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The Mounted Acrobats (1825 or after) American

HE THREE-RING CIRCUS HAS DELIGHTED
audiences for over a century, but not everyone enjoys
watching animals perform under the Big Top. There are
two diametrically opposed points of view as to whether
or not the use of animals in the circus is a cruel prac-
tice. Coincidentally, there are also two diametrically op-

posed points on the ring that the above horse is circling
where a continuous function takes equal values. We're
sure you'll never look at certain circus acts the same
way again after you have explored this theorem in greater
detail. Turn to page 16 to learn more about the “Borsuk
—Ulam theorem.”
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BRAINTEASERS

Just for the fun of it

B296

Picture perfect. A teacher put a pentahedron (a polyhedron with five
faces) on the table. Two of the faces were triangles, and the other three
were quadrilaterals. Jean drew a top view of this polyhedron (see the
figure). Is this drawing correct?

B297

Connect the dots. Is it possible to mark six points in the plane, and
connect some pairs of them with nonintersecting segments, so that
every point is connected to four others?

B298

Polls apart. One hundred persons—chemists and alchemists—attended a
conference. They were asked a question: “Which group is more numer-
ous here, chemists or alchemists (not including yourself)?” The first 50
persons said that alchemists were more numerous. Now, it’s known that
alchemists always lie and chemists always tell the truth. How many
chemists attended the conference?

B299

Vexing hexagons. Six congruent regular hexagons are given. Cut three of
them into two parts such that the nine parts obtained (three hexagons
and six “halves”) can be used to compose an equilateral triangle.

B300

Wrong-way mercury. A thermometer is quickly removed from molten tin.
At first the mercury goes up, not down! Explain this strange phenomenon.

Aisnuisy) jeaed Ag Uy

ANSWERS, HINTS & SOLUTIONS ON PAGE 54
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Self-similar mosaics

When the whole is the sum of its parts

by N. Dolbilin

OSAICS MADE OF PIECES

that are similar to the whole

are called self-similar. One of

the first famous examples of a
self-similar mosaic was constructed
by the English physicist Roger
Penrose. After quasicrystals were
discovered in 1984, Penrose’s pat-
terns became a generally recognized
model used for analyzing their geo-
metrical properties. The mathema-
ticians John Conway and William
Thurston found new and unex-
pected relations of these mosaics to
other fields of mathematics. Self-
similarity plays an important role in
modern fields of mathematics such
as dynamic systems, fractals, and
quasicrystals.

Self-similar figures

It is well known that the medial
lines (the lines connecting the mid-
points) of a triangle split the triangle
into four equal triangles (figure 1).

Figure 1
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Each of these small triangles is simi-
lar to the original one. In this sense,
the triangle is a self-similar figure.

A figure F is self-similar if it can
be cut into several figures, F,, F,, ...,
F_, each of which is similar to the
initial figure. Since every constitu-
ent F, is similar to F, there exists a
similarity transformation h, that
takes F onto F,: h (F) = F.. The coef-
ficients of these similarity transfor-
mations are not necessarily equal,
but all are less than 1.

Similarity transformations

Recall that a similarity transfor-
mation is a transformation, h, of a
plane (or space) such that the dis-
tance d(x, y) between any two points

x and y changes by the same num-
ber k:

d(x, y) = kd(h(x), h(y)), k > 0.

In the case k = 1, the similarity
transformation is a rigid motion.
Some rigid motions—for example,
translation by a nonzero vector—
move any point to a different point.
Others—for example, a rotation g of
the plane about a point O by a cer-
tain angle—leave certain points
where they were. Such a point (for
which g(O) = O] is called a fixed
point of the transformation g. Thus,
a rotation about a point has a single

TR E | AN LR

fixed point. Motions of a third type,
reflections in a line ], have infinitely
many fixed points: the points of the
line I itself. Thus, some rigid mo-
tions have no fixed points, others
have a single fixed point, and still
others have infinitely many.

This situation changes if we con-
sider a similarity transformation h
that is not a rigid motion. This hap-
pens if the similarity coefficient, k,
is not equal to 1. In this case, the
transformation h has a unique fixed
point.!

By virtue of this remarkable fixed
point theorem, any similarity trans-
formation of the plane with a coef-
ficient k # 1 has a unique fixed point,
say, a point O. For this reason, any
similarity transformation can be
represented as a dilation? (centered
at O with some coefficient k|, fol-

IThis remarkable theorem holds not
just for similarity transformation, but
for a more general type of mapping: a
contraction mapping. This is a
mapping f{x) for which d(x, y) <
kd|h(x), h{y)) for a certain 0 < k < 1.

2A dilation (or homothecy, or

homothety) is a transformation with a
center O and a coefficient k, which
takes any point P onto a point P’ such
that O, P, and P’ are collinear, and
OP’ = k - OP. If k is positive, O is
outside line segment PP’ If k is
negative, O is outside this segment.



lowed by a rotation about O through
a certain angle, and perhaps reflec-
tion through a line that passes
through point O. In particular, such
a transformation can be a simple
dilation without any rotational
component.

Examples of seif-similar figures

The triangle. We have seen that
any triangle can be decomposed into
four similar triangles by its medial
lines. What similarity transforma-
tions map the original triangle ABC
into these similar parts? Three of
these transformations are dilations
centered at the vertices of the tri-
angle, with coefficient 1/2. The
fourth is the dilation centered at the
intersection of the triangle’s medi-
ans, with coefficient —1/2. This last
transformation can also be described
as a dilation? centered at the inter-
section of the medians with positive
coefficient 1/2, followed by a rota-
tion about the same point by 180°.

The right triangle. A right tri-
angle can be decomposed into two
similar triangles (figure 2). Let us

B

A D C
Figure 2

map AABC onto AABD. Consider
the similarity transformation g, that
is the product of the dilation h, cen-
tered at A and coefficient k; = AB/
AC, followed by a reflection about
the bisector of ZBAC. It is not hard
to see that

€,(AABC) = AABD.

In the same way, we can see that
the transformation g, that maps
AABC into ABDC is the product of
the dilation centered at C with co-
efficient k, = BC/AC and a reflection
about the bisector of ZACB.

Note one difference between this
example and the preceding one. In

3This observation depends on the
fact that the centroid (intersection of
the medians) divides each median in
the ratio 2:1.

the case of the right triangle, trans-
formation coefficients differ in abso-
lute value.

Domino. The domino figure con-
sists of two equal squares. It can be
easily cut into four pieces similar to
itself (figure 3).

Figure 3

Problem 1. Find the fixed point
for each of the corresponding simi-
larity transformations.

Problem 2. Find another way to
cut the domino into four pieces,
each similar to the original.

Chair. The chair figure (tromino)
consists of three equal squares. It
can be cut into four similar copies of
itself: F|, F,, F,, and F, (figure 4). Let

A

Figure 4

h,, h,, h,, and h, be the similarity
transformations that transfer the
“big” chair into the corresponding
parts. They have a coefficient of 1/2.
The dilations h; and h, have their
centers at the points A and D, re-
spectively.

JAVAVAN

Figure 5

[FXIFN

Figure 6

Sphinx. The sphinx figure (hexo-
mino) consists of six equilateral tri-
angles (figure 5) and can be decom-
posed into four similar copies (figure
6).

Problem 3. Find the fixed point
for the similarity transformations
that take the original sphinx onto
each smaller figure.

Self-similar figures and mosaics

Consider a “good” self-similar fig-
ure F; that is, one that does not con-
tain holes. Some examples are a tri-
angle, parallelogram, or any other
polygon that can be decomposed into
equal polygons, each similar to the
original one. Then an entire plane
can be tiled by copies of F, without
gaps or overlaps. A covering of the
entire plane with non-overlapping
tiles is called a mosaic or tessella-
tion. If all the tiles of the mosaic are
congruent, it is called monodical.

How can we obtain a monodical
mosaic from a self-similar figure F?
There are several ways. One way
seems to be the simplest, but in fact
conceals a tricky point. Consider, for
example, a chair F of a certain size
(figure 7a) and decompose it into
tour small chairs, as shown in figure

3

1
2 4

-
-

-

7b. Now double this picture to make
each small chair equal to the initial
one (figure 7c). Then cut each of the
four chairs into four smaller chairs
(figure 7d) and double the resulting
picture once more. Repeating this
procedure, we obtain an infinitely
expanding chair-shaped domain
consisting of congruent chairs.
This procedure has a peculiar
name: deflation-inflation. Inflation
corresponds to the increase in the

C d
Figure 7

QUANTUM/FEATURE 5




FEREnL

e rls
L] || [

| h| | lj‘
[ _| L_ [ 1
_—\ \jﬁ ]
‘['_II L

\ \ l
a b
Figure 8
| 4

Figure 9

size of the tiles; deflation corre-
sponds to the decomposition of large
tiles into smaller ones. Taken to the
limit, this process (which is called
the d-process) results in a monodical
mosaic. However, the transition to
the limit is the tricky point men-
tioned above. As a matter of fact,
what is the limit here? Apparently,
the d-process results in a sequence of
domains that increase in size and are
covered with congruent tiles. How-
ever, this sequence is not a sequence
of fragments that grows as we add
new tiles to the mosaic constructed
in previous steps. Nevertheless, it
can be proved that the plane can al-
ways be tiled by self-similar poly-
gons.

A mosaic constructed from a self-
similar figure F is called self-similar
if
e the tiles of this mosaic (let’s call
them first-level tiles) can be joined
into bigger tiles (second-level tiles)
that are similar to the first-level tiles
and such that the second-level tiles
also constitute a mosaic (figure 8a);
¢ this "sequential integration" can be
performed for any level (figure 8b).

For this reason, self-similar mosaics
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are also called hierarchical, referring
to the hierarchy that exists between
the tiles of preceding and succeeding
levels. This hierarchy can be strong
or weak. With a strong hierarchy,
the mosaic of each succeeding level
can be constructed from the tiles of
the preceding level in a unique way.
With a weak hierarchy, the mosaic
tiles can be joined to obtain the tiles
of the succeeding level in several
different ways.

The strong or weak nature of the
hierarchy is mainly determined by
the figure F itself. For example, a
square produces a weak hierarchy.
Indeed, a mosaic composed of
squares (figure 9a) can be integrated
into its second-level mosaic in dif-
ferent ways. That is, a given square
A can occur among the second-level
tiles in different positions (figures 9b
and 9c).

However, the chair, sphinx, and
domino figures produce a strong hi-
erarchy. Consider a chair-figured tile
in its corresponding mosaic. To-
gether with three other chairs, it
constitutes a second-level chair, and
each first-level tile uniquely deter-
mines three other complimentary
tiles.

Thus, the second-level mosaic is
uniquely determined. Since the sec-
ond-level mosaic possesses the same
properties as the first, the self-simi-
lar decomposition of the plane into
chairs is strongly hierarchical.

Propertes of strongly hierarchical
mosaics

Strongly hierarchical mosaics
have a number of peculiar properties
that differ from the properties of
weakly hierarchical mosaics.

Aperiodicity. A mosaic for which
at least one translation exists such
that it maps the mosaic onto itself
is called periodic. As we can see in
the example of the square mosaic,
weakly hierarchical mosaics can be
periodic. Any tile of the square mo-
saic can be translated into any other
tile together with the entire mosaic.

The most important property of
strongly hierarchical mosaics is that
they are aperiodic. Let us prove that
such a mosaic cannot be periodic.
Assume that a translation ¢ exists
which maps the entire mosaic onto
itself. Then t moves a tile F, onto
some other tile F,. Because the next
mosaic consisting of second-level
tiles is uniquely determined, the
translation t also maps the second-
level mosaic onto itself. Again, by
virtue of the fact that the second-
level tiles are uniquely integrated
into the third-level tiles, the trans-
lation ¢ that maps the second-level
mosaic onto itself also transfers the
third-level mosaic onto itself, and in
general it maps the mosaic of any
kth level onto itself, for any k.

The tiles of the kth level are 2k-1
times bigger than the tiles of the first
level. Thus, if the tiles of the first

2K
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level contain a circle of diameter d
(figure 10a), the tiles of the kth level
contain a circle of diameter 2k-1. 4.
For a large enough k, 25-1 . d will be
greater than the length of the trans-
lation vector ¢ (figure 10b). This
means that the translation by t maps
a circle of diameter 25-1 . d onto a
circle that overlaps the original one.
On the other hand, these circles
must belong to different tiles of the
kth level and thus cannot intersect.
Why do they belong to different
tiles? No bounded figure can be
mapped into itself by translation;
since different tiles of the kth-level
mosaic do not overlap, the circles in-
side those tiles do not overlap either.
Thus, we have arrived at a contra-
diction. So, we know that all
strongly hierarchical mosaics are
aperiodic.

Periodic mosaics provide a good
model for crystals, while strongly hi-
erarchical mosaics play an impor-
tant role in the study of quasicrys-
tals. In contrast to crystals, these
structures are aperiodic. In particu-
lar, the famous Penrose patterns (fig-

Figure 11

ure 11), the best-known model of
quasicrystals, are a direct generaliza-
tion of strongly hierarchical mosa-
ics.

All Alike. Let’s consider another
peculiarity of strongly hierarchical
mosaics: The mosaic of each suc-
ceeding level can be uniquely recon-
structed from the previous level.
Therefore, it may seem that a
strongly hierarchical mosaic—for
example, the chair—is determined
uniquely. However, there are many

self-similar mosaics composed of
chair-shaped tiles. Moreover, there
are even innumerably many of them.
To be more precise, two (infinite)
plane mosaics are considered identi-
cal if one of them can be matched
with the other by a rigid motion of
the plane. Otherwise, these mosaics
are considered different.

Let us explain why an uncount-
able set of self-similar mosaics can
be obtained from the chairs. Decom-
pose a chair into four smaller chairs
and assign a number 1, 2, 3, or 4 to
each of them, as shown in figure 7b.
Let a chair occur in a bigger chair
under number a, at the first stage of
the d-process. At the second stage,
this chair occurs under number a,in
the chair of the second level, and so
on. Thus, the mosaic that grows
from the given chair determines a
sequence consisting of the numbers
1,2, 3, and 4. The same mosaic can
grow from any of its other tiles, but
the sequence produced will be differ-
ent. Since the mosaic is composed of
a countable set of tiles, and there
exist innumerable different se-
quences, there exist innumerably
many different self-similar mosaics
consisting of chairs.

Because there are infinitely many
strongly hierarchical mosaics that
can be constructed from a given self-
similar tile, these mosaics cannot be
enumerated by natural numbers as
the elements of a sequence can be.
However, they can be enumerated
by real numbers.

Assume that all mosaics from the
uncountable family “Chair” have
already obtained names in the form
of real numbers. Suppose we want to
make a family album of these mosa-
ics. Every mosaic is infinite, and it
cannot be placed on a finite photo.
Thus, the portrait of each mosaic
inevitably captures only a small part
of it. Therefore, a given mosaic can
have infinitely many portraits. Now
assume that a photographer has cho-
sen a portrait of each mosaic for his
album, but he did not label the pho-
tos in time, and instead wrote them
in afterward at random. However
extraordinary it may seem, he did
not get any wrong. The point is that

any finite fragment in a mosaic of
the “Chair” family also occurs in
any other mosaic of this family, and
it even occurs infinitely many times
in each mosaic. Thus, although all
strongly hierarchical mosaics of the
same family differ globally, they
look identical locally.

Conway's mosaics

Recall that a self-similar mosaic
can be periodic. Strongly hierarchi-
cal mosaics are aperiodic. However,
despite their aperiodicity, the tiles
must have a finite number of differ-
ent positions up to translation. For
example, with dominos, every tile
belongs to one of the two classes of
parallel tiles. With chairs, there are
four classes of tiles.

Problem 4. How many classes of
parallel tiles are in the sphinx hier-
archical mosaic?

It would be interesting to dis-
cover whether a mosaic consisting
of identical tiles exists such that
these tiles have infinitely many dif-
ferent orientations. In 1992 Conway
suggested a self-similar, strongly hi-
erarchical mosaic with tiles of equal
triangles having infinitely many dif-
ferent orientations. The underlying
idea is very simple. Consider a right
triangle with legs equal to 1 and 2
and a hypotenuse of +/5. This tri-
angle decomposes into five equal
and self-similar triangles (figures
12a, 12b). The acute angle of the tri-
angle is o = arctan (1/2). This decom-
position induces self-similar mosa-
ics called Conway mosaics. It can
easily be seen that in a Conway mo-
saic, for any integer m and for any

b
Figure 12
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tile, there exists another tile that is
oriented at the angle mo with re-
spect to the initial tile. Since the
angle o is incommensurable with 2%
(see problem 5), any two triangles
oriented at the angle mo with re-
spect to each other cannot be paral-
lel. Therefore, triangle tiles in a
Conway mosaic occur in infinitely
many different orientations. ‘

It turns out that all Conway mo-
saics are self-similar mosaics with a
strong hierarchy. Therefore, there
are infinitely many of them, and all
of them include triangles with infi-
nitely many different orientations.

Problem 5. Prove that the angle
arctan (1/2) is incommensurable
with n—that is, the equation n
arctan (1/2) = mn has no solution in
natural numbers (m, n).

Let’s rephrase the statement of
the main property of Conway’s mo-
saic: For any possible orientation of
Conway'’s original triangle, A, and
any small positive number ¢, there
exists a tile A, that is “almost paral-
lel” to A, up to an accuracy of €. That
is, the angles between the corre-
sponding sides of the triangles A and
A, are less than e. In other words, the
tiles’ orientations are distributed ev-
erywhere densely in the set of all
possible orientations.

Later on, Conway (together with
Charles Radine) constructed a mo-
saic in space consisting of equal

\C D
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Figure 13
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prisms whose orientations are dis-
tributed everywhere densely in the
set of all possible orientations. The
orientation of a polyhedron can be
determined using a triple of, say,
mutually perpendicular vectors that
are rigidly attached to this polyhe-
dron. The property of being “every-
where dense” means that for any
orientation of the polyhedron P and
for any arbitrarily small € > 0, there
exists a three-dimensional tile P,
such that the angles between the
vectors of its triple and the vectors
of the P-triple are less than e.

The right triangular prism of
height 2, whose base is the right tri-
angle with legs 2 and 2+/3 and hy-
potenuse 4 at its base (figure 13a)
serves as the initial object. The base
triangle is decomposed into four
similar triangles, as shown in figure
13b. Therefore, the initial prism can
be decomposed into eight similar
prisms, as shown in figure 13c. The
two prisms, A and B, on the upper
floor constitute a regular triangular
prism. Therefore, this pair (taken as
a whole) can be rotated by 120° and
then returned to its place (figure
13d). The prisms C and D at the
lower floor constitute a right-angled
parallelepiped with a square face of
1 x 1. This pair can be turned by 90°
and returned to its place (fig. 13d).

As a result, we obtain the con-
struction of a Conway-Radine mo-

N
R
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saic. Note that in this construction,
the prisms that are turned at angles
of 120° and 90° about mutually per-
pendicular axes with respect to each
other are identical. Suppose we con-
struct a self-similar mosaic consist-
ing of the Conway-Radine prisms,
using the inflation-deflation pro-
cess. Then this mosaic will contain,
together with each prism P, all
prisms that are turned with respect
to P by various angles obtained by all
possible combinations of the form

m,

&1

my

.g2

mj3

.gl

my m My,
2

"8 8 "8 ,
where g, and g, are turns by 120° and
90° about mutually perpendicular
axes.

We can use the three mutually
perpendicular edges that meet at the
vertex of the right angle at the base
of the prism as the orientation triple.
It is relatively simple to prove (using
the fact that the rotational axes of g,
and g, are mutually perpendicular)
that the set of different orientations
is infinite. It is more difficult to es-
tablish that the set of orientations is
everywhere dense. The proof re-
quires the use of group theory.

“Chiaos™ and self-Similar mosaics

The game “Chaos” provides an
unexpected and simple method of
obtaining self-similar mosaics using
the computer.

Let’s look at the rules of this
game. We choose an initial set of
transformations. For the present
case, we take those that map the
Conway triangle onto its five con-
stituent triangles. We denote these
transformations by h,, h,, h,, h,, and
h, (figure 12b). Let a random number
generator produce numbers 1,2, 3, 4,
and 5. Mark an arbitrary initial point
x, on the plane. :

Step 1. Assume that the random
number generator produced the
number 2. Set x, = h,(x,).

Step 2. Assume that the random
number generator produced the
number 1. Set x, = h(x,).

Step n. Assume that the random
number generator produced the
number o, , where o, = 1,2, 3, 4, or
5. Then set x, =h, (x,)-




This procedure produces the se-
quence of points

X= {XO,XI,...,XH,...}.

After two or three thousand steps,
we will see Conway'’s triangle dis-
played. The reasons for the phenom-
enon are not simple, and are a sub-
ject for another article.

In the general case, let F be a self-
similar figure, F=FKU...UF,,, and
h,, ..., b, be the similarity transfor-
mations that transfer F into its con-
stituent parts F,, .., F_. The
“Chaos” game makes it possible to
obtain the figure F on the display by
using the transformations h..

To obtain the mosaic, let us paint
the point x, = h, (x, ) depending
on the value of o, . Suppose we as-
sign green to 1, red to 2, blue to 3, or-
ange to 4, and gray to 5. We paint the
point X, = h, (x, ) the color that
corresponds to the number o, Then
we obtain on the display the color
picture shown in figure 14a. This is
the first fragment of the self-similar
Conway mosaic. If we choose to
paint x_ the color corresponding to
o, ,, we will obtain a more detailed
colored portrait of the same mosaic
(figure 14b). We will obtain a still
more detailed portrait if we paint x_
the color corresponding to x, _, (fig-
ure 14c¢), and so on.

a
b
S
NS,
ﬁ‘jb"éﬁ}}’ﬁ\‘%,
a VAU ISNALEINS
Figure 14

Conway’s protilem

Let’s summarize our results. If a
polygon is self-similar, then copies
of this polygon can tile the entire
plane. If the mosaic consisting of
these polygons is strongly hierarchi-
cal, it is aperiodic—for example, the
self-similar mosaics consisting of
chairs. However, it would not be
correct to think that one can com-
pose only aperiodic mosaics of
chairs. Figure 15 shows a simple
periodic mosaic consisting of chairs.

L

Il ]
Figure 15

Thus, self-similar polygons can
make up periodic mosaics along
with aperiodic, strongly hierarchical
mosaics.

John Conway raised a question:
Does a polygonal or even curvilinear
plane figure exist such that it can
produce only aperiodic mosaics? In-
terestingly enough, an affirmative
answer has recently been discovered
in the form of the so-called
Schmidt-Conway-Danzer biprism
(figure 16a). This biprism can be
glued from the pattern shown in fig-
ure 16b. Note that this development
of the polyhedron is not of the usual
type. It contains a rhombus, which
is not a face of the polyhedron, but
rather an auxiliary element of the
construction.

The biprism is constructed as fol-
lows. First, take the triangular prism
ABCA|B,C,, whose lateral face
ABB, A, is arthombus (with an acute
angle o). Then, attach to this lateral
face the same prism turned by 180°
about the diagonal of the rhombus
face. Note that the lateral edges of
the second prism are at the angle o
with the lateral edges of the first
one. A pair of such prisms attached
to one another constitutes the de-
sired biprism.

E

a By

b

Figure 16

It is not difficult to verify that
space can be tiled with such bi-
prisms without gaps or overlaps.
The construction of such mosaics is
predefined in many respects. If we
want to tile space with such
biprisms, first we must construct a
layer of them (figure 17a). In such a
layer, all the biprisms are parallel to
each other. Moreover, the layer is a

‘/
/L // // 7
1 7
a
o
Figure 17

periodic family of biprisms. Then all
of space can be filled with such lay-
ers (figure 17a). Each succeeding
layer is obtained from the previous
one by turning it about the axis per-
pendicular to the plane of the layer
through an angle equal to the acute

CONTINUED ON PAGE 20
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MUSICAL NOTES

Gatching up on rays and waves

A rhapsody on wavelengths and the Stefan-Boltzmann law

by Albert Stasenko

HY DO MUSICAL INSTRU-
ments produce musical
sounds and not the disorderly
noise produced by, say, bang-
ing a spoon against a pan?! Because
musical instruments don’t generate
random sounds of every frequency.
They emit sounds of only certain
frequencies—so-called monochro-
matic |“single-colored”) tones.

If the frequency of a sound is v,
the corresponding wavelength in
the air is A = v/v, where v is the
speed of sound in the air. The
length of a piano string, or a pipe in
a pipe organ, determines the wave-
lengths of the sound generated. Fig-
ure 1 illustrates this idea for a
string. It shows three variants (or
modes) of standing waves on a

i=1
=D
-1/2 \0><\/z/z
i-3
Figure 1
-1/2,

a2
Figure 2
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string. Each of these standing waves
contains an integral number of half-
wavelengths:

(1)

The longest wavelength is 21 (i = 1),
while all other standing waves have
smaller wavelengths and larger 1.
The number i indicates how many
half-wavelengths exist on the string.

Now what if, instead of a string,
we have a square plate with an area
of I x I (figure 2)2 Then we can have
the following numbers of half-wave-

lengths along each axis:
i= 2—]-—
A

along the x-axis (i =1, 2, ...) and

1=iM 2193 ..
2

Y

Figure 3

j=2

i

(2)

along the y-axis (j =1, 2, ...}

An interesting feature of these
standing waves is that the wave-
lengths 2, and A, can describe either
independent waves or the same
wave traveling at some angle o rela-
tive to the x-axis (the angled solid
lines in figure 3). In the latter case,

A 21 A 2
}\.7' = iy
s o ]

cosa 1’

1

Whenever a physicist encounters
“sin” and “cos” in a formula, there
is a keen desire to square them and
add the squares together:

2

COSZG+Sin2a:1:L(12 +7‘2).
41>
It’s clear that this equation can be
satisfied by more than one pair of
numbers i, j. For example, the bro-
ken lines in figure 3 show another
wave described by the same equa-
tion:

] %
12+72:4[X) =R2. (3)

This is the equation for a circle of
radius R in the i, j-plane (figure 4).

Art by Vadim Ivanyuk
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However, the abscissa and ordinate
in this plot are integers; therefore,
the area in this plot is “granulized,”
and its minimum value is AS . = Ai
- Aj = 1 (the shaded square]. The ra-
dius of this circle isn’t measured in
meters—it belongs to the realm of
dimensionless numbers. How many
such square “granules” could be
placed in one quarter of the circle?
(Why only one quarter? Because the
numbers i and j are positive.) Scien-
tists call this quarter-circle the “first
quadrant.” To answer the question,
we need to divide the area of the first
quadrant by AS_. =1 (in other
words, we can skip the division).
Thus

92 2
N ER/A (1) .

1 A
The “=" sign reminds us that it’s not
easy to cover a round expanse of

floor with square tiles.

Let’s move into three-dimen-
sional space now and consider a spa-
tial figure (say, a cube with edge

L 'a
o |

2 ! 12 /s !
:{1‘ ',//
Figure 5
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length I). Sound waves can now
travel along three axes (x, y, and z).
We need to add a new equation to
the system (2):
I
k=2— (k=1,2,..),
Ak

and equation (3) becomes
12
%+ 12 4 2 =4[I) =R?.

This is the equation for a sphere
in the i, j, k-coordinate system (fig-
ure 5). This space is also “granu-
lized” and has a minimum volume
AV =Ai-Aj-Ak=1-1-1=1.
Therefore, one-eighth of a sphere of
radius R (guess why we consider
only one-eighth of it?}]—the “first
octant”—contains the following
number of such “granules”:

(8)(4mR*/3) 4y (1)
1 3 (k) - 14

The smaller A is, the larger N is.
Recall that each “granule” (the set of
three numbers 1, j, and k) describes
an individual standing wave. There-
fore, we have found the total num-
ber of modes—that is, the number of
standing waves with wavelengths
less than I—generated inside a cube
with edge length 1.

However, sounds are not the only
things that can be musical. In a sense,
electromagnetic waves and visible
light can also be “musical.” This
“musicality” is called color, and any
color is characterized by its own fre-
quency v and wavelength A = ¢/v,
where c is speed of light. In this case,
a laser producing a monochromatic
wave could be considered analogous
to an organ pipe or piano string. If the
distance between the two parallel
mirrors of a laser is I, the laser gener-
ates a wave whose wavelength is de-
scribed by equation (1).

Is it difficult to construct a cube
filled with electromagnetic waves?
Not at all. We only need to pump
everything out of a cube of volume
I3—air, water vapor, carbon dioxide,
and so on. Will the cube be empty?
Paradoxically, no. It will be filled
with so-called “equilibrium radia-

tion” corresponding to the tempera-
ture T of the cube’s walls. At this
temperature the walls emit and ab-
sorb the same amount of energy per
unit time. Every cubic centimeter of
the space inside the cube is perme-
ated by electromagnetic waves trav-
eling in every direction. These are
waves of every sort—ultraviolet
waves, visible light, infrared radia-
tion... Of course, all have wave-
lengths less than 21

If such a “stove” is heated only to
room temperature, it will be a very
weak “radio station” that mainly
gives off “warm” (infrared) radiation.
An open-hearth furnace, on the other
hand, heated to about 1,000 K pro-
duces not only infrared radiation but
visible light as well. The wave-
lengths of the electromagnetic waves
in this range vary from a fraction of
amicron to a few microns, so the dis-
tance between adjacent spectral lines
(with wavelengths A, and A, , ,) given
by equation (1) is very small. There-
fore, the set of wavelengths (or fre-
quencies) can be considered continu-
ous rather than discrete. Equation (4)
says that the number of equilibrium
electromagnetic waves filling the
volume P of a “stove” is

4anl®  4nl®
= 37\3 = 3C3 VSZN(V), (5)

N(»)

Every photon of frequency v car-
ries an energy hv (h is Planck’s con-
stant). The equilibrium electromag-
netic radiation is sometimes called
the “photon gas.” It’s similar to con-
ventional gas in that the photons
travel in all directions like mol-
ecules. However, unlike molecules,
the photons do not collide with one
another—they only “strike” the
walls of the vessel (our “stove”). In
addition, the speed of all the photons
is the same (it equals the speed of
light), so physicists say they are dis-
tributed in frequency (while the
molecules in a gas are distributed in
speed). So what is the mean energy
of the photons?

First, let’s consider a molecular
gas. The number density of its mol-
ecules is n and the mass of each
molecule is m. It’s known that the

L



mean kinetic energy of a molecule
of gas at a temperature T is propor-
tional to k;T, where kg is Boltz-
mann’s constant:

mvz

T (6)

Thus the energy density of this gas
is

H’lV2

n ~nkgT=P,
where P is pressure.

In the Earth’s atmosphere the
density of the gas varies with alti-
tude according to Boltzmann’s for-
mula:

mgy

n=ngye &

This formula gives the characteris-
tic altitude at which the density of
air decreases e-fold compared to that
on the Earth’s surface:

_ kT _RT
Cmg Mg
~8.31-300

©29.102.9.8

H

e
m = 8.8 km.

At this altitude the potential energy
of amolecule is mgH, = k,T. It's cu-
rious that this value is also equal to
the mean potential energy of mol-
ecules in an isothermal atmosphere:

mgy =kyT (or H, = y). (7)

According to the mathematical
definition of a mean value,

mgyN = mg f ydn(y),
0

where N is the total number of mol-
ecules in the column of air above a
unit area:

The denominator of this expression
is nfeo) - n(0) = 0 — ny = —n, (here we
took into account that ne) = 0—
that is, at an infinite height the den-
sity is zero). The numerator can be
obtained by means of the identity

dlyn) = ydn + ndy,

from which we get

oo o

Tydn(y) = Jd(yn) - J.ndy

0 0
T o kT
= n|_nJ61<BTd mg | Kl
Y y=0 00 y]<BT mg
mg
Finally,

mgy = kgT.

Equations (6] and (7) show that
the mean values of both the kinetic
and potential energies of the gas
molecules are of the order of k,T.
This result is also true for any other
case where thermodynamic equilib-
rium is present for a large number of
chaotically moving molecules.

What can we say about the equi-
librium radiation in our “stove”?
According to equation (1), the long-
est wavelength is A = 2], so for a
stove with a side length / ~ 1 m we
have A ~2 m. This lies in the ra-
dio range. The shortest wavelength
can be anything down to that of X-
rays. Of course, nobody uses a stove
as an X-ray generator or radio sta-
tion. However, for a given tempera-
ture a certain value v. will be most
characteristic (“will be found most
frequently among the photons,”
“will be most likely,” “will be the
mean”—choose your own terminol-
ogy). We may expect that the corre-
sponding energy of equilibrium pho-
ton radiation is also of the order of
k,T—that is,

hv. ~ kT, (8)

while the frequency distribution of
the radiation energy is described by
a bell curve (figure 6). This curve

shows that there is only a small

amount of energy at very long and
very short frequencies. In contrast,

o
<b---
8

‘mjn Y 0
" . A
mi
Figure 6

the largest portion of the energy is
carried by photons with frequencies
near the characteristic frequency v.
~ kyT/h. Thus the total energy of the
equilibrium radiation in the volume
of the stove can be found from the
formula

U~N(v*)-hv* ~i—zhvf‘.

Correspondingly, the energy density
(energy per unit volume) is described
by the formula

U 1
n= JTN ch®
For the sake of this formula—

u=oT*

(k1) (9)

—we’ve covered a lot of ground.
That’s because we derived it rather
than simply cite the Stefan-Boltz-
mann law. Note that these formulas
describe only the dimensionality
and qualitative dependence of the
values sought. The correct fre-
quency distribution of photons is
given by Planck’s formula, which
contains the dimensionless factor
1/(e"/&T — 1). However, here we're
only trying to estimate the physical
values (which is a very important
step in exploring any problem). The
above coefficient is dimensionless,
so it will not change the dimension
of our formula for u. We're on the
right track.

We can take another step and cal-
culate the energy radiated per unit
time from a unit surface area of a
body in thermal equilibrium (that is,
at a constant temperature). As noted
earlier, such a body radiates and ab-
sorbs the same amount of energy.
When we multiply the energy den-
sity u by its rate of propagation (the
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speed of light ¢), we get the density
of the energy flow uc (its dimension-
ality is J/m3(m/sec) = J/(m? - sec)).
The photons propagate in every di-
rection, and 1/6 of the photons
travel to the surface of the body (be-
cause it’s one of six possible direc-
tions: forward, backward, up, down,
right, and left). Thus the density of
the energy flow is

4
Zue-—s ' (10)
This is another form of the Stefan—
Boltzmann law.

If we look a little deeper into the
problem, we might guess that the
correct coefficient is 1/4, not 1/6.
But this is a fine point that doesn’t
concern us here. OQur aim was to
obtain not only the Stefan-Boltz-
mann law in the form u = aT* ~ g =
oT* (where ¢ is the Stefan-Boltz-
mann constant, but also the rather
important nontrivial relationship
between the proportionality factors
and fundamental physical con-
stants:

kg kg
~c3h3 / ~c2h3 :

o

The precise value of the Stefan-
Boltzmann constant is 6 =5.67 - 1078
J/[m? - s - K%). Note that these com-
binations of fundamental constants
could be obtained (as has happened
many a time in the pages of Quan-
tum) by dimensional analysis, pro-
vided the set of related values is
known (here they are h, k;, and c). In
this article we took a step further
and showed how to obtain the for-
mulas by playing with basic laws
rather than basic constants.

Clearly the dependence of gon T
is very steep: if we double the tem-
perature, the density of radiation
energy increases by a factor of 16!

Now that we've obtained such a
powerful law, it’s tempting to use it
right away. For example, we can cal-
culate the temperature at the Sun’s
surface knowing only its angular
diameter 85 = D¢/L (Dy is the Sun’s
diameter, L the distance between
Earth and the Sun) and its mean
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temperature. Indeed, the energy ra-
diated from the entire surface of the
Sun per unit time is

Qg = g - 4nR¢ = oTgnD}.

The disk of the Earth, whose area is
nRZ, receives only a small fraction
of this energy, which is equal to
(nR2)/(4nL?). All this “intercepted”
energy is radiated into space from
the entire surface of the Earth 4nR ;2.
Equating the solar energy striking
the Earth to the energy radiated by
the Earth, we get

RZ
oTénD? e _ 4nR26T.
S S 4TEL2 EY-E

Note that we don’t need the precise
value of the Stefan-Boltzmann con-
stant, because it cancels out. Thus
we have

16 2
TS :TE4 =TE .
V(DS/L)2 \/@

Plugging T; =~ 300 K and 6 = 0.5 =
102 rad into this formula, we get

T, = 20T, = 6000 K.

Now that we know the tempera-
ture at the Sun’s surface, we can cal-
culate the area of a solar “sail” that
can generate a force of one newton
to propel a spacecraft. We'll assume
that the spacecraft and the Earth are
traveling at the same distance L
from the Sun. The surface of the sail
is covered by an ideally reflecting
layer. Every photon that hits the sail
perpendicular to its surface is re-
flected back and thereby changes its
own momentum by hv/c - (-hv/c) =
2hv/c. Since the energy falling on a
sail of area A per unit time is

4 2 A
Ql GTS 7-EI)S 47‘[L2 ’

(we showed earlier how to derive
such a formula), we multiply this
value by 2 and divide by ¢ to obtain
the change in momentum of all pho-
tons striking the sail (which is the
propulsive force F):

2
po2 Ech‘egé,
C c 4

from which we get
A= tFC 4
205075
4.1-3-108 )
= 4 3 g m
2-107"-5.67-107° - 6000

=107 m2,

This is almost ten hectares, to speak
in agricultural terms.

Knowing the temperature of the
Sun, we can now make the relation-
ship (8) more precise. Since v. = ¢/A.,
we can rewrite it as

KT s,

kg
We see that the product of the tem-
perature and the characteristic radia-
tion wavelength is some constant
composed of fundamental physical
constants. Since the temperature of
the Sun is about 6,000 K and the char-
acteristic wavelength of visible light
is about 0.5 um, this constant is about
05-10°m-6000K=3-103m K.
The relationship between the tem-
perature and the characteristic radia-
tion wavelength is known as the
Wien displacement law, which is
one of the universal physical laws.

From this law it follows that at
room temperature all bodies emit
electromagnetic radiation predo-
minantly at the wavelength A. =
3 -1073/300 m = 10 um—that is, in
the infrared range. Therefore, this ra-
diation cannot be seen in the dark
(by the human eye). However, if
there were such a thing as an “invis-
ible man,” an infrared camera would
detect this “warm” object quite eas-
ily against the background room-
temperature radiation.

We can draw one more conclu-
sion from our reasoning. A very
small stove or a speck of dust heated
to a certain temperature under con-
ditions of thermal equilibrium
should radiate a number of wave-
lengths limited by condition (1]: the
longest wavelength will be about
the size of the speck. Therefore, the
spectrum of radiated frequencies will

CONTINUED ON PAGE 20



Math
M296

Exacting equation. Let o — ot — 1
= 0. Find the exact value of the ex-
pression

Y302 — 4o+ 04202 + 30+ 2.

M297

Copper conundrum. Two pieces
of metal have masses of 1 kg and 2
kg, respectively. They are alloys of
copper with some other metals. The
two pieces were melted down and
reformed into two new pieces. One
of the new pieces had a mass of 0.5
kg and was 40% copper; the other
had a mass of 2.5 kg and was 88%
copper. What was the percentage of
copper in each original piece?

M298

Linear thinking. Let the perpen-
dicular to side AD of the parallelo-
gram ABCD passing through vertex
B intersect line CD at point M, and
the perpendicular to side CD passing
through vertex B intersect line AD
at point N. Prove that the perpen-
dicular dropped from B onto diago-
nal AC passes through the midpoint
of segment MN.

M299

Circular logic. A circle lies en-
tirely inside a given angle. Construct
another circle, tangent to the first
and to the sides of the given angle.
How many such circles are there?

M300

Think small. Let a line m be per-
pendicular to a plane L. Three

HOW DO YOU
FIGURE?

Ghallenges

spheres that are tangent in pairs are
also tangent to line m and plane L.
The radius of the largest sphere is 1.
Find the minimum possible radius
of the smallest sphere.

Physics

Pendulum puzzle.
A wire arc of length L
and radius R is sus-
pended on two light R
inextensible strings
of the same length R.
Find the period of
small oscillations for L
such a pendulum if the strings and
the arc always remain in the same
plane. (M. Yermilov)

P297

Extraterrestrial ozone. According
to some estimates, the mass of
ozone (O,) in the Venusian atmo-
sphere is o = 107° percent of the en-
tire atmospheric mass. What would
the thickness of the ozone layer be
if it were collected at the planet’s
surface and had a temperature and
pressure equal to that at the surface
of Venus? The acceleration due to
gravity on Venus is g = 8.2 m/s?, and
the temperature at its surface is T =
800 K. (A. Sheronov)

P298

Two-plate special. A parallel
plate capacitor of capacitance C is
composed of two large conducting
plates, each of which is a double
layer made of electrically connected
thin sheets of foil. The plates are
charged with charges Q and 2Q of
the same polarity. The outer foil

layer of the plate with the largest
charge is carefully disconnected,
moved away parallel to the other
plates, and positioned as the third
layer on the outer side of the plate
with charge Q. A very narrow gap is
left between this third layer and the
plate, which prevents any electric
contact between them. What work
must be expended in this transfor-
mation? (All the actions are done at
a distance so as not to influence the
distribution of charges on the
plates.) (A. Zilberman)

P299

Spot-light. A plano-convex lens
made of glass has a refractive index
n=1.5and adiameter D =5 cm. The
radius of the convex spherical sur-
face R =5 cm. A broad parallel beam
of light hits the flat side of the lens
along its optic axis. Calculate the
size of the light spot formed on a
screen set behind the lens perpen-
dicular to the incident beam. The
screen is positioned so as to obtain
the smallest light spot for a narrow
beam (restricted by a diaphragm) di-
rected along the optic axis.

(A. Zilberman)

P300

Con-fusion? The nuclei of deute-
rium D(}H) and tritium T(3H) can
fuse according to the reaction D +
T — $He + n to produce a neutron
and alpha-particle (4He). In addition,
each pair of interacting nuclei re-
leases energy E = 17.6 MeV. What
energies are carried away by the neu-
tron and the alpha particle? The ki-
netic energy of the nuclei before
nuclear fusion is negligible.

(Y. Samarsky)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 51
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The Borsuk—Ulam theorem

Horsing around with continuous functions on a circle

by M. Krein and A. Nudelman

HE WEATHER IS CAPRI-
cious. The parameters that de-
scribe it (for example, pressure,
temperature, and humidity)
vary continuously over time and
from place to place. The isothermal
and isobaric curves on weather maps
take whimsical (and, alas, often un-
predictable) shapes. Yet no matter
how convoluted the weather map
looks, the following theorem is true.

Weather theorem. At any mo-
ment there exists a pair of diametri-
cally opposed points on the Earth
(“antipodes”) where both the tem-
perature and the pressure are iden-
tical.

Although we’ve couched this
proposition in meteorological terms,
it is actually a property of continu-
ous functions defined on a sphere
rather than properties of the atmo-
sphere. The theorem lies within the
realm of topology, a division of
mathematics that deals, among
other things, with functions or col-
lections of functions that are con-
tinuous for certain sets.

Some properties of such functions
are determined by the structure of
the set on which they are defined.
For example, for numerical func-
tions that are studied in high school
the following theorem holds:
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Theorem of the zero of a function.
If a function f is continuous on the
interval [a, b] and takes values with
opposite signs at its endpoints, then
there exists a point x, between a
and b such that f(x,) = 0.

We won’t prove this theorem—it
may seem obvious geometrically,
but strange to say, the proof is far
from elementary.

For the “zero theorem” to be true,
both the continuity of the function
and the connectivity of the segment
are essential. The reader is invited to
explore why we need continuity. By
“connectivity” we mean that there
are no “gaps” in the segment. For ex-
ample, the function

Fal= \@m +2x

H/

Figure 1

QPPOSING POIN TS

is continuous on its domain [-2, —1]
U [1, 2], is negative on [-2, -1], and
positive on [1, 2]. However, it doesn’t
have a value of zero at any point.
In this article, we’ll examine
some properties of pairs of continu-
ous functions defined on a sphere.
But first we'll look at a simpler case:
an unexpected property of continu-
ous functions defined on a circle.

The case of a circle: a circus horse
periorms

Suppose that a circus horse begins
running smoothly around a ring
from a point A, and stops smoothly
at the same point, after making a full
circle. It turns out that no matter
how the speed of the horse varies,
there exists a pair of diametrically
opposite points where the horse’s
speed is the same.

It goes without saying that the
horse isn’t the cause of this—in fact,
we’ll turn the horse into a point later
on. Rather, it’s a property of con-
tinuous functions.

We can determine the position of
the horse H on the circle by the
magnitude of the angle 8 (0<6 < 2x)
that the radius OH forms with the
radius OA drawn from the starting
point (figure 1). The corresponding

Art by Leonid Tishkov
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speed will be denoted by v(8). We
assume that the function v is con-
tinuous on [0, 2x] (the horse stops
and starts running smoothly), and
according to the statement of the
problem v{0) = 0, v(2xt) = 0. The point
H’ diametrically opposed to H is de-
termined by the angle 6 + © (where
0 <0 <n). We need to prove that
there exists 8, € [0, n] such that v(6,
+T) = v{6).

Consider the function u(6) = v{6 +
n) — v({8). We want to find 8, € [0, 7]
such that u(6,) = 0. The function u is
continuous on the interval [0, 7] (as
the difference of two continuous
functions), and its values at the end-
points of this interval have opposite
signs (if v(rt) # 0) or are both equal to
zero (if v(r) = 0). Indeed, u(0) =v(rn) -
v(0) = v(r) and u(rn) = v(2x) - v(r) = -
v(n). In the case when v(rn) = 0, we
can set 0, = 0; otherwise, the exist-
ence of 6, follows from the theorem
of the zero of a function.

We can see that the nonnegativity
of the function v(8] is not needed to
prove the theorem. (That is, the
horse may sometimes run in the
opposite direction around the ring.)
From the conditions v(0) = 0 and
v(2n) = 0, only the equality v(0) =
v(2m) is essential (the horse may pass
the initial point A with a nonzero
speed. What matters is that it return
to this point with the same speed).

It’s clear that v may be considered
a function of the point H rather than
a function of the number 6. There-
fore, our theorem can be formulated
as follows.

The “horse” theorem. If a func-
tion is defined on a circle and is con-
tinuous, there exist two diametri-
cally opposite points on the circle
where this function takes on equal
values.

Mathematical formulations of the
weather thearem

Let’s rephrase the weather theo-
rem in mathematical terms. At a
given moment in time, each point P
of the Earth’s surface S can be char-
acterized by two numbers—the pres-
sure f(P) and the temperature g(P).
Thus two functions are defined on
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the sphere S. We assume they are
continuous. Indeed, the values of
these functions cannot vary too
much when the location of point P
changes slightly.

A precise definition of the conti-
nuity of a function defined on an ar-
bitrary point set X {located on a line,

- on a plane, or in space) can be formu-

lated as follows. The function ¢ is
called continuous at the point P, €
X if for any ¢ > O there exists 6 > 0
such that, for any point P € X whose
distance from P, is less than §, the
inequality lo(P) - ¢(P,]! < € holds.
The function is continuous on the
set X if it is continuous at every
point of this set.

We will denote by P’ the endpoint
of the diameter of the sphere whose
other point is P.

Leaving aside the “meteorologi-
cal” meaning of the functions f and
g, we'll formulate the theorem in its
general form.

Borsuk-Ulam! theorem. If the
functions f and g are defined on a
sphere S and are continuous, then
there exist diametrically opposed
points P, and Fj on the sphere such
that fIE}) - Py and glB) = glPy).

Let’s introduce two functions F(P)
= flP’) - fiP) and G(P) = g(P’) - g(P).
Both these functions are continuous
on S and are antisymmetric: F(P’) =
- F(P) and G(P’) = — G(P). For in-
stance, F(P’) = fl(P’)) - fiP’) = fIP) -
f(P’) = —F(P). For the points P € S
such that f{P) = f{P,) and g(Fy) = g[P,)
and only for such points, F(P;) = 0
and G(P,) = 0.

Therefore, the Borsuk-Ulam
theorem would follow from the fol-
lowing theorem.

Common zero theorem. If the
functions F and G are continuous
and antisymmetric on a sphere S,
then there exists a point Py at which
both these functions are equal to
zero: F(Py) = G(P,) = 0.

Theorem of the zeros of vector fiels

Zero theorem gives the condi-
tions that are sufficient for a func-

1 Karol Borsuk (born in 1915) is a
Polish mathematician; Stanislaw
Ulam (1909-1984) was an American
mathematician.

Figure 2

tion that is continuous on an inter-
val to have a zero on this interval.
We now formulate a theorem that
gives a criterion for the existence of
a zero that is common to two func-
tions that are continuous on a circle.

Let every point Q of a set K (for
our purposes, this will usually be a
circle) in a plane be assigned a vec-
tor a(Q) in the same plane. In this
case, we say that a two-dimensional
vector field is defined on K (figure 2).
A vector in a plane is defined by two
coordinates. Therefore, the defini-
tion of a two-dimensional vector
field is equivalent to the definition
of two functions: a(Q) = (x(Q), y{Q)).

The vector field is said to be con-
tinuous at the point Q, if both func-
tions x(Q) and y{Q) are continuous
at this point. The vector field is con-
tinuous on a given set if it is con-
tinuous at every point of this set.
The vector field is said to be degen-
erate on the set K if a(Q) = 0 for a
certain point Q, € K. We want to
obtain conditions that are sufficient
for a continuous vector field in a
circle to be degenerate.

First, we give a vector interpreta-
tion of the zero theorem. A vector
defined on a line is given by a single
coordinate. Therefore, a function
defined on an interval may be inter-
preted as a one-dimensional vector
field (consisting of vectors that are
oriented along the given line|. Thus,
the theorem of the zero of a function
may be formulated as follows.

Theorem of the zero of a one-di-
mensional vector field. If a continu-
ous one-dimensional vector field is
defined on an interval and the cor-
responding vectors at the endpoints
of this segment have opposite di-
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rections, then this vector field is de-
generate (figure 3a).

This theorem can be extended for
the case of a two-dimensional vector
field as follows.

Theorem of the zero of a two-di-
mensional vector field. If a continu-
ous two-dimensional vector field is
defined on a circle and the corre-
sponding vectors at any diametri-
cally opposed points on its circum-
ference have opposite directions,
then this vector field is degenerate
(figure 3b).

Proofs of the “one-dimensional
zero theorem” and the “two-dimen-
sional zero theorem” would take us
well beyond the high school curricu-
lum. But while the one-dimensional
theorem is easy to grasp visually,
such is not the case for two-dimen-
sional vector fields. So we’ll provide
a “plausible reason” for you to ac-
cept the validity of this theorem.

Let O be the center of a circle K
and r its radius. We’ll denote the cir-
cumference of K by C, and for any
number a, we'll let C, denote the cir-
cumference of the circle centered at
O with radius a. Let a be a continu-
ous vector field in K. Suppose that
alQ) =0 forall Qe C,. Then the
vector a(Q) will change its direction
somehow as the point Q moves
along C . Let’s denote by v(C ) the
number of revolutions that the vec-
tor a(Q) applied to a point I performs
in the counterclockwise direction as
point Q passes along C, counter-
clockwise. The integer v(C | can be
positive, negative, or zero. To be pre-
cise, we note that if a(Q) makes sev-

eral revolutions counterclockwise
and several revolutions clockwise as
Q moves along an arc of C,, these
revolutions “cancel out.” We sug-
gest that you try to find v(C) for the
tields depicted in figure 4 (the field
of velocities of a rotating circle and
the field corresponding to parallel
translation).

Let a(Q) (where Q € K) be a vec-
tor field satisfying the conditions of
the theorem. Now let’s assume the
opposite—that is, that a(Q) # 0 for all
Q € K. Then, in particular, a(0) # 0.
Due to the continuity of the field,
the direction of all vectors a(Q) is
close to the direction of a(0) in the vi-
cinity of 0. Therefore, for a small g,
>0 we have v(C,) = 0, since the direc-
tion of the vectors on C;, is “almost
the same” as the direction of a(0) (see
figure 5), and the vector a(Q) makes
no full revolutions as Q moves along
Ce,- We now gradually increase ¢ to
its extreme value € = 1. Since 4(Q) #
0, the number v(C) is defined for all
values of €, 0 < € < 1. That is, the
function v(C,| (considered a function
of €) is defined for all e on (0, 1]. This
function is continuous (since our
tield is continuous| and takes integer
values only. However, the integer-
valued function can change only by
steps (each step is greater than or
equal to 1). Therefore, it is either dis-

Figure 4

Figure 5

Figure 6

continuous or constant. Thus, in our
case, v(C,) = const, from which we
get v(C) = v(C, ) = 0.

Now consider a point A on the
circumference C and its antipodal
point A’ (figure 6). Since the direc-
tions of the vectors a(A) and a(A’) are
opposite to one another, the vector
a(Q) makes an odd number of half-
revolutions as Q moves from A to A’
along the arc AmA’. As Q moves
turther from A’ to A along the arc
A’nA, the vector a({Q) makes the
same number of half-revolutions in
the same direction. Therefore, v(C)
is an odd number, which contradicts
the equality v(C) = 0 proved earlier.
This completes our reasoning.

Proof of the theorem of the
common zera

Let the functions F and G be con-
tinuous and antisymmetric on the
sphere S:

FA’) = - FA), GIA) = - GA).

Construct a plane passing through
the center O of S. The cross-section
is a circle K, and we denote its cir-
cumference by C. Let’s introduce a
rectangular coordinate system in the
secant plane whose origin is the cen-
ter of the sphere. Assign the vector
a(Q) with coordinates F(P) and G(P)
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Figure 7

to every point Q € K, where Pis the
point on the upper hemisphere that
projects onto Q (figure 7). We sug-
gest that you verify that this vector
field is continuous on K. By virtue of
the antisymmetric property of the
functions F and G, we find, for all
Q e C, that

a(Q) = -a(Q).

By the zero theorem for two-dimen-
sional fields, there exists a point Q,
€ K such that a{Q,) = 0. Therefore,
F(Py) = 0 and G(P,) = 0, where P, is
the point on the sphere that projects
onto the point Q,- Thus, the theo-
rem is proved.

A yeographical consequence

There is a consequence of the
Borsuk-Ulam theorem that is rather
distressing for geographers. The loca-
tion of a point on Earth is given by
geographic coordinates: latitude 0
and longitude ¢. These may be con-
sidered functions of a point on the
terrestrial sphere. In this coordinate
system, the poles have a peculiar
property: the latitude of the poles is
90° (N or S), and they can be assigned
an arbitrary longitude. So if we go to
the North Pole along a meridian and
then continue moving along another
meridian upon reaching the pole, our
motion will be continuous and the
latitude will vary continuously, but
the longitude undergoes a disconti-
nuity. If we assign the plus sign to
East longitudes and the minus sign
to West longitudes, then the longi-
tude undergoes a discontinuity when
it crosses the meridian that is antipo-
dal to the Greenwich meridian. The
question arises: is it possible to intro-
duce a coordinate system on the
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whole sphere such that the coordi-
nates are continuous functions of
the corresponding point on the
sphere! Naturally, different points
must have different coordinates.

It follows from the Borsuk-Ulam
theorem that this is impossible. In-
deed, if continuous coordinates x(P)
and y(P) were given on the sphere, a
pair of antipodal points Py, B/ € §
would exist for which x(P,) = x(F})
and y(Py) = y(F;).

Some generalizations

If we thoroughly analyze the
proof of the “horse” theorem, we’ll
see that it isn’t so important that the
points H and H’ be diametrically op-
posed. The reasoning remains valid
if we take an arbitrary point O, in-
side the circle instead of O and in-
terpret H and H’ as the opposite end-
points of a chord passing through
O,. This also applies to the zero
theorem for the two-dimensional
field and to the Borsuk-Ulam theo-
rem (figure 8). It’s only important
that the property (P’) = P be valid for
the new definition of the point P’.

Any continuous mapping P — P’
that possesses this property is called
an involution. The Soviet mathema-
tician A. Fet used ingenious and
powerful topological methods to
prove that the Borsuk-Ulam theo-
rem (even its n-dimensional version)
remains true for an arbitrary involu-
tion P — P’ on the sphere. Here is
the precise formulation of this theo-
rem for three-dimensional space.

Let an arbitrary involution P — P
be given on a sphere S. For any pair
of continuous functions f{P) and g(P)
defined on S, there exists a point P,
€ S such that f(Py) = f(P,) and g(P,)
= g(Po)~

Figure 8

* Kk *

We recommend that readers who
wish to gain a deeper understanding
of the basic concepts of topology
read the excellent book by W. G.
Chinn and N. E. Steenrod, First Con-
cepts of Topology: The Geometry of
Mappings of Segments, Curves,
Circles, and Disks (New York: Ran-
dom House, 1966). (@

CONTINUED FROM PAGE 9

angle of the thombus. Then the layer
is translated. Therefore, if the angle
of the thombus is incommensurable
with nt (that is, if a cannot be written
as (m/n)r for integers m and n), then
no two biprisms from different layers
can be parallel. On the other hand,
any translation that maps a layer
onto itself cannot map any other
layer onto itself. Thus, if the angle a
is incommensurable with =, there are
no translations that map the decom-
position described onto itself.
However, if we ask the same ques-
tion about a plane figure, the answer
is not known. It is possible that there
are no such aperiodic tiles on the
Euclidean plane. An analogue of the
aperiodic tile on the Lobachevskian
plane has already been found. It
would be wonderful if a reader of
Quantum discovered an aperiodic
tile on the Euclidean plane. Q)

CONTINUED FROM PAGE 14

be “cut off” on the low-frequency
side, as shown qualitatively by the
dashed line in figure 6—that is, they
are shifted toward the “violet” por-
tion of the spectrum. If the specks of
dust could be heated to the tempera-
ture of the Sun’s surface, the smaller
they are, the bluer they’d look (in the
visible range of the spectrum).

All these considerations come
into play in many fields of science
and technology—for example, in
studies of the energy balance in plan-
etary atmospheres, metallurgical fur-
naces, rocket jets, and so on. So we
see that the waves generated by a pi-
ano string have reverberated far into
diverse areas of research. @
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Algebraic and transcendental numbers

Thought-provoking for thousands of years

by N. Feldman

ATURAL NUMBERS, INTEGERS, RATIONAL
numbers, real numbers, and complex num-
bers—this expanding chain,

NcZcQcRcC(C,

has been familiar to mathematicians
for quite some time.

complex (R < C) numbers to be
accepted as links in the chain.
This article will have something to
say about another part of the chain—the
inclusion Q c R.

You've certainly heard about irrational
numbers (that is, numbers that cannot be
represented as a fraction m/n, whereme Z
and n € N). These numbers had already been
discovered in antiquity. The fact that the diagonal
of a square is incommensurable with its side (translated
into the language of algebra, this means that v2 is an
irrational number) was one of the most exciting (and dis-
turbing) scientific discoveries of the time. Nowadays, a
proof of this fact is given in elementary textbooks. If you
have any feel for the mathematical way of thinking, the
elegance and deceptive simplicity of this proof cannot
leave you cold.

Besides being classified as rational and irrational
numbers, real numbers can also be classified as algebraic
(such as 2/3, \/2, 5 — /7, or /4 and transcendental
numbers (such as m, ¢, or 1g 2). This classification isn’t
as well known, but it’s very important nonetheless. In
this article we’ll examine these two classes of numbers,
their properties, and their (ongoing) history.

Perhaps you've read the articles &
in Quantum describing how hard e -
it was for negative (N < Z) and e
e

Art by Vasily Vlasov
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Algetraic numbers
Every rational number a =
a/blae Z, b e Z)is the root
of a polynomial with integer
coefficients—for example, of
the polynomial bx — a. Any ir-
rational number of the form ¥a
(a € Z) is the root of a polynomial
of this kind as well—for example, of the
polynomial x* — a. We now want to consider only the
numbers of this sort—that is, roots of polynomials

with integer coefficients.

By definition, a real number is called algebraic
if it is the root of a polynomial with inte-
ger coefficients that is not equal to an
identically zero polynomial.! We de-
note the set of all algebraic numbers by

A. Aswe've already seen, Qc AcR. To

get a better feel for the concept of algebraic
numbers, prove the following propositions.

1.If e A (0. #0), then 1/ € A.

2. If o is the root of a polynomial with rational coef-
ficients, then o € A.

3.ffaoe Aandae Q, thenaoe Aanda +'a.€ A.

It can be proved thatif o e AandBe A, thena+pe
A a-Be A a-Be A, and /B € A (in the latter case,
cannot equal zero). In other words, arithmetic opera-
tions do not take us out of the set of algebraic numbers.

! The set of polynomials with integer coefficients is
denoted by Z[x]. In this article, we consider only
polynomials that are distinct from the zero polynomial
without specifying this fact every time. For readers who are
familiar with complex numbers, we note that it is possible
to introduce and study complex algebraic numbers as well.



(The proof of this fact is more complex than the solution
of the first three problems, so I won't give it here.) Thus,
the set A with the operations + and x, as well as the set
Q with the same operations, form a number field—that
is, a number set with all four arithmetic operations de-
fined on it {except for division by 0, of course), and all the
operations act as they usually do in arithmetic.

The question naturally arises: are there any real num-
bers that are not algebraic? To give an answer, we need
a notion that is explained in the next section.

The tiegree of an algebraic number

If ouis a root of the polyno-
mial P(x), then it is also a
root of the polynomial
P(x)Q(x), where Q(x]) is
an arbitrary polynomial.
Therefore, every algebraic
number o is the root of an infi-
nite set of polynomials from Z[x].
Clearly we can find polynomials of minimum
degree among them. If this minimum degree is n, we
say that o is an algebraic number of degree n and write
deg o = n. We can see that deg o = 1 if and only if o e Q.
It’s also clear that the degree of an irrational number of
the form +a (a e Z)is 2—that is, deg v/a = 2.

To go any further, we’ll need the following simple,
yet important, theorem.

The remainder theorem (1779). The remainder when
the polynomial P(x) is divided by x -y is P(y).

Proof. Let us divide P(x) by x — y. The remainder is a
constant, which we denote by c:

P(x) = (x =) Pylx] + c,

where Py(x)is a polynomial. Plugging x = yinto this for-
mula, we find that ¢ = P[y).

On the basis of this theorem, we can easily prove the
following lemma.

Lemma. If an algebraic number o. of degree n 22 is
a root of the polynomial P(x) e Z|x] of degree n, then P(x)
has no rational roots.

Proof. Assume, on the contrary, that P(a/b) = 0, where
ae Zand b e N. By the remainder theorem, the remain-
der when P(x) is divided by x — a/b is 0. Therefore, P(x]
is divisible by x - a/b:

P(x) = (X - %)PO (x),

where P(x) obviously has rational coefficients. If
M is a common multiple of the denominators of
the coefficients of Py(x], then P,(x) = M Pyx) e Z[x].
~ Since Pla) = 0 and a # a/b (the degree of o, is greater
than 1), we have Py(o) = 0. Therefore, P,(a) = 0. How-
ever, the degree of the polynomial Pj(o)isn—1<n =
deg o.. So we have arrived at a contradiction.

The decisive step in the search for numbers that are
not algebraic was the following theorem.

Liowille's theorem

At first glance, the formulation of this theorem is
unrelated to the existence of “nonalgebraic” numbers.

Liouville’s theorem (1844). If o is an algebraic num-
ber of degree n>2, then there exists a number ¢ > 0 such
that, forany p e Z and q € N,

.2

q

This theorem in effect says that an irrational alge-
braic number o cannot be approximated by rational frac-
tions “very well.” Therefore, if we find an irrational
number that can be approximated “very well” by ratio-
nal numbers, it is not algebraic.
Proof. Let o be an algebraic number of degree n > 2.

Then there exists a polynomial

P
q

a_

Plx)=ax"+a, x""1+ .  +ax+ ax", (a, #0)

with integer coefficients such that P(a) = 0. Denote
by H the greatest of the absolute values among la,],
la,], ..., la_|. We’ll show that the number

€= ;1
n*H(1+|o])

possesses the desired property. Notice that ¢ < 1. Let’s
take an arbitrary p e Z and g € N. Then

p[gj: a,p" +a, 1 p"'q+..+ apq™ + ayq” _a
q q° q"’

where we have denoted the numerator of the fraction,
which is an integer by a.

By the lemma,
P(EJ #0.
q

Therefore, a#0. Since a € Z, we have lal > 1. Therefore,

3]

Since P{a) = 0, we obtain

P(o) - P(%)

1
Z—,
n

q

then we have
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o— P 212 L > £
q " q"
and the assertion of the theorem holds. On the other
hand, if
o— P <],
q
then
’2 <lof+1

Obviously, lal < lal +1. Then, forany 1 <k <n (ke N),
we obtain

k ) k-1
ok —(E) Y R <2 ) 0 Y .+(£)
q q q q
Jo i .
<lo - B‘kﬂal + 1) " <lo— En(|oc| £ l)n 1,
q

from which we get
LS o-2 nz(ia]Jrl)n_lH: o-2 l, and |o— 2>

Thus the theorem is proved.

It’s possible to reformulate

Liouville’s theorem so as to
eliminate the condition deg
o=2.

Theorem. If o is an al-
gebraic number of degree !i,;
n, then there exists a :
number ¢, > 0 such that,
foranype Z and g € N for
which o # p/q,

a_E

q

. (1)

c
n
q

Proof. The case deg o> 2 has
already been considered above.
Let deg oo = 1—thatis, o= a/b(a e Z,

b € N). Then, the number ¢’ = 1/b possesses
the desired property. Indeed, if p/q # a/b, then
Ipb — gal #0, so Ipb — qal > 1. Therefore,

g
q

E_B‘:Lb—qd 51 &
b q bg  bg q
Setting ¢, equal to the minimum of the numbers ¢ and
¢/, we obtain the desired inequality.

Liouville’s theorem can also be proved by examining

the difference Pla) - P(p/q) and using Lagrange’s mean
value theorem. Try to find this proof!
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Approximating algebraic numbers with rational numbers

We say that the number o allows approximations of
order m if, for a certain constant v, there exist infinitely
many rational fractions p/q that satisfy the inequality

< qlm (2)
Liouville’s theorem shows that algebraic numbers of
degree n do not allow approximations of an order
greater than n. Indeed, if o allows approximations of or-
der m, then it follows from (1) and (2) that, for an infi-
nite sequence of natural numbers ¢, the inequality

w P
q

0<

c
= < —Ym :
q q
which can be transformed
into
1 c
ni—n ;

holds. However, this is im-
possible for m > n and suffi-
ciently large q.

Example of a transcendental
umbep

Now we have an instrument for
constructing real numbers that are
not algebraic (such numbers are called
transcendental). For this purpose, it’s suf-
ficient to construct a number that admits
approximations of an arbitrarily high order.
We define such a number as an infinite deci-
mal sequence o, = 0.a4,a,a, ..., where

{1, ift=m! (m=12,..),
a1'=

. 3
0, if t #m!. 3]
(Here m! denotes the product 1 -2 -3 ... - (m-1)-
m, which is called the “m factorial.”)
In particular, a, = a, = ag = ay, = a}py = Aypy = - =
landaj=a,=a;=a,=..=0ay;=0dy5=...=dy 9=}y,
=...=0. Then, forany m > 1,
p
o=0.aa,a, .. Ay 1y + 00..0a,4a,,, 6, =—2+B,,

m

where

2 1f you are familiar with the concept of countability,
you can easily prove that the set of algebraic numbers is
countable. If you also know that the set of all real numbers
is uncountable, you can immediately conclude that
transcendental numbers do exist. However, this reasoning
does not provide a single concrete example of a
transcendental number.



Dy =a1ayds .. [m l“q = 100m- 1)‘[ Bm_oo Oam'am!+1""
! ! _m! 2
0<B,=10"" a a, .10 1, . <2. 10" - —=_
()
Thus
O<fu-Bmlc 2 o1, .,
m (CIm)

which means that o allows approximations of any or-
der whatever. Therefore, it cannot be algebraic.
Exercises
4. Prove that o is transcendental if in equation (3)

1fort=m™
@, =
0 for t # m™

5. Find several more transcendental numbers us-
ing Liouville’s theorem.

Dirichlet's theorem

In 1955 the English mathematician Klaus Roth
proved that no irrational algebraic number can be ap-
proximated to any order greater than 2.

At the same time, every irrational number can be ap-
proximated to an order of 2. This fact was proved by
the German mathematician Peter Dirichlet using a
principle that now bears his name. This principle is
simple yet fruitful: if n items are distributed among
n-1 boxes, then at least one box contains 2 or more
items.

Exercise 6. Construct several transcendental
numbers using the Roth theorem.

Dirichlet’s theorem (1824). For any real number
o and any natural number m, there exist p € Z and
q € N such that g < m and

1
q-m’

al

q

<

(4)

Proof. The interval [0, 1) is a union of m intervals

o) 52} -2 ) 22)

Consider the numbers (ko) (k = 0, 1, ...,

m) (where {x}

denotes the fractional part of x. We recall that, by defi-
nition, {x} =

- [x], where [x] is the integer part of x—
that is, the greatest integer that does not ex-
ceed x). Each of these numbers belongs
to one of the intervals (5). We have
m + 1 numbers and m intervals.
Therefore, by Dirichlet’s prin-

ciple, at least one of the inter-
vals (5) contains two or more

—>[{ka}- {ro -
[0~ [By] = Kyor + [y = (g = Ky Jot

([F1er] - [kzam'
If we now set ¢ = k; -~ k, and p = [k 0] - [k,0, we obtain
the desired 1nequahty by dividing the above inequality by
g and taking into account the fact that 0 < ky, <k < m.

Corollary. Any irrational number o can be approxz
mated to an order of 2.

Proof. For any m e N, there exist pe Z and g € N
such that ¢ < m, and inequality (4) holds. Since ¢ < m
and o is irrational, from (4) we obtain

g 6
o (6]

It follows from (4) that the quantity lo.— p/ql

(X_E

q

0<

5000 @ Dbecomes arbitrarily small as m increases.
%; &g ® © Since this quantity cannot be zero, the
) 9§ fraction p/q comes ever closer to o.as m
©q 8 & increases. Thus (6) holds for an infinite
& e ®_ number of rational numbers p/q.
e%e
o® ® Famous transcendental
9
A numbers

Although Liouville’s
and Roth’s theorems al-
low us to construct infi-
nitely many transcenden-
tal numbers, they have
been of no use so far in di-
rectly proving the transcen-
dence of such well-known
numbers as , ¢, In 2, 1g 2, and

so on. These numbers have been
attracting attention for centuries.

The number = is especially famous. The
mathematicians of ancient Greece posed the problem
of squaring the circle: given any circle, construct a
square of equal area with a straightedge and compass.
This problem is reduced to constructing a segment of
length , given a segment of unit length. For 2,000 years
all attempts to solve this notorious problem have failed.
Eventually such a solution was shown to be impossible,
and to establish that fact it’s sufficient to prove the tran-
scendence of = (in fact, it’s sufficient to prove that = is
not an algebraic number of a certain type). *

The irrationality of the numbers e and © was proved
by J. Lambert in 1766. In 1873 C. Hermit proved the
transcendence of e. The method he developed for this
purpose continues to play an important role in number
theory. In 1882 F. Lindemann improved on Hermit’s
method and proved that rn is transcendental. He also
proved that the number e® is transcendental for o e A
(oe# 0). This fact implies that natural logarithms of all
algebraic numbers distinct from 1 are transcendental
(try to prove this).
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In 1748 Euler suggested that if a, b € Q, and log,b
is irrational, then it is also transcendental. Certainly,
it is clear that log,b can be rational—for example,
log,8 = 3/2. This conjecture was not proved in the
18th or 19th centuries.

In 1900, at the International Congress of Mathema-
ticians in Paris, David Hilbert formulated twenty-
three problems that he thought would
stimulate the development of mathemat-

- T
ics. The seventh problem was as fol- -: . :"?*
lows: if o and P are algebraic numbers, - 0"
aisnot 0 or 1, and B is irrational, then -
oP is transcendental. In particular, «;"

Hilbert suggested that someone prove -

that 2¥2 and e” are transcendental (the
second number can be reduced to the form o,

where o, B e A; however, this requires some knowledge
of functions of a complex argument).

Exercise 7. Prove that Hilbert’s proposition implies
Euler’s hypothesis.

The first partial solution of Hilbert’s seventh prob-
lem was obtained in 1929 by a postgraduate student at
Moscow University, A. O. Gelfond. Among other

. 4%
@ g L

things, he proved the transcendence of ™. A
year later the Soviet mathematician R. O.
Kuzmin showed that Gelfond’s method with
certain improvements could be used to
prove the transcendence of the numbers of
when o is an algebraic number different
from O or 1 and B = +/d , where d is a natu-
ral that is not a perfect square. In particu-

lar, he proved the transcendence of 2¥2.

A complete solution of the Hilbert’s seventh prob-
lem was given by A. O. Gelfond in 1934 by means of a
new method, which was called Gelfond’s second
method.

Gelfond’s theorem. Let o, B e A; a.is not 0 or 1, and
B is irrational. Then of is transcendental.

Exercise 8. Prove that if the numbers o, B, and p are
such that the expression log_c/log P is defined and o, B

P P!
€ A, then the number logpoc/long is transcendental or
rational.

Gelfond’s second method makes it possible to prove
many other theorems. An improvement of this method
by A. Baker in 1966 led to significant advances in num-
ber theory. Work in this area is far from finished. (@]
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Cyherteaser winners

The following are the names of
first ten people to submit a correct
answer to this month’s Cyber-
Teaser—Wrong-Way Mercury. We're
sure the problem generated heated
debate among our contestants, but
cooler heads prevailed and the solu-
tion was found.

Dimitrios Vardis (Ithaca, Greece)
Eu Jin Teoh (Johor Bahru, Malaysia)

HAPPENINGS

Bulletin board

Maxim Bachmutsky (Kfar-Saba, Israel)
Oleg Ivrii (Toronto, Ontario)
Mikhail Agladze (Ithaca, New York)
Theo Koupelis (Wausau, Wisconsin)
Chris Ridgers (Cambridge, England)
Howard Brown (Idaho Falls, Idaho)
Clarissa Lee (Selangor, Malaysia)
Igor Astapov (Kingston, Ontario)
Our congratulations to the win-
ners, who will receive a copy of this
issue of Quantum and the coveted

Quantum button. Everyone who
submitted a correct answer (up to
the time the answer is posted on the
web) is entered into a drawing for a
copy of Quantum Quandaries, a
collection of 100 Quantum brain-
teasers. Our thanks to everyone who
submitted an answer—right or
wrong. You will find our next
CyberTeaser at:

http://www.nsta.org/quantum. [@]
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HEN YOU STUDY GEOM-

etry in school, you often have

to prove theorems that are

pretty obvious—for example,
the fact that when two parallel lines
are intersected by a third line, the
alternate interior angles are equal.
However, the fact that three alti-
tudes in a triangle meet at a point is
not so obvious. In fact, mathemati-
cians in ancient Greece didn’t know
this fact, even though they were ex-
cellent geometers and knew how to
prove that three bisectors, as well as
three medians, of a triangle meet at
a point.

When a mathematical fact is un-
expected, it gives that fact a certain
charm. This adds to the beauty of
mathematics, along with unexpec-
ted and elegantly brief proofs.

In this article, we’ll acquaint you
with some surprising geometrical
facts.

Figure 1

Let’s construct two circles and
draw tangents from the center of
each circle to the other circle (figure
1). Now connect the points where
these tangents intersect the circles.
The quadrilateral obtained turns out
to be a rectangle! We don’t know
who first discovered this unexpected
fact. Try to prove it—it’s not very
difficult.
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Figure 2

We owe the next geometric sur-
prise to Archimedes. While studying
lunes formed by circles, he discov-
ered that two circles inscribed in
“curvilinear triangles” (figure 2) are
equal. The figure obtained from the
largest semicircle by removing the
other two semicircles reminds me of
a medieval battle-ax. Archimedes,
who lived much earlier, thought this
figure looked like the cobbler’s knife
called arbelos; so this theorem is
known in mathematics as the arbe-
los theorem.

It’s interesting that many surpris-
ing geometrical facts can be seen on
the walls of Japanese temples. Japa-
nese mathematicians discovered
them several centuries ago. In 1800
an inscription was made on the wall
of a Japanese temple which made
the following observation.

Figure 3

KALEIDOS!

ieometric st

Let’s divide an inscribed polygon
into triangles by drawing all the di-
agonals through one of its vertices
(figure 3). Then inscribe a circle in
each of the triangles obtained. It
turns out that the sum of the radii of
these circles is a constant, and is in-
dependent of the choice of vertex of
the polygon.

Later it was proved that the same
sum of the radii is obtained for any
decomposition of the inscribed poly-
gon into triangles (figure 4).

Figure 4

You have certainly dealt with
quadrilaterals that are inscribed in a
circle or circumscribed about a
circle. However, many interesting
properties of these quadrilaterals are
less well known. One such property
was discovered by Claudius Pto-
lemy, who lived in the second cen-
tury. He is known as an outstanding
astronomer, but he also contributed
to the development of mathematics.
Ptolemy discovered that the sum of
the products of the lengths of the
opposite sides of an inscribed quad-
rilateral (figure 5) is equal to the
product of the lengths of its diago-
nals. Ptolemy used particular cases
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Figure 5

of this theorem, now known as
Ptolemy’s theorem, in his astro-
nomical calculations.

Another interesting theorem in-
volving a circumscribed quadrilat-
eral belongs to Isaac Newton. He
noticed that the center of the circle
inscribed in a quadrilateral lies on
the line connecting the midpoints of
its diagonals (figure 6).

Figure 6

Continuing the list of prominent
people who discovered unexpected
properties of geometrical figures,

we’ll mention Napoleon Bonaparte,
who was a serious student of geom-
etry and even read a paper at the
Paris Academy of Science. The theo-
rem ascribed to Napoleon is as fol-
lows. Let’s construct equilateral tri-
angles on the sides of an arbitrary
triangle ABC (figure 7) and mark
their centers O,, O,, and O;. It turns
out that triangle O, 0,0, is equilat-
eral.

Figure 7

The proof of this fact is simple
and elegant. Let’s connect the points
O,, O,, and O, with the nearest ver-
tices of triangle ABC. Then rotate
two of the three triangles obtained
about points O, and O, as shown in
figure 8. The triangle composed of
these three triangles has the same

Figure 8

Figure 9

sides as triangle O,0,0,, and it’s
not hard to determine that its angles
are equal to 60°. Thus the upper tri-
angle in figure 9 is equilateral; there-
fore, triangle O, 0,0, is equilateral
as well.

I'd like to round out this collec-
tion of surprising mathematical
facts with an elegant miniature by
the Moscow mathematician V. V.
Proizvolov. Consider a strip formed
by two parallel lines. Let’s superim-

45°

Figure 10

pose on this strip a square whose
sides are equal to the width of the
strip. Then connect “crosswise”
the points where the sides of the
square intersect the boundaries of
the strip (figure 10). The angle
formed by these lines is 45°. Sur-
prising, isn’t it? (0]

—A. Savin
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PHYSICS
CONTEST

Batteries amd bulbs

by Larry D. Kirkpatrick and Arthur Eisenkraft

HE RULES OF BASEBALL ARE

the same for everyone—from

the smallest Little Leaguer to

the biggest Major Leaguer.
However, we expect the expertise of
the player to increase with age. The
laws of physics are the same for ev-
eryone. We expect that the problems
adults can tackle are more difficult
than the ones we give children.
That’s usually true—but not always.
Given a flashlight battery, a flash-
light bulb, and a single piece of wire,
hold them together to make the bulb
light. We have seen adults take more
than an hour to light the bulb! And
yet, this is the first activity in a les-
son on circuit electricity for fifth
graders. Experience has shown us
that fifth graders are much more
successful at this task than adults.
Experience has also shown us that
studying Ohm’s law does not guar-
antee that one can successfully ana-
lyze circuits containing batteries
and bulbs. Elementary education
majors who have studied Batteries
and Bulbs in physical science
courses at college have often re-
ported that their friends and spouses
in electrical engineering did not
have the conceptual understanding
to help them with their homework.
Batteries and Bulbs was devel-
oped and written by the Elementary
Science Study project in the mid
60s. Gerry Wheeler, currently the
Executive Director of the National
Science Teachers Association, wrote
the final version of this popular unit
in 1968. It stresses the development
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The habit of analysis
has a tendency to wear
away the feelings.

—John Stuart Mill

of a logical framework for under-
standing electric circuits and was an
early example of the kind of inquiry
supported by the National Science
Foundation.

After unsuccessfully trying to
light the bulb using arrangements
such as that shown in figure 1, most
students discover that they must

Figure 1

use two parts of each of the objects:
the two ends of the wire, the two
ends of the battery, and the two
metal parts of the bulb. The two
parts of the bulb are the metal tip
and the metal around the base.
Whenever all of these six parts are
connected in pairs—no matter how
you do it—the bulb lights. One such
way is shown in figure 2. Can you
find the other three ways of doing
this?

Figure 2

All four ways have one thing in
common—a continuous conducting
path allows charges to flow from one
end of the battery through the light
bulb to the other end of the battery.
This path is known as a complete
circuit. By examining a broken
flashlight bulb you can see that
there is a continuous conducting
path from one metal part through
the light bulb to the second metal
part as shown in figure 3. (The com-

Figure 3

Art by Tomas Bunk
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plete circuit is preserved when bulbs
are screwed into sockets as shown in
the rest of the figures.)

Combining the concept of a com-
plete circuit with the law of conser-
vation of charge leads to the conclu-
sion that electricity flows from one
end of the battery and back into the
other. All of the charge that leaves
one end returns to the other end.
Charge does not get lost along the
way.

Figure 4

If we light one bulb with one bat-
tery as shown in figure 4, we find
that the battery runs down in some-
thing less than a day. (The actual
time depends on the type of battery
and the type of bulb.) However, if we
connect the wire directly between
the two ends of the battery, the bat-
tery runs down in less than an hour
and the wire usually gets too hot to
touch. We infer that the current is
larger through the wire than through
the bulb. We say that the bulb pro-
vides more resistance to the flow of
charge than the wire. Let’s denote
the brightness of the single bulb con-
nected to a single battery as the stan-
dard brightness.

Figure 5
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Let’s now look at what happens
if we use a single battery to light two
identical bulbs. We start by connect-
ing the bulbs as shown in figure 5, an
arrangement known as series. Be-
cause there is only a single path
through the two bulbs, whatever
charge flows through one of the
bulbs must flow through the other

" bulb. If we use identical bulbs, we

notice that the two bulbs have the
same brightness. We also notice that
these bulbs are dimmer than the
standard brightness. If we leave the
bulbs lit, we discover that the bat-
tery lasts longer than the battery in
the standard circuit. From this we
infer that there is less current in the
circuit and, therefore, the resistance
of the two bulbs in series is greater
than the resistance of a single bulb.
(We assume that you are already fa-
miliar with the concept of resis-
tance. If not, we would spend time
developing this concept more care-
fully.) From these observations we
infer that the brightness of a bulb is
arough measure of the current pass-
ing through the bulb. We will as-
sume this from now on.

L

Figure 6

We can also connect two identi-
cal bulbs to the battery so that each
bulb is on its own path from one end
of the battery to the other, an ar-
rangement known as parallel. (Note
that the paths may share some of the
same wires, as seen in figure 6.) In
this case, each bulb has the standard
brightness. The current through one

bulb does not pass through the other
bulb. You can check this by discon-
necting either bulb and noticing that
the other bulb is not affected. This
means that the current through the
battery must be twice that in the
standard circuit and the total resis-
tance of the combination must be
one-half the resistance of a single
bulb. You can verify this experimen-
tally by letting the battery run
down. It does so in approximately
one-half the time. In general, adding
a path in parallel always reduces the
resistance of the combined paths.

Figure 7

Let’s use these ideas to analyze
the circuit in figure 7 containing
three identical bulbs. Which of the
three bulbs is brighter and why?
How do the brightnesses of the other
two bulbs compare to each other?
Notice that the entire current from
the battery must pass through bulb
A. Therefore, it must be the bright-
est. At junction J, the current must
split. Because each path following
the junction contains a single bulb,
the two paths are equivalent and the
current must split equally. Conser-
vation of charge tells us that the
currents through bulbs B and C are
each one half of the current through
bulb A. Therefore, bulbs B and C are
equally bright but dimmer than bulb
A.

We can check our understanding
of the model by answering the fol-
lowing questions about this circuit.
(1) What happens to the brightness

L e



of the bulbs when bulb A is removed
from its socket? (2] What happens to
the brightness of the bulbs when
bulb C is removed from its socket?
(3) What happens to the brightness
of the bulbs when a wire is con-
nected across the two terminals of
socket A? (4) What happens to the
brightness of the bulbs when a wire
is connected across the two termi-
nals of socket C? Be sure to write
down your answers to these ques-
tions before you read on.

Now that you've committed your
answers to writing, we are ready to
look at the answers to these ques-
tions.

(1) Bulbs B and C will go out as
the single path to the battery has
been broken and there is no current.

(2) After the removal of bulb C,
bulbs A and B are wired in series and
are equally bright. Removing bulb C
removes a parallel path to the right
of the junction and therefore in-
creases the resistance of this part of
the circuit. This, in turn, reduces the
current from the battery. Therefore,
bulb A becomes dimmer. Two com-
peting effects determine the bright-
ness of bulb B. There is less current
from the battery but it all passes
through bulb B. Qualitative argu-
ments do not tell us the answer, but
observation tells us that bulb B gets
brighter.

(3) Connecting a wire across the
terminals of socket A provides a
very low-resistance path around
bulb A, so bulb A goes out. This also
reduces the resistance in the circuit,
so there is more current from the
battery. Therefore, bulbs B and C
brighten.

(4) Connecting a wire across the
terminals of socket C provides a
very low-resistance path around
both bulb B and around C. There-
fore, they both go out. Because this
also reduces the resistance of the
circuit, bulb A brightens.

A. For the first part of our contest
problem, examine the circuits
shown in figures 8 and 9. In each
case, which bulbs are the brightest
and which bulbs are the dimmest?
Repeat the questions asked above
for each of these circuits.

Figure 8

Figure 9

Figure 10

B. The second part of our contest
problem is a modification of one of
the questions on the exam given to
select the members of the 2000 US
Physics Team. Which of the identi-
cal bulbs in the circuit in figure 10
are the brightest? Which are the
dimmest? What happens to the
brightness of the bulbs for each of
the following? (1) Bulb A is re-
moved from its socket. (2) Bulb E is
removed from its socket. (3] Bulbs
A and E are both removed from
their sockets. (4) Bulbs A and D are
both removed from their sockets.
(5) A wire is connected across the
terminals of socket A. (6) A wire is
connected across the terminals of
bulb E. (7) Wires are connected
across the terminals of sockets C
and E. (8) Wires are connected
across the terminals of sockets A
and D.

Please send your solutions to
Quantum, 1840 Wilson Boulevard,
Arlington VA 22201-3000, within a
month of receipt of this issue. The
best solutions will be noted in this
space.

Tunnel froutle

The January/February 2000 con-
test problem concerned gravity and
the construction of gravity tunnels.
Art Hovey of Amity Regional HS in
Connecticut provided a solution to
all parts, and a number of his stu-
dents (Brian Chin, Alex Rikun, Josh
Leven, and Victoria Buffa) were able
to present solutions to parts A and
B.

Part A asked for the force a hol-
lowed-out lead sphere exerts on a
small sphere of mass m that lies at
a distance d from the center of the
lead sphere on the straight line con-
necting the centers of the spheres
and the hollow. "

There are three equivalent ways
of looking at the solution to this
problem. The first is to fill in the
missing mass of the hollow in the
sphere and add an equivalent mass
on the opposite side of the small
sphere. The difference of the two
forces is the desired force. A second
approach is to calculate the force of
the sphere as if it were solid and sub-
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tract the force due to the mass imag-
ined to fill the spherical hollow.
The third approach is to calculate
the force of the sphere as if it were
solid and add a second force due to
a “negative mass” filling the hollow.
(The positive mass and the negative
mass add together to produce the

hollow.) Let’s use the second ap-

proach.
_GMm , _ GM'm
ATE P TR
where M’ = 1/8M because the

spherical hollow has 1/2 the radius
of the sphere. Therefore the force on
the small sphere is:

_GMm{ 1
A-h="% (1 8(1-R/2d)2]'

Part B asked for an analysis of a
tunnel drilled along a chord of the
Earth connecting points A and B as
shown in figure 11. At the position
shown, there is a component of the
gravitational force along the tunnel.

A X B
T\g
Figure 11
A w B
g
d
X
R o8
Figure 12
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This force is proportional to the

mass that lies inside the sphere of
radius r.

4 3
’ Gp—mnr’m
P GMstinG -—3 _sin6
r r

2 3

4 3

Gp—mnr’m

= 3 5=(471:Gpmjx=kx.
r r

When the displacement is to the
right, the force is to the left, so the
correct form of the equation is

F = -kx.

Once again, we see that the path
through the tunnel is simple har-
monic motion with the same pe-
riod (84 minutes) for a tunnel along
an Farth diameter and also equiva-
lent to the period of an orbiting
satellite.

The tunnel would not be particu-
larly feasible due to the difficulties
of drilling through the Earth and
the presence of friction, heat, and
air resistance. If the Earth’s molten
core doesn’t present enough diffi-
culties, we will also have to worry
about the walls melting and col-
lapsing.

Part C asked if the straight tun-
nel provides for the fastest journey
from A to B? We found that the pe-
riod for any chord is 84 minutes, or
a one- way travel time of 42 min-
utes. However, a chord is not the
fastest path from A to B. It is best
to travel a curved path that passes
nearer the center of the Earth. Find-
ing that curved path requires the
use of the calculus of variations.
Let’s find a path with two straight

60 80

segments that takes less time.

Consider the path from A along d
and then to B as shown in figure 12.
Since every cord requires 42 min-
utes for the trip, path w will require
1/2 that time, or 21 minutes. Path d
+ x will also require 21 minutes,
showing that path d requires less
than 21 minutes.

We can find the minimum path
by finding the path d + x that maxi-
mizes x. First, we do some trigo-
nometry.

w d+x
sing=—, sin{¢+06)= ;
0="7, sinfo-+6)="

w
cosf=—.
d

We now write down an expres-
sion for x.

x = Rsin(¢ +0)-d,

x = Rsin(¢ +6) -

coso
Rsin¢

= Rsin(d +06)— .
cosB

At this point we could take the
derivative of this equation and set it
equal to zero, but a simple solution
does not emerge. Alternatively, we
can solve it numerically using a
spreadsheet and finding.6 for any
given 0. As a specific example, let’s
choose ¢ = 20°.

From the graph in figure 13, we
obtain a maximum value for 8 of 45°
and a corresponding distance x =
0.43R. The resulting time savings
can be determined by analyzing the
equations for the simple harmonic
oscillation... but that’s another prob-

lem. @




ROM TIME TO TIME YOU

may encounter problems where

you need to prove that three or

more lines meet in a point. For
example:

Problem. Three isosceles tri-
angles are constructed on the sides
of triangle ABC as shown in figure
1. Prove that the perpendiculars

A

Al
Figure 1

dropped from the points A, B, and C
onto the lines B,C,, C;A,, and A B,
meet in a point.

Here’s a method that is useful in
solving such problems: prove that
two of the given lines intersect in a
point that satisfies a certain condi-
tion, and then prove that all points
of the third line and only these
points satisfy this condition. The
following well-known theorems can
be proved by this method: three bi-
sectors of the internal angles of any
triangle meet in a point, and three
perpendicular bisectors of any tri-
angle meet in a point.

AT THE
BLACKBOARD |

fiaring a point

by |. Sharygin

Similarly, if we have to establish
that three or more points belong to a
straight line, we can try to prove that
all the given points satisfy a condi-
tion and then prove that all the points
of a line and only such points satisfy
this condition (this line of reasoning
can be used for circles as well).

Now let’s see how we can find the
locus of points that helps us solve
this type of problem.

Formulating the propositions

Proposition 1. Let A, and A, be
two fixed (different) points in a
plane, and let k, k,, and k, be real

numbers. Then the locus of points
M such that

k(A MP+ k(A MP =k (%)
is as follows: .

(a) a circle, a single point, or the
empty set if ky + k, #0;

(b) a perpendicular to the seg-
ment A\A, if k| + ky =0 (and k, #0).

A generalization of proposition 1
for several points holds.

Proposition 2. Let A, A s A, b
fixed points in a plane, and let k,,
ky, ..., k, (all k.#0) be real numbers.
Then the locus of points M such that
the sum
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K A MP + kol A,MP + ... + K [A MP

is a constant is as follows:

(a) a circle, a single point, or the
empty set if ky + k, + ... + k, #0;

(b) a line or the entire plane if k,
+k, +..+k, =0.

Using assertion 1b, we can prove
the following useful condition.

Proposition 3. Let perpendiculars
be dropped from points A,, B, and
C, onto the sides BC, AC, and AB,
respectively, of triangle ABC. In or-
der for these perpendiculars to meet
in a point, it is necessary and suffi-
cient that the following equation
holds:

(A,BP - (BC,]? + (C,A {AB,?
+(B,CP-(CA,2=0. (1)

This proposition implies another.

Proposition 4. Let perpendiculars
dropped from the vertices A, B,
and C, of triangle A,B,C, onto sides
BC, AC, and AB of triangle ABC
meet in a point. Then the perpen-
diculars dropped from points A, B,
and C onto lines B,C,, A,C,, and
A,B, also meet in a point.

Try to prove all these proposi-
tions. In the next section we'll see
how we can use proposition 3 or
proposition 4 to solve the problem
formulated at the beginning of the
article; then we’ll prove the propo-
sitions themselves.

Solution of the problem

According to proposition 3, it’s
sufficient to verify that

(AB,) - (B,C)* + (CA, P
—(A,B? + (BC,* - (C,AP = 0.

(See figure 1. Note that the equation
in the statement of proposition 3 has
here been multiplied by -1.) Indeed,
this equality holds since

AB, = B,C, CA, - A\B, BC, = C,A.

We can also use proposition 4. In
this case it’s sufficient to note that
the perpendiculars dropped from
points A,, B;, and C, onto the sides
of triangle ABC pass through the
midpoints of the sides of ABC and,
therefore, meet in a point that is the
center of the circle circumscribed
about triangle ABC.
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Now let’s prove the propositions
we've formulated.

Proof of the propositions

Proposition 1a. Let k, >0 and k, > 0.
Consider the point D that divides
the segment A, A, in the ratio k, : k;.
Then k,(A,D) = k,(A,D). Let
ZMDA, = ¢ (see figure 2). Choose
any point M in the plane, and draw
MA,, MD, MA,. We can then apply
the law of cosines to triangles MDA,
and MDA,:

(A M) =(A,D)?*+ (MD)*

- 2MD - DA, cos ¢,
[A,MP? = (A,D)* + (MDY

+2MD - DA, cos ©.

Multiply the first equation by k;,
the second by k,, and add them to
obtain
K [AMP + ky|A,MP = k (A, D

+ k,(A,D)? + (k; + k,)(MDJ*. (2]

Therefore, if M equation satisfies (*),

then

2

2 _ k—kl(A]D)z _kz(AzD)
k, +k,

(MD)

The right-hand side is indepen-
dent of M, so it is constant. Thus,
(MD)? is constant. Therefore, if C
> 0, then point M lies on the circle
of the radius +/C centered at D. If
C =0, then M coincides with D;
and if C < 0, there are no points M
satisfying the conditions of the
problem.

The converse assertion—that is,
every point M of the set obtained
satisfies the equation k(A M)* +
ky(A,M)* = k—can be easily verified.
It’s sufficient to substitute the ex-
pression for (MD)? in equation (2).

We've considered the case k; >0,
k,>0.The case k, <0, k, <0 can be
reduced to the previous one by re-
versing the signs of k, k), and k. In
the case k; >0, k, <0 {or k, <0, k, >
0), our reasoning can follow that of
the first case. However, in this case,
we must take D outside segment
A A, (see figure 3—try to perform all
the computations). Equation (2) re-
mains true for all cases—we’ll make
use of this fact later.

Proposition 1b. The relation

k(A MP - k(AMP* = k
is equivalent to the relation

k

(A, M) - (A,M)? - X

Choose any point M on the plane,
and let D be the projection of M onto
the line A;A,. Then, we have by
Pythagorean theorem (see figures 4
and 5)

M M
[] [ ]
A, D A, D A, A,
Figure 4 Figure 5




(A M) = (A, D + (MDJ?,
(A M) (A, DP + (MDJ?.
Therefore,
(A, MP~(A,M?~(A DR (A,DP = kﬁ .
1

Thus, the problem is reduced to
finding the points D on the line
A, A, that satisfy this equation. It is
clear that such a point is unique, and
it can be easily found. Thus, the
point M must lie on the perpendicu-
lar to A|A, erected at point D. The
details of this discussion are left for
the reader.

The converse proposition is also
true: for any point on the perpen-
dicular to A, A,, the difference of the
squares of the distances to A; and
A, is constant. The proof is left to
the reader.

Thus, proposition 1 is proved.

Proposition 2. We conduct the
proof by induction. For n = 2, this
proposition has already been proved.
(For n = 2, the locus of points coin-
cides with the entire plane if k, + k,
=0and A, coincides with A,. Then,
for all pomts of the plane, (A M)? -
(A,M)?=0.)

Now we assume that proposition
2 holds for a certain n and prove that
it is true for (n + 1). Notice that if n
22andallk, k,, .., k,, k_, aredis-
tinct from zero, then there exist two
of them such that their sum is not
zero. Let them be k; and k,. Con-
sider the point D constructed in the
proof of proposition la and apply
formula (2). Then the equation

k(A MP + k,(A,M) + k(AM)P +
+k, A M=

n+1

can be written as

(k; + k,(DMJ* + ky(A;MP + ...
+kn+1( n+1M)2=Z<—]<1(AID)2—Z{z(AQD)Z.

On the right-hand side of this
equation, we have a constant, the
number of points on the left-hand
side is reduced by one, and the sum
of the coefficients remains the
same. By the induction hypothesis,
proposition 2 holds for the last
equation. Therefore, it holds for (n
+ 1) points. Thus, proposition 2 is
proved.

Proposition 3. Necessity. Let P be
the point of intersection of the per-
pendiculars dropped from points A,
B,, and C, onto BC, AC, and AB, re-
spectlvely The followmg relatlons
follow from proposition 1b:

(A,B)* - (CA,? = (PB? - (CPP,
(B,C)* - (AB, )2 (PCJ* - (APP,
(C,AP - (BC 12 = (PAJ? - (BP).

Adding up these equations, we
see that condition (1) is satisfied.

Sufficiency. Let condition (1) be
satisfied and let P be the point of
intersection of the perpendiculars
dropped from points A, and B, onto
BC and AC, respectively. It follows
from proposition 1b that

(ABP - (CA,)* + (B,CP - (AB,)?
- (PB)? — (AP).

Condition (1) implies that the
left-hand side of this equation equals
(B,C)* - (C,A)%. That is, (BC,)* -
(C,A)? = (PB)> - (AP?, which means
that the point P lies on the perpen-
dicular dropped from C, onto AB,
which was to be proved.

Proposition 4. The validity of this
proposition follows from the fact
that condition (1) is symmetric with
respect to Aand A}, Band B}, and C
and C,.

Exercises.

1. Use Proposition 3 to prove that
all three altitudes in the triangle
meet in a point.

2. Three pairwise intersecting
circles are given. Prove that all com-
mon chords of any two of these
circles meet in a point.

3. Prove that if the perpendiculars
dropped from the points A}, 4,, ...,
A, onto the lines B,B,, B,B,, ..., BB,
meet in a point, then

+(B,4,)"
~(A,B,)* =0.

(BA)" -(4B,)

~(A,B5)" +..+(B,A,)

4. An escribed circle of a triangle
is a circle that is tangent to one side
of the triangle and to the extensions
of the other two sides (so that its
center lies outside the triangle).
Prove that the three perpendiculars
to the sides of a triangle at the
points of tangency of one of its

escribed circles all meet in a point.

5. Let the distances from a point
M to the vertices A, B, and C of a
triangle ABC be q, b, and ¢, respec-
tively. Prove that for any d # 0, the
distances to the vertices A4, B, and C
from any point of the plane (taken in
the same order| can never be

Ja* +d, \b* +d,

6. Let an equilateral triangle ABC
and an arbitrary point D be given:
Let A, B}, and C, be the centers of
the circles inscribed in triangles
BCD, ACD, and ABD, respectively.
Prove that the perpendiculars
dropped from A, B, and C onto B,C,,
A,C,, and A B,, respectively, meet
in a point.

7.Let A, A, A,, and A, be arbi-
trary points in a plane. Prove that
there exist four numbers x |, x,, x,,
and x, (not all of them equal to zero)
such that x, (A M)* + x,(A,M)?
X,(A;M)? + X4(A M) is constant for
any point M of this plane.

8. Let a triangle ABC be given.
Consider all pairs of points M, and
M, such that AM, : BM, CM =
AM : BM, : CM,. Prove that all hnes
M, M meet in a point.

9. A circle is tangent to side AB of
triangle ABC and to the extensions
of sides AC and CB at points M and
N, respectively. Another circle is
tangent to side AC and to the exten-
sions of sides AB and BC at points P
and K, respectively. Prove that the
intersection point of lines MN and
PK lies on the altitude of triangle
ABC drawn from vertex A.

10. Two segments, AB and CD,
are given. Find the locus of points M
such that the sum S
constant.

11. Use the previous problem to
prove that the midpoints of the di-
agonals of any circumscribed quad-
rilateral and the center of the circle
inscribed in it lie on a straight line
(Newton'’s problem) (see “Kaleido-
scope”’].

12. Prove that the locus of
points—such that the ratio of the
distances from these points to two
tixed points of the plane is a con-
stant different from 1—is a circle
(called a circle of Apollonius). (@)

Vet +d.

aaBm + Sacpm 18
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The little house on the tundra

HE GREAT 16TH-CENTURY
Italian architect Andrea Palla-
dio (1518-1580) thought that
any building worthy of public
approval must satisfy three require-
ments. These are usefulness (and
comfort), beauty, and durability.
Leaving aside the principles of use-
fulness and beauty, let’s talk about
durability—in other words, the reli-
ability and safety of buildings.

Just about everybody knows that
the construction of any building be-
gins with laying the foundation. A
good, solid foundation is a token of
further success. But just what is a
“strong foundation”?

Builders face many challenging
tasks, and one of them is laying
the foundation. This is especially
difficult in permafrost areas.
Many buildings in these areas are
subject to cracking due to settling
of the foundation in soil that has
melted.

Can we prevent thawing of the
ground under buildings erected in
permafrost, or at least minimize it?

Let’s try to solve this problem
using the simplest physical laws and
rules. We begin by analyzing the
conditions of the problem. Why does
the ground under a building start to
thaw? Clearly because the founda-
tion transfers heat to it. So we need
to focus on the foundation.

The first thing to do is decrease
the area of contact between the
ground and the foundation. This is
why some buildings in permafrost
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by A. Tokarev

areas are built on piles instead of a
conventional solid foundation. But
this isn’t enough.

Are there any other ways to re-
duce the flow of heat to the ground?
In this particular case, heat is trans-
ferred by thermal conduction only;
therefore, we should make the piles
out of material with the lowest pos-
sible thermal conductivity. What
material could that be?

The thermal conductivity of vari-
ous substances is described by a spe-

. T— relative th‘er;na]
conductivity
gasoline 0.2
cotton 0.07
water 1
air 0.04
felt 0.1
wood 0.2-0.6
iron 122
kerosene 0.2
brick 1.1
ice 3.7
cork 0.07
alcohol 0.3
Table 1

cial physical parameter, the coeffi-
cient of thermal conductivity. Natu-
rally this coefficient is different for
different substances. Thermal con-
ductivity is highest for metals (which
correspondingly have the highest co-
efficients of thermal conductivity),
while it’s lower in liquids and much
lower in gases. For the purposes of
our analysis it isn’t important how
the coefficient of thermal conductiv-
ity is determined and in what physi-
cal units it’s measured. We need only
compare the capacity of various sub-
stances to transfer heat. So we take a
reference book and construct a grid
(table 1) that shows the coefficients
of thermal conductivity relative to
that of water.

Take a good look at table 1.
Among solid substances, cotton
and cork have the lowest values of
thermal conductivity, while wood
and brick are next. Now, a pile
must be durable and strong, so the
substances with the lowest values
won’t make good piles. But what if
we take some steel pipe and stuff
it with cotton, felt, or some other
porous substance that contains a
lot of air? I think we’ve found a
solution!

Piles should be made of a durable
solid material and filled with a po-
rous substance.

Analyzing our result, we arrive at
this conclusion: due to its low ther-
mal conductivity, a pile of this de-
sign will actually decrease the flow
of heat from the surrounding air to

Art by Pavel Chernusky
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the ground (that is, downward) dur-
ing the warm season. However, a
properly constructed pile can do
even more. It would be nice if in
winter, when the temperatures are
well below freezing, the piles could
cool the ground (that is, they could
transmit heat upward). This would

add strength to the soil and decrease -

its thawing during the following
summer.

Let’s try to formulate more pre-
cisely the details of the physical pro-
cesses in a pile and the surrounding
soil in summer and winter. During
the warm season, the upper part of
a pile is heated due to contact with
the warm air. Gradually the lower
part of the pile, buried in the ground,
is also warmed. The less the lower
part of the pile (and the soil sur-
rounding it) is heated, the better. In
winter the air cools the upper part of
the pile. Gradually the lower part of
the pile and the adjacent soil are also
cooled. The colder the ground gets,
the better.

Therefore, a pile should have the
following properties:

(a) if the temperature of the upper
part of the pile is higher than the
temperature of the lower part, the
pile should conduct heat very
weakly;

(b if the upper part of the pile is
colder than the lower part, the pile
should conduct heat efficiently.

In other words, downward heat
transfer should be small, but the
upward heat transfer should be
large. The pile should be a “heat
semiconductor.”

It’s known that heat exchange in
solids is due entirely to thermal con-
ductivity, which doesn’t depend on
direction. So an ideal pile cannot be
completely solid. Our previous
model of a metal pipe filled with a
porous material is of no use either,
because its porous interior will con-
duct heat weakly not only in sum-
mer but also in winter, when it’s
necessary to cool the ground.

What if we fill a strong and du-
rable pipe (or some other empty
metal shell) with a fluid—that is, a
liquid or a gas? In this case, the heat
is transferred not only by molecular
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thermal conductivity but also by
convection. How would such a pile
work?

In winter, the upper layer of fluid
will be cooled. The cold fluid has
higher density than the warm fluid,
so it will sink. Warmer, less dense
fluid layers will rise and release heat
to the surrounding air. Then this
portion of the fluid will be replaced
by cold fluid from the bottom, and
so on. As a result, the lower part of
the pile and the adjacent soil will be
cooled to the temperature of the sur-
rounding air. Notice that we don’t
need to construct any special refrig-
erators and waste energy to cool the
foundation—everything is done “at
the expense” of the naturally occur-
ring cold winter air.

In summer, the upper layers of
the fluid in the pile will be heated by
the air. But being less dense, they’ll
stay in the upper part of the pile. As
a result, no convection occurs in
summer; the heat will be transferred
downward only because of thermal
(molecular) conductivity, which is
very small in fluids.

Since this type of pile conducts
heat poorly in summer, the tempera-
ture of the surrounding soil will in-
crease only insignificantly.

Thus we've arrived at another
important conclusion: the pile, con-
structed of a durable material,
should be filled with a fluid (gas or
liguid).

One question remains: With
what exactly should we fill the pile?
In winter, the properties of the fluid
aren’t crucial, since there’s plenty of
time to cool the ground to the am-
bient temperature. In summer, how-
ever, it’s very important that the
ground be heated as little as pos-
sible. Therefore, we should use a
fluid whose temperature rises the
least when heated. From this well-
known formula—

Q=cmt, - t;)

—we find that the change in tem-
perature (t, — t,) depends not only on
the amount of heat transferred but
also on the heat capacity c of the
fluid and its mass m.

Since the mass of a liquid is al-

substance hglf]t/ ﬁfgpa%ty
gasoline 14
water 4.9

air 1
glycerin 9.4
kerosene 21
motor o0il 1.9
Table 2

ways greater than the mass of a gas
in the same volume, we prefer to use
a liquid as our filler for the pile. Now
let’s compare the heat capacities of
various liquids (we’ll use a reference
book again). We can see from table
2 that not only density but also heat
capacity is higher in liquids com-
pared to gases. Thus the piles should
be filled with a liquid.

What liquid is the best for this
purpose? Although water is cheap
and readily available, it won’t do: in
winter it freezes. Both glycerin and
motor oil thicken at low tempera-
tures, which makes convection inef-
ficient. This leaves gasoline and
kerosene from our list. The freezing
point of both these liquids is less
than -50°C, so either could with-
stand the low Alaskan and Siberian
temperatures. Of the two we should
probably choose kerosene, because
it’s cheaper and has a higher heat ca-
pacity than gasoline.

At long last we can formulate the
“final answer” to the problem:

To decrease thawing of the
ground beneath buildings in perma-
frost areas, they must be erected on
piles; the piles should be made of a
hollow durable material and filled
with kerosene.

We should note that this method
of strengthening frozen foundations
(decreasing thawing of the ground
under buildings) isn’t just idle specu-
lation. It was calculated theoreti-
cally and tested by the construction
industry in permafrost areas. As ex-
pected, construction costs were re-
duced significantly. (e
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AT THE
BLACKBOARD II]

The enigmatic magnetic force

T IS KNOWN FROM
experience that, in gen-
eral, the force acting on

a point electric charge g
placed in electric and mag-
netic fields depends on the
position of the charge and
on its velocity. Usually,
this force is resolved into
two components: the elec-
tric force F, = gE, which is
independent of the motion
of the charge, and the mag-
netic force F_, which de-
pends on the velocity of
the charge. In this article
we discuss the nature of
this magnetic force and its
interplay with the electric
force.

At every point in space
the magnetic force is per-
pendicular to the velocity
of the electric charge. The
magnetic force is also per-
pendicular to a special direction,
which is defined at every point as
well. The magnitude of the mag-
netic force is proportional to that
component of the velocity of the
charge which is normal to the “spe-
cial direction” mentioned above.

F

WE

N\

Figure 1

by E. Romishevsky

This property of the magnetic force
can be described in another way us-
ing the concept of the magnetic
field. The direction of the magnetic
tield coincides with the special di-
rection in space.

The magnitude and direction of
the magnetic force are determined
by the formula

E_ =qvBsinoag,

where v and B are the magnitudes of
the velocity and the magnetic field,
while the unit vector £ (according to
the right-hand rule) serves to indi-
cate the direction of the magnetic
force. This direction coincides with

the advance of a right-
hand screw whose head
lies in the plane of the
vectors v and B, and
which is turned through
the smaller angle from
the vector v to the vector
B (figure 1). The magnetic
force F_ is normal to both
of the vectors v and B.

The total electromag-
netic force F=F,_ + F_ act-
ing on a particle with a
charge ¢ is called the
“Lorentz force.” By mea-
suring the Lorentz force
acting on a test charge of
known sign (positive or
negative), one can deter-
mine the magnitudes and
directions of the vectors E
and B.

Note that the mag-
netic force does not affect
an clectric charge at rest.
Another important feature of the
magnetic force is its direction: it is
always normal to the velocity, so
that it performs no work while act-
ing on a charge. Therefore, in a con-
stant magnetic field the kinetic en-
ergy of a charged particle does not
change, whatever motion this par-
ticle undergoes.

As an example, consider the mo-
tion of two particles with opposite
charges +gq and —q that have different
masses M, = 2m and M, = m. Ini-
tially, the velocities of these par-
ticles have the same value v,, whose
direction is perpendicular to the
boundary of a homogeneous mag-
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Figure 2

netic field B (figure 2; the vector B is
normal to the plane of the page and
directed away from the reader).
When the positively charged particle
enters the magnetic field, the mag-
netic force F = qv,B, which is ini-
tially directed upward. The negative
particle experiences the same mag-
netic force, but this force is initially
directed downward. Each particle
describes a semicircle, after which it
leaves the region of the magnetic
field. The radius of each circle can be
found from Newton’s second law:

Mv
qvoB= RO ’
whence
R=M
gB

The angular velocity of the particle
and its period are

_Yo_4dB
R M
and
T:2_7t=2nM.
0] gB

Clearly, the positive particle (M,
= 2m) describes a semicircle whose
radius is twice that of the negative
particle (M, = m), which moves in
the opposite direction. The heavier
positive particle will return to the
no-field region in a half-period
which is twice as large as the corre-
sponding interval of time for the
lighter negative particle. Thus, a ho-
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mogeneous magnetic field is capable
of separating, in time and space, par-
ticles that move in the same beam
but that have different masses and
charges. This property is used in
mass spectrometers, which can
separate isotopes (atoms of the same
charge but different masses).

Moving charges (that is, electric
currents) generate magnetic fields.
Numerous experiments with mag-
netic forces yielded a simple law
that gives the magnetic field B gen-
erated by a point charge ¢ moving
with constant velocity v that is
much less than the speed of light c.
This law can be written as

B 1 gvsino

4meqc? in ‘
where o is the angle between the
velocity v of the charge and the ra-
dius vector r drawn from the charge
to the observation point; £ is a unit
vector obtained by applying the
right-hand rule to the vectors v and
r (figure 3). The constant 1/(g,c?) is
usually denoted by i, and is called
the magnetic permeability of free
space.

By multiplying both sides of this
formula by the number of electrons
AN = nAlS in a segment of wire of
length Al, electron density n, and
cross-sectional area S carrying an

A

Ty

q \4
Figure 3

electric current [ = gnvS, we obtain
the famous Biot-Savart law for the
contribution AB to the magnetic
field generated by an electric current
element JAI:

AB = Mo IAlsina.
41 1’2

In this case the lines of magnetic
field are concentric circles drawn
around the trajectory of the moving
charges (figure 4). The magnitude of

L.

Y

the magnetic field decreases with
distance as 1/12, just like the magni-
tude of the electrostatic field gener-
ated by a point charge. The analogy
between the electric and magnetic
fields is not universal: the magnetic
field has no “sources” and “sinks,”
so that the magnetic lines are always
closed. Such a physical vector field
has specific features and is referred
to as a vortical or solenoidal field.

Now let us consider another ex-
ample. Suppose that two fairly mas-
sive point particles 1 and 2 with
equal charge ¢ move parallel to each
other with the same nonrelativistic
velocity v (figure 5). Each particle is
affected by a repulsive electric (Cou-
lomb] force F, = gE and an attractive
magnetic force F_ = qvB (the veloc-
ity of one particle is normal to the
magnetic field generated by the
other particle). Let us compare these
two components of the total electro-
magnetic (Lorentz) force that act,
say, on particle 2:

Figure 4

Foo _ qvBy

By qEy,

where B,, and E,| are the magnetic
and electric fields generated by
charge 1 at the position of charge 2.
Inserting the corresponding expres-
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sions in this ratio, we get

v . q
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This ratio shows that at nonrela-
tivistic speeds the magnetic force
produced by moving charges is
much weaker than the electric force
acting on the charges. In other
words, under these conditions the
magnetic force is a minor contribu-
tion to the total electromagnetic
force.

What will happen if we choose an
inertial reference frame that moves
with the same velocity v as our par-
ticles? In this moving reference
frame the particles are at rest, so
that their magnetic fields and mag-
netic forces disappear!

Well, this paradox could have been
expected: the magnetic component
of the Lorentz force depends on the
velocity of a charged particle, and
this velocity changes when one ref-

erence frame is replaced by another.
At the same time, the total Lorentz
force, just like any other force, does
not depend on the choice of nonrela-
tivistic inertial frame. Therefore, in
the reference frame in which the
magnetic component of the Lorentz
force disappears, the electric compo-
nent of this force must change to
compensate for such a loss. In other
words, dividing the total Lorentz
force into electric and magnetic com-
ponents is meaningless without
specifying a reference frame.

The last example raises the ques-
tion of whether it is reasonable to
study and take into account such
relatively small magnetic forces. Of
course, it is worthwhile, and here
are the reasons why.

First, the ratio obtained is valid
also at relativistic speeds v ~ ¢. In
this case the magnetic forces are
comparable with the electric ones.
For example, they play a major role
in a rapidly moving beam of charged
particles.

Second, there are situations where
a “negligible” magnetic force is really
a single unbalanced force in a physi-
cal system. This is the case for elec-
trons moving in a conducting wire.
Here, there are no net electric forces
as aresult of the almost ideal balance
of the negative and positive charges
in a conductor. Recall what a huge
number of charged particles partici-
pate in generating an electric current
in metals—about 10>® elementary
charges in one cubic centimeter!
This enormous number produces a
very large magnetic force—for ex-
ample, in electric motors.

Third, sometimes the electric
charges move under the action of
various combinations of electric and
magnetic fields generated by differ-
ent sources. In general, the relation-
ships between electric and magnetic
forces can be quite versatile, includ-
ing the case when the magnetic
force dominates over the electric
one. Therefore, magnetic knowledge
is power in itself, isn’t it? O)
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IN THE LAB

Can you carry water in a Sieve?

O YOU KNOW THE STORY

of the little ant who was in a

big hurry to get home? Many

creatures helped him. For ex-
ample, a water strider carried him
across a river. Maybe you’ve seen
this insect. The water strider stands
calmly on the surface of the water,
which sags slightly under its weight.
Why doesn’t this insect sink? And
can water really “sag”?

It turns out that the surface layer
has a number of unusual properties.
We can investigate them in some
simple experiments.

1. The water surface can support
various objects.

Pour some water into a saucet.
Take a needle and place it carefully
on the surface—it doesn’t sink. If
this experiment failed, don’t give up.
Rub the needle with your fingers (or
oil it slightly, or rub it with a
candle). Repeat the experiment and
look closely at the surface. Now do
you see that the surface is bent? It
looks as if the needle is lying on a
film.

A rather good comparison is that
surface layer of a liquid is similar to
a stretched piece of cellophane (al-
though the specific properties of the
surface layer are quite different from
those of stretched cellophane). Let’s
try to guess why.

A molecule within a liquid is
surrounded by other molecules,
which pull it equally in every direc-
tion. By contrast, molecules of the
surface layer have no molecules
above them, so they are attracted
only by the molecules below them.
It looks as if the liquid “tries” to
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have the minimum number of mol-
ecules at its surface. As a result,
the surface layer of a liquid is
“stretched” much like cellophane.
Let’s call this surface a “film” (in
quotation marks).

We see that not only water strid-
ers but even denser bodies (such as
a metal needle) can stay on the sur-
face and not sink. They don’t swim
or float in the usual sense of the
words—they’re held up by the sur-
face tension of the liquid. However,
if we test thicker and thicker
needles, we'll eventually find one
whose weight is greater than the
supporting force of the surface ten-
sion. Of course, this needle (and
heavier ones| will sink to the bot-
tom. It’s interesting that the length
of the needle has virtually no effect
on its ability to “float.”

2. The tension of a surface “film”
depends on the liquid used.

Place a needle on the water sur-
face. Take a wooden matchstick and
cut off the head. Rub the end of the
match with soap and touch the wa-
ter about 1 cm from the side of the
needle. The needle will immedi-
ately “jump away” from the match.
Why? Well, you created a soap solu-
tion near the needle when you
dipped the matchstick in the water.
The molecules of the soap solution
don’t attract the needle as strongly
as the pure water molecules on the
opposite side. Since unbalanced
forces act on the needle, it moves in
the direction of the greater force. In
other words, the surface tension of
pure water is greater than that of a
soap solution.

You can use this trick to pilot the
needle all around the saucer. Ma-
neuver it to the very edge of the sau-
cer and watch what the needle does.
Keep in mind that the soap spreads
across the water surface very
quickly, so don’t forget to change
the water in the saucer from time to
time. You can replace the needle
with a match and repeat the experi-
ment. (A needle that keeps sinking
is an unnecessary complication in
your experiments.)

Take two matches and place them
carefully onto the water surface par-
allel to each other. What happens?
The matches are drawn toward each
other (figure 1). Pull them apart and
touch the water on both sides of this
pair with the tip of a third match,
which you’ve rubbed with soap, as
before. What do you see now?

Using the same principle, you can
make a number of simple toys and
entertain kids with them. Slit the
end of a match and skewer a piece of
paper with it (figure 2). Soak the pa-
per in the soapy soup that often col-
lects in soap dishes (or make some
“soup” yourself, if there isn’t any).
Now lay this match “ship” on the
water—it starts “sailing.” Did you

Figure 1 Figure 2




notice the direction in which it
sailed? Now slit a matchstick at
both ends and
slip pieces of pa-
per into the slots
as shown in fig-
ure 3. Soak these
pieces of paper in
the soap soup.
Fi This match will

igure 3 rotate on the sur-
face like a propeller. Figure 4 shows
a “gun” cut out of thick paper. To
“fire” the gun, touch the water sur-
face at point A with the end of a
match that you’ve rubbed with soap.

Figure 4

Try testing other substances in-
stead of soap. Here’s a nostalgic
scene from summer camp: a bunch
of kids are gathered around a little
puddle. They’ve taken wood chips
and rubbed their ends with resin
from fir trees. Now they’re holding
races—the chips slide swiftly along
intricate paths on the water surface.

3. Surface tension can raise the
liquid rather high.

Take a glass tube with a very nar-
row internal diameter (much less
than 1 mm)—a so-called “capillary
tube” (or just “capillary”). Lower
one end into a jar of water and
watch the water rise in the capillary
to a height greater than the water
level in the jar. The thinner the cap-
illary, the higher the water is lifted
in it. If you've ever had blood drawn
from your finger at the doctor’s of-
fice, you’ve seen how the nurse col-
lects it in a capillary tube. This
“capillary action” can be observed
everywhere. You can see it in tea
rising in the tiny holes in a sugar
cube, in kerosene rising in the wick
of an oil lamp, in water absorbed
from soil by the roots of various
plants, and so on.

A more modest experiment can
be made with a thicker tube. Put

some water in it and
plug the bottom with
your finger (figure 5).
You'll see that the
water surface in the
tube is curved. This
curvature—called a
“miniscus”—is ex-
plained by the fact |
that water molecules
are attracted more .
strongly to the walls Figure 5
of the tube than to each other. In
this case we say that the liquid wets
the surface of a container.

Now let’s do one more experi-
ment. Pour tea from a cup, but leave
some tea and a few tea leaves at the
bottom. Carefully touch the surface
of the liquid with a teaspoon or a
match and watch how the surface
quickly “crawls” upward, drawing
the tea leaves along with it.

4. Not all liquids “cling” to the
walls, and it doesn’t happen in ev-
ery pipe.

There are cases when a liquid in
a capillary doesn’t rise—not only
that, but the miniscus is curved in
the other direction (it’s convex).
Why is that? It’s because this par-
ticular liquid doesn’t wet the surface
of the walls—the mutual attraction
between molecules in the liquid is
stronger than the attraction between
these molecules and the walls of the
tube. This is how mercury behaves
in a capillary (figure 6).

Figure 6

Collect some water in a pipette.
Carefully release one drop onto
clean glass and another onto a piece
of buttered bread. The first drop
spreads out on the glass, while the
other one maintains its round shape.
So we conclude that water wets
glass but doesn’t wet butter.

And now the moment of truth:
how would you answer the ques-
tion posed in the title of this ar-
ticle? Can you carry water in a
sieve? Well, let’s take a sieve and
spread butter on it, or even better,
rub it with a candle. Pour some wa-
ter into it—the water doesn’t run
out! It’s supported by a surface
“film” that forms because the wa-
ter doesn’t wet the edges of the
sieve’s tiny openings. If you don’t
have a sieve, you can do this experi-
ment with a can with a small hole
punched in the bottom.

As we saw, a liquid that doesn’t
wet the surface doesn’t spread out
but collects itself into a drop. In
this case, the smaller the drop, the
nearer its shape approximates a
sphere. Why? Due to the strong
mutual attraction between mol-
ecules in such a liquid, the drop as-
sumes the shape with the least suzr-
face area. As arule, this is a sphere,
which is easily (and often) demon-
strated in the weightlessness
aboard an orbiting spacecraft. If an
astronaut releases water from a
container (one can’t “pour it” as
one does on Earth), it immediately
assumes a spherical shape.

The brief weightlessness of mol-
ten drops of metal as they fall from
a high tower has been used for gen-
erations to produce pellets. The
drops become spherical as they fall
and stay that way long enough to so-
lidify as spheres.

You can do a similar experiment
at home. Tilt a burning candle and
pore the melted wax into a basin
filled with cold water—you’ll get
small wax pellets. Hold the candle
as close to the water as you can, so
that the wax solidifies right at its
surface. .

5. Sometimes surface tension is
so strong you can literally “feel” it.

Take two identical plates of glass.
Clean them carefully and put one on
top of the other. You can easily sepa-
rate them again. Now wet one plate
with water and put one atop the
other again. Try to pull the plates
apart (without sliding one over the
other). It’s not so easy, is it? That’s
surface tension at work. (]
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LOOKING BACK

Ernst Abbe and “Garl Zeiss”™

NYONE IN THE FIELD OF

optics knows the name of the

German scientist Ernst Abbe

(1840-1905). Thanks to the
work of Abbe and Carl Zeiss (1816~
1888), a brilliant engineer and inno-
vator in the commercial production
of optical instruments, standards in
optics were raised to a level that has
remained essentially unchanged to
the present day.

The period from the middle of the
19th century to the beginning of the
20th was a time of revolutionary
discoveries in various fields of natu-
ral science, which enriched human-
kind with sophisticated new tools
and methods of investigation. The
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demands of science and technology
led to the invention of devices for
observing various objects, which re-
sulted in the rapid development of
applied optics and optical engineer-
ing. The production process for sci-
entific instrumentation was radi-
cally improved. Small workshops
were replaced by scientific and
manufacturing conglomerates such
as “Carl Zeiss” (its modern name).
Abbe’s work in this firm contributed
to its prosperity and made it possible
to produce outstanding optical in-
struments.

Ernst Abbe was born in Eisenach
in 1840, but he finished primary and
secondary school in Jena, where he
entered the local university. He
later transferred to Gottingen. At
that time Wilhelm Edward Weber
(1804-1891), George Friedrich Ri-
emann (1826-1866), and other re-
nowned mathematicians worked in
Gottingen, and personal contact
with them helped Abbe develop his
considerable mathematical gifts.

He defended his doctoral thesis in
1861, and in 1863 he became an as-
sistant professor at the University of
Jena. Abbe lived in Jena for 35 years
and brought worldwide fame to the
town. As a professor at the univer-
sity, Abbe focused all his attention
on optics: the theory of optical in-
struments, analytical and math-
ematical optics, and the technology
of optical experimentation.

The period of Abbe’s life from
1866 to 1888 was closely tied to the
work of the legendary German opti-
cal engineer Carl Zeiss. In 1846 Zeiss
founded a workshop in Jena that ini-
tially produced magnifying glasses
and primitive microscopes. Very
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soon, however, Zeiss microscopes
received high praise and were widely
used by scientists and engineers due
to the exceptional workmanship of
the lenses. Beginning in 1858, Zeiss
produced sophisticated microscopes,
and later he added other optical in-
struments to his list of products.
Zeiss continually strove to “base the
practical design of microscopes en-
tirely on scientific theory,” so he in-
vited a number of outstanding spe-
cialists in applied optics to work with
him, Ernst Abbe being the brightest
star among them.

By that time, optical tools had
been manufactured in Europe for
three centuries. However, produc-
tion was based mainly on intuition
and traditional workmanship. One
of the inventors of a two-lens micro-
scope with a biconvex objective and
a biconcave eyepiece was the great
Italian scientist Galileo Galilei
(1564-1642). The father of the mod-
ern microscope is Cornelius Drebbel
(1572-1634), whose microscope con-
sisted of a biconvex objective and a
plano-convex eyepiece. A funda-
mental improvement was made by
Robert Hooke (1635-1703), who in
1663 inserted the third “collecting”
lens between the objective and the
eyepiece. The next step was taken in
1716 by Hertel, who added a rotat-
ing stage with a mirror beneath it to
reflect light. This led to better illu-
mination of the object and a clearer
image. This is essentially the micro-
scope design that is used today.

Any further improvement in im-
age quality would have to be made
by eliminating defects in the opti-
cal system—above all, spherical
and chromatic aberrations. Because
of spherical aberration, paraxial
rays (rays traveling near the optic
axis) pass through different parts of
alens and cross the optic axis at dif-
ferent points, causing the image of
a point source to look like a
nonhomogeneously illuminated
disk. Chromatic aberration causes
a ray of white light to split into a
number of rays of different colors,
which cross the optic axis at differ-
ent points because the focal length
of alens depends on the wavelength

F P,

Figure 1. Abbe’s microscope diffraction theory: P,P, is the plane of the
object, FF is the focal plane of objective OO, P,P, is t}ge image plane, o, is the
diffraction angle, and A, is the diffraction maxima in the focal plane.

of the incident light. This phenom-
enon is known as dispersion.

From the 17th through the 19th
centuries, investigators tried not
only to improve the quality of the
images formed by microscopes, but
also to construct a microscope with
the greatest possible magnification.
It’s known that the magnification of
a microscope increases as the focal
length of its objective decreases, so
opticians started to work with short-
focal-length objectives. In addition,
the resolving power of a microscope
depends on its aperture—that is, the
angle between the outermost beams
from the object to the edge of the
objective. An aperture of almost
180° was achieved by the middle of
the 19th century. However, the
short-focal-length and wide-aperture
objectives suffered from even greater
aberrations.

Attempts were made to improve
the performance of microscopes and
calculate their magnification on the
basis of geometrical optics. It turned
out that geometry could not com-
pletely explain the process of image
formation in microscopes. This fail-
ure directed Abbe’s attention to
physical optics.

Abbe published his studies on mi-
croscope design in 1873. In these
papers he considered the role played
by the objective and the eyepiece in
image formation. For the first time
in optics, he classified the aberra-

tions. But Abbe’s biggest achieve-
ment was discovering the limits
imposed on designers of optical sys-
tems by the wave nature of light.

Abbe explained how a lens forms
the image. First an interference pat-
tern is formed in the plane perpen-
dicular to the axis of the lens. This
is a system of alternating maxima
and minima of illumination, which
plays the role of a diffraction grating.
The light flux passes from the lens
through this grating and interacts
with it. Only then does an image ap-
pear a short distance from the plane
of the grating, which can be seen on
a piece of frosted glass or photo-
graph. This is how an image is
formed with one lens. In a micro-
scope, however, according to Abbe’s
theory, the image is obtained in two
stages, shown schematically in fig-
ure 1.

In the first stage, the light illumi-
nating an object P, P, falls on the
microscope’s lens after being scat-
tered and diffracted by the details of
the object, so that the structure of
the light beam is determined by the
object. After passing through the
objective of the microscope, the
light beam produces a diffraction
pattern in the focal plane FF, which
is a system of illumination maxima
whose angular sizes depend on the
structural details of the object. The
directions to these maxima are de-
termined by the condition nd sin ¢
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= k), where n is the refractive index
of the medium, d the characteristic
size of the object’s details, o the dif-
fraction angle, k = 0, 1, 2, ... the
number of a particular maximum,
and A the wavelength.

In the second stage, the illumina-
tion maxima are considered point
sources emitting coherent beams of
light. These beams mutually inter-
fere behind the focal plane of the
objective and produce an image of
the object in the P,P, plane. Abbe
called the pattern in the focal plane
of the objective the primary image
and the pattern in the linked plane
the secondary image.

To obtain the correct image of an
object, the secondary image must be
formed as a result of the interaction
of the beams emitted by all the
maxima of the primary image. Of
particular importance are the first-
order maxima situated at small
angles to the principal axis and pro-
duced by the largest and usually
most important details of the object
being examined. The maxima corre-
sponding to large angles are pro-
duced by smaller details of the ob-
ject. Minute details of the object
(smaller than the wavelength of
light) cannot be seen at all, because
the waves diffracting off such small
details do not reach the screen, even
through an objective with the larg-
est possible aperture. This sets a
limit on the resolving power of a
microscope: d 2\ = Ay/n, where A is
the wavelength of light in vacuum.

Usually there are no obstacles for
light inside a microscope, so the
number of diffraction maxima pass-
ing through the objective is limited
only by its mount. The smaller the
object or its detail, the larger the dif-
fraction angles it produces (half this
angle is called the aperture u) and
the larger the opening of the objec-
tive must be.

If the aperture is less than the dif-
fraction angle ¢, corresponding to
the first-order spectra (that is, if sin
u < sin ¢, = A,/d), only rays from the
central maximum will pass through
the objective into the microscope,
and we won’t see an image corre-
sponding to details whose size is of
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the order of d. The larger sin u is
relative to A,/d, the more high-order
spectra will contribute to the image
formation, and greater detail will
appear in the image.

Usually an object is illuminated
not only by light beams passing
along the optic axis, but also by
beams at larger angles, and this im-
proves the resolving power. If the il-
luminating beam makes an angle o
with the microscope’s axis and dif-
fracts at an angle o, the condition
for the maxima takes the form
sin o, — sin o = kKA/d.

In order for the first spectrum to
enter the objective completely, the
following requirements must be
met: o = -u, oy = u, k= 1. Also,
2 sinu 2 Ayf(nd) or d 2 Ay/(2n sin u).
Abbe called the value A = n sin u the
“nmumerical aperture.” According to
Abbe’s theory, the numerical aper-
ture determines several important
properties of a microscope—for ex-
ample, the brightness of the image
and the degree of similarity be-
tween the object and its image. The
larger the numerical aperture of a
microscope, the smaller the details
in the object that it can resolve.
Abbe’s theory says that it is impos-
sible to see objects in a microscope
that are smaller than half the wave-
length of the light illuminating
them. Abbe confirmed the validity
of his theory by experiment (in
which the objects examined were
the absorbing gratings), and in 1887
he formulated a strict mathematical
theory of the microscope.

In order to improve the resolving
power of microscopes, Abbe tried to
increase the numerical aperture.
There were three ways to do this:
increase the angular aperture, in-
crease the refractive index of the
medium, or decrease the wave-
length of the light beam. Even at the
beginning of his optical research
Abbe realized that microscopes had
reached their limit in angular aper-
ture and that this was a dead end.

The second approach looked
more promising: Abbe proposed in-
creasing the medium’s refractive
index n by filling the open space
between the object and objective

with a substance whose refractive
index is greater than that of air. In
1878 Abbe and Stephenson made a
microscope in which cedar oil was
placed between the object and objec-
tive. Their efforts met with success:
this instrument improved the resolv-
ing power by one-third.

Of particular interest are Abbe’s
ideas about improving the resolving
power of microscopes by decreasing
the wavelength of the light used to
form the image—specifically, the pos-
sibility of using ultraviolet light. This
idea was realized in one of the micro-
scopes made by Abbe’s colleagues in
the Carl Zeiss firm not long before
the death of the great inventor. Later
such microscopes helped in studying
the structure of DNA and RNA, the
large information-bearing molecules
in living organisms.

Abbe also devoted a great deal of
attention to correcting aberrations in
optical systems. Since the various
zones of a simple lens produce an
image of a plane element with differ-
ent magnifications, the images of a
point source formed by various zones
coincide only at the optic axis of the
system, while the sharpness of the
image degrades sharply outside this
axis. Abbe showed that all the zones
of an optical system magnify an ob-
ject to the same degree as long as the
“sine condition” is met. This re-
quires that for all rays emerging from
a point on the axis of the optical sys-
tem and then collecting after refrac-
tion at the point of an image, the ra-
tio between the sines of the angles of
the respective rays with the optic
axis must be constant:

sin u,/sin u, = Kn,/n,,

where n, and n, are the refractive in-
dices of the media on the object and
image sides, and K is the magnifica-
tion of the optical system.

Two points that have no spherical
aberration, and for which Abbe’s sine
condition is valid, are called apla-
natic. Abbe showed that only one
pair of aplanatic points exists on the
axis of an optical system. He also
found a simple method for determin-
ing the degree to which the sine con-
dition is satisfied. He drew the pat-
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Figure 2. Abbe’s pattern for testing
the Abbe sine condition.

tern shown in figure 2, which is
viewed with the optical system be-
ing tested. If the sine requirement is
met, it is possible to find a location
for the pattern such that the ob-
server sees it as a rectangular grid.
Abbe tested many microscope objec-
tives made by trial-and-error by the
old masters and found that the sine
condition was valid for all the good
objectives. Today, Abbe’s sine con-
dition is always taken into account
in the design of any optical system.

In his struggle with chromatic
aberration, Abbe spared no effort in
persuading the glass workshops to
produce new kinds of optical glass
with certain properties. To compare
the properties of various types of
optical glass, Abbe proposed the fol-
lowing method: select a number of
reference wavelengths in the visible
range of the spectrum and use the
concept of relative dispersion (de-
fined as the ratio of the refractive in-
dices corresponding to the chosen
wavelengths). In applied optics the
value vis known as the Abbe num-
ber. In 1873 Abbe managed to make
the first objective in history that was
achromatic for three colors. The co-
incidence of the foci for rays of three
different wavelengths was achieved
by using various types of glass with
different Abbe numbers. Abbe called
such objectives “apochromatic.” In
1886 Abbe managed to design and
produce an apochromatic objective
in which both spherical and chro-
matic aberrations were virtually
eliminated. It was a triplet whose
outer lenses were single lenses
while the inner lens consisted of
three lenses glued together, each of
which had a different Abbe number.

In designing optical systems Abbe
always started from a theoretical
analysis. It was theory that led him

to the idea that an optical system
must include special diaphragms
that limit passage of light rays. He
showed that to form an image, an
optical system needs only those rays
that pass through the device to the
image without a delay, whereas rays
that pass through only a part of the
optical system (held back, perhaps,
by the lens mount) are not only use-
less, they’re harmful.

Abbe performed a great service by
developing and constructing a num-

ber of new optical instruments, as
well as organizing scientific research
aimed at producing new types of op-
tical glass. The Carl Zeiss firm de-
signed and produced prismatic bin-
oculars, new types of photographic
lenses, refractometers (devices that
measure the refractive index of a
substance), and various optical de-
vices to measure angular and linear
values. All these instruments raised
the standards of the optics industry
to a higher level. @

We used advanced computer-aided optical design to
system ever manufactured, then m ]
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X 0SS Science

ACROSS

1 Pronto: abbr.

5 Quartz deposit in a
furnace

9 “March King”

14 Point of minimum

disturbance

15 Adams or McClurg

16 Type of circle or
tube

17 Shebat follower

18 Hammer or wrench

19 Like Neon

20 Type of flow

22 Eisenhower’s
nickname

24 Author ___ Rand

25 State of matter

26 Status ___

27 Width times length

28 Cooks

31 1946 chemistry
Nobelist James ___
(1887-1955)

33 __ Descartes

34 Southern constella-
tion

35 Type of engine

39 Abscisic acid: abbr.

40 Nickel-chromium
alloy

42 Mine output

43 Electric doublet

0l

Gris

by David R. Martin

6 7

10 |11 12 |13

14

15

17

18

45 Small amount

46 Pelvic bones

47 ___ paper
(pH indicator)

49 Mitosis star

50 Chemical connec-
tion

53 Wave guide mode:
abbr.

54 Narrow coastal inlet

55 Actress Gardner

56 Ferrous sulfide

57 Half-spin particle

61 Plane detector

63 Unlock

65 Famous lion

66 Sooty dirt

67 Musical sound

68 Baseballer Nolan

69 Eagle nest

70 Volt or coulomb
preceder

71 Red stone

DOWN

1 __ sphincter
(certain muscle)

2 Sodium carbonate

3 Swedish botanist ___

JULY/AUGUST 2000

Afzelius (1750-1837)
Orbital extremum

[SAIEFEN

Alpha followers
Olfactory sensation
Silicon monoxide

oo N

Element 2

O

Trigonometric

function

10 Yoko ___

11 Release

12 Physician Hans
Hugo Bruno ___
(1907-1982)

13 Competition site

21 Sci. org.

23 Biochemist
Bloch (1886-1944)

26 This magazine

27 Appendage

28 Nail

29 Phosphatase unit

30 Sack or weed
preceder

31 ___ Lanka

32 Sense organ

34 Minor building
wing

36 Bump

37 Buffalo’s lake

38 Fissure

40 Samuel’s teacher
41
44

46

Biological duct
Aged
CH,(CH,),CHj and
CH,CH(CH,),, e.g.
48 Strong nuclear
particles?

49 It’s mostly nitrogen
50 Large raft

51 Reproductive organ
52 Zenith’s opposite

SOLUTION TO THE MAY/JUNE PUZZLE

54 Civet relative
56 Gibbs __ energy
57 Greek cheese

58 1977 Chem.
Nobelist
Prigogine
59 Esker

60 A logic circuit

62 Friend: Fr.
64 Variable resistor

(slang)
SOLUTION IN THE

NEXT ISSUE
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Math
M296

It follows from the given equation
that o = o - 1. Therefore, 302 — 40 =
307 -30—0®+1=(1-a Thus, the
cube root is equal to (1 — a). Let’s
transform the expression under the
second root. We have 202 + 30+ 2 =
o + (02 + o) + 2o+ 1) =02 + offor + 1)
+2o+1)=0?+ 0+ 203 = (02 + a2 =
o?(a + 1% = of. The second term in
the sumis o® = 1 + o. Thus, the given
expression equals 2.

M297

Let us ask how much of each old
piece could have gone into the mak-
ing of the larger new piece. If all of
the old 2 kg piece were used, then
the larger new piece must contain
0.5 kg of the 1 kg piece. If all of the
old 1 kg piece were used, then 1.5 kg
of the old 2-kg piece was used. In ei-
ther case, the new 2.5 kg piece con-
tains at least 0.5 kg of each old piece.

The reader is invited now to show
that at least one of the original
pieces contains no more than 40%
copper.

Armed with these two proposi-
tions, we can now ask: what is the
maximum possible percentage of
copper in the 2.5-kg piece? We ob-
tain it if we melt 0.5 kg containing
40% copper with 2 kg of 100% cop-
per. That is, the maximum possible
value is

05-04+2
2.5

100% = 88%.

This is exactly the percentage of
copper given in the condition of the
problem for the 2.5-kg piece. Thus
the original pieces were 40% and
100% copper, respectively.

ANSWERS,
HINTS &
SOLUTIONS

M298

For definiteness, consider the
case when angle ABC is obtuse (see
figure 1). (The case when this angle
is acute can be treated similarly.) Let
P be the point symmetric to M about
point B. We first prove that triangles
ABC and BPN are similar. Note that
ZABC = ZPBN, since they are ob-
tained by adding a right angle to the
angle CBN. Triangles CBM and
ABN are similar right triangles.
Therefore,

BP _BM _BC
BN BN AB’

Thus triangles BPN and ABC are
similar.

Triangle BPN can be obtained
from triangle ABC by rotating ABC
by an angle of 90° followed by a di-
lation centered at B. Under this

P
B G
Ol
A D N
T
M

Figure 1

transformation, the line AC goes to
the perpendicular line PN. Thus BN
is perpendicular to AC. But BTLAC
by construction, so BT || PN, and BT
passes through the midpoint of side
PM in triangle PMN. A theorem of
elementary geometry says that a
line parallel to one side of a triangle
and passing through the midpoint of
a second side must pass through the
midpoint of the third side as well. It
follows that BT passes through the
midpoint of MN.

M299

Suppose that we have already
constructed the desired circle C (see
figure 2a). We draw a third circle,
centered at C, with a radius equal to
the sum of the radii of the other two
circles. This new circle will then
pass through the center of the given
circle, and is inscribed in an angle
(A, in the figure) with its parallel to

Figure 2
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the given angle at a distance equal to
the radius of the original circle.

If we can construct this third
circle, we can then shrink its radius
by a known amount to find a circle
which solves our original problem.
So we have reduced our problem to
that of constructing a circle (the new

one) tangent to a given angle (angle .

A,), and passing through a given
point inside the angle (the center of
the original circle).

This problem can be solved by
similarity, as shown in figure 2b.

(1) First, we inscribe an arbitrary
circle o centered at Q in the given
angle.

(2] We find the points where the
line A’O intersects the circle w; call
them L and N.

(3) Draw the lines parallel to LQ
and NQ through point O and find
the intersections of this line with
the bisector A’Q of angle A’. These
points are the centers of the desired
circles.

The original problem has, in gen-
eral, four solutions. We have shown
how to get the two new circles that
are tangent externally to the given
circle. The construction of the
circles that are tangent internally is
left to the reader, as is the analysis
of the special cases which result
when the given circle is itself tan-
gent to one or both sides of the given
angle.

M300

We first obtain a simple and use-
ful formula.

Lemma: Suppose two spheres,
with radii x and y, are tangent exter-
nally, and each is also tangent to
some plane, at points A and B, re-
spectively. Then,

AB=2.[xy.

Proof: Let the centers of the
spheres be O, and O,. Figure 3a
shows a cross section of the situa-
tion, taken through the plane deter-
mined by the O, O,, A, and B. (The
reader can prove that these four
points are in fact coplanar, and is
invited to recall that the line con-
necting the centers of two tangent
circles passes through their point of
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tangency.) Note that triangle O,0,C
is a right triangle, CO, = AB, 0,0,
= x +y, and that CO, = Ix-yl. Then,
by the Pythagorean theorem,

CO, =,/0,0; —-CO}

:V/(?ﬂ’)z ‘(X‘V)2 =2xy.

(Note that the result for this
lemma is really a property of tangent
circles, not tangent spheres.)

Before proceeding to the stated
problem, we solve a simplified ver-
sion. Suppose we remove the mid-
sized sphere (in the original problem
statement). What then is the mini-
mum possible radius for a sphere
tangent to plane L, line m, and the
unit sphere touching plane L and
line m?

In figure 3b, we again see a cross
perpendicular to plane L through the
centers of the two given spheres (and
through line m). It is clear from this
figure that the center of the mini-
mum sphere lies on the plane of this
cross-section. If the radius of this

Ol
G _'/K 0,
A B
a
m
-
M K O
b
M K @)
C P
Figure 3

minimal sphere is 7, then our lemma
shows that MK = 247, and we know
that OM =1, KO =r. But OM = MK
+KO,s0l=r+ 2+t . From this equa-
tion, we find that r = 3 - 242.

Now let us turn to the given prob-
lem by re-introducing the middle
sphere. It’s clear that the radius of
the smallest sphere cannot be any
less than the value for r found above.
We will show that we can in fact
introduce a middle sphere such that
the radius of the smaller sphere is
exactly r.

If such a middle sphere exists,
then it must touch plane L at some
point P. We will find a point P and a
radius R for this middle sphere,
which makes it touch the other two
spheres i our auxiliary problem.

Figure 3¢ shows the situation on
plane L. Points M, K, and O are as in
figure 3b, and point P is the point
where our new sphere is tangent to
plane L. If there is such a point P,
then it is not hard to show that OP
= R, and our lemma tells us that MP
= 2JR, and KP = 24/Rr. As before,
OM=1and OK =r.

We apply the law of cosines, let-
ting cos ZPOK = . In triangle POK,
we have 4Rr = R? + r* — 2ARr. In tri-
angle POM, we have 4R = R*> + 1 -
2AR. Multiplying the second equa-
tion by z, and subtracting it from the
first equation, we find that R = \r.

Now we can construct our
middle sphere. It is not hard to see
that if we assign the line segments
lengths according to the computa-
tions above that MO < MP + OP.
Thus we can construct triangle
MOP to find point P, and the radius
R will be the correct value so that a
sphere tangent to plane L at P with
radius R will be tangent to the other
two spheres. Since R < 1 and greater
than r = 3 — 24/2, this last value for r
is the smallest possible.

Physics

Let’s displace the arc through a
very small angle ¢. The restoring
torque of the force of gravity relative




to the pivot point is determined by
the “surplus” of mass m on one side
and the “deficit” on the other:

2mgRsino = 2(-]\; R(D)gR sinq,

where 20 is the angle between the
strings and M is the mass of wire arc.

The moment of inertia of the sys-
tem relative to the pivot point can
readily be calculated since all the
parts having mass are located the
same distance R from the reference
point:

[ = MR*.
The next step is to write down

Newton’s second law for rotational
motion:

_ 2MR*gsino.
L

from which we obtain the period of
oscillation:

MRZ(D// — (D,

»
T=2m | —,
\2gsina

where the angle o is
_ L
2R
When the arc is small, we can set
sin o = o and obtain the usual ex-
pression for the period of a math-
ematical pendulum as expected.
This problem has an elegant solu-
tion that is based only on energy
conservation and doesn’t need the
value of the moment of inertia.
Hint: compare the maximum values
of the potential and kinetic energies
and recall a similar relationship for
harmonic oscillations.

P297

Let m be the mass of the Venu-
sian atmosphere, M = 48 g/mole the

o

molar mass of ozone, and R=8.31]
mol - K] the gas constant. At the
planet’s surface the ozone layer oc-

cupies a volume V = 4nr’h at a pres-
sure P and temperature T. According
to the statement of the problem, P =
mg/4nr?, where r is the radius of the
planet. On the other hand, the equa-
tion of state for ozone is

py =22 g7
M

Plugging the formulas for V and P
into this equation, we obtain the
thickness of the ozone layer:
_OoRT

gM

h ~17-107° m.

P298

For the given charges, the electric
field outside the capacitor is not zero
(in contrast to the case when the
total charge on the plates is zero).
Any rearrangement of the plates
modifies only the internal field in
the capacitor; it doesn’t disturb the
external field. The outer foils of both
plates (figure 4) collect equal charges
of the same polarity, each of which
is half the net charge of the capaci-
tor (in a “correctly” charged capaci-
tor this half-sum is zero). In our case
the half-sum is 1.5Q.

Therefore, the inner foils of the
plates carry charges -0.5Q and
+0.5Q. The internal field is deter-
mined only by these residual
charges, because in this region the
fields generated by the external
charges cancel. The energy of the
field located between the plates can
be calculated as usual:

(@) _ @

‘/\/1:————-——: .
2C 8C

-0.5Q

1.5Q 1.5Q

— 3 P .
U screen
///
/ F

Figure 5

After the outer foil of the plate
with charge 2Q is disconnected, the
charge of the outer plate remains on
it, and we carry this charge onto the
other side of the capacitor. Now the
charges of the plates of the modified
capacitor become 2.5Q and 0.5Q.
The field between the plates
changes direction (which is not es-
sential for the energy calculation)
and increases two-fold. Therefore,
the energy of the field located be-
tween the plates increases by a fac-
tor of four and becomes

2
w, =L
- 20
The outer field doesn’t change, so
our work was expended on increas-
ing the internal field between the
plates. Thus the work necessary for
the charge transfer is

2 2 2
w2 LB
2C¢ 8C 8C

P299

According to the statement of the
problem, the lens is placed in a way
that simplifies our calculations: the
parallel beam hits the flat side of the
lens perpendicular to its surface and
doesn’t refract. Therefore, we should
consider refraction only at the
spherical boundary between the
glass and air. To begin, we find the
thickness d of the lens along the
optic axis (where it’s thickest):

R :(QJ +(R=-d),
)

from which we get
d =0.67 cm.

The thickness of the lens is impor-
tant because we'll measure the dis-
tances from various points on the
surface of the lens. Thus a narrow
(diaphragm-restricted) pencil of light
parallel to the optic axis is focused
at a distance

F= & =10 cm.
n-1

Now let’s consider the ray far-
thest from the optic axis (figure 5).
The angle of incidence for this ray
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measured relative to the radius
drawn to the point of refraction at
the spherical surface is o = 30°, since
sin o = (D/2)/R = 0.5. The angle of
refraction can be obtained from
Snell’s law: sin B = n sin o = 0.75,
from which we get p = 48.6°. Simple
calculations yield the point on the
principal axis crossed by the ray af-
ter refraction. It's located at a dis-
tance L = (D/2) cotan (B — o) from the
flat side of the lens. Taking into ac-
count the thickness of the lens, we
find that the outermost rays of the
beam intersect 3.2 cm from the
screen, and so the diameter of the
light spot is about 2.2 cm.

It would be interesting to investi-
gate the question: Are there rays
that produce a spot with a larger di-
ameter than that produced by the
outermost rays considered here?

P300

Since momentum and energy of
the system before nuclear fusion are
zero, the newly formed particles fly
off in opposite directions with nu-
merically identical momenta (this
follows from the law of conservation
of momentum):

o P
Pn= \/anEn =Dy = Nf'zmocEa .
Energy conservation requires
E=FE,+E,.

Solving this system of equations si-
multaneously, we get

_Mn  E~35MeV,

E =
m, +m,

o

—— Ma  F.14] MeV.
I’Ha +mn

Brainteasers

B296

The drawing is incorrect. The
quadrilaterals shown would not lie
in a plane.

To see this, note that we can say
the following about any three
planes: either (1) they intersect in a

E_

n
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N

Figure 6

7

Figure 7

point, in which case the lines of in-
tersection of any two of them go
through this point, or (2) they do not
intersect in a point, in which case
the lines of intersection of some pair
of them are parallel. But the ‘lines of
intersection’ of the ‘planes’ of the
three quadrilaterals shown do not
intersect in a point, and no two are
parallel (figure 6).

Challenge: What could the
teacher’s pentahedron have looked
line?

B29r7

This situation is possible (see fig-
ure 7).

B296

Suppose there were more chem-
ists than alchemists. Since the to-
tal number of participants was 100
(an even number), the number of
chemists was not less than 51; then
there were not more than 49 alche-
mists. Thus there was at least one
chemist among those who an-
swered the question, and she must
have said that chemists were more
numerous. Or suppose there were
more alchemists than chemists.
Then there was at least one alche-
mist among those who answered
the question, and he must have said
that chemists were more numer-
ous. Therefore, 50 chemists and 50
alchemists attended the confer-
ence.

Ve

Figure 8

B299

See the figure 8.

B300

When the thermometer was
taken out of the molten tin, the
temperature of the glass bulb
dropped sharply. The bulb shrank
and squeezed the mercury, causing
it to rise in the glass column. To
quantify this effect, compare the
coefficients of thermal expansion
for glass and mercury.

Gorrections

Vol. 10, No. 4
p. 7, col. 2: Third line after the
second display equation:

for “x/"read “E".
Vol. 10, No. 5

p. 36, col. 2: The formulas should
be:

bY 4ac-b>
y=a x+—| +——.
2a 4a

b 4ac-b*)\
20" 4a |

e



INFORMATICS

Ghores

by Don Piele

ACH SPRING, THE USA COMPUTING OLYM-

piad staff is faced with the job of creating a chal-

lenging set of informatics problems for our national

competition. These problems are similar to the pro-
gramming challenges presented at the International
Olympiad in Informatics. They focus on tasks that can
be solved with an efficient algorithm that will quickly
dispose of the 10 test data sets. An optimal program
must find a solution for each data set within a few sec-
onds to receive the maximum score. Less efficient pro-
grams receive partial credit, depending on how many
test cases it can solve within the time limit. The scor-
ing is done with an automated grading system.

Creating the problems is anything but automated.
The entire staff participates by submitting new problem
ideas to the head coach—Rob Kolstad. A list of approxi-
mately ten possible problems are considered, and five
problems are selected for the competition. Then the fun
begins: every problem gets “cowified.”

Cowification is the process of transforming an ordi-
nary looking programming task into a barnyard chore.
It is also a license to work in some of our “dairy state”
humor. Presented in this column is one of the easiest
tasks from our recent US Open Competition.

The probiem

Farmer John's family pitches in with the chores dur-
ing milking time. They round up the cows, put them in
the stalls, wash the cows’ udders, and perform many
other tasks. Organizing the chores and completing them
as quickly as possible is always desirable, because it
leaves more time for hang gliding with the cows. Of
course, some chores cannot be started until others have
been completed. For instance, it is impossible to wash
a cow’s udder until a cow is in the stall, and you
wouldn’t want to attach the milking machine until you
have washed the cow’s udder. Farmer John has created
list of N chores that must be completed. Each chore re-
quires an integer number of minutes to complete, and
there might be other chores to be completed before this
chore can be done (i.e., prerequisites). At least one chore
has no prerequisite: the very first one, numbered 1.

Farmer John's list is nicely ordered, and chore K (K > 1)
can have only chores 1, ..., K- 1 on its dependency list.
Write a program that reads both a list of chores from 1
through N with associated times and a list of chore pre-
requisites. Calculate the shortest time it will take to
complete all N chores. Of course, chores that don’t de-
pend on each other can be performed simultaneously in
parallel. In fact, a large number of chores could be tak-
ing place simultaneously.
INPUT FORMAT:
Line 1: One integer, N, the number of chores (3 < N
< 10,000
Line 2, ..., N + 1: N lines, each with several integers:
The chore number (1, ..., N, supplied in order in the
input file).
The length of the chore in minutes (1 <length < 100).
A list of no more than 100 prerequisite chores, if any
are needed.
SAMPLE INPUT (file CHORES.IN): 7
15
211
332
461
5124
6824
74356
OUTPUT FORMAT: A single line with a single integer
that is the least amount of time required to perform all
the chores. SAMPLE OUTPUT (file CHORES.OUT): 23.
The sample INPUT file is represented graphically in
figure 1. The chores are numbered 1 to 7 and highlighted

Figure 1
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in green. The time required for the chore appears above
the green dot. Lines between chores denote a depen-
dency. Lower numbered chores must be completed be-
fore the higher numbered chores can be done.

It is clear from figure 1 that chores 1, 4, 6, and 7,
which follow a line of dependency, will take 5 + 6 + 8
+ 4 or 23 minutes to complete. This is the worst case
and hence the shortest time that it will take to do all
chores.

The solution

What we are looking for is an algorithm that guaran-
tees a solution without summing up all chore paths. To
sum up all chore paths would be, in the worst case, of
order (n — 1)! for n chores if chore i depended on nearly
all previous chores for i = 1 to n. A more efficient solu-
tion uses recursion and works as follows. If we have only
one chore to complete, the solution is known: the time
it takes to complete chore one. Now assume we know the
minimum time it takes to complete chore k — 1 and all
dependent chores. The shortest time that chore k can be
completed is equal to that maximum of all shortest times
each dependent chore can be completed plus the time it
takes to complete chore k. These times are indicated
below in blue as they are generated for each chore from
k =1 to 7. Each frame in figure 2 shows one step in the
process of finding the minimum time it would take to
complete both a chore and all its dependent chores.

Figure 2
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We now have the minimum length of time it would
take to complete each chore and all dependent chores
for all n chores. The solution to the problem is simply
to take the maximum of all these values, which in this
case is 23.

Pseudo code

Here is the pseudo code which encapsulated the al-
gorithm described above.

1) Initialize

Chore|k] = Time to complete chore k.
DependentChores|k] = List of chores that must pre-
cede chore k.

2) Recursive algorithm for computing MinTime|k] =
Minimum time needed to complete chore k and all de-
pendent chores.

Fork=1ton
MinTime|k] = Chore[k] + Max[MinTimelj], j €
DependentChores|k]]
3) Solution = Max[MinTimelk], for k = 1 to n]

Mathemalica code

Now for the actual code in Mathematica which mir-
rors the pseudo code:

(* INPUT file *)
CHORES = {{1, 5},
{4, 6, 1}, {5, 1, 2,

{7, 4, 3, 5, 6}};

{2, 1,
4},

1}, {3, 3,
{6, 8, 2, 4},

2},

number of chores *)
Length [CHORES] ;
(* pick off chore times *)

Chorelk 1 := CHORES[[k, 2]]
(* pick off dependent chores *)

(* n =
n =

DependentChores[k_] := CHORES] [k,
Range[3, Lenght[CHORES[[k]]1111]

(* compute MinTime to complete each
chore and all dependent chores *)

MinTime[l] = Chorell];

AllMinTimes = Table[MinTimel[k] =
Chorel[k] + Max[MinTime /@

DependentChores[k]]l, {k, 2, n}]

{6, 9, 11, 12, 189, 23}

Max[AllMinTimes]

23

Your furn

Certain sequences of chores follow a path of depen-
dency and take the full time needed to complete all
chores. These sequences are called critical paths. There
can be more than one critical path. Your chore is to
modify the code ever so slightly to find a critical path.
In our example, {1, 4, 6, 7} is a critical path because chore
7 depends on chore 6 which depends on chore 4 which



1 3
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Figure 3

depends on chore 1, and the total time to complete all
chores is 23: the minimum time needed to complete all
chores. Your output should be a list of chores. Figure 3
shows graphically a critical path.

2000 US Open

The 2000 US Open, held in April of this year, at-
tracted 378 entries from 34 countries, including 223
from the United States. For US students this is the fi-
nal competition of the year leading up to the selection
of the fifteen finalists. The finalists will spend an all-
expenses-paid eight days at the University of Wiscon-
sin-Parkside in June competing for one of four spots on
the USA Computing Olympiad team. The finalists this
year are:

Reid Barton, Arlington, MA; John Danaher, Spring-
field, VA; Vladimir Novakovski, Springfield, VA; Percy
Liang, Phoenix, AZ; Yuran Lu, Presque Isle, ME; Jacob
Burnim, Silver Spring, MD; Steven Sivek, Burke, VA;
Jack Lindamood, Dallas, TX; George Lee, San Mateo,
CA; Gary Sivek, Burke, VA; Richard Eager, Falls
Church, VA, Tom Widland, Albuquerque, NM; Gregory
Price, Falls Church, VA; Kevin Caffrey, Oakton, VA;
Thuc Vu, Anaheim, CA.

The USACO team will have the opportunity to repre-
sent the United States in the Central European Olympiad
in Informatics, August 24-31, in Romania (http://
ceoi.ubbcluj.ro) and the International Olympiad in
Informatics in Beijing, China, (http://www.10i2000.0rg.cn),
September 23-30, 2000.

The complete listing for all participants in the 2000
US Open can be found on the USACO website at
WWW.USaco.0rg.

Finally
Waiting for two months to see a solution is not nec-
essary, thanks to the Internet. All solutions to the prob-
lems presented in this column are available at the
Informatics website:
http://www.uwp.edu/academic/mathematics/usaco/
informatics/.

Worldco LLC

IVY LEAGUE, GRADS FROM TOP
SCHOOLS
Wanted for position of

Equity Trader
WORLDCOLLC.COM

Worldco LLC, an established “self clearning” trading
firm, seeks bright determined individuals with the
drive and commitment to become successful traders.

For those with 3.8+ GPA’s, a chance to trade with
firm’s capital, with no capiral contribution of your

nagement team ‘&I’ld mentoring

ght instruction and support.
.33 and 24 exams. Join other

ving ffiC‘.:i",Q en\'ironment.

ATTN: Magda Kaczo

mbkaczorowska @wlde. com.
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Use the response card in this issue to order

Quantum for your child, grandchild, niece,

nephew, mother, father, friend . . . Or call 1 800

SPRINGER (777-4643). Give them six colorful,

challenging, entertaining issues of Quantum—
a year’s worth of reading pleasure!

Factor x into the
QUANTUM equation,

where xis any potential

& QUANTUM reader you know!
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Think thermo-
dynamics is beyond
your students’ grasp?
Engage student interest
in heat transfer and
insulation with this
volume. A challenging,
hands-on opportunity for
students to compare the
function and design of
many types of handwear
and to design and test a
glove to their own
specifications. Students

learn the basic principles of product design while
exploring principles of physics and technology

necessary to construct
and test an insulated
glove. #PB152X1

How can physics
help your garden
grow?

Engage your students
in a problem-solving

challenge to design and

build a physical system

that provides an optimal environment for plant
growth. This volume helps you cultivate student

interest in optics, energy
transfer, and photosynthe-
sis. In addition to learning
and applying concepts in
thermodynamics, light
absorption, and plant
biology, students must
make a range of decisions
as they encounter cost
constraints, construction
alternatives, and environ-
mental changes while
building a greenhouse
model. #PB152X3

SCiENcE

e
sER1ES |

How do boats work?
Why do they float?
Explore principles of
buoyancy, hull design,
scale modeling, and
seaworthiness. In this
volume, students
investigate the physics
of boat performance and
work with systems and
modeling. Through
research, design, testing,
and evaluation of a
model boat, students

experience the practical application of mass, speed,
and acceleration while applying the math and science

necessary to build a

_ scale model of a boat.

#PB152X2

How much can you

_ launch? How far

will it go?

Catapult into physics
and technology with
the heavy weaponry of
the Middle Ages. This

volume integrates history, physics, mathematics,

and technology in its
challenge to students to
design and build a
working catapult system.
Students investigate
elasticity, projectile
launching, and learn
about frequency distri-
bution while working
through the process of
product design.
#PB152X4
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