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GALLERY O

The Ship (1942-43lrby Salvador Dali

T HIS ANIMATED FIGUREHEAD MAY ALSO HAVE
I a head for figures judging by the elaborate rigging she

has woven between her limbs. Similar systems can be de-
vised to synchronize the movement of the arms and legs
to achieve a resonant frequency that will increase one's

speed dramatically. Hopefully, the high winds and seas
seen in the background will allow her to resume her more
leisurely duties on the prow of the ship before long. If you'd
like to learn more about her elaborate lines of locomo-
tion, turn to "The physics of walking" on page 20.
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BRAINTEASERS

Jusl lol' IhE lun ol il!
8301
Be fruitful and muhiply. One day all of Mrs. Brown's grandchildren came
to visit her. There was a bowl of apples and pears on the kitchen table. Mrs.
Brown gave each child the same number of pieces of fruit without keeping
track of which kind. Billy got 1/8 of al1 the apples and 1/10 of all the pears.
How many grandchildren did Mrs. Brown have?

8302
Overbooked dance card. A school dance was held where girls danced
with boys. At the end of the evening, all the girls and boys were asked
how many songs they danced to (with apartrrert of course). Six said that
they danced to three songs/ one reported dancing to five songs, four
danced to six songs, and one danced to nine. Prove that not all the
answers were correct.

8304
Cross coverage. A unit cube is unfolded to form the figure held by the
gentleman on the left. Use a number of copies of this figure to cover,
without overlap, the surface of a cube with edge-length twice as big.

8303
Ratings game. Sixteen baseball teams were ranked 1 through 16 accord-
ing to the results of a series of games. After the ranking, a playoff was
held, in four rounds. In the first round, eight teams were eliminated; in
the second round, four teams were eliminated; in the third round, two
teams were eliminated; and the two remaining teams met in the cham-
pionship game. It turned out that the team with the higher ranking won
every game. A game was considered "interesting" if the ranking of the
teams differed by not more than 4; otherwise, the game was considered
"uninteresting." What is the minimum possible number of "uninterept-
ing" games?

8305
Pirates with an image problem. On a roll of photographic film it says:
"Develop in red light." Wil1 such film reproduce the |olly Roger in the
picture on the left? How about the one on the right?
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Simple operations with complex numbers

by A. Mishchenko and Y. Solovyov

E HAVE RECENTLY PUBLISHED ARTICLES
on the representation of real numbers as contin-
ued fractions llanuarylFebruary 2000), and alge-
braic and transcendental numbers (|uly/August

2000). The present article completes this series (how-
,ever, familiarity with the articles mentioned above is

not required). It's about quaternions. These numbers

-include complex numbers and, therefore, al1 other
kinds of numbers we've mentioned. It contains

qs.Some information about applications of quater-
nions and of their peculiar history. The starting* point was the desire to introduce an algebraic

:t" structure (addition and, most importantly, mul-
tiplication) for geometric objects (various sets of
points).

distributive laws, and the existence of the inverse op-
erations of division and subtraction.

t's cluite natural to add paipalrs co-
,,: ordinate by coordinate, just as we add vec-

",;, ,,. 
tors (figure 2):

Figure 2

F, (r, y) + lx', y1 : lx + x' , y + y'). (1)

' Multiplication is a bit trickier.l
However, a rather simple formula can

be found in this case/ too:

lx, y)lx', y') = lxx' - yy', Xy' + x'y). t2)

We can verify that this operation of multipli-
"'cation, and that of addition (1), possess all the fa-
miliar properties listed above. Thus the set of pairs

,l with operations (1) and (2lmaybe considered a num-
ber set.

lMultiplication by coordinates-that rs, (x, y) (x', y'l :
', yy')-is not satisfactory, because this operation has
inverse operation. (For example, division by the

ffi' ]lnw can tltls UBlnttttt[or$ Ipnm ruints?
, ff we're talking about points on a line, J.t's easy.

ffi' Choosing an origin l"zero") and a scale with a clirec-I tion ("unit"), we can turn a line into a number line.
Every point is assigned a real number-its coordinate

.' ifigure 1).

,,4.8" B O E"A+B" A x

Fioure 1
6v'E With points in the plane, the situation is more com-
p plicated. Choosing an origin ("zero") and apair of per-
'b pendicular axes/ we can assign a pair of coordinates (x,

-9 y) to every point in the plane. To make numbers out
LLI-r, of these pairs, we must learn how to tt addtt and "mul-
I tiply" them to retain the familiar properties of addition
< and multiplication: the commutative, associative, and

stPTtltilEtR/0cT0BtR 2000

nonzero pair (0, 2) is impossible.)



These pairs are, tn fact, complex numberc. They are
more often written as x + yi rather than (x, y), where i
is the imaginary unit (the pair (0, 1)) possessing the re-
markable p{operty i2 = ii = -1. This property makes it
possible to extract square roots from negative numbers
(in the field of complex numbers).

Can we turn points in space into numbers? As before,
we can introduce a coordinate system and describe a
point as a set of three coordinates:.(x, y, zl.It'snatural.
to add these triples coordinate by coordinate:

l*, y, r) + lx', y', z') = (x i X', y + y', z + z'1. (3)

We will be able to consider triples as numbers if we
find a method of multiplying them while retaining the
familiar properties of addition and multiplication. In
partictLar, multiplication must have an inverse opera-
tion (division by nonzero elements).

In 1833 the Irish mathematician William Rowan
Hamilton (1805-1865) took an interest in this problem.
The following is the story of this remarkable man's
obsession with triples and quadruples.

,,..,. At the age of 10 he knew many lines of
#;##iik1'g;',... Homer by heart, and at 14 he spoke

;,"',nine languages. In 1824 he pub-

h56*',,,-.:lished a paper on geometric

By 1833 Hamil-
ton was the director

.. of the Dunsink Ob-
servatory near Dub-
lin and had pub-
lished sevcral pa-
pers on optics and
analytical mechan-
ics. Based on his

work in geometric op-
tics, Hamilton predicted

tlre effect of double coni-' cal re{raction in biaxial
crystals, which was discov-. 

ered soon after by his colleague
L1oyd.

,f " For ten long years Hamilton tried
to devise a rule for muitipiying triples,

but without success. He later recalled,
in a letter to his son: "Every morning,

i;',i when I came down to breakfast, you and
your brother would ask me: 'Daddy, have
you learned to multiply triples?'And aI-

:-'.r{ays I would have to reply, sadly: 'No,

tftl. B. ]lamillon
Hamilton was a very capable, well-rounded person

'r., optics in the Transactions
-of the Royal kish Acad-

emy, andin 1827 he be-
came the royal as-
tronomer of Ireland.

uefior pnodurls

The problem that occupied Hamilton might not seem
difficult at first glance. It's clear how vector addition can
be defined (by means of formula (3)); alt one needs is a
formula for multiplication-something like formula (2).

But none of the formulas that Hamilton tried worked-
one of the properties was always violated.

The operation of vector multiplication was aheady
well known at that time: the vector ptoduct vz= v1.x v2
of two nonzero vectors v, and v, is the vector perpen-
dicular to both v, and v, and directed as specified by the"

Figure 3
right-hand ru1e (figure 3). The length of this vector is de-
fined as lvrl . lvrl . sin(v1, v2). A basic result about vec-
tor products (sometimes called "cross products") is ..1
that if v, and vz are given by their coordinates in a (

Cartesian reference frame-
v, = (cx1, 01, y1 ),

v, : (o2, B2, y2)

-then
v1xv2

= (0ryz - 0zYy Yroz - Yzoy srFu - o',Prl.

However, vector products weren't suitable
for Hamilton because the inverse opera-
tion isn't valid. For example, if v, : v,
+ 0, then the angle (v, v2) between
these vectors is zero. Therefore,
the length of the vector product
v3 : vr x v, is zero (substituting
into formula (4) will give the
same result). If the operation of di-
vision by any nonzero vector existed, we
would have (v, xvrl : vr= v, + 0. At the same.
time, v, x v2 = 0 and, therefore, (v, x vr) : v,
= 0. The contradiction obtained proves that di-
vision by v, is impossible.

In the face of his disappointments and fail-
ures, Hamilton kept trying, with admirable
persistence. Although his problem wasn't .:

solved (and couldn't be solved, as we'll see be-
low), his ten-year effort was rewarded. One day in 1843
Hamilton decided to try defining multiplication for clua-
druples rather than for triples. He called this new type
of number quaternions. Here's how it happened.I can only add and subtract them."'

OUAlllTUIi]l/IIAIURI

v2

{f"$}



An euent on t[e Bnouuham [l'idUe
In a letter to his son, Hamilton recalled that the idea

of how the'multiplication for quaternions could be de-

{ined occurred to him when he was walking along the
Royal Canal to a meeting of the Irish Academy.
Hamilton was so pleased with the idea, he couldn't re-
sist taking out his penknife and scratching the funda-
mental formula in the soft stone of'the Brougham bridge:

i2:i2:k2:iik:_t.

Deliltitiolt ol quaftmnions

Quaternions are quadruples of real numbers (x, y, lt,
v) that can be conveniently written as

e=x+yi+ui+vk,
where i, j, andk are new numbers similar to the imagi-
nary unit used in defining complex numbers. They must
satisfy the relations

i2=i2=k2=-1, (5)

ii = -ii : k, ik = -ki : i, ki: -ik = i. 16l

These relations can be written in the form of a "multi-
plication" table:

By definition, addition and multiplication of quater-
nions ate performed according to the conventional rules
of removing parentheses and collecting similar terms/
taking into account the rules contained in formulas (5)

and (6).

By this definition, if q, and e2 arc two quaternions,
then
Qr + Qz = (x, + yri + uri + vrkl + (x, + yri + uri * v,2kl :

: x, + jrri + uri + vrk + xr* Yz] * uri + vrk
: (r, * xrl + Vri + 5tril + (uri + u2il + ftrk + vrkl
: (xr * xrl * b1+ yrli + lu, + u2li + ft, + vr)k. l7l

This is conventional addition by coordinates, which
we looked at earlier. The product of two quatemions ql
and qris calculated as

hQz : $, + Yri + uri + vrkllxr+ Yri + uri + vrkl
: ,rri f xryri + xru2i + xrvrk + yrxri * yryziz- 

+ ytizii + yrvrik + urx2i + uryrii + uru2i2' 
+ urvrik + vrxrk + vryrki + vrurki + vrvrkz

: Xrxz + xryri + xru2i + xrvrk + Yrxri
- YtYz + Yrurk - YJzi + urx2i - urYrk

- utuz + urvri + vrxrk + v{2i - vruri - vrvz
: (rrrr- yryz* utfrz- vrv2) + @1Y2 + Ytxz + litvz- vrur)i

+ (xru, + urx2- y{z + vy2li
+ (xrvr+ ytuz- utyz + vrxr)k.

srPrt]tllBtfii0cr0BrB 2000

That is, we act as if r, i, andk are variables, and expand
using the distributive law. However, the order of mul-
tiplication of the "variables" i, i, and k must be pre-
served (although the order of the "coefficients" X1, x2,

etc. may be changed).
A tedious but straightforward computation will show

that multiplication of quaternions possesses the asso-

ciative property:

lctflz)qz: qrlqzqal.

It is natural to consider real and complex numbers as

particular cases of quaternions. The real number x is the
quaternion

X:x+ 0.i+0.i+0.k.
The complex number z: x + iy can be written as the
quaternion

z=x+iy+0.j+0.k. (9)

If you're not familiar with complex numbers/ you can
consider formula (9), together with 17) and (8) as their
definition. Write the multiplication formula (B) for the
case (9) and compare the result with formula (2).

It's clear that addition of quatemions has an inverse
operation-subtraction. The difference of two quater-
nions q, and qris defined by the formula

et - 4z: (rr - xrl * (ry-vrli + (ur-u2li + lvr-vr)k.
If 4t = e2, dner, the difference is the zero quaternion

Qr- 4z: 0 + 0'i + 0' I + 0'k : 0'

[iuision olUnGnnions
Consider the division of quaternions, which is the

inverse of multiplication. In general, the quotient of
division of a number aby a number b * 0 is the num-
ber c such that

bc = a. (10)

This is how the quotient for real and complex num-
bers is defined. Unfortunately, this definition doesn't
apply to quaternions. In order for formula (10) to give a

correct definition of the cluotient, multiplication must
be independent of the order of the factors. Otherwise,
in addition to the quotient c : b-La defined by formula
(10), there exists the equally correct "left" quotient c'
defined by the formula

c'b = a.

The left quotient can be different from c in formula
(10). So besides the need to go beyond three-dimensional
space/ Hamilton had to make another sacrifice.

It turned out that quaternions lack another conven-
tional property: the product of quaternions is no, inde-
pendent of the order of the factors. Indeed, we see from
formulas (5) that the product changes sign when the
order of the factors changes.

So we can speak only of "left divisiott" and "rtght
division." How can we find, say/ the left quotient of

1 1 k

7 -1 k -t

1 -k -1 1

k i -7 -1



scaldr tr)Lrt
of the
qLl0t eil1io11

vect0L part
of the
qllaternion

Figure 4

divisicln of thc quaternion i7, by the quaternion q, +0i
Denotc the desired cluotient l'ry q - x + ,vi + ui + tk.

Using the definitlon for multiplication of quatcrnrons
and the clcfinition of left division, we obtain thc follow-
ing ccluality:

or 
Iclt = 4t

(xxz yy) - ultz- vvr) + (r1., + yr, + ttvr- vur)i
+ (xu, + uxr - yv. + vyrli + (xv, + vx) + yu) u_yu )k

= x, + )zrl + ttri + vrk.

Thrs equality is ec1-rivaient to the iollowing systeul
o{ lincar ecluations in the unknowns xt yt Ltt and y:

XiX - y)y - U)Ll V2V : X1r

yjx+X1y+V1U-LlrV:f,,
Ll)X - Vzy + XrLZ + Y2V - L11,

V)X+UZY-Y2U+XrV=V,.

We leave it to the reader to solve this system and find
the left quotient of division of 17, by q.. Similarly, we
can find the right cluotient after division of c7, by qt.

If the diviclend q, eqrrals the real number 1, the cluo-
tient of leit and right division of 4, = 1 by the quater-
nion 17, is tlrc srrrre !lLlato't'rion

_- x.t - J,:/ - u.f - r'./iP- 
,rl+,,1 -ti.l-,.

(we lcave the proof to the rcader). For this reason, the
quaternion p is clenoted by

-1 xt-yzi-uri -v2k
'lj 

- 

)xi+yr+u; +vi
The right quotient of division o{ clrby the nonzero
quaternion e, is written as

Q=Qlt'Q1,
and the left quotient of division ol qrby e, is written
AS

Q: %' Qzt'

In practice, division of quaternions is performed by
another method. In order to explain it, we have to make
use of the scalar and vector parts of quaternions.

$cala]' alld t,edm qllamrllioffi
Like complex numbers, which can be broken down

into their real and imaginary parts, the quaternion

e=x+yi+ui +vk

can be written as

q:x+(yi+uj +vkl.

The first term in this expression is called the sca-
lar part of the quaternion, and the second term (in pa-
rentheses) is called its vector pafi.The scalar part x is "

a real number, and the vector part can be considered a
vector

r=yi+uj +vk

in three-dimensional space/ where i, i, andk are consid-
ered unit vectors in a Cartesian reference frame (figure
41.

Thus every quaternion q is written as the sum

Q=X+t,
where x is the scalar part of q arrd t is its vector part. If
r = 0, then e = x, and q is called a scalar quaternion.If x
: 0, then e : t, and q is called a vectu cluaternion.

When quaternions are added, their scalar and vector
parts are added independently.

Multiplication of cluaternions is more complicated.
If q, and e2 arc scalar quaternions, then their product
e1e2is a scalar cluaternion as well. When et: x is sca-
lar and Q2: t is a vector cluaternion, the product

QtQz= x 'lyi + ul + vk): lxyli + (xuli + @v)k

is a vector cluaternion and multiplication coincides with
multiplication of the vector r by the real number x in
three-dimensional space.

Fina1ly, if both el and qzarevector quaternions-that
is,

Qr: tt = Yri + uri + vrk

4z: 1z = Yri + urf + vrk,

-then
QrQz: -V{z + ut17z + v1v2l + (urv, - v#2)i

+ (vy2- ytvzli + (ypz- u{21k.

As we can see from this formula, the scalar part of
ele2equals the scalar product (r, rr) of the vectors r, and
r, with the sign reversed. The vector part of efl2is the
familiar vector product r x r, written in the coordinate
form (see formula (4)).

Combining all the cases, we obtain the general for-
mula for multiplying quaternions .ll h: xl + 11 and c1,
: x2 + t2t therl

QtQz: (xr*, - r, ' \l + (xrr, + x2tr+ t, x ry).

CONTINUED ON PAGE 1B
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Fertilinr urith a hanu

lnvestigating an explosive situation

by B. Novozhilov

I N IANUARY 1953 THE TYR-
I rhenia-a steamer with a dis-
I plr."-.r,t of four thousand
I iorrr-"rploderi ano sank in the
Red Sea. There have been greater ca-
tastrophes in the history of sailing-
explosions and fires in oi1 tankers
and ships carrytngammunition. But
the Tyrrhenia was carrying ammo-
nium nitrate-not an explosive ma-
terial (at least at first glance). If this
were the only instance of such a ca-
tastrophe, one would look elsewhere
for the cause of the explosion. How-
ever, Lloyd's Navigation Reglster,
which records every major marine
catastrophe, contained dozens of ref-
erences to fires and explosions in-
volving ammonium nitrate. They
occurred more frecluently in the for-
ties and fifties, when production of
this substance greatly increased.
The worst year was 1947, when
three powerful explosions occurred
in port as the substance was being
loaded, resulting in a large number
of casualties.

Ammonium nifiate (NHoNOr) is
used extensively in industry and ag-
riculture. Tens of millions of tons of
this chemical are produced every
year. The formula itself gives a big
hint about how it's used. Ammo-
nium nitrate contains alarge amount
of nitrogen, and it is of particular

importance that the nitrogen is
present in forms that plants absorb
most easily: ammonium and nitrate
ions. Because of this, ammonium
nitrate is one of the most potent min-
eral, fertllizers. In addition, the pres-
ence of alarge amount of oxygen in
ammonium nitrate leads to another
(not necessarily peaceful) use of this
substance as an oxidant in the pro-
duction of gunpowder and explo-
sives. Without the addition of organic

ingredients, however, ammonium
nitrate is not explosive. In fact, it's
often used in chemical demonstra-
tions. On the other hand, mixtures of
NH4NO3 with trinitrotoluene or alu-
minum are very powerful explosives.

Let's try to figure out how an ab-
solutely safe mineral fetilizer, ar,':,-

monium nitrate, which is stored for
years in warehouses or in the open
air, can turn into the cause of so
many marine tragedies.
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An explosion is charact erized,by
a raptd release of a large amount of
energy/ accompanied by a drastic
change in the state of the explosive.
The gases lormed by the explosion
can perform a huge amount of work
as they expand.

Of course, terms like "rapid" and
"large" are relative. One kilogram.of
coal burned in the air yields about
thirty million joules. This energy is
sufficient to heat the combustion
products to many thousands of de-
grees. For a gas of normal density
such temperatures correspond to a
pressure of hundreds of atmo-
spheres. The coal-oxygen system
has enough chemical energy to pro-
duce an explosion, but in reality coal
doesn't explode-it burns peace-
ful1y.

Something else is needed for an
explosion to occur: the energy must
be released rapidly. Indeed, coal be-
gins to burn on its surface, so the
deeper layers of coal start to burn
only after they are heated by the
energy released in the surface layers.
Both the heating and the transfer of
oxygen proceed so slowly that the
combustion products have plenty of
time to expand, so this reaction is
not accompanied by a significant
increase in pressure.

However, there are substances
that need no external oxidant for
their chemical transformation. Ex-
amples are solid rocket propellants
and dynamite.

One such substance is trinitro-
toluene CiH5(NO2)3, also known as

tolit. ff tolit is lit at the surface, it
catches fire easily and burns quies-
cently. As it burns the inner part of
the tolit slowly heats up. And de-
spite the lact that the heat of reac-
tion of this substance is far less than
that of an ordinary fuel (it's only 4
MI/kg), tolit can explode. To make
it expiode, you just need to increase
the temperature of the entire vo1-
ume of the tolit. You can do this in
a number of ways-for example, by
compression. In this case the reac-
tion occurs throughout the entire
volume andproceeds so quickly that
the gases produced have no time to
expand during the reaction. Occupy-

ing a volume approximately equal to
that of the tolit be{ore it was deto-
nated, and heated to a high tempera-
ture, these gases create a pressure of
tens or hundreds of thousands of at-
mospheres. The subsequent rapid
expansion of the gases destroys
whatever is nearby-a classic explo-
sion.

This article will examine the no-
tion of a thermal explosion-a spon-
taneous explosive process linked to
the release of chemical energy.

First, let's recall some basic facts
about the rates of chemical reac-
tions.

The first thing we notice about
most chemical reactions is their
slowness. For example, in a gas un-
der normal conditions, every. mol-
ecule participates in about 1010 col-
lisions per second. If every collision
resulted in a chemical conversion,
the corresponding reaction would
occur almost instantaneously. How-
ever, chemical experiments contra-
dict this scenario. For example, a

mixture of hydrogen and oxygen
(oxyhydrogen gas, also called "deto-
nating gas") can be stored at room
temperature cluite safely. This is
because only a tiny fraction of al1the
collisions is efficient and results in
a chemical reaction.

The basic chemical process is the
conversion of one type of molecule
into another. In this process some
interatomic bonds are destroyed,
while others are created.If the new
bonds are stronger than the o1d ones,
the reaction releases energy (it's an
exothermic process). This doesn't
mean/ however, that the reaction
must proceed rapidly. The fact is,

before new (and stronger) bonds are
formed, the o1d ones must be de-
stroyed, which recluires energy.

The durability of any composite
system (atom, molecule, or nucleus)
is characterized by its binding en-
ergy. This is equal to the work that
must be performed to break the sys-
tem down into its component parts.
For example, the binding energy of
the hydrogen molecule is 7.2 . lO-re

|. This is the energy that must be ex-
pended to obtain two individual hy-
drogen atoms. Correspondingly, the
same amount of energy wiil be re-
leased when a hydrogen molecule is
formed from two hydrogen atoms.

The difference between the bind-
ing energies of the products and the
initial substances in a chemical re-
action is called the heat of reaction
(because the internal molecular en-
ergy is usually converted to heat in
the course of the chemical reaction).
Recomputed per unit mass or vo1-
ume of a substance, the heat of reac-
tion is the heat of combustion.

If a reaction is accompanied by
the release of energy, this doesn't
necessarily mean it must proceed
quickly. This is illustrated in figure
1. In the reaction A + B -s C + D the
bonds in molecules A and B must be
destroyed or at least wbakened. To
meet this requirement, a certain
amount of energy E (a definite
amount for any particular reaction)
must be supplied to the system.
This is called the activation energy
of the reaction. Clearly the activa-
tion energy must be of the order of
magnitude of the sum of the binding
energies of molecules A and B.
Therefore, a chemical process runs

ab
FigUfel . Activation energy E and heat of reaction Q for the reaction A + B -+
C + D for (a) exotltermjc and (b) endotltermic rtactions.
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Figure 2. Portion o'f active mol-
ecules at various energies of activa-
tion (E, . Er-. E") (dependent on
temperature).

into an energy barrier at the very
first stage. The molecules participat-
ing in the reaction must have suffi-
cient thermal energy to overcome a
hurdle of height E.

The chemical binds could be de-
stroyed or weakened by the thermal
(translational or oscillatory) motion
of the atoms and molecules. Nature
is so constructed that the energy of
thermal motion at moderate tem-
peratures is usually far less than the
activation energy. The mean energy
of thermal motion is of the order of
kT-that is, - 4. 10-21 |; while the
activation energy is hundreds of
times greater. This explains the neg-
ligible number of efficient colli-
sions. The chemical reaction pro-
ceeds only with those molecules
whose thermal energy is far greater
than the mean energy. Such mol-
ecules are extremely rare.

The number of molecules that
have thermal energy E at tempera-
ture 7 is given by a yery simple for-
mula:

t, - D-LfkT
/ -v

(The reader will have to take this
formula on faith-a more or less
strict deduction would be a large di-
gression.) Figure 2 shows qualita-
tively the dependence of y on tem-
perature T for various values for the
activation energy E.

Thus the rate of a chemical reac-
tion-that is, the amount of a sub-
stance (in kilograms, moles, or par-
ticles) that reacts in a unit volume
per unit time-can be written as

w: ze-ElkTl

where z is determined either by the
number of collisions (in gases) or by
the number of molecular bonds that
must be broken to make the chemi-
ca1 conversion possible in con-
densed bodies. The dimensions of w
andz are the same: kg/(m3 . s), mole/
(rrl3 . s) or 1/(m3 . s). To get a feel for
how much the rate of a chemical re-
action depends on temperature, take
a look at a specific numeric ex-
ample-problem 1 at the end of the
article.

Now we're ready to explain the
phenomenon of thermal explosions.
The explanation of thermai self-ig-
nition is very simple. If a reaction is
accompanied by heat release, the
substance itself is heated. As we
saw, heating increases the rate of a
chemical reaction. This in turn
Ieads to a more intense release of
energy. The possibility of a progres-
sively self-accelerating chemical re-
action was pointed out at the end of
the 19th century by the great Dutch
chemist |acobus Henricus van't
Hoff. In 1928 Nikolay Semyonov
provided a quantitative theory of
thermal explosions that can justifi-
abiy be called classical. The theory
is easy enough to explain, yet it re-
mains the basis for investigating and
solving new problems in physical
chemistry-the science of the physi-
cal foundations of the chemical pro-
cess-a century after it was formu-
lated.

Now, if we iump to the conclu-
sion that any mixture in which an
exothermic reaction occurs will
eventually explode, we'd be wrong.
After all, the vessel in which the
reaction occurs is limited, and the
heat that is released can be absorbed
by the surroundings. The competi-
tion between heat production and
heat dissipation leads to very pecu-
liar behavior in chemically self-in-
tensifying systems.

Let's turn to the cluantitative as-
pects of this phenomenon. Imagine
a reaction that proceeds with aheat
of combustion Q (|/kg)in some vol-
ume V. The amount of heat released
in this volume per second is

P* = zQVa-Elt'r filseel,

where T is the temperature of the
reacting substance in volume V.

The temperature of the surround-
ing medium Tois assumed to be con-
stant. The heat losses from the re-
acting volume are proportional to
the differen ce T - 7o and to the area
S of the surface that defines the vol-
ume V. Therefore, every second the
reacting substance transfers the fol-
lowing amount of heat to the sur-
roundings:

P_:cxS(7-70),

where cr is the coefficient of heat
transfer. This value naturally de-
pends on the capacrty of the reacting
substance to transfer heat-the co-
efficient of heat transfer )"-and on
the size of the object r (for a sphere,
for example, this would be its ra-
dius). Thus

a= IAlr
The coe{ficient K is a constant de-
scribing the effect of the body's
shape on the process of heat transfer.
It's clear why the parameter r is in
the denominator: given the same
temperature difference between two
points of a body, the heat flow (that
is, the amount of heat passing
through a unit area per unit time)
decreases as the distance between
these points increases.

Figure 3 shows the heat produc-
tion function P,l71and a number of
heat transfer lines P_(7) correspond-

To(1)7,,i21 Toic) Toi3l T

Figure 3. Dependence of heaL
releose P * ond heat ftonsf er P on
tenTper Lttllr e.

10 srPTrl,lBrR/ocToBER 2ooo

[,'
b;

ir.7



t
Figure 4. Temperatura changes in
subcritical (curves 1 and 2) and
superciltical (curve 3) modes of
heating,

ing to different temperatures of the
surroundings. Pay particular atten-
tion to the number of points where
the graphs of P* and P_ intersect-
that is, the number of roots of the
equation

Pt= P-. (")

Because of the strong nonlinearity of
the heat production function, the
number of intersection points can be
more than one. When the tempera-
ture Tn is high enough or low
enough (Tn(ll and Tn(3)), equation (")
has only one root. However, at some
intermediate temperature To(2) 11r"
graphs can intersect at three points.
Equation (") describes thermal equi-
librium in which all heat generated
is dissipated in the surroundings. It
may easily be deduced that intersec-
tion points llke a, where the heat re-
moval graph is steeper than the heat
release graph, are stable, while
points like b are unstable.

Now let's consider the behavior
of the reacting system over time. At
the initial moment t = 0 the sub-
stance has a temperature 70(1) equal
to the temperature of the surround-
ings (point A in figure 3). Since at
this point P * , P. the system will be
heated. In figure 4 this process cor-
responds to a shift of the system
along the curve 1. We see that the
increase in temperature is slowing
with time. It slows because the dif-
ference P*- P_decreases as the sys-
tem heats up, and this difference
determines the temperature in-

crease. Heating will stop at point B
(figure 3), which is stable.

A similar dependence of tem-
perature on time (curve 2 in figure
4)willhold for a higher initial tem-
perature 7o(z). 1r, this case the sys-
tem wi11be heated to some higher
final temperature and will end up in
a stable state.

By increasing temperature of the
surrounding medium (and, corre-
spondingly, the initial temperature
of the reagents), we can affange a
qualitatively different mode of heat-
ing. Let's analyze how heating will
proceed at an initial temperature
7o(3)(curve 3 in figure 4). At the be-
ginning of the process, the depen-
dence T(t) is similar to that in both
cases considered above: the differ-
ence P* - P_ decreases over time, and
therefore the increase in tempera-
ture is slowed. The system needs a
lot of time to pass through the nar-
row gap between the heat produc-
tion and heat dissipation curves-
this corresponds to an almost
horizontal portion of the tempera-
ture dependence flt). After the dif-
ference P * - P _has passed this mini-
mum/ the temperature increases
sharply, and this increase is steeper
than the exponential law. A self-ac-
celerating chemical process of en-
ergy release has begun. And that is
what a thermal explosion is: the
thermal sel{-acceleration of an exo-
thermic chemical reaction.

The most remarkable feature of
this phenomenon is the existence of
a crrtical condition. We see that a
gradual increase in temperature 7o
produces an abrupt qualitative
change in the system's behavior.
The temperature dependence 7(t)
can be only one of two types-either
a weak heating or an abrupt heating
after some "calrn" (or latent) pe-
riod-in other words, an explosion.

It's clear that there must be some
crrttcal temperature To(c) 11rr, r"nr-
rates these two radically different
types of reactions. No doubt you've
noticed the dashed line P(") in figure
3, which corresponds to a tempera-
ture To(c). The value 7.ol") i. the criti-
cal initial temperature we're looking
for. The curves P, and P l") have a

common tangent point c. If the ini-
tial temperature is below 7o("), slow
heating occurs. A slight increase in
7o above Tolc) 1"r4t to an explosion.

Before we analyze the conditions
for an explosion, note that changing
the initial temperature isn't the only
way to produce the critical state in
a system. The functions P* and P_

depend on other parameters, and
changing those parameters can
move the system from the subcriti-
cal to the supercritical state (prob-
lem 3 explores this possibility).

Now let's obtain the quantitative
criterion for an explosion. It shouid
look like the inecluality ?o > Tolc),

which includes all the parameters of
the problem. We want to obtain the
condition for the tangency of the
two curves representing the func-
tions P*(T) and P_lT). This is a good
problem for those who are familiar
with differential calculus. If you
don't know this mathematical tech-
nique, you should take the result for
granted and try to understand its
physical meaning.

For the graphs of functions to
touch, two conditions must be met:
first, the values of the functions
must be eclual at this point; and sec-
ond, the values of the first deriva-
tives at this point must be the same.

These two conditions determine
the critical temperature-that is, the
temperature of the substance core-
sponding to the tangent point of the
graphs P.(TI and P_(Tl:

kTn'

r

ithe value of 7o in this formula is
equal to 7j')).

This value of 7" gives the crite-
rion for an explosion:

lHere's a hint {or those who wish
to deduce this formula and obtain the
value of T" and the criterion for
thermal eiplosion. As we said, kTlE
<< 1, so i+:glggleq"g 7" we can
replace ,E4krJ E with its
approxiniation 1 - ZkT ol E - zlkTol EP.
Similarly, in deducing the criterion for
explosion, we replace the expression
1ll1 + kTnlE) with its approximation
\ - kTolE.
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Plugging f into ("") gives the con-
dition for the critical mode; the sign
">" corresponds to an explosion.l

So, if we know the shape and the
volume occupied by a substance
with known physical and chemical
properties, we can predict whether it
will explode.

Now we can return to the explod-
ing ships that were loaded with am-
monium nitrate. As noted above,
heat is produced when this sub-
stance breaks down. Since the rate
of the chemical reaction increases
with tempetaturet a thermal explo-
sion of ammonium nitrate is pos-
sible. However, a possibility doesn't
mean that an event will actually
occur. Only a numerical estimate
can tell us whether a thermal explo-
sion took place or if we need to look
for a reason elsewhere.

Let's write formula ("") another
way. Clearly the ratio V/oS is pro-
portional to the square of the linear
size of the obiect-that is, 12. There-
fore, the criterion for a thermal ex-
plosion can be written as a condition
determining the critical size r"of an
object:

,- -(cxt r& 
"r,oro\''' 

.'IzQE 
)

(The constant C characterizes the
effect of the object's shape on the
chemical reaction). If r > t ,, an explo-
sion will occur.

The values of the parameters in
the formula for r 

" 
are known to dif-

ferent degrees of accuracy. The heat
of combustion of ammonium ni-
trate is 1 M|/kg, and its coefficient
of heat transfer is l" : 0.17 I/(- ' s
K). By contrast, the exact values of
the kinetic constants z and E for
ammonium nitrate are not known.
Due to limitatlons in our current
understanding of chemical conver-
sions, it is not possible to find these
constants theoretically. We can
measure them, but the procedures
are difficult and fraught with experi-
mental error. So the tables of kinetic

t x
\r,

!t

\E,

ered with wax and packed in paper
bags. Experimental stufies show that
adding organic substances lowers the
activation energy. A11 these factors
make an explosion more likely.

And here we'll stop with the hope
that our readers have felt the power
and practical value of theory, for
there's nothing more useful than a
good theory.

To conclude/ we note that the
methods developed in the theory oJ
thermal explosions are widely ap-
plied in studying similar phenomena
in other fields of science. Here are a
few processes where nonlinear (with
respect to temperature) heat sources
play a key role: thermonuclear reac-
tions; thermal breakdown in dielec-
trics; and critical phenomena ac-
companying the motion of viscous
liquids (hydrodynamic thermal ex-
plosion). All of which shows the
power and vigor of the theory of ther-
mal explosions.

Problems
1. The rate of the gas-phase reac-

tion of hydrogen with iodine is given
by the ecluation

w = KnH2nrze-ElkT t

SO

Z = K71y1rf71r,

where r: 10-10 cm3/s is some char-
acteristic of the reaction and E : 2.69
. 10-1e |. Assuming the concentra-
tions of the initial substances to be

fiH, = firr. = n = 1.35' 1019 / cma

(under normal conditions), find how
long it will take l% of the mixture
to react at the following tempera-
tures: (a) 273Kt (b)500 K; (c) 800 K.

2. Prove that the intersection
points of the graphs of heat produc-
tion and heat transfer correspond to
stable states if the curve for heat
transfer is steeper than the curve for
heat production, and vice versa.

3. Plot the graphs of the transition
from subcritical to supercritical con-
ditions as dependent on (a) the heat
of combustion and (b) the coefficient
of heat transfer cx. O

ANSWERS, HINTS & SOLUTIONS
ON PAGE 51
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FigUfe 5. Dependence of the ciltical
size t, on the temperature Tn of
ammonium nitrate for various values
of the activation energy:
E1 : 2.4 l0 23|, E) :2.5. l0 23 |,
E1:2.6 

'O-zs 
I; ri:2.2. 10-231.

constants only give ranges for these
parameters: z : (3-51. 1016 kg/(ma .

s) and E = 12.4-2.7) . tO-" r.
Thus the problem isn't calculat-

ing the critical size r"of an object,
it's determining the range of values
of r"that correspond to the ranges of
z and E given above.

The critical size is most strongly
affected by the activation energy and
the temperature of the surrounding
medium, because they are located in
the index of the exponential func-
tion. The contribution of the other
parameters is relatively insignifi-
cant. Let/s plot the dependence for
various values of the activation en-
ergy (figure 5). The region above this
curve (large r and high temperature)
corresponds to an explosion. The
critical size drops as the activation
energy decreases.

This plot shows that the charac-
teristic sizes of the compartments in
the ships (of the order of dozens of
meters) corresponds to the region of
r" for reasonable estimates of activa-
tion energy and initial temperature.
As noted above, the series of explo-
sions accompanied the beginning of
large-scale production of ammo-
nium nitrate. The process was accel-
erated, and it included cooling the
ammonium nitrate obtained from
neutralizing nitric acid with ammo-
nia. It is quite possible that the prod-
uct was stil1 warm when it was
loaded on the ships. In addition, to
prevent caking, the granules are cov-
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Physics

P301
Suspended cord. A heavy cord is

suspended at points A and B (figure
1). The cord's tension at point C is
20 N. Find the mass of the cord. (I.

Slobodetsky)

P302
Isothermal and adiabatic curves,

Transform an ideal gas from state I
with temperature 71 to state 2 with
temperature Tzr 7, in such away
that, during the entire reversible pro-
cess 1-+ 2, the temperature doesn't
fall and heat isn't lost from the gas.
The minimum heat transferred to
the gas in such a process is Qr. What
is the maximum heat that can be
added to the gas under these condi-
tions? (O. Shvedov)

P303
Welding in water. Sometimes a

mixture of oxygen and hydrogen, ob-
tained by electrolysis of water, is

HOW DO YOU
FIGURE?

ChallEltUE$

used for small welding jobs. Find the
efficiency of eiectrolysis cell if the
voltage drop between the electrodes
in the cell is U = 2Y. Take into ac-
count the fact that heat Q = 0.29 Ml
is released by burning m:2 gof hy-
drogen in oxygen. (V. Pogozhev)

P304
Elecuicity on the rails. Parallel

rails of length 2L and resistance per
unit length p are fixed on the hori-
zontal plane at a distance I from
each other. Their ends are connected
to identical batteries with emf ='6
(figure 2). A jumper of mass m and
resistance R lies on the rails and can
slide along them. The entire system
is placed in a vertical homogeneous
magnetic field B. Find the period of
the small oscillations that result
from moving the jumper from the
ecluilibrium position. Neglect the
damping of the oscillations, internal
resistance of the batteries, resistance
of the contacts, and inductance of
the circuit. (A. Yakuta)

P305
A suiking problem, A light beam

traveling in the plane normal to the
axis of a glass semicylinder strikes
its flat surface at an angle of 45".
From what part of the curved surface
of the semicylinder can the beam
emerge? The refractive index of
glass is n.

tlllAIh

M301
Making progress. The number N

is divided into the number 201. The
quotient, the remainder, and the di-

visor (i.e. N itself) form a geometric
progression, taken in some order.
Find all possible values of N.

M302
Tread lightly. It's known that the

rear tires on a car wear out after
42,000 km, while the front tires
wear out after 58,000 km. What is
the maximum distance a car carr
travel if it is given four new tires
plus a new spare? (Al1 the tires are
identical.)

M30s
Check your calculations, A two-

round chess tournament was held.
In each round, every participant
played a game with every other par-
ticipant. The players earned points
for each game: one point for a vic-
tory, 0.5 for a draw, and 0 for a de-
feat. Is it possible that, when the
tournament was over, the partici-
pants'rankings were the opposite of
those they held after the first round
(that is, the participant who was last
after the first round was the cham-
pion; the participant who was next
to last after the first round ended up
in second place, and so on). Solve
this problem for (a) 9 participants; (b)

10 participants.

M304
Circumsuib ed circle. In triangle

ABC the altitude CM is drawn. The
line that is symmetric to the alti-
tude drawn from vertexA about line
CM intersects line BC at point K.
Find angle OMK, where O is the
center of the circle circumscribed
about triangle ABC (the points O,
M, and K are all distinct).

CONTINUED ON PAGE 27
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Shape numher$

HE PROMINENT FRENCH
mathematician Pierre Fermat
is famous not only for the
theorems he proved but for the

Exploring a Fermat hypothesis

by A. Savin

hypotheses he proposed. Some of
them turned to be false-for ex-
ample, the hypothesis that all num-
bers

2' +l
are primes. Another hypothesis,
called Fermat's last theorem/ was
proved at the very end of the 20th
century.

In this article we'Il look at ar.-
other Fermat hypothesis:

Any natural number can be repre-
sented as a sum of not more than
three triangular numbers/ not more
than four square numbers, not more
than five pentagonal numbers, and
so on.

This hypothesis was proved by
Augustin-Louis Cauchy some 300
years a{ter it had been proposed. Be-

fore this, the hypothesis was proved
for triangular numbers by Carl
Friedrich Gauss; for scluare numbers
it was proved by |oseph-Louis
Lagrange. It seems that square num-
bers are of particular interest to
mathematicians. In 1738 Leonard
Euler established all cases when a
number can be represented as a sum
of two squares:

A natural number can be rcpre-
sented as the sum of two scluarcs if
and only if each of its prime factors
of the form 4k + 3 occurs as an even
power.

In 1798 Adrien-Marie Legendre
proved that numbers of the form
4k(8n - 1) cannot be represented as

the sum of less than four squares.
It might seem that everything in

this field is clear now, and that the
hypothesis is of historical interest
only. But all we need to do is add the
word "different" to Fermat's hy-
pothesis to obtain another difficult
problem:

Which natural numbers can be
rcpresented as the sum of not morc
than thr ee diff er ent triangular num-
berc, not more than four different
square numberc, and so on!

It's clear that not every number
can be represented in this form-for
example, the number 2.

Before considering this problem,
we should recall the notion of
"shape numbers" (oa "number
shapes"). If you have a number of
similar things, such as coins, stones,
or buttons, you sometimes feel like
arranging them in a certain order-
as a triangle, rectangle, or some
other geometric figure.

In ancient Greece, mathemati-
cians did their calculations on an

abacus, repositioning stones on a set
of rods. Nowadays, programmers
play computer games when they
want to take a break, but in the oid
days the only "professional" enter-
tainment was to build number
shapes. This pastime led to some
serious results. For example, build-
ing rectangles from stones suggested
the idea of divisors as wel1as prime
and composite numbers.

Arranging stones in the form of
triangles (figure 1), we obtain the tri-

AAA
Figure 1

angnlar numbers t, 3, 6, 10, ... The
general formula for the nth triangu-
lar number is written as the sum of
the arithmetic series

_r n(n + I)

For square numbers (figure 21, we

iltffi
(d

o:
C

_o
C)

-CY
cd

C)

-ot

SEPTItilBIB/OIIOBIR

Figure 2



OUAlllItlll,l/ItATUBI



have 1, 4, g,15, ... , andthe general
formula is very simple:

a.)
' Sn = l1-'

For the pentagonal numbers 1, 5,

12,22,... (figure 3), the formula can

Figure 3

Figure 4

be obtained by examining {igure 4.
It's sufficient to add three (n - 1)th
triangular numbers and one " copy"
of a. Thus we get

A11 other numbers not exceeding
1,000 can be broken down into the
sum of different squares. What
about larger numbers? Checking
numbers up to 10,000 doesn't pro-
duce any more negative results.
Maybe there aren't any more? This
turns out to be the case. It's suffi-
cient to prove the following theo-
rem.

Theorem l.If , for a given number
k and a pafiicular function f(k), all
natur al numb erc b etween k and f (k)
can be represented as the sum of
squares of different natural num-
bers, then k and all natural num-
bers after it can be represented in
this form.

We'll determine the function /(k)
in the course of proving this theo-
Iem.

Proof. Let k be the given number,
and let p be an integer such that
p2 , k.Let's suppose that the num-
bers from k to lp + l)2 can be repre-
sented as the sum of different
squares. Then the numbers p2 + k, p2

+ k + 1, ...,2p2 - 1 can also be repre-
sented in this form. Indeed the rep-
resentation o{ the numbers k, k + l,
..., p2 - 1 cannot include p2.Inthe
same way, we can show that the
numbers (p*Il2+k,lp + 1)2+k+ 1,

..., 2(p + Il2 - 1 can be represented as

the sum of different squares as we1l.
Consider the position of these

numbers on the number line (figure
5). We know that the numbers in the
intervals from k to (p + Il2, from (p2

+ k) to (2p2 - l), and from (p + ll2 + k
to 2(p + 1)2 - 1 can be represented as

a sum of different squares. Does this
mean that all the numbers from k to
2(p + I)2 - 1 can be represented as a
sum of different squares? That de-
pends on how the numbers that
bound our intervals are arranged on
a number line. Figure 5 shows one
possible affangement. If the three in-
tervals we are studying overlap, then
the answer is yes. But suppose there
are intervals containing integers
that are skipped, as figure 5 shows?

We can assure ourselves that the
skipped intervals do not contain in-
tegers if we make sure that the fo1-
lowing inequalities hold:

(p*ll2>p2 +k-1, (1)

2p2-l>lp*ll2+k-1. (2)

The first inequality is equivalent
to the inequality

p >kll - t, (1')

and the second is equivalent (for p >

0) to the inequality

p+t2v3+3 l2')

For k > 13, inequality (1') implies
(2'), since in this case kl2 - 1 > 1 +

&+3
We formulate this result as the

following lemma.
Lemma. Let an integer number k

> 0 and an integu p satisfying in-
ecluality (l'l be given, If all integers
from k through lp * l)2 can be rep-
resented as the sum of different
squares, then all integers fuom k
through 2(p + I)z - I can be repre-
sented in this form as well

Now we can complete the proof
of theorem 1 by explicitly specifying
the function /(k). Since we assumed
that all integers from k to (p + I)2 can
be represented as the sum of differ-
ent squares, and that inequality (1'),

which can be written as p + I >k12,
was satisfied, we get

lp * t)'>k214.

Therefore, we can takek2l4 as the
function l(k).

We complete the proof of our
theorem with a peculiar form of in-
duction, in which we keep extend-
ing the upper bound of the interval
on which our proposition is true.

Let k be a positive evBn integer,
and suppose all the numbers from k
to k2l4 can be represented as the
sum of squares of different natural
numbers. Consider the number p :
klL - l. By the 1emma, all the num-
bers in the range k to k2l4 : 2(p + ll2

,4 A\

VEa
n(an - t)q ^ (n-1)n

Sr=n+$ =

Similarly, we can obtain a for-
mula for the nth k-gonal number:

. (n-l)n'=n+lk-zl 
2

n(nk-2n-k+4)
'f

2

Now let's get to work on our
problem. We'lI start with the part
about breaking the number down
into the sum of squares. We can
check directly that the small num-
bers 2, 3, 6,7, and B cannot be rep-
resented as a sum of squares of dif-
ferent natural numbers. It's not hard
to write a computer program for
finding such numbers. The program
shows that among numbers not ex-
ceeding 1,000, the following num-
bers cannot be represented as the
sum of different squares:

2, 3 , 6, 7 , 8, ll , 12, 15, 18, 19 , 22, 23 ,
24,27,28, 31, 32, 33, 43, 44, 47, 48,
60, 67,72,76,92,96, rO8, rr2, 128.

k

Figure 5
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- 1 can be represenied in this form
as well. Let's increase p by 1. A little
algebra will show that

(p *,212 .2(p * ll' - t
for allp, ,E. fhe values otpwe are
interested in are certainly in this
rarrget so our lemma tells us that all
the integers from k to lp + 2]r2 canbe
represented as the sum of squares of
different natural numbers. In addi-
tion, some more algebra wiII show
that the inequalities resulting by
substituting p 

1 
: p + I for p in the in-

equalities (1') and l2'l are satisfied.
Therefore, according to the lemma,
all numbers from k to

Z(pr+ll2-l:2(p+2)2-l
:Zlp*l)2-t+4(p+l)

are representable as the sum of
squares of different natural num-
bers. Thus the interval containing
integers that can be represented as

the sum of different scluares is in-
creased by a{p + ll = 2k. The same
reasoning makes it possibie to pass

fromp, to pz= p1 + | = p + 2 and rn-
crease again the interval where a1l

integers can be represented as the
sum of different squares. This pro-
cess increases the length of the in-
terval in question by 4. Indeed,

4lp, + t) = 4(p * 2l = alp + 1) + 4.

Now it's clear that taking p3 = p2 +

1, then p+= pz + 1, and so on/ we
prove that any integer greater than
k can be represented as the sum of
different squares.

It remains to show that such a

number k exists. This job was done
by a computer that calculated that
all integers in the range from 130 to
]JOz l4 = 4,225 can be represented as

the sum oi different scluares.
Readers who don't trust comput-

ers (and there may be a fewl) can do
the computations by hand.

We have proved that all integers
beginning with 129 can be repre-
sented as the sum of different
squares. However, we don't yet
know the minimum number of dif-
ferent squares in the representation
of each of these numbers. To ana-
lyze as many numbers as possible
and get a sense of the answer to this

cluestion, we wrote the following
program in BASIC.

N=0
INPUT "INPUT N" N
R:rNT(sQR(N))
DrM S(N),T(N)
FOR A:1 TO N
s(A):100
NEXT A
K:1
BO:

P:K*K
Q=P

B1:
M=Q-P
r(Q)=s(M)+1
Q:Q+1
IF Q<:N GOTO 81
M:P

B2:
rF T(M)>S(M)GOTO 83
s(M)=r(M)

83:
M=M+1
IF M<=N GOTO 82
K:K+1
IF K<=R COTO BO

FOR L=IOO TO 5 STEP-I
FOR A=1 TO N
IF S(A)=L THEN PRINT "L="

L; "M=" Ai
NEXT A

NEXT L
END

To use this program, you should
input a number N, which serves as

the upper limit for the computa-
tions. For every number I < 100, the
program prints all integers less than
or equal to N for which the mini-
mum number of squares in the rep-
resentation is I. Numbers that can-
not be represented as the sum of
squares are printed on the row I =

100. These numbers have already
been listed above.

Only the numbers 124 and 188
are represented as the sum of no
fewer than 6 different squares. The
following numbers are represented
as the sum of 5 different scluares:

55, 88, rO3, 132, 172, 175, 192, 240,
268,299, 304, 368, 384, 432, 448,
495, 512,752.

A11 numbers obtained by multiply-
ing the above numbers by a power of

4 possess the same property. These
ate

220, 352, 4L2, 528, 688,704,768,
BB0, and so on.

No other numbers less than 100,000
have been discovered that are repre-
sented as the sum of no fewer than
5 dif{erent squares.

Now we prove the following
theorem.

Theorem 2. If an even number
cannot be represented as the sum of
fewer than 5 different squares, this
number multiplied by 4 possesses
the same propefiy.

Proof. Notice that the remainder
upon division of the square o{ an
even numb er by 4 is zero, while for
odd numbers the remainder is l. Let
abe an even number that cannot be
represented as the sum of fewer than
5 different scluares. Assume that 4a
can be represented as the sum of 2,
3, or 4 different squares. Note that
4a cannot be a perfect square, since
in this case a would be a perfect
square as welI.

Assume that 4a = bz + c2. Con-
sider three cases. If both b and c are
even-that ts, b :2p and c =Zq-we
have

4a=4/*4q2,
and, therefote, a = p2 * q2, cofltrary
to our assumption. If both a and b
are odd, the number on the right-
hand side of the ecluality 4a = a2 + b2
gives a remainder 2 upon division by
4, and the lefthand side is divisible
by 4, which is a contradiction. If one
of the numbers a and b is even and
the other is odd, the righthand side
of this equality is odd, and its left-
hand side is even, which is a contra-
diction as well.

The case 4a = b2 + cz + d2 can be
considered in a similar *ay. If ail the
numbers a, b, and c are eYeflt then a

can be represented as the sum of
three dif{erent scluares. In the other
cases, the remainder upon division
of the righthand side by 4 is either 1,

2, or 3, whereas the lefthand side is
divisible by 4.

The case 4a = b2 + c2 + d2 + e2 is
quite similar except for the case
when all the numbers a, b, c, and d

0lJAlllTU]il/ttIIURt l7



are odd. In this case b = 2p + l, c :
2q+l,d:2r+ 1,and e:2s+ l.Sub-
stitute these expressions in the for-
rnula 4a = a2, + b2 + c2 + d2 to obtain

4a:4p2+4p+l+4q2+4q+l
+4P+4r+l+4s2+4s+1.

Dividing both sides by 4, we have

a:p(p+ll+qlq+l)
+r(r+1)+s(s+1)+1.

Every term among the first 4 terms
on the righthand side is even, there-
fore, the righthand side is odd. How-
ever, the iefthand side is even/ ac-
cording to our assumption. This
completes the proof.

Among the 18 numbers (listed
above) that cannot be represented as

the sum of fewer than 5 different
squares/ 16 numbers are even.
Therefore, the numbers obtained
from them by multiplying by a
power of 4 possess the same prop-
erty by theorem 2.

To prove this fact for the remain-
ing two odd numbers 55 and 103, it's
sufficient to show that the even
numbers 220 : 4. 55 and 412 : 4 .

103 cannot be represented as the
sum of fewer than 5 different
squares. This fact can be verified by
direct calculations.

Examination of the set of num-
bers not exceeding 100,000 produced
some interesting results. It turned
out that the minimum number of
different squares in the representa-
tion of numbers of the form 8n - 2

lfor n > 13) is three; for numbers of
the form 8n - 5 (for n > 80), it is also
three; and for numbers of the form
4^(Bn- 1) (for m>0 andn) 14), it is
four.

It would be interesting to prove
these theorems for numbers greater
than 100,000 and to prove that there
are no other numbers apart from the
sequence specified above that can-
not be represented as the sum of less
than 5 different squares.

Consider other shape numbers.
Some thought will show that theo-
rem 1 can be proved for any shape
number by choosing an appropriate
function/(k). It's also not difficult to
modify our BASIC program to en-
able it to perform calculations for
arbitrary k-gonal numbers. How-
ever/ the results obtained are not as
interesting as for square numl:ers.

For triangular numbers, only six
numbers 2, 5, B, 12, 23, and 33 can-
not be represented as the sum of sev-
eral different triangular numbers.
There exists a single number

20:l+3+6+10
that can be represented as the sum
of not fewer than 4 &fferent triangu-
1ar numbers.

We found 61 numbers that can-
not be represented as the sum of sev-
eral different pentagonal numbers.
These are

2,3,4,7,8,9,10, 11, 14, 15,16, Ig,
20,21,24,25,26,29,30, 31, 32, 33,
37, 38, 42, 43, 44, 45, 45, 49, 50, 54,"
55, 59, 50, 5r, 65, 66, 67,72,77, 90,
Bl, 84, 89, 94, 95, 95, 100, 101, 102,
lo7, ll2, 116,124,136,137, l4l,
142,147, and 159.

Other numbers not exceeding
100,000 can be represented in this
form. Only two of them, 241 and
205, can be represented as the sum
of 6 different pentagonal numbers
and cannot be represented as the
sum of fewer of them.

Ambitious readers can extend our
investigation to 6-, 7-, and more-
gonal numbers.

I am grateful to Maria Kurkina
and Archil Maisuradze, students at
the Moscow Institute of Physics and
Technology, for their help in writing
the BASIC program and performing
calculations. O

CONTINUED FROM PAGE 7

ltlhfllfllouil ll'iplrs?
Why wasn't Hamilton able to find a reasonable

method for multiplying triples? It was not for lack of in-
ventiveness or effort. We mentioned earlier that this
problem cannot be solved for "three-dimensional" num-
bers. Indeed it has been proved that no multiplication
operation for points in three-dimensional space exists
that possesses the associative, commutative, and dis-
tributive (with respect to coordinate addition) properties
and allows division by any nonzero element. Moreover,
we now know a1l the cases where multiplication of this
sort exists. The German mathematician F. G. Frobenius
(1849-1917) proved that there exist only three such
cases: for dimensions one (rea1 numbers), two (complex
numbers), and four (quaternions).

Ful'fim deuelopmsltts
Hamilton and others piaced great hopes on quater-

nions. Quaternions were expected to bring rich results,
even deeper than complex numbers. Indeed quaternions

were used to obtain elegant formulas that describe a
number of important physical phenomena. However, vi-
sions of further development of the algebraic and func-
tional calculus of quaternions failed to materialize.

For cluaternions, the fundamental theorem of algebra
regarding the existence of roots of any polynomial with
quaternion coefficients doesn't hold. On the other hand,
for alay quaternion, there exists a rrorrzero polynomial
with quaternion coefficients, such that the given quater-
nion is a root.

Optimism gave way to skepticism. At thE beginning
of the 20th century, mathematicians lost interest in
quaternions. However, some time later the need arose
in theoretical physics to find a mathematical formal-
ism for describing certain effects related to the so-
called spin of elementary particles. Quaternions re-
ceived recognition agarn when their role in
constructing various geometric transformations of
space important for quantum physics was understood.
The geometric properties of quaternions is a separate
topic, and a big one, to which we hope to devote a spe-
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ever/ even for a physical pendulum
we can write the frequency as
v s = ffi ,where I is a very impor-
tant parameter of the pendulum:
the "reduced length." This is the
length of a mathematical pendu-
Ium that has the same frequency as

the physical pendulum.
For proportionally built people

the reduced length of their peqdu-
Ium-Ieg is proportional to their
height. Therefore, in different
people, the natural oscillation fre-
quency of their legs varies inversely
as the square root of their height.

This feature yields a simple way
to flnd vo for a person of any height.
You just need to measure the natu-
ral frequency of your own leg. It's
not hard to do: stand on one leg and
swing your other leg, relaxing your
muscles in that leg. While the leg is
swinging, count the mean number
of oscillations per second. For ex-
ample, for a person 175 cm tal1, the
frequency turns out to be 0.8 Hz.
Therefore, for a person of height h
(cm)we have

vo : O.B^ffffi (Hz).

For a bent leg (as is the case when
you run), the reduced length is
smaller, while the natural frequency
is higher by about one quarter.

When you walk, your legs per-
form forced oscillations under the
action of your muscles. The charac-
teristic feature of forced oscillations
is that their amplitude depends not
only on the size of the force but also
on the frequency with which it var-
ies. The frequency producing the
largest amplitude of forced oscilla-
tions is called the resonant fre-
quency.

The resonant frequency almost
coincides with the natural fre-
quency:

v, =Vo

where

o = ]mr, =o.B7logn,
2n

and n is a number showing by how
much the amplitude of fiee oscilla-
tions decreases during one period.
The amplitude of free oscillations of
a human leg decreases about two-
fold during one period, so in the
present case n = 2 and cx = 0.11. Thus
the difference between natural and
resonance frequencies is only 0.5% .

From the viewpoint of energy sav-
ings, the best way of walking is to
move the legs at the resonant fre-
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The phy$ics ol uralking

Why you're bound to run faster

by l. Urusovsky

AN A PERSON BOUND HAND
and foot run faster than an "un-
tied" person? Yes! You don't be-
lieve it? Think about it...

From the viewpoint of oscillation
theory, a person running in a refer-
ence system attached to the runner
is just legs swinging. Therefore,
when one runs or walks the legs play
the role of pendulums attached to
the body by hinges and oscillating in
the gravitational field near the equi-
librium position (the vertical posi-
tion). However, a leg is not "a mass
suspended by a weightless inelastic
cord," and it's not the mathematical
pendulum you've come across in
your studies-the leg's mass is not
concentrated at one point. The leg is
a physical pendulum.

The most important characteris-
tic of any pendulum is the fre-
quency of its free oscillations. For a
mathematical pendulum the angu-
lar frecluency of free oscillation
vo = s[El] (the natural frequency)
depends only on the length I of the
pendulum. By contrast, the natural
frequency of a physical pendulum
depends not only on the length but
also on the distribution of mass
along the pendulum: the nearer the
mass is to the axis of oscillation,
the higher the frequency. How-
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quency. At this rate of walking, the
potential energy accumulated while
a leg is being raised converts most
efficiently into kinetic energy at the
moment it passes through the equi-
librium position. After a quarter-
period (that is, after a half-step) the
kinetic energy of oscillation con-
verts most efficiently into potential
energy of the raised 1eg. In this case
the maximal values of the potential
and kinetic energies are almost iden-
tical, while the extra load to the
muscles needed to "swing the legs"
during walking is minimal.

When people walk, they actually
do move their legs at the resonant
frequency. The deviations of the
"operational" frequency from the
resonant frequency are quite smail.
The reason is clear: the greater this
deviation, the greater the extra load
on the muscles to overcome the in-
ertia of the legs when one is walking
too fast or, in the opposite case/ to
cope with the gravitational force af-
fecting the legs when one is walking
too slow.

You can encounter a similar phe-
nomenon on the playground. It's
comparatively easy to swing on a
swing at its resonant frequency. But
if you try to swing att sayt twice the
resonant frequency, you'l1 get tired
very quickly, and the swing will
hardly move.

Now it's clear that when you
need to go faster, you should in-
crease the length of your stride and
not the rate at which you step. As a
result, your speed increases, but the
resonant frecluency changes only
slightly: physics tells us that the
resonant frequency is practically
independent of the amplitude of the
oscillations.

In addition to increasing the
length of your stride, there's an-
other way to walk faster: bend your
1eg at the knee as soon as you lift it
off the ground. This trick won't af-
fect your stride length, but it in-
creases the resonant frequency. By
"tuning" the resonant frequency of
your legs to a higher value, you can
waik faster.

A person's arms are also involved
in the process of walking. Since the

legs are moving in two parallel
planes located some distance apartt
the motion of the legs produces a
torque that "tries" to turn the body
about the vertical axis. To stay up-
right while walking, people swing
their arms counter to their 1egs. This
motion of the arms produces a
torque that counterbalances the
torque produced by the legs and
compensates for it. Also, when you
walk this way the vertical displace-
ment of your center of gravity de-
creases/ and along with it the me-
chanical work involved.

In fact, moving your legs apart
while you walk lowers your center
ol gravity, while spreading your
arms raises it. Of course/ you can
maintain a strictly vertical posture
without swinging your arms, but
only at the expense of an extra load
on your muscles, and this makes
your walking inefficient.

Swinging your arms while walk-
ing is easiest if the resonance fre-
quencies of your legs and arms are
identical. And indeed these frequen-
cies do coincide. Moreover, when
you "tune" the resonant frequency
by bending your legs when you walk
fast, yoir also bend your arms to
keep the resonance frequencies of
your legs and arms equal.

The faster you walk, the more
you need to bend your extremities
(legs and arms) to tune (that is, to
increase) the resonance frequencies
to the pace you choose. When you
are running fast, your legs are bent
at avery acute angle. Nevertheless,
however we may try, the construc-
tion of our legs won't permit us to
bend them more than double, so the
most we can do is halve the reduced
length. Therefore, we cannot in-
crease the resonant frecluency of the
legs by more than a factor of "12 .

(Taking into account that the push-
ing leg should be straight, we would
guess that the actual increase in fre-
quency is significantly less than
^tE 

)

So we see that "tuning" the reso-
nant frequency to the walking
speed is possible only to a rather
limited extent. If one needs to run
very fast, the potential energy accu-

mulated by a raised leg isn't enough
to give the leg the necessary kinetic
energy of oscillation. The muscles
must work to compensate for this
deficiency. The l<inetic energy re-
cluired quickly increases with
speed: it's proportional to the
square of the runner's speed. Bear-
ing in mind that for constant stride
length the speed is proportional to
the number of strides per second,
we see that the energy "wasted" in '
swinging the legs at a rupid rate is
proportional to the cube of the
speed. This means that to increase
the running speed by a merc l)Yo,
one needs a one-third increase in
energy expenditure; doubling the
speed requires an eight-fold in-
crease in energy. As for the forces
the muscles must exert to move the
legs when you run fast, they are
proportional to the square of the
speed.

This steep nonlinear dependence
of energy expenditure on speed ex-
plains the relativeiy small difference
in the speeds attained by record-
hoiding sprinters and average run-
ners. Now it's clear why it's so hard
to shave another hundredth of a sec-
ond from your time in the 100-meter
dash. By the way, the steep energy-
speed dependence also explains why
long-distance runners conserve en-
ergy by taking long strides and mov-
ing their legs at nearly the resonant
frequency. They do it despite the
fact that the longer stride recluires
extra energy.

To find the quantitative depen-
dence of the forces developed by
muscles on the frequency of the
strides, we need to know not only
the natural frequency of the legs but
also the decrease in the amplitude of
these oscillations. For htrmans the
amplitude is approximately halved
during a single period.

The force of the muscles pulting
the legs forward and backward acts
periodically. We may assume that
this periodicity is described by a sine
function. Given these assumptions,
we can calculate the force needed for
arry rate of walking using formulas
developed from the theory of oscil-
lations.
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Figure 1 . Dependence of the forces
setting our legs in motion on the
walking speed, where v is the fre-
quency of oscillations of the legs-
that is, the numbu of steps per
second; andvnis the resonant
lrcquency of a leg. The vertical axis
gives the factor by which the muscu-
lar force must increase in comparison
with walking at the rcsonant fre-
quency.

The results of such calculations
are shown in figure 1. It shows that
the force recluired is minimai when
the walking frequency is equal to
the resonant frecluency, and it in-
creases drastically both for higher
and lower frequencies. This graph
makes it particularly clear how
much more efficient it is to walk by
moving the legs at the resonant fre-
quency/ and how the forces needed
for walking increase catastrophi-
cally with speed. For example, dou-
bling the stride rate (compared to the
resonant frequency)-that is, in-
creasing the number of strides per
second by a factor of two-without
changing the stride length increases
the load on the muscles by a factor
of 141 Even if the stride rate deviates
from the resonant frecluency by only
70"h, the muscular forces required
increase significantiy. Now we see

why people walk at a pace right at
their individual resonant frequency:
that pace is easiest and most effi-
cient for them. (The graph in figure
1 clualitatively describes the process
of running as weII. Here we should
remem.ber that the resonant fre-
quency for running is slightly higher
than that for walking because your
legs bend a bit more when you run
than when you wa1k.)

The lower the reduced length of
the legs (practrcally speaking, the
more the legs taper from top to bot-
tom), the higher the resonant fre-
quency and the greater the speed
that can be attained with the same
effort. On the other hand, lighter
legs require less muscular effort to
move at the same speed, since the
force is proportional to the mass of
the leg. Now it's clear why swift-
footed animals (for instancet aflte-
lopes, cheetahs, racing horses, and
greyhounds) have strongly tapered
and rather light legs.

True, the second condition is less
important than the first, because the
decisive role in running speed is
played by the resonant oscillations
of the legs. For example, elephants
with their massive yet well-propor-
tioned legs are almost frisky when
they run-in India it's a compliment
to say a person "moves like an el-
ephant."

You needn't travel to Africa or
Asia for examples: just try chasing a

piglet sometime! The pig's legs (its
"hams")have acone shape, tapering
sharply downward. The pig needs its
hams not to grace our plates but to
increase the resonant frequency of
its legs. The short legs of a piglet
have such a high resonant frequency
that it can hold its own in a race
with a human being, whose legs are
much longer.

Thus the resonant frequency of
the legs plays a key role in the'speed
at which creatures run and walk. A
question naturally arises: can it be
increased? It's tempting: increase
the resonant frequency and increase
the speed of runners and walkers.

In principle there are at least two
ways to approach the problem. The
first is to increase the force of grav-
ity. The resonant frequency of a

pendulum is proportional to the
square root of the acceleration due
to gravity. Therefore, doubling the
gravitational force means increas-
ing the leg's natural frequency by a
factor of Ji . True, it's not that easy
to increase the Earth's gravitation
(to put it mildly), and maybe it
wouldn't be worth the effort. But
for space travelers who will run and

walk on other planets, the depen-
dence of the resonant frequency of
their legs on gravity isn't a theoreti-
cal issue-every planet has its own
value for the acceleration due to
gravity.

The second approach is much
simpler. If the potential energy
stored every time a 1eg is lifted is
not sufficient to give the 1eg the
necessary speed of oscillatory mo-
tion, we can tie the legs together"
with an elastic cord or attach some
other elastic devices that help re-
store the ecluilibrium position of
the legs. In this way we can in-
crease the potential energy accu-
mulated by the raised leg (at the
expense of the kinetic energy). This
will decrease the useless extra load
applied to the muscles that is
needed to oYercome the inertia of
the moving 1egs.

The elastic devices attached to
the legs play the role of potential
energy "batteries" that are
"charged" and "discharged" twice
during each period of oscillation. As
in any oscillatory system/ these
"batteries" will increase the reso-
nant frequency. The greater the elas-
ticity of the device (say, the thicker
the rubber cord between the legs),
the higher the resonant frecluency.
So we've arrived at a paradoxical
conclusion: in order to run fast, you
should bind your legs-with elastic
cord, of course.

An old German fairy tale de-
scribes a man who could rrLn amaz-
ingly fast. To walk at a normal
speed, he attached weights to his
feet. Wel1, this fellow knew what
he was doingl By adding the
weights, he increased the reduced
length of his legs and thereby de-
creased the resonant frequency and,
along with it, his walking speed. If
he attached a rubber cord instead of
weights, he would run even faster.
However, one might suspect that
the secret of this fast runner con-
sisted in the fact that his legs had a

much higher resonant frequency
than other people's legs had.

Any healthy person can become a

fast runner by increasing the reso-
nant frequency of the legs with
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some elastic device. Imagine doing
it yourself: just before the start of a
track-and-field event, you tie your
feet together. When the judges ask
you to explain your odd behavior,
you modestly reply that, because
you're such a fast runner/ you tie
your legs together so as not to run
too far ahead of the other competi.
tors.

As you take your starting posi-
tion, you pull your leg back with
some effort, thereby " charging" it
with potential energy. When the gun
goes off, you lift this leg from the
ground and it flies ahead as if fired
from a slingshot. This also decreases
the acceleration period. You'll arrive
at the finish line first-you, with
your legs tied together!

Actually, the hard part is stopping
yourself at the end of the race-your
elastically bound legs "run by them-
selves. "

If we wanted to take this experi-
ment to its logical conclusion, it
would make sense to attachthe elas-
tic devices to your arms as well, be-
cause you also use your arms when
you run. You would simply attach
elastic cords to your arms (above
your wrists) and tie them to your
waist. Our overall conclusion: if you
want people to run faster, bind them
hand and foot.

When I mentioned this to some of
my colleagues, they laughed, but
they agreed with me in principal.
One of them, however, wasn/t con-
tent to just stretch his mind-he
wanted to put my idea to the test. So

we got some thick rubber shock-ab-
sorbing cord, which is made of many
thin parallel elastic rubber fila-
ments. Then we cut 57-cm seg-
ments of these filaments and used
them to make several rubber rings
about 1 cm thick. It was a simple de-
vice: a ring was made of each rubber
filament by tying the ends, and
seven or eight rings were used to
make a composite ring. At regular
intervals this ring was tied with
string (just as you tie up a bundle of
twigs).

If you put this ring on your feet
and stand with your legs together,
the ring is neither stretched nor

slack-it lightly grips your legs.
When you walk or run/ it gets
stretched periodically. The elastic
forces generated tend to restore the
equilibrium position of your legs
and thus increase the resonant fre-
quency. In our experiments, the ring
went around the legs at calf level
and increased the resonant fre-
quency by afactor of 1.5.

To keep the ring from constrict-
ing the blood vessels, we attached
it to the legs with stiff bandages
made of cardboard or a similar ma-
terial. To prevent the ring from slid-
ing upward, we attached it to the
bandages, and also ran a string from
the ring to our shoes. The strings
didn't impede the motion of the
ring in the horizontal plane, be-
cause the angle between the strings
and the leg was always small-the
strings were kept practically paral-
lel to the legs.

The rubber ring increased the
resonant frequency regardless of
where it was attached-above the
knee or beiow. Since the oscillatory
kinetic energy of the lower part of
the leg (below the knee) is 5-5 times
greater than the kinetic energy of
the upper part of the leg (above the
knee), it makes sense to attach the
ring below the knee.

I tried walking in such a device
and found that my walking speed
increased. I felt like something was
helping me move my legs. When I
wanted to stop, I found myself-tak-
ing a few extra steps.

The rubber ring pulls the legs to
the equilibrium position, so it alter-
nately presses the front and rcar of
each leg. After a while this con-
tinual "massage" may be harmful.
For long distances it's better to at-
tach the device in such a way that
its parts don't compress areas of
muscle that have many blood ves-
sels. Perhaps the easiest way to at-
tach it is to tie the ends of the rub-
ber cord to straps wrapped around
your feet.

In order to prevent the cord from
hanging loosely between your feet
when it's not stretched, attach a rub-
ber band to the middle of it and tie
the other end of this slightly

stretched rubber band to your belt.
In this design the middle part of the
elastic cord is somewhat elevated,
but it doesn't impede motion. We
should point out, however, that un-
der great tension the elastic cord
"tties" to rotate your feet about the
vertical axis. The muscles must
compensate for this torque, other-
wise you'lllook like the police dogs
in A. N. Tolstoy's The Golden Key,
which "ran with a peculiar gallop,
their hind legs swinging out to the
side." You can eliminate this defect
by replacing the straps around your
feet with a rubber ring that goes
around the feet and rol1s around
them when you move.

You could use this device with
horses as we1l, attaching the elastic
straps to their hooves (one strap for
the front hooves, one for the hind
hooves).

If technology ever brings us
"walking devices" and robots, the
future designers should bear in mind
that they can increase their speed or
economize the energy needed by ty-
ing the "legs" together with an elas-
tic cord.

Of course, we don't necessarily
have to bind our legs to increase our
speed. There are many possible de-
signs for such elastic devices and
methods of attaching them. How-
ever, all such systems must share
this common property: the elastic
devices must develop forces that
act to restore equilibrium. In other
words, they must enhance the reso-
nant frequency of that wonderful
set of biological pendulums-our
1egs. O

Quantum on oscillations and
parametric resonance:

L. Aslamasov and I" Kikoyin,
"Wave Watching, " I antary f F ebnt-
ary 1991, pp. 12-16.

A. Chernoutsan, "Swinging
Techniques," Mayflune 1993, pp.
64-65.

P. Mikheyev, " AMagrcal Musical
Formula, " I anuary fFebruary 1995,
pp. 30-31.

A. Stasenko, "Hurling at the
Abyss, " November/December I 998,
pp.43-44.
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LOOKING BACK

Tyuho, lol'd ol Ul'anihuru

by J. D. Haines

OR AS LONC AS TYCHO
could remember, he had
loved to gaze at the stars. As
he watched the stars night

after night, he noticed patterns in
their movement. There must be
a way to understand the move-
ments of the stars, he thought.
And a way to measure how far
away they were. More than any-
thing else, Tycho wanted to
study the heavens.

When Tycho Brahe was born
in Sweden in 1546, very little was
known about astronomy. People
still thought that the ancient
Greek philosopher Aristotle's
laws ruled the universe. Aristotle
had believed that the Earth was
the center of the universe. He
also thought that the heavens
were unchangeable. Tycho was
destined to change the way hu-
mans understood the universe.

Tycho's father was a noble-
man, and the family lived in a

castle. His mother was in charge
of the Queen's court. He was his
parent's first child. But a very
strange thing happened when
Tycho's little brother was born.
Tycho's uncle was an important
Danish Admiral. He and his wife
had no children, but they badly
wanted a child. They wanted to
adopt Tycho, but instead of seeking
his parents' approval, they kid-
napped Tycho shortly after his
brother was born.

The family worked out an agree-
ment to let the uncle and his wife
raise Tycho as their own son.

Tycho's parents went on to have ten
more children. But only one of the
eleven was destined for greatness.
Tycho never forgot his fascination
with the stars. At fifteen, Tycho left
his uncle's home to attend the uni-
versity. FIe announced to his uncle
that he intended to study as-
tronomy.

"What is this astronomy?" his
uncle asked. "Foolish gazing at
stars? Please be serious, Tycho. You
are a nobleman. You need a real pro-

fession, like the law and states-
manship. It has already been de-
cided. You will study law at
Leipzrg."

Tycho was very disappointed.
He didn't want to spend his time
poring over dry, dusty law books.
His passion was the stars. But he
knew that it was useless to argue
with his uncle. Soon after arriving
at the university, he secretly pur-
chased books on astronomy and
studied them instead of the law.
|ust before he left Denmark,
Tycho was lucky enough to wit-
ness a partial eclipse of the Sun.
When Tycho was nineteen, his
uncle died. He was now free to
study astronomy openly.

Tycho had a fiery temper as a
young man. He once got into a
disagreement with another Dan-
ish noblem an that resulted in a
sword duel. The two fought with
broadswords. Fortunat ely, they
both survived. But Tycho hadpart
of his nose cut off. He made a
prosthetic nose out of gold and sil-
ver and wore it the rest of his life.
In astronomy, Tycho's first goal

was to improve upon the poor in-
struments available to ineasure the
stars. His greatest invention was
called an armillary sphere. It had a

ring nine feet across and was used to
accur ately locate stars.

He spent every night charting the
heavens with his instruments. Then,
on November LI, t572, Tycho made
an incredible discovery. He ob-

CONTINUED ON PAGE 33
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NOMENCI_,ATORIUM

A parlial hi$ot'y ol ll'actions

HE FIRST FRACTION PEOPLE
used was a half. While the
names of all other fractions are
related to the name of the num-

ber in the denominator (one-third,
one-fourth, etc.), this is not the case
forhalf. In many languages, its name
has nothing in common
with the word for two.The
next fraction was a third.
These and some other frac-
tions are encountered in the
most ancient mathemati-
cal texts that have been
handed down, which were
written more than 5000
years ago on Egyptian pa-
pyri and Babylonian clay
tablets. Both the Egyptians
and Babylonians used a

special notation for the
fractions l13 and}l3, dlfferent from
the notation used for other frac-
tions.

The Egyptians tried to write all
their fractions as sums of unit frac-
tions, that is, fractions of the form
Lln.The only exceptionwas 2l3.For
example, 8/15 was written as If 3 +
1/5. This was sometimes conve-
nient. For example, the papyrus cop-
iedby the Egyptian scribe Ahmes in-
cludes the following problem:
divide seven loaves among eight
people. If we cut each loaf into 8
parts/ 49 cuts are needed. This is
more cuts than is necessary. The
Egyptians solved this problem as fol-
lows. They wrote 7lB as l12 + l14 +

1/8. Now it is clear that 4loaves
shouldbe cut in half, 2loaves should
be cut into quarters, and just one
loaf should be cut into 8 parts,
which makes 17 cuts in total.

by N,Vilenkin

However, it was inconvenient to
add fractions written as sums of
unit fractions. If the same unit frac-
tion appeared in both terms, the
sum would contain the disallowed
fraction 2f n. For this reason, the
Ahmes papyrus begins with a table

in which all fractions of the form
2f n from 215 to 2199 are written as

a sum of unit fractions. The same
table was used to divide integets.
For example, this is how 5 was di-
vided by 2l:

5122r_r_
2t 2t 2t 2t

| (t 1\ (t 1\=i*l*. *)*l**a)

The Egyptians also knew how
to multiply and divide fractions.
They multiplied by expressing the
fractions as sums of unit fractions,
then multiplying the unit fractions.
Again, two identical unit fractions

may appeat, so they needed the table
of 2ln once more.

The Babylonians had a different
approach. They used the sexage-
simal (base-60) notation. A unit in
each position was sixty times
greater than the unit in the preced-

ing position. For example,
the notation 14"42'38
meant 14. 502 + 42 . 60 + 38,
which is 52958 in our ordi-
nary notation (of course, the
symbols used by the Baby-
lonians for the digits were
different from ours: they
were based on cuneiform
characters). The Babylonian
fractions were also sexa-
gesimal rather than deci-
mal. Actually, we still use
such fractions in the nota-

tion of time and angles. For ex-
amp1e, the time 3h 17 min 28 s can
be written as 3.L7'28", which reads
as three whole plus 17 sixtieths plus
28 thirty - six hundr edths hour s. In-
stead of the words sixtieth and
thirty-six hundredth, the shorter
terms first small part and second
small part were used. This is where
our words minute (fr om L atin minu -

tus-small) and second (from Latin
secundusl come from.

Not every fraction can be written
as a finite sexagesimal fraction, just
as not every fraction can be written
as a finite decimal fraction. For ex-
ample, l17, llI l, and 1/13 cannot be
written as finite sexagesimal trac-
tions. However, they can be approxi-
mated by finite sexagesimal fuac-
tions with an arbrtrary small error.
That is how the Babylonians wrote
them.

t22t11
2t144272t21
12111

- -r_-_r_r_
72t7t442

o
C
(s

c)o
c)a

_o
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Sexagesimal fractions were also
used by Greek and Arab mathema-
ticians and astronomers. However,
it was inconvenient to use the deci-
mal notatioir for integers and the
sexagesimal notation for fractions.
Computations with ordinary frac-
tions were even more difficult: for
example, try to add or multiply 785/.
2213 and B9l7 l34ll.

For this reason, in 1585 the Dutch
mathematician and engineer Simon
Stevin suggested using decim al frac-
tions. At first, notation was rather
unwieldy; then, gradually, modern
notation became common. As early
as 150 years before Stevin, the as-
tronomer |amshid al-Kashi, who
worked at Ulugh Beg's observatory
in Samarkand, used decimal frac-
tions, but his work remained un-
known to European mathemati-
cians.

In the present day, binary frac-
tions are used in computers. In the
binary notation, the unit in each
next position is twice as much as the
unit in the preceding position. For
example, the notation 100101
stands for the number I . 2s + O . 2a

+ 0. 23 + l . 22 + O. 2+ 1 : 37. Al-
though this notation is rather long,
it uses only two digits. This kind of
notation is easy to implement on a
computer/ using electrical currents.
For example, the digit 1 could be
represented by a current flowing
through some object, and the digit 0
by the lack of such a current. An
example of a binary fraction ts
0.101101. (Try to write this fraction
in decimal notation.) It is interesting
that binary fractions were common
in o1d Russia, where such fractions
as a half, a quafiert a half-quarter,
a half-half-c1uafter, and so on, were
used.

An interesting system of fractions
was used in ancient Rome. It was
based on dividing the weight unit as
into 12 parts. A twelfth part of the
ds was called anuncia (ounce). Dis-
tance and time were treated by anal-
ogy with the familiar weight sys-
tem. For example, a Roman could
say that he traveled 7 ounces of the
way or read 5 ounces of a book. This
clearly meant that he had traveled

7 ll2 of the way or read 5ll2 of the
book. Special names were used for
fractions resulting from some num-
ber of l2ths to lowest terms, and
also for those resulting from divid-
ing l2ths into smaller units. The 1/
288 part of the ds was called
scrupulus (from which we get our
word scruplel. Other names used
were semis (half of the as), sextans
(Il5 of the as), semiuncia (half o{ an
uncia, or ll24 of the asl, and so on.
Eighteen different names were used.
Computations with fractions were
performed with the aid of addition
and multiplication tables. Thus a

Roman merchant would remember
that the addition of a triens (ll3 of
the as) and a sextans gave a semis,
while multiplication of abes (213 ot
the as) by a sesquiuncia l3l2 of an
uncia, or 1/8 of the as) gave oneun-
cia. Of course/ they understood
completely that they were multiply-
ing fractions represented as certain
weights rather than the weights
themselves (it wouldn't make sense
to multiply weights). Special tables
were used to facilitate computa-
tions, and some of them have come
down to us.

Thus in ancient Rome the num-
ber 12 played the same role that was
played by the number 60 in ancient
Babylon and by 2 in old Russia. The
Roman system of weights and mea-
sures was duodecimal (but the nota-
tion was decimal, though different
from that of the present day). Since
the numbers of the form 1/10" can-
not be represented as finite duodeci-
mal fractions, the Romans could not
represent the result of dividing a
number by 10, 100, etc. in the form
of a fuactron. For example, this is
how a Roman mathematician
would divide 1001 by 100. First, he
obtained the integer part, lO asesi
then he divided the 1 as remainder
into unciae, etc. But he was always
left with a remainder.

In the mathematical works of
ancient Greece, fractions were not
used. Greek scholars thought that
mathematics must deal only with
whole numbers. Fractions were left
to merchants, craftsmen/ astrono-
mers/ and mechanics. Thus frac-

tions found their way into the schol-
arly works of the Greeks in a round-
about way. Besides arithmetic and
geometry/ Greek mathematics in-
cluded music. That was the name
they gave to the branch of present-
day arithmetic that deals with ratios
and proportions.

Why this strange nomenclature?
The Greeks had developed a scien-
tific theory of music. They knew
that the longer a string, the lower
the sound, and the shorter a string,
the higher the sound. Musical in-
struments often have several strings.
For them to be in tune, their lengths
must have a certarn relation to each
other. For example, for the pitch of
the sounds produced by two strings
to differ by an octave, their lengths
must be in the ratio of 1:2. In a simi-
lar way, the ratio of 2:3 corresponds
to the {i{th, and the ratio of 3:4 to the
fourth. Thus the Greeks considered
the part of arithmetic dealing with
ratios and fractions to be a part of
music.

The modern system of notation
of fractions with a numerator and
denominator was developed in In-
dia. However, they wrote the de-
nominator at the top and the nu-
merator at the bottom, and they
didn't use the fraction bar. The
Arabs were the first to write frac-
tions exactly as we do today. O

CONTINUED FROM PAGE 13
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Positively unknown (twice), Find
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Every unknown occurs twice in
the equation.
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HIS INSTALLMENT OF OUR
Kaleidoscope inaugurates a se-
ries of articles describing the
interaction o{ two aspects of

the material world: fields and mat-
ter. We begin with the behavior of
objects in a gravitation field. In this
article we'1l discuss not only mate-
rial points, whose motion in the
gravitational field is described in
most physics textbooks, but also
extended obiects. The motion of
such objects reveals odd features of
the "interrelations" between the
gravitational field and matter,
which have occupied scientists for
centuries.

The motion of objects near the
Earth, weightlessness, tidal phe-
nomena/ the synchronous rotation
of planets and their satellites, the
evolution of stars, the past and fu-
ture of the Universe-all these prob-
lems are linked by the phenomenon
of gravity. Although great scientists
of the past have predicted many phe-
nomena involving gravitation (for
example, Laplace predicted the ex-
istence of "black holes" 200 years

"Nothing composed of
terrestrial matter

and raised to a
height can
avoid the

strong ties of
gravity."
--Johannes

Kepler

before they were discovered), the
stream of unexpected and downright
amazing discoveries hasn't dried up
yet. And the increasing power of
Earth-based and orbiting telescopes
forces us to prepare our minds for
new and arnazing discoveries "out
there."

So that these future discoveries
will not catch us napping, let's try to
get a handle on at least some of the
questions raised by gravity. After
that, we'l1 move on to electricity
and magnetism in future Kaleido-
scope articles.

Questions and problems
1. Two objects start to fa1l si-

multaneously from two points
located on the same vertical line
near the Earth's surface. How
will the distance between them
change during their free fall?

2. Where is it easier for
a person to swim-on
Earth or on the Moon?

3. Are the gravita-
tional forces on two iden-
tical balls-one of them
floating in water and the
other lying on a table-
identical?

4. A rocket leaves
Earth along a radial path
with constant accelera-
tion equal to the accel-
eration due to gravity at
the Earth's surface. How

KALEIDOS
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does the weight of a passenger
change with distance from the
Earth1

5. A vessel with a floating object
starts to fall with acceleration a < g.

Will the object rise up out of the
water?

6. Why do astronauts sleep with-
out pillows for some time after they
return to Earth?

7 . Can a conventional medical
thermometer be used in an orbiting
space station?

8. Will the air density in a space-
craft change when it enters the state
of weightlessness?

9. Why does an object
weigh less at the
equator than at

the poles?
10. Why are

the planets spheri-
cal, while comets
and asteroids have very
irregular shapes?

1 1. Two travelers started a round-
the-world voyage from the same
point on the equator and traveled at
the same speed. One of them trav-
eled along the equator, while the
other traveled along a meridian. Will
they arrive at the starting point at
the same time at the end of their
travels?

12. How rapidly must 4 planet ro-
tate on its axis to be destroyed?

13. What causes the tides?
14. Why are the tides the highest

when the Moon is new and full and
lowest at the first and last cluarters?

15. How would solar eclipses dif-
fer if the radius of the Moon's orbit
were half the present value?

16. Imagine that the Earth
stopped rotating on its axis and kept
moving around the Sun. How would

I
I

I

I
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the acceleration due to gravity at the
Earth's surface vary from place to
place?

Microexperiment
Next time you go swimming,

carry a weight to help you submerge.
Try to stay motionless in a state of
neutral equilibrium, even for
just a moment. Can we say
that this is a state of weight'
lessness?

It',s interesting that ...

...1ong before Newton,
|ohannes Kepler thought about the
" gravity" acting between celestial
bodies and used the notion to ex-
plain the tides, asserting that the
Moon attracts the waters of the
oceans.

...there are still doubts about
whether Galileo ever really dropped
anything from the Leaning Tower of
Pisa. However, it's known that the
tower was used in Galileo's time by
an Aristotelian demonstrating that
different objects fall at different
rates. Be that as it may, it was cer-
tainly Galileo who managed to es-
tablish that the acceleration of freely
falling objects in a vacuum does not
depend on the nature of the objects
(such as their size, shape, or mass).

...according to Aristotle, the force
of gravity doesn't change with dis-
tance as the object approaches the
Earth's center/ but suddenly changes
direction when it passes the center.
This was the scientific description
used by Dante Alighieri 11255-l32ll

in his description of the B E I -ffi E f of years from now the
deepest region of Hell {the ffiE B A B; samehemisphereof Earth
center of the Earth). By con- s E h g. -€ g will continually face the
trast/ Newtonian theory says that Moon, as Pluto faces its satellite
the force of gravity becomes zero at Charon. By that time the Moon will
the center, as Newton had proved have moved away from the Earth to
that an object placed inside a thin a distance of 553,000 kilometers,
spherical shell does not experience and a month will Iast 47.2 days.
any forces. ...according to the theory of rela-

...in 180l-almost two hundred tivity, the accelerated motion of ob-
years ago-the German astronomer jects should generate gravitational
I. Zoldner calculated the deflection waves. But because of the weak na-
of light rays in the Sun's gravita- ture of gravitation, these waves have

tional field on the basis not yet been detected from even the
of Newtonian theory. largest celestial objects. (By the way,
More than a century the operating principle of the gravi-
latertheEnglishastrono- tational wave "receivers" is based
mer O. Lodge introduced on the tidal effect.)
the term "gravitationaL ...the Newtonian theory of grav-
lens" and predicted that ity does not apply to "black holes,"

extensive celestial objects such as whosemonstrous gravitationalforce
galaxies may produce several images prevents even light from escaping,
of distant stars because of the deflec- even though the very possibility of
tion of light passing from these stars their existence follows {rom this
through such "lenses." theory.

...the low-orbiting satellites of Ju- ...the destructive ef-
piter have fewer craters on their sur- fect of ticlal forces was
faces than the high-orbrting ones. "demonstrated" by |u-
This is due to trdal iorces and the piter, which in July 1992 destroyed

I

magnetic iield oi the giant
planet, rvhich promote
tectonic activity rn the
nearer satellites. Their
surfaces are constantlv be-
ing "reworked", andthe old
craters disappear.

a comet that dared to approach it
too closely.

...for many years astronomers
looked unsuccessfully for the
so-called dark matter in the Uni-

verse/ whose gravitatign prevents
galaxies from leaving their galactic

...although about ten thousand clusters and slows the expansion of
tons of space debris falls to Earth ev- the Universe. However/ recent as-
ery day in the form of meteorites tronomical data indicate that gravi-
and space dust, the resulting in- tation is not sufficient to bring the
crease in the Earth's mass during its rapidly dispersing galaxies back to-
lifetime has had virtually no effect gether. The Universe expands at an
on the rate of the planet's rotation increasing rate, andthis process will
about its axis. go <-rn forever. O

...the Earth's daily rotation is ANSWERS, HINTS & SOLUTIONS
ON PAGE 51
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slowing due to tidal friction. Billions
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PHYSICS
CONTEST

LL CURVES ARE NOT EQUI-
valent. As young babies, per-
haps as young as two or three
months, we can distinguish be-

tween straight lines and curves. As
we enter school, we learn geometry
based on straight lines and the
shapes that they qeate-triangles,
squares/ hexagons, and the like.
During our fascination of discover-
ing the mundane and esoteric prop-
erties of these polygons/ we forget to
ask about their relevance to the
natural world. Certainly, we require
squares to map out our rooms and
gardens. We need triangles to deter-
mine the height of a fiagpole {rom its
shadow. We need straight lines to
find the shortest distance between
two points.

Does nature share our enthusi-
asm for straight lines? How often do
we find straight lines in nature?
The horizon appears to be a line,
but we know that it must curve if
the Earth is a sphere. The rays of
Iight piercing through the clouds
provide one example of the straight
Iine in nature. The quarter moon il-
luminated by the Sun at just the
correct angle provides us with an-
other natural straight line. Is the
edge of a crystal a straight line? Are
there other examples? We would
enjoy hearing from our readers as

they expand this short list of natu-
ral straight lines.

Perhaps nature/s straight lines are
more subtle. Perhaps the lines are
there not for our visual eyes but for

Cul'ued reality

by Arthur Eisenkraft and Larry D. Kirkpatrick

There are always two
choices, two paths to

take. One is easy.
And its only reward is

that it's easy.

-Unknown
our mind's eye. As a ball falls, its path
is a vertical line. If we could only see

the ball at all places at once, how
beautiful it would be. When we mea-
sure the stretch of a spring with vary-
ing weights, we discover Hooke's
law, which states that the stretch is
directly proportional to the force. If
we write that as an algebraic eclua-
tion, we succinctly state F = -kx.
When we graph this, we find nature's
straight iine. Every direct relation,
from x = vt to F = ma to V = 1R, is a
discovery of a straight line in nature.

Visually, if not straight lines,
then does nature favor curves? A11

curves are not equivalent. Does na-
ture favor the circle (the Greek's
symbol o{ perfection) over the pa-
rabola? Does the hyperbola appear
more often than the ellipse? Does
the cycloid make more appearances
than the catenary? Let's embark on
a brief tour of some simple physics
with an eye toward the curves we
may discover along the way. Follow-
ing the earlier notion of the path of
a falling ba11, what would be the
paths of other moving objects?

The thrown ball, without air re-
sistance, travels along a parabola.
This is simply proven with the equa-
tions of motion {or horizontal and
vertical motion.

x = vorcose/

1"
y = -;gt' + vnf sin0.

Eliminating the time between
the two equations-allowing us to
see the thrown object at all times-
the equation of motion becomes:

-g* , xsinO

' - zr'o"o*e- .ote '

This path is identical to the gen-
eral equation of a parabola: y = a*
+ bx. The curve of the parabola is de-
termined by the initial angle and ve-
locity of the throw. But all throws
result in the parabolic shape,

A charged particle shot into a re-
gion of space containing a magnetic
fieid experiences a force that is per-
penficular to both its instantaneous
velocity and the magnetic field. This
perpendicular force serries as the
centripetal force as the particle
moves in a circle.

F = QV*B=*" ,

RI

mv: qBR.

Knowing the charge and mag-
netic field, we can measure the ra-
dius of the curved path and deter-

f<
C
l
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etal force. Since the speed is depen- FiOUre 1
dent on the distance/ we can deter-
mine the mass of the Earth by the. wheel (figure 1). You sometimes ob-
behavior of the satellite. serve this shape at night from the re-

flectors on bicvcle tires.

- GMrm mr2
1- =---------:-= j:::-, x: OA = OB - AB = OB - PD

R' R r0-rsin0=r(0-sin0),

mine the momentum of the charged
particle.

An orbiting satellite also foilows
a curved path. In this situation, the
gravitational attraction between the
Earth and the satellite is the centrip-

V

ME

2nR
-t'

4nz R3

A moon orbiting a planet pro-
vides us with the mass of the planet
if we are able to measure the radius
of the moon's orbit and its period.

The moon about the planet and
the planets about the Sun do not
travel in perfect circles. It is a testa-
ment to the experimental accuracy
of Tycho Brahe's measurements
that Kepler could not "settle" for
the approximate circular path of the
planets, but determined that they
travel in ellipses. The eccentricity of
Halley's comet with the Sun at one
focus provides strong evidence of
Kepler's mathematical insight.

We find hyperbolic paths when
we observe the scattering of an alpha
particle from the nucleus of a gold
atom. This Rutherford scattering
experiment demonstrated the exist-
ence of a nucleus, which contains
(almost) all of the mass and al1of the
positive charge of the atom packed
into an extremely small volume.
Knowing the deflection angle of the
alpha particle, we can determine the
impact parameter (how close the
particle comes to the nucleus) or
vice versa. The derived equation is:

O cttez
----- z msv!'

where @ is the scattering angle and
s is the impact parameter.

A particularly interesting curve is
traced out by a point on a rolllng

y=AP:BD=BC-CD
=r-rcos0=r(1-cos0).

This month's contest problem
challenges you to traverse the ter-
rain of some of these shapes.

1. A trajectory with air resistance
can be assumed to have a frictional
force proportionai to the velocity.

Fr: -bv'
Derive an equation for the trajec-

tory and sketch the path for different
values of b.

2. A charged particle is projected
into a region of space containing
crossed (perpendicular) electric and
magnetic fields. It enters the region
perpendicular to both fieids.

a) If the particle traverses this re-
gion without any deflection, show
that the speed of the particle equals
E/8. Thrs is a way we can create a

velocity selector.
b) If the particle traverses'the

crossed fields from the opposite di-
rection with the speed ElB, does it
remain undeflected?

c) If the particle traverses the
crossed fields in the original direc-
tion, but with speed other than E I B,
determine the curved path.

]Ulaunetfu uee

In the March/April issue of Quan-
tum, we asked you to calculate the
direction and magnitude of the mag-
netic fields at points P and P" pro-
duced by the current in the mag-
netic vee shown in figure 2.

Part A:Using the right-hand rule,
we see that the direction of the mag-
netic field produced by each segment
of both wires is out of the page at

Figure 2

point P and into the page at point P".
Part B: Symmetry te1ls us that the

total field at point P is twice that
generated by each half of the vee. To
calculate the magnetic field pro-
duced by the upper wire, we use the
formula for a current segment de-
rived in the March/April issue. The
first angle 0, is defined for the left-
hand end of the segment. It is the
angle between the current and the
position vector of the point P.
Therefore,

cos 0, = cos (n - s) = - cos cr.

The second angle 0, is defined in
the same way for the right-hand end
of the segment. Because the wire is
infinitely long in this direction, the
angle is effectively 180" and

cos0, =cos7t:-1.

Finally, the perpendicular dis-
tance between the (extended) wire
and the point P is equal to d sin q,.

Remembering to multiply by 2 for
the two current segments, we now
have

a=z{ftoso1 -coso2)4na'

_ FoI 1- coscx 
= [01 .rr.,, 

o
2n dsincr Znd'"" 2'

For point P"

cos0, =cos(-o) =cosc16

and

cos0, -cos(-rr)=-1.

Therefore,

- FoI I + cosa [n,l 0,

2n dsina Znd 2

You can also solve part B by treat-
ing point P" as if it were outside a

T2
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vee with half-ang1e n - a carrying
current 1in the opposite direction.
Then

- u^,1 /n-cr\ rt^1 o(B='" tanl 

- 

l=r-Y-cot-.)rd(2)Zrd2

As a third method, you can use
the superposition principle. The
problem is equivalent to two crossed
infinite wires plus a vee on the left
carrying current 1in the clockwise
direction as shown in figure 3. The
currents in the two vees on the left

cancel each other, leaving the origi-
nal situation. The superposition of
the fields due to the vee on the left
and the crossed infinite wires gives
us the answer.

Each of the infinite wires pro-
duces a magnetic field given by

- !o/
2xdsina

into the page. The contribution to
the magnetic field due to the vee on
the left is out of the page and given

Figure 3

by our answer for point P. Therefore,
the total field is

n=vol( 2 
-.rrrg)=Fo1 .n,o..2rd\sincx 2) 2rd Z

o

CONTINUED FROM PAGE 25

served a "flew" star that was as
bright as Venus. Today we know
that he saw a superfloyat a variable
star that suddenly increases in
brightness before it dims. The dis-
covery allowed Tycho to make two
breakthroughs. First, he proved that
the heavens were indeed change-
able, contrary to what Aristotle had
predicted. Secondly, he measured
the new star to be as far away as the
other stars.

At twenty-seven, Tycho was the
most famous astronomer in all of
Europe. The King of Denmark gave
him the island of Hven and built
him a castle that became the great-
est observatory in the world. Tycho
named the observatory Uraniborg,
which means castle of the heavens.
His next big discovery was the ob-
servation of the comet of 1577,
which further challenged Aristotle's
view of a static universe. For over
twenty years Tycho taught as-
tronomy and carefully mapped the

Eartlt six
montlTs lLtter

sky. He engraved the stars'positions
on brass plates that covered a celes-
tial globe five feet in diameter.

Tycho also pioneered a method
for measuring the distance of stars
ca11ed stellar parallax. He observed
that a nearby star that is sighted
from opposite sides of the Earth's
orbit about the Sun appears to shift
in position (see figure 1). By calculat-
ing the parallax angle using a math-
ematical formula, a star's distance
from the Earth could be determined.

Tycho was forced to leave Urani-
borg when the king supporting him
died. He moved to Prague to become
the Imperial Mathematician for Em-
peror Rudolph II. Tycho was an old
man now/ and he wanted a younger
man to continue his life's work. He
met |ohannes Kepler, who became
his assistant and heir. After Tycho
died in 1601, Kepler was able to use
Tycho's observations of Mars to
help formulate the laws of planetary
motion. Kepler's discoveries then
led to Isaac Newton's explanations
of the workings of the solar system

due to gravity. Newton's work in
turn served as the basis for Albert
Einstein's great leap forward in the
twentieth century with the theory
of relativity.

But it was Tycho's love of the
stars and his careful observations
that laid the foundation for many
historic discoveries made by later
astronomers. It has been said that
each generation stands on the shoul-
ders of the generation before them in
order to see a little further into the
unknown. There are many scientists
today standing on the shoulders of
Tycho Brahe.

Uisil

ott IhB Weh!

We've opened up a site on the
World Wide Web, so stop by
if you can. As with most Web
sites, we're still growing. But
aheady you'11find an index of
Quantum articles, a directory
of personnel and services,
background information on
Quantum and its sister maga-
zine Kvant, and more. Recent
visitors will have found a pre-
view of this issue, plus a

Brainteaser contest.

your Web browser to
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AT THE
BLACKBOARD I

0n qtla$ipel'iodic $Equoltce$

by A. Levitov, A. Sidorov, and A. Stoyanovsky

ET'S PLAY A BIT WITH SE-
quences consisting of ones and
zeros. Our sequences can be fi-
nite or infinite (or even infinite

in both directions)1. Here's one ex-
ample of an infinite sequence (this
one is periodic):

...01 100101 100101 100101 10... .

A more interesting example of
such a sequence can be constructed
as follows. Define a transformation
lI that assigns a new sequence S' =
n(S)to every sequence S. This trans-
formation simultaneously replaces
every I in S by the three digits 100,
and it replaces every zero in S by the
two digits 10. For example, the se-
quence S:11010 is transformed
into lI(S) : 1001001010010.It's clear
that II(S) is longer than S.

Now take So : 1, and set S, :
r(so), s2: u(s,), s3 = rl(s2), s4 = tl(s3)'
and so on (table 1). We see that ev-
ery sequence is a continuation of the
preceding one.

Exercise 1.

(a) Prove this fact.
(b) Formulate a similar proposi-

tion for So = 0 rather than 1.

Thus all sequences S, form the
beginning segments of an infinite
sequence S-. This is our first inter-
esting example of a sequence.

- Exercise 2. Prove that II(S-) = S-.
p consider the sequence S- ln moie
9 detail. First of all, it is not periodic.

5 1An infinite sequence is a function
ff that assigns to every positive integer a

> number 0 or 1. A doubly infinite se-

f qr.n.. is such a function defined for all
< integers (positive, negative, and zero).

Exercise 3. Prove this fact (or wait
for the proof below).

Second, 1et's find the average den-
sity of ones in this sequence. The
average density c can be calculated
(to a high accuracyl3s 6 = (the num-
ber of ones in a 1 km of the se-
quence)/(the number of digits in a 1

km of the secluence).
In mathem atical language, the

definition can be formulated as.foi-
lows: this density is the limit lirrrcn,
where c, = (the number of oh?3 in
S,)/(the number of digits in S,). The

first several values of cnare given in
the table. Notice that c,rapidly ap-
proaches a number c = 0.41421... .

You may have guessed by now that
this number is c = v7 - t.

Exercise 4. Prove this fact.

iHint: "r-r=r|-*.l
Thus we have constructed a se-

quence with a remarkable property:
it has an irrational density of ones.
We note that periodic infinite se-
quences do not possess this property.

{!E iii:1; +- 1.

@s?@.-:r..=r -z:
T:4 ,+. -.$ .,sll

*j

n s
I

Cn

0 1 1

t 100 1 /r
1/i = U.JJIJJ

2 100i010 317 = 0.12857...

10010101001010010 7lt7 :0.4\t76...

4 10010101001010010100101010010100101010010 t7l4r :0.41463.

5 4t199 :0.4t4r4r

6 991239 : O.4t422...

7 z39ls77 :0.4142t.

8 5771t393 :0.4t42r
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Exercise 5. Prove this fact (and
derive the assertion of exercise 3
from it).

The following problems involv-
ing further properties of the se-
quence S- may be skipped on first
reading.

Problem 1. Prove that the se-
quence S_ is quasiperiodic-that is,
every finite segment of S_occurs an
infinite number of times at different
places in the sequence.

Problem 2. Number the digits in
S- using the natural numbers. Let m,

n(n(il(S'"))) = S is called very very f e-
licitous, and so on. Finally, the most
important point:

Definition. The sequence S is
ca11ed good if the transformation
that is the inverse of II can be ap-
plied to it an infinite number of
times. In other words, S is good if
there exist sequences S', 5", S"', ...

such that S : II(S'), S' : II(S"), S" :
n(S"'), and so on.

The main problem that we'II focus
on is to classify al1 good sequences.
Naturally we won't differentiate be-

ment of the sequences, it's impos-
sible for this committee to find any
differences between S and 7.

Can the committee draw the con-
clusion that S : 7? (We, on the other
hand, can take the entire sequence
T in view and make certain that it
cannot be made identical to S by
shifts.)

So, do different good secluences
exist? To answer this question and
others, we'Il use an unexpected yet
powerful tool-graph paper.

A geomr[nic iltm!'pt'otfltiolt
Let's take a big sheet of graph pa-

per. Introduce a Cartesian reference
frame with a unit along the coordi-
nate axes equal to one square of the
graph paper. We'il depict each se-
quence as a polygonal path consist-
ing of line segments paralle1 to the
coordinate axes. If the next digit in
the sequence is 1, the polygonal path
moves one square to the right; if the
next digit is 0, the polygonal path
moves one square up (see figure 1).

The polygonal path corresponding to
a good (felicitous) sequence will also
be called good (felicitous) as well.

One thing we can notice when
we look at a good polygonal path
(such as that in figure i) is that it
looks very much like a straight line.
More precisely, there are no nodes
of the graph paper between the po-
lygonal path and some straight line.

...101m101m10101m101m1010010i01m10...

Figure 1

be the number of the ith digit in the
sequence. Prove that the following
formula gives m, explicitly:

t \-olm, =li("lz +t
L t 2)'

where [a] denotes the integer part of
a.

We now have made our acquain-
tance with the first inhabitant of the
fantastic world of quasiperiodic se-
quences. Next, we'll deal with dou-
bly infinite sequences.

sumlll8llt olile main protlem

Let S be a doubly infinite se-
quence of ones and zeros. Does a se-
quence S'exist such that II(S') : S?

It's clear that S' exists if and only if
the sequence S can be broken down
into segments of the form 100 and
10. We call such a sequence felici-
tous and denote it as S' = n-l(S).
Suppose the sequence n-l(S) itself is
felicitous. Then there exists a se-
quence S" such that II(S") = S', and,
therefore, II(II(S")) = S. In this case,
we call S very felicitous. As you
might guess/ a sequence S for which
there exists a sequence S"'such that

1.

d.
"-, .ii.

'.;.tr'

tween sequences that can be ob-
tained one from another by a shift.

The first question is whether at
least one good sequence exists. The
answer is given in the following ex-
ercise.

Exercise 6. Prove that if we adloln
the secluence from exercise 1(b)
(which is infinite to the ieft) to the
sequence S* (which is infinite to the
right), we obtain the good sequence
S, and that II(S) : S.

The next question is: do other
good sequences exist, and if so, how
many are there? Let's try to answer
this on the fly. Let S and 7 be two
good sequences.

Exercise 7. Prove that any {inite
segment of S occurs in 7 and vice
VCISA.

The result of exercise 7 has the fol-
lowing interpretation. Let's imagine
that the sequences S and 7 arewrtt-
ten on strips of paper that are placed
on a doubly infinite table. We'lI also
imagine that an infinitely large com-
mittee is sitting at the table, and the
committee's aim is to determine
whether the sequences are identical
or not. If every member of the com-
mittee can examine only a finite seg-

/:r;l
O:11 2
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Figure 2
The polygonal path presses up
against the straight line. To de-
scribe this straight line, we must/
first of all, find its slope k. It's clear
that the slope is approximately
eclual to the ratio 11= (the number
of vertical sections in I km of the
polygonal path)l(the number of
horizontal sections in I km of the
polygonal path) =

l-c

-t
c

where c is the aYerage dsnsity of
ones. We know that c = Jz - t (see

exercises 4, 6,7). Therefore,

o -^lol,-t- \o-,.)

42 -r
This sort of inexact reasoning
(which mathematicians call heuris-
frc reasoning) suggests a method for
constructing many examples of good
sequences.

Theorem l. Letlbe a straightline
described by the equation y : "l2x
+ b (where b is an arbitrary num-
ber), andlet LA: LAII) and Lr: AB(1)

be polygonal paths that press up
against l from above and from be-
low, respectively. Then lro and ,\,
are good.

The idea of the proof . First of all,
Ao and A, are felicitous.

Exercise 8. Prove this fact.
We will prove that the polygonal

paths |I-1(AA) and II-1(lr) also press
up against a certain straight line 1'
from beiow and above, where the

ecluation of l' is y = tDx + b' (for a
certain b'). It follows from this fact
that II-1(Ao) and n-t(ns) are felici-
tous, and so on.

Proof. Connect the endpoints of
the sections corresponding to 100
and 10 of the polygonal paths by
segments (shown in red in figure 2).
We obtain two new polygonal paths
Ia and .[r. Their sections lie on a

new grid consisting of lines with
slopes of 1 or 2 (the nodes of the new
grid coincide with the nodes of the
initial grid). Now imagine that the
drawing in figure 2 is made on a

sheet of transparent rubber. Stretch
the sheet to make the new grid co-
incide with the initial (rectangular)
grid. Then turn the sheet upside
down as shown in figure 3. After
these transformations, the polygo-
nal paths Ao and Ar go into fI-I(AA)
and II-1(Ar), respectively. Indeed, the
sections corresponding to 100 on the
old polygonal path A, are assigned
the horizontal section of the new
line, while the section correspond-
ing to l0 is assigned the vertical sec-
tion. The same applies to Ao.

The transformation F of the coor-
dinate plane that we performed
(stretching and turning) takes the
point (x, y) to the point

F(x.yl = lx+y. 2x-y). (")

In particular, F(!,2) = 1,0) and
F(1, 1) : (0, 1). The transformation F
has a fixed point at the origin. It

takes every straight line into a
straight line and retains the lengths
of the segments on the line.

Exercise 9. Prove these properties
of F on the basis of formula (").

Transformations of this kind are
called linear.

Exercise 10. Prove that F takes the
line I described by the equation y =

^12 x + b into the line /' described by
the equationy = "l2x + b', andfind
the coeffici errt b' .

It remains to note that there are
no grid nodes between the polygonal
paths rt-1{AA), rI*1(AB), and the
straight line J' (see figure 3) (the
same applies to Lo and .L 6 and the
line I in figure 2). Thus, ll-1(nr) and
n-1(AB) press up against the line 1'.
The theorem is thus proved.

Soltriliolt h l[e main prollem

It turns out that the converse
theorem also holds.

Theorem 2,Let A be a good po-
lygonal path. Then there exists a

line I described by the equation
y = Ji x + b againstwhich A presses
up from above or be1ow.

The proof of this theorem will be
given at the end of this section. In
the meantime we'll explain how
this theorem helps classify good se-
quences (or polygonal paths). It re-
mains to find which polygonal paths
of the form Aa(/) and AB(1) give iden-
tical secluences (that is, sequences
that can be brought into coincidence
by a translation).

Exercise 11. Prove the following
propositions.

(a) The line J contains a node of
the grid if and only if b = m * n"lz
for certain integer m and n.

(b) If the line I does not contain
any nodes of the grid, then the po-
lygonal paths Ar(7) and Au(7) are
equivalent. That is, the upper line
can be obtained from the lower
line by translation by the vector
(-1, 1).

(c) Let I, and 7, be two lines de-
scribed byihe equations y = Jix +

b, and y = "l2x + b2, respectively.
Then, the polygonal paths Ao(1,) and
ltolr) are equivalent if and only if b,
- bz = m + n^f 2, where m and n are
integers.
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(d) The polygonal paths Ao(10) and
Au(10) for the line 1o described by the
equation y = 

^12 
x a.re nor equivalent.

Thus every number b is assigned
a good sequence (except for the num-
bers b of the forrn m * n"12, which
are assigned two different good se-
quences), and two sequences are
equivalent if and only ii the corre-
sponding numbers b, and b, differby
m + nJ2. This is the complete solu-
tion to the classification problem.

Exercise 12. (a) Prove that the set
of good sequences is infinite.

(b) Find an explicit {ormula for
the position of the ith one in the se-
quence corresponding to the num-
ber b.

(c) Find the number b for the se-
quence S in exercise 5.

Now let's prove theorem 2.
Lemma. Any good polygonal path

A can be placed in a strip between
two straight lines with slope J2,
and the upper line is obtained from
the lower line by translation by the
vector (-1, 1).

Ptoof. Let's try to place A in a
strip as specified in the lemma (it
will be called the strip of standad
widtl!. Take a line 1, with the slope
k = "12 that passes very high (above
A) and start moving it downward
until it comes up against A. (As we
do this, a strange situation can occur
where the polygonal path doesn't
touch the straight line. At the same
time, it's impossible to move the
straight line downward because dif-
ferent "teeth" of the polygonal path
approach arbitrarily close to the
straight line.) We perform the same
operation with the line below: take
al;lne lrwith the slope k = "12 and
move it right up to A. We assert that
the width of the strip containing A
is not greater than the standard
width. Indeed, suppose that the strip
containingAis wider. Move the lines
1, and 1, abit closer to each other.
Then the polygonal path will inter:
sect both boundaries of the strip,
which is still wider than the standard
one. Consider a finite part of the po-
lygonal path that contains the inter-
section points with both lines 7, and
7r. But the finite parts of A are iden-
tical to those of some polygonal path

Ar(1) (see exercise 7), which can be
placed in a strip of the standard
width (the proof is left to the reader).
Thus we have arrived at a contradic-
tion, which proves the lemma.

Proof of theorem 2. Place the po-
lygonal path A between the lines 1,

and 12, which can be done by virtue
of the lemma. Then either A: AB(1r)

or A : LAQ2), or both.
Exercise 13. Prove this fact.
Thus theorem 2 is proved.

Conclusion
Let us summarize. We have be-

come acqualnted with quasiperiodic
sequences of a special type (related
to the transformation lI). In addi-
tion, we studied the structure of po-
lygonal paths that press up against a

straight line with slope J2.
We can continue our study in two

directions. The first is to consider
transformations different from II.
For example, consider the transfor-
mation lI that takes I into

190;..0
I Zeros

and u lnto

1q4
n-l zetos .

Problem 3. Classify the sequences
that are good relative to fr . Every-
thing is similar to the case of fI, ex-
cept that the role of J2 is played by
the number

n*ffi _r.
2

Problem 4 (for study-which
means that the authors don't know
the solution). Consider more general
transformations instead of II (for
example,

r - eJ9o;!
- ponesqzeros

and

o-,"u*g#

and similar transformations) and
classify the corresponding good se-
quences.

The other direction is to consider
lines with other irrational slopes k
and study polygonal paths that press

up against these straight lines. It
turns out that the structure of these
polygonal paths depends on how the
numberk + 1 is representedas a con-
tinued fraction, Here is an example
of a continued fraction:

",D +l=2+
-l- I'' r* '2+...

Similarly, k + 1 can be written as

1
irlr-

-- _ 1

I,, *:

where fli are natural numbers. The
study o{ continued fractions is a

separate and interesting topic. We
can't discuss it here due to space
limitations. For a detailed discus-
sion of this subject, see the article by
Y. Nesterenko and E. Nikishin in
the fanuary fFebruary 2000 issue of
Qudntum.

Here's the last problem.
Problem 5. Examine the structure

of polygonal paths that press up
against straight lines with an irratio-
nal slope ,k. For exarnple, it's clear
that such pol,vgonal paths can be
broken dorvn into sections of the
form

1qq_!
it :eros

and

1 00...0
,l,-=ror'

where n, = lrt + 1]. What happens ii
every section

100...0\_-
,l zeros

is replaced hy I and every sectiorr

I 00...0
n, I zetos

is replaced by 0? O
The problent discussed in this article
was solved by Alexunder Sidorov, then
a stttdent at Moscow School No, 57. He
presented o repott on this problern at
the 19th Stttdent Conf erence in Batttmi
(November 1988). On luly 1, 1990, his
life came to a tragic end. We dedicate
this article to his memorv.
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HE GREAT FRENCH SCIEN-
tist Henri Poincare ( I 854-
I9l2) once said: "The experi-
ment is the only source of

truth: nothing else can teach us
something new, and only it can
ecluip us with trustworthiness."
And we can't help agreeing-ex-
perimentation is truly the corner-
stone of every science.

Expeniments Ul'sflt attd $lnal!

On the basis of the material ex-
penditures on experimental re-
search, one often sees science di-

Figure 1. e Mic-zs iet fighter in a
wind tunnel.

IN THE LAB

The prico ol resi$lance

by S. Betyayev

vided into "big science" and "small
sciense. " Research in small science
is carried out by small research
groups, or even by an individual,
with little money. Big science in-
volves the reaLtzation of grand
projects-building huge particle ac-

celerators, or space vehicles, or
nuclear power plants.

Without big science it would be
impossible, for instance, to build air-
planes, ocean tankers, and rockets.
The design of each arose out of in-
dustrial research conducted in mod-
ern aerodynamic test facilities. Ac-

cording to the principle of
relativity, there are two
equivalent methods of cre-
ating flow: moving a model
in a me&um that is at rest,
or pushing a medium past
a model that is at rest. The
first method is used in bal-
listics facilities, hydro-
channels, and experimen-
tal tanks, while the second
is used in hydro- and aero-
dynamic tunnels.

In a hydrochannel, a

special cart moves along
rails set above the chan-
ne1 and pulls a model of a
hydro-airplane; the flow
around it is photographed,
and the forces and mo-
ments acting on the model
are measured. Aerody-
namic tunnels, like the
one shown in figure 1,

have made it possible to
move from primitive air-
planes to modern airliners
in a single century.

However, many physical laws
can be discovered in small-scale ex-
periments. So-called "kitchen ex-
periments" belong to the category of
scientific (as opposed to technologi-
ca1) research. Most of them can be
done at home or in a schooi physics
lab, as the American physicist Rob-
ert Wood said, with "a stick, a rope/
sealing wax, and mica." The Ger-
man physicist Hermann Helmholtz
once said of Michael Faraday that
"old pieces of wire, wood, and iron
are seemingly all he needs to make
great discoveries."

Sl'eal "hall [o$sel'$"
The easiest way to determine the

resistance acting on a body moving
relative to a medium is to watch
how balls fa1l in the medium.

Leonardo da Vinci (1452-1519)
was one of the first researchers who
carried out such experiments. How-
ever, he experimented not only with
falling objects but also with objects
moving in water/ and even with flat
surfaces moving in ak at an angle of
attack.

Galiieo Galilei 11564-1642) con-
tinued Leonardo's work. Throwing
heavy and light bal1s fror.n the lean-
ing tower at Pisa, he discovered that
the speed of a faliing object is inde-
pendent of its weight and formu-
lated one of the great physical prin-
ciples-the principle of rnertia: if no
net force acts on a body, it moves
uniformly in a straight line. Gallleo
attached great significance to the
Iogical explanation of experimental
results, to an understanding of the
physical essence of a phenomenon.
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"Nature gave Lrs eyes to see her
works," he told his students. "But
she also gaYe us a brain capable of
understanding thern."

Another great "ball tosser" was
Sir Isaac Newton {1643-1727), the
founder of classical physics and, to-
gether with Gottfried Lerbniz 11646-
1716), the founder of ca1culus. He
threw balls in St. Paul's Cathedral in
London. For Newton the question of
moving objects and resistance
wasn't a matter oi idle speculation.
He wanted to prove that {contrary to
the assertions of the Aristotelians)
interstellar space is not iilled with
matter. If it were, the matter would
resist the motion oi the heavenly
bodies, and Newton's elegant rne-
chanical system oi the Universe
would collapse likc a house of cards.

According to Ncwton, the resis-
tance of an object rnoving in n arer
consists of three parts: the frrst part
is constant, while the second and
third are proportionai to the spccd
and the square of the speed, respec-
tively. The constant part oi resrs-
tance is negligible; the resistance
proportional to velocity is due to
friction; and the resistance propol-
tional to the scluare of velocity is due
to the forces of inertia.

Today it's known that it's impos-
sible in general to subdividc resis-
tance into separate parts, Lrecause
the effects related to florv arouncl a

body are woven together too tightll .

Nevertheless, it was Nerr,ton rrho
discovered that the force t,i rc.ir-
tance oi a ball moving rvith speecl r-

is directly proportional to its cross-
sectional area S and fluid density p:

F = C, {-S,,r2

rvhere Cu is the coeificient of pro-
portionality (often called the drag
coeificrent l.

Whar happens if the flow condi-
tions are drtterenti for example, we
can spin an obiect ;rbout its vertical
axis. Which l.aLl r' ril hit the ground
first-one that rs sprnnins or one that
isn't? It turns oL1: rll.ti rrttilting ba11s

fal1 more qurckh-\-, r-: ..rr .1-mo1-I-

strate this on )-ollr , -,.,-:: :r' -hr.rr\ 1ng

spinning and non-
spinning tops from a

tall building.
The law saying that

resistance is less the
faster an obiect spins
is qualitative. Quanti-
tative measurements
of this phenomenon
are fraught with diffi-
culties. Because of the
resistance force, there
is a loss of momen-
tum in the Lrail be-
hind the obiect. In a

Figure 2. Tsiolkovsky's
wind tunnel.

ways. For example, an
airplane should have
low drag but large 1ift.
On the other hand, a
parachute should have
high air resistance to
slow its fall.

Experiments with
objects having a simple
shape can be quite in-
structive. For instance,
by blowing air or wate{
on dihedrals with dif-
ferent opening angles
B but the same face

wa, the flow "remembers" how the
trail was formed.

If the speed of a falling object
doesn't vary along some portion of
its trajectory, the resistive force re-
mains the same. We know that
speed is constant if the sum of all
the {orces acting on the object is
zero; thus the force of resistance
equals the force of gravity. For the
same object this equality is reached
at greater heights in air than in wa-
ter. It seems that Newton took this
feature into account when he chose
water as a resistive environment in
his ball-tossing experiments (he
used a wooden barrel 4.5 meters
high filled with water).

Binlltouslry,s ilowm
In the 19th century the idea arose

that the forces of air resistance (aero-

dynamic drag) could be measured in
wind tunnels.

In Russia the first such tunnel
was built by Konstantin E. Tsiol-
kovsky tn 1897. He used a hand-
driven winlowing machine to con-
struct his blower. Unfortunately,
the wind speeds generated in
Tsiolkovsky's experiments were too
1ow for use in aviation research.
However, this kind of blower is very
useful in carrying out many labora-
tory experiments on air resistance.

You can make a wind tunnel out
of an ordinary vacuum cleaner by
connecting a tube to its exhaust
vent. You then place the obiect be-
ing tested in the stream of air com-
ing out of the tube.

It's interesting that the laws of alr
resistance are manifest in various

width I we find that the highest drag
is reached not for the flat plate (B =
0) but for a dihedral with some nega-
tive opening angle B (figure 3).

Figure 3, ,+t Tlow around a dihedral.

Along the same lines, we might
think about airplane wings with a
swept-forward shape (figure 4l-in

Figure 4. Atrcraft wing with
forward-swept V shape.

the plane perpendicular to the air
moYement, the flow is similar to
that around a dihedral with B < 0,
and lift will correspond to the
dihedral's drag. But now welve
moved into the realm of "big sci-

CIcnce"...
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AT THE
BLACKBOARD II

LANCING AT THE TITLE OF
this article, you might think
it's about the pressure of light
(which is an electromagnetic

field). You may have come across
this phenomenon in your physics
textbooks. You can grasp the nature
of light pressure if you keep in mind
the dual nature of light, which can
be seen both as a wave and as a
stream of particles (photons) that
have momentum. When the pho-
tons are reflected or absorbed by an
object, their momentum changes,
which means that some force is ex-
erted on the object,

This approach treats light pres-
sure like the pressure of an ideal gas,

which is explained within the
framework of the kinetic theory as

molecules striking the walls of a
vessel. But if we try to explain light
pressure without leaving the con-
fines of electromagnetic theory, the
creation of forces must be linked to
the action of the wave's magnetic
field on the uniformly moving
charges of the substance, which is
induced by another component of
the wave-its electric field.

However, we won't get bogged
down in a discussion of the pressure
of electromagnetic waves/ because
this article is about something
else-the pressure of a static field
(either electric or magnetic). Clearly
in this case there can be no talk of
changes in momentum/ so the very
term "pressure" must be taken with
a grain of salt. Nevertheless, this
concept crops up in popular science

4 0 srPrrlrtBrR/ocroBrR 2ooo

tield prg$$ut'B

by A. Chernoutsan

magazines and books. For example,
reading about the generation of ex-
tremely strong magnetic fields, we
iearn that one of the basic problems
is the pressure this field exerts on
the walls of the solenoid. This prob-
lem is closely related to controlled
thermonuclear fusion, where the
hot plasma must be held by a strong
magnetic field (the "magnetic
bottle"). However, let's begin not
with magnetic field but with our old
friend, the electric field.

Elscll'ic lield pnessul'e

We start with the case where
pressure is exerted by an electric
field on a charged surface. It arises if
the field strength is different on each
side of the surface. As always, the
simplest case is a charged parallel-
plate capacitor. The electric field
inside such a capacitor is

"- 
6
eo

where o = cIlS is the surface charge
density. When we calculate the
force affecting a unit area of one of
the plates, we need to take into ac-
count only the fieid generated by the
other plate (El2), because a plate
doesn't act on itself:

F E r^FZt) - - - '0-
s22

Let's examine this result.
First, pressure is expressed as the

intensity of the field located on one
side of a plate (the field outside the

capacitor is negligible). Second, the
force affecting the plate is directed
into the capacitor-that is, the
plates are mutually attracted. This
means that if we want to ascribe
pressure to the electric field, we
should treat this pressure as nega-
tive. hr other words, the electric field
doesn't "push" an object, it "pulls"
it. Third, the field pressure is equal
to the volume density of the electric
field energy U stored by the capaci-
tor:

P = -u= -u = -toE2 il)V2
These features of an electric field

can be illustrated by means of en-
ergy conservation. Consider a paral-
Iel-piate capacitor isolated from any
electrical source. Using an external
force, let's s1ow1y increase the dis-
tance between its plates by some
value x. Since the strength of the
electric field between the plates is
constant (it's determined entirely by
o), the energy of the field will in-
crease by uSAx. So the external force
must perform positive york FAx,
while the force of the field pressure
must perform negative work -PSAx.
Therefore, the pressure of the elec-
tric field is negative, and its magni-
tude is equal to the volume density
of the electrical energy.

Formula (1) is valid also in the
case of a charged surface ol any
shape, provided the fieid strength is
zeto ofl one of its sides. Here's an
important example: a fragment of

oY
-Ca
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the surface of a conductor with area
AS, at which the electric field is E, is
acted on from the outside by aforce
M : leoE2l2l{S. Without proving this
formula, let's work out the general
result: If the electric fields on two
sides of a charged surface are Erand
E, then a force acts in the direction
from the first to the second region,
which corresponds to the pressure

^ tnP, eoE,2 ,^r
22

This formula can be proved in
three ways. The most simple and
natural way uses energy. We men-
tally shift the surface a distance Ax
and ecluate the work of the external
force to the change in the energy of
the electric fie1d. (The work due to
the pressure generated by the elec-

o

-
E1

+
E.r,

Ei,r,

E"r,

+
Ei..

Figure 1

tric field is equal to the work per-
formed by the external force but
with the opposite sign).

It's also possible, as in the case of
the parallel-plate capacitor, ro sepa-
rate the external and internal fields
(figure 1). Assume that both fields
are perpendicular to the charged sur-
face. In fact, the tangential compo-
nent of the electric field (if it exists)
must be identical on both sides of
the charged surface (this follows
from the conservative nature of the
electrostatic field-prove it on your
own), so it cancels out from the pres-
sure formula. For the internal field
E,r, and external field E"*, we get

The eiectric field ncar thc surfzrce
is inclistinguish:rble frorn the field
generatecl by thc pl:rte-thzrt iS, E,,,.

- ol2to. Both ecluations yield E",,

and o:

o=eo(E, -Er), (3)

from which we gct thc pressure

P : 6E",,

ancl formula (2).

To make it clcarcr th:rt it is the
total fic1cl that dctermines the pres-
sure, while the separatron of the
ficlcl rnto externirl:rnd internzrl com-

Figure 2
ponents is or-r1,v :r mathemirtical
tricl<, let'S Ln11-i.1.1 the iorce Jllcct-
rng a thin laryer oi a r.olume charge
(figurc 2). Insicle the layer the fielcl
strcnStlt grarlulllr clrrrrrges trom E,
at one surface to E. :rt thc other. If
rhe r ollrrle e lrar'.. .le rrsity p is corr-
stant, the fielcl strcngth varies lin-
eirr'ly,tntl the fnlcc atfecting x scg-
ment oi area S cirn bc expressed by
the rnerrn ticld rrrtcrr.it):

,=osu,lu.

wl-rcrc o = pd rs the charge of ir unit
surface layer. The rclationship be-
tween o, E,, and E, can be cleduced
by rleans of Geruss's 1aw (see the list
of referenccs bclolv) or by consider-
ing t1-ic cxtcrnal :rnd rnternal fielcls,
as we dicl in declucing formula (3).

Ii the iunction p{rJ is arbitrary, we
divide the layer ir-rto mauy vely thin
letyers r,rf thickncss dr and :rdd the
forces affecting thcsc layers (figure 3):

l-r---,----]

Figure 3

The change in the field strength at
the next layer is

dE=

which is derived from Gauss's law
and formula (3). For the pressure we
get

-) -lcllrr .OLl-) .)

Note an important feature here:
In the case of a volume charge we
need not separate out the internal
field. The reason is that by decreas-
ing the thickness of the layer, its
internal field tends to zero.

tUlaUneth lield Uessul'e
In the case of a magnetic field we

encounter two difficulties. One is
purely pedagogical. Textbooks usu-
ally don't give the formulas for a

magnetic field generated by an ele-
ment of a current-carrying conduc-
tor (the Bio-Savart relation) or elec-
tric current flowing in a straight
wire or a coil (solenoid). They also
don't give the formula for the den-
sity of the magnetic field energy.

Therefore, we'1l restrict our dis-
cussion to the case of a long solenoid
(a11 our generahzations will proceed
as in the case of electric field pres-
sure). The solenoid's magnetic field
is uniform almost everfwhere (ex-
cept at the ends) and is equal to

B = po/{ =;ror, 14)
1

where Fo is the permeability of free
space, I is the length of the solenoid,
N is the number of turns, and r is the
surface current density (current per
unit length), which is similar to the
surface charge density in electrostat-

pdx

c0

lEep-t=lns^ap
.l

I

E2

JE, - E.,, - Ei.,,

lEr=E.,,*E,n,.

a tE r,.4,*E._10\Ll -l /, 
)

= lie. - r-t I'
| 2 ) )'

d
IF- lE(v)p(v)Sr1r.

J
0

Elx + dx)
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ics. The direction of the magnetic
field can be found from the right-
hand rule. The magnetic flux in the
solenoid is.<D : NBS, from which we
can find both the inductance L : ol
1 and the magnetic field energy
stored by the solenoid U = LIz12.
Dividing the energy by the
solenoid's volume gives us the for-
mula for the density of the magnetic
field energy:

U82
V Zpo

The second difficulty arises from
the careless application of energy
relationships in problems involving
a magnetic field. If you're not care-
ful, you may run into apparentpara-
doxes and contradictions. And that's
exactly what threatens to occur
here.

Our calculation of the force af-
fecting a small rectangular area AS of
a solenoid's surface will be based on

cLlrrent
flows down

,1

'*,1

,*,1

Figure 4
reasoning that is similar to that used
in electrostatics (figure 4). We subdi-
vide the magnetic field near the sur-
face into an internal field 8,., (very
near the surface it should be equal to
the field generatedby an infinite cur-
rent-carrying plane) and an external
field 8.". (the fieid generated by the
otherparts of the solenoid). Thus we
have

fromwhichirc i:: I = : - : l
Wc can ol.rtairr :-- -'-- '..'. - . -

ft,rce lrorn Arttp.:- r .-' : --
mula (4) into acc, --.::

lr = B"*,(i^J ya = Lzi.,
zVo

where AJ is the width of a segment
along the solenoid's axis and Ad is
its length in the direction of the cur-
rent.

At first glance, everything is okay
and is similar to what we saw in
electrostatics: the field pressure is
numerically equal to the density of
the magnetic field energy. However,
if we determine the direction of the
force according to the right-hand
rule, we shall see a significant differ-
ence: the force is directed outward,
so that in contrast to the electric
field, the pressure of the magnetic
field must be considered positive.

It would seem there's nothing
wrong with this result-it agrees
better with conventional views of
pressure. However, it's not hard to
see that this result is at odds with
energy conservation. Indeed, if we
mentally move the curent-carrying
surface, say, in the direction of the
field (that is, if we decrease the ra-
dius of the solenoid), the external
forces perform positive work against
the magnetic forces, while the vol-
ume of the solenoid containing the
field decreases-which means the
energy of the field decreases as well!
How can we resolve this contradic-
tion?

The contradiction arose because
we didn't take into consideration
the work performed by the source
of electric energy needed to main-
tain direct cuffent in the solenoid-
without this condition the value of
the magnetic field in the solenoid
cannot be held constant. The extra
work of the source must compen-
sate for the work of the induced emf
arising due to the decrease in the
magnetic flux in the solenoid. Mov-
ing the segment a distance Ax cor-
responds to a change in magnetic
flux

L@ : -BAxLd,

which generates in this segment an
induced emf equal to

Taking formula (4) into account,
the work performed by the source
against the induced emf is

BslLip61
W, = -%,-rLq = -: Lt

o2

- -' Lv,
Lro

where Aq is the electric charge that
passed through the segment during
time At. Now we see that the work
per{ormed by the external force and
the source is exactly equal to the
change in the energy of the magnetic
field!

It's interesting to note that a simi-
lar problem arises in formulating
energy conservation (the first law of
thermodynamics) for an isobaric
change in an ideal gas, where the
pressure is also positive. It's conve-
nient to consider the isobaric pro-
cess because in this case the density
of the internal energy remains con-
stant:

nCuT crn
R

where Cu is the molar heat capacity
of the gas at constant volume. For
example, compression of the gas is
performed by the positive work of an
external force. (Correspondingly, the
work performed by the gas is nega-
tive). However, the internal energy
of the gas decreases during this pro-
cess. This "paradox" can easily be
explained: the amount of heat trans-
ferred from the gas is exactly eclual
to that needed to satisfy energy con-
servation. In this case, the heat res-
ervoir plays the same role as the
electrical source in the solenoid
problem. O
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100 101 102 103 104 10.5

106 101

I
108 109

il0 111 12 I13

52

54

55

56

ACR0SS
1 Large

5 Asser

10 Pivot
15 Coml
19 More

Large fisl.r hook
Assert
Pivoted
Complcx silicate
More stable isomer:
prcf.

20 Archaeologist _

Breuil (1877-1961)

21 Actress _
Wasserstein

22 -fype of exam

23 Brew
248=madiscoverer
26 Medicine amount
27 A solvent
29 Cowboy show

30 Representatives

32 Nucleotide chain:
abbr.

33 Homes
35 Actor _ Sharif
36 Aquatic plants

39 Annapolis fresh-
men

40 Three-sided figure

44 Beginning of the
day

45 Town in Oman
46 Spoiled children
47 Phase difference
48 Dutch town
49 Sea duck
50 Hackneyed
51 Tennis score

Sheep cry
Actresses Mulgrew
and Winslet
Argry
Oscillations
1945 chem.

Nobelist
_ Virtanen

lr89s-19731
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58 Cold: comb, form
59 Most rational
60 Like light
6,1 Cellist Pablo _

(1876-19731

67 Like the country-
side

68 Sideways

72 Group of double

73

74

76

77

7B

79

80

B1

82

83

84

85

salts

Jerks
Daunt larchaic)
Srlver iodide: abbr.

Carpets

Records

Acted dramatically

- 
Product

ior inner prodr,rct)

Winglike structllre
Africar-r capital
Town near )aicos
Ernploy

- 
acid HOOC-

(cHoH)2cooH
Harmony
Type of eclipse

Spheres

Italian river
Fiat coral island
Shout of exultation
Zodiac sign

Trig. function
Hydrated
amorphous silica
Double-helix
Nobelist
Dammed German
river
Calcium oxide
966,350 (base 16)

196.1 Chem.
rE'eli-.: Gir.:lio

t-t-, __ -

D.:- --
D---

DotIlllll
1 g-aminobutyric

acid: abbr.

2 Actor Balclwin
3 Escape

4 Computer l:rnguage

5 F;rr east

6 _ maiest)-
/ ( olltrctl(ln (lt

irnecdotcs

B Bank account
9 Onc dyne/cmr
10 Stockholm

residents
11 City in Sussex, Del.
12 Poet's to
13 Tokyo, formcrly
14 An explosivc
15 Up-to-date
1(r Elerlent in steel

17 Use a fisl.ring pole

1B Anthropologist 

-Hrdlicka (1869-

1934)

25 Points of minirnum
disturbance

28 Identity element
of a set

31 Gallium arsenide

33 Portlar-rd cement
clinker c0nstituent

34 Former Czech.
presrdent

35 Speak pompously

36 Or-re-cel1ed animal
37 Direction fincler

38 _ circle
(equator, e.g.l

39 Likc thc top

layer of oceans

-r0 Neptune's moon
* - 1 r;.t oi bor

49 Skeletal parts

50 Courtroom event
5l Spear

54 La Douce et. al.

55 Stayed in
anticipatlon

57 Bul1s and Suns, e.g.

58 Knox and Sr-rmter

i9 Declares

61 _ of Cancer

62 Reigns

63 Happy
64 0.200 grams

65 Bird wrng part
6(r Saccharide

69 Anthropologist
Paul

_ (1883-19s9)

70 Marketplace, in

ancicnt Grcece
71 Unit of volumc
73 Singcr _ Ioplin
74 Son of Lot
75 1972 Chem.

Nobelist
Stanford _

78 Type of engine

79 C,oHr"
82 Poi sourcc

83 Cornmon fastener

8,1 

-' 
principle (of

u,avc propagirtionl

86 
-'s 

aldel.rydc tcst
87 Woken up

88 Con-rputer netr.r.ork

abbr.

90 Betel nut p:11m

91 The auditory _

92 Pediatrician Luthcr
_ (18ss-1924)

93 Bee ger-rus

94 blacl<

(carbon pigment)
95 USA word: abbr.

96 Type o{ bag

97 Revisc ancl correct
98 Hawaiian goose

99 Ore cart

102 

- 
blood group

103 Sales or income
follower

104 1 atn-r. ancl 0"C:

abbr.

SOLUTIOI'I IN THE
A/EXT /SSUE

87

88

89

90

91

92

95

96

100
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Physics

P301
Let's denote the mass of the cord

by m andthe tension at points A and
Bby Toand T6, respectively. Keep in
mind that at evety point the direc-
tion of the tension is tangential to
the cord. Since the cord is at equilib-
rium, the total sum of the forces act-
ing on the cord is zero:

f"*t+mg:0.
The vector character of this equa-

tion means that the sum of the pro-
jections of these forces in any direc-
tion is also zero. In particular, for the
vertical axis OY we have:

To, * Trr- mE = 0,

from which we get

To, +Tr,

I
Therefore, to determine the mass of
the cord, we need to find To, and
Tr,.

The segment CB of the cord is in
equilibrium. This means that the
sum of the projections onto the hori-

ANSWERS,
HINTS &

SOLUTIONS

zontal axis OX of the forces acting
on the cord at points C and B is zero:

T"r+ Trr= o'

Now draw the vector force T" on an
arbitrary scale (figure 1a). Its direc-
tion is tangential to the cord at point
C. Let's find the projection of this
force onto the X-axis and draw the
tangent to the cord at point B. The
force T, is directed along this tan-
gent 1ine. The next step is to draw
the horizontal component BK of the
forceTr*. This projection is equal to
-7",. Drawing a vertical line at
point K allows us to determine the
force Tr. Now it's easy to find the
projection of the force T, onto the
vertical axis. It's determined by the
length of the segment KE measured
in the scale we chose for drawing the
force T.. In our case T r, = 22 N.

In a similar way we plot the ten-
sionT, atpoirtA (figure lb)andfind
its projection onto the Y-axis. In our
case it is about 9 N. Therefore,

OOrO
* = 

oo-.' ' kg = 3.2 L*.
9.8

P302
Let's consider the process in the

lP, Vl plane and denote the states
with temperatures T, and Trby
points L and 2, respectively (figure
2). Now draw isothermal and adia-
batic curves through these points
and label the intersections 3 and 4.
By the statement of the problem, the
process 1 -+ 2 is possible, during
which the temperature does not de-
crease and heat is not lost. This
means that point 2 is situated to the
right of the adiabatic curve that
passes through point 1. In addition,
the plot of an arbitrary process 1 -+
2 satisfying the given conditions is
located within the cycle I -+ 3 --> 2
-+4-+1.

Denoteby Qe, Qs2, and Qro, the
heat added to the gas during the pro-
cesses L -+ 2, 1 +3 -+ 2, and I -+ 4
-+ 2, respectively. Let's consider the
process 1 -+ 3 -+ 2 -+ l.In this pro-
cess the gas acquires heat Qrr, then
dissipates heat Qr, performing
work Qr., - Q12 as it does so. The
work is equal to the area of the fig-
ure delimited by the lines 1 -+ 3, 3
-s 2, andZ -+ I . Since this area is not
negative/

Qrrr 2 Q,r'

In a similar way we consider the pro-
cess 1 -+2 -+ 4 -+ l. The work per-
formed by the gas in this process is
also nonnegative and equal to Qr, -
Q1a, from which we get

Q"2 Q:,o''

These two inequalities lead to

Qrqza Q,z s Qre,

Since the process I -+ 2 is arbitrary
(it is one of the processes that satis-
fies the conditions of the problem),
the last inequality means that the
minimum amount of heat Q, that
can be imparted to the gas in this
process is Qr+2. The maximum heat
Qrthat can be transferred to the gas

in this process is Qraz, by the same
reasoning.

Therefore, to solve the problem,
we must consider the Carnot cycleTn,

b

Figure 1
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1 -+ 3 + 2 -+ 4 -+ 1, where the eifi-
cicncy is

rr=l ?_l:-l-l' Qrr: rl
Taking into considcration that Q,*,
= Q, and Q,.r.: Q2, we obtairt

P303
Electrolysis oi water is accompa-

nied by polarization of the clec-
trocles, whrch means that the cell
turns into a galvanic cc1l. The emf of
this cell can be founcl b1- assuming
that the energy releasecl by the hy-
drogen combustion is not used tcr

perform any work against external
electrical forces. In accordarnce \\rrth
Faraday's electrolysis lau., to obtain
hydrogen o{ mass n7t at1 elcctric
charge q lnust pass through the ce11:

mZell sLl-

where Z: I is the valence, M: I gl
mol is the atomic mass of hydrogen,
e = L.6. 10-1e C, and NA = 6.02 ' 1023

1/mol is Avogadro's number. As
noted above, work equal to Q must
be performed in this process:

(a= QM
mZeNs

This results in the following cell
efficiency (which is equal to the ef-
ficiency of the corresponding gal-
vanic cell and therefore of the elec-
trolysis cell):

- Aobtri." d cl8

"= 'q.r*u 
= qu

QM
= ______:: = 0.7 5 = 7 5"/".

mZeN sU

P304
First let's iind the equilibrium

position of rhe iumper. Since both
batteries hare the same emf, the

b

Figure 3

rium position of the jurrpcr. Wc'1l
see later that tl-ris equilibrium is
stable.

Note that if the jur-n1.rcr tnoves
near thc ctluilibliLrnr position, it r'ar-
ries clcctric current generatcd by
two sourccs: first, by the ch:rngc in
Lesistance in that part of the elcctri-
ca1 circuit; ancl seconci, by the gen-
cration of electromagnetic incluc-
t:.rnce emf. According to Lentz's law,
part oi the n-ragnetic force clue to
incluced current darnps the oscilla-
tions (it can be shown that this part
oi the magnetic force is proportional
to the velocity of thc jumper ancl is
analogou.s to viscous friction). Ac-
corcling to the statement of the prob-
1em, the induccd emf can be ne-
glccted.

Let's fix a rectangular coorciinate
systcm to the midpoint of the lower
rail and with the posirive x-axj5 rL)

the right {figure 3b). Considcr a

smal1 shrft oi the jumper along the
r-axis-say, to the left. If the jumper
is shiited zr distance r, it will carry
zrn electric clrrrent. Dcnote the cur-
rent flowing from the left battery tcr

the jumper as 11, the current carricd
by the jumper as 1r, and thc currcnt
entcring the right battery as 1,.. Ac-
cording to Kirchhof{'s frrst l:rw,

[,=1.+1..
l'. , rLt; Kirchhoif 's scconcl lar.v

e circuit loop containing the

1/,p1/ vl 1,R = r,

21,plI + xl I"R -'€.
Solving thc system of three equa-
trons, we get the currcnt flowing
thror-Lgh the jumper:

T-t) - p(r' - x2)+ Rr PL2 + Rt '

where we have clroppcd the second
tenr in the p:rrentheses due to the
sma1l amplitude of the oscillations.

Since the jumpcr ls situated in
rhe rnagneric field, ir cxpcrienccs a

rnagnetic force:

tr t tt) (lBx
I i - I ) tu - 

-

': - t(P/ +a)

This forcc is directecl to the right and
tends to rcstore the jumper to the
ecltrJlibrium position. The ecluation
ot lrrtrtiolr of the jLrrnper is

zlB
llltl

t(pt + R)

from which the perioci of srnail os-
cillations of thc jumper can be ob-
tainecl:

^ trtl(pf - RJT t- ''
\ .l1rq

P305
A beam stnking the flat iacc of a

semrcylinder at point A with an
angle of inciclence a. = 15" is refracted
and then trar.els 1n the glass at an
angle B (figure .lal such that

sin cv-

= 1-1,

sin P

from r.r,hich we gct

sin o. I
F = ltc>tn' i'l n-tZ

Then this beam strikes the curved
surface at point B at an :rngle y,

which clepencls on thc angle Q

iormecl by thc radius OB with the
flat facc of the semicylinder: y - nl2
+ B - d (figure 4a). This beam
cmcrges from the semicylindcr at an
angie 6, which satisfies the formul:r

sIn Y
sin 5

-that is,

I llstils. ltITt I t!ltTttrs

6XtrX

ar=ar+

M

O
q

I
n

qt

^B(,
nI, R I

a



b

Figure

'i\

. sin6
slnY - 

-.
n

The only rays that can escape the
semicylinder are those that satisfy
the condition 6 < nl2 (figLLre 4a).
Therefore, for these rays sin y<lln.
This means that the only rays
emerging from the glass are those
that strike the cylinder's surface be-
tween points B, and B, and for
whichQr<Q<Q2.Since

a, = L-Yr 
+ F, Q, = 

X,+ 
T z +9,

and

Tt = \z= arcsinl,
n

we get finally

'*rr"ri, 1:-rr"*it1<6
2 n^12 n

. ,r"rinl+ arcsin 1: 
+ 

ft.
n n^12 2

Clearly the upper limit must be
smaller than rc. Therefore, for the
values of n corresponding to Qr> n,
the upper limit for Q is r.

It's possible that for some v4lue of
n the lower limit for Q (that is, Qr)
corresponds to the shaded region,
where no light ray falls. The bound-
ary of the shade can be found from
the trajectory of the ray striking the

n
ot at

.1 ln
2ICSlfl-+aICSln->-

semicylinder at point D (figure  b).
Clearly the shaded region is sub-
tended by the arc DE.

Since the triangle DEO is equilat-
eral andhas an angle at the base DE
equal to

. rc-d^ n ^'s -__t{I- Z Z Pr

it follows that

0. = 2P : 2arcsin 1= 
.

n"l2

The lower boundary of the illumi-
nated region is equal to Qs at 0. , 0r-
that is, when

I
2arcsin.....:

n^]2

Nl1
) - * 4ICS1fl -----= - aICSln-,2 n"rZ

numbers give no solution. For n = 1,

we have 20I = kzms + k, and k is a
divisor of 201. Trying all possible
values, we see that this value of n
doesn't work either. Therefore, n :
3. Dividing equation 12) bV 3, we
obtain the equation 67 : k2m3 + 3k,
whose solution is k : l, m = 4. Thus
the remainder is 9, and the divisor
can be 16 or 12.

M302
Let x: 42000, y: 58000. We will

show that the maximum distance is
sxyl2(x + y) = 60900 km. After I km,
the rear tires each have llx units of
wear, where we define I unit to be
the point at which the tire becomes
unusable, and the front tires each
have lf y units of wear, so the total
wear is Zlx + Zly. Since each tire can
only take 1 unit of wear, the maxi-
mum wear over the entire trip is 5,
so the maximum distance is at most
s lQlx * 2lyl : SxylZ(x + yl.

To attain this distance, drive xyf
2(x + y) kilometers, then rotate the
five tires cyclically, then drive xy/
2(x + y) kilometers, then rotate in
the same order, and so on/ stopping
when we rotate back to the original
positions.

Then each tire has been in front
twice and in back twice, and its
wear has beenl}lx + 2lyl$ylzlx + yl)
= 1. (Solution by Gabriel Carroll)

M303
This situation is possible if n is

odd, but not if fl is even.
Suppose there are n players in

the tournament. Since each player's
score is an integer multiple o{ I12,
and since all the scores are differ-
ent/ two consecutive scores must
differ by at least Il2.In particular,
if we look at the scores after the
first round, from lowesi to highest,
each differs by at least 1/2, and thus
the highest score must be at least
ln - lll2. This is true both for the
first and the second rounds indi-
vidua11y.

Let us refine this effort a bit. Let k
be the number of points eamed in the
first round by the player with the
lowest score (after the first round).
Note that this player is destined to

n",12 n2

tUlath

M301
Let d, q, and r (0 < r < d) be the

fivisor, quotient, and the remainder,
respectively. Then

2Ol: dq + r. (1)

Since r < d, z must be either the first
or second element of the geometric
progression. Can it be the second? If
it were, then we would have dc1 : 12.

Plugging this into equation (1) we
get 201 = P + r.A little investigation
will show that this equation has no
integer solutions. Thus r cannot be
second and so must be the smallest
element of the geometric progres-
sion. Let the common ratio of this
progression, expressed in lowest
terms/ be mln. Then the number
rm2 f n2 must be an integer, so r = kn2,
where k is some natural number.
Then d and cl are equal to kmn and
kmz insome order. Therefore, equa-
tion (1) can be rewritten as

20r:(kmn)(km2l+kn2
= knlkms + nl. l2l

Thus n is a divisor of 2OI and equals
1,3,67, or2Ol. The last two of these
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win the tournament. The argument
of the preceding paragraph shows that
the highest score in the first round
cannot be Iess than k + ln - I)12.

The lowest possible high score in
the first round is k + (n - l)12, and
the lowest possible high score in the
second round rs ln - ll12, so the low-
est total high score, the score of the
winner of the tournament, cannot
be less than the sum of these two,
whichisk+(n-1).

On the other hand, the winner of
the tournament, who came in last in
the first round, earned k points in
that round, and could not have
earned more than ln - 1) points in
the second round {by beating every-
one else once), so he could not have
earned more than k + ln - 1) points.

It follows from the last two para-
graphs that the winner of the tourna-
ment earncd exactly k + (n - 1)

points. How did this happen? Wel1,
the winner after the first tournament
must have earned as little as possible
(for a fixed ft), which is k + (n - 1)/2
points, and the scores in that round
must then all have differed by as
little as possible, which is ll2.

What was the sum of the points
earned in the first round? On the one
hand, it was just the number of
games played, which is n(n - \)12
On the other hand, it was k + (k + 1/
2) + (k + 212) + lk + 312)+ ... + (k + (n

- l)12) = nk + n(n - I)14. Of course,
these two computations must yield
the same number, so nk + nln - I)la
: nln - l)12, or k = (, - l)14 This is
certainly impossible {or even a,
since k must be an integer rnultiple
ol r12.

But is it always possible for odd
values of n?

We will show that it is by an in-
lr,rctir-e construction. Let a, be the
:. r'- : rhe player ranked ith in the
i::.: : --:--: .:nd 1et b. be the score o{
th.: :'-.'. .: ,:: :.rr se iond round.

\\-; ::. : - -:: :.1le.- CLrntestants.
OUt::.-, _. .:--_.--.,. .it,--.r,-S that
the SC,-:.. -1, ..-,: -- :i -,t- I :::-:sf l.c
bunche; :r--r----ii : ----..-.:-::

lost to Ar. Then we constmct a sec-
ond round by letting player r beat
player i If i < i . This means that b, =
0, bz = 1, and b, : 2.The reader can
construct the appropriate wins and
losses, and check that the sums dj +
b, give the proper rank.

To construct a tournament with
five players, we duplicate the 3-per-
son tournament described above,
then introduce players I and 2, and,
for i> 3, Iet player i beat player 1 and
draw player 2 if i is even, and vice
versa if i is odd. Finally, Ietplayer 2
beat player 1. The resuit will be that
at: l, ar= 3f2, a3= 2, ao:5f2, and
a- :3.

a

For the second round, 1et player i
beat player 7 whenever i < l. We then
have b, : 4, bz: 3, b e = 2, b q= 1, and
b, = O, and the sums dj + b, are in the
coffect order.

This construction generalizes. If
we have a tournament set up for n
people, we can get one for (n + 2)
people by setting up a first round
among the 3rd, 4th, ..., ln + Z)nd
players in which the lowest score is
ln - Llla (notice that this is an inte-
ger multiple o{ ll2 when n is odd).
Then, for i > 3, let player i beat
player 1 and draw player 2 il i is
even, or vice versa if i is odd. Fina11y,
let player 2 beat player 1. Then, in
the second round, pLayer i beats
player 7 whenever i < l; this gives b,
: n - i, and the scores are ranked as

desired. (Solution by Gabriel Carro1l)

M304
In solving this problem we'lluse

the following well-known fact: the
distance from any vertex of a tri-
angle to the point where its altitudes
intersect (its orthocenterl is twice
the distance from the center of the
circumscribed circle to the side op-
posite this vertex.

This fact can be proved in many
different ways. For example, let Hbe
the point where the altitudes of tri-
angle ABC intersect, and let O be
the center of the circumscribed
circle (see figure 5a). Denote by 41,

ct

D

b

Figure 5

1/2. Now the perpendicular bisec-
tors of the sides of triangle ABC con-
tain the altitudes of triangle A ,B rC ,,
so O is in fact the orthocenter of tri-
angle ArBrC,. Therefore, we have
CH : zCrO (and two additional
similar equalities).

Now let's return to our originai
problem. Let H be the point where
the altitudes of the given triangle
ABC intersect (figure 5b). Let line
KH (which is given to be symmetric
to AH about CM) intersect AB at
point P, and let C, be the midpoint
of AB. Denote by D the projection of
K onto AB. We have ZHPM :
ZHAM : ZHCK (the iast equality
follows from the fact that both
angles are complementary to angle
ABC if that angle is acute, and are
complementary to the angle adja-
cent to ABC if it is obtuse). By the
auxiliary proposition proyen above,
we have

cH :zcp. (1)

Without loss of generrlity, *" 
"rrtassume that AC > BC (the case

when AC = BC is easy). Then AM >

BM. Since C, is the midpoint of AB,
we have

MC, : BC, - BM : (L l2)AB - BM

= \rlzllAM + MB) - BM

: ttlZl\AM - MB)

Since P.[4 : AM, we have

: :lrl C the mrdpoints of the cor-
respondirrg sides of triangle ABC.
The rriangle ArBrC, is similar to
-{iC rrirb, a similarin- coefficient of

(z)

4g

C

$
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PB:PM-BM:AM-BM. (3)

Next we show that triangles KHC
and KBP are similar. Indeed: we
have ZKPB = Z.HPM = ZHAM:
ZHCK (the last paLr are equal be-
cause they are both complementary
to ZCBMI, and ZPKB : tCKH (they
are a pair of vertical angles). Now
the altitudes drawn to correspond-
ing sides of similar triangles are pro-
portional to those sides. Here, we
see that KD is an altitude KD in tri-
angle KBP, and DM is equal in
length to the corresponding altitude
in triangle KHC. So, from the simi-
1ar triangles and from (3l1, Ql, and ( 1 ),

we have

KD PB MA_ BM

-=-=
DM CH CH

=2MCr = 
MC,

2OC1 OCr

Thus the right triangles KDM and
MC tO are similar. We can now
write (for the case shown in figure
lb) ZKMD + ZOMC, = ZKMD +

.MKD : 90" and ZOMK = 180" *90"
= 90'.

M305
Denote the fraction on the left-

hand side of the equation by Q,,.
Then

O=<n {1)
v r-
" *, * Qr-t

Let us show that

Indeed, it's well known that the in-
equality

1x+- > 2 lllX

holds for all positive x, and that
equality occurs only for x = 1. We
can write

I
v2 --

1iz--" *z+Qr

Therefore,

11
C-^'-"r*,
=(x2+ar)+,-1,. -e,.\ z -tt ("+Qr)

(We use here the trick of adding and
subtracting the quantity Qr.) By in-
equality (2)we have

1^3
=>2-Q' 

>=.ez-,2
Thus,

()

Qr<i,
o

and the ecluality occurs only for Q,
: Il2(that is, x, = 1)and xr+ Qr: I
(that is, xr: ll2l.

We now prove by induction that

o*.*,
and equality occurring only for x-: n/
llm, inwhich case b301

Here, if

^ ft+l
Qn*t = k+2,

then

_k
Qt = ft+l

(which, by the inductive hypothesis,
implies x* : I f m for m = l, 2, ..., kl.
In addition, we find from relation (3)

that

Xt. r=l-O,.=l- ft = I
'-K-r - <K - k+l k+t'

The inequality is proved.
Answer: Xt : l, xr: !f 2, ..., Xn:

rln.

Bl'aintea$Ers

It's clear from the statement of
the probiem that Bil1y got more than
1/i0 of all the fruit and less than l/8.
Therefore, he got I 19 of all the fruit.
So Mrs. Brown had nine grandchil-
dren. This situation is possible, for
example, if there were eight apples
and ten pears in the bowl. In this
case, eight children got one apple
and one pear each, and one child got
two pears. Other examples, with
larger numbers of fruit, are also pos-
sib1e.

8302
To make things definite, Iet's say

that the person who reported danc-
ing to five songs is a boy. Then each
girl danced to 3, 6, or 9 songs, so the
sum of the numbers of dances de-
clared by the girls is divisible by 3.
But each time a girl danced, a boy
{her partner) also danced]Hence the
number of times the boys danced
was also divisible by 3. But the to-
tal number of dances is 6 . 3 + I . 5
+ 4. 6 + I . 9 : 56, andhalf of them,
or 28, were danced by girls. Since
28 is not divisible by 3, someone
must have made a mistake. (A
similar argument holds if the per-
son who declared 5 dances was a
girl.)

..= 1 .1<r 1-2'Xt*-
x1

^mQ-=- m+l
for m : 1,2, ..., k.

Proof: For k : I and 2, this in-
equality has already been proved (in
fact, the inductive proof requires
checking only k = 1). It remains to
prove that if the inequality holds for
k, it also holds for k + l. It follows
from equation (1) that

11
vl

Ql-r ^rr x.t-t + Ql

=xk-r +Qr+--+ ^ -OrxL*t * Ql

By inequality (2), we have

=1- = 
z-ex,

Qt*t

and the equality occurs if
X_k*r + Qo = 1. (3)

By the inductive hypothesis, we
have

^k() <--^ - k+r'
Therefore,

I k+la1- Z-Qp- n k
k+1
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Figure 6

8303
Suppose there were no uninter-

esting games at all. Then the team
with rank 1 played those with ranks
2, 3, 4, and 5. Therefore, these four
teams didn't play each other. Thus
one of these teams played three
games with a weaker team before it
was defeated by the champion; one
played two games with a weaker
team; and one played one game with
a weaker team. In sum, they played
I + 2 + 3 : 6 matches with teams
ranked 6 through 16. Therefore, one
of these teams played a team ranked
10 or lower, and this game was un-
interesting. On the other hand, the
tournament can be organized to
have only one uninteresting game
(see figure 6). Unfortunately this
must be the championship game.
(The organizers of real playoff series
would certainly avoid this affarLge-
ment.)

8304
See figure 7 . The folding neces-

sary to create the cube from this
pattern is left to the reader.

8305
The film reacts to red light as if it

were darkness/ so it cannot distin-
guish red from black. Therefore, the
red skull on the white background
will be black (in the print made from
this negative), while the skull on the

black flag will not be visible at all
(that is, the entire flag will appear
black).

terlillftr ttttl[t a halt[
1. Since the concentrations of thc

initial substances change only
slightly (this is a case of "srnall con-
rersion depth"), the reaction rlte is
constant. The time t we seek is de-
tcrmined by thc simplc cquation wt
= 10-2n, or

,^ ],

T='u- c,'., -7 l0'1,.,/" (r).
ZN

Plugging in the values for the activa-
tion energy and temperature/ we get

xztt=7 1Ores:2 1012years.

This is longer than the age of the
Universel It's natural to consider the
gas mixture as inert at thrs particu-
1ar temperature. At a temperature of
600 K the reaction period is tooo = 7 .

101 s = 10 minutes, which signifies
a slow reaction. Finaily, troo : 0.3
sec, which indicates a rapid reaction.

Thus an increase in thc absolute
temperature of the mixture by a

rnere factor of two (from 273 K to
600 K) changes the rate of the chemi-
cal reactions by seventeen orders of
magnitudel

2. If the graph of heat transfer is
steeper than that of heat production,
a random increase ln temperatr.rre
would result in the inequality P- ,
P_, so the system will be cooled and
rhc temperzlture will return to the
::,,-:rr1rf l-.oint. Srmilarly, a random
: .r^---';- -,-t,-ri rlecrcase results in the
,.- : -- .t--r,,.-.-1rtv so the s)'stem

' - .. - -. ..::,i .,..;.::r :qr-rihl.riurl

will be restored. By contrast, if the
slope of the graph for heat produc-
tion is greater than that of the graph
for heat transfer, a random change in
temperature will increase-that is,
the equilibrium point will be un-
stable.

3. (alYarying the heat of combus-
tion of a reaction changes the heat
production function (the ordinate
values are multiplied by a constant
coefficient), while the straight line
of the heat transfer function will not
change. In figure 8, Qt . Qz . Q:.

(b) Varying the heat transfer coef-
ficient cx will change the slope of the
heat transfer 1ine. In figure 9, ctr> u,

' 03'

lhleido$cope
1 Since both objects move with

the same acceleration, the distance
between them will not change.

2. The weight of a person fully
submerged in water is proportional
to the acceleration due to gravity
and to the difference in density of
the person's body and the water. If
we assume the properties of water

P*(T},

P_(TI

Figure B

P IT\,

P IT\

Figure 9

EE EE EI'l EE tit14lFs-i;l
\/ \/ \/EE

\./ E
\\

tt11l I-tGl
\-/

t,131

E

Figure 7

:!l\1!\t Ails11tRs tlt[lIs & s0tlJTt0ttis



are the same on the Earth and Moon,
it's easier to swim on the Moon,
where the acceleration due to grav-
ity is about ll5 that on Earth.

3. Yes.
4. According to the law of univer-

sal gravitation, the attractive force
decreases from mg to zero when an
object moves from the Earth's sur
face to infinity. Therefore, in this
case the obiect's weight decreases
frorn Zmg at the Earth's surface to
mg at infinity.

5. No.
6. After returning to Earth, astro-

nauts sleep without pillows to com-
pensate for the drastic redistribution
of blood caused by the transition
from weightlessness to normal grav-
ity and thereby to provide the head
with an adecluate supply of oxygen.
"Upside down" sleep models the
conditions of weightlessness to
which the astronauts were accus-
tomed during a long-term mission.

7. Yes, because weightlessness
doesn't affect the process of thermal
expansion of a liquid.

8. No.
9. It is due to the spinning of the

Earth about its axis of rotation.
10. In the large massive planets

the force of gravity prevails over the
elastic repulsive force. Therefore, it
flattens any outcropping of the plan-
etary landscape. By contrast/ on as-

teroids and comets the force of grav-
ity is negligible, so the shape of these
small objects is determined by the
processes of collision, adhesion, and
destruction. This explains why
small space objects have such ir-
regular shapes.

11. The Earth is "flattened"
slightly at the poles, so the path
along the meridian is shorter than
the ecluatorial route. Thus the polar
traveler will be the first at the finish
line.

12. The linear velocity of rotation
at the equator must be equal to the
escape velocity.

13. To paraphrase Richard Feyn-
man's explanation of this phenom-
enon: The attraction of water and
land by the Moon is balanced at the
Earth's center. By contrast, the
Moon more strongly attracts the

water situated on the "lrLrrar" side of
the Earth than it attracts the Earth
on average. Conversely, the atfiac-
tion of water on the far side of the
Earth is weaker than the mean at-
traction of the Earth. In addition, in
contrast to solid rock/ water can
flow. The tides are caused by these
two factors.

14. The tidal effect of the Moon is
added to the tidal effect of the Sun.

15. In that ancient time (about
two billions years ago), not only did
lunar eciipses last longer, they oc-

curred more frecluently, because the
Iunar shadow covered a far greater
area on the Earth than nowadays.

16. Due to the heterogeneity of
the Sun's gravitational field, even on
a spherically symmetrical planet
that does not rotate/ the acceleration
due to gravity would be different at
various points on the planet's sur-
face.

Microexperiment
No. Your body is affected by the

buoyant force, so the water is af-
fected by your body's weight.
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I -e borrowed, olif,fi fl,1,,,f,llim,tl],,.0, o,on,,,
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ThettllRlTtsrutl

by Don

URING THE THIRD WEEK IN JUNE, THE USA
Computing Olympiad staff and sixteen high school
participants from around the United States gath-
ered at the University of Wisconsin-Parkside in

Kenosha, Wisconsin for a week of instruction/ games/
cows, and competition. In the course of eight days, the
finalists improved their programming skills, enhanced
their frisbee throwing ability, expanded their gaming
skills in Nine Men's Morris, and felt the full g-force of
Raging Bull at Six Flags Great America. In the end, the
strongest four computer programmers emerged as the
USA 2000Informatics Team. This team will represent
the United States in the Central European Olympiad in
Informatics in Romania in August, and in the Interna-
tional Olympiad in Informatics IOI'2000 in Beijing,
China in September.

tree ride to Dairylaltd
To be invited to Wisconsin, high

school students must show us that
they have the WRITE stuff. They do
this by entering the Fall, Winter, and
Spring Internet competitions and the
USA Open Competition in April.
These competitions are oifered in
two divisions: |unior for beginners,
ancl Senior {or those at the top level
u-ho have a shot getting invited to
\\-isconsin. We look at all of the re-
sults and L.rck the top fii1.., finalists,
rrho are g1\-en a tree ride to our eight-
dav trainrng calxp and ir-ttorm:rtics
tcam selectiun conll.L'tiilon.

Unfortunatell,, agarn thrs y-ear, the
iield of competitors comprised only
boys. It was a surprise that seven of
the fifteen finalists came from one
high school-Thomas |efferson High
School for Science and Technology in
Alexandria, Virginia. The finalists
from "Tl" were: Kevin Caf{rey,

Finalists of the USA Computing Olympiad. Top (left to fight): [ohn Danaher,
Tom Widland, Vladimtu Novakovski, lack Lindamood, Steven Sivek, Yuran Lu,
Tomasz Czaika, Percy Liang. Bottom (left to right): lacob Burnim, Gregory
Price, Kevin Caffrey, Adam D'Angelo, Richard Eager, Thuc Vu, Reid Barton,
and Gary Sivek.

INFORMATICS

Piele

sophomore; |ohn Danaher, senior; Richard Eager, jun-
ior; and Vladimir Novakovski, Gregory Price, Gary
Sivek, and Steven Sivek, all sophomores. Also invited
to camp were: Reid Barton, Arlington, MA; |acob
Burnim, Silver Springs, MD; Adam D'Angelo, Redding,
CT; Percy Liang, Phoenix, AZ;lack Lindamood, Dallas,
TX; Yuran Lu, Presque Isle, ME; Thuc Vu, Westminster,
CA; and Tom Widland, Albuquerque, NM. Tomasz
Czalka, a member of the Polish informatics team, jolned
the camp as a guest competitor.

Eendel' iliuide
what is it about competitive computer programming

that makes it such a male-dominated activity? It is not
something that is cultural, since all 65 countries that
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compete in the International Olympiad in Informatics
(IOI) have teams that are almost exclusively ma1e. There
have been only a handful of exceptions, and eachyear
they get fewer. The typical biography of a finalist goes

something like this:
"My first introduction to programming was on the

Apple IIe with BASIC at a summer day camp when I was
eight. I still have a book which I later used to teach my-
self more BASIC. I remember having to skip over the
sections that were QBASIC specific because all I had
was GW-BASIC.

When I was in the fourth or fifth grade, I used to spend
a substantial amount of time programming, mainly in
QBASIC. I remember reading in Scientific Amefican
about a project to simulate simple societies on a com-
puter, and trying to write a similar program myself. I got
the engine working with some of the basic features, but
the inadequacies of QBASIC for the type of complexpro-
gram I was trying to write, combined with my own in-
experience, eventually caused me to give up on continu-
ing the project.

Since then I have learned C++ and some better pro-
gramming techniques, but most of what I know about
algorithms, I've learned in preparation for the USACO
contests. I am not one who knows the workings of Unix
or Windows inside out/ or who knows how to write a
good-looking web page. Infact, the only ianguages I know
besides C/C++ are Lisp and a little lava and BASIC.

When I am not programming, I enjoy math, physics,
and whatever related endeavors I can find, including as

many academic competitions as I can juggle. This year,
I'11be competing in the International Physics Olympiad
in |uly. I was also invited to the math olympiad train-
ing camp. Unfortunately, because it conflicts with both
the USACO and the physics olympiad, I could not go."

Common threads that run through all fifteen
USACO finalists and our guest Tomasz from Poland are
the following: Early introduction to programming in
BASIC-mostly self taught at home; strong background
in mathematics and mathematics competitions (almost
a1l have competed in regional and national mathemat-
ics competitions, and some have reached the level of
the Internatronal Mathematics Olympiad); moderate
background in physics competitions including the Phys-
ics Olympiad training camp; and an early programming
experience, often to create their own computer games
in BASIC.

Of course, many of the competitors have other inter-
ests too/ such as music, reading, or playing sports. But
the following revelation by one of the finalists this year
may contain the key to the passion for computers that
puts them on the fast track to the USA Computing
Olympiad.

"I afir interested in anything involving computers/
including programming, game playing, taking them
apart, putting them back together, and trying to figure
out why they don't work after I took them apart and put
them back together."

Pnuhlem lypes
What kinds of problems will our team face at Inter-

national programming competitions? This is a question
our students need to know. Hal Burch, a staff member
and graduate student in computer science from
Carnegie Mellon, has classified all previous IOI prob-
Iems into 16 types: dynamic programming, greedy algo-
rithm, complete search, flood fill, shortest path, recur-
sive search, minimum spanning tree, knapsack,
computational geometry, network flow, Eulerian path,
convex hu1l, big numbers, heuristic search, approximate
search, ad hoc problems. Furthermore, the top half of
this list comprises almost B0% of the problems seen at
IOI.

The most valuable technique is dynamic program-
ming. Until one understands it, however, it seems al-
most like magic. Exhaustive search algorithms, which
try allpossibilities and select the best, come with a pro-
hibitive cost in time. Since time is a big factor in the IOI
competition, finding the fastest solutions is critical. Dy-
namic programming is based on the idea of stodng the
consequences of all possible decisions to date and using
this information in a systematic way to minimize the
time to find a solution. No two cases seem exactly alike,
so dynamic programming is best learned by studying a

number of examples. It is often the case that recurrence
relationships hoid the in{ormation you need in dynamic
programming.

We devoted a whole day to dynamic programming,
during which Russ Cox, a staff member and undergradu-
ate from IHaward, organized lectures, drills, lab prob-
lems and a set of eight different problems to be solved
by the participants working together in two-person
teams. Each team then presented its solution to the
whole group and did an outstanding iob.

" CraftingWinning Solutions" was a lecture/discus-
sion given by Greg Galperin, a stafl member from MIT
who is now on grad school leave and working for a

startup company. He said: "When analyzrng an algo-
rithm to figure out how long it will run for a given data
set, the first rule of thumb is: modern computers can
deal with 107 actions per second. So 5 x 107 is the num-
l'rer of actions that can be handled in a five-second time
limit. Do the math. Plug in the actual expected and
worst case-numbers."

Colnruliliolt day
Two days were reserved for competition. We simu-

late the same environment our team will face at the
International Olympiad in Informatics (Iol)-three to
four problems to be solved working alone for five con-
tinuous hours. After the time was up, Russ Cox applied
his grading program to each of the contestants/ pro-
grams. Test data, which had been carefully chosen by
the staff to test all aspects of the problem, was fed into
each program, and the output was analyzed for correct-
ness and speed. Each contestant got a printed result
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form showing the result on each test case/ the time
taken by the program/ and the correct answer. After
lunch, our solutions were explained by Hal Burch, and
each contestant got a chance to run the test data once
again againSt his program to verify the results.

[tline Men,s lUlnnl'is

Writing programs that play games is fun and very in-
structive. Back in the early days of the personal computer,
you could buy a book such as "lCil BASIC Computer
Games," by David Ahl, and spend hours typing them in
and running them. This is the way many of our finalists
first learned how to write their own games. Before com-
ing to camp, Rob Kolstad, the head coach for the
USACO, offered the finalists a challenge: Write a pro-
gram that wil1play the game Nine Men's Morris. (The
rules for the game can be found on the Web at
www.game-club.com/jav10-10/nmmhist.htm.) At
camp, Rob hooked up his hardware to the computers
and monitored the play between dueling programs. A11

of the game moves were displayed on a screen through
a proiection system for the enjoyment of the fans and
the admiration of the proud programmers. Our Polish
guest/ Tomasz Czajl<a, wrote the winning program/
which was never defeated.

Tnaininu lnalel'iah
The finalists this year were the best crop ever. One

reason is probably the on-line training materials that
have been placed on the Web. These were the creation
of Rob Kolstad, head coach and USACO spark p1ug,
whose "leopardy" quiz show is another big hit at sum-
mer camp. At ace.delos.com/usacogate/ anyone can sub-
mit solutions to an ever expanding set of problems and
have his or her program automatically tested with the
sample data sets and the results returned. A11 of the fi-
nalists had visited this site before coming to camp and
were at various stages of completing a1l of the problems.
Expanding these materials and adding some for begin-
ners is a goal for 2001.

Tlte USA lnlormatics Team

Aiter the seconll elar oi competition \\ aa o\ er arlrl
ir-rtlgc.i tl-i; r.s-r r. rr -rc Ci:-nf i1;J al; al, tlar \r l: lcir
i.:: .,s -,,:s :,-,ait:l: I-1. -1';-t1-1 :: : t. : p ,\t ,.,i-r.:1\ at.J:
bal-iqr-.e,, \rc .lllnLrU11ctJ :r. i-'rt pl,-, .t.tt:lt-il;is rt i-to
made the USA 100 Inlorrnatrcs Trarr: Rcld Barton, a

home-schoolecl junior w.ho ji-rst recenth- returned irom
Macedonia, where he placed iirst in the Balkan Ol1-m
piacl in Informatics as a representative of the USA; fohn
D:rnahcr, a senior from Thomas |efferson High School
ior Sciencc and Technology who placed second, one
point behrncl Reid, at the recent BOI; Percy Liang, our
veteran senror from Phoenix who won a bronze medal
Iast year on the USA IOI team in Turkey; ancl Gregory
Price, a sophorlore this year from T|HSST, who came
to thc camp ior the iirst time. The alternate was |acob
Burnim, a sophornore irom Silver Springs, Maryland.

Besides receiving a handsome plaque, each team mem-
ber received a glass milk pitcher with our cow mascot
etched on the side.

tihonaccicows
Below is the first problem of the first day of compe-

tition-usually the easiest. Of course, it has a barnyard
setting, as do all of the problems created by the coaches
at the USACO. That's the tradition.

Farmer |ohn's brother, |ames, decided to get into the
cow business. He bought a white cow his first year and
a brown one the f ollowing year. Each succeeding year
he duplicated his purchases of the preceding two years, "

buying the same number of cows, of the same colors,
and in the same order. Thus, in the third year, he
bought a white cow and then a brown cow; in the
fourth yeart a brown, then a white, and then a brown;
and so on.

Your task is to tell farmer |ohn the color of the Nth
cow his brother bought. Farmer fohn will always ask
about the Nth cow for five different values of N.

INPUT FORMAT (file FIB.IN)
Five integers on a single line (1 < integer <

2,000,000,000).

SAMPLE INPUT
48t2t620
OUTPUT FORMAT (file FIB.OUT)

SAMPLE OUTPUT
brown white brown white brown

For those who would like to solve this problem, see
if your program will arrive at the corect solution for N
= 2,000,000,000.

The answer is brown, and you have one second to
find it.

$runsol,
Once the finalists had been selected for the USACO

training camp/ they leave their money at home. The
roundtrip ticket to Wisconsin, room, board, awards,
banquets, polo shirts, T-shirts, and a day-long excursion
to Six Flags Great America were paid for by our spon-
sor USEND(. USEND( is the Advanced Computing Sys-
tems Association, which brings together the commu-
niry o{ engineers, system administrators, scientists, and
technicians working together on the cuttingf edge of the
computing world (www.usenix. org).

tiltally
To find out more about the USACO and this year's

finalists and the final team of four going to IOI, go to our
Web site at w-ww.usaco.org and click on 2000 and Train-
ing Camp/Finals. View our training materials located at
ace.delos.com/usacogate. If you think you may have the
WRITE stuff, "come on down." We want youl And if
you are female, we need you all the more! O
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INDEX

Uolulne 10 (1 ggg-2000)

About the triangle (properties of tri-
angle), Mar/AprOO, p31 (Kaleido-
scope)
Alexandrian astronomy today (as-
pects of early Greek astronomy),
Case Rijsdijk, Sept/Oct99, p35 lAt
the Blackboard)
Algebraic and transcendental num-
bers (numbers and their properties),
N. Feldman, |ul/Aug00, p22 (Fea-
ture)

Batteries and bulbs (circuit electric-
ttyl, Larry Kirkpatrick and Arthur
Eisenkraft, |ul/Aug0O, p30 (Physics
contest)
Boiling Liquid (bubble chamber), A.
Borovoi, Mar/Apr00, p54 (In the Lab)
The Borsuk-Ulam theorem (continu-
ous functions), M. Krein and A.
Nudelman, |u1/Aug00, p15 (Feature)
Breaking up is hard to do (nuclear
fission), Arthur Eisenkraf t and Larry
Kirkpatrick, Sept/Oct99, p30 (Phys-
ics Contest)

Cantor Cheese (recursion), Don
Piele, |an/Feb00, p53 (Informatics)
Carl Friedrich Gauss (biography), S.

Gindikin, Nov/Dec99, pl4; lanf
Feb00, pl0 (Feature)
Catching up on rays and waves (mu-
sical sounds), A. Stasenko, |ul/
Aug00, p10 (Feature)
A Chebyshev polyplayground (poly-
nomials), N. Vasilyev and A. Zele-
vinsky, Sept/Oct99, p20 (Feature)
Chores (organizing and completing
the chores), Don Piele, |u1/Aug00,
p55 (Informatics)
Continued fractions (number theory),
Y. Nesterenko and E. Nikishin, |an/
Feb00, p22 (Eeature)

The death of a star (poem), David
Arns, Mar/Apr0O, p53; May/|unOO,
p33
Do you know atoms and their nu-
clei? (atomic structure), A. Leo-
novich, |an/FebO0, p28, (Kaleido-
scope)
Do you know the binding energy?
(principles of the construction of the
universe), A. Leonovich, May/funOO,
p28 (Kaleidoscope)
Do you really know time? (tlme in
physical problems), A. Leonovich,
Sept/Oct99, p34 (Kaleidoscope)

Electric multipoles (sets of electric
charges), A. Dozorov , Septf Oct99, p4
(Feature)
The enigmatic magnetic force (mag-
netic force and its interplay with the
electric force), E. Romishevsky, )u1/
Aug2000, p41 (At the Blackboard)
Equation of the gaseous state (solv-
ing problems using the ideal gas
ecluation), V. Belonuchkin, May/
|un00, p44 (At the Blackboard)
Ernst Abbe and "Carl Zeiss" (optics
and optical instruments), A. Vasilyev,

|u1/Aug00, p46 (Looking Back)
Experiments of Frank and Hertz (ex-
periments confirming Bohr's postu-
lates), A. Levashov, Mar/Apr00, p38
(Looking Back)
The eye and the sky (physics of vi-
sion), V. Surdin, |an/Feb00, p15 (Fea-

ture)

Fermat's little theorem (number
theory), V. Senderov and A. Spivak,
May/)unO0, p14 (Feature)
The Feuerbach theorem (plane geom-
etry), V. Protasov, Nov/Dec99, p4
(Feature)

Fluids and fault lines (laws of fluid
flow), G. Golitsyn, |an/Feb00, p4
(Feature)
Fuel economy on the Moon lgravita-
tional forces), A. Stasenko, lanf
Feb00, p38 (At the Blackboard)

Geometric surprises (unexpected
geometrical facts), A. Savin, |u1/
Aug00, p28 (Kaleidoscope)
Geometry of sliding vectors (theory
of sliding vectors), Y. Solovyov and
A. Sosinskiy, Marf Apr00, p18 (Fea-

ture)
The Great Law (law of universal grav-
ity), V. Kuznetsov, Sept/Oct99, p38
(Looking Back)

Heating water from the top (layers
and boundaries), V. Pentegov, Nov/
Dec99, p41 (In the Lab)
High-speed hazards (large accelera-
tions in space travel), I. Vorobyov,
May/|unOO, p2 4 (E e atur e)

Inequalities become equalities (solv-
ing equations and inequalities), A.
Egorov, Mar/Apr0O, p42 (At the
Blackboard)

Langton's ant (programming the
game of life), Don Piele, Mar/AprOO,
p53 (Informatics)
The little house on the tundra (con-
struction in permafrost areas), A.
Tokarev, |u1/Aug00, p38 (At the
Blackboard)

Magnetic vee (magnetic field of cur-
rent-carrying wires), Larry Kirk-
patrick and Arthur Eisenkraft, Mar/
Apr00, p34 (Physics Contest)
The Markov equation (equation in
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integer variables), M. Krcin, fan/
Feb00, pa2 (At the Blackboard)
Mathematics: 1900-1950 (history oi
math), V. Tikhornirov, Mar/AprO0,
p4 (Featurc)
Message from afar (poem), David
Arns, Nov/Dec99, p9
Minimal surfaces (soap iilms and
contours), A. Fomenko, May/)unOO,
p4 (Feature)
Modeling a tornado lclcrting a tor-
nado in a laborator,v), A4ay/]un00,
p42 (In the Lab)
Molecular interactions up close 1in-
tcrmolecular forcesl, G. M.vakisher,,
May/|un0O, p8 (feature)

Obtaining symmetric inequalities
(Muirhead's theorem), S. Dr,orr-a-
ninov and E. Yasinovyi, NoviDec00,
p44 lAt the Blackboarcl)
An old algorithm (algorithm for tak-
ing scluare roots), Y. Solovyov, Mari
Apr00, p51 (At thc Blackboarcll
An olympian effort (equations and
ineclualities),V. Tikhomirov, Mar/
Apr00, p32 (At the Blackboard)
On the quantum nature of heat (cha-
otic forces), V. Mityugov, Nov/
Dec99, p10 (Feature)
Out to Pasture (prog,raurring a s()-

lution), Dr. Mu, Sept/Oct99, p55
(Cowculations)

Physical optics and two camels (light
interference), A. Stasenko, Sept/
Oct99, p44 (At the Blackboardl
Principles oI vortex theory (hydrody-
namics), N. Zhukovsky, Mar/Apr0O,
p26 (Feature)

The quadratic trinomial ( combining
algebraic and gcomctric reasoning),
A. Bolibruch, V. IJroev, ancl M. Sha-
br-rnin, May/fun0O, p36 (At the Black-
l'' , rrt tll
-\ question of complexity (simplify-
-::: -, 

-:,' ,rLim', .\'thur Eiscnkraft and
L:r'r-. K r..-'-::r' :h Nor,/Dcc99, p32
r,1- , -
I1,.:,,: ! -:)-
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graphics)
Returning to a iorm.r .i:i; ' 

-

rcity theolertt' .\. r..
p28 (Kaleidoscopc

Rolling wheels (motion of the wheel),
Arthur Eisenkraft and Larry Kirk-
patrick, May/ir,rnOO, p30 (Physics
Contest)

Selecting the best alternative {solv-
ing problems of planning and man-
agementJ, V. Gutenmakher andZh.
Rabbot, Nov/Dcc99, p36 (At thc
Blackboard)
Self-similar mosaics (similarity
transformations), N. Dolbilin, |ui/
Aug00, p4 {Featr-rre)
Sharing a point {locus of points), I.
Sharygin, |ul/Aug00, p35 (At thc
blackboard)
Shortest path (Diikstra's shortcst
clistance algorithmJ, Don Piele, May/
|un00, p54 (Informatics)
Sink or swim (forces of buoyancyJ,
N. Rodina, May/|un00, p34 (In the
Open Air)
Solving lor the slalom (physics of
dou,nhi11 skiing), A. Abrikosov, Nov/
Dec99, p20 (Fcature)
A star is born (astrophysics),V. Sur-
cLr-r, Mar/Apr00, p12 (Feature)

Thoroughly modern Diophantus
(drophantine ecluations), Y. Solo-
q,ov, Scpt/Oct99, p10 (FeatureJ

Three golds and two silvers in Italy
(XXX International Physics Olyrn-
pi:rd), Mary Moggc and Leaf TLrrner,
}.Isv/Dec99, p52 (Happenings)
The toy that drove the universe
iprobability and evolution of the
Univcrsc), lef Raskin, Nov/Dec99,
p:19 lCommentary)
Tunnel trouble (law of gravitation),
Arthur Eiscnkraft and Larry Kirk-
patrick, Jan/Feb0O, p30 (Physics Con-
test l

An unsinkable disk (flurd mechan-
ics), A. Lrzrn, Sept/Oct99, p42 (In
the Lab)

A Watery view and Waterloo (waves,
refraction, and optical illusions), A.
Stascnko, Mar/AprO0, p48 (In the
Opcn Air)
\l'hen Trolans and Greeks collide
1.1:rnctzlr\- lnotionl/ I. Vorobyov,
!: ': Ccr:19, p16 lFeature)
\tr'l:,, necd: a lotn tor\ er iorces that
- . ---. "ar.r \ St:tst'tt1<o,
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HE FOLLOWINC ARE THE "

names of first ten people to sub-
mit a correct answer to this

month's Cyber-Teaser-Be Fruitful
and Multiply. As always, we re-
ceived a cornucopia of international
entries this month, but the follow-
ing were the pick of the crop.

ferold Lewandowski (Troy, New
York)
Bruno Kondet (Rio de )aneiro,
Brasil)
Dimitrios Vardis (Ithaki, Greece)
Theo Koupelis (Wausau, Wiscon-
sin)
Nick Fonarev (staten Island, New
York)
Christopher Franck (P1aya Del Rey,
California)
Gianluca Crippa (Dervio, Italy)
facopo De Simoi (Treviso,Italy)
Michael Brill (Morrisville, Pennsyl-
vania)
Marco Devigili (Verona, Italy)

Our congratulations to the win-
ners, who will receive a copy of this
issue of Quantum and the coveted
Quantum button. Everyone who
submitted a coffect answer (up to
the time the answer is posted on
the web) is entered into a drawing
for a copy of Quantum Quandaries,
a collection of 100 Quantum brain-
teasers. Our thanks to everyone
who submitted an answpr-right or
wrong. You will find our next
CyberTeaser at:
http://www.nsta.org/quantum. 0
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