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GALLERY C

D EOPLE HAVE BEEN FASCINATED BY FLICKERING
l- images ever since shadows were first cast on cave
walls by primitive peoples sitting around a fire. As time
passed, technology allowed us to gain more control over
the creation of these images-and some would say these
images gained more control over us. The magic lantern
pictured above was the 1Sth century equivalent of

Oil on canvas, 34 7lB x 34 718, Gift of Mt& RobeftW. ScllLlette, A2A01 Baard of Trustees. National Callery at Att, Washjtlgtoii, D.C

The Magic Lantern (1764l'by Charles Am6d6e Philippe Vanloo

today's 52", high-definition, surround-sound television
sets that dominate many family roolrrs. Of course, the
lantern's flicker was due to the inconstant flame of a
candle, while the rapid flash of the TV screen is preciscly
controlled by high-tech electronics. To leam hou. the e)'es

of couch potatoes har,e proccssecl the imagcs of iclot
bore s both ancient irncl moclern, turlt to paqe -10
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Cover afi by Leonicl Tishkov

Why, you may wonder, is Quantrzm us-
ing a snowy scene for its fuiy/August
coverl The ;lnswer is twofold. First, the
scene ties in nicely with our article on
the physics of ice crysta1s, whlch can be
fonnd on page 6. And second, it marks
the passage oi Quontttm rnaglazine into
the winter of its existence. With this fi-
nal issue, we mark the endoi Quantunt's
12-year journey into the most challeng-
ing areas of math and physics. Thanks {or
sharing the iourney with us. Perhaps
one day we 11 meet again further down
the road. (See notice belolv.)

NOTICE TO SUBSCRIBERS
We regret to inform our loyal readership
that this is the last issue of Quantum
published by the National Science
Teachers Association. NSTA is proud
of its 12-year history of producing the
magazine and is grateful to its col-
leagues in Russia and the U.S. for their
dedication and hard work. We hope to
work with other groups to bring Ouan-
tumback as a Web-only resource, free
to all-but we cannot predict the likeli-
hood of success in developing financial
support for this endeavor. Please con-
tinue to check for updates at the Ouan-
tum website (www.nsta.org/quantum).
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FRONT MATTER

Iime Iu lllollB olr...

You say goodbye and I say hello
Hello hello

I don't know why you say goodbye,
I say hello.

past

HIS LAST ISSUE OF QUAN-
tum is a celebration of excel-
lence that our mag,azine has
brought to its readers for the
12 years.

Our success was bringing quality
physics and mathematics material
that would stretch the most inter-
ested and talented students. Our
failure was never reaching a circula-
tion that could financially sustain
the effort. It was a great run.

One puzzle that still confounds
me is the response by scientists and
mathematicians. In Russia, the most
accomplished people of science and
math contributed to Kvant. Their
efforts formed the resource of many
of our articles. These Russian lumi-
naries felt honored to have articles
published in a student magazrne.
From what I have heard, they exhib-
ited great pride in having their work
so published. This pride emerged not
only from the service they were pro-
viding but also from the satisfaction
of having successfully communi-
cated complex ideas in a manner ac-
cessible to students. The American
scientists and mathematicians have
never viewed Quantum in this way.
I will go so far as to say that they do
not view any popularization of their
ideas in this way.

Years ago, C.P. Snow talked
about two cultures. For Snow, the
cultures identified were people

-Lennon/McCartney

learned in science and those learned
in humanities. There are another
two cultures. The first is those aca-
demics who value communicating
their work to students and others in
the general community. In contrast
are the others who shun popttlariza-
tion because they think it detracts
from their work or, worse/ they be-
lieve that communication with the
public will harm their career op-
tions. Why does this second culture
emerge? Why is it that successful
writers are often considered "less
serious" scientists because of their
success in communicating their
ideas to a wider audience? Are the
universities and tenure criteria to
blame? How can we get the wide
range of talented professors (some
of whom were Quantum readerc
when students) to value good com-
munication and efforts in both for-
mal classroom environments and
informal arenas of magazines/ mu-
seums/ and media?

If the high quality of Quantum
articles provides an example of suc-
cessful interchange of ideas and
spurs American scientists to place
value on similar efforts, then we will
see the emergence of new Quantum
initiatives in the near future. We at
NSTA are hopeful.

I was first introduced to Kvant
by *y friend Sergey Krotov of the
former Soviet Union during our

years as academic directors for our
respective Physics Olympiad
teams. The problems, articles, and
humor in Kvant seemed like some-
thing we could import and massage
for our United States audience. Lots
of interested people stepped up to
the p1ate. Bill Aldridge, Executive
Director of NSTA, led the charge to
create a magazine of "the highest
qua1ity." Bill came through on his
commitment. He enlisted the help
of Sheldon Glashow, a Nobel Lau-
reate in physics; William Thurston,
a Fields medalist in mathematics;
and Yuri Ossipyan, vice-president
of the Academy of Sciences of the
USSR to launch the magazine. Ed-
ward Lozansky was right there as

an international consultant, and
Tim Weber took on the challenge of
managing editor. NSTA, under Bill
Aldridge's leadership and NSF sup-
port/ committed resources to ensur-
ing that Quantum met the needs o{
our intended audience. He also
brought the AAPT and NCTM on
board.

In the first issue, Bill Aldridge
quotes the great Russian scientist
and poet Michail Lomonosov as he
viewed the Northern Lights: "Na-
ture, where are your laws? The dawn
appears from the dark northern
climes! Does not the sun there set
up its throne? Are not the ice-bound
seas emitting fire? Behold, a cold
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flame has covered us! Behold, the
day has trod the earth at night." The
12 years of Quantum have at-
tempted to.answer some of these
questions while illuminating the
minds of so many who will one day
provide us with another glimpse
into the wonder of the universe.

Bill Thurston, in that same first
issue, reflected on the beginning of
his illustrious career as a mathema-
tician. "As a child, I often hated
arithmetic and mathematics in
school. Pages of exercises were te-
dious and dull.... I stared out the
window and let my mind wander.
Sometimes I tried to puzzle some-
thing out.... Might the square root of
2 eventually be periodic if you write
it out in base 12 instead of base 10?

How many ways are there to fold a

map into sixteenths, in quarters
each way?" This spirit of inquiry
pervaded the many issues of Quan-
tum andstimulated many readers to
invent their own questions and have
their minds wander.

It is now time to say goodbye to
Quantum and time to move on to
the next challenge. The high school
students who first subscribed to
Quantum are now 30 years old.
Some have received their doctoral
degrees, and I read their scientific
papers and biographies in magazines
and newspapers. Others have cho-
sen different paths in law, com-
merce, history, philosophy, and edu-
cation. Everyone was enriched by
Quantum.

It is strange that the last issue
should come on my watch, as I serve

as president of NSTA. The contest
problem that my colleague and
friend Larry Kirkpatrick and I wrote
each issue was both challenging and
rewarding. We were always pleased
to see the creativity that Tomas
Bunk added to our work with his i1-

lustration. And his illustrations
were an enjoyable contrast to the
work of Russian artists that has
graced so many pages of our maga-
zine.

NSTA loved QuantlTmt as did its
readers. NSTA will continue to
search for ways to engage the stu-
dents, teachers, and others in the
enjoyment of math and science.
NSTA will be looking to say hello,
once agaln.

-Arthur Eisenkraft
NSTA President 2000-2001

o

CyherTea$Er tttliltlter'$

ANY OF YOU WERE ABLE TO
get a1l ofyour ducks in a row to
correctly answer this month's

cyberteaser. Some of you ran a-fowl
during your calculations, but the
maiority of of our contestants were
able to set their sights on the corect
answer.

Congratulations to those of you
who were able to determine the

limitations of Baron Munchhausen's
hyperbolic hunting claims. Here are
the names of the ten contestants
who drew a bead on the correct an-
swer the quickest:

fohn Beam (Beilaire, Texas)

ferold Lewandowski (Troy, New
York)

Theo Koupelis (Wausau, Wisconsin)

Shvachko Y aly a ( Fremont,
California)

Anastasia Nikitina (Princeton, New
|ersey)

Margarita Satraki (Athens, Greece)

Wade Roach (Anchorage, Alaska)

Lewis Mitchell (Mt. Keira,
Australia)

David Yu (San Francisco, California)

Dale A. Boyd (Chesterfield,
Missouri)

I
HAPPENINGS Congratulations to our happy

hunters! Each oi you will recerr-e a

copy of this issue ol Quantttn and
the classic Quantum button. h-r ad-
dition, one of you will receive some
reading material for those cold
mornings in the duck blind: a copy
of Quttntum Quandarle-s. Hcrpe-
fully, it will warm your brain Lf not
your extremities.

For those oi r-ou
who weren't iortu-
nate enough to rrin
a copy of this per-
plexing pubhcatron,
Quantum Qu":i:da-
nes {stock # PB1l3X,
S8.951 can be or-

dered from the NSTA Scrence Srore
by calhng E00-S-'-1300, or b)-r-lsrt-
ing the online srore at 1\r\r\-,rsrd.o1gl
-s rold .

Aithough this rvill be the last is-
5uc oi Qtt,tntunt, wc invite you to
continue to visit our website at
\rww. nsta. or g I quantum. There you
will find our archive of past cyber
teasers, along with a listing of past
winners. Thank you for piaying
along with us all these years. \\re
hope your future is fil1ed rtth chal-
lenging puzzles to ponder. O
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BRAINTEASERS

Just lor lhe lun ol it!

8325
Calculating acquaintances. A teacher noticed that before class every
student shook hands with 5 girls and B boys. The number of handshakes
between boys and girls was 5 less than the number of all other hand-
shakes. How many students were in the class? (K. Kokhas)

8327
A checkered carcer. A knight moving according to the rules of chess
traversed an entire miniature chessboard consisting oI 5 x 6 squares and
returned to its orlginal position after having visited each square exactly
once. For some of the squares, the figure shows the number of the move
when the square was visited. Restore the entire path the knight took.
(A. Savin)

8326
Library Science 707. Seven volumes of an encyclopedia are arranged in
the foliowing order: l, 5, 6,2, 4, 3,7. Aruange them in ascending order by
volume number using the following operation. You may move three
adjacent volumes to the beginning, to the end, or between any other two
volumes without changing the order of the volumes in this triple.
(A. Savin)

8329
The T of tea. Tea was poured from the same teapot into a cup with sugar
in it and a cup without sugar in it. In which cup wiil the tea be cooler?

ANSWERS, HINTS & SOLUTIOIVS O/V PAGE 55

B328
Play this chord. The length of the chord tangent to the inscribed circles
shown in the figure is 2t. Find the area of the shaded part of the circle.
(From the book Mathematical Discovery by George P6lya)
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The lnaltylaces ol iue

The physics of frozen water

by A Zarelsky

I CE HAS ALWAYS BEEN CON-
I sidered a symbol of clarity, maj-

I .r,y, and beauty-a beauty,'how-
I ever, that is also austere, carrying
with it a coldness, a touch of evil,
even death. It wasn't for nothing
that Dante imagined that ice must
be found at the center of the Earth,
at the last step leading to Hell, and
that Satan's treasure is hidden in a

chest of ice.
It goes without saying that an art-

ist is entitled to view natural phe-
nomena and the laws of the universe
through an emotional lens. A scien-
tist, on the other hand, must be more
impartiaf both in choosing the object
of study and in analyzingthe mass of
(sometimes contradictory) data.

What is so interesting about ice
from the physical point of view?

The chemical formula for ice is
HrO. When it is cooled, water
freezes-or, strictly speaking, it
crystallizes. At present, thirteen dif-
ferent structural forms of ice are
known. Those who are superstitious
may have a problem with this num-
ber, but it puts ice in a special posi-
tion: no other substance with such
a simple chemical composition has
so many phase transitions. Let this
be our initial motivation in examin-
ing this curious obiect.

Figure 1 shows almost the entire
phase diagram of HrO. However,
there are still many gaps in the pic-
ture. Suffice it to say that ice-X and
ice-Xl were discovered only a few
years ago. The ice that everybody
knows is ice-I-or, strictly speaking,
ice-Io. At normal pressure and 0'C
its density is 0.917 x 103 kg . m*3-
it is less dense than water (that is,
water's density decreases during the
process of crystalhzation).

T (K)

1 000

100

This paradoxical property of ice
(recall that crystallization usually
results in an increase in density) is
of vital importance for life on Earth.
The glacial armor that forms on the
surface of water produces such effi-
cient thermal insulation that iakes
and reservoirs do not freeze to their
full depth. It's better not to think
what would happen to marine crea-
tures if ice were just a bit more
dense than water!
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Figure 2

Now let's consider the crystal
structure of ice-Ir. As early as l9l7
the first X-ray diffraction analysis
was performed. It wasn't too intri-
cate a task to study the arrangement
of oxygen atoms in the ice crystal. In
1922 the English physicist William
Henry Bragg showed that eYery oxy-
gen atom must be located approxi-
mately at the center of mass of its
nearest neighbors. Soon it became
clear that the oxygen lattice has a
hexagonal structure and looks like
figure 2. Look closely-turning the
lattice 50' about the OO'-axis
doesn't change it. This is why snow-
flakes (which areice crystals, by the
wayl are symmetrical. (Hans Chris-
tian Andersen was mistaken: snow-
flakes are not ten-pointed stars-if
they are star-shaped at all, they have
six-points.)

It took much longer to determine
the arrangement of the hydrogen
atoms. The reason is that X-rays are
scattered mainly by electrons. The
electrons in ice are almost always
concentrated near oxygen atoms/ so
it was very difficuit to localize the
hydrogen atoms by X-ray diffraction.
At first it was assumed that the hy-
drogen atoms are located between
the nearest oxygen atoms. This hy-
pothetical structure is very sym-
metrical. Let's think about whether
it's actually true.

First of all, it's clear that if all the
hydrogen atoms are located in the
middle between oxygen atoms, this
would be a typical ionic crystal.
However, the dielectric permeabil-

ity of such substances is generaliy
less than 10; in the case of ice, this
parameter can as high as 100-that
is, an order of magnitude greater.
Not good for our hypothesis.

In addition, the spectra of ice, wa-
ter, and water vapor (the latter is vir-
tual1y a collection of individual HrO
molecules) are very similar in the
infrared region. But these spectra re-
flect the molecular structure of a
substance. Therefore, a molecule of
water is "preserved" tn a crystal of
ice. Such crystals are cal1ed molecu-
lar.

Now 1et's do some simple arith-
metic. The X-ray data tel1us that the
distance between oxygen atoms in
iceis27.6 nm (1 nm: 10-e m). Thus,
in the symmetrical model, the hy-
drogen atoms must be located at a
distance of 13.8 nm from the oxygen
atoms. But in an "isolated" water
molecule the O-H distance is 9.5
nm, which is at odds with the sym-
metrical model.

Clearly we need to find a struc-
ture in which a certain degree of
"independence" is guaranteed for
the HrO molecules. Several such
structures were proposed by the
English physicists |ohn Desmond
Bernal and Richard Gildart Fowler
in 1933. The lattices were very
complicated, and perhaps for this
reason at the end of their paper the
authors proposed a very unusual
model for ice. According to their
hypothesis, in the premelting zone
the ice is crystalline only with re-

spect to the location of whole wa-
ter molecules, but the orientation
of these molecules can be arbrtrary
to a certain degree.

This important and interesting
hypothesis was further developed by
the American physicist and chemist
Linus Pauling. He proposed that ice-
Io is crystalline only with respect to
the oxygen atoms (which means
that only these atoms are arranged
in a certain order, forming in the.
total structure an independent crys-
tal lattice-that is, a "sublattice").
The hydrogen atoms are not ordered,
but their coordinates are not cyuite as

arbitrary: they are subjected to cer-
tain rules known as "Bernal-
Fowler-Pauling" (BFP) rules. Here
they are:

1. The protons are arranged on the
line connecting the oxygen atoms at
a distance of 0.95 A from an atom of
oxygen.

2. There are two and only two
protons located near every oxygen
atom.

3. One and only one proton is 1o-

cated between neighboring oxygen
atoms.

Figure 3a shows schematically a
piece of ice lattice that satisfies the
BFP rules.

Thus, in the classical sense of the
terms/ ice-I, is neither a crystai (the
hydrogen sublattice is disordered)
nor an amorphous solid body (the
oxygen sublattice is ordered). Again
we see the need {or physical research
to clarify mattersl

But wait-are we saying that ice
is never a " ttrle crystaI" ? To answer
this question/ we need to specify
what kind of ice we mean. Ice-II, ice-
MII, ice-IX, and ice-XI are " true crys-
tals." In these types of ice, both the
hydrogen and the oxyge+ atoms are
ordered and located at quite definite
places.

Ice-X is even more interesting.
Although the structure of this type
is a point of vigorous debate, we can
be reasonably sure that in ice-X the
hydrogen atoms are located right
between neighboring oxygen atoms.
But look at the phase diagram. To
obtain this kind of ice, we need to
compress water to a pressure of
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about 50 GPa (50 . 10e Pa)-that is,
we need to apply a 5-ton load per 1

mm2 of its surfacel
What wifl happen to the ice if the

pressure is increased further? Un{or-
tunately, at present it's impossible
to answer this question experimen-
taily. But scientists suppose that at
ten times the pressure the ice wi.ll
become... a metal. Metallic ice! It
sounds unbelievable. We'll have to
wait and see.

Let's return to our " orditary"
ice-that is, ice-Ir. As a general rule,
solid bodies tend to become more
ordered at lower temperatures.
Thus, sooner or later (that is, at a

sufficiently 1ow temperature) the
protons will occupy definite " crys-
talline positions. " Theoretical esti-
mates show that the ordering of
protons becomes energetically fa-
vorable at temperatures of 60-70 K.
Therefore, to convert ice-I, to a

"true crystal," we need to decrease
the temperature. However, cooling
results in an increase in the chatac-
teristic time of proton redistribution
(the lower the temperature, the
slower the motion of the protons in
the oxygen sublattice). In chemi-
cal1y pure ice at 120 K, the protons
are redistributed in l0 s, while at
100 K they undergo the same rear-
rangement in an hour; at 90-95 K it
takes a day. At the boiling point of
nitrogen (78 K), we would have to
wait ayear for the ordered hydrogen
sublattice to be arranged, while at
70*73 K you would spend your
whole life waiting for it to happen!
Let's not allow the temperature to
decrease to 4045 K: at this tempera-
ture the proton redistribution time
equals... the age of the Universe it-
self (5 . 1017 s).

The BFP rules explain many prop-
erties of ice. However, let's imagine
a crystal that is in strict compliance
with these rules. Look carcfully at
the ice lattice (figure 3a)-can the
protons move in it? The answer is
no. If proton A changes its position
as shown in figure 3b, the second
principle of the BFP rules will be vio-
lated. The motion of proton B along
the path shown in figure 3b wouid
violate the third principle.

Thus the BFP rules prohibit the
motion of the protons in the ice lat-
tice. However, ice is not an ideal
dieiectric-it has a measurable
electric conductivity, and its con-
ductance is protonic. So protons can
move in icel Does this mean that
the BFP rules are wrong after all?
That would be too simple an an-
swer. The correct one is this: they
are valid in almost all cases, but it is
the exceptions to the rules that ex-
plain the wonderful electrical prop-
erties of ice.

At the end of the 1950s the Swiss
physicist |acquard proposed a bril-
liant way of describing these electri-
cal properties in terms of the motion
of particular defects that arise when
the BFP rules are violated. It's a very
unusual mechanism of electric con-
ductance, so let's examine it in
some detail.

To begin with, we "spoil" the ice
Iattice and break the second BFP
ruIe: a proton will be taken from one
oxygen atom and added to another
{figure 3c). In this way we obtain
ionic defeus (they are denoted as
OH- and HaO.). Now we disturb the
regular lattice by breaking rule 3 as

shown in figure 3d. This results in
the appearance of orientation defects
(called I- and D-defects). The defects
are always present ln the real struc-
ture of ice but in very small num-
bers: there are only about 10s orien-
tation defects and a pair of ionic
defects among 3 . 1011 molecules of
chemically pure ice at 10"C.

Figure 4a shows how the protons
can moye. Consider the ionic defect
HrO'. Proton 1 moves to the place
marked by the cross. Previously the
HrO* ion was near the oxygen atom
I, and now it is at oxygen atom II.
Then proton 2 moves to the place
also marked with a cross-now the
HrO* ion is iocated near atom III,
and so on. We see that different pro-
tons move along different segments
of the same trajectory/ as if they"
were passing the baton in a relay
race. The result looks as if an indi-
vidual HrO* ion traveled the whole
way "by itself." Figure 4b shows the
ice lattice after displacement of the
HrO* ion from position I to position
x.

For clarity, we considered a hypo-
thetical flat, square ice lattice. Every
oxygen atom in such a lattice is sur-
rounded by four ecluivalent oxygen
neighbors, just as in a real three-di-
mensional lattice. Therefore, all the
derived inferences are also valid for
the real ice iattice. Try to under-
stand the motion of OH-ions andL-
and D-defects on your own.

It turned out that in some other
substances the mechanism of con-
ductivity is just the same. Nowa-
days even biochemists pay close at-
tention to studies of the electric
conductance mechanism in ice,
since proton transfer in a number of
biological objects is very similar to
proton motion in ice.

Although |acquard's theory ex-
plained many phenomena, the
amount of new experiment aI data
grows with every passing year, and
they demand further elaboration of
currently accepted concepts. New
and sometimes paradoxical hypoth-
eses are proposed. According to one
such boid hypothesis,,the "trLle"
caruier of the electric charge in ice
are electrons that have "saddled"
the proton defects. Whether this is
true or not, time will te1l.

The volumetric properties of ice
are unusual and rather exotic, but
the features of its surface are even
more remarkable. Wake someone up
in the middle of the night and ask at
what temperature ice melts. "At
0"C, of course." However, change
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the wording slightly: "At what tem-
perature does the surface of ice be-
gin to melt?" Even specialists in the
physics of ice won't be able to give
you a straight answer.

From the viewpoint of fundamen-
tal science, studies of the surface of
ice are very interesting. But their
practical importance is even more
impressive. Indeed, the movement of
ice-breaking ships, the de-icing of
ships and planes, construction in po-
1ar regions, the motion of glaciers: in
all these processes it's important to
know what takes place on the surface
of ice-that is, at the boundary be-
tween ice and metal, plastic, various
kinds of soil, and so on. It's necessary
to know the mechanism of ice adhe-
sion to various building materials,
the value and character of friction,
and similar characteristics. And the
sporting goods industry is forever on
the lookout for materials with a

minimal coefficient of friction!
By the way, why do many mate-

rials slide on ice so easily? Perhaps
many readers are ready to answer
this seemingly "simpie" question.
Everybody knows that swift sliding
takes place when there is a layer of
water between the ice and the ob-
ject. When the object presses hard on
the ice, the ice melts, since melting
under pressure occurs at lower tem-
peratures.

Is it really so simple? Let's see.
The ice phase diagram says that the
meiting point of ice decreases by one
degree per pressure increment of AP
: 107 Pa. Let the mass of an ice
skater be M = 60 kg and the area of
a skate S :3 . 200 mm2 = 6 . l}a m2.
The increase in pressure will be AP
: MSIS: 106 Pa. Thus the melting
point of the ice under the skate will
be decreased by only 0.1"C1 Can we
enjoy skating at -10"C? It seems

quasi-liquid layer

that we should look for some other
reasons for efficient sliding on the
ice surface.

It's thought that at temperatures
below the melting point, a thin
quasi-liquid layer is formed at the
surface of crystalline ice (the prefix
"quasi" means "almost" or "sort
of"). It's doubtful that this film is
iust an ordinary liquid. However, in
many respects it's similar to water.
In some experiments the quasi-liq-
uid layer was detected even at
-3O"C-that's 30 degrees below the
standard melting point! Does the
quasi-liquid layer underlie the small
value of ice's coefficient of friction?
This hypothesis explains many fea-
tures of the surface of ice, but unfor-
tunately the true nature of these
phenomena is far more complicated
and may be understood more fully in
the future.

By the way, the scientific debate
between adherents of the "quasi-1iq-
uid layer" and "pressure melting"
has gone on for more than a century.
Such renowned personalities as
Michael Faraday and the Thomson
brothers {one of them known world-
wide as Lord Keivin) devoted some
of their scientific efforts to studying
ice.

No doubt many of our readers
have had the pleasure of throwing a

snowball. Did you ever wonder why
it's so easy to make a snowball?
Snow isn't dough or modeling clay,
after all-it's small crystals of ice.
Try making an iron "snowball" out
of metal filings. Ice is much better
suited to the task! Can you figure
out why? Michael Faruday did, more
than a hundred years ago. In 1850 he
noticed the following fact: the
pieces of ice congeal if they contact
each other at a temperattxe near
0'C. Why? To explain this phenom-
enon, Faraday suggested the exist-
ence of a certain (quasi-liquid) layer
on the surface of ice.

Look at figure 5 and you'll see
immediately why the existence of a
quasi-liquid layer causes two pieces
of ice to adhere. The concept of a
quasi-liquid layer was also used in
attempting to explain the move-
ment of glaciers.

congealed balls

,

Figure 5

pressure melting

b

common liquid
layer is formed

Cd
Figure 6

The authority of Faraday was
yery greatt but it didn't stop |ames
Thomson (brother of Lord Kelvin)
from suggesting an alternative ex-
planation. He drew attention to the
part of the phase dragrarn that was
known at the time and proved theo-
retically that ice must melt when it
is compressed. There{ore, if two
pieces of ice are pressed together,
they must melt together (figure 6).

Earaday conducted a series of ex-
periments that undercut Thomson's
theory, but the controversy was stiil
not settled. The fine theories of Fara-
day and Thomson are surely based
on sound data, but the real mecha-
nism of ice adhesion lies somewhere
in between.

In this article we considered only
some of the physical properties of
ice. These properties affect many
atmospheric processes and geo-
physical phenomena on Earth. Re-
cently it was established that rapid
crystallizatron of ice is accompanied
by glowing. Perhaps the northern
lights are related to some properties
of ice?

Ice is also found widely in outer
space. Mars, |upiter, and Saturn con-
tain huge amounts of ice, and many
asteroids and even some natural sat-
ellites are made entirely.of ice.

Many of the problems discussed
here still await a solution. How
many types and aspects of ice are
still hidden from science? There is
no shortage of problems and hlpoth-
eses about the many "faces" of ice-
I, ice-Il, ice-III... It's quite possible
that some of our readers will succeed
in mapping the unexplored regions
of ice physics. Perhaps you'll dis-
cover yet another "face" of ice. O

congealed balls
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Physics

P326
Cat and two mice. A cat is sun-

ning himself on the roof of abarn, at
the very edge. Two nasty mice shot
a pebble at him with a slingshot.
They missed-after describing a pa-
rabola, the pebble recoiled elasti-
cally from the inclined roo{ near the
cat's paws. The recoil occurred at t,
: 1.2 s. After a period tr: 1.0 s the
pebble hit the paw of the mouse who
shot it (figure 1). What was the dis-

HOW DO YOU
FIGURE?

Challer$Bs

tance s between the cat and the
mice? (D. Aleksandrov andV. Slobo-
dyanin)

P327
Sinking barge.In the middle of

the bottom of a rectangular barge
(length a : B0 m, width b : 70 m,
and height c : 5 m), a hole with di-
ameter d = | cm was punched. De-
termine the time needed to sink the
barge if water is not pumped out of
it. The top of the barge is open, the
barge is unloaded, and the initial
height of the sides above the water's
surface was h = 3.75 m.

(S. Varlamov)

P328
Two electric hemispheres. Find

the force of interaction between two
electrically isolated hemispheres of
radii R and r carrying charges Q and
q, respectively, uniformly distrib-
uted over their surfaces (figure 2).
The centers and the maximum
cross-sectional planes of the hemi-
spheres coincide. (G. Grigoryan)

P329
Large capacitor. Estimate the

steady-state charge accumulated on
the capacitor with capacitance 1000C
shown in figure 3. (O. Shvedov)

P330
Lens and dancingmfuror. Aplane

mirror rotates with an angular speed
ro about an axis that is perpendicu-
lar to the optic axis AB of a converg-
ing lens with a focal length F (figure
4). AparaLlel beam of rays hits the
mirror, where it is reflected and fo-
cused on a screen situated at the fo-
cal plane of the lens. Find the speed
of the light spot on the screen at the
moment it passes the focal plane of
the lens. (E. Palchikov)

llllalh

M325
How elongated is rtl We'll say

that the "elongation" of a rectangle
is the ratio of its longer side to its
shorter side. Let a rectangle B be in-
scribed in a rectangle A so that the
vertices of B lie on the sides of A.
Prove that the elongation of B is not
less than that of A. (N. Vasilyev)

M326
lntegerc and altitudes. The sides

of a triangle are integers x, y, and z.
It is given that one of its altitudes is
equal to the sum of fwo others.
Prove that * * f + z2 is the scluare
of an integer. (D. Fomin)

M327
Can't be Jess. Prove that x . 2v +

y . 2-" > x + y for any positive num-
bers x and y.

(N. Vasilyev, V. Prasolov,
and V. Senderov)

CONTINUED ON PAGE 15
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$tl'elchinU Erel'cise

Give your mind a workout

by Donald Barry

HERE ARE TWO MAIN REA-
sons why textbooks should in-
clude challenging problems.
The first is that students gain a

valuable and authentic sense of ac-
complishment whenever they con-
quer something truly difficult. The
second is that the more difficult
problems have a greater variety of
solutions, providing students with
the opportunity to experience their
own creativity in mathematics. Un-
fortunately, since present textbooks
don't stretch our students, we need
to create challenging problem sets.

Here's one such problem along
with a solution, eight annotated

proofs, and some additional prob-
lems. I gave it to a class of strong
ninth-grade geometry students, fol-
lowing work with right triangle
trigonometry, the Sine and Cosine
Laws, inscribed angles, and the
Power of a Point Theorem.

Problem: Ecluilateral triangle
ABC is inscribed in ctucle O(see.fig-
ue l). Point P lies onEd and PA =

3. Determine the value of PB + PC.
The students first reactions was

that the problem was impossible be-
cause neither P's location nor the
size of the circle or triangle were
given. But when you give students
challenging problems, suspicions of
old tricks arise, and so it wasn't long
before my students guessed that the
answer had to be invariant. They
slid P until it coincided with B, mak-
rngPB: 0. This made PC : PA = 3,
and if the answer was invariant then
PB + PC = 3 as well. But they felt
uneasy. They weren't certain thar
PB + PC always equaled PA, and
some of them realized that their spe-
cial case solution involved changing
the size of the figure. We had a

double period, and within 25 min-
utes, Soojin Park and |en Wong
came up with the following fairly
complicated proof . Luckily, I'd done

the problem the same way the night
before so that I could point them in
the right direction when they be-
came confused.

Proof 1: A clever student solution.

LBDP-LADC)BP -BDAC AD

-+BP=AC'BD.
AD

LPDC - LBDA-PC =DCBA DA
, D,- -BA'DC-fv- DA

Since AC = BA and AD = DA we
have:

AC.BD+ AC.DC
BP+PC=

AD
ACIBD+DC) _AC.BC _

, ^],-t(_

AD AD AD

This is interesting, suggesting the
presence of a geometric mean. Aha,
consider:

L1AC-^cAD-4={AC AD
^^)AL

AD

Flence, PB + PC = PA (figure 2).Figure 1
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Proof 2: The kitchen sink. For my
part,I looked at the problem and felt
that surely there ought to be a proof
involving the Triangie Angle Bisec-
tor Theorem, the Power of a Point
Theorem, and perhaps the invari-
ance involving the bisector of a I2O"
angle. It took a while but I finally
put them all together in the follow-
ing proof, which reveals facets of the
problem that no other method illu-
minates.

First, given figure 3, it is true that

This gives

Second, referring to Figure 4,
know that

by the Triangle Angle Bisector
Theorem. Thus, 1et BD = ak andDC
: bk.

Third, Iet PD = c and DA = d.
Then, since the products of the seg-
ments of concurrent chords are
equal {the Power of a Point Theo-
rem), we have (ak)lbk) : cd, giving
(abklk = cd.

Fourth, without loss of general-
ity, let the sides of equilateral tri-
angle ABC be 1. Since LADC -
ABDP,

DC AC bK 1 ,,
-=---)-=--)aDR=c.DPBPCa

From (abklk = cd we now have k =

d, giving abd = c or

abl
-=-cd'

Drawing upon the f.act that

,ab
nLh-UTU--

L

we now have

a+b =

That's interesting, a theorem in its
own right.

Fifth and last, since LADC -
LACP, we have

AC AP I c+d
AD AC ,d_ 

I

Thus, both c + d and a + b equal lf d,
and so they are equal. If the side of
ABC equals m, then

c+d=r*b=*ld'
not as pretty a result but sti1l nifty.

Working independently, Ben
Bloom, a ninth grader, developed a
proof much like mine. He didn't
know that lla + llb: llc anddidn't
use it, but he did discover that if the
side of the triangle is 1, then both PA
and PB + PC equal the reciprocal of
AD. His proof is shorter than mine,
and I'm grateful for having learned
something.

Proof 3: Create a new equilateral
triangle. One of my colleagues, Bill
Scott, was so excited by the proof he

I
d

111
I

ab c

.ab
C

PB BD

-=-PC DCFigure 3

Figure 4

Figure 2

Figure 5 Figure 6
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discovered that he burst into my
Analytic Geometry class to share
the proof right then and there in
front of all qry students. I loved the
interruption; I think it is important
for students to see our passion and
excitement for mathematics, and
Bill more than filled that bi1l. I also
like his proof because it is very visu-
ally satisfying.

In figure 5 mark off chord Af
gqual to chord BP, making
AE = BP . Since AB = -BC we have
EE=fa and so BE : PC. Extend
both Af and nP until they meet at
F. Since EAPB is an isosceles trap-
ezoid and IBPA: 60o, then ZPAF
: 60' and triangle FPA is an ecluilat-
eral triangle wlth FP : PA. But BE
is parallel to AP, making triangle
FBE an ecluilateral triangle. Thus,
FB : BE, and since we showed that
BE : PC we know that FB + BP : PC
+ BP. Since FB + BP = PA then PB +
PC = PA.

Proof 4: A second equilateral tri-
angle construction. Extend rc to d
(figure 5) so that PA : PE. Since
ZAPC : 60' then LPAE is equilat-
eral. If ZBAP : x, ZPAC : t, arrd
ICAE : z, then x + y = 60" arrd y + z
: 60", making x : Z -+ ZBAP =
ZCAE. Since IBPA = ZE:60'and
AB : AC, then L,PBA - LECAby
AAS, giving PB = CE. Thus, PB + PC
: CE + PC = PE. Since PE = PA, then
PB + PC: PA.

Proof 5: Law of Cosines. I sug-
gested that the students look for a
trigonometric solution. As an aside
I should say that I think our cuffent
trigonometry textbooks miss all

A

Figure 7

l4

Figure B

sorts of opportunities to tie trigo-
nometry to the previous work stu-
dents do in geometry. However, no
one in the class found a trigonomet-
ric solution. They ran into road-
blocks when they tried to find PC
using the Law of Cosines rather than
finding setting AB andAC equal, as
in the following solution (figure 7):

AB2 : PBz + PA2 - 2(PB\(PA) cos 50o

gives AB2 : PB2 + PAz - (PBllpAl.
Likewise: ACz : PC2 + PAz -
(PCllPAl. Since AB : AC

PB2+PAz-lPBl(PAl
= PC2 + PA2 - lPCl(PA),

PBz - PC2 : lPBl(PA) - (PCl(PAl,

(PB + PC)IPB - PCI = PA(PB - PCl.

Therefore, PB + PC : PA.
Proof 6: Law of Sines and Summa-

tion formula. No one tried to use
either Law of Sines or the summa-
tion formula for sines, but such an
approach was, in fact, quite acces-
sible as the {ollowing proof shows:

Without loss of generality let the
side of the triangle be 1(figure 8).

Using LAPC:

IPC
ri"60r=.ir-,1e0"-11

-+ sin 60' cos x - cos 60o sin x
= (sin60')PC.

Thus,

J3 IG
-cosx 

- -slnx = 
u" pC -222

J3 "or, - 
sinx = Jz1trc1.

Using LABP:

:^= !' -+2sin,=Jl1ta..sin60' sinx

Using LAPC:

IPA
r*r60"=srn(60"+x)
-+ sin60"cosx + cos50osinx

= (sin60.)pA.

Thus,

Glr;
-cosx 

+-sln y =!a p4
222
- J5"os, + sinx = (J5)ra

Clearly,

Je1ta1+J5(PC)

= J5"o., + sinx = Jz(pe),

soPA=PB+PC.
Proof 7: A third equilateral tri-

angle construction. No one discov-
ered the following proof, although
we were beginning to nudge around
it. I love this one because it extends
our understanding of auxiliary lines;
they can be more than paralle1 or
perpendicular lines.

Construct an equilateral triangle
(figure 9l: draw CE so that IPCE :
60'. If we let ZDCP: x, then ZDCE
:60o - x, but since IACD: 60o, that
makes ZACE =& so ZDCP: ZACE.
Also, ZBPC:120" = ZAEC, andAC
: BC, sobyAAS, AACE - LBCP and
AE : BP. Since AECP is equilateral,
PC: PE, so PB + PC : AE + PE: PA.

Proof 8: Ptolemy's theorem. Our
discussion of the equilateral prob-

A
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Figure 10

lem paved the way nicely for a dis-
cussion of Ptolemy's theorem, and,
additionally, proof 7 primed my stu-
dents for proof B.

Ptolemy's theorem states that if
ABCD is inscribed in a circle, then
the sum of the product of the oppo-
site sides equals the product of the
diagonals; i.e.

AB .DC + AD .BC: AC .DB.

We apply it in this problem using
quadrilateral ACPB:

AC-PB + AB .PC : AP .BC.

Since AC : AB : BC, we divide to
obtain PB + PC: PA. This is the
simplest proof, and suddenly it be-
came clear that the problem we'd
started with was just a special case
of Ptolemy's theorem.

Ptolemy's theorem and the con-
struction of trigonometric tables.
Once we had Ptolemy's theorem, I
could return to a previous discussion
of the origins of trigonometric tables
and demonstrate how this result
could have been used to develop the
difference formula for sines.

In Figure 10, let AD, a segment of
unit iength, be a diameter of the
given circle. Lr such a circle, it is not
difficult to see that a chord sub-
tended by an angle of measure u has
length sin o.1 Thus BC : sin (u - B),

llndeed, if one side o{ the angle is a
diameter, this result follows from the
trigonometry o{ the right triangle. If
not, then we can construct an inscribed
angle subtenfing the same arc for
which one side is a diameter, and
which has the same measure (figure 11).

Figure 11

CD : sin p, BD = sin 0, and (from
right triangles ABD, ACD) AB :
cos a, AC: cos p. Substituting into
AB.CD + BC.AD: BC.AC,we
find that cos cx sin 0 * I . sin (cx - p)

: sin u cos B, and we can solve for
sin (o - B).

With this result, we can now con-
struct tables of the values of trigono-
metric functions. For example, us-
ing special triangles, one can find
exact values for 15o and 18" angles,
and the formula then yields an exact
value for a 3" angle. The half angle
formula then gets exact trigonomet-
ric values for the 1.5" and .75o angles,
and one is well on the way to con-
structing accul.r ate trigonom.etric
tables.

Invariance. It should be clear
that the original equilateral triangie
problem was not a dead-end-it led
us on a merry search for proofs and
then back to the origins of trigo-
nometric tables. In general, chal-
lenging problems do just that-they
are fertile and productive, they re-
veal connections, suggest ques-
tions, pique interest, and demon-
strate the creative potential of
mathematics. I have found that ge-

ometry problems that involve an
invariant relationship are a particu-
larly good source of such materials.
Initially, they catch students' atten-
tion because they are provocative-
they appear to be unsolvable. Yet by
using either a special case or an ex-
treme case, students can often ob-
tain a numerical answer/ but they
don't trust their work, and they are
keen to soive the general problem

to know for sure that they are cor-
rect. Furthermore/ once the general
problem has been solved, they've
often discovered a significant re-
sult.

I'd like to close this article with
three problems that involve invari-
ants. The first leads to the Parallelo-
gram Law, the second raises all sorts
of questions, and the third may be
familiar.

Problem I.IIABCD is aparallelo-"
gram with AB = 7 and BC = 24, de-
termine the value of AC2 + BDz.

Problem 2.If ABCD is a rec-
tangle and point P is somewhere in
space such that PA : 9, PB :7 , and
PC = 2, find PD. Is there an analo-
gous result for trapezoids, for just
isosceles trapezoids, or for hexa-
gons?

Problem 3. In AABC, ZABC :
120o, and D lies on AC so that BD
bisects ABC.

al If DB : 2, {ind the value o{

11
-T-.
AB BC

b)If DB = 12, find all pairs of in-
tegral values for AB and BC. O

CONTINUED FROM PAGE 11

M328
Numatous nines. The sequence

{zr,} is defined by the following rules:
ao : 9, ak, 1 

: \af + aaf for anyk >

0. Prove that arocontains more than
1,000 instances of the digit 9 in deci-
ma1 notation.

(N. vyatyi)

M329
P erf ect chr omatic b aianc e. Every

face of a conYex polyhedron is a
polygon with an even number of
sides. Is it always true that its edges
can be colored in two different col-
ors so that each face has an equal
number of edges o{ every color?

(S. Tokarev)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 52
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The tricky business of returning from space

[Ulany happy r'Blurlt$

by Albert Stasenko

"J|H:,'l-,iqt-"#fr*;1
splashed into the bay. In the middle
of it were three floundering men.

"We had no food for fifty-seven
dayst" mumbledMr. Lund, whowas
skinny as a starving artist, and he
explained what happened.

-Anton Chekhov,
"The Flying Isles"

Strange as it may seem, returning
to Earth is by no means a simpler
task than space travel in a rocket.
You'Il know the answer to this ques-
tion: How much energy is needed to
lift a load (you, for example) ft
meters? Yes: mgh. Accordingly, this
potential energy will be transformed
into kinetic energy and finally into
heat during and after a fall from this
same height ft. How can one use this
energy if the altitude h ecluals, say,
the height of a 1O-f1oor building?
Our aim is to make a soft landing
with almost zero speed. This means
that the kinetic energy that is con-
tinually gained from the loss of po-
tential energy must be dissipated in
one way or another-for example, to
overcome the frictional forces of a
rope hanging from the tenth floor.

In the same way, a spacecraft that
must make a soft landing on the
Moon or a planet without atmo-
sphere (Mercury or Mars) must de-
crease its speed, and its correspond-
ing kinetic energy, by firing its
engines to oppose the spacecraft's
motion.

However, this reasoning is cor-
rect only if we heed the advice so
often given in physics textbooks:
"neglect air resistance." In reality,
no experienced spacecraft designer
neglects it: many hovering devices-
parachutes, gliders, and airplanes
with their engines turned off, which
for better or worse fly like gliders-
land without using an ounce of fuel.
Their speed is decreased by aerody-
namic resistance-that is, by the
force acting on the vehicle due to
the air molecules. Can one use the
force of the Earth's atmosphere to
make a landing from outer space
"free o{ charge"? It's not as trivial a
problem as it may seem at first
glance. Indeed, recall the tragic des-
tiny of most meteorites, which can-
not land safely! Only miserable rem-
nants manage to reach the Earth's
surface. We, on the other hand, want
to land in one piece, without giving
up any of our mass or expending any
energy.

Can we do it?
To answer this question, 1et's

come up with a plan and break the
problem down into manageable
pieces. We'l1 recall how air resis-
tance-the aerodynamic f orce-de-
pends on atmospheric density and
the object's speed; and how an object
heats up and cools down as it moves
in the atmosphere. Finally we'1ltake
the last step and draw our conclu-
sion.

Almospfimh density
First of all we'Il consider the at-

mosphere on Earth. In this limited
space we can't hope to cover every
sort of atmospheric phenomenon-
winds, thunderstorms, typhoons,
clouds, and so on. There are entire
books devoted to these topics. How-
ever/ we can do what physicists do
whenever things get too compli-
cated (unfortunately, ority compli-
cated processes are left, because the
simple ones were understood long
before modern physics was born):
we'll construct a mathematical
model of the atmosphere. A good
model should describe the most sa-

lient features of the phenomenon, or
aspects that we'll use later in our
investigations. What is most charac-
teristic about the atmosphere? Its
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density, for one thing-after all,
we'll be examining rapid motions in
the atmosphere, and intuition
clearly tells us that the force of air
resistance should depend on the
medium's density. Indeed, it's much
harder to moye our hand quickly in
water than in air.

We know that the density of the
atmosphere must decrease with ai-
titude. The dependence of density
on the height above sea leve1 is ap-
proximately described by the
Boltzmann barometric f ormula:

p = poe-hlh.. (1)

This can be used for altitudes up to
ft = 80-100 km. In this formula po =
1.3 kg/m3 is the density of air at sea
level. The value h* :7 .15 km in the
denominator of the exponent is the
density scaling coefficient. Clearly
the atmospheric density at height h*
is less than that at sea level by afac-
tor of e:2.72.

Aerodynamic lome
A moving object is affected by the

surrounding medium-in this case,
air. You can feel the resistive force
of air by putting your hand out the
window of a moving car. Turn your
hand about the horizontal axis-the
drag force presses it either upward
(when the wind hits your palm) or
downward (when the wind hits the
back of your hand). In the first case
the angle of attack (between the
piane of your palm and the velocity
v of the incident wind) is considered
positive; in the second case it's nega-
tive (figure l).

What does this force depend on?
We'll use dimensional analysis to
help us find the answer. First let's
write down the characteristics of the
processes that are supposed to deter-
mine the value of this force.

Certainly it must depend on
speed v-you know that cluite differ-
ent forces affect your outstretched
hand when you're moving up an es-
calator or rushing along tn a car.
Now, if you move your hand with
the same speed in air and in water,
the resistive force is greater in water.
Thus the force of resistance depends
also on the density p of the sur-

rounding medium. Have we missed
some important factor? It seems so.
Try waving your hand in the air
with the same speed with and with-
out a fan-it doesn't take long to
realize it's harder with the fan.
Therefore, the aerodynamic force
also depends on the characteristic
size L of the moving object.

Now let's write down these vari-
ables and their fimensions:

[v] : m/s, [F] = kg/m3, [I]: m.

The next step is to compose a com-
bination o{ these variables that has
the dimensions of force-that is, the
newton: [F] = N= kg.m/s2. Clearly
the unit of mass [kg] is present only
in the density p, and the unit of time
[s] is present only in the velocity v
(here it is to the first power, but we
need it to the second power). There-
fore, the force will surely be propor-
tional to the product pv2. However,
the dimensions for this combination
is kg/s2 'm, but we need [m] in the
denominator. So we need to multi-
ply our formula by the square of the
length (which has the dimensions of
area). Thus the only combination of
the parametets vt pt L thatresults in
the dimensions of force is F - p*f2.
Of course, dimensional analysis
can't provide us with a dimension-
less factor of proportionality.

"Wait a minute!" the thoughtful
reader will exclaim. "What about
the viscosity of air-the resistive

force certainly depends on that!"
We1l, this is true. Not only that, in
many cases viscosity provides the
largest contribution to the resistive
force: for example, a pel1et sinking
in honey is affected by the Stokes
force, which is proportional not to
area but to the linear radius of the
sphere and also to its velocity-but
this time to the first power only.
The flow of honey in this case is so
slow, it's called "creeping." Such .

motion in a thick viscous medium
has litt1e to do with the flight of
large aircra1rt at supersonic speeds.

A similar phenomenon-that is,
the radical influence of an object's
size on the character of its motion
(the scaling effect)-can be observed
in other cases. Consider, for ex-
ample, a steel needle, which c,an
float on the surface of water. Can an
iron crowbar float in the same way?
Obviously not. In the case of a
needle the lifting force is the surface
tension, which is proportional to the
first power of an object's size. An-
other force, gravity, which is propor-
tional to the third power of an
object's size, plays the key role in
the experiment with the crowbar,
and this force cannot be counterbal-
anced either by surface tension or by
buoyancy.

Let's break down the net aerody-
namic force F affecting a stream-
lined body into two components: Fvl
which is perpendicular to the veloc-
ity vector v, ar.d F", which is di-
rected along this vector (figure 2).
The first component (F,) is lift, and
the second one is drag. Clearly they
have the same dimensions (new-
tons, N), so F, - piLz andF* - pv2L2.
We can guesi that some dimension-
less coefficients must be inserted
into these formulas, which depend
at least on the angle of attack. In-
deed, put a wing or your palm per-
pendicular to the velocity v-you'll
get drag only and no lift. We'll call
the respective dimensionless values
the lift coefficient (C,) and the drag
coefficient (C"). Now we have

Fo= Crp#L2, F*: C,ptPLZ. (21

As we mentioned, these aerody-
namic coefficients, C, and Cu, de-
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Figure 3

pend on the angle of attack. How
can we know what these dependen-
cies are? In some cases they can be
calculated. For example, calcula-
tions can be made for the case of an
aircraft flying at a yety high alti-
tude where the air is thin, so the
air molecules don't collide with one
another but collide only with the
aircraft. This approach greatly sim-
plifies the caiculations.

Now let's consider motion in the
reference frame fixed to an object
that flies in the atmosphere with a

velocity u. In this frame the object
is at rest and the air molecules fiy
into it. We assume fhat u is much
larger than the thermal velocity of
the air molecules; therefore, we can
neglect the stochastic thermal mo-
tion of the molecules and assume
that all of them move toward the
body with velocity v: -u.

As a first step we consider the
collision of a single molecule with
the hard surface of an object inclined
to the velocity vector by an angle of
attack cr. Assuming the collision to
be absolutely elastic, we find that
the speed does not change after the
impact, so the vector v turns
through the angle 2cr (figure 3). It's
not difficult to find the resulting
change in the velocity of the mol-
ecule (see figure 3):

Lv = 2vn: 2y sin a.

The corresponding change in the
momentum of a molecuie with
mass m is

According to momentum conser-
vation and Newton's third law, the
same momentum will be imparted
to the body. How many molecules
are incident on a unit area per unit
time? In a unit of time the area S (fig-
ure 4) will be struck by all the mol-
ecules that are located at a distance
y from it-that is, by molecules lo-
cated in a volume Sv sin u. If n is the
concentration of the molecules, N:
nSv sin o molecules will strike the
area S per unit time.

Thus the net momentum im-
parted to the object per unit time is
directed perpendicular to the surface
and is equal to

LP^' N : 2mv sin *' 
lS]_.!l"r[, .r,

since nm : p. Reca1l that the rate of
change of momentum is ecluivalent
to the force acting on the object.
Therefore, we have obtained the for-
mula for the aerodynamic force:

F : 2p*S sin2 cx.

The next step is to break this
force down into two components
(lift and drag forces):

Fr: F cos cx, : 2p#S sinz cr cos o(,

F,: F sin s : 2pv2S sin3 o. (3)

The dependencies of F, and F, on
the angle of attack u ar6 shown in
figure 5. We can see that lift is maxi-
mum at some angle of attack uo. Its

Figure 4

Fu

value can be found by plotting the
function Fr(o) point by point, using
a calculator that provides the values
of trigonometric functions. Those
who know how to find the extre-
mum of a function can determine
the maximum by setting the first
derivative equal to zero. Both meth-
ods yield

tan 0,0 = VZ.

Since

I
COS C'._

Jl+ trt 'o
and

. tan c[

-

4l*an'o'
we obtain the maximum lift by in-
serting the value tan 0,0 = 1D into
these formulas:

- 4 ,^
Fymx = 

315-ou" 
=0.77pv25.

In cases where the aerodynamic
coeificients cannot be calculated,
their dependence on the angle of at-
tack must be studied experimen-
tally. Hundreds of wind tunnels
have been constructed all over the
world for this purpose. Even in these
cases dimensional analysis has
saved huge amounts of money and
effort, because we know beforehand
that the force is proportional to the
medium's density, the area of the
object's surface, and the square of
the speed.

Shork waue
Until now we've considered a fly-

ing object in the form of a plate of
area S making an angle o with the
direction of the flow of molecules.
The velocities of the molecules were
assumed to be equal in magnitude
and direction, and the object's speed
was considercd far greatff than the
speed of thermal motion of the mol-
ecules. We weren't interested in
what was going on behind the
streamlined body: the molecules
never got there, so this space could
be filled by, say, a wedge with the
same angle o at its vertex. Now let
this wedge sink into denser and
denser atmospheric layers and thus

Lp-= Zmv sin u.
Figure 5
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lose speed, which is still greater than
the mean thermal speed of the mol-
ecules and consequently greater
than the spqed of sound. Indeed,
such an organized process as sound
cannot travel faster than the mol-
ecules themselves, which move at
thermal speed.

In order to make the braking.
more pronounced, let's turn the
plane of the wedge to form a larger
angle with the directlon of flow (re-

member, the drag force Fr. is propor-
tional to sin3 u). After this angle is
increased, the molecules will re-
bound from the front of the wedge at
an angle approximating a right
angle, so a compressed layer of air
(shock wave) will be formed at the
front of the wedge. When the plane
is positioned perpendicular to the
flow, the molecules striking the
wedge far from its edge won't be able
to get away from it-they'll be
packed in like sardines! Arriving
molecules, which "know" nothing
about this obstacle (because the
speed of the flow is greater than the
speed of sound), will plunge into this
overcrowded layer. A compressed
layer will be formed at plane S, sepa-
rated from the undisturbed gas by a
normal shock wave lfigue 6). This
shock wave is characterized by an
abrupt change in the speed of the
flow-from supersonic to subsonic.

What's going on with the tem-
perature? Let's estimate it. Consider
an object moving very quickly with
a speed v (more precisely, with a
speed u : vl 20 times the speed of
sound c. In other words, the ratio of
the speed of the flow v to the speed
of sound c is M : 20 (this ratio is
called the Mach number). Each mol-
ecule in the undisturbed incident
flow has a kinetic energy that is ap-
proximately equal to

*r' mc2

-142.
22

Inside the compressed layer the
molecules are almost motionless
with respect to the streamlined ob-
ject; therefore, their kinetic energy
is transformed almost entirely into
heat. To estimate the temperature
7, in the shock wave/ we use the

2l JUIY/AUEU$r 2oor

following approximate ecluation (for
the case of diatomic air molecules):

mc- 
Mz =lkT,,2Z

from which we get

T mc2M2 mlvoc2M2
'5k5R

-'!"r,czMz
5R

Taking the molar mass of the air
to be p,,. :29 . l0-3 kg/mole, and c
= 300 m/s, we have

29 .tO-3.(eOO)2 .(ZO)2
rf_ \ / \ / ff

5.8.31

= 25,000 K.

This is an amazrng result: the
temperature in a shock wave travel-
ing with a speed of 20M is higher
than the temperature at the Sun's
surfacel At this temperature the
molecules will disintegrate, dissoci-
ating into individual atoms. What
else does this mean? Let's compare
the kinetic energy of a molecule

-

v>c

_( 'lt\
rJ\

r 
'[-]

-ttFigure 6

with its ionization energy. Refer-
ence books give this value per mol-
ecuie of a given sort (for example,
the ionization energy of nitrogen,
the main component of the Earth's
atmosphere, is 0 = 2.5 . 10-18 f). Now
1et's calculate the kinetic energy of
an incident nitrogen molecule:

m^, c)E= "z Y1z
2

=!.or 10-26.(3oof Qq) I2'
= 0.95.10 18 

I.

We see that E and q are of the
same order of magnitude/ so we can
expect to find free electrons and ions
in the shock wave.

Clearly dissociation and atomic
ionization will consume some of the
primary kinetic energy of the inci-
dent molecules, so the temperature
in the shock wave wil1be somewhat
less than that provided by our rough
estimate. Nevertheless, it will be of
the order of a thousand degrees.

Although we considered the for-
mation of a shock wave at a plane,
which we gradually oriented at a

right angle to the flow, our reason-
ing is valid for any moving object
that has a portion of its surface ori-
ented perpendicular to the flow. In
aerodynamics such objects are
called "blunt." However, the exist-
ence of such a plane isn't enough: to
produce a shock wave similar to
what was just described, it's neces-
sary to have a rather large radius of
curvature of the object's surface near
the front-it must be greater than
the thickness of the shock wave. In
this case the shock wave will be a
line stretching some distance across
the flow. An example is shown in
figure 7, where a sphere is placed in
a supersonic flow. We can see that
near the sphere's leading point (the
braking point), the shock wave is al-
most {lat (this region is enclosed by
the dashed rectangle). Such objects
might be offended by the name
given them: "obtuse." Note that
from the aerodynamic point of view,
any human being (even a very clever
one) is just an obtuse object.Figure 7



In short, a compressed and
strongly heated gas layer (shock
wave) is formed in front of any blunt
or obtuse qbject in a supersonic flow.

Condusinn: tfie menFy corl'idor
At the beginning of this article we

discussed the problem of a soft land-
ing on a planet without an atmo-
sphere or with a very thin one. To
accomplish this, almost the same
amount of energy must be expended
as is needed for taking off from such
a planet. However, if the atmo-
sphere is rather dense, this energy
(and precious fuel) can be saved by
using the drag force F,for braking
and the lift force Fu for supporting
the vehicle during reentry. But what
does it mean to have a sufficiently
thick atmosphere? Is atmospheric
density the only parameter to be
taken into consideration? What
about the planet's size, its mass
(these parameters determine the ac-
celeration due to gravity at the
planet's surface). What are the ef-
fects of the atmosphere's thickness
and composition? And how do the
characteristics of the reentry vehicle
affect the process of a soft landing?

We'll consider these questions
one by one.

Let a vehic.le of mass M and wing
area S move with speed v in the
Earth's atmosphere at an altitude ft,
where the atmospheric density is p.

The lift is F, = Cupv2S. Flying by the
planet, the'vehicle moves along a
curved traiectory. Simplifying, we'l1
assume that this trajectory is close
to being a circle of radius R + ft (R is
the Earth's radius). Then the centrip-
etal acceleration of the vehicle will
be*llR + h). The value of this accel-
eration is determined by the force of
gravity and the lift force Fr:

- Mv2h[g- Fr: _*
Taking into account that the

thickness of the atmosphere is small
compared to the Earth's radius, we
rewrite the last equation in the form
of

Accordingly, at Yery high alti-
tudes, where the density of the at-
mosphere and lift are almost zero,
the right-hand side of the equation
is zero, so

v1=JR8r: 2.8 km/s,

the orbital velocity.
What will happen during the de-

scent of the reentry vehicle? The
velocity will decrease due to the
drag force Fr. As the altitude de-
creases/ the density of the atmo-
sphere increases very rapidly (see
formula (1)). Therefore, notwith-
standing the decrease in speed, the
lift force F, increases. This force can
be used to'slow the "fall" of the ve-
hicle, which act:ually becomes a
glider. In its flight the force of grav-
ity is counterbalanced by the lift
force:

Mg = CrptPS.

The wings of a space vehicle can
be used at altitudes where the atmo-
spheric density is larger than

^ - Msls
rmln - )cu''

(the numerator in this fraction-that
is, the force of gravity per unit area
of the wing-is called the net wing
loading, so we wrote the fraction in
this particular way). Formula (1)
gives the limiting altitude above
which a vehicle cannot be supported
by wings at a given speed v:

MslS +
;-'7=PgeLvv-

= 
ft-,* 

=1rPoC'vz' ht --' MglS'

from which we get

. osCrvz
h^^*(r) = h.ln' " 

r1-.
In other words, if we expect the

vehicle not to "drop" at aparticular
altitude ft, its speed must be greater
than

lt
v-,,(h) = ,lYslt "n'! uYPo

h (km)

v-1r(h)

0m
Figure B

Figure B shows the plot BADC
corresponding to the reentry of a
space vehicle into the Earth's atmo-
sphere with the escape speed v" :
1i.2 km/s. The formula we just
wrote describes the portion CD cor-
responding to flight in the lower at-
mosphere.

Thus we obtained the curve for
the altitude above which a vehicle
cannot be supported by the atmo-
sphere: at ary given speed (1ess than
the orbital speed), the lift force will
be smaller than needed if we ascend
higher than this limiting altitude.
Therefore, the region of "forbidden"
heights is shown as slashes above
the curve.

Perhaps we should fly faster at
high altitudes? Careful! At high
speeds a shock wave will " attach"
itself to the blunt edges of the ve-
hicle, and the air behind it (not even
the air, but a mixture of its molecu-
lar fragments) will be heated so
much that the reentry vehicle might
be burnt to a crisp like a meteorite.
This is a problem that complicates
reentry into the atmosphere: the
heat barrier. How can this heat be
removed? Every possible way must
be used-the thermal conductivity
of the vehicle itself, which lets the
heat flow from "stem to stern//i par-
tiai melting of the hull (which modi-
fies its shape, making the vehicle
more "obtuse"); thermal radiation of
"white-hot " incandescent parts; and
so on.

We won't discuss the heat barrier
problem in detail, but in order to
estimate the allowable speed of

CONTINUED ON PAGE 27
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tlementary lunctions

Definitions from two perspectives

by A Veselov and S. Gindikin

I N THIS ARTICLE WE DISCUSS

I exponential, Iogarithmic, and

I trigonometric functions. These
I functions belong to the class of e/-
ementary functions. This class also
inciudes the linear function y : ax +

b, the power function y : xn, and
various combinations of these func-
tions-sum, difference, product,
quotient, and composition. These
functions are called " elemetttaty"
because they were the first func-
tions that were studied in math-
ematics, and for a long time the ar-
senal of mathematicians didn't
extend beyond them.

Figure 1 . Graphs of several expo-
nential functions.

We'll consider two basic ap-
proaches to a definition of the expo-
nential, logarithmic, and trigono-
metric functions: axiomatic and
kinematic. We'll see that both ap-
proaches lead to the same functions,
and we'l1 discuss how they relate to
the "textbook" definitions.

Axiomalic delinition 0l lhe exponential

lunction

The exponential functionf(xl: a"
is a function that has the following
properties:

1. I is defined for all x;
2.f(Il:a>0(a*I);
3. for al1 x, y the relation

f(x * yl: fk)flyl;
holds;

a. f$) is a monotonic function.
This method of defining an object

by listing its properties is called axt-
omatic. It's important to understand
that the axiomatic definition of the
exponential function does not, in
essence/ differ from the textbook
definition. Property 3 is called the
functional equation for the expo-
nential function. Functional equa-
tions relate the functions' values at
different points, and the functions
that satisfy functional equations are

called therr solutions. In our case/
exponential functions are the solu,
tions to the functional equation
(property 3), and there are no other
solutions under the additional con-
straints listed above.

Problem 1. Prove that any solu-
tion to equation (property 3) that is
defined for all x is either identically
zero ot everywhere positive. This
implies that an exponential function
that is defined everywhere exists
only for nonnegative values of a.

The axiom atic approach to the
definition of the exponential func-
tion that is used nowadays did not
appear right away. It's remarkable
that the exponential function first
appeared as the solution to a differ-
ential equation. This story is worth
recalling.

lfinemath dsliltilion 0l ffe expmenlial

lunction

At the very beginning of the 17th -
century, Galileo '1564_1642lwanted $
to establish a 1aw describing the free !
fall of objects. He hoped to establish P
this law in a purely speculative way, ?
guided only by considerations of f;
simplicity. Thus he assumed that \
the speed of the free fall is propor- |
tional to the distance traveled: i

22 JU[Y/AUGUsr 2oo1
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s = )"s. (1)

From physical considerations, 7 > 0
(the speed inpreases) and s(0) = 0 (the
body is at rest at the initial mo-
ment). Later, Galileo was surprised
to discover that the differential
equation (1) cannot have a solution
with s(0) : 0 that was different from
s = 0 (that is, movement with the
properties that Galileo first ascribed
to free fall is impossible).

Problem 2. Prove Galileo's asser-
tion.

Hint. Let l" > 0. Then the speed s

increases as s increases. If s(to) : c >
0 at some point ts, then ,i (to) = l,s, s(t)
< l,s for t < to; thus to> lfL, no mat-
ter what the value of cmay be. From
this fact, it's easy to see that s = 0.

This observation induced Galileo
to change his proposed law to s : gt,
which 1ed him to discover the 1aw of
free fall. He lost interest in the mo-
tion described by equation (1).

Here we should reca1l another
remarkable mathematician: Iohn
Napier, Baron Murchiston (i550-
1617), who studied motion accord-
ing to law (1) almost at the same
time as Galileo, but for quite differ-
ent reasons. While Galileo wanted
to obtain a mathematical descrip-
tion of an actual mechanical phe-
nomenon/ Napier was heading in
just the opposite direction: he
sought a mechanical interpretation
of purely mathematical procedures.
Even before Napier, some mathema-
ticians had tried to use the relation-
ship between geometric and arith-
metic progressions to simplify
calculations (to replace multiplica-
tion with addition). To increase ac-
ouracyt ever more "dense" progres-
sions were needed, and Napier's
brilliant conjecture consisted in the
fact that one needs to go all the way
to the end in this process and replace
discrete progressions with continu-
ous magnitudes-that is, with func-
tions. Considenng an imaginary
motion according to law (1) for this
purpose and interpreting time as a
continuous analogue of an arith-
metic progression, Napier satisfied
himself that in this case the distance
traveled was an analogue of a geo-

metric progression. That is, if the
time t increases by k units, the dis-
tance traveled is multiplied by qft for
some q. If we make the time units
smaller, the geometric progression
transformation still corresponds to
the changes in time.

The main difference between
Napier's approach and Galileo's con-
sists in the fact that Napier lifts the
restriction s(0) = 0. Let i" be fixed.
Then Galileo's assertion implies an
important property of motion (1).

For a fixed 1,, the motion according
to law (1) is completely determined
by the value of s at any fixed mo-
ment ro. Indeed, if sr(t), sr(t) are two
functions with sr(tr) = sr(to), then
letting s(t) : sr(t) - sr(t), we find that
s(ro) :0, and that s(r) satisfies equa-
tion (1) as well. Then, by Galileo's
result, s{t) is identically 0, so sr(t) :
sr(t) for all values of r. Now, if s is a
solution to (1), then sr(t + to) is also
a solution. So all the solutions to (1)

differ only by a constant.
Let S^(t)be a solution to (l)such

that Sr(0) : 1. Let's set

sr(t):Sr(t+to),

sr(t) : S,(t)S,(to).

Both these functions are solutions to
(1), and they take one and the same
value S1(t6) at t : O; therefore they
must be identical. Thus we obtain

s,(r + ro) : sl(r)s1(ro). Q)

The function S^ is differentiable,
so it is continuous. By Galileo's re-
su1t, it never equals zero, and so
never changes sign. Since S^(0) : I >

0, this sign is always positive. Equa-
tion (1)implies that Si(the deriva-
tive) has the same sign as 1., so that
S^ increases for )" > 0 and decreases
for 1" < 0. The results of this para-
graph show that the solution to
equation (1)with s(0) : 1 satisfies the
axiomatic definition of an exponen-
tial function.

We should discuss one more
cluestion. We've studied the solu-
tions to (1) under the assumption
they exist. This assumption follows
from a general property of differen-
tial equations, which we're not go-
ing to discuss here. If we make this

assumption, we obtain a proof of the
existence of the exponential func-
tion that is different from the proof
discussed above. On the other hand,
the existence and differentiability of
the exponential function implies the
solvability of ecluation (i).

llaffil't mlnler r
We now have two approaches to

the definition of the exponential
function. With the axiomatic defini- "

tion, it would be quite natural to
distinguish various exponential
functions by their bas e f(l) = a. How-
ever, if equation (1) is used for the
definition, it would be more natural
to use the coefficient )" to distin-
guish them. What is the relationship
between these two constants? First
of a1l, with the kinematic approach,
it would be quite natwral to singie
out the exponential {unction with },
= 1. It's conventional to denote its
base by e, and the function itself is
sometimes denoted by exp t (after
the beginning of the word exponent).
Thus, for the motion governed by
the law s = s, for which s(0) : 1, we
have s(t) : et l: exp r).

Let us examine the number e.
This is the distance from the origin
at which the point wiil be at time t
: 1. Since the speed of the motion is
greater than 1 and the motion starts
at the distance I from the origin, we
findthat att=l thedistance e>l+
| : 2. Let' s now show that e < 3 lthat
is, the point will not have time to
get to the point on the x-axis with
coordinate 3). To prove this fact,
let's split the distance from 1 to 3
into eight equal parts (the length of
each part being llal. The point
passes the first part with a speed that
is not greatil than its speed at the
right-hand endpoint of. this part,
where it is equal to 514 because of
equation (1); therefore, the time it
takes the point to pass this part of
the path is not less than 1/5. Simi-
larly, it takes the point not less than
ll6 to pass the second part of the
entire distance, not less than I l7 to
pass the third part, and so on. The
total time needed to travel the dis-
tance from point 1 to point 3 is not
less than
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t 15 + L l5 + | 17 + tl8 + tl9 + rlrO + | ltL + lltZ.
This sum is greater than 1; thus e

is nearer than 3.
Now 1e.t's split the time interval

[0, 1] into n equal parts. We can see
that the speed of the point is greater
than I during the first time interval
Lt: lf n, so the point travels a dis-
tance greater than lln arrd ends.up
at a distance greater than I + lf n
from the origin. Its speed at this
moment is greater than I + Ilnbe-
cause of equation (1). During the
next time interval Lt = I f n, the point
travels a distance greater than (1 +
llnlln, ends up farther than (1 + llnlz
from the origin, and has a speed
greater than ( 1 + I f nlz,and so on. So,
at the moment t = 1, the point is far-
ther than (l + Iln)" from the origin.

It seems quite plausible from this
reasoning that an: (1 * Iln)" in-
creases as n increases (prove that
this is indeed so) and tends to e.In a
textbook on algebra and mathemati-
cal analysis it's proved that

n=u-(r*!\".
n+-\ n )

This formula makes it possible to
evaluate e with arry accvracy de-
sired. It turns out that

e : 2.7 L828182845904s...

Similarly, it can be proved that

,, = lyilt* 
L)" 

{3)

The reader is invited to think about
the kinematic interpretation of this
equation.

Problem 3. Give a kinematic
proof of the inequality

e<(I+lln)"*r.
Hint. Split the interval [1, (1 +

Ilnl"* 1]into (n + 1)segments of the
form [(1 + Iln)k-r, (I + Iln)k). When
the point is passing the kth segment
of length ll@ + Il lI + llnlk accord-
ing to 1aw (1), its speed does not ex-
ceed (1 + llnlk and, accordingly, the
time taken is greater thanlln + 1, so
that the total time is greater than 1.

Let's return to the question with
which we started our discussion of

the number e. Let S1(t) : at. What is
the relationship between the con-
stants )" and a? Note that if s(t) is a
solution to equation (1) for some ),,

then s(cr) is also a solution to (1)

with )"' = cl" and with the same value
at zeto. So S^,(t) : Slct), from which
we get

s^(t) : at,where a: eL.

Thus the relationship between a and
l, can be very simply written in
terms of e.

Let's sum up our consideration of
equation (1). We have proven that
the general solution to this equation
has the form

s{t) = so exp(}"r), so: s(0).

Equation (1) is called the equa-
tion of exponential growh (or de-
cay, if l, . 0). It describes many pro-
cesses encountered in nature:
radioactive decay, change of tem-
perature with time and of pressure
with height, many laws of biological
and social evolution, and many oth-
ers. The most salient feature of the
exponential function, which mani-
fests itself in the phenomena it de-
scribes, is its rapid growth (for )" > 0).
In particular/ exponential growth
(for )" > 0) exceeds any poiynomial
growth, and exponential decay (for ),
< 0) exceeds any polynomial decay.
That is to say/

tk
lim!*=O (f,O),
t+.1_ AM

J1?*"*to =o (r.o).

The Iogal'ilhmic lunulion logr4

il>0,il*1
This function is defined as the

inverse of the exponential function
a', a + i. All properties of the loga-
rithmic function follow immedi-
ately from this definition. It is de-
fined for a1l x > 0, its range of values
is the whole set of real numbers,
logox increases for a > 1 and de-
creases for a < 1, and logrl : 0. But
the main thing is that the functionai
equation

logly = log,x +logoy, (41

Figure 2. Graphs of severallogarith-
mic functions.

(which is called the fundamental
prcperty of the logarithm in some
textbooks) hoids. This property im-
mediately follows from the func-
tional equation for the exponential
function (1).

Problem 4. Prove directly that the
inverse function to the function y:
a* intact has all these properties.

The logarithmic function can
also be described axiomatically:
logrx is a monotonic function that is
equai to I at x = a, satisfies (4), and
is defined for all x > 0. Note that
when we pass to the logarithmic
function, we essentially use the
strict monotonicity of a" for a + |
(this guarantees that the inverse
function exists); for this te"a;sort, a:
1 is excluded.

The natural logarithm ln x is de-
fined as the inverse function of e"-
that is, as the time taken by the
point that moves according to the
law s : s to get from I to x.

It must be said that it was the
logarithmic function, not the expo-
nential one/ that was Napier's aim.
However, the model that he con-
structed was somewhat compli-
cated. He considered Bquation (1)

with l, : I0-7 and took its solution
with s(0) : 107-that is, s(r) =
107exp( I0-7 t). The corresponding
inverse function-Napier's loga-
rithm-had the form t : Nap log:
1071n 10 + 1071n x, and for this func-
tion the equation t(x .yl = tlxl + t(y),
and t(1) :0, does not ho1d. By the
end of his twenty years of preparing
logarithmic tables, Napier was un-
doubtedly not satisfied with the sys-
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tem he had adopted. He already had
the idea of base-10 iogarithms, but
he was exhausted and couldn't per-
form the necqssary calculations.

The corresponding tables were
prepared by the London mathemati-
cian Henry Briggs, who had an op-
portunity to discuss the idea of com-
mon logarithms with Napier during .

the last years of Napier's life. The
common logarithms are still some-
times called Briggsian (the book
Arithmetic of Logailthms by Briggs,
printed rn 1624, was devoted to
common logarithms). Natural loga-
rithms first appeared in 1619 in a
book by the little-known teacher of
mathematics Speidel {a short,
anonymous table appeared the year
before in the appendix to the second
edition of Napier's book).

Using the rule of differentiation
of inverse {unctions, we derive from
the kinematic definition of loga-
rithms that

(lnx)'= llx.
Furthermore, the aforementioned
relationship between )" and the base
of the solution S1(t) means that (atl'
:ln a. at, fromwhich we get

(Iogox)'=-l-
X TTTA

Problem 4. Find the maximum of
numbers of the form <ln ln is a natu-
ral number).

Hinr. Test the function
I

f(xl= xi = *pfll")
\x/

or, what is the same/ the function
g(x) :ln xf x, for extrema.

The function ln x is convenient
for describing different characteris-
tics of processes described by equa-
tion (1). For example, if the time t
during which a magnitude doubles
(or halves) is taken as the measure of
growth (decay), we obtain t:ln2lX
for 1" > 0 and t: -ln Zl)"for I.0,
since el' :2.In the case of radioac-
tive disintegration, t is called the
half-life (1,. 0).

Problem 5. An account in a sav-
ings bank grows by 3% a year. How
many years will it take for the ac-
count to double?

Finally, we note that since the
exponential function grows very
fast, the logarithmic function, on
the contrary/ grows very slowly. It
grows more slowly than any positive
power of x:

.. lnxIlm _-U
x_+1_ X0

Tl'igonomehic fultcliolt$

u<0.

Both methods (axiomatic and ki-
nematic) that we discussed in con-
nection with exponential function
are also possible for defining trigono-
metric functions. Flowever, neither
of them was historically the first.
Originally, it was natural to define
trigonometric functions using ratios
of the sides of a triangle or in a circle.
True enough, this method gives
functions that take numeric values
while their argument takes non-nu-
merical, angular values. To pass
from the functions of a numeric ar-
gument, one must first learn how to
measure angles.

Although trigonometry has been
developing since the second cen-
tury B.c. and acquired great impor-
tance in connection with astro-
nomical calculations, our modern
definition of trigonometric func-
tions dates only to the 1Sth century
(mainly to Euler's work). Before his
time, various tables were used-for
instance, tables of chords corre-
sponding to angles. It should be re-
membered that for most mathema-
ticians, functions were limited to
algebraic functions only and it did
not occur to them that trigonom-
etry has any connection with analy-
sis.

Let's look at a kinematic defini-
tion of trigonometric functions.
Consider one of the simplest laws:
acceleration (or force) is proportional
to distance:

i + r,l2x = 0. (5)

This equation is ca1led the eclua-
tion of harmonic oscillations: it
describes the motion of a ball on a
spring, the oscillation of a pendulum
about its equilibrium point, and so
on. First let's restrict our attention
to the case o: 1:

Figure 3. Graphs of several trigono-
metric functions.

.:i+x=0. 16l

We know that sin t and cos t are
solutions to this equation, but let's
try to obtain an independent defini-
tion of these functions. First, we
must obtain an analogue of the
Galileo's theorem for (1)-the
uniqueness theorem. We must
prove that the unique solution to (6)

withx(0) = x(0) : 0 is x= 0. Notice
that we have to specify two condi-
tions at t : 0. This is because (5) in-
volves the second derivative. The
proof follows from the conservation
of the quantity E = Ilz(kz + *1.

Problem 6. Show that equation
(6) implies that h = 0, and so is con-
stant.

Denote by s(t) the solution to (6)

subject to the initial conditions s(0)
: 0, s (0) : 1 . Let's analyze the proper-
ties of this solution (which, in {act,
is identical with sin t, but we want
to infer all its properties from (5)).

(1)Let c(tl = s(tl; then c(t)is a solu-
tion to (5) subject to the initial
conditions c(0) = 1, c (0) : 0 (this fact
can be verified by direct differentia-
tion: E = s :-s :-c, b:-sl.

(21 s(t): -s(-f), c(tl : c(-tl (it suf-
fices to verify that x(tl = -s(-r) is a

solution to (6) with the same initial
conditions at t : 0 as for s(t); the
same for c(r)).

(3) The following suryrmation
theorems hold:

s(r + ro) = s(t)c(to) + s(ro)c(r), l7l

clt + to): c(t)c(tol - s(r)s(ro). (8)

It's sufficient to verify that the
left-and right-hand sides are solu-
tions to (6) for some fixed ro with
identical initial conditions at t : 0.

A lot of trigonometric formulas
can be derived from the summation
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theorems lin fact, almost all of
them-we'll discuss this below). For
example, setting to: -t in (B), we
obtain

czlt) + s2(r) : l. (9)

It follows from (9) that lc(t)l < 1, ls(t)l
s1.

l4l It can be proved that c(t) van-
ishes at some positive value of the
argument.

If this were not so, c(r) would be
positive for , > 0; this would mean
that the function s(t) grows mono-
tonically and, consequently, takes
positive values for , > 0. Let's fix
some t : to , 0. then s(to) : so > 0.
The equation c(t) = -s(t)means that
the rate of decrease of c(t) is greater
than so beginning at the moment ,o
and, consequently, c(t) will go to
zero r.ot later than time c(ro)/s(rs),
which contradicts the assumption
that clt) is positive.

Let t be the smallest positive
number such that c(t) : 0. (The num-
ber t is really nf 2, but we must prove
this fact from what we already
know.)

It follows from (9) that s(t) : tl.
Since s(t) increases on the interval
(0, r), and since s(t) : cltl r 0, we have
s(t) : 1. From the summation theo-
rems (7) and (B), we see that

s(t+r):cltl,
c(t +'cl = -s(t).

Therefore,

s(t + 2r) = c(t + t) : -s(t),
clt + 2r,l: -s(r +r) : -cltl,
s(t + 4r): -s(r + 2rl: s(t),
clt + 4rl : -clt + 2r,l : c(t).

Thus the solutions cltl ands(t)are
periodic with the period T : 4r.It
can be proved that there is no
shorter period.

Problem 7. Prove this statement.
Thus we have shown that the

theory of trigonometric functions
can be built exclusively on the
analysis of ecluation (5). As for equa-
tion (5), its general solution has the
form

x(t): a cos o, + b sin ruot, a: x(0),

tunctional Eqtlati0ns I0r lrigunomelric

lunclions

The fact that trigonometric func-
tions can be described by means of
functional equations is fundamen-
tal. Roughly speaking, this means
that if trigonometric functions are
defined geometrically, it suffices
geometrically to prove the summa-
tion theorems on1y. A11 the other
innumerable trigonometric formu-
las (except for the {ormulas involv-
ing n) can be formally derived from
the summation theorems without
using geometric reasoning.

The exact assertion (compare it
with the similar axiomatic descrip-
tion of the exponential function) is
the subject of the following problem.

Problem 8. Let s(t) and clt) be
functions such that (1) they are de-
fined for all t; (21s(0) : 0, c(0) : 1; (3)

they satisfy the functional equations

17) and (8); (+) they are continuous.
Then c(t) = cos ort, s(t) : sin o, for
some real number ro.

Hint.Use the fact that every con-"

tinuous function is completely de-
termined by its values at the points
of the form t = mtofZk (m, k are in-
tegers/ to is an arbitrary fixed real
number [istinct from 0). O

CONTINUED FROM PAGE 21

flight in the atmosphere, we'll just
consider the "worst-case scenario, "
where all the incoming heat is re-
moved from the vehicle by radiation
only.

The Stefan-Boltzmann law says
that the power taken away by radia-
tion from one scluare meter of a rafi-
ating surface is proportional to the
fourth power of the temperuturei q:
oTl I llm2. s). The proportionality fac-
tor-the Stefan-Boltzmann constant
o-can be found in a physics refer-
encebook: o:5.57 . t0-8W(m2 s.K4).
This is a Yery steep dependence:
given a threefold increase in the
object's temperature, the amount of
irradiated heat increases by a factor
of 3a : Bl-almost a hundredfold!
According to this Law, a body must
be "white-hot" to be efficiently
cooled by radiation.

Now let's estimate the maximum
speed of atmospheric flight in which
the reentry vehicle does not melt.
The air mass striking a unit area of
the vehicle's surface per unit time is
pv. This air carries an energy of
pv(v2lZ), which is almost entirely
converted into heat. We've proposed
that all this heat will be removed by
thermal radiation, which carries
away energy o7a from a unit area per
unit time. The surface temperature
of the vehicle must not be greater
than the melting point 7-:

a

io" <or#.

Thus the vehicle's velocity can-
not exceed the maximum value cor-
responding to any given altitude:

Irgr,1l'"
v 3v^^,(h)=l:. _ max\--,/ 

L p(a) 
.]

The plot v^,lhl is given in figure
B-this is the EF curve.

Therefore, if we want to use the
"supporting " and "bral<ing" proper-
ties of the atmosphere-that is, if
we want to land on a planet in a
winged vehicle and use no fuel to
brake in the air-then, in the alti-
tude-velocity coordinate axes, the
trajectory cannot pass higher than
the curve CDAB (the wings will not
support the vehicle) and lower than
the curve EF (vehicle will burn up).
Both these curves are plotted for
landing on Earth. We can see that
increasing the speed leduces the
distance between the boundary
curves to a minimum-that is, the
reentry corridor becomes narrowest
at high speeds. There's no room for
error here! Fortunately, the bound-
ary curves don't meet or cross at
any altitude. It's as if Nature
wanted to make sure that intelli-
gent creatures, having left Earth to
explore, could return home in

b=ni<lo)
0) winged vehicles. o
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KALEIDOS

Physicswilhoul

light (like the bits from the begin-
ning and end of the ro11) and a
sewing needle.

Scratch a line on the emulsion
side with the needle. You've
created a so-called diffraction slit.
Bring this slit close to your eye and
look through it at some bright
source of light (for example, a
bright lamp). You'l1 see bright,
multicolored bands off to both
sides. Turn the film, and these
bands will also tum so as to
remain parallel to the slit. Now
scratch a small circle on the film.
In this case, the diffraction pattern
will be composed of concentric
multicolored rings. Play with
other lines and see the resulting
diffraction pattems.

A rainbow can also
be seen using a water
drop. Set the drop on
a rod or a blade of
grass. Turn ,vour
back to the Sun and
carefr-r11r- raise the
drop. \\rhen the
Sun's rays form an

42" angle u,ith the line between
your eye and the drop, the trans-
parent drop .udJenly gives off a

bright, pure coior. What color?
Any color vou wantl Move the
drop careiully along an arc and you
can see all the colors oi the rain-
boru

Once I was gathering mush-
roolns rn a forest and witnessed an
amusing scene. My son was
looking attentively at the dew-
drops on the grass and on the pine
needles. His movements were
rather strange: he slowly sat down,
rvhiie looking oif at seemingly
nothing. Then another mushroom

UMMER IS A CAREFREE
time for students. Textbooks
are put away, homework is a
hazy memory. How nice to

just splash in a pool, or wander in
the woods, or lie on the grass and
look at the sky, not thinking about
anything in particular. But if you
take a good look around, you'Il
find that many things that seem
ordinary and even boring arereally
pretty interesting.

You're standing at the edge of a
pond. See how the water strider
runs across the glassy top of the
water? Don't be in a hurry-stop
and watch how the insect calmly
takes step after step without
piercing the surface. Surface
"tension"? Not for this little
creature!

On a summer evening, you can
find glow-worms in the thick grass
or on tree stumps in the woods.
These living "lamps" produce
chemical substances that "burn"
(that is, are oxidized) in the air.
The energy released is radiated in
the form of visible light. So a glow-
warm " creates" a source of light
within its own body.

Or take the cuttle{ish: it squirts
liquid from somewhere inside its
body and moves according to one
of Newton's laws (the one about
action and reaction). Another
clever creature!

The inorganic worid is also ful1
of interesting things. Here are some

g experiments you can do on your
fi own or with your friends. Don't be

-Ct upset if you can't explain the
$ results. Sooner or later, a new

5 school year will start, and many
> things seen in the bright light of
! summer will be illuminated further
5 with explanations.

28

Not many
people who
live in
temperate
climes have
ever seen a

mirage. But
if you want to see one/ you don't
need to go to Saudi Arabia. All you
need is a little patience and a bit of
preparation. First, find a smooth
wall illuminated by the Sun. Wait
for a clear, calm day. Stand with a
friend close to the wall, at opposite
ends of it. Look along the wall and
you'll see two friends instead of
onel The wall turned into a mirror
and reflected your friend's image.
Again-you'Ilneed to be patient
for this to work. Good experi-
ments don't always work the first
time, after all.

If you watch
the Moon
rcgtlarLy,
sooner or
later you'll
probably see a
coiored ring------'-r-----* 
(or a couple of

them, if you're lucky) around it.
They're p artictlarly dis tinct when
a light, semitransparent cloud
comes between you and the Moon.
The light from the Moon is dis-
persed and scattered by random
heterogeneities in the cloud,
which produces a dlfhaction
pattern in the form of colored
iridescent rings.

If you're burning with curiosity
to see these iridescent patterns and
there's no Moon in the sky, you
cafl steate them artificially. A11

you need are pieces of photo-
graphic film spoiled by exposure to

l

I
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lover came into the clearing-a
very respectable-looking gentle-
man. He watched my son's slow-
motion antics for cluite some time,
clearly at a loss as to what he was
up to. Finally he broke down and
asked the boy to explain his
strange behavior. Then I watched
with amusement as both natural-
ists periodically moved carefully,
then froze in awkward positions,
near an ordinary fir tree.

A small drop of
water can be
turned into a
magnifying
glass. Take a
sheet of dense
paper and
pierce it with a

thick needle.
Then place a droplet onto the hole.
Your magnifying glass is readyl

Move your improvised magnify-
ing glass very close to a newspa-
per. You'll see the magnified
image of a letter. The smaller the
drop, the higher the magnification.
After you "fine-tune" your magni-
fier by adjusting the drop size,
you're ready to examine any small
object in more detail.

By the way, Antony van
Leeuwenho ek ll 532-1723 ) con-
structed the first microscope using
the same design, except that he
used a "drop" of glass.

Speaking of small
droplets, perhaps
you have ahug,e
drop of water in
your house-a
round fishbowl
(fitled with water,
of course). It's a

wonderful optical instrument-
you can see some very unusual
things with it.

First of all, the apparent size of
the fish inside depends strongly on
their location in the fishbowl.
How strongly? And why?

Second, the fishbowl inverts the
image of distant objects. Look out
at the street through the fishbowl.
Note the direction a car's image
travels when the car itself is
moving, say, from left to right.

Thtud, when the fish swim to the
side walls (relative to our view-
point), they suddenly lose their
heads-all we can see are their
tails! A{ter a moment, the whole
fish disappears {rom view. Where is
it hiding? Recal1 the law of total
internal reflection and explain this
phenomenon. Rack your brain
(even though you're on vacation)
and calculate the region of fishbowl
where the fish cart "hide."

Fourth, look at the street lamps
in the evening-once directly
through the window, then through
the fishbowl. Has the brightness of
the lamps changed?

In novels and
short stories
(and even in
the pages of
our magazine)
you may have
encountered
descriptions

of the so-called "green f1ash" that
appears at sunset. (See the list of
Quantum articles below.)As a
rule, the green flash is observed at
sea, where the air is very clean.
When the Sun drops down on the
sharply delineated horizon, an
emerald green flash may appear for

the briefest moment. This is due
to the dispersion of light-that is,
the angular separation of its
component colors (the colors of
the rainbow) as the light passes

through a thick layer of air that is
nonuniform in density. In prin-
cip1e, all colors should be ob-
served, but against the background
of the Sun, which is giving off a
yellowish light, the human eye
perceives the green color more
intensely.

ln the summer you can try to
catch this rare phenomenon. If you
don't live near the sea (or aren't
vacationing there), choose aplace
with a sharply etched horizon. You
can use the edge o{ a roof or the
slope of a nearby hill.

If the summer passes and you
haven't seen the Sun in its unnatu-
ral green disguise, don't despair.
You can keep trying allyear round.
Actually, winter is a good time to
see a green Sun. Look at the rising
or setting Sun through a frosted
window. If you find a suitabie place
on the glass, the ice crystals will do
their thing-they'Il break the
sunlight down into all the colors of
the rainbow. You can see a green
Sun, or a blue Sun, or a red Sun... O

-A. Dozorov

Quantum f or natural{sts-young
or experienced:

D. Tarasov and L. Tarasov, "The
Play of Ltght," May/|une 1995, pp.
10-13.

L. Tarasov, "The Green Flash,"
lamtary fF ebntary 1997, pp. 38-39.

A. Eisenkraft and L. D. Kirk-
patrick, "Color Creation," Mayf
lune 1997, pp.36-39.

V. Novoseltzev, "Visionary Sci-
eflce," May/|une 1998, pp. 2l-25.
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I MAGTNE A PrECE OF WOOD
I beine rotated on a lathe. Let it be

I iit"rii"rted not by sunlight but
I by rapidly repeating flashes of
light. If its rotational frequency f sat-
isfies the condition f : nv (n: I,2,3
...), where v is the frequency of the
flashes, we'll always see only one
side of the piece. This "experiment"
is actually dangerous, because we
might mistakenly think the piece
isn't rotating and try to grab it. This
optical illusion occurs because the
piece makes n complete turns dur-
ing the dark period between flashes,
so we always see the same side of
the piece.

This example demonstrates the
stroboscopic eff ect. The word
"stroboscopy" comes from the
Greek words sftobos: rotation and
skopeo = to look. It refers to the op-
tical illusion of arrested rotation. If
the frequency f dlffers slightly from
flvl we see the object turning slowly
with each successive flash. It is easy
to understand that the object will
tum in the direction of the actual ro-
tation if f > nv and in the opposite di-
rectionrffcnv.

The stroboscopic effect is widely
used in science and technology for
precise measurements of rotational
frequencies or periods of periodic pro-
cesses. Note, however, that the
greater n, the poorer the sharpness
and brightness of the " frozerr" object.
Usually, n < 5 is chosen in practice.

Cinematography is a wonder of
the 20th century, and it owes its
existence to the stroboscopic effect.

3 0 JttIY/AUotlsT 2ool

NOW SHOWING

An arrestinu sighl

by V. Uteshev

"The moment that you
had pronounced him

one,
Presto! his face

changed, and he was
another,

And surely he was
some mother's cousin's

brother."

-George 
Gordon,

Lord Byron (1788-1824)

Photographic film is puiled in a pre-
cise, jerky manner/ frame by frame,
in front of the lens of the projector
at arate of.24 frames per second. The
images of successive frames are aL-

most identical, so we see continu-
ous motion on the screen due to the
inertial lag of our visual system.

Now let's take a closer look at
how the human visual system oper-
ates.

A fuw wonds on plUsioloUy

Beams of light from an object pass
through the optical system of the
eye, consisting of a convex cotrLea, a
crystalline lens, and a semiliquid,
transparent vitreous humor. The
beams are focused on the retina,
which is the biological "screen" of
this natural " cameta." The retina
has a complex structure consisting
of several layers of nerve cells.

Figure 1 is a schematic of a cross
section of the retina. The light is
incident from the right. In the outer
layer (1), which is in direct contact
with the vascular envelope, there
are ce1ls containing black pigment.
Next come the basic visual percep-
tion elements (2), called rods and
cones because of their shapes. Lay-
ers 3-5 consist o{ nerve fibers con-
nected to the rods and cones. Behind
these layers are the so-called granu-
lar layers 6 and7, which are also re-
lated to the nerve cells and their
axons. Layer 8 is formed by ganglion
cells, each of which is connected to

Llr2r3rl4 I 6tTtgrlg___rll0l
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a nerve fiber in layer 9. Layer 10 is
the internal limiting membrane.
Every nerve fiber terminates with a

cone or a groyp of rods. (Figure I and
the description above are taken from
a book by the famous Russian oph-
thalmologist Sergey Ivanovich
Vavilov (1891-1951), The Eye and
the Sun.l

The human eye contains about 7

million cones and 130 million rods.
Biophysicists and physiologists dis-
covered that rods are more sensitive
to light than cones, although cones
can differentiate colors. In what fol-
lows we'll use the term "rods" to
denote both types of light-sensitive
elements of the eye.

When light strikes the rods, it
splits the light-sensitive protein
rhodopsin into retinene and opsin.
As a result, the rods become excited
and generate nerve impulses that go
to special vision analyzers in the
brain. A chain of specific chemical
reactions converts retinene and op-
sin back into rhodopsin.

The time interval (about 0.2 s)

needed to restore rhodopsin mo1-
ecules is called the "dead time."
During this time the rod is charac-
teized by the so-called refractory
(non-excitable) state, in which the
rod doesn't respond to light. The
dead time depends primarily on the
intensity of the incident light. All
rods work independently and have
di{ferent dead times (although the
difference is not great). As a result,
the composite retina has no dead
(blind) time at all.

Visual inertia, which is widely
used (particularly in the movies),
arises due to the fact that the visual
system can "remember" afl image
for only a short time-about 0.2 s.

During this period it remembers the
previous image and cannot process
the next one. If a shorter time passes

between successive signals than the
time necessary to retain an image,
the successive frames fuse and vi-
sual perception becomes continu-
ous. This is why we don't notice the
dark intervals between the frames
on the screen in a movie.

The sensitivity of our visual sys-
tem is amazing.It can reliably detect

(without special contrivances) 10
photons and notice a flash in dark-
ness with a duration of only
0.00000i s.

We should note that informa-
tional "stitching" of the image
frames underlies the optical illusion
that converts the jerking frames into
the continuous motion of an object.
It's important that this illusion (or a
sophisticated analysis of video infor-
mation, one might say) is created by
the brain, while the visual system
plays no role in these extremely
complicated processes.

In addition to the phenomena
described, the eye has many other
wonderful properties. For instance,
it can produce the stroboscopic ef-
fect without any physical devices.
Let's see how.

Th amazinu "Byg-ttoice" gffEcl

This interesting phenomenon
was first reported in 1957.It was
stated that a rotating object can be
" artested" by a voice. Moreover,
unlike the usual stroboscopy, which
requires a flashing light, physi-
ological eye-voice stroboscopy can
be demonstrated in ordinary sun-
light.

Here's how it works. Imagine that
we observe alternating white and
black bands moving downward. The
images of these bands will also
move on our retina. Now we need to
produce an oscillation of our eye in
the plane of the bands. The ampli-
tude and frequency of vibration
must be chosen to keep the image
motionless on the retina during
most of the oscillation period. If we
can do that, the illusion of arrested
bands will occur.

Vibration with the necessary pa-
rameters can be produced by the
human voice. Oscillations of the
vocal cords are transmitted to the
eye through the sku1l bones, so by
changing the volume and frequency
of your voice/ you can affest the mo-
tion of the bands.

Instead of your voice you can use
the vibrations of your tongue as you
ro11 an "t," but the result won't be
as good. It's also possible to use a

loudspeaker connected to a sound

generator, a motor with a regulated
angular velocity, or even a vibrating
massager. By pressing your head
against any vibrating device, you
can obtain the stroboscopic effect.

This "physiological" stroboscopy
can arrest the rotating propellers of
an airplane, the spokes of a bicycle
wheel, and other vibrating or rotat-
ing mechanisms. Some people can
even produce bands on a television
screen or change the quality of the
image by humming. However, such
feats require patience and skill, so
don't be surprised if you can't do it.

Gonuentonal slrolo$copy mdur
Let's consider another interesting

manif estation of stroboscopy. When
you watch TV, try to move your
forefinger up and down in the space
between the screen and your eyes as

shown in figure 2. You'll see several
"motionless" fingers. When your
hand moves downward, these fin-
gers will be wider and more lumi-
nous than when your hand is lifted
up. Why?

The image on the TV appears due
to the persistent scanning motion of
the electron beam from left to right
and from top to bottom on the sur-
face ol the luminescent screen.
When the beam hits a region of the
screen/ it produces a brief {lash at
that spot. Sweeping across the
screen/ the electron beam leaves iI-
luminating lines behind it. After a
moment these lines fade, so one
might say that light "frames" are
moving on the screen (as with a
movie). When watching TV, we
don't see the flashes produced by the
scanning beam. The frequency of
these {lashes is too high for our vi-

finget
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sual system l5O Hz), so the dark in-
tervals appearing on the screen be-
tween frames simply elude our per-
ception.

Now let's make our finger move
in front of the screen for about 0.2 s.

Given a frame refresh rate of 50
frames per second, this means that
10 frames move dor,tm the screen dur-
ing this time. If you move your fin-
ger downward, its motion is slower
relative to the downward movement
of the scanning electron beam com-
pared to the motion of your finger
moving upward. Therefore, your fin-
ger is illuminated for a longer time,
and the shadow produced by your
finger exists for a longer time. So
when your finger moves downward,
its shadow produces a wider band on
your retina, and your fingers seem to
be wider and brighter.

By changing the speed of your fin-
ger/ you can regulate the number of
frames illuminating it and thus the
number of separated shadows pro-
duced by the finger on your retina.
It's possible to choose a finger speed
for which the different shadows will
be resolved by your eyes (that is,
they wi1l be viewed separately from
one another). Since 10 frames move
down the screen during the chosen
period of 0.2 s, we can see 10 mo-
tionless fingers in this case.

lloul In lnake a $ll'olo$oope
To make your own stroboscope,

buy an electric motor and abattery.
You'Il also need a piece of cardboard
or thin meta1, wires, a variable resis-
tor (a rheostat rated at several ohms),
and a film projector. Cut out a card-
board disk with a diameter of 30 cm
and make 5-8 equally spaced slits
not far from the edge of the disk.
Attach the center of the disk to the
shaft of the motor and set the film
projector in such away as to make

Figure 4

the slits pass in front of the objec-
tive. Now assemble the electrical
circuit shown in figure 3, and your
stroboscope is ready for use.

By rotating the knob of the rheo-
stat/ you can regulate the rotational
velocity of the disk and thus the
flicker frequency. At some rota-
tional frequency you'll be able to
arrest a revolving (or arbitrarily
moving) object observed through the
openings of the disk. You can ob-
serve a fan, water dripping from a

faucet, waves on water, a swinging
pendulum, and so on. If you know
the rotational frequency of the disk,
you can determine the frequency of
the object's periodic oscillations. To
do this, you'll need to choose the
minimal rotational frecluency at
which the object seems to stop mov-
ing. Thus you can determine one fre-
quency by means of another.

You can do a lot of interesting
experiments with a stroboscope. For
example, you can demonstrate that
an ordinary incandescent bulb
"twinkles" (its luminance periodi-
cally changes ever so slightly). Not
only that, you can show that the
blinking frequency is double that of
the alternating current in the wires.
To detect the flashing, you should
draw one or two black bands on the
stroboscope's disk (figure 4) and illu-
minate it with a table lamp. After
starting the motor at some rota-
tional frequency, you'Il see arrested
or slowly moving dark bands.
They'1lbe rather faint, so you should
look carefully. If you repeat this ex-
periment with sunlight, you won't
see any dark bands.

Sll'uboscoly altd lils
The stroboscopic effect has many

practical uses, mostly in fields
where it's necess ary to measure
high-frecluency rotations or oscilla-
tions. It's also used to create the i1-

lusion of motion in neon signs, to
measure rotational speeds in elec-
tronic music devices, to emphasize
the fluid motion of performers on
stage, and, as we said above, to cre-
ate virtual life on TV and in the
movies.

However, even more original and
extravagant projects are also based
on the stroboscopic effect. For ex-
ample, imagine a long set of pictures
drawn on the wal1s of a subway tun-
nel. When the train moves at a cer-
tain speed (and, possibly, if the wal1
is illuminated by a flashing light),
these pictures will "come to 1ife," so
the passengers can look out the win-
dow and be treated to an animated
cartoon or advertisementl O
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LOOKING BACK

Uolla, 0ersled, and Fal'aday

by A. Vasilyev

lllN A woRp voLTA rN-
- - I vented the electric battery,

I and Oersted short-circuited it
lwith a wire and saw that a

compass needle deflects. Faraday, on
the other hand, forced current to
flow in a wire by moving a magnet
and discovered electromagnetic in-
duction."-from a conversation
with Moscow University students
before a physics exam

"If you rub a resin disc with cat
fur and put an iron coin on it, the
eleetric charge that has collected on
the coin can be used to charge aLey-
den jar." Thus the Italian physicist
Alessandro Volta (I745-1827) re-
ported, in letters to the leading sci-
entists of the time, his discovery of
the electrophorus. This electropho-
rus was the first device that made it
possible to accumulate electric
charge (if only in smali amounts)
and use it, say, to obtain a spark or
cure a paralyzed finger.

But Volta's greatest achievement
was his invention of the first electric
battery in 1799, which became
widely known as the "voltaic pile."
This battery consisted of several
dozen alternating copper and zinc
discs with skin or cardboard separa'
tors between them. To activate the
voltaic pile, the separators were
soaked with alkaline or salt solu-
tion, and all the elements were com-
pressed. The voltaic pile needed no
periodic recharging and, in Volta's
words, it "caused shaking" when-

3 4 JUrY/AUrttsT zool

ever a person touched it. Further im-
provements in the voltaic pile led to
a cup-shaped version-the forerun-
ner of the modern storage battery.
Volta immersed silver and zinc
plates in the cups and connected
them in series with metal wires to
build up the electric effect.

From the viewpoint of modern
science, the induction of an electric
spark by shorting the edge plates of
a voltaic pile results from chemical
reactions in the battery that gener-
ate a potential difference across its
terminals. Imagine a zrnc plate im-
mersed in a solution of sulfuric acid
(H2SO4). The process of zinc dissolv-
ing is complex: it is doublycharged
positive ions (Zn2*) that enter the
solution, not neutral atoms. As a
result, solution in the immediate
vicinity of the plate becomes posi-
tively charged, the zinc plate be-
comes negatively charged, and the
metal acquires an electrochemical
potential relative to the electrolyte
solution. The sign and value of this
potential depend not only on the
nature of the acid and the metal but
also on the concentration of ions in
the electrolyte. If plates of different
metals are immersed in the solution,
the potential difference generated
between them will be ec1ua1 to the
difference in their electrochemical
potentials.

For example, the electrochemical
potential o{ zinc immersed in sulfu-
ric acid, in which each liter contains
one mole of dissolved metal ions, is

equal to -0.5 V. By contrast, under
the same conditions the electro-
chemical potential of a copper plate
wil1be +0.6 V. The point is that the
copper plate accepts positive ions
and acquires a positive charge,
thereby giving a negative charge to
the adjacent solution. The voltage
difference between thezinc and cop-
per plates (the emf of this metal pair)
is 1.1 V. (Note that the great Italian
physicist is immortalized tnthe unit
of measurement used: the volt.)

As early as 1800, Volta's discov-
ery made it possible to break down
water and ammonia. It also led to
new technologies such as silver,
copper/ and ztnc plating. In short, it
opened the new age of electrical sci-
ence: electrodynamics.

In 1820, the permanent Secretary
to the Danish Royal Society, Hans
Christian Oersted 11777-l95l), de-
livered a lecture on physics and dur-
ing a demonstration found that the
magnetic needle of a compass was
defiected when the terminals of a
battery were connected by a wire.
He had a strong battery that made
the wire red-hot. At first, Oersted
thought that a high temperature was
needed for the electric current to
produce the magnetic effect, but
soon it became clear that the needle
"fe1t" even sma11 currents. The au-
thor named this phenomenon "an
electric conflict," according to the
popular philosopher Friedrich
Schelling ll7 7 5-l 85 41, who believed
that everything in this world occurs
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due to a collision of polar-opposite
entities. True, the wire in Oersted's
experiment connected the opposite
poles of the.battery (negative and
positive), but it was far more impor-
tant that the "conflict" between
electricity and magnetism occurred
not only in the metal wire but in the
surrounding space as well.

The effect of the electric current
on the magnetized needle was very
unusual. Indeed, all the forces
known at that time resulted in ei-
ther attraction or repulsion. By con-
trast, the magnetic needle was nei-
ther attracted to nor repulsed from
the current-carrying wire. It simply
turned so that it is perpendicular to
the wire. Noting this feature, Oer-
sted wrote that " according to the
facts described, the electric conflict
produces a Yortex around the wire.
Otherwise it cannot be understood
why the same fragment of wire
placed under the magnetic pole
drives it eastward, and when lifted
above the pole, it is driven west-
ward." Here Oersted encapsulates
the idea that electric current is en-
circled by magnetic lines of force.

The discovery of the Danish
physicist ignited an unprecedented
interest in the scientific community
and, in particulat, among French
scientists. Soon after it was pub-
lished, |ean Baptist Biot (177 4-1852)
and Felix Savart (1791-lB4Ll found
the mathematical expression for the
force exerted by the electric current
on the magnetic pole. Dominique
Francois Arago (1786-1853) discov-
ered that iron filings are magnetized
by a current-carrying wire, and
Andr6 Marie Ampdre (1775-1836)
obtained the expression for the force
between electric currents and re-
vealed the close " gerretic" relation-
ship (not conflict!) between electri-
cal and magnetic processes.

The next great discovery involved
the rotation of a magnet around a
current-carrying conductor, and the
honor belongs not to a Frenchman
but to the Englishman Michael Fara-
day (I791-18671. The experiments
conducted by Faruday in 1831 to
demonstrate electromagnetic rota-
tion were briliiant. To perform such

an experiment (in other words, to
construct the first electric motor in
history), he needed to come up with
an arangement of the magnet and
the current in which the current
would act on only one pole of the
magnetic. To accomplish this, Fara-
day directed the current through
cups fil1ed with mercury into which
wires were lowered. In one cup the
wire was set along the axis of the
cup, and a magnet floated in the
mercury, half-submerged (with one
pole above the surface). In this setup
the current affected only the upper
pole of the magnet and forced it to
circle around the wire. In the other
cup the magnet was fixed along the
cup's axis, and it was the cuffent-
carrying wire that circulated about
the magnet.

Having demonstrated that elec-
tromagnetic rotation was possible in
principle, Earaday set himself the
task of "converting magnetism into
electricity." Many physicists worked
on this problem and tried to produce
an electric spark or another manifes-
tation of the electric force by wind-
ing wire on a magnetized piece of
iron. All these experiments were un-
successful, because a permanent
magnet failed to generate electricity.

Flowever, in the interest of his-
torical justice, we should note that
while European physicists made one
fruitless attempt after another, the
American scientist )oseph Henry
(1797-1878) observed that current is
induced in a coil when a magnet
moves in it. As Henry prepared to
publish the results of his experi-
ments, Faraday published his paper
on the electromagnetic induction he
had discovered.

Here are some excerpts from
Faraday's journal, written in 1831:

I took an iron ring and wound two
coils on it, each of copper wire insu-
lated w.ith cotton cloth.

Then I charged a battery made of 10

pairs of plates with an area of 4 square
inches. The ends of one coil were
closed with a copper wire passing iust
above a magnetic needle. When the
other coil was connected to the bat-
tery, an immediate e{fect on the needle
was observed: it started to oscillate
and eventually retumed to its original

position. The same thing happened
when the second coil was discon-
nected from the battery.

In the following passage, Faraday
describes the effect of induction pro-
duced by permanent magnets:

If a magnet is inserted into a spiral
with a single continuous motion, the
needle turns to one side, then it sud-
denly stops/ and {ina11y it starts to
move in the opposite direction.

Elsewhere E ar aday writes :

The results that I have already ob-
tained in my experiments with mag-
nets led to the idea that the current
transmitted by a battery through one
conductor actually induces a similar
curent in another conductor, but this
latter current lasts only {or a brie{
moment/ and by its nature, it re-
sembles rather the electric wave gen-

erated by the discharge of an ordinary
Leyden iar than the current produced
by a galvanic battery....

When the wires are brought close
to one another, the lnduced curent
has the direction opposite the direc-
tion of the inducing current. When the
wires move away {rom one another,
the induced current has the same di-
rection as the inducing current. If the
wires remain motionless, there is no
induction curent.

These excerpts from Faraday's
journal describe one of the greatest
discoveries in human history, one
that had an enormous impact on
science and technology. However,
historical justice again demands that
we recall some other wonderful dis-
coveries made by this scientist.

For example,Faraday proved that
all the types of electricity known in
his time were identical: animal (tor-
pedo ray and electric eel), magnetic,
galvanic, thermal (thermoelectric-
ity), and frictional (triboelectricity).
In his attempt to discover the nature
of electricity, he conducted experi-
ments on the transmission of elec-
tric current through solutions of
salts, acids, and alkalis. As a result,
he found the laws of electrolysis.
Faraday discovered the effect of di-
electrics on electrostatic interaction
and introduced the concept of di-

CONTINUED ON PAGE 40
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IN THE LAB

The lellowship ol IhE l'inus

by S. Shabanov and V. Shubin

chemical agents produce a thick fog
or smoke of ammonium chloride
(NH4C1) particles.

Striking the membrane imparts a
velocity to the adjacent layer of
smoke. When set in motion, this
layer compresses the
neighboring layer, which
in turn transf ers the
compression to the next
layer, and so on. When
the sound wave reaches
the diaphragm, the
smoke will escape from
the hole, disturb the pre-
viously calrr,ait, and curl
itself into a ring due to
viscous friction.

What factors affect the
formation of vortex rings?
Might it be that the most
important role in this pro-
cess is played by the rim
of the orifice? To test this
hypothesis, we replaced the usual
diaphragm in the Tait's machine by

a sieve with a num-
ber of ho1es. If our hy-
pothesis is correct,
we should obtain
many small rings.
However, experi-
ments show that the
sieve produces only a

single large vortex
ring (figure 2).

It is very important
that the smoke es-
capes from the hole
in discrete bursts of
a continuous stream.
If the membrane is
replaced by a moving

piston, there will be no rings, and
only continuous smoke will curl
from the hole.

Vortices in water can be produced
by a common pipette filled with ink.
Take some ink up into a pipette and

squeeze a drop from a height of2-3
cm into an aquarium containing
static water (that is, without convec-
tive or other flows produced, say, by
an illuminating lamp, aerating de-
vice, etc.). The resulting ink rings
are clearly seen in the transparent
water (figure 3).

We can modify the experiment
and squeeze ink directly into the
water (figure 4). In this case the rings
will have somewhat larger diam-
eters.

The formation of vortex rings in
wate.r and air is similar: the ink in
water plays the same role as the
smoke in air. In both cases a key role
is played by forces of viscous fric-
tion. HoweYer/ the similarity of

E'LL SHOW YOU HOW TO
make air and water vortex
rings in the lab. We'll con-
sider their properties and

their interactions with obstacles and
with one another.

When we were still in grade
school, we noticed some interesting
features in the behavior of vortex
rings. We were able to explain a1-

most ail of them on a qualitative
level.

[onmailion oluonH rinus
We made air vortices in the labo-

ratory with a Tait's vortex machine
({igure 1), which is a horizontal cyl-
inder closed on one end by an elas-
tic membrane (made of leather, for
example) and having an opening
through acircular diaphragm on the
other end.

Inside the cylinder are two ves-
sels: one contains hydrochloric acid
(HCl), and the other ammonium
hydroxide (NH4OH). These two
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these cases is not perfect: the two
types of rings look similar only for a
short time after formation. After
that, the behavior of the rings in
water and air begins to differ.

lUloliolt ollhe medium ahoul

Ihe uortex rinus

What is going on in the medium
where a vortex ring is produced?
Let's study this problem with some
experiments.

Put a lighted candle 2-3 cm away
from the diaphragm of the Tait's
machine. Aim the smoke ring so
that it passes near the flame. We see
that the flame will either die or fluc-

tuate vigorously. This indicates that
more than the visible part of the ring
is set in motion. The air layers near
the visible ring are also moving.

How do they move? Take
two small rags soaked in hy-
drochloric acid (one rag) and
ammonium hydroxide (an-
other rag). Suspend the rags at
a distance of 10-15 cm apart.
Immediately the air between
the rags will be filled with
smol<e (fumes of ammonium
chloride). Now direct a smoke
ring from the apparatus into
this cloud of smoke. After
passing the smoke cloud the
ring will grow in size, and the
cloud will be set into rota-
tional motion. Therefore,
the air near the vortex

ring must be rotating (figure 5).

A similar experiment can be
carried out with water. While
slowly stirring the water in a
glass, drop some ink into it. Stop
stirring, and af ter a while
"threads" of ink will form in the
water. At this time, squeeze an
ink ring into the water. When
the ring passes near the threads,
the ring will spin the threads
around itself.

uorlu rillu$ ill tll,ail8l'

Let's consider the evolution of
vortex rings in water. As we saw
above, if an ink drop falls from a
height of 2-3 cm into an acluarium,

it generates an ink vortex
ring. What will happen to
this ring; that is, how will it
evolve?

Paradoxically, after a
while the vortex ring
will decay into several
smaller rings, and these
rings will also decay
into smaller rings, etc.
Asaresult,abeautiful
"castle" will appear in
the water (Figure 6).

We saw that the
split-up of the first ring
was precededby the for-
mation of bulbs on the
ring, which later gave
birth to the second gen-

eration of rings. How can this
be explained? The outer parts of
the ink vortex ring are con-
stantly mixing with water. That

means that the ring as a whole
moves in a heterogeneous medium,
so some parts of it get ahead of oth-
ers. Since the ink is heavier than
watert it spills into these advanced
parts of the ring. At this moment the
surface tension comes into play and
produces the round bulbs. Shortly
thereafter these bulbs become iso-
lated drops of ink, which produce a
new generation of vortex rings. The
process repeats itself several times,
producing a number of vortex gen-
erations. Alas, we could not find any

regularity in this hydromechanical
fission: in 10 experiments the num-
ber of rings in the fourth generation
was too variable to draw quantita-
tive conclusions. Perhaps our read-
ers will have better luck in finding
the mean number of aqueous vortex
rings in each generation.
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In other experiments we found
that the existence of a vortex ring is
possible only within some mini-
mum "vital" volume. For this we
set tubes of various diameters along
the trajectory of aqueous vortex
rings. When the diameter of the tube
was slightly larger than the size of
the ring, it decayed within the tube,
and then a smaller ring was gener-
ated from its remnants. When the
tube's diameter was about four
times larger than that of the ring, the
ring would pass unscathed through
the tube. The vortex was practically
{ree of any external influences.

Scattel'ing olfie smofte rinus
We carried out several experi-

ments on the interaction of smoke
vortex rings with a plane and with
diaphragms of various diameters.
We refer to the processes occurring
here as the scattering of vortex rings
{rom obstacles.

Imagine a ring impinging on a dia-
gram whose diameter is smaller
than that of the ring. We consider
two cases: 1) a central collision,
which occurs when the ring's trans-
lation velocity is normal to the dia-
phragm and the ring's center travels
through the center of diaphragm,
and 2l an off-center collision, when
the ring's center doesn't pass
through the center of the diaphragm.

In the first case, the impinging
ring is scattered, but another
(smaller) ring is generated on the
other side of the diaphragm. The
mechanism of its generation is the

same as in the Tait's machine:
the air moving around the pri-
mary ring flows into the orifice
and carries with it the smoke
of the scattered vortex.

If the diameter of the dia-
phragm is equal to or some-
what larger than that of the
ring, a central collision occurs
in a similar way.

The off-center collision is
far more interesting: in this
case the newly generated ring
travels at some angle to the
initial trajectory (figure 7l.Try
to figure out why this happens.

Now let's consider the interac-
tion of a vortex ring with a plane.
The experiments showed that if the
obstructing plane is perpendicular to
the velocity of the ring, the ring
swells uniformly while maintaining

its shape. We explain this phenom-
enon as follows: the flow of air in-
side the ring produces a high-pres-
sure region that causes the entire
ring to expand uniformly.

When the obstructing plane is
inclined at an angle to its initial po-
sition, the incident vortex is repelled
by it (figure 8). This repulsion can
also be explained by the formation
of a high-pressure region between
the vortex ring and the plane.

lntmaclion olllrs uonlu rinUs
Surely, the most interesting ex-

periments were those in which two
vortex rings interacted with
each other. We conducted
such experiments both in air
and water.

Let an ink drop fal1 from
a height of l-2 cm and an-
other from a slightly greater
height of 2-B cm. These
drops produce two vortices
in the watert which move
with different speeds (v, >

v1). When the two rings are
at the same depth, they start
to interact with each other.

Three types of vortex in-
teraction are possible. In the
first case, the delayed ring
passes the first ring without

"touching" it (Figure 9a). Even so,
the two rings interact. The flows of
water in the two rings repel each
other. In addition, there is a spillover
of ink from the first ring to the sec-
ond ring: the latter has a more in-
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tense flow that entrains some ink
from the first ring. Sometimes a por-
tion of this ink passes through the
second ring and produces a new ring-
let. Then the rings begin to break up
and we could no longer observe any-
thing interesting.

In the second case, the second
ring overtakes and touches the first
ring (figure 9b). As a result, the more
intense flows in the second ring de-
stroy the first ring. As a rule, new
smal1 vortices are formed from the
fragments of the first ring.

Finally, in the third case the rings
collide centrally (figure 9c). The sec-
ond ring passes through the first ring
and shrinks in srze, while the first
ring expands. As in the previous

cases, these changes result from the
interaction of the flows of water
around the two rings. As usual, the
process culminates in the breakup of
the rings.

The interaction of smoke rings
was studied with the help of a modi-
fied Tait's machine that had two
holes instead of one. It turned out
that the outcome of an experiment
was heavily dependent on the force
and duration of the blow delivered
to the membrane. In our setup the
membrane was struck by a heavy
pendulum.

When the distance 7 between the
holes was smaller than the diameter
of a hole (l . d), the two air streams
intermixed and produced a single

vortex ring. As a rule, no ring could
be generated il d .1 < 1.5d. In all
other cases two rings were gener-
ated. When l was larger than 4d, the
rings did not "feel" each other. At
l.5d < 1 < 4d the rings initially drew
together, and then (in some cases)
they moved apart before disintegrat-
ing.

The attraction of the rings can be
explained by the formation of a sort
of "virtual ring" between the real
ones, moving in the opposite direc-
tion (iigure 10). Consecluently, the
planes of the real rings turn toward
each other, and these rings draw to-
gether.

We could not explain what hap-
pens to the rings at the end of their
short and turbulent life. O

Quantum on vortices and turbu-
lence:

S. Kuzmin, "Spinning in a |et
Stream, " September/October L99 4,
pp.49-52.

L. Leonovich, "Fluids and Gases
on the Move," lanuaryfFebruary
1995, pp.28-29.

|. Raskin, "Foiled by the Coanda
E{Iect," |anuary fFebruary 199 4, pp.
5-l 1.

A. Stasenko, "Airplanes in
Ozotre," Mayllune 1995, pp.20-25.

A. Stasenko, "Whirlwinds Over
the Runway, " |uly/August 1997, pp.
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electric permeability. Later he ex-
perimentally proved the law of con-
servation of electric charge and
came very near to discovering the
law of energy conversion and con-
servation. In 1845 he discovered
diamagnetism, which is the cluality
that causes a substance to be pulled
out of a magnetic field, and in lB47
he observed paramagnetism-the
property of substance that causes it
to be drawn into a magnetic field. In
addition, Faraday discovered the ro-
tation of the plane of polarization in
a magnetic field, which was the
first evidence of the electromag-
netic nature of light and laid the

groundwork for magneto-optics, an
entirely new branch of modern
physics.

Finally, it was Michael Faraday
who advanced the extremely fruitful
concept of physical fields. According
to Albert Einstein, the idea of a field
was the most original of Faraday's
achievements and the most impor-
tant discovery since the time of
Newton. A11 of Faraday's predeces-
sors considered space a passive wit-
ness to the processes going on be-
tween the bodies and charges. By
contrast/ in Faraday's world space is
an active participant in the physical
game. "One must have had a power-
ful gift of scientific foresight,"
Einstein wrote/ "to perceive that in

describing electrical phcnornena it is
not the charges andparticles that are
essentially responsible for phenom-
ena, but rather the space betlr,een
the charges and partlcles." O

Quantum on the historl- oi elec-
tromagnetism:

S. Filonovich, "The Modest Ex-
perimentairst, Henry Cavendish,"
fantrary/February, 1991, pp. 4l-44.

A. 81,31[s, "Backtracking to
Faraday's Law," fanuary/Fcbruary
1994, pp. 20-23.

P. Bliokh, "The Advent of Radio,"
Novenrbcr/December 1996, pp. 4-9.

A. Leonovich, "Of Combs and
Coulombs, " l anuary fF ebrtary 1997,
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AT THE
BLACKBOARD I

Waue inlel'lel'ence

by L. Bakanina

AVE INTERFERENCE CONSTITUTES A
large and important area o{ physics. Research in
this area has played a significant role in the de-
velopment of optics, because the discovery of

light interference was a strong argument in favor of its
wavelike nature.

When two waves meet/ the resulting oscillation
obeys the superposition principle: the resulting oscilla-
tion is the sum of the oscillations caused by all of the
individual waves. Flowever, the interference pattern ap-
pears only in cases where the individual waves are co-
herent-that is, all of them have the same frequency and
constant phase differences. What does this pattern look
like?

Imagine a sinusoidal wave propagating in some direc-
tion in the plane. At a point located a distance d from
the origin the wave produces oscillations described by
the following formula:

a= Acosrl, - 4 ) = Acos ( r, -44\= Acos ( r, -4 a\.\ "/ \ rv) \ I I
where a is the value of the oscillating physical param-
eter at time t, A is the amplitude, r-tl is the cyclic fre-
quency/ T : 2nla is the oscillation period, and v is the
wave speed (for electromagnetic waves in a vacuum v
is equal to the speed of light c).

The sum of two coherent waves with the same am-
plitude is

and the amplitude of the resulting oscillation is

where LS:2n(dr- dr)lX is the phase difference of the
two waves. Depending on the phase difference AQ (and
thus the path difference d2- drl of the waves, the result-
ing amplitude can vary from A.,- -o : 2.4 (when the
phases coincide) to A.r- -ir, 

: 0 (when the phases differ
bv m).

The human eye (or a photodetector) perceives not the
amplitude of the oscillation but its intensity I which
is the energy incident on a unit areaper unit time. Both
the energy and the intensity are proportional to the
square of the amplitude, so

1r,r. - A'ru- - +Azcosz !.surl2

Thus there are points {nodes) where the total intensity
is greater than the sum o{ the intensities of both super-
imposed waves (1.r- rr,r" - 4A2) and points (antinodes)
where the waves nullify each other (1.r--i, : 0). This
spatial redistribution of energy is a characteristic feature
of wave interference.

The phenomenon of interference can easily be dem-
onstrated with waves in water or with radio waves. In
contrast/ in optics it's not easy to produce an interfer-
ence pattern, because ordinary light sources (and not,
say, lasers) emit light composed of waves with rapidly
and randomly varying phases. This type of light and
their sources are cal1ed incoherent. Flowever, if we
break the light emitted by such a source into two pen-
cils of light and then superpose them, we can observe a
rather clear interference pattenl

Note that in order to describe the interference pattern
correctly, we need to know the phase difference with an
accufiacy far better than n; otherwise the maxima and
minima cannot be discriminated (or resolved/ as the
physicists say). Correspondingly, the error in measuring
the path difference of the tv/o waves must be much less
than the wavelength l, {for light waves it must be far less
than 0.1 mm).

To familiarize ourselves with the phenomenon of
wave interference/ let's consider some problems given

a = ar t az = Acos(* -T u)+ Acos (* - T n)

= 2Acosl 
z" @, - a) 

l.n, [r, _ 2r (dr + d, ) )Lr 2 I I r 2 )

A.,-=, "l*"T@?; 
: r"1"", #[

f<
C
f

c0
a
c0

E
oF

_o
t
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on the physics exams at the Moscow Institute of Phys-
ics and Technology.

Problem l. A plane electromagnetic wave with fue-
quency v erytitted by a funnel-shaped antanna falls
perpendicularly on a flat teflecting screen. Find the
amplitude of the reflected wave if an electric field-in-
tensity meter shows maximum and minimum field
amplitudes A, and A, respectively, as it moves be-
twean the antenna and the scraarT: In addition, deter-
mine the distance between two adiacent maxima of
the field.

Solution. Superposition of the incident and reflected
waves occurs in the space between the antenna and the
screen. At the points of maximum intensity the phases
of these two waves coincide, so the resulting oscillation
has the following amplitude:

At: Ain"+ Ard.

At the points of minimum intensity the incident and
reflected waves have opposite phases, so the total am-
plitude is

Az: Ain"- Ard.

These equations yield

A,.r= 6r- A2ll2.

Let's describe the oscillations at a point with coor-
dinate x induced by the incident wave as

ain = Ain cor,(, -;) = Ai,,"cos (r, - +")

If the distance between the antenna and the screen is 1,

the reflected wave travels the distanc e 2l - x to this
point. Therefore, the oscillations induced by this wave
are described by

( Zl-x\ ( 2n 4rl\
ar"1 =Ar"lCosol r--l=A..1coSltot+ - x- - l.

\ c ) ''' [ ]' ]")

(Reality, as usual, is more complicated: depending on
the properties of the screen/ reflection may preserve the
phase of the incident wave or change itby n; however,
this won't affect our reasoning below.)

Now denote the coordinates of two neighboring
maxima by x, and xr. The phase differences of the os-
cillations induced by the incident and reflected waves
at these points are

(ro), = [,, -*",)- [,,. f ", - *,)= -* *,. f t

and

(40), = -*"r**t,
lL

respectively. The phases of the resulting oscillations at
two adjacent maxi.ma must differ by 2n. Therefore,

from which we get

)"_c
1) -  1

problem z. e point ,t*"lf l*t s is located at the
focal point of a lens. A symmeftic prism with inteilor
angle u: 0.01 rad and width D = 5 cm is situated be-
hind the lens (figure l). At what distance L from the
prism can the largest number of interference bands be
observed! How many bands can be seen on the screen!
What is the width of the bandsl The refractive index
of the prism g/ass is n = 1.5, and the wavelength of the
light is l" = 0.5 pm.

Solution. Since the light source is located at the fo-
cal point of the lens, a parallel beam of light lands on
the prism along its optic axis (figure 2). The prism splits
this beam into two beams traveling at an ang)e B with
the optic axis, which we can find using Snell's law
sin o/sin B : r. Since the angles are small,

F=sinp=ti'o=o.nn
It's clear that the largest width of the interference

pattern will be at the place corresponding to the great-

Figure 1
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est cross-sectional area of the interfering beams. Figure
2 shows that this distance is

t= D =D =Dn=112.5cm.' 4tanB 4p 4a

The width of an entire interference pattern at this dis-
tance is b = D12:3 cm.

The width of each crossing beam is d : lD lzl cos B =
D12. The angle between the wave fronts of the beams
is 2p, so the maximum path difference of the beams is

N=dtar2B=d.28.
The path difference corresponding to two neighboring
maxima (or minima) equals the wavelength i,. Thus the
number of interference bands on the screen is

N = 
AJ 

-2d9 = 
Do 

= goo,
I)"il.

and the width of a single band is

- b Dl2 n),"b^=-=-=-= 3/.5 um." N Dullnx) 2a

Problem 3. A rudio receiver that tracks the appear-
ance of a satellite beyond the hoilzon is located on the
shore of a lake at a heightH = 3 m above the water's
surface. As the satellite ilses above the horizon, peri-
odic changes in signal intensity are observed. Find the
frequency of the rudio wave emitted by the satellite if
the intensity maxima arc observed at angular eleva-
tions of the satellite above the horizon of ut = 3" and
az: 5o. The surf ace of a lake can be considercd an ide-
ally ruflecting mfuror.

Solution. The receiver detects both the ray traveling
directly from the satellite and the ray reflected by the
lake. In figure 3 these are rays I and2, respectively. By
drawing the wave front BC, which is perpendicular to
both rays, we get the path difference between the inci-
dent and reflected rays:

N =lAcl-]eal = -ry- - - -ry- -cos2u.' sfurcr sincx

Since ali the angles in this problem are small, we have
sin or = u and cos G = 1 - a2f2, so

H(1- cos2a)o,=-\*,- .=LHa.

The maximum intensity is observed when the path
dif{erence of the interfering rays is equal to an integer
number of wavelengths:

ZHu, = k)" and zHor: (k + 1)1..

This ecluation yields the wavelength and frequency of
the satellite's radio signal:

)',:2H(ar- o"r)

and

v-9- ,' =\OeHz.X ZHlu2-u1)

Exercises
1. A funnel antenna emits a plane electromagnetic

wave with frequency v = 9.4 . l}e Hz in the direction
perpendicul ar to a reflecting screen. An electric field in-
tensity meter establishes the result of interference of the
incident and reflected waves as they move between the
antenna and the screen. Determine the minimum thick-
ness of a dielectric plate attached flat against the screen
such that the meter shows a minimum electric field
intensity if, before the plate is attached, it was located
at a spot with maximum intensity. The refractive index
of the plate is n : 1.4; ignore absorption by the plate and
reflection from it.

2. A shortwave transmitter operates at a frequency v
= 30 MHz. A receiver is located at a distance L = 2,000
km from it. Radiowaves reach the receiver after being
reflectedbyionosphericlayers at altitudes of hr= 100 km
andhr= 300 km. Find the equation describing how the
intensity of the signal changes as the receiver is moved
along the line connecting it to the transmitter. The dis-
placement of the receiver is small compared to I.

3. Radiowaves from a star situated in the plane of
the equator are received by two antennas located on
the equator and separated by a distance L = 2OO m. Sig-
nals from the antenna are sent along cables of equal
length to a receiver. Find the equation describing the
change in the amplitude o{ the voltage in the reeeiver's
input circuit as a consequence of the Earth's rotation.
Reception occurs at a wavelength ), : 1 m. During the
time of observation, the star remains very close to the
zentth. CI
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HE SIGNIFICANCE OF AS-
tronomy and its role in human
history are often underesti-
mated. Everyone allows that

astronomy helped develop rules for
measuring time and orienting our-
selves on the Earth's surface, and
that it discovered much of interest
in the firmament. But the consensus

AT THE
BLACKBOARD II

EiuinU astroltolny il$ due

by A. Mikhailov

seems to be that this isn't as impor-
tant as what other sciences-say,
physics and chemistry-have given
us. Only in our age of space explora-
tion has the value of astronomy be-
come more obvious. And yet one
might argue that if it hadn't been for
astronomy/ our history would have
been quite different indeed.

Imagine if the entire sky were
constantly blocked by thick clouds,
so that we couldn't see the Sun,
Moon, planets, and stars. Day
would sti1l alternate with night,
and we would notice that it was
brighter on some nights than oth-
ers, and that this phenomenon was
somehow related to the tides. We
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would dream up ai1 sorts of clever
theories, most of them far from re-
ality.

Thanks to astronomy, more than
two thousand years ago we learned
that the Earth is a sphere. This real-
tzation came from measuring
changes in the midday height of the
Sun and the culmination height of
the stars as an observer moved along
a meridian. This idea was also cor-
roborated by the round shadow of
the Earth on the Moon during lunar
eclipses. The first known successful
attempt to calculate the circumfer-
ence of the Earth was made by Era-
tosthenes of Cyrene in the third cen-
tury B.c. If we couldn't see the
heavenly bodies, this discovery
might not have been made. We
might still think the Earth is flat and
hemmed in by the ocean on all sides.

Some might object that the con-
vexity of the sea and land, which can
be seen when objects recede on open
water or on a broad, featureless
plain, is proof that the Earth is
round. However, other observations
may lead to the opposite conclu-
sion-that the Earth is concave. In-
deed, if we climb up to a high spot,
we don't perceive the horizon as

dropping off at the " edges," and the
lowlands around us look like a de-
pression in the Earth's surface. We
get the impression that the Earth is
like an overturned bowl-the un-
even bottom is the dry land, while
the sides, bent downward, are cov-
ered by the ocean.

If people hadn't known about the
sphericity of the Earth, history
would be quite different. America
wouldn't have been discovered, in
a1l likelihood, because sea{aring
would have been stunted. In ancient
times, people sailed near the shore-
why plunge deep into the sea and
tempt fate? The sea route from Eu-
rope to India and its treasures
hugged the shores of Afric,a and
rounded its southem tip. The idea o{
reaching the lands of East Asia by
traveling west would seem absurd if
sailors were unaurare that the sur-
face of the Earth was "clos€d-"

Could there havebeensome other
way of discovering the sphericity of

the Earth without astronomical ob-
servations? In principle/ yes/ there
were such methods-but they were
nearly impossible to implement. One
such method is based on measuring
how the horizon drops when ob-
served from a high vantage point;
another involves measuring the
spherical excess in the angles of large
triangles on dry land.

The way the horizon drops off can
be depicted geometrically as in figure
1. Imagine that we're situated at
point A at a height h above the sur-
face of a sphere of radius R. Draw the
tangent line to the sphere from point
A to point B, which lies on the hori-
zon. The angle BAE, which is equal
to the angle o formed by the tangent
line and an imaginary plane with
point B on its "horizon," is the dip of
the horizon at height h. Figure 1

shows that lABl = d = R tan u. Ac-
cording to the Pythagorean theorem,

(R + hlz : R2 + & : A2 + R2 tanz a,

from which we get (neglecting the
small factor h2)

tancx,=,mR.

Since angle a, is small, ,rn s = u, so

a=rEEla lradl.

Clearly if u is constant for a given
height h at any spot on Earth, this
means R : const-that is, the Earth
is a sphere. Therefore, by measuring
o( we can discover the sphericity of
the Earth. However...

If we plug the value R : 6,370 km
into the last equation and convert
radians to minutes of arc (1 rad :

3437.7'1, we get the following result
for the Earth:

u=60'.91"1h,

where h is measured in kilometers.
Assume that we perform our geo-

desic measurements at aheight h :
I km above sea level. In this case,
our formula for the dip of the hori-
zon yields almost 51', which is mea-
surable even with a small theodo-
1ite. However, in reality it's not easy"

to measure the dip of the horizon.
This is because the rays of light are
refracted when they pass through
atmospheric layers of different den-
sities, so the line of sightAB will not
be straight. Usually it's curved, with
its concavity directed downward.
Therefore, in reality the theodolite
will measure not the dip of the ho-
rizon but some angle that may dif-
fer from the correct value o by 20
percent or more. This way of mea-
suring the Earth's curvature is very
unreliable, and it cannot prove the
sphericity of the Earth. Moreover, it
can be implemented only on islands
with high mountains, because only
in such places is the horizon an un-
interrupted line and the altitude can
be measured reliably.

As noted previously, another
method of supposedly detecting the
Earth's sphericity is based on mea-
surements of the spherical excess in
the angles of a large-scale triangle.
The sum of all the angles of a triangie
whose sides are the arcs of the great
circles of the sphere is larger than
180 degrees. Stereometry says that
the difference (sphericai excess) is

t.:206265' S/R2 angular seconds,

where S is the area of the triangle
and R is the radius of the sphere.
Assume that we could rpeasure the
angles of a huge equilateral triangle
on the Earth with sides 100 km long.
The area of this triangle is 4,330km2,
and the spherical excess is 22". This
value can be "captured" by a good
theodolite, but such instruments
were created for astronomical pur-
poses; for "rough" terrestrial mea-
surements/ such precision wasn't

CONTINUED ON PAGE 49
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AT THE

HE CREEK MATHEMATI-
cian and astronomer Ptolemy
(ca. 90-168) found a theorem in

Ptolemy's theorem, Part I: If
quadrilateral ABCD is inscribed in a
circle (figure 1), then

AB .CD + AD .BC = AC .BD. (1)

Ptolemy's theorem, Part II: If
quadrilateral ABCD cannot be in-
scribed in a circle, then

AB .CD + AD .BC > AC .BD. l2l

Ptolemy's theorem, discovered
1,800 years ago, is still considered a
great result and a treasure of ancient
mathematics. The Swiss mathema-
tician Leonhard Euler (1707-1783)
came up with a similar theorem: if
points A, B, C, D lie on a straight
line, then

AB .CD + AD .BC = AC .BD.

Comparing Euler's and Ptolemy's
theorems, we notice an interesting
fact.If a straight line is viewed as a
circle whose radius is infinitely
long, then four points on the straight
line can be seen as a circle. Euler's
theorem would thus be a special
case of the first part of Ptolemy's
theorem.

There are marry instances where
the two theorems are compatible.
Let's look at another.

Example. Suppose ABCD ts a
convex quadrilateral inscribed by a
circle. Then

(3)

the circum-
ABCD. We

BLACKBOARD III

The Thl'ee Chol'ds lheorgln

by Shikong Le and Lioukan Chen

AC BA.AD+BC.CD
BD AB,BC+AD

Proof. Suppose R is
radius of quadrilateral
first show that

DC

AB ,BC + AD ,DC
=2R.BE+2R.DF (4)

In figure 2, BE L AC and DF L AC,
we draw a diameter CM and Line
BM. Thenwe have ZCBM = 90, lM
: ZBAC. Therefore,

BC : CM sin lM: 2R sin ZBAC.

Figure"i

Similarly, by drawing line DM, we
can show that

DC :2R sin IDAC.
From rlght triangles BEA, DAF, we
have

BE: AB sin ZBAC,
DE: AD sin ZDAC.

Using these four equations, we have

AB.BC + AD ,DC

= AB . 2R srn ZBAC + AD . 2R sn lDAC
:2R. BE + 2R. DF.

Now we have:

ACIAB.BC + AD.DC)
: ACILR.BE + 2R.DF)

= LRIAC .BE + AC . DFI
= 4R(S^ABC * S*cr)

:4R . Sor"o.
In fact,

BDIBA . AD + BC CD):4R . SAtscD.

Thus AC(AB .BC + AD .DC):
BD(BA.AD + BC .CD), and expres-
sion (3)follows.

Now we can play with result (3)

a bit. Let R -+ - lthus lB -+ 180o,

lC -+ 180', lA e 0", lD -+ O').
Then the convex quadrilateral
ABCD turns into four points on a

line. But expression (3)remains true.
Thus we derive a new theorem from
the example above.

Theorem: Let points A, B, C, D lie
on a straight line in sequence. Then
expression (3) is true.

Recently, Minghuai Hou, a teach-
er in Liaoning province, found a new

4 I JtlIY/AUGU$T 2[or
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Figure 3

theorem, which we will call the
Three Chords theorem.

Let point A 1ie on a crrcle, and let
AB, AC, and AD be three chords of
that circle (figure 3). Then

AB sin ICAD + AD sin ZBAC
= AC sin Z BAD. (5)

It was reported that this theorem
won a gold medal from an interna-
tional organization. After studying
it, we have concluded that this
Three Chords theorem is equivalent
to the first part of Ptolemy's theo-
rem. Indeed, if we connect BC and
DC, we get a quadrilateral ABCD
inscribed in a circle. Therefore, we
can apply Ptolemy's theorem to see
that expression (t ) is true. Using the
law of sines in LABC, we have

BC CA
sinZBAC- sin4CBA

= AB 
=2R.

sin ZACB

Figure 4

where R stands for the radius of the
circle in figure 3. Thus

BC :2R sin ZBAC. (5)

Similarly, in LACD and LABD,we
get

CD = 2R sin ICAD (7)

and

BD = 2R sin ZBAD, (8)

respectively. Substituting these ex-
pressions into (t ), we get

AB .2R sin ICAD
+ AD .2R sin IBAC

: AC .2R sin ZBAD. (9)

Equation (5) follows if we divide by
2R.

So the Three Chords theorem can
be derived from the first part of
Ptolemy's theorem. Conversely, the
first part of Ptolemy's theorem can be
derived from the Three Chords theo-
rem. Indeed, we can easily derive
equation (9)from equation (5). With

the aid of equations 16l, (71, and (B),

equation (1) follows. Therefore, the
Three Chords theorem is ecluivalent
to the first part of Ptolemy's theorem.

Using Ptolemy's theorem, we can
prove the converse of the Three
Chords theorem.

Theorem. Let line segments AB,
AC, AD, and the angles they form
satisfy equation (5). Then points A, B,
C, D are on the same circle-that is,
line segments AB, AC, and AD arc
chords of the same circle (figure 4).

Proof. Draw a circle through
points A, B, D.It intersects ray AC
at point Cr. We shall prove that
point C, coincides with point C.

From Ptolemy's theorem we have
shown that

AB sin zcLAD . o:;Ai:fi",

-that is,

AB sin Z.CAD + AD sin ICAB
= ACrsin IDAB. (10)

Comparing equation (10) with
equation (5), we have ACrsin ZBAD
: AC sin IBAD. Obviously
sin ZBAC > 0, sin ICAD > 0, so
equation (5) shows stn IBAD > 0.
Therefore, ACr: AC-thatis, point
C, coincides with point C.

As we've noted, the Three Chords
theorem is an equivalent form of the
first part of Ptolemy's theorem, but
the Three Chords theorem is much
briefer and easier to apply. For this
we are grateful to Mr. Hou. O

CONTINUED FROM PAGE 47

necessary. So the second method oi
proving the Earth is round could not
have been realizcd.

Our analysis shows that the sphe-
ricitl. oi the Earth could not have
becn dirct.,r e red rvithoLrr astronomi-
cal observatrons. Without astronomy
the history of thc rvorld r,r,ould be dif
{erent, and science and technology
would suffer great losses. The biggest
loss would be the law of universal
gravitation discoverecl by Isaac New-
ton at the end of the 17th century on
the basis of astronomical observa-
tions by Tycho Brahc and |ohannes

Kepler. This fundamental law under-
lies all the exact sciences, and many
fields of science could not have de-
veloped without it: mechanics, the
theory of magnetism and electricity,
aviation-to say nothing of space
flight. The theory of relativitywould
surely be out of the question.

The speed of light was first mea-
sured by the Danish astronomer Ole
Ramer (1644-17lol in 1575 and re-
sulted from his observations of
|upiter's moons. It's likely that the
speed of light could have been mea-
sured experimentally without astro-
nomical observations, but it would
have happened much later, and this

would have slowed the development
of optics. Even chemistry was en-
riched lry astronomy'. rccall that he-
lium was discovered first on the Sun
and only later found here on Earth.
Astronomy also posed.a number of
mathematical problems whose solu-
tions advanced this field of endeavor.

Perhaps someone will say, "Radio
astronomy isn't bothered by your
hypothetical cloud cover. It can
even tell us about celestial bodies
that we cal7't see." But radio as-
tronomy has been around for only
seventy years or so, and it appeared
and developed thanks to its
" granddad"-optical astronomy. 0l
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INFORMATICS

[ard parly

by Don Piele

I T,S TIME ONCE AGAIN To HOST THE ANNUAL
I card pafiy, where six couples will gather together to

I enjoy a night of cards. From painful past experiences,
I I have learned to avoid putting couples together at the
same table. It's no fun watching friends leave the party
not speaking to each other. To avoid this I will distrib-
ute the twelve guests around three tables so that each
table has two women and two men but no couples. I
wonder how many ways I can do this?

One way to model this problem is to number the
tables from 1 to 3; if a women is placed at table -r write
out a slip for her partner with her table number on it.
Thus, the men willall end up with slips numbered {1,
l, 2, 2,3, 3). If a man with slip I sits at table 1, he will
be sitting with his partner. Any complete permutation
of the slip numbers will result in a seating arrangement
where no man sits with his own partner. A complete
permutation (sometimes called a derangement) is any
permutation where all numbers are not in their origi-
na1 positions. For example, {2, 2, 3, 3, 1, 1 } is a complete
permutation of {1, I, 2, 2,3, 3}, but {2, 2, L,3, 3, 1} is not,
because one 3 has not moved.

tir$ appl'oaclr
Let's begin our investigation by constructing a func-

tion that will build all complete permutations. First, we
need a function to generate the list of table numbers {1,
1,2,2, ..., n, n\ for any n, in case we want to add more
than three tables.

sliptilumbers [n_l : =F1atten [llbb].e I i, ( i, n], { 2 } I I

slipuumbers [31

{1,1,2,2,3,3}
Next, let's construct a predicate that detects if one

list is a complete permutation of another by seeing if the
difference of the lists contains afly zeros. FreeQ tests to
see if the difference is free of zeros.

conrpletePermutationQ IL1_, L2_7 z =EreeQ IL1-
Ir2,07

Let's do a test.

aompletsePermutationQ l{L,L,2,2,3,31, t2,2,3,3,1,717

True

5 0 JUIY/[tlotl$r 2oo1

To generate all permutations we will use Mathe-
matica's built-in Perrmrtations function. Let's see how
many permutations there are for {1, | , 2, 2, 3 , 3]1.

al lPerrnrtations=Pezmrtatiorrs | {L, L, 2, 2, 3, 3 I I i

"</ /S}ral]-ott

{ {1,L,2, 2,3,3}, {L,1",2,3,2,3}, {1,L,2,3,3,2}, {L, 1,,3,2,2,3},
{1_,L,3,2,3,2} , {L,1_,3,3,2,2} , {L,2,L,2,3,3} , {L,2,L,3,2,3} ,

{L,2,L,3,3,2}, {1,2,2,1,3, 3}, <<80>>}

Only a few of the 90 total permutations are shown.
Of course, it is well known that the way to compute the
number of permutations of six objects if three of the ob-
jects have duplicates is 6! / (2t2t2t).

Next we select from all permutations those that are
complete permutations of {1, 1,2, 2, 3, 3}.

Select I allPermutations,
completePerrmrtationQ [#, {1 ,L,2,2,3,3} ] &l

{{2,2,3,3,L,t}, {2,3,L,3,1-,2} , {2,3,1,3,2,1} , {2,3,3,L,1,2} ,

{2,3,3,L, 2, L}, {3,2, 1_,3, t,2}, {3,2, L,3,2, 1}, {3,2,3, L, L,2},
t3,2,3,1_,2, 1), {3,3,1_,L,2,2} }

The answer to my original question of how many
ways I can seat the fellows with different partners than
their mates is 10. The graphic below shows the 10 ar-
rangements with the women sitting in seats South and
West and the men in seats North and East. Notice there
are never more than two of a given color at any table.
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Let/s put our ideas together into a function that will
derive the arrangements for n tables.

completePermutations [n_] : =
Module [ [start=s1ipl{ilnbers [n] ],

Select IPermutations Istartl ,
completePermutationQ [#, start] &l l

The complete permutations for four tables is much
higher at 297.

conpl-etePermutations [ 4 ] / /Sha1low

{ {2,2, L, 1, 4, 4, 3,3}, {2,2,L, 3, 4, 4, L, 3}, {2,2, L, 3, 4, 4,3, 1},
{2,2, L, 4, 1, 4,3, 3}, {2,2, 1, 4, 4, t, 3, 3}, t2, 2, 3, 1, 4, 4, t, 3},
{2,2,3,L, 4, 4,3,1}, {2,2,3,3, 4, 4, 1,, 1}, {2, 2,3, 4, t, 4, L,3},
{2, 2, 3, 4, t, 4,3, 1}, <<287>>}

The problem with this method of counting the com-
plete permutations for n tables is that all permutations
of 2n objects need to be constructed. This gets out of
hand fast, and the highest number we can reach in area-
sonable amount of time is n : 5.

Ta-b1e [ { i, Lengrth [cqqrLetePerrmrtationg I i ] I ],
{L ,2 ,51 1

Second auroaclt
One way to count the number of arrangements with-

out completely enumerating thern is to use generating
{unctions. Suppose the card party has three tables: A, B,
and C. The first empty seat at the irrst table can be filled
by a person whose mate is at table B or C, u,hich we
represent by the factor (b + c). The second empty seat
at table A has the same restriction, so \\-e repeat the
term (b + c). Each empty seat at table B can be ii1led by
a person whose rnate is at table A or C, and so \\,e rep-
resent each seat at tabie B b1'a factor 1.7 - c'. Atter con-
tinuing for table C and multiph-rng the iactors, \\re get
the following cxpressron :

Expand.t(b + c)2 (a + c)2 (a + b)21

b2aa + czaa + Lbcaa + 2b3a3 + Zc)a3 + 6bda3 + 6b)cd3 +

baa2 + c4a2 + 6bc3a) + lOb2Pd + 6b3ca2 + 2bcla +

6b2c3a + 6b3da + Zbaca + b)ca + 2b3c3 + bad.

The coefficient of dzb)cz in the expression above is
the number of ways to seat six people so that no person
is srtting at the same table as his or her partner.

Coefficient [%, a2 b2 c21

10

If we move up to iour tables and denote the last table
by D, then \l.e can prck a man from table B, C, or D lor
each of the nr-o sears ar table .{. Continuing the same
argument as use d sf pr-; for three tables, we have the
correspondiflg c-\f l t -:- :'.

E:<pandt(b + c + d)' (a * c + d)2 (a + b +

d)2(a+b+c)27,

The number of seating arrangements for four tables
is the coefficient of a2b2c2d2.

Coefficierttlozo, a2 b2 c2 d27

297

For five tables, add another letter E, and expand the
expression to get the coefficient of a2b2c2d2e2.

E:<pand[(b + c + d. + e)2 (a + c + d + e)2 (a +
b + d + e)2 (a + b + c + e)2 (a + b + c + d.)2i;

Coefficienllzo, a2 b2 
"2 

42 .21

r3756

Even though Mathematica is able to expand these
terms faster than it can generate complete permuta-
tions, it will quickly run up against an exponentlal ex-
plosion in the number of computations required. For
five tables the computer must perform over one million
computations. At seven tables the number goes up to
over 78 billion computations. We have just hit the walll

We can automate the expression expansion approach
to create a new completePerrmrtationsll.

completePermutationsll [n_] !=
ModuIe[{L = Array[A, {n}], K, P}, K =
TablelDroB[L, {i}1, {i, n}l;
P = TimesGG(Plus@@#a/gx)2 i
Coefficient[E:<pand[P], Times@@L, 2)1

Now we can extend the number of seating affange-
ments to seven tables-more than I care to worry about.

iloin [ { { "tables" r "arangements" } },
Table [ {n, cqlE>letePeflr[rtat,ioErglI [nl ], {n, 2,7117

tables affangements

2t
310
4 297

5 L3756

6 92s705

7 8s394646

Finalfiouglrh
This is the last in a series of l0Informatics and 18

Cowculations columns that have appeared in Quantum
rnagazine over the past five years. I have made all the
Mathematica notebooks available on my homepage at
www. uwp. edu / a c a d e mi c/ m ath e m ati c s /f a culty I
piele.html.

You can keep abreast of developments in the USA
Computing Olympiad through the web page at

(z 1)
l. 10 |

lo zs7 I

[, 
',7s6)

o

5l

www.usaco.org.
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Physics

P326
Let uo be the pebble's initial ve-

locity and un be the pebble's veloc-
ity at the mciment it hit the mouse's
paw. The crucial point here is the
choice of the reference system. Let's
direct the X-axis along the slope of
the roof and the Y-axis perpendicu-
1ar to the roof through the cat's paw
(figure 1). Energy conservation says
that

uo: up.

The projection of the pebble's
velocity on the x-axis immediately
before the impact equals the projec-
tion of its velocity iust a{ter the im-
pact, so

uo* = upt

Therefore,

uov = upv'

Thus the x- and y-projections of
the pebble obey the followlng equa-
tions:

n+2
-- - , 6xL7.l,n-t-l-=5,

2

-*26vLugrt* 2 =srr

where 8, and Bu are the projections
of the vector g onto the respective
axes. According to Viete's theorem,
the equations can be transformed

ANSWERS,
HINTS &

SOLUTIONS

lnto

^ 8*trt z
.r., = --'x2,

Suttz
2'

from which the distance s can be
obtained:

r1 ) SltLZr=,/r;+s; =T

P327
Since the buoyant force acting on

the barge ecluals the weight of the
displaced watert the increase in the
force exerted by the external water
on the barge will be proportional to
the amount of water that has en-
tered the barge through the hole.

First we'll show that the differ-
ence in the water level inside and
outside the barge will not change as

the barge sinks. Denote the mass of
the barge by ^. With no water in-
side, the barge wil1float if

mg=pgab(c-h),

where p is the density of water. Let
the barge sink in such a way that the
height of its sides above the water
surface becomes fr,, while the depth
of the water inside the barge be-
comes J. Now the equilibrium eclua-
tion looks like this:

mg+pgabl:pgablc-h1),

From these equations we get

c-hr-l=c-h,
which means that the difference in
the water levels inside and outside
the barge at any point in time (as

long as the barge is afloat) is con-
stant and equal to the difference be-
tween the barge's height and the
height of the side of a nonleaking
barge. Therefore, water will flow

into the barge with a constant speed,
which can be calculated according
to Bernouili's equation.

In calculating the potential en-
ergy, we'll say that the surface of the
water outside the barge is the zero
level. Then we can write Bernoulli's
equation for a tube of water flowing
from the surface to the hole in the
bottom of the barge:

Pg-pg(c-h,-\+$=to,

where Po is the atmospheric pres-
sure and v is the speed of the water
as it enters the hole. In writing
Bernoulli's equation we've taken
into account the fact that the surface
of the water inside the barge is much
greater than the cross-sectional area
of the hole at the bottom. This
means that the speed at which the
water rises inside the barge is far less
than the entry speed of the watet vt
and so it can be neglected. In this
wayl we get the water's entry speed:

u= rEg(c-4-4 = rEr1"-n1.
The barge will sink with drop

below the level of the extemal wa-
ter. At that moment, the height of
the internal water is h, and its vol-
ume is

V: abh: SvAt,

where S: nd2l4 is the cross-sec-
tional area o{ the hole, and Ar is the
time we seek. Finally/ wg get

4abh
=7.6.106 sLt=

r.P ,zg(c- 11)

- Zlllh = BB days = 3 months.

P32B
Figure 2 shows the directions of

the forces F acting on the hemi-
spheres if their charges have the
same sign. If we add a hemisphere ofFigure 1
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radius R carrying an electric charge

Q to the system as shown in figure
3, the force affecting the hemisphere
of radius r will be zero, since there
is no electric field inside a charged
sphere. Therefore, the right and the
left haives of the composite sphere

a{*
It\Fl \ rlr
\Jq
\

Figure 2

Figure 4

Figure 5

affect the small hemisphere with
forces F that are equal in magnitude
and opposite in direction.

Now let's add a hemisphere of
radius r ar,d charge q to the initial
hemispheres (figure 4). From our rea-
soning above it's clear that two
hemispheres carrying charge q will
af.f.ect the large hemisphere with
charge Q with forces F that are eclual
in magnitude and oriented in the
same direction, so the force between
the sphere of radius r carryingcharge
2c1and the concentric hemisphere of
radius R with charge Q will beZF.

Flowever, this force can easily be
calculated from the electric field at
the surface of the large hemisphere
(figure 5):

-)oL_t-L-n .r
R"

which yields the pressure P on the
large hemisphere:

P=oE,

where o = QlZnR2 is the surface den-
sity of the electric charge. The re-
suiting force ecluals the pressure
times the area o[ the plane subtend-
ing the hemisphere (figure 6):

Fr: nRzP.

Taking into consideration that F,
= 2F, we finally get

- rqQ
l 

- 
A-' -'2R2'.

P329
Charge conservation tells us that

the charges on all of the capacitors
are approximately equal (to an order
of magnitude). However, the voltage
drop across the 1000C capacitor is
negligibly small (compared to the
other capacitors in the circuit), be-
cause its capacitance is 1000 times
that of its neighbors. Therefore, as a
first approximation, we may con-
sider the large 1000C capacitor to be
short-circuited. The equivalent cir-
cuit is shown in figure 7.

Denote the voltages across the C
and 2C capacitors by V1, and that
across the 3C and 4C capacitors by
Vr. Charge conservation says that
the total charge on the connected

plates is zero, so

3CV,+ 3CV2: CV, + zCV'

from which we get

v2=3l7vr.

Taking into consideration that

8:vr+vr,
we get

vr = 0.7'8, v2= 0.3t8.

Now we can return to the original
scheme and evaluate the charges
accumulated on the capacitors. The
charge on the 3C capacitor is ap-
proximately equal to

q.:3CV2= 0.92C'

while that on capacitor C is

Q2: CVr:O.7ZC.

Therefore, the charge stored in ca-
pacitor 1000C is

e = et- ez:0.22C.
It's curious that our estimate is close
to the precise value

,8C

"'- s+rzllooo'

which can be obtained by routine
calculations. Surprisingly, our esti-
mate differs from the correct value
by only 0.2%.

P330
We assume that the initial angle

between the optic axis of the lens
and the perpendicular to the mirror
is o, while the light is focused at
point B, where the optic axis inter-
sects the screen (figure B). At this
moment/ the reflected rays travel
parallel to the principal optical axis.
After a small time interval At, the
mirror will turn throqgh a sma11

angle Aa : oAt. The reflected beam

4C 2C

.-lF-- .-lFrlttltltt--tltttlttttttl-Fr-ts1r3ccl
L_______________1V

Figure 7Figure 6
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k cos o + sin u < k2 sin o + k cos 0,,

or if k2 sin u > sin cr. Since k > 1, this
is certainly true/ so the eiongation of
ABCD is not less than that of EFGH.

M326
Let zbe the smallest side of tri-

angle ABC, and 1et S be its area.
Since

1- 1. 1-
S = -h_ . Z = -h.. . X = - h... V.2' 2 "

then

-that is, xy - xz - yz = 0. This prod-
uct reminds us of the cross products
that occur when we square a trino-
mial. Indeed,

(x*y-z)2:* +52 + z2

+ Zlxy -xz -yz) : * + 5P + 22,

Since x + y - z ts an integer, this
proves the assertion of the problem.

M327
Solution 1. Consider the function

flxl = xlb + x ba,where a > O, b > O,

and x > 1. Then the derivative

flx)=ablx'1-x-b-r).
Nowforx,l,f- t rr,1, andx-b-l

E

G

Figure 10

Dl-x,0)

Figure 11

= llrb* 1 . 1, so f(x)> 0, so /(x) is an
increasing function. Therefore,

flzl > f(r).

Thus we have the inequality

b2'+a2-b>a+b.
It remains to replace b with x and a
with y in this inecluality.

Solution 2 (for experts in calcu-
lus). Since the function flt) : 2t is
convex downward (its derivative is
increasing), any chord that connects
two points of its plot lies above the
plot (see figure 11). Taking two posi-
tive numbers x and y, the points
(-x, 0) and (y,01 are located as in fig-
ure 11, and the chord AB is divided
by K in the same ratio as CD is di-
vided by O. Using a well-known for-
mula from analytic geometry, this
means that the inequality

1= i(o) <oK= i(-x)y + f (y')x

x+y
ho1ds.

M32B
We prove that if ao ends in t in-

stances of the digit 9-that is, has
the form ak: a. 10t - 1, where t is
an integer-then ao * , has at least}t
instances of the digit 9 at the end. In-
deed,

ak, r = 3(a. l}t - l)a * 4la . l)t - ll3.

Removing the parentheses and col-
lecting similar terms/ we obtain

3(a.10t - l)a * 4\a.IOt - ll3
: Baa .I04t _8a3. 103t + Gaz . l02t _l
- lgztlf,aa .Iozt _ Ba3 . 10r + 6a2) _I

:P.l02t-1,
for a certain integer P.

This means that the last 2r digits
of ao*, are nines. Since a, :9, then
aro has at least 210 > 1,000 nines at
the end.

M329
The answer is no.
Let Mbe a polyhedron with edges

colored as described in the state-
ment of the problem. We'll prove
that Mhas an even number of edges.
Indeed, if x, edges have color i (for i
: l, 2l1, then the total number of
edges of this color is 2x, (since every

23 25 25

zxv

will "turn" through the angle 2Ao
relative to the axis (figure 9), so the
light spot on the screen will shift to
point C. Let's find the displacement
lBCl of the spot during time At:

lBCl : lOBl tan2Lo'
: F tan2Lu=ZFLr.

As usua1, we consider Acr to be
small, so tan Acr = Acr. Now it's
child's play to find the instanta-
neous speed of the light spot at point
8,.

lacl 2FLu 2FaLt
-,=l r=-=-= rEar

Lt Lt Ar

tlllAIll
M325

Figure 10 shows a smaller rect-
angle inscribed in alarger, as the
problem describes. Consider o, the
angle formedby the two longer sides
of the rectangles. Since it is the
smaller angle in right triangle EBC,
a<n14. Nowlet CD:l andBC:k,
so that the eiongation of ABCD is k.
Then EC : k sin a and BE = k cos cn.

Since ZDCF is also a, CF : cos or and
DF : HB = sin cx,. Then the elonga-
tion of EFGH rs

HE kcos cx + sin cr
ILl cos u + ksin u'

andwewant to compare this withk.
That is, we need to know whether

clv, o) t
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Figure 12

edge serves as a side for two faces).
Since every face has the same num-
ber of edges of every color, then 2x,
:2xr: that is, x, = x, and the total
number of edges, x, ,r X2t is even.

The answer to the question posed
in the problem is no. Indeed, we'll
give an example of a polyhedron
such that its every face has an even
number of edges and the total num-
ber of edges is odd. Figure 12 depicts
a 9-hedron with 19 edges. It is
bounded by one hexagonal face and
eight quadrilateruI faces. Such a
polyhedron can be obtained by cut-
ting off two parts of a hexagonal
prism-namely, the parts that lie
above two planes passing through
one of the longer diagonals of the
upper base and crossing three lateral
faces each.

Bl'aintea$Ers

8325
Let B be the number of boys in

the class, and let G be the number of
girls. Since every girl shook hands
with B boys, the number of hand-
shakes between boys and girls was
8G. However, this number can also
be written as 58, since every boy
shook hands with 5 girls.

How many handshakes were ex-
changed by boys only? Each boy
shook hands with 8 other boys, and
there are B boys. This would be BB
handshakes/ except that we have
counted each one twice (once for
each participant). Thus the number
of handshakes between boys is 48.
Similarly, the number of hand-

shakes between girls is 6Cl2 :3G.
From the statement of the problem
we obtain the equation 8G + 5 = 48
+ 3G. Solving the system consisting
of this equation and the equation BG
= 6B,wefind that G: 15 andB =20.

8326
The operations can be performed

in the following order: 1562437-
r 624537 

-t245 637 -t23 45 67 .

8327
See figure 13.

Figure 13

8328
Designating the radii of the in-

scribed circles by x and y/ we see
that the area to be determined can
be written as

S = n(x + y)2 - n* - n5? : Znxy.

Now let r be the altitude in the
right triangle shown in figure 14.

Figure 14

Then a well-known theorem of ge-

ometry tells us that t2: 4xy. Thus
S = ntzl2.

8329
The tea will be cooler in the cup

with sugar in it.

Plrysic$ Coltlesl
The fundamental particles
In the March/April issue of

Quantum we asked our readers to
use the idea of quarks as fundamen-
tal particles to build some of the
hadrons we find in nature. We
learned that baryons consist of three
quarks and that mesons consist of a
quark and an antiquark.

Readers were asked to use the
down, up, and strange quarks to
build the first group of particles. The
properties of these three quarks are
given in table 1. The oniy two prop-
erties of a hadron that are needed to
do this are its charge (in units of the
electronic charge) and its strange-
NESS.

The neutron, as its name implies,
is neutral. Because it is a baryon, it
must be composed of three quarks,
and because it does not have any
strangeness, it must be composed of
only down and up quarks. Since the
down quark has a charge of -1/3 and
the up quark has a charge of +2f 3,
the neutron is composed of two
down quarks and an up quark (n =

ddu).
The negative pion has a charge of

-l and a strangeness of zero. Once
again it must be composed of only
down and up quarks. However, the
pion is a meson and consists of a
quark-antiquark pair. Because the
antiquark has the opposite charge of
a quark, we need a down quark and
an up antiquark to get a charge of

-r (n- = do)
The neutral kaon is a meson with

a strangeness of + 1 . The only way we
can get this strangeness is by using
a strange antiquark, which converts
the strangeness of -1 to +1. This
gives us a charge of +I13. Therefore

Name Symbol Charge Strange

Down d 0

Up u +'1, 0

Strange S _, l, -1

Table 1

r7 24 3 JZ 11 26

2 31 18 25 4 JJ

23 t5 1 10 27 12

30 o 28 t9 34 5

15 22 7 35 13 20

8 29 t4 2t 5 35
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we need a down quark to give us an
overall charge of zero (x" = as).

The lambda baryon'only comes
with a zero cltarge.Its strangeness of
-1 requires that we use a strange
cluark, giving us a charge of -113.
The other two quarks must be down
and up quarks. The only combina-
tion of two of these that gives us a

charge of +I/3 is one of each. There-
fore Ao = dus.

The antineutron is an antibaryon
and must be composed of three an-
tiquarks. We simply use the anti-
quark version of each quark in the
neutron to bu!1cl the antineutron.
'I'heretore n=ddu.

The cascade minus has a strange-
ness of -2 and a charge of -1. This
recluires two strange cluarks for a

charge of -213. We need a down
quark to give us the additionai
charge of -113. Thus, we have
E = OSS.

Up to this point we have not had
to woffy about the Pauli exclusion
principle. However, to complete the
picture, we need to add a new quan-
tum number. Color comes in three

varieties: red, green, and blue. Let's
use the subscripts r, g, andb, respec-
tively, to represent these three val-
ues, and the subscripts c/ m/ and y to
represent the complim entary colors
cyan/ magenta, and yellow, respec-
tively. In this scheme all hadrons
must be white if we imagine the
colors to combine as lights; that is,
additively.

Four of the particles are repeats.
All we need to do is to make sure
that we include all combinations of
the color quantum number.

n = drdru6+ drd6u.+ dod.u'

n = d-d.u, * d"dr[In* d, d-[.,
fi- =d.[- + d*[" + d6[y,

E- = drsrsb+ d*s6sr+ d6srs*.

The delta plus plus is a baryon
without strangeness. Therefore, it is
composed of only down and up
cluarks. The only combination that
gives us a charge of +2 is three up
cluarks. Thus, we have

A++ = urugllb.

Finally, the antilambda is the an-
tiparticle of the lambda. A1l we need
to do is to change each quark to the
antiquark and each color to the
complementary color.

n----_n' =d-[.\ + d.urs. + dr[*Q.

-Larry 
D. Kirkpatrick and Arthur

Eisenkraft
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