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Boy on the Rocks (1895/1897) by Henri Rousseau

NYONE WHO HAS WATCHED A TODDLER STAG-  cially among rock formations where water and wind

ger across an open floor, tipping precariously from side ~ erosion has carved the landscape. Often you will find
to side, has probably wondered how children at this stage  teeter-totter rock outcroppings that are so finely balanced
of development manage to keep upright despite being  that they sway in the breeze. To learn more about the
perched on such seemingly unsteady legs. Similar ex- physics behind these massive monuments of stability,
traordinary balancing acts can be seen in nature, espe-  turn to page 18.
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Just as shaking out a tablecloth will give
you an indication of what was served for
dinner the night before, vibrations cre-
ated by gravitational waves provide sci-
entists with clues about recent events in
the Universe. Currently, scientists are
devising ways to detect and decipher
these waves to gain insight into back
holes, the collisions of neuron stars, and
other cosmic events millions of light
years away. Turn to page 4 to learn more
about how we’ll be catching these waves
of the future.

Indexed in Magazine Article
Summaries, Academic Abstracts,
Academic Search, Vocational
Search, MasterFILE, and General
Science Source. Available in
microform, electronic, or paper
format from University Micro-
films International.

QUANTUM

VOLUME 11, NUMBER 4

FEATURES

4

10

18

24

Gravitational Waves
Ripples on a cosmic sea

by Shane L. Larson

Geometric Gymnastics

Taking on triangles
by A. Kanel and A. Kovaldzhi

Rocking Cliffs

Rock “n’ no roll
by A. Mitrofanov

Out of Sight?

The near and far of it
by A. Stasenko

DEPARTMENTS

J
17
22

28
30
34
38

Brainteasers 40
How Do You Figure?
At the Blackboard |

Brocard points

Kaleidoscope

Many ways to multiply

Physics Gontest

The fundamental particles

Looking back 50 Answers, Hints & Solutions
From the pages of history

Problem primer 54 Crisscross Science
Exploring every angle 55 Inf[]pma[ms

Breakfast of champions

In the open air

Flights of fancy?

In the lab

Using cents to sense surface
tension

Forces of nature

Lunar launch pad

49 At the Blackboard II

Electrical and mechanical
oscillations

QUANTUM/CONTENTS 1




Quantum (ISSN 1048-8820) is

m published bimonthly by the Na-
tional Science Teachers Association in coop-
eration with Springer-Verlag New York, Inc.
Volume 11 (6 issues) will be published in
2000-2001. Quantum contains authorized En-
glish-language translations from Kvant, a
physics and mathematics magazine published
by Quantum Bureau (Moscow, Russia), as
well as original material in English. Edi-
torial offices: NSTA, 1840 Wilson Boulevard,
Arlington VA 22201-3000; telephone: {703)
243-7100; e-mail: quantum@nsta.org. &
Production offices: Springer-Verlag
New York, Inc., 175 Fifth Avenue, New §
York NY 10010-7858.

Periodicals postage paid at New York, NY, and
additional mailing offices. Postmaster: send
address changes to: Quantum, Springer-Verlag
New York, Inc., Journal Fulfillment Services
Department, P. O. Box 2485, Secaucus NJ
07096-2485. Copyright © 2000 NSTA. Printed
in U.S.A.

Subscription Information:

North America: Student rate: $18; Per-
sonal rate (nonstudent): $25. This rate is
available to individual subscribers for per-
sonal use only from Springer-Verlag New
York, Inc., when paid by personal check or
charge. Subscriptions are entered with pre-
payment only. Institutional rate: $56.
Single Issue Price: $7.50. Rates include
postage and handling. (Canadian custom-
ers please add 7% GST to subscription
price. Springer-Verlag GST registration
number is 123394918.) Subscriptions be-
gin with next published issue (backstarts
may be requested). Bulk rates for students
are available. Mail order and payment to:
Springer-Verlag New York, Inc., Journal
Fulfillment Services Department, PO Box
2485, Secaucus, NJ 07094-2485, USA.
Telephone: 1{800) SPRINGER; fax: (201)
348-4505; e-mail: custserv@springer-ny.com.

Outside North America: Personal rate:
Please contact Springer-Verlag Berlin at
subscriptions@springer.de. Institutional rate
is US857; airmail delivery is US$18 addi-
tional (all rates calculated in DM at the ex-
change rate current at the time of purchase).
SAL (Surface Airmail Listed) is mandatory for
Japan, India, Australia, and New Zealand. Cus-
tomers should ask for the appropriate price
list. Orders may be placed through your book-
seller or directly through Springer-Verlag,
Postfach 31 13 40, D-10643 Berlin, Germany.

Advertising:

Representatives: (Washington) Paul Kuntzler
(703) 243-7100; (New York) M.]. Mrvica As-
sociates, Inc., 2 WestTaunton Avenue, Berlin,
N7J 08009. Telephone (856)768-9360, fax
(856)753-0064; and G. Probst, Springer-Verlag
GmbH & Co. KG, D-14191 Berlin, Germany,
telephone 49 (0) 30-827 87-0, telex 185 411.

Printed on acid-free paper.

Visit us on the internet at www.nsta.org/
quantum/.

2 MARCH/APRIL 2001

Pub/lsher
Getald F Whee]er Executive Director, NSTA

Associate Publisher -
Sergey S. Krotov, Director, Quantum Bureau,
Professor of Physics, MGSCOW‘State~Un ersity

Founding Editors -
YunA Oss1pyan Presu}ent Qua tu.m Bureau .

- Managing Editor
~ Sergey Ivanov

Special Projects Coordinator
Kenneth L. Roberts

Yuly Danilov, \mmg R
Yevgeniva Morozova, Managz

Edward I_ozanskv

1es (Springer-Verlag)
‘i delme Kraner

Advisory Board -
~ Bermard V. Khoury, Executlv Ofﬁcet AAPT -

rbfessor /Emerltus of Mathematlcs Rose‘Hulman Instlmte :
‘ ‘ of Technology, IN

‘ , 1tt1t9’e‘ Remed Physxcs Teacher, Pamsh PL
Petet Vunovxch Capital Area Science & Math Center, Lansing, MI




BRAINTEASERS

Just for the fum of i

On call 24-7. The working hours of a receptionist at a hotel are either

8 A.M. to 8§ P.M., 8 P.M. t0o 8 A.M., or 8 A.M. to 8 a.m. the next day. In the
first case, the break before the next shift must be not less than 24 hours;
in the second case, not less than 36 hours; and in the third case, not less
than 60 hours. What is the smallest number of receptionists that can
provide round-the-clock operation of the hotel?

B317

Sweet primes. A bag contains 101 pieces of candy. Eric and Karlson

play a game. In rotation (first Eric and then Karlson) they take from 1

to 10 pieces from the bag. When the bag becomes empty, they count the
number of pieces they’ve taken from the bag; if these numbers are prime
relative to each other, Eric is the winner; otherwise, the winner is
Karlson. Who should win in this game and what must his strategy be?

B318

Ducky numbers. For many years now Baron Miinchhausen has gone

to a lake every day to hunt ducks. Starting on August 1, 2000, he says to
his cook: “Today I shot more ducks than two days ago, but fewer than a
week ago.” For how many days can the baron say this? (Remember, the

baron never lies.)

B319

Bench mates. Several chess players played chess in a park the whole
day long. Since they had only one set of pieces, they chose the follow-
ing rules: The winner of a game skips the next two games, and the loser
skips the next four. How many players took part in the tournament if
they managed to follow these rules? (If the game ended in a draw, the
player who played white was considered the loser.)

B320

Curls when wet. Why do waves curl up on top as they approach the shore?

ANSWERS, HINTS & SOLUTIONS ON PAGE 52
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Ripples on a cosmic S

Cutting-edge astronomy is making waves

by Shane L. Larson

IGH ON THE COLUMBIA
plateau of eastern Washington
state, a remarkable astrophysi-
cal observatory is being con-
structed; its twin is taking shape in
the lush forests of central Louisiana.
If you're peering through the dust
and the tumbleweeds (or the thick
mossy forest), don’t expect to see
any domes housing massive optical
assemblies or great radio dishes
tracking across the skies. These ob-
servatories are not looking for the
visible light from the countless
burning stars throughout the Uni-
verse, nor for the faint radio whis-
pers of charged particles thrashing
about in their hot and violent envi-
ronments. These are a phenomenal
new kind of observatory called
LIGO: the Laser Interferometer
Gravitational-wave Observatory.
Gravitational waves were one of
the novel predictions of Einstein’s
1916 general theory of relativity, a
completely new phenomenon that
was not present in the Newtonian
theory of gravity prevalent up to
that time. It is only now, almost a
century later, that technology has
become sophisticated enough to
possibly detect this new radiation,
and observatories like LIGO are
slowly taking shape across the
planet.
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The modern gravitational wave
observatory is a large laser interfer-
ometer (typically with arms about
0.5 to 4 km long, for current de-
signs). They are very similar to the
familiar Michelson interferometer,
but on a much larger and grander
scale. Scientists will carefully moni-
tor the output of the interferom-
eters, looking for miniscule changes
in the lengths of the interferometer
arms, indicating the passage of a
gravitational wave.

In addition to ground-based obser-
vations, scientists at NASA and the
European Space Agency are also be-
ginning to think about the search for
gravitational waves in space. They
are designing a much larger interfer-
ometer, known as LISA (Laser Inter-
ferometer Space Antenna), to be
launched sometime late in the next
decade. The mission will consist of
three spacecraft arranged in a trian-

Figure 1

GRAVITATIONAL WAVES

gular constellation, 5 million kilo-
meters per side. These three space-
craft will orbit the Sun in 2 triangu-
lar configuration, just over 52
million kilometers behind the Earth
in its orbit, and inclined to the
Earth’s orbit by 60 degrees (figure 1).
By monitoring laser signals ex-
changed between each of the space-
craft, scientists can monitor any
change in distance between the craft
in an effort to detect gravitational
waves.

But what are gravitational waves?
Why didn’t we know about them
before Einstein and why are they
hard to detect? To understand this,
we must explore the differences be-
tween Isaac Newton’s theory of
gravity and Albert Einstein’s theory
of general relativity.

Gravity according to Isaac

When Isaac Newton sat beneath
the proverbial apple tree waiting for
his fruitful concussion, his percep-
tion of the cosmos was built around
the idea that space and time were
immutable qualities of the Uni-
verse. From his perception (and in-
deed, from the perception of essen-
tially all experimental evidence
available at the time), space and
time were fixed, absolute entities
throughout the Universe




Figure 2

Newton set down his ideas about
absolute space, time, and motion in
1687 in his monumental work,
Philosophiae Naturalis Principia
Mathematica, or “The Mathemati-
cal Principles of Natural Philoso-
phy” (the Principia also covers
Newton’s ideas of relative space and
time, which are defined with respect
to human constructs; for example,
time is measured in hours and min-
utes, and space is broken into dis-
tances or orientations with respect
to Earth).

The idea that space and time were
immutable, universal quantities al-
lowed Newton to propose his very
successful universal law of gravita-
tion, which is familiar to us all:

Gmym,

3 )

F:

The universality of space and
time allowed the application of
equation (1) to any gravitational sys-
tem that could be observed, includ-
ing the Moon, the planets, and even
the newly discovered Galilean satel-
lites of Jupiter (Galileo had detected
the four largest satellites of Jupiter
with his telescope in 1610), despite
the fact that these systems were far
removed from the time and space
that could be sampled directly in
any Earth-bound laboratory.

The theory was deceptively
simple in its formulation and un-
precedented in its predictive power.
In particular, it can be used to con-
struct (and indeed was developed to
explain) Kepler’s laws of planetary
motion; this can be easily demon-
strated for the special case of circu-
lar orbits if one assumes equation (1)
to be the centripetal force that binds
a mass (for example, the mass of an
asteroid, or other small test mass) in
its orbit about the Sun.

An important aspect of Newto-
nian gravity is that the gravitational
force acts instantaneously (that is,
changes in the gravitational field
propagate at infinite speed). If the
mass of the Sun were to suddenly
change, or if it were to start moving
away from its location at the center
of the Solar System, each of the plan-
ets would know instantly and their
orbits would change in accordance
with the new configuration of the
gravitational field.

Gravity according to Albert

The Newtonian theory of gravity
was a cornerstone of physics for
more than 200 years, and even today
it is extraordinarily useful and par-
ticularly well suited for many differ-
ent applications, such as computing
spacecraft trajectories or describing

the orbits of binary stars. But when
Einstein published his special theory
of relativity in 1905, it immediately
began to pose problems for the
Newtonian theory of gravity.

Special relativity introduced
many wondrous and strange predic-
tions about the relationships be-
tween moving clocks and rulers, but
one of its most important predic-
tions is the existence of a universal
speed limit: ¢ = 3.0 x 108 m/s. Noth-
ing can travel faster than the speed
of light. In contrast, Newton’s theory
of gravity allows infinite propagation
speeds, clearly a violation of the
much slower speed limit c.

Einstein set out to formulate a
theory of gravity consistent with spe-
cial relativity, and in 1916 published
his general theory of relativity. Gen-
eral relativity breaks with Newtonian
gravity from the outset by discarding
the idea of the gravitational field in
favor of a new concept: space-time ge-
ometry. Einstein’s basic premise was
that the motions of particles were not
affected by an unseen force tugging
on them, pulling them toward mas-
sive bodies. The motions of particles
are determined by the geometry of
the space-time around them.

A visual analogue of Einstein’s re-
markable idea may be seen in figure
2, which illustrates the “rubber-
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sheet” model of general relativity.
Space-time is “flat” when there is no
mass present, as shown at the ex-
treme right edge of the surface. The
presence of a massive body curves
space-time, as shown at point A
(imagine placing a small lead weight
on the rubber sheet]. More massive
bodies produce more curvature in
space-time, deforming it more than
smaller masses (imagine placing a
bowling ball at point B).

How does the shape of space-time
affect the motion of particles? Con-
sider the three trajectories labeled x,
y, and z shown in figure 2. You can
imagine that each of these paths is
the trajectory of a Ping-Pong ball
rolling across the rubber sheet; they
are analogous to the paths of par-
ticles (such as satellites, asteroids,
and comets) in the vicinity of mas-
sive bodies. The path x represents
the path of a particle through space-
time when it is far from any mass.
Such a path is called a geodesic. In
this rubber-sheet model, geodesics
are the shortest length paths be-
tween any two points. In the flat
regions of the sheet, the geodesics
are familiar straight-line paths.

There are other “straight-line”
paths in space-time, such as the tra-
jectory y. Imagine a ball rolling
along y, which is initially parallel to
x. When the ball encounters the
curved region of space-time, the geo-
desic path dips into the curved re-
gion, and reemerges along a new di-
rection that is diverging from x. This
path is also a geodesic because it is
the straightest trajectory for the ball
through the region of high curva-
ture. No external forces acted on the
ball to alter its trajectory. The trajec-
tory was altered only by virtue of the
fact that the ball rolled on a curved
surface.

Now think about the curve z.
This path is also a geodesic; the ball
rolls along its trajectory, free of ex-
ternal forces pushing or pulling on
it, its course determined only by the
curvature of the space around it.

Each of the three paths in figure
2 is analogous to familiar particle
trajectories described in terms of a
central potential,

y-_GM
#

where M is the mass of the central

(2)

7

source of the potential. The path x is
that followed by a particle far from
any source of gravitational attrac-
tion, the path y is that of a particle
scattering off a gravitational poten-
tial, and the path z is that of a par-
ticle in orbit about a larger mass.

This way of thinking about gen-
eral relativity can be summarized in
the two-line mantra of the modern
gravitational theorist, popularized
by Misner, Thorne and Wheeler in
their classic text Gravitation: “Mat-
ter tells space how to curve; space
tells matter how to move.”

The idea that the “gravitational
field” is simply curvature of space-
time will be integral to our physical
picture of a gravitational wave.

Gravitational waves

The existence of a cosmic speed
limit is at great odds with New-
tonian gravity, which allowed sig-
nals to propagate at infinite speed.
By imposing the constraints of spe-
cial relativity on a theory of gravity,
we suddenly find a myriad of new
phenomena we can experimentally
search for in nature—phenomena
that we did not know existed be-
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Figure 4

cause they simply cannot be ex-
plained with Newtonian physics.
One example is the famous “bend-
ing of light” by a gravitational field,
which Einstein put forth as a test of
his new theory of gravity. Ed-
dington’s measurement of the de-
flection of starlight by the Sun dur-
ing the total eclipse of 1919
confirmed the predictions of general
relativity and made Einstein a
worldwide celebrity.

To understand how waves are
treated by modern relativistic
theory, recall our Einsteinian de-
scription of gravity as curvature of
space-time. If the analogue to the
gravitational field is curvature, then
changes in the gravitational field are
analogous to changes in the curva-
ture of space-time. When changes
in curvature propagate, moving
through space-time, they are called
gravitational waves. Figure 3 shows
amodel of gravitational waves in the
context of the rubber-sheet analogue
outlined in the section above.

Like the waves we are more fa-
miliar with, gravitational waves
have an amplitude (usually denoted
h), a wavelength A, and a frequency
f, which are related to the propaga-
tion speed c:

c =M. (3)

Itis no accident that the propaga-
tion speed is written as ¢; general
relativity predicts that gravitational
waves travel at the speed of light.

Detection

How does one go about detecting
gravitational waves? To do this, you
must develop a way to measure the
changes in the space-time curvature.
We can imagine a detector of gravi-
tational waves in the rubber-sheet
model we developed above. Con-
sider the two people in figure 4a.
They are hanging out in an essen-
tially flat space-time, shining a
flashlight back and forth at each
other, and timing how long it takes
the beam to traverse the distance be-
tween them. This time is a measure
of the proper distance between
them. Unbeknownst to them, a cur-
vature wave is approaching, and it
will affect the results of their experi-
ment.

In figure 4b, the wave is upon our
space-time experimenters. Because
the wave has changed the curvature
of the space-time between them, it
takes a different amount of time for
the photons to travel back and forth;
our intrepid young experimenters
can measure this time difference,
thus detecting the wave!

Interferometers detect gravita-
tional waves in much the same way,
by comparing the distance along two
different directions in spacetime.
Using laser light, the beams in two
different directions are interfered
with each other. When a gravita-
tional wave passes by, the lengths of
the interferometer arms change, and

so the interference pattern made by
the two laser beams shifts.

The quantity measured in a gravi-
tational wave observatory is called
the strain and is defined as

S ] ! (4)
where Al is the change in proper
length the gravitational wave pro-
duces between our two experiment-
ers and ] is the unperturbed length,
before the wave is upon them. The
strain can be approximately related
to the amplitude of the wave by
s ~ h/2.

Laser interferometers aren’t the
only way to detect gravitational
waves. One could imagine that the
two experimenters in figure 4 aren’t
shining a flashlight back and forth,
but rather are holding a long metal
bar between them. When the gravi-
tational wave passes by, it stretches
the bar a little. The bar snaps back
to its original shape after the wave
passes by, and as a consequence be-
gins to “ring” (that is, it begins to
vibrate). The frequencies that the
bar can see depend on its length.
Roughly speaking, the bar is sensi-
tive to waves that have a frequency
corresponding to its normal modes
of vibration:

v
where v is the speed of sound in the
bar, I is the length of the bar, and n
is an integer indicating the mode.
The amplitude of these oscillations
depends on the strain induced in the
bar by the gravitational wave.

These types of detectors are
called “bar-detectors” and were first
pioneered by Joseph Weber at the
University of Maryland in the
1960s. The most sensitive bar-detec-
tor in operation today is called
ALLEGRO, and is operated by Loui-
siana State University.

Sources

Gravitational waves are created
from the dynamical motions of
mass. Any asymmetric acceleration
in a massive system will generate
gravitational waves (to be precise, a
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Figure 5

system will emit gravitational radia-
tion if it has a non-zero quadrupole
moment). Symmetric motions, such
as radial pulsations in spherical
stars, will not generate gravitational
waves.

Purely symmetric systems are, of
course, an ideal in physics and very
unlikely to exist in nature. A survey
of common astrophysical systems
shows that the cosmos is replete
with asymmetric dynamical sys-
tems, from active galactic nuclei and
spiral galaxies on the largest scales
to supernovae and common binary
stars on smaller scales.

Binary systems in general are ex-
pected to be one of the most impor-
tant sources of continuous astro-
physical gravitational waves.
Interesting targets for study include
binary stars, neutron-star binaries,
black hole binaries, or combinations
of any of the three. Throughout
most of their lives, binary systems
evolve slowly. If they are in approxi-
mately circular orbits, gravitational
waves are emitted with a frequency
that is twice the orbital frequency:

f= 2f0rb- (6)
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These waves are said to be mono-
chromatic in analogy with single
frequency visible light. Figure 5
shows the amplitude of the gravita-
tional waves generated by a typical
binary system. The stars generating
the radiation lie at the center of the
figure. Gravitational waves are
thrown off as a result of their orbital
motion, and propagate out through
the vast sea of space-time until they
come gently lapping up on the
shores of Earth.

The (dimensionless) amplitude of
gravitational waves radiated by a
binary system, as measured at the
Earth, can be estimated by the for-
mula

4G*mym,
c*aR
where m, and m, are the masses of
the binary components, G is
Newton’s constant, a is the semi-
major axis of the binary orbit, R is
the distance from the Earth to the

binary, and c is the speed of light. By
rewriting a using Kepler’s third law

|H| = ) (7)

-
a"’=rz—(%mz), )

equation (7) may be expressed in
terms of the orbital frequency
(which is related to the gravitational
wave frequency by equation (6)):

2 (2G)"°
&R

LR r2/3

13 Jorb (9)

|| =

(my + my,)

Indirect, astrophysical evidence
for the existence of gravitational
waves exists from monitoring the
famous Hulse-Taylor binary pulsar,
PSR 1913+16, over the past 25 years.
By monitoring the pulsar’s orbit, it
was discovered that the orbital pe-
riod was gradually shrinking, imply-
ing the two pulsars are slowly spiral-
ing together. The rate at which the
orbital period is changing is pre-
cisely the amount that general rela-
tivity predicts through the emission
of gravitational radiation. Gravita-
tional waves from the orbital mo-
tion of the pulsars carry away orbital
energy, causing the orbit to shrink.
This discovery earned Joseph Taylor
and Russell Hulse the 1993 Nobel
Prize in physics.

We can estimate the amplitude
of the gravitational waves from this

=

pulsar when they arrive at the Earth




using equation (9). This binary has
two stars, each of mass m ~ 1.4M__,
an orbital period of about 7.75
hours (implying f_ , ~ 3.58 x 107
Hz), and lies at a distance of r ~ 5
kpc from Earth. This gives a dimen-
sionless amplitude of |h| = 6.4 x
10723, a very small amplitude in-
deed! This is many orders of mag-
nitude lower than the minimum
amplitude detectable by LISA at
this frequency.

Is it possible for us to detect
sources of gravitational radiation
much closer to the Earth? For in-
stance, binaries are expected to be
good sources of gravitational waves;
might we expect to see gravitational
radiation from the orbits of the
Galilean satellites {Io, Ganymede,
Callisto, and Europa) about Jupiter?
Consider equation (9] again, and
let’s apply it to the case of To, the in-
nermost of the Galilean satellites.
Jupiter has a mass of 1.90 x 10%7 kg,
and Io has a mass of 8.94 x 1022 kg.
The orbital period of Io is 1.77 days,
giving an orbital frequency of f,_, =
6.54 x 107¢ Hz. At their closest ap-
proach, Jupiter and the Earth are
6.29 x 108 km apart. Using equation
(9) with these values gives an ampli-
tude of |h| = 1.4 x 102*. Despite
being significantly closer to Earth
than the binary pulsar, the gravita-
tional radiation from Io is much
weaker. It is not expected that de-
tectors such as LIGO or LISA will
detect any gravitational radiation
from any source within our own
Solar System.

What we hope to learn

Gravitational waves are a com-
pletely new way of looking at the
Universe. When the first radio tele-
scopes were built, we learned a tre-
mendous amount about distant as-
trophysical systems because radio
waves bring us different information
than ordinary light. Similarly, we
hope that by observing the Universe
in gravitational waves, we should
learn different things than we would
by looking in ordinary light. In par-
ticular, we should be able to observe
the collisions of massive black
holes, the collisions of neutron stars,

stars falling into the black holes at
the centers of galaxies, and super-
nova explosions.

The most prevalent type of source
will be close binaries such as those
described above. Early on, close bi-
nary systems will have relatively
small orbital frequencies. Frequen-
cies in the range of roughly 10-° to
10-! Hz should be accessible to
LISA. Late in their lives, binary sys-
tems tend to evolve rapidly, the
components spiraling toward one
another. As they spiral together, the
frequency ramps up rapidly and the
binary “chirps.” Ultimately, these
binary systems coalesce to form a
single object. This high frequency
inspiral, chirp, and coalescence
should be observable by LIGO at fre-
quencies from about 10 to 1000 Hz.

The process of coalescence will
be a dynamic and violent one, and
scientists expect it to produce copi-
ous amounts of gravitational radia-
tion. By studying these gravitational
waves, it is hoped we will gain our
first direct observations of what hap-
pens during the collision of two
massive bodies and how the final
object wobbles, stretches, and vi-
brates before settling down into its
final state. Short, transient pulses of
gravitational radiation, such as su-
pernovae, are known as burst
sources. Predicting what bursts of
radiation from violent events might
look like using a gravitational wave
observatory such as LIGO or LISA is
a problem that is at the forefront of
modern theoretical physics, and is
being studied using advanced nu-
merical simulations on fast-comput-
ing systems. Whether or not we will
be able to detect burst sources (they
are much harder to detect than
inspiraling binaries) will depend on
precisely how strong the burst of
radiation from an explosive event is,
and how far away from Earth it is.

The futurg

Because of the weak nature of
gravitational waves, it is possible
that our initial searches with LIGO
will not detect any gravitational ra-
diation. This is largely due to limi-
tations in technology, but as com-

puting power, laser technology, and
our understanding of gravitational
waves improves, we’ll be able to
build better gravitational wave ob-
servatories. Plans to upgrade LIGO
to LIGO II are already in place, and
should make the detection of gravi-
tational waves a routine occurrence.

Space-based observatories such as
LISA are literally guaranteed to see
nearby interacting white dwarf bi-
nary stars. The closest of these, a
star called AM CVn, is a helium
cataclysmic variable about 100 par-
secs away in the constellation of
Canes Venatici, and can be seen in
small telescopes. Since stars like
AM CVn can be observed with ordi-
nary telescopes, we know a tremen-
dous amount about the masses and
orbits of these binary systems.
Therefore, we know what the gravi-
tational wave signal should look
like, and should be able to detect
such stars almost immediately after
LISA becomes operational.

The study of gravitational waves
from the Universe at large promises
to produce a revolution in astrophys-
ics as spectacular as the revolution
brought on by the advent of X-ray, ra-
dio, and y-ray astronomy. Unlike pho-
tons, gravitational waves propagate
very readily through regions of dense
gas and dust. Gravitational waves
will be generated by the mysterious
“dark matter” that seems to pervade
much of the cosmos, and should have
been generated in the earliest mo-
ments after the Big Bang. By studying
this remarkable new type of radia-
tion, astrophysicists will, for the first
time, be able to probe the dense cores
of galaxies, see the inspiral and colli-
sion of neutron stars millions of light
years away, and study the region very
near the event horizons of black
holes. Gravitational wave astronomy
promises to be one of the hottest ar-
eas of research as we move into the
21st century. Q

Shane L. Larson is a NASA EPSCoR
postdoctoral research associate at Mon-
tana State University and the Jet Pro-
pulsion Laboratory, where he works on
issues related to sources of gravitational
radiation and the design of space-based
observatories like LISA.
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Taking on triangles

In search of answers between the lines

by A. Kanel and A. Kovaldzhi

ERE’'S A PROBLEM THAT
was published in our sister
magazine Kvant in the early
seventies:

Given are n straight lines in gen-
eral position in a plane (that is, no
three of them pass through the same
point and no two are parallel to
each other). They divide the plane
into several parts. Prove that among
these parts there are at least (a) n/3
triangles, (b) (n—1)/2 triangles, and
(c) n -2 triangles.

We want to come up with the
exact number of triangles. This
problem was stated as early as 1870;
its statement is simple and appeal-
ing. Yet it’s so difficult that it had
remained unsolved for over a hun-
dred years. It draws you in; you
think you’re on the verge of a solu-
tion. But every “Eureka!” just adds
to the list of subtle errors.

The first solution was obtained in
1979 by the well-known mathema-
ticians Grinbaum and Sheppard. In
this article, we present a shorter, el-
ementary solution found by A.
Kanel. We could actually present it
in three sentences, but such a bare-
bones approach would contribute
little to the reader’s understanding
of the essence of the problem. For
this reason, we try to trace the steps
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leading to the solution and uncover
the key in the idea. Sometimes we
will take a side trip, solving a com-
pletely different problem with a
technique that will unlock the origi-
nal one.

Simplified statement

The following problem was pro-
posed at the Moscow Mathematical
Olympiad in 1972.

Problem 1. We are given 3,000
straight lines in the plane such that
no two of them are parallel and no
three meet in a point. The plane is
cut into pieces along these lines.
Prove that among these pieces there
are at least (a) 1,000 triangles, and
(b) 2,000 triangles.

Solution. It’s clear that item (a) of
this problem coincides with item
(a) of the problem formulated at the
beginning of the article for n =
3,000; and item (b) is a strengthen-
ing of item (b) of that problem,
since 2,000 > (3,000 — 1)/2.

Let’s begin with a key idea. We
will prove that for every line, there
exists at least one triangular piece
adjacent to it (that is, a triangle with
a side on this line). If we manage to
prove this fact, this will prove item
(a), since each triangle is adjacent to
three lines.

GEOMETRIC GYMNASTICS

For each line, let’s try to find a tri-
angle adjacent to it that is not inter-
sected by other lines. Here we use an
elegant idea: Consider the point of
intersection of other lines that is the
nearest to the line under consider-
ation (figure 1). We leave it to the
reader to prove that this point can be
chosen as a vertex of the desired tri-
angle.

To prove item (b), it’s sufficient to
find, for each line, one more triangle
adjacent to it. This seems simple;
indeed, every line divides the plane
into two half-planes. Perhaps we can
choose one triangle on each half-
plane to correspond to each line.
Unfortunately, if we choose a cer-
tain line, it may happen that all the
other lines will intersect on only one

Figure 1. The nearest intersection
point.

Art by Ekaterina Silina
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Figure 2. Every triangle leaves a
smaller triangle when intersected by a

line.

of its half-planes. How often can
such a “bad” case occur? Let’s make
an estimate.

It’s clear that there can be three
bad lines. Fortunately, this is the
worst case (when the total number
of lines is three). If n > 3, it turns out
that at most two lines are bad. Here
is a proof of this fact.

Assume that there are three bad
lines. Draw these three lines and
one more arbitrary line. In any case
we examine, new intersection
points appear on both sides of one of
the bad lines. Indeed, the fourth line
intersects all three given lines, and
one of the three intersection points
lies between two others. We have
arrived at a contradiction, and this
proves our assertion.

Thus, for n > 3, there exist not
more than two lines adjacent to only
a single triangle: All the other lines
are adjacent to at least two triangles.
Now we can obtain an estimate of
the number of triangles. It’s clear
that this number is not less than
(2n —2)/3. For n = 3,000, this yields
1,999 !/,. But the number of tri-
angles is an integer. Thus, there are
at least 2,000 triangles.

At the same time we have proved
a stronger assertion than item (b) of
the original problem, since 2(n—-1)/3
>(n-1)/2.

Here are several exercises related
to the problem just solved.

Exercises

1. We are given n planes in gen-
eral position, in space (that is, any
four of them form a tetrahedron).
The planes divide the space into sev-
eral parts. Prove that among these
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parts there are at least (a) n/4 tetra-
hedrons (for n 2 4), (b) (2n - 3)/4 tet-
rahedrons (for n = 5).

2. (This problem exploits the idea
of a “nearest point”|. We are given n
straight lines (n > 3] in the plane
such that any two of them intersect
and at least three lines pass through
each intersection point. Prove that
all the given lines meet at a point.

3. We are given n planes in space
such that any three of them have a
common point and at least four
planes pass through each intersec-
tion point. Prove that all the given
planes have a common point.

Exact estimate—sulie errors

In this section, we consider the
basic problem:

We are given n straight lines in
general position in a plane (that is,
any three of them form a triangle).
They divide the plane into several
parts. Prove that among these parts
there are at least n - 2 triangles and
that this estimate is exact.

Exercise 4. Draw n lines in gen-
eral position such that they form
n - 2 triangular parts.

The observation that a triangle
cannot be destroyed was at the ba-
sis of early attempts at proving the
exact estimate. What we mean by
this is that if we have a certain num-
ber of lines in the plane, and draw a
new ling, it will divide any triangle
it intersects into two parts, one of
which is again a triangle. (Is a simi-
lar assertion true for a tetrahedron
and an intersecting plane?)

Here is one elegant, but errone-
ous, “solution”: Suppose we have n
lines in general position, and man-
age to find n - 2 triangular pieces.
If we draw a new line, we will not
destroy any of these triangles, and
the “closest point” to the new line
provides one more triangle. It re-
mains to prove that there exist n —
2 triangles. Indeed, consider an arbi-
trary line. The other lines intersect
it at n — 1 points, which form n - 2
segments. The lines that pass
through the endpoints of these seg-
ments form n - 2 triangles (figure 2).

Exercise 5. Find the error in this
“solution.”

An attempt o use induction

Since no triangle can be de-
stroyed, it seems reasonable to use
induction—for example, to prove
that adding one more line increases
the number of triangles.

This is the line of reasoning led to
many errors. The fact is that the un-
derlying assertion is wrong: Adding
a line doesn’t necessarily mean that
a triangle is added!

Exercise 6. Draw several lines in
general position such that removing
one of them does not decrease the
number of triangles.

Attempts were made to prove
that there exists a line such that re-
moving it decreases the number of
triangles (in which case induction
could be used]. However, the prob-
lem ultimately fell to other meth-
ods. The question of whether such a
line always exists remains open.

So adding and removing lines was
of no use. We'll try to find another
line of reasoning.

Don't go to exiremes to avoid exiremes

The notion of general positions
results from a desire to avoid consid-
ering degenerate cases. The very
word “degenerate” has overtones of
pathology, of something that must
not happen. However, it is the idea
of degeneracy that forms a basis for
our solution to the problem on tri-
angles. We first take a small side
trip, and consider a new problem,
not closely related to this one. Its
solution will illustrate the idea of
“going to extremes.”

Problem 2. In a convex pentagon,
every diagonal cuts off a triangle.
Prove that the sum of the areas of
these triangles is greater than the
area of the pentagon.

Solution. It’s rather difficult to
deal with an arbitrary pentagon. It
may be possible to “simplify” the
situation—not to consider a particu-
lar case (which can also be useful),
but rather to reduce the general so-
lution to a specific one.

Let’s move a vertex of one of the
triangles along a line parallel to its
base (figure 3). Then the area of this
triangle and of the pentagon remain
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Figur € 3. Degeneration (simplification) of a pentagon.

unchanged, but the areas of the
neighboring triangles vary.

The key idea is as follows: if we
move a vertex of a triangle along a
straight line, its area either keeps
increasing, keeps decreasing, or
stays the same. Indeed, the base re-
mains the same, and the altitude
either keeps increasing, keeps de-
creasing, or remains the same. We
can say a bit more: If the vertex
moves at a constant rate along a
line, then the area of the triangle
also varies at a constant rate.

Therefore, the sum of the areas of
all the triangles varies at a constant
rate as well. It would be nice if the
sum decreased, because we hope to
prove the inequality for the new
pentagon, in this case, it would be
true for the original pentagon as
well.

But what shall we do if the total
area of the triangles increases? It's
simple—we just move the vertex in
the opposite direction and the area
will decrease.

How far should we move the first
vertex? We certainly want the pen-
tagon to remain convex. Let us
move the vertex as far as we can,
without letting the pentagon lose
this property. Then one of the angles
of the pentagon (the one at E in the
diagram above) will have become
180°. In this extreme position, the
pentagon has become a simpler fig-
ure: a quadrilateral.

Now we repeat the reasoning for
the vertex with the straight angle. In
its extreme position, it will coincide
with one of the neighboring vertices.

We can move the vertices further
until the pentagon becomes a tri-
angle (with two double vertices or
one triple vertex). But it’s not neces-
sary, as triangles EAB and BCD al-
ready cover the entire pentagon.

Thus the proof for the original
pentagon is reduced to a particular
(degenerate!) case, and one that is
quite easy to see.

Remark. The vertices of the pen-
tagon can be moved along an arbi-
trary line. Then all the areas will
vary linearly (i.e. at a constant rate),
and we need only to ensure that the
difference of the total area of the tri-
angles and the pentagon (which also
varies linearly) decreases.

Similar reasoning helps solve a
number of other problems.

Exercises

7. Any three neighboring vertices
in a convex hexagon form a triangle.
Is the sum of these triangles always
greater than the area of the hexagon?

8. A triangle is cut from a paral-
lelogram. Prove that its area doesn’t
exceed half of the area of the paral-
lelogram.

9. Given an arbitrary convex
polygon, we select three points on
its perimeter and look at the area of
the triangle they determine. Prove
that the triangle of largest area is
formed by three of the vertices of the
polygon.

10. A convex solid is placed inside
a cube, and it turns out that the pro-
jection of this solid on any face of the
cube covers this face. Prove that the
volume of the solid is not less than a
third of the volume of the cube.

11. If we are free to select any n
points on a line segment, what is the
maximal sum of the distances be-
tween these points, taken in pairs?

12. Prove that the maximum of
the linear function f{x, y, z) = ax + by
+cz + d, for all points (x, y, z) lying
inside a convex polyhedron, is at-
tained at a vertex of this polyhedron.

13. Ali Baba arrived at a cave
where there are gold, diamonds, and
a trunk. If the trunk is filled with
gold it weighs 200 kg; if it’s filled
with diamonds, it weighs 40 kg; the
empty trunk is weightless. A kilo-
gram of gold costs 20 dinars and a
kilogram of diamonds costs 60
dinars. How much money can Ali
Baba get for the treasure if he can
carry only 100 kilograms?

We will now return to our origi-
nal problem, having drawn inspira-
tion from this “method of ex-
tremes.”

In solving all these problems,
three ideas proved useful: (1) reduc-
ing the general case to a particular
case by moving some elements of
the figure; (2) choosing ways to
move the figure at a constant rate, so
as to improve the situation; (3) con-
sidering extreme cases, which are of-
ten degenerate.

Sometimes, in what follows, we
will not look at the process of mov-
ing the figure in detail, but rather
analyze only the end results of the
process. Indeed, sometimes there is
an enormous number of possible
ways to move the figure, but the end
result of any such movement can be
analyzed simply.
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Thus, in what follows we will

(1) move the lines such that their
mutual arrangement is most conve-
nient,

(2) use linear motion—that is,
translation at a constant rate, and

(3) analyze extreme cases of the
line’s mutual arrangement.

A plan of action

The following reasoning is not
included in the final solution. How-
ever, it is worth considering for
three reasons. First, it shows how we
have found the solution; second,
similar reasoning can be used in
solving many well-known prob-
lems; and third, it’s useful to see
how the solution is “cleaned up.”
This section will express the situa-
tion more intuitively. Later, we’ll
make our reasoning rigorous, and,
finally, provide a short formal proof.

Where do triangles live?

All of our attempts at a system-
atic description of the arrangements
of our lines have failed. The
arragements are simply too numer-
ous. Let’s try moving the lines in-
stead. To achieve linearity, we’ll

Figure 4. As the broken line moves, a
triangle is destroyed and other triangles
are generated.

Figure 5. Foci.
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move them parallel to themselves.
What can happen during such a mo-
tion?

Until the lines reach the points of
intersection of other lines, the over-
all picture doesn’t change. But as
soon as several intersection points
merge, a “catastrophe” occurs—one
or several triangles disappear. As the
line moves further, reorganization
occurs, the results of which are dif-
ficult to foresee (figure 4).

We won't create a catastrophe.
Rather, we’ll stop moving the lines
just before a catastrophe occurs,
when triangles are not yet created or
destroyed, but have become very
small. We will call the arrangement
of the lines just before the intersec-
tion points merge a focus. Thus a fo-
cus is formed by a number of lines
whose intersection points lie in a
small area, almost a point, and this
area is not intersected by other lines
(figure 5).

For our analysis, it’s especially
important that in the neighborhood
of a focus we are dealing with a min-
iature decomposition of the plane,
with a smaller number of lines. In
other words, foci can be treated as
little isolated “worlds” inhabited by
minute triangles. Thus, if we man-
age to decompose the picture into
foci, the triangles will be easier to
count. Indeed, if we introduce an in-
duction hypothesis (which we will
do shortly), we can even assume that
the problem has been solved for a
smaller number of lines.

Returning {o induction

Let us proceed by induction. Our
induction hypothesis will be that
any k lines, k < n, divide the plane
into pieces among which there are at
least k — 2 triangles. Thus if we ana-
lyze a focus that involves k < n lines,
we can be sure that there are at least
k — 2 triangles in the neighborhood
of this focus.

For example, assume that by
moving the lines we managed to
gather them in two foci with a com-
mon line, one involving lines from
1 through k and the other from k
through n (the kth line is common
for both focuses—see figure 6).

12 K-1 K+1 n-1n

Figure 6. Two foci.

Then the total number of triangles
in both foci is not less than (k - 2)
+(n-k+1-2)=n-3.Tomake the
inductive step, it remains to find
one more triangle outside the foci.
This can be done; however, can we
be sure that it’s possible to gather
all the lines in just two foci? Unfor-
tunately we can’t, and if there are
many foci, a great variety of situa-
tions arise. What can we do in this
situation?

The boundaries of the possible

Let’s analyze how foci are formed.
At first the lines can be moved inde-
pendently, but if a focus is already
formed, it must be preserved. That
is, the lines involved in the focus
can only be allowed to move to-
gether, as a sort of “porcupine” (we
must not allow the lines in the focus
to move one relative to each other,
or else a catastrophe might occure
which would destroy the treatment
of the focus as a miniature decom-
position of the plane). Foci are
“pseudo-points,” and so can be aug-
mented by new lines or joined with
one another to form new “pseudo-
points.” Preserving the foci will im-
pose ever stricter constraints on the
movements of the lines, until it be-
comes impossible to move them any
more.

In this process we must avoid
contracting the whole picture into a
single focus (so that we can use in-
duction on the number of lines). For
example, it is sufficient to fix two in-
tersection points, so that they can-
not move and become part of the
same focus.

Now we will try to understand
how the rates of motion of the lines
involved in a focus must be related.
Two lines can be moved indepen-
dently if the speed of the others is




adjusted accordingly (consider the
case of three lines). In other words,
preserving a focus involving k lines
requires k — 2 constraints on the
speeds. However, by assumption,
there are k — 2 triangles in this fo-
cus—exactly the same number as
the number of constraints. This is a
key to the solution.

Let’s try to estimate the number
of triangles in the final state (when
the lines can’t be moved any more).
First, we fix a line and two intersec-
tion points on it—that is, three lines.
We have n — 3 lines left free, and we
will move them as long as it’s pos-
sible. To preserve the foci, n — 3 con-
straints are required. By the induc-
tion hypothesis, the number of
triangles in every focus is not less
than the number of constraints.
Thus, there are at least n — 3 tri-
angles.

The finishing touch

It remains to find one more tri-
angle—ijust one, somewhere among
the foci. But it isn’t clear how it can
be found. Let’s think this over: If we
need one more triangle, why search
for it? Isn’t it possible to arrange
things so that it exists from the very
beginning? After all, it doesn’t mat-
ter which three lines are fixed at the
beginning of the process. So we can
fix three lines that already form a
triangle! Thus the problem is
solved.

Constructing the solution

Our work is far from complete:
We must clean up our reasoning,
improve it, and make it rigorous. It’s
important to reveal the relationship
between the triangles and foci, in
particular, to understand why the
number of triangles in a focus is not
less than the number of constraints
required to preserve this focus.

Exercise 14 (This exercise ex-
ploits the idea of a focus.) Moving a
single line, prove that there exists a
triangle adjacent to it.

Thus we have decided to preserve
a triangle from the very beginning,
which guaranteed that no collapse
would occur and produced a triangle
outside all the foci. But isn’t it pos-

sible to preserve all triangles, grant-
ing them all equal rights? Then no
foci will occur as the lines move (in-
deed, there exists a contracting tri-
angle in any focus).

If the initial arrangement of lines
is not rigid, a focus will inevitably
occur during a certain motion,
which leads to a contradiction.
Thus, preserving all the triangles
guarantees that the arrangement of
lines is rigid, and it remains to prove
that it is impossible to guarantee ri-
gidity by preserving fewer thann -2
triangles.

Recall how we preserved a focus:
We allowed it to move as a whole.
The simplest focus is a tiny triangle.
We treat an ordinary triangle in a
similar way: We allow it to move
while preserving its size. (Verify that
fixing n/3 triangles can lead to los-
ing the mobility of the lines.)

However, now we haven’t even
fixed the initial triangle. So to avoid
uninformative parallel translations
of the entire arrangement, we fix
two lines. (By the way, the position
of a focus is also determined by two
lines.)

Every triangle, as well as the sim-
plest focus, yields one constraint on
the rates of motion of the lines.
Therefore, we obtain as many con-
straints as we had triangles that are
preserved.

Thus we need to choose n — 2
speeds, which we will call param-
eters. If there are not enough tri-
angles (fewer than the number of pa-
rameters), preserving their sizes
cannot guarantee rigidity (figure 7).

Why can we be sure that if the
arrangement is not rigid, a focus can
be obtained? The reason is that, as in
the problem about the pentagon, we

—

Figure 7. 1v’s possible to contract
the red triangle while preserving the

blue one.

can move the lines in the opposite
direction—that is, change the direc-
tion of all the motions. Therefore,
we can direct one of the lines to the
intersection point of the fixed lines,
and then a focus will inevitably oc-
cur. (It’s interesting that while con-
structing the solution, induction
dropped out, just as the scaffolding
is removed when a building is con-
structed.)

Summing up

First, we fixed two lines and al-
lowed all the others to move at con-
stant rates so as to preserve the size
of all the triangles. Then, if the num-
ber of triangles turns out to be less
than n - 2, the rates can be chosen
to be nonzero (this fact will be
proved later). Changing, if necessary,
the direction of all the motions, we
can create a focus where the un-
counted triangle will be found. The
contradiction obtained solves the
problem.

Refining our reasoning

To obtain a rigorous proof, we
must refine our intuitive reason-
ing—first of all, our arguments con-
cerning rigidity. We translate them
into algebraic language where the
rates are interpreted as unknowns
and the constraints as equations.
The mobility of the lines means that
there exists a nonzero solution to
the system of equations.

Anyone who has dealt with sys-
tems of equations knows that the
general rule is as follows: If the num-
ber of equations equals the number
of unknowns, the system has a finite
number of solutions; if the number
of equations is greater than the
number of unknowns (an overdeter-
mined system), there are no solu-
tions; and if the number of equations
is less than the number of un-
knowns (an underdetermined sys-
tem), the system has an infinite
number of solutions. The last con-
sideration is what we need for our
problem,

Unfortunately, these consider-
ations are valid only “as a rule”’—
that is, not always. For example, the
system
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Figure 8. Three parallelograms.
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x+y+z=],
X+y+z=2

has no solution, although there are
fewer equations than unknowns.
However, we will use one particular
kind of system of equations. If all
the unknowns in the system appear
to the first power, and if the right-
hand side of all the equations is zero,
we say that the equations are linear
and homogeneous. For such a sys-
tem, the following theorem holds:
Theorem. Any underdetermined
system of m linear homogeneous
equations with n unknowns (m < n)

alle + 012X2 S, alan = 0,
G91X) + A9 Xg +...+ 0y X, =0,

Ay X] +App Xy +.. 4+ a,,x, =0

has infinitely many solutions.

This theorem can be proved by
induction, sequentially eliminating
the unknowns by substitution. The
proof can be found in any textbook
on linear algebra.

Let’s translate the relationships of
the lines’ rates of motion into the
language of linear equations. The
speed of a line is interpreted as the
rate at which it moves from its ini-
tial position. It’s easy to see that the
intersection point of two lines that
move at constant rates also moves at
a constant rate, and the sides of the
triangle change at a constant rate. It
is also not hard to see that the sides
of the triangles formed by three lines
moving at a constant rate also
change at a constant rate. From this
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we conclude that the condition that
the size of a triangle is preserved can
be written as a linear homogeneous
equation for the speeds of the lines.

We prove this proposition geo-
metrically. When a triangle is trans-
lated, three parallelograms are
formed (figure 8), and the area of the
larger one equals the sum of the ar-
eas of the other two. The area of the
parallelogram is the product of the
length of the triangle’s side and the
magnitude of the line’s shift.

We assume that the direction the
line is moving in is positive as the
area of the triangle increases. Then
the condition of the equality of the
parallelograms’ areas can be written
as a linear homogeneous equation:

a,h, + ayh, + a;h, =0,

where a,, a,, a, are the sides of the
triangle and h,, h,, h, are the shifts
of the lines. A similar equation re-
lates the speeds of the lines.

Thus we can write the condition
that all the triangles are preserved as
a system of linear homogeneous
equations. Linearity has turned out
to be very useful.

Exercise 15. Prove that, in the
coordinate system (x, y), the equa-
tion of a line that moves at a con-
stant speed v can be written as

Xsino —ycos o =_cC+ Vi,

where t stands for time and o is the
slope of the line relative to the x-
axis.

Rigorous proof

In conclusion, we give a rigorous
proof in which all the details and
turns of thought are hidden, as it is
common in mathematical journals.
Such mathematical texts are like
rebuses or computer programs with-
out comments. The Russian math-
ematician V. I. Amold once remarked
that their meaning, like the mean-
ing of parables, is explained to stu-
dents only in private.

Assume that the number of tri-
angles k in the decomposition is less
than n - 2. Let d be the minimum
side of the triangles, let v, ..., v_be
the speeds of the lines in perpendicu-
lar directions, and let v, = v, = 0.

The condition that we preserve
the size of all the triangles is
equivalent to a system of k linear
homogeneous equations in the
speeds v, (i = 3, ..., n). By the theo-
rem above, this system has a non-
zero solution.

We can assume (changing the di-
rection of time, if necessary| that a
certain line I, moves in the direction
of the intersection point of the lines
I, and I,. There exists a moment in
time (the “catastrophe”) when three
or more lines will pass through the
same point. Let t be the first such
moment. Then, at the moment

t; =t-d/[2 maxv)

there exist three lines that form a
nonintersected triangle with a side
less than d. This fact contradicts the
condition that the size of all the tri-
angles is preserved, and this contra-
diction completes the proof.

Remarks

1. The condition of the problem
for triangles can be extended for
space of any dimension; in particu-
lar, if n planes in general position are
given in three-dimensional space
and they divide the space into sev-
eral parts, there are at least n— 3 tet-
rahedrons among these parts. (Why
is the number of triangles n - 2, but
the number of tetrahedrons is n — 3?
What would the number be for the
one-dimensional case?)

2. Analyzing the solution, we see
that the requirement that the lines
be in general position can be relaxed:
If among n lines in the plane any
two intersect and not all of them
pass through the same point, then
there are at least n — 2 triangles
among the pieces the plane is bro-
ken into.

The main difference in the proof
for this variant is that points of mul-
tiple intersection can be destroyed
in the process of moving the lines,
and then new triangles appear. How-
ever, these triangles increase at a
constant rate, and they are easily
distinguished from the desired tri-
angle, which is contracting into a

point.
We invite the reader to construct
the complete proof. (@



Physics

Weight on a string. A weight of
mass m is suspended by an elastic,
weightless string with a “spring con-
stant” k. The maximum force the
string can sustain is T. The weight is
lifted to height x above the equilib-
rium position and then dropped
from this height. At what minimum
x will the string break?

(V. Kharitonov)

P317

Wire cuts ice. A wire loop with a
weight attached is put on a block of
ice (figure 1). Gradually the wire cuts
the ice. This is because the pressure
exerted by the wire decreases the
melting point of the ice, which be-
gins to melt under the wire and
freeze above it. However, if the

Figure 1

Figure 2

HOW DO YOU
FIGURE?

Ghallenges

metal wire is replaced by a nylon
thread of the same or smaller diam-
eter, it will cut the ice but very
slowly. Why? Do this experiment on
your own. (I. Slobodetsky)

P318

Vessel with a partition. A tall ver-
tical vessel with a square cross sec-
tion, separated by vertical partitions
into three sections (figure 2), was
filled with various liquids to the
same height. The large compartment
contained hot soup (+65°C), while
the two small sections were filled
with warm stewed fruit at 35°C and
cold Russian kvass at 20°C. The ex-
ternal walls are thermally isolated
from the environment. All internal
partitions are the same thickness
and are made of material with a
rather small thermal conductivity.
After a while the soup cooled 1°C.
Assuming all the liquids to be water
(from the thermal viewpoint), find
the temperatures of the kvass and
stewed fruit. Note that the volumes
of kvass and stewed fruit are the
same, while the volume of soup is
twice that of either the kvass or the
fruit. (A. Zilberman)

P319

Electrical maxima in an LC cir-
cuit. A switch S is closed in the LC
circuit shown in figure 3. Find the

S L
~Y

Figure 3

Rg R
Figure 4
maximum value of the current in
this circuit and the maximum volt-
age across the capacitor. (P. Zubkov)

P320

Sparkling planet. During liftoff,
astronauts observed a thin shining
layer at altitude H, caused by total
internal reflection of light in the at-
mosphere. They had a good refer-
ence book in the spacecraft, which
contained a graph (figure 4) of the de-
pendence of the refractive index n
on the distance to the Earth’s center
(Rg stands for the radius of the
Earth). How can one obtain the
value of H, from the graph?

(O. Batishchev)

Math
M316

Composite after eight. A se-
quence of natural numbers a,, a,, ...
a,, ... is such that, for any k > 1,

I

o = dg g1+ L.

Prove that for k > 9 the number
a, — 22 is composite. (S. Genkin)

CONTINUED ON PAGE 43
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Rock ‘0’ no rol

‘... there are a lot of strange things in the mountains.”

by A. Mitrofanov

T SHOULD ALSO BE RE-
membered that it’s not an
uncommon thing to encoun-
ter so-called ‘rocking cliffs’ in
these places. This is a very curious
phenomenon: a piece of cliff has ac-
quired the conditions for stable equi-
librium. It’s usually situated on a
stone platform, and if one shoves it,
it returns to its initial position (like
one of those inflatable toys with a
weight at the bottom). These rocks
sometimes weigh thousands of tons,
but they respond to a push from a
person of average strength. They can-
not fall over, unless of course you
blow them up with dynamite ...”
This quotation is taken from The
Rocking Cliff by the Russian writer
Alexander Green. It’s the sad tale of
a poor hunter who was offered a
huge sum of money to topple a huge
stone pillar that rocked near its equi-
librium position. Despite all his ef-
forts, the hunter couldn’t accom-
plish the task (although he continued
trying) and went insane.

Let’s try to figure out why such
“rocking cliffs” are so stable.

For an object to be in equilibrium,
we know that two conditions must
be met:

(a) the vector sum of all the forces
acting on the body must be zero; and

W\
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(b) the algebraic sum of all the
torques relative to an arbitrary axis
must also be zero.

However, not every equilibrium
state is stable. For example, a needle
affected only by gravity and a nor-
mal force doesn’t stand vertically on
a table. Nevertheless, if the needle is
oriented strictly vertically, both
equilibrium conditions (a) and (b) are
met. The point is that a slight shift
from the vertical position produces
torques that topple the needle. In
contrast, a brick stands firmly on
each of its faces. We can make the
brick smaller proportionally (that is,
preserving its shape) as much as we
want, and the smaller bricks will be

Figure 1

ROCKING CLIFFS

—Alexander Green

in equilibrium on the table. How-
ever, it’s much more difficult for a
brick to be in equilibrium on a con-
vex curved surface (say, on a foot-
ball) in comparison with a flat or
concave surface. Therefore, the con-
ditions for an object to be in stable
equilibrium depend on the object’s
shape (more precisely, on the shape
of its base) and on the shape of the
supporting surface.

To deduce the criterion of stabil-
ity, let’s again consider the rocking
cliff, or a boulder, and assume that
both the boulder and its supporting
surface, the ground, are spherically
shaped at the point of contact. Let’s
assume that both the boulder and
the ground have been eroded by
wind and water. As a result, their
surfaces are smooth and have no
protruding points. In this case, the
contact region between the two ob-
jects has narrowed to a point. Figure
1 shows the cross section of the
stone and the ground in the vertical
plane passing through the contact
point C. Here O and O’ are the cen-
ters of the spherical surfaces of the
boulder and the ground in the con-
tact area, while r and R are their ra-
dii. Above all, equilibrium requires
that the boulder’s center of gravity
P lie on the vertical line OO".

Art by Pavel Chernusky
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Clearly both conditions (a) and (b)
are met in this case. Let’s consider
what would happen if the boulder
were given a slight push from its
initial equilibrium position.

Let’s say that our little push has
put the boulder in the position
shown in figure 2. Here Q is the in-

tersection of the line PO with the.

vertical line passing through point
A—the new contact point of the
boulder with the ground. If point P
lies to the left of the vertical line
AA’, the gravitational torque will
“try” to restore the boulder to its
initial position. This means that the
equilibrium position of the boulder
is stable.

Thus, if CP < CQ, the equilib-
rium position is stable. Let’s con-
sider how the values CP, R, and r are
related in this case. The triangle
OAQ (figure 2) yields

CA CA R
B == =0—,

r r r

because the angles are small. Ac-
cording to the law of sines,

0Q 7
sino, sin(n —(a+ [3))
oo
sin| o+ 0.
r

We are interested only in small de-
viations from the equilibrium posi-
tion. When we say “small devia-
tion” we assume that the distance
“traveled” by the contact point on
the ground (that is, the arc C’A and
thus the equal arc CA) is small com-
pared to the radii r and R. And this
means that the angles o and § are
small:

o<l
and

B=OLB<<1.
r

As you probably know, the sine of
a small angle is equal, to a high de-
gree of accuracy, to the angle itself
(if, of course, we measure angles in
radians, which is what we’re doing
here). Therefore, equation (1) can be
written as follows:

20 MARCH/APRIL 2001

Figure 2
oQ__ 1
r 1+R/r’
or
2
4
OoQ= .
. R+r
Since
cQ=r-0Q=-"21,
R+r

the condition for stable equilibrium
of the boulder CP < CQ is trans-
formed to

Rr

CP< .
R+r

(2)

If the ground is concave and has
a radius R, the condition of stable
equilibrium will look like this:

Rr
CP :
<R_7 (3)

(Try to deduce this condition on
your own.)

Now we should note an impor-
tant feature of the problem. Assume
that the boulder is in stable equilib-
rium. In this case, deflection of the
boulder from its equilibrium posi-
tion produces a torque that resists
this deflection because the boulder
has “thrown its weight behind” the
new supporting point (figure 2). To
keep the boulder at the new equilib-
rium position, one must apply an
external force such that its torque
relative to the new contact point is
equal in magnitude and opposite in
direction to the torque due to grav-
ity. The magnitude and direction of
the external force are determined by
condition (a).

Now we see that one must per-
form some mechanical work to pro-
duce even a small deflection of the
boulder from the equilibrium posi-
tion. This work is spent on increas-
ing the potential energy of the boul-
der. Therefore, the potential energy
of the boulder is minimal at stable
equilibrium—in other words, in this
state the center of gravity is the low-
est. This feature makes it possible to
deduce condition (2) in another way:
by considering how the center of
gravity moves when there is a small
deflection (see exercise 1). These two
different ways of solving the prob-
lem are equivalent. If the boulder is
slightly deflected from the equilib-
rium position, it will move back and
travel beyond the equilibrium posi-
tion due to its inertia. After a while
the boulder will again pass through
the equilibrium point. In short, the
boulder will oscillate about its stable
equilibrium position.

If a small deflection of an object
from the equilibrium position low-
ers the center of gravity, the equilib-
rium of the object is unstable. The
slightest deflection produces a gravi-
tational torque that acts in the same
direction and “tries” to increase the
deflection. The object falls over.

There are cases when the dis-
placement of an object from the
equilibrium position doesn’t change
the height of the center of gravity
relative to the supporting point. This
kind of equilibrium is called neutral.
For example, a homogeneous ball on
a horizontal plane is in neutral equi-
librium. Note that when the equilib-
rium is neutral, and if the object and
the supporting surface are spherical
in the contact area, the following
equation holds:

_ Rr
R+r’

This equation is also valid for a
homogeneous ball on a horizontal
plane whose “radius” is infinite: R
— o, By the way, this condition is
necessary, but will it be sufficient to
yield neutral equilibrium? The an-
swer is no. To prove this fact, we
can show at least one example
where condition (4) is met but the

cp
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equilibrium is neither neutral nor
stable. Consider a spherical object
placed on top of a fixed sphere of the
same radius. The ball is not homog-
enous, and its center of gravity is
located at half its radius, so CP =z/2.
It’s not difficult to show (do it on
your own) that the equilibrium of
such ball on the sphere is not stable,
even though condition (4) is strictly
satisfied. For any finite angle of tilt
of the ball from the equilibrium po-
sition, the center of gravity drops, so
it rolls down off the sphere [see
problem 2).

Note that in deducing the stabil-
ity criterion we considered only
small displacements of the object
from the equilibrium position and in
our calculations took into account
only the linear terms that are pro-
portional to . Under the conditions
of this linear approximation, an ob-
ject or a system of objects may re-
main in neutral equilibrium. How-
ever, if we consider the problem
more carefully and take into consid-
eration terms of higher orders (pro-
portional to o2, o, and so on), the
equilibrium position may be un-
stable, as can readily be seen in prac-
tice.

Now we can better understand
what the “rocking cliff” is: This is a
vertically standing boulder with a
low center of gravity or large radius
of curvature at its base. Deflecting
such a boulder (within certain lim-
its, of course—see exercise 2) in-
duces oscillations near its equilib-
rium position. And so a rocking cliff
is simply a stone pendulum.

Clearly, it’s not a simple matter
for a person of moderate strength to
rock a huge stone pillar. It’s not just
that the rocking cliff has a very large
mass so that a very large force must
be used to give it an appreciable ac-
celeration. The support under the
boulder has become deformed due to
the boulder’s weight, which leads to
reactive forces preventing further
displacement from the vertical
(equilibrium) position. Neverthe-
less, rocking cliffs—or at least rock-
ing (not to mention rolling) stones—
exist in nature. Maybe you’ve seen
them with your own eyes.

Now let’s look at some examples
in greater detail. We won’t need to
journey to a mountain area, but in
essence they’re the same as the
rocking stones.

Example 1. In a uniform ball the
center of gravity coincides with its
geometric center, so the ball is un-
stable on a convex surface. How-
ever, if the “top” is cut from such a
ball, it can rest in a stable manner on
the top of a convex surface (see ex-
ercise 3).

Example 2. The amusing chil-
dren’s toy Weeble Wobbly resembles
the cut ball in example 1. A piece of
lead or steel hidden near the spheri-
cal base gives the toy a surprising
stability.

Did you know that Weeble Wob-
bly had (and surely has) many rela-
tives? “There were once five and
twenty tin soldiers, all brothers, for
they were the offspring of the same
old tin spoon. Each man shouldered
his gun, kept his eyes well to the
front, and wore the smartest red and
blue uniform imaginable.”

Such were the steadfast tin sol-
diers from the famous fairy tale of
Hans Christian Andersen (1805-
1875). Why they were so steadfast?
The reason is clear: no matter how
one might try to tip them over, they
always returned to the vertical po-
sition, ever alert. When a box
packed with these soldiers was
opened, they all jumped up as if by
command. Every soldier was at-
tached to the flat side of a lead
hemisphere and was remarkably
stable, standing at attention “for-
ever.”

Example 3. It’s known that a uni-
form ellipsoid of revolution (elon-
gated spheroid)—or, in other words,
the body formed by the curve (x/a)?
+ (y/b)?* = 1 rotating about its major
axis X (a > b}—cannot stand verti-
cally on a flat surface. The reason is
that the radius of curvature of the
ellipsoid’s top (that is, the radius of
the sphere that approximates the
ellipsoid’s surface at the apex) is
b2/a, while in this body the center of
gravity is located at height a. There-
fore, the criterion of stability (2) is
not met.

However, what will happen to
the stability if the shape of the ellip-
soid is modified slightly? The Dan-
ish mathematician Pit Hein in-
vented a body formed by rotation of
the curve

&) -

In this formula the negative values
of x and y are replaced by the corre-
sponding absolute values. There is a
happy choice of combinations of
height a and width b (say, 5 and 4
cm, respectively) for which Hein’s
so-called super-ellipsoid rests in
stable equilibrium when set on any
of its poles.

It can be shown that this property
of stability characterizes any uni-
form body formed by rotation of the
curve (x/a)” + (x/b)" = 1 about the x-
axis, provided that n > 2 and
a > b > 0. For large n this body looks
like a cylinder with rounded upper
and lower bases—isn’t that just the
thing for a model of a rocking stone?

The problem of the stability of
objects has occupied the minds of
many outstanding scientists over
the years. In 1644 Evangelista
Torricelli (1608-1647) formulated a
criterion of stable equilibrium of
two bodies in a gravitational field.
Later Christian Huygens (1629-
1695) generalized it for a system of
several bodies (Torricelli’s prin-
ciple). In 1788 Joseph Lagrange
(1736-1813) proved a theorem that
formulates the sufficient condition
for equilibrium of a system of bod-
ies. Later Peter Dirichlet (1805-
1859] produced a more rigorous
proof of this theorem. According to
the Lagrange-Dirichlet theorem, if
the potential energy of. an isolated
system is minimal at the equilib-
rium position, this equilibrium is

stable. @
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VERY TRIANGLE HAS MANY
interesting points: the intersec-
tion of its medians, the intersec-
tion of its altitudes, the centers
of the circumscribed and inscribed
circles, and so on. In this article I
consider two such points—namely,
the Brocard points.
A point P inside a triangle ABC is
called a first Brocard point if

ZPAC = LPCB = LPBA

(figure 1a). A point Q inside a tri-
angle ABC is called a second
Brocard point if

ZLQAB = ZQBC = ZQCA

(figure 1b).
B
; \

A a

a
/D 0

A C
b
Figure 1
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Brocard points

by V. Prasolov

Before discussing the properties of
these points, let’s prove that, for ev-
ery triangle, there exists exactly one
first Brocard point and exactly one
second Brocard point. We begin with
the first point.

We begin by constructing the first
Brocard point. In triangle ABC let
ZBAC =0, ZABC =3, and ZACB =
v. The key is to construct triangles
A,BC, AB,C, and ABC, outside tri-
angle ABC, so that the three new
triangles are all similar to the origi-
nal triangle, and so that the angles
are as shown in figure 2. (The reader
should stop and prove that this is
indeed possible.)

Our plan is to show that the
circles circumscribed about these
new triangles all pass through the
same point, which has the first
Brocard property. To this end, let P
be the intersection point (other than
C) of the circumcircles of A BC and
B,AC. We remember that a quadri-
lateral is inscribed in a circle if and
only if its opposite angles are supple-
mentary. This gives us

ZBPC = 180° - o,
ZAPC = 180° - B,

ZAPB =360° - £BPC - ZAPC
=360° - (180° — o) — (180° - B)
=a+pB=180°-v

which means that P lies on the cir-
cumcircle of triangle AC, B. The three
circumcircles intersect at point P.
Now we draw PA, PB, and PC,
and, noting equal inscribed angles,
note that ZPAC = £ZPB,C = y -

ZACP = ZPCB. We can show simi-
larly that ZPCB = ZPBA. Thus P
qualifies as a first Brocard point.

But is it unique? We can show
that it is by reversing our reasoning.
We invite the reader to check that
our reasoning can be reversed. Sup-
pose P’ is a point such that ZP’AC
= /P'CB = /P'BA. Then ZACB =y
= LP'CA + ZP'CB = £LP'AC +
ZP’'CA = 180° — LAP’C. This im-
plies that P’ is on the circle passing
through A, B,, and C. Similarly, P is
on the circle passing through A,, B,
and C, and thus P’ coincides with P.
This means that the point P, satis-
fying the first Brocard property, is
indeed unique.

We note in passing that if we
draw PA,, PB,, and PC,, then
ZAPB, = ZACB, = o. Similarly,
ZCPA, =y, and £B,PC = B. Hence
ZAPA, =0+ B+7=180°s0A4,P, and
A, are collinear. Similarly, B, P, and
B, are collinear, as are C, P, and C,.

¢

Figure 2



Problem 1. Construct triangles
A |BC, AB,C, and ABC, similar to
triangle ABC on its sides such that
segments AA,, BB, and CC, meet
at the second Brocard point.

Thus we have proved that there
exists exactly one first Brocard point
in every triangle. So we're ready to
discuss some properties of Brocard
points. If we draw lines AO, BO, and
CO through the center O of the cir-
cumscribed circle of triangle ABC,
these lines intersect the circle at
points A,, B, and C, such that tri-
angles ABC and A B, C, are congru-
ent (they are symmetric about the
point O). The Brocard points possess
a similar property.

Problem 2. (a) Let P be the first
Brocard point. Lines AP, BP, and CP
intersect the circumscribed circle of
triangle ABC at points A,, B,, and
C,, respectively. Prove that AABC =
AB,C,A,.

(b) Formulate and prove a similar
proposition for the second Brocard
point.

If we draw perpendiculars OA’,
OB’, and OC’ from the center O of
the circumscribed circle of triangle
ABC to its sides, points A’, B/, and
C’ will in fact be the midpoints of
the sides, and it is not hard to see
that AABC is similar to AA’B’C’.
The Brocard point P possesses a
similar property.

Problem 3. Perpendiculars PA’,
PB’, and PC’ are drawn from the first
Brocard point P to the sides of tri-
angle ABC. Prove that AABC is
similar to AB'C’A’.

In a certain sense, Problem 3 be-
comes redundant after Problem 2
has been solved. The fact is that the
following proposition holds.

Problem 4. Let lines AX, BX, and
CX intersect the circumscribed
circle of triangle ABC at points A,
B,, and C,, respectively. Let also A’
B’, and C’ be the projections of X
onto the sides of triangle ABC.
Prove that AA,B,C, is similar to
ANA'B'C’.

We now consider angle ¢ = ZPAC
= LPCB = ZPBA. We can express 0
in terms of the angles of triangle
ABC. To this end, we erase all the
construction lines in figure 2 (see fig-

A C K

Figure 3
° B 4
(x i
o A 4
A H C K
Figure 4

ure 3), and draw A K from point A,
to line AC, then, from the triangles
AKA,, A|CK, we have

cot ¢ = AK/AK
- ACJAK + CK/A,K
= AC/A K + cot B.

Now BA, is parallel to AC, hence
A K is equal to the altitude of tri-
angle ABC drawn to side AC. If BH
is this altitude (see figure 4), then

AC _AC_AH HC
AK BH BH BH
=coto + coty.

Hence cot ¢ = cot o + cot B = cot .

For the second Brocard point, we
obtain the same expression. Angles
in the range from 0° to 180° are
equal if and only if their cotangents
are equal. Thus we obtain the same
angle ¢ for the second Brocard point.
This angle is called the Brocard
angle.

Problem 5. (a) Prove that the
Brocard angle ¢ is less than or equal
to 30°.

(b) A point M is given inside tri-
angle ABC. Prove that one of the
angles ABM, BCM, or CAM does not
exceed 30°. (This problem was given
at the International Mathematical
Olympiad in 1991.)

Let’s discuss in more detail the
fact that the angles for the first and

second Brocard points are equal. Let
P and Q be these points. Reflect the
lines AP, BP, and CP in the bisectors
of angles A, B, and C, respectively.
Then the lines obtained meet at
point Q. However, this property is
not unique to the Brocard points: For
any point X not on the circum-
scribed circle of triangle ABC, when
lines AX, BX, and CX are reflected in
the bisectors of the corresponding
angles, the resulting lines meet at a
point. We won’t discuss this re-
markable fact here—it deserves a
separate article. We only note the
following.

Problem 6. Let O be the circum-
center of triangle ABC. Prove that the
lines symmetric to lines AO, BO, and
CO about the bisectors of angles A, B,
and C, respectively, pass through the
point of intersection of the triangle’s
altitudes.

We leave it to you to solve the
following problems concerning the
properties of the Brocard angles and
points.

Problems

7. Let P be the Brocard point of
triangle ABC, and let R, R,, and R,
be the radii of the circumscribed
circles of triangles ABP, BCP, and
CAP, respectively. Prove that
R R,R, = R?, where R is the radius
of the circle circumscribed about
triangle ABC.

8. Let Q be the second Brocard
point of triangle ABC, let O be the
center of its circumscribed circle,
andlet A,, B;, and C, be the centers
of the circles circumscribed about
triangles CAQ, ABQ, and BCQ, re-
spectively. Prove that AA,B,C, is
similar to AABC, and that O is the
first Brocard point of triangle
AB,C,.

9. Prove that one can.construct a
triangle A, B, C, from the medians of
triangle ABC, and that the Brocard
angles of both these triangles are
equal.

10. An equilateral triangle ABC is
given with its center at a point O.
Prove that the Brocard angle of the
triangle formed by the projections of
an arbitrary point X on the sides of
triangle ABC depends only on the
length of OX. (o]
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The near and far of It

Limitations of optical instruments

by A. Stasenko

R. LUND CAME TO THE
telescope and began to look at
the Moon.
“Don’t you see the pale
spots moving near the Moon?”

"Good gracious, sir! Call me an
old coot if I can’t see these spots!
What are they?”

“These are spots that can be seen
only with my telescope. Time’s up!
Leave it be.”

A half-hour later, Mr. William
Chatterly, John Lund, and the Scots-
man Tom Snipe were flying off to
the mysterious spots on eighteen
balloons.

Readers wishing to learn more
about Mr. Chatterly can read his re-
markable treatise, “Did the Moon
exist before the Flood? If yes, why
didn’t it sink?” By the way, this
book also describes how the author
lived in the Australian swamps for
two years, where he subsisted on
crayfish, ooze, and crocodile eggs ...
and devised a microscope very much
like our ordinary microscope.

—Anton Chekhov, Flying Islands
(a parody of Jules Verne)

Of all the devices invented by
physicists, two have attained wide-
spread fame: the telescope and the
microscope. One is aimed at the
depths of the Universe, while the
other allows us to see little things
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that are literally under our nose.
Let’s take a quick look at how these
devices work.

From the point of view of geomet-
ric optics, the telescope is pretty
straightforward. It consists of two
coaxial lenses with focal lengths Fop;
(for the objective) and F, . (for the
eyepiece), respectively (figure 1). Let’s
aim this device at a pair of stars that
are near each other. The rays from
each star are nearly parallel. From the
definition of focal length, the objec-
tive focuses the light at points B and
K on its focal plane (figure 1). But in
a telescopic system this plane coin-
cides with the focal plane of the eye-
piece, so after passing through the
eyepiece, the rays from each star will
also be parallel. Denote the angle be-
tween incident rays 1 and 2 (from the

objective

L T -CFF S 4 HTS

two stars) by o and the angle between
the emerging (refracted) rays 1’ and 2
by B. It’s easy to see the “trick” of a
telescopic system. The rectangular
triangles OBK and O’BK show that
their common side is

BK=Ftano=F, tan B,
from which we get
tan B _ Fobj :E
tana  F o (1)

eye

This approximate equation is valid
for the small angles characteristic of
most optical devices.

At first glance, equation (1) opens
unlimited possibilities for increas-
ing the magnification of a telescope:
We just need to use an objective
with the longest possible focal
length (this explains why refracting

focal
plane

eyepiece

Figure 1
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Figure 2

telescopes have such a large base
length) and an eyepiece with the
shortest possible focal length.

Unfortunately, a characteristic
parameter of light foils our plans: the
wavelength A. And how could it be
otherwise? A beam of light is com-
posed of electromagnetic waves with
wavelengths in the range 0.4 um <A
<0.8 um. And any wave passing near
an obstacle diffracts. In addition, ac-
cording to the Huygens—Fresnel
principle, any portion of the primary
wave (say, that located on the plane
of the objective) can be considered a
source of secondary waves that inter-
fere with one another wherever they
meet—for example, on the focal
plane of the objective.

Let’s use this principle to approxi-
mately determine how much the
light emitted by a star is diffracted
by the objective of a telescope. We
divide the objective into two parts
(figure 2a) and consider them to be
the sources of the secondary waves.
The distance between points C and
C’ is about half the objective’s diam-
eter D, so the difference in the paths
of the waves arriving at point M is
approximately equal to

A= Bsin 0,
2

which can be obtained from the
small triangle drawn in figure 2b.
The resulting interference is defined
by this difference. For example, at
point B (and along the entire optical
axis OB) we have 6 =0 and A = 0.
Therefore, the waves amplify each
other along the optical axis. If we
place a screen in the plane normal to
the optical axis and passing through
the focal point (this is called the fo-
cal plane), we'll see a bright spot.
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We can obtain a better formula
for the path difference at point M by
assuming that points C and C’ are
the centers of mass of each half of
the objective. It can be shown ex-
perimentally (by cutting a semi-
circle of cardboard and balancing it
on a knife’s edge) that the center of
mass of a semicircle is located at the
height
_ 4D

3r 2
above its diameter. Thus the path
difference A of two spherical waves

emitted from points C and C’ at an
angle 6 to the optical axis is

Yc

8 D
A=2y-sin®=——sin0. (2
Ya 31 9 (2)

Now let’s shift the observation
point at which we examine the in-
terference up or down in the focal
plane. It’s important to find the
angle 6, . for which the path differ-
enceis A, . =A/2, so that the waves
annihilate each other. Equation (2)
yields

sin 0 iy = 3{% = 1.18% =0 min-

Of course, a correct application of
the Huygens-Fresnel principle re-
quires us to take into account and
add (that is, integrate) all the el-
ementary waves emitted from small
areas of the primary wave. In this
process we would need Bessel func-
tions, which in the case of axial
symmetry are analogous to “con-
ventional” sines and cosines that
describe a number of similar one-di-
mensional problems (such as the
vibration of a guitar string). This so-
lution gives the following formula:

Our simple approximation differs
from the strict theoretical result by
a mere fourhundredths—not bad.
But why are we so interested in this
angle? Because it corresponds to the
radius BM = AV - of the first
dark ring surrounding the bright
spot (the image of the star) in the
focal plane of the objective. It turns
out that this image is far from being
an infinitely small point, as geo-
metrical optics says it should be.
This means the second star, located
at an angular distance o from the
optical axis, also produces a bright
spot on the focal plane, and the prob-
lem is how far this new image must
be from the first one so we can tell
one star from the other. The great
physicist Sir John Rayleigh (1842—
1919) suggested a simple criterion
for resolution:

a=0 (4)

1 min*
If this requirement is not met, the
images of both stars will be fused
even at the focal plane of the objec-
tive. Try as we might, we won't be
able to separate them.

Now let’s turn our eyes from the
heavens and squint into a micro-
scope. Using the thin-lens approxi-
mation, we can plot the images of
the object formed by the objective
and the eyepiece (figure 3). It’s im-
portant that the object be located

eyepiece

Figure 3



outside the focal point of the objec-
tive to form the real image I’ and
that this real image be located be-
tween the eyepiece and its focal
point to produce the final virtual
image I”.

Geometrical optics yields the fol-
lowing formula for the magnifica-
tion of our simple microscope (fig-

ure 3):
X _ Dg
X F FOb] !

eye

where A is the distance between the
foci of the objective and the eyepiece
and D, is the near point of the eye—
that is, the smallest distance at
which the eye can focus. The magni-
fication of a microscope can be very
large. For example, for reasonable
values Fpi=2mm, F, =15mm, 3=
160mm, and D,=250 mm, the mag-
nification is X/x = 1,333.

It would seem that this isn’t the
limit—we could increase the magni-
fication by improving the quality of
the lenses (through better polishing)
and by eliminating their defects—
aplanatism, astigmatism, chromatic
and spherical aberration, distortion,
and so on. But the wavelength A re-
turns to play its tricks again!

The theory of the resolving power
of microscopes was developed by
Ernst Abbe (see the article in the
July/August 2000 issue of Quan-
tum). Abbe came up with the idea of
looking at a diffraction grating under
a microscope (figure 4). What is the
minimum amount of information
that can be obtained about this grat-
ing? Well, first of all we can try to
determine its period d.

We know that when light of
wavelength A passes through a dif-
fraction grating, it produces a pat-
tern of light with a set of diffraction
maxima. If the light hits the grating
at some angle 6, the directions to
these maximums are determined by
the equation

A,-Ay=dsin®,
= mA. (5)

A microscope will provide infor-
mation about the period d if at least
two beams arrive at its objective,
which correspond to two adjacent

—dsin 6,

Figure 4

maxima of the diffraction pattern
(say, the maxima withm =0and m
= —1). This limiting case with o = 6,
and oo = 0, . is shown in figure 4.
Note that the period d of the screen
to be resolved is very small—on the
order of microns. Compared to such
a tiny size, the objective of the mi-
croscope and its focal length (several
millimeters) are so large that the ob-
jective should actually be drawn far
outside the margins of this
magazine’s pages—at a distance of
several meters. Therefore, the objec-
tive is shown schematically by the
dashed line, and the rays traveling to
it from the screen are drawn almost
parallel.

For the case of two neighboring
maxima, equation (5) yields 2d sin o
= A, where o is the angular aperture.
Thus, at the given wavelength of
incident light, the smallest period of
the screen that can be resolved and
seen with a microscope is d_;
= A/(2 sin o).

We can improve things a bit by
placing a transparent medium with
refractive index n (say, a drop of
some liquid) between the screen and
the objective. As a result, the differ-
ence between the paths will be in-
creased, because in this medium the
speed of light and the wavelength
are smaller by a factor of n, which
gives us

A

d_. =———.
2nsin o

min

Now let’s compare the resolving
power of a telescope and a micro-
scope. To improve this important
parameter in both optical instru-
ments, two opposing requirements
must be met: For the telescope, A/D
= o, should be as small as pos-

sible, while for the microscope,
A/d = 2n sin o should be as large as
possible.

Now it’s clear why telescopes are
constructed with the largest possible
diameter of the input “pupil” (objec-
tive), while microscopes have the
smallest possible focal length of the
objective (to get sin o as close as
possible to 1). In addition, the space
between the objective and the exam-
ined object is filled with some liquid
that has the largest possible refrac-
tive index n (this is the so-called
immersion technique).

What have scientists and engi-
neers achieved in their attempts to
increase the resolving power of op-
tical devices? The largest diameter
of an optical telescope is D ~ 6 m.
Equations (3) and (4) yieldA_. ~ 1077
for the “average” wavelength of vis-
ible light A ~ 0.6 pm. Assuming the
radius of the Universe to be R ~ 1026
m, the minimum distance between
two resolvable points at its “bound-
ary” must be

I ., ~Ra_. ~10Ym.

To estimate the resolving power
of a microscope, we assume sin o, <
1 and n = 1.6 (the refractive index of
an aniline). In this case, equation (6)
yields

doin z% ~01um=10" m.

Now we know the characteris-
tic limits for the functionality of
these wonderful optical instru-
ments. To further improve our
ability to observe both very distant
and very small objects, we must
rely on other techniques (such as
X-ray astronomy or electron mi-
croscopy). Q

Quantum on light diffraction and
interference:

A. Eisenkraft and L. D. Kirk-
patrick, “Color Creation,” Novem-
ber/December 1997, pp. 32-33.

V. Surdin and M. Kartashev,
“Light in a Dark Room,” July/Au-
gust 1999, pp. 40-44.

A. Stasenko, “Physical Optics
and Two Camels,” September/Oc-
tober 1999, pp. 44-47.
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HEN I WAS A KID, I HAD

a hard time remembering

the multiplication table. Of

course, some of it was easy—
2 times 2 is four, 5 times 5 is 25—
but 7 times 8 or 9 times 6 just
wouldn’t settle in my noggin. Here’s
how I calculated such difficult prod-
ucts: 5 times 8 gives 40, and 2 times
8 gives 16, which adds up to 56. But
my teacher wanted quick answers,
so I had to learn the table by heart. I
wasn’t the only one to suffer from
the multiplication table. (And some
people never get over it, to judge
from some of my students at the
Moscow Institute of Physics and
Technology, whose grasp of the
table is rather shaky.)

Eventually Ilearned the multipli-
cation table. It ended up being pretty
useful, and not just to my teacher:
Using this table, I could multiply
any numbers I came across, and
pretty quickly, too.

For many years I was convinced
that it was impossible to multiply
quickly without using the multipli-
cation table. This certainty became
even stronger when I learned the
different multiplication methods
used in India, in China, and in Eu-
rope during the Renaissance.

One day I came across an old Rus-
sian method used by peasants about
two hundred years ago and saw that
it didn’t require any knowledge of
the multiplication table. All one
needed to know was how to mul-
tiple and divide by two and to add
numbers. Here’s how they did it.

Let’s write the numbers on a
single line, one on the left and the
other on the right. We'll divide the
left number by two and double the
one on the right. We'll put the results
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17

13
£ 24

3|68
1]136

221
Figure 1
in a column as shown in figure 1.
When an odd number is divided by
two, we’ll discard the remainder.
When we obtain 1 on the left-hand
side, we eliminate all the rows in
which the left-hand side contains an
even number. We then add up all the
remaining numbers on the right-
hand side. The result obtained is the
product of the two original numbers!
Naturally, I didn’t believe in this
method at first. I began experiment-
ing and multiplied 13 by 17 using
this method. The answer was cor-
rect: 221. Then I changed the order
of the factors and did the multipli-
cation again. The answer was again
correct (figure 2).

17 |13

(o] QL
_—OTZZ0—

A LA

a} 1in4a
T Irow

11208
221

Figure 2

Icouldn’t believe my eyes. It was
like one of those mathematical
tricks where incorrect operations
give a correct answer (see, for ex-
ample, figure 3).

w_1 4&8_4_1
¥ 4 %8 8 2
Figure 3

However, the method turned out
to be quite correct. Before reading
further, try to multiply several pairs
of numbers by this method to con-
vince yourself that it’s valid.

KALEIDOS

Many ways t

And now I'm going to show that
this method always yields a correct
answer.

In earlier issues of our magazine,
articles were published that dis-
cussed the binary system of notation
(For example, “Number Systems”
by I. M. Yaglom in the July/August
1995 issue of Quantum). In this sys-
tem, any number is represented as a
sequence of ones and zeros—for ex-
ample, 32 = 100,000,, 13 = 1101, 17
= 10,001,. The subscript 2 shows
that it is written in binary notation.
These representations are inter-
preted as follows:

32=100,0002=1-25+0-24
+0-22+0-22+0-21 40,
13 = 1101,
21.23+1.224+0.2141,
17 = 10,001,
=1-24+0-23+0-22+0-21 +1.

Under each digit of the binary
representation of 13, let’s write the
corresponding number from the left-
hand column obtained when multi-
plying by the “Russian peasant
method,” and do the same for the
number 17 (figure 4). Do you see a

11]o]1 1[0[0\0\1
113]6]13 1]2]4l8]17
Figure 4

pattern? Yes, you're right. If a cer-
tain place in the binary notation is
occupied by the digit 1, then an odd
number is written under it; other-
wise, this number is even. Try to
prove this fact.

Now I'll reformulate the peasant
rule of multiplication. On the right-
hand side, we write the numbers
equal to the second factor multi-
plied by 2 raised to a power thatis 1

| S —
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10 multiply

|

less than the number of the row in
which the number is written. Then
the result is multiplied by 1 if the
corresponding number in the left-
hand column is odd, and by 0 if it is
even. To make this clearer, I suggest
that we add one more column be-
tween the first two and write in it
the remainder upon division of the
corresponding number on the left-
hand column by 2 (figure 5). Thus, in

Figure 5

essence, the peasant method of mul-
tiplication suggests that the right
and middle columns are multiplied
row by row, and the results are com-

bined. In our example of multiplying
13 by 17, we have

17-1-1+17-0-2+17-1-22+17-1-23
=17(1+0-2+1-22+1-29
=17.1101, =17 -13.

Multiplying the factors in reverse
order, we have

13-1-1+13-0-2+13-0-2?
+13-0-23+13.1.24

=13(1+0-2+0-22+0-2%3+1-24
=13-10001,=13-17.

We see that the peasant method
of multiplication is based on repre-
senting one of the factors in binary
form. Isn’t that simple and elegant?

Now let’s see how well this
method works for larger numbers—
say, 567 and 3,984. At the left of fig-
ure 6 we give the peasant method of
multiplying these numbers, and at
the right we give the conventional
method. We see that in the conven-

567 3984
283 7968
141 15936
—0—31872-
35| 63744 <067
17| 127488 3984
—8 254076 , 2268
—4+—509059 , 4536
—211019904- |, 5103
1| 2039808 1701
2258928 2258928
Figure 6

tional method, less addition is re-
quired, but the summands are ob-
tained in a more complex way. With
the peasant method, what we gain in
simplifying the calculations we lose
in time, so that the conventional
method is perhaps better.

“No!” say those who are not on
good terms with the multiplication
table. “With the peasant method you
don’t have to memorize any tables,
and that’s certainly worth some-
thing!” Well, I can present the fol-
lowing argument in favor of the
multiplication table: It would be in-
convenient to take a pen and a piece
of paper or look for a copy of the

213(4|5]6|7|8]9]10
416 (8|10]12|14|16|18]|20
6
8

9 [12[15/18 (21|24 |27]30
121620 (24 |28 |32 |36 |40
10 15 |20 |2

45150

40

O[N] |~ |W||—

12|18 ]24 5460
14|21 6370
1624 |3 7280
18 27 81|90
102030 90 |100
Figure 7

“Pythagorean table” (figure 7) to cal-
culate how much 8 pies would cost
at 70 cents each.

This table really is ancient: The
Pythagoreans used it more than
2,000 years ago. (Recently, the
Tashkent mathematician A. Aza-
mov noticed an interesting property
of this table: If we choose four num-
bers from the table whose positions
form the vertices of a square, and
there is a number at the center of the
square as well, then the number in
the center is the arithmetic mean of
the numbers at the vertices. For ex-
ample, for the numbers that are
highlighted in figure 7, we have 42
= (25 + 48 + 63 + 32)/4.)

Over several thousand years of
mathematical study, many methods
of doing multiplication were in-
vented. Around the turn of the 16th
century the Italian mathematician
Luca Pacioli presented eight differ-
ent methods in his treatise on arith-
metic. Here I'll describe two that I
find most interesting.

In the first method, called a small
castle, the digits of the upper num-
ber are multiplied by the lower
number one by one, beginning with
the most significant one, and writ-
ten in a column (figure 8).

3984
e
1701000
* 510300
45360
. eg
2258928

Figure 8
CONTINUED ON PAGE 49
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PHYSICS
CONTEST

The fundamental particles

by Larry D. Kirkpatrick and Arthur Eisenkraft

HE SEARCH FOR THE FUN-

damental building blocks in na-

ture has gone on for more than

two thousand years. Aristotle
felt that all the materials around us
were composed of varying quantities
of four basic elements—earth, fire,
air, and water. In hindsight, this may
seem simplistic. How can the
myriad of properties of these mate-
rials arise from only four basic ele-
ments that don’t share these proper-
ties? Is this any more strange than
believing that everything is com-
posed of chemical elements? For in-
stance, hydrogen—a very flammable
substance, and oxygen—a gas re-
quired for combustion, combine to
form water, which is used to put out
fires!

With the number of chemical el-
ements exceeding one hundred, it
was quite comforting to discover a
hundred years ago that atoms were
composed of three more basic par-

ticles—electrons, protons, and neu-
trons. For instance, the most com-
mon neutral atom of carbon is com-
posed of six electrons, six neutrons,
and six protons. Combinations of
only three basic particles determine
the myriad of chemical properties
that exist in nature.

Beginning in 1932, scientists dis-
covered many new “elementary par-
ticles” such as the muon, the pion,
and the kaon. In 1932 the first of the
“antiparticles” was discovered. The
positron is just like an electron, ex-
cept that it has a positive charge.
Over the next few decades more
than a hundred new particles were
discovered, leading to renewed ef-
forts to find a simpler set of funda-
mental building blocks.

The elementary particles are
grouped into two families—the Iep-
tons and the hadrons. The lepton
family has six members: the elec-
tron, a heavy electron known as the

muon, a still heavier elec-

tron known as the tau, and
three neutrinos, one asso-

ciated with each of these
“electrons.” It is currently

believed that these six par-

ticles are truly fundamen-
tal, as they do not show

any internal structure.
The other elementary

particles are composites.
Murray Gellmann and

George Zweig hypoth-

Name | Symbol | Charge Other
Down d 3,
Up u +2/,
Strange s —!/, | Strangeness = —1
Charm c +2/, Charm = +1
Bottom b -!/, | Bottomness = +1
Top t +2/, Topness = +1
Table 1
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esized that these particles
are combinations of more

fundamental particles known as
quarks. Theorists believed (and still
believe) that there should be one
quark for each lepton. Therefore, it
was very comforting to discover six
quarks. In order to account for the
known hadrons, the quarks must
have baryon number !/;, spin 1/,,
and the properties given in table 1.
Let’s look at an example of how
this works. The proton is a baryon
with a spin of !/, and charge of +1. All
baryons are composed of three
quarks—hence the assignment of
baryon number !/, to the quarks.
Each quark has a spin of !/,. If two of
these are aligned in one direction and
the third is aligned in the opposite di-
rection, they can combine to form
a particle with a spin of !/, if the
quarks have no orbital angular mo-
mentum. This leaves us with obtain-
ing the correct charge. We see that
the combination uud has a charge of
+1. We could coneeivably use some
of the other quarks but the proton is
the lightest baryon and we expect it
to be composed on the lightest
quarks, the up and down quarks.
The antiproton is an antibaryon
and is composed of three antiquarks.
Antiquarks have the same proper-
ties as the quarks, but many of these
properties have the opposite sign, in
particular, the baryon number, the
charge, and the “other” properties in
table 1. The composition of the an-
tiproton is just like that of the pro-
ton except that all of the quarks are
replaced by the corresponding anti-

Art by Tomas Bunk
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Name Symbol | Baryon Spin Charge Strangeness
Neutron n +1 ', 0 0
Pi minus T 0 0 -1 0
K zero K° 0 0 0 +1
Lambda zero A° +1 Yy 0 -1
Antineutron n -1 ', 0 0
Xi minus E” +1 ', -1 -2
Table 2

quark. Therefore, the composition
of the antiproton is Tud, where the
overbar indicates an antiquark. This
yields a baryon number of -1, a spin
of 1/,, and a charge of -1.

The members of the other sub-
family of hadrons are known as me-
sons. Mesons are composed of a
quark and an antiquark, which
yields a baryon number of zero. For
example, a positively charged pion
has a spin of a zero and a charge of
+1. Verity for yourself that ud has
the correct properties. To get a spin
of a zero, the spins of the two quarks
must be aligned in opposite direc-
tions.

The positively charged kaon is a
meson with a spin of zero, a strange-
ness of +1, and a charge of +1. Its com-
position is us. The neutral pion is an
interesting case as it is composed of
two combinations, ull and dd.

A. What combinations of up,
down, and strange quarks make up
the particles in table 22

There is one problem that we've
not mentioned. The omega minus
(@] is a baryon with a spin of 3/, and

a strangeness of —3. The only combi-
nation of three quarks that gives the
correct properties is sss. In order to
get the spin of 3/, all three of the spins
need to point in the same direction.
This is the root of the problem. The
Pauli exclusion principle says that no
two quarks in a hadron can have the
same set of properties—that is, none
of the quarks can have the same set
of quantum numbers. But, in the Q-
the three quarks have the same set of
quantum numbers.

This led to the idea that there
must be another quantum number
that describes the quarks. This
quantum number is known as color,
and has three values. But, in this
case, the values are not numbers.
They are called red, green, and blue.
If we think of these quantum num-
bers as combining like colored
lights, all hadrons must be white.
Therefore, one of the strange quarks
in the Q- must be red, another green,
and the third blue.

The antiquarks have the compli-
mentary colors; the antired quark is
cyan, the antigreen quark is ma-

Name Symbol | Baryon Spin Charge Strangeness
Neutron n +1 Y, 0 0
Antineutron n -1 ', 0 0
Pi minus T 0 0 -1 0
Xi minus c +1 L, -1 -2
Delta plus plus AT +1 Al +2 0
Antilambda A0 =1 1y, 0 +1
Table 3
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genta, and the antiblue quark is yel-
Iow. Therefore, the positive pion is
a combination of

Uyed d +u dmagenta T Upue d

cyan green yellow*

B. What combinations of up,
down, and strange quarks make up
the particles in table 32

Please send your solutions to
Quantum, 1840 Wilson Boulevard,
Arlington, VA 22201-3000; within a
month of receipt of this issue. The
best solutions will be noted in this
space.

Curved reality

In the September/October issue
of Quantum, we began the explora-
tion of shapes found in nature.
These shapes included the straight
lines of falling objects, the parabolas
of trajectories, the circles of charged
particles trapped in a magnetic field,
the ellipses of planets orbiting the
Sun, the hyperbolas of alpha par-
ticles scattering off a nucleus, and
the cycloid traced out by a rolling
wheel.

In Part 1 of the problem, we asked
you to derive an equation for a tra-
jectory that has a frictional force
proportional to the velocity and to
sketch the paths for different values
of the proportionality constant b. It
is probably best to begin with the
one-dimensional problem of an ob-
ject falling with a retarding force.
The total force on the ball is

F=mg-bv,

where the constant b depends on the
size and shape of the object and the
viscosity of air. Putting this force
into Newton’s second law, we have

dv
m-—=mg - bv.
dt
Separating the variables and as-
suming that the initial velocity is
zero, we obtain

v dv bt
——=——| dt.
-[o v —(mg/b) mjo
We now integrate and solve for v:

= %(l—e_bt/m).

1%
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As t gets large, the velocity ap-
proaches mg/b, which is called the
terminal velocity.

In the two-dimensional problem,
we realize that the initial velocity
will not be zero and that when the
object is ascending, the air resis-
tance opposes the rise and when the
object is descending, the air resis-
tance opposes the fall. Since the ve-
locity has a horizontal component,
there will be an air resistance in the
horizontal direction as well as in the
vertical direction.

The appropriate equations for an
object traveling in the xy-plane are:

v
der dt
and
d’y dy
mZZ—tT =-mg-— bE.

Assuming that the object starts from
the origin, the solutions of these
equations for velocity and position
are:

Ve =V 0e oM,
x = MV g (l_e—bt/m)/
b
2,
mrg My —bt/my 11§
Y - 1 =2
y { 5 5 j( ) 7,

60 70 80 90 100 X

In the same way that we elimi-
nate t and combine the equations to
find that trajectories with no air re-
sistance travel in parabolas, we find
that the equation for the trajectory
with air resistance is

V
- [;ﬂg_ . LOJX
bVXO Vx0
_ ng In ) )
p? mv,, —bx

We can graph this equation for dif-
ferent values of b using a graphing
calculator or a spreadsheet.

As we can see from the graph in
figure 1, the trajectory approximates
a parabola for low air resistance (b =
0.1) but for larger air resistance (b =
0.7), the path falls off more rapidly
than a parabola. If you crumple a
piece of paper and toss it at an angle,
you will see that the path is quite
similar to that of our theoretical cal-
culation.

Part 2 of our problem asks about
the path of a charged particle enter-
ing a region of crossed electric and
magnetic fields. If the particle were
to travel in a straight line without
any deflection, then the speed must
be equal to E/B. We can show this
quite simply by asserting that for the
net force on the particle to be zero,
the magnitude of the electric force
must equal the magnitude of the
magnetic force:

gE = gvB,
and therefore
E
v=.
B

In part B, we asked what would
happen if the particle entered the
region of crossed fields in the oppo-
site direction. In this case the par-
ticle would no longer travel unde-
flected since the direction of the
electric force would be the same but
the direction of the magnetic force
would be reversed.

Part C asks what the path of the
particle would be if it traveled at a
speed other than E/B. Qualitatively,
we can look at a laboratory frame
that moves at a speed of E/B. In this
frame, the particle will move in a
circle. We can show this by looking
at the general force equations for the
particle, changing reference frames,
and analyzing the resulting equa-
tions.

Using the orientations indicated
in figure 2, we have

- vyB
m
and
a, = —iv B.
y X
m

.

Changing to a reference frame that
moves with speed E/B in the nega-
tive y-direction requires the follow-
ing equations:

and
E
Vy = —E + Vy/
CONTINUED ON PAGE 37
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LOOKING BACK

From the pages of history

ANY NEWSPAPERS AND

magazines have a column

where they reprint stories

that appeared in their publica-
tion a hundred years ago. There the
reader is entertained with interest-
ing or even bizarre (to modern eyes)
things that went on in the “good old
days.” Quantum has a long way to
go before its centenary, so it’s a little
premature to use such a headline.
Still, let’s imagine what a magazine
like ours would have written a hun-
dred years ago.

At that time the phenomena of
superconductivity and superfluidity
were not yet discovered, and nobody
was aware of the possibility of con-
structing lasers, thermonuclear reac-
tors, artificial satellites, and rocket
ships. So it may seem at first glance
that, for inquisitive students in the
year 1901, there wasn’t anything to
read about. And yet they did read,
and with great success, because at
that very time a generation of re-
markable physicists was coming of
age—a generation that created mod-
ern physics.

Recently I came across an old,
beat-up copy of Bruno Donath’s
Physikalisches Spielbuch fiir die
Jugend (spiel = to play, Jugend =
youth—TI'll leave it to you to deci-
pher the rest), which was published
at the end of the 19th century. In
those days the study of physics was
based mainly on laboratory demon-
strations, which were both engaging
and instructive.

34 MARCH/APRIL 2001

by A. Varlamov

Presented below are descriptions
of some of the engaging experiments
presented in this wonderful book.

A fountain that Spurts on command

The design of such a fountain is
shown in figure 1. A retort A (with
a volume of about 1 liter) has two
openings, one on top and one on the
side. It’s placed on a support B lo-
cated near a reservoir C, which col-
lects water. Both openings are
stopped with rubber plugs in which
the curved tubes a and b are in-
serted. Tube b is the main outlet of
the fountain, while tube a (whose
end almost reaches the bottom of
the reservoir) plays the role of an
improvised stopcock.

If tube a is open, air enters the
retort, and water freely runs out of
it through tube b, thereby raising the
level of water in the reservoir. As
soon as the water level reaches the
opening of tube g, the influx of air is
stopped and water doesn’t run any
more—the fountain dries up!

Figure 1

In order to revive it, one must
open the end of pipe a. Pipe ¢, lo-
cated at the bottom of the reservoir,
serves just this purpose. If its diam-
eter is smaller than that of tube b,
the flow of water into the reservoir
is greater than the flow of water out
while the fountain is in operation.
This means the opening of tube a
will be closed at some moment and
the fountain will immediately stop
working. When enough water has
run out of the reservoir, the fountain
will start working again.

If we hide the internal mecha-
nism of our fountain from the spec-
tators—for example, by pasting pa-
per around the retort—we can use
the demonstration as a trick. What
we need is to reverse the cause and
effect. Although in reality the be-
havior of the fountain doesn’t de-
pend on what you say, you can peek
at the opening of pipe a and say, at
the appropriate moments: “Foun-
tain, spurt! Fountain, stop!”

Speaiing doll

This experiment is based on the
wave nature of sound. To perform it,
we need to prepare two concave
spherical mirrors with a radius of
curvature of about one meter.

Since these mirrors must reflect
sound instead of light, there is no
particular need to polish their sur-
faces. It’s enough to make the size of
the wrinkles and irregularities far
less than the wavelength of a sound
wave. The characteristic wave-

Art by Vasily Vlasov
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lengths of human speech range from
dozens of centimeters to several
meters, so the irregularities of the
mirror’s surface must not be greater
than 1-2 cm. (See if you can come up
with a similar estimate of acceptable
roughness for optical mirrors.)

It isn’t hard to make a sound mir-

ror. Take a piece of cardboard and-

cut it into identical acute isosceles
triangles (the more the better). Con-
struct a pyramidal surface with
these triangles by stitching the
pieces together (figure 2). Longer tri-

Figure 2

angles will yield a wider mirror. For
our experiment it’s sufficient to use
triangles with lateral side lengths of
about 30-40 cm.

Moisten the stitched cardboard to
make it soft and stretchable, and
then press it against a large flat plate.
Finally, flatten the irregularities and
finish the surface with a template,
which you can also make yourself.
Here’s how. Draw an arc of radius 1
m on a piece of cardboard about 70
cm long and about 30 cm wide so
that the entire length of the card-
board piece is covered (figure 3).

% 30 cm

Figure 3

Now carefully cut out the segment
of the circle obtained—there’s your
template. Insert the template into
the mirror and form its surface so
that you can freely rotate the tem-
plate without catching on any ir-
regularities. Now put the mirror in
the shade to dry.
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For our experiment we need two
mirrors that are as close to identical
as possible. Hang them up on oppo-
site walls in two adjacent rooms,
one facing the other with a door in
between. The distance between the
mirrors can be as much as 10 m.
However, the mirrors must be
strictly lined up or the experiment
won’t work. To check this, place an
analog watch at the focal point of
one mirror (situated at a distance
equal to half the radius of the mir-
ror from the mirror’s apex). Its tick-
ing should be loudest at the focal
point of the second mirror.

After you’ve tuned the acoustic
system, put a doll or statuette at the
focal point of one mirror and tell
your friends that this doll can an-
swer any question whispered into its
ear. You should hide the second
acoustic mirror from the audience
(for example, screen the doorway
with a cloth or brightly illuminate
the room containing the doll while
leaving the adjacent room dark-
ened).

Of course, you cannot perform
the trick alone—your able assistant
must be near the distant hidden
mirror. In the adjacent room your
helper will hear everything that is
whispered into the doll’s ear and
will answer the questions. The an-
swers will be heard near the doll,
creating the illusion of a speaking
creature.

This isn’t hard to explain (when
the time comes to explain it). If the
source of a sound is at the focal point
of one mirror, the sound waves will
reflect from it and produce a sound
beam traveling parallel to the axis of
our system. When this wave arrives
at the second mirror, it will be con-
centrated at the focal point of this
mirror.

Even better results can be
achieved by your partner with a
megaphone instead of a hidden mir-
ror. The megaphone can be used
both to intercept the questions and
to whisper the answers. In this case,
the effect of the trick will be even
stronger, because the megaphone
not only amplifies the sounds, it also
distorts them.

Singing gohlet

You can produce various musical
sounds with a thin-walled goblet,
and not just by tapping it. How?
Read on!

Wash your hands with hot water
to remove the oils from your fingers.
Dip your finger into some water and
carefully run it over the rim of the
goblet, wetting your fingers repeat-
edly. At first the goblet will give off
unpleasant, squeaky sounds. How-
ever, when the brim is well rubbed,
the sound will be more pleasant and
tuneful. By changing the pressure of
your finger, you can vary the tone of
the goblet’s song. In addition, the
pitch of the tone depends on the size
of the goblet, thickness of its wall,
and amount of liquid in it.

By the way, not every glass can
produce pleasant melodic sounds, so
your search for a suitable goblet
might be long and vexatious. The
best melodic (nonsqueaky) sounds
are generated by very thin, high-
quality goblets in the shape of a pa-
raboloid with a long, thin stem. The
pitch can be changed by adding liq-
uid to the glass—more liquid yields
a lower pitch.

Here’s another curious property:
If the water level rises to the middle
of the glass, ripples appear on the
liquid’s surface, generated by the
vibration of the goblet’s wall. The
ripples will be most pronounced
near your moving finger.

It’s interesting that Benjamin
Franklin (1706-1790}—who in addi-
tion to his fame as a statesman was
known worldwide for his discovery
of atmospheric electricity and in-
ventions such as the lightning rod
and the modern chimney—created a
strikingly original musical instru-
ment based on the singing glass phe-
nomenon. He took a set of well-pol-
ished glass cups, drilled holes
through their centers, and attached
them to a shaft, spacing them
equally. This system was rotated by
a pedal drive (similar to that of a
sewing machine). Touching the ro-
tating cups with wet fingers pro-
duced a wide range of sounds, from
a fortissimo to a hushed whisper.




It’s hard to imagine how this won-
derful musical instrument sounded,
but those who heard it said the har-
mony of sounds had a tremendous
effect on both the player and the au-
dience. In 1763 Franklin presented
this musical wonder to an English
woman by the name of Davis. She
demonstrated this instrument in
many European countries before it
disappeared forever without a trace.

A mirror that doesn't confuse “left”
and “rigt”

Take two ordinary flat mirrors
without frames and set them at right
angles to each other with their edges
touching and their reflecting sur-
faces inside. Now look into such a
compound mirror along the bisector.
You'll see your own image. Close
your right eye—the image will do
the same. Lift your left arm up—the
image will repeat your movement
and raise its left arm. You see, this
optical device is a “perfect” mir-
ror—it doesn’t confuse “left” and
“right.” How does it manage it?

The answer is simple. You can’t
observe the image of your left side

in the left mirror, because the law
of reflection says that it reflects the
beams not to you but to its neigh-
boring mirror. The right mirror pro-
duces the final image of the left part
of your body, which consequently
will be located on the right. In other
words, the mirrors “exchange” im-
ages, so the final image results from
two reflections instead of one pro-
duced by a common mirror. There-
fore, the left side of an object will
be naturally transformed into the
left part of the image, and vice
versa.

Now let’s gradually increase the
angle between the mirrors. At first,
the middle part of your face with
your nose will disappear; then you’ll
see your own ears only, and at some
angle the image will disappear en-
tirely. However, when the angle be-
tween mirrors reaches about 180°,
the familiar image of your face will
appear in the flat mirror.

The experiment can be carried
out in reverse order. Obviously the
chain of events will be reversed:
First your face widens, then your
nose swells, your mouth stretches,
a third eye appears at the top of your

nose... and so on. Try to understand
the strange behavior of the image
and plot the path of the light rays in
this mirror system for various angles
between the mirrors.
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where the primed variables refer to
the moving reference frame.

Substituting these expressions
into the acceleration equations, we
get

, _[aB) ., . gB) _,
=L =[-L . (1
(L @=L

These are the equations for a
circle (the acceleration is perpen-
dicular to the velocity and the veloc-
ity is constant).

If we choose a particle having a
velocity other than E/B, the path of
the particle will be a cycloid, the
same curve as a point on a bicycle
wheel rolling with uniform speed
E/B. This can be shown by assuming
that the particle is at the origin and
at rest in the laboratory frame. The
particle will begin to accelerate due
to the electric force in the x-direc-

tion. Once it has a velocity in the x-
direction, it will then be deflected by
the magnetic force. It will travel in
a cycloid finally coming to rest again
at a point on the y-axis where its
motion will be repeated.

We can prove this mathemati-
cally. By “guessing” the solutions to
equation 1, we can then transform
the solution back to the laboratory
frame and analyze the final equa-
tions. Our “guess” at the solutions
of equation 1 satisfying the initial
condition that the speed in the x-
direction is 0 and the velocity in the
y-direction is E/B are

We can take the derivative of
these equations and substitute back

into equation 1 and see that they are
solutions. Transforming these equa-
tions back into the laboratory refer-
ence frame, we arrive at

E . (qBj
v, =—sin| =— |t,
B m

E [qBj E
Wy = —C08| == [E——.
B m B

Integrating these equations, sub-
stituting ® = gB/m and R = E/wB,
and using the initial conditions that
x=y=0att=0yields:,

x =1(1 - cos wt),
y = r{-ot + sin ot).

These are the equations of a cy-
cloid as shown in the article. The
resulting path of the particle will
be a cycloid having loops, cusps, or
ripples, depending on the initial
conditions and on the magnitude
of E. Q
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PROBLEM
PRIMER

Exploring every angle

OW MANY SOLUTIONS

does a problem have? Why is it

important to find different so-

lutions to a single problem?
Why aren’t we satisfied sometimes
with the solutions we’ve already
found, and it is worthwhile to look
for another one?

In finding multiple solutions to a
problem, we can develop a deeper
understanding of the subject matter.
Searching for multiple solutions to
a given problem helps one develop
problem-solving ability and flexibil-
ity. The process can also stimulate
imagination and creativity, as well
as build a broad base of experience
from which to draw in solving more
difficult problems.

In this article we pose one inter-
esting construction problem and
several approaches to its solution.

Problem. Given an angle with an
inaccessible vertex O, arbitrary
points K and N on different sides of
the angle, and a point M that is in-
terior to the given angle, construct
the line passing through points O
and M.

Before considering any solutions
to the problem, I'd like to emphasize
that point O must not be used—this
point is inaccessible. What I find at-
tractive in this particular problem is
that one might have to solve it in
real life, perhaps in constructing a
building, in geological field work, or
in surveying (geodesy).

Solution 1. Construct the perpen-
dicular to ON through M and denote
the point of intersection by A (figure
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by Boris Pritsker

Figure 1

1). Construct the perpendicular to
OK through M and denote the point
of intersection by B. The right tri-
angles OAM and OBM have a com-
mon hypotenuse OM; therefore,
points A, M, B, and O lie on the
circle whose center is at the mid-
point of OM and whose radius is
1/,0OM. We now find the circum-
center of the triangle ABM, which
coincides with the center of circum-
scribed circle of triangles OAM and
OBM. Tt is the point of intersection
of the perpendicular bisectors of AM
and BM—ypoint H. Thus MH is the

desired line.
esired line "

@) K B K

Figure 2

Solution 2. Construct MA Il OK
and MBIl ON. Then OAMB is a par-
allelogram (figure 2). The diagonals
of a parallelogram bisect each other.
So if we find the midpoint of the di-
agonal AB (point H), it must be also
the midpoint of the diagonal OM.
Line MH is the desired line.

Solution 3. Construct MA Il OK
and MB Il ON. Draw line N’K’ par-
allel to AB through M (figure 3).

Figure 3

Then we can show that M is the
midpoint of segment N'K’. Indeed,
AN'MB is a parallelogram, so AB =
MN’, and AMK'B is a parallelogram,
s0 AB = MK’. Thus MN’ = MK’. Simi-
larly, by choosing another pair of
parallelograms, we can show that A
is the midpoint of ON’ and B is the
midpoint of OK’. Thus K’A and N'B
are medians of triangle ON'K".The
point of their intersection H is the
centroid of that triangle, and its
third median OM must also pass
through H. Thus MH is the desired
line.

Solution 4. First we prove a
lemma:

Lemma: In any trapezoid, the
midpoints of the bases are collinear




with the point of intersection of the
diagonals, and also with the point of
intersection of the two non-parallel
sides.

Figure 4

Proof: Let the trapezoid be K’N’PF
(see figure 4), and let H and O be the
intersection of the diagonals and of
the nonparallel sides, respectively.
Suppose OH intersects base N’K” at
point M. We use a succession of
similar triangles.

From similar triangles K’MO and
PEO, we have

K'M _OM
PE  OE’
From similar triangles MON’ and
EOF, we have
OM MN’
OE EF
From similar triangles K’HM and
FHE, we have
K'M MH
EF  EH'
From similar triangles MN'H, EPH,
we have

MH MN’
EH PE
Multiplying together these in-
equalities, and canceling some
terms, we find that K’M?/(PE - EF) =
MN"/(PE - EF), which implies that
K’'M = MN’, or M is the midpoint of
K’N’. The proof that E is the mid-
point of FP proceeds analogously.
Now we turn to the solution of
our problem. Using the method of
solution 3, we construct segment
N’K’ through point M such that M is
its midpoint, and its endpoints are
on the sides of the given angle (fig-
ure 4). Draw an arbitrary segment
FP, parallel to N’K’ with its end-
points on the sides of the given

angle. Then FN’K’P is a trapezoid. If
H is the intersection of N’P and FK’,
then our lemma says that line HM
will pass through point O.

Solution 5. Construct an arbitrary
triangle MAB with vertices A and B
on sides ON and OK, respectively,
of the given angle (see figure 5). Pick
any point C on segment OA, and

N
A

Figure 5

draw CD parallel to AB (where D
lies on line OB). Draw the line par-
allel to AM through C and also the
line parallel to MB through D. Sup-
pose these two lines meet at point E.
We will show that line ME passes
through point O, solving our prob-
lem.

Indeed, triangles COD and AOB
are similar, so CD : AB=OD : OB.
Triangles CDE and ABM are simi-
lar, so CD : AB = DE : BM. Thus
OD : OB = DE : BM. By construc-
tion, LODE = ZOBM. Now tri-
angles ODE and OBM are similar
because they have an angle in com-
mon, and the sides which include
this angle are in proportion. This
means that /DOE = ZBOM. Since
points O, D, and B are collinear, it
follows that points O, E, and M
must also be collinear, and ME is the
required line.

o
Figure 6

Solution 6. This solution uses ro-
tation by 90° about point M (figure
6). Suppose such a rotation takes the
given angle NOK into the angle
N’O’K’, where N’ is on ray OK.
(Note that this rotation can be per-

formed without knowing where
point O is: We merely rotate the ac-
cessible portions of the angle’s
sides.) Then OM is perpendicular to
MO’. Suppose line O’M intersects
ray ON at point X, and OK at point
Y. Consider triangle OXY, and draw
its altitudes XX’ and YY’. Since OM
is perpendicular to XY (which is the
same line as MQ’), OM is the third
altitude of the triangle. Since the al-
titudes of triangle OXY intersect at
point H, we can draw line MH and
it will pass through point O. Thus
MH is the desired line.

N

Figure 7

Solution 7. This time we rotate
by 180° about point M (figure 7).
Angle NOK (even if we cannot ac-
cess its vertex) is taken into some
angle FO’F’, where F is on ray ON
and F’ on ray OK. (Again, we can
construct this parallelogram with-
out accessing point O.] Then
OFQO'F’ is a parallelogram, and point
M is the midpoint of diagonal OO".
Hence line O’M passes through
point O and solves our problem.

In conclusion, it’s worthwhile to
compare the solutions offered here.
In my opinion the most elegant is
solution 1, but solutions 2 and 7 are
casier to follow and require fewer
steps to construct; they also use
more elementary ideas. Solutions 3,
4, 5, and especially 6 may seem
more difficult. However, they are
also very useful in developing think-
ing skills and creativity.

In discovering new solutions to
these problems, we may be led to
find interesting generalizations. We
can, for example, combine the re-
sults of solutions 1, 3, and 6 to show
that the circumcenter, centroid, and
orthocenter of any triangle are col-

CONTINUED ON PAGE 41
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IN THE OPEN AIR

Hights of fancy?

by V. Drozdov

Art by Sergey lvanov

LTHOUGH THE USE OF
bows and arrows as weapons
stopped long ago, bows and ar-
rows still remain favored toys
of children and are used in special
hunts and Olympic competitions. It
was recently reported that an arrow
shot from a distance of 536 meters
hit the bull’s-eye. Compare this
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value with 50 meters, which is an
approximate range for an arrow shot
from a homemade bow.

Let’s evaluate the capacity of a
military bow applying the laws of
physics. All the data that are needed
to characterize the bow may be
found in the literature. Usually
bows are subdivided according to

the force Fneeded to draw a bow full
length. In the British classification
there are bows of small, medium,
and large tension. In modern units
this subdivision corresponds to
forces of 648, 864, and 1079 N. As a
rule, the length I of an arrow is 60—
100 cm, while its diameter d varies
from 0.5 to 1.2 cm.



Let’s assume that a bow is an
elastic body that obeys Hooke’s law.
Conservation of energy tells us that

In_v(zJ B F(Z - h)
2 2
where v, is the initial speed of an ar-
row with mass m, h is the maximal
bending deflection of the bow (for
definiteness we assume h = 1/2).

Clearly, the flight of an arrow is
greatly affected by air resistance
(otherwise, why would an arrow
have a fletching?). Since it is not a
simple matter to calculate air resis-
tance precisely, we shall give only a
rough estimate that will not differ
greatly from the experimental data.

Let’s evaluate the maximum
range L with the help of the follow-
ing reasoning. Physics textbooks
show that in the absence of air resis-
tance the maximal range of a body is
v¢/g (prove this on your own). The
maximal altitude that can be at-
tained by a body thrown vertically
upward at the same speed is v/(2g),
which is half the distance. Let’s as-
sume that the same ratio is valid
when air resistance is taken into
account. This is a reasonable hy-
pothesis, because air resistance af-
fects both the vertical and the hori-
zontal motion.

First, consider the motion of an
arrow shot vertically upward. The
height of its trajectory can be deter-
mined from energy conservation

mv}?
mgH - 0 =—w,

2
where W is the work performed by
air resistance during the upward
flight of the arrow. When the speed
of the arrow is large (although far
less than the speed of sound), the air
resistance is proportional to the
square of the speed: F, = kv2. Since
we are only estimating the range, we
need not calculate the work W pre-
cisely. Assume that

W= _Fr meanH’
where
kv}
Fr mean — T

is the “mean” air resistance.

We then find that

2
=20
2g+—vE

m

Accordingly, the maximal range of
the arrow is

2
[=—20

LI
4 om0
It can be easily shown that although
the speed affects both the numerator
and the denominator, the maximal
range increases monotonically with
the initial speed (this confirms the
validity of our estimation).
The proportionality factor k is

usually written as

k= gpS,

where p is the density of the me-
dium, S is the maximal cross-sec-
tional area of the body in the plane
perpendicular to its velocity, and ¢
is a dimensionless factor (as a rule,
¢ < 1). Note that the proportionality
of the resistance to the product pSv?
can be established by dimensional
analysis. Note also that the air resis-
tance is frequently mentioned in our
discussions in Quantum (see the
references below).

It is clear from experience that if
the velocity of the arrow is parallel
to its length, the air resistance is
minimal and S = nd?/4. In contrast,
if the velocity of the arrow is perpen-
dicular to its length, the air resis-
tance is maximal, and S = Id. During
the flight of the arrow, the angle be-
tween the arrow and its velocity
constantly changes. What value of S
should be used in the calculations?
We allow for these factors by setting
¢=1and S = nd?/4.

In this connection, we note that
the head of the arrow has two func-
tions. It is not only a “warhead” but
it also increases the range by de-
creasing the angle between the ar-
row and its velocity (this can be eas-
ily proved experimentally).

For our calculations we use the
parameters for three oak arrows
(table 1): a short arrow (I = 60 cm, d
= 0.5 cm, arrowhead mass 3 g) used

short | medium | long
arrow | arrow | arrow
mlg | 1124 | 3576 | 84.13
v, (m/s) | 131.5 98.3 80.1
L (m) 885 655 509.6
Table 1

with a small-tension bow; medium-
length arrow (1= 80 cm, d = 0.85 cm,
arrowhead mass 4 g) used with a
medium-tension bow; and long ar-
row (I = 100 cm, d = 1.2 cm, arrow-
head mass 5 g) used with a strong-
tension bow. We see that the range
discussed at the beginning of this
article is quite realistic. Q)

Quantum on aeromechanics and
aerobraking:
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rent,” May/June 1996, pp. 22-29.

A. Eisenkraft and L. D. Kirk-
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A. Mitrofanov, “Satellite Aerody-
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1999, pp. 18-22.
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March/April 1999, pp. 21-23.

CONTINUED FROM PAGE 39

linear. These three points form the
so-called Euler line. The reader may
enjoy proving that the centroid di-
vides the distance from the ortho-
center to the circumcenter in the
ratio 2:1. It would be interesting to
find several different proofs of this
fact.

We learn from solutions 3 and 6
how to construct the segment
whose endpoints are on.the sides of
the given angle, passing through the
given point inside the angle such
that this point bisects the segment,
and how to construct the line pass-
ing through a given point inside a
given angle and perpendicular to
the line connecting the vertex of
the angle and the given point. I be-
lieve it would be a good exercise to
tind other solutions to these prob-

lems. O
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IN THE LAB

Lsing cents to sense surface tension

by Mary E. Stokes and Henry D. Schreiber

HEN IS A CUP OF WATER

really full? Suppose you fill a

cup with water so that it ap-

pears full, and you think the
cup will hold no more. Then, add
pennies one at a time to the cup.
You discover that you can add quite
a few pennies before the water over-
flows. The cup was not as full as you
initially thought.

Experiment 1

Fill a 3-ounce plastic cup with
water until the surface of water is
level with the rim of the cup. Care-
fully add one penny at a time until
the water overflows. Record the
number of pennies that you added.

Imagine the water as consisting of
an inconceivably large number of
tiny molecules. Further, imagine
each water molecule being strongly
attracted to other water molecules.
Consequently, the molecules exist
as an interconnected network, not
as isolated molecules. The attrac-
tion among water molecules is, in
fact, so great that the water’s surface
tends to repel anything that tries to
break into their network.

Figure 1. Intermolecular attractions
at the surface versus those in the

interior of a liquid.
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A water molecule in the interior
of this network experiences strong
intermolecular attractions in all di-
rections, as shown in figure 1. How-
ever, a water molecule at the surface
is different. It is attracted only to
neighboring molecules at the sur-
face and to those molecules beneath
the surface. The net inward force on
the surface molecules results in sur-
face tension, or a surface “skin” on
the water. The formal definition of
a liquid’s surface tension is the work
required to increase the surface area
by one unit. Alternatively, if you
move a line segment perpendicular
to itself in order to increase the sur-
face area, you can envision the sur-
face tension as the force opposing
the line’s movement.

The greater the attraction of one
molecule to another in the liquid,
the greater the liquid’s surface ten-
sion. Water molecules will do al-
most anything to keep one or more
molecules from breaking loose from
the surface. Other liquids, of course,
have different surface tensions,
which are used as a measure of the
intermolecular attractions among
the molecules of the liquid.

Experiment 2

Fill a 3-ounce plastic cup with
isopropyl alcohol! until the liquid is
level with the rim of the cup. As in
Experiment 1, carefully add one

Isopropyl alcohol (rubbing alcohol)
can be purchased as a 91% solution at
most drug stores. To protect the sur-
face of the table from the overflowing
liquids, you may wish to put a plate
underneath each of the cups.

penny at a time to the cup until it
finally overflows. Compare the
number of pennies used in this case
to the number used for water.

Prepare a solution by dissolving
40 grams (2 tablespoons) of table salt
in 160 mL (3/4 cup) of water. Fill
another plastic cup with this solu-
tion until the solution is level with
the cup’s rim. Add one penny at a
time until the solution overflows,
and record the number of pennies
used.

Note the extent that the liquid
bulges up above the cup’s rim in
each one of these three systems (wa-
ter, isopropyl alcohol, and salt wa-
ter). The greater the liquid’s surface
tension, the more the liquid will
bulge up and the more pennies the
cup held before overflowing.

Add a drop of liquid detergent to
the penny-filled cup of water from
your first experiment. What do you
observe?

You can make a crude calibration
of the liquid’s surface tension (g) by
the number of pennies needed to
overflow the cup. Plot the value of
the surface tension (from the table
below| on the y-axis versus the num-
ber of pennies added before the cup
overflowed on the x-axis.

y
Liquid (dyne/cm), N;gzifés()f
20C
salt water
(20%) i
water 73
isopropyl 99
alcohol (90%)




Is this relationship linear? Prepare
different mixtures of isopropyl alco-
hol and water, and measure their
surface tensions by seeing how
many pennies are required to over-
flow the respective cups. Determine
whether or not the surface tension is
a linear function of the concentra-
tion. Finally, measure the surface
tensions of other liquids (for ex-
ample, vinegar or soap solutions)
found in your kitchen.

Why are the surface tensions of
isopropyl alcohol and salt water dif-
ferent from that of water? How does
detergent affect water’s surface ten-
sion? Does this explain some of the
properties of detergent for washing
clothes?

In a sense, molecules of a liquid
are stuck together by molecular
“glue.” A liquid like isopropyl alco-
hol has much weaker “glue” than
water, making it easier to penetrate
its surface. Because these surface
molecules stick together, it is then
easy to see why a liquid’s surface
resists penetration.

Aquatic life evolved around
water’s surface tension, as debris
resting on pond surfaces provides
shelter and nutrients. In addition,
water’s high surface tension allows
some insects to walk on water. Even
though the insects are denser than
water, when their weight is spread
across outstretched legs, it does not
exert enough pressure to exceed
water’s surface tension.

Experiment 3

Fill three cups once again so that
each is level-full with the water,
91 % isopropyl alcohol, and salt wa-
ter solution, respectively. Use twee-
zers to carefully place a paper clip on
the surface of the water. You should
find that, indeed, even though the
paper clip is more dense than water
and will dent the water’s surface, it
will not penetrate the surface of
water.

Predict, then determine, whether
or not you can float the paper clip on
the surface of the other two liquids.
As the paper clip rests on the surface
of water, add a drop of liquid deter-
gent and observe what happens.

All liquids, in the absence of
other forces, tend to minimize their
surface area. Because a sphere has
the lowest ratio of surface to vol-
ume, freely suspended volumes of
liquids assume a spherical shape.
Once again, this is a result of the
intermolecular attractions of the
liquid’s molecules. For example,
when you place water on a freshly
waxed car, the water beads into
near-spherical droplets instead of
spreading over the entire surface.
Water molecules would rather stick
to themselves than to the wax.
However, water molecules do have
strong interactions with glass and
fabric surfaces. Consequently, water
molecules will spread over, or wet,
these surfaces. Whether a liquid will
form a droplet on a surface or wet a
surface depends on whether the
liquid’s surface tension is greater
than the attractive forces between
the liquid and the other surface.

Experiment 4

Determine the shape of a drop of
various liquids on different surfaces.
Use a medicine dropper to place one
drop of each liquid (water, salt wa-
ter, and isopropyl alcohol) on a piece
of wax paper, glass, and aluminum
foil. Sketch the shape of the drop,
and measure the angle of the drop
with respect to the surface as shown
in figure 2. Can you relate the mag-
nitude of a liquid’s surface tension
to its droplet shape? How might de-
tergent affect water’s ability to wet
a surface?

Each of these experiments has il-
lustrated that the surface molecules
of a liquid are, in a way, different
from the molecules in the bulk of
the liquid. The difference results in
an inward pulling force on the sur-

Flg ure 2. Droplets of different liquids
on a surface. The one on the left does
not wet the suface while the one on the
right wets the surface.

face molecules, resulting in a surface
tension for the liquid. Furthermore,
throughout these experiments, you
have envisioned liquids as consist-
ing of lots of submicroscopic mol-
ecules with varying degrees of inter-
molecular attractions. You have
imagined molecules! And you have
used this molecular model to under-
stand your observations of the sur-
face tension of liquids. Q)

Henry D. Schreiber is professor and
head of the Department of Chemistry at
the Virginia Military Institute. Mary E.
Stokes is a junior at Rockbridge County
High School.

CONTINUED FROM PAGE 17

M317

Hyperbolic equilateral. The
points M(x,, v,) and N(-x,, —y,) are
given on the hyperbola y = 1/x. The
points are symmetric about the co-
ordinate origin. A circle centered at
M is drawn through the point N.
This circle intersects the hyperbola
at three other points. Prove that
these points are the vertices of an
equilateral triangle. (V. Senderov)

M318

N for n. Prove that, for any natu-
ral n, the number

R
has at least n different prime divi-
sors. (N. Vasilyev and V. Senderov)

M319

Shifting stones. A circle is divided
into n sectors. Some of the sectors
are occupied by stones; the total
number of stones is n + 1. The ar-
rangement of the stones is then
transformed according to the follow-
ing rule: Two arbitrary stones lo-
cated in the same sector are chosen
and moved to the two next sectors
on the left and on the right. Prove
that after a certain number of such
transformations at least half of the
sectors will be occupied by stones.

(N. Konstantinov and N. Vasilyev)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 50
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FORCES OF
NATURE

Lunar launch pad

OLCANOES ARE VERY IN-

teresting natural objects—ma-

jestic and terrifying. Here’s

what one encyclopedia says:
“Krakatoa is an active volcano in
the Sunda Strait between the islands
of Java and Sumatra. It is 813 meters
high. In August 1883 this volcano
erupted with exceptional violence.
The explosion destroyed more than
half of the volcanic island, and it was
heard more than 3,000 km away. It
generated a huge tidal wave (tsu-
nami) that killed more than 36,000
people on the shores of Java and
Sumatra. The volume of ejected ma-
terial was about 19 km3. Launched to
an altitude of 80 km, the volcanic
ashes were suspended in the air for
several years.”

A book on cosmic gas dynamics
has this to say about the possibility
of asteroids being created by volca-
noes: “Of particular theoretical in-
terest is the action of routine volca-
nic explosions, which can result in
spectacular catastrophic eruptions
similar to that of Krakatoa. Such
eruptions are not exceptions—they
are the natural result of physical
and chemical processes inside the
Earth. The high speeds of the
ejected gas, which undoubtedly ex-
ceed several kilometers per second,
explain the great heights attained
by the column of ejected material,
sometimes reaching 60 km. ...In
some cases, when the initial speed
of the material reaches 11 km/sec,
it is expelled beyond the limits of
Earth’s gravity.”
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by A. Stasenko

“..and, lo,
there was a great
earthquake,; and the
sun became black as
sackcloth of hair, and
the moon became as

heaven fell unto the
earth, even as a fig tree

casteth her untimely
figs, v

Shakern mighty
wind. Are : heaven
departed as a scroll
when it is rolled
together; and every
mountain and island
were moved out of
I'he Revelation of

St. John the Divine

So, could it be possible that a vol-
cano has given birth to a satellite of
the Earth or Sun? Let’s see.

Let’s assume that a randomly
torn-off piece of basalt, lava, or some
other volcanic material is moving

upward through the vertical shaft of
avolcano (figure 1 on page 46). True
to form as physicists, we'll also as-
sume a perfectly cylindrical shaft
and a spherical projectile. To top it
off, both of them have the same ra-
dius R. The projectile is accelerated
by the pressure P of the volcanic
gases, which is far greater than at-
mospheric pressure (according to the
estimates in the aforementioned
book, the pressure in a volcanic ex-
plosion is about a hundred thousand
atmospheres).

At the “muzzle” of the volcano—
that is, the crater—the projectile
reaches its greatest speed v, after
which the projectile will be slowed
by Earth’s gravity and air resistance.
Note that we don’t dare utter the
proverbial words “neglect air resis-
tance,” because the initial speed of
the volcanic projectile must be
greater than the escape velocity

Vese =+28Rg =11km/s, (1)
where Ry is Earth’s radius. There-
fore, the projectile must move at
supersonic speed. Indeed, approxi-
mating the speed of sound as ¢ = 300
m/s, we get the following speed ra-
tio (known as the Mach number}:

Yo o Vese _11.10° m/s_ 0.
& c 310> m/s

Here we're in the realm of hyper-
sonic speeds, where no designer of
flying objects would ever think of
neglecting air resistance.

Art by Ekaterina Silina
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What’s the magnitude of the air
resistance? Time and again we’ve
deduced it using dimensional
analysis. It depends on the air’s den-
sity p, the cross-sectional area of
the moving object S, and its speed
v (check for yourself that the units
are newtons on both sides of the
equation):

F = CpSv2. (2)

Alas, the dimensionless coeffi-
cient C can’t be found by dimen-
sional analysis (after all, it’s dimen-
sionless). But a pleasant surprise lies
in store for us: Sir Isaac Newton
took an interest in it—for hyper-
sonic motion, his theoretical calcu-
lations give a value of C = 1/2.

Well, what happens after the pro-
jectile is “shot” from the volcano?
As it moves along the y-axis its po-
tential energy increases while its
kinetic energy decreases. It’s tempt-
ing to say that their sum is constant
(according to energy conservation)
and obtain equation (1). However,
air resistance acts on the shell, so
part of the kinetic energy is con-
verted into heat. Therefore, we must
take into account that the decrease
in total mechanical energy in a
small segment Ay of the trajectory is
equal to the work performed by air
resistance in this segment:

2
A[ m2V + mgy] =—FAy. (3)

It can be shown that the kinetic
energy of the projectile outside the
atmosphere (at an altitude of, say,
100 km, which is characteristic of
artificial satellites orbiting our
planet) is far greater than its poten-
tial energy. Indeed, assuming v =
Voo & =10 m/s? and y = 10° m, we
find that v2/2 is about twenty times
greater than gy. If we take into ac-
count the fact that the initial speed
v, must be greater than v__ to
“punch through” the layer of atmo-
sphere, the ratio of kinetic to poten-
tial energy must be even greater
than 20. Therefore, the second term
in the parentheses in equation (3)
can be neglected (yielding an error of
no more than a few percent).
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Figure 1

The force of air resistance given
in equation (2) varies not only due to
a change in speed but also due to a
drop in air density, which is de-
scribed by Boltzmann'’s barometric
formula

P = poe™, (4]

where p,, is the atmospheric density
at sea level (y = 0) and y. is the char-
acteristic thickness of the atmo-
sphere (about the height of Mount
Everest), where the air’s density is
less than p, by a factor of e = 2.7.
This dependence is shown on the
right side of figure 1. Clearly, the
density of the Earth’s atmosphere
decreases very quickly (exponen-
tially, as physicists say) with alti-
tude.

Equation (4] is rather interesting:
if we want to make the mass of an
infinite vertical atmospheric col-
umn of variable density equal to the
mass of a column of finite height
and constant density p,, we obtain
the value y. for this height. In other
words, the area of the rectangle p,y.,
in figure 1, equals the area under the
curve p(y). We’ll make use of this
fact immediately.

Taking everything we've said into
account, equation (3) can be written
in the form

¥

S )
5 T | P Ay | (5)

A mathematician will recognize
this expression as a simple differen-
tial equation with separated vari-
ables (the left side contains only v2
and the right side only y). A busi-
nessman of the new stripe will also
see something familiar—some sort
of complex bank percentage (for ki-
netic energy instead of money].

Well, whatever it looks like, the
time has come to solve it. Where to
begin? First of all, we notice that the
parentheses contain the elemental
area p(y)Ay shown in figure 1. This
means that as the volcanic projectile
rises along the y-axis, this area will
sweep out the entire area under the
curve p(y), which is equal to p,y., as
noted above. And somewhere not far
from the Earth’s surface (since the
layer of atmosphere is relatively
thin), air resistance stops having any
effect on the energy of the rising
object. At this (not very high]| alti-
tude the object must have the escape
velocity to break the chains of
Earth’s gravity.

But what’s happening on the left
side of equation (5)? Integration
along the y-axis (that is, piercing the
atmospheric layer| yields the natu-
ral logarithm of v?, so we have

ur S
11’1 V% pOY’ m k (6)
On the other hand, the initial speed
of the projectile emerging from the
volcano’s crater results from the ef-
fect of the pressure PS on the mass
m. Assuming the pressure to be con-
stant and neglecting friction arising
from interaction with the inside
wall of the volcano, we get a con-
stant acceleration a = PS/m im-
parted to the shell in the volcano’s
shaft. Therefore, according to the
laws of uniformly accelerated mo-
tion, the object acquires the follow-
ing specific kinetic energy (or energy
per unit mass) while being acceler-
ated along a shaft of length I

2

Y0 _q41= EZ .

2 m
Plugging this equation into equation
(6) and rearranging a few things, we
get



72 ZPZi S
= =eXp(poy'—j~ (7)

Vesc Vesc m

There is something attractive
about dimensionless parameters, so
let’s introduce two such parameters
for the sake of beauty and simplic-

ity:

S
X=Po¥-—;
m

ke 2P]2 .
PoY-Vesc

The first parameter depends on the
characteristics of the projectile

S mrR* 3
m 4nR3ps/3 4pgR’

where py is its density. The second
parameter depends on the volcanic
“gun”: on its length I and its pres-
sure P. Now, using these new di-
mensionless parameters, we rewrite
equation (7):

kx = ¢~ (8)

The left side describes a straight
line, while the right side is our old
friend, the exponential function.
Both functions are plotted in figure
2. We can see that at small values of
k (when, for example, the pressure of
the accelerating gases P or the length
of the shaft ] are small), a solution to
equation (8) doesn’t exist: the dashed
line doesn’t cross the exponential
function.

However, at some value k, there
is a single tangent point, for which
x,=1and k;, = e (check this by plug-
ging these values into equation (8)).
From this we obtain all the values
we're interested in:
the radius of the projectile

RozépOY"
4 pg

7

the necessary length (depth) of the
shaft

] =e pO.V'Vf%sc
0 2P ’

eX
i kox
k >k,
1 . ' |
J E ™ k< kO
0 X }I{O Xy x

Figure 2

and the initial ejection speed
Vo = \/Evesc (: 1/65Vesc )/

needed to have escape speed after
punching through the atmosphere.

(It should be noted that at such a
speed it’s not easy for the volcanic
gas, which is providing the impetus,
to keep up with the projectile. Even
more problematic is preserving a
constant pressure during the volca-
nic “shot put.” In a more sophisti-
cated theory we should consider the
irreversible expansion of a rapidly
heated gas, which is characterized
by rapid changes in temperature and
pressure exerted on the moving pro-
jectile. I hope our readers will even-
tually be able to handle such compli-
cations as they continue their
studies.)

But what about the sphere and
the shaft? Plugging the values p, ~ 1
kg/m3, y. ~ 10 km = 10* m, pg ~
5-10%kg/m3, and p ~ 10° atm =
10'% N/m? into our answers, we get

Ry=1.5m, 1~ 160 m.

The mass of such a sphere is

my =%nR§’pS =70 t.

Not bad for an artificial satellite!
However, our equation (8) also
has other solutions. For example, if
k > kg, the corresponding straight
line in figure 2 crosses the exponen-
tial curve in two points. The two

roots x, and x, correspond to heavy
and light spheres, because x ~ 1/R.
The heavy sphere can be launched at
a lower speed than v,, while the
launching velocity of the light
sphere must be greater than this
value. The reason is obvious: Air re-
sistance is far less important for a
stone than for a feather.

There’s another side to the prob-
lem. We considered only a vertical
“launch.” Naturally, a volcano
could launch a projectile along an
inclined shaft (figure 1), thereby in-
creasing the number of satellites
orbiting the Earth. Less speed is
needed to perform this task: It’s
equal to the orbital speed v, ~ 8
km/sec). The reader is invited to in-
vestigate this case independently.

What would a cautious profes-
sional physicist conclude after sort-
ing through the numerous simplifi-
cations in our reasoning? “Well, if
it’s possible to provide volcanic
gases at a constant pressure of about
100 atm along a shaft about 100 m
long, then perhaps a volcano could
eject from its crater an object with
a mass of about 100 t and give it
enough speed to launch this projec-
tile to infinity. That’s assuming, of
course, you can find an object that
can endure an acceleration of ten
thousand g¢’s.”

Whether the volcanic catapult is
just a mental toy or a real phenom-
enon is an open question, but the
awesome spectacle of a volcanic
eruption has certainly given us some
interesting physics problems. (@]

Quantum on space travel:

Y. Osipov, “Catch as Catch Can,”
January/February 1992, pp. 38-43.

A. Stasenko, “From the Edge of
the Universe to Tartarus,” March/
April 1996, pp. 4-8.

A. Byalko, “A Flight to the Sun,”
November/December 1996, pp. 16—
20.

V. Surdin, “Swinging from Star to
Star,” March/April 1997, pp. 4-8.

V. Mozhaev, “In the Planetary
Net,” January/February 1998, p. 4-
8.

I. Vorobyov, “High-Speed Haz-
ards,” May/June 2000, p. 24-26.
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AT THE
BLACKBOARD |

Electrical and mechanical

N 1853 THE FAMOUS BRITISH
physicist William Thomson
(later Lord Kelvin) published a
paper titled “On Nonstationary
Electric Currents.” In this paper he
showed that a circuit composed of a
capacitor with capacitance C and a
coil with inductance L (the so-called

-d11*4
)

C

Figure 1

LC-circuit—figure 1) must produce
electromagnetic oscillations with a
period T =2n+/LC.

The word “oscillation” usually
conjures up the oscillating math-
ematical pendulum (figure 2) or a
mass attached to a spring (figure 3).

Figure 2
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pscillations

by A. Kikoyin

Figure 3

However, the term “oscillation”
does not only refer to the mechani-
cal motion of some material body.
This term is used by physicists in a
broad meaning encompassing any
periodic variation of any parameter.
Periodicity means repetition of the
value of some parameter after a defi-
nite interval of time, called the “pe-
riod” of the oscillations.

The mechanical oscillation of an
object is the most obvious form of a
periodic process. In this case, the
periodic parameter is the coordinate
x of the moving point.

In an LC-circuit, one of the peri-
odic parameters is the electric
charge ¢ on the capacitor. It's as-
sumed that the capacitor was ini-
tially charged by a battery and then
connected to the coil. During each
period, the charge on the capacitor’s
plates gradually vanishes, changes
its sign, and then increases. Other
periodic variables are the voltage V
= g/C across the capacitor and the
current I in the circuit. The periodic
change of the latter may be obvious
for those who know a bit of differen-

tial calculus, because
v=14L (1|
At

(If you haven’t encountered such
equations, just keep reading and
compare equation (1) and equation
(2) below.) The magnitude of the
electric field E in the capacitor also
oscillates (because E = V/d, where d
is the distance between the plates),
as does the magnetic field B within
the coil (since it’s proportional to
the current I).

This is similar to what we know
about mechanical oscillations,
where not only the coordinate of an
oscillating object varies periodically,
but also its velocity, acceleration, ki-
netic energy, potential energy, and
so on, change in a similar way. We
might say that all these parameters
“oscillate.”

In a physics textbook you may
come across an analogy between
mechanical and electrical oscilla-
tions. This analogy can be made
strict by noting that equation (1) has
the same form as Newton'’s second
law formulated for an object oscillat-
ing on a spring:

Av
At
where Av/At = a is the acceleration
of the object. Therefore, equation (1)
can be viewed in light of the well-
known equation (2] according to the
rule that “identical equations have
identical solutions.”

A comparison of equations (1)
and (2) shows that the voltage V

F=m (2)



corresponds to the elastic force F,
the current I in the coil to the ve-
locity v of the moving body, and the
inductance.L of the coil to the mass
m of the body. Finally, the equa-
tions

V=¢q/Cand F = kx

show that the reciprocal of the ca-
pacitance 1/C corresponds to the
spring constant k, and the charge g
corresponds to the string’s displace-
ment x (remember that [ = Ag/At, v
= Ax/At). You might construct a
table of the corresponding values
within the framework of the electro-
mechanical analogy and compare it
with that given in physics text-
books.

Analogy is a very powerful instru-
ment. The brilliant Irish mathema-
tician Sir William Hamilton (1805-
1865) used an analogy between
optics and mechanics that helped
him formulate classical mechanics
in an elegant way. Almost a century
later this analogy helped the out-
standing Austrian physicist Erwin
Schrodinger (1887-1961) formulate
the basic equation of quantum me-
chanics (the famous Schrodinger
equation).

To conclude, let’s look at an in-
teresting question involving the
current in an oscillating circuit. De-
spite the fact that the circuit is
“open” (there is no conducting
material between the capacitor’s
plates), charge nevertheless flows in
such an open circuit. Moreover, if
the resistance of the coil and the
connecting wires were zero (that is,
cooled to the superconducting
state), the current induced by dis-
charging the capacitor would oscil-
late forever.

Strange as it may seem, the oscil-
lating current in an LC-circuit can
be considered “closed.” To under-
stand this paradoxical view, let’s
consider the phenomenon of elec-
tromagnetic induction. The British
physicist Sir James Clerk Maxwell
(1831-1879] was the first to show
that the essence of this phenom-
enon is not generating current, but
inducing a vortical electric field
(that is, a field with closed lines of

force) by a varying magnetic field.
Therefore, magnetically induced
current is a phenomenon that is
secondary to the generation of the
electric field that drives the charged
particles in the conductors. Max-
well brilliantly flipped this formu-
lation on its head: He proposed that
the opposite is also true—that any
varying electric field generates a
magnetic field.

In our LC-circuit there’s a place
where there is nothing more than a
varying electric field. This is the
space between the plates of the ca-
pacitor. According to Maxwell, this
capacitor must be surrounded by a
magnetic field (figure 4). On the

B
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Figure 4

other hand, we know that a current
generates a magnetic field around it.
So a varying electric field is analo-
gous to moving charged particles
(that is, to current). Since Maxwell’s
time the rate of change of a variable
electric field is called a current—
specifically, displacement current.

So here’s how we might describe
what’s happening: “ordinary” cur-
rent in the conducting part of the
oscillating circuit continues in the
capacitor as chargeless current (dis-
placement current).

Quantum on the kinship of elec-
tric and magnetic fields:

S. M. Rytov, “From the Prehis-
tory of Radio,” May 1990, pp. 39-42.

A. Chernoutsan, “Michael, Meet
Albert,” September/October 1993,
pp. 43-44.

A. Leonovich, “Surfing the Elec-
tromagnetic Spectrum,” January/
February 1995, pp. 32-33.

P. Bliokh, “The Advent of Radio,”
November/December 1996, pp. 4-9.

V. Dukov, “Convection and Dis-
placement Currents,” March/April
1999, pp. 4-8.

CONTINUED FROM PAGE 29

In the process, the corresponding
number of zeros is added on the
right. Then the results are added.
The advantage of this method is that
the most significant digits are ob-
tained first, which is important for
approximate calculations.

The second method is called jeal-
ousy. In this method, a grid is drawn
in which the results of intermediate
calculations are written (in fact,
these results are extracts from the
multiplication table). The grid is a
rectangle divided into cells, each
divided by a diagonal (figure 9). Such

Figure 9

a grid looks like the latticed shutters
that were attached to Venetian win-
dows to prevent passers-by from see-
ing women sitting at the windows,
according to Luca Pacioli.

Let’s multiply 567 by 3,984 using
this method. One factor is written at
the top of the grid and the other on
its left. Then we write the product
of the factors’ digits in the corre-
sponding row and column in every
cell. Tens are written in the left
lower triangle and units in the right
upper one. After the grid has been
filled, the numbers along the diago-
nals are added. This method is very
simple. Indeed, the cells are filled
directly from the multiplication
table, and it remains only to add
them.

The six other methods described
by Pacioli, as well as the first two,
are based on the multiplication
table. There are many other meth-
ods invented in different countries
and at different times, but I don’t
know of any method, except for the
Russian one, that doesn’t use the
multiplication table. (o

—Anatoly Savin
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Physics

P316

First, note that T > mg; otherwise
equilibrium would be impossible.
At the equilibrium position the
string is stretched by

Al, = mg/k. (1)

When the weight is dropped from
height x above the equilibrium po-
sition, it starts to fall downward.
After the position corresponding to
the length of the free (unloaded)
string, the weight will stretch the
string. Denote by Al the maximum
elongation of the string. The condi-
tion of breakage of the string is

k-Al-T=Al=T/k. (2

Depending on the relationship be-
tween T and m, two cases are pos-
sible: (1) x < Al and (2) x > Al,. Let’s
consider each case.

(1) x < Al,. We use energy conser-
vation, taking the zero of potential
energy at the position of the un-
loaded string:

k
—-mg(Aly - x)+ E(A]O —X)2
= —mg-A]+§(AZ)2.

Plugging in the values Al, and Al
from equations (1) and (2), we get x:

T—-mg
X=—"2,

k

Clearly the condition x < Al is
equivalent to T < 2mg.

(2) x > Al,. The energy conserva-
tion yields

mg(x~Alp) =-mg- AL+ X (al)"

Solving this equation together
with (1) and (2) we get
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P317

The melting point of ice does in-
deed drop under increased pressure.
However, melting requires energy,
so the temperature under the wire
drops. This process goes on until the
temperature of the pressurized ice
region falls to the melting point cor-
responding to the increased pressure
that has been exerted. Further melt-
ing of the ice is controlled by the
rate at which heat is conducted to
the low-temperature region.

In the case of the metal wire this
heat will be conducted efficiently
from the water freezing above the
wire, so the cutting will proceed rap-
idly. In contrast, the nylon thread
has a negligible thermal conduc-
tance, so the heat will be transferred
mainly due to cooling of the entire
block of ice. Therefore, the cutting
will be very slow.

P318

In this bit of kitchen physics we'll
neglect the heat capacity of the ves-
sel, which is quite reasonable if it
has thin walls and its mass is small
compared to that of the liquids. In
addition, the specific heats of met-
als are considerably smaller than
that of water (but since this thermal
parameter wasn’t mentioned in the
statement of the problem, and since
we have no intention of calculating
it, we'll just ignore it).

The heat transferred through a
partition per unit time is known to be
proportional to the contact area and
the temperature drop across it. In our
problem the contact area of each pair
of liquids is identical, so the follow-
ing quantities of heat transferred:

(1) from soup to stewed fruit
Q, = k(65° - 35°),
(2) from soup to kvass
Q, = k(65° - 20°),

and
(3) from stewed fruit to kvass

Q, = k(35° - 20°),

where the constant k is the coeffi-
cient of proportionality.
Thus the heat loss for the soup is

Q,+Q,=k- 75

while the heat gain for the stewed
fruit and kvass are

Q,-Q,-k-15°
and
Q+ Q=k - 60°,

respectively. Taking into consider-
ation the double mass of the soup,
and comparing the amounts of heat
lost and gained, we find the tem-
perature increase of the stewed fruit

Ay B2 1 ynes
and that of the kvass
At =M:O.6°C,

where At, = 1°C is the drop in tem-
perature for the soup.

In principle, it’s possible to make
more precise calculations. The de-
creases in temperature across the
partitions varied during the heat
exchange processes, which means
that the above formulas for Q,, Q,,
and Q, are only approximations.
However, the given temperature
decrease for the soup (1°) is far less
than all the temperature differences
in this problem, so the corrections
aren’t that significant. In any case,
they would affect the final result far



less than our neglecting of the heat
capacity and heat transfer in the
metal vessel.

P319

Electric current starts in the loop
after the switch S is closed. How-
ever, this current cannot increase
immediately due to the presence of
the inductor, which, like any honest
and reliable inductor, always dis-
likes variations in the current
through it (although it’s quite loyal
to any constant current). Still, the
current will increase steadily to
some maximum value.

This current charges the capaci-
tor. According to energy conserva-
tion, the following equation is valid
at any given moment:

B @Oy

—+

2

where I is the electric current, L is
the inductance, LI1%/2 is the mag-
netic field energy stored in the in-
ductor, V is the voltage drop across
the capacitor, and CV?/2 electric
field energy stored in the capacitor.
In addition, g = CV is the charge
supplied by the battery, which per-
formed the corresponding work gé.

The voltage across the capacitor
attains the value € at some value I
of electric current. At this instant
the battery cannot drive current to
the capacitor, so from now on the
coil will take the leading role. As
usual, it resists any changes in the
current (and so it “tries” to maintain
its present value). Therefore, the
charging of the capacitor proceeds at
the expense of the magnetic field of
the coil. Since this source of energy
is limited, the current will gradually
fade.

Thus I is the maximum current
in the circuit. Equation (*) with V =
¢ yields

=g€=CV%, (*)

Charging of the capacitor will
continue until the current drops to
zero. Thus the maximum voltage
across the capacitor is given by (*] at
I=0:

v_ =2€.

max

P320

Assume that the layer in which
total internal reflection occurs hov-
ers at a distance R, from the Earth’s
center (point O in figure 1) and has
a thickness AR. The refractive index
of this layer is n,,. Since the layer is
thin, we can consider that the refrac-
tive index n of the atmosphere
doesn’t vary within this layer (that
is, over a distance AR).

Consider the beam AB directed to
the external boundary of the spar-
kling layer, which is tangent to its
internal boundary at point A. If this
beam undergoes total internal reflec-
tion at point B on the external bound-
ary, any other beam traveling within
the sparkling layer will also be re-
flected at the external boundary.

The condition of total internal re-
flection for beam AB is

sina 115 +An An

Ll INE e Ny

1 1, 1,

where n, + An is the refractive index
outside the upper boundary of the
sparkling layer. Since this layer is
thin, the geometry can be simplified
to yield

R,
Ry +AR
AR
_RO +AR

sino =

_AR
Ry’

Therefore,

1+E=1—ﬁ

Iy 0

7

from which we get

or

Figure 1

Figure 2
An 1, _
AR Ry 2 (Ro)

Thus the tangent to the graph
n(R) at the point corresponding to
the values n, and R, must be in-
clined at an angle ¢, for which

tan@ = ~Io
Ry
In other words, this tangent line
must be parallel to the line crossing
the points with coordinates (0, n,)
and (R, 0) in figure 2.
Therefore, the altitude H, is

H,= Ry~ Ry

Math
M316

Letk>8,andletm=a, ,.Con-
sider the remainders upon division
by m of a, (where i > k - 6). We will
use the (standard) notation a = b
(mod m) to denote the fact that the
numbers a and b have the same re-
mainder upon division by m. We
also use the fact that the remainder
upon division (or multiplication) of
a sum equals the remainder upon
division (or multiplication) of the
sum of the remainders of the sum-
mands (or factors).

Since

Ay =0, (0, _,+1=1(modm)
and

a,_,=0 54, _¢+1=1(modm)
then

a, ;=0 ,a, s+ 1=2(modm),
Ay _o=4; 508, ,+1=3(modm),
4, =0y _, 0, _5+1=7(modm),
a,=a, ,a, ,+1=22(modm).
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Thus we see that a, — 22 is divis-
ible by a, . We can similarly prove
that, beginning with a certain k, the
numbers a, — b are composite,
where b is any number from the se-
quence 1,1,2,3,7,22, ... that is de-
fined by the same recurrent relation:
Every next number is one greater
than the product of the two preced:-
ing numbers.

M317

We will use the following lemma
to solve this problem.

Lemma. Let the points A, B, and
C lie on the circle centered at M.
Then triangle ABC is equilateral if
and only if

- - — -
OA+OB+0OC=30M.
Proof. The given equality imme-
diately implies that

- - — -

MA+ MB+MC=0.
This means that the point M coin-
cides with the center of mass of tri-
angle ABC—that is, with the point
of intersection of its medians (prove
this fact). Thus the lengths of all the
medians of triangle ABC are equal,
which implies that the triangle is
equilateral. The converse statement
is not difficult to prove.

We now pass to the solution of
the problem. Let the coordinates of
the points A, B, C, and M be (x,, v ,),
(XB/ yB)/ (XC/ YC’)I and (XM/ YM)/ respec-
tively. By the statement of the prob-
lem we have

xy=1,
{(X—XO)Z +(y—-yo):4(x(2) +y%).

Substitute y = 1/x from the first
equation of this system into the sec-
ond one and perform simple ma-
nipulations to obtain the following
equation in x:

x4 -2xx3+..=0.

We write out only the first two
terms, since the other terms are ir-
relevant. The sum of all roots of this
equation, including the root -x, is
2x,. Thus, x, + x; + X= 3%,. Simi-
larly, Ya* Vg + Vo~ 3y, These
equalities imply that

- — = -
OA+0OB+0C=30M,
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where O is the origin of the coordi-
nate system. It remains to use the
lemma proved above.

M318

We use the following factoriza-
tion:
X*ext+1=(x2+1)2-x>
=(x2+1-x)(x*+1+x).

Setting
n-1
x=22 s
we have
n+l n
22 12% 4]

= (2211 02" 4 1)(22“ +227 4 1).

It’s not difficult to prove that the
numbers

S S |
and

n n-1
2% $2% 41
are relatively prime for every natu-

ral n. Indeed, if they had a common
(odd) divisor g > 1, their difference

n-1 n
22 +1 - 22

would have had the same divisor.
Now assume that

n pn-1
22 4227 41
has not less than n different prime
divisors. Then, by induction,

n+l n
227 +9% 41

has not less than (n + 1) different
prime divisors.

Remark 1. For 11 > 4, the number
in question has not less than n + 1
different prime divisors, since

22 _92° 11-97.673.

Remark 2. The statement of the
problem implies that the number of
different primes is infinite.

M319

It is clear that a sector always
exists that contains more than one
stone.

We prove a stronger assertion: that
after a certain number of steps no
pairs of adjacent free sectors will re-

main (it immediately follows from
this fact that not less than half of the
sectors will be occupied by stones).
First we note that if a pair of sectors
is free, it was also free at the previous
step; in other words, no new pairs can
occur during the transformations.

Now we prove our stronger asser-
tion. Assume the opposite. Let there
exist at least one free pair of adjacent
sectors after every nth step; thus one
of the pairs exists for an infinitely
long time.

Let’s cut the circle along the ra-
dius that separates the sectors of this
free pair and consider the problem
for the line. In this case, the seg-
ments of length 1 play the role of
sectors, and we assume that the
stones are located at the center of
the corresponding segment. Con-
sider the sum of distances between
all stones. After every step, this dis-
tance increases at least by 2. Indeed,
let two stones A and B be moved, A
to the left and B to the right. The
distances from A to all the stones
located to its left decrease, and the
distances from B to the same stones
increase by the same value. The dis-
tances from A and B to the stones
that remained in the sector where A
and B were before moving increase
(or remain the same if this sector
becomes empty). The distance be-
tween A and B increases by 2. Since
we can make an infinite number of
steps, the distance will increase in-
finitely. However, it cannot be
greater than the length of the entire
segment multiplied by the number
of stones. The contradiction ob-
tained proves that all free pairs of
sectors will eventually disappear.

Brainteasers

B316

It’s clear that four receptionists
can do the job. Indeed, the following
schedule is possible: Everyone works
24 hours and then rests for three full
days (72 hours). We prove that the
number of receptionists cannot be
less. Indeed, if any of the reception-
ists works in a 24-hour period, then



at least three people are required to
work while the first one is off (60
hours). If no one works more than 12
hours, then at least three people
must work while the receptionist
who worked the night shift is off.

B317

Notice that the number 101 is
prime. Therefore, if 101 = a + b, then
a and b are prime relative to each
other (indeed, if they had a common
divisor d, it would also be a divisor
of the sum). Thus Eric is always the
winner, regardless of his strategy.

B318

The answer is six days. To prove
the baron’s statement can’t be true
for seven days, let’s put a point cor-
responding to each day under con-
sideration on a line, and connect
with an arrow the days for which we
know Miinchhausen shot fewer
ducks (the beginning of the arrow)
than on the second day (the end of
the arrow). We obtain figure 3. The

Figure 3

chain of arrows is closed, which
means that the assumption that
Minchhausen could make that
statement for seven days was wrong.
If we consider only six days, it’s easy
to construct an example satisfying
the conditions of the problem. On
July 31 he shot one duck, on August
2 two, on August 4 three, and so on.
On August 5 he shot eight ducks,
and every day before July 30 he shot,
say, 2,000 ducks.

B319

The answer is eight players. In-
deed, beginning with the sixth game,
the pair of opponents is completely
determined by the results of the pre-
vious games. In the sixth game, the
loser of the first game and the win-

ner of the third will play; in the sev-
enth game, the loser of the second
game and the winner of the fourth
will play; and so on. This means that
no new player can enter the tourna-
ment after the first five games. In the
course of the first five games, eight
players entered the tournament—
two in the first game, two in the sec-
ond, two in the third, one in the
fourth, and one in the fifth.

B320

Near the shore the water is shal-
low. The water at the bottom of the
wave is slowed by friction against
the sand below, causing the upper
layers of the wave to “outrun” the
lower layers. As the uppermost lay-
ers run past the layers below, they
are no longer supported by the wa-
ter below and fall because of gravity.
And so the wave curls.
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1 Liquid meas.

4 Superconductivity
theory: abbr.

7 __ X-1(X-ray pulsar)

10 Biblical Mount of
curses

12 Sierra ___, Africa

14 60,074 (in base 16)

15 __ -Civita symbol

16 Writer Joyce Carol

17 Unit of length
18 Type of heat

20 Monochromatic
light sources
Energy unit

__ bob

1024 cm?

___ Angeles
43,708 (in base 16)
Pressure units
Ten decibels
Matrices

100 m?

Less dense than
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23
24
26
27
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31
32
34
35

water

37 Digital display: abbr.

38 British astrophysi-
cist ___ Arthur

04

Bris

by David R. Martin

7 8 9

Milne (1896-1950)
40 Student’s concern
41 Beautiful: comb.
form
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44
45
47
48
50

___lily

Trig. function

Fail

Noun-forming suffix

Kind of rally

Six feet

Drawings of

functions

53 Hyperbolic
function: abbr.

54 South American
river

56 60,075 (in base 16)

58 Width times length

59 Vaporized water

60 Swiss mountain

61 Football QB
Dawson

62 Unhappy

63 Curl

DOWN

1 Solidified colloidal
solution

2. Norwegian math-
ematician Niels

MARCH/APRIL 2001

Henrik ___ {1802~
1829)
3 Volcanic output
4 Interference sound
5 Trig. function
6 __ law of refraction
7 French river
8 Fourth planet
9 Modern design tool
11 Units of volume
12
13
14
19
21
23
24
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Sea eagle
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poets

25 “___ having fun
yet?!”

26 Physicist ___Szilard

28 Rose-red spinel

29 Period

30 2990 (in base 16)

31 Flower

32 Collection of
anecdotes

33 Star Wars program:
abbr.

35 Watery soup

36

Physics assoc.

differential operator

39 Novelist Christie 51 1960s Broadway
41 Element 29 musical
43 Small planets 52 Starch source
44 Meadow 53 4.19 joules: abbr.
46 Charged particles 55 Place: comb. form
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Breakrast of champions

by Don Piele

HEN I WAS GROWING UP IN THE FIFTIES,

collecting baseball and football cards was a seri-

ous extracurricular activity. Within my group of

neighborhood friends, we bragged about our col-
lections of 2 x 3” cards with the faces of famous play-
ers on the front side and short biographies on the flip
side. Mickey Mantel was a highly prized baseball card
and Doak Walker was the top football card. The primary
sources for these coveted sports cards was Wheaties,
“The Breakfast of Champions.” Each cereal box prom-
ised to hold the card of a famous sport figure inside, but
you would have to get Mom to buy the box before you
would find out whose it was.

So Mom got the cereal as requested. It didn’t matter
to her as long as I was willing to eat the contents after
shoving my hand down into the flakes to retrieve the
card. If it turned out that I already had it in my collec-
tion, it could be traded among my friends. Of course, I
hoped that this would not be necessary. At that time it
never dawned on me that there was a mathematical
way to calculate how many boxes, on average, Mom
would have to buy before I got all the players being of-
fered that season.

Recalling my card-collecting days suggests the follow-
ing problem for investigation. Every season there were
n cards being offered for collection by General Mills, the
maker of Wheaties. If the
goal was to collect them
all, then how many
boxes, on average, would
Mom have to buy before
I had them all? T'll make
it simple and assume
there is no trading with
my friends.

b S

MICHEY BIANTLE suthicid AW 10K VANKELS

Simulation

Armed with a computer loaded with Mathematica,
let’s take a look at how to easily answer this question
via simulation. Suppose the number of cards offered for
the season is n = 12. We first assign a number to each
of the twelve cards.

n=12;

cards=Range[l,n]
{1,2,3,4,5,6,7,8,9,10,11,12}

Next we draw a random number from the set of cards
drawOne:=Random[Integer, {1,n}]

drawOne

4

Now we take this card away from the list of cards.
This is done by taking the complement of the cards with
the set of one element {4} consisting of the card drawn.

cards=Complement [cards, {4}]
{11213/51617/8/9/10/11,12}

Now all we must do is to repeat this process until all
the cards have been drawn, to see how long it takes. I'll
keep track of how many cards I have left in a list called
cardsLeft.

cards= Range[l,nl];
cardsLeft={};

While[Length[cards] # 0, cards=
Complement [cards, {drawOne}];
cardsLeft=Join[cardsLeft, {Length[cards]}]1]

cardsLeft
{11,11,10,9,8,8,7,7,6,6,6,6,6,6,6,5,5,5,4,3,2,2,2,2,2,2,1,1,1,0}

The length of the cardsLeft list is how many boxes
Mom had to buy before I have them all.

Length[cardsLeft]
30

When I plot this list I see the progress of my card
collection until I have them all.

ListPlot[cardsLeft,PlotJoined — True,
AxesLabel — {"Boxes","Cards Left"}]
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Left

Cards

10

Boxes

Now I'm ready to write my program to put this all
together in a function that asks me to enter the num-
ber of cards to be collected and returns the number of
boxes purchased in the simulation to get the whole
collection. I call this function BOC for “Breakfast of
Champions.” Of course BOC is a random variable, since
the outcome varies with each simulation.

BOC[n_ ] := Modulel[{cards,boxes =
cards = Rangel[l,n];
While[Length[cards] # O,
cards = Complement [cards, {drawOne}] ;boxes++];
boxes]

Let’s run BOC for each of my 10 buddies.
Table[BOC[12],{10}]

0},

{32,28,41,45,24,30,35,31,40,55}

The luckiest one completed his collection after 28
boxes and the unluckiest one in 55 boxes. A big differ-
ence. To get a good estimate of the expected number of
boxes needed, let’s let each of my 10 buddies run the
program 100 times and report their average.

Table[Apply[Plus, Table[BOC[12], {100}11/
100//N,{10}]

{35.02,38.03,36.56,36.86,35.83,38.94,35.5,37.4,38.7,38.05}

That’s more like it. Now I'll average these to come
up with my best estimate for the number of boxes
needed.

Apply[Plus,%]/10//N
37.089

On average, Mom is going to have to buy 37 boxes
before my collection of 12 cards for the season is com-
plete.

This simulation required the use of nine Mathe-
matica commands: Range, Random, Complement,
Length, While, Module, Apply, Table, Apply,
Plus. All of these commands are commonly used by
beginning users of Mathematica. What Mathematica
does is harness the power of programming and make it
available for everyone—even my neighborhood buddies.
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Probiability

The simulation method provided us with a simple
and direct way to get a good estimate on the solution
to this question. If you are advanced in your understand-
ing of probability, it is possible to derive a probability
density function for this problem which has an expected
value for the number of boxes needed. However, be-
cause of the complexity of the distribution function, it
would be nearly impossible to reach a solution without
the use of the computer. Let’s take a look.

The easiest case to compute is the probability that I
will get the whole collection in the first 12 boxes. This
means I get a new card on each and every draw for a
series of 12 successes. The probability of a success on
the first draw is 1 followed by a success on the second
draw of 11/, followed by a success on the third draw
of 19/,,, and so down to the last draw with a probability
of success being !/,,. Thus the probability of all events
QeEUrHE 1 suceesslon 18 [y Yy w Wi s o

The chance of that happening is very low.

12!
1212

1925
35831808

%/ /N
0.0000537232

That’s about once in every 20,000 times. This can be
computed another way with a recursive function p that
computes the probability of getting n straight successes
(a new card) based on the knowledge of the probability
of n — 1 successes. In other words, if you have 3 suc-
cesses in a row then the probability you will get another
success is p(3) 12-3)/ , . This is expressed recursively in
Mathematica as

pl1] = 1;
(12 - n + 1)
12
We want to compute the chances of 12 successes in

a Yow.

1] *

pln_] := pln -

pll12]//N
0.0000537232

That one was easy. But we need to compute many
more. In reality, we have a series of successes and fail-
ures until we have a total of 12 successes in all. So we
need to compute a probability density function p[j, k|
which represents the probability of j successes and k
failures. We will generate this distribution recursively
with the following observations:

The probability of one success and no failures is 1.
That means the first box you buy will have a new card
in it.



Clear|[p]

pl[1,0]=1;

If you have one success followed by k — 1 failures,
then the probability you will have one more failure is
the current probability times !/;,. You have to pick the
one card you already have to have another failure (no
new card).

1f—
12
Also, if you have a string of j — 1 successes and no fail-
ures, then, as above, the probability you will add another
success is the current probability times 12-0-1/,, or
12-i+1)/ . There are 12— + 1 cards left that you don t
have.

pll, k] := p[l, k]l = p[1, k -

pli_, 0] := p[j, O]
) (12 - § + 1)
= -1,
plJ 1 ™

The key recursion is knowing how you arrive at j
successes and k failures. This can be arrived at in only
two ways: 1) you have j successes and k -1 failures and
record another failure with a probability of '/, or 2) you
have j — 1 successes and k failures and record another
success with a probability of 1> -7-1/ _ This is repre-
sented by the recursion: -

pli_, k_1 := plj, kIl

(12

i+ 1)
12

. 3 :
= plj, k 1]12 + plJ 1, kI
Finally, you can arrive at 12 success
from only one direction. From 11 successe
ures you get the final card. It is not ?::5_*':‘ to an‘ive at
12 successes and k failures from 12 s S
failures, since once you reach 12 su
over. The final recursion is expresse

pll12, k] := p[l1l2, k] =

Here is a plot of the probability distribution
as the number of failures runs 3

pd=Table[p[12,k],{k,0,50}];

ListPlot [pd,AxesLabel — {"k",
PlotStyle — PointSize[.02]]

n _prob n } ;

0.025 .

0.015 | .

10 20 30 40

Ul

The total probability is
Apply[Plus,pd]
0.946323

So, 94.6% of the time the collection is complete
within 12 + 50 or 62 boxes. The expected number of
boxes is the product of the probability p[12, k] times the
number of boxes (12 + k) summed over all values of k.
Since we need to stop somewhere, let’s assume that the
probability of more than 200 failures is insignificant.

200

Y pl12, k] (12 + k) // N

k=0
37.2385

Well, what do you know? We get nearly the same
result we expected from our simple simulation! Does
anyone believe they could get this anwer without an
informatics tool?

Distribution image

To view a picture of how p[j, k] changes as j varies
from 1 to 12 and k varies from 0 to 70, we simply color
arectangle the value of p[j, k]. Each row corresponds to
j, an increasing number of successes (new cards), and
each column corresponds to k, an increasing number of
failures. The large area of red corresponds to small prob-
abilities. The green, blue, and purple correspond to in-
creasingly larger probabilities. The bottom row is an
image of the final distribution p[12, k|. Actually, I
stopped at p[11, k] since the colors show up better and
pl12, k] is a constant (!/,,) times p[11, k].

Show[Graphics[Table[{Hue[ (p[j, k1) * 2.1],
Rectangle[{k, -j},{1 + k,1 - §}1},{k, O, 70},
{i, 1, 11311,

AspectRatio — 1/4]

Final thoughts

The level of mathematical sophistication needed to
understand the probability argument above is signifi-
cantly greater than the level needed to understand the
simulation argument. This is often the case with many
problems in probability. Without the use of tools such
as Mathematica, a whole line of reasoning is closed to
the student. What this problem illustrates to me is, if
vou want to be a well rounded problem solving cham-
pion today, you had better learn how to use a computer
algebra system such as Mathematica. And of course,
you had better eat your Wheaties, “The Breakfast of
Champions.” O]
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