-

-

-




GALLERY [@

Trumpeters of Napoleon’s Imperial Guard {1812/1814) by Théodore Gericault

HOUGH SEEMINGLY DRESSED MORE FOR Find out how atmospheric quiet zones may have de-

showing than blowing, these mounted imperial cided the fate of Europe at the battle of Waterloo by
guardsmen were state-of-the-art communications turning to page 48. You'll also be given some sound
equipment during the Napoleonic Wars. The trumpet- advice on the causes of other auditory phenomena as
er’s call ordered charges, issued retreats, and rallied the  well as an explanation of some of the environmental
troops—assuming, of course, that they could be heard. conditions that can affect our view of the world.
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Just for the fun of it

B286

Can you place it? Let us successively write all the natural numbers
beginning with 1. Which digit is at the 500,000th place in this sequence?

B287

Also ran. At a certain sporting event, 100 students took part in track-
and-field events, 50 students participated in swimming, and 48 in
sharpshooting. It turned out that the number of students who took part
in only one event was twice as high as that who took part in just two
events and three times as high as the number of students who partici-
pated in exactly three events. What is the total number of students that
participated in the events?

B288

Cook-off calculations. Four hot plates are used simultaneously to fry
cutlets. Connections of the hot plates and their resistances are as shown.
On which hot plate will the cutlets be ready first?

B289

Smooth ascent. Two circular towers are the same height but have
different diameters. A spiral staircase runs around each of the towers
from top to bottom. The slopes of the staircases are identical and con-
stant. Which staircase is longer?

B290

Color bind. Arrange 11 nonoverlapping equal squares on the plane in
pairs such that, for any coloring of these squares in three colors, there
exist two identically painted squares that touch each other along a side.

ANSWERS, HINTS & SOLUTIONS ON PAGE 61
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Mathematics:

1900—1950

MATH HISTORY

An overview of the first half of the 20th century

by V. Tikhomirov

HE END OF THE 19TH CEN-

tury and the beginning of the

20th century were marked by

unprecedented development in
science and technology. In 1895,
Roentgen discovered x-rays. Popov
and Marconi invented radio. In
1896, Antoine-Henri Becquerel dis-
covered natural radioactivity of ura-
nium salts. In 1900, Planck devel-
oped the theory of heat emission
based on the quantum hypothesis.
At the same time, the term gene
was introduced, and the splendid
field of genetics was born. In 1903,
the first plane built by the Wright
brothers performed its 59-second
flight. In 1905, Einstein developed
the special theory of relativity (simi-
lar ideas were developed simulta-
neously by Poincaré), gave new im-
petus to the quantum theory
(explained the theory of the photo-
electric effect), developed the fun-
damentals of the theory of Brown-
ian motion, and published the
formula E = mc2.

At that time, many people thought
that progress would bring about glo-
bal prosperity and the reign of rea-
son.

Alas, these expectations didn’t
come true. Many tragic events hap-
pened in the 20th century: wars,
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genocide, environmental degrada-
tion, bloodcurdling crimes, and so
on. At the present time, humankind
faces the most serious problems and,
if we are unable to unite and listen
to reason, we may perish. In the pre-
vious century, it was impossible to
imagine such a situation: the Earth
seemed infinitely rich, and nobody
felt a threat to the very existence of
life.

Science {and, in particular, math-
ematics) played an important role in
all the changes that took place in
this century. What changes occurred
in mathematics during this century?
In this article, we have a look at the
history of mathematics in the first
half of the 20th century.

The accomplishments of math-
ematics in the 20th century perhaps
exceed its achievements during the
previous two and a half thousand
years. How should we assess the ac-
complishments of this science?
First, we discuss the advantages that
mathematics can bring to human-
kind.

Goals of mathematics

In the previous century, there was
an argument between two promi-
nent scientists: the French Jean Fou-
rier and the German Karl Jacobi.

Fourier took the position that the
goal of mathematics is to help study
the laws of nature. Jacobi argued
that the goal is to glorify the human
mind. Thus, Jacobi suggested that
mathematics has a certain “inner”
sense which is as difficult to explain
as the sense of poetry or art.

In addition to the study of na-
ture and the “glorification of the
mind,” practical applications (in
engineering, technology, econom-
ics, and biology) have stimulated
mathematical studies in modern
times. Mathematics has also con-
tributed to the philosophical un-
derstanding of the world.

Below, we outline the historical
development of mathematics in the
20th century. The world was chang-
ing fast, and so was mathematics.

Mathematical schools

Up to the beginning of the 20th
century, mathematics developed
mainly within several countries.

In the 19th century, two math-
ematical schools competed: the
French and the German. F. Klein
gave an impressive, though biased,
account of this competition in his
very interesting book Development
of Mathematics in the 19th Cen-
tury. At the beginning of this cen-

Art by Yuri Vaschenko
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tury, Gauss reigned in mathematics,
and at the end of the century, it was
Poincaré.

At the turn of the century, other
mathematical schools appeared,
such as the Italian, Hungarian, Aus-
trian, Swedish, and others. In the
middle of the century, the Russian
school (chiefly, in Petersburg) ap-
peared. In the second decade of the
20th century it was supplemented
by the Moscow school, which be-
came the most prominent math-
ematical school in the world in the
1930s. At the turn of the century,
the first prominent mathemati-
cians appeared in America; after
World War I, the Polish school ap-
peared.

Such was the situation at the be-
ginning of the century. Nowadays,
this situation is changing. Math-
ematics is becoming a truly interna-
tional science. Hilbert’s vision of the
world uniting as a single math-
ematical community is being real-
ized. Lines of investigation have be-
come more diverse, and priorities
have changed.

New tevelopments in mathematics at
the beginning and end of the century

We can get an idea of which
branches of mathematics were most
important at the beginning of the
20th century by looking at the list of
sections at the Second Paris Con-
gress of 1900. That congress had a
great impact on the history of math-
ematics because Hilbert formulated
his famous problems there. Four
main sections were represented at
the congress: arithmetic and algebra,
calculus, geometry, and mechanics
and mathematical physics. There
were two additional sections: his-
tory and bibliography, and teaching
and methodology.

We can assess the changes that
occurred in mathematics during the
20th century by looking at the list
of sections of modern mathemati-
cal congresses: mathematical logic
and foundations of mathematics,
algebra, number theory, geometry,
topology, algebraic geometry, com-
plex analysis, Lie groups and the
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theory of representations, real and
functional analysis, probability
theory and mathematical statistics,
partial differential equations, ordi-
nary differential equations, math-
ematical physics, numerical meth-
ods and the theory of computing,
discrete mathematics and combina-
torics, mathematical aspects of in-
formation science, applications of
mathematics to nonphysical sci-
ences, the history of mathematics,
and teaching.

Many of these branches of math-
ematics evolved only in the 20th
century. In addition, the priorities
have changed: before World War II,
analysis and its branches (equations
of mathematical physics, probabil-
ity theory, and complex-variable
theory) were the main issues of
mathematics; after the war, the in-
terests of many mathematicians
moved to topology, multidimen-
sional complex analysis, algebraic
geometry, Lie groups, and the theory
of representations. The most re-
sounding successes and prestigious
awards came to mathematicians
working in these fields.

However, the change of priorities
occurred after World War II, which
is beyond the scope of this article.
Which new branches of mathemat-
ics evolved at the beginning of the
century? First of all, these are func-
tional analysis, topology, and the
theory of functions. We begin our
review of the accomplishments of
mathematics in the first half of the
20th century with the discussion of
these branches.

Functional analysis

The advent of functional analysis
was one of the most important
events in the development of math-
ematics before World War 1. This
new branch of mathematics com-
bined many concepts of classical
analysis, linear algebra, and geom-
etry.

As early as the late 19th century,
similarities were found between the
theory of linear algebraic equations
in a finite number of variables and
their infinite-dimensional analogs—
linear integral equations. The piv-

otal advance was achieved by
Fredholm in 1900. He replaced the
integral equation

x(t)- [ K(,o)x(x)de=v(t), (1)

where y|-) is a given function and x{-)
is the function to be found, by the
following system of linear equa-
tions:

i=0

For this purpose, he replaced the
integral by the integral sums

t;=a+ih, x;=x[t), y, = ylt),

kj=Klt, 1), 1<i,j<n.

Methods for solving systems of
linear equations were developed in
the 18th century. One acquires an
initial knowledge of these methods
at high school, and the complete
theory is studied in the first year at
university. Using these methods and
passing to the limit, Fredholm found
the solvability conditions and algo-
rithms for solving equation (1). These
results stimulated the development
of a theory combining algebraic and
geometric methods applied to objects
in an infinite-dimensional space.
Thus, linear functional analysis ap-
peared.

Another important part of func-
tional analysis was the theory of
quadratic forms, which was first
developed by Hilbert in 1904-1906.
Any quadratic form

- 2 2
Qlxy, Xy) = ay, X7 + 285X, X, + A%,

can be brought to the diagonal form
AyE+ A, v, by arotation of the axes.
Hilbert proved an analog of this
theorem for the quadratic form

Q[x()) = [ [ K(t,2)x(e)x(x)dt dr,

aa
K(t/ T)= K(T/ t)/

where the argument is a square-in-
tegrable function x(-) rather than a
vector X = (X, X,). A function is said
to be square-integrable if



b
sz(t)dt <oo.

The set of such functions was
called Hilbert space and is usually
denoted by L,. The theory of qua-
dratic forms in Hilbert spaces served
as a mathematical foundation of
quantum mechanics.

Development of topology

The word topology is nowadays
used to refer to two different
branches of mathematics. From the
beginning, a special adjective was
used with the word topology to dis-
tinguish those two branches. One
branch, first developed by Poincaré,
was called combinatorial topology;
and the other, pioneered by Cantor,
was called general or set-theoretic
topology.

General topology is close to set
theory and lies at the foundations of
mathematics according to the plan of
this science developed by the succes-
sors of Cantor—Hilbert, H. Weyl,
and others. This axiomatic theory
has as its aim the study of concepts
like limits, convergence, continuity,
and so on. In the 20th century, the
foundations of general topology were
laid by the German mathematician
Hausdorff, the Polish Kuratowski,
the prominent Russian mathemati-
cian P. Alexandrov of the Moscow
school, and others.

Combinatorial topology is a
branch of geometry. It studies the
properties of geometric figures that
remain unchanged under one-to-one
continuous mappings. Cantor con-
structed a one-to-one mapping of the
segment onto the square; however,
a one-to-one continuous mapping of
the segment onto the square does
not exist. This fact is proved in the
theory of dimension. Several promi-
nent mathematicians took part in
the development of this branch of
topology: Poincaré (who posed the
problem and outlined a method for
its solution), the Dutch mathemati-
cian Brouwer, the Frenchman
Lebesgue, the Austrian Menger, and
a representative of the Moscow
school of mathematics, Uryson,
who tragically died at the age of 26.

Presently, the adjective combina-
torial is usually omitted when refer-
ring to geometric topology. Unless
otherwise noted, the term topology
refers to Poincaré’s work.

The destiny of the two topologies
turned out to be different. General
topology serves mainly to glorify the
human mind, but it is not directly
involved in the study of the laws of
nature and applied research.

For a long time, geometric topol-
ogy was also considered as an ab-
stract science; however, quite re-
cently it turned out that it could
help us understand the structure of
the universe. In addition, topologi-
cal methods are used in virtually all
branches of mathematics: analysis,
the theory of differential equations,
and so on. Topology is now one of
the central branches of mathemat-
ics.

The theory of functions

At the beginning of the century,
Lebesgue completed the construc-
tion of the theory of measure and
integration. In the 19th century, fol-
lowing Cauchy and Riemann, the
integral

b

J.f(x)dx

a

was defined as the limit of Riemann
sums. That is, the following expres-
sions were taken as approximate
values of the integral:

if(&j)(xi _Xi—l),

yi=1

wherea=x,<x,<...x,_,<x =bis
a partitioning of the interval of inte-
gration and x, is a point in the inter-
val [x. |, x].

Lebesgue tried a different ap-
proach. He partitioned the y-axis,
rather than the x-axis, by points ...
Y; 1 <V;<.., arguing that for discon-
tinuous functions it was impossible
to choose a point x, that would ad-
equately represent the function on
the interval [x; ,, x,|. However, the
sets E; on the x-axis for which y,
<f|x) < y, can be rather weird for cer-

tain complicated functions. There-

fore, to develop the theory of inte-
gration, the theory of measure had to
be developed first. In other words,
one had to learn how such weird sets
can be measured. This was done by
Borel and Lebesgue.

Lebesgue defined the measure of
a set E (say, on the interval [0, 1]) as
follows. He referred to the lower
bound of the sums of the lengths of
intervals that cover E as the upper
measure of E. The upper measure is
defined for any set. The set E is said
to be Lebesgue measurable if the
sum of the upper measure of E and
of its complement (with respect to
the interval [0, 1]) is 1. In this case,
the upper measure of E is called the
Lebesgue measure of the set E, and
is denoted by mes(E).

Lebesgue replaced Riemannian
sums used to define the integral by
sums of the form

an-mes(Ei),

where 0, is a point on the interval
[v._, v;]. He eloquently described
the advantages of his method by
comparing how two clerks count
money. An inexperienced clerk
counts coins in the order in which
they come to him. An experienced
and methodical clerk proceeds as
follows: I have mes(E,) coins of 1-
franc, whose sum is 1 x mes(E ). I
have mes(E,) 2-franc coins, whose
sum is 2 x mes(E, ). Thave mes(E;) 5-
franc coins, whose sum is 5 x
mes(E,), and so on. As aresult, Thave
1 x mes(E,] + 2 x mes(E,) + 5 x
mes(E,) + ... francs. Certainly, both
clerks obtain the same result. How-
ever, in the case of an infinite num-
ber of indivisibles, the difference
between these methods is funda-
mental. The new measure theory
gave rise to a new approach in the
theory of functions—the metric
theory of functions. Set theory also
underwent a transformation. The
new theory was launched by three
French mathematicians—Borel,
Baire, and Lebesgue. It became
known as descriptive set theory,
which studies the structure of vari-
ous weird sets.
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In the 1920s, the leading role in
the theory of functions passed to the
Russian mathematical school repre-
sented by Nikolai N. Lusin and his
disciples P. Aleksandrov, N. Bari, A.
Kolmogorov, D. Menshov, M. Suslin,
A.Khinchin, and others. These scien-
tists founded the Moscow school of
mathematics. Having taken their
first steps in the theory of functions,
each of Lusin’s disciples proceeded to
study various other fields of math-
ematics. Kolmogorov and Khinchin
worked in probability theory,
Aleksandrov and Uryson in topology,
Lyusternik and Shnirelman in non-
linear analysis, Novikov in math-
ematical logic, and Lavrent’ev con-
tributed to complex analysis and
mechanics. Only Men’shov and Bari
continued studying the theory of
functions. In the 1930s, no other
mathematical school in the world
had such a group of brilliant math-
ematicians.

In the next section, we discuss
the role of mathematics in studying
the laws of nature.

Mathematics and physics

At the end of the 19th century,
it seemed that physics was a com-
pleted field of knowledge. Accord-
ing to legend, a young man! who
wanted to become a physicist once
asked a renowned physicist for ad-
vice. The master answered that he
saw no prospects in physics—only
two problems remained unsolved:
to explain the Michelson-Morley
experiment and to elucidate the
laws of radiation. Soon, these prob-
lems would be solved and nothing
would remain to be done in phys-
ics.

Several years later, the first prob-
lem gave rise to the special theory of
relativity, and the second to quan-
tum mechanics, which overturned
all our notions about the structure of
the world.

The special theory of relativity
was developed in 1904-1906 by
Lorentz, Einstein, and Poincaré. The
structure of the physical world de-
scribed by this theory was quite

1 Max Planck.
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strange. It contradicted physical in-
tuitions evolved during the previous
three centuries.

The mathematical foundations
of the special theory of relativity
were formulated by the prominent
German mathematician Herman
Minkowski, who established a con-
nection between this theory and
Lobachevsky’s geometry.

We illustrate this idea as follows.
Consider two airplanes that fly to-
wards each other, one with speed v
with respect to the Earth, and the
other with speed v’ (also with re-
spect to the Earth). According to
Newtonian mechanics, the speed of
the second airplane with respect to
the first one is v + v’; however, the
special theory of relativity gives a
different formula:

v+v’
L+ iy

c2

where ¢ is the speed of light. If the
airplanes move in the same plane
rather than along the same line, the
formula for adding the velocities is
related to a transformation of
Lobachevsky’s plane. In short, this
can be formulated as follows: the
space of velocities in the special
theory of relativity is realized by
Lobachevsky’s plane, where the for-
mula for adding velocities is defined
in terms of the motion of this plane.

It turned out that time and space
cannot be considered as separate
entities—our world is four-dimen-
sional. As a result, the multidimen-
sional geometry was given a physi-
cal meaning.

This event was very important for
mathematicians, because theories
that many people considered ex-
tremely abstract and as having no
connection with reality proved to be
useful in describing fundamental
characteristics of the universe.

Ten years later, Einstein devel-
oped the general theory of relativity,
which demolished all the estab-
lished notions of a “flat” world. The
geometry of our world proved to be
“curved” and related to gravitation.
The readings of measuring devices
will differ, depending on the trajec-

tory along which they travel from
one point to another. This phenom-
enon is closely related to one of the
most important concepts of geom-
etry—the concept of connectivity,
which defines parallel displacement
on curved surfaces. This notion was
studied by geometers of the Italian
school at the beginning of the 20th
century {Levi-Civita and others).

These events gave impetus to the
intensive development of geometry
in the 1920s and 1930s and of topol-
ogy at the present time.

In the 1920s, humankind faced an-
other shock—the advent of quantum
mechanics. One of the most stable
principles of science was over-
turned—that of the predictability of
the future on the basis of the past. It
turned out that the microcosm is un-
predictable in principle. Suppose that
an electron passes through an open-
ing and hits a screen. It turns out that
one can predict only the probability
of finding the electron at a certain po-
sition on the screen. This seemed un-
believable even for such a great sci-
entist and one of the founders of
quantum mechanics as Einstein—he
said repeatedly that he didn’t believe
God played dice with the universe.

We now try to explain what kind
of mathematics underlies this phe-
nomenon. In classical mechanics,
the motion of a particle is character-
ized by its coordinate x and its mo-
mentum p. It is assumed that they
can be measured simultaneously,
and that the future motion of the
particle is uniquely determined by a
differential equation.

In quantum mechanics, the loca-
tion of a particle is defined by a
(complex) wave function X(x) in the
Hilbert space L, on the line. This
function satisfies the condition

and determines the probability
Pyl[a, b]) of finding the particle (at a
certain instant of time) in the inter-
val [a, b] according to the formula

([ b)) = [|X(x) d.

a




The momentum is characterized
by another function P(p). This func-
tion is also defined on the line and
satisfies the condition

J‘P(p)‘zdp =1.

The probability %o, B]) that the par-
ticle momentum lies within the range
o< p <Bis given by the equation

R 2
%([o,B)) = [[P(p)f dp.

The motion of the particle is de-
termined by a partial differential
equation called the Schrédinger
equation.

One of the most important points
in quantum mechanics is that the
wave function and the momentum
function are related by the Fourier
transform

= —iBX
P(p):(Znh)fl/ZJ.X(X)e hodx, (3)

where # is Planck’s constant. The
most probable values of the particle
coordinate and momentum (their
mean values) are given by the for-
mulas

= JX‘X(X)‘ZCZX, n= J.p’P(p)‘zdp.

If these average values are zero, then
the dispersions of the coordinate and
momentum are given by the formulas

fXZ’X(X)ZdX,

—oo

Dx

Il

-
D} = [ p’|P(p) dp.

Equation (3) implies the inequal-

ity
42

Dipet

which is called the Heisenberg un-

certainty principle. It reflects the

fact that it is impossible to measure

precisely the position and momen-

tum of the particle simultaneously.

This overturned hopes for determin-
ism and complete knowledge of the
microcosm.

It happened that the mathemati-
cal foundations of quantum me-
chanics were developed by Hilbert
and his disciples shortly before the
advent of quantum mechanics itself.
In particular, the equivalence of two
approaches to the description of the
microcosm suggested by Heisenberg
and Schrodinger was quickly estab-
lished, owing to the fact that one of
the founders of the new science,
Max Born, had attended Hilbert's
lectures on functional analysis and
the theory of infinite-dimensional
quadratic forms.

Here is another story. When the
English botanist Brown discovered
the chaotic movement of small par-
ticles in a liquid, neither mathema-
ticians nor physicists paid much at-
tention to his discovery. The theory
of Brownian motion was first devel-
oped by Einstein (in the same year,
1905, that he created the foundation
for theory of relativity and quantum
mechanics) and the Polish physicist
M. Smoluchowski. It was Norbert
Wiener who first suggested the
mathematical theory of Brown-
ian motion. It turned out that the
trajectories of Brownian particles are
continuous functions that have no
derivatives.

The first example of a continuous
function that has no derivatives at
any point was constructed by
Weierstrass in 1872. Mathematicians
looked skeptically at this discovery:
many of them thought that this mon-
ster had no relation to reality. One of
the most renowned mathematicians
of the 19th century, Charles
Hermite, said that he was aghast at
these monsters, continuous func-
tions without derivatives. Again, the
conventional idea that everything in
the world is “smooth” was over-
turned. It turned out that the world
is populated by “monsters.”

The complete mathematical
theory of Brownian motion was de-
veloped by A.N. Kolmogorov. This
theory is one of the most prominent
achievements of mathematics in the
first half of the 20th century.

Development of abstract branches of
mathematics

The desire to glorify the human
mind independently of any practical
goal stimulated the efforts of many
mathematicians and sometimes led
them into “jungles” that had almost
no relation to reality.

In the first half of the 20th cen-
tury, the concept of an axiomatic
construction of the entire body of
mathematics arose. Citing Kolmo-
gorov, according to this concept,
pure set theory—this spiritual
legacy of Cantor—lies at the foun-
dation of mathematics. This theory
left deep marks on the history of
mathematics. It was believed that
Cantor found a “paradise” for
mathematicians. When absurdities
in set theory were found and many
scientists cast doubt on its founda-
tion, Hilbert said: “Nobody can ex-
pel us from Cantor’s paradise.”

The development of axiomatics
was connected with the critical
analysis of the foundations of math-
ematics.

The extraordinary development of
algebra in the 1920s led to the
algebraization of all of mathematics.
A considerable contribution to this
process was made by Emmy Noether
and her student B.L. van der Waerden.
Elementary geometry (Hilbert) and
probability theory (Kolmogorov) were
axiomatized as well. We have men-
tioned earlier the fields of general to-
pology and measure theory. Many
other axiomatic theories began to be
developed as well.

In the late 1930s, a group of French
mathematicians decided to present
mathematics on an axiomatic basis.
This group wrote under the collec-
tive pseudonym of Nicolas Bourbalki,
a French general. Set theory was at
the basis of the whole construction.
Then, the first story was constructed:
ordered structures, algebra, general
topology, and measure theory; next,
the second story had to be con-
structed, where algebraic and geo-
metric structures were to be com-
bined with topological and ordered
structures, and so on. This endeavor
remained unfinished. The very idea
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seems Utopian, since it 1s not pos-
sible to imitate the development of
science. However, Bourbaki’s efforts
were not in vain. In particular, they
created a language that still serves for
communication among mathemati-
cians.

Mathematics and the military-industrial
complex

Mathematics played an impor-
tant role in many events of the cen-
tury, some of which almost led to
worldwide disaster.

In particular, many mathemati-
cians “on opposite sides of the
trenches” took part in various pro-
grams aimed at the development of
modern weapons.

X-rays and radioactivity gradually
led scientists to the idea of using
atomic energy. Initially, physicists
got along without mathematicians.
However, the development of the A-
bomb and especially the H-bomb re-
quired the development of complex
mathematical models and massive
computations. Many prominent
mathematicians took part in the cre-
ation of the A-bomb. As a result,
principles of computational math-
ematics were revised and powerful
computers were developed. It seems
that the time has not yet come (at
least in Russia) for an assessment of
the contribution of mathematicians
to the creation of nuclear arms. How-
ever, there is no doubt that this con-
tribution was considerable.

The Wright brothers built their
airplane without using mathemat-
ics; however, further development
of aviation stimulated the develop-
ment of aerodynamics and the
theory of flight. Among the classics
of this science are N. Zhukovsky
and his disciples Chaplygin,
Golubev, and others. They applied
the theory of complex functions
(and developed it at the same time)
to flight theory. In the 1940s, super-
sonic aerodynamics emerged.

The invention of radio gave rise
to the development of a new field of
mathematics—the theory of nonlin-
ear oscillations. Among the creators
of this theory are prominent Russian
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scientists: Mandelstam and his stu-
dents and collaborators Papaleksi,
Andronov, and others.

Problems of controlling shellfire
and bombing stimulated the devel-
opment of many branches of prob-
ability theory (von Neumann,
Wiener, and Kolmogorov).

Problems of encrypting classified
messages and efficient transmission
through communication lines gave
rise to a new branch of mathemat-
ics: information theory (K. Shannon)
and coding theory.

Problems of automatic control in
industry and cosmic navigation
stimulated the development of opti-
mal control theory (Pontryagin and
Bellman). The same can be said
about many other branches of pure
and applied mathematics.

Much of what was done in secret
laboratories later became general
knowledge. The confrontation be-
tween two social systems during the
cold war resulted in unprecedented
development of technical facilities
and the present information explo-
sion caused by total computeriza-
tion. The first computers emerged at
the end of the period that we are
considering in this article, and
mathematicians played a key role in
their development. In particular,
von Neumann made the major con-
tribution to the development of
principles of computer design and of
programming.

Of course, mathematics is also
essential for engineering, econom-
ics, biology, and other fields of hu-
man activity. Among prominent
mechanicians and engineers who
made a major contribution in math-
ematics are Bubnov, Galerkin,
Krylov, Timoshenko, G. Taylor, and
von Karman. This list can certainly
be enlarged.

Mathiematics and philosophy

The 20th century was a time of
greatness—a time when our under-
standing of the world around us was
changed forever. Mathematics played
an important role in this process.

At the beginning of the century,
it seemed that science was close to
understanding the structure of the

world. Rational people were sure
that the laws of nature could be dis-
covered, that the universe existed
and would exist for ever, that it was
unbounded both in time and in
space, that the Earth evolved in a
natural way and so did life, and that
natural evolution resulted in every-
thing we have before our eyes.
Doubt was cast on all these facts in
our century.

The general theory of relativity
stimulated the development of cos-
mology. This led to the Big Bang
theory, that posits the existence of
an initial point in the life of the uni-
verse. According to modern esti-
mates, the universe has existed for
no longer than 10'% years. The space
of the “filled” universe proved to be
bounded, though expanding. The
theory of a “contracting universe,”
which predicts that the universe
will ultimately collapse into a point,
remains unproved. The prominent
Russian scientist Friedmann made a
major contribution to the develop-
ment of cosmological theories.
Quite recently, fantastic theories
about the multiplicity of domains in
the universe that differ in the direc-
tion of time have been developed
(Sakharov).

Significant drawbacks were found
in the majority of theories dealing
with the origin of the solar system.
The origin of the Earth and of life,
their evolution, and the origin of
humankind seem even more enig-
matic.

Doubt was also cast on many
major philosophical concepts. The
basic postulate of the post-
Newtonian scientific philosophy
stated that the world was governed
by differential equations; in other
words, it is completely predictable.
Only a small domain of this ordered
world was governed by Chaos: it
seemed that only in gambling could
something be unpredictable. Pascal,
Fermat, J. Bernoulli, and Laplace
were the first to describe the laws of
chance.

However, the domain occupied
by chaos has been steadily expand-
ing. Probability theory—the science
of chance—has been steadily devel-



oping. In the 20th century it took on
an orderly shape. Half a century ago,
it seemed that the Kingdom of
Chaos and the Kingdom of Order
were comparable in size. Only in our
time has the situation changed.

In contrast to the standpoint of
Newton and Laplace, many scien-
tists now believe that everything is
Chaos, and there is good reason to
believe this.

Serious doubt was cast on the
idea of the unlimited capabilities of
humanity. We have already men-
tioned information theory—the new
branch of mathematics that
emerged in the 1940s. Norbert
Wiener included information theory
in a more general scientific disci-
pline, which he called cybernetics.
The development of this science is
related to many philosophical ideas,
especially to the notion of con-
sciousness. It seemed to most people
that only humans could think. How-
ever, in the 1940s, Turing and
Wiener put forward the idea of mod-
eling human consciousness. Quite
recently, the idea of a computer de-
feating the world chess champion
seemed crazy; nevertheless, it hap-
pened! The discussion of the possi-
bility of creating artificial beings
capable of thinking pertains to a
new philosophy that has emerged in
our time.

At the beginning of the century,
many mathematicians (and particu-
larly Hilbert] believed that “every
problem can be solved.” It seemed
possible to design an algorithm that
would enable a machine to read the
formal description of an axiomatic
theory and prove any theorem of
this theory. It turned out that this
plan could be implemented (in prin-
ciple) for elementary geometry, al-
though the machine would have to
work extremely long to prove any
significant part of the well-known
theorems of geometry. However,
this plan is actually impossible to
implement for most other theories
(in particular, for arithmetic). This
great theorem was proved by Godel
in 1931.

Now we should say a few words
about problems that were stated or

solved in our century, and about the
role that these problems have played
in the development of science. This
topic deserves a separate article.
Here, we give only a short review.

Protilems

The study of the laws of nature,
the development of abstract math-
ematics, the achievements of ap-
plied mathematics, and speculation
about the philosophical foundations
of the world resulted in the emer-
gence of new branches of mathemat-
ics and new fundamental concepts,
the achievement of outstanding re-
sults, and the development of new
theories and efficient methods.

In the introductory part of his
lecture at the International Math-
ematical Congress in Paris in 1900,
devoted to the formulation of im-
portant mathematical problems,
Hilbert said: “It is impossible to
deny the important role of certain
problems for mathematics as a
whole and for particular investiga-
tions.”

The preceding centuries have left
for the 20th century several great
problems. The oldest of them is
Fermat’s last theorem, which states
that, for every integer n > 2, the
equation x” + y? = z% has no solu-
tions in positive integers. This prob-
lem was posed in the 17th century.
Two famous problems in number
theory—Goldbach’s conjecture and
Euler’s conjecture—have come
down to us from the 18th century.
Goldbach, in his letter to Euler in
1742, claimed that every odd natu-
ral number greater than 6 is equal
to the sum of three primes. Euler
noted that to prove this, it is suffi-
cient to prove that every even natu-
ral number greater than 2 is equal
to the sum of two primes.

Of the problems posed in the 19th
century, the most famous ones are
Riemann’s problem about the zeros
of the zeta function, and the con-
tinuum hypothesis of Cantor.

In the 20th century, the most fa-
mous set of problems is the list of
Hilbert’s problems, which we have
already mentioned. The first place in
this list is occupied by the con-

tinuum problem: does an uncount-
able set exist which can be mapped
in a single-valued way onto a unit
interval, but such that the unit in-
terval cannot be mapped onto this
set in a single-valued way? In other
words, does a set exist with a cardi-
nality greater than that of a count-
able set but less than that of a unit
interval?

Fermat’s last theorem was proved
at the very end of the 20th century.
Goldbach’s conjecture was “almost”
proved by I.M. Vinogradov, who
proved in 1937 that any sufficiently
large odd number can be represented
as a sum of three primes. The Euler
and Riemann problems remain
open.

Let us explain how several of
Hilbert’s problems were solved. To
a large extent, Hilbert turned out to
be a good forecaster, but in several
cases intuition failed him. As a rule,
this was related to the optimistic
view of the world that was charac-
teristic of the previous century.

In putting forward the continuum
problem, Hilbert proceeded from the
assumption that it can be decided
one way or the other. However, it
turned out that the continuum hy-
pothesis could neither be proved nor
disproved within the framework of
conventional axiomatic set theory
and mathematical logic. The fact
that it cannot be disproved was
proved by Godel in 1936. That it
cannot be proved was shown by
Cohen in 1963.

Hilbert’s confidence in the un-
limited possibilities of the human
mind was expressed by his apho-
rism: “We want to know, we will
know.” This confidence made him
sure that every mathematical prob-
lem must have a solution. Thus, he
posed the following problem as his
tenth: Given a polynomial P in n
variables, with integer coefficients,
find an algorithm to determine
whether or not the equation P = 0
has solutions in integers. The solu-
tion to this problem also turned out
to be negative as well, as proved by
Matiyasevich in 1970.

CONTINUED ON PAGE 17
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A star IS horm

Gravity backs a stellar production

by V. Surdin

E BEGIN OUR STORY IN

Great Britain at the begin-

ning of the 20th century. Sev-

eral years after a brilliant
graduation from Cambridge Univer-
sity, James Hopwood Jeans (1877-
1946) carried out a series of out-
standing studies in various fields of
theoretical physics: he published a
monograph on the kinetic theory of
gases and papers on molecular phys-
ics and the theory of radiation. Un-
der the influence of George Howard
Darwin, Professor of Physics and As-
tronomy at Cambridge University
(the son of the famous biologist Sir
Charles Robert Darwin), he com-
pleted a number of studies in theo-
retical astrophysics. These included
a fundamental study, “Stability of a
spherical nebula,” published in 1902
in the Proceedings of the Royal Soci-
ety (London).

This work described the behavior
of gaseous condensations under the
action of intrinsic gravitational
forces. It became the cornerstone of
the modern theory of gravitational
instability, which explains the ori-
gin of virtually all structural ele-
ments of the Universe, from galax-
ies and their clusters to the stars,
planets, and their satellites. The
characteristic sizes and masses of
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gravitationally unstable gaseous
condensations are now called
Jeansean and are labeled by the in-
dex J. For example, M, is the Jeans
mass and Ry is the Jeans radius.

Certainly, George Howard Dar-
win might be proud that he could
focus the attention of the young
Jeans on astronomy: his student
made an amazing contribution to
the development of cosmogony and
stellar dynamics. However, could
Darwin, who in 1899-1900 was
President of the Royal Astronomical
Society, foresee that Sir James
would fill this post a quarter of a
century later and establish the an-
nual Darwin Lectures in honor of
his tutor?

Curiously, the connection be-
tween these astronomers was even
more profound. George Darwin was
famous for his studies of tides and
the shape of rotating fluid bodies.
Jeans continued the studies of the
cosmogonic role of tidal phenomena
and even developed the tidal theory
of the origin of the Solar System,
which was very popular in the first
half of the 20th century. This theory
considers the birth of a planetary
system to be an extremely rare event
caused by a close fly-by of some star
near a sun, which tore a part of the

ST GF THE SLOUBRE

condensed protoplanetary matter
from the sun’s shell. Although in re-
lation to the Solar System this hy-
pothesis is of only historical interest,
the mechanism of tidal interac-
tion undoubtedly plays an impor-
tant role in the world of galaxies,
stellar clusters, and possibly during
the formation of stars, that is, at the
stage of so-called protostar evolu-
tion.

However, let’s return to the main
work of Jeans: the theory of gravita-
tional instability. After Jeans laid
the foundation at the start of the
20th century, astronomers needed
another 70 years to discover the
component of the interstellar me-
dium that is directly linked to star
formation. When Jeans’s theory is
applied to this component, it cor-
rectly predicts the parameters of
newborn stars. This period between
theoretical predictions and experi-
mental findings is strikingly long for
a modern, rapidly developing sci-
ence. Let’s consider the fundamen-
tals of Jeans’ theory.

This theory originates in the
work of the great physicist Sir Isaac
Newton (1643-1727]. Five years af-
ter Newton published his law of
gravitation, his young friend, cler-
gyman Richard Bentley, who was



then Master of Trinity College,
Cambridge, asked him in a letter
about the reasons for star forma-
tion. He was interested in whether
the recently discovered gravita-
tional force could be the cause of
the origin of stars. (This question
allows us to consider Bentley as the
joint author of the idea of gravita-
tional instability). We find Sir Isaac
Newton in his first letter to Dr. R.
Bentley (Dec. 10, 1692) writing as
follows:

“It seems to me, that if the mat-
ter of our Sun and planets, and all
the matter of the universe, were
evenly scattered throughout all the
heavens, and every particle had an
innate gravity towards all the rest,
and the whole space throughout
which this matter was scattered,
was but finite, the matter on the
outside of this space would by its
gravity tend towards all the matter
on the inside, and by consequence
fall down into the middle of the
whole space, and there compose
one great spherical mass. But if
the matter were evenly disposed
throughout an infinite space, it
could never convene into one mass;
but some of it would convene into
one mass and some into another, so
as to make an infinite number of
great masses, scattered great dis-
tances from one to another through-
out all infinite space. And thus
might the Sun and fixed stars be
formed, supposing the matter were
of a lucid nature.”

As we see, Newton elaborated the
idea of gravitational condensation of
the primordial matter. He consid-
ered this matter to be absolutely in-
ert and cold, with no resistance to
the compressing gravitation. There-
fore, according to Newton, any re-
gion of higher density must be pro-
gressively compressed, becoming
more and more dense as a result of
gravity.

Toward the end of the 19th cen-
tury, physicists clearly understood
that any matter, including rarefied
gas, is elastic: it is this property that
underlies such phenomena as the
existence of propagating sound
waves. Therefore, Jeans concluded

Columns of cool interstellar hydrogen gas and dust are giant incubators
for new stars. They are part of the Eagle Nebula, a nearby star-forming
region 7,000 light-years away in the constellation Serpens.
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that the gravitational compression
starts only when the force of grav-
ity overcomes the pressure of the
gas.

To find conditions that make this
possible, we shall obtain some
simple physical estimates. Let’s con-
sider what processes are induced by
a small stochastic compression of
some gaseous volume with charac-
teristic size A and density p. On the
one hand, the force of gravity tends
to prolong this compression. Were
the pressure of the gas entirely ab-
sent, all of the matter of the conden-
sation would fall to its center during
the period of free fall,

ty~(Gp) ",
which is independent of the size of
the perturbation.

This formula can be explained
with the help of Kepler’s third law.
The fall of any particle to the cloud’s
center occurs under the influence of
the attractive force generated by the
mass M ~ pa®, where a is the initial
distance from the particle to the cen-
ter. The fall time is equal to half of
the period of orbiting along a very
narrow ellipse, one focus of which
coincides with the cloud’s center.
According to Kepler’s third law, the
period of motion along an ellipse
with major axis a is equal to the pe-
riod of circular revolution at radius
a/2 around the mass M. (We recall
that it is Kepler’s ellipse as long as
all the particles fall to the center of
gravity and the mass of the cloud is
conserved at every r.) The period of
such circular motion can be easily
calculated using Newton’s second
law.

On the other hand, were gravita-
tion absent, the pressure of the gas
would force the cloud to expand
during the so-called “dynamical
time,” estimated as

A
tg~—

N

where v, is the speed of sound in the
gas, which is the same order of mag-
nitude as the speed of molecular
motion in this gas:
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Free compression of a cloud under the
action of its own gravitation can be
considered as motion of all its
constituent particles along strongly
elongated elliptic orbits obeying
Kepler’s laws.

" [RT
xS
N \)‘ !'l
(Here R is the gas constant, and  is
the molar mass.)

Evidently, if t; «< ¢, the molecu-
lar pressure will have plenty of time
to redistribute the matter in such a
way as to prevent its further gravi-
tational compression. In contrast,
when tp<ty the gravitational com-
pression occurs more rapidly than
the molecular expansion. Let’s find
the ratio of t; and ¢;:

t, A A

o (Gp) v, (RT/Gpu)

172"

We see that small-scale perturba-
tions (A << (RT/Gpu)'/?) are stable
with respect to stochastic compres-
sion, but large-scale perturbations
(A >> (RT/Gpu)'/2) are unstable: hav-
ing appeared, they cannot be
damped by expansion of the gas.
Thus, our reasoning yields the
following estimate of the critical

size K]:
[ RT )1/2
A~l=—] .
Gpu

from which we obtain an estimate of
the critical mass MI:

3/2
RT
My ~paf == | p
P [Gu] P

Apart from numerical coefficients,
the last two formulas are the famous
Jeans laws.

To gain a better feeling for the
meaning of these results, we deduce
them again from the equilibrium
condition for a gaseous cloud under
the action of molecular pressure and
gravitation, which according to the
definition of A, and M, takes place
precisely when & =4, and M = M.
The characteristic value of the free-
fall acceleration in the cloud is (or-
der of magnitude)

M
gNGFNka.

The pressure of the gas must coun-
terbalance the force of gravity; this
pressure must vary from zero at the
outer boundary of the cloud to the
value

P ~pgh ~Gpti?

in the depth of the cloud (we recall
the formula for hydrostatic pressure,
P = pgh). Substituting here the value
of P from the gas equation of state

_pRT
v

P

we obtain the same estimates for A,
and M; ~ pkﬁ as above. Using more
sophisticated mathematics, one can
obtain more accurate values of %,
and M; (we shall not prove this
here):

orT rRT )
Ay = My=|—| p 2
Gpu )’ 2Gu

These simple laws are corner-
stones of the theory of gravitational
instability. This says that if density
perturbations of various sizes arise
in a gaseous medium for any rea-
sons, the largest of them with mass
greater than M will be irreversibly
compressed into dense matter.
However, large-scale density fluc-
tuations are rare events, and usually
only small-scale density fluctua-
tions occur in the gaseous cloud.
Therefore, it is most probable that
gravitational compression will oc-
cur with perturbations that have
mass M = MI'




Two hundred and forty years af-
ter Newton wrote his letter to
Bentley, Jeans wrote in his book
“The Stars in their Courses” (1931):
“Assume that at the beginning of
time all the space was filled with
gas... One can prove that this gas
couldn’t remain equally distributed
in space, but immediately began to
condense into balls. We can calcu-

late how much gas is needed to form
every ball.”

Unfortunately, Jeans slightly
overestimated his possibilities: he
couldn’t provide a sufficiently cor-
rect proof of the validity of his for-
mulas, because in his time almost
nothing was known about the physi-
cal properties and composition of
the interstellar gas from which the

stars are formed. However, now we
can perform this work using modern
experimental data.

Astronomers have shown that
the chemical composition of stars
and interstellar gas is very stable:
every 1,000 hydrogen atoms are ac-
companied by 100 atoms of helium
and 2-3 atoms of other (heavier) el-
ements. In the dense cold clouds

Interstellar “twisters” in the heart of the Lagoon Nebula. The large difference in temperature between the hot surface
and cold interior of the clouds, combined with the pressure of starlight, may produce strong horizontal shear to twist the
clouds into their tornado-like appearance. The Lagoon Nebula and nebulae in other galaxies are sites where new stars
are being born from dusty molecular clouds.
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A stellar jet (the thin, wispy object pointing to the upper left) in the Trifid Nebula protrudes from the head of a dense
cloud and extends three-quarters of a light-year into the nebula. The jet’s source is a very young stellar object that lies
buried within the cloud. Jets such as this are the exhaust gases of the star formation process. Radiation from the massive
star at the center of the nebula is making the gas in the jet glow, just as it causes the rest of the nebula to glow.

where the stars are born, hydrogen
exists in the molecular form H,
with molar mass p(H,) = 2 g/mol.
With due allowance for other
chemical elements, the mean mo-
lar mass of the interstellar gas is
Mo ean = 2.3 g/mol.

In astronomy, the density of in-
terstellar gas p = (u_.,./N,)n is ex-
pressed in terms of the concentra-
tion of molecular hydrogen, n(H,).
Taking into account the composi-
tion of interstellar gas, we get n =
1.1n(H,). Substituting p and n into
Jeans’ formulas, we obtain their
modern form:

4 3\
7\‘ 3.2 104AU _M
A 10K n(H,) |’
812 10* em™
M; = 0.3Mo| Tox ()

Here M, =2 - 10%0kg is the mass of
the Sun, and AU (the astronomical
unit) is the average distance be-
tween the Earth and the Sun (1 AU
=1.5 -10'% cm).
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Recently, it was revealed that the
typical regions of star formation
are the small-scale condensations
in the interstellar molecular
clouds, where the temperature is
T = 5-20 K and the hydrogen con-
centration is n(H,) = 10*-10° cm™.
Correspondingly, M; = (0.02-2)M,,
in these regions. Astronomical ob-
servations have shown that the
masses of most stars are confined
to this range. Thus, Jeans’ theory
works!

Another touchstone for this
theory is the size of the “ancestor”
cloud of the stars. For our Sun this
size is estimated as 10* AU: this is
the value of the radius of the dense
interior of the Oort Cloud, which
contains most of the mass of the
cometary nuclei. How is this
value related to the predictions of
Jeans’ theory?

The radius of the gaseous frag-
ment at the beginning of its gravi-
tational instability is naturally
taken to be R; = A /4. Since the
mass of the fragment must be
equal to that of the Sun, and as-

suming T = 20 K, we get n(H,) = 10*
cm= and R = 10* AU. This value s the
same as the initial radius of the Oort
Cloud. Need we look for other proofs
of the validity of Jeans’ theory?

Of course, the simple Jeans formu-
las do not take into account many
physical processes occurring in the
interstellar medium. These formulas
are correct for an ideal homogeneous
gas at rest, which never really exists in
Nature. The real interstellar matter is
in constant motion, often with speeds
greater than the speed of sound. More-
over, this motion occurs under the
strong influence of the magnetic field,
the gravitational attraction of the
neighboring stars in the Galaxy, and
the radiation pressure from the bright-
est of them. No wonder that after
Jeans many physicists developed and
delineated the gravitation instability
theory. Among them were E.M.
Lifshits, S. Chandrasekhar, Y. B. Zel-
dovich, and J. Silk.

This theory is now highly devel-
oped: it takes into consideration the
expansion and rotation of the gaseous
medium and its interaction with mag-



netic fields and with external
sources of gravitation. However,
analysis of these additional physical
phenomena did not change the fun-
damental theoretical conclusions: in
the most modern studies the values
of the Jeansean mass and radius are
used to estimate the effects pro-
duced by gravitational instability.
One of the reasons for such scien-
tific longevity is the limited capa-
bilities of modern astronomical de-
vices: only on rare occasions is it
possible to obtain some other pa-
rameters of the protostellar medium
in addition to its density and tem-
perature.

Sir James himself was filled with
enthusiasm by the results of his
studies, and, first of all, by their
simple and clear nature. He wrote:
“Tt is clear why all stars have simi-
lar mass; all of them were formed by
the same process. Perhaps they look
like the goods produced by the same
machine-tool.”

At present, we know that the
masses of various stars may differ by
as much as a thousand times. There
are even greater variations in the pa-
rameters of the interstellar medium.
Therefore, we can consider Jeans’
enthusiasm as premature. However,
this was clear to Jeans as well, who
realized that only the first hurdle
was left behind on the long road per
aspera ad astra. Foreseeing future
problems in the theory describing
the formation of stars and galaxies,
he wrote a note of warning: “At the
present state of our knowledge, any
attempt to dictate the final solution
of the basic cosmogonic problems
would be nothing but pure dogma-
tism.”

Almost one century passed after
the plight of Sir James. This century
yielded plenty of data on star forma-
tion. It also demonstrated that Jeans’
theory of gravitational instability
stood the most difficult trial—the
test of time. Isn’t this wonderful in

the century of quantum and relativ-
istic physics, which made so many
classical theories obsolete? O
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Hilbert was so sure that functions
of three variables have a more com-
plex structure than functions of two
variables that he proposed the fol-
lowing hypothesis as his 13th prob-
lem: There exists a function of three
variables that cannot be represented
as the superposition of continuous
functions of two variables. This hy-
pothesis was radically disproved by
Arnold and Kolmogorov in 1957. It
turned out that any function of n
variables can be represented as a su-
perposition of the simplest function
of two variables [the addition func-
tion (x, y) = x + y] and continuous
functions of one variable.

The emergence of topology was
followed by great achievements.
Here are several examples. A circle
divides the plane into two parts,
which means that it is impossible to
connect a point outside this circle
with a point inside it by a continu-
ous curve without intersecting the
circle. The 19th-century French

mathematician Jordan proved that
any homeomorphic (that is, con-
tinuous one-to-one) image of a circle
also divides the plane into two parts.
The Dutch mathematician Brouwer
generalized this result for the ho-
meomorphic image of a multidi-
mensional sphere. In his proof, he
developed Poincaré’s ideas. In par-
ticular, he proved a remarkable
theorem called the Brouwer fixed-
point theorem. In the simplest case,
this theorem is as follows: Any con-
tinuous mapping of the plane disc
onto itself has a fixed point. Further
development of topology led to gen-
eralizations of these results obtained
by the Americans Alexander and
Lefshetz, the German Horf, the Rus-
sians Aleksandrov, Kolmogorov, and
Pontryagin, and others.

Several elegant topological prob-
lems were posed by Poincaré. An
example is the problem of three
closed geodesics. Suppose we take
a smooth stone and try to fit a rub-
ber band over it. If the rubber band
doesn’t slip off, we have found a

closed geodesic. Poincaré conjec-
tured that, for any smooth oval-
like body, there exist three closed
geodesics, and this number cannot
be increased. In particular, for an
ellipsoid with three different axes,
this number is exactly three. This
problem was solved by the Soviet
mathematicians Lyusternik and
Shnirelman.
¥ % %

We have given an account of only
some of the events of our century in
which mathematics played an im-
portant role; we have also discussed
some topics concerning our “internal
world.” We hope that you have
gained some feeling for the enormous
amount that was done in this rather
short period of time. We hope to pub-
lish in our journal articles devoted to
recent discoveries so that the reader
can be proud of our time. With con-
temporaries such as Finstein, Kolmo-
gorov, and Sakharov, it is certainly a
dynamic time to be working as a sci-
entist. I hope you too can one day
share in the excitement. Q
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Geometry of sliding vectors

The Swan is heaven bound,
The Crayfish pulls backward, the Pike moves upstream.

by Y. Solovyov and A. Sosinskiy

HE PHRASE IN THE EPI-

graph is taken from the well-

known fable of the famous

Russian writer I. A. Krylov. In
this fable, the Swan, the Crayfish,
and the Pike harnessed themselves
to a cart, but could not move it be-
cause everyone pulled it in a differ-
ent direction. Would you be able to
determine the motion of the cart if
you are given the forces and direc-
tions in which the Swan, the Cray-
fish, and the Pike are pulling?

This problem comes up quite of-
ten: certain forces are applied to
a rigid massive body at certain
points. How will this body move?
Strange as it may seem, the usual
vector approach studied at school in
physics and mathematics classes is
quite inadequate for solving such a
problem.

If we must take into account not
only the mass, but also the size of
a body, and if we deal with a real
body rather than a material point, it
is not always clear how the forces
applied to the body at different
places should be added, and what
we are allowed to do with the cor-
responding vectors. Indeed, what
are such “real” vectors? This article
presents an answer to this question
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in the form of a small mathemati-
cal theory—the theory of sliding
vectors.

What kinds of vectors exist?

A vector in the plane or in space

is usually depicted by a directed seg-

=2,

ment AB. It is defined by two
points: its origin (or point of applica-
tion) A and its terminus B. If the seg-
ment AB is extended in both direc-
tions, we obtain a line, which is
called the Iine of action of the vec-
tor AB.

When are two vectors considered
the same? The answer to this ques-
tion defines how we will think of
vectors, and it depends on the kind
of physical objects they represent.
We can think of at least three types
of vectors.

1. It may happen that two geo-
metrically equal vectors depict one
and the same physical or mechani-
cal magnitude. [Remember that in
geometry, two vectors (directed seg-
ments) are said to be congruent if
their lines of action are parallel,
their lengths are equal, and the order
of their points defines the same di-
rection on their lines of action; in
other words, if these vectors are con-
gruent under parallel translation.]

VYING VECTORS

Such vectors, which have neither a
definite line of action nor a definite
point of application, are said to be
free. For example, the vectors of
magnetic induction of a constant
magnetic field or the velocity of an
inertial coordinate system with re-
spect to another inertial coordinate
system are free vectors. We may
consider them as being applied at
any point. Mathematicians, as well
as physicists, study free vectors. The
vector that defines a translation is
the simplest example. When such a
vector is applied to a point, its termi-
nus indicates the image of this point
under the translation.

2. On the other hand, we some-
times encounter physical quantities
represented by vectors that cannot
be separated from their point of ap-
plication. Such vectors are called lo-
calized. The vector of the instanta-
neous velocity of a moving point is
one such example. It cannot be sepa-
rated from the moving point (of
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points in space are not moving with
the same velocity).

3. Finally, it may happen that two
geometrically congruent vectors rep-
resent equal physical quantities only
if they have the same line of action.
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Figure 1

An example is given by vectors that
represent forces acting on a rigid
body. Such vectors, which cannot be
separated from their line of action,
are called sliding vectors. These vee-
tors model forces that actually act on
rigid bodies having a definite size and
shape rather than on abstract and
infinitesimally small points. The ri-
gidity of the body being acted on is
important to our model. Such a body
neither expands nor contracts, and
passes the force along its line of ac-
tion without loss of magnitude.
Thus, the particular point of applica-
tion of the force along its line of ac-
tion is irrelevant, and in our model,
we allow it to “slide” along its line
of action.

In this article, we deal with slid-
ing vectors. In what follows, the
word vector, unless otherwise
noted, should be interpreted as a
sliding vector; instances of free or lo-
calized vectors will be specifically
indicated.

We will denote (sliding) vectors
by bold letters, for example v, or by

Figure 2
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two letters with a bar, for example
AB. Free vectors will be denoted by
letters with an arrow above them,
for example, v or AB.

Systems of sliding vectors

Thus, a (sliding) vector v= AB is
defined by the line I = AB—its line
of action—and the directed segment
AB on this line. Two vectors v= AB
and u = CD are considered identical
if they define the same free vector
(AB = CD) and have the same line
of action (the lines AB and CD coin-
cide).

In what follows, we will consider
finite systems of vectors v, v,, ...,
v,, rather than individual vectors.
Such systems correspond to systems
of forces that can be applied to a rigid
body. The order in which the vectors
are enumerated is irrelevant. How-
ever, one and the same vector may
occur several times in the system,
and it must be taken into account as
many times as it occurs.

Our aim is to learn how to trans-
form such systems of vectors and to
reduce, if possible, an arbitrary sys-
tem to a simpler one. For this pur-
pose we need some elementary op-
erations on systems of vectors and a
notion of equivalence.

Elementary operations and equivalence
of systems of vectors

If the lines of action of two vec-
tors v and u intersect, these vectors
can be added in a natural way: if u
=AB and v = CD (where A is the
common point of their lines of ac-
tion), then the vector w = u + v is
defined as the vector w= AD, where
the point D is obtamed by addmg
the free vectors AB + AC = AD by
the parallelogram law (figure la).
Such an addition of “intersecting”
vectors is the first elementary opera-

tion. It reduces a system of two vec-
tors (1, v) to a system consisting of
the single vector (w).

This operation has an inverse: for
any vector v = AB, one may choose
two arbitrary lines passing through
an arbitrary point on the line of
action (say, through point A) and
resolve the vector AB by the paral-
lelogram law (figure 1b). Thus, we
obtain a system of two vectors (v,
v,) from the single vector (v).

Note that only vectors with inter-
secting or coinciding lines of action
can be added. The addition of vec-
tors that have the same line of ac-
tion is especially simple. In particu-
lar (see figure 2), two opposite vec-
torsv = AB and -v = BA give a null
vector upon addition: 0 = AA,

The second elementary opera-
tion consists of eliminating a null
vector: that is, in passing from the
system (v, v,, ..., v}, v, —v) to the
system (v,, v,, ..., v;). In particular,
for k = 0, the simple pair (v, -v) is re-
duced to the empty or null system,
which is denoted in the same way as
the null vector, by 0.

The second elementary operation
also has an inverse: this is the gen-
eration of the null vector, that is,
passing from the system (v, v,, ...,
v, ) to the system (v, v,, ..., v, v, -V),
where v is an arbitrary vector.

We say that two systems of vec-
tors (uy, u,, ..., u,) and (v}, v,, ..., v}
are equivalent if each can be re-
duced to the other by a finite se-
quence of elementary operations.

From the point of view of me-
chanics, it is clear why we are inter-
ested in elementary operations and
equivalent systems. Indeed, two
equivalent systems of forces act
identically on a rigid body. You can
convince yourself of this fact not
only experimentally, but also by
simply thinking about the physical
meaning of the elementary opera-
tions. By reducing complex systems
of vectors to simple ones, it becomes
easier to understand the resulting
action of a given complex system on
a rigid body.

Problem 1. How do these elemen-
tary operations work when applied
to free vectors? To localized vectors?
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C) two antidirectional vectors of different lengths to two intersecting vectors

d) two antidirectional vectors of equal length to another pair

Figure 3. The simplest transformations of planar systems of vectors.

Simplest systems in the plane; pairs of
Vectors

Figure 3 shows how some simple
systems of vectors in the plane can
be reduced to other systems by el-
ementary operations. We advise the

reader to follow these operations
carefully and to practice them in
various cases.

Special attention should be paid to
figure 3d. It shows systems of two op-
posite vectors of equal length with
parallel lines of action. Such systems
are called pairs for short. It can be

Figure 4. Transformation of a single vector to a vector passing through a

given point and a pair.

Figure 5

seen from the figure that a pair can-
not be simplified; it can only be ro-
tated (transformed into another pair).

Figure 4 demonstrates another
series of elementary operations.
Here, we make the initial one-vec-
tor system more complex, rather
than simplify it: from the initial vec-
tor, we obtain a vector with another
line of action and a pair. However, if
we look at this figure in the reverse
order (which makes sense because
every elementary operation has an
inverse), we obtain a simplification:
the system consisting of a vector and
a pair is reduced to a single vector.
The transformation (v) — (u, x, y) is
particularly important. We will use
it a lot in later work.

Note that the methods used for
planar systems can be applied in spa-
tial problems as well. For example,
in figure 5, we have modeled the ef-
forts of Krylov’s hapless creatures.
The vector s models the force ap-
plied by the swan, ¢ the crayfish, and
p the pike, while g represents the
force of gravity. Following Krylov,
we have chosen s = —g and Icl = Ipl.
Then, settingc=a+v, p=>b + u (fig-
ure 5a), where b = —a, we can reduce
the system (s, ¢, p, g) to the planar
system (u, v).

Moment of a vector and moment
of @ pair

We have already seen that a pair
of vectors cannot always be reduced
to a single sliding vector. However,
a pair exhibits a useful vector char-
acteristic.
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Suppose we are given a vector v =
AB #0 and a point O not on its line
of action. Then the moment of vec-
tor v with respect to point O is the
localized vector OM, applied to the
point. Its line of action is taken per-
pendicular to plane OAB, and its
length |OMI is the product of the
length of v and the length of the pei-
pendicular from point O to line AB.
The direction of vector OM is cho-
sen so that the direction of the rota-
tion of v about O as observed from
the point M is positive (i.e., counter-
clockwise; figure 6). If the point O
lies on the line of action of v or if v
= 0, the moment is taken to be zero.
The moment of a vector plays an im-
portant role in the analysis of rota-
tions and has elegant applications in
geometry.

Now suppose that a pair of vec-
tors v= AB, v'= A’B’, and a point
O are given. (Recall that when we
talk about a pair of vectors, we mean
that they act along parallel lines.)
Let OM and OM’ be the moments of
v and v’ with respect to O.

Problem 2. Show that the length
and direction of the sum of the
moments of vectors v and v’ with
respect to O are independent of the
choice of this point. That is, show
that this sum is actually a free vec-
tor.

This free vector is called the (vec-
tor) moment of the pair (v, v’).

Problem 3. If d is the distance be-
tween the parallel lines AB and A’B’,
show that the length of the vector
moment of the pair (v, v/)is d - lvl.

Problem 4. Show that a pair of
vectors can be reduced to zero if and
only if its vector moment is zero.

Reducing planar Sysiems to a pair or a
vector

We now prove the following re-
markable theorem.

Any finite system of sliding vec-
tors in a plane can be reduced either
to a single vector or to a pair of vec-
tors.

Proof. If the given system con-
sists of a single vector, the theorem
is proved. If the system contains
vectors with intersecting lines of
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action, they can be simplified in
pairs (figure 3a) until only vectors
with parallel lines of action remain.
If there are three or more such vec-
tors, then at least two of them are
codirectional. Therefore, we can
simplify the system further (figure
3b). Thus, transformations 3a and
3b make it possible to reduce the
proof of the theorem to the case of
two vectors with opposite direc-
tions, but parallel lines of action. If
the lengths of these vectors are dif-
ferent, then transformation 3¢ with
the subsequent transformation 3a
yields a single vector. If the lengths
are equal, we have a pair. Thus, the
theorem is completely proved.

Note that we not only proved the
theorem, but also gave an effective
algorithm for finding an equivalent
vector (or pair). Also, if we are given
an arbitrary fixed point, we can per-
form the elementary operations in
such a way as to reduce the given
system to a pair and a vector with
the line of action passing through
the given point. Indeed, if the sys-
tem is reduced to a pair, this is ob-
viously true. If the system is reduced
to a single vector, the operation
shown in figure 4 transforms this
vector to a pair and a vector with the
line of action passing through the
given point.

Calculations with Systems of vectors.
Bases

We have learned how to reduce
planar systems of vectors to simpler
systems. We can also express one
system of vectors in terms of other
systems. In this way, we can per-
form calculations on systems of slid-
ing vectors that are similar to our
calculations with free vectors.

To describe this calculations, we
define the sum of two systems N =
(u, uy, ..., wJand M = (v, v,, ..., v)

Figure 6

as their “free combination,” i.e., as
the system

L=N+M=(u,u,, .., 0, v,Vv,,..,v)

Here, we interpret the equality of
two systems of vectors to mean that
they can each be reduced to the
same system by elementary opera-
tions. The product of the system N
and a number A is defined as the new
system

AN = (hu,, My, ..., Ay,

where Au denotes the vector with
the same line of action as u, of
length 1Al - lul, and having the same
direction as u if A > 0, but the oppo-
site direction if A < 0.

The system N is said to be ex-
pressed linearly in terms of systems
M,, ..., M, if there exist numbers %,
Ay, ..., A, such that

N=AM, + LM, + ... + AM.

Problem 5. Let O be an arbitrary
point in the plane. Let [ =iand [ =j
be two single-vector systems such
thati,j#0, iand j are non-collinear,
and iand j are both applied at point
O. Let K be any nonzero pair of vec-
tors. Prove that for any planar sys-
tem N there exist unique numbers
o, B, and y such that

N=oi+Pj + vk

Those readers who are familiar
with the concept of a vector space
will see that this assertion states
that I, /, and K form a basis for the
set of planar system of vectors, and
that therefore the set of classes of
equivalent sets of sliding vectors in
the plane forms a vector space of di-
mension 3 with respect to the opera-
tions defined above.

* x *

At this point, the authors had an
argument about what applications
of sliding vectors should be consid-
ered in this article. This theory is
used in statics (truss theory), in
structural mechanics, and in the ki-
nematics and dynamics of rigid
bodies. Its generalizations are used
in some modern branches of geom-
etry. However, in this article we
give only one example from the ki-



nematics of rigid bodies and present
several problems at the end of the
article.

Rotation of a rigid body

We are interested in the following
kinematic problem: how can the
motion of a rigid body rotating about
an axis be described if this axis, in
turn, rotates about another fixed
axis? This problem will be solved if
we give a method for finding the
velocity of any point of the body
with respect to a fixed frame of ref-
erence.

The solution can be elegantly for-
mulated in terms of sliding vectors.
Before presenting this solution, let
us first discuss the various kinds of
motion of a rigid body. We begin
with the simplest examples.

During uniform rectilinear mo-
tion, a rigid body moves in a fixed
direction with constant speed. For
all points, the velocity is the same
and is independent of time. All
points move along parallel lines, and
the motion is characterized by a
single free vector vy (the velocity).

During uniform rotational mo-
tion, a body moves with constant
angular speed about a fixed axis. The
velocity of all points on this axis is
zero, and the velocity of any other
point is perpendicular to the plane
passing through this point and the
axis. The magnitude of the velocity
is proportional to the distance from
the point to the axis. The points on
the axis do not move at all, and all
other points move along circles cen-
tered on the axis. This type of mo-
tion is characterized by a single slid-
ing vector » with the line of action
identical to the axis. This vector ®
is called the rotational velocity.

During uniform spiral motion, a
body rotates uniformly about an axis
(called the spiral axis) and simulta-
neously moves along it with con-
stant speed. The velocity of every
point is the sum of the vectors of the
rotational and rectilinear motions
(figure 7). The points of the body de-
scribe spiral lines, and only the
points of the axis move along it.
This type of motion is characterized
by a pair of vectors (v, o): the free

vector of the rectilinear motion v
and the sliding vector of the angular
velocity o (figure 7).

Of course, the possible types of
motion of a rigid body are not ex-
hausted by these examples. For ex-
ample, the vectors y and o may
depend on time. However, the fol-
lowing remarkable assertion is true
(see problem 10): however complex
the motion of a rigid body may be,
the instantaneous distribution of ve-
locities of its points coincides with
one of the three types described
above. By the way, note that rectilin-
ear and rotational motion may be
regarded as particular cases of spiral
motion. Two examples of more
complex motions are illustrated in
figures 8 and 9.

To return to our kinematic prob-
lem, suppose that the moving axis
M, N, rotates with constant angular
speed o, about a fixed axis AB, and
that the body itself rotates about

Figure 8
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Figure 9
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Figure 10

M, N, with constant (in magnitude)
speed ;. We stress that the latter
angular speed considered as a sliding
vector varies: o, = o, (t), because its
line of action, M, N,, changes. How
can the resulting motion be de-
scribed? This depends on the rela-
tive arrangement of AB and M, N,.

1. The axes coincide. In this case,
the body rotates about the fixed axis
AB = M,N, with a constant velocity
® = w, + ;. An example is provided
by the hour or minute hand of a
clock at the North Pole.

2. The axes are parallel and o, #
-m,. At any instant of time ¢, the ve-
locities of all points of the body are
the same as if this body were uni-
formly rotating about the line P,Q,,
the line of action of the vector o = ,
+ o, (here the plus sign denotes the
sum of two sliding vectors, as in fig-
ures 3 and 10}, with angular velocity
®. The body is said to have the in-
stantaneous angular velocity o and
the instantaneous axis of rotation
P.Q,. In the case under consider-
ation, the instantaneous axis rotates
about the fixed axis AB, remaining
parallel to it.

3. The axes are parallel and o, =
-,. In this case, the body executes
translational motion with constant
velocity v equal to the moment of
the pair (o, ;). An example is pro-
vided by the moving part of a bicycle
pedal (figure 8).

4. The axes intersect. This case is
similar to case 2: at any instant of
time ¢, the body has an instanta-
neous axis of rotation and an instan-
taneous angular velocity @ = o, + ©,.
The difference is that the instanta-
neous axis describes a cone with
vertex at the point of intersection of
the axes, rather than a cylinder as in
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case 2. One such example is the pre-
cessional motion of a top (figure 9).

5. The axes are skew. In this case,
the body has, so to speak, an “in-
stantaneous spiral axis” (see prob-
lems 6 and 7).

We see that the solution to our
kinematic problem can be elegantly
formulated in terms of the addition
of sliding vectors. Simple proofs of
propositions 1-4 are left to the
reader.

Various problems

1. Suppose that a system of sliding
vectors (v, vy, ..., v, ) is_given.Con-
sider free vectors vy, vy, ... , v,
equal, respectively, to the given slid-
ing vectors. We call the sum of these
free vectors the resultant vector of
the given system. The sum of the
moments of the vectors v, v,, ..., v,
with respect to a point O is called
the resultant moment of the sys-
tem with respect to this point.
Prove that any two equivalent sys-
tems have identical resultant vec-
tors and identical resultant mo-
ments with respect to the same
point O.

2. Prove that any system of vec-
tors lying in one plane is equivalent
to three vectors directed along the
sides of an arbitrary triangle in the
same plane.

3. Prove that any planar system of
vectors that are perpendicular to the
sides of a convex n-gon at their mid-
points is equivalent to zero if the
lengths of these vectors are propor-
tional to the corresponding sides and
all the vectors are directed towards
the interior of the polygon (or to-
wards its exterior).

4. Formulate and prove a proposi-
tion for the tetrahedron, similar to
that in the previous problem.

5*. Prove that any system of spa-
tial vectors is equivalent to six vec-
tors directed along the edges of an
arbitrary tetrahedron.

6*. Prove that any system of spa-
tial vectors is equivalent to a system
consisting of a vector (passing
through an arbitrary point) and a
pair. Deduce from this fact that sys-
tems of sliding vectors in three-di-
mensional space (taking into ac-
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count their possible equivalence)
form a six-dimensional vector
space).

Hint. First reduce the given sys-
tem to three sliding vectors passing
through three arbitrary points (by
resolving each vector in terms of
three directions|, then apply the
same technique to two vectors, one
of which passes through the given
point, and finally apply the con-
struction from figure 4.

7*. A rigid body rotates with
speed o about an axis that, in turn,
executes uniform rectilinear motion
with velocity v. Prove that (a) the
body executes spiral motionif ol v;
(b) the body has an instantaneous
axis of rotation if v_L w; (c) the body
has an instantaneous spiral axis if
v is neither parallel nor perpendicu-
lar to o (this means that all points of
a line—the spiral axis—have identi-
cal velocities v directed along this
axis, and the velocities of all other
points are equal to the sum of v and
the vector of the instantaneous
speed of rotation of the point about
the spiral axis).

8*. Prove that in the case of skew
axes AB and M_N, in the above ki-
nematic problem, the body has an
instantaneous spiral axis parallel to
the vector ®, + o, and intersecting
the common perpendicular to the
axes AB and M,N,. Describe more
precisely the position of the instan-
taneous spiral axis and the velocity
along this axis.

Hint. Use problem 7.

9*. Describe the resultant motion
of a body that executes instanta-
neous spiral motion with respect to
an axis that, in turn, executes spiral
motion with respect to a fixed axis.

10~*. Prove that however complex
the motion of a rigid body may be,
the distribution of the velocities of
its points at any instant of time is
the same as if the body executed
uniform (rectilinear, rotational, or
spiral) motion.

__11. The moment of the vector
AB with respect to the point O is
equal (in magnitude) to the doubled
area of the triangle OAB. Use this
fact to prove that the set of points in
the interior of any convex polygon

for which the sum of the distances
to its sides (more precisely, to the
lines containing the sides) is con-
stant, is either a segment, or the en-
tire polygon, or is empty.

“When, among pariners, concord there
is not,

Successful issues scarce are got ...”

Let us return to the fable cited at
the beginning of this article. Sup-
pose that a rectangular heavy cart is
standing on a road. The gravitational
force g acts on the cart; we may as-
sume that this force is applied at the
center of gravity of the cart. This
force is compensated for by the reac-
tion of the ground: the cart is not
moving. Now three agents—the
Swan, the Crayfish, and the Pike—
begin pulling the cart in different di-
rections with forces s, ¢, and p, re-
spectively, as shown in figure 5.
What will happen?

Having the theory at our disposal,
we can answer this question. The
system of forces (s, ¢, p, g), like any
other system of vectors, can be re-
duced to a pair and a vector (see
problem 6). We have already done
this and found the resulting pair (u,
v) in the horizontal plane. It is clear
that the cart will rotate, remaining
at the position where it is standing.
Thus, we can confirm the words of
the fable: “I know the cart remains
there, yet.” Q)
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Math
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Quad query. Quadrilateral ABCD
is inscribed in a circle. Let M be the
point of intersection of its diagonals,
and L be the midpoint of arc AD
(which does not contain the other
vertices of the quadrilateral). Prove
that the distances from L to the cen-
ters of the circles inscribed in tri-
angles ABM and CDM are equal.

M287

Up a creek. A mathematician
was walking home along a creek up-
stream with a speed equal to one and
a half times the speed of the current.
He had a hat and a stick. He wanted
to throw the stick into the stream,
but accidentally threw his hat in-
stead, and continued walking with
the same speed. Several minutes
later he noticed his mistake, threw
the stick into the stream, and ran
back with a speed equal to twice his
walking speed. He caught up with
the hat, picked it up (instantly), and
continued walking upstream with
his initial speed. Ten minutes after
he caught up with the hat, the math-
ematician encountered the floating
stick. How much earlier would he
have arrived home if he didn’t mix
up the stick and the hat?

M288

Simply irreducible. Prove that all
fractions of the form

101011...10101
110011..10011

are equal, provided that the numera-
tor and the denominator contain

HOW DO YOU
FIGURE?

Ghallenges

four zeros and the same number of
ones (the dots in the middle stand
for a sequence of 1’s). Find the irre-
ducible fraction equal to these frac-
tions.

M289

Smallest segment. A point M is
given on the graph of the function
y = x%. A perpendicular is drawn to
the tangent to this graph through
the point M. This perpendicular cuts
off a segment of the parabola. Find
the minimum value of the area of
this segment.

M290

Stuck in the middle. Two circles
and an isosceles triangle are ar-
ranged as shown in figure 1. Find the

Figure 1
altitude of the triangle drawn to its
base if the sum of the circles’ diam-

Physics

P286

Lunar perturbations. How does
the Moon affect the Earth’s orbit
around the Sun? (A. Dozorov)

P287

Diving bell. A diving bell is an
apparatus used for working under
water. It is a thin-walled cylinder,
which is sunk from a boat to the
seabed with its base up. What

should be the thickness of the bell’s
walls and base (that is, ceiling) to
make it rest at the bottom of a pond
at a depth of H = 3 m? The inner ra-
dius of the diving bell is r = 1 m, its
height is h = 2 m, and the density of
steel is p,, = 7.8 - 10° kg/m?.

P288

Inside a capacitor. A plate of
thickness h is made of weakly con-
ducting material with resistivity p.
It is placed inside a parallel-plate ca-
pacitor, parallel to its plates. The ca-
pacitor is charged to voltage V,,. Find
the maximal current that will flow
via the plate after short-circuiting
the capacitor. The area of each plate
of the capacitor is S, and the distance
between them is d, which is much
smaller than the size of the plates.
(V. Deryabkin)

P289

Flying plasmoid. Photographs
of radiating spherical plasmoids
(plasma clusters) that move with
uniform deceleration until they stop
completely look like bands of length
1. The maximal width of the bands
is d < 1. The distance between the
plasma and the objective of a cam-
era is L, and the focal length of the
objective is F. The minimal expo-
sure time needed to obtain an image
on the photograph is 1. Find the ac-
celeration of a plasmoid. The objec-
tive is open until the plasmoids stop
completely. (V. Sergievich)

P290

A spherical lens. A hemisphere of
radius R made of transparent glass
with refractive index n = 2 has a

CONTINUED ON PAGE 41
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Principles of vortex theory

Inside the hydrodynamics of Helmholtz

by N. Zhukovsky

ECHANICS IS THE CHILD
of the combined efforts of
geometricians and analysts.
It was not a rare event when
the complicated analytic formulas
were illustrated in a clear visual
form through witty geometrical
plots. Such interpretations encom-
passed the problem in its splendor
and completeness and clarified
many features that were overlooked
in purely analytic studies. This was
the case with the problem of the ro-
tation of a solid body about its cen-
ter of gravity. It was first solved by
the great Leonard Euler in analytic
form. However, the solution was
buried under a mass of formulas
until Louis Poinsot clarified it with
simple and clear geometrical inter-
pretations. Another example is the
work of Hermann Helmbholtz, who
illuminated many dark corners in
the problems of moving fluids.
Almost all the papers of Helmholtz
on mechanics were focused on hy-
dromechanical problems. It is not an
exaggeration to say that modern hy-
drodynamics was developed mostly
by Helmholtz. However, the most
remarkable work of this scientist on
hydrodynamics was published only
in 1858, after a long period of 43
years, when the formulas that had
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the vortex conservation principle
hidden somewhere inside their spa-
cious structure were obtained by
Augustin Cauchy. However, Cauchy
treated his results only from the ana-
lytical viewpoint and did not foresee
the huge number of questions that
could be solved with the help of the
corresponding geometrical interpre-
tation of his inferences.

I shall try to explain in the sim-
plest way the concept of a vortex as
elaborated by Helmholtz. Imagine a
cylindrical vessel of finite height
(figure 1) and rather large base,
which is filled with a fluid (a gas or
a liquid). Suppose that this fluid
moves in the following way: a cen-
tral cylindrical column of some
width rotates as a solid body about
its axis, while other parts of the fluid
circulate around this column with
speeds that are inversely propor-
tional to the distance from the axis

e

Figure 1

CIRCULATING FLUIDS

of the column. Thus, the speed of
the fluid grows in the direction to-
ward the axis of the cylinder, and it
coincides with the speed of the cen-
tral column at its boundary.

Such motion in fluids is called a
vortex, and its characteristic col-
umn is referred to as the vortical fila-
ment. We define the intensity of a
vortex as half the product of the fluid
speed at the surface of the vortical
filament and the circumference of
the normal cross section of the fila-
ment. Twice the value of this prod-
uct is called the circulation. In gen-
eral, the circulation along a closed
contour inside a moving fluid is
equal to the product of the length of
the contour and the mean tangential
velocity along the contour.

Since in the moving liquid shown
in figure 1 the speeds are inversely
proportional to the radius, the circu-
lations along all horizontal circles
centered about the axis of the col-
umn (and enclosing it) are identical
and equal to twice the intensity of
the vortex.

In contrast, the circulation along
a contour consisting of two arcs of
concentric circles and two radial
segments, and lying outside the fila-
ment (the contour ABCD in figure
2), is zero. This property can be gen-
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Figure 2

eralized: one can prove that the cir-
culation along any closed contour
enclosing the filament is equal to
twice the intensity of the filament,
while the circulation along any
closed contour that does not enclose
the filament is zero.

This property makes it possible to
detect a vortical filament in a mov-
ing fluid. To this end, one must draw
a closed contour and calculate the
circulation along it. If this circulation
is nonzero, the contour is threaded by
a vortical filament. Now we contract
the contour until the circulation
changes. In this way we may detect
the surface of the filament.

If our wide vessel contains only
one vortex due to a straight vortical
filament, it will remain motionless.
However, if two such vortices are
generated in the vessel, which circu-
late around parallel vortical fila-
ments, the filaments will move. Fig-
ure 3 shows the top view of two
vortical filaments of different inten-
sities that rotate in the same direc-
tion. Since the vortex generated by
the left filament spins the entire lig-
uid mass clockwise around the axis
of the filament, the right filament
will acquire a velocity directed
downward and perpendicular to the
radius. For the same reason, the vor-
tex generated by the right filament

Figure 3
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will impart to the left filament an
upward velocity. As a result, both
filaments rotate in the clockwise di-
rection around a certain point. The
location of this point can be deter-
mined if we place at the centers of
the two filaments masses propor-
tional to the intensity of the corre-
sponding filaments and find their
center of mass.

If the vortices circulate in oppo-
site directions (figure 4), the vortical
filaments rotate about an axis lo-
cated at the side of the filament with
the larger intensity, and this rota-
tion will be in the same direction
the stronger vortex rotates. If the in-
tensities of the two vortices are
equal, their common center of revo-
lution is located at infinity, so that
both filaments move forward in the
direction normal to the line con-
necting their centers (figure 5).

Figure 6 shows the trajectories of
three vortical filaments rotating
both counterclockwise (filaments 1
and 2) and clockwise (filament 3).
The indices mark the same time
values for all the vortices.

Our concept of a straight vortical
filament generated in a sufficiently
wide cylindrical vessel can be gener-
alized for vortical filaments gener-
ated in any mass of fluid. These fila-
ments can also be detected by means
of the circulation calculated along
closed contours, as we did for a
straight filament.

If vortices are generated in a fric-
tionless liquid subject to forces which
do not violate energy conservation,
the following remarkable theorem
holds: the circulation determined for
any closed contour in such a liquid
does not change when the particles
forming the contour are displaced.

Figure 4

Figure 6

It follows from this theorem that
the particles of the liquid forming
the vortical filament will generate a
filament of the same intensity dur-
ing a displacement of the vortex.
Another consequence of this theo-
rem is that no new vortical fila-
ments can arise in such a fluid. In-
deed, if we look for a vortical
filament with the help of circulation
values calculated along closed con-
tours, we shall obtain zero for all
contours not threaded by the fila-
ment, and the same constant value
for contours enclosing it. Therefore,
we shall conclude that the chosen
contours are pierced by a vortical
filament of the same intensity.

Another consequence of the same
theorem is that throughout its mo-
tion the vortical filament will either
have its ends at the fluid boundary
(at the walls of the vessel or at the
free surface) or remain closed.

In fact, in order to detach itself
from the walls of the vessel, the base
of the vortex would have to shrink
to zero size. Since the circulation
along the circumference of the base
must remain constant, such a con-
traction would require an infinite
speed for the circulating liquid at the
foot of the vortex.

The hydrodynamic pressure in a
fluid decreases when the speed in-
creases. Thus, when the base of the
vortex at the wall of the vessel con-




tracts, the increased speed will de-
crease the pressure there, so that the
neighboring fluid will push the par-
ticles of the base of the vortex and
prevent its detachment from the
wall. It looks as if the vortical fila-
ment “sticks” to the walls of the
vessel with its ends. If the end of the
filament is located at the free sur-
face, such “sticking” can be seen by
the “crater” formed at the free sur-
face near the end of the filament.

If the ends of a vortical filament
are not located at the boundaries of
the liquid, they must be attached to
each other, which means that the
vortical filament must be closed: its
ends are “stuck” to each other.

The simplest form of a closed vor-
tical filament is a ring (torus), as
shown in figure 7. All the particles
of the fluid lying outside the ring
move along closed curves threading
the ring in such a way that the cir-
culation values along all these tra-
jectories are identical and equal to
the circulation along the contour of
the normal cross section of the ring.
If we “enter” into the ring, we ob-
tain various values for the circula-
tion along the trajectories of its par-
ticles. The particles at the surface of
the ring have the largest speeds. The
speed decreases in the direction
from this surface to the inner part of
the ring and becomes zero at some
axial line. The speed also decreases
with the distance from the ring in
the adjacent mass of fluid. The speed
is inversely proportional to the cube
of the distance from the ring for par-
ticles at large distances from the
ring.

As we have seen, two parallel
straight vortical filaments of equal
intensity, rotating in a fluid in op-
posite directions, run along the line
normal to the plane in which both
filaments lie. For the same reason,
the vortical ring will not stay still,
but will run in the direction normal
to the plane of the ring to the side
in which fluid runs out from the
ring.

Figure 7 shows that the particles
of the fluid that move along the up-
per closed trajectories will push the
lower edge of the ring to the right.

Figure 7

Similarly, the particles of the fluid
moving along the lower closed tra-
jectories will push the upper edge of
the ring in the same direction.
Therefore, the entire ring will move
uniformly to the right and will
carry the part of the fluid rotating
around it. This motion is more
rapid for smaller rings with stronger
intensity.

As we mentioned above, vortical
filaments generated inside an ideal
fluid should always be preserved,
and no new filaments may appear in
it. However, in nature we often see
the birth and death of vortices. The
point is that water and air are some-
what viscous substances, and so our
theoretical reasoning must be
slightly modified to describe the
behavior of real vortices. On the one
hand, vortices can be generated pre-
dominantly in the regions where
two layers of fluid move with differ-
ent speeds and slide on each other;
on the other hand, the generated vor-
tices have only a limited lifetime
and gradually decay.

Generation of straight vortices
in liquids was demonstrated by
Helmholtz in a beautiful experi-

Figure 8

ment described in his lecture on
vortical tempests. Here we repeat
this demonstration.

A small hole at the bottom of a
cylindrical vessel (figure 8) filled
with water is plugged with a stopper.
A jet of air is blown via a tube to one
side of the free surface of the water,
thereby spinning the water slowly.
After opening the vessel, water be-
gins to pour out of the hole, moving
from the wall of the cylinder to its
axis. Particles of water move along
gradually decreasing circles centered
at the axis of the cylinder. Since the
circulation along these circles is
constant, the decrease in radius is
accompanied by an increase in speed
of the particles. In approaching the
axis of the cylinder, the speed of ro-
tation becomes greater until a vortex
with a characteristic deep crater can
be observed clearly.

A vortex can also be produced by
means of a rapidly rotating disk as
shown in figure 9. A vertical axle
with a small disk at its end is in-
serted through the bottom of a glass
cylinder. The cylinder is filled with
water, and oil is poured on top.
When the disk is set in motion, it
gradually spins the water and gener-
ates a vortical filament in it. The
vortex is clearly seen by the crater at
the oil-water boundary. The crater is
filled with oil, which goes down-
ward to the disk as a falling oil-
spout. At the instant when the oil
contacts the disk, the entire mass of
the oil is dispersed in the water.

Straight vortices in air can be pro-
duced and visualized by a very inter-
esting method. Air over water is
spun by means of a rapidly rotating
fan placed at some height over the
surface of the water (figure 10). The

Figure 9
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Figure 11

invisible air vortex catches water
into its axial filament and lifts it as
a rising waterspout up to the fan.

Vortical rings in air can be demon-
strated with the help of a Tait device.
This consists of a box (figure 11)
whose back panel is closed by a piece
of leather, while the front panel has
an orifice with a sharp edge. The
shape of the hole can be made round,
elliptical, quadrangular, and so on, by
using special fittings.

To visualize the vortical rings,
two jars are placed in the box: one is
filled with hydrochloric acid, and
the other with liquid ammonia. The
vapors of these chemicals produce a
thick fog composed of ammonium
chloride particles. Striking with a
fist or a hammer on the stretched
leather, we quickly push a mass of
air with ammonium chloride fog out
of the box. This mass passes through
the motionless air and causes the air
to execute vortical motion. The air
from the Tait machine wraps itself
into a vortical ring that is clearly
seen by the fog that fills it. Evi-
dently, the air near the ring will ro-
tate in such a way that the vortical
ring moves away from the orifice of
the apparatus.
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Previously, we saw (figures 3-6)
how a number of straight vortices
interact with each other. By observ-
ing the vortical rings puffed from the
Tait apparatus, one can see cases of
interaction between them. When
rings contact each other with their
sides, they are repelled. One ring can
pass through another. This interest-
ing case was investigated theoreti-
cally by Helmholtz in detail. He
showed that the trailing ring should
decrease in size and acquire in-
creased speed. In contrast, the lead-
ing ring becomes larger in size and
decelerates. These changes continue
until the trailing ring passes through
the leading ring. After this, the rings
interchange roles: the trailing ring
again catches up and passes through
the leading ring. Unfortunately, this
play of two rings can be observed
only rarely, when their sizes and
intensities are properly matched.

We can prove that a vortical ring
carries rapidly rotating air by direct-
ing the ring to a burning candle. A
candle placed at a large distance
from the Tait apparatus is blown out
whenever its flame is caught by a
ring. In my youth I tried to find out
why a percussion cap shot from a
gun can blow out a burning candle
at a great distance. Now I know the
reason: a pistol fires not only a bul-
let, but also a vortical ring of air.
Such a ring can travel a great dis-
tance without decay.

Previously, we puffed the rings
from a round orifice. The rings may
be formed by elliptical or square
holes. However, such rings do not

Figure 12

retain their shape and oscillate, try-
ing to assume the “correct” round
shape, which is a single stable form
of a closed vortical filament.

Now let us consider the influence
of material bodies on the vortical
rings. Solid bodies placed at the side
of a moving ring repel it. However,
if a ring runs into a plane parallel to
its own plane, it will become greater
and greater, as if spreading around
the obstacle. If we put a knife in the
way of the ring so that the plane of
its blade contains the ring’s axis, the
ring will be cut into two half-rings,
whose ends will slide on the blade.
When these half-rings pass the knife,
their ends are “glued” together to
restore the ring.

In addition to smoke rings in air,
one can observe air-traced rings in
water. This interesting phenomenon,
which at first glance seems paradoxi-
cal, has a simple explanation. The
point is that the pressure at the axis
of a vortical ring is greatly reduced as
a result of the centrifugal force. If we
introduce a few air bubbles into wa-
ter at the instant of generation of a
vortical ring, they quickly get to that
part of the liquid where the pressure
is minimal, that is, to the axis of the
ring. The air bubbles will be retained
there all the time, as long as the vor-
tical ring travels in water, despite the
fact that air is 800 times less dense
than water.

We describe here a device to gen-
erate air rings in water, which are vi-
sualized with the help of air bubbles.
It consists of a large glass bath {fig-
ure 12) filled with water. A wide
glass tube bent at a right angle is
sunk into the bath. The upper end of
the tube is held above the water sur-
face. It is connected to a rubber ball,
which can be pressed to push air
into the tube, thereby expelling wa-
ter from it. By rapidly squeezing the
rubber ball, we expel water from the
horizontal elbow and displace air to
the very flange of the tube. In this
way we not only expel water from
the tube, but also release a small
amount of air into the bath. After
leaving the tube, the horizontal wa-
ter column is curled into a vortical
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HE TRIANGLE IS THE
simplest polygon—it has
three vertices and three
sides. The study of triangles =
gave rise to a branch of mathemat-

ics—trigonometry—in which the

metric properties of the triangle are
expressed in terms of functions of its
angles. The development of this sci-
ence was stimulated by practical de-
mands. Trigonometry was used to

measure parcels of land, to
make maps, and to de-

sign machines.

The earliest refer-
ences to the triangle
can be found in Egyp-

tian papyri more than
4000 years old. For ex-

ample, the Egyptians knew an ap-
proximate formula for calculating
the area of an isosceles triangle: the
area was found as the product of
half the base and the lateral
side. This formula gives a
good approximation if the
angle opposite the base is
small.

In ancient Greece 2000
years later, considerable
progress in the study of the
triangle’s properties was
made. It suffices to recall the
Pythagorean theorem and Hero’s
formula.

After a long period of cultural de-
cline, the Renaissance began in the
15th century. Numerous studies of
the triangle appeared, especially in
the 18th century. These studies
made up a large part of plane geom-
etry, called the new geometry of the
triangle.

Here is one remarkable theorem
proved by Euler: the midpoints of

KALEIDOSCOPE

out the triangle

the triangle’s sides, the feet of its
altitudes, and the midpoints of
the segments connecting its
vertices with the orthocenter
(the point of intersection of the
triangle’s altitudes) lie on a circle.
This circle is depicted in figure 1. It
is often called the nine-point circle
(in view of the nine remarkable
points that lie on it). It is also
known as Euler’s circle or
Feuerbach’s circle, after
the 19th-century Gez-
man mathematician
K. Feuerbach (the
brother of the promi-
nent philosopher L. Feuerbach), who
proved that this circle is tangent to
the inscribed circle of the triangle
and all its escribed circles (that is,
the circles tangent to a side of the
triangle and the extensions of the
other two sides; see figure 2).
Let us denote by H the
orthocenter of a triangle
ABC. Tt turns out that
triangles ABC, ABH,
BCH, and CAH have the
same nine-point circle.
Therefore, the nine-

point circle is tangent to
the 16 circles that are
inscribed or escribed for triangles
ABC, ABH, BCH, and CAH.

The radius of the nine-point
circle is equal to half the radius of
the circumscribed circle, and its cen-
ter lies at the midpoint of the seg-
ment connecting the center of the
circumscribed circle with the ortho-

center of the triangle. The line
containing this segment is
called the Euler line. The
point of intersection of the
triangle’s medians also lies
on this line.

It is well known
that Napoleon de-
voted part of his time
to mathematics. The fol-
lowing elegant theorem is attributed
to him: the centers of the equilateral

Figure 2

triangles constructed externally on
the sides of any triangle form an-
other equilateral triangle. This equi-
lateral triangle is called the external
Napoleon triangle. An internal Na-
poleon triangle can be constructed
similarly.

Even in the 20th century, there
were some discoveries left to be
made in the geometry of the tri-
angle. In 1904, the American math-
ematician F. Morley proved that if
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Figure 3

the angles of any triangle are tri-
sected, then the points of intersec-
tion of adjacent trisectors form an

. trisectors,

equilateral triangle (figure 3). An-
cient Greek mathematicians could
have proved this theorem. Most
probably, they didn’t discover this
remarkable fact because they con-
sidered only constructions that
could be made using a compass and
a straightedge. Angle
however,
cannot be constructed
using only these instru-
ments (this wasn’t proved
until the 19th century).

In the middle of our cen-

tury, a generalization of &%®

Morley’s theorem was obtained.
For every angle, we can consider
three types of trisectors. The first

kind was consid-
ered above. The
second kind in-
cludes trisectors
of angles adjacent
to the given one. The
third kind includes trisectors of the
angle whose measures, to-
gether with that of the
original angle, add up to 360
degrees. The points of inter-
section of these 18 trisectors
form 18 (!) equilateral triangles,
whose sides are parallel to the
sides of the basic Morley triangle.
A special report on this subject was
presented at the Moscow Math-
ematical Congress in 1966. O]

AT THE
BLACKBOARD |

An Olympian effort

ACH GENERATION OF STU-
dents at the mathematical de-
partment of Moscow University
has had its Olympic! leader. My
generation also had such a leader.
The members of his family said
that even before he could speak prop-
erly, he would tell people he wanted
to be an “alithmetician.” He started
taking part in mathematical Olympi-
ads when he was in the fifth grade,
despite the fact that the contests
were open only to students in the
eighth grade and above. More incred-
ible is that he always solved the prob-
lems and was among the winners.

1We mean Mathematical
Olympiads, of course.
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by V. Tikhomirov

At that time, mathematical
Olympiads were organized by the
Moscow Mathematical Society,
Moscow University, and the Mos-
cow Department of Education. The
winners were given books. The
first-prize winners were given a
large pile of books, the second-prize
winners were given a smaller pile,
the third-prize winners a still
smaller pile, and the winners with
honorable mention were awarded a
single book, which was neverthe-
less nice. All the books were signed
by renowned mathematicians, and
the ceremonial presentation was
held in the main auditorium of the
mathematics department. Accord-

ing to legend, the hero of my story
was once given a pile of books taller
than himself. Be that as it may, he
was always the winner. I believe
that his achievements were never
exceeded.

Later, my hero and I entered the
mathematical department of Mos-
cow University, then worked there
and became friends. My friend be-
came a prominent mathematician
and could still solve any Olympiad-
type problem.

Once, in the mid-1970s, a profes-
sor who had to make up problems
for the entrance exams left for a long
business trip abroad. He started the
work but didn’t finish it. The job



was urgent (it was May already, and
the exam was to take place in July),
and I was asked to finish it. The list
of people who were supposed to help
me included the name of my friend,
and I agreed to do the job.

Easy problems were already made
up, but I lacked more difficult ones
and, in particular, the so-called
“nonstandard” problems. Each set of
problems had to include a nonstand-
ard problem.

You may ask what a nonstandard
problem is. T also asked this question
and was given the following expla-
nation.

There exists an old and unsolved
problem: Is it possible to test talent?

Athletes think that they have
solved this problem. Once I ob-
served how children were tested as
to whether or not they could try out
for gymnastics. A girl came up to the
woman who was responsible for
testing. The woman grasped the
poor girl’s buttocks and said: “The
buns are too fat, doesn’t suit.” The
procedure took only a second. I was
delighted by its simplicity. How-
ever, we still don’t know whether
there exists a simple procedure for
testing talent for mathematics. It is
unclear whether it is possible, as
A.N. Kolmogorov wrote, taking into
account the particular atmosphere
of the entrance exam used to assess
a student’s prospects in a certain
branch of science.

Among other things, nonstandard
problems were intended to test
whether or not a student has a tal-
ent for mathematics. Such a prob-
lem has to include a difficult ele-
ment that was impossible to
overcome by standard methods. It
was assumed that only talented stu-
dents were able to solve this prob-
lem.

The nonstandard problem tradi-
tionally occupied the last, fifth place
in the list of problems. Everybody
knew that this problem was very
difficult, and only ambitious stu-
dents tried to solve it. As far as I
know, the information on who
solved the nonstandard problem was
not made public, so I don’'t know
who of the really talented mathema-

ticians solved such a problem at the
entrance exam.

Thus, among other things, I had
to find a nonstandard problem, and
I asked the hero of this story to do it.
Naturally, he asked me what a non-
standard problem was. Instead of
giving him lengthy explanations, I
showed him a list of problems posed
on the entrance exam of the previ-
ous year and asked him to make up
a problem similar to the fifth prob-
lem in this list (however, I didn’t
solve it myself]. We agreed that he
would phone me two or three days
later.

However, he didn’t phone me
even a week later. I was pressed to
finish the work, and thus phoned
him myself. With irritation I asked
why he didn’t contact me. Melan-
cholically, he answered that he
couldn’t solve my problem. Here it
is.

Find all pairs (x, v) of real num-
bers satisfying the conditions

[
|
I

4y? —0x? = \ 2<X + 2y)2 —(x+ 2y)4,
x* +2S4y(x2 —1),

I think that my legendary friend
was cunning. I don’t believe that
there is an Olympiad-type problem
that he couldn’t solve. Later, I solved
this problem myself, which took
several hours (but not days). I think
my friend just didn’t want to solve
the problem, maybe because he con-
sidered it insufficiently elegant, or
for some other reason. Be that as it
may, he didn’t pass the test.

What is your opinion? Do you
think this is an adequate problem for
testing talent? Tty to solve it.

By the way, my friend and I failed
to make up a nonstandard problem
that year. The job was done by other
people.

In case you don’t want to ponder
that problem, here is my solution
(maybe not the best one).

Denote (x + 2y)? by z. The func-
tion 2z — z? attains its maximum at
z = 1. Thus, we find from the first
equation that

4y? —2x? =+2z-2%* <1. (1)

The second inequality can be writ-
ten as

x*—4yx2 + 4y + 2.<0,
or
x*—dyx? + 4y <4yr 4y -2,
or
[(x%— 2y <4yt — 4y — 9,
This implies that

x?< 2y +4/4y* —4y-2. (2]

Therefore,
4y <2x* +1<4y + 2ay® —4y -2 +1

which is equivalent to the inequal-
ity

4y® —4y—2-2.[ay* —4y -2 <0.

This implies the inequality
— e . yp
(\J‘4y2 _4y-2-1| <o0.

Thus, 4y? — 4y — 2 = 1; therefore,
y =-1/2 or y = 3/2. In the first case,
the second condition of the problem
(the inequality) entails x* + 2x2 <= 0;
that is, x = 0.

In the second case, we have x* —
6x* + 8 0. This implies that x2 < 4.
Substituting into the first condition
of the problem (the equation), we
find that

9=2x2 +2(x+3)" ~(x+3)";

but we have already observed that
the function under the radical sign
has its maximum when x + 3 = 1.
Hence

932X2+1;

that is, x2 > 4. .

As a result, we arrive at the fol-
lowing conclusion: there exist only
two pairs of numbers satisfving the
conditions of the problem: (0, —1/2)
and (-2, 3/2).

If you want to know my opinion
about testing talent, I doubt that it
is possible to make up a short test
for finding out whether a student
will be able to become a scientist or
not. What’s your opinion? Q
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Magnetic veg

by Larry D. Kirkpatrick and Arthur Eisenkraft

NE OF THE GOALS OF

modern day theoretical physics

is to reduce all forces in Nature

to manifestations of a single
force. In fact, the 1999 Nobel Prize
in Physics was awarded to the
Dutch physicists Gerardus ‘t Hooft
and Martinus J. G. Veltman for their
contributions in unifying the elec-
tromagnetic interaction and the
weak interaction. Their theoretical
methods have also been applied in
attempts to combine this electro-
weak interaction with the strong in-
teraction to form a grand unified
theory. The biggest remaining prob-
lem is how to include the gravita-
tional interaction in a “theory of ev-
erything.”

During the early part of the 19th
century, much effort went into es-
tablishing connections between
electric forces and magnetic forces.
Although there had been much dis-
cussion of possible connections, the
first connection was established in
1819 during a classroom demonstra-
tion when the Danish scientist Hans
Christian Oersted discovered that a
current carrying wire deflected a
compass needle. Furthermore, he
discovered that the compass needle
pointed at right angles to the current
and that the compass needle pointed
in the opposite direction when the
current was reversed.

Within one week of the an-
nouncement of Oersted’s discovery
in 1820, the French physicist André
Ampere formulated the right-hand
rule: if you grasp a wire with your
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The secret of
magnetism, now
explain that to me!
There is no greater
secret, except love
and hate.
—dJohann Wolfgang
von Goethe

right hand so that your thumb
points in the direction of the cur-
rent, the compass points in the di-
rection of the fingers. In modern lan-
guage, the magnetic field lines are
circles around the wire and your fin-
gers point in the direction of the
magnetic field.

A short time later, Ampere devel-
oped a formula for calculating the
magnetic force between current-car-
rying wires. He also made the sug-
gestion that all magnetic fields are
due to currents, including those at
the atomic level. Note that this oc-
curred three-quarters of a century
before the discovery of the electron
and the publication of Niels Boht's
theory of the hydrogen atom a de-
cade later.

During this time, Jean Baptiste
Biot and Félix Savart obtained a
quantitative expression giving the
contribution dB to the magnetic
field at a point P due to an element
of current Ids. The full expression,
now known as the Biot-Savart law,
is

Ids xt

_ My
dB == 5

47 r

where f is a unit vector directed
from the current element to the
point P and i, is the permeability of
free space with the value 4n - 107
T-m/A.

To find the total magnetic field
created at point P by a current of fi-
nite length, we must sum up the
contributions from all of the current
elements:

B:&J' Idsxf.

4 1’2

We must be very careful when
evaluating this integral as the inte-
grand is a vector quantity and we
must take its direction into account.

Notice the similarity of the Biot-
Savart law with Coulomb’s law.
Here a current element produces a
magnetic field that varies as the in-
verse-square of the distance from
the current element. In Coulomb’s
law, a point charge produces an elec-
tric field that varies as the inverse-
square of the distance from the point
charge. ,

However, the directions of the
two fields are very different. In
Coulomb’s law the electric field is
radial; it points toward or away from
the point charge. In the Biot-Savart
law, the magnetic field is perpen-
dicular to both the current element
and the radius vector. The magnetic
field points out of the plane deter-
mined by the current element and
the point P.
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Figure 1

Let’s apply the Biot-Savart law
to find the magnetic field gener-
ated by a thin, straight wire carry-
ing a constant current [. Let’s set
up the geometry as shown in figure
1. The wire is along the x-axis with
the current in the positive x-direc-
tion. The point P is along the posi-
tive y-axis at a distance a from the
origin O.

Using the right-hand rule, we see
that each current element produces
a contribution to the magnetic field
that points out of the page. There-
fore, the total magnetic field points
directly out of the page and we only
need calculate its magnitude. This
means that we can replace ds X ¢
with dx sin 6, where 6 is the angle
between the direction of the current
element and the direction to point P
as shown in figure 1.

Before we go on, we note that we
have more variables than we need. If
we choose a given current element,
the values of r, x, and 0 are all speci-
fied. Therefore, we must express
two of these three variables in terms
of the third variable before we carry
out the integration. Let’s choose to
express everything in terms of 8. We

then have
a
r=—
sin®
and
—a
X = .
tan 6

Taking the derivative of the last ex-
pression, we obtain

dx = .adz(i) .
sin“ 6
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After making these substitutions,
we are left with calculating the in-
tegral

6y
B= “—OII " 5in 040
41ade,

ol
=——(cosB; —cosH,).

4rma ( ! 2)
The angles are defined in figure 2.

If we look at the special case of an
infinitely long, straight wire, 6, = 0
and 6, = w, and the magnetic field is
given by

potsd
2na

Our contest problem is based on
a problem that was given at the In-
ternational Physics Olympiad that
was held in Padua, Italy, last sum-
mer. A very long, thin, straight wire,
carrying a constant current /, is bent
to form a “V” of half-angle o as
shown in figure 3.

A. What are the directions of the
magnetic field at points P and P"?

B. What is the magnitude of the
magnetic field at point P?

C. What is the magnitude of the
magnetic field at point P*?

Please send your solutions to
Quantum, 1840 Wilson Boulevard,
Arlington, VA 22201-3000 within a
month of receipt of this issue. The
best solutions will be noted in this
space.

o
aB
s

Figure 2

Figure 3

Breaking up is hard to do

In the September/October issue,
we asked a series of questions re-
lated to the energy released during a
fission reaction.

Part A asked readers to calculate
the mass defect in the reaction

235 1 140 94 1
U + o —> 1 Xe + 505r + 2 on,

where the Xe rapidly decays
into '¥9Ce and the Sr into 9} Zr with
the emission of electrons of negli-
gible mass. Given the following

masses:

2‘352U 235.004 u
n - 1.009 u
49Ce  139.905 u
%47 93.906 u,

we find that the initial and final
masses are 236.013 u and 235.829 u,
respectively, for a change in mass of
0.184 u and a corresponding energy
release of 171 MeV.

Part B asked readers to follow the
argument used by Frisch and
Meitner and Joliot (independently)
where the change in electrostatic
potential energy provides the energy
of the fission products. The radii of
the Ce and Zr nuclei can be calcu-
lated using the approximate equa-
tion,

R = KAY3,
where K=1.0- 10" m.
Re =519 105 m

R, =455-10"m

The distance between the centers of
the two fragments is equal to the
sum of their radii, R = 9.74 -10~"> m.

We can now find the electrostatic
potential energy:

U= ~kq,9,
R

N.-m?
—(9-109 =

97410 m

](58)(40)(1.6 107" c)2

=5.49.107117
= 343 MeV.



The values for the energy calculated
in parts A and B are relatively close.
Part C asked readers to show that
the energy released is greatest for the
rare case of a symmetric fission.
Weizsacker’s semi-empirical for-
mula for the binding energy is

B=|157534-17.8044%3

22

= 0.7103W = 94.77—A-——

We built a spreadsheet to calcu-
late the binding energies of all pos-
sible pairs of daughter nuclei. In do-
ing this, we needed to make a
decision on how to divide the neu-
trons between the daughter nuclei.

200
180
160

energy (MeV)
S
S

0 10 20 30

40 50 60 70

atomic number

Figure 4

We chose to divide them so that the
ratio of nucleons was the same as
the ratio of protons. For example, if
the daughter nuclei had 30 and 62
protons, the number of nucleons A
was taken to be (30/92) of 236 and
(62/92) of 236, respectively.

After completing the spreadsheet,
we graphed the energy released ver-
sus the atomic number of one of the
daughter nuclei (figure 4). The en-
ergy released is greatest for the sym-
metric fission with each daughter
nucleus having 46 protons. Q)
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LOOKING BACK

Experiments of Frank and Herz

HE BEGINNING OF THE
20th century was an excep-
tional period in the history of
physics. This was a time of re-
vision of the old and venerable basic
concepts of the structure of the ma-
terial world. In a number of cases
this was not a revision, but an out-
right revolution, which made obso-
lete the good old laws of classical
mechanics and electrodynamics.

In 1900 Max Planck created the
quantum theory of electromagnetic
radiation. In 1905 Albert Einstein
formulated the principles of the spe-
cial theory of relativity. During the
same period, science took a close
look at the problem of the physical
nature and internal structure of the
atom. In 1911 Ernest Rutherford
published the results of his experi-
ments, the cornerstones of the
nuclear model of the atom, which
contradicted classical physics. In
1913 Niels Bohr formulated quan-
tum postulates that explained
Rutherford’s atomic model and the
character of atomic spectra, but was
at odds with both classical mechan-
ics and electrodynamics.

Each of these discoveries opened
up new vistas in our knowledge of
the material world. The develop-
ment of new theoretical ideas is al-
ways supported by a sound experi-
mental foundation. Therefore,
experimental tests of new hypoth-
eses play an exceptionally important
role in science.

The work of the German physi-
cists James Frank and Gustav Hertz
was practically the first experimen-
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by A. Levashov

tal confirmation of Bohr’s postu-
lates. Historically, their experi-
ments continued the work of the
German physicist Philip Lenard,
who tried to determine experimen-
tally the ionization energy of at-
oms long before the advent of
Rutherford’s model. In 1902 Lenard
carried out an interesting experi-
ment. The main part of his setup
was a glass tube with three soldered
electrodes. In fact, it was a prototype
of a triode, which was the corner-
stone of electronics in the first half
of the 20th century. The tube was
filled with a gas whose ionization
energy was to be measured. The gas
pressure in the tube was about 0.01
mm Hg. The setup is shown sche-
matically in figure 1. The voltage V,
applied between the cathode C and
the grid G by battery 1 can be
changed with the variable resistor
R,. The voltage V, applied between
the anode A and the grid G by bat-
tery 2 can be changed with the vari-
able resistor R,.

The idea of the experiment was
very simple. Electrons emitted
from the cathode are accelerated by
an electric field in the C-G space
and rush to the grid. Therefore, the
voltage V, is called the “accelerat-
ing voltage.” Passing through the
grid, the electrons enter the G-A
space. Here the electric field has the
opposite direction, and it deceler-
ates the electrons. Accordingly, the
voltage V, is called the “decelerat-
ing voltage.” Clearly, depending on
the relation between V, and V,, the
electrons either arrive at the anode
(V, > V,) and produce an electric
current I recorded by an ammeter,
or they are decelerated in the G-A
space (V, > V,) and are captured by
the grid to be returned to battery 1
in the grid circuit. In Lenard’s ex-
periments the decelerating voltage
was always higher than the acceler-
ating one, so the emitted electrons
could not reach the anode.

In starting his experiments to de-
termine the atomic ionization en-
ergy, Lenard proceeded from the fol-
lowing assumptions about the
interactions of electrons with at-
oms. In the C-G space the emitted
electrons collide with the atoms of
the gas. These collisions are of two
types—elastic and inelastic. The
elastic collisions do not change the
kinetic energy of the electrons ap-
preciably. Indeed, because the mass
of an atom is thousands of times
larger than the mass of an electron,
an elastic collision changes only the
direction of the electron velocity,
but not its magnitude. Thus, the ac-

Art by Ekaterina Silina



QUANTUM/LOOKING BACK




celerated electrons follow zigzag
paths to the grid. Near the grid, the
electron energy reaches its maxi-
mum value determined by the con-
servation of energy

I’HV2

2

=8V1,

where m is the electron mass and e
is its charge.

As the accelerating voltage V, is
increased, the energy of the elec-
trons increases. Lenard assumed
that when the maximal energy of
electrons near the grid was equal to
or somewhat greater than the ion-
ization energy of the gas, the colli-
sions of electrons with the atoms
would become inelastic. In this case,
an electron transfers essentially all
its kinetic energy to the atom, and
this energy initiates the internal
atomic processes that lead to ioniza-
tion of the atom. As a result, second-
ary charged particles appear: elec-
trons and positively charged ions
(that is, atoms deprived of at least
one electron). All the electrons in
the gas (both secondary and pri-
mary—those emitted by the cath-
ode) finally travel to the grid circuit.
In contrast, the positive ions that
penetrated into the G-A space move
to the anode under the influence of
the accelerating electric field. There-
fore, the current that arises in the
anode circuit is caused by the posi-
tive ions.

Thus, according to Lenard, the
appearance of an electric current in
the anode circuit should indicate the
beginning of ionization. The ioniza-
tion energy is eV, where V, is the
value of V| at which the anode cur-
rent arises. Although certain values
of the accelerating voltage V, did
produce an anode current, Lenard
could not obtain reliable data, owing
to technical imperfections in his ex-
perimental setup.

It is important to note that Lenard
proceeded from incorrect assump-
tions about the interaction of elec-
trons with atoms because he could
not know about the existence of dis-
crete energy levels in atoms. For this
reason, Lenard’s experiment, al-
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though very interesting, was not a
landmark in the history of physics.
A refined version of Lenard’s method
was subsequently used by Frank
and Hertz in their classic experi-
ments.

James Frank and Gustav Hertz
began their joint work at Berlin Uni-
versity in 1911. At that time they
studied the passage of an electric
current in gases. Naturally, they
were interested in the value of the
ionization energy of the atoms.
To determine it, they first used
Lenard’s method, but later im-
proved it considerably.

First of all, Frank and Hertz
modified the tube. The distance
between the cathode and the grid
was made far greater than the dis-
tance between the grid and the an-
ode. The gas (or vapor) pressure in
the tube was increased to 1 mm Hg.
Thus, the electrons emitted by the
cathode underwent multiple colli-
sions with gaseous atoms. The de-
celerating voltage was decreased
and made constant (in the range of
0.5-2.0 V). Therefore, a current ap-
peared in the anode circuit when
the accelerating voltage V, was
larger than the decelerating voltage
v,.

Frank and Hertz, like Lenard,
wanted to measure the ionization
energy as a first step. The result of
one of their experiments with a
tube filled with mercury vapor is
shown in figure 2. The curve in this
figure shows how the anode current
varies with increasing accelerating
voltage (the current is measured in
arbitrary units). Our attention is
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drawn to the curious shape of the
plot: the current rises and falls “pe-
riodically” at regular intervals of the
voltage V,. The current peaks corre-
spond to voltages 4.9V, 2-4.9V, and
3-49V.

Frank and Hertz interpreted these
data in the following way. When the
accelerating voltage is increased, the
anode current grows (specifically,
from the instant when V| becomes
larger than V,). When V| is equal to
or slightly larger than 4.9V, an accel-
erated electron acquires an energy of
4.9 eV along its way to the grid, so
that collisions in the vicinity of the
grid become inelastic. As a result, an
atom is ionized, and the decelerated
electron is trapped by the grid.
Therefore, the anode current drops
drastically.

With a further increase of the ac-
celerating voltage, an electron ac-
quires the critical energy 4.9 eV be-
fore arriving at the grid, so that the
region of inelastic collisions is
shifted toward the cathode. After a
collision, an electron loses energy,
but it continues its accelerated mo-
tion (from zero velocity) to the grid.
If it is accelerated strongly enough to
acquire an energy larger than eV, it
will overcome the decelerating effect
of the voltage V, and arrive at the an-
ode. In the plot, this process is shown
by the rising segment of the anode
current after the first decline.

When V| becomes so large that an
electron that has lost 4.9 eV of en-
ergy in the first inelastic collision
manages to acquire the same critical
energy of 4.9 eV along its way to the
grid, its collision with a second atom
is inelastic, and it no longer reaches
the anode, but is captured by the
grid. The second inelastic collision
occurs near the grid, which traps the
decelerated electron. As a result, the
anode current drops for the second
time. In the plot, this process is
shown by the decline after the sec-
ond peak.

The third maximum indicates
that the electrons undergo three in-
elastic collisions on their way to the
grid.

On the basis of these results,
Frank and Hertz concluded that the



ionization energy of mercury is
4.9 eV, which is equal to the energy
gained by the electrons between two
successive inelastic collisions with
atoms.

Although Frank and Hertz were
confident of the value 4.9 ¢V that
they obtained for the ionization en-
ergy of mercury, they decided to test
their results in another way. They
knew that mercury vapor strongly
absorbs ultraviolet radiation at a
wavelength & = 2536 A. According to
Planck’s theory, this radiation corre-
sponds to the energy

= E =484 ¢V.
A

E=hv

This value is remarkably close to
the value obtained for the ionization
energy. Is this coincidence acciden-
tal? Frank and Hertz decided to
check and see whether radiation
with the wavelength A = 2536 A is
generated in gaseous mercury at the
voltage V, =49 V.

The results were spectacular.
While the voltage V between the
grid and the cathode was less than
4.9V, the grid current grew with V
but no radiation appeared. However,
when this voltage reached a value of
about 4.9 V, the current dropped
sharply and, at the same time, a
spectrograph detected radiation at a
wavelength of precisely 2536 A!

On the basis of these data, Frank
and Hertz concluded that in most
cases of inelastic collisions the elec-
tron energy is expended on atomic
ionization, but sometimes it induces
radiation. These data were explained
correctly four years later, when the
theory of Niels Bohr began to win
recognition. In essence, the experi-
ments of Frank and Hertz were the
first direct experimental confirma-
tion of this theory, although Niels
Bohr did not realize it at the time.

According to Bohr’s first postu-
late, an atom can exist only in a
number of states in which its en-
ergy has certain discrete values. In
Frank and Hertz’s experiments this
postulate was supported by the fact
that the sharp decrease in the anode
current occurred at values of V,
which were multiples of the same

value 4.9 V. This means that in in-
elastic collisions a mercury atom
absorbs energy in fixed amounts: it
cannot “swallow” an energy less
than 4.9 eV. In other words, an
atom changes its energy in jumps
or, simply, by quanta. If the energy
of a mercury atom is E; in the
ground state with the lowest en-
ergy, the energy of its first excited
state will be E|= E;+ 4.9 V.

Bohr’s second postulate was also
supported in the experiments of
Frank and Hertz. It says that when
an atom makes a transition from a
state with larger energy E,  ,to a
state with smaller energy E_, a pho-
ton is radiated, and its energy hv
(where v is the radiation frequency)
is determined by the equation hv =
E, .,-E, whencev=(E, —E)l/h
Now it is evident why Bohr’s second
postulate is also called “the rule of
frequencies.”

The experiments of Frank and
Hertz with a quartz tube filled with
mercury vapor confirmed this postu-
late: having absorbed an energy of
4.9 eV in the course of an inelastic
collision, a mercury atom goes from
the ground state E to the first (ex-
cited) state with energy E, + 4.9 eV.
The inverse transition to the ground
state is accompanied by radiation of
a photon with energy 4.9 eV, which
is observed as ultraviolet radiation
at the wavelength 2536 A.

Thus, Frank and Hertz observed
not ionization, but excitation of
mercury atoms. What they thought
was the ionization energy was in re-
ality the energy of the first excited
State.

It was impossible to measure the
energy of the higher excited states
with Frank and Hertz's setup. After
a collision, an electron had no
chance to acquire an energy greater
than 4.9 eV, because the number of
“obstacles” (atoms) was too large.
Therefore, the acceleration of the
electron was interrupted by too
many colliding atoms absorbing the
electron’s energy in numerous in-
elastic collisions. This obstacle
must be removed to measure the
energy of the higher excited states of
an atom.

Later, Hertz modified the experi-
ment. He separated the region in
which the electrons collided with
atoms. This allowed an electron to
acquire energy larger than 4.9 eV be-
cause it did not meet obstacles in
the accelerating region. The experi-
ments showed that when the
electron’s energy reached 9.8 eV, its
collision with a mercury atom be-
came inelastic. Having absorbed an
energy of 9.8 eV, mercury atoms
undergo a transition to the second
excited state. Thus, the modified
method revealed the higher energy
states of atoms.

In 1925, James Frank and Gustav
Hertz became Nobel Prize laureates
for the discovery of the laws describ-
ing collisions between electrons and
atoms. Q

Quantum on atoms and colli-
sions:

M. Digilov, “A Strange Box and a
Stubborn Brit,” March/April 1991,

pp. 26-27.
S. R. Filonovich, “The Power of
Likeness,” September/October

1991, pp. 23-27

A. Korzhuyev, “Bohr’s Quantum
Leap,” January/February 1999, pp.
42-46.

CONTINUED FROM PAGE 25

symmetric spherical cavity. The
thickness of glass along the line
passing through the centers of both
spheres is R/2 (figure 2). A point

=

A
Y

Figure 2

source of light is located at the cen-
ter of the outer spherical surface
(point A). Where will this source be
seen by an observer whose eye is far
from the lens along the line connect-
ing the centers? (A. Zilberman).

SOLUTIONS ON PAGE 50
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Art by Sergey lvanov
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Inequalities hecome equalties

by A. Egorov

HE COMMUNICATION BY TIKHOMIROV
(pp. 32-33) describes a rather funny situation: a
first-rate mathematician could not quickly solve a
problem for an entrance exam. This was in 1973.
Another remarkable mathematician told me that he
learned about this very problem the day he was leaving
Moscow for Vladivostok. He attempted to solve it duz-
ing his 8-hour flight, but couldn’t find the solution.

It must be said that mathematicians are rarely inter-
ested in examination problems. So it is all the more sig-
nificant that this young mathematician got interested
in the problem. There must be something to it. Unfor-
tunately, entrance-exam problems are rarely interesting,
especially in the last 15 years.

In this article we discuss problems that are similar to
the very difficult problem mentioned above. They are
linked by several themes, which we will point out as we
go along.

Problem 1. Solve the equation

Jx-1++/3-x =x>—4x+6.

Solution. An attempt to find a straightforward solu-
tion, i.e., eliminating the radicals by squaring both sides
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of the equation, leads to an eighth-degree equation,
which is very difficult to solve. Let us try to use the
following simple fact.

The left-hand side of the equation,

y= \f?(j + \Jrg——X
is defined for 1 € x <3, and its graph is symmetric about
the vertical line x = 2. It seems likely that the point
x = 2 has some special property. What is it? In fact, the
left-hand side attains its maximum at this point, as we
will now prove. Consider the square of the left-hand
side:

y? =(Vx-1+43-x) =2+2/(x-1)(3-x).

The maximum is attained at the point where the radi-
cand attains its maximum, i.e., at x = 2. Indeed,

(x-1)(3-x)=-3+4x-x" :1—(X—2)2.
Thus, the left-hand side is not greater than 2, and is

equal to 2 only for x = 2. However, the right-hand side
is not less than 2, since




X2—4X+6=(X—2)2+2,

and it is equal to 2 only for x = 2. Thus, the problem is
solved.

Answer. x = 2.

In this problem, we dealt with two functions, one of
which attains its maximum at x = 2, while the other
attains its minimum at this point, and the maximum
coincides with the minimum. In this article, we discuss
problems of this type. Consider the following classic
example.

Problem 2. Solve the equation

3

sin® x+cos’ x=1.

Solution. All attempts to solve this problem by con-
ventional methods are bound to fail. Let us try to guess
the solution. The solutions for which either sinx =1 or
cos x = | are evident: these are

T
—

+2nk and x = 21k, ke Z.

We prove that the equation has no other solutions.
For this purpose, it is sufficient to prove that, for other
x, the left-hand side of the equation is less than 1.

Suppose that sin x # 0, 1 and cos x # 0, 1. Then, sin®x
< sin?x and cos3x < cos?x. Thus,

sin®x + cos3x < sin%x + cos?x = 1.

For sin x = 0 and cos x = 0, we obtain the solutions that
we have already guessed.

Answer. g +2kn, 2k, ke Z.

The next problem is similar to problem 2.
Problem 3. Solve the system of equations (n is a posi-
tive integer)

2n =1

x+y=1,
x4ty

Solution. The second equation implies that Ix/ <1 and
lyl < 1. Then the first equation implies that x > 0 and
y20.If0<x<landO<y<1,thenx*"+y*" <x+y=1.
Thus, we immediately obtain the solution.

Answer. (1, 0), (0, 1).

Here is another example.

Problem 4. Solve the inequality

—X—yl—\;““X—yz—lz—l.

Solution. Since the radicand cannot be negative, we
see that x>y + 1. Thatis, x> 1 for y # 0. Then -x < -1,
which implies that the left-hand side of the inequality
is less than its right-hand side. Thus, y =0, x = 1.

Answer. (1, 0).

Now let us consider a system of equations.

Problem 5. Solve the system of equations

x+y+z=2,
2xy —z2 =4,

Solution. Here we have two equations and three un-
knowns. Let us express y in terms of z and x, and sub-
stitute it into the second equation:

y=2—(x+2z),
22— (x+z))lx-z2 =4,
4x — Ix% - Oxz — 7% = 4.

Therefore, (x —2)2 + (x + z)> = 0.
This implies that x=2,z=-x=-2, and y = 2.
Answer. (2, 2, -2.).
Here is another problem where the number of un-
knowns exceeds the number of equations.
Problem 6. Solve the equation

2(X4 = 4 3)(y4 ~3y+ 4) =7,

Solution. Each of the factors on the left-hand side is
a quadratic trinomial: the first one is quadratic with
respect to x> and the second one with respect to y2.
Therefore, the factors are minimal for x*> = 1 and y* = 3/2,
respectively. Substitution shows that both these mini-
mal values are positive. This means that both factors are
positive for all x and y, so the product attains its mini-
mum when each of the factors is minimal. A quick com-
putation shows that the minimum of the product is 7.

Answer. The problem has four solutions:

(21, £/3/2).

Problem 7. Solve the system of inequalities

x? - 6x+6y<0,
y> —2xy +9 <0.

Solution. We add the inequalities to obtain

(X—y)2—6(X—y)+9SO,
or
(X—y—S)ZSO.

The last inequality implies that x —y = 3. Also, all the
inequalities must become equalities (if any of the in-
equalities of the system is strict, their sum is also a strict
inequality, which is impossible, since a square cannot
be negative). Thus, y = x — 3 and x*> — 6x + 6y = 0. There-
fore, .

x =432 and y = -3+ 342.

Answer. (342,312 -3), (-3v2,-3V2 - 3).
Problem 8. Solve the system
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Solution. We define t = (x — y)2. Then the left-hand
side of the first equation can be written as

flt)= '—

The radicand is a quadratic trinomial that attains its
maximum at t = 1/4. The maximum itself is

11 1 1
max f(t) = \E‘Z_B:Z'

Now we replace the first equation by the inequality (this
is the decisive step in the solution)

1
2 ‘ 9
-2x°<—.
¥ 4

We add this inequality to the second inequality in the
system to obtain

y+124x4 +4yx? -{-l-w/2 ~ Bz,
4 2
This inequality can be written as

0= (ZX2 +y)2 —(ZX2 +y)+

2o 1Y
2x +y—§ <0.

This implies, first, that 2x* + y — 1/2 = 0 and, second,
that all the above inequalities are in fact equalities.
Taking into account the fact that t = (x — y)> = 1/4, we
arrive at the following system of equations:

or

1

—oxt =2,
x 4
1
2x*+y=—,
=3

2 1
(x-y) e

This system can be solved, for example, by solving the
second equation for y, substituting in the third equation,
then checking that the first equation is satisfied.
Answer. (0, 1/2), (-1, -3/2).
Here is a similar problem with a parameter.
Problem 9. Find the values of a for which the follow-
ing system of equations has a unique solution:

XZ(Y—CZ)Z,

2

yz(x-a).
Solution. It is easily seen that if (x,, y,) is a solution
of the given system, then (y, x,) is also a solution.

Therefore, if the solution is unique, then x;, = y,,. There-
fore, the inequality
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x2(x- a)z,
and the equivalent inequality,
x> - (2a+1)x+a” <0,

must also have a unique solution. Thus, the discrimi-
nant of the quadratic trinomial on the left-hand side
must be zero:

(2a+1)* —4a> =0.

Thus, a = -1/4.

It remains to verify that for a = —1/4 the given system
has a unique solution. We substitute a = -1/4 in the
system and add the inequalities to obtain the inequal-

ity

1 1
L mgdala

EEPRY gt > 16

which reduces to

(4] e

Thus, x = y = 1/4 is the unique solution of the system.

Answer. a = -1/4.

The following two problems require us to estimate
maxima and minima of certain trigonometric expres-
sions. We will make repeated use of the following alge-
braic inequality:

If A >0, then

A+1/A=2, (1)

with equality only when A = 1.
Proof. We have

M A
(\/Z-— /i] A+t fal
A

VA A N
=A+ i -220.
A
This implies the result!.
We have
A+ i =0 | / L =2,
N A

with equality only when A = 1/A; that is, when A = 1.
Problem 10. Solve the system of equations
tan’x + cot’x = 2sin? v,
sin” y+ cos’z=1.
Solution. Let tan? x = t. Then t > 0. The left-hand side

of the first equation is t> + 1/t and so (result (1)) it is not
less than 2. The right-hand side is not greater than 2.

IThis inequality is in fact a special case of the
arithmetic/geometric mean inequality for two variables.



Therefore,
tan?x=1,sin2y =1, cos?z = 0.

Answer.
g o T L
(_4+n ,2(21+1), 2(2m+1) ,kImeZ.

Problem 11. Solve the equation
tan*x + tan*y + 2cot’xcot’y =3+ sinz(X + y).

Solution. Let g = tanx and b = tan?y. Then the left-
hand side of the equation can be written as

2 2 2 2 2 2
a*+b s =(a-D) +2ab+ab >(a-b)" +4.

(We have used the inequality (1) with A = ab.) There-
fore, the left-hand side is not less than 4, and is equal
to 4 if a = b and ab = 1. However, the right-hand side is
not greater than 4, and is equal to 4 only if sin?(x + y] = 1.
Thus, it remains to solve the system

sin?(x + y) = 1, tan%x = tan?y, tanx tan2y = 1.

T °mn T Twm
— o gyl ,
4 24 2
where m + nis even and m,ne Z.
Some problems require a transformation of the ex-

pression f(x) = a sin x + b cos x using an auxiliary angle.
Let us recall how this is done. We write f{x] as

f(x)=mx(

Answer.

——sinx+

‘ %COSX .
Na® +b

\a -}-b2

Consider the point with coordinates

Rt
\/a2+bl,Ja2+b2

This point lies on the unit circle; therefore, there exists
a unique angle 0 < ¢ <27 such that

cos¢=a/\ﬁ“€?;gzandsin¢= b/m

Therefore,

flz)= \a* +b* (cos gsin x +sin ¢ cos x)

BT (2)
=a® +b* sin(X + (p).
This immediately implies the estimate
|asinx+bcosx|§wa2+b2, (3)

and the equality holds for x such that sin(x + ¢) = 1 or
sin(x + ¢) = -1, i.e., for x = —¢ + w/2 + 2km.
Here is a problem that uses this method.

Problem 12. Solve the equation

sin3x — 2sin18xsin x = 32 — cos3x + 2¢cos x.

Solution. We rewrite the given equation as

sin3x + cos3x —2(sin18xsinx + cosx) = 34J2.

By virtue of (3), we have
lsin 3x + cos 3x| <2

(herea=1,b=1, and ¢ = w/4).
Similarly,

2|sin18xsinx + COSX| <241 +sin218x <242

(here a = sin 18x and b = 1, and we have used the fact
that sin 18x < 1).

These inequalities imply that the modulus of the left-
hand side is not greater than 3+/2, and it can be equal
to 342 only for sin?18x =1, i.e., if sin 18x =1 or sin 18x

For the left-hand side to be equal to the right-hand
side, it is necessary and sufficient that

sin3x + cos3x = \E,

sinl8x =1,

sinx +cosx=+/2,
or

sin3x + cos3x =+/2,

sinl8x = -1,

—sinx + cosx = —/2.

Let us solve the first system. The third equation is

the simplest one. For this reason, we solve it first, and
then check which of the solutions obtained satisfy the

other two equations.
To solve the third equation, we use (2}, and find that

. — . T
SINX +COSX =+/2 SIH(X+Z] =42.

. T
sinfx+—|=1
( 4j '

X:£+2TEI’1.
4

We have

and, therefore,

For these x,

. . 3n 3r
sin 3x + cos X :smT—f— COST =0,

Thus, the first system has no solutions.
For the second system, we similarly have
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sin[x - E) =1
4  §

X=3—n+27'512,
4

and, therefore,

For these x,

. . 9m on -
sin3x + cos3x = smT + COST =4/2

and

sin18X=sin%ﬁ=—1;

that is, these x satisfy the second equation and, there-
fore, the original equation.
Answer.

i—n+2nn/nez,

Finally, we consider one more problem.
Problem 13. Solve the equation

(\’,3— tan” %nx]sinnx— cosmx = 2.

Solution. Let

2 3nx

A= J“‘S—tan
\

We estimate the left-hand side of the equation:

|Asinnx — cos x| < Ja 1= \;“4 —tan”? 3% .
VfVe see that it does not exceed 2, and is equal to 2 only
1 - 0,
i.e., for
X = 2?13’ neZ. (4)

For these x, the equation can be written as
J3sinnx —cosmx =2

(we intentionally substitute for x in some places, but not
in others). We solve the last equation, to obtain

sin(nx — E) =1
6

X:%+2m, meZ.

or

Using (4), we obtain
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or
n=3m+1.

Thus, x = %(Sm +1), where me Z.
Answer. \

2
—+2m, meZ.
3
In conclusion, we offer you the following exercises.

Exercises
1. Solve the following equations and systems:

(a) Vx+2 +4/6—x = 3x* —12x +16;
(b) sint32x + cos!?2x = I;

(c) sin x + sin 9x = 2;

X+y+2z=4/3,
(d){ 2,2, .2
X +y +z" =]

(e] (x2 —2X+3)(y2 +6y+12) =6,

(f) 2 — cos y + log,(1 + x% + lyl) = 0;

2 2
. 1 - 1.
sin? x + +|cos? x + ‘ =12+—siny,
g ) B
sin” x cos” x 2

2. Find all a for which the following systems have a
unique solution:

(a) {YZXZ-i-Z(l,.(b} {X+Y+Z=Z/

f 2 2
x>y” +2a X +y =z

3. Find all pairs of numbers that satisfy the follow-
ing conditions:

yo+y®+ox? = N/X;— xoy*

(a) 3 3 1,0 o o D
4xy° +y +522X‘ +1+(2x-y)";
\;"JZXzyz —xtyt =y° +Xl(1~X),

(b} [ , 4
YL+ (x+ y)z - X(Zy" +X3) <0.

4. Solve the equations
(a) 2+/3sin5x —~/3sinx

=co0s24xcosx +2cos5x — 6(% + Znn);

I 9 ; /
(b) \1-cot?2nx cosmx +sinnx =+/2 -

5. For every value of b, solve the equation

3cosxsinb—sinxcosb—4cosh =3+/3. QO
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IN THE OPEN AIR

A watery view and Waterloo

by A. Stasenko

UST ABOUT ANY FISH KNOWS SOMETHING

about waves and beaches. But that’s not the point.

We want to settle a matter of principle—why

waves roll onto a beach parallel to the coastline. In
doing so, they disgracefully neglect both the direction
of the wind and their own previous course in the open
sea. In other words, we are interested in why the lines
perpendicular to the crests of the waves (the wave rays)
curve in such a way that they come ashore at right
angles to the shoreline.

Many things in physics are related to each other. This
particular problem is directly related to the phenom-
enon of refraction of light rays at the boundary between
two media—for example, when light travels from air to
water. This is a simple process: in air light propagates
with speed v, while in water it travels with a smaller
speed v, (v, < v,). The ratio of these speeds is the index
of refraction of water relative to air:

n, v
A=t bs]
n v,

Here n, and n, are the absolute indices of refraction of
air and water relative to the vacuum.
Snell’s law of refraction says that

n,sin o, = n;sin o, (1)

where the o, are the angles between the rays and the
normal to the air-water interface. Therefore, when light
travels to a more optically dense medium (n > 1), the re-
fracted ray is closer to the normal than the incident ray:
o, < 0,. Snell’s law of refraction is universal: it is inde-
pendent of the nature of the waves.

First of all, let’s find the speed of the waves near a
beach. What does it depend on? If we produce a
“hump” on the surface of still water in the sea, a lake,
or a pond of depth h (figure 1) and then release it, the
hump will move downward under the effect of the
gravitational force, which is proportional to the accel-
eration due to gravity. When the hump reaches the
initial (unperturbed) position, it will not stop because

48 MARCH/APRIL 2000

of its inertia. Therefore, a cavity will appear instead of
the hump, which generates a circular crest. As a result,
a propagating water wave is generated.

What quantities (and corresponding dimensions) can
affect the speed of water waves? We know that the waves
that roll onto a beach are not small ripple waves, so we
neglect surface tension. The size of sea waves is compa-
rable to the depth of the water—at least in the beach area.
Thus, two physical parameters should play a decisive role
in determining the speed of sea waves—the depth h (m)
and the acceleration due to gravity g (m/sec?). Dimen-
sional analysis yields the following formula:

v ~gh (2]

Thus, the waves travel slower in shallow regions (this
is true only for rather shallow water, where the speed
does not depend on the wavelength). When a wave ap-
proaches the shore, it enters less deep regions, so its
speed decreases. By analogy with optics, we may say
that the waves travel into a more and more “optically”
dense medium.

By the way, we can model such a gradual change of
optical density in a glass of water, where the index of re-
fraction grows smoothly with increasing depth. To do
this, we prepare a very concentrated solution of table salt,
pour it into a glass, and then add less and less concen-
trated salt solutions. We must pour them layer by layer
and finish with pure water. The composite optical me-
dium is ready! A teaspoon in this glass will look not like
a broken object, but like a smoothly curved object.

oq

Figure 1
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Figure 2

Let’s divide the sea’s surface into bands of width dx
parallel to the coastline (figure 2). Each band is charac-
terized by its own depth h, speed of wave propagation,
index of refraction (inversely proportional to this speed),
and the angle between the wave ray and the axis x nor-
mal to the shore. Now Snell’s law (2] for all layers can
be written as
sina, _ sinofx)

=— 2 - =—_~ 7 —const. (3)

7h, Jh(x)

sin o

iy

Even this initial equation shows that if the depth ap-
proaches zero, the angle between the ray and the nor-
mal also tends to zero. This feature explains why the
waves approach the shore at right angles. However, we
may proceed a little further and obtain the equation of
the ray itself. Figure 2 yields:
dy _ canox) = sino(x) ., BBEE
dx cosa(x) J1-sin’ o(x)

sino(x)

With the help of equation (3) we may obtain the rela-
tionship between the inclination of the wave to the
normal at any distance x from the shore and its value
o, at any fixed distance x;:

ﬁiX _ \’T/E sin oy (4)

dx  1-(h/h)sin*a;

We need only choose a particular profile of the sea-
bed, that is, a dependence of its depth on the distance
to the shore, h(x]—and you are welcome to integrate
equation (4).

For example, let’s take the quadratic law h = b (x/x, .
This yields

j:dy:y—ylz]{ (x/x;)sin a

s 2.
¥ wl-(x/x) sin’oy

dx .

At this stage we may want to ask mathematicians what
to do with this monster. However, courage overcomes
all obstacles—let’s try to cope with this integral our-
selves. First, we make a change of variable:

2
x| . 9

1—[—] sin“oy, =7,
X

By differentiating this equation we get

dx x .
§ it
Xy X

o, =—dy.

Substituting this into the integrand, we obtain
y»n 1 jﬂ e

n - [ y
x, /sin oy 2% VY A

b
[ N q“ X )
= 1-sin“o, _Vl_ — | sin~oy

This clumsy formula is the desired ray equation y(x).
What kind of curve is this? We transfer the first term
on the right-hand side to the left and then square both
sides. By leaving only unity on the right-hand side we

get
2 2
—Y_,L—cos oy | + 4}{— =1.
x; /sin oy x, /sin o

Isn’t this familiar? Yes, this is the equation of a circle!
Of course, another profile of the sea bed h(x) would gen-
erate some other ray equation.

Let’s proceed further. Snell’s law of refraction (1) ex-
plains many other natural phenomena, including the
atmospheric refraction of solar rays (figure 3). Since the
density of the atmosphere grows in approaching the
Earth’s surface, the index of refraction in the air de-
creases at higher altitudes. Therefore, the solar rays
curve in such a way that an observer on the Earth sees
the Sun during some period after the geometrical sun-
set or before the geometrical sunrise. As a result, the
period of daylight is prolonged for several minutes, a
very regrettable phenomenon for nocturnal lovers. In
contrast, the atmospheric refraction curtails the very
long polar nights at high latitudes, which is a very use-
ful result of good old Snell’s law.

The same equation of refraction explains mirages in
the desert. The hot sand warms the adjacent layer of air,
so that the index of refraction of the upper layer be-
comes larger than that of the bottom layer. As a result,
the rays emerging, say, from point A (figure 4) are de-

Figure 3
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flected upwards, so that a tired traveler treats the point
A* as a reflection in a desert lake, which is unfortu-
nately absent in reality.

Let’s revisit the fish’s eyeview of the world. The in-
dex of refraction of its environmental media (water) is
significantly larger than unity (n =4/3). Therefore, to fo-
cus the rays, the index of refraction of the fish’s eye
must be even greater. Should Nature make the eyes of
tishes of flint or crown glass? This is indeed a difficult
problem, and how Nature solved it should be considered
in a special paper. Here we will just recall that the fa-
mous physicist Sir James Clerk Maxwell invented such
an apparatus and called it a “fish eye.” It is an un-
bounded refracting medium with index of refraction de-
pending only on the distance (r) to a fixed point:

nfr)=—>20 .
() 1+(r/ a)2

Here n, and a are constants. It can be shown that in such
amedium a light ray moves along a circle, independently
of the point of emergence and the initial direction.

At first glance, all this is optics. However, the same
phenomena take place in acoustics, because equation (1)
describes a general property of the rays for waves of any
nature, which curve to the region where the speed of the
wave decreases. On a sunny day the sand on the beach
is strongly heated, so that the speed of sound in the ad-
jacent hot layer of air is larger than in the upper layer
(the speed of sound is proportional to the square root of
the temperature). As in the case of optical illusions, the
“sound rays” go upward, so that voices are muffled on
the hot beach. In contrast, in the evening the soil cools
down before the warm upper air, and the opposite phe-
nomenon takes place: the upward sounds curve down-
ward, so the sound of the “evening bells” really does
carry across the fields at night.

However, while evening songs propagate far into the
distance, they might not be heard nearby. During the fa-
mous battles of yore, full of sound and fury, sometimes

Figure 4

atmospherics were such that “quiet zones” were cre-
ated. (Of course, surrounding terrain clouds and other
factors described in textbooks on acoustics also contrib-
ute to this phenomenon.)

For example, the noise of the battle of Waterloo was
heard at very great distances, but not nearby, where
Napoleon’s general Emmanuel Grouchy waited with his
troops. Alas, the general did not come to save his Em-
peror. Thus, an acoustic event changed the course of Eu-
ropean history. It certainly pays to learn physics—even
if you're a general.
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ring. A few bubbles of air from the
tube will be split into smaller
bubbles that take their places at the
axis of the ring. These bubbles will
clearly reveal the water vortex trav-
eling in water: it will be traced by
the sparking beads. Running along
the entire length of the bath, the
rings hit the opposite wall, expand,
and finally disintegrate.

Using this device, we can clearly
demonstrate reflection of the rings
from the free water surface. To this
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end, we need only turn the lower
flange of the tube slightly upward.
When a ring arrives at the water sur-
face, it is reflected from it. Note that
the angles of incidence and reflec-
tion are equal.

Since real liquids are viscous and
rub against the walls of the vessels
during their motion, they are con-
stantly filled with generated vorti-
cal filaments. Helmholtz showed
that a liquid mass set in any imag-
ined motion could be considered as
continuously filled with vortical
filaments. He also developed math-

ematical and physical tools to study
the motion of these filaments. [@]
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An old algorithm

OWADAYS COMPUTA-
tions are mainly done with the
help of calculators or comput-
ers. Nevertheless, it is still
worthwhile to consider some of the
many methods that have been de-
veloped since ancient times to facili-
tate doing calculations by hand.
Everyone knows algorithms for ad-
dition, subtraction, multiplication,
and division. In this paper we
present an algorithm for taking
square roots. This algorithm, which
has been known since the fifteenth
century, is not much more difficult
than ordinary long division. It can be
mastered by working just a few ex-
amples. Let us first consider the case
when the number is a perfect square.
For example, let us find the root of
the number 294849.
We start by partitioning the dig-
its of this number into groups of
two, starting from the right.

V29 48 49

The groups are numbered (first, sec-
ond, ...} in order of decreasing signifi-
cance, from left to right. The total
number of groups is equal to the
number of digits that will appear in
the square root.

The first digit of the square root
is the square root of the largest per-
fect square that is equal to or smaller
than the first group of digits. In our
case this is 5. Now square this digit,
subtract this squared value from the
first group, and “bring down” the
two digits of the next group, writing
them to the right of the remainder.

by Y. Solovyov

If the remainder is zero, this next
group will stand alone. In our ex-
ample we obtain the number 448.

5
V29 48 49
25
4 48
Now compute the second digit.
Draw a vertical line to the left of the
number obtained (448). Multiply the
first digit obtained by two (2 x 5 = 10,

5

V29 48 49

25
10 | 4 48

and write the product to the left of
the line you just drew, leaving space
for one digit to the right of this prod-
uct (the rightmost digit of the prod-
uct is in the “tens” place). The digit
that goes in the “ones” place is the
largest digit a such that the differ-
ence 448 — 10a-a is nonnegative
(i.e., positive or zero).! By trial and
error, we see that in our case this
digit is 4, and we write this as the
second digit of the result.
5 4
V29 48 49
25
104] 4 48
Now multiply 104 by 4 and write
down the result to the right of the

vertical line. Calculate the differ-
ence 448 — 416 = 32 and write down

Here, as usual, 10a denotes the
integer with hundreds digit 1, tens
digit 0, and units digit a.

the next group to the right of the re-
mainder, to obtain 3249.

5 4

N 29 48 49
25
104 448
X 417416
3249

The third digit of the result can be
found in much the same way as the
second digit: double the answer ob-
tained so far (multiply 54 by 2), write
down the product, 108, to the left of
the vertical line, and find the largest
digit b such that the difference
3249 — 108b-b is nonnegative. In
our example we find b = 3, and we
write this as the third digit of the
result.

5 4 3
N 29 48 49
25
104448
_ 41416
1081 3249

We now multiply 1083 by 3,
write down the product to the right
of the vertical line, and then sub-
tract it from 3249.

5 4 3

V29 48 49 = 543
25

104] 448
47416
1083 3249
3] 73249

0

Since the remainder is zero, the
calculation is completed.
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Now, looking at the calculations
below, try to repeat all the necessary
steps and find the roots /212521
and /165649 .

V212521 = 461
16

86[ 525
617516
211 ol
1] 921
0
V16 56 49 = 407
16
80[ 56
0| 00
807] 5649
71 5649
0

So far, we have considered only
numbers with an even number of
digits. If the number of digits in the
given number is odd, the leftmost
group will consist of a single digit.

V14641 =121
1

22 46
8| 44
Q241 241
1] T241
0
V53361 =231
4
43133
317129
461 46l
1l 461
0

What is to be done if the given
number is not a perfect square? The
algorithm does not change in this
case, but the number itself must be
treated in a certain way. Let N be a
number (not necessarily an integer)
written as a decimal fraction; sup-
pose that we are required to calcu-
late its square root to an accuracy of
1/10™, i.e., to m decimal places. As
before, we partition the digits of the
integer part of the number into
groups of two digits each, starting
from the right, while the fractional
part is partitioned into similar
groups starting from the left (in
other words, start from the decimal
point and work in both directions).
If the number of digits in the inte-
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ger part is odd, the leftmost group
consists of a single digit; if the
number of digits in the fractional
part is odd, we write down an extra
zero to the right of the last digit. If
the number of groups in the frac-
tional part is greater than m, we
eliminate the extra groups from the
right; if it is less than m, we fill in
the missing groups with zeros.
Now everything is ready for our al-
gorithm to be applied. Here we
demonstrate the calculation of the
square roots /2 and J12.5 to an ac-
curacy of 0.001.

V2 =v2.000000 = 1.414
i S

24[100
~ 4] 96

281 400

* 1] 28] (*)
2824 11900

X 4 11296

6 04

V125 =412.5000 00 = 3.535
)

65350
57395
/03] 22500
3| 72109
7065 _39100
5/ 735305
3775

To check whether you fully un-
derstand the algorithm, calculate
the following roots to an accuracy
of 0.001: V18769, 24336, /35721,
~232324 , /243049 , +104.2441,
/18671041, /7, and 410

In this paper we will not prove
the validity of the algorithm de-
scribed. Note that the calculation of
each new digit of the square root re-
quires increased computational ef-
fort; for this reason, this algorithm
should be used only when the re-
quired accuracy does not exceed
three or four significant digits (an
accuracy sufficient for most practi-
cal calculations).

The accuracy of a calculation can
be improved by using the following
theorem.

Suppose that we have calculated
n significant digits of the square
root. Subtract the square of the
value found for the root from the

number whose square root you are
taking, and divide the difference by
twice the value found for the root;
the result gives the next n — 1 digits.

Let us prove this proposition.
First, suppose that the integer part
of the given number a consists of n
groups of two digits. Let the first n
digits of the root give a number c.
Then +a = ¢ + x, where x is the
fractional part to be found. There-
fore,

a=c*+2cx + x2,

a-c? x?
=X+ —.
2c 2¢
The difference a — ¢? is the re-
mainder obtained after the calcula-
tion of the first n digits of the root.
The quotient

a—02

2c

is the number in the proposition (the
next n — 1 digits). Hence,

a-¢ x°
X = — -—
c 2¢
Setting
)
a-c
X= ,
2c

we make an error

2
X

E .
Since x < 1 and a =107~ , we have

x? 1

< /
20 2'1011-1

which gives the necessary esti-
mate. If the decimal point in the
number a is to be moved an even
number of decimal places from
where it was when we calculated
the root, we get the new answer by
moving the decimal point in the
old root by half that number of
decimal places in the same direc-
tion (i.e., if a is multiplied or di-
vided by some power of 10 with an
even exponent, the root found pre-
viously must be multiplied or di-
vided by 10 to the power of one-half
that exponent).



Consider an example. Calculate
V2 to six decimal places. We have
already calculated v2 out to three
decimal places [see (*)]. Dividing the
remainder by twice the value ob-
tained for the square root, we obtain
the next three digits.

V2 =~2.000000 = 1.414213
-]

24100
4~ 96
281 _400
1] "28l
2824 11900
4] 711296
6 04]28 28
6040/0.213
5656
3840
2828
10120
T 8484
1636

Certainly nowadays, when every
primary school pupil has a calcula-
tor, it is not easy to delight a student
with an algorithm for calculating
square roots by hand. However, we
can still hope. The well-known
American mathematician Ron Gra-
ham recalled that his first interest in
mathematics was invoked by this
very algorithm for the calculation of
square roots. He wondered whether
it was possible to find a similar algo-
rithm for the calculation of cube
roots and roots of higher orders. He
found such an algorithm, and since
then mathematics has always been
part of his life.

) @
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The Death of a Star

(Part 1)

by David Arns

W hat happens to a star whose life is drawing to an end?
These luminaries shone when in their prime,

But as the final curtain nears, which attributes attend?
Do they waste away and shrivel?

Or get rude and most uncivil?

Or just disappear with style and chic sublime?

It depends, of course, upon the kind of star that you might choose:
The Hollywood variety, perchance?

And all of their shenanigans that always make the news?

Or would you choose the kind

with which heaven’s void is lined:

And are scattered through the cosmos’ vast expanse?

The subject of this magazine demands the latter choice

(A checkout-counter tabloid this is not);

And so I'll choose the stars that make astronomers rejoice:
Those spheres of white-hot fusing

Hydrogen, which they keep using

To maintain their normal size and keep them hot.

So what happens to these stars when all their hydrogen’s consumed?
Well, they’'re all so far away, it’s hard to tell,

But according to the theories, even when a star is doomed

And its life is nearly through,

Then the next thing it will do

Depends upon its gravitational well.

See, a little star has insufficient mass and gravitation
To make a big display when once it dies;

Its fuel used up, it undergoes a gradual transformation
Where it cools, and then grows dark,

Leaving not a single spark

Of the splendor that it had ere its demise.

A star of somewhat larger mass and gravity will die
With significantly more than just a “pop.”

Its gravity will cause some different physics to apply:
When its hydrogen is gone,

Then the helium’s light lives on,

Since its gravity’s compression heats it up.

So the helium starts to fuse, and a brand-new lease on life

Is now granted to this star of medium mass.

But then the helium’s ash (that’s carbon) in the stellar core gets rife
And the star again compresses

Under gravitational stresses

And so iron, fused from carbon, comes to pass.

CONTINUED ON PAGE 56
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OW DOES A BUBBLE CHAM-

ber work? During the early

1950s, Donald Arthur Glaser, a

young scientist at the Univer-
sity of Michigan, invented an origi-
nal device to record elementary par-
ticles. His apparatus became known
as a bubble chamber.

Figure 1 shows a modern bubble
chamber. It is a rather large setup
that occupies a spacious hall with a
number of floors equipped with so-
phisticated devices and controlled
by powerful computers. Many
bubble chambers have names,
such as Ludmila, Mirabelle, and
Gargamelle.

However, the first models of a
bubble chamber made by Glaser
were in no way “impressive” (fig-
ure 2). Their main part was a glass
ampoule filled with ether. Its vol-
ume was only a few cubic centime-
ters. The liquid was heated and com-
pressed to 20 atm (1 atm = 10° Pa).
A simple contrivance could rapidly
relieve the pressure. According to
thermodynamics, this maneuver re-
sults in boiling of the liquid.

Figure 1. The hydrogen bubble chamber
“Mirabelle” is a key instrument at the High Energy

Physics Research Institute.
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Boiling liquic
by A. Borovoi

However, boiling cannot start im-
mediately: there is some latent wait-
ing period before it starts. If a
charged particle encounters such a
superheated (with respect to the
boiling point] liquid during this pe-
riod, it will produce a track of ions
along its path, marked by bubbles of
vapor. One can photograph the track
and raise the pressure again. The
bubbles collapse under the raised
pressure, and the chamber is ready
for a new measurement.

Bubble chambers have been ex-
tremely useful for studying the
physics of elementary particles. Fig-
ure 3 shows a photograph taken in
a bubble chamber. Why did the
bubbles appear precisely along the
path of the particle?

Let's recall boiling

Textbooks say that boiling is the
process of formation of bubbles
throughout the volume of a liquid,
which grow and rise to the surface.
Evidently, the pressure inside the
bubbles is greater than the pressure
in the liquid—otherwise they would
collapse. Everybody
knows that under
normal atmospheric
pressure water boils
at 100°C. Precisely
at this temperature
the pressure of satu-
rated water vapor
becomes sufficient
to produce bubbles,
so that water begins
to boil. However, is
it precisely so, and
does a liquid always

boil under such
conditions?
Let’s take
two test tubes.
We wash one of
them very care-
fully. This test
tube must not
have any scrat-
ches or foreign
inclusions or
particles. We fill
it with distilled
water (about 10
cm?). The other
test tube should

Figure 2. The
track of a charged
elementary
particle recorded
in the first bubble
chamber of
Glaser.

not be particularly clean. We fill it
with the same amount of tap water
and drop a piece of chalk into it.
Both test tubes are heated under
identical conditions, avoiding di-
rect contact with the flame. It turns
out that the water boils quite differ-
ently in these two test tubes (fig-
ure 4).

In the test tube with tap water the
boiling starts earlier and is a quies-
cent and continuous process. As a
rule, the bubbles are produced on
the surface of the chalk. In contrast,
in the test tube with distilled water,
boiling starts later (at a higher tem-
perature) and proceeds irregularly.
Large bubbles appear now and then,
and their generation and collapse are
accompanied by loud crackles.

Using twice-distilled water, it is
possible to purify water and glass-
ware (retorts, flasks, and the test
tubes) so carefully that boiling does
not start until 140°C. Such water is
said to be superheated. It is very dan-
gerous: if a grain is thrown into the



F|gure 3. A photograph of processes
of interaction and conversion of
elementary particles in a liquid-
hydrogen bubble chamber.

water, the water will burst into boil-
ing. The reason is an extremely high
rate of production of bubbles.

Chemists are well aware of this
dangerous property of liquids. In or-
der to guard against bursts and ensure
a quiescent and homogeneous boil-
ing process, they place so-called boil-
ing chips (pieces of glass and porce-
lain tubes, or marble fragments) into
the vessel with the boiling liquid.

These remarkable features of
boiling are explained by the liquid’s
surface tension. The surface of a lig-
uid can be imagined as a stretched
elastic film. Such a film “wants” to
contract, so the surface tension tries
to crush a newly formed bubble. The
smaller the bubble’s radius, the
higher the additional pressure devel-
oped by the surface tension!, which
nips the boiling in the bud. This is
the reason why a pure homogeneous
liquid can be superheated. At the
same time, any heterogeneity in the
liquid itself or foreign bodies facili-
tate boiling.

In particular, such heterogeneous
zones are produced along the trajec-
tory of a charged particle in a bubble
chamber, so that the bubbles form
along the particle’s path. Now it is
clear why the homogeneity of the
ether and the purity and smoothness

IThe additional pressure applied to
a bubble can be evaluated by the
formula P = 206/r, where 6 is the
coefficient of surface tension and r is
the radius of the bubble. The same
pressure is applied to the liquid in a
capillary directly under the convex
hemispherical surface (meniscus).

of the ampoule are the most impor-
tant conditions for the operation of
the Glaser bubble chamber.

Some interesting obsenvations on
hubbles in a liguid

Such observations can be carried
out with ordinary aerated water,
which sometimes behaves very
much like a superheated liquid. This
raises the following question: Why
and under what conditions can aer-
ated water be a model for a super-
heated liquid?

For our experiments we need a
bottle of lemonade, a glass, a tea-
spoon, sugar, and a piece of choco-
late (in any case, one can be confi-
dent about the pleasant side effects
of experiments with such test ob-
jects). We begin our study with a
rapid opening of the bottle with aer-
ated water. Instantaneously, a light
puff of smoke appears
above the neck of the
bottle. Why does this
happen?

We now pour the
water into the glass
and wait until the
foam dissipates and
only individual bub-
bles rise in the water.
We put a close-fitting
lid on this glass and
tighten it. After a
while, the bubbling stops. If we open
the glass, bubbles appear again.
Why!

We throw a pinch of sugar into
the glass. The “boiling” of the aer-
ated water is intensified, and foam
appears on its surface again. Evi-
dently, there was still a lot of carbon
dioxide in the water. What pre-
vented its release previously, and
why did the granulated sugar in-
duce it? There are other ways to in-
duce the formation of foam—for ex-
ample, by stirring the water or by
pouring it from one glass into an-
other.

A spectacular demonstration can
be performed by throwing a small
piece of chocolate or a berry into a
glass of aerated water. Since choco-
late is more dense than water, it will

quickly sink to the bottom. Here it
is “overgrown” with bubbles. Like
buoys, they lift the sunken piece of
chocolate. When it reaches the sur-
face, the bubbles escape to the air,
and the piece of chocolate sinks
again. Sometimes this sink-rise
cycle will be repeated a dozen times.

How can these questions be answered?

In essence, all these questions can
be reduced to the first problem—
why is aerated water similar to a
superheated liquid?

Perhaps you know how to carbon-
ate water at home. It can be done by
placing a small balloon filled with
carbon dioxide (CO,) over the
mouth of a test tube filled with wa-
ter. To accelerate the dissolving of
the carbon dioxide, the test tube
should be shaken vigorously. The
gas continues to dissolve until equi-
librium is reached. If this gas does

Figure 4. The process of boiling proceeds quite
differently in test tubes with distilled and tap water.

not react chemically with water, its
steady-state content (that is, its den-
sity and concentration) in water is
proportional to its pressure at the
surface.? There are other recipes for
preparing fizzy water at home with
the help of lemon juice or soda wa-
ter, etc.

If we quickly open a bottle of aer-
ated water, the pressurized gas lo-
cated above the surface expands rap-
idly and cools off. The water vapor
released with the gas will condense
and form a small misty cloud. After
the pressure on the liquid drops ap-

’In the case of carbon dioxide and
water, the process is somewhat more
complicated because these substances
do react with each other. However, the
resulting acid is not stable and rapidly
disintegrates.
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preciably, the dissolved carbon diox-
ide is released from the water in two
ways: through the gas-water inter-
face and into the bubbles formed in
the water.

Immediately after opening the
bottle, when the equilibrium is dis-
turbed most strongly, and when the
water contains a great surplus of
carbon dioxide, bubbles are pro-
duced easily and in great numbers.
Thus, foam appears on the surface of
the water. Gradually, the foam
abates, although there is some “ex-
tra” gas left in the water. However,
the formation of bubbles is now
impeded because the concentration
of the gas is considerably reduced,
and therefore the chances are very
low that the gas molecules will
come together to produce a bubble.
Bubbles appear and grow only at the
heterogeneous places in the water,
and this process looks very much
like the boiling of superheated wa-
ter. Perhaps it will not be difficult
for our readers to explain all the fol-
lowing experiments.

An absolutely unexpected application of
aerated waten

Our article began with a story
about the bubble chamber. We want
to finish it with another story,
which also deals with an application
of bubbles—and again in the physics
of elementary particles.

Several years ago, Soviet physi-
cists investigating the properties of
neutrinos were faced with an excep-
tionally difficult problem. It was
necessary to extract a few atoms of
gas formed in a large volume of lig-
uid (hundreds of liters) by collisions
with neutrinos. This gas (neon-23) is
radioactive and highly unstable: its
atoms decay in less than one
minute. Therefore, it was necessary
to find 5-10 neon atoms among 1028
atoms of liquid, extract them, trans-
port them to a counter, and finally
count them. At first glance, the
problem seemed insoluble.

Nevertheless, the problem was
solved with the help of a carbonated
liquid. Prior to irradiation, the lig-
uid was saturated with carbon diox-
ide. Immediately after the irradia-

58 MARCH/APRIL 2000

tion, the vessel was opened and the
liquid was vigorously stirred with
special blades. As a result, turbu-
lent boiling was induced, which in-
creased the area of the gas-liquid
boundary by tens of thousands of
times, thereby drastically raising
the rate of escape of neon atoms
from the liquid. The evaporating
carbon dioxide carried them away
from the vessel with the boiling lig-
uid. The mixture of neon and car-
bon dioxide was transported to an-
other vessel, where the carbon
dioxide was absorbed by an alkali
solution. Then the neon atoms
were collected in a special test tube,
which was quickly placed into the
counter. The entire procedure took
less than 20 sec. Thus, aerated lig-
uids are not only pleasant, but use-
ful as well.
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Well, this iron core is stubborn, and resists attempts to fuse
Into anything more dense than iron at all,

But the grav’ty of this star of medium mass is loathe to lose
When it fights atomic forces

So its tendency, of course, is

Just to squeeze it all into a neutron ball.

This “neutron star,” as it is called, is just exactly that:
The pressure got so high in its collapse,

That electron shells of atoms, in their white-hot habitat,
Just cave in, and burst asunder,

Nuclear forces knuckling under,

And neutrons all crowd in and fill the gaps.

Now, as you can well imagine, since an atom’s mostly space,
A neutron star is dense beyond belief.

Just try to grab a teaspoonful and take it anyplace:

The hundred million tons in weight

Would crush your spine to such a state

You’d hardly be much more than bas-relief.

So now, you ask, what happens when a star’s so very large
Even neutrons can't resist gravitic squeeze?

Ah, well, that’s another duty I will faithfully discharge,
In an issue not yet printed

(As he shrewdly, subtly hinted),

Assuming that the publisher agrees!
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44 Tt's mostly Nitro- 9 Scrap of food 51 Chip maker
gen 10 Microscopy dye 52 Social insect SOLUTION IN THE
45 Japanese sash 11 Able to displace 3 division NEXT ISSUE
46 Speck of dust H atoms e A e 1
48 Like some alleles 12 Wings SYEHII TS Dd:‘Z“'Z‘/NEUAHY/FEBRUAHY
53 One cubic meter 13 Be inclined N
55 Fencing sword 19 Dammed German S|CIAIT S|OJA|K]|S DIAIL|E
56 Singer ___ Horne TIU|NJE I [N]JOfT I'[NJA[S
57 Trigonometric 21 E|C|G|S L|IG|A|E E|G|G|S
24 Betore bone or gate PILIU|T]|O U[L[NJ]A U|lSI|E
59 25 Reactive power unit LlalMmleElLIL]A MlAlL
60 27 3937 inches | [s|AMolo|e| A&l [n[a]T]E
61 Reverse curve 29 Cleveland’s lake ol alR olololnr ANl TIR Tm
j e g Ktiv, )
62 Edltol,ma;l\ 30 Actne.pelson =L mlo vl sl g el o2 lm
63 Pressure units 31 Peaceful Alrlolale Elal L Bl E
64 An Esker 32 Type of parity
65 Carpel stalk 33 3.937 x 105 mil a1 MI Bl D LIEJUI K ALALR
34 “___ the season ...” ELE A HlGL Ll LI M
I][IWN 35 Actor __ Robbins CIT|N C/HIO[C S/PIEJEID
1 Periodic table 36 Sue ___ Langdon S|E|T[A AlGII|LE o|T|T|0
division 39 Moslem ruler C|R|U HIA[T|E|R N|E|O|N
2 Simple: comb. form 41 For shame! LIA|M|P AN O|N A|R|IN|E
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Let I, | be the centers of the
circles inscribed in triangles ABM
and CDM, respectively (see figure 1).
First we note that I, M, and J are col-
linear.

Indeed, I is the intersection point
of the angle bisectors of triangle
ABM, so ZIMB = ZIMA. Similarly,
ZCMJ = 2.DM]J. And #BMC = ZAMD
(they are vertical angles) so ZIMB +
ZBMC + £ZCMJ] = LZIMA + ZAMD
+ #DM]. This implies that ZIMJ] =
180°, so I, M, and | are collinear.

Next we prove that triangle ITL is
isosceles. ZLIM is an exterior angle
of triangle IBM, so ZLIM = ZIMB +
ZIBM. Similarly (using triangle
CM]J), we have ZL]M = ZCMJ =
/MCJ. But ZIBM = /DMJ = ZCM],
and ZIBM = ZJCM (they intercept
equal arcs along the circle). Hence
ZLI] = ZL]I, which proves our asser-
tion.

M287

The delay time starts accumulat-
ing when the mathematician drops
his stick into the water. We could
calculate it using straightforward
algebraic methods, but the calcula-

C

Figure 1
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tion is made simpler if we use one of
the physicist’s prize tricks. Let us
consider all the events from the
point of view of someone floating
down the river. That is, let us take
a frame of reference moving with
the river. From this point of view,
neither the hat nor the stick move at
all, but the mathematician (and his
house!] are moving upstream, as if
on a conveyor belt.

We can divide the time lost into
three parts: (a) the time lost walking
downstream from the stick back to
the hat, (b) the time lost walking
upstream from the hat up to the
stick, and (c) the time lost because
the house has moved further on the
conveyor belt during all these
maneuvres.

Suppose the speed of the current
is v. Then the mathematician walks
upstream at a speed of 1.5v, to
which we must add the speed of the
conveyor belt. So, from our point of
view, he walks upstream at a rate of
2.5v. When he turns back to get his
hat, he runs at a speed of 3v, from
which we must subtract the speed of
the river (he runs downstream), so
his speed is 2v.

For part (b), we know that at this
rate it takes him 10 minutes, walk-
ing upstream, to cover the distance
between the stick and the hat.

For part (a), the distance traveled is
the same as part (b) (since the hat and
stick are stationary). How long will
this take at the rate of 2.5v? We have
(10)(2.5v) = (t){2v), which gives ¢ =
12.5 minutes. So parts (a) and (b) ac-
count for 22.5 minutes of lost time.

For part (c], we note that the
house ‘traveled’ 22.5v meters in the
time taken by procedures (a) and (b).
The mathematician is traveling 1.5v
faster than the house, so he makes
up this distance in 22.5/1.5 = 25
minutes.

Altogether, the mathematician
has lost 37.5 minutes.

The reader may find it amusing to
work this all out by conventional
algebra. The key insight, capture by
the physicist’s trick, is that the dis-
tance between the hat and the stick,
once they are in the river, does not
change. (Solution by Boris Kor-
sunsky.)
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The solution will follow if we
prove that both the numerator and
denominator are divisible by
111...111, the number consisting
entirely of 1’s, and containing
as many 1’s as either the numerator
or the denominator of the given frac-
tion. To simplify the solution, we
take the case when the numerator
and denominator each contain ten
1’s. The general case will be clear
from this discussion and is left to
the reader.

In this case, the denominator is
11001111110011 and can be writ-
ten as (we group the digits to make
the numbers easier to read):

11111111 110000
+ 1111111111
- 111 111111100.

(The reader is invited to check this.)
This sum is equal to:

(1111 111 111)(10 000 + 1 — 100)
—(1111111111)(9901).

The numerator can be treated simi-
larly and is equal to:

11111111 110000
+ 111111111100
+ 1111111111
-1111111111100
- 11111111110,

which can be written as

(1111111 111)(9091).




Hence the original fraction is equal
to 9091/9901.

M289

Let M(t, t2), with t > 0, be a point
on the parabola y = x? (see figure 2).
The slope of the tangent at this point
is 2t, the slope of the perpendicular
(normal) is —1/2t, and the equation of
the normal is

Lyl
T 2
Let us find the second point of inter-
section of this normal N with the
parabola y = x2. We have the equa-
tion
‘ 1 1
B e R =
2t 2,
One root of this equation corre-
sponds to the point M: x, = t. The
sum of the roots is 1/2¢, so the sec-
ond root is

1
Xzz_t_z_t.

The area of the segment is

4 , 11 4( 1]3
=—t°+t+—+——=—|t+—]| .
3 4t 48t3 3 4t

This function of t attains its mini-
mum at the point ¢t = 1/2, and the
minimal value itself is 4/3.

A

!

Figure 2

O LA C

Figure 3
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Infigure 3, AB=BC=a, AC =2b,
and let h be the triangle’s altitude.
Using the fact that the tangents
drawn to a circle from the same
point are equal, we find that AL =
AQ, BQ = BK, and OL = OK. There-
fore, OL + BQ = OK + KB = OB.
Thus, (AO - AL) + [AB - AQ| = OB.
Since AL = AQ, we have

AQ= %(AO+ AB-OB).
In the same way, we find that

CM:%(BO+CB-OC).

Then
AQ+CM:é(AO+AB+BC—OC)
=i<2AB—AC)=a—b.

2

Thus, the sum AQ + CM is indepen-
dent of how the line passes through
vertex B. If r and R are the radii, then

r R
——=——=cot —
AQ CM 2!
where o is the internal angle at the

base of the isosceles triangle ABC;
therefore,

Moon’s
center

Earth’s &

center S

Figure 4

r+R o
——=cot —
AQ+CM 2

or
r+R o sino. h
=Cot —=——— = g
a-b 2 l-cosa a-b

whencer + R = h. Thus, h = 1.

Physics

The mutual gravitational attrac-
tion between the Earth and the
Moon results in their revolution
around some point P (figure 4). The
Moon’s center of gravity (CG) re-
volves along a circle of radius r,; =
380,000 km, while the correspond-
ing value for the Earth’s CG is r; =
4,700 km. The Earth-Moon system
revolves as a whole about the Sun
under the action of solar gravitation.
The point P (the system’s CG) re-
volves about the Sun along a circle
of radius R =150 - 106 km.

Owing to the Moon’s revolution
about the Earth, the CG of our
planet is located first on one side of
the point P, and then on the other
side of this point. Therefore, the
Earth does not simply revolve about
the Sun along the circular orbit of
radius R, but it also oscillates about
this circular orbit. The maximal dis-
tance of the Earth’s center from the
Sun’s center is R, + r;, while the
minimal distance is R, — r;.

The Moon makes a full revolu-
tion about the Earth in T, = 27 days,
7 hours, 43 minutes, and 11 seconds
(27.322 days]. At the same time, the
Earth’s center travels through a dis-
tance S = 2nrp = 29,500 km. This
motion is not rapid: its linear speed
v = 8/Ty =12.5 m/sec is a little
higher than the fastest human
speed (210 m/sec). In contrast, the
linear velocity of the orbital motion
of the point P about the Sun is much
greater: V = 30 km/sec.

The segment of the trajectory tra-
versed by the point P during a small
interval of time can be approxi-
mated by a straight line. Indeed, the
daily rotation of the radius vector of
the point P is o = 21/365 = 0.99°, so
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30 km/s

Figure 5

that the corresponding arc of the tra-
jectory is practically a straight line
segment. In other words, the veloc-
ity of the point P maintains the
same direction during a small inter-
val of time. Therefore, in this inter-
val the projection of the velocity v
onto the direction of the basic trajec-
tory can be written as

V=V sin (ot + ¢,),

where ® = v/r; is the angular fre-
quency of rotation, while the initial
phase ¢, depends only on the choice
of the origin for the time variable t.
During a small interval of time, the
speed of the Earth’s CG relative to
the Sun also changes according to a
sinusoidal law (figure 5):

Vil =V +vy=V+vsin (of + ¢).

Thus, during a small time inter-
val, the trajectory of the Earth’s
revolution about the Sun is a frag-
ment of a sinusoid. The entire trajec-
tory of the Earth during a full revo-
lution can be represented as
successive fragments of a sinusoid
“bent” into a circle. The number of
“swings” performed by the Earth
near the basic trajectory during a
year is 1 year/T,, = 13.5. Therefore,
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the Earth’s CG will not arrive at the
same position after traveling for one
year.

We see that the Earth does not
undergo repeated motion. Strictly
speaking, there is no such value as
a “period” for the Earth’s revolution
around the Sun. From the math-
ematical viewpoint, only the mo-
tion of the combined Earth-Moon
system about the Sun is periodic.
The trajectory of the Earth’s CG is
shown schematically in figure 6.

P287

When the diving bell just makes
contact with the bottom of the
pond, there is a thin layer of water
separating it from the solid surface
(figure 7). However thin, this layer of
water provides two keys to solving
the problem. First, the thin layer of
water immediately determines the
pressure in the water inside the bell.
Second, it clears the way to apply
Archimedes’ principle, since the bell
makes contact with only water.

Let us start with the latter ap-
proach. For the sake of simplicity,
we assume that the thicknesses A of
the walls and ceiling of the bell are
equal and small in comparison with
its radius and height. The weight of
the water displaced by the bell is
determined by the volume of the air
layer (2nr2x), the side walls (2rrhA),
and the ceiling (n(r +A)?A =nr?A). The
necessary width A can be found from
the condition that the bell’s weight
is greater than or equal to the buoy-
ant force:

pw(nrzx +2nrhA + anA>g
<P (nrzA + 2TEI’]1A)g, (*)

where p_ = 10° kg/m? is the density
of water, and g is the acceleration
due to gravity.

Now let us find the thickness x of
the layer of air left at the ceiling at
the instant when the bell “lands” at
the bottom of the pond. The air in
the bell is compressed by a pressure
p,,8H + Hy— (h - x)), and p_gH,, is
the external atmospheric pressure
(H, = 10.3 m). According to Boyle’s
law,

Figure 7

p,gH hnt? = p g(Hy + H— (h - x))xmr?,
whence
x>+ (Hy+ H-h)x - H,h=0,
and
x=1.6m.

Finally, the inequality (*) yields
the required value for the thickness
of the wall:

3
A= Pw? X ~4.6-102 m.

(pst — pw)(r1 + 21’]1)

Another way to find the maxi-
mum value of the buoyant force is to
use Pascal’s law (this is the point
where the thin film helps us again).
The air inside the bell acts on the
ceiling of area > with a force p, g(H,
+ H—(h - x))nz2. The water pressure
applied via the thin film to the
flange surface of the bell at the bot-
tom of the pond is p, g(H, + H)2mzA.
The ceiling of the bell with area n(r
+ AP = r? + 2mrA is pressed down-
ward by a force p, g(H,+ H-h—-A|nr?
+ 2mrA). The buoyant force is equal
to the difference of these upward and
downward forces:

p,8Hy + H - (h - x))nr + p, g(H, +
HP2mrA-p, g(Hy+ H-h - A)nr* +
2mA) = p, glnrx + (2meh + A,

which agrees with the left-hand side
of (*).

P288

If the conducting plate is shifted
inside the capacitor without rota-
tion (that is, if this plate is oriented

C R

S L B e

Figure 8



always parallel to the plates of the
capacitor), the electric field inside
the capacitor does not change. Let us
shift it close to one of the plates. Fig-
ure 8 shows the equivalent scheme
of this new arrangement. In this
scheme the area of a plate is S, and
the distance between the plates is d
—h. The capacitor is charged to volt-
age V,,. The value of the series resis-
tance is R = ph/S. The maximal cur-
rent will flow in the first instant
after closing the circuit:

Vo VoS

I:—:
R ph-

P289

Evidently, the maximal width of
the band is determined by the
plasmoid diameter D. The magnifi-
cation of the camera is

&
F-1L

!

so that D = d/T". To obtain an image
on the film, the velocity v of a
plasmoid must be sufficiently small
for it to move a distance less than D
during the time 7. If a time ¢ elapses
from the instant at which the image
appears to the complete stop of the
plasmoid, the plasmoid velocity at
the instant when the image appears
is Ivl = lalt, which satisfies the con-
dition

D d
et (1]
lalt  Tlalt
The plasmoid travels a distance
=LY 2)
I 2

before it stops completely.
Equations (1) and (2) vield the ac-
celeration of the plasmoid:

N

d? g [r-i

lal= —=—
ok 2It=| F |
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As afirst step, let’s find the radius
of curvature of the hollow [it is the
radius of the inner spherical surface
(figure 9])]. From the right triangle,
we obtain

Figure 9

* =R+ (r-R/2)%,

whence
r=1.25R.

Now let’s draw a ray emitted by
the light source (figure 10). For the
sake of convenience, we draw the
ray impinging on the spherical sur-
faces at a fairly large angle (other-
wise we will not discern the details).
In reality, the image is formed by
rays which travel at very small
angles to the principal optical axis
(POA), because the pupil of an
observer’s eye is narrow. Moreover,
according to the conditions of the
problem, the eye is located at a large
distance from the lens. Therefore, in
this problem we use the conven-
tional approximations for small-
angle trigonometry: the values of
the sine and tangent are equal to the
angles themselves, provided that the
latter are measured in radians.

Consider the path of a ray emitted
at an angle o to the POA. It inter-
sects the inner spherical surface at a
distance 0.5Ro from the POA. Now
draw a normal from the center of the
inner spherical surface O to this in-
tersection. This ray forms an angle
B with the POA, which is related to
the angle o by

0.5Ro =B = 1.25Rp,
B=040.

The angle between this incident
ray and the normal line is 0.60, so
after refraction at the surface of the
glass with n =2 it will form an angle
0.30. with the normal. At the same
time, this ray forms an angle 0.4 +
0.30. = 0.70. with the POA. The ray
will hit the inner side of the outer
spherical surface at a distance 0.5Rq
+ 0.5R - 0.700 = 0.85R0 from the
POA. Let’s draw the normal to the
spherical surface at this point (it is

O B/ A
Figure 10

the radius drawn from point A, the
center of this surface). The angle
between this radius and the POA is
v = 0.85R0/R = 0.850, so that the
angle of incidence is y—0.70. = 0.150.
After refraction the angle is doubled
and becomes 0.3c.. The refracted ray
makes an angle 8 = y-0.30. = 0.55a
with the POA. The continuation of
this ray intersects the POA at a
point B at distance L = 0.85R0,/0.550
= 17R/11 = 1.55R from the point of
emergence of the ray (for small
angles, this is the point of intersec-
tion of the outer spherical surface
with the POA). Since we chose a
small arbitrary angle of incidence for
aray traveling from the source to the
lens, the position of this point does
not depend on the value of this angle
(after refraction a narrow beam of
light appears to be emitted from this
point). Therefore, we have found the
location of the image observed by an

Brainteasers

B286

The 500,000th place is occupied
by the digit 5. Indeed, to write the
numbers 1 through 99,999 we need
9+2-90+3-900 +4-9000 + 5 -
90000 = 488,889 digits. It remains to
find the digit number 500,000 —
488,889 = 11,111 among the 6-digit
numbers. We notice that 11,111 =6
- 1851 + 5. Therefore, the desired
digit is the fifth one in the numeral
101,851. Writing down all these
numbers, at the rate of one per sec-
ond, would take almost six days!

B287

Denote the number of students
who participated in only one event
by 6x. Then 3x students participated
in three events and 2x students in
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two events. If we add all the num-
bers given in the problem, then each
student who participated in one
event is counted once, every student
who participated in two events is
counted twice, and everyone who
participated in three events is
counted three times. Thus, we have
the equation 100 + 50 + 48 = 6x + 6x
+ 6x, which yields x = 11. From this,
we find that the number of partici-
pants is 6x + 3x + 2x = 11x = 121.

B288

The hot plate with the most
power will cook the cutlets the fast-
est. The current through the upper
two hot plates is given by Ohm’s

law:

]u:l'
R

u

Because the current through both
hot plates is the same, the right-
hand hot plate has the greater
power,

VZ
Pu _ILZZRUI _R_lzzRuz'
9) 2
__ " 00)=2
(30 Q)z 90 Q

The same calculation for the bottom
pair of hot plates yields

_
245 Q

Therefore, the hot plate with the
20-Q resistance will cook the cutlets
the fastest.

B289

We assume that the steps in
each staircase are identical (an as-
sumption forced on most archi-
tects by their lawyers, because if
the steps are uneven people tend
to trip and fall). Since the stair-
cases have the same slope, each
step in one staircase is the same
length and height as each step in
the other staircase (the ratio of the
height to the length will be the
common slope). Since the towers
are the same height, the two stair-
cases must have the same number
of steps. Therefore they must be
the same length. Note that we did
not use the fact that the towers
were circular. The solution holds
for any two staircases for which
the word ‘slope’ is meaningful and
which have the same slope.

b

1
3 3
2
1 1
2 3 2
(or3) | (or2) | (or3)
Figure 11
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One such arrangement of squares
is shown in the figure 11. Let’s prove
that this set of squares satisfies the
condition of the problem. Assume
the opposite. If we paint the two
upper middle squares in colors 1 and
2 (as shown in figure 11), we auto-
matically obtain the coloring for
four more squares (the two on the
left and the two on the right of the
first two we’ve colored). Now we see
that the next layer of squares can be
painted only in colors 2 and 3. How-
ever we choose these colors, we can-
not paint the two bottom squares as
required.

Bulletin Board

A not-sa-smooth ascent for Some

There were a few missteps taken
by some entrants trying to solve this
month’s CyberTeaser involving two
cylindrical staircases. However,
many more were able to overcome
the treacherous ascent the problem
posed. The following were the first
ten correct solutions to the problem:
Helio Waldman (Campinas, Brazil)
John E. Beam (Bellaire, Texas)
Jerold Lewandowski (Troy, New
York)

Rick Armstrong (St. Louis, Mis-
souri)

Vincze Zsombor (Szeged, Hungary)
Maxim Bachmutsky (Kfar-Saba, Is-
rael)
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Theo Koupelis (Wausau, Wisconsin)
Bruno Konder (Rio de Janeiro, Brazil)
Mirella Murad (Curitiba, Brazil)
Michael H. Brill (Morrisville, Penn-
sylvania)

Qur congratulations to this
month’s winner, who will receive a
copy of this issue of Quantum and
the coveted Quantum button. Ev-
eryone who submitted a correct an-
swer (up to the time the answer is
posted on the Web) is entered into a
drawing for a copy of Quantum
Quandaries, a collection of 100
Quantum brainteasers. Qur thanks
to everyone who submitted an an-
swer—right or wrong. The new
CyberTeaser is waiting for you at
http://www.nsta.org/quantum.

A summer of science

The Weizmann Institute of Sci-
ence in Israel is opening its doors
and laboratories to gifted high
school seniors who are graduating
this June for a one-month summer
program at its Rehovot campus.
Since its establishment in 1969,
each summer the Institute has
brought together 75 talented science
students from around the world to
experience the challenges and re-
wards of scientific research.

American participants in the In-
stitute receive a full scholarship, in-
cluding travel to and from Israel.
For information and an application,
contact Debbie Calise, American
Committee for the Weizmann In-
stitute of Science, 130 East 59th
Street, New York, NY 10022;
telephone: (212) 895-7906; email:
debbie@acwis.org.
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Langton's ant

by Don Piele

ANY OF YOU HAVE HEARD ABOUT, OR
perhaps played with, John Conway’s “Game of
Life.” It first appeared in Martin Gardner’s
“Mathematical Recreations” column in Scien-
tific American in October, 1970. When I read this col-
umn, I was astounded at the variety of life forms that
could evolve from such a simple set of rules. Further-
more, it seemed impossible to predict what would
evolve knowing the rules and the life form at the first
generation. Such is the nature of the world of Cellular
Automata. In this column we will explore a small cor-
ner of this world through the eyes of Langton’s Ant,
created by Chris Langton of the Sante Fe Institute.

The rules

Imagine that you are an ant in the middle of a large
square array of cells—such as a checker board. Imagine
that all the cells are colored white. You have a black and
a white magic marker and you are facing North. Your
instructions are as follows:

1. Move forward one cell;

2. If the cell you are on is colored white, color it black
and turn right 90 degrees;

3. If the cell you are on is black, color it white and
turn left 90 degrees;

4. Repeat steps 1-3.

Can you predict what pattern of black cells will
evolve on the board? Will any identifiable pattern evolve
or will it just appear as a random array of black dots? To
find the answers to these questions, let’s write the nec-
essary algorithms and build a program in Mathematica
to carry it out.

Translating a set of rules that we understand in the
real world into a set of procedures a computer can carry
out is the art of programming. Programming requires,
first, that you know the data structures available to you
in your computer language and, second, how to build
algorithms that solve problems within those structures.

Let’s start by naming the board antland and defin-
ing it as a square matrix of cells each set initially to 0
for white
size = 10;
antland = Tzble[0, {size}, {size}];

MatrixForm[antland]

O OO OO 0O oo o o
0 OO0 0 O 9 OO O
O O O OO oo o o o
O O OO O O o o oo
O O O O OO O o o o
O O O O O O o o o o

O O O O O O o o o o
O O O O O O o o o o
O O O O OO oo o o
O O O O O O o o o o

Let’s put the ant initially set at {x, y} near the center
of antland.

size
x =y = Floor 2

The state of each position x, y is the value of
antland[[x, v]]. Of course, initially antland[[x, ¥]] = O for
all x, v.

Changing states

If the ant lands on white (0), it must be colored black
(1) and vice versa. Notice if we take {0, 1} and add 1 to
each position we get {1, 2}. Now, if we take the result
mod 2, we end up with {1, 0}, a reversal of values. Thus
we have our first algorithm for changing states of a
square the ant is on: Add 1 to the current state of the
cell and compute the value mod 2.

antland[[x, y]] = Mod[antland[[x, y]1] + 1, 2]

Enter the above command several times and watch
the state switch from 0 to 1 and back to 0.

Changing directions

The direction the ant is facing determines where it
will be when it moves forward one cell. We number the
four directions as follows: North = 0, East = 1, South =
2, and West = 3. Initially, we have the ant facing North
or direction = 0. Let’s examine how the directions
change after a right turn. Start with {N, E, S, W} = {0, 1,
2, 3} and do a right turn. Clearly N ->E,E > S, S > W,
and W ->Nor{0, 1, 2,3} ->{1, 2,3, 0. This is exactly
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the same result you would get if you added one to {0, 1,
2, 3} to get {1, 2, 3, 4} and took the results mod 4, {1, 2,
3, 0). It is easy to see that a left turn is the result of sub-
tracting 1 and computing the result mod 4. Assuming
dir is the existing direction number, the following com-
mands, rightTurn and leftTurn, change the direction
dir in the correct way.

rightTurn := dir = Mod[dir + 1, 4]

dir = Mod[dir - 1, 4]

3};

leftTurn :=

dir = {0, 1, 2,

rightTurn; dir

{1, 2, 3, 0}

Moving forward

Next we need to work out the movement forward
algorithm. Depending upon the direction we are facing,
amove forward from {x,y} has a different result. Here are
the transformations for each direction: North {x, y} ->
{X/ y+ 1}/ East {X/ y} -> {X+ 1/ Y}/ South {X/ y} -> {X/ Y= 1}1
West {x, y} -> {x - 1, y}. In Mathematica we use the
switch command to change the position {x, y} depend-
ing on the direction dixr the ant is facing. Note that x++
increases x by 1 and x-- decreases xby 1. If dir =0, then
y++;if dir = 1 then x++; if dir =2 then y--; if dir =3
then x--. This is expressed in the command

Switch[dir, 0, y++, 1, x++, 2, y--, 3, x--];

Note: It is true that an array in Mathematica starts
with {1, 1} in the Northwest corner of the array and not
in the usual Southwest corner. But for purposes of view-
ing the pattern we will use a Graphics command that
takes this into account. Let’s assume the usual x, y co-
ordinate system where going North increases y and
going South decreases y.

Putting the pieces togethier

Let size be the dimension of antland on each side.
Let’s agree that dir always begins facing North. Let
tourLength be the total number of steps the ant will
take, and let moves be the current number of moves
taken. Continue making moves as long as the ant is still
on the board and the number of moves is less than the
tourLength. Here is a module called LangtonsAnt that
puts all the pieces together.

<< Graphics‘'Colors®

LangtonsAnt [tourLength , size_ ] :=

Module[{dir = 0, moves = 0, X =y =
Floor[size/2]},
antland = Table[0, {size}, {size}l;
rightTurn := dir = Mod[dir + 1, 4];

leftTurn := dir = Mod[dir - 1, 4];
While[moves < tourLength && 1 <= x
<= size && 1 <= y <= size,
antland[[x,v]] =

Mod[antland[[x,y]] + 1, 2]1:

64 JANUARY/FEBRUARY 2000

If[antland[[x,v]] == 1, leftTurn,
rightTurn];
Switch[dir, 0, y++, 1, x++, 2, y--,

31 x__] 7
moves++];

Show [Graphics [RasterArray[antland] /.
{0 -> White, 1 -> Black}], AspectRatio ->
Automatic]]

Here is the final state of antLand after 96 moves.

LangtonsAnt [96, 11]

Big moves

After 10,000 moves of Langton’s Ant on an array of
size 100, nothing interesting seems to be happening.

LangtonsAnt [10000,

100]

But going a bit further we see something developing.

LangtonsAnt [11000, 100]

100]

LangtonsAnt [12000,
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The ant has now settled into a pattern, building a
highway to infinity and beyond. Could you have pre-
dicted that? That’s the nature and the beauty of cellu-
lar automata.

Your furn

1. As a first exploration, see if you can make a one
line change to the LangtonsAnt program in order to be
able to view all the cells the ant visits. As it now stands,
you see only the cells the ant visits an odd number of
times. Color the even number of times blue, the odd
black, and unvisited squares white. It will look like:

LangtonsAnt1[12000, 100]

2. Modify the rules in problem 1 so that once an ant
steps on a blue cell, it does not change color and it
moves forward on the next step instead of turning. The
results are completely different and unexpected.

3. Explore making up your own rules and imple-
menting them. I'm interested in any unusual patterns
you discover.

2000 USA Computing Olympiad

Over 150 students from 31 countries took part in the
USACO Fall Internet competition in November, 1999.
In this programming competition, the problems are sent
out via email to students who subscribe to the USACO
listserv at majordomo@delos.com.

The top four students in the Senior Division of the
Fall Internet competition were: Percy Liang, USA; Omid
Etesami and Siamak Tazari, Iran; and Jing Xu, China.
All four students had perfect scores on all four problems.

Three Internet competitions are held each year in
November, January, and March. The USACO National
competition will be held at local high schools in the
United States on April 12, 2000. To be included in
any of these competitions, send an email to me at
piele@uwp.edu, or visit our website at www.usaco.org.

Finally

Waiting for two months to see a solution is not nec-
essary today thanks to the Internet. Therefore, all solu-
tions to the problems presented in this column are avail-
able at the Informatics website: http://www.uwp.edu/
academic/mathematics/usaco/informatics/. Send your
solutions to me at piele@uwp.edu.

To participate fully in this column, you will need to
have access to Mathematica. Readers who are students
in any school or college may purchase the student edi-
tion of Mathematica. For details go to http:// www.
wolfram.com/products/student/.
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The Russian National Team
was ranked first in the Interna-
tional Physics Olympiad in 1999
and shared the first place with
China’s Team in the Mathemati-
cal Olympiad in the same year.
The professors and students of
Phystech [fiz'tekh] have been
training our national teams for
decades.

Phystech has been educating
top Russian scientists for more
than 50 years. To select and
train prospective students,
Phystech supports Physics and
Mathematical Olympiads at
various levels. For almost 30
Years, our School for Distance
Learning has brought advanced
education in Physics and Math
fo high schools located in all of
Russia’s 11 time zones.

Now we invite senior high school
and first-year college students to
take part in the First International
Phystech Olympiads in Physics
and Mathematics. Free for all
participants. Varying degree of
difficulty. You will receive a

confidential status report with
your rating against the other
participants worldwide and by
cross-sections. Prizes for
winners. Check our website.




