
mal places given in the table is too
high. To be credible, the first two
entries in the last column should read

1890

3.16, and the third should read 3.14.

And so—efusion or fraud?

But how can we explain the result
obtained by Lazzarini? We can hardly
suspect him of deliberate fraud. When
Lazzarini was throwing his needle,
the law of large numbers was already
well known—our calculation could
have been done by any mathemati-
cian of the time. Most probably the
scientific community never took his
result seriously, despite the fact that it
has been republished a number of times.
Before he began his experiment, Laz-
zarini should have known what he
could expect from it. And even after
obtaining anumberasaresultof cer-
tain arithmetic exercises, he should
have refrained from publishing such a
fantastic result until he was able to
reproduce it in an independent series
of tests. Personally, I would guess that
he was too eager to outdo all his prede-
cessors. Overweening ambition some-
times deludes researchers, leading them
to find what they want to find.

Another possible explanation is that
while throwing the needle Lazzarini
calculated 7 after each throw and ended
the experiment after 3,408 throws,
having obtained the value given above
by pure chance. Of course, even after
10,000 throws it’s practically impos-
sible to obtain a given value to an
accuracy of 2 - 107 even once—the
probability is about 10°—but it could
happen. If that was indeed the case,
Lazzarini deceived himself rather than
others. Unfortunately, this happens
in science from time to time.

Although the result of Lazzarini’s
experiment didn’t confirm the con-
clusions of probability theory (taken
seriously, it would have contradicted
them), it did serve to generate this
cautionary tale. Once again we are
reminded to be cautious with experi-
mental results and the statistical analy-
sis of these results.

Solving Butfon’s problem

It remains for us to explain how the
probability that the needle will inter-
sect a line in Buffon’s experiment is
calculated. We'll denote the distance
from the needle’s center to the nearest



line by a (0 < a < h/2) and the angle In particular, the area of the curvi- f N

between the needle and the line by (0 linear trapezoid formed by the sinu-

<@ <m/2). ‘Then, as figpre '1a shows, soidal curve is equal to Bﬂﬂk ISSIIBS m
the needle intersects a line if and only
if I
, Al
as 3 sind . e
- :é[(—cosg)—(—cos‘m}
Each ppssible outcome in our experi- . You may order copies of
ment is descnbed by a point in Fhe _L the January (premier) and May
= plane having coordinates (4,¢) and lying 2 issues of Quantum

inside the rectangle bounded by the ‘
coordinate axes and the straight lines Since the area S of the rectangle . )
a = h/2 and 9= /2 (fig. 2). The points  equals th/4, we get the probability Single LapIEs. $5
of the rectangle lying below the curve S 2-19 copics: $4/ea
a = (1/2)sin@ represent the intersec- p=—t= 2L 2049 copies:  $3/ea
tions, while the points above the curve S mh 50 or more: $2/ea
correspond to the outcomes when the —just as we predicted a few pages
needle doesn't cross a line. back! @ Send your order to:

The problem can now be reformu-
lated in the following way: A point is
chosen at random within the rec- Quantum

tangle {0< o <7/2;0<a<h/2}. What
1s the probability that it lies below the
sinusoidal curve a = (1/2)sin@?

The term “at random” here replaces
the requirement that all the positions
of the fallen needle be equivalent.
There are several ways of precisely
defining this term. The simplest is to

1742 Connecticut Ave. NW
Washington, DC 20009
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require that the probability that a point

will fall into a square {¢, <9< ¢, a, < a AFS

<a}(@,-¢ =a,-a, =d)withagiven

side doesn’t depend on the position of INTERNATIONAL/INTERCULTURAL PROGRAMS

the square inside the rectangle (al-
though it obviously depends on the
length d of its side). For instance, the
probabilities of finding the point in-
side the squares K and K, (fig. 2) are
equal. From this we can easily deduce
that the probability of landingin any
figure inside our rectangle is propor-
tional to its area and consequently
equals the ratio of this area to the area
of the entire rectangle.

IN 70 COUNTRIES AROUND THE WORLD

High School student exchanges ® Teachers programs
Hosting opportunites for families

Call Us!

FOR AN EDUCATIONAL ADVENTURE THAT WILL LAST A LIFETIME
1-800-AFS-INFO.

m International Intercultural Programs
313 East 43rd Street New York NY 10017
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AT THE BLACKBOARD
Taking 2 “Vll]!] leap

Applying Hooke's law on a South Seas isle

ATIVES ON ONE OF THE IS-

lands of Vanuatu (formerly the

New Hebrides) celebrate their

festivals in a rather bizarre way.
A young man mounts a special tower,
attaches vines to his ankles, and then,
accompanied by the music of a ritual
dance, throws himself off. The vines,
tied at the other end to the top of the
tower, break his fall in such a way as to
dampen the shock, and the young
man lands safely.

The height of the towers used on
the island varies from 15 to 30 meters.
You’d think the load on the jumper’s
legs would increase as the tower grows
taller and the vines grow longer. Asa
result, there should be a maximum
altitude for safe jumping. This straight-
forward and obvious conclusion,
however, is absolutely wrong. The
right answer is provided by Hooke’s
law.

Let the length of a freely suspended
string be equal to I. When a force is
applied to the string, it stretches to the
length I+ x. The value xis called the
absolute deformation of the string,
and the value x/I = ¢ is called the
relative deformation. This deforma-
tion is said to be “elastic” if, after the
force is removed, the string returns to
its original length. Generally, for small
elastic deformations (x << ) the value
of the absolute deformation is propor-
tional to the force applied. The direc-
tion of the elastic force tending to
return the string to its initial state and
the direction of deformation are oppo-
site. This situation is described by
Hooke’s law:

10 SEPTEMBER/OCTOBER

by A.A. Dozorov

F=-kx. (1)

The factor k is the rigidity coefficient
of the stretched body (for example, a
string or spring).

The greater the cross section of the
string, the greater the force that must
be applied to achieve the same stretch-
ing of the string. In other words, the
rigidity coefficient is a function of the
string’s cross section. In such a situ-

1980

ation the term stress, 6= F/S, is often
used. (If a rod of cross section S is
compressed by aforce F, thenoisthe
average pressure on its end.)

The absolute value of the relative
stretching e for small deformations of
elastic bodies is proportional to the
absolute value of the stress c:

e:éc. (2)

This relationship reflects another for-
mulation of Hooke’s law. The coeffi-
cient E is called Young’s modulus.
Usingequation (2)and recalling that
e = x/I, we can write the expression for
the force in another way:

_SE

F X
[

(3)

Comparing equations (1) and (3),
we get the following relationship be-
tween Young’s modulus and the rigid-
ity coefficient: k = SE/I. Young's
modulus is dependent only on the
material from which the string is made,
while the coefficient k depends also
on the shape of the stretched sample.

According to the definition, Young's
modulus is numerically equal to the
force stretching a string with a unit
cross section to double its length (the
dimensionality of Young’s modulus
in ST units is N/m?).

Let’s return to Vanuatu now and
try to estimate the maximum stretch-
ing of the vines. This amounts to
solving the following problem.

Amassm-=72kgis suspended on
an elastic weightless string and dropped
from the point where the other end is

-



attached. Find the maximum force
stretching the string and the maxi-
mum acceleration of the mass while
its fall is being broken. Young's modulus
for the stringis E= 10" N/m?2, and its
cross section S=9 cm?.

The work expended in stretching
the string by an amount Ax is equal to

AA=F. Ax.

The force F is proportional to x (fig. 1).
The work expended over the interval
Ax is numerically equal to the area of
the trapezoid ABCD.

If the string stretches from length I
to length I + x, the work expended (and
consequently the potential energy
acquired by the string) is determined
by adding up all the components of the
work. That is, the string’s potential
energy Wis defined by the area of the
triangle OCD:

1

W= EFX = %kx2 . (4)

The potential energy of the mass is
transformed into the kinetic energy of
its motion and then into the energy of
the string’s deformation. Since the
total height from which the mass falls
isequaltol+x, then

mg(l+x) = l/oc2 .
2
So the stretching of the string is equal

to
_mg+\/ m?g>+2kmgl

= > ,

and the maximum stretching force
(since k = SE/I)is given by

F=mg+\/ (mg)z—i-ngES.

=y

0 Ax

Figure 1

The overload is the difference between
this force and the force of gravity mg.
Therefore, the maximum overload
acceleration is

_ |, 2ES
a=g 1+W.

(This obviously occurs at the lowest
point.)

Soneither the maximum stretch-
ing force nor the maximum overload
acceleration depends on the string’s
length.

As for jumping from a tower, we
can now conclude that there is no

critical height beyond which the human
body could not withstand the over-
load (that is, the additional g-forces). If
the elastic properties of the vine are
close to those of rubber (that is, E = 107
N/m?), the vine’s cross section S =
9 cm? and the jumper’s mass is 72 kg,
we get a = 5g. The human body can
withstand such overloads.! Q

'Here’s something else to think
about: is the overload more or less if we
take the vine’s weight into account?
And on the same tack, who will
experience more g’s, a little person or a
big person?—Ed.

Could Isaac Newton really believe

This manual is designed to help
teachers introduce the sometimes
daunting subject of Newtonian
mechanics to students in the middle
grades. The 27 teacher-created
activities—including marble races, a
tractor-pull using toy cars, fettucini
carpentry, film container cannons,
and others—wiill make teachers and
students look forward to class. All
the actiivites use readily available

NSTA and Isaac Newton Join Forces:

that a thrown object would continue
at a constant velocity in a straight line?

materials to give students visual, aural,
and tactile evidence to combat their misconceptions. Background for

teachers and a master materials list follow the activities and make this manual
useful for inservice workshops. (grades 6-10) #PB-39, 1989, 192 pp. $16.50

5800. Quantity discounts are available.

fun—for teachers and students. Show your students the Evidence of Energy
that is all around them and they will see just how exciting learning can be.
(grades 6-10) #PB-80, 1990, 200 pp. $16.50

All orders of $25 or less must be prepaid. Orders over $25 must include a postage
and handling fee of $2. No credits or refunds for returns. Send order to: Publication
Sales, NSTA, 1742 Connecticut Ave. NW, Washington, DC 20009-1171, (202) 328-

We live in a universe that is
constantly in motion. Do your
students understand why objects
move and how? Topics such as
projectile motion, work, energy,
machines, torgue, and center of
gravity are introduced with the first-
time student of mechanics in mind.
The informal, hands-on activities
use readily-available materials and a
variety of instructional techniques
to combat common misconcep-
tions and make the sometimes-
intimidating subject of mechanics
immediately accessible—and
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A MATHEMATICAL TAXONOMY

- Flexible in the face of adversity

=

Aouen| AebBieg AQ Ly

Identifying and classifying a certain breed of fanciful “creature”

by A.P. Vesyolov

HE HERO OF OUR STORY IS
the “flexie”—an imaginary flex-
ible organism living in our three-
dimensional world and capable
of marvelous transformations. You
can think of a flexie as a flat amoebalike
creature of finite size and zero thick-
ness having a single mobile closed line
as its boundary. In the vicinity of each
inner (that is, nonboundary) point a
flexie resembles a tiny piece of plane,
possibly a bent one. Its life consists
not only of continuous deformations
(that is, bending, stretching, and shrink-
ing without tearing and gluing) but
sometimes of more dramatic transfor-
mations of the “cut-and-heal” type.
Here’s how that happens. First, a
self-inflicted wound appears on the
flexie’s surface—a cut that goes along
an arc that starts and ends on the
boundary. Then the flexie experi-
ences convulsions—stretching, shrink-
ing, or twisting in any possible way—
until, finally, the torn edges rejoin
(each point joining precisely the point
from which it had been torn away),
and the wound heals again. This cut-
and-heal act doesn’t alter the inner
structure of the flexie, but it may
thoroughly change its position in space
(resulting in entanglement or disen-
tanglement of the flexie). If you've
ever tried to untangle a fishing line
you'll certainly appreciate the extent
to which your task would be simpli-
fied if the fishing line had the same
properties. We’ll come back to the
transformations of flexies a little later,
but first let’s get to know some of the

Figure 1

members of the flexie family.

The simplest flexie (fig. 1) looks
like a genuine amoeba, although it
can take the form of a triangle, a square,
or even a star. A special term, “disk,”
has been coined to designate such
objects.

The flexie shown in figure 2 is
called (more or less understandably) a
“handle,” although it resembles a
punctured inner tube more than the
broken handle of a cup. Its shape,
however, can change beyond recogni-
tion (fig. 3).

The next flexie (fig. 4) merits a bit
more discussion. We'll call it
“amoebius” afterits discoverer, A.F.
Moebius (though it’s usually known
as a “Moebius strip”).

Figure 3

Figure 2

August Ferdinand Moebius (1790-1868),
a leading geometer of his time, was the
director of a German observatory and de-
voted much of his time to astronomy. But
for many years he also contemplated the
properties of objects similar to our flexies, in
particular those of the Moebius strip shown
in figure 4. Only after many years did Moebius
venture to submit the results of his work to
the French Academy in Paris, but the subject
of his “Memorandum on Single-sided Sur-
faces” was so unusual his manuscript gath-
ered dust on the Academy’s shelves until the
author finally decided to publish it as a sepa-
rate book at his own expense. Around the
same time the German astronomer I.B. List-
ing (1808-1882) independently obtained and
published results similar to those of Moebius.

It's easy to construct a model of the
amoebius—in fact, you should do that
before we go any further. ‘Take a strip

e e
el

QUANTUM/FEARTURE 13



Figure 4

of paper (approximately 20 cm by 4
cm), draw a blue line down the middle
along its entire length on one side and
ared line on the other, and then glue
the ends of the strip together after
giving one of them a twist of 180° (fig.
5). Where the ends meet, the blue line
runs into the red one, so that now both
lines turn out to be on one and the
sameside of the surface. Thismeans
the amoebius has only one side! You
can now run your finger along the
entire surface of the amoebius with-
out going over the edge, which you
couldn’t have done with the original
strip of paper that had two sides (with
blue and red lines).

Let’s perform an act of pure barba-
rism: take a pair of scissors and cut the
amoebius along the red-blue line. How
do you like the result? Be honest—did

Figure 5

you expect such an outcome (unless
you had already heard about it)? Al-
though the amoebius didn’t split into
two pieces, the cut still had a disas-
trous effect: the boundary of the new
surface consists of two closed curves.
(Check tomake sure.) So, according
to our definition, it’s no longer a flexie!
Not only that, it has acquired a second
side! The next cut won'’t produce
such a striking result, although I doubt
you'll be able to predict what will
happen.

Let’s quit our brutal behavior and

amoebius under natural conditions.
First of all, owing to its cut-and-heal
ability it can acquire the shape of a
strip twisted by any odd number of
half turns (fig. 6). (Notice that a strip
twisted by a whole number of turns
isn’t a flexie at all since it has two
closed curves for its boundaries.) In

- fact, after cutting itself apart the amoebius

can untwist itself by any whole num-
ber of turns and then heal itself along
the same edge again. (Check this with
a strip of paper.) Similarly, the amoebius
can tie itself into any knot and disen-
tangle itself again (fig. 6).

Figure 6

No temporary self-inflicted wounds like
these would have been necessary if the amoebius
lived in four-dimensional space. In addition
to providing a convenient escape from a
completely sealed room (an achievement
well known and widely exploited in science
fiction), the fourth dimension enables one to
freely undo knots and disentangle flexies. In
the course of evolution the cut-and-heal
ability of our flexies arose precisely because
of the “limited dimensionality” of our space.

We can identify an entire (infinite)
family of flexies, which we’ll call the
“amoebius family.” After the amoebius
itself, the next representative of this
family is obtained by “fusing” two
amoebii together along a section of
their boundaries (fig. 7). The third
representative is obtained by fusing
three amoebii, and so on. The shapes
of these flexies can be quite diverse, so
they’re not easy to recognize. Figure 8
shows the entire family in one of its

Figure 8

Figure 7

most symmetric states.

In exactly the same way the handle
generates a family of two-sided flexies
obtained by sequentially fusing a number
of handles to one another (fig. 9). For
lack of a better name, we’ll call this
the “bilateral family.” The bilateral
family likewise consists of an infinite
number of species described by the
number of handles making up a par-
ticular flexie. Since they are two-
sided, disks naturally belong to this
family as well. (In this case the num-
berof handles N=0.)

Ijust can’t decide which of these
many shapes is the most beautiful, so
the bilateral family is represented twice,
in figures 10a and 10b. Take the
double handle (N = 2), for example,
and try to see for yourself that you
actually have two different forms of
the same flexie. It’s quite a challenge,
but it will bring true pleasure to a
genuine geometrician. Maybe you’ll
discover even more elegant forms of
these same flexies.

By now you're probably thinking
that, various and rich as the class of
our flexies is, their external appear-
ance is just as complex. So the follow-
ing result, which is the cornerstone of
“flexiology,” may catch you by sur-
prise:

| The class of all flexies consists of two
infinite families—the amoebius family
(fig. 8) and the bilateral family (fig. 10).

k twists

take a look at what goes on with an

14 SEPTEMBER/DCTOBER
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Figure 9

This is a typical classification theo-
rem. It states that any representative
of a certain class (in our case, any
flexie) can be classified as belonging to
one species in a certain list (in our
case, the amoebius and bilateral spe-
cies).

“Noway!” youmay exclaim after
thinking about it for a while. “To
begin with, you forgot about the flexie
we get by fusing an amoebius with a
handle” (fig. 11). But have I really
overlooked it? Let’s analyze the situ-
ation more closely by taking, for the
sake of convenience, the handle in the

Figure 11

form presented at the extreme right in
figure 3 (transferred now into figure
12). The amoebius “turns the handle
inside out,” transformingit into two
amoebii so that our flexie becomes
nothing other than a triple amoebius,
shown in figure 8 (marked “N = 3").
This is really an amazing result, since
we could have achieved it by replacing
the handle with a double amoebius—
an absolutely different flexie! Now
it’s easy to understand that the fusion
of k amoebii (k > 0) and / handles (1> 0)
yields a (k + 21)-fold amoebius. So
combining handles with amoebii gets
us nothing new. (Notice that from a
biologist’s point of view two-sided-
ness is a recessive trait and amoebius-
ness is dominant. See, for example,

k holes

2k twists

Figure 10

Figure 12

The amazing transformation of a
handle fused with an amoebius into
a triple amoebius. First, one of the
bases of the amoebius is dragged
along the edge of the handle (a) until
it takes a position between the two
neighboring bases of the handle (b).
Then the two right bases of the
handle are dragged one after the
other along the edge of the twisted
amoebius strip (see figure b).
Moving along the edge of the
amoebius, the two strips of the
handle are twisted, which results in
two new twisted strips, one of them
embracing the other. The strip that
is embraced can be released by
dragging both its bases along the
edge of the embracing strip. This
results in a triple amoebius!

(Here we have dragged the end of
a strip along the flexie’s edge. Any
flexie can be subjected to such an
operation: the section along the
flexie’s boundary is exceptionally
elastic, whereas the base of the strip
becomes rigid; the strip moving
along its edge stretches the flexie’s
elastic edge behind it and
compresses it in front. To an outside
observer it looks as if the base of the
strip simply slides along the flexie’s
edge.)

Quantum, May 1990, “The Geome-
try of Population Genetics” by .M.
Yaglom.)

The time has come, however, to
prove our main result. We'll make use
of the intuitively obvious fact that an
appropriate number of cuts can trans-
form any flexie into a disk. Two cuts
are necessary for a handle, whereas
one cut is sufficient for an amoebius.
The boundary of the disk obviously
includes the traces of the cuts (fig. 13).
To restore the flexie we should per-
form the inverse operation and “heal”
them. Here’s how to doit. For each of
the cuts, take a strip of paper and glue
one end to one edge of the cut. Then
stretch the strip over the disk in an arc
and glue the other end to the other
edge. Notice that the strip obtained in
this way can be one of two types. We'll
call them type 1 (fig. 14a) or type 2 (fig.
14b), depending on the relative orien-
tation of the cut’s edges on the bound-
ary of the disk.

Theresulting flexie looks like the
one in figure 15.

Any flexie can be deformed into
such a shape in two stages. Stage 1 is
shown in figure 16. You take a type 1
strip and drag the ends of all other
strips from under the first one, sepa-
rating it from the rest. For type 2 strips
the situation is different. We can’t

Figure 1
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Figure 14

remove all the other ends from under
a type 2 strip (otherwise the boundary
of the whole flexie would consist of at
least two curves). One end of a strip
must remain. The remaining strip is
necessarily also of type 2. It’slogical
to call this pair of strips a handle (recall
figure 3).

In stage 2 a similar operation moves
everything from under each handle
(fig. 17) and the flexie acquires the
shape of a disk with separate “pure”
handles and strips of type 1 or type 2
attached toit. {No doubt you recog-
nized the latter as amoebiuslike.) If
thereis at least one amoebius, it will
tumn all the handles into double amoebii
(seefigure 12), yielding a representa-
tive of the amoebius family (fig. 8).
Otherwise, the flexie consists only of
handles and is therefore bilateral, which
completes our proof.

But is this really the end of the
proof? We've established that any
flexie belongs to one of the species in
thelist. Canitbelongto several spe-
cies at once? In other words, can the
two species actually be the same (that

16 SEPTEMBER/OCTOBER

is, be transformed
into one another
according to the
natural laws gov-
erning the behav-
ior of flexies)? The
answer isno, butI
won't give you the
proofhere. Check
the books men-
tioned at the end of
the article if you're
curious.

Notice that our
proof provides an
effective method of determining to
which of the species a given flexie be-
longs. In particular, it makes it pos-
sible to judge when two given shapes
are actually different forms of one and
the same flexie.

Problem. Determine the species of flexie
depicted in figure 18. Also, show that the
shapes given in figure 10 are in fact different
forms of the same bilateral flexie.

To avoid any possible misunder-
standing, before I finish I'd like to
emphasize that the subject here has
not really been biology but rather to-
pology—an area of mathematics deal-
ing with the properties of bodies that
retain their shape after being arbitrar-
ily shrunk and stretched. SoI'll give
you a short dictionary for translating
our main ideas from the language of
biology used here into the language of
mathematics used elsewhere. “Flex-
ies” are compact connected two-di-
mensional manifolds with a connected
boundary. “Bilateral” and “amoebi-
uslike” flexies correspond to oriented
and nonoriented two-dimensional
manifolds with a connected bound-
ary, respectively. “Amoebius,” as I
mentioned earlier, is the Moebius strip.
The terms “disk” and “handle” are
borrowed from topology and need no
translation. So what we have is actu-

Figure 18

1980

I

Figure 15

Figure 16

ally a topological classification of two-
dimensional manifolds with a con-
nected boundary. Ityields, in turn, a
topological classification of such con-
nected manifolds as the sphere or torus
(the surface of a doughnut), since cut-
ting a small hole in such a manifold
turns it into a flexie.

A more detailed treatment of these
problems can be found in an excep-
tionally interesting book by V.G.
Boltyansky and V.A. Efremovich,
Topology in Pictures (Moscow, Nauka
Publishers, 1980, in Russian). Ialso
recommend you take a look at Experi-
ments in Topology by Stephen Barr
(New York, Thomas Y. Crowell
Company, 1964). O]
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The Sky’s Not the Limit!

The year 1992 has been declared the International Space Year (ISY) by the United Nations. Scientists from many countries
will meet at various conferences, seminars, and symposiums to discuss the future of international cooperation in space. We
hope there will be many new agreements on joint projects, including perhaps one about a joint Mars mission. All these projects
will need many new researchers. Many of them will be among those who are presently going to high school. For this reason
work with youth has been an important part of the ISY. One of the projects under development is the 1992 International Space

Olympiad in Washington, DC.

Summer study in the USSR and US

To prepare for this olympiad, several American and Soviet
organizations, including the magazines Kvant and Quantumn,
the US International Space Year Association, the Soviet
Aerospace Society “Union,” the National Science Teachers As-
sociation, and the International Educational Network, have
decided to organize an International Summer Institute in the
summer of 1991 in the United States and the Soviet Union.
The program will feature advanced classes in mathematics,
physics, biology, and other space-related subjects; lectures
by prominent scientists; trips to major scientific laboratories;
sports and recreation; and many cultural activities.

Nobel Laureate Sheldon Glashow of Harvard University instructs
participants in a previous International Educational Network

Three-stage competition

Sixty students from the US and 60 from the USSR will be
selected, and we expect that students from other countries
will also be interested in participating. The selection process
will be based on the results of a three-stage competition. The
questions for the first round are printed below. The second
round will also be by correspondence and will include two
math and two physics problems related to space. A total of
300 students will be invited to participate in the third round,
which will be given at local universities or schools in the
presence of the organizers’ representatives.

Three-week program

The winners will participate in either the American or the
Soviet part of the program, which will each last three weeks.
The American session will take place July 1-21, 1991, while
the Soviet session will take place August 1-21, 1991. Each
session will feature two weeks of study and one week of travel
in the host country. The winners of the competition, depend-
ing on their total score, will receive scholarship prizes and
awards that will cover all or part of the program costs.

To enter the competition, please fill out the form and mail
it, along with your answers to the questions printed below,
postmarked no later than December 31, 1990, to:

Dr. Edward Lozansky, President
International Educational Network
3001 Veazey Terrace, NW
Washington, DC 20008
(Telephone: 202 362-7855)

Yes, | am interested in the 1991 International Summer Institute!

Last name First name
Home address
City State Zip Birthdate Sex
Home phone ( ) Parent’s office phone ( )
School name
School address
Phone ( )

Name of math or science teacher who can recommend you

(print first and last name)

Please answer the following questions:

1. When was the first manned space ship launched! Who piloted this ship?

2. Who was the first man on the moon!

3. Name all American and Soviet women who have been in space.
4. Write a short essay explaining why you would like to participate in this program.
5. Could you write this essay with a ball point pen while orbiting the Earth! Explain.

Teachers are encouraged to copy this page and distribute it to potential participants.

18 SEPTEMBER/OCTOBER 1990
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BRAINTEASERS

Just for the fun of it

Prob/ems offered for your enjoyment
by A. Savin, G. Galperin, M. Lobak, Y. Kurlyandchik,
and S. Sefibekov

9

B11 Bi15

How can a polygonal Winnie-the-Pooh and Piglet went to visit

line BDEFG be each other. They started at the same time
drawn in a triangle and walked along the same road. But since
ABCsothatthefive Winnie-the-Pooh was absorbed in compos-

triangles obtained inganew “hum” and Piglet was trying to

have the same area?

The product of a billion natural numbers is
equal to a billion. What's the greatest value
the sum of these numbers can have?

A glassflask of an ir-
regular shape con-
tains a certain
amount of liquid. Is
it possible to tell
(without any meas-
uring devices or
other containers)
whether the flask is
more or less than

1 half full?

Art by Edward Nazarov

Is it possible to add
four digits to the
right of the number
9999 so that the
eight-digit number

count up all the birds overhead, they didn’t
notice one another when they met. A min-
ute after the meeting Winnie-the-Pooh was
at Piglet’s, and four minutes after the meet-
obtained becomes ing Piglet was at Winnie-the-Pooh’s. How
the square of an inte- : long had each of them walked?

ger? SOLUTIONS ON PAGE 61
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LIRS Z] V) N MY TRAVELS T SAW A
marvelous thing in the Slavic

lands,” wrote an eleventh-cen-
tury Russian chronicler. “I saw

B [ @
wooden bathhouses, and the people
heat them until they are red-hot, and
they undress, and they are naked, and

they pour kvass! over themselves, and =

they take green twigs, and they whip

~ themselves, and they beat themselves
until they arebarely alive when they =

leave the place, and they pour cold

water over themselves, and in this
way they come back to life.”

Imagine you're the proprietor of a Russian

bathhouse—how do you keep the air so You don't have to be a time-trav-
) eler, however, to see Russians enthu-
,D/ easant /y d I’y ! siastically “torture” themselves in the

bathhouses. Why do they do it? Well,
it’s thought that the body benefits
when the skin is exposed to high
temperatures (in this case, hot air) for
a short period of time. In humid air,
though, the high temperature can’t be
withstood even briefly. So good Rus-
sian bathhouses feature not only heat
butalsoadryatmosphere. It’snotan
easy thing to build a good banya, and
it’s not obvious how you are to “pre-
pare the steam” (or, to speak in more
scientific language, provide the opti-
mum microclimate). Our predeces-
sors were able to perform this task
back in the 11th century, but they
hardly would have been able to ex-
plain why things are done this way,
and not that way, in the banya.
Nowadays any teenager has enough
knowledge of physics to answer the
questions that arise in an ordinary
bathhouse. And thisis exactly what
I'm now inviting you to do. Let’s
analyze a session in the bathhouse
step by step, formulating relevant
physical problems and then trying to
answer them.

And so—to the banya! To orient

by I.I. Mazin

ourselves, let’s use the picture on the =
left.

We've entered the steam room of
the bathhouse. Wow, is it hot in here! <

Let’s stay down below where it’s a
little bit cooler, at least for the time

< being.
= ; Now that we’ve gotten used to the
5 L heat, we can go up on one of the tiered
= \
§ . B S 2 x\
z 1A slightly fermented drink made
= from bread and raisins.
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benches. Hot? No, it’s not so hot
today. Some days you can’t walk
barefoot on the wooden floor let alone
sit on the benches. But if the bench
hasironnails in it, you’ll do well to
steer clear of it even if it’s not too hot
in the steam room—the head of the
nail will still give your skin a nice
little burn.

Question 1. Why is it cooler down
below in the steam room than it is on
the tiered benches!?

Question 2. Why is it possible to
sit on heated wood but not on an iron
object at the same temperature?

Gradually we're getting used to the
steam room. The air doesn’t seem so
hot now. Still, we feel that it’s rather
humid—there are wet spots here and
there on the benches and on the floor.
We can fix that. Weneed to “add the
steam”—which is to say, we should
throw boiling water in small portions
onto the glowing stones in the stove.
Immediately a hot wave rushes up-
ward from the stove. It's getting hot-
ter up on the benches, and the heat
dries up the wet spots there and down
below.

Question 3. Why doesit get drier
when water is thrown on the hot
stones in the stove!

Question 4. Why must the water
be thrown in small portions! Why
can’t we just throw a whole tub of
water into the stove?

Question 5. Why must we use
boiling water?

... Over an hour has passed. Many
people have been to the steam room.
The air has lost its freshness. It’s too
humid. Leaves from the twigs are
scattered here and there. The time
has come to “clean” the steam room.
Here’s how it’s done. The room is
vacated for about 10 minutes. In that
time we have to sweep the floor, hose
it down, open the steam room door,
and throw several tubs of cold water
on the floor in front of the door. Then
we start “adding the steam.” The new
steam forces out the stale air. Now
everything is ready again, and visitors
can return and begin their enjoyment
anew.

Question 6. What'’s the purpose of
the puddle of cold water at the en-
trance to the steam room!

Question 7. Why is the stale air in
the steam room forced out by the
Steam!?

Now that you’ve mastered the rules
of the banya, let’s try to answer all the
questions.

The first question is so easy all of
you probably answered it right away.
So let’s skip to the second one.

What happens when you step or sit
onahotbench? Yourbody tempera-
ture doesn’t exceed 40°C whereas in a
good steam room the temperature of
the air, and consequently that of the
benches, varies from 80° to 120°C. A
process of heat transfer from the hot
body (the bench) to the cold one (you)
begins when such contact is made.
What's the rate of this process? It
depends on the thermal conductivity
of the hot body. The higher its ther-
mal conductivity, the faster heat is
transferred from its hotter areas to its
cooler areas. Along with other met-
als, iron’s thermal conductivity is sig-
nificantly higher than that of wood
(by a factor of approximately 300).
When you touch a hot wooden bench
you cool an area adjacent to the area of
contact, drawing heat from just a small
volume of the bench. The situation is
quite different if thereis anailin the
area of contact—the heat is pulled
from the whole length of the nail and
quickly gathers at the area of contact.
Also, iron’s specific thermal capacity
(that is, the thermal capacity calcu-
lated for a unit volume) is about 40
times that of wood; so under similar
cooling conditions, you get much more
heat from an iron object than from a
wooden one of the same volume.

Now I think you're capable of for-
mulating the answer to question 2.
(You'll notice I didn’t mention either
the thermal capacity or the thermal
conductivity of the human body. Try
to analyze the role of these parameters
in the process on your own.)

In order to answer the remaining
questions, let’s recall several concepts
of molecular physics, in particular
those related to water vapor.

As we all know, water exists in
three different states: solid (ice), lig-
uid (what we usually mean when we
say “water”), and gas (vapor or steam).
We'll leave ice out of our discussion,

since it’s not directly related to the
bathhouse, and concentrate on water
in its liquid and gaseous states.

The process by which a liquid changes
into a vapor is called evaporation;
conversely, the process by which a
liquid forms from its vapor is known
as condensation. During evaporation
heat is absorbed, while condensation
of the same mass of vapor releases the
same amount of heat. The atmos-
phere always contains a certain amount
of water vapor. For instance, in a
living room there is approximately
10 g of vapor per cubic meter. The
density of water vapor present in a
unit volume of air is called the abso-
lute humidity.

Let’s bring a saucer of water into
theroom. The water evaporates and
changes into vapor. This causes the
absolute humidity in the room to in-
crease, although not significantly—
the volume of the room usually amounts
to several dozen cubic meters. If the
saucer contains 10 g of water, the
humidity increases by no more than
1 g/m3. What happens if the same sau-
ceris placed in a sealed flask with a
volume of only 1 1 (10 m?)? The
amount of water in the saucer de-
creases until the vapor in the flask
becomes saturated. This happens when
the number of molecules leaving the
water per unit of time and the number
of molecules entering the water be-
come equal. From this time on, the
absolute humidity of the air in the
flask doesn’t change. (It’s assumed, of
course, that the temperature of the
flask is kept constant.)
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So for every constant temperature
there is a maximum absolute humid-
ity equal to the density of the satu-
rated water vapor at that temperature.
The higher the temperature, the greater
the density of saturated vapor.

Here’s another relationship that
comes into play in the bathhouse: the
lower the absolute humidity relative
to the maximum humidity attainable
at a given temperature, the more in-
tense the evaporation. The ratio of the
absolute humidity to the density of
the saturated vapor for a given tem-
perature is called the relative humid-
ity, expressed as a percentage. Since
the pressure exerted by the vapor is
proportional to its density, relative
humidity can be defined in another
way—namely, as the ratio (expressed
as a percentage) of the partial pressure
of the water vapor to the pressure of
the saturated vapor at a given tem-
perature.

Both the pressure and the density
of the saturated vapor increase as the
temperature increases. The graph in
figure 1 demonstrates this depend-
ence.

An increase in the absolute humid-
ity at a given air temperature causes
an increase in the relative humidity.
The same result can be achieved in
another way—Dby decreasing the air
temperature while keeping the abso-
lute humidity at a fixed level. The
relative humidity will again increase.
At a certain temperature it reaches
the 100% level—the vapor becomes
saturated, which results in condensa-
tion and the creation of fogand dew.
The temperature at which this hap-
pens is called the dew point.

But what happens if the absolute
humidity and the temperature in-
crease? In this case, the relative humidity
depends on whichever increases more
quickly: the density of the vapor in
the air or the pressure of the saturated
vapor.

Now we can get back to our ques-
tions.

We've made it clear that the evapo-
ration rate depends on the relative
(not absolute) humidity. If the steam
room gets drier after boiling water is
tossed in the stove, this means that
the relative humidity decreases (whereas
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the absolute humidity obviously in-
creases). Why does this happen? When
a small amount of water is thrown
vigorously into the stove, it turns into
tiny droplets. Landing on stones heated
to hundreds of degrees, the droplets
immediately evaporate, and the tem-
perature of the steam produced is close
to that of the stones. The steam bursts

“out of the stove, and the overall tem-

perature in the steam room increases.
The higher the temperature in the
room, the greater the density of satu-
rated vapor. So despite an increase in
the absolute humidity, the relative
humidity should decrease. And, in
fact, that’s what happens.

Now it’s easy understand why the
water should be thrown in small por-
tions. A large amount of water would
plop on the stones in the form of a
huge “drop.” Such a “drop” can’t
evaporate as quickly as a small one. It
starts to boil, which creates steam at a
temperature of 100°C or a bit higher.
This is just what we're trying to avoid!
The secret of the banya lies in the
rapidity of the process. For the same
reason we mustn’t use cold water.
After all, the stones have a rather low
thermal conductivity—even a small
droplet being heated to 100°C cools
the portion of the stone it lands on,
and this lowers the temperature of the
steam produced.

yo
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Now that we’ve answered ques-
tions 3, 4, and 5, question 6 can be
dealt with easily enough. Near the
puddle at the entrance, the tempera-
ture is below the dew point, so the
cooler “waste” vapor leaving the steam
room quickly condenses, or “precipi-
tates,” on the puddle. In well-de-
signed steam rooms the entrance and
the stove are located at opposite ends
so that the steam created in the stove
passes through the entire steam room,
cools along the way, and precipitates
at the exit.

Finally, the last question: why
does the fresh steam force the stale air
out of the steam room? When we
cleaned the steam room, we threw
boiling water (no less than 10 kilo-
grams)into the stove. The tempera-
ture of the steam created by this water
is about 300°C; at this temperature, 10
kilograms of steam occupy a volume
of about 25 m? at a pressure of 1 bar.
We can deduce that in a short period of
time we have generated enough steam
to fill about one third of the room. The
steam is hot, so it rises and forces the
stale air down and out the door.

Well, we're finished with the phys-
ics of that venerable Russian institu-
tion, the banya. With this introduc-
tion, I hope you’ll make a point of
visiting one of our bathhousesif you
ever get the chance! [@
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HOW DO YOU FIGURE?

Challenges in physics and math

Math
M11

Bisector estimated. The lengths of
two sides of a triangle are 10 and 15.
Prove that the bisector of the angle
between them is no greater than 12.
(N. Vasilyev)

M12

Counting pairs of integers. Prove that
any nonnegative integer n can be rep-
resented in the formn =[x+ yP + 3x +
yl/2 with nonnegative integers x and
y, and that such a representation is
unique.

B K

D

Figure 1
M13

A quadrangle in a parallelogram. A
quadrangle is inscribed in a parallelo-
gram whose area is twice that of the
quadrangle, as shown in figure 1. Prove
that at least one of the quadrangle’s
diagonals is parallel to one of the
parallelogram’s sides. (E. Sallinen)

Leapfrog. Three frogs are playing—
what else?—leapfrog. When frog A
jumps over frog B, it lands at the same
distance from B as it was before the
jump (and, naturally, on the same line
AB—see figure 2). Initially the frogs
are located at three vertices of a square.

%/ /’,—-T,_\\\\
Wil f“b N

A

Figure 2

Can any them get to the fourth vertex
after several jumps? (Y. Ionin)

M15

Counting the sides of a polyhedron’s
faces. Prove that any convex polyhe-
dron has two faces with the same
number of sides. (A. Gruntal)

Physics

Wheel balancing. Automobile wheels
have tobe accurately balanced in or-
der to position the wheel’s center of
mass exactly on the rotation axis.
What's the purpose of this operation?
(S. Semenchinsky)

P12

Breaking a string. A weight is sus-
pended from an elastic string. An
increasing force (whose initial value
iszero)is applied to the weight until
the string breaks under a force F,.
What's the minimum force that must
be applied to break the string if the
force could reach a constant value
instantaneously? (G. Baronov)

The bell. Water is poured through an
orifice into a hemispheric bell lying
onatable, tightly pressed against its
surface (fig. 3). When the water level
reaches the orifice the bell lifts up and
the water begins to flow from under-

Figure 3

neath. Find the bell’s mass if its radius
is R and the density of water s p.

Hot walls or cold walls? The tem-
perature of the walls of a vessel con-
taining a gas is 7. The temperature of
the gasis T). When is the gas pressure
on the walls greater—when the ves-
sel’s temperature is lower than that of
the gas (T < T)) or vice versa (T > T,)?
(V. Myakishev)

P15

Unknown resistances. Figure 4 shows
part of an electric circuit consisting of
unknown resistances. Is it possible to
find the value of one of the resistances
using an ammeter, voltmeter, battery,
and connecting wires without break-
ing any contact? (A. Zilberman) [g)

Figure 4

SOLUTIONS ON PAGE 58
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MATHEMATICAL SURPRISES

An old fact and Some new ones

Another excursion into the region of shape-numbers, number-
shapes—mysterious numbers that may put a spell on you!

by John Conway

DD UP THE FIRST 1 odd numbers, starting from 1.
What do you get?
1 = 1
1 +3 = 4
1 +3 +5 = 9
1 +3+5+7 = 16
1 +3+5+7+9 = 25.

Do you recognize these numbers? You probably do.
They’re the square numbers

1=1-1, 4=2.2,9=3.3,16=4.4,25=5.5, ...

This is our old fact. Can we explain it? Generalize it? Can
we get the cube numbers

1=1-1-1,8=2-2.2,27=3-3.3,64=4.4.4, ...

in a similar way?
Well, there are lots of ways to explain this fact, and they
lead to lots of different new facts. Let’s try.

From algebira

What we have to prove is that the differences between
adjacent square numbers 0, 1, 4, 9, 16, 25, ... are just the odd
numbers1,3,5,7,9,11,.... But thisis easy—the typical
difference is

(n+1)P-n?=(n*+2n+1)-(n?)=2n+1

by some easy algebra.

You can see in the same way that the differences
between adjacent values of any polynomial are the values
of a polynomial function of the next lower degree. So, for
instance, adjacent cubes differ by the numbers of the form
3n* + 3n + 1—namely, the mysterious numbers

1,7,19,37,61, ...
24
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The cubes are just the sums of the first few of these:
1=1,1+7=8, 1+7+19=27, ....

Boring! Why should anyone be interested in these myste-
rious numbers?
Let’s try again.

From arithmetic

The sum of several numbers is just the number of them
multiplied by their average. So, for instance, the sum 1 + 3
+5+ 7 +9isjust 5 times 5 {the middle number). The
averages for the sums

1, 1+3, 1+3+5, 1+3+5+7,...
are indeed
1,2,3,4,..,

since they can be found as half the sum of the first and last
terms.

This does give us a nice way to get the cubes. Rather
than always taking the sum of the first n odd numbers, we
take the sum of the next n, starting from where we left off.

So, instead of

1 =1
1+ = 2%
1 +3+5 = 3

we have
1 = 13
3 +5 = 22,
7 +9 + 11 = 33

That’s a bit nicer, but let’s try yet another idea.



Frrom geometry

Just look at this pattern:

It shows very clearly how a typical square number can be
broken up into consecutive odd numbers. Is there a way to
seeour mysteriousnumbers 1,7,19,37, 61 aspatterns of
dots? The way that seven pennies naturally arrange
themselves into a neat figure

might suggest something. .. Yes! The mysterious num-

bers

Y]

1 7 19

© o000 00 W
eee ooe

are what combinatorialists call the “hex” numbers.
(Beware—they use the term “hexagonal numbers” for
something else!)

Is it really true that the sum of the first few hex numbers
is a cube number? Yes! To see this, just draw in some lines

and those patterns of dots become cubical shells.

My daughter had some hexagonal blocks like the ones
pictured below, which she used to stack into hexagonal
pyramids. How many blocks did she need to build a
pyramid n layers high?

It seems there are lots of ways to generalize our basic
fact, and this is nice, because it means that no matter how
longyoulive, you'll always see some new ones. Here’s a
striking one that was discovered only recently.

Moessner’s magic

First, the squares. We write down the first few whole
numbers, circle every second one, and then add up the

others:
@ o O O © ® ¢ @
Of course, we get the squares.
Now, instead, circle every third number in the top row,
get the next row as before, circle every second number in it,

and add the uncircled numbers in this row to get the last
row:

Surprise! There are the cubes! Can you show that this
continues forever?

This seems to work for all powers. For instance, if we
circle every fifth number in the first row, every fourth
number in the second, and so on, we at least get the first
three fifth powers correctly:

3 4. () 6 7 8 9 (DI

6 16 23 31 (40 51
@) O 26 49 (80) @ 131
31 (80) 211

o @ ®

Can you verify that this, too, will continue forever?

In general, you can circle any selection of numbers in
the top row, thus dividing the remaining numbers into
blocks; then in subsequent rows you circle the last number

1
1
1
1

@#OJN

© 1990 Geometry Supercomputer Project

These pictures were rendered by Toby Orloff at the Geometry Supercomputer Project and printed on a color laser imager

developed at 3M.
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in each block, sum the uncircled numbers to get the next A“sweps
row, andsoon.

. . f ter used exactly n® blocks to make
We've seen that if in the top row you circle the numbers Of course, my daugh Y S

her pyramid of n layers.
Yes, those cubes do continue forever! It’s quite easy to
prove this by working out the general form of the pattern:

you get the squares—namely, the numbers 3n-1 @ 3n+1 3n+9 ( 3n+3) "
(3n?) 3n’+3n+1 3n+1)?
1:1,2:2,3-3,4-4,.., @ @+ 1)

It’s abit harder to prove that the kth power rule works
for all k. We'll publish the best proof we receive.
From the triangular numbers

141,242,343, 4+4, ...

while circling
1+1+1,2+2+2,3+3+3,4+4+4,..

grves theranbes 1 142, 142+3, 1+2+3+4, 1+2+3+4+5,...

1-1-1,2:2:2,3:3-3, 444 ... the Moessner magic leads (of course!) to the factorials:

What happens when you circle the triangular numbers 1,1.2,1:2:3,1:2:3.4,1-2-3-4-5, ... Q

1,1+2,1+2+3, 1+2+3+4, 1+2+3+4+5,...7

ShirtWear!

Broadcast your pride in physics

with a 100% cotton T-shirt from AAPT! Get "Molecules Moving, HUG a Physicist" is perfect for ©
the student who wants to stand out. Available in neon yellow and black. For your teacher, "Another
Awesome Physics Teacher" has navy letters on white or gray, or white letters on a teal T-shirt.

Only $13.75. And if you’re an AAPT member and order more than one shirt, your 20% discount Y
means your T-shirts will only cost $11! To order, send your check or money order to

American Association of Physics Teachers (AAPT)
5112 Berwyn Road, College Park, MD 20740
301/345-4200 FAX 301/345-1857
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FLUID STATICS REVISITED

We hope you won't get dunked by these problems from Soviet
university entrance exams

by Alexander Buzdin and Sergey Krotov

IRST, WE'LLREFRESH YOUR
memory by reviewing the basic
laws of fluid statics.

A liquid or gas, when it moves
as a unit, constitutes a mechanical
system in which different parts inter-
act with each other only through pres-

sure. If a liquid (and when we say
liquid we’ll also mean gas) is at rest—
that is, in static equilibrium—viscos-
ity doesn’t appear because the liquid
friction emerges only when layers of
liquid move relatively to each other or
a solid body in contact with the liquid.

The pressure in a liquid is governed
by Pascal’s law: pressure applied to a
liquid is transmitted without change
toevery part of the liquid. If only the
force of gravity is applied to a liquid,
the pressure p increases with depth h
according to the law p = pgh, where p is
the density of the liquid. Therefore,
different forces of pressure are applied
to various parts of a body immersed in
the liquid so that there is upward (lift)
force, which is called the buoyancy
force. This phenomenon is described
by Archimedes’slaw: abody totally
immersed in a fluid is pushed upwards
by a buoyancy force equal to the weight
of the fluid displaced by the body—
that is, the weight of the fluid con-
tained in the volume of the body.

We should notice that Archimedes’s
law can’t be applied in the situation
when a body is tightly pressed to the

i walls or the bottom of a container. For
§ cxample, asubmarine lyingonssilt is
g taken to be pressing against the ground
B and not being pushed upward.

Now let’s turn to some specific

3'3 problems.

Problem 1. One pan of a balance

& holds a glass of water and a stand
M from which a weight is suspended
B (fig. 1). What will happen to the
& balance’s equilibrium if we lengthen
& the string so as to immerse the weight
2 in the water!
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The most common answer, and the
wrong one, is that the equilibrium
will be disrupted. Some students say
that the buoyancy force acts on the
weight in accordance with Archimedes’s
law and decreases the tension of the
string so that the pressure of the stand
on the balance pan is decreased as
well. Others say that because the
weight has been immersed in the water,
the water level will increase so that
the pressure on the bottom of the glass
will increase as well and the left pan
will drop down.

To get the right answer we need to
notice that the contents of the pan
don’t depend on the position of the
weight, inside or outside the water;
consequently, the equilibrium of the
balance will be preserved. Now let’s
find the errors in the arguments the
students offered.

We'll take into account the fact
that when the weight is lowered into
the water the tension of the string is
decreased owing to the buoyancy force
acting on the weight. So the force of
the pressure of the stand on the pan
also decreases. But according to
Newton’s third law, the force acting
on the water and the bottom of the
vessel will be increased by the amount
of the buoyancy force. Therefore, the
pressure of the glass on the pan in-
creases. We see that the decrease in
the pressure due to the stand will be
compensated by the increase in the
pressure of the glass on the pan. From
this we get the correct answer: the
equilibrium will be preserved.

Can you figure out what will hap-
pen with balance if you put your finger
in the glass of water without touching
the walls and the bottom of the glass,

Figure 1 o
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or if the stand were on the other pan of
the balance?

Problem 2. A glass containing a
small ball floats in a vessel of water
(fig. 2). How does the level of the
water change if the ball, which is
made of either steel or wood, is trans-

fered from the glass to the vessel!

The force of pressure on the bottom
of the vessel equals the weight of the
water, the glass, and the ball. If we put
the vessel on a balance, which for
simplicity’s sake we'll consider weight-
less, it will indicate the weight of the
total contents. It’s important that its
reading doesn’t depend on whether
the ball is inside the glass or in the
vessel of water. On the other side, the
balance must indicate the force that
acts on the bottom of the vessel, and
initially the force was determined only
by the level of the water in the vessel.

If we transfer the wooden ball, it
will float on the surface of the water,
and the force acting on the bottom of
the vessel will be determined by the
level of the water. Since the force
doesn’t change, the water level must
also remain the same.

The result will be different if the
ball is made of steel. Such a ball drops
to the bottom of the vessel, and the
total force of pressure on the bottom
comprises the force of pressure of the
water and the force of pressure of the
ball. Therefore, the level of the water
in this case will decrease.

A similar problem involves a glass
in which a piece of ice floats with (1) a
piece of cork, (2) a small lead pellet, or
(3) a bubble of air embedded in it. How
does the water level change in the
glass after the ice melts?

1980

Figure 2

Problem 3. A steel ball floats in
mercury. Water is added so as to
cover the ball with water (fig. 3). How
does the depth of immersion of the
ball in the mercury change?

You're tempted to apply Archimedes’s
law right away, aren’t you? But the
difficulty is that different parts of the
ball are in different liquids so that we
can’t consider the ball as a whole
while applying this law.

Let’s choose a small area of the
ball’s surface inside the mercury and
find the force of pressure acting on it.
It’snot hard to see thatitequals

f= (p1gh1 + nghz) AS/

where p, is the density of water, p, is
the density of mercury, and AS is the
area. Let’s cast this equation in the
form

f=Ipglh, +h,)+(p,—p,)gh,]JAS =1, +f,.

Next, we’ll sum the forces of pres-
sure that act on all areas of the ball’s
surface that touch both the water and

Vi

Figkure 3 ”
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the mercury, obtaining the two forces
F,andF,. Thefirstforce,

F1 =p1g(V1 + Vz)i

is the buoyancy force that acts on the
ball when it’s immersed only in water.
The second force,

Fg = (pl _pz)gvz/

is the buoyancy force if the ball is
immersed down to the level occupied
by the mercury in liquid with a den-
sity of p, - p,. The resultant buoyancy
force equals

f= F +F,=pgV, +P,8V,.

We see that the force is resolved
into two terms—the first for the wa-
ter, the second for the mercury—cor-
responding to the parts of the ball
immersed in either liquid. We may
say there is a principle of independ-
ence of the buoyancy forces so that
either liquid makes a contribution to
the resultant force, even though we
might think that mercury pushes the
ball out while the water presses it
against the mercury.

Thus, the water appears to help the
mercury hold the ball up so that it
emerges a little from the mercury, and
the depth of the ball’s immersion in
the mercury decreases.

Problem 4. A thin plank of length 1
is propped up at its higher end by a
stone that emerges above the water’s
surfaceto a height H (fig. 4). What is
the minimal coefficient of friction be-
tween the stone and the plank that is
needed for the plank to remain at rest!
(We’ll let the densities of water and
wood be p, and p, respectively.)

Four forces act on the plank: (1) the
force of gravity Mg, (2) the force of
reaction of the prop N, (3] the force of
friction F, and (4) the buoyancy force
F,. The first force is applied to the
center of the plank, the second and
third at the point where the plank
touches the stone. The force N is
directed along the normal to the plank,
the force F, along the plank.

Until now we had to know only the
magnitude of the buoyancy force. Now

we need to know where the force is
applied. Let’s imagine a certain region
in the liquid. In the state of equilib-
rium the force of gravity that acts on
the region is balanced by the buoy-
ancy force. The angular momentum
of the force of gravity with respect to
the center of mass of the region is
taken to be equal to zero. Conse-
quently, the sum of angular moments
of the forces of pressure is also equal to
zero. If we replace the liquid with a
rigid body of the same shape, we can
convince ourselves that the forces acting
on it from the surrounding medium
don’t change. So we can infer that the
forces of pressure are equivalent to a
force thatacts vertically through the
center of gravity of the displaced lig-
uid. It should be noticed that we've
found only the line of action of the
buoyancy force, but we can’t say any-
thing about the point at which it’s
applied.

Therefore, in our case the buoy-
ancy force has an upward direction
and passes through the center of the
immersed part of the plank (the center
of mass of the displaced water). Let
the area of the section of the plank be
S, the length of the immersed part of
the plank 2x, and the angle that the
plank forms with the horizon (the
surface of the water)o. Then

F =2xp Sg
and
Mg=pSlg.
Since we're interested only in the

minimal value of the friction coeffi-
cient u, we can assume that

N

E=uN.

Because the plank is in a state of
equilibrium, the sum of all forces act-
ing on it is equal to zero. Let’s write all
these forces by using the projections
on directions tangent and perpendicu-
lar to the plank:

2xp, Sgsino—gl Sgsino + uN =0,
2xp, Sg coso.—gl Sg coso+ N = 0.

From the equations given above we
infer that

p=tgo.

On the other hand, from figure 4 we
infer that

tgo =AY (=20 - K.

The quantity x can be found from
the requirement that the sum of the
angular moments of all the forces act-
ingon the plank be equal to zero. It’s
convenient to consider the angular
moments of the forces with respect to
the point at which the plank touches
the stone (point O) because the angu-
lar moments of the friction force, and
the reaction of the prop, are equal to
zero at this point.

The buoyancy force passes through
the center of mass of the immersed
part of the plank so that its arm with
respect to point O equals (I - x]coso.
The arm for the force of gravity equals
Yalcosa. The equation for the total
angular momentum reads

plS%lcosoc— p,2xS (I-x)cos0. = 0,
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or

From this we get

1)

We've dropped the second root be-
cause it doesn’t satisfy the constraint
2x < 1. Finally, we obtain

I : S
12{1—3)4{2
Py

The problem of the angular mo-
mentum of the buoyancy force is of
primary importance for studying the
equilibrium of floating bodies. In fact,
an important concept used in ship-
building is the “metacenter,” which
is where the line of action of the buoy-
ancy force of a ship in a slanting
position intersects the plane of the
ship’s symmetry (fig. 5). The meta-
center (point M) isn’t allowed to de-
scend below the ship’s center of grav-
ity (point O); if it did, the angular
momentum of the buoyancy force
couldn’t retumn the ship to its upright
position.

“:

Problem 5. An aquarium of rectan-
gular cross section is filled with water
(whose density p = 10° kg/m®) to the
height H= 0.5 m. Find the force acting
on the aquarium wall (whose length 1
= 1 m) and the angular momentum of
the pressure on the wall with respect
to its lowest edge.

In this case the pressure changes

/
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with the depth of immersion h accord-
ing to the linear law p = pgh. The resul-
tant force of pressure is directed hori-
zontally, and the problem is to find its
magnitude. To solve it, students usu-
ally introduce the formula

F=p.S,

‘ with S = IH (the area of the wall in

contact with water)and p, beingthe
average pressure, which is equal to the
pressure at the middle depth. The
answer is the right one, but we need to
know why this formula was chosen
for the average pressure.

Let’s consider arectangular prism
made of a material of density p and
height I that has an isosceles right
triangle with a side H as its base. Place
the prism on a horizontal surface (fig.
6). It's easy to convince ourselves that
the force of pressure of the prism on
the surface equals the pressure of the
water on the side surface of the aquar-
ium because of the fact that pressures
are equally distributed on the contact
surface. But the force of pressure for
the prismisits weight; sowehave

pgHH &gﬁ

F=—— IH=1,250N.
21 2 /250

Consequently, the mean pressure of
water is to be taken as the pressure at
the middle depth.

The second question of the prob-
lem is more difficult because both the
pressure and the arms of the corre-
sponding forces depend on the depth.
Sometimes, drawing an analogy from
the preceding result, students propose
to use the average force of pressure and
the average arm, equal to H/2, for
finding the angular momentum of the
forces of pressure. But this is quite
wrong. To get the right answer we’ll
use a different analogy, one based on
the prism mentioned above. The cor-
responding angular momentum for
the prism M, equals the product of the
force of gravity on the prism and the
arm taken with respect to the straight
line AA’ (fig. 6). Since the center of
mass for a homogeneous triangle is
the point of intersection of its medi-
ans, the line of action of the force of
gravity isatadistance of (1/3)H from
the edge AA’. Therefore, we have

1890
SR e

Figure 6

M =P H 208 3N m.
P 2 3

You'll notice that in this solution
we haven’t allowed for atmospheric
pressure. Can it change the answer?
One more question is whether the
force of pressure on the wall changes if
the aquarium wall is made of rubber.

Problem 6. What happens to the
depth of immersion of a ball floating
in a glass of water if the glass begins to
move with acceleration upward?

Let’s consider a system comprising
the water and the ball floating in it,
and let’s suppose that it moves up-
ward with an acceleration a. The
acceleration is caused by the interplay
of the force N, which is the pressure
exerted by the bottom of the glass, and
the force of gravity of the system (M +
m|g, where M is the mass of the water,
misthe mass of the ball, and

N, - (M +m)g=(M+m)a.

When the system was at rest, the
pressure N, at the bottom of the glass
is determined by the equation

N,- (M +m)g=0.

Comparing the forces N, and N,, we
get

Let’s show that the pressure at any
point of the liquid has increased by the
same ratio. Imagine a water cylinder
of section AS; one of its basesisat the
surface of the water and the other is at
a depth h. We can write the following
equations of motion for the cylinder
in the upward direction:

P, AS - pAShg = pASha,

4



where P, is the pressure of water at a
depth hand p is the density of water.
We see that

P, =p(g+alh.

That is, it has increased by a factor of
(g + a)/g compared to the static case.
Consequently, the buoyancy force has
increased by the same ratio. Now we

write the equation for vertical motion
of the ball:

at+g
pVagT—mg =ma.
From this we infer that the volume V.
of the immersed part of the ball during
the accelerated motion of the glass
doesn’t depend on the system’s accel-
eration and equals V, = m/p. Conse-
quently, the depth of the part of the
ball immersed in water doesn’t change.

Problem 7. An aquarium in the
shape of a cube with edge L is half
filled with water. Find the shape of
the surface of the water in the aquar-
fum and the pressure at point M if the
aquarium moves in the horizontal
direction with an acceleration a (a < g
(fi8. 7).

We'll show that the surface of the
wateris anareain aplane that forms
an angle oo with the horizon.

Imagine a small region of the liquid
of mass m close to a point A on the
surface of the water. The resultant of
forces of pressure from all other parts
of the water is normal to the surface at
that point. Let it be equal to N and
form an angle o with the vertical. The
fixed area of the surface, which we can
consider flat because it’s small, then
forms the same angle with horizon.
(Can you explain why?)

Figure 7

Let’s write the equations of motion
for this region by using projections of
the force and acceleration in the verti-
cal and horizontal directions:

Ncoso.—Amg=0,
Nsino=Ama.

From this we infer that

a
1goL=",
so that the angle of the slope doesn'’t
depend on the choice of point A.
Let’s choose a plane inside the water
that is parallel to the surface of the
water and at a distance h from it in the
vertical direction. Let’s show that the
pressure of the water at all its points is
given by the formula

P, =pgh.

To this end let’s imagine a slant cylin-
der of slant height h and base AS.
Since it doesn’t move in the vertical
direction, the sum of all the vertical
projections of forces acting on the
cylinder is equal to zero:

pgh AS cosa— P, AS cosou=0.

Here the first term is the force of
gravity for the cylinder, the second the
vertical projection of the force of pres-
sure on the lower base. From this we
get

P, =pgh.

Therefore, the surfaces of constant
pressure are planes parallel to the free
surface of the water.

To find the pressure at point M,
let’s notice that the middle point B
remains at rest because of the incom-
pressibility of water. So we have

P = pg(%#ilgd)z p%(a+g).

We'll leave a question for you to
answer: have we employed the condi-
tion a < g2 Also, find the forces of
pressure of the water on the walls and
bottom of the aquarium when it moves
with acceleration.

Exercises

1. Amercury manometer (fig. 8) consists of
two tubes with cross sections S ,and S, such that
S,/S, =2. Find the change in measured pressure if
the level of mercury in the first tube increases by
Ah=10mm.

2. A funnel of mass M, which has the shape of
a truncated cone with a base of radius R, stands
on the table. The edges of the funnel are tightly
pressed against the surface of the table, How
much water must be poured into the funnel if, at
the moment it breaks away from the table, the
water level in the funnel is equal to h?

3. A cylindrical weight suspended from a
springbalanceislowered into a vessel of water
until the water level is changed by Ah = 8 cm (fig.
9). The reading of the spring balance is changed
by AF = 0.5 newton. Determine the vessel’s cross
section.

4. Where does a gas bum better, on the ground
floor or the top floor of a fourteen-story building?

5. A wooden ball floats in a glass that is filled
with water up to the brim and closed on top. How
does the pressure of the ball on the cover change
if the glass is moved upward with an acceleration

of a? @

SOLUTIONS ON PAGE 61

Figure 9
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INTHELAB

Through a olass brightly

Theres more to green glass than meets the eye

by B. Fabrikant

HAT COLOR IS GREEN GLASS?

This question may bother you. You'll probably
answer that green glass is called green because
it’s ... But don’t be in a hurry to offer conde-
scending explanations. A simple experiment will show
you that the question of the color of green glassis not as
simple as it seems.

If you have a piece of green glass, break it carefully so as
to get several pieces (not too small). Then look through
one of them at the incandescent filament of a clear light
bulb. As expected, the filament appears green (fig. 1). Place
this piece of glass on another one and look at the filament
again.

Youprobably won’t see any change in the color of the
filament—it’ll appear green, as before. But if you lay a third
piece of glass on the first two and look at the filament
through all three, you'll see that it’s discolored and whit-
ish. The filament will appear reddish when seen through
four pieces, and ruby through five pieces.

This result is totally
unexpected and instruc-
tive. It turns out that
the color of glass depends
on its thickness, and glass
thatis green whenitis
not so thick changes its
color to red when it is
quite thick. Not every
kind of green glass has
this property, but most
common types of cheap
green glass do. It’s in-
teresting that this prop-
erty is characteristic of
the most common dye
on Earth, chlorophyll.
It’s known that chloro-
phyll gives the leaves of
plants their green color.
By putting some leaves

Figure 1

Alteration of the visible color of
an incandescent filament from
green to red for different numbers
of pieces of green glass.
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in alcohol, you can get a chlorophyll solution and perform
the following experiment.

Put a glass on a sheet of white paper and slowly pour in
the chlorophyll solution. The bottom of the glass will
appear green at first; then, as the layer of solution increases
inthickness, it will take on a deepred color.

Let’s get back to the green glass. We can muddy the
problem of its color even more if, after the filament, we
look at the end of a red-hot poker. With only three pieces
of glass it will already appear ruby-red. So here we have our
second unexpected result: the visible color of glass de-
pends not only on its thickness but also on the properties
of the object we're observing. Three pieces of green glass
layered together look discolored when we look at the
filament but red when we're looking at the red-hot poker.

We can perform another experiment that has a practical
outcome. When taken out of the fireplace, the poker cools
very quickly. Try observing the poker as it cools down. As
we noticed earlier, the end of the poker appears red through
three pieces of green glass. After cooling a bit, though, it
appears red through only two pieces. If you wait a little,
you'll see the poker as red through a single piece of glass.
Our experiment shows that the higher the temperature of
ared-hot object, the more layers of glass needed for its color
to change. So we can estimate the temperature of a red-hot
object by the thickness of the glass needed to change its
color.

This experiment with the poker helps explain the
design of a simple yet ingenious instrument for determin-
ing the temperature of red-hot objects—the optical py-
rometer (fig. 2). It consists of a wedge of green glass whose
thickness gradually increases from one end to the other.
The wedge can be moved in a metal holder with an
opening for observing red-hot objects. A temperature scale
runs along the edge of the glass wedge.

The opening is aimed at the object under consideration
and the wedge is moved inside the holder until the color of
the object seen through the opening changes. Then a
reading is taken from the scale at the point opposite the
opening, and in this way the temperature of the object is

Art by Sergey lvanov







ascertained. The
optical pyrome-
ter is widely used
to determine the
temperature of
molten metals
(for example, in
open-hearth
~ furnaces). De-
spite its simplic-
ity, in experi-
enced hands it

Figure 2 provides a high
Optical pyrometer for determining the degree of accu-
temperature of red-hot objects. racy

So now you know about a clever application of the
strange properties of green glass, but the mystery of the
green glass itself remains unsolved.

An experiment Newton didn’t perform and a look at
landscape painting

I'm sure many of you remember Newton’s famous
experiment in which he split a beam of sunlight into a
rainbow-colored band (the visible spectrum) by means of a
glass prism. The experiment showed that sunlight is a
mixture of beams of different colors: red, orange, yellow,
green, blue, dark blue (indigo), and violet. For some reason,
Newton didn’t perform a more sophisticated experiment
by putting colored glass or a beaker of colored liquid in the
path of the sunbeam. Atleast, he never mentioned any
such experiment.

As it turns out, if red glass is used, the experiment gives
us nothing new. Instead of a multicolored spectral band,
we get only a narrow band corresponding to red beams.
This result could have been predicted beforehand: the red
glass is red precisely because it allows only red light to pass
through it and absorbs all the others.

An experiment with green glass or a beaker filled with
chlorophyll solution is much
more interesting. Instead of
one band, two bands remain—
green and dark red. This
means the green glass and
the chlorophyll allow not only
green but also red beams to
pass through.

The famous Russian sci-
entist K.A. Temerezyaev made
the following very interest-
ingobservation about chlo-
rophyll: “It’s very easy to
convince yourself that chlo-
rophyll allows only red beams
to pass—it’s enough to look
at a sunny landscape through
a piece of special dark-blue
glass (fig. 3) that allows red

Figure 3

A green landscape seen
through dark-blue glass.
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and dark-blue beams to pass but absorbs the green ones.
Before your amazed eyes the whole of nature is completely
transformed, and under the usual dark-blue sky we see
dark-red vegetation. Do the troubles that landscape paint-
ers continually have to overcome lie in this specific
property of chlorophyll? No doubt the painter’s palette
doesn’t include the green hues peculiar to brightly colored
green plants.”

But let’s leave painting for now and return to the optical
pyrometer, making a few changes in the experiment with
the wedge of green glass. We’ll use an incandescent
filament as the light source and put the optical pyrometer
between it and a prism (fig. 4). Again two bands will be
thrown on the wall, green and red; the relative brightness
of these bands will depend on the thickness of the wedge
at the point where the light passes through it. If the beam
passes through the thin part of the wedge, the green band
is brighter than the red one. As the thickness of the wedge
increases, the brightness of the green band diminishes
and, after a certain point, the red band will be brighter.
When the green band is brighter, the filament is seen as
green; when the reverse is true, the filament is seen as red.
If the two bands are equally bright, the filament appears
discolored.

So the mystery of the green glass seems to be solved. But
it remains to be explained why the ratio of the brightness
of the red and green bands is inverse as the thickness of the
glass increases. To get an answer, we need to look at an
important optical law discovered by a French scientist
about 200 years ago.

Pierre Bouguer was the first to focus on the problem of
measuring the intensity of light and illumination. He
devised the first instruments for measuring the intensity
of light, discovered that the intensity of the Sun’s light is
300 times that of the Moon, and in his Optical Treatise
formulated the important law describing how the inten-
sity of light diminishes in absorbing media.

To understand the meaning of this law, which we’ll call
the Bouguer law, we’ll employ an analogy borrowed from
sports—not particularly accurate but conveniently graphic.
Imagine that we're watching a seven-kilometer race. It
turns out the race is rather poorly organized. The partici-

 pants’ lack of training becomes apparent right at the out-

set, and the observers soon discover the following interest-

Figure 4
Newton’s experiment: the optical pyrometer allows only the
green and red components of white light to pass through.



inglaw: only one third of the runners that begin a given
kilometer make it to the end of it. There were 2,187
participants at the start of the race; at the end of the first
kilometer, 729 remain; at the end of the second, 243; at the
end of the third, 81; at the end of the fourth, 27; at the end
of the fifth, 9; at the end of the sixth, 3. Only one runner
makes it across the finish line at the end of the seventh
kilometer and is naturally declared the winner.

Let’s write out the numbers of runners that ran the
different distances: 2,187, 729, 243, 81,27,9, 3, 1. It's easy
to see that these numbers form a geometric progression in
which every number after the first is one third its predeces-
sor (standing to the left of it).

Now let’s get back to optics. Take a piece of a colored
glass. Suppose it allows one third of the incident light to
pass through. Add another piece of glass similar to the
first. It transmits one third of the light that passes through
the first piece—that is, one ninth of the light that falls on
the first piece. Adding another piece, we get one twenty-
seventh part, and so on. Obviously, the same result is
obtained by doubling, tripling, and so on, the thickness of
the glass.

We can conclude that if the thickness of the glass
increases, the ratio of transmitted light decreases in a
geometric progression. This is the law Bouguer discov-
ered. As we saw in the example of the race, numbers in a
geometric progression can decrease very quickly.

A little more Sports

Equipped with the Bouguer law we can attack the
mystery of the green glass, but first let’s revisit the seven-
kilometer race. Suppose the novices who ran so poorly
were conceited enough to challenge experienced athletes
to arace. These well-trained athletes accept the challenge
and suggest very generous conditions: 2,187 novices and
only 512 experienced athletes will take part in the race.
Whichever team has the most members who cross the
finish line after 7 kilometers wins.

Both teams arrive at the event dressed in colored T-
shirts: the novices wear green, the experienced athletes
red. After the first kilometer the supporters of the novices
are encouraged by the results: as in the previous competi-
tion, 729 novice runners remain in the race, while only 256
experienced athletes remain. The numerical superiority
remains with the novices. The supporters of the experi-
enced athletes are disappointed by the fact that half the
runners on their team have quit. But one of the fans, after
doing some simple calculations on a race program, states
firmly that if the race continues the way it’s going, the
athletes will win.

After the second kilometer 243 greens and 128 reds are
left; after the third, 81 greens and 64 reds; after the fourth,
27 greens and 32 reds. Everybody looks respectfully at the
person who made the calculations. The remaining three
kilometers only worsen the defeat of the greens: 9 greens
and 16 reds remain after the fifth kilometer; 3 greens and
8 reds after the sixth kilometer. Finally, 1 green and 4 reds
arrive at the finish line at the end of the seventh kilometer.

Let’s jot down the numbers of runners at each stage of
the race, the greens above and the reds below:

729
256

243 81 27 9 3
128 64 32 16 8

2,187
512

B

In the second line each number after the first is one half
the number on its left; in the first line, as previously, one
third. It turns out that this small difference in the divisors
is enough to compensate for the great numerical advan-
tage of the green team and lead the red team to victory. The
race just needs to be long enough (at least 4 kilometers).

The behavior of green and red beams is analogous to the
performance of the green and red teams (fig. 5). The green
glass transmits dark-red beams better than it does green
ones, and according to the Bouguerlaw the difference in
the transmission of these beams increases rapidly with the
thickness of the glass layer (the “long-distance effect” in
the race).

The question arises: why does the glass appear green
for a thin layer if it transmits red beams better than green?
The explanation lies in the spectral composition of light
from the incandescent filament used in the experiment—
its green band is much brighter than its dark-red band. In
a thin layer (a short race, according to our analogy), the
difference in the absorption of dark-red and green beams
isn’t large enough to compensate for the initial advantage
of the brighter green beam, so that the green beam plays
the major role and provides the dominant color.

Now we need only explain the part played by the
temperature of a red-hot object viewed through the glass.
It’s widely known that the higher the temperature of a
heated object, the whiter the light radiated. For example,
at low voltages an incandescent filament gives off a
reddish light; at normal voltage its light is much whiter.
This effectis explained by the fact that the brightness of
the green and blue beams increases with temperature
faster than that of the red beams. So at high temperatures
the difference in brightness between the green and red
bands of the spectrum is much greater, and it’s difficult to
compensate for it with the glass. This is why at higher
temperatures we need a thicker glass to change the color of
the heated object under observation.

Figure 5
Bouguer’s law: an explanation of how increasing the number
of pieces of green glass alters the color of a filament.
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Ancient Russian icons and an observation by Leonardo da
Vingi

Some ancient Russian icons are particularly striking
because of the peculiar way the clothing of the saints is
painted. Folds are painted with colors that are in sharp
contrast to the smooth parts of the garment. For example,
we may see red folds on a green coat (fig. 6) or orange folds
on a blue garment. The experienced eye of the Russian
painters of antiquity noticed that some fabrics have the
property of being double colored—that is, their folds take
on a color different from that of their flat surfaces. We can
say that the cause of this phenomenon is the same as the
one we discovered in our experiments with the optical
pyrometer.

If we allow a beam reflected from a double-colored
fabric to pass through a prism, two colored bands will
remain in the spectrum. For green double-colored fabric,
the scenario will be the same as for green glass: the green
and red bands remain, and all other beams are absorbed.

In fact, double-colored green fabric reflects red beams
better than green ones, but the greater intensity of the
green beams is decisive when light is reflected from a
smooth surface. We conclude that green beams are
predominant in light reflected only once from the green
fabric.

When there are folds in the fabric, however, the beams
of light are reflected more than once. At the second
reflection, the red beams are reflected more strongly than
the green beams, so the double reflection results in the
same effect as that for thick green glass—the red beams
become more intense than the green ones, and the fabric
changes color. Further reflection simply increases this
effect.

Most ordinary fabrics have properties that are just the
opposite of those discussed above. In their folds we merely
see a color that’s darker than that on a smooth surface. The
cause?! Again, multiple reflection.

Figure 6

An ancient Russian icon: alteration of color in the fabric
folds because of multiple reflection.
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When light reflected from such fabric is split by a prism,
there is only one band in its spectrum instead of the two
bands for double-colored fabrics. For example, light re-
flected once from yellow velvet produces a broad band in
the spectrum with the greatest intensity in the middle of
the yellow range. There are also green and blue beams in
the spectrum in addition to the yellow ones. This band in
the spectrum becomes narrower for double reflections
because the blue beams disappear almost completely and
the green ones become substantially weaker. This is a
result of the law of geometric progressions discussed
above. Consequently, the yellow-orange color becomes
darker.

Leonardo da Vinci, a multitalented genius who was not
only a painter but a sculptor, architect, engineer, writer,
musician, and anatomist, noticed the peculiarity of folds
in fabric and came up with the correct explanation for this
phenomenon. In his Treatise on Painting he wrote that
reflected colors are more beautiful than the original ones
and that this fact is particularly noticeable with folds in
golden fabrics when one surface is reflected in another and
then reflected back, over and over again.

Maybe I've given you a good reason to take another look
at the work of the old masters. Perhaps they can pass their
powers of observation on to us, and we can share in their
profound understanding of the properties of light. Once
you've learned to notice the subtleties of multiple reflec-
tion and the transmutation of colors, no doubt the world
will neverlook quite the same.. .. O]

7 N
Why all the Russian names in
Quantum?

Because Quantum is the product of a joint
venture with the Soviet magazine Kvant.
Much of what you read in Quantum is
translated from Russian. Our goal is to
increase the content contributed from this
side of the globe to the fifty-percent level.

Quantum’s Soviet and American staffs
work very hard to make the translations
read well. How are we doing? If youdon’t
look at the names of the authors, can you
tell which articles were translated and which
were written originally in English?

We hope you enjoy the glimpses of So-
viet life offered in Quantum. And we hope
you enjoy the wonderful articles from our
sister magazine Kvant, written in the inter-

national language of math and science!
/
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Florida Institute
of Technology

earned its

academic reputation
by degrees.

Florida Institute of Technology has everything youd expect
from a university. Including a lot of degrees — both in and
out of the classroom.

For example, we offer more than 121 degree programs, from
A.S. to Ph.D., specializing in Science, Engineering,
Business, Psychology and Aviation. Our modermn campus is
located on Florida’s famous Space Coast, in the heart of one
of America’s fastest-growing business areas.

Now, add an annual average temperature of 75 degrees,
miles of clean, uncrowded beaches, and every water sport
you can think of, and you know why students prefer EI'T.

For more facts about EI'T., the University with all those
degrees, call TOLL FREE 1-800-352-8324, IN FLORIDA
1-800-348-4636.

Florida Institute of Technology

MELBOURNE
150 West University Blvd., Melbourne, FL 32901
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CONTEST

A pigeonhole for gvery pigeon

An attempt to provide private accommodadations for that
special mathematical bird

NMARTIN GARDNER’S AUGUST

1980 Mathematical Games column

in Scientific American, the famous

mathematics expositor Ross
Honsberger showed the following: If
Sisasubset of {1,2, ..., 99} and if S has
10 elements, then S must have two
disjoint subsets A and B such that the
sum of the elements of A is the same
as the sum of the elements of B. Thus,
forexample,if S={(3,9,14,21,27,35,
42,59,63,76},then A={14,63}and B
={35, 42} yield the same sum (77), and
sodoA=1{3,9, 14} and B = {26}.

To prove his assertion, Honsberger
applied the pigeonhole principle, which
was the topic of a beautiful article by
Alexander Soifer and Edward Lozan-
sky in the premier issue of Quan-
tum.! More specifically, he observed

1See answer M 15 on page 59 fora
restatement of this principle.
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by George Berzsenyi

that the sum of the elements of S is at
most 90+ 91 + ...+ 99, or 945, and so
the subsets of S can be sorted accord-
ingtothesum of theirelementsinto
pigeonholes numbered 1, 2, ..., 945.
For the pigeons, he chose the nonempty
subsets of S, of which there are 21°-1,
or 1,023. Thus, there must be a pi-
geonhole with more than one pigeon—
that is, there must be at least two
subsets of S whose elements have the
same sums. Upon discarding com-
mon elements, the reduced sums will
remain equal for the resulting disjoint
subsets of S.

As he was reading Honsberger’s
arguments, Andy Liu, another Cana-
dian mathematician, became inter-
ested in the maximum size of S that
will allow for the sum of the elements
of each pair of its disjoint subsets to be
distinct. In other words, he was dis-
. tressed by the over-

" crowded conditions of
-~ the pigeonholes and
. wanted to ensure pri-
- vate accommodations
for each of the pigeons.
To make the arith-
metic more manage-
able, he switched from
99 to 25 and submit-
ted the following
» problem to the sub-
{ committee of the
- Mathematical Asso-
* ciation of America in
charge of the Ameri-

1980

can Invitational Mathematics Exami-
nation (AIME): Let S be a subset of {1,
2, ..., 25} such that for every two dis-
joint subsets of S, the sum of the ele-
ments of one subset is different from
that of the other subset. Find the
maximum value of the sum of the
elements of S.

In view of the time limitations of
the AIME, it was felt that even this
problem was a bit too ambitious. Since
I was chairing the AIME Subcommit-
tee at that time, I replaced 25 with 15
and posed the revised problem on the
1986 AIME, saving Andy Liu’s origi-
nal problem for this year’s USA Mathe-
matical Talent Search (see Happen-
ings).

HereI'dlike toreopen Andy Liu's
investigations in a more general set-
ting, searching for maximal subsets of
S, of{1,2,..,n}. Asitturnsout, forn
=15,8,.={15,14,13,11,8), with five
elements whose sum is 61; while for n
=25, = (25,24,23,21, 18, 12, with
six elements whose sum is 123. In
both cases (as well as for other values
of nn investigated so far), S_is uniquely
determined by the Greedy Algorithm,
according to which we always pick
the largest avaliable numbersfor S_
that don’t lead to contradictions.

I invite you to explore this problem
more systematically, possibly by first
gathering some more data via clever
computer programs. Here are some

CONTINUED ON PAGE 42




. CONTEST

Glick, click, click . . .

“The causes of events are ever more interesting than the events
themselves.—Cicero, Ad Atticum, Book IX, Section 5

by Arthur Eisenkraft and Larry Kirkpatrick

O DOUBT MANY OF YOU

have played delightedly with

Newton’s collision toy (though

not one so large as in the pic-
ture!). In this toy five identical balls
are suspended by strings so that they
lie along a line. If you pull one ball
back and releaseit, the three middle
balls remain stationary and the last
ball flies off the other end. If two balls
are raised on one side, two balls fly off
the other end. The pleasure we take in
the toy comes from the repetitive
motion of the colliding balls and the
click, click, clicking sound of the
collisions.

The physics of the toy is both inter-
esting and informative. The toy pro-
pels the inquisitive idler into an ex-
amination of the conservation laws in
nature. Conservation of momentum
states that, in a system free of outside
forces, the momentum (mass times
velocity) before a collision must be
equal to the momentum after the
collision. In our collision toy, one ball
with velocity v collides with the hang-
ing balls and a single ball leaves with
velocity v. Momentum is conserved.
Two balls in, two balls out—momen-
tum is conserved. Three balls in,
three balls out—momentum is con-
served. The toy certainly obeys the
law of conservation of momentum.

If momentum conservation were
the only law governing the collisions,
then other results would be plausible.
Couldn’t two balls enter with veloc-

ity v and one ball leave with velocity
2v? Momentum would be conserved.
Couldn’t two balls enter with veloc-
ity v and four balls leave with velocity
v/2? Although momentum conserva-
tion allows this, these events never
occur. Nature is warning us that we
don’t know the whole story. There
must be another restriction on the
motion of the balls that forbids these
other events.

The second restrictionis the con-
servation of kinetic energy (K=Y4mv?).
The sum of the kinetic energies before
a collision must be equal to the sum of
the kinetic energies after the colli-
sion. When two balls of mass m enter
with velocity v, the momentum is
2mv and the kinetic energy is mv?. If
two balls leave with velocity v, the
momentum and the kinetic energy
have both been conserved. We can see
that one ball leaving with a velocity

2v would conserve momentum (2mv)
but would have a kinetic energy of
2v?! Similarly, all other possible colli-
sion scenarios that conserve momen-
tum do not conserve kinetic energy
except for the one that we really ob-
serve. The collision toy has yielded
some important physics.

The collision toy leads us to won-
der what would happen if the balls
didn’t have the same mass. Take any
two balls of different mass (a basket-
ball and a table tennis ball would
work well). Drop each one separately
onto the ground and observe the height
each reaches. Now place the table
tennis ball atop the basketball and
release the basketball. Watch your
eyes! The table tennis ball goes “sky
high.” Here, the collision is between
the Earth, the basketball, and the table
tennis ball. Imagine three balls of un-
equal mass on the Newton collision

) J
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toy. The large mass ball is pulled back
and released. The collision occurs.
The big ball hits the middle ball, the
middle ball hits the small ball, and the
small ball flies off the other end.

Here’s part A of our contest prob-
lem: Find the mass of the middle ball,
in terms of the masses of the bigand
small balls, such that the velocity of
the small ball will be greatest.

Part B: Extend your proof to find
the relationship between the masses
of the balls if three balls of intermedi-
ate mass are involved in the collision.

In our discussion so far we've as-
sumed there’s no energy loss in the
system. We know that the kinetic
energy must continually decrease, since
the Newton toy eventually stops. We
also know that some of the kinetic
energy becomes sound energy—that’s
the click, click, click. Since collisions
with macroscopic objects aren’t per-

fectly elastic, we need a means by

which we can quantify the loss of
kinetic energy. Newton defined the
coefficient of restitution e of a colli-
sion as the ratio of the final relative ve-
locities to the ratio of the
initial relative velocities
of two balls. Newton then
discovered, experimentally,
that this number stays rela-
tively constant for balls of
a given material.

Finally, part C: Deter-
mine the middle mass in
a three-mass collision, given
a coefficient of restitution
e for each collision.

This interesting physics has some
interesting applications. When one
wishes to hammer a small nail, an
intermediate mass called a punch is
placed between the massive hammer
and the less massive nail. In some
gravitational wave detectors, the tiny
signal hits a succession of masses in
just the ratio discovered in part B of
this month’s problem. Can you think
of other applications for maximizing
collisions of unequal masses?

Those of you who are just begin-
ning your study of physics may at-
tempt part A alone. When submitting
your solution, indicate your physics
background so that we can reward our
younger readers for their excellent
attempts. Here’s our address: Quan-
tum, 1742 Connecticut Avenue NW,
Washington, DC 20009.

We're still getting some interesting
answers to our first contest problem,
so we’ll hold off selecting the best
ones until the next issue. @

CONTINUED FROM PAGE 40

questions to answer: Is it true that n,
n-1,n-2 mustbeelementsofS_for
n > 3? Is the number of elements of S
always maximized when the sum of
its elements is largest? Is there some
nfor which there are several choices
for S ? Send your findings to Quan-
tum, 1742 Connecticut Avenue NW,
Washington, DC 20009. The best
results will be acknowledged, and their
creators will receive a free one-year
subscription to Quantum.

We've received some very impres-
sive answers to our first contest prob-
lem. In fact, we're still receiving
answers as we go topress, soI'll wait
until the November/December issue
to discuss the best ones. O}
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“Fascinating ....

Highly recommended”
—Booklist.

“In the iconoclastic tradition of
Aldo Leopold, Rachel Carson, and
James Lovelock, Daniel Botkin
has used a lifetime of research in
the ecological sciences as a basis
for reexamining the human-nature
relationship. Discordant Harmo-
nies will be provocative to histori-
ans and philosophers as well as
scientists. It is a book to pack in
our intellectual baggage as we
prepare for the journey into the
21st century.”

—Roderick Frazier Nash, author of
Wilderness and the American Mind

Just published by Oxford
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Attention High School Students!
® Are you interested in math, science, engineering or technology?

® Would you like to check your potential for succeeding in
engineering school before you apply to college?

If so, take the

National Engineering Aptitude Search!

The NEAS is a guidance exam for 9th through 12th graders con-
sidering careers in engineering, mathematics, science or technology.

The NEAS covers mathematical understanding, science reading
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Junior Engineering Technical Society (JETS)
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and helps prepare them today for tomorrow’s world.
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LOOKING BACK

Jules erne’s cryptogram

“Everybody realized that if the attempts to decipher the document
failed, the convict would stand no chance.”

ECRET WRITING AND THE

mysteryitconceals...puzzling

out the code that finally gives the

clue to hidden treasures or saves
a human life . . . there’s quite an
attraction in a mystery story that’s not
only well written but contains in-
triguing coded messages—think of “The
Gold Bug” by Edgar Allan Poe or “The
Adventure of the Dancing Men” by
Sir Arthur Conan Doyle.

In his works Jules Verne also made
a good use of mysterious documents
whose secret is disclosed at the very
end of the story—Captain Grant’s Chil-
dren and A Journey to the Center of
the Earth are good examples. Another
novel, Jangada, or Eight Hundred Miles
Down the Amazon, isn't as well known.
It’s full of detailed geographic, histori-
cal, and ethnographic descriptions as
well as pages devoted to the curious
peculiarities of plant and animal life
in the Amazon basin. But the most
gripping chapters of the book are de-
voted to the deciphering of a docu-
ment containing the confession of a
criminal who took part in adiamond
robbery 23 years before the action in
the novel.

The story has it that Joao da Costa,
through a fatal coincidence, finds himself
on trial, facing a charge of theft and
murder. The crime was committed a
long time ago and he’s unable to pro-
duce any evidence of his innocence. A
message with the confession of the
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by G.A. Gurevich

real culprit is his only hope, but it’s
written in some unknown code. Here's
the text to be deciphered:

WEFDPFWQQUMWYMPVXRNJE
LEPQSEVEQFPJOPHFLVDYV
GUTOWLHPNHKXRHOBQYDT
DUKIWYJOWCVGHPQHHKLI
WIHPYXHRWAXJAMVPTUMS
DQIBEFSVVFVQNXUYMBGRP
IFPRHFYPGIDVMCXXPGFN
LWHTFCOIFNJSNSIVMFGM
DOTOGHLUYSLGWCINLRLU
YSDXLQSZHWPGFMRRHYM]
FLLJJSHFBUNHQMQODPZR
QCRFRVWGLB.

Judge Jarriques volunteers to un-
ravel the knot. “The first thing we
need,” he declares, “is a system. Sys-
tem means logic, and logic means
success.” The judge doesn’t have a
shadow of adoubt about success. He
decides to employ the method bril-
liantly described by Poe, which is
based on a comparison of the fre-
quency with which different symbols,
in ciphertext, and letters, in ordinary
plaintext, occur: “I arranged all the
letters of the alphabet in numerical
order, starting with the most prepon-
derant, and replaced the letters in the
document with new ones according to
the procedure described by our im-
mortal analyst Edgar Allan Poe, and
then I tried to read the message . . .
but, alas, I failed!”

1980

After a thorough analysis of the
text, the judge comes to the conclu-
sion that the key to the code is a
number. He explains to the convict’s
son Manuel how the document was
enciphered.

“Let’s take a phrase, any phrase.
This one, for example: ‘Judge Jar-
riques is cute.” And now I take any
number at random to make a crypto-
gram. Let’s assume that it’s a three-
digit number: 423, for example. I
write ‘423’ underneath the words so
that each letter corresponds to one of
the digits, and I repeat this process
until I reach the end of the sentence:

JUDGE JARRIQUES IS CUTE
42342 342342342 34 2342

Then we replace each letter in the
sentence with the one that followsit
in the alphabet by the number of
places indicated by the corresponding
number. For example, if the number
‘3’ stands under the letter ‘D,’ you
count off three letters and replace it
with the letter ‘G.’ If the letter is at the
end of the alphabet and there aren’t
enough letters after it, we continue
counting from the beginning of the
alphabet.

“So let’s complete our cryptogram
based on the key number 423—which,
mind you, was chosen at random.
Instead of our plaintext message, we'll
end up with the following coded one:

NWGKCGMETUMSX TULWEXXG.”

Art by Dmitry Krymov
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After the judge arrives at the con-
clusion that the cryptogram has a
numerical key, his certitude gives way
to the darkest pessimism. Calcula-
tions carried out by Jarriques show
that a random search for the key, by
going through all possible combina-
tions of numbers containing not more
than 10 digits, will take over 300 years!
Eventually, he gets bogged down in
guesswork and turns into a gambler
who is trying to hit upon the right
number.

Meanwhile, the day of the execu-
tion is approaching. Joao da Costa is
going to the gallows.

But all ends well. Luckily, Joao’s
friend comes to know that the name of
the man who had written the crypto-
gram was Ortega. The judge places
the letters O, R, T, E, G, A over the last
six letters of the message, determines
the amounts of the shift, and obtains
thekey tothecode:

ORTEGA
343251
RVWGLB

Jules Verne is a great writer, and he
easily leads the reader to believe that
except for a happy coincidence, it’s
impossible to guess the number 343251}

Now it’s time to tell you that Jarri-
ques could actually have deciphered
the cryptogram without waiting for a
lucky break. The most amazing thing
about it is that the judge was on the
right track and had practically solved
the puzzle. He had the key right in his
pocket.

IAn interesting fact is mentioned in
the commentary appended to the novel:
“The author . . . received a letter from his
friend Professor Maurice d’Ocagne
informing him that a student at a
polytechnic school had managed to read
the cryptogmm lying at the core of
Jangada. At the time, the novel was still
being published serially in a magazine.
So it was not too late to correct the
regrettable inadvertence. Before the
book appeared as a separate edition, Jules
Verne had time to think up a more
complex code—one that precluded
premature deciphering of the
document. . . .

“One will undoubtedly not find as
intricate a cryptogram in any other of his
works.”
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Let’s get back to the text of the
novel. Jarriques’s line of thinking was
as follows: “Tam sure that the name of
Joao da Costa is mentioned in the
document. Had the lines of the mes-
sage been separated into words, we
could have picked out the pairs of
words that could stand for “da Costa”’—
that is, ‘two letters-space-five letters’
combinations. Trying them one by
one, we could possibly find the key to
the cryptogram.”

It’s not quite clear why the absence
of spaces between the words seems an
insurmountable barrier to the judge.
In fact, it merely increases the range of
the exhaustive search. That’s why
Manuel, who has a better grasp of the
problem, disagrees with Jarriques: “What
of it? If we assume the name of da
Costa is mentioned and take each
letter in turn to be the first letter of his
name, we’ll eventually find it the
key.”

That’s it! The direct way to the
solution has been found. Not only
that, the range of the search is not so
wide. The text consists of 230 letters,
which means that the number of pos-
sible combinations doesn’t exceed 223.
Eventually, having written the words
“da Costa” over the IBESVVF frag-
ment, we'd determine the following
sequence of figures: 5134325. It would
be natural to assume that the last
number opens up the following nu-
merical pattern:

¢ w s DACOSTA., ., .
...5134325134325134..
... TUMSDQIBFSVVEVON. .

So instead of the key 343251, we
have found its cyclic permutation
513432, which in no way prevents us
from deciphering the text. (And, by
chance, it’s the very combination that
opens the coding line of numbers.)

Finally, let’s consider the following
problem. In the case described above
we knew what kind of document it
was and so were able to guess one of
the words, which gave us a clue to the
solution. But what do we do when the
content of the document is completely
obscure?

There are several possible paths to
pursue. Justas with ourcryptogram,
we can try to guess a word (or its
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component). Some words (“the,”
“which,” “that,” as well as suffixes
like -tion, -ing, -able, and so on) occur
quite frequently in all kinds of text.
Naturally, in this case the scope of the
search is substantially increased, but
the chances would still be good enough.
It seems, though, that a more rational
way is to analyze the frequency with
which different letters occur in the
cryptogram. According to Jarriques,
however, this approach will be unac-
ceptable if the key to the code is a
number: “Consequently, the mean-
ing of each letter is determined by the
underlying number chosen at random,
and the same letters in the cryptogram
never correspond to a particular letter
in the plaintext.”

Figure 1

The special coding device shown in
figure 1 will help us see that the judge
was wrong. To simplify the matter
we'll assume that the key is a three-
digit number. The letters of the alpha-
bet are written in order around the
outside edges of four concentric disks.
Three of them can rotate, while the
inner disk is stationary. The inner
disk can be considered the “plaintext”
disk, the three rotating disks the “ci-
phertext” disks.

Suppose the key number is 259.
Turn the first ciphertext disk counter-
clockwise through two letters; the
next disk, through five letters; and the
third disk, through nine letters (fig. 2).
Now we're ready for coding. Find the
first letter of the plaintext on the in-
nermost disk and replace it with the
letter across from it on the first rotat-
ing disk; replace the second letter with
the corresponding letter on the second



Table 1:

The number of instances of each letter in sets selected from a cryptogram with a 6-digit key

SetNo| A|B|C|D|E|F|G|H|I|J|K|LIM|N|O|P|Q|R|S|T|U
1 |o]o|ol2]of4fo|1|3lalo|afal2|1|1]1]1]2]3]0
> |lo|lal2|ol2MWalol21f4]o0/0|2|2 3 104 o]2
3 |1|1]o]|aflol2|afs)o|1|[204)o|[1]2]1 21001
4 |olo|1|ofl2|1|2(20aBo|o|2f4)1|0]2 13|00
5 |ol1]|o|4|lo|2|1lizd1]|0lo0|4]|0 ol2(4(3|0]0
6 [1|/0|2]|of1fal3y1|[1|1]|0|ofof3]2]|3 of2}

The columns under letters obtained from the letter E by shifting no more than 9 places are tinted yellow. In each line, red
indicates the number under the letter that actually denotes an E in the corresponding set; green—the maximum number of
instances in the yellow (that is, permissible) range; blue—the maximum values that fall outside the permissible range.

rotating disk, and replace the third
letter with the corresponding letter on
the outer disk. In other words, the
respective letter of the ith rotating
disk replaces the (3k + i]th letter of the
text (wherei=1,2,3and k=0, 1,2, ...).

The very process of coding suggests
that if the difference between the
numbers of any two letters in the text
is a multiple of 3, the same number—
that is, the same disk—is used to enci-
pher them. So Jarriques was mistaken
in maintaining that the same letters
in the ciphertext never denote the
same letters in the plaintext.

Now, let’s start deciphering. Sup-
pose we know that the key is a three-
digit number. To determine its first
digit we should analyze the 1st, 4th,
7th, ... letters of the cryptogram. If the
first digit of the key is 1, all these
letters should be replaced by those
immediately preceding them in the
alphabet; if it’s 2, the letters should be
shifted back two places; and so on. But
how can we determine the actual

Figure 2 |

magnitude of the shift? The trick is
that in the set of correctly shifted
letters, the frequency of each letter’s
occurrence is approximately the same
asinthe language asawhole. That’s
the gist of the matter! By comparing
frequencies at different shifts, we’ll
determine the most probable first digit.
Then similar analysis of the set con-
taining the 2nd, 5th, 8th, ... letters of
the cryptogram will give the second
digit of the key, while the third set (the
3rd, 6th, 9th, ... letters) will suggest the
third digit. Finally, there might be
several sufficiently probable keys at
our disposal—we just have to choose
the one that gives a coherent text.

All that remains is to clarify how to
approach the problem when the number
of digits in the key is unknown. This
case, too, requires a good deal of se-
quential searching. First, we assume
that the key is a two-digit number;
then, a three-digit number; and so on,
until the text has been deciphered.

Omitting the intermediate variants,
let’s make use of the method to deci-
pher our cryptogram, whose key, as
we already know, is a six-digit num-
ber. In this case, the text of the crypto-
gram is divided into six sets of letters
according to the pattern described above
(first set: theletters 1,7, 13, ..., 229;
second set: the letters 2, 8, 14, ..., 230;
...; sixth set: the letters 6, 12, 18, ...,
228). The first two sets have 39 letters
in each; the rest, 38 letters.

Tobegin with, we countupall the
instances of each letter in each set.
Theresults are listed in table 1. And
that’s all the information we need for
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decoding. Now we can try to puzzle
out the key number right away, com-
paring the frequencies of the different
letters. Because the most frequent
letter in English is E, we can assume
that its counterparts are the most fre-
quent in their respective code sets. For
example, in the first set the prime
suspect is Y (5 entries—see the first
line of table 1). But Y is 20 places away
from E in the alphabet, whereas the
maximum shift is 9 places. So Y falls
away. For the same reason we can
generally confine ourselves to the 10
yellow columns in table 1 (from E to
N). The predominant “yellow let-
ters” in the first line are F, |, and M,
which means the first digit of the key
shouldbe 1, 5, or 8. The second line
gives us F and ] as plausible letters (or
1 and 5 as digits); the third line sug-
gests L (or 7); and so on. Although
we've already seen that the actual key
number is 513432, to play fair we
should checkall the3-2-1-2.1-3=
36 possibilities. Itlooks tobe alittle
boring, and we still wouldn’t be all
that sure we didn’t miss the right digit
(in fact, we did miss it in the third
line). But there’s nothing to be sur-
prised at: our sets are too small for us
to draw reliable conclusions about the
frequencies of individual letters. And
yet, if we take a group of the most
common letters right off the bat, sta-
tistical laws will inevitably take over.

To make the superiority in frequency
significant, a group of four letters, E, T,
A, O, will suffice. This time we'll be
clever right from the start and restrict
ourselves to this group and its shifts:
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Table 2:

The number of instances of the letters E, T, A, and O in each cryptogram set

Magnitude of Shift
Set No. 0 1 2 3 4 3] 6 7 8 9
1 4 1 5 6 16 2 2 5 6
2 5 13 4 2 8 8 3 3 6 9
3 3 5 9 i R 3 7 10 4 3
4 2 5 9 13 2 2 6 10 6
5 0 5 8 19 2 2 1 14 7 1
6 6 | 11 [ 1 2 2 9 8 5 2 6

In each line red denotes the number
corresponding to the actual magnitude
of the shift for the set. It’s always the
greatest number in the line, and it’s
almost always unique. (The exception is
the sixth line, where there is another
number as large, which is marked
green.)

F, U, B, P,‘ G, V, C, Q; e N, C, L X (that
is, the “yellow portion” of a giant
“table of letter-quadruplets”). The
number of letters of each group in each
set is easily calculated by adding up
the corresponding four numbers in
table 1. This gives us table 2, by means
of which we can more or less defi-
nitely conclude that the first five key
digits are 5, 1, 3, 4, 3. Although the last
digit remains uncertain—it’s a choice
between 1 and 2—full decoding of the
cryptogram now poses no problem.
Ileave it to you to figure out what'’s
written in the ciphertext! O]
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GETTING TO KNOW...

The elementary particles

Fishing for the Higgs boson, stalking the top quark. . .

Mass, spin, and the antiparticle

Quantum mechanics and relativ-
ity tell us that every particle is charac-
terized by a nonnegative mass and a
nonnegative integer or half-integer spir,
and that it has an antiparticle with the
same mass and spin but opposite elec-
tric charge. Massive particles travel
slower than light and can be brought
to rest, while massless particles (like
photons and gravitons) travel at light
speed relative to all watchers. Spin is
the measure of a particle’s intrinsic
angular momentum. A massive par-
ticle of spin s may be found in any one
of 2s + 1 different quantum spin states.
The antiparticle of the electron, called
the positron, was seen first in cosmic
raysin 1932. Antiprotons were first
produced and detected at the Berkeley
Bevatron in 1955. Photons are their
own antiparticles. Particles annihi-
late their antiparticles on contact. All
earthly matter (and virtually all celes-
tial matter) consists of particles, not
antiparticles. Otherwise, we wouldn’t
behere totell the tale.

Fermions and bosons

Particles with half-integer spin (like
electrons with spin 1/2) satisfy
Fermi-Dirac statistics, which means
no two of them may be in the same
quantum state at the same time (the
Pauli Exclusion Principle). Such par-
ticles are called fermions. Particles
with integer spin (like photons) satisfy
Bose—Einstein statistics. Many of these
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bosons can (and, in a sense, like to)
congregate in the same quantum state,
which is the principle underlying the
operation of lasers.

Fundamental fermions—quarks and
leptons

Our particle directory lists twelve
spin 1/2 particles: six quarks and six
Ieptons. Quarks (rthyming with forks)
were invented by M. Gell-Mann and
G. Zweigin 1963. “Up,” “charmed,”
and “top” quarks carry electric charges
of 2/3, while “down,” “strange,” and
“bottom” quarks carry charges of
-1/3. An individual quark can’t be iso-
lated from the hadron of which it
forms a part. Thus, quarks can’t be

FORCE

seen as particles in their own right.
The word lepton comes from the Greek
leptos meaning “small” or “slight,”
and was coined by L. Rosenfeld in
1948 to mean any fermion of small
mass, like the electron or neutrino.
Today, leptons include any of six known
fermions lacking strong nuclear inter-
actions. Three are electrically charged:
the electron, the muon (about 200
times heavier, and the tau-lepton (about
17 times heavier yet). Each one is
associated with its own sort of neu-
trino, making six leptons in all. Neu-
trinos are very light, perhaps even
massless. Recent experiments sug-
gest that there are no more than three
neutrino species. This implies that
our list of fundamental fermions is
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complete. Whether it really is or not,
we shall see!

These particles mediate forces
among the fundamental fermions.
Electromagnetism results from the
exchange between charged particles
of massless photons, the particles of
light. The strong nuclear force arises
from the exchange between quarks of
massless gluons. The weak nuclear
force is produced by the exchange of
massive W or Z bosons between any of
the fundamental fermions. Gravity
may be thought of as due to the ex-
change of massless gravitons. Gluons,
like quarks, are “confined”: they can’t
be seen as isolated particles. Charged
W's and neutral Z’s were discovered at
the European Center for Particle Phys-
ics (CERN) in 1983. The last of the
basic bosons in our bestiary is the
Higgs boson, an elusive and still hypo-
thetical particle responsible for gener-
ating all particle masses. It should
show up at the Superconducting Su-
per Collider, now a-building in Texas.

Hatrons

In 1962 the Soviet physicist L. Okun
used the Greek word adros, meaning
“thick and bulky,” in choosing a name
for any seemingly elementary particle
that partakes in the strong nuclear
force, like the proton but not the elec-
tron. Today, a hadron is any particle
made up of quarks. Three quarks stick
together to form a baryon; a quark
binds to an antiquark to form a meson;
and three antiquarks form an antibar-
yon. These are the only known ways
in which quarks combine to form
hadrons. Because they are made up of
an odd number of fermions, baryons
and antibaryons are themselves fermi-
ons. Mesons are bosons.

This is a word that has been used
since 1941 to refer to neutrons or
protons. An atomic nucleus with
mass number Z contains A nucleons,
Z of which are protons. Nuclei with
the same Z but differing A are known
as isotopes. Nucleons are fermions.
They are the lightest baryons, consist-
ing exclusively of up and down quarks:



two ups and a down make a proton,
while two downs and an up make a
neutron. About 99.98% by weight of
all ordinary matter consists of nucle-
ons. The rest is electrons.

Pions and muons

Hideki Yukawa suggested in the
1930s that the nuclear force results
from the exchange of hypothetical ele-
mentary particles between nucleons.
He called his particles mesotrons (soon
truncated to mesons) because they
had to be intermediate in mass be-
tween electrons and nucleons. Par-
ticles with such masses were observed
in 1938, but they turned out to be
muons. Yukawa’s particles were fi-
nally discoveredin 1947. Both pions

and muons were first seen in cosmic
rays. Many other kinds of meson have
been discovered since. Yukawa’s mesons
became known as pi-mesons and even-
tually as pions. They aren’t elemen-
tary: like all mesons, they’re each
made up of one quark and one an-
tiquark.

The top quark

Our theory demands that such a
particle exists and weighs no more
than 200 protons. Experimenters have
not yet found it. They are confident it
must be heavier than 100 protons;
otherwise, it would have shown up
already. This window is rapidly being
closed: Ipredict that “top” (the Last of
the Quarks!) will be found by physi-

cists working at the Fermilab
proton—-antiproton collider within two
years.

Neutrinos

Neutrinos produced by a nuclear
reactor were first observed in 1953.
Since then, physicists have observed
neutrinos produced at particle accel-
erators, by cosmic rays, by the nuclear
furnace of the sun, and by the last
“nearby” supernova in 1987 (which
was a mere 160,000 light-years away).
Some scientists believe that neutri-
nos have mass and that the mysteri-
ous dark matter of the universe con-
sists of swarms of neutrinos left over
from the Big Bang. Ol
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QUANTUM SMILES

Physics limericks

Mysteries of the universe in rhyme,
the riddle of time in verse

by Robert Resnick

UTTING PHYSICS in limerick form has become

popular recently. It’s really an old game, though.

Back in Albert Einstein’s day, when there was a

writer named Gertrude Stein (“a rose is a rose is a
rose”) and a modernist sculptor Louis Epstein, a fashion-
able limerick went

There’s a curious family named Stein—
There’s Gertrude, there’s Ep, and there’s Ein.
Gert'’s verses are bunk,
Ep's statues are junk,
And nobody understands Ein.

Iwork humor into my physics classes and often cite a
relevant limerick. For example, in warning students what
could happen if they try to defy the laws of physics, I would
say

There was a young woman named Bright
Whose speed was much faster than light.
She eloped one fine day
In a relative way
And conceived on the previous night.

Of course, today that could be considered a sociological
limerick.
Or, in another vein,

A mathematician named Haines,
After infinite racking of brains,

Now says he has found

Anew kind of sound
That travels much faster than planes.

Back in 1958 I gave the students in a modern physics
class an examination in limerick form. They had to
complete the limerick I started by adding the couplet or the
last line. One test item, for example, was

An electron quite debonair
Spied a positron up on the stair.
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And finished him off in mid-air.

I should tell you the sort of legitimate answers I had in
mind for this one. Remembering that the electron and the
positron circle about their common center of mass, form-
ing a short-lived positronium atom before mutual annihi-
lation, the student might have used a couplet like

Sheputhiminatrance
With her infamous dance

A somewhat incorrect answer, for which I'd give part
credit, might be

She meant him no harm,
But turned on her charm,

A recent correspondent! who heard of my test offered this
answer:

She needed no tact,
For unlikes attract,

So you see, you really can find lots of meaningful solutions.
Another test item was

There once was a hard gamma ray
And a nucleus it forced to decay.
A resultant bambino
Was called the neutrino

The same correspondent met the challenge with this last
line:

You askifithad mass? Noweigh!

Now Ill give you some of the other test items and let

Barbara Levi, Physics Today.
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you try your hand at filling in the blanks. Remember, you
must make physical sense, be clever, and keep the gallop-
ing rthythm (or at least try)!?

Said a slow little neutron ere fission,

“Don’t speak of me with such derision.
Imay haveno charge,
Andbenotsolarge,

Anatom that camefrom the tap
Had electrons all over her map,
But in her interstices
Lurked a much worse disease

A meson descending in flight

Was veering first left and then right.
So brisk was its action,
The Lorentz attraction

An Xray shotoutlike a tear

Took off for a crystal quite bare.
It wasn’t the plasticity,
But that darn periodicity

The mesons are nuclear glue—
Just listen to what they can do:

The piones, thatis, not mu.

*There was a young man from San Fran
Whose verses never would scan.
When asked why this thing
Never went with a swing,
He said, “Itry to get as many words into the last line as I
possibly can.”

An electron was spinning around
And moving quite close to the ground,
Exotic its rapture
At the thought of K-capture

That exam spread far and wide since 1958. Ido think it
had something to do with popularizing physics limericks.
Since then physics journals and others have held physics
limerick contests.> Once you open it up to classical phys-
ics, as well as modern, and allow complete ones instead of
just test items, the sky’s the limit. I must have filed
hundreds of them away—not all the greatest, of course.

A recent article* in The Physics Teacher reprinted a
story of mine from the Rensselaer alumni magazine that
told of my experiences with student limericks. Already
I'm getting mail with complete physics limericks. One of
the best sets came from a high school student.> Here are a
few of his creations:

Isaquark a thing or a wave?

This question spurs many to rave.
Please, don’t you jeer,
I'm being sincere—

A quark can as either behave.

Where is it? 'Tis really uncertain,

Like trying to peer through a curtain.
Heisenberg had no doubt
You can never find out

Both position and momentum for certain.

And one for skeptics:

They thought they discovered cold fusion,
And in general caused quite some confusion.
Fleischman and Pons
May unfortunately be cons—
Their research might just be illusion.

So maybe we should have a contest
among students for the best complete
physics limericks. What do you think?
(For our foreign readers, this may push
your English as well as your physics to
the limit!] Meanwhile, send in your
lines to complete the protolimericks I've
given. ;

Next time—palindromes. That’s a lot
tougher!

Robert Resnick is Professor of Physics at
Rensselaer Polytechnic Institute, Troy, NY.

3See The Physics Teacher, September
1986 and September 1987.

#'There Was a Professor from Troy,”
The Physics Teacher, January 1990.

SPatrick T. Baker of Rockville,
Maryland.
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The music of physicists

Short tales (not “from the Vienna woods”)
that show the human side of some of the
giants of modern science

Albert Einstein (1879-1955) liked to play the violin, and he especially liked being
accompanied by the great pianist Artur Schnabel. One particular day, Einstein played
a wrong note—after all, he was a physicist, not a professional musician! He and Schna-
bel tried the passage again, and again Einstein missed the note. Schnabel lost his cool.
“Wrong, Albert, wrong! Just listen to me play it: one, two, three. .. Dearme, how
could it be you can’t count?!”

Robert Bunsen (1811-1899) invented many things, including the carbon zinc elec-
tric cell and the ice calorimeter, but he played only a minor role in developing the
ubiquitous burner that bears his name. Once he went to the local music conservatory
foraconcert and abulbwent oninhis head. During the intermission he turned to the
person sitting next to him: “Tell me, are all the violins over there playing the same
thing?” His neighbor told him yes, they all play the same notes. Bunsen shook his
head. “Well,” he said, “that’s pretty uneconomical. They ought to exchange them for
one big violin and have just one person play it!”

Max Planck (1858-1947), the instinctively conservative scientist who revolutionized
physics with his work on the quantum theory and relativity, was strongly drawn to mu-
sic in his youth. In fact, he seriously considered making it his career. Planck had such a
good ear that, as he used to tell his friends, no concert could be completely pleasurable for
him because he always noticed even the slightest mistakes the musicians made. Only
after many years did he—to his great joy—lose this “supersensitivity.”

The great nuclear physicist Ernest Rutherford (1871-1937), on the other hand, didn't
have avery good ear for music. Buthe did have apretty loud voice. Hisrepertoire con-
sisted of just two things, which his lab assistants reliably used to ascertain his mood. If
Rutherford was walking down the hall bellowing “Onward, Christian soldiers” {recog-
nizable only by the words, not the tune), work was going well. But if he was carefully
fitting words to the doleful strains of a ponderous dirge, his coworkers began mentally
preparing themselves: Watch out, Rutherford’s in a rotten mood! Q
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Methods of Motion

An Introduction to
Mechanics, Book 1

Isaac Newton really believed
that moving objects continue
at a constant speed in a
straight line? Do your
students? This manual was
created to help teachers
introduce the sometimes
daunting subject of Newtonian
mechanics to students in the
middle grades. The 27
activities presented here use
readily available materials to
give students visual, aural,
and tactile evidence to combat
their misconceptions. And the
teacher-created and tested
modules are fun: Marble races,
a tractor-pull using toy cars,
fettucini carpentry, and film
container cannons will make
teachers and students look
forward to class. Readings for
teachers, a guide for workshop
leaders, and a master
materials list follow the
activities, making this manual
useful for inservice
workshops. (grades 6-10)

#PB-39, 1989, 157 pp. $16.50

All orders of $25 or less must be
prepaid. Orders over $25 must include
a purchase order. All orders must
include a postage and handling fee of
$2. No credits or refunds for returns.
Send order to: Special Publications,
NSTA, 1742 Connecticut Ave. NW,
Washington, D.C. 20009.
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HAPPENINGS

The USA Mathematical Talent Search

Where else do you get an entire month to solve five problems?

N THE FALL OF 1989, VIA A

column of the same name in Con-

sortium, I initiated the USA Mathe-

matical Talent Search (USAMTS),
broadening the well-known Wiscon-
sin Mathematical Talent Search to
the national level. This endeavor was
supported by Rose-Hulman Institute
of Technology, the Consortium for
Mathematics and Its Applications
(COMAP), and the Exxon Education
Foundation. It was aimed at talented
high school students to attract them
tothe fields of science and engineer-
ing. Four sets of five problems were
published in the quarterly Consor-
tium during the 1989-90 school year.
The participants were given one month
to submit their solutions to each set of
problems, and their work was care-
fully evaluated by a team of faculty
members at Rose-Hulman. These
evaluations, along with complete sets
of solutions with insightful commen-
tary, were sent to the students, who
could gather 5 points for each perfect
solution and thus a total of 100 points
over the year. On the basis of the
outcome, several winners were de-
claredin each of grades 9 through 12
and were awarded valuable book prizes
by COMAP.

During the first year of the USAMTS,
nearly 300 students took advantage of
this unique opportunity. The states of
New York, Illinois, and Texas pro-
vided the largest numbers of competi-
tors, but most of the other states were
also well represented. It was particu-
larly gratifying that more than half of
the participants of the US Mathemat-
ics Olympiad were active in the USAMTS
and that five of the six members of
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by George Berzsenyi
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Prove that an integer can be expressed as the arithmetic average of two perfect
squares if and only if it is the sum of two perfect squares.

For what values of n is it possible to partition the set {1, 2, ..., n} into five disjoint
subsets so that within each subset the sum of the elements is the same?
00 000000000000 0000000000 0000000060C0DOCBOCFOCGOGNOGEISIPOISINOSGETS

this year’sInternational Mathemat-
ics Olympiad team took part in it.
Many of the participants commented
on their preference for this type of
competition, which doesn’t impose
stringent time constraints but instead
encourages careful exposition of mathe-
matical thought. That takes time,
and the beautiful work submitted by
most of the contestants is most re-
warding. Unfortunately, year-round
problem solving is not yet a national
pastime in America, SO we must re-

double our efforts to attract even more
of you to the USAMTS.

To this end, I offer two problems
from year 2, round 1, in the hope that
they will whet the appetites of thou-
sands of Quantum’s student readers.
For the complete set of five problems,
see the Fall 1990 issue of Consortium
or write to me at the USA Mathemati-
cal Talent Search, Box 121, Rose-Hulman
Institute of Technology, Terre Haute,
IN 47803. Q

Bulletin Board
Supercomputing for high school Students

The Cornell Theory Center, one of four national supercomputing
centers, offers a summer program called “SuperQuest.” Open to all of
the 23,000 high schools in the United States, SuperQuest is the only pro-
gram to offer advanced supercomputing specifically for high schools.
Four teams, consisting of 3-4 students and one teacher-coach, are
selected to come to Cornell for one month in the summer to learn about
supercomputing research and its applications. The students take classes
in supercomputing techniques, meet with supercomputer researchers
such as Carl Sagan, and work with Cornell’s technical staff to develop
their own programs.

Sponsored by IBM and the National Science Foundation, Super-
Quest’s goal is to foster creativity in devising computational solutions to
scientific problems, and no area of scientific endeavor is out of bounds.
For an application booklet and more information on SuperQuest, write
to SuperQuest, P.O. Box 6345, Princeton, NJ 08541, or call 607 255-4859.

National Science Olympiad results

Approximately 2,000 students representing 94 schools in 35 states
gathered at Clarion University of Pennsylvania in May to take part in the
sixth annual National Science Olympiad. The students competed in 32
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science events testing their knowl-
edge of biology, earth science, chemis-
try, physics, computers, and technol-
ogy. Winners received medals, tro-
phies, or scholarships for their efforts.
This year Irmo, South Carolina, bested
competitors in both the high school
and middle/junior high school divi-
sions.

The Science Olympiad, a nonprofit
organization headquartered in Roch-
ester, Michigan, seeks to improve the
quality of science education, increase
student interest in science, and recog-
nize outstanding achievement in sci-
ence education. The teams advancing
to the finals at Clarion University
were the survivors of regional and
state Science Olympiad tournaments.

Next year’s National Science Olym-
piad will be held at Penn Valley
Community College in Kansas City,
Missouri. For more information, write
toNational Science Olympiad, 5955
Little Pine Lane, Rochester, MI 48604.

Duracell scholarships

arship Competition awards 41 stu-
dents in grades 9 through 12 over
$30,000 in scholarships and cash prizes
for battery-powered devices they have
designed and built. Judges evaluate
devices on the basis of originality,
creativity, and practicality, and all
entrantsreceive an award certificate
and a special gift.

This year’s top winners will also
win an expense-paid trip to Houston
for the awards ceremony. All entrants
must have a teacher/sponsor, so ask
your science teacher for rules and
applications. For more information,
write to Duracell/ NSTA Scholarship
Competition, National Science Teach-
ers Association, 1742 Connecticut
Avenue NW, Washington, DC 20009.

Introducing Network Earth

The Turner Broadcasting System
recently premiered “Network Earth,”
an informative and entertaining weekly
program that offers a provocative look
at current environmental problems
and their solutions. Presented in a
fast-paced magazine format, Network

Earth’s topics range from the well-
publicized and widely discussed to
the obscure and unexplored issues of
the environment. The series will also
include interviews with environmen-
tally active celebrities and local he-
roes, and pointers toward leading an
environmentally positive lifestyle.

Network Earth invites viewers to
participate with its staff, environmental
experts and organizations, and each
other via computer. Through Com-
puServe Information Service, viewers
with access to a personal computer
and modem will be able to log onto the
system, read about current environ-
mental activities, ask questions about
what they have seen on the show,
access material that could help them
become more environmentally aware,
and participate in live computer con-
ferences.

Network Earth runs on Sundays at
11:00 p.m. on TBS. For more informa-
tion, write to Network Earth, One
CNN Center, Box 105366, Atlanta,
GA 30348.

Each year the Duracell/NSTA Schol-
/fWhal’s tiappening?

N
Summer study ... competitions ... new
books ... ongoing activities ... clubs and
associations ... free samples ... contests
...whateveritis, if youthinkit's of interest
to Quantum readers, let us know about
it! Help usfillHappenings and the Bulle-
tin Board with short news items, firsthand
reports, and announcements of upcom-
ing events.

What's on your mind?

Write to us! We want to know whatyou
think of Quantum. Whatdoyou like the
most? Whatwould you like to see more
of? And, yes—what don’t you like about
Quantum? We wantto make iteven bet-
ter, but we need your help.

What's our address?

Quantum
1742 Connecticut Avenue NW

Washington, DC 20009

Beatactorinthe
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physics in “Lightning in a Crystal.”

“Math to the Max.”

article.

nthe nextissue of Quantum. . .

What are the prospects for using light instead of electricity for information transfer
in electronic devices? Y.R. Nosov gives us a guided tour of this area of solid-state

What does it mean to “take the extreme case,” as we were told to do in the answer
to Math Challenge 152 A.L. Rosenthal plays variations on that rich theme in

Have you ever wondered why the holes in Swiss cheese are round? In his article
Sergey Krotov reminds us not to be afraid of asking “childish” questions.
What do Euclid’s greatest common divisor, Pythagorean triplets, and geneological

trees have in common? A.A. Panov shows us what in his mathematically arboreal

How did Native Americans throw a tomahawk so that it stuck instead of
bouncing? V.A. Davydov’s love of James Fennimore Cooper’s novels led him to
investigate, and he offers his results in “Tomahawk Throwing Made Easy.”

Plus . ..

- A glitch while inventing the steam engine
- Physics for dummies
- A discomforting incident in a railway tunnel

- New problems from the Tournament of Towns

...andourregular features!
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Math
M11

From a great variety of solutions to
this problem we've chosen two of the
most instructive and elegant, in our
view.

Inatriangle ABClet CD =1 bethe
bisector of angle ACB, AC=b, BC = a.
We'll prove that

1( 2ab .

a+b
Fora=10,b=15,thisgivesI<(2-10-
15)/(10+15)=12.

Solution 1. Draw a line through D
parallel to BC and intersecting AC at E
(fig. 1). Obviously, CD < CE + ED, and
the angles marked in the figure are
equal. Therefore, triangle CDE is
isosceles, CE = ED = x, and because of
the similarity of triangles ADE and
ABC

CE_ED _CB

EA EA CA’ (1)

orx/(b-x)=a/b. Sox=ab/{a+b)and
I<2x=2ab/(a+Db).

Solution 2. If wefix the vertices A
and C, the locus of B will be the circle
with center C andradius a|(fig.2). By
the well-known property of a bisector,
which can be obtained easily from
figure 1 and equation (1), BD/DA =
BC/CA = a/b. Thus AD/AB = bjla + b)
therefore, D is the image of B aftera
dilation with center A and scale factor
b/la + b). This dilation maps the locus
of Bonto the locus of D. So the latter
isacircle of radius ab/(a + b) passing
through C (seefigure2), andI= CDis
always less than its diameter, 2ab/(a +
b). Also, we see immediately that for
anylfromtheinterval0<I<2ab/(a+
b) there exists a triangle with a, b, and
1 as two sides and the bisector between
them.
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Figure 1

B

Figure 2

M12

Let’s set the sum s = x+ y > 0. Then the
set V(s) of values assumed by

2
(x+y)2 +3x+y= s—;—S—Hc 5

when x varies from 0 to s, consists of
all the integers from (s? + s)/2 to (s? + s)/
2 +s, each of them assumed once.
Now let’s notice that the last number

of V(s) and the first number of V(s + 1)
are consecutive:

s2+1 (st D)’+s+1

— —
Therefore, the sets V(s) cover all the

nonnegative integers n without over-
laps or gaps (fig. 3). Since any n gets

+s5+1

n

V(S)lD_ILL_ZJIS 4 5, .6 7 8 9
s 0 1 2 3
x0 01 0 1 20 1 2 3
y0 1 0 2 103 2 10
Figure 3

1990

intoone and only one of the sets V(s),
it can be represented in the required
form. Also, s, x, and y = s — x are
determined by n uniquely.

By the way, our formula shows that
pairs (x, y) can be enumerated by the
numbers n, as seen in figure 4. (N.
Vasilyev)

M13

To expose the main idea of the proof
let’s consider a triangle XYZ with a
fixed base YZ and vertex X moving
along a line I (fig. 5). It’s quite obvious
that the area of XYZis constantif /is
parallel to YZ; otherwise, it varies
monotonously as long as X doesn’t
cross YZ. (Actually, the area is propor-
tional to the distance from X to YZ.)
Now let’s denote the given quad-
rangles as in figure 6. If a diagonal of
the inscribed quadrangle, say KM, is
parallel to a side of the parallelogram
(AB or CD), we're done. Otherwise we
mark the point P on BC such that PM
is parallel to AB. Using our moving
methodit’s easy to transform PLMN
into the triangle ABC, which is just
half of ABCD, so its area remains
unchanged. Thus the quadrangles
KLMN and PLMN have the same area,
equal to half the area of ABCD. Sub-
tracting the triangle LMN from both
of these quadrangles, we get two triangles,
LNK and LNP (fig. 7), with the com-

Figure 4



Y Z
Figure 5

mon base LN and equal areas. From
this it follows that KP (or the side BC)
is parallel to the diagonal LN. (V.
Dubrovsky)

M14

The answer is no. To prove it, let’s
introduce a coordinate system on the
plane such that the initial positions of
the frogs get the coordinates (0,0), (1,0),
and (0,1) (fig. 8). It’s easy to see that
when a frog sitting at (x,y) jumps over
a frog at (a,b), it lands at the point (2a -
x,2b-y)|(fig. 9). So the parities of a
frog’s coordinates don’t change after a
jump. At the start each frog had at
least one even coordinate. Therefore,
none of them can hit a point with two
odd coordinates, in particular the point
(1,1)—that is, the fourth vertex of the
square. ‘

This solution can be explained in a
more visual way with the grid shown
in figure 10. The grid contains three of
the four vertices of the initial square at
which our frogs start, and it’s sym-
metrical about each of its points.
Therefore, the frogs can’t leave it to hit
the fourth vertex.

Also, for a similar reason the “red
frog” (starting at the red vertex in
figure 10) can get only to red points

(0,1) @

(o,o)‘-;'\; e (1,0) 0

N e

Figure 8

(2a-x,2p-y)

Figure 7

(the red “subgrid” is symmetrical about
any point of the whole grid). Simi-
larly, the “blue” and “black” frogs
have to stay on blue and black points,
respectively. We leave to you to prove
that each frog can get to any point of its
color. More difficult questions are
these: (1) Can two frogs simultane-
ously get to any two given points of
their respective colors? (2] What are
the triplets of points accessible to three
frogs at the same time?

The second question has a simple
and beautiful answer, but we won'’t
deprive you of the pleasure of finding
itonyourown. (N. Vasilyev)

M15

One of the most useful principles for
solving olympiad problems says: “Take
the extreme case.” Following this rec-
ommendation, let’s consider the face
F of a given polyhedron with the great-
est number of sides; let this number be
m. Each side of the face Fbelongs to
another face. This gives us at least m

® ¢ 6 ¢ © & © © © & © & ©
@ ® [ J ® [ ] @ L ]
® ¢ ¢ ¢ ® ¢ @ ¢ © & © © °
® ® [ ] L ] [ ] ® [ ]
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® & @ & 6 ¢ © ¢ © & © o @
L ] L ] L ] L ] ® ® ®
@ & © o ©¢ & © ¢ © & © ¢ ©
® ® [ ] L ] ® ® [ ]
Figure 10

D

+ 1 faces (including F), because a face of
a convex polyhedron can’t have more
than one edge in common with any
other face.

On the other hand, all the faces can
have no more than m different num-
bers of sides (even less, since 1 and 2
are, in fact, impossible). So there are at
least two faces having an equal num-
ber of sides.

This last conclusion is based on yet
another useful principle, this time a
very simple theorem known as the
pigeonhole (or Dirichlet) principle: if
more than m pigeons are placed inm
pigeonholes, then at least one pigeon-
hole has more than one pigeon in it.
(See the Contest Problem in this issue
for more pigeon talk.)

Although our solution seems very
much like many other pigeonhole
solutions, it can’t do without convex-
ity, and so it’s essentially geometrical.
In fact, two adjacent faces of a noncon-
vex polyhedron can have more than
one common edge (like a and b in
figure 11). In this case our reasoning
fails. Nevertheless, the statement of
the problem remains valid for non-
convex polyhedrons, too. The only
condition is that they shouldn’t have a
hole that goes all the way through,
like the one shown in figure 12. The
proof is based on Euler’s famous for-
mula

Figure 11
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Figure 12

v-e+f=2

(where v, e, and f stand for the number
of vertices, edges, and faces in a poly-
hedron), but it’s rather cumbersome
and not elegant enough to present
here. And yet another problem: does
our statement remain true if holes are
allowed? (G. Galperin)

Physics

The wheel is subjected to the reaction
force N. If the wheel is balanced, this
force is equal in absolute value to 1/4
of the automobile’s weight Mlgl (as-
suming the car is traveling along a
smooth, horizontal road).!

If the wheel is unbalanced, its cen-
ter of mass moves along a circle of
radius z, and the centrifugal accelera-
tion is w’r (r is the distance from the
wheel’s center of mass to the wheel’s
center, o is the angular velocity of the
wheel). When the center of mass
reaches the lowest point, INI exceeds V4

Mgl by moy’r (m is the wheel’s mass).
When the center of mass is at the
upper point, INlisless than ¥4 Mgl by
the same value. When the wheel slips
on the road surface (a certain amount
of slipping always occurs), the result-
ing force of friction between the wheel
and road may have a different value.
So with an unbalanced wheel some

The exact fraction of the
automobile’s weight corresponding to
each wheel depends on the position of
the automobile’s center of mass. In
general, it’s not equal to 1/4.
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areas of the tire may wear more rap-
idly than others. The practical result?
You may have to buy new tires sooner
than you would if the wheels had been
balanced.

P12

The elastic string can be considered a
spring. Let the spring’s rigidity equal
k. The string breaks when the full
force reaches the value

F.=mg+F, (1)

where m is the mass of the weight.
Let’s see what happens when the ap-
plied force reaches the value F imme-
diately and then doesn’t change.

At the initial moment (when the
force is equal to zero), the string is
stretched because of the weight of the
hanging mass mg by the amount x,
defined by the expression kx, = mg—
that is, the coordinate of the string’s
end at equilibrium is equal to x, = mg/
k (the origin is assumed to be the
position of the string’s end when the
weight isn't attached). After a force F
is applied, the coordinate of the string’s
end at equilibrium is equal to x’ = mg/
k + F/k. But the system reaches the
equilibrium state only after some
oscillations. The initial amplitude of
these oscillations depend on the ini-
tial deviation of the system from the
equilibrium position—that is, A = x' -
x, = F/k. The damping rate of these os-
cillations is quite low, so the full ex-
tension of the string after half of the
period is
X, = mg+F+A i +2£ :

i k k k

This means that a total force of

F/=mg+2F

is being applied to the string.

The string snaps when this force
exceeds F—see equation (1); this de-
fines the string’s strength limit. So the
minimum force F__ under which the
string breaks can be determined from
the condition F, = F—that is,

mg+2F

min

=mg+F1,

which readily yields

1890

F .
min 2

P13

The total pressure on the table is the
total force of gravity acting on the bell
and water:

F=Mg+ %nR3pg .

But when the water lifts the bell and
starts to leak out, the bell’s weight
itself no longer acts on the table. The
pressure on the table then equals the
pressure of the water multiplied by
the area of the base. The water pres-
sure is the same at all points (pgR), so
F=pgRnR?. Thisimplies that

nR3pg =Mg+ %nR3pg ,

which yields

1_.3
M==mRp.
3P

A Kvant reader proposed an inter-
esting approach. Assume that the bell
is placed in a cylindrical container
whose radius and height are both equal
to R. We'll fill the container with
water and take the bell’s mass to be
negligible. We can easily see that
since the inside and outside pressures
on the bell are equal at all points (this
follows from Pascal’s law and from
the assumption that the bell is very
thin), the water’s equilibrium won’t
be affected if the bell is removed. Neither
does the pressure of the water on the
table change. But this means the
pressure of the water we poured into
the cylindrical container acts exactly
like the bell, so the bell’s mass is equal
to the mass of the poured water:

M=V, e Vi
cylinder hemisphere p

= (RnR2 = % R’ )p

1_.3
==-mRp .
3 p

P14

The gas temperature is defined by the
average kinetic energy of its mole-
cules



where k is the Boltzmann constant.
This means that the higher the gas
temperature, the greater the average
velocity of its molecules and, conse-
quently, the.greater the average mo-
lecular momentum.,

If the temperature of the wall is the
same as that of the gas, a molecule
colliding with the wall changes its
momentum from p, to-p,. The change
in momentum is 2p,. When T'> T, the
gas gets heated, which means the gas
molecules move from the walls with a
greater velocity than they had before
the collision. So the resulting mo-
mentum is greater than the initial
momentum (fig. 13a), and the change
in momentum is greater than 2p,.

If T< T, the gas gets cooler, so after
the collision a molecule’s momen-
tum is less than before (fig. 13b). In
this case the change in momentum is
evidently less than when T'> T'. Ac-
cording to Newton’s second law, the
change in momentum is proportional
to the average force from the wall
acting on the molecule; and according
to Newton’s third law, the average
force exerted on the molecule is equal
to the average force acting on the wall;
therefore, the pressure of the gas on
the wall is greater when T'> T, than
whenT<T,.

P15

The devices should be connected as
shown in figure 14. Points O, A, and B
have the same potentials. (The resis-
tance of the ammeter is low, and we
can ignore the corresponding voltage
drop.] Consequently, there is no cur-
rent through the resistances connect-
ing point O with A and B. This means
that the ammeter registers the current
passing through the resistance between
points O and C, while the voltmeter

T,<T T,>T
P, P,
—— —
4.——[_ —
P P
a b
Figure 13

measures the voltage drop on this re-
sistance. Dividing the voltmeter read-
ing by that of the ammeter, we find the
value of the resistance.

Brainteasers

Point D should be positioned so that
segment CD is equal to 1/5 of segment
AC (fig. 15); then the area of triangle
DBC will be 1/5 that of ABC. Simi-
larly, point F is positioned so that BE =
AB/4,point Fsothat FD=AD/3, and
point Gsothat EG=AE/2.

AnZv%er: 1,999,999,999. 1f there are
two numbers a and b greater than 1
among the given numbers, then, re-
placing one of them with ab and the
other with 1, we’ll retain the product
of all the numbers and increase their
sum because the inequality (a - 1)(b-
1)> Qimplies that ab +1 > a+ b. Thus,
the sum will be greatest if one of the
numbers is a billion and all the others
areequalto 1.

Figure 14

Mark the level of the liquid and turn
the flask upside down.

Figure 15

B14

No, since every such number is less
than 10,0002 but greater than 9,9992 =
99,980,001.

Winnie-the-Pooh had walked for 3
minutes and Piglet for 6 minutes.
Suppose it took x minutes for Winnie-
the-Pooh and Piglet to walk from their
respective homes W and P to the meeting
point M. Winnie-the-Pooh spent x
minutes walking from W to M and
1 minute from M to P; therefore,
WM/MP =x. The same reasoning for
Piglet gives PM/MW = x/4. Since
WM/MP - PM/MW = 1, x2/4 =1,
which givesusx=2.

In tackling this kind of problem,
you’llfind it helpful to begin by plot-
ting the motions in question. The
graphs can then prompt you how to
work out an equation or simply render
the problem as pure geometry, as in
figure 16.

Boy-oi-iuoyancy!

1. Ap = 3p,_ gAh = 4kPa (p_ is the
density of mercury).

2. m = prnR*h - M (p is the density of
water).

3. 8 =AF/|pgAh) = 6.25 cm?.

4. The intensity with which the gas
burns is determined by the difference
in the pressure of the gas and air. The
pressure of the gas in the pipes of a
building is usually low, and its density
is lower than the density of air. The
decrease in air pressure on the top
floor of a fourteen-story building is
greater than the decrease in gas pres-
sure. As a result, the difference be-

distance
P X 1
x x WM PM

M( X x+1Tx+d wp Pw !
w Z 4

time

Figure 16
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tween the pressures increases, and the
gas burns better on the top floor.

5. The pressure the ball exerts on
the cover must increase.

Kaleidoscope

1. In the notations for figure 17 let
the circumcircles passing through A
meet again at P. Then angle BPC =
360° - angle APB — angle APC =360°-
(180°—v)-(180°-{3) =y+1{3. Thus, o+
angle BPC = o+ y+13 = 180°, s0 the third
circumcircle also passes through P.
The case in which P lies outside triangle
ABC is treated similarly. B,

2. Infigure 18, angle ATC + angle
ATC =120°+60°=180° therefore, T
lies on line CC,. The case in which T
lies outside the triangle requires obvi-
ous changes.

Figure 19

C] Cl

T
3. Let the rotation about A through
60° turn an arbitrary point M into M’ P
(fig. 19). Then AM = MM, BM = C M.
The segments CM, MM’, and M'C| c B b g
form onelineif and only if M= T'and .
the angles of triangle ABC don't ex- Figure 18 Figure 20
ceed 120°. In this case CM + AM + BM
- CM+ MM’ + M'C,>CC,=1=CT+
TT'+T'C =CT+AT+BT. If A>120° ;
ffig 20), 1= CC,= CT—TT"+ T'C, = CT Index of Advertisers
—AT + BT. We leave it to you to prove
that in the latter case the smallest ) o .
value of AM + BM + CM is attained for American Association of Physics Teachers 26
M=A. Cornell Theory Center 4
4. The answer is the intersection of Duracell 5
the diagonals. Ed d Scientifi 55
5. Hint: each of the centers of the B ) cientific .
Torricelli circles passing through, say, Embry-Riddle Aeronautics 17
vertex A is equidistant from the ends Florida Institute of Technology 39
of segment TA. General Motors Institute 48
Grinnell College Back cover
Tona College 2
International Educational Network 18
JETS 43
Marymount University 55
Correciion National Council of Teachers of Mathematics 65
NSTA Special Publications 11,55, 63
In equation (1) on page 18 of the Oxford University Press 42
May issue, the plus sign should be Princeton University Press 3
araised dot. (The equation is cited TOPS L ine S 2
correctly on page 21.) . @u’rnng ystems
University of Dayton 43
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FLIGHISOf W skills. Let Flights of
MMGN . Imagination add a

AN INIRODLCTION £ springtime lift to your
TO AFRODYRAMICS N .
B SANEIORNG g ;| middle- thrOUgh h[gh-
i school science teaching.
(grades 5-12)
#PB-61, 1990, 56 pp.

$7.00
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NATIONAL SCIENCE TEACHERS ASSOCIATION

included so students can convince themselves of the
value of statistics and careful measurement.

(grades 9—college)
#PB-2, 1985, 98 pp. $6.00

All orders of $25 or less must be prepaid. Orders over $25 must include a postage and handling fee
of $2. No credits or refunds for returns. Send order to: Publication Sales, NSTA,

1742 Connecticut Ave. NW, Washington, DC 20009-1171, (202) 328-5800.

Quantity discounts are available.

Experimentation
and Measurement

W. J. Youden

This text takes students
through the processes of
measuring: from taking
measurements and
recognizing possible sources
of error to learning which
measurements are important
and choosing proper
equipment. Experiments are

i
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Science and valg gé(l) ;n
Math Events: 5

and
Competing

When you are trying to build student
interest and enthusiasm in math and

science, few resources can match the Use the response card in thisissue to
excitement generated by science clubs .
and competitions. But how do you get OIC?.GI' Quantum f.Ol’ your Chﬂd/ grand-
your high-school students involved? And child, nephew, niece, mother, father,
how do you keep them involved? With friend ... Four colorful, challenging,
plans for successful fairs, details on 25 i 5 f 1 |
national and international contests, and entertalmng 1ISSUCS 101 only $ 14.00!
commentary by 89 prize-winning
scientists, this new publication prepares
you and your students for . ;
connecting and competing in the 1990s. F&CTOF X /nfO Z-he Quaﬂtum equaT/Ol’?,
#PB-47, 1990, 196 pp. $7.00 : :

P 3190 where X is any potential Quantum
All orders of $25 or less must be prepaid. /
Ord $25 t includ h der.
il reader you Know.

fee of $2. No credits or refunds for returns.
Send order to: Publications Sales, NSTA, 1742
Connecticut Ave. NW, Washington, D.C. 20009.
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CHECKMATE!

Fantasy chess

By introducing new parameters, you can add some
interesting twists to the age-old game

MONG THE UNUSUAL PROB-

lems and brainteasers in the realm

of “fantasy chess” (that is, chess

with an extra rule or two), there
are some rather rare but extremely
witty variations. Let’s take alook at
three of these.

Gince

This highly original version of the
fantasy genre differs from ordinary
chess in the following way: after an
enemy piece is captured, it isn’t re-
moved from the board—it’s returned
tothe positionitoriginally occupied
at the start of the game. Rooks and
knights return to the square of the
same color as the one on which they
were taken, and pawns go to the start-
ing position in the row in which they
were taken. If, however, the point of
relocation is already occupied, the
captured piece must leave the board,

as usual.
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N. Macleod, 1978
Mate in 2 moves (Circe)
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by Yevgeny Gik

It seems that white will achieve a
checkmate in one move, and in two
different ways: 1. Qa4xb3+ or 1. Bd7-
gd+. Butit’snotsosimple...

1. Qa4xb3 (the knight leaves the
board because g8 is occupied by the
black rook)—mate? The defense 1. ...
Kd1xd2 is impossible because the
captured bishop returns to ¢l and the
black king would thus be put in check
with white yet to move. But black has
another, more clever defense up its
sleeve: 1. ... Na8xc7!, and the white
pawn that appears on c2 blocks the
diagonal a4-d1. It seems white will
nevertheless achieve its goal: 2. c2-c3
mate, but after 2. ... b4xc3! a white
pawn again appears on c2.

1. Bd7-g4 won’t work either. That
move can be repulsed by 1. ... Bglxe3!
The white pawn is restored to e2 and
there’s no mate after one move; there’s
none after two moves either because
the €2 pawn can’t move anywhere.

The quiet move 1. c7-c8R! will lead
to success. This pawn disappears from
the board and 2. Qa4xb3+ becomes a
threat. Black answers with 1. ... Rg8xc8,
whereby the newly made white rook
appears on h1. The capture 2. Qa4xb3
is parried by 2. ... Re8xc5!, and again a
white pawn shows up on ¢2. But now
we can get a checkmate by 2. Bd7-g4+,
bringing the hl rook unexpectedly
intoplay: the black bishop is pinned
and the response Bglxe3 can’t be made.
Can’t black be saved by 1. ... Bglxe3
2. Qadxb3 Be3xc5!? In this case
2. Rg7-gl+ will prove decisive: black

1980

can’t take the gl rook with the bishop
or the rook because the white rook
will appear on al, putting the black
king in check again with white yet to
move. And openingwith 1.Rg7xgl+
won’t work because the bishop re-
turns to {8 and the white king is al-
ready put in check.

Finally, 1. ¢7-c8Q(N) goes nowhere
because of 1. ... Rg8xc8, and 1. c7-c8B?
isadeadendbecauseofl....Bglxe3!

Trellis board

In this interesting version of fan-
tasy chess the board is broken into
sixteen squares of four spaces each.
The rules are simple: a piece is power-
less in the square it sits in (it can’t
move or attack enemy pieces); it can
become active only by moving into
another square.

E. Wisserman, 1955
Matein2moves on atrellis board

In this position the black king can’t
move to h5 or h6 (these spaces are in



the same square as the king), while
the pawn on b2 can transform itself
into another piece only by capturing a
piece on cl (in the adjoining square)!

1. Bf5-d7! This threatens 2. Bd4-
f6+, against which there’s no defense.
If black responds with 1. ... Bb7-£3,
2. Nd2-E4+! is decisive—the bishop
on f3 finds itself in the same square as
the knight and isn’t allowed to cap-
ture it. In response to 1. ... Qhl-e4,
which pins the bishop on d4, white’s
next move is 2. Nd2-f3+ (the queen
protects the knight from the bishop
on b7—an impracticable idea in an or-
dinary two-move problem).

Other variants: 1. ... Re7-¢6 2. Rf2-
g2+); 1. ... Qh1-3(c6) 2. h2-hd+; 1. ...
Rgl-g4 2. Rf2-f5+. In normal play the
knight on g6 would be defenseless,
but on a trellis board it’s untouchable.

Frankfurt chess

In this kind of fantasy chess the
capturing piece turns into the cap-
tured piece (without changing color).

IN NN N
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N. Bakke, 1986
Cooperative mate in 2 moves

(Frankfurt chess)

As you know, in a cooperative prob-
lem black moves first and helps white
achieve a checkmate. 1. 0-0-0! f4xe5
(now e5 is occupied by a white bishop).
2. Nc6-e7+ d6xe7+! Mate is effec-
tively achieved by the new knight on
e’.

Curiously enough, this problem
has a very attractive twin. If the rook
is taken off a8 and put on h8, castling
again leads to a solution: 1. 0-0!

h2xg3 (the pawn turns into a rook)
2. Qh4-h5+! gd4xh5+ (the pawn turmns
into a queen), and the black king is
checkmated. It's amusing that the
white pawns in this diagram turn into
all sorts of pieces and at a rather
great distance from the last rank,
where these kinds of things usually
happen.

Q
f Does your library N
have Quantum?

If not, talk to your librarian!

Quantum is a resource that be-
longs in every high school and
college library.

See page 51 for subscription in-
formation.
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Comic relief for the serious student.

MATHEMATICS AND HUMOR

Edited by Aggie Azzolino, Linda Silvey, and Barnabas Hughes

What did the acorn say
when he final [y grew up ?
S o

\

National Council of Teachers of Mathematics

[N|C) 1906 Association Drive, Reston, VA 22091
B Tel. (703) 620-9840; fax (703) 476-2970

" Read this unusual collection of
limericks, riddles, jokes, and car-
toons that poke fun at the usually
serious subject of mathematics.

You'll find that mathematics can
be funny and that mathematicians
\ can laugh at themselves.

Share a good laugh with your
friends! Order your copy now.
58 pp., #266, $4.50.
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You may be surprised to learn that Thomas
R. Cech, the biochemist who shared the
1989 Nobel Prize in chemistry, is an honors
graduate of Grinnell College.

Robert Noyce, the co-inventor of the
integrated circuit and the father of the Infor-
mation Age, also graduated with honors
from Grinnell College.

In fact, Grinnell College is one of 48
small liberal-arts colleges that historically
have produced the greatest number of sci-
entists in America. Grinnell and these other
small colleges compare favorably with ma-
jor research universities, showing a higher
per-capita production of graduates with
science degrees. The small colleges comprise
five of the top 10 and 13 of the top 20
baccalaureate institutions in the proportion
of graduates earning Ph.D.s.

1989 Nobel Laureate in chemistry ThomasR. Cech, recognized forhisRNAresearchwhichmay provide

a new tool for gene technology, with potential to create a new defense against viral infections.

Election to the National Academy of
Sciences is an honor second only toreceiving
the Nobel Prize. Six of the top 10 member-
producing institutions, 11 of the top 20, and
15 of the top 25 come from that group of 43
small liberal-arts colleges.

The sciences do not exist in a vacuum in
the larger world. Nor do they at Grinnell.
The college’s open curriculum encourages
science students to take courses in other
areas.

Students who wish to focus their study
may engage inscientific research, usually in
a one-to-one relationship, under the direc-
tion of a Grinnell College faculty member.
Undergraduate student researchers often be-
come the authors of scientific papers with
their professors at Grinnell College.

Circle No. 15 on Readers Service Card

For more information,
please write or call:

Office of Admission
Grinnell College

P.O. Box 805

Grinnell, Iowa 50112-0807
(515) 269-3600
FAX-(515) 269-4300




