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GALLERY C

ii ETEORS ENTER OUR ATMOSPFM,RE EVERY DAY,
lUlU", the lifespan of the resulting "shooting star" is so
brief that catching a glimpse of one is still considered a
rare treat. Rarer still is the opportunity to watch a comet
move through the night sky, but the infrequency of their
visits is more to blame than the shortness of their
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lifespan. Though long-lived, comets eventually bum out
as they exhaust the fuel that creates their fiery glow.
But how long can we expect a comet such as Halley's
to light up the sky as it passes through our Solar Sys-
tem? To find out what the brightest minds have to say
about this burning question, turn to page 4.
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Cover afi by Yuri V aschenko

In this issue we take a look at the pos-
sibility of inscribing a " chrp o{f the old
block" (a polyhedron carved from the
corner of a cube) within a sphere. With
a little help from Steinitz Thereom,
you'll be in good shape to tackle this
geometrical challenge. Turn to page 18

to start pondering these polyhedrons.
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8321
Eating into profits. After selling his last peach for $2.30, a merchant
calculated that the average price of his peaches was $2.45. However, a

buyer returned a peach because it had a worm hole. The buyer agreed to
pay only $1.58 for this peach. The merchant recalculated the average
price, which became $2.42. How many peaches did the merchant sell?

8322
Cutting corners. A corner of a square is snipped off to form a right
triangle. It turns out that the sum of the legs of the triangle is equal to a
side of the square. Prove that the sum of the angles subtended by the
hypotenuse at each of the three remaining vertices of the square is 90'.

8323
Checkmate math. At the end of a chess tournament, each participant
won the same number of games playing white as all the other players,
taken together, won playing black. Prove that all the participants won
the same number of games.
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8324
Pricey address. A building has four apartments on each floor, and the
apartments are numbered consecutively. The residents of one of the
{loors decided to place new apartment numbers on the doors. This
required seven digits, which they ordered from a firm that charged n
dollars for the digit n (for example, the digit 0 was free). The residents
collected 3 dollars from each apartment on the f1oor, which exactly
covered the cost of the new digits. Which digits were ordered?

ANSWERS, HINTS & SOLUTIOIVS O/V PAGE 52
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]loul lonu does a comel liue?

Until it runs out of gas

by S. Varlamov

HE PLANETS IN OUR SOLAR
System are usually divided into
two groups. The planets nearest
the Sun (Mercury, Venus, Earth,

and Mars) are called the terrestrial
(earthlike) pianets-their surfaces
have approximately the same
chemical composition. In contrast,
the |ovian (|upiter-like) planets (|upi-
ter, Saturn, Neptune, and Uranus)
have much more helium and hydro-
gen in their outer layers. Many mi-
nor planets (asteroids) also orbit the
Sun, and their chemical composition
is similar to the terrestrial planets.

Sometimes the region near the
Sun is visited by comets, which are
chemically di{ferent from both the
|ovian and the terrestrial planets. It
has been hypothesized that a vast
number of small heavenly bodies
exist in the Solar System beyond
Pluto's orbit, in the so-called Oort
cloud. As a rule, the solid bodies in
this cloud, together with gases and
intergalactic dust, revolve around
the Sun in the same direction as the
planets. They move very slowly, but
sometimes, when they pass very
near each other, the magnitudes
and directions of their velocities can
change considerably.

If, as a result of such an encoun-
ter, one body gives a significant por-
tion of its momentum to another

Comet Hyakutake. This image captures an area 3,340 km (2,070 miles) aczoss
1t shows that most of the dust from the comet is produced on the side facing
the Sun. At the upper left are three fuagments from the comet that have pro-
duced thefu otrm tails.
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body, its orbital path changes, taking
it closer to the Sun. Astronomers say
that such a body falls from the Oort
cloud intq the solar region. Depend-
ing on its velocity at the outskirts of
the Solar System, this body can be-
came a "one-time visitor" or a
comet with a long period. Passing
near one of the large planets, such a
body may again change its velocity
(that is, perform a gravitational ma-
neuver) and become a comet with a
rather short period of revolution,
like Halley's comet.

Astronomical observations of the
emission spectra of comets' tails
have shown that the comet cores
consist of volatile substances such
as water/ methane, and ammonia.
There is still much to be learned
about the differences in the chemi-
caI composition of the )ovian plan-
ets, the terrestrial planets, and the
comets. In this article we'll try to
answer a different question: How
long does the icy core of a comet
live? Is its lifetime long or short
compared to the lifetime of the So-
lar System?

Imagine that a spherical comet
with an initial radius of 1 km and an
initial temperature of 0 K has en-
tered the Solar System and has be-
gun to revolve along a circular orbit
with a radius equal to half the dis-
tance between the Sun and Earth-
that is, 0.5 astronomical unit (a.u.).
Let our comet rotate rather rapidly
about an axis normal to the orbital
plane. We'll also assume that the
greater part 17 5%) of the solar radia-
tion is reflected from the comet's
surface. These data are sufficient to
evaluate the lifetime of such a
comet, provided it isn't destroyed by
a catastrophic coilision.

The water molecules that break
away from the icy surface will be
returned to the surface by the
comet's gravitational field only if
the speed of their thermal motion is
many times smaller than the escape
speed

v1=r@ffi.
For our comet this speed is about
0.7 mf sec, so it's clear that the
comet's own gravitation cannot

hold the water mol-
ecules leaving its sur-
face. In other words,
there willbe no atmo-
sphere around the
comet. The molecules
that leave the comet
will never come back.

It's also clear that the
Iargest flux of solar ra-
diation will strike a

comet/s surface near its
equator. The intensity
of the sunlight falling
perpendicularly on a
plateof area l m2onthe
Earth (the so-called so-
1ar constant) is 1 = 1.36
kW. The same power will be ab-
sorbed by each square meter of ice
near the comet's equator. Although
the incident flux of the solar radia-
tion is increased by a factor of four
because the comet travels closer to
the Sun, most of the energy (75%) is
reflected by the comet's surface.

The power incident on 1 m2 of
equatorial surface and averaged over
alarge period of time is Wln = 433
W. This estimate can be obtained
rather easily. Let's take a band of
width h : 1 m that circles the entire
equator. This band collects sunlight
from an area equal to ft . 2R, while
the collected energy is distributed
over the band's entire arcah.ZnR.

Consider the following situation.
As soon as the comet is placed in
orbit, it's illuminated by the Sun, so
the temperature of its surface rises.
The external ice layers are gradually
warmed and the heat is transferred
to the interior of the comet. As the
surface is heated, a greater role is
played by the dissipation of heat to
the environment. The surface ice
loses heat in several ways. First, its
evaporation requires energy, second,
thermal radiation carries away some
energ; and third, some thermal en-
ergy is spent on warming the inner
layers of the comet (this heat will
eventually be spent on the evapora-
tion of surface ice or therma\radia-
tion into space).

Now let's estimate the mean
temperature at the surface of a
comet orbiting for a long time about

Gaspra asteroid, The nuclei of comets probably
look like this after their volatile substances have
evaporated.

the Sun. As a way of orienting our-
selves, we'll note that the mean
temperature at the Earth's surface is
about 290 K. Our planet dissipates
energy into space mainly due to
thermal radiation. Taking into ac-
count that more than7j% of Earth's
surface is covered with water, and
that the Earth absorbs the same en-
ergy per unit area as our model
comet/ the mean temperature of the
comet's surface cannot be higher
than 290 K.

Ice is a very poor conductor of
heat (its thermal conductivity is
only2.2 W(rn.K), so the equatorial
surface wi1l be warmed rapidly. In
order to remove all the heat released
at the comet's surface in the equato-
rial zone, the slope of the tempera-
ture dependence on depth (the tem-
peruture gradient) must be 200 K/m.

Let's assume that only an ice
layer with a thickness of 290 1200 m
= 1.5 m is warmed, and estimate the
time needed to warm this layer to a
temperature of 29012K. Consider an
ice cube with an edge length A: 1.5
m located at the equator. For the
given temperature gradient (200
F]m), radiation with a power of
about A2 . 430 W enters this cube
perpendicularly to its face. The
amount of heat necessary to warm
the cube is Q : cMLT. A reference
book gives the value c : 2,lOO
I/(kS . f) for the specific heat of ice.
The temperature difference of the
opposite faces of the cube is some-
where between 0 and290 K (we es-
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Table 1

timate it as AT= 150 K). Finally, the
mass of the ice cube is M= 3,000 kg.
The time needed to warm such a

cube is about 106 sec, which is
slightly more than 10 days. During
this time the temperature gradient
decreases considerably, and the heat
flowing into the comet will no
longer be counterbalanced by the
heat arriving at the comet's surface.
We can be reasonably sure that the
iiJetime of a comet is far greater than
l0 days, so the thermal flow into the
interior of the comet can be ne-
glected when we assess its surface
temperature.

The power of the thermal energy
radiated from a surface area S is
crso'?a, where o : 5.67 i0-8
W l(r.r'z. t<4) is Boltzmann's constant,
7 is the surface temperature, and u
is a coefficient characterizing the
difference between a real radiating
body and an ideal black body. In our
case, this coefficient is about 1: A
comet absorbs solar radiation in the
visible rar,get while it radiates elec-
tromagnetic energy in the infrared
range. Thus it follows that its tem-
perature should be exactly 290 K!

In our reasoning we didn't take
into account the heat loss caused by
evaporation at the sur{ace. The
number of molecules evaporated
from a unit area per unit time can be
estimated from the pressure of the
saturated gas of a substance at a

given temperature: P : nkT. To an
order of magnitude the number of
molecules leaving the comet's sur-

Table 2

face, which is in contact with a layer
of saturated vapor/ is equal to the
number of collisions of the vapor
molecules with the surface. Imagine
that each molecule striking the sur-
face during some period of time ad-
heres to it. During this time the
same number of molecules must be
vaporized. In reality, the number of
molecules leaving the surface is sev-
eral times less, because not every in-
cident molecule adheres to the sur-
face: most of the molecules recoil
eiastically from it.

Every vaporized molecule carries
away the energy needed to escape
from its neighbors, as well as the
mean thermal energy corresponfing
to the temperature of the surface.
Since there is no atmosphere around
the comet, the vapor doesn't per-
form the work needed to expand in
an atmosphere. Each unit of surface
area loses the following amount of
heat per second:

m

units),

PBrE

!ffi

where No is Avogadro's number, B
:3.6 . 104 |/mol is the molar latent
heat of evaporation of water, and M
is the molar mass o{ the ice.

Let's use experimental data de-
scribing the dependence of the satu-
rated vapor pressure on temperature
(see table 1), and calculate the de-
pendence of the heat loss caused

by evaporation on
temperature (table
21.

Our estimates
show that the
equatorial surface
of the comet will
be heated to a tem-
perature between

183 K and 197 K. (By the way, how
will this temperature vary over the
course of the comet's "day"?l At
such temperatures the thermal loss
to radiation per unit area will be 70
W llmz and92W lrr,2 at temperatures
of 183 K and 197 K, respectively.
Therefore, we conclude that evapo-
ration is the major mechanism of
heat flow from the surface. The sec-

ond table shows that it's responsible
for about 80% of all the comet/s heat
loss.

Now let's estimate the lifetime of
a comet if its heat loss is caused en-
tirely by evaporation of ice on its
surface. Clearly the evaporation pro-
ceeds more rapidly in the ecluatorial
region than in the polar area. As a

result of such nonuniform evapora-
tion, the comet assumes a shape that
is elongated along its axis of rota-
tion. The rate of ecluatoriai "thin-
ning" of the comet doesn't depend
on the comet's size, since it's deter-
mined by the balance of energy
gained from solar radiation and lost
by evaporation:

IM/(llPP) = 2' l0-7 m/sec.

In other words, the radius of the
comet's equatorial region desteases
(on average) by 2.tg-z m every sec-
ond. Therefore, it only takes 2.5 . 10e

s to completely evaporate the comet.
This means that the lifetime of our
comet is only about B0 years! This is
a trifle compared to the age of the
Solar System.

Of course, there are no comets
wandering along circular orbits
about the Sun. The periodic comets
spend most of their lives far from
the Sun. Flowever, they lose mass
most rapidly during the short peri-
ods when they travel near the Sun
at comparatively small distances. If
Halley's comet had an ice nucleus
with a diameter of 10 km and
passed near the Sun at a distance of
0.5 a.u. (the latter figure corre-
sponding to an S0-year period), it
would be completely evaporated
after only 1,300 revolutions-that
is, after 100,000 yearst which is a

CONTINUED ON PAGE 17
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Physics

P321
Chalk line. A piece of chalk rests

on a horizontal board with a coeffi-
cient of friction p. Suddenly the
board starts to move horizontally at
a speed vo, and after a time t it stops
abruptly. Find the length of the line
drawn by the chalk on the board.

(A. Zilberman)

Figure 2

HOW DO YOU
FIGURE?

ChallBltUs$

P322
Density at a distanca. Astrono-

mers discovered a very dense planet
in the system rlvnx Maior. The period
of the planet's rotation about its axis
is only 7 : 6 min. Calculate the
planet's density.

P323
Charges and spheres, Apoint elec-

tric charge q is located between two
uncharged metallic, concentric
spheres of radii a and b at a distance
c from the center of the system (fig-
ure 1). What charge will flow through
a thin wire when it touches both
spheres? (V. Komov)

P324
C alculate what dis sip ates. A coil

with inductance L (figure 2) is situ-
ated in a magnetic field. The field is
abruptly turned off. Immediately
thercafter, an electric current 1 flows
through the resistor R,. Neglecting
the resistance of the coiI, find the
amount of heat dissipated by each
resistor (R, and R2). The direction of
the magnetic field was perpendicu-
lar to the plane of the turns of the
coil. (V. Mozhayev)

P325
Tri to solve thjs. The image of a

trident BACGDE is formed by a thin
converging lens (figure 3). The base
EDG of the trident coincides with
the principle optical axrs, and AB :
AC (thatis, the trident is symmetri-
cal). The lens magnifies the seg-
ments DG and ED by factors of B,
andp, respectively. By how much is
the segment AD magnified?

(Y. Cheshev)

tlllath

M320
54-gon conclusions. Prove that in

(a) a regular 12-gon and (b) a regular
54-gon there exist four diagonals
that meet at a point and do not pass
through the center of the polygon.

(S. Tokarev)

M321
Budget items. A chamber consist-

ing of 2,000 deputies must pass a
state budget that consists of 200 ex-
pense items. Every deputy prepared
adraftbudget, where the maximum
expenditure for every item is speci-
fied and the total expenditures do
not exceed a given value S. For each
item the chamber passes a maxi-
mum expenditure that is approved
by no fewer than k deputies. What is
the minimum value of k for which
the total expenditure can be guaran-
teed to be not gteater than S?

(I. Sergeyev)

M322
Find the sum. The numbers cr and

B satisfy the equations

aa - 3a2 + 5s =.1,

B3-382+5B=5.
Find u + B. (V. Kukushkin)

M323
Clean slate. Written on a black-

board are z numbers. The following
operation is performed on these
numbers: two numbers, a and b, ate
erased, and the number {a + blla is

CONTINUED ON PAGE 11

BAC A
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Figure 3 V
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is not without reason that the bibli-
cal tradition states that God created
the world in six days; rndeed, 6 rs the
first of the perfect numbers.

The next per{ect nurnber known
in ancient times lr.,as lS. In 1917, a

strange ancient strucrure rras dis-
covered in Rome: 28 ceLls u-ere situ-
ated around a large central hai1. This
was the site of the Neo-Pr-thagorean
Academy of Sciences, iihrch in-
cluded 2B members. Untrl recently,
many scientific soci.etie s tradition-
ally consisted oi 28 members, al-
though the reason for such a number
had long been forgotten.

Ancient mathematrcians rr-ere
impressed by the peculiar property
of these two numbers-the1' are
equal to the sum of their orr-n drr.i-
SOTS:

6:l+2+3i
28:1+2+4+7+11.

Only two perfect numbers had
been known before Euclid, and no-
body knew if other such numbers
existed or how numerous they rr-ere.
The great founcler of geometrr to-
cused rnuch cffort on properties or
numbers, and he was certainly rnter-
ested in perfect numbers. Euclid
proved that any number that can be
represented as a product of the fac-

tors 2P - 1 and 2P - 1, where 2P - I is
prime, is perfect. For p :2, Euclid's
formula 2o-t(Zr - 1)yields 2z-t(/z -
1) = 6, which is the first perfect num-
ber. For p = 3, we obtain the second
perfect number:

a.l-l/.3 ,l:28.L lL - Ll

Using his formula, Euclid {ound
two more perfect numbers-for p :
5andforp:T.Theyare
2s - t()s _ t) : Z4lZs _ tl = t6 .ZI = 49G

and

2z - t()t _ | = Zept _ Ll = 64 .rz7 : Bt2B.

The reader may enioy verifying that
they are indeed perfect.

For almost fifteen hundred years
these four numbers were the only
perfect numbers known. Nobody
knew if additional "Euclidean" per-
fect numbers, or perfect numbers
found in other ways, ex'isted.

The intractable nature of this
problem and the difficulty of work-
ing with perfect numbers 1ed some
to think that they were divine. One
of the most famous scientists of the
Middle Ages, a friend and teacher of
Charlemagne, the Abbot Alcuin,
wrote textbooks on arithmetic and
organized schools. He was con-
vinced that humanity is imperfect

oa6
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ln $Earch ol perlection

What's beyond 6 and 28?

by l. Depman

lF sp FAMOUS GREEK pHI-

I losopher and mathematician
I Nicomachus of Gerasa wrote:
I "Perfect numbers are beautiful.

It is well known that beautiful
things ate tatet whereas ugly ones
are numerous. Almost all numbers
are either abundant or deficient, but
perfect numbers are extremely
rare."

How numerous are perfect num-
bers? Nicomachus, who lived in the
1st century e..o., didn't know the
answer.

The first perfect number that was
known in ancient Greece was 6. The
most honored guest at a banquet oc-
cupied the sixth place. According to
Pythagorean doctrine (and Nico-
machus was a Pythagorean), the
number 6 possessed various mysti-
ca1 properties.

Plato devotes particular attention
to this number in his Dialogues.It

In 1961, the Mathernatical edu-
cation published an article by
professor I. Depman on perfect
numberc, which are equal to the sum
of their own divisors. Here we print a
rcvised vercion of this afiicle prepared
for publication by Academician V. V.
P etryanov- Sokolov. The suppTement
on recently discovered perfect
numbers was vwitten by Professor
A. A. Bukhshtab.
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and evil, simply because humans de-
scended from eight persons who es-
caped on Noah's ark-and eight is
an imperfect number. Before the
f1ood, hunian beings were better;
indeed, it was supposed we de-
scended from a singie person-
Adam, and unity can be considered
a perfect number (it's equal to its
single divisor). Alcuin lived in the
Bth century, but even in the 12th
century the Church taught that it
was quite sufficient to study perfect
numbers to save one's sou1, and that
a person who found a new perfect
number could look forward to eter-
nal bliss.

However, even the promise of
this reward didn't help medieval
mathematicians. The fifth perfect
number wasn't discovered until the
15th century. This number also sat-
isfies Euclid's formula.

Actually, it's surprising that this
number was discovered as early as
the 15th century. It's equal to

33,550,336

and corresponds to p = 13 in Euclid's
formula.

Two hundred years later, the
Frenchman Marin Mersenne, a
mathematician and musician, one
of the founders of the French Acad-
emy of Sciences, and a friend of
Descartes and Fermat, declared
without proof that the next six per-
fect numbers that satisfy Euclid's
formula correspond to values of p
equal to L7, 19, 3L, 67, 127, ar,.dZST.

It was clear to Mersenne's con-
temporaries that he was unable to
verify his assertion by direct calcu-
lations. Indeed, to do so, he would
have had to prove that the numbers
2P - | were prime for the corre-
sponding values of p. It's not diffi-
cult to calculate those numbers,
but it was almost impossible atthat
time to find out whether or not
they're prime. Thus it remained
unknown whether or not Mersenne
was right.

It was discovered later that the
Italian Cataldi, who was a professor
of mathematics in Florence and Bo-
logna and the first to describe a
method for calculating square roots/

also studied perfect numbers (appar-
ently to save his soul). In his notes,
the values of the sixth and seventh
perfect numbers were given-almost
a hundred years before Mersenne.
These were

8,589,869,056 (the sixth perfect
number),

137,438,69 I,328 (the seventh
perfect number).

Both numbers were identical to
those given by Mersenne:

2tel2r7 _ 1) and yapro _ I).

However, the fact that these
numbers were perfect remained un-
proved. It was necessary to verify
that 217 - I and Zte - L were prime.

An academician from St. Peters-
burg, a founder of modern math-
ematics, the great Leonhard Euler,
was a human calculator par excel-
lence. He proved a new theorem on
these mysterious and enigmatic per-
fect numbers. He proved that all
even perfect numbers have the form
indicated by Euclid. As for the form
taken by odd perfect numbers, or
whether they even exist-that ques-
tion persists to the present day.

Euler proved that the first three
numbers of those indicated by
Mersenne-namely, 2'7 - I, 2'9 - I,
and 23r - l-are prime. Thus the
sixth and seventh perfect numbers
found by Cataldi and then Mersenne
turned out to be correct. We don't
know, and probably never will
know, how they were found. The
only "explanation" available, which
was given by contemporaries of
those scientists, is that they were
aided by Providence.

The eighth perfect number, corre-
sponding to p :31 in Euclid's for-
mu1a, is

2,305,843,008,r39,9 52,128.

For an entire century this number
remained the largest perfect number
known. In this period, a new
method was found for verifying
whether or not the number 2? - I is
prime without performing direct
calculations. It turned out that not
all numbers indicated by Mersenne

were perfect. He predicted the value
p = I27 correctly, but the numbers
with p : 67 and p :257 are not per-
fect, contrary to Mersenne's expec-
tations. On the other hand, the num-
bers corresponding to p:51, p = 89,
and p : 107 turned out to be perfect.

The ninth perfect number wasn/t
calculated until 1883. It was found
by the Russian priest I. M.
Pervushin. He calculated the largest
prime number (of his time) of the
form 2P - 1 for p : 5l-namely,

2,305,843,009,2r3,693,9 5l

-and the corresponding perfect
number

2,305,843,009,213,693,9 5l . 260.

This calculation was a heroic
deed. Mersenne said that even eter-
nity was not long enough to check if
a number consisting oi 15 to 20 dig-
its is prime. Pervushin didn't use
any technology in his work, and his
number consisted of 37 digits.

At the beginning o{ the 20th cen-
tury, the first mechanical calculat-
ing devices appeared, which facili-
tated the search for new perfect
numbers.

The tenth perfect number was
found in 1911, consisting of 54 dig-
its:

618,970,019,542,690,
t37,449,552,i11 .288.

The eleventh number, consisting
of 65 digits, was discovered in 1914:

152,259,27 6,829,213,363,39 l,
579,010,299 ,127 . 2106.

The twelfth perfect number was
also discoveredin 1914. It consists of
77 digits and is written as

2126(2127 _ ll.
In 1932, Lemere set himself the

goal of finding the thirteenth perfect
number. For this pu{pose, he decided
to check iJ the last number 2P - I lfor
p = zi71indicated by Mersenne was
prime. Using mechanical calculators
available at that time, he spent a
year veri{ying that this number is
composite. Thus, the twelfth perfect
number remained the largest one
until 1952.
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The thirteenth perfect number
was found with the help of a com-
puter. On'|anuary 30, 1952, the
American mathematician Robinson
used a computer to check whether
numbers of the form 2P - 1 are
prime. To begin, Robinson checked
the number 22s7 - 1. He invited
Lemere, who had spent a year on
this work 20years earlier, to witness
the calculation. Lemere was glad to
see that the computer needed only
18 seconds to obtain the result. To
find a new perfect number, it was
necessary to find a new prime satis-
fying Euclid's formula. The com-
puter continued its calculations. In
two hours it checked 42 numbers,
the smallest of which consisted of
80 digits. Flowever, all these num-
bers turned out to be composite. A
new perfect number was found that
evening. It was

2szo12szt _ 1l (p = 5211.

The thirteenth perfect number con-
sists of 314 digits.

The fourteenth perfect number
was found the same day toward mid-
night. After checking thirteen more
Euclidean numbers, it found the
prime 2607 -1, which is written with
183 digits. The corresponding per-
fect number is

26061260T _ tl (p = 6071.

The fourteenth perfect number has
356 digits.

The fifteenth perfect number was
found in lune 1952. Computers were

scarce atthattime, and the machine
could study the problem of perfect
numbers only " at leisure."

Further work brought the prime
number 21279 - 1 and the correspond-
ing perfect number consisting of 770
digits:

Ztz7slTt27e _tl (p: tZ79).

The sixteenth and seventeenth
perfect numbers were discovered in
October 1952. By that time, the
computer found two more Euclid-
ean primes ' 22208 - 1 and 22281 - 1.

The corresponding perfect numbers
aTe

2zzozl2zzos _ t) lp = 2203),

consisting of 1327 digits, and

Z2z80lZ22sI _ Il (p :ZZgLl,

consisting of 1373 digits.
The eighteenth perfect number

was found in September 1957 by
the Swedish mathematician G.
Riesel. Using a computer, he spent
five and ahalf hours verifying that
the number 23217 - I is prime and
obtaining the eighteenth perfect
number:

2ezteq2zztz _ tl (p = B2t7),

consisting of about 2000 digits.
The search for larger perfect

numbers required more and more
computational effort. But comput-
ers were becoming more and more
powerful, so in 1962 two new per-
fect numbers were discovered, and
in 1965 three more. In the Euclid-
ean formula, these numbers corre-
spond to p = 4253, 4423, 9689, 9941,

and 11213. The perfect number
2Lr2r2t2tt2t3 - 1) consists of 3375
digits. Obviously such numbers
could never be found and verified
without the help of powerful com-
puting technology.

And there we have it: everything
the human race has learned about
perfect numbers over the past two
thousand years.l

The history of searching for per-
fect numbers shows how comput-"
ers can increase our capabilities.
However, in the words of Edmund
Landau, the great expert in number
theory, "Two problems temain
open:

Are there infinitely many even
perfect numberc!-I don't know.

Are there infinitely many odd
pe$ect numbers or does at least one
such number exist!-I don't even
know if one such number exists."

What is there to add?
Exercises
1. Prove that the number 2*-r()x

- 1), where 2k - 1 is a prime, is per-
fect.

2. Denote by o(n), where n is a
natural number, the sum of a1l divi-
sors of n. Prove that if n, and nz are
coprime, then o(n, .nr): o(n1l .o(nz).

3. Let n be an even perfect num-
ber. Then o(n) : 2n. Represent fl as
Tk-rb, where k22 and b is odd, and
prove that b = lZx - 1)c. Then prove
thatc: 1 and2k-1 isprime. O

lActually, we do know about more
than 30 prime Mersenne numbers, the
largest of which corresponds to the
prime number p :216091.

CONTINUED FROM PAGE 7

written in their place. This operation
is repeated n - 1 times. As a result, a
single number remains on the black-
board. Prove that if all the original
numbers are equal to one/ the result-
ing number is not less than lf n.

(B. Berlov)

M324
Cfime solver. An investigator de-

vised a plan for interrogating a wit-

ness that guarantees that a crime
would be solved. He is going to ask
questions that assume only a yes or
no answer. The next question may
depend on the answers obtained to
the preceding questions. The inves-
tigator assumed that all the answers
would be correct. He calculated that
not more than 91 cluestions had
been asked regardless of the an-
swers. Prove that the investigator
can devise a plan consisting of not
more than 105 questions that guar-

antees the crime will be solved even
if one of the answers may be false
(however, all the answers are aI-
lowed to be correct as well).

Note: If you can devise only plans
consisting of more than 105 ques-
tions, give the best of them.

(A. Andzhans,I. Solovyov, and
V. Slitinsky)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 50
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Peel'inU inlu polenlial wells

A potential well is a hole that hasn't been dug yet.

-Scientific 
folklore

by K Kikoin

I N PHYSICS WE OFTEN COME
| ,aroa, senrences rrKe: "Aparrrcle

| 1o, , system, ls sltuatec ir, , po-

I i."tiri we1l." What is this well,
and why must any physical object
eventually get trapped in it? Let's
take a close look at this potential
pitfall. We'll examine several con-
crete examples, starting with the
simplest one,

Ball and box
Let's drop a metal ball into a box

with an uneven bottom, one having
hills and valleys. A{ter bouncing and
rolling around, the ball will come to
rest at the bottom of a valley. Why

does the ball stop at the bottom and
not/ say/ on a slope of the uneven
surface? The obvious answer is the
following. Two forces act on the
ball: the force of gravity (its weight)
Fn and the normal force F,,. When the
bill is located on the slope of a hill
or valley (figure 1), the net force F is
directed downward along the siope,
so according to Newton's second
law the ball accelerates and moves
to the bottom. At the bottom, the
two forces (F* and Fr') cancel. So,
eventually, the ball will come to rest
at this spot.

Now let's consider the same prob-
lem from another perspective. A ball

resting at the bottom of a valley has
no kinetic energy. In other words, all
the ball's energy is potential (E.).
Let's imagine moving the ball from
this equilibrium position. Obvi-
ously, work must be performed
against the force of gravity during
any motion of the ball up the hill.
This work will increase the poten-
tial energy of the baII. However, if
the potential energy increases dur-
ing any displacement r relative to
the equilibrium position, it is mini-
mal at the equilibrium point lr :0,
figure 2).

Now let's follow the conversion
of energy of a ball thrown into the
box. At the outset the ball had an
initial amount of kinetic and poten-
tial energy. The up and down mo-
tion of the ball along the hills and
valleys on the bottom iS accompa-
nied by the transformation of ki-
netic to potential energy and back
to kinetic energy. In addition, a I
very important process occurs con- f
tinuously: The frictional forces per- #
form work (eventually this energy !
is dissipated as heat to the sur- fr
roundings). At long last, the total J=

amount of mechanical (kinetic plus !
potential) energy will become so i

-1

r
Figure'1
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Figure 3

small that the ball will not get out
of the va11ey. After many oscilla-
tions, the ball will come to rest at
the bottom of the valley. In this po-
sition, all the residual energy of the
ball is potential. Moreover, the
value of this energy is minimal
within the valley. For example, fig-
ure 3 shows two possible equilib-
rium positions of a ballin adjacent
valleys of various depths. Each
equilibrium position is character-
rzed by its own minimum of the
potential energy/ and E. min r (
En-i.z (this means that fositive
niechanical work must be per-
formed to shift the bali from posi-
tion 1 to position 2).

And so we arrive at an alternative
definition of stable equilibrium: Tha
stable equilibilum of an obiect aL-

ways cofiesponds to the minimum
of its potential energy. In other
words, when in stable equilibrium,
an obiect is situated in a potential
well.

The example we looked at is very
simple and clear: For a ball, a poten-
tial well is literally a depression or
a 1ow spot. Next we'I1 move on to an
object for which no "wel1" in the
usual sense of the word can be imag-
ined, but the potential well exists
nevertheless and determines its
equilibrium state.

$oap lu[ile
Every child knows that a soap

bubble is always round. But does
every child know why?

To answer this cluestion, we
need to recall the phenomenon of
surface tension. From the physical

point of view, a soap bubble is a liq-
uid film that delimits a volume
filled with gas. Looking at this film
at a greater magnification, one can
see that it consists of two surface
layers (inner and outer) and the liq-
uid between them. The molecules
on a surface are subject to quite dif-
ferent conditions from those affect-
ing molecules between the sur-
faces. Every molecule inside the
liquid is surrounded by similar
molecules, whose effects on a given
molecule is therefore zero. In con-
trastt a surface molecule is affected
by significantly di{ferent forces
from the adjacent liquid and the
gas. Since the density of a gas is far
less than that of a liquid, the net
force acting on a surface molecule
is always directed inward, into the
liquid. Therefore, in order to leave
the surface, the molecules must
perform a fixed amount of work
against these attractive forces. In
other words, the surface molecules
have a greate'.r potential energy than
the inner molecules. This extra po-
tential energy is referred to as the
surface energy Er:

E.-S,

OI

E': oS'

The coefficient of proportionality o
is the surface tension. It's equal to
the ratio of the work W needed to
increase the surface area by AS to AS

itself. Every liquid is characterized
by its own coefficient of surface ten-
sion.

When we inflate a soap bubble,
its volume (and the surface area ot
the film) increase, although the
amount of liquid in the surface re-
mains constant. Clearly, an increase
in surface area is possible only be-
cause new molecules move to the
surface from the interior of the liq-
uid. This means that some work
must be performed to drive this pro-
cess and increase the surface energy
of the film.

Now we can explain why a soap
bubble is always round and not,
say, an ellipsoid or polyhedron. The
sphere has this wonderful property:

Among all geometrical objects of
the same volume, it has the small-
est surface area. Theref ore, ifwe try
to deform a soap bubble to make its
shape ellipsoidal, we must perform
a certain amount of work to in-
crease its surface area ar.d surface
energy. In other words, the spheri-
cal shape of a soap bubble corue-
sponds to the minimal potential
energy of the film that forms its
shell.

So, you may ask, what lies at the
bottom of the potential well in this
exampie? Obviously it's not an indi-
vidual particle, since the surface ten-
sion results not from the behavior of
individual molecules but from the
interaction of a vast number of mol-
ecules. We can't even say that the
potential well contains all the sur-
face molecules, since a change i-n the
ljubble's radius is accompanied by
moYement of molecules from the
surface to the interior of the liquid
and vice versa. In addition, the con-
tinuous exchange of molecules be-
tween the surface and deep layers
occurs due to thermal motion.
Therefore, the potential well con-
tains all the liquid that forms the
soap film.

We could apply the concept of po-
tential energy (and the potential
well) to this problem only because
there is a universal parameter that
describes the energy of the system-
the surface area of the bubble, which
is simply proportional to its surface
energy.

Strictly speaking, we can describe
in this way only half of the potential
well corresponding to the spherical
form of a bubble (figure 4). We can
decrease the area only by compress-

,rl

+
T
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ing the bubble-that is, by perform-
ing work in compressing the gas in-
side the bubble. The corresponding
lncrease in .the system's energy in
this case in shown by the broken
line in figure 4. So in reality the po-
tential well of a soap bubble con-
tains the complex system "surface
molecules of the liquid + interior 1iq-
uid molecules + molecules of gas

inside the bubble."

lonic cnystal
Now we come to our last ex-

ample of a system situated in a po-
tential well. The shape of the po-
tential well for such a system can
be found by means of precise but
very cumbersome calculations.
However, an approximate result
can be obtained with very simple
reasoning. We'll take this efficient
route, in which we sacrifice a little
precision for the sake o{ much
greater clarity.

This system is the ionic crystal, a
typical example of which is ordinary
table salt (NaCl). It's known that
atoms (or ions) in crystal bodies
form regular geometric lattices. The
crystal of table salt has a simple cu-
bic lattice, the nodes of which con-
tain positive sodium (Na*) and nega-
tive chloride (Cl-) ions arranged in a
three-dimensional checkerboard
pattern (figure 5). Every Na* ion has
six Cl- ions as its nearest neighbors,
and every CI- ion has six neighbor-
ing Na* ions. The distance between
the two nearest identical ions on the
face of the cube is called the lattice
constant d.

To determine the shape of the
potential well of a particular crystal,
we need to find its total potential

-
Figure 6

energy, which is the energy of inter-
action between all the ions in the
crystal. As a first step/ we consider
the interaction between the closest
neighboring Na* and Cl- ions. This
interaction is composed of the cou-
lomb attraction and the quantum
mechanical repulsion, which pre-
vents the ions from getting too close
to one another.

We can describe this interaction
using the notion of potential. Imag-
ine a sodium ion situated in the at-
tractive electric and repulsive quan-
tum fields generated by a chloride
ion. According to electrostatics, the
potential of the attractive field is
-kef r.Herek is Coulomb's constant,
e is the charge of a monovalent ion
equal to the charge of an electron,
and r is the distance between the so-
dium and chloride ions. As a rule,
precise expressions of the repulsive
potential for various ions are not
known, but as an approximation we
can describe it by the rapidly de-
creasing power function bf r",where
b is a certain constant. The expo-
nent n for crystals like NaCl is as-
sumed to be 9.

Thus a positive Na* ion is situ-
ated in a compound field of negative
Cl- ion, whose potential is described
by the foliowing formula:

kebU lrl=--+-.\/ r rn

Since n is large, at small distances
the repulsion potential increases
very rapidly and becomes substan-
tially larger than the attraction po-
tential. At large distances, the repul-
sion potential is virtually zero, so
the total potential coincides with
the coulomb potential. As a result,

U-(r) takes the form of a curve with
a minimum and forms the potential
well for the sodium ion (figure 5). In
turn, a sodium ion generates a simi-
lar wellto trap the neighboring chlo-
ride atom.

Therefore, two adiacent ions cre-
ate potential we1ls for each other by
repulsion at small distances and at-
traction at large distances. In these
wells both ions keep each other in
the stable equilibrium state.

O{ course, an entire crystal is a far
more complex system than the pair
of unlike ions we just considered. In
addition to several neighboring ions
with opposite charges, any ion is
surrounded by ever more distant
ions that also affect the given ion
and therefore contribute to the for-
mation of the total potential func-
tion. Although the size of a erystal
is limited, the number of neighbors
of any ion can be considered infinite.
Indeed, consider the most finely
ground table salt. Its crystals are
about 0.1 mm across, while the lat-
tice constant ts a - 10-8 cm, so the
edge of a crysta1 of table salt is com-
posed of -106 atoms. Correspond-
ingly, the area of a face and the vol-
ume of a crystal of table salt have
1012 and 1018 identical ions.

A calculation of the total energy
of interaction of all the ions in the
crystal would seem to be insanely
difficult at first glance. However,
using a clever trick based on certain
fundamental physical properties/ we
can solve the problem in a few
strokes. Details are provided in
Supplement II, so here we'll show
only the final result. The total po-
tential energy of all the ions in the
crystal is described by the formula

. Ar) .Bu,,(r)- -"' *'"= ,Aa"

where A and B are constants. The
plot of this function is a curve with
a minimum (that is, with a potential
well). What's at the bottom of this
well? The entire crystal, of coursel
This means that the lattice constant
assumes a value ao at equilibrium,
corresponding to the minimum of
the potential energy.

C N,.

ocl
Figure 5

15OUA[IIU]Il/tIAIURI



To sum.rp, *"'r" looked at three
objects that are completely different
at first glance. However, a common
feature emerged-the potential en-
ergy of each took the shape of a

curve with a minimum. In the gen-
eral case, the shape of a potential
well may be more complex (in par-
ticular, the potential energy may
depend on many parameters rather
than a singie one). Still, the general
principle is always the same: A,
stable equilibrium any system has
minim al p otential ener gy-in other
words, it is situated in a potential
weLL.

Supplemeltl I

Let's calculate the potential Q,
created at point 1 with coordinate r,
by an electric charge +elocated at
the origin of the coordinate system
(figure 7). This potential is equal to
the work of the electric field needed
to move a unit positive charge from
the given point to infinity.

Let's place a test charge q at point
1. According to Coulomb's law, it
experiences aforce F : kc1eft due to
the presence of charge a. Now we
calculate the work l4lr_, needed to
transfer charge qfrornpoint 1 to the
nearest point 2. To simplify our cal-
culations, we'll choose a distance r,
- 11 so small that we can consider
the force to be constant over the
entire interval l-2: F, = kqelrz =
kqelftrrrl. Thus

w;z=4(rr-rr)

=kQ"k -rri=Lrrf1- t]rtrz \1r tz )
Similarly, we can calculate the

work ly'lr_, needed to transfer the
charge q from point 2 to the neigh-
boring point 3:

wz-B=er(+-rr)

kae, (t t)=-(/:-rz)=kqel---lrz4 \12 ts )

Clearly the work of the field in
the interval 1-3 equals the sum of
the work performed in the intervals
l-2 and 2-3:

WrB=W;z+Wz-z

= xq"( L- ' l* or"( ! - '\'[r, rz) 'tt 4)

=kqrf!- 1)
\4 rs )

Continuing this calculation, we
see that the intermediary points
play no role, and the resulting ex-
pression for the work contains only
the coordinates of the initial and fi-
nal points. Therefore, the work of
the electric field to transfer the test
charge q from point 1 to infinity
(1/r- = 0) is

Finally, the potential at point I is
determined by the formula

Wke
qrr

Those who know how to inte-
grate could have obtained this result
in one line (if you ever needed an
incentive to learn calculus).

Supplementll
In order to find the total poten-

tial energy of a crystal, let's start
with a computation of its electro-
static energy. Consider a sodium
ion Na* located at the center of the
cubic lattice shown in figure 5. Its
closest neighbors are six chloride
ions located at distance r = af 2 hom
it. Each of these chloride ions gen-
erates a potential -ke/r = -Zkela.
According to the superposition
principle, the potential of several
charges is ec1ua1 to the potentials
generated individually by each
charge. Therefore, the six chloride
ions generate a potential of
-l2ke/a. The next set of neighbor-
ing charges are 12 sodium ions 1o-

cated at a distance af ^li frorn the
chosen (central) sodium ion. These
sodium ions generate a total poten-

tial +tZ.[Zkef a = +l6.97kela. Con-
tinuing this calculation, we find that
the third set of charges produces a
potentiai -9.24ke/a, the fourth set a
potential of +6kela, and so forth.

There is no simple regularity in
this sequence (for example, the
nineteenth charge set contributes
-3.08ke/a to the total potential), so
it's useless to compute the infinite
sum by adding the successive
members of the series. However,"
there's something interesting
about this series: The sign of its
members alternates, and this im-
plies the possibility of some rear-
rangement of the addends to com-
pute the total sum. Indeed, such a
clever rearrangement does exist,
and the idea is based on the notion
of electric neutrality.

Let's calculate the total charge of
all the ions of the cube shown in
figure 5. We'll assume that only a
half of each ion located at a face be-
longs to the cube, a quarter of the
ions located on an edge, and one
eighth of the ions located at a cor-
ner. This is by no means a casual as-
sumption: If we subdivide the en-
tire crystal into cubes similar to the
one we're considering, we'll see
that an ion on a face belongs to two
cubes, an ion on an edge belongs to
four cubes, and an ion at a corner
belongs to eight cubes. Our great
achievement is this: The total
charge of such a cube composed of
partial charges is exactly zerol In
other words, we found a way to di-
vide the crystal into electrically
neutral cells. The coulomb energy
of the neutral cube is

12 kez t6.97 kez
2a4a

t).

=-2.9lRe
a

9.24 kez

Now let's consider a more com-
plex set of ions. It will be composed
of the initial cube (with whole ions)
enveloped by a single layer of ion
fragments. The edge of this new
cube is 2a; the ions of the inner cube
belong entirely to the new construc-
tion, while only a half, a quarter/ or

, (t t) kq"
Wt = kqel l= 

-\1r r*) 11
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an eighth of the enveloping ions will
belong to the system, depending on
their location. This is a more com-
plex division of the entire crystal
into an electrically neutral cell. We
would expect that the resulting po-
tential energy will be more precise.
Indeed, the electrostatic energy of
the new electric cell is -3.50 ke2 I a..

If we take an electrically neutral
cube with a side length of 3a, its
energy will be -3.49 kezla. Further
increases in the volume o{ the cube
have practically no effect, and even-
tually we obtain a value for its en-
ergy equal to approximately -3.495
kezla.

The same idea of dividing the
entire crystal into elementary cells
suggests another way of approxi-
mating the crystal energy. Take an
ion with charge +1 and surround it
with a sphere of radius a filled with
a uniformly distributed negative
charge whose total value is *1. Cal-
culating the electrostatic energy of
this neutral sphere yields the value

-3.5 kezf a, which is very close to
the correct value.

Thus a correct model that takes
into account the most essential fea-
tures o{ a physical process greatly
simplifies our calculations.

Paradoxically, the energy associ-
ated with the quantum repulsion
can be calculated in a far simpler
way, although the nature of this re-
pulsion is far from trivial. The repul-
sion potential decreases very rapidly
with distance. Thus we can take
into consideration the repulsion that
acts only between neighboring ions
at a distance af 2 trorn one another.
In this approximation, the total en-
ergy of repulsion is just the sum of
the energies of repulsion ("pairwise
interaction") counted for all ion
pairs. We immediately get +Bf a",
where B: Nb, Nbeing the number
of pairs in the cell. The electrostatic
energy corresponding to individual
ions calculated above must also be
multiplied by this factor N. As a re-
sult, we get the formula for the to-

tal energy of the cubic crystal used
in the main body of this article. O
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negligible period compared to the
age of the Solar System {5 billion
years). This explains why comets are
such rare guests in the firmament
and do not visit us eyery other
night-they simply cannot collect
in any significant numbers near the
Sun.

The appearance of a comet with a
period comparable to the period of
revolution o{ the large planets about
the Sun is a rare event because it re-
quires a combination o{ circum-
stances whereby the comet, passing
near the Sun, must be subjected to a
strong interaction with one of the
large planets. The planet must
modi{y the comet's trajectory such
that its long period (or "nonperiod,"
if it would have been a one-time visi-
tor) tums into a short period. What's

the probabfity of such an event? Per-
haps a Quantum reader will be the
one to answer this question.

Imagine that every ten years (on
average) a comet appears in the night
sky whose charac.teristics are sirni-lar
to those of Halley's comet. This
would mean that about 10large ob-
jects periodically appear near the Sun
and are visible as comets. Since the
lifetime of such a comet is about
100,000 years/ one would conclude
that the frequency with which such
comets emerge from the Oort cloud
is about once every 10,000 years, and
that approximately a half-million
comets like Halley's have appeared
and vaporized near the Sun while the
Earth has been in existence. O
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Uninscl'ihahle polyhedl'uns?

Provi ng Steinitz Theorem

by E. Andreev

ONSIDER A CUBE WITH ONE
of its vertices cut o{f by a plane
(figure I ). lt would be interesting
to determine whether this poly-

hedron can be inscribed in a sphere.
Does the answer depend on the cut-
ting plane? This article is dedicated
to solving this and similar problems.

Let a convex bounded polyhedron
be given. More precisely, we'll deal

Figure

with a three dimensional body that
is bounded on all sides by piane
polygons (called faces) and lies on
one side of the plane of each {.ace.
We want to find out whether this
polyhedron can be inscribed in a
sphere.

We'll designate the given polyhe-
dron by M, and number (separately)
its faces, edges, and vertices, ca.lling
the rth face F, the ith edge E, and
the ith vertex Vr. Two faces are
called adjacent if they have a com-
mon edge, and two vertices are con-
sidered neighboring if they are con-
nected by an edge.

If such a polyhedron can be in-
scribed in a sphere, then, iooking
along the plane of each face, it is
clear that any face can be inscribed
in a circle. To solve our problem, we
must first check whether all poly-
gons F, are inscribed.

Next, we choose some edge 81,
and consider the two faces .F', and F,
that are bounded by this edge. Let
O, and Orbe the circumcenters of
these two faces (figure 2). Then the
lines through Ot, Ozperpendicular
to the planes of the two faces both
lie on the perpendicular bisector
plane of E1, and so intersect. (hdeed,
what would the two faces look like
if they were parallel?) Designate by

ro the distance from the intersection
point of these perpendiculars to one
of the vertices of { or F,. It's clear
that the length of ro'do", Lot depend
on the choice of this vertex.

Problem L. Prove that polyhedron
M canbe inscribed if and only if all
the polygons F, arc inscribed and r,
- rz: : r*' whete m is the num-
ber of edges of the polyhedron.

This and similar tests have been
known for a long time. In the begin-
ning of the 20th century, it turned
out that it's sometimes possible to
prove that M cannotbe inscribed in
a sphere even without doing any
computations.

The German mathematician E.
Steinitz was the first to notice this
fact. In 1927 he published an article
in which the {ollowing theorem was
proved.

Steinitz Theorem. Aqsume that
all the vefiices of polyhedron M can
be colored black and white so that

(1) no two black vertices are
neighbofing;

(2) the number of black vertices
is greatu than the number of the
white ones.

Given these conditions, M can-
not be inscribed in a sphere.

Before proving the theorem, we'll
make a few remarks. Assume thatFigure 2

oL
C
0)
.C
oa
(U

-=
f

!

t

l8 itlY/Jl|ilr 200r



0UlilItll'l/ttITURt



Figure 3

Figure 4

we are given a fixed sphere and a
dihedral angle whose edge intersects
this sphere. Draw the tangent plane
to the sphere through one of the two
intersection points (figure 3). The
intersection of this tangent plane
with the dihedral angle forms a
plane angle. We will call this angle
the plane angle o{ the given dihedral
angle with respect to the given
sphere, or simply the rclative angle
of the given dihedral angle.It's clear
that the relative angle is indepen-
dent of the choice of one of the two
intersection points of the edge with
the sphere. If the edge is tangent to
the sphere, we set the relative angle
equal to zero.

Now consider a convex polyhe-
dral angle such that all its edges in-
tersect the given sphere. The rela-
tive angles of its dihedral angles will
be calTedrulative angles of the given
polyhedral angle.

Lemma 1. If the vertex of a poly-
hedral angle with n faces lies on a
sphere, and all its edges intercect
the sphere, then the sum of its rela-
tive angles is nln - 21.

Proof. Draw the tangent plane
through the polyhedral angle's ver-
tex, and then draw a plane parallel to
this tangent plane and such that it in-
tersects the sphere and all edges of
the given polyhedral angle (this is
possible since all edges of the angle
intersect the sphere). The intersec-
tion of the polyhedral angle with this
plane is a polygon, and pairs of sides
of this polygon are parallel to the
sides of the relative angles we want
to sum. So each relative angle is
equal to an angle of the polygon,
which makes their sum equal to
xln-21.

Proof of Steinitz Theorem. As-
sume that polyhedron M is inscribed
in a sphere and that its faces are col-
ored as required by the theorem. We
will show that this implies a corrtra-
diction involving certain relative
angles. Designate the relative angle
of the dihedral angle with edge E, by
y1. Let no be the number of edges that
meet at vertex V*.By Lemma 1, the
sum of the relative angles at vertex
V ois n(no- 2). Set Fi = n -y; and call
0, the exterior relative angle. Then y,
: n - Br. Since the sum of the interior
relative angles of any polyhedral
angle is n(np-21, the sum of the ex-
terior relative angles is 2m. Thus if
the edges P i, P i, .. ., P, meet at vertex
Vp, then

0,*0i+...+$r:2n-
Let's write similar equations for

each vertex of the polyhedron, mul-
tiply the equations for black vertices
by -1, and sum all the equations
obtained. Black vertices are more
rurrerous; therefore, the right-hand

side will be negative,
Consider the sum on the left-

hand side. If the ith edge connects a
black vertex with a white one, then
the number F; enters the left-hand
side twice-once with a positive
sign, and once with a negative sign,
which gives a net contribution of 0
to the sum. If the edge connects two
white vertices, then B, enters the
left-hand side with a positive sign
both times. By our assumption/
there are no edges with two black
vertices; therefore, the sum on the
le{t-hand side is not less t}r'an zero.
Thus we have arrived at a contradic-
tion, which proves that polyhedron
M cannot be inscribed in a sphere.

Before analyzing the theorem
proved-that is, before revealing its
meaning-we want to demonstrate
that there exist polyhedrons satisfy-
ing the conditions of the theorem.
Consider an octahedron ({igure 5a)
and construct a regular triangular
pyramid on each of its faces, using
the face as a base. The altitude of the
pyramid must be small enough that
the dihedral angles at the base will
be less than 25". Consider the poly-
hedron M glued together from the
original octahedron and eight newly
constructed pyramids (figure 5b).

Problem 2. Prove that polyhedron
M is convex.

We color all the vertices of M that
are vertices of the original octahe-
dron white, and all the other verti-
ces black. It's clear that the condi-
tions of the Steinitz Theorem are
satisfied. Thus we have constructed
a polyhedron that cannot be in-
scribed in a sphere, and this {act car'

a

Figure 5
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be verified without i*o*rn* the size
and angles of the polyhedron; all we
need is the structure of. the polyhe-
dron.

We now consider in more detail
the concept of structure. In the
plane, everything is very simple. To
describe the structure of a convex
polyhedron, it's sufficient to say that
it has as many sides as it has verti-
ces; ever)/ side is adjacent to two
others, and every vertex is adjacent
to two sides.

The situation in space is much
more complicated. For example, the
dodecahedron (figure 5a) and the de-
cagonal prism (figure 5b) have the
same number of faces (12), the same
number of edges (30), and the same
number of vertices (20), but their
structure is different. To describe
the structure of a polyhedron, we
must specify not only the number of
edges, faces, and vertices, but also
how the faces are connected; that is,
which faces are adjacent, which ver-
tices are neighboring, and which
faces meet at each vertex. Two poly-
hedrons have the same structure if
they have the same number of ver-
tices, edges, and faces and are com-
posed of these elements identically.

Suppose that a convex polyhe-
dron M is such that neither it nor
any polyhedron of the same struc-
ture can be inscribed in a sphere. We
call such a polyhedron absolutely
uninscrib able. The Steinitz theorem
implies that any polyhedron satisfy-
ing conditions (1) and (2) is not only
uninscribed, but also absolutely
uninscribable. The polyhedron in fig-
ure 5b provides such an example. We
can compare this result to the situa-
tion on a plane. Here, all polygons
withn sides have the same structure,
and there exist an inscribable poly-
gon of that structure 6or arry a. For
this reason, it was believed, before
Steinitz proved his theorem, that ab-
solutely uninscribable polyhedrons
do not exist. There were even quite
plausible, though not quite complete,
proofs of this "tact."

Now another problem presents
itself: Find all absolutely uninscrib-
able polyhedrons. More specifically,
find necessary and sufficient condi-

Figure 6

tions for a polyhedron to be abso-
lutely uninscribable. We have the
Steinitz Theorem, which gives suf-
ficient conditions. Are these condi-
tions also necessary? The following
problems show that this is not the
case.

Problem 3, Let all the vertices of
a polyhedron M be colored black
and white so that

(1) the number of white vertices
is not greatu than the number of
black ones;

(2) no two black vertices are
neighboring, and there exist two
neighb o r ing whit e v efiic es,

Prove that polyhedron M cannot
be inscribed in a spherc.

Problem 4, Consuuct a polyhe-
dron satisfying the conditions of
problem 3, but not satisfying the
conditions of the Steinitz Theorem.

It's important to note another
fact.

Lemma 2. If the same number of
edges (say k) meet at every vertex of
a polyhedron, then this polyhedron
satisfies neither the conditions of
the Steinitz Theorem nor the condi-
tions of problem 3.

Proof. Assume the opposite. Let
m be the total number of edges of
the polyhedron, p the number of
black vertices, and g the number of

white ones, and let p > g (in the
Steinitz Theorem, this inequality is
strict). Then 2m = k(p * g); indeed,
every edge has two endpoints, and k
edges meet at every vertex. At least
one of the endpoints of every edge is
white-thatis, m < kS (in the case of
probiem 3, this inequality is strict).
On the other hand, p + I > 29, and
this inequality is strict under the
conditions of the Steinitz theorem.
Thus we obtain the inequalities

kg<m<kg.
If Msatisfies the confitions of the

Steinitz theorem or the conditions
of problem 3, then one of these in-
equalities is strict, which is impos-
sible. This contradiction proves the
assertion of the lemma.

Now consider polyhedrons with
three faces concurring at every ver-
tex. In a certain sense/ such polyhe-
drons are the most typrcal, but we
know nothing about whether they
can be inscribed.

Consider three planes that inter-
sect in pairs. They either form a tri-
hedral angle or the lines of their in-
tersection are parallel. In the latter
case/ we say that the planes form an
in{inite trihedral angle. Let's intro-
duce a sphere. Assume that all the
edges of the trihedral angle intersect
this sphere, but the vertex doesn't lie
on it, or maybe the angle has no ver-
tex at all. It tums out that if the ver-
tex lies inside the sphere, the sum of
the relative angles is greater than ni
if it lies outside the sphere or the tri-
hedral angle is in{inite, the sum is
less than n.

lndeed, consider the circles that
are cut out by the faces of the trihe-
dral angle on the sphere; the angles
between these circles are exactly the
relative angles of the trilredral angle.
Take a point on the sphere that
doesn't belong to any of these circles
and construct stereographic projec-
tions of the circles from this point
onto a plane. Three cases are pos-
sible (see figure 7a,7b, andTcl.In the
first case, the vertex is outside the
sphere; in the second case it lies on
the sphere; and in the third case it is

CONTINUED ON PAGE 46
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"...thought is a change in the body"

IIUhal islhouuhl?

by V. Meshcheryakov

I MAGINE YOURSELF INSIDE A
I Cnf scan machine, a sophisti-
I cated device for studying the mo-
I lecular structure of living crea-
tures. You would be subjected to
electromagnetic radiation with a
frequency of about lot Hz and a
magnetic field of about 1 T (by way
of comparison, the magnetic field of
planet Earth is less than 10-4T). And
yet our brain doesn't feel a thing!
The electromagnetic radiation from
a personal computer may interfere
with TV reception, yet it doesn't fis-
turb you oryourbrain at all! The en-
vironment around us is jammed
with electromagnetic waves trans-
mitting radio and TV programs. Our
towns are enmeshed by current-car-
rying (and field-generating!) wires; at
home we're never more than a step
away from an electrical appliance.
Your brain is oblivious to it all.

These arc aLl contemporary ex-
amples. Let's remember, however,
plain old lightning which is an elec-
tric discharge known to humans
from time immemorial. Lightning
generates electromagnetic ;uraves
that can be detected by a receiver in
any frequency range. What about
our thoughts? Are they af{ected?
Well, aside from the fear we may
experience, throughout all of re-

-Leucippus 
and Democritus

corded history lightning has not
been found to affect us at all.

We may also recall visible light,
as well as infrared and ultraviolet ra-
diation. They are also electromag-
netic waves. Most of this radiation
reaches the brain-it doesn't just
reach it, it penetrates/ passes
through, and permeates!

The interaction of an electromag-
netic field with biological systems is
determined primarily by two fac-
tors: the intensity and the frequency
of the electromagnetic radiation.
The search for the parameters of
electromagnetic waves capable of
controlling but not disturbing the
state of cells in a biological system
(or, as they say, modifying the infor-
mational structure of a iiving organ-
ism) led to low-intensity waves of
the miliimeter range. However,
even in this case no evidence was
found that electromagnetic fields
affected the thought process.

Perhaps it would be better to try
to explain the inIluence of thought
on the electromagnetic field? There
are indeed devices (one o{ them is
called "SQUID") that measure
weak, brain-generated magnetic
fields with strengths of only 10-r3 T,
but they don't have any connection
with thoughts.

What can we conclude from these
negative results? Maybe electromag-
netic interaction is not the process
responsible for thought generation.
There are arguments in favor of this
hypothesis. It's corroborated not
only by a huge amount of experi-
mental data but by common sense
as well. |udge for yourself: Would
the Creator have allowed thought to
be controlled by an electromagnetic
mechanism, knowing that an imma-
ture humanity would extract the
secrets of electromagnetism in the
20th century? Imagine radio fre-
quency-control of the brain as a
weapon at a dictator's disposal! This
possibility is much more dangerous
than radiation damage to an organ-
ism characterized by a breaking of
intermolecular bonds and ionization
of atoms. Keep in mind that the rate
of radioactive decay decrqases with
time and that sources of intense ra-
diation are ratet expensive, and hard
to get a hold o{, while radio waves
are cheap and readily available ev-
erywhere.

Well, at present only two interde-
pendent states of the human mind
and an electromagnetic field seem to
be possible. Either there is no inter-
action for some range of electromag-
netic parameters, or this interaction
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exists for other parameters and its
ef{ect is destructive to the brain.
This hypothesis doesn't contradict
modern views of the interaction be-
tween fields and matter/ even
though no theory of brain-field in-
teraction exists. Although the
theory of the electromagnetic field
was elaborated long ago, in the 19th
century, we still don't know what
"mind" is.

Maybe this isn't a pressing prob-
lem? Well, history can show us
many scientists who have worked
on seemingly "nonpressing" prob-
lems. Examples are the search for
extraterrestrial intelligence; para-
psychology; telekinesis; travel into
the past, future, and even "parallel"
time; teleportation; and much more.

We might recall the experiments
of the dye maker Steven Gray and the
priest Granville Wheeler. At the be-
ginning of the l8th century they con-
structed current-carrying lines by
rubbing glass rods and channeling the
charge through threads. Was this re-
search a pressing matter in the period
preceding the developrnent of the
theory of electricity and its practical
application by more than 100 years?
Perhaps not. But among all of Gray's
papers/ including those devoted to
contemporary problems in optics, as-

ffonomy/ and meteorology, only the
paper on electricity was published in
the Proceedings of the Royal Society
during the very time when the great
Isaac Newton was its president.

How far could this outstanding
personality see, this man who de-
clared that he did not invent hypoth-
eses! Perhaps that's why he framed
his view of biological structures in
the form of a question: Does not Lirr-
ing Motion occur by means of the
oscillation of the Living Medium
excited in the Brain by the force of
Will and transmitted through con-
tinuous, transparent, and homoge-
neous nerve capillaries to the
muscles, thereby contracting and
distenfing them?

So, is the problem of elucidating
the mechanism of the brain's activ-
ity important to humanity? The
United States Congress declared the
1990s "The Decade of the Brair,,"

because "fundamental discoveries
about the organization of the brain
at the molecular and cellular levels
have laid the foundation for under-
standing the mechanisms of the
mental 

^ctivity 
of human beings."

lllltnll'gfllily
At present, one of the main indi-

cations of the importance of brain
research is the development of new
technologies. It's confirmed by the
appearance of the notion of virtual
reality.

As early as 1959, the renowned
American physicist Richard Phillips
Felmman (1918-1988) declared that
in the future, after mastering opera-
tions with individual atoms, hu-
manity will have the technology to
synthesize everything. An unex-
pected start in the practical rcaliza-
tion of this fantastic idea occurred in
1981, when the physicists Gerd Bin-
ning and Heinrich Rohrer of the
Swiss branch of IBM c,onstructed a
device that incorporated a control-
lable single-atom contact between
two solid objects. The first applica-
tion of this device was scanning the
surfaces of solid objects to examine
their structure. Improvements made
in the following decade led to the
appearance of devices that could
build molecular aggregates from in-
dividual atoms according to a cho-
sen plan. In their NobelPrize lecture
(in 1987) Binning and Rohrer pro-
claimed: 'At last it has become pos-
sible to a{fect individual atoms and
to modify individual molecules."

This was the birth of a new tech-
nology known now as nanotechnol-
ogy.Why "r.aflo"? The typical dis-
tance between atoms in the
condensed state of matter is about
10-10 m, while the characteristic lin-
ear size of a typical molecular struc-
ture composed of hundreds and
thousands of atoms is about 10-e m,
or 1 nanometer.

The importance of Binning and
Rohrer's work was immediately rec-
ognized. Not only did they receive
the Nobel Prize, but an avalanche of
scientific research followed. The
number of fields affected was unprec-
edented: physics, electronics, biol-

ogy, medicine, gerontology, cyber-
netics, ecology, design, art, religion,
philosophy, science fiction... We're
now living in a period many cail the
"nano-industrial revolution. "

Given the prospects for the future
development of nanotechnology,
Feynman's published remarks in
1984 were timely. He was speculat-
ing about the possibility of creating
a quantum-mechanical computer in
which the role of the logic elements 

"

would be played by individual at-
oms. Here's how things actually
played out.

In the 1980s computers could
write data with an information den-
sity of about 1 bit per 1011 atoms.
For a typical atomic volume of l0-2e
m3, a one-bit memory element occu-
pies 10-18 m3, which corresponds to
a linear size per bit of about 10{ m
: 1 p. This is why computer chips
are considered microelements.

The size of the logic elements in
processors has approached the na-
nometer rattge, but hasn't quite
reached it yet. Specialists say that
production of nanoelements-that is,
chips with an element density of
about 1 bit per 102-103 atoms-will
begin in the next decade, despite the
fact there are problems yet to be
solved.

One of the problems is that mod-
ern circuit design is planar (the ele-
ments are located on a plane), and
switching to three-dimensional
structures will require industrial
development and customization of
nanotechnology methods. The pros-
pects of developing chips with an
element density of 1 atom per bit are
still hazy, but the general tendency
is quite clear: continual miniaturiza-
tion of the elements (memory chips,
processors/ controllers) in order to
develop a technology of so-called
terubit uystals. Even now numer-
ous projects are under way in the US
and fapan, costing hundreds of mil-
lions of dollars or more/ involving
dozens of private firms and govern-
ment organizations in developing
these nanotechnologies.

It was on this road that the con-
cept of "downloading" was bom. We
can readily grasp its essential mean-
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ing by way of nanotechnology. Con-
sider the human brain, which ac-
cording to neurophysiologists con-
tains abogt 10s neurons per cubic
millimeter of brain tissue. Taking
into consideration that the cerebral
cortex occupies a volume of about
10-3 m3, we get the total number of
neurons. This is an amazingly large
number: 1011.

Supposing that 1 bit of human
memory requires at least I neuron,
the total injormational content of the
brain can be described by the number
1011. Imagine we could scan the neu-
ron state one cell at a time to obtain
the physical characteristics of every
neuron in the brain. Then we "down-
load" this "file" into terabit chips
with a memory capacity of about
1012 bits. This "smart" chip couldbe
incorporated in a personal computer
or the controller of a robotic police-
man. We could also send it off to
wander the World Wide Web. The
scanned information carries some
personal features with it, so it's not
baseless to think we could equip this
individual inJormation flow with the
ability to make its own decisions-
that is, to generate new information,
which means to think.

So our hypothetical "something"
obtained by scanning the brain and
downloading the information into a
computer system is known as the
state of virtual rcality and deter-
mines the image that arises from the
achievements of nanotechnology.

llle[aliue rsaltty
Now let's consider the problem

from another direction, leaving
aside for now the puzzle of brain
scanning.

Imagine you're a design engineer
with all possible combinations of
atoms at yout disposal. You could
construct a ball, a cube, a ring.
These shapes you could pull out of
your own memory. However, i{you
tried to reproduce the shape of a
snowflake, you'd at least need a de-
tailed photo, and adiagram showing
the arrangement of all the atoms
would be even better. These imagi-
nary experiments deal with what we
take to be nonliving matter. Let's

move on and try to construct a DNA
molecule, which is only one of the
numerous components of the neu-
rons in the brain. This is a very
simple problem-just get the map of
the molecular structure. Unpack the
set of atoms you bought at the atom
store and start building!

But first let's look at the maps or
handbooks to find out which sort of
molecule we'Il end up with-living
or nonliving. Unfortunately, the re-
search iournals don't have the an-
swer to this one, nor to the question
of how to synthesize a rteuton ott
taking it several steps further, a hu-
man brain. At present, science
doesn't know whether the result
will be living or nonliving, a think-
ing object or iust a pile of atoms.

We've reached the point where
so-called "traditional science" lags
behind progressive trends. Its ex-
perimental methods still can't ob-
tain data on the effects of external
forces on human intellectual activ-
ity-or vice versa, on the effects of
human thoughts on the measuring
devices. The analyticalpart of sci-
ence stil1 can't tel1 the difference
between live and dead groups of
molecules, between thinking and
unthinking molecular aggregates.
And the understanding we seek
isn't verbal-who can talk about it
longest and cleveresti we/re looking
for a constructive understanding-
an understanding that could pro-
vide the basis for building an arti-
ficial intellect. Here the criterion is
straightforward. If you know how
electromagnetic waves or thoughts
are generated, you should also

know how to make a radio or an
artificial brain.

At the same time/ experimental
physics and biology can manipulate
individual atoms and molecules and
construct atomic clusters that are the
elementary building blocks of living
and dead mattett of thinking and
nonthinking organisms. (For now
this is possible only in laboratories.
So far only nanotechnological inspec-
tion of CD and DVD disks has
reached the factory floor.) So the
search goes on. Who's taking part?
Theologians, biologists, physicists,
and, of course, science fiction writers.

On this thorny road, we should
note that no highly refined reproduc-
tion of an original thinking speci-
men produces a perfect identical
copy or even explains why the cop-
ies may be different. The physical
characteristics of the atoms are
scanned by measuring devices. In
other words, only measurable pa-
rameters can be scanned. However,
we have not yet invented a device
capable of reading thoughts. Perhaps
the main reason is that a thought
cannot be expressed by a static set of
atoms, ions, and molecules. A
thought is a process/ a movement.
We know something is moving, but
we don't know how.

So, our attempt to create an arti-
ficial intellect must necessarily be
related to discovering how the brain
functions. This wonderful "device"
was given to us by nature/ orby God.
But our search must be based on
modern views of the worId, on the
thousands of years of human experi-
ence that speaks of the continuity of
knowledge and rejects, i{ not the
most intellectual and experimental
attempts to " jump" to metaphysical
reaLity, then at least the expectation
that they will lead to any construc-
tive consequences-that is, to actual
objects of widespread use.

However, orthodox science sticks
to its principles and keeps mum. The
reason is simple. On the one hand,
we have an excellent model of the
brain based on a complex integral
system composed of a finite number
of elements working on the basis of
electric charge transfer or excitation
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in the electron rrbry.t"*, which re-
sults in the transmission and recep-
tion of inJormation coded in terms of
electromagnetic field parameters. On
the other hand, more than a hundred
years of practical experience in using
such systems has not demonstrated,
either accidentally or intentionally,
the effect of electromagnetic radta-.
tion on mental processes.

In other words, on the one hand
we have a computer as the most per-
fect model of the brain, and on the
other hand it's always possible to find
a set of parameters of an external
electromagnetic field that will not
destroy but will modify, in a given
wa, the functioning of the resistors,
capacitors, transistors, and all the
other components of this computer.

So the question is this: Can a com-
puter, now or in the future-even a
supercomputer using terachips-
model the human brain even ap-
proximately? Most likely, no.

Pl'osruflim maltty
" So, " you may ask, " ate there te-

ally no other models of mental ac-
tivityz." It's a complicated situation.
Imagine someone who doesn't
know physics but wants to under-
stand how a car works. What should
that person examine? The wheels,
carburetor, motor, or gasoiine tank?
After all, one might guess that it is
the burning of gasoline that moves
the car and declare that combustion
is the principle of car performance
one is looking for. Although some
people will be satisfied with this ex-
planation, there is a yawning chasm
between this conclusion and, say,
the Carnot cycle, which provides
data about the engine's ef{iciency.
The same is true with respect to the
activity of a neuron. Many features
of neurons are known: structure/
chemical composition, the character
of diffusion fluxes, thermal condi-
tions, distribution of electric and
magnetic {ields, electrical and ther-
mal conductaneet and so on. Never-
theless, there is no answer to the
question: What physical process un-
derlies mental activity?

Maybe we need to feel our way to
a qualitatively new, non-electromag-

netic model of the brain, a model
based not on the transfer of electrons
or other charged particles, or on the
excited states of such particles?

From the outset we reject arry at-
tempts to bring in supernatural con-
cepts such as a "biological field."
Recall that the transmission of in{or-
mation (to say nothing of its genera-
tion) requires a material carrier. We
don't have a lot o{ choices here. OnIy
two suitable substances are known-
the electromagnetic field and a sub-
stance composed of atoms, which in
turn consist of protons and neutrons
(forming the nuclei) and electrons
located near the nuclei; the electrons
actually occupy almost the entire
volume of the atom. Theprotons and
electrons are electrically charged, so
an arbitrary piece of a substance is
united by the forces of interatomic
bonds, which are electromagnetic in
nature. However, this piece o{ mat-
ter is "electromagnetically neutral"
in equilibrium.

Now let's think about the follow-
ingproblem: How can we, using a set
of neutral atoms involved in a com-
plex electromagnetic interaction/
produce and transmit information
without disturbing the electric neu-
trality of this set? The answer is
simple. We'llpush the nearest group
of atoms. Since the atoms are held
together by interatomic forces, and
the piece of matter as a whole is a
more or less elastic medium, the per-
turbation applied to the atomic equi-
librium position will spread along the
piece. If we act on one side of the
piece with a particular force pattern,
we canproduce a certain signal of the
same nature on the opposite side.

As we said earlier, we can place
ourselves in a CAT scan machine to
examine the effect of the electro-
magnetic field on the brain's func-
tioning. But where should we place
the head to detect the possible ef-
fects of mechanical forces? The sim-
plest experiment requires no devices
at all, because elastic waves exist
everywhere. Mechanical watches
are ticking, voices are heard from
the TV, the telephone is ringing-all
these events occur in your home. In
the open air we hear the rustle of

foliage, the slamming of doors, the
squeal o{ brakes, the roar of airplane
engines. Lr addition, there are natu-
ral events that are quite noisy: thun-
derstorms, thundering surf, the
rumble of an earthquake. Do these
events affect mental activity? Basi-
cally, no. Indeed, how could stable
thought formation occur in a brain
that functions by means of elastic
waves under conditions of complete
sonic anarchy, created by both Na-
ture and bustiing Humanity? The
Creator took care to screen the brain
from its noisy surroundings.

We can do our own experiments.
Take a sound generator (usualiy
available in a school lab), connect it
to headphones, and try to determine
the upper and lower boundaries of
perceptible sound frequencies. You'll
have no problem with the lower
boundary. hr the frequency range be-
low 20 Hz the membranes of the
headphones produce clicks instead of
a clear tone. The value 20 + 10 Hz is
quite adequate for our purpose.

In contrast, it's not easy to esti-
mate the upper boundary. When the
frequency of sound exceeds 18 kHz
(the region of the upper limit of hu-
man hearing), it's impossible to de-
tect changes in the sound intensity
with the ac,curacy achieved for the
lower boundary. It looks like we still
"hear" (perceive)the sound, but this
is only an auditory illusion. kr real-
ity, it's impossible to {ix the exact
frequency of the attenuation of au-
ditory sensitivity. Such experiments
should not be repeated too fre-
quentl, lest the experimentalist get
a headache. It's quite sufficient to
see for yourself that such an audi-
tory illusion does exist.

It's tempting, using the results of
such psychophysical expgriments,
to admit the existence of nonde-
structive interaction of elastic
waves with the brain. However, a
new problem arises at this point.
Soundwaves of about l}AHzhave a
wavelength of about one centimeter.
When spreading within the brain,
such a wave induces oscillations of
huge atomic aggregates composed of
108 atoms. This means that i{ the
element of human memory is not an
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atom or nanochip, but a rather
"large" microchip containing 1011

atoms/ the elastic waves simulta-
neously displace 1012 "memory
cells." It'S clear that individual con-
trol of any ofthese 1012 micrometer-
sized cells by an elastic wave with a
wavelength of one centimeter is
impossible, because such a long
wave cannot change the state of any
cell without disturbing its near and
distant neighbors. In the same wayl
the surf simultaneously drenches all
objects located at eclual distances
from its crest. In other words, if elas-
tic waves really participate in men-
tal activity, their wavelengths must
not be greater than one nanometer/
which is a typical size of the mo-
lecular constructions in the brain
(for example, the DNA molecule is
2 nm in diameter). To produce elas-
tic oscillations with such wave-
lengths, one needs frequencies
higher than a few hundred gigahertz.

Eurekal Something interesting is
lurking here. It's noteworthy that
this frequency range of elastic oscil-
lations is not reached in experimen-
tal physics. We have no method of
regularly producing hypersound of
ultrahigh frequencies with control-
lable parameters, which is a prereq-
uisite for conducting a physical ex-
periment. However, the lack of
experimental data has never been an
invincible b arrrer tor inquisitive hu-
manity in its drive to understand
nature. For example, the physics of
atomic groups was understood at the
time of Maxwell and Boltzmann, al-
though experimental proof of the
existence of atoms was obtained
only after the lifetimes of these sci-
entific giants.

At present, dozens of mechanisms
have been invented for storing and
transmitting data in biological and
inorganic molecular structures.
These include quasi-elastic models.
Let's briefly consider the incorrect
(according to the consensus)but sti1l
interesting and widely discussed
model, suggested in the 1970s by the
outstanding British physicist
Herbert Froelich. To explain the
mode of data transmission in biologi-
cal systems, he suggested a mecha-

nism whereby elastic oscillations at
about LO12 Hz are generated in a

medium consisting of charged par-
ticies. Flowever, in this frequency
range the oscillations have a quan-
tum nature. This is an unfavorable
feature of the model, because in or-
der to control the transition of a neu-
ron or its parts from one state to an-
other, they must remain in the
initial state for a sufficiently long
period. This condition is not met for
oscillatory states with a lifetime of
about 10-12 s. Therefore, Froeiich ad-

vanced the concept of so-cal1ed co-
herent excitation, which is a classi-
cal wave train composed of quantum
states. This wave train propagates
with the speed of ordinary sound and
(more importantly) can change the

elastic state of a neuron for a long
time. The details of Froelich's model
were not elaborated, because it was
soon established that the formation
of such coherent trains is impossible.
Nevertheless, this model is very at-
tractive conceptually, because it re-
placed conventional electromagnetic
memory cells with one based on de-

formation.
In this context, the problem of

the deformation of biological obiects
is particularly interesting. As early
as 1678, the Dutch scientist Anton
van Leuwenhoek ( 1 532- 17 23) noted
that when he was seriously ill, the
erythrocytes of his blood looked
rigid and nonpliable, and that they
became soft and elastic when he got
better. Three centuries have passed,

but we know only that elasticity
(that is, the capacity to reversibly
change shape under the action of

external forces) is an intrinsic prop-
erty of all biological objects, neurons
included, and not a feature peculiar
to erythrocytes. Experimental and
theoretical attempts to reveal the
mechanism of this elasticity remain
unsuccessful.

Summing up our consideration of
prospective reality, let's consider a
question: Could it be that the lack of
both an experimental technology for
studying super-extra-ultrasound and
a theory of the deformation of bi"o-

logical objects is the "yellow brick
road" showing us the way to under-
standing how the human brain func-
tions? In addition, current research
into the response of nanometer mo-
lecular aggregates to the action of
extraneous forces-that is, the study
of the elastic properties of nanocrys-
tals-is one of the most intensively
developed branches of nanotechnol-
ogy. Perhaps it will be the analysis of
force effects on molecules, atomic
clusters, or nanocrystals that pro-
vides the answer to the question
"What is thought?" and conse-
quently leads to the creation of arti-
ficial intelligence?

By way of conclusion (or, if you
1ike, as a guide to further exploration
of the mystery of the brain), let's re-
call what one of the founders of bio-
physics, Emile Du Bois-Reymond
( 1B 18-1896), said: "There are no
forces affecting particles in a living
organism that do not operate outside
the organism as we11." O

Quantum on the philosophy of
science and mental activity:
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ROM THE FIRST ATTEMPTS
centuries ago to use magnets for
our own purposes/ primarily
navigation, we have made

great progress in understanding
the subtle processes occurring in
the obiects around us when they

lowed another, and this
knowledge was applied in

creating electrical ma-
chines and transformers/
audio recorders and play-

l ers, communication devices,
i and computer technology.

lecular structure; the
application of mag- used to transfer the red-hot jtems on
npf nctrictinn lthe " .^lli-- 

-ill ^+ a otaal nlan+2netostriction (the a rolling mill at a steel plant?
are placed in a magnetic field. {r.- \, capacity of bodies to 5. A cuvette containing a copper

Ore amazing discovery fol- change their shape suifate solution is placed between
the poles of a strong electromagnet
(the surface of the solution is per-
pendicuiar to the magnetic field). A
copper electrode is immersed into
the solution at the center of the cu-
vette and connected to the positive
terminal of a battery, while the
negative terminal is connected to a
copper ring immersed into the solu-
tion along the perimeter of the cu-
vette. What will happen when the
circuit is ciosed?

6. A long, thin uncharged bar
made of a nonmagnetic substance
moves with a constant speed per-
pendicular to the lines of a magnetic
field, as shown in figure 1. A poten-
tial difference appears between the
faces of the bar. Why?

Figure 1

7. Is it possibie to block an exter-
nal magnetic fieldby means of a fer-
romagnetic screen/ just as one
blocks an electrostatic field?

;

1

\

"Magnetic phenomena
are produced exclusively
by electricity, and there is

no other difference
between two magnetic
poles than their position

relative to the electric
cu rrents that constitute

the magnet."

-Andre 
Marie Ampere

and size when magnetized) for gen-
erating ultrasound waves; the use of
the ferromagnetic effect as a tool ior
assessing the quality of semiconduc-
tors; the production of ferrites as an
alternative to metal magnets; the
discovery that superconductivity
and magnetism are interrelated-
these were the glorious achieve-
ments of the 20th century in the
study of magnetic phenomena.

However, that century did not
provide solutions to all the problems
involving magnetism-much is left
for this new century! You may find
yourself investigating substances
with as yet unknown magnetic prop-
erties and using them to create high-
capacity information storage devices
that are very small and very reliable.
And how many interesting and even
mysterious magnetic effects can be
observed in living organismsl

Don't forget that even poets have
been enchanted by the phenomenon
of magnetism, and in the French lan-
guage the very word "magnet" de-
rives from the verb "to love." And if
this theme attracts you like a mag-
net-success is assured!

Ptoblems and questions
1. Why do vertical steel security

bars on windows eventually become
magnetized? Which end of the ver-
tical bar is the north pole and which
one the south pole?
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8. Why are oscillations of a com- 15. An electric current flows in a
^-ll- l- --,J :il :r I f 1.

8. Why are oscillations of a com- 15. An electric current flows in a

pass needle damped more rapidly if superconducting ring of radius r.
the case of the device is made of The ring is deformed as shown in
k*^"".^+1"-*+}" .--1..+i^2 +id',?64 LI^-^,-^,ill+I'^*^--^+i^t:^1A

exactly with the known law of elec-
trostatic interaction. Eventually
Andre Marie Ampere (1775-1835)
made the hypothesis of specific
magnetic charges superfluous by ex-
plaining all electromagnetic phe-
nomena on the basis of elementarv
electric currents.

...any rotating body, including
the planets, must at least have

a weak magnetization. At-
tempts were made by the
outstanding Russian physi-
cist Pyotr Lebedev (1855-
l9l2) to detect this rotation

magrretization. The phenom-
enon was later observed by sen-
sitive and sophisticated devices.
In particular, the magnetiza-

tion of a rod rotating about
its longitudinal axis was
measured.

...the total mag-
netic permeability of an alloy
of diamagnetic gold and para-
magnetic platinum is smaller
by two orders of magnitude com-
pared to ordinary nonferromagnetic
substances.

...some alloys of paramagnetic
and diamagnetic metals-for ex-
ample, the so-called Heusler alloy,
composed of copper, manganese/
and aluminum-are almost equal to
iron in their magnetic ploperties. At
present/ useful magnets are even
obtained from organic materials.

...new discoveries in magnetism
make it possible to produce memory
chips with superdense data record-
ing capabilities, where an area the

size of a thumbnail can hold
tens of thousands of copies of
Homer's Odyssey. O

ANSWERS & SOLUTIONS
ON PAGE 53
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brar

i- ring as compared to the field at theIOIrIICI
vroual Ividual plates? center of the original ring?

10. Does the inductance in a coil
with an iron core depend on the cur- Microexperiment
rent flowing in it? Suspend a thin iron nail on a

1i. How will the magnetic field light incombustible thread
generated by a current-carrying coil such that the nail is de- A
vary if a core is introduced into it? flected into the flame of a tl
Consider cores made of (a) iron, (b) burner when a strong electro-
aluminum, (c) copper. magnet nearby is turned on.

12. The magnetic permeability of You'll see that alter a while, the
several liquids was being investi- nail jumps away from the flame
gated. The liquids were poured one as if it got "burnt" and returns
after the other into connected ves- to its original position. Then ffi 1

se1s, one of which was placed be- the sequence begins again . t#.d
tween the poles of a strong electro- and keeps repeating itself. H.k,
magnet. Why do some liquids rise in What causes the nail's peri- *d#
this vessel while others sink? odic motion?

13. Why is the flame of a .. -".r;;_-=-il.
candle placed between the poles - t, It's interesting that...
of a magnet expelled outward? :\q* ' ', ...the firsr comprehensive

14. What will occur in a ring *-;,,o;*i,' work. on the. properties and
^- ^r _ ^-when a magnet is introduced P-{ practical application of mag-

into it if the ring is made of (a) a di- nets, in which the magnetic stone
electric, (b) a conductor, (c) a super- was described and instructions were
conductor? given on how to find the magnetic

poles and magnetize iron needles,
was the manuscript "Message on

er than plastic? {igure 2. How will the magnetic field
r rs the core of a trans- change at the center of the small
rmposed of several indi- ring as compared to the field at the

l t 
^7 

\ the Magnet, from Pierre de Mari-
I \ I court, known as Peregrine, to the

[ \ / 5,fl*"1'"1'-*:T,1"":"-i"^',:"?::k"which appeared in France in L269.
...as early as the 15th century,

William Gilbert hypothesized that
there should be north-seeking and
south-seeking "magnetic charges. "
This idea was developed by
Charles Coulomb (1736-
1806), who suggested the
law of interaction of these
" charges," which coincidedFigure 2



IN THE LAB

Where is lasl year,s winlel'?

by A. Stasenko

"Large ceramic vesse/s for food storage were
buried at a depth greater than a person's height
to keep them cool (found at Knossos, Troy, and

-{ncycloped ia of Antiquity
Tiryns)."

HE GREAT LUCRETIUS (98-
55 n.c.) offered a curious expla-
nation for the half-year period-
icity of temperature oscillations

at some depth below the surface of
the Earth: "Let us now consider why
it is that well water is warmer in
wintu and coolar in summet.Thts
happens because in summer the
earth is relaxed by the warmth and
any particles it may contain of its
own heat are dispersed into the air.
...Conversely, when all the earth is
compressed by cold and contracts
and virtually congeals, it naturally
happens that in contracting it
squeezes out any heat it may con-
tain into the wells."1

Since that time physics has devel-
oped concepts more rigorous than
"heat particles" and "cold pressure. "
Physicists prefer to speak in terms of
density p and specific heat c. These
concepts will come in hand here.
There's another physical quantity
that we'll use as well: thermal con-
ductivity. Let's take a closer iook at
this useful notion.

Imagine that you need to know
how much heat is dissipated to the
environment every second through
each square meter of the walls in
your house. This is an important

e number that will help you calculate
fr t o- much coal, oii, or electricity
fi you'll need to keep your house
g warm. Let the temperature of the
'-
f

> rlucretius, The Nature of the
i universe (trans. Ronald Latham),
< Baltimore: Penguin Books, 1962.
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averaSe
temperature

hrl2

2hr12

3hT12

depth

Figure

internal and external surfaces of the
walls be ?ro, and 7"r,, and let the
thickness of the walls be h. The den-
sity of heat flow 4 (in units of
Illrr,2 .s) is given by

^ . 4r, -4*, ,1ru=A--. ttl,h

This formula introduces the coeffi-
cient of thermal conductivity 1.,

which depends on neither the tem-
perature of the wall's sides nor the
wall's thickness. The coefficient
characterizes only the physical prop-
erties of the material the wall is
made o{, so a builder can look it up
in a reference book.

It's easy to find the units used to
express the coefficient of thermal
conductivity from equation (1): It is
[X] : I/(^. s . K). It's important that
the time unit be incorporated in this
expression-this makes it possible
to write a combination of p, c, h, and
)" that is expressed in units o{ time:

" 
-99h'.

i"

What can we do with this value?
Well, it helps to know the depth hr,,
reachedby the temperature that wds
at the surface ahalf-year ago. From
this we get

hrtr-

Of course, there are many varie-
ties of "earth" or "soil." For ex-
ample, loam, sandy soil, and granite

temperature

last year's
winter

last year's
summer

winter of the
year beforu last

differ wideiy in their densities, spe-
cific heats, and thermal conductivi-
ties. However, ar; "avetage" value
like 2 . rg-t taP f scan be assumed for
the expression

l.
A=_r

pc

which is known as the temperuture
con du ctivity co eff ici ent.

How many seconds are there in a
year? Let's do the arithmetic:

T:3,500 s/hour .24hourslday .

355days=3.107s.

Plugging this numerical value into
the formula tor h712, we get

Ll1Tlz -

Of course, this is only a rough, or-
der-of-magnitude estimate. But even
this approximation explains why the
ancient Greeks buried their ampho-
ras deeper than the height of a person.
This just happens to be the depth
reached by the thermal wave of the
previous winter at the time the soil
is heated by the summer Sun.

Figure 1 qualitatively shows the
"instantaneous" distribution of
temperature at different depths.
Why do the temperature oscillations
{ade at the deeper layers? This is due
to the same phenomenon of thermal
conductivity described above. On
the one hand, it allows the thermal
energy to reach into the ground, on

the other hand, it helps disperse and
flatten the crests and depressions in
the temperature curve. In particular,
equation (1) says that the thermal
energy flows downward along the
"slope" AB and rises upward along
the slope DC.

One can plot a similar instanta-
neous distribution of temperature
for sound waves in the air. Fortu-
nately, the thermal conductivity of
the air doesn't play a significant role
for the frequencies used when we
talk or listen to music, because the
successive compressions and relax-
ations occur so quickly that thermal
conductivity has no time to damp
the crests and depressions of the
temperature. As physicists would
say, the dispersion arad attenuation
(fafing) of the acoustic wave are in-
significant. But it's unlikely the an-
cient Greeks thought about these
problems when they buried their
amphoras. O
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heat exchange:
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N THE THIRD OF SEPTEM-
ber in the year 2000,I wanted
to find out which day of the
week December 20, 2001,

would be. I had no calendar at hand,
so I had to do some calculations. I
knew that September 3 was a Sun-
day.There are27 +31+30 +20+365
= 473 days from September 3, 2000,
to December 20,2001, which makes
67 full weeks and 4 days (473 = 67 .

7 + 4). Therefore, December 20,
2001, must be a Thursday.

A student squared a multidigit
number and obtained 45,991,075.
The teacher looked at his answer
and immediately said that the an-
swer was incorrect. How did the
teacher know?

Exercise 1. Can the square of an
integer number end in the digits
7s?

We will see further in this article
that the solution to this simple prob-
lem and many others is based on
divisibility considerations. First, re-
call the concept of division with re-
mainder.

Diuhion with nemainder
Definition. To divide a natural

numbet a by a natural number b
means to v\rrite a aS a: qb + r, where
q and r arc nonnegative integers and
r < b. The number q is called the
quotient and r the rcmainder upon
division of a by b.

In practice, division with remain-
der can be done using the algorithm
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called long division. For example,

t2
t4tr79

t4
39
28

11

So 179 = 12 . 14 + 11. Here the re-
mainder is 11, and the quotient is 12
+ 179 :12. 14 + II.

Notice that we don't require in
this definition that a be greater than
b. For example, we can divide 5 by
7 by writing 5 : 0 . 7 + 5. Generally,
If a < b,then a = 0 b + a. Thus, in
this case, q :0 and r : a.

Note. We can de{ine division
with remainder for any integer aby
any integer b + 0 as follows. To di-
vtde a by b with a remainder means
to represent a in the forrn a: qb + r,
where q is aninteger and 0 < r < lbl.
For example, for a: -I5 andb = 7,

we have -15 : (-3) . 7 + 6. For a =
-224 andb = -9, we have *224 = 25 .

(-9) + 1.

If the remainder is zerot we say
that a is divisibleby b.

The iollowing simple fact is ex-
tremely important: If a and b are
divisible by c, then the number ka
+ lb is divisible by c for any integerc
k and l.

Problem 1. Find the integer d > 1,

such that for any integer n, the num-
bers 7n + 1 and 8n + 3 are both divis-
ible by d.

Solution. Since 7(Bn + 3)- 8(7n + 1)

: 13, the number 13 is divisible by
d. Now, since d + 1 and 13 is a
prime, we have d: L3.

Exercises
2. Divide the following with a re-

mainder: (i) 1931 by 17; (Ill -295by
31, (iii) -1005 by -98.

3. If the number 17x + 3y is divis-
ible by 61, prove that Bx + 5y is also
divisible by 61 (x andy are integers).

4. Determine the remainders
upon division of (i) nby n - 1 and by
n -2; lll) n2 + n+ I byn + 1 andbyn
+ 2i fiil na + | by n +3 (where n >
180).

5. Find all integers n for which the
following numbers are integers: (i)
(n2 + t)l@ - 1), (ii) (ns + 3ll@2 + Ll.

ConUruenm$
From this point on, we'll assume

that all the numbers we're dealing
with are integers. Consider one
more problem.

Problem 2. Determine the last
digit o{ the number 2eee.

Solution. Let's write out the se-
quence of powers of two:.

2, 4,8, L6,32, 64, ...

We see that the last digits of the
numbers in this sequence repeat in
a cycle of 4. Thus the last digit of the
number 2" depends only on the re-
mainder upon division of nby 4.
Since 999 : 996 + 3 = 4. 249 + 3, the
answer is 8.

In this example, the set of expo-
nents of the powers of two is divided

12 tu[Y/JUlrr zoor



f; ,n,o four classes consisting of the
I numbers n of the form

: 4k,4k + l,4k + 2,4k + B.

; In general, for any natural num-
6 ber m, all the integers (not just the
i positive ones) can be divided into m

*ffx$q;* *,1. 6* J4r::r,r* m*.

classes, each class containing all the
numbers that give the same remain-
der upon division by m.There is a
description of these classes:

(0) the numbers a of the form
a: kmi

(1) the numbers a o{ the form
a:km+l;

(2) the numbers a of the form
a:km+2;

(m - Il the numbers a of the form
a:km+m-1.

It's clear that every number be-
longs to one of these classes. The
difference of two numbers from the
same class is fivisible by m, and the
difference of two numbers from fif-
ferent classes is not divisible by *.

Definition. If the differunce of the
integers a and b is divisible by the
integer m, then a and b are said to
be congruent modulo m.

Congruence modulo m is written
AS

a=b(modml.
The numbers a and b are congru-

ent modulo m if and only if they
belong to the same class-that is,
when they give the same remainder
upon division by m. In other words,
a = b (mod m) means that a = b + km,
where k is an integer. For example,
27 =7 (mod 10), 78 = 6 (mod} l, 6 :
0 (mod 3), and 25:4 (mod 29).

Exercises
6. For any integer a, provethat (i)

a3 = a lmod 6l; (l1l a5: a (mod 5).
T.Prove that the number

a(a +I)...(a+ k -I)
k!

is an integer.
8. Prove that 2roo: 31oo for (i)

modulo 5, (ii) modulo 13, (iii)
modulo 211.

9. Prove that 1110 - I is divisible
by 100.

10. Let S(N) be the sum of all dig-
its of the number N. Prove that N=
S(N)modulo 3 and 9.

11. Let S(A) : S(5A). Prove that A
:0 (mod 9).

12. The decimal notation o{ a
number involves 1991 ones and a
certain number of zeros. Can this
number be a perfect square?

13. Use the fact that 10 : -1 (mod
11) to prove the following test for
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divisibility by IL: a = anan-r ...ao = 0
(mod 11) if and only if (-Ll"a, +

Fll"-ra,_r+ ...+ co is divisible by 11.

Pr$efim ulctnUnumms
Properties of congruences are

similar to the properties of equali-
ties.

I.If a=b (modml andb = c (mod.
m), then a: clmodml.

I{. a =b (mod m) and c = d (rnod ml,
then

2.a+c=b+d(modm);
3. a- c=b - d (modm);
4. ac=bd(modml.
Thus congruences, just like equa-

tions, can be added, subtracted, and
multiplied by each other.

Here, by way of example, we
prove property (4ll. Since a = b arrd c
: d, then a - b ard c - d aredivisible
by m. Now, the equality ac - bd =
a(c - dl + d(a - b) implies that ac -
bd is divisible by m; thus

ac=fufl (mod m).

Exercise 14. Prove properties 1-3.
Let a = b {mod m}. Properties 1-4

imply that, for any natural k,
5. ak: bk (mod m).
In addition, sometimes congru-

ences can be reduced by a factor
common to the le{t- and right-hand
side.

5.II ac=bc (modml and the num-
bers c andm are coprime, then

a=b (modml.

7.If a:b (rnodml, k is an integer,
and a: ka, b = kbt, and m = km1,
then

ar=bt (mod m1).

In other words, both sides of a con-
gruence and the modulus can be di-
vided by their common divisor.

Let's prove property 5. The num-
ber c(a - b) is divisible by m. Since c
andm are coprime, a-b is divisible
by m; therefore,

a: b (mod ml.

Exercise 15. Prove property 7.
These properties imply that the

remainder upon division of any alge-
braic expression involving integers
a, b, c, ..., zby a number m doesn't
change when those integers are re-

placed by their remainders upon di-
vision by m.

Problem 3. Find the remainder
upon division by 3 o{ the number

N: (12 + ll(22 + ll(32 + 1) ... (10002 + 1)

Solution. The remark above im-
plies that

N= (12 + 1)333 .(22 + lpee .(32 + 11zzs
:2333 .23s3 . 1JJ3 :2666: Ir21333: 1333

:1.
Problem 4. Find all natural num-

bers n for which Bn + 3 is divisible
by 13 (see problem 1).

Solution. Using the properties of
congruences/ we can write the fol-
Iowing chain of relations.

Let 8r + 3 = 0 (mod 13). Then
8n : -3 (mod 13),
8 x 8n =-24lmod l3l,
54n = -n = -24 =-11 (mod 13).
Therefore, n = 11 (mod 13). Fi-

nally, 8n + 3 is divisible by 13 if and
oniyifn:13k+11.

Exercises
16. Find the remainders upon di-

vision of (11 zteet + I by t7, (l1l (32o +

11)ss by 13.
lT.Prove that (i) 250 + I is divis-

ible by 125, lill 248 - | is divisible by
105, (iiil 23" +l is divisible by 3't I

and is not divisibl e by 3 * 2 
.

18. Find all primes p for which
20p2+lisaprime.

19. Prove that (i) lleel + 2teer * ...
+ 301ee1 is divisible by 31; (ii) tm + zm
+ ... + (n - 1)- is divisible by nfor any
odd m andn.

20. Find all natural n for which
the number 204 + l6a - 34 - 1 is di-
visible by 323.

21. Prove that the number 52n + I

* 3n +2 . 2-r is divisible by 19 for any
natural n.

22.Find all n for which the frac-
tion

lin+2
l4n+ 3

is not in lowest terms.

Consider m members of the arith-
metic progression

a, a+ d,..., a*(m-lld, (-l

where a is an integer and d and m arc

Clinese r'Blnaindff fieorem

coprime. The following theorem is
often useful.

Theorem l. There exists exactly
one membu of progression (-) that
is divisible by m.

Proof. The difference of the kth
and lth members of (. ), which is
equal to d(k - 1l1, is not divisible by
m. lndeed, otherwise, k - I would be
divisible by m, which is impossible
since lk - ll < m.

Therefore, no two o{ the numbers
(*) are congruent modulo m, and
they give different remainders upon
division by -.

Therefore, all the congruence
classes modulo m are represented
among the numbers (*)-that is, for
each o{ the remainders 0, 1, 2, ..., m
- 1, there exists exactly one member
of sequence (*) that gives this re-
mainder upon division by m.

This proves Theorem 1, and even
a bit more.

Exercises
23. Find all triples of prime num-

bers of the form

p,p+2,p+4.
24. Find the longest finite arith-

metic progression with the differ-
ence 6 consisting of prime numbers.

25. Fifteen prime numbers form
an arithmetic progression with a diI-
ference d. Prove that d > 30,000.

We now use theorem 1 to prove
the so-called Chinese temainder
theorcm.It was known in ancient
China as far back as 2000 years ago.

Theorem 2. Suppose n numbers
m7, mz, ..., mn are coprime in pafus,
and let the n numbers rt, t2, ..., rrbe
given such that 0 I ri1 mi- 1 (i: l,
2, ..., n).Then there exists a number
N that gives the remaindu riupon
division by mt

In otherwords, N=r, (modmr)for
all i : 1,2, ..., ff.

Proof. We'll construct the proof
by induction on n. For n = 1, the as-
sertion of the theorem is obvious.
Assume that the assertion is true for
n: k - l. Then, there exists a num-
ber M such that

M=rilmodmilfor all i :1,2, ..., k- l.
Let d : mrmz...mk_ r. Consider

the numbers
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M, M + d, M + 2d, ..., M + lmu- \)d.

Since d and mk are coprime/ the
proof of theorem 1 implies that
thcrc exists a number N among the
numbers in the above sequence that
gives the remainder r* upon divi-
sion by ma. At the sarne time, N
gives the remainders r1r rtt ...r r1r_1

when divided by m,, m)t ...t frk_t,
respectively. Thus, the theorem is
proved.

Finally, we prove one more theo-
rem.

Theorem 3. For anv nttmbers m,
ffi), ..., m,,that 4vp .'ctprittte in poirs.
and for any remttlnders rr, r,.,, ..., rn
upon division b1' n1 t, lt1)t ..., 7'11n,

lhere exisl n ( on)cr utive inteBers a.

a + 1, ..., a + n - 1 suc,h that a = rr
(mod m1), a + I = r. inod mr), ..., a
+n-l:rnlmodn .

In other words, for any numbers
mt, tn),..., fr, that arc coprime in
pairs, there cxist n consccutive inte-
gers that give any predeiined set of
remainders when dividedby tn, m2,

"'t mu'
Proof. By the Chrnese remainder

theorem, there exists a number a

such that

a = r, (mod mr),
a = rz- 1 (mod m.1,

a=rn-n+ 1(modmr).

Then a, a + l, ..., a + n - 1 satisiy
the conditions of the theorem.

Exercises
26. Prove that (i) among any 10

and {ii} among arry 16 sequential
natural numbers there exists one
that is coprime to all others. (iii) Is
this assertion true for any 17 sequen-
tial natural numbers?

27 . Prove that for any n there ex-
ist n sequential natural numbers,
each of which is divisible by the
square of a natural number.

28. Does a moment exist when
the hour, minute/ and second hands
of a properly adjusted clock form
angles of I2O'with each other?

29. Find the smallest natural
number that gives the remainders 1,

2, 4, and 6 when divided by 2, 3, 5,
and 7 , respectively.

30. Find the smallest even num-

ber a such that a + 1 is divisible by
3, a + 2is divisible by 5, a+ 3 is di-
visible by 7, a + 4 is divisible by 1 i,
and a + 5 is divisible by 13.

$oluing cott$r'uencs$
In problem 4 we found all integer

n for which Bn + 3 is divisible by 13.
In other words, we solved the con-
gruence

8n+3=0(mod13).

Now we're able to solve this prob-
lem for the general case. Let coprime
numbers a an:d mbe given. We want
to solve the congruence

ax: b (mod m),

where b is an arbitrary number.
By theorem 1 there exists ak such

that ak: I (mod m). Multiply both
sides of our original congruence by
k to obtain

k(axl = (aklx: x=bk (mod m),

from which we immediately get

x--bk+ml,
where 1 is an arbitrary integer.

Thus the problem of finding k
atises. For rather small m, k can be
found by a straight{orward search;
however, the general solution of this
and many other problems deserves a
separate article.

Problem 5. Solve the congruence

32n:7lrnod37l.
Solution. Since 32 : -5 (mod 37),

we obtain the equivalent con-

gruences

5n: -7 :30 (mod 37),

or

n=6(rnod37l.

The problem of solving linear
equations with integer coefficients
in integers can be reduced to solving
congruences.

Problem 6. Find all pairs o{ inte-
gers x, y satisfying the equation"
7x-23y:131.

Solution. Since 23 :2 (mod 7),we
obtain the congruences 2y = -l3l
(mod 7) or 2y = 9 = 2 (mod 7l1, from
which we get y = 1 (mod 7).

Thus y :7k + 1, where k is an
integer. Now we can easily find x:

7x-2317k + 1)= 131,

which can be rearranged as

7x:154 + 23 .7k

and further reduced to

x :22 + 23k.

In conclusion/ we suggest that
you solve the foliowing problems.

Exercises
31. Solve the congruences (i) 17x

= 19 (mod 37); (ii) 147 x = 63 lmod 291.
32. Find integer solutions to the

equations ll)7x + 8y: l; (ii) 13x- 15y
= 15, (iii) 257x + l8y:175.

33. Find integer solutions to the
system of equations

[ZZx+5y -72=1,
l4x+9y+llz=2. O
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HE NAME OF THE OUT-
standing physicist Erwin Schro-
dinger is inseparably linked to
the formation and development

of quantum mechanics. His wave
equation is the centerpiece in this
theory and ensured Schrodinger a
prominent place in the history of
physics.

The range of Schrodinger's cre-
ativity is amazing. He made signi{i-
cant, and sometimes definitive, con-
tributions to quantum theory and
electrodynamics, the physics of el-
ementary particles and cosmic rays,
statistical mechanics and thermody-
namics, the general theory of relativ-
ity, cosmology, andfield theory. He
also conducted pioneering interdis-
ciplinary research in physics and
biology and wrote papers on the phi-
losophy of natural science.

The scope of Schrodinger's inter-
ests went far beyond the limits of
physics and the natural sciences in
general. He was an expert in ancient
and oriental philosophy, read widely
in world literature, mastered many
languages, including Latin and an-
cient Greek, and preferred to read
classic works of literature in their
original language. And that's not all:
Schrodinger sculpted in clay and
wrote poetry-he even published a
book of his verses. His contemporar-
ies were astounded by his wide-rang-
ing and encyclopedic mind.

The turbulent events of the 20th
century (the two world wars in par-
ticular) had a major impact on

LOOKING BACK

Thetnlatte lnerhaltic$ol

Erurin Schl'lidinUer

by A. Vasilyev

Schrodinger's life. He was forced to
move repeatedly from one European
country to another, returning to his
native Austria only in his declining
years.

Erwin Schrodinger was born in
1887 in Vienna, where he graduated
from an elite school. After passing
his final exarns with flying colors, he
entered the University of Vienna,
where he chose physics and math-
ematics as his specialty. As a pupil
of Friedrich Hasenoehrl (I874-
19 I 7 ), an outstanfi ng representative
of the Vienna school of physics,
Schrodinger learned thoroughly the
mathematical methods of physics.
Even in his student years Schro-
dinger combined a brilliant physical
intuition with a masterly command
of those methods. He began his sci-
entific work at the University of
Vienna by studying classical me-
chanics, Brownian motion, and the
theory of errors. However, he was
soon attracted by quantum theory,
which atthat time was already scor-
ing great successes.

In I92O Schrodinger moved to
Germany, but soon thereafter he
was invited to head the department
of theoretical physics at the Univer-
sity of Z:d;rich. Around this time the
French physicist Louis de Broglie
was developing the idea of expand-
ing the wave-particle duaiity of light
(postulated by Albert Einstein to
explain the photoelectric effect) to
material particles. According to de
Broglie, every particle that has en-

ergy and momentum can be charac-
terized by some oscillation fre-
quency and wavelength. Schrodin-
ger familiarized himself with this
theory rn 1925, and it inspired him
to develop wave mechanics to de-
scribe the physical properties of at-
oms. The next year he began pub-
lishing a series of papers under the
common title "Quantization as a
Problem of Eigenvalues," which in
time became a classic in the science
literature but immediately put the
heretofore mysterious theory of
wave mechanics on a solid footing.

The concepts of quantum physics
in use at that time were uncoordi-
nated and contradictory in many
respects. For example, in Bohr's
atomic model the laws of classical
mechanics and electrodynamics
were used to calculate the orbits of
electrons and the spectral lines of
radiated (or absorbed) light, while
quantum conditions were applied to
explain the stability of electron or-
bits. An important step toward over-
coming this contradiction was made
in 1925 by Werner Heisenberg,
whose work laid the foundations of
matrix mechanics (created subse-
quently by Heinsenberg together
with Max Born and P. |ordan).

Heisenberg began with the propo-
sition that, in studying the physics
of the microcosm, one should be
interested not in quantities that can-
not be observed (such as the orbits of
electrons or their orbital periods),
but in values that can be measured
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experimentally-for instance, the
frequencies of the emitted light and
the intensities of spectral lines.
Heisenberg's goal was to formulate
a strict quantum theory that, by
analogy with classical mechanics,
would involve relationships be-
tween observable values only. His
formal mathematical apparatus of
matrix mechanics was soon refined
and yielded precise solutions to
many physics problems.

Schrodinger was aware of the
fresh winds of quantum theory, but
he disliked the complicated tricks of
matrix mechanics and the tact that
he could not visualize it. Working as

he did inZ:d;rich, he was far from the
centers of atomic physics, and he
had little personal contact with its
leading exponents. In addition,
Schrodinger's independent nature
would not permit him to attach
himself to one or another doctrine.
As a result, Schrodinger took his
own path to wave mechanics by
considering an atom as an oscillat-
ing system and postulating the
equivalence of all possible natural
("eigen") oscillations of this system
with the stable energy states of the
atom. His acquaintance with the
theory o{ oscillations helped Schro-
dinger formulate the basic physical
idea within the framework of the
probiem of the eigenvalues of differ-
ential equations.

In constructing a new atomic
theory on the basis of de Broglie's
hypothesis, Schrodinger leaned
heavily on his knowledge of the ana-
lytical mechanics of William
Hamilton. As early as the middle of
the 19th century, this great Irish
mathematician had given theoreti-
cal mechanics its final form and es-
tablished formal relationships be-
tween classical mec.hanics and
geometrical optics. The optical-me-
chanicai analogy helped him formu-
late the basic laws of these seem-
ingly different sciences through
similar mathematical equations.
Within the framework of this opti-
cal-mechanical analogy, the laws of
motion of a material point with a
given energy in a static field of forces
looks like the propagation of a

monochromatic light beam in a
medium with a varying refractive
index. Within this analogy, the con-
stant value of energy of a material
point corresponds to the constant
oscillation frequency of the light,
while the speed of the material poirt
corresponds to the group speed of
light propagation in the medium.

Schrodinger decided to extend the
mathematical analogy between op-
tics and mechanics to the wave
properties of light and matter. Lr this
way he overcame numerous prob-
lems and finally obtained the fa-
mous wave equation for hydrogen
atoms:

Yyt + (2mlhzllE + e2lrlty :0,
where ry is the wave function, m is
the electron's mass, e is the
electron's charge, r is the distance
between the electron and the
nucleus, E is the total energy of the
system/ and.h is Planck's constant.
The symbol V (the Laplace operator)
means a special mathematical op-
eration: the sum of second deriva-
tives with respect to the space coor-
dinates. In Cartesian coordinates
this operator takes the form

r2 r2 
a217 o ,or -------=i ^ --------.dx" dy' dz'

This equation is a generalization
of de Broglie's hypothesis regarding
the wave properties of matter. From
the mathematical viewpoint it's just
a linear differential equation whose
solutions are standing waves. Now
the stationary electron orbits in
Bohr's atom model could be consid-
ered natural oscillations similar to
the oscillations of a taut string,
which oscillates only at a certain set
of discrete frequencies determined by
its length and boundary conditions.

Using his equation, Schrodinger
calculated the energy levels of an
atomic harmonic oscillator. Choos-
ing the hydrogen atom as an ex-
ample of such an oscillator, he
showed that the theoretical energy
levels either coincide with those
obtained with Heisenberg's matrix
mechanics or closeiy agree with ex-
perimental data. His application of

well-known methods of mathemati-
ca1 physics made Schrodinger's
theory more attractive to physicists
than Heisenberg's matrix theory.
Moreover, in his third paper on
quantization Schrodinger demon-
strated the complete mathematical
equivalence of matrix and wave
mechanics: Heisenberg's matrices
could be calculated from his wave
functions and vice versa.

Although the works of Heisen-"
berg and Schrodinger completed the
edifice of quantum theory, they did
not end the discussion on its physi-
cal meaning. Now the nature of the
wave function became the domi-
nant problem. On this issue, physi-
cists split into two camps. For
Schrodinger, the authority of the
classical concept of motion was
unshakeable, and so he visualized
the wave function and in this regard
spoke of oscillatory motion in three-
dimensional space. The quantum
jump in the atom during the transi-
tion from one state to another was
interpreted as a gradual transforma-
tion from the state corresponding to
natural oscillations with energy E-
to the state with energy Er, where
the extra energy is radiated as an
electromagnetic wave. Within this
framework, the electron was consid-
ered a charged cloud enveloping the
nucleus that could be transformed
into a spatially distributed electro-
magnetic wave moving continu-
ously without any quantum jumps.
In this way quantum mechanics
could coexist naturally with classi-
cal physics, and this attracted
Schrodinger and the pleiad of out-
standing physicists nurtured in clas-
sical physics: Louis de Broglie,
Albert Einstein, Max von Laue, and
Max Planck

Their opponents were eminent
physicists as well: Wolfgang Pauli,
Werner Heisenberg, and Niels Bohr.
Intensive work on these controver-
sial theories showed that the semi-
classical interpretation of wave me-
chanics was wrong, and it was
impossible to construc,t a consistent
quantum theory entkely on the basis
of wave mathematics without the
concept of the wave-particle duality.
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A hint at a solution to this im-
passe was found in research on
atomic collisions performedby Max
Born in 191.5. Analysis of electron
and alpha-particle scattering on
atomic nuclei provided the key to
understanding the meaning of
Schrodinger's wave function: The
square of its amplitude meant the
probability of finding the particle at
a given point in space. Therefore, the
wave function describes individual
events (such as the emission of a
single quantum of light) only as a
probability of its occurrence. This
interpretation put wave mechanics
on a firm physical basis, and soon
this novel theory became relatively
complete and consistent. At present,
the statistical interpretation of
quantum theory is universally rec-
ognized.

Although Schrodinger's hopes of
creating a kind of classical field
theory for atomic phenomena were
not realized, his wave mechanics
was a giant step in the development
of mathematical methods of quan-
tum theory. Moreover, it helped
many physicists understand and
"feel" its essence. In later years
Schrodinger worked intensively on
many theoretical problems of wave
mechanics and their numerous prac-
tical applications. In this period he
wrote very important papers on per-
turbation theory.

As the creator of wave mechan-
ics, Erwin Schrodinger advanced
himself to the first rank of contem-
porary physicists. In 1933 he became
a Nobel laureate along with Paul
Dirac for their "discovery of new
forms of atomic theory." O
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NCEUPONATIME, AWOM-
an asked her grandson, who
was a student at the Moscow
Physics and Technology Insti-

tute/ to water her vegetable garden.
She had everything he needed: water
faucet, hose... There was only one
catch: her grandson was not only a
clever kid, he liked to read. And
somewhere he read that way back in
450 n.c. (or thereabouts) an ancient
Greek (or somebody) expressed the
view that manual labor should be
replaced-gradually at first, and
then completely-by automatons.
The student's chin dropped onto his
chest as he gave this a good hard
think. He recalled Segner's wheel
and imagined a pipe with ends
curved in opposite directions, set on
a pipe such that it could rotate
treely, driven by the force of the run-
ning water. The student mentally
added the necessary labels to his
imaginary machine (figure 1) and
thought some more.

If v* is the speed of water in a pipe
with cross-sectional area S, then Q :
p*v*S is the amount of water coming
out of the end every second. Since
water is incompressible (that is, its
density p* is constant), the water
speed is identical for all sections of
the pipe having the same cross sec-
tion S. (Here the student felt he was
applylng the conservation of mass.)

If a pipe of length 21 acquires an
angular speed ro due to the reactive
force of the water, the tangential ve-
locity at the ends of the pipe is rr:1

IN THE OPEN AIR

Sell-propelled $priltkler

$y$t8lll$
by A. Stasenko

and is firected counter to the veloc-
ity v* of the moving water. There-
fore, in the reference frame of the
garden, the speed of the ejected wa-
ter is vo : vw - oil. Thus the flow of
momentum through the opening is
Q(v* - coi), which has the dimen-
sions (kg/s) . (-/r)= N. Surprise! It's
the same dimensions as force.

So we have a pair of forces F,
equai in magnitude, parallel, and
acting in opposite directions. Here J

is the moment arm of each force
relative to the axis of rotation. As a
result, the pipe experiences a torque:

F .21= 2Qlv*- ruo41. (1)

What angular speed can the pipe
achieve? Is there anything that
might prevent unlimited accelera-
tion of the spinning pipe? Of course
there is. For instance, torque from

friction in the hub (can we ever es-
cape from friction!), air resistance,
and so on. Our student was tempted
to utter the well-worn words, "Ne-
glect air resistance,'/ but as an hon-
orable feilow he decided to attempt
a numeric estimate.

He knew that the force of air re-
sistance acting on a moving object is
proportional to the square of the
speed v of the object relative to the
air, its perpendicular cross section
S, and the density of air p. Before we
can neglect the air resistance, we
need to compare it with some other
force that is considered essential-
say, with the flow of momentum of
the water (Qv*), which in the refer-
ence system of the pipe is

pv2sr . o (at)2 z4t
Qv- - p*xrlv*.v*

To make this inecluality stronger,
we use the largest change in speed,
v: @1, which is achieved at the end
of the pipe; and, of courde, we ne-
glect the fact that a rotating pipe
pulls the surrounding air along with
it. But let's not let that keep us from
finishing our estimate. Clearly ro1

cannot be greater than v*-other-
wise the pipe won't spin. The den-
sity ratio p/p* is about 10J, so for a
pipe of "reasonable" size lsay, 1- l0
cm and 2ro - | cm) we get a ratio of
the two forces of the order of 10-2, or

t*)(#)"(*)

Figure 1
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even less. This means that, with an
accuracy of a few percent, we can in-
deed neglect the air resistance.

What elpe do we need to take into
account? Friction in the hub, of
course. For steady-state rotation the
frictional braking torque t, is equal
to the accelerating reactive torque of
the water iet:

2Q(v*-r.l,l)l=:-6,

from which we get the speed of the
water ejected from the pipe in the
garden's coordinate system:

vo=v*-col= tjt
21Q'

(Again we assume that rol is not
greater than the speed of the water
relative to the pipe.)

Now what? We1l, now we say, in
our best professorial voice, that the
problem "reduces to" a f.arr'tliar
textbook problem about the motion
of an object thrown at an angle o to
the horizon with an initial speed vo

from a point with coordinates

xo--lsino, Yo:h+/cosa
(see figure 1). The solution to this
standard problem yields

x = -lsinoc + yo cos0.r/

y =h+lcosu+v6sino t-+,2',
where t is the time from the mo-
ment when the elementary mass of
water is ejected from the pipe. This
solution assumes that the elements
of the water stream/ or the drops
that the stream breaks into/ interact
with neither the air nor one another.

When you water a garden, two
things matter: where and how
much.In our system of coordinates
(the garden), the ordinate of the soil
is y = 0. Denote the point on the soil
where the water lands as x1. Elimi-
nating the time from the previous
two equations/ we get

v* coscr (x =-lslncx,+ " xl srnor,g\

.W;tqu!.o,o)l tzt

V vo-\ n ))

In particular, this formula contains
the known expression for the dis-
tance a thrown obiect travels from
the origin (h = 0, 1= 0l:

.)

xol = ZLcosq sing'
I
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As you probably know, in this case
the largest distance flown is attained
for u = 45":

Xo-"*

Formula (2) shows that in the gen-
eral case the solution depends on
two parameters: the ratio of the ini-
tial values of the potential and ki-
netic energies

sh
u - --T7.

v612

and the geometric characteristics of
our device l/h. No wonder our stu-
dent turned to his computer for
help in analyzing these relation-
ships.

We'Il restrict our analysis to a
characteristic case. For example, as-
sume 1/ft << 1 (which means that
the rotator is small compared to its
height above the ground). In addi-
tion, we'l1 assume that the "firing
tange" is also greater than 7 (in
other words/ even when ejected at

-TEl2

Figure 2

zero altit:ude the water stream will
travel a long way). In this case, the
abscissa of the landing point on the
soil, determined by the characteris'
tic distance defined by formula (3),

is

u- xl
'^ 1l

vo l8

We see that the higher the ejec-
tion point, the greater the range of
the water. For example,lf a = L lthe
initial values of the potential and
kinetic energies are equal),

.1
0m = arcSin 

J, = ,t.,

and the "watering range" is greater
by a lactor of ^li compared to the
range when the water is ejected at
ground 1evel (formula (3)).

Figure 2 shows the qualitative
dependence of the relative coordi-
nate of the landing point on the
angle u (or on time, because o, = ot).
The positions of the rotating pipe
corresponding to some characteris-
tic angles are shown in the upper
part of figure 2. Even this graph clari-
fies the irregular character of the
watering process. The bottom part
of this figure shows the graph of the
function lduldVl, which describes
the distribution of water on the soil.
Indeed, if the pipe turns through an
angle du, the water ejected during
the corresponding time interval dt :
do/ro will land in the region dxlwe
assume that the water is absorbed
immediately by the soil). It's clear
that at some moments in time the
watering density tends to infinity.
This is because at these points
(where u : u-l the stream of water
landing there stops for a finite time
in order to change direction. Infinity
appears in our calculations l:ecause
we considered the stream an infi-
nitely thin thread carrying a nonzero
water flow.

"Flowever," the student said to
himself, "the stream of water is not
a line-it has a diameter of 2ro even
at the nozzle of the pipe, and as it
travels it breaks up into drops,
which are decelerated by the sur-
rounding air. Also, the centrifugal
inertial force can modify the pres-
sure distribution along the stream's
axis. Obviously this whole theory
needs to be tested, and expanded,"
which our student continued to
think about.

And what about Grandma's gar-
den? (Let's iust say there's more
brown there than green.) O

="0 (3)

We can also find the angle of ejec-
tion corresponding to the mximum
"firing distance," and the distance
itself, by equating the time-deriva-
tive to zero:

dv_^o-;-=I-2s1n"0,
aa

+#(r-z.ir' o-o)=0,
r/srn"u+a'

from which we get

.n 1 -sinz cx,- = ;i,, r-r, = "tTi.
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51 t8 i9
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A[B0SS

1 Seasoning

5 Energy units
9 Kiln
13 Fencing sword
14 Orchestra members
15 Ghost: comb. form
16 Austrian physicist

|t844-te06l
19 Donkey
20 Orderly
21 Poet Gunther 

-lte07-t972)
22 Lct
23 Town along the

Sokoto
25 Monochromatic

light sources

28 Type of bomb
31 Mature person

32 Ground hominy
34 Energy unit: abbr.

36 1551

37 -type of exams

38 Indonesian island
39 Ten decibels

40 English astronomer

Iohn Couch 

-(1819-1892)

41 Number part

:12 Angle unit
4zl Type of algebra
:15 Terrapin
,16 Sounds from an

aucLence
,17 Wisc man
49 Russian weight

unit
50 College degree

53 English mathemati-
cian (1861 1947)

57 Point oi minimum
disturbance

58 Chi1ls

59 Srcilian volcano
(r0 German physicist

Ernst _
1 i 8a0-1905 )

61 Focusrng device

62 Space org.

DOtllllll

I Actress _ Ward
2 Constellation
3 Calculator displays:

abbr.

4 Work hard, in
London

5 965,549 (in base 161

Square _
Coagulated sub-

stance

Fast plane

Element 75

44,204 (in base 16)

Hyperbolic
function
Trig. {unction
S-shaped curves

Like a noble gas

Goose eggs

Sandwich shop

Sends

Lawyers: abbr.

_ shift {of H
spectrum)
Totaler
Roman general

{138-78 B.C.)

Real or virtual
{o1lower
Actress Weston of
Alice

32 _unified theory
33 Computer memory:

abbr.

35 Glass: comb. {orm
37 Singer Anita _
38 Storage boxes

40 Actress Anouk
41 Current rectiiier
43 Terlperature

untt
44 Plunders
46 Vaporizes

47 Mcssy person

48 45,019 {in base 16)

49 Unit oi loudness

50 101;: prei.

51 Common Cerman
name

52 56,746 (in base 16)

53 Collection o{

anecdotcs

54 650

55 Grief
5(r Egg l:r-ver

SOLUI/O,ry IN THE NEXT
/SSUF

6

7

8

9

10

11

t2
t4
r7
18

22

23

24

25

26

27

29

30
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AT THE
BLACKBOARD II

Thelheoreln ol [Ulenelaus

by B. Orach

HE SIMPLE AND ELEGANT
result known as Menelaus'
Theorem is often hidden
among more complicated and

specialized problems in the prob-
lem-solving literature. It is a tiny
gem of ancient mathematics.

Menelaus' Theorem concerns a
line which intersects all three sides
of a triangle. We will call such a line
a secant line f.or the triangle.
Clearly, there is no case when all
three points of intersec,tion lie on
the triangle's sides, so at least one
point of intersection lies on the ex-
tension of a side. This is the case one
usually sees in problems.

Menelaus' Theorem states the
following:

Let a secant line to triangle ABC
intercect the sides at A, B, C, (see
figure Il. Then

Aq cAr .BCt _t
BrC ArB CA- ''

(To help keep track of the letters
in the formula, follow the outline of

Figure 1
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the triangle from a vertex to the in-
tersection point and then from the
intersection point to the next ver-
tex.)

Proof. Draw any set of parallel
segments from the three vertices to
the secant line. This creates many
sets of similar triangles.

From similar triangles AMB1,
CNBI, we have

A4, 
=m4c n'

From similar triangles CNA1,
BLA,, we have

CAt 
=nArB 7'

From similar triangles BLC1,
AMC' we have

BCr=1
CtA m

It remains to multiply these equa-
tions to obtain

AB\ C4
BtC 18

BCt

3 : l. Find the rutio in which line BK
divides the area of tilangle ABC.

Solution using ateas. We will use,
over and over/ the theorem that the
ratio of the areas of triangles with
equal altitudes is the ratio of their
bases, and absolute value signs to
denote area.Draw segment PD, and
suppose IPDKI = S. Then, since tri-
angles PDK, PAK have the same al-
titude fromP, the IPAKI is 35.

Now suppose the ratio BK: KP :
k. We will solve for k by comparing
areas. Triangles ADK, PDKhave the
same altitude from D, so IBDKI =
kS. Triangles PBD, PDC have equal
bases BD = BC, and equal altitudes
from P, so IPDCI = IPBDI = IKBDI +
IPKDI = S + kS. Triangies A BD, ADC
also have equal altitudes (from A)
and equal bases, and so IABDI :
IADCI.

In terms of the various areas we
have represented, this last equation
can be written as: 3-kS + kS : 3S + S

+ S + kS, or 3kS = 55, and k = 513.
Similarly, IABPI = 3kS + 35 = BS, and
IPBCI =7<S + S + S + -kS : 155/3. The
ratio IAPBI : IPBCI is thus I : (1613l
:3:2.

Solution based on the Menelaus'
Theorem. We apply the theorem to
triangle ACD and secant line BP to
obtain

Figure 4

Proof. Suppose point C, were not
on line ArB, (figure 4).Let C'be the
intersection of lines ArB, and AB.
Then, by Menelaus' Theorem,

Aq lcArl lac'l_,
W lA,Bl lcaa'

However, it's clear that

m.n'l
I- * l.*- ''CrA

The theorem is proved.
We know this theorem from an

Arabic translation of the book
Spherica by Menelaus of Alexandria
(1st century e.o.).

To demonstrate the effectiveness
of this theorem, consider two solu-
tions of a problem-a solution using
areas and one based on Menelaus'
theorem.

Problem l. Let AD be the median
of triangle ABC (figure 21. A point K
is taken on AD such that AK : KD =

A

AP CB DK 
-.,rc BD AK_',

AP .r.l _,
PC3 lec,l 1sc'

lcAl-lcAAP3
-=-PC2

The advantage of using Menelaus'
Theorem is obviou.s.

The foilowing proposition, which
is the converse of Menelaus' Theo-
rem, is often very useful.

Suppose points Ar., Br., Cr lie on
sides BC, AC, and AB, rcspectively,
of some ftiangle ABC, or on the ex-
tensions of these sides lfrgtxe 3). If

Aq c4 .BC, _,
w ArB CA-''

the points A, B' and C, are col-
linear.

Thus the relation in the condition o{
the theorem cannot be true. The
contradiction obtained proves the
theorem.

The following elegant problem
seems to have been linown since
ancient times. It has often been used
in mathematical olympiads.

Problem 2. Three ctucles of ddfer
ent radii are afianged in a plane so
that none of them lies inside the
other two. For every pair of circles,
we consftuct the intersection point
of their two common tangents.
Prcve that these three intersection
points are collineaz (figure 5).
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Figure 5

Solution. Let the radii of the given
circles centered at points O1, 02,
and O, be t ,, r 2, and ts, respectively.
Then

lo,cl rr
t-t :-

lcorl rz'

since the circles centered at O, and
O, are homothetic with respect to
point C with the homothety coeffi-
cient brf rrl. Similarly,

orA - r,Aor-i'
and

Thus we have

otc .o2A ozB 
=coz Aoe Bor

4 b.13
= 1.rzh\

By the inverse of the Menelaus'
Theorem, points A, B, and C lie on
a line.

Exercises.
1. Points M and N are given on

sides AB and AC, respectively, of
triangle ABC, such that AMIMB =

CN/NA = Il2.Let S be the point of
intersection of segments BN and
CM. Determine the ratio in which S

divides each of these segments.
2. The bisector AD in triangle

ABC divides BC in the ratio 2 : 1.

Determine the ratio in which the
median CE divides this bisector.

3. A point D on side AB and
points E and F are taken on side BC
of triangle ABC, suehthat AD : DB
:3'.2,8E:EC = 1:3, andBF:FC=
4 : 1. Determine the ratio in which
line AE divides segment DF.

4. The point of intersection of the
altitudes of triangle ABC is at the
center of the altitude drawn from
vertex C of the triangle. Prove that
cos ZC : cos lA cos lB,where lA,
lB, and ZC are the angles of the tri-
angle.

5. In equilateral triangle ABC
with side a, E andF are midpoints of
sides BC and AC, respectively, F is
a point on segment DC, and BF in-
tersects DE at M.If the area of. trt-
angle BMD is 5/B of the area of tri-
angle ABC, find, in terms of a, the
length of MF (figure 6).

B

Figure 6

6. A paruIlelogram ABCD is
given. Point M divides side AD in
the ratio p, and point N divides DC
in the ratio q. Lines BM and AN
meet at point S. Determi.ne the ratio
AS : SN (figure 7).

BT

Figure 7

7. The area of parallelogram
ABCD is i. A line is drawn through
the midpoint M ol side BC, such
that it intersects the diagonalBD at
a point Q. Determine the area of
quadrilateral QMCD (figure 8).

Figure 8

Figure 9

8. The sides of triangle ABC are
divided by points M, N, and P, such
that AM: MB : BN: NC : CP : PA
= I : 4. Determine the ratio of the
area of the triangle bounded by lines
AN, BP, and CM to the area of tri-
angle ABC (figure 9). O

CONTINUED FROM PAGE 21

inside the sphere. Any stereographic
projection preserves angle measures,
so the angles o, $, and yare equal to
the original relative angles. In the
first case, o + B + yis less than the
sum of angles o{ triangle ABC, and
in the third case the sum is greater.
The proposition is proved.

Assume that the vertices of poly-
hedron M can be colored black or
white so that no two vertices of the
same color are neighboring.

Problem 5, Assume that the same
number of faces meet at every ver-
tex of polyhedron M and the veni-
ces are colored black or white such
that no two vertices of the same
color are neighboring. Prove that the
numbu of blackvefiices is equal to
that of the white ones.

Problem 6. Prove that the vertices
of apolyhedron canbe coloredblack
and white so that no two vefiices of
the same color are neiglboring if and
only if every face of the polyhedron
has an even numbu of sides.

OeB _ r,
Bor \
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Hint: It is sufficient to take any
vertex and color it white, then color
the neighboring vertices black, and so
on. It remains to prove that no corrtra-
dictions cdn occur in the process-
that is, any ciosed polygonal line
composed of the edges of the polyhe-
dron has an even number of sides.

Let's retum to polyhedron Mwilh
its colored vertices. Since three faces
meet at every vertex of M, the num-
ber of white vertices is equal to the
number of black ones. We chose
some (or even a1l) of the black verti-
ces, and cut them off with planes.
Every vertex is "cut off" each of the
chosen vertices with a plane that (a)

intersects only those edges that
meet at the chosen vertex and (b)

doesn't contain any vertices of M.
This forms anewpolyhedron, which
we will call M. It differs from M in
that it has triangular faces instead of
some number of black vertices. We
now prove that M' is absolutely
uninscribable.

Assume that M or another poly-
hedron with the same structure is
inscribed in a sphere. Consider the
three faces that correspond to the
three faces of polyhedron M that
meet at a Yertex that was cut off.
These faces are adjacent in pairs, and
the vertex of the trihedral angle that
was cut off certainly lies outside the
sphere, since M'is inscribed. Thus
the sum of the relative angles of this
trihedral angle is less than rc. To ev-
ery edge of M, we assign the relative
angie of the dihedral angle formed
by the faces adjacent to the corre-
sponding edge of M'. For all white
and all undesignated black vertices,
the sum of all angles thus assigned
is zr, and the sum of the assigned
angles at designated black vertices is
strictly less than n. As in the proof
of the Steinitz Theorem, write out
these equalities and inequalities,
multiply the sums corresponding to
the white vertices by -1, and add
them up. We obtain a strict inequal-
ity. However, this inequality reads 0
< 0, whichis impossible.Indeed, the
left-hand side of this inequality
equals zero, since 1fog mggnitude of
every angle enters the sum once
with a negative sign 1at a w-hite ver-

C

Figure 7

tex) and again with a positive sign (at
a black vertex). The right-hand side
is also equal to zero, since the num-
ber of white vertices is the same as

the number of black ones.
The same reasoning can be used

if the designated vertices are cut off
by several planes, rather thanby a

single one. The only condition is
that the faces that will appear re-
main adjacent in pairs and don't in-
tersect at the same vertex.

Similar technique can be used to
obtain other sufficient conditions.
At present, some necessary condi-

tions for a polyhedron to be abso-
1ute1y uninscribable are known.
However, the problem as a whole re-
mains open.

The method of relative angles
provides a tool for soiving other in-
teresting problems.

Problem 7. Suppose three faces
meet at every vertex of a polyhe-
dron, and every face has an even
number of sides. Prove that if allbut
one vefiex lie on a sphere, the poly-
hedron is inscribed.

Hint: Use problem 5. Don't ne-
glect the following unpleasant pos-
sibility: Edges emerging from a ver-
tex not lying on the sphere might be
tangent to it.

Here is a similar but more diffi-
cult problem.

Problem 8. Let all the vefiices of
a polyhedron be colored black or
white as described in problem 5,
and let the number of black and
white vertices be equal Prove that
if all but one vertex lie on a spherc,
the polyhedron is inscribed.

Thus, if the vertices of a polyhe-
dron are colored black or white as
described in problem 5, this polyhe-
dron is either absolutely uninscrib-
able or satisfies problem 8. That is,
the fact that ail its vertices but one
lie on a sphere implies that the poly-
hedron is inscribed.

The simplest example of an abso-
lutely uninscribable polyhedron is a
cube with a vertex cut off (figure 1).

In conclusion/ we should point
out that Steinitz proved not the
theorem named a{ter him, but a re-
lated one, which we'll formulate as

a problem.
Problem 9. Assume that all the

faces of a polyhedron can be colored
black or white so that

(1) the number of black faces is
greater than the number of white
ooes;

(2) no two black faces are adja-
cent.

Prove that this polyhedron can-
not be circumscribed about a
sphere.

Figure 8 shows one of the sim-
plest examples of an absolutely
uncircumscribable polyhedron-a
cube with all its vertices cut off. IFigure B
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The sport of pole vaulting has its
origins in ancient Creece, where
long poles were used to vault over ,N
charging bulls. In Europe, poles J
made of ash were used as a ..rt'
means to cross canals without i '

getting wet. The sport of
pole vaulting as it is known :r',,, ,

today began in the late
1800s when competitors be-
gan vaulting for height rather
than distance, and they d

climbed the pole as they A

r.*:?J:;,'"?:i:,1;::; G
was outlawed and the tech- T
nique of swinging the legs up-
ward, clearing the crossbar ',,,

with the stomach facing down, /
was employed, similar to the r
technique used today. Light-

The $cigltre ol pole uaulling

by Peter Blanchonette and Mark Stewart

T THE OLYMPIC CAMES IN
Sydney, Australia, women
competed in the sport of pole
vaulting for the first time.

American Stacey DragILa, the cur-
rent world record holder, won the
gold medal with a height of 4.50 m,
just 3 cm below her world record.
Women have only seriously com-
peted in pole vaulting over the last
five or so years/ but in this short pe-
riod of time the world record has
increased dramatically. In this ar-
ticle we will discuss the history of
pole vaulting, and some of the phys-
ics behind the event that we can use
to determine how high Stacey can
flyl

1lislot'y

weight bamboo poles were used for
the first time in 1904, enabling
competitors to jump higher.

In the 1950s the use of more du-
rable aluminium poles became
common, and in 1957 Bob Gutowski
set a world record of
4.78 m using
one. Around
this time
landing
pads

were introduced, which improved
safety for the competitors. Prior to
this the landing material was a com-
bination of sand and wood shavings,
making it necessary to land feet
first. The fiberglass pole came to
prominence at the 1955 Olympics,
but a world record was not set using
one until 1951. The introduction of

fiberglass has been the most sig-
nificant breakthrough in the

sport. This can be seen in the
rapid progression of the men's

world record in the 1960s (figure 1).

American vaulters have domi-
nated the Olympics, their winning
streak extending from 1896 until
1968. More recently, Ukranian
Sergey Bubka has ruled the event,
breaking the world record numerous
times and winning six world cham-
pionships.

Although women's pole vault
performances have been recorded
since 1911, the International Ama-
teur Athletic Federation has only
been ratifying the women's world
record since 1995. The women's
pole vault has been contested at the
last two Worid Indoor Champion-
ships, the most recent World Out-
door Championship, and the Sydney
Olympics.

Tle l.ise ol$hcey [nagila
Stacey Dragila came to pole

vaulting from a background in
heptathlon (a combination of seven
track and field events) at Idaho
State University. While a iunior in
college, Dragila, at the ur$ing of
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coach Dave Nielsen, tried to vault
over 5 feet. While she admits it
took her many jumps before she felt
comfortab.le, her improvement has
been rapidl With her background in
heptathlon, she had a head start on
her competitors in terms of the
physical requirements of pole
vaulting, speed and upper-body
strength. Combining this with her
competitive instincts, she has won
four U.S. outdoor championships.
At 170 cm and 64 kg, she is very
similar physically to Emma George,
who has broken the world record 15

times. Stacey quickly improved and
won the first major women's pole
vault contest/ the world indoor
championship in 1997, deleating
then world-record holder Emma
George. And, of course, she has
gone down in history as the first
female Olympic champion in pole
vault.

llow lriUh can Staffiy lly?
Given that women's pole vault-

ing is a new event/ a question to con-
sider is how close the current
women's world record is to a "real"
world record. To estimate this we
can use the current world records in
the men's and women's long jump,
as well as the men's world record in
the pole vault:

Men's long jump world record:
8.95 m (Mike Powell, USA)

Women's long iump world record:
7.52m (Galina Chistyakova, URS)

The ratio of the women's world
record to the men's is 7.5218.95 :
0.84. Using this ratio and the world
record for the men's pole vault, 5.14
m, set by Sergey Bubka in 1994, we
can estimate the true world record
in the women's event.

"teal" world record : 0.84 x 6.L4 m
:5.15 m

Allowing for the fact that the
strength of women's upper bodies is
proportionally less than their lower
bodies compared to men/ we can re-
duce this figure to about 5.00 m.
This is about 40 cm above Stacey's
current mark. Since Stacey has only
been vaulting for a short period, it is
possible that she may keep improv-

height (m)

4
1910 t920 1930 t940 1950 t950 t970 1980 t990

Figure 1

ing. Another question to consider is
"Can we estimate the greatest
height Stacey could vault?" The an-
swer is yes, using some simple
physics. Given that we know the
athlete's speed at take-off, we can
estimate their maximum vault.
Typically, vaulters will use a run-up
of between 12 and 16 strides, and as

they approach take-off their speed
gradually increases, as does their
kinetic energy. Kinetic energy is
defined as KE = r l2mt2, where v is
the athlete's speed arrd m is the
mass of the athlete.

As the vaulter reaches the take-
off point, she lowers the pole into
the box and the pole bends as the
kinetic energy is transferred to the
pole. The pole then begins to
straighten, returning the energy to
the vaulter in the form of gravita-
tional potentiai energy/ so that at
the peak of her flight she has poten-
tial energy of PE = mgh, where g is
the acceleration due to gravity (9.8

m/s2) and h is height of the athlete
above the ground.

If we assume all the kinetic en-
ergy is transformed to potential en-
ergy/ we can estimate the maximum
height of the athlete.

Stacey's take-off speed has been
measured at 8.3 m/s. Putting this
into the equation we see that her
center of gravity rises 3.7 m. How-
evert at take-off Stacey's center of
gravity is about 1 m from the ground,
and due to the techniques she uses
her center of gravity actually passes
under the bar by around 20 cm. Also,
being a good gymnast/ Stacey can
pull herself up into a handstand po-
sition, adding approximately an-
other 70 cm. Taking all these factors
into account/ we see that Stacey's
maximum height is approximately
5.6 m. Obviousiy there are some
mechanical energy losses (trans-
ferred to heat, for example), so
Stacey couldn't iump this high.
However, this result shows she still
has room for improvement.

This result shows us that the abil-
ity to run fast is vital to a pole
vaulter's suscess/ with the height
vaulted being proportional to the
square of their take-off speed. One
thing is certain: The women's world
record will continue to increase rap-
idly for the next several years. O

Dr. Pater Blanchonette is an applied
mathematician with a keen interest in
the physics of sport. Dr. Mark Stewaft
is a senior lecturer in economics. He
coached Emma George to 1A woild
records from 1994 until the end of 1997.

h : t)l)o--max ' l'a>
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Physics

P321
If the piece of chalk acquired a

speed vo during the time interval t,
its displacement on the board is

7

, vo

Zpts'

When the board is stopped abruptly,
the chalk moves the same distance
backward and stops at the starting
point. So in this case the length of
the line drawn is Ir.

If the period t is too short for the
chalk to come to rest on the moving
board, the result will be different.
The length of the line drawn before
the board comes to a full stop is

f -- - Irgr2Lz= voL- 
2 

.

At the instant the board stops, the
chalk has gained a speed v : pt"g, rela-
tive to the laboratory reference sys-
tem. After that, the chalk will con-
tinue on its way with a gradually
decreasing speed until it stops com-
pletely. The length of this path is

-1uv2t_L) - V'2[szvg
Clearly this value is smaller than

I, so in this case the length of the
line drawn is Ir.

P322
Clearly no part of the planet can

move with a speed greater than its
escape velocity. The escape velocity
is determined by the equation

v'*" _ Gtnl

R R2'
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where M and R are the mass and ra-
dius of this extremely dense planet.

Therefore, in order to hold onto
the mass at the planet/s equator, the
equatorial speed must be less than
the escape velocity:

( ctvt\1tz
v.q (v".. =l- |

r.R )
The rotational period is

)rR
v".,1

Taking into consideration the mean
density

Mn:-' (+naal'
[s )

3nD)-, GTl

p > 1.09 . 106 kg/m3

minate at the small sphere and at
the internal surface of the large
sphere. Thus the charge e2 must be

o2= -lo + or).

Since these lines of force do not
penetrate the large sphere and do not
escape from the system/ the charge
on the external surface of the large
sphere is distributed uniformiy, so it
doesn't generate an electric field
anywhere inside the large sphere.
Equating the potentials of the two
spheres (these potentials are equal
since the spheres are connected by a
conductor)/ we can neglect the
charge at the external surface of the
large sphere. Therefore, the poten-
tiai of the large sphere can be taken
as equal to zero. Thus the potential
at the center of the system is also
zero (since there is no field inside
the small sphere, the potential of the
small sphere is equal to the potential
at the center of the system). This
gives us

4t clz q _^
4Tceoa- 4ft%b- 4*or=u'

Plugging ez:-h+ q,)into this eclua-
tion, we get

1_1
^ ^c btjt=_Ll I I.

;-b
The value of q, doesn'q depend on

the initial charges of the spheres,
since it's determined only by the
value of q and the geometrical pa-
rameters of the system. -Nll " extta"
charge will be located at the exter-
nal surface of the large sphere, and
it will determine the potential of the
whole conductor. It's interesting to
note that when the charge q moves
(more strictly, when the distance c
varies), e1@ndhence e2and e"rrl can

r>lnR=rnf jll"'v.,. IGM )

we get

and

P323
Initially the small (inner) sphere

was not charged. After the two
spheres are connected with a con-
ducting wire, a certain charge q,
flows to the smal1 sphere, where it
is nonuniformly distributed over the
surface. At the same time, another
charge qz appears on the internal
surface of the large (outer) sphere,
and it is also nonuniformly distrib-
uted. The lines of force of the field
generated by the point charge q ter-



vary. Therefore, in,hir ar.., the ex-
ternal field may also vary. In con-
trast, the field inside such a spheri-
cal "screen". doesn't depend on the
value and location of the external
charges.

P324
While the external magnetic field

was fading, an emf was generated in
the circuit by two processes: first, by
the change in the external magnetic
flux moving though the coil, and
second, by the change in the flux
generated by the coil itself (self-in-
duced emf).

Since the resistors R, and R, are
connected in parallel, the currents
flowing through them obey the
equation 1,(r) . R, : I2ltl Rr. There-
fore, immediately after the external
field is switched off, the current
flowing through resistor R, is

, IRr
r f = 

-,
'R2

The electric current 1, flowing in
the coil immediately after the mag-
netic field is cut off equals

Rr+R,Ir=I+It=I-t.

Now the system is isolated. At
first, allits energy was in the mag-
netic field of the coil:

_ -l
rr Llt

2

rrr (Rr + R. )'

Subsequently, thrs energ.v is drssr-
pated by the resistors. Since the -,'olt-

age drop across the resistors is the
same, the amount of heat drssipated
by them is inversely proportional to
their resistance:

o, - I and O, -!.-' Rl -' 
R'

Thus we obtain the foilowing sys-
tem o{ ecluations:

l^ l1r (Rr *R.,)'
tt I _t ) -_tvt \<r -

t-
lQr/Q: =RtlRt.

which yields

rr2 (R, +Rr)
(Jr = 

--
-'2R2

and

LIz (\+ar)4,
'-zr=zN'

BAC

P325 Figure 1

Denote the dis-
tance between the center spike of
the trident and the lens by d and the
distance between its image and the
lens by / ((igure 1). Let's construct
the images of the spikes BE, AD, and
CG. Denote the length of segments
ED and DG by x, the distance be-
tween the images ArDrand CrG, by
y1, arrd that between the images
BrErand ArDrby y2, Prove on your
own that the magnification of seg-
ment AD is

|-= F- d-F'
where F is the focal length of the
iens. This yields

, r(t+r)
U_-, I

and

I = F(l+ I).
Using the lens formula for the spikes
CG and BE, we get

111

-l

d+x' f xy- F'

where the upper signs in the de-
nominators relate to spike CG,
while the lower signs correspond to
dent BE. Obvious transformations
result in

xh -h -*yFf
and

xv. (v" \") ) =_l !_L_xf IF \r )
Since the magnifications of seg-

ments DG arrd DE are F1 and 92, re-
spectively, we obtain the magnifica-
tion of segment

"l nZ
"n2

tUlalh

M320
(a) Let ArA2...Anbe a regular 12-

gon (figure 2). Consider the triangle
AzA4As. The lines ArAr, ArAr, and
AoA,., are bisectors of its angles.
Similarly, AzAs, AsA, andArrAoxe
bisectors of the angles of triangle
ABAsAn. This implies that diago-
nals ArA5, A2A6, ABAB, and AoA,
meet at a point.

(b) Consider the regular 18-gon
ArAr... A* with vertices selected
from the vertices of the given 54-
gon. Its diagonals ArAs, A2Ae,
AoArz, and AuArumeet at a point. To

n4p

Figure 2
Av Ars

Y2 Y1
:+j<->l

Figure 3
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prove this fact, we apply the argu-
ment of part (a) to triangles ArAArz
and AoArAru with bisectors A2Ae,
AuAru, A,.rAo and AnAr, AsA1,
ArdA6, respectively (figure 3).

It/s interesting to find values of n
for which there exist four diagonals
of a regular n-gon that meet at a
point different from the center of
this polygon. Does a regular n-gon
exist that has five diagonals that
meet at a point different from the
center of this polygon?

M321
The answer is k = 1991.
If k < 1990, it may happen that the

first 10 deputies suggest assigning
nothing for the first item and assign
SlI99 f.or the other items. The next
l0 deputies can suggest assigning
nothing for the second item and as-
sign 5/199 for the other items, and
so on. As a result, the sum SlI99
would be approved for every item,
and the total budget would amount
to

200---s>s.
t99

If k = 1991, then for every item,
there were at most ten deputies who
suggested an expenditure less than
the approved one. Therefore, for ev-
ery item, there exists a deputy who
suggested an expenditure not less
than the approved one. However,
the budget proposed by this deputy
was not greater than S. Thus the
budget approved does not exceed
this amount either.

M322
Letf(xl = P -3* + 5x = (x- 1)3 +

2(x - ll + 3, and consider the function
Sbl : t' + 2y. Thenthe first equation
can be written as g(u - t) = l(o) - 3 =

-2, and the second as g(B - 1) = l(B) -
3 :2. A little algebra will show that
g(y)is monotone increasing and odd,
and it follows that s- i : -(B - 1).

This implies that cx, + p = 2.

M323
We use the inequality

(a>0, b>0)

This inequality implies that the
sum S of the inverse of the numbers
written on the blackboard does not
increase after each operation. Ini-
tially it was equal to n. Theref oret at
the end of the process we will have
S < n. This means that the remain-
ing number satisfies the inequality
LIS > rln.

To prove the original inequality,
note that (o - b)') 0, so (a + blz : a2

+ 2ab +b2 z.4ab. We obtain the re-
quired inequality after dividing by
abla + b), which is positive since a
andb are.

M324
The original plan of the investiga-

tor can be modified by including
additional questions according to
the following scheme. First, the in-
vestigator asks 13 questions follow-
ing his original plan. Then he puts
the question: "Did you give a false
answer to one of the questions in the
preceding series?" If the witness an-
swers no/ the sets consisting of 12,
It , ..., 2, and 1 questions of the origi-
nal plan are asked, and the test ques-
tion is asked after each series. If the
answer to one of the test questions
is yes, the corresponding series of
questions is repeated; then the inter-
rogation follows the original.plan
without test questions (remember
that the witness may give only a
single false answer).

Suppose the answer yes was given
to the kth test question. Then -k + 14

- k = 14 addltional questions were
asked, compared to the original
p1an. Thus the modified plan guar-
antees that the investigator can re-
veal the truth using 105 questions.

Assume that the original plan
consists of N questions and one of

BC

the answers may be false. Then the
modified plan guarantees that the
truth will be revealed a{ter N + q
questions, where q is the mini-
mum number for which N < q(q -
rll2.

It would be interesting to learn if
this number of questions is the
minimum possible one and to ana-
lyze a similar problem in which k
false answers are allowed.

Bl'ainleaser$

8321
The story is saying that a72 cent

decrease in the price of one piece
results in a 3 cent decrease in the
average price. Since 7213 = 24, this
must be the number of peaches.

More formally, let A be the sum
of the original prices (in cents) of all
the peaches, and let n be the num-
ber of peaches. Then A/n is the origi-
nal average price of. a peach,
(A - 72lln is the new average price,
and Aln :3 + (A - 72)ln. Simplify-
ing, the A's drop out, and we find
that n = 24.

8322
In figure 4, right triangles NAD

and MBA are congruent (their legs
are eclual in pairs), so ZNAD =
ZMBA. Similarly, right triangles
MCD, NBC ate congruent, so
ZMCD = INBC. So the sum ZABM
+ Z.MBN + ZNBC = IABC: 90'is
equal to the required sum of the
three subtended angles.

8323
Take any one player, and suppose

he won u/ games playing white and
b games playing blac\. Then the
number of all the victories o{ other
players playing black is also r,q, and
so b + w is the total number of vic-
tories playing black, including our
singled-out player. But this number
is constant, independent of the par-
ticular values of b and w. That is,
this number is independent of the
original choice of player to observe,
so every participant won this many
games.

114
--L->-a' b- a+b
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8324
The numbers assigned to the

apartments were 9, 10, 11, and 12.

The digits A, l, l, l, I, 2, and 6 were
ordered. Digit 6 was put upside
down on the door to apartment 9.
Thetotalsumpaidwas 1+ 1+ 1+ 1

+ 2 + 5: 12 dollars.

8325
3 x29 + 13 = 100.

l(aleido$cUE
1. Earth's magnetic field has a

vertical component. In the Northern
hemisphere, the north pole will be
at the lower end o{ the bar, and the
south pole at the upper end.

2. No, because the effects of exter-
nal magnetic fields, vibrations, and
sharp changes in temperature pro-
mote the demagnetization of perma-
nent magnets.

3. A sufficiently strong magnetic
field will magnetize a ferromagnet of
any shape.

4. As steel is heated and its tem-
perature approaches the ferromag-
netic Curie point, its magnetic per-
meability decreases, so the hot steel
is poorly magnetized and weakly
attracted by the magnet.

5. Electric current willflow from
the central wire to the ring. The ions
moving in the solution will be af-
fected by the magnetic field. As a re-
sult, the entire liquid will rotate
clockwise (if we look down from
above).

5. Free electrons in the metal,
moving in the magnetic field, are
moved by the Lorentz force to one of
the faces of the bar. Therefore, an
electric field willbe generated per-
pendicular to the direction of the
bar's velocity. This is the Hall effect.

7. In contrast to electric lines of
force, the lines of force of the mag-
netic field do not terminate at the
surface of the screen. There{ore, a

screen can only diminish but not
eliminate the magnetic field-and
even this effect requires a rather
thick screen.

8. The oscillating needle gener-
ates an alternating magnetic field/

which induces eddy currents in the
brass case. These currents consume
energy from the needle and damp its
oscillations.

9. In order to decrease the induced
Foucault (eddy) currents, which de-
crease the transformer's efficiency.

10. The inductance depends on
the magnetic permeability of the
core, which in its turn depends on
the magnetic field generated by the
cuffent in the coil. Therefore, the
inductance depends on the current
in the coil with an iron core.

11. (a)It will increase many times
over; (b) it will increase slightly; (c)

it will decrease slightly.
12. The paramagnetic liquids are

pulled into the region of the stron-
ger field, while the diamagnetic liq-
uids are expelled from it.

13. The gases formed during com-
bustion (carbon dioxide and carbon
monoxide) are diamagnetic sub-
stances.

14. (al Polarization will occur; (b)

a short-term induced current will
appear; (c)a long-term induced cur-
rent will appeat.

15. The magnetic flux in the su-
perconducting circuit cannot change
(otherwise the infinite cuffent must
be driven by the induced emf in the
infinitely conducting circuit)..Since
the area of the circuit decreased by
a factor of four, the magnetic field
increased by the same factor.

Microexperiment
In the flame the iron nail loses its

magnetic properties. When cooled,
it regains its magnetizing capacity.

Relativistic conservation laws
In the Contest Problem in the

November/December 2000 issue of
Quantum, we asked our readers to
solve a problem using the relativis-
tic forms of the laws of conservation
of energy and momentum. A relativ-
istic particle decays into two pho-
tons. One of the photons travels
along the positive x-axis with fre-
quency /1, while the second photon
travels along the negative x-axis
with frequency fz < f y

Physics ConIEsI ar-
Lll 

-
m= ', 

'lhb'C-

The relativistic energy and mo-
mentum of a particle are given by

E = ymc2
and

p=wvl
respectively, with

Aq cAr.BCt 
=lBtC ArB qA

and

t7

0=1,
L

where c is the speed of light in a
vacuum. For a photon, we have

E",= hf
and

hf
y! ,c

A. We now apply energy and mo-
mentum conservation to the decay
process.

ymc2:hfr+hf, (1)

hf. hf.
Tmv =:- ^ 12)CA

Let's now divide equation (2l'bV
equation (1), cancel common {ac-
tors, and solve for the velocity:

f,-f,
v =cffi. t3)

B. We now solve equation (1) for
the mass:

*= 4tr, - f:) =4ti - r,)il - f
YC' C'

and substitute for p from equation
(3) to obtain

C. In the rest frame of the particle
the two photons must travel in op-
posite directions with the same size
momentum. Therefore, the fre-
quency / will be the same for both
photons. Energy conservation re-
quires

mc2 :zhf

. mcL

'- 2h'

llillT8 & S0[tlIt0ilS
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D. In this part we are to deter-
mine the functions F, and F, in the
expression

P'r'= 4P, * Fr.4,
C

where the unprimed variable refers
to the rest frame of the particle and
the primed variable refers to th.e
laboratory frame. Writing this eclua-
tion for the first photon, we obtain

hfi -rhl -, !!-t^+n\!L.
-- 

r)
CCCC

Using equation (5), this simplifies to
) h{,n , n --'rt r t2 (5)
mc-

For the second photon we obtain

hfz ,h[ ,,h[ _r",,thl-;= -riTnurT =(-4 +h);,

zhf,
4 - fz:---- 17)mc-

Adding equations (5) and (7) and di-
viding by 2, we get our expression
for Fr:

h4=i(t,*fr)mc-

Comparing this to equation (1), we
see that

Fr:Y'
Subtracting equation (7) from equa-
tion (6) and dividin1by 2 yields

h
Fr=_:=(t, _ i).

mc-

Comparing to equation (2) shows
that

F': 9Y'

A good theory
In the lanuarylFebruary 2001 is-

sue of Quantum, we asked readers
to solve problems emerging from the
profound theories of Newton and
Bohr. Once agarn, Art Hovey from
Amity Regional High School oi
Connecticut submitted solutions
that were basically correct.

In the first problem, readers were
asked to show that if a moon of mass

m orbits a planet of mass M closer
than a specified distance, loose rocks
lying on the surface of the moon will
be lifted from the surface.

The gravitational and normal
forces acting on a rock of mass p ly-
ing on the surface of the moon pro-
vide the centripetal force that keeps
it in orbit about the planet. Let's as-
sume that the rock is located on the
side of the planet facing the moon,
that the radius of the moon is z, and
that the distance between the moon
and the planet is d. We also assume
that the mass of the planet is very
much larger than the mass of the
moon.

CMU - Gml
:+Fv -Y+r= $0)2lr-a). lll
lr - al' a'

The gravitational force of the
planet acting on the moon causes
the moon to revolve about the
planet with the same angular veloc-
ity.

GMm ) ._.
-7-= mar-r' l'z)

Solving equation (1) for ro and
substituting into equation l2l, we
get

GMr Gmt .( Cu\
;--t+fN - $lr-oll ,, l.lr-ar o- \ r" /

The loose rock will leave the surface
whenever the normal force is nega-
tive. The limiting case is found by
setting the normal force eclual to
zero.

GMI Gml .( GM\
,J - ) -I l, -*/t ----- t.V-a)' a' \ r" J

Recognizing that the distance be-
tween the planet and the moon is
much greater than the radius of the
moon ? ,, al, we can ignore the
terms of a that are added to much
larger values of r.

Ma\3 _ mr'= Ma2fte _ Zr2al,

^EM,=o\l *.
The second problem described an

inelastic collision between two hy-
drogen atoms. For this inelastic co1-

lision, the two hydrogen atoms
"stick" together, forming a diatomic
molecule. Momentum must be con-
served.

fitVo:Zmrvr.

The loss in kinetic energy can
now be calculated.

LK=Kf-Ko

Where did the energy go? With
billiard balls, the energy of an inelas-
tic collision may be transformed
into sound, deformation of the ob-
jects, or heat, but these don't make
sense at the atomic level. The en-
ergy must have raised an electron to
a higher energy state. The smallest
energy change for a ground state
electron in hydrogen can be calcu-
lated:

M=E. -E,=+-E,=-3E'2t,4
_ _ 3(2.18.10-18 I) = t.63.10_18 I.

4

Setting these energy di{ferences
equal to one another, we can solve
for the initial velocity of the hydro-
gen atom.

v, :3.13' 104 m/s

Since the diatomic molecule is
moving with a speed vo/Z, the fre-
quency of the emitted photon will
be Doppler shifted. For speeds that
are small relative to the speed of
light, the fractional change in the
frequency is approximately equal to
the ratio of the speed of the mol-
ecule to the speed of light.

6.26.104 mls
= O.O2l"/".

3.108 m/s

The frequency is larger if the pho-
ton is emitted in the forward direc-
tion and smaller if emitted in the
backward direction.

-Larry 
D. Kirkpatrick and Arthur

Eisenkraft

.2

=!e*\(+l - t*)"t)' '\ ) ) )'- \- /
lrE,,

=- O*16=-:.

Lf=r=
f-c
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INFORMATICS

[Ulusical chail's

by Don Piele

T SOME TIME IN YOUR CHILDHOOD YOU
have probably played a version of the game cailed
Musical Chairs. In this game, as I played it in el-
ementary school, a group of n kids dance around a

set of n - I chairs, skipping to the music. When the mu-
sic stops/ everyone scrambles to sit down-one person
to a chair. Since there are more kids than seats/ some-
one is left standing, and that person is out of the game.
Then everyone gets up/ one chair is removed from the
circle, and the music begins again. The game is repeated
until only one chair is left and one person is sitting in
it. That person is the winner.

This game is an entertaining way of selecting at ran-
dom a person from a group of n, since everyone has an
equal chance of ending up the winner. Let's change the
rules and invent a new game of Musical Chairs. Suppose
this time everyone brings their own chair to the game
and the chairs are aII different. This time we won't take
away a chair but instead we'll require that when the mu-
sic stops everyone must sit down in a charr different
from their own. Anyone who can't do that takes them-
selves and the chair they are sitting in, which of course
is their own/ out of the game. The music begins again
and ali the remaining players repeat the process with the
same rules-you can't sit down in your own chair or you
are outl

There are two quick observations about this game.
It can never be the case that you have only one person
Ieft not sitting in his own chair, since for nplayers, if n
- 1 are sitting in their own chairs then the last person
must also be sitting in his/her own chair. And on any
given round o{ play, it can happen that everyone finds
a different chair and no one is removed. We know that
in the original game/ where a chair is removed at each
p1ay, with n players the game is over in n plays of the
music. But what about our new version of Musical
Chairs? On average, how long will it take to end this
game? The game ends when there are no chairs left.

Simulalion
Armed with a computer loaded with Mathematica,

let's take a look at how to answer this question easily

via simulation. Suppose the number of chairs and play-
ers is 12. We first assign a number to each of the twelve
chairs.

t:=L2i
chairs=Range [1,n]
{1,2,3, 4, 5, 6,7,8, 9, 10,LL,1-2}

We assume that the game is played in such away that
when the music stops/ a random permutation of the
players {1,2, ...,12}, is chosen. Any number that does not
change position is removed. For example, with the per-
mutation 12, L, 4, 3, 5, 6, 7, 8, 9, 10, 11, 12), the eight
numbers 5-12 would be removed. So the length of a
game with the new rules is a random variable, and we
are aftet its average or expected va1ue.

To generate our random permutations/ we will load
the M athematica package "Discrete Permutations. "

< <Di EcreteMath' Pezmutat ions'
Now we can use a simple function, Random Permuta-
tion, to generate one play of our new Musical Chairs.

s topTheMus ic=RandmPerunrtat ion t 1 2 l
{3,5, 8,7 ,4,6,!,9,12,2,11 ,1-0}

The cluestion is, which o{ these numbers are in their
own positions? One way to identify them easiiy is to
subtract the position numbers {1,2, 3, ..., 12} from the
corresponding random permutation numbers shown
above and see if we have aly zeros. The set {1,2,3, ...,

12) is generated in Mathematica by Range t 12I .

stopThetr[usic-RanEe [ 12 I
{2, 3, 5,3, -1-, 0, -6, L,3, -8, 0, -2}
In this play of the game, two zeros appear at positions

6 and 11, meaning that these players are in their own
chairs and must be taken out of the game. One simple
way to do this in Mathematica is with a replacement
rule.

EtopTheMusic-Range [12] / / . {a_,0,b_}
->{a,b}

{2, 3, 5,3, -]-, -6, L,3, -8, -2}
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Now we have reduced the chair size down to 10 and
can start the music again. We repeat this process until
all the chairs are gone. Let's simulate one complete
game and keep track of how many chairs areleft at each
step. We begin with 12 chairs.

C1ear [a,b]
n=L2 i stage=0 ; chairsleft= {n} ;

while [n>0,
sit= RandornPeamutation [n] -Range [n1 ;
siu=siu //. ta-,,0,b_)->{a,b};
n=Lengthlsitl;
chairsLeft=iloin IchairsLeft, {n} I ; stage++] ;

Print [ "Il\rmber of plays", stagel

Print["Chairs left after each B1ay",
chairsLeftl

Number of plays 13
Chairs left after each play

tL2,L0,9,9,7,7,7,5,5, 4, 4,2,2, 0j

Now we'1lplot the number of chairs le{t after each
play.

ListPlot lnest lchairsleft L Plotiloined-+T:ere,
Ar<esLabel+{ trPlaystt, ttChairs Left" } ]

Plays
681012

These steps can be collected together into a new
Mathem atica function called musicalChairs.

musicalChairs In*l : =
Module [ { stage=O, sit, m=n} ,
While [m>0, sit=

RandonPermutation lml -Range [ml ;
sit-sits //. {a_,0,b_}->{a,b};
m=Lengthlsitl ;stage++l ; stagel

The function musicalChairs lnl returns the num-
ber of plays needed to end a simulated game that begins
with n chairs. Let's try tt for n : 12.

musicalChairs [ 12 ]
1-L

Now we are ready to simulate this game 1000 times
and average the results. We'l1 do the experiment for n
: t2.

extrleriment=
Table lmusicalChairs lL21 , { 1000 } ] ;

Apply IP1us, experiment ] / 1000 / /N
L2.129

The answer rounds off to 12, the number needed to
end the original game of Musical Chairs, in which one
chair is taken away each time. That surprises me.

Pl'nlalilrty
A more difficult task is to find the probability den-

sity funetion for this random experiment. Here the ar-
guments can get a bit mind bending and may take a feu.
readings to ful1y understand them. Our first goal is to
deveiop the formula for computing the number of ways
that n people can be arranged in n chairs so that k are
sitting in their own chairs andn -k are not. We will call
this number wfn, k]. Let's see how to construct this
number with recursion.

First we notice that

w[1, 0] : =0

w[1,1]:=1,
because with {1} you cannot make an arrangement
where 1 is not in his own chair. And with {1} there is one
way to arrarrge a person in his own chair. Also we have

w [n_, n_-1] : = 0

w[n_,n_]:=1,

because for n people you cannot have n - 1 in their own
chairs without having all n in their own chairs. And
there is only one way all n can be in their own chairs
namely |.1,2,3, ..., n\.

The next relationship is the key that solves a big part
of the problem.

wln_,01 :=w[n,0] = (n-1)wln-1,0] + wln-1,11

This says that if you know how many ways you can
arrarrgen- I people so that none are in their own chairs,
w1n - I, 0], then add one more chair to the game and
exchange this chair with any one of the n - I chairs. You
will end up with an arrangement of n chairs with no one
in their own chair. Thus you have created (n - l)v'fln -
1, 0] arrangements of n chairs, none of which has a per-
son in his own chair.That's one way to do it. But you
can also consider all the arrangements of n - 1 chairs
where exactly one person is in his own chair, vvln - I,
I l. Now add one more chair and exchange that chair with
the person sitting in his own chair. This addd win - 1, 1]

more new alyangements, which completes the recursion.
Finally we can argue:

w[r-, j-]:=w[n, j]= Binomial[n, jlwln-j,0].
This says that to find the number of ways 7 people are

in their own chairs andn- i arenot, simply pick i of the
n chairs, which can be done ginomial [n, j I, and
multiply this by the number of ways you can arrar.ge
the remaining n - 7 people with no one in their own
chair, tt\n - i, 0).
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With these ,"".rr.io, relationships established, we
are rcady to compute v4i, i)for any i and i < i.

Tablelwli, jl, {i,L,6l ,{i,O,Ll1/ lEab]-eForm

01
101-
2301
98601
44452010.0L
265 264 13 s 40 l-s 0 1

These numbers are transformed into probabilities by
simply dividing each row by the total number of ways
I people can be arranged in i chairs, which, of course, is
i!.

Tab1e [wli, jl l G! ) , {i, L, 6l , li, 0, i} I
// Tablerorm

01
L/2 0 1-/2
1,/3 L/2 0 L/6
3/8 !/3 1,/4 0 L/24
1-L/30 3/8 L/6 L/L2 0 1-/1-20

53/144 LL/30 3/16 L/L8 L/48 0 L/720

Each row is the probability that with r chairs, 0, t, 2,

..., r people are sitting in their own chair when the mu-
sic stops. Here is a graphical view o{ this probability
distribution.

ShowlGraphics [Tab1e [ {Huelwli, j I / (it ) *E
((i/(i + 3)))1,

Rectangle[{j, (-i)}, {1 + ), L - i}l}, {i,
L, L2l, tj, 0, illl,

AspectRat io->L/ 47

The red indicates a low probability and the blue and
purple the highest probability. Notice that the first two
columns are the largest and that they measure the prob-
ability that 0 and 1, respectively, are in their own chairs
after eachplay. It can be shown that both of these prob-
abilities converge to lle as i increases.

llow Ioru willtlte lntl$ic las[?
We are ready to create the probability density func-

tiorr plm, k], which measures the probability that for a
set of m chairs the number of plays of the new Musical
Chairs game is k for k :1I,2,3, ...i. Once we know this
distribution/ we san calculate the expected number of
plays and compare it with our simulation,

First we observe that the chances that with m chairs
the game is over in one play is 1/m! Remember that
there is only one way this can happen-|L,2, 3, ..., m\.

C1ear [p]

Plm-, 1l := [>lm, 1l = 1/(m!)

Now for the final observation. If we know the prob-
ability pli, k- 1l that it takes k - I plays to end the
game with I chairs tor i :2 up to m, then we can com-
pute the probability that it takes k plays from m chairs
by multiplyingpli, k - 1] by the chances of going from
m to j chairs, (by removing m - i chairs), in one play
which is ',tflm, m - illml. This gives the recursive rela-
tionship:

p[m-, k-J := p[il, of =i ptj, k - 1l
j-2

Here then is a picture of the distribution pll2, k)for
k: {1, 2, ...,40]}.

pdf =Tab1e tp t12, kl , {k, L,4Ol7 i
ListsPlot Ipdf , A:<esLabel

-r{ "Plays", "Probability" }, PlotSty1e+
Poinrsizet.02l I

Probability

0.08

0.06

0.04

0 .02

Plays

The average number of plays to end the game is ex-

actly 12.
40

Jro 
Ptt2' kl //N

L2.

Hnallhouglrts
This column was based on the examination of com-

plete permutations or derangements/ as they are also
called, where no number in the permutation is left
fixed. They are often studied in a first coulse in prob-
ability. However, the game o{ Musical Chairs that I
suggested here is, to my knowledge, original. It took
about a day to solve it. I would never have attempted
an examination of it without Mathematica and the
ease with which it allows me to program recursively.
This seems to happen all the time. I begin with a simu-
lation, and then move on to the search for the probabil-
ity distribution. More often than not, the problem
yields to force o{ reason applied with the power of

w[m, m - j]

oMathematica.
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