
us $7.50/cAN $10.50

ttr.'.

:-'

r$.t '

,d'w'

.;41#''

,i

f
:t,

2000

':. 
.

' -" ...' :

''4. ] .'

;

I

:

n
t-J



GALLERY O

N T FIRST GLANCE, THE PAINTING ABOVE SEEMS
Hto b. nothing more than a surreal gathering of exoti-
cally costumed individuals gathered at a desert locale.
However, those familiar with the works of Dali know
that his paintings should never be taken at face value.
After closer inspection of the above image, the bust of
Voltaire enters the room, emerging from the interplay of

Disappeailng Bust of Voltaire (l94ll by Salvador Dali

light and shadou'. Trainir-rg \-Lrlrr c\ i tLr see beyond the
obvious is talent that both arri:ts and sclentists seek to
develop. This s1d11 sllp\rs thc artist to add nuance to a
stretchecl can\-as rr-hile .rlL.rr rng the sclentist to discern
detarl rn the canr as ,-.f th.- lirhr skl'. To learn more about
horr the hrain pr,--;esscs the rrorld that enters through
our e\ es tl11:i t,r Tht Er i and the Sky" on page 10.

Oil on canvds, 18 114 x 21 314 jnches, Collection of the Salvador Dalt Museunl St. Pete$butg, Floida @ 1999 Salvador Dali l{uem. Inc.
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It's important not to panic during earth-
quakes, and the more you understand
about what's happening the less likely
you are to lose your head. Fortunately,
large earthquakes are rare events, thanks
in part to the fluid nature of the forces
at work. F{owever, to play it safe, turn
to "Fluids and lault Lines" on page 4 to
ground yourself in the fundamental
physics behind earthquakes.
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BRAINTEASERS
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8281
Five at a time. Bill placed 9 empty glasses on a table and asked |ohn to
turn them upside down, turning 5 glasses at a time. Solve this problem
using as few operations as possible.

8283
Sfiive for perfection Can a number consisting of 300 ones and some
number of zeros be a perfect square?

8285
Snow how! Since ice melts at 0 oC, how can streets in the winter remain
covered with snow when the temperature is above zero?

8282
Failing inversion. Having solved the previous problem, )ohn tried to
invert the 9 glasses by turning 5 glasses at a tirne; however, he failed. Do
you think it is possible?

B284
Straight to the point. A line I and a point A are given on a plane. Using a
compass and a straightedge, construct a perpendicular to / through point
A, drawing not more than three lines and circles (the desired perpendicu-
lar counts as the last line drawn). Consider two cases/ when point A does
not lie on line I and when it does.
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Fluids and laull lines

HE WORLD WE LIVE IN IS
very complicated and diverse,
particularly in the details,
which vary in time and space

Why large earthquakes are rather rare

by G Golitsyn

and are distributed in essentially a
random manner. Our lives depend
on many factors in the surrounding
world: weather, climate, rainfaIl,
flood, and drought. Many regions
suffer from earthquakes, blizzards,
hurricanes, and typhoons. These
phenomena share a common feature
known to everyone from experience:
the stronger the disturbance, the
more seldom it occurs. In other
words, large deviations from the
norm are rare events. This ciearly
reflects the statistical natare of our
world, which is ruled by chance
even while governed by physical
laws. Certainly the conservation
laws for energy and linear and angu-
lar momentum are always valid ev-
erywhere*one must only under-
stand where and how to apply them.
That is the main task of science, to
provide a deeper understanding of
the world around us.

Various technical applications of
science require knowledge of the
laws of fluid flow lby fluid we mean
a liquid or gas). These laws help us
understand how airplanes fly and
ships move and how water flows in
a pipe. Let's take a look at the factors

that determine the basic features of
a flow and its intensity and varia-
tions in time and space. We'll see
why a large and interesting event
requires a longer waiting period (ex-
pectation time), and how long one
must wait (on average) to observe
such an event.

D]'oilels and ules
Suppose a body is immersed in

some medium-say/ in air or water.
According to Archimedes' principle,
the body will be acted upon by a
buoyant force equal to the weight of
the medium that is displaced by the
body. It appears as if the acceleration
due to gravity has changed by afac-
tor of (po - p,,,)/pu where pr and p*
are the densities of the bodv and
medium:

-,_-Pb-P-6d
pr,

In addition, every mefium resists
the motion of external bodies in it.
Let's consider the motiottof "large"
and "small" bodies in air-for ex-
ample, the fal1 of a drop of spray or
the descent of a parachutist.

Using dimensional analysis, one
can easily show that the resistive
force acting on a large body of char-
acteristic length r moving with
speed u in a medium with density

p- must depend on these factors as

follows:

Fn - p*u)r).

Indeed, (kg/m3)(m2/s2)m2 : N.
This is ca1led the aerodynamic drag
force. For small bodies the resistive
force results from the mutual fric-
tion of layers of the surrounding
medium. It is proportional to the
first power of the speed u and the
characteristic length r. Evidently,
the proportionaliry {actor must have
dimensions of kg/(m - sl. trt is known
as the viscosity coefiicient p of the
medium. Thus the viscous drag
(Stokes'l force is

Fr- !ur.
The ratio oi these two drag forces

is the Rey-nolds number:

--f^ururRe = --z{, vlp*
For brevity here we introduce a new
{actor, known as the kinematic vis-
cosity of the medium v. For ex-
rrnple, for air under standard condi- 3
tions, v - t0-s -z/s. ,:

Now we see that the predomi- #
nance of either force (inertial or vis- !
cous) depends not only on the size of I
the body (whether it is large or small) -=
but also on its speed and the kine- !
matic viscosity of the medium it is <

JANUARY/ItBRUARY 2OOO
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moving in. A1l these factors are com-
bined in a single parameter (the
Reynolds numberl. Thus the compe-
tition for predominance between the
inertial and viscous properties of a
me&um is decided by the Reynolds
number-whether it is much larger
or much smaller than unity. An in-
teresting thing about this famous
number is that it can be represented
as the ratio of two characteristic
times, the viscous time t, : Plv and
the inertial (dynamic) time tr: rf u:

o^_ur _rzfv _t,
v rfu ri'

Both t, and t, are measures of the
characteristic time required for a

body to attain a constant speed un-
der the action of the respective force.

Now let's consider a body falling
in some medium. The speed of the
steady-state motion can be found by
equating the effective force of grav-
ity (that is, the weight minus the
buoyant force) mg', where rrl =

4nf polS andg': s(pt - p-)/pt, to the
appropriate drag force Fuor F^.

The larger the accel'eration im-
parted by the force, the shorter the
relaxation time required for attain-
ing equilibrium. If several forces act
on a body, the main role will be
played by the force that corresponds
to the shortest relaxation time.
Small Reynolds numbers (Re < 1)

mean that the viscous relaxation
time is far smaller than the inertial
time tr. In this case we can write for
the falling body

mg'- pur -ypmlirl

which gives

,, - o'- Pb* 6 "v p*

In a similar way, for large
Reynolds numbers (Re >>1)we have

mg' - p^'U2t2,
and so

u- g'L Pa =g'1 9-b .

uP- P-
Let's consider the flow of a viscous

liquid of density p in a tube of radius
r and length I under a driving pressure
difference Ap between the ends of the

tube. A unit volume of this liquid
will be acted on by a force Ap/1, so its
acceleration will be a : Lp lpl. As a re-
sult, the mean speed (averaged over
the cross section of the tube) for
small Reynolds numbers (Ra < 1) is

u-"rrr- o""-&Lpl v'
The solution to this problem for

narrow tubes was obtained in the
middle of the nineteenth century by
the famous French scientist |ean
Leonard Marie Poiseuille. His solu-
tion differs from ours by a factor of
about 1.

In contrast, for Re >> 1 we get

Lpru-aT.* *-t plu,

from which it follows that the drag
is again proportional to the square of
the speed, but now the mean speed
is approximately

T,

This formula agrees beautifully
with many experiments.It has long
been used f.or praetrcal calculations
in connection with the pipeline de-
livery of various substances neces-
sary for modern living.

Note that the mass flow rate G in
the two cases has a different depen-
dence on the radius at a given value
of the pressure head tpll.In the vis-
cous regime the mass flow is

6=prr2u^"n -*ro,
1

while in the nonlinear (with respect
to Ap) regime

6 : pn+u,n"*,- l+rt/, .

Comparing the two formulas, we
see that the relative efficiency of the
pipeline transport in the second case
compared to the first case falls off as

the pressure head or the tube radius
is increased.

Iurhulence
There are various energy sources

in the world whose power changes
only over periods comparable to the

lifetime of the Earth (approximately
4.5 billion years or 1.5 . 1017 sec). For
example, solar energy is not only the
source of all life on our planet
(through photosynthesis by chloro-
phyll), but it is also the " fluel" for all
motion in the oceans and the atmo-
sphere.

Another huge source of energy
that drives different processes in the
Earth's crust and interior is the heat
produced there by the radioactive
decay of various elements. The
mantle of the Earth extends from a
depth of 3,000 km up to the crust,
whose thickness is only 20-70 km
under the continents and even
smaller (5 km) near the oceanic
ridges from which the crust origi-
nates. Heating of the mantle pro-
drces convective motion of the sub-
stance it is made of. This convection
displaces the lithospheric plates of
the crust in a nonuniform way by
several centimeters per year. As
slow as this shift is, it causes a

buildup of elastic stresses at the
boundaries of the plates. These ac-
cumulated stresses are partially re-
lieved by earthquakes.

One can write an equation de-
scribing processes that alter the en-
ergy of a system over time by mul-
tiplying the equation of motion by
the speed. The product of force
times speed is the power developed
by that force. If the power developed
by a system is counterbalanced (on
average over time and space) by the
power of an extraneous source (say,

by solar energy), the kinetic energy
of the system will remain constant
(also on average). The characteristic
relaxation times for establishing this
steady state depend on the forces
involved (in much the same way as

we saw previously whenestimating
velocities of falling bodies).

We start with a description of the
spatial structure of a turbulent (that
is, irregular) flow on a small scale,
where the structure doesn't depend
on the chosen direction and location.

More than 70 years ago the En-
glish scientist Richardson cluestioned
whether it is possible to c,haracterize
the wind by a speed. He explained
that the wind varies stochastically in

JAlllUARY/IEERUARY 2OOO



time and space at any place on the
Earth. He also proposed a clualitative
description of turbulence as a process
in which the main flow is unstable.
The unstable flow decays and pro-
duces smaller vortices, which in turn
generate even smaller vortices-and
so on down to the very smallest
scales. The smallest vortices dissr-
pate by viscous damping because
they are eharacterized by rather
small Reynolds numbers.

InI94l Andrei Kolmogorov (who,
incidentally, was the founder of the
Russian version of Quantum) wrote
a paper describing the structure of
turbulent flow. At virtually the same
time, his postgraduate student
Alexander Obukhov published a pa-
per in which he obtained the so-
cal1ed spatial spectrum of turbulence,
among other interesting results. At
the time, Kolmogorov did not know
of Richardson's work, but he was
well aware of the obstacles facing the
creation of a theory of turbulence,
and he provided some quantitative
tools to overcome them. For ex-
ample, to get around the wind speed
problem he suggested considering as

a parameter the mean square di{fer-
ence of the components of the veloci-
ties at two points separated by a dis-
taucer.In this case, the slow changes
produced on larger scales by the
anisotropic large vortices generated
as a result of the instability of the
main flow simply cancel out and do
not have to be looked at. Kolmogorov
proposed a quantitative description
of the vortex fragmentation process
that had been described qualitatively
by Richardson.

If the development of the insta-
bility of the main flow is main-
tained at a1l times by some energy
source (as, for example, the overall
circulation of the atmosphere is
maintained by solar radiation dis-
tributed nonuniformly over the
Earth's surface), there must be a con-
stant flow of energy from the large
vortices to the small ones, where the
turbulent energy is converted into
heat on ac.count of the viscosity of
the fluid. This energy flow (or the
rate of change of kinetic energy per
unit mass per unit time) is usually

measured in f/(kg . sec). The mean
square difference of the moduli of
the speed at two points separated by
a distance r ffray be regarded as the
relative kinetic energy of fluid par-
ticles of unit mass separated by the
distance r. The cases of large and
small r must be treated separately.

Suppose that r is large compared
to the distances over which the vis-
cous forces act. This distance is
called Kolmogorov's miuoscopic
scale 1*: (vslelrla (prove to yourself
that this formula is consistent with
dimensional analysis). Then the
Reynolds number is also large, and,
by exploiting the analogy between
the force and energy characteristics
of a system/ we can use the corre-
sponding formula containing the
dynamical time tr: r/u to obtain the
famous Kolmogorov 2l 3 law:

u2 - (27Ple '

Obukhov found a formula for the
spatial spectral density of kinetic
energy in turbulent f1ow. Essentially
it works as follows. The stochastic
speed distribution can be repre-
sented as a sum of spatial harmon-
ics (sinusoids) of various amplitudes
and wavelengths, just as an arbitrary
electrical signal can be decomposed
into a sum of sinusoidal functions of
time with different amplitudes and
frequencies. The function that gives
the contribution ("weight") of each
sinusoid to the waveform is ca11ed
the specftum. The spectral descrip-
tion of any phenomenon is very ef-
fective for practical purposes.

Obukhov found that turbulence
has a spatial spectrum

E(kl - E2l3k-s13, k: ZnlX,

where )" is the wavelength of a spa-
tial harmonic. This formula works
in the atmosphere, in the oceans, in
large wind tunnels, in stellar atmo-
spheres, and even in the interstellar
gas in our galaxy. Its correctness is
confirmed by many direct measure-
ments carried out by the world sci-
entific community. There are excel-
lent reasons why this theory is
considered to be one of the most
outstanding achievements of twen-
ti eth-century hydrodynami cs.

On the other extreme, for small
scales chatactertzed by t < 1* =
(va lelUa the Reynolds number is not
large, and we should therefore use
tu, the viscous time (because tu << tr).
Thus,

u2 - trz fv.

At this scale one can do an exact
calculation, which gives a numeri-
cal factor of ll3 on the right-hand
side of this formula.

Convection, which is an impor-
tant class of motions in nature and
technology, occurs when a light liq-
uid is under a heavy one. This situa-
tion is typical in a pan o{ water set on
a stove, which heats water from the
bottom. Another example is cooling
of water from the top. Heating from
the bottom takes place in the atmo-
sphere when soil is warmed by solar
radiation. The resulting convection
can be observed as a shimmering in
the air over a plowed fie1d, for ex-
ample. Cooling from the top occurs
in all natural reservoirs, where the
thermal energy making up the heat
of evaporation is taken from the top
layer of water. The heat flux qn re-
moved from (or supplied to) the liq-
u-id is related to kinetic energy dissi-
pation by the formula

- _ agen
c--l

pcp

where o, is the coefficient of volume
thermal expansion of the liquid, g is
the acceleration due to gravity, and
c, is the specific heat at constant
pressure.

Of course, convection is distinct
from locally homogenous and iso-
tropic turbulence in that there is a
preferred vertical direction (associ-
ated with the gravitational accelera-
tion g). Flowever, for a rough estima-
tion of the convection rate one can
use the formulas derived for turbu-
lence. Of course, the numerical co-
efficients should be "customized"
for convection instead of turbulence.

For practical purposes it is impor-
tant to know the convection rate in
viscous liquids, and so the corre-
sponding formula has been tested in
many experiments and numerical
and analytical calculations. The ex-
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pression obtained for the mean
speed is

I

u - o.t-/9r = o.t la9an ,.!v ! pr.,

Geophysicists have obtained the
foilowing parameters of the Earth's
mantle: a= 4 . 10-4 K-1, p =3' 103

kg/m3, co = 3 102 I/kg ' K, and Y =
l0Ie m2/s. By inserting the mean
value of the geothermal heat flux qn
: 0.08 W lt z and the mantle thick-
ness r= 3000 km into the above for-
mula, we get a value of about
5 cmfyear for the convective speed
of the Earth's mantle. The actual
speed of the lithospheric plates, as

measured by navigation satellites,
lies in the range of 1-10 cmfyear.

The value 5 crnfyear may seem to
be extremely smal1, butwith 52 weeks
in a year, this rate is 1 mm/week.
Incidentally, that is about the same
as the growth rate of human finger-
nails, so we are quite familiar with
such "slow" motion. (I believe that
the first person to note this fact was
the contemporury English geophysi-
cist D. Mackenzie.)

In addition to gravitation, there is
another factor that affects convection
on the Earth. It is related to the Co-
riolis force, which results from the
rotation of the Earth about its axis.
This force always acts perpendicular
to the velocity, so it can't perform
any work and doesn't affect the en-
ergy of convection. Therefore, the
Earth's spinning does not modify the
formula for the energy dissipation
rate. The Coriolis force introduces a

new time scale t, = (2rosin 0)-1,
where ro is the angular speed of rota-
tion and 0 is the angle between the
axis of rotation and the local horizon-
tal (for the Earth it is simply the lati-
tude). In the middle latitudes
1/t, : 2rosin e = 10-4 s-1.

The ratio of the inertial force to
the Coriolis force is known as the
Rossby number, Ro = trf'cr. It was
named a{ter a Swedish meteorologist
who in 1940 introduced this ratio
into science. In the case of large-scale
atmospheric or oceanic motion, this
number is far smaller than unity. For
example, Ro = 0.1 for r: 1000 km and
u - l0 m/sec. The Coriolis force is

counterbalanced by a horizontal at-
mospheric pressure gradient. This
explains the empirical rule long used
by meteorologists: if you turn your
back to the wind, thc region of low
pressure will be to your left and the
high-pressure region to your right. Oi
course/ in the southern hemisphere it
is lust the opposite.

Sincc thc charactcristic timc t,, is
much less than the inertial time, we
can obtain the speed of convectrve
flow in the rotating fluicl:

lr) - tT,,,, nr r, .- ,{.
Many cxpcrimcnts lm)' o\\'r'r rn-
cluded) SavE yieldcd a valuc oi 1.' ior
the proportionality coeiiicrent rn thr,.
formula. When apphed to the E:rrth s

liquid core, the forr-nu1a g1\-e s ;1 spe ed
of about 5 cm/1-ear, u hrch is sr-riir-
cient to generate anrl maintarn the
geomagnetic iielcl. 1t also 1-ie1cls
spccds of 40-50 m sec ior hr:rricanes
and typhoons, rrhrch agrees with
meteorological er-idence. Recently,
convection in a rotating licluid was
intensiveh' stndied by oceanogra-
phers rn an illtempt to describc the
sinkrng oi rrater at the edges of the
ice sheets at hrgh latitudes (the main
process that "ventilates" the water in
the depths oi the ocean).

In the mid-1960s, A. M. Obukhov,
then director of the Institute of Atmo-
spheric Physics of the Russian Acad-
em,v of Sciences, suggested I should
search for data on atmospheric mo-
tion on other planets. I spent several
years analyzing astronomical obsewa-
tions and simulating some features of
the dynamics of the Martian atlno-
sphere. This work culminated in a

similarity theory for the circulation of
planetary atmospheres. The theory
gave reasonable estimates oi the wind
speed and the tcmperature difference
driving thc winds on the Earth: l2la;,f
sec and 45 K, respectively. It also gave
predictions for these paralneters on
Venus, Mars, and thc Saturnian rnoon
Titan (cln which thc mass of the atr-nc,-

sphcric colutnn is I i tittte - -r'i.'-:,:'
than that on the Earth\, Thc 1t.,.--: --:
formuia for the ilre 3o rrurrl .:=;,i ,. :,1
from trivial:

(r - -.u

where a is a dimensionless factor
(0.6 for the Earth); o = 5.67 . 10 8

W/m2 . K4 is the Stefan-Boltzmann
constant (which appears in the for-
mula {or thermal radiation c1 = oTa)i
m is the mass of the atmospheric
column (10a kg/m2); e = ectll - A)14

lc1 = 2a0 W/-2) is the density o{ so-
lar energy received by the planet on
avcragc over its sutface, which has
a reflectivity A \A: 0.3); and q.-. is
the solar constant (1368 W/mrl. The
nurnbers in parentheses are the cor-
respondrng r-a1ues for the Earth.

Thrs iormr:la rs too complicated
ior cven a sirnpliiied analysis. Sev-
L-ral \-e ars passed before thc author
guessed that thc total kinetic energy
oi the atmosphere could be de-
scribed by the formuia

n = ! -. 4niu2 = ZnazQt 
" 

= ZQx 
",2

where Q is thc total cncrgy from so-
lar radiation received over the plan-
etary disk and t, : r f c rs the ratio of
the radius of the planet to the speed
o{ souncl, which is the damping time
of pressure and dcnsity disturbances
on a planetary scale. The ratio of the
damping time rs to the inertial time
t, is the Mttch number Ma : ulc.
Since Ma << I, the clamping timc t.
is the smallest time parameter.

In general, winds arise because
planets are iapproximately) spheri-
cal. They therefore have day and
night and high and low latitudes, so
that different parts of the planet are
heated differently. This nonuniform
heating is the prrlrrary cause of
winds. For Venus the formula for the
mean speed yields rz = 1 m/sec. This
estimate has been confirmed by di-
rect measurements made by space
probes in the lower hemrsphere oi
that planet. For Mars the rhc-oretrcal
estimates oi tl-rc rrrr-rJ sFe ed turn out
to be three tirle s h:::rtr than the er-
perir-ner-Lt:.- a:.:: >:t -,it-s This dis-
crel'.lltai .:r.a *:t:.i-1i\- orlginates
li.'ll1 l1: :11,:1 ::1'] tranSparent Char-
.:a:.1 : :-1r,'\lartlan atmosphere.

- :-.:-: . --:--. :,'n.lttions the main role
--- :---. -:".:: erchange between the
: --t-.:-: ..: j atmosphere of the planet
-. :-...-.1 b1- thermal radiatior-r in-
:::-:; -ri atmospheric dynamrcs.
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Curiously, the reasoning that
yielded the formula for the energy E
can also be used to describe stochas-
tic processes involving objects and
events/ that is, to determine the num-
ber of events occurring per unit time
as a function of their mean intensity.

Earfiquakes
Let's analyze the number of

earthquakes occurring on the planet
(fortunately, this number is small,
and a strong earthquake is an ex-
tremely rare event). An earthquake
is a very complicated process in its
structure and nature. It was only 30
years ago that a more or less precise
(about 2O%l quantitative measure of
earthquake intensity was proposed.
It is based on the energy of the radi-
ated waves detected by seismo-
graphic stations, which for the past
20 years have been organized into
the Woridwide Standardized Seis-
mographic Network (\afWSSN). This
parameter is the saism ic moment M
= !t.Ss, where U. is the shear modu-
lus of the rock ruptured in the earth-
cluake, s is the mean displacement of
adjacent blocks of the crust during
the earthquake, and S is the contact
area along which this displacement
occurs. The dimensions of M are N
. m (newton meters)/ which means
that it has dimensions of work or en-
ergy. Earthquakes relieve the stress
Ao accumulated during displace-
ment of the lithospheric plates. It is
noteworthy that for different earth-
quakes Ao varies only slightly about
its mean value (40 atm : 4 MPa : 4
. 106 N/m2 = 4.t06 |/m3), although
M can differ by many orders. This
feature makes it possible to charac-
tertze every earthquake by its own
linear scale L-, area scale S*: L2-,

or volume scale V^: L3^:

\/ -MAo'

The parameters L* and S- are
useful in estimating the length and
arca of the rupture zone formed in
the earthquake, while knowledge of

the shear modulus enables one to
determine the mean displacement s.

For example, the most severe earth-
cluake in the twentieth century oc-
curred in Chiie (May,1960l, where
the rupture of the crust extended as
far as 800 km and the displacement
was more than 20 ml

Using dimensional analysis, we
may write

M = a,P'c(> M),

where a, is a const ant factor, P is the
power fed into the system (in our
case of global statistics it is the to-
tal value of the geothermal power P
= 4 . lors W, with a mean energy flux
density of 0.08 W l^2), and t(> M) is
the mean expectation time for an
earthquake event with a seismic
moment eclual to or greater than M.
This is precisely the distribution of
earthquake events observed in the
thin crust near the oceanic ridges,
where the crust originates and is
only about 5 km thick.

Seismologists usually write the
distribution law for the mean occur-
rence rate of earthquakes as

M>M) -+,
M"

where N(> M) : llr(> M). According
to carefully compiled statistics on
earthquake events/ the exponent n
has a value of 1.05 for some sets of
data and0.94 for others. In any case,
it is very close to unity. Bear in mind
here that we know only the power of
the energy source and are attempting
to find a relationship between the in-
tensity of an earthquake and its ex-
pectation time (or occurrence rate).

However, the overwhelming ma-
jority of earthquakes occur far fuor,rr
the oceanic ridges, so only a small
percentage of all earthquakes (only
about 50 events in the period from
1977 to 1992) obey the above distri-
bution law. For most earthcluakes,
with seismic moments M less than
1021 N . m, the exponent n is less
than 1. The experimental values of
n compiled by different authors vary
somewhat, but they aIl can be de-
scribed by the value n :0.66 + 0.03.

Now recall our scales of length,
area, and volume (see formulas

above). The latter formula was sug-
gested in 1956 by the |apanese seis-
mologist Chuji Tsuboi. It gives the
volume in which the relief of me-
chanical stresses occurs. The heat
flux, which is the ultimate source of
the stresses in the crust, is delivered
to an area of the crust S- of thick-
ness h, and thus the affected volume
is hS- : h(MlLol2l3. Therefore,

MN(> M) p

v_ " hs_'
which gives

N(> M) = 0.4PM-zlzh-1(Ao)-1l3.

The coefficient a, = 0.4 in this for-
mula was determined by comparing
with the data in the catalog of g1o-

ba1 earthquakes.
This formula, which I published

in1996, not only explains the nature
of the exponent 0.66 + 0.03 =2l3but
aiso reveals the factors that are con-
ducive to earthquakes. For ex-
ample, the thinner the crust, the
smaller the mean expectation time
for earthquakes of a given intensity.
The differences in the experimental
values o[ n arc explained by the dif-
ferent degrees of rupturing of the
crust in different earthquakes.
When n : I, the entire crust of
thickness .h is ruptured. When n =
2f 3, only a partial rupture occurs in
the crust, over an area S such that
,8 . h. Therefore earthquakes in
the thin oceanic crust have a distri-
bution with n = 1, while the far
greater number of earthquakes that
occur in the thick crust have a dis-
tribution described by n = 213. The
power-law dependence of the earth-
quake occurrence rate on intensity,
with an exponent of about 2f 3, is
named after the American seis-
mologists Beno Gutenberg and
Charles Francis Richter, who dis-
covered itinI94L.

We could look at many more ex-
amples of the application of dimen-
sional and similarity analyses, ex-
tract the characteristic times of
other processes/ and search for
more analogies in events of abso-
lutely di{ferent physical natures,
but the universe won't fit into a
short article!

t =l Y\' , : M l"" t' 
I lo,/ l ro,]
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This article is continued from the
November/December 1999 issue of
Quantum, pp. 14-19.

-Gauss

cussion as to the reasons for which
Gauss began to study astronomy.

First of all, it must be taken into
account that since the time of Kepler,
Galileo, and Newton/ astronomy was
the most impressive application of
mathematics. This tradition was
continued by Euler, d'Alembert,
Clairaut, Lagrange, and Laplace. By
predicting and explaining celestial
phenomena, mathematicians {elt as

if they had been let in on the secrets
of the Universe. Gauss, who was in-
terested in practical computations,
couldn't fail to try his power in this
traditional field.

However, there were other, quite
practical reasons. Gauss held the
modest post of privatdocent in
Brunswick, earning only 5 thalers a
month. The stipend of 400 thalers
from the Duke did not improve his
material condition to a degree suffi-
cient to support afamlly, and Gauss
was thinking of getting married. It
was difficult to obtain a professor-
ship in mathematics, and, in addi-
tion, Gauss was not inclined to
teaching. The growing number of
observatories made a oareet as art
astronomer possible.

Gauss began to study astronomy
while still in Gottingen. Some ob-
servations were made in Brunswick

-he even spent a part of the Duke's
stipend on a sextant. Meanwhile,
Gauss sought a suitable computa-
tional problem, while keeping busy
solving minor problems. For ex-
ample, he published a simple
method for calculating the date of
Easter and other cyclic feasts (at
that time, very unwieldy methods
were used for this purpose). An idea
for a worthy problem occurred in
1801 under the following circum-
stances.

On the lst of fanuary 1801, the
astronomer Piazzi, who was making
up a catalog of stars, found an un-
known star of the Sth magnitude.
He observed it for 40 days and then
addressed prominent astronomers/
asking them to continue the obser-
vations. For various reasons/ his re-
quest was not fulfilled. In fune, this
information reachedZach, yrho pub-
lished the only astronomic journal
atthattime.Zach assumed that this
was a planet that was suspected to
exist between Mars and |upiter.
Zach's hypothesis seemed very
likely and the "lost" planet had to be
found quickly. For this purpose, its
orbit was to be computed. However,
it was beyond the possibilities of
astronomers to compute an elliptic
orbit knowing only the 9-degree arc
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Carl triedl'ich Gauss

Nothing can be consrdered completed
if anything remains to be done.

by S. Gindikin

I N THE NEW CENTURY,
I Gauss' scientific interests shifted
I away from pure mathematics. Pe-
I riodically, he returned to it, each
time achieving excellent results,
worthy of a genius. In 1812, he pub-
lished a work on the hypergeometric
function. This function depends on
three parameters. By assigning them
different values, a great many of the
functions that occur in mathemati-
cal physics can be obtained. A lot of
credit for the geometric interpreta-
tion of complex numbers must go to
Gauss. His works in geometry will be
described below. However, math-
ematics was never again his main
occupation. Here is a telling circum-
stance: in 1801, Gauss stopped keep-
ing his diary regularly, although cer-
tain notes were made up to 18 14. We
rurely realtze how short the "math-
ematical life" of Gauss was-less
than 10 years, and the greater part of
this time was spent on works that re-
mained unknown to his contempo-
raries (elliptic functions).

lulinol' planels

We now talk about a new passion
of Gauss. There has been a 1ot of dis-
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that had been observedby Piazzi.In
September of 1801, Gauss aban-
doned all his affairs and got down to
computations. He finished them in
November, and the results were
published in the December issue of
Zach's journal. At night from the
3 1st of December to the l st of |anu-
ary-exactly a year after Piazzi's'
observations-the renowned Ger-
man astronomer Olbers found the
planet on the basis of these calcula-
tions; the new planet was named
Ceres. This discovery created quite
a sensation.

On the 25th of March 1802,
Olbers discovered yet another
planet, called Pailas. Gauss quickly
computed its orbit, showing that it
also was located between Mars and

fupiter. The effectiveness of Gauss'
computational methods became ap-
parent.

Thus, Gauss gained recognition.
One of the signs of this recognition
was his election as a corresponding
member of the St. Petersburg Acad-
emy of Sciences. Soon he was in-
vited to take the post of Director of
the St. Petersburg observatory.
Gauss wrote that he felt flattered to
be invited to the city where Euler
had worked, and seriously consid-
ered accepting this offer. In his let-
ters, Gauss wrote that the weather
was often bad in St. Petersburg, so he
would have time for his own studies
in addition to making astronomical
observations. He also wrote that the
1000 rubles he was offered were
more than the 400 thalers which he
got in Brunswick, but that the cost of
iiving was higher in St. Petersburg.

At the same time, Olbers made
efforts to keep Gauss in Cermany.
As early as in 1802, Olbers asked
the curator of the University of
Gottingen to invite Gauss to take
the post of Director of the newly
founded observatory. Olbers wrote
that Gauss had an aversion to the
chair o{ mathematics. Gauss agreed
but moved to Gottingen only at the
end of 1807. In the meantime, Gauss
got married. In 1806, the Duke died.
Gauss was sincerely attached to
him, and now nothing held him in
Brunswick.

Life in Gottingen was not easy for
Gauss. In 1809, after the birth of a
son, his wife died, and then the child
died also. In addition, Napoleon lev-
ied a heavy tribute on Gottingen.
Gauss himself had to pay at exces-
sive tax of 2000 francs. Olbers and
Laplace tried to pay this tax ior
Gauss, but he proudly refused. How-
ever, another anonymous benefactor
paid the tax, andthis time, there was
no one to return the money to (later,
it became known that this benefac-
tor was the elector of Mainz, a friend
of Goethe). Gauss wrote, between
remarks on the theory of elliptic
functions, that death was better
than such a life. People didn't appre-
ciate his work and considered him
an eccentric at best. Olbers tried to
comfort Gauss, saying that one
shouldn't expect understanding but
should pity people and serve them.

In 1809, the famous Theoria
Motus Corporum Coelestium
(Theory of Motion of Celestial Bod-
ies Revolving around the Sun by
Conic Sections) was published. This
book was finished as early as in
1807. The delay in printing was
partly due to the apprehension of the
publisher that there would be no
demand for the book in German, and
Gauss refused to publish his book in
French for patriotic considerations.
The compromise settlement was to
publish it in Latin. This was the
only Gauss'book on astronomy (be-

sides this book, he also published
several papers).

In this book, Gauss presented his
method for calculating orbits. In or-
der to demonstrate the effective-
ness of his method, he repeated the
calculation of the orbit of the comet
of the year 1759, which had been
calculated earlier by Euler. Euler
spent three days of intensive work
on this job and lost his eyesight as

a result. Gauss carried out the job in
only an hour. Among other things,
the book presented the least-
squares method, which remains
one of the most widespread meth-
ods for the analysis of observations.
Gauss claimed that he had known
this method since 1794 and had
been using it systematically since

1802. (The least-squares method
was published by Legendre two
years before the Theoria Motus
Corporum Coelestium,)

In 1810, Gauss received many
honors: he won theprize of the Paris
Academy of Sciences and the gold
medal of the Roya1 Society of Lon-
don, and he was also elected to
membership in several academies.

In 1804, the Paris Academy of
Sciences chose as a topic for the
greatprrze (a gold medal of 1 kg): the
theory of perturbations of Pa1las.
The deadline was twice postponed
(eventually to 1816) in order for
Gauss to be able to present his work.
Although Gauss' student Nicolai ("a
youth tireless in calculations")
helped him, the calculations still
weren't finished because of Gauss'
depressed state of mind.

Gauss continued his regular stud-
ies in astronomy almost until his
death. The famous comet of 1812
(which "portended" the Moscow
fire) was observed on the basis of
Gauss' calculations. On the 28th of
August, Gauss observed an eclipse.
Gauss had many student astrono-
mers ( Schumacher, Herling, Nicolai,
and Struve). The prominent German
geometers Mobius and Staudt stud-
ied astronomy rather than geometry
under Gauss. Gauss also corre-
sponded with many astronomers,
read papers and books on as-
tronomy, and wrote reviews. We
know a lot about his studies in
mathematics from his letters to as-

tronomers. The image of Gauss the
astronomer was quite different from
that of an inaccessible hermit, a no-
tion that existed among mathemati-
cians at that time.

0eodesy (tal'fi mea$ttmlnsn0
In 1820, Gauss turned his atten-

tion to geodesy. As early as in the
beginning of the century, he tried to
use the measurements of an arc of a
meridian carried out by French geod-
esists to set a standard for length
measurements (the meter). He
planned to use it to calculate the
Earth's flattening near the poles.
F{owever, the arc turned out to be
too short. Gauss dreamed of per-
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forming measurements of a suffi-
ciently long arc of a meridian, but
was able to get down to this work
only in 1820. Although the measure-
ments took as long as two decades,
Gauss was unable to fully imple-
ment his idea. Investigations con-
cerning the analysis o{ observations
obtained in connection with geod-
esy were of major importance (his
main publications on the least-
squares method date to this time).
Various geometric results were ob-
tained in connection with the neces-
sity of performing measurements on
the surface of an ellipsoid.

In the 1820s a move to Berlin was
discussed, where Gauss was to head
an Institute. The most prominent
young mathematicians were to be
invited there, including |acobi and
Abel. The negotiations dragged on
{or four years-there were disagree-
ments over whether Gauss was to
give lectures and how much he was
to be paid (1200 or 2000 thalers a
year). Negotiations were unsuccess-
ful. However, all was not lost-
Gauss' salary in Gottingen was
raised to what he was supposed to
receive in Berlin.

lttlt'ilt$ic Usolnell'y ol surlaces
Geodesy was responsible for the

fact that mathematics again became
Gauss'main occupation for a short
period of time. In 1816, he consid-
ered a generalization of the main
problem of cartography-mapping
one surface onto another so that the
image was similar to the original in
the smallest details. Gauss advised
Schumacher to choose this cluestion
when announcing a competition for
the prize of the Copenhagen scien-
tific society. The competition was
announced in 1822. The same year,
Causs presented a memoir in which
he introduced characteristics that
permitted a complete solution to the
problem, particular cases of which
had been analyzed by Eu1er and
Lagrange (the mapping of a sphere or
a surface of revolution onto a plane).
Gauss gave a detailed description of
the conclusions from his theory for
numerous particular cases, some of
which arose in geodesy.

In 1 828, Gauss published his basic
memoir on geometry called General
Inv estigations on Cuwed Surf aces. It
was devoted to the intrinsic geom-
etry of a su$ace, that is to everything
that is related to the surface itself
rather than to its position in space.

Broadly speaking, the intrinsic
geometry of a surface describes its
properties that can be found when
one "remains on the surface itself . "
One can measure distances on sur-
faces by stretching a thread so that
it remains entirely on the surface.
Such curves are called geodesic arcs
(they are analogs of straight lines on
a plane). One can analyze angles be-
tween geodesics and study the prop-
erties of geodesic triangles and
polygons. If we warp a surface
(thinking of it as a film which can
neither be stretched nor torn), the
distances between its points will re-

main unchanged: geodesics wil1re-
main geodesics, and so on.

It turns out that one can find out
whether a surface is curved or not
without leaving it. A "truly curved"
surface cannot be developed onto a
plane. Gauss introduced a numerical
measure of the curvature of a surface.

Consider a neighborhood of a
point A with an area of e. Consider
a normal (perpendicular) to the sur-
face, o{ unit length, at each point of
this neighborhood. For a plane, all
the normals areparallel, while for a
curved surface they diverge. Trans-
late all these normals so that they
start from the same point. Then, the
endpoints fill a domain on the unit
sphere. Let q(e) be the (oriented)
arca of this domain. Then

, q(e)
llm
e-+0 €

OUANTU]i4/IIATURI

....',

. ./.;,

- -&." t as_
,li.;.'lt.'".

. ,at

'.:

I3

ffiffi



is a measure of curvature of the sur-
face atpoint A. It tums out that k(A)
remains the same under any warping
of the surface..A part of a surface can
be developed onto a plane if and only
iIklAl: 0 for allits points. The mea-
sure of curvature is related to the sum
of the angles of a geodesic triangle.

Gauss studied surfaces of con- '

stant curvature. The sphere is a sur-
face of a constant positive curvature
(for all its points, klA) = 1/R, where
R is the radius). In his draft notes,
Gauss mentioned a surface of a con-
stant negative curvature. Later, such
a surface was called pseudosphere,
and Beltrami proved that its intrin-
sic geometry was exactly the geom-
etry of Lobachevsky.

llon-Euslidealt geolnstry

There is evidence that Gauss was
interested in the parallel postulate
as early as in 1792.In Gottingen, he
often discussed this problem with
Farkas Bolyai, a student from Hun-
gary. We know from Gauss'letter of
1799 to Bolyai that he clearly real-
ized that there were numerous
propositions which implied the fifth
postulate of Euclid. Gauss wrote: "1
achieved much of what would be
taken for a proof by tha maiority of
people." And then: "Howevet, the
road I have chosen leads to doubt
about tha truth of gaometry rather
than to the desired dastination."
There was only one step from this
point to the reahzation of the possi-
bility of constructing a non-Euclid-
ean geometry. However, this step
was not taken, although this phrase
is often taken as evidence that
Gauss had come to non-Euclidean
geometry as early as 1799.

The following words of Gauss
must be taken into account. He
wrote that he could not devote
enough time to this problem. It
should be noted that the problem of
parallels was not mentioned in his
diary; evidently, it was never the
focus of Gauss' interests. In 1804,
Gauss refuted the attempts of Bolyai
to prove the parallel postulate. His
letter ended in the following words:
"However, I still hope that some-
time, even before my death, these

obstacles will be overcome. " These
words give evidence that Gauss
hoped that a proof would be found.

Here is some more evidence. "In
the theory of parallels we haven't
yet left Euclid behind. This is a dis-
graceful patt of mathematics that
must take quite a different form
sooner or later" (1813). "Wehaven't
gotten beyond the point reached by
Euclid 2000 yearc ago" (1816). How-
ever, in the same year of 1815,
Gauss wrote about "a gap which
cannot be fiLled," and in 1817, he
wrote in a letter to Olbers: "My con-
viction that the "necessity'" of our
geomefty cannot be ptoved, at least
by the human mind and for the hu-
man mind, becomes increasingly
sftong. It may happen that in an-
other life we would arrive at a dif-
ferent view on the nature of space,
but now this view is beyond our
understanding, Until that time, ge-

ometry must be ranked with me-
chanics rather than with arith-
metic, which is purely an a prrori
science."

About the same time, similar
thoughts about the impossibility of
proving the fifth postulate were ex-
pressed by Schweikart, a lawyer from
Konigsberg. He assumed that an "as-
tral geometry" existed along with the
Euclidean geometry, in which the
fi{th postulate didn't hold. Herling, a
student of Gauss who worked in
Konigsberg/ wrote to Gauss about
Schweikart and sent his note. In his
reply, Gauss satd: "Almost every-
thing is copied from my heafi." The
work of Schweikart was continued
by his nephew, Taurinus, with
whom Gauss exchanged several let-
ters beginningin 1824.

In his letters, Gauss stressed that
his opinions were private and must
not be made public in any case. He
didn't believe that his ideas could be
understood and was afuaid of attract-
ing the attention of a crowd of lay-
men. Gauss experienced tough years
and he highly appreciated the oppor-
tunity of working calmly. He
wamed Herling, who was only going
to mention that the parallel postu-
late may be wrong: "Wasps whose
nest you are going to destroy will

fise arcund your head." Gradually,
Gauss arrived at the conclusion that
he must write down his results, but
not publish them. He wrote: ",{r

seems that it will take a long time
to prepare my extensive investiga-
tions of this question for publica-
tion. It is quite likely that I won't
rcsolve upon publishing them at all,
because I am afraid of the shouts of
Boeotiansr which they will raise if
I make all my opinions public" (a

letter to Bessel, l829l.In May, 1831,
Gauss began a systematic descrip-
tion of his studies: "It has been sev-
eral weeks that I have been com-
mitting to paper the results of my
work on this subiect. This work was
partly done 40 years ago, but it has
never been put on paper; thus, I had
to reconsftuct the entfue rcasoning
thtee ot four times. However, I
wouldn't like it if my work died
with me." (A letter to Schumacher)

However, in 1832, Gauss received
from Farkas Boiyai a small paper by
his son |anos called "Appendix"
(this title was explained by the fact
that the paper was published as an
appendix to a large book by his fa-
therl. "My son appreciates your
opinion more than the opinion of
the whole of Europe." The contents
of the paper amazed Gauss: it pre-
sented in a complete and systematic
form the construction of a non-Eu-
clidean geometry. This paper was
quite different from fragmented
remarks and con jectures of
Schweikart and Taurinus. Gauss
himself was going to give such an
outline of the theory in the near fu-
ture. He wrote to Herling: "I found
all my ideas and results presented
very elegantly, though they are
exposited in a very condensed form,
which makes them difficltlt to un-
derstand for those who don't work
in this field... I think that this young
geometu Bolyai is a genius." Here
is what he wrote to the (ather "...

the entire contents of this work, the
way your son went about it and the
results he obtained are almost the
same as my own, which I partially

lTrafitionally in ancient Greece,
the citizen of Boeotia were known for
their weak intellectual ability.
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obtained 30 or 35 yearc ago. I am
really very surptised. I have com-
mitted to papu some of my resuits
but did nqt intend to publish them
dwing my lifetime; I just didn't
wanttheseresults to pefish after my
death. For this reason I am stag-
gered by what has happened-it
frees me from this work. I am also
very glad that it was the son of my
old friend who anticipated my
work." However, |anos Bolyai didn't
receive any public support from
Gauss. It seems that simultaneously
Gauss stopped his regular notes on
non-Euclidean geometry, although
fragmented notes of the middle
1840s do exist.

In 1841, Causs got to know the
German edition of Lobachevsky's
work (his first publications date to
18291. As usual, Gauss was inter-
ested in other works of this author,
but expressed his opinion only in
correspondence with close friends.
However, in 1842, Gauss recom-
mended that Lobachevsky be
elected a correspondent member of
the Royal Scientific Society of
Gottingen as "one of the best math-
ematicians of the Russian state."
Gauss himself informed Lobachev-
sky o{ his election, but neither in the
recommendation, nor in the di-
ploma that was given to Lobachev-
sky, was there a mention of non-
Euclidean geometry.

Gauss' works on non-Euclidean
geometry became known only when
his archive was published after his
death. Thus, by refusing to publish
his great discovery, Gauss provided
himself with an opportunity to work
calmly. This fact raised an unremit-
ting discussion about whether such
a position is acceptable or not.

It must be noted that Gauss was
interested not only in the purely
logical question of the possibility of
proving the fifth postulate. He also
tried to establish the place of geom-
etry in the natural sciences and the
question of the true geometry of the
physical world (see his opinion of
1817 above). He discussed an oppor-
tunity for an astronomic verification
and was interested in Lobachevsky's
ideas concerning this issue. In his

geodetic work, Gauss couldn't resist
the temptation of measuring the
sum of the angles of the triangle
formed by the summits of three
mountains: Hohenhagen, Brocken,
and Inselberg. The deviation from2n
didn't exceed 0.2'.

ElecFodynamhs and Ueolnaurethln
By the end of the 1820s, Gauss,

who was akeady over 50, began to
seek new fields for his research. This
is evidenced by two articles of 1829
and 1830. The first of them was de-
voted to general principles of mechan-
ics (Gauss' principle of least con-
straint); the other was concemed with
caplllary phenomena. Gauss had de-
cided to study physics, but his particu-
lar interests had not been decided yet.
h i83i, he tried to do research in crys-
tallography. This was a very difficult
year for Gauss: his second wife fied,
and he developed bad insomnia. The
same year, Wilhelm Weber, the 27-
year old physicist who had been in-
vited at Gauss' initiative, came to
Gottingen. Gauss made his acquain-
tance in 1828 at Humboldt's home.
Although Gauss, then 54, was a very
reserved man, he nevertheless found
in Weber a companion such as he had
never before met for doing research.

Klein wrote that "the internal dif-
ferenc,e of these two people manl
fested itself even in thefu appearance.
Gauss was a thickset man, a true
rcpresentative of Lower Saxony, taci-
turn and rcserved. Small, graceful,
and lively Weber was his antithesis.
He was very talkative and amiable,
which betrayed a native Saxon. In-
deed, he camefromWittenberg, this
country of ' quintessential S axons.'
The Gottingen monument to Gauss
andWeber makes this differcnceless
noticeable; even in height they seem
closer than in real life."

Gauss and Weber were interested
in electrodynamics and geomag-
netism. Their activity wasn't
purely theoretical, it also brought
some practical results. In 1833,
they invented electromagnetic te-
legraphy (this event is memorial-
ized in the monument). The first
telegraph connected the observa-
tory and the physics institute. How-

ever, they couldn't introduce the
device for large-scale use because of
financial reasons.

While studying magnetism,
Gauss arrived at the conclusion that
systems of physical units must be
constructed on the basis of several
independent units, and all other
units must be expressed in terms of
the basic ones.

The study of tertestrial magnetism
was based both on observations made
at the magnetic observatory in
Gottingen and on data collected in
various countries by the Union for
O b s erving T eru estrial M agnetism,
which was founded by Humboldt af-
terhis retumfrom SouthAmerica. At
the same time, Gauss created one of
the most important divisions of math-
ematical physics-potential theory.

The common work of Gauss and
Weber was interrupted in 1843,
when Weber was expelled from
Gottingen with six other professors
for signing a Ietter to the King,
which pointed to violations of the
constitution by the King (Gauss
didn't sign this letter). Weber re-
turned to Gottingen only in 1849,
when Gaus 
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We conclude our story with the
following words of Klein: "Gauss rc-
minds me of the highest summit of
the Bavarian ridge as it stands be-

fore the eyes of an observer looking
from the North. In this mountain
range, isolated summits become
higher and higher from E ast to W est,
reaching the maximum height in a
mighty cenftal giant. Breaking
steeply, it is replaced by a lowland
of a new form with spus spreading
deeply into it, and streams thatflow
down from this giant b4ing moisture
and life." O
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The ByE and lhe sky

The art of seeing faint objects

bvV Surdin

HUMAN BEINC HAS EICHT
senses: sight, hearing, smel1,
taste/ touch, hot and cold,
pain, and a sense of the posi-

tion and motion of the body. Un-
doubtedly, the most important and
wonderful sense is sight, which pro-
vides the brain with more than 90%
of the information it receives about
the surrounding world. For astrono-
mers vision is an indispensable tool
for studying the Universe. When
making observations with the naked
eye or with a telescope, one should
take into consideration the specific
features of the construction and vi-
sual performance of the eye. Only
with such knowledge can one dis-
cern such almost invisible objects as

sma1l lunar cratetst faint stars, re-
mote comets, and galaxies.

The first encounter with a tele-
scope is often disappointing to the
amateur astronomer. "I can't make
out any details," says the novice
first looking at Mars or even |upiter.
In contrast, the experienced observer
can map the details of the planet
with the same telescope. The reason
is that the astronomers have trained
their eyes (as have, say, biologists,
who discern the tiny details of the
living cells under a microscope). You
can also master this skill by learning

the special features of our vision and
by observing the heavenly bodies on
a regular basis.

llorrrr tfie EyE i$ [olt$Fu[Nnd
The construction of the eye is

shown in figure 1. At first glance, it
looks very similar to a photographic
camera. The objective of the eye (the
cornea/ iris, and crystalline lens). is
similar to a classical objective, with
its system of lenses and a diaphragm
(iris). This natural obiective is excep-
tionally wide-angle: the visual field
of the human eye extends to almost
180" in the horizontal and 140" in the

temple side

cornea

111S

crystalline
lens optic nerve

(to the brain)

nttsal side

Figure 1. Sagittal section throttgh
the eye.

vertical. Of course, the quality of
such a simple objective cannot be
very high: a sharp image is projected
only on the center of the visual field,
while the image is severely degraded
at the periphery.

The central opening of the iris is
called the pupil. It plays the same
role as the aperture of a camera: it
covers the edge of the lens to a

greater or lesser degree. The eye can
adjust the pupil diameter over a

range from 2 to 8 mm. In this way it
controls the luminous flux passing
through the crystalline lens to the
light-sensitive retina. This is where
all simple analogies with a camera
come to an end, because the retina
has nothing in common with photo-
graphic film.

In design, the retina is far closer
to the photodetector of a modern
video camera, which consists of an
array of elementary semicbnductor
photodetectors, called pixels (from
"picture elements"). In the eye their
role is played by light-sensitive ce1ls
of two types: rods and cones. These
cells differ not only in shape, but in
function. The retina of a human eye
contains about 7 million cones and
120 million rods.

The rods work at very weak illu-
mination and provide twilight and

(U

o:
C

_o
c)

-CY
(6

C)

-o
E

Mariottc s I

ltlincl spot \

18 JAlllUARY/IIBRllARY 2OOO

retinn



OUAIIIUllll/[EAIUBI



night vision. FIowever, they do not
distinguish color (thus the saying,
"all cats are gray at night"). The
cones/ on the other hand, can work
only in broad daylight but are sensi-
tive to color. This property is ex-
plained by the fact that there are
three types of cones in a jumbled
arangement. Some of them are sen-
sitive to blue, some to green, and
others to red-orange light. Working
together, they can convey precise
information about the hues in the
image. This works something like
the picture tube of a color TV set,
which incorporates three monochro-
matic kinescopes in one tube: red,
green/ and blue.

ResoluinU pottuer' ol lfie eye
The size of the smallest details

that canbe distinguished by the eye
is determined by its angular resolv-
ing power. When we cannot distin-
guish the tiny details in a picture,
we try to bring it nearer to the eyes.
The linear size does not change dur-
ing this procedure, but the angular
size o increases (figure 2). The small-
est angle at which the eye can distin-
guish two points is ca1led the (angu-
lar) resolving power or simply the
resolution. In the center of the vi-
sual field (that is, at the place where
the surface density of cones is high-
est) the normal eye has an angular
resolution o{ about 1'(one minute of
arc). The period at the end of this
sentence subtends an angle of this
size if the journal is held at arm's
length. Note that when viewing at
arm's length, you can easily distin-
guish a comma from a period. How-
ever, if you place the page three
times farther awayt you cannot tell
a comma from a period. Try it with
the following string of commas and
periods: (,.,..,,..,.,,.,).

Figure 2. rt e anguTar size of an obiect
and the sharpness of its image depend
on distance.

oq,1015zo
duration of adaptation to darkness lrrrrn)

Figure 3. Stellar magnitudas of the
faintest stars that can be seen by the
human eye, as a function of the dwation
of adaptation to datkness. The tfueshold
sensitiuity of the eye cannot be attained
in an asuonomical observation, because
the night sky is not absolutely dark on
account of illumination by atmospheric
radiation, space dust, and evenby
distant starc.

There is another wonderful fea-
ture of our vision-the ability to dis-
tinguish rapid movements and
changes in an image. This is referred
to as time resolution. For example,
in some music video clips the pic-
ture changes at a rate of 5-7 frames
per second. At this rate we can see

each individual picture. However,
when the rate of change is increased
to 15-20 frames per second, the dif-
ferent pictures merge into one, and
the individual frames cannot be dis-
cerned. The reason is that the time
resolution of the human eye is only
about 0.1 sec. This physiologicalfea-
ture accounts for the cinema effect:
when the frames are changed at a

rate of 24 per second, we do not see
the frames flashing but perceive
them as a smooth/ uninterrupted
movie.

The eye can perceive differences
in illumination of adjacent objects
only if they are greater than 2o/o, in-
dependent of the absolute brightness
of the objects. In this process the eye
operates as a comparator that evalu-
ates not the difference but the ratio
of the luminosities. This is why as-
tronomers use the concept of stellar
magnitude. When two stars differ in
stellar magnitude by 1*, it means
that the luminous fluxes from them
differ by afactor of 2.51,2... An expe-

rienced astronomer can discern di{-
ferences in the brightness of adja-
cent stars as small as 0.02 -. This is
almost exactly equal to the value of
2"h that characterizes the threshold
of sensitivity of the human eye.

Let's continue the analogy with
electronic devices. A video camera
has a system that controls its sensi-
tivity (automatic gain control). The
eye also has a similar system. In
darkness its sensitivity increases by
thousands of times, while in broad
daylight it decreases accordingly.
However, these changes do not oc-
cur as rapidly as in a video camera.
Therefore, when we enter a brightly
illuminated room, our eyes are
dazzled for several seconds by the
light, and when we enter a dark
room it takes a while before we can
see anything. The complete adapta-
tion of the eyes to darkness takes
about half an hour. After this adap-
tation period the sensitivity of our
eyes is maximal (figure 3).

Some [Ectllial'ilies ol uhion
The eye is connected with the

brain by a bundle of nerve fibers, but
the number of fibers is far less than
the number of light-sensitive cells in
the retina. This means that the eye
does some preliminary processing of
the visual information and sends a
simplified image to the brain. For ex-
ample, it tries to "recognize" the
contours of geometrical figures fa-
miliar to the brain in what at first
glance may look like chaotically
scattered spots. Sometimes this
property helps astronomers (it is
easier to remember the outlines of
constellations), although in some
cases this feature of visual percep-
tion is misleading. An example is
the "discovery" of canals orl Mars or
the apparent observation of strands
or rings of stars.

We should remember that percep-
tion of visual information is a subtle
process intimateiy c,onnected to spe-

cific features of human psychology.
Knowing these features/ one can eas-
ily deceive those parts of the brain
that analyze the two-dimensional
image fixed by the retina and recre-
ate the original three-dimensional
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picture. Specialists know many of
the "optical illusions" exploited in
the tricks of the stage magician. No
less important is the reverse skill-
to represent the 3D structure of a
real object in a 2D drawing. An ex-
treme example of the manipulation
of visual perception is to draw "im-
possible" objects. The Dutch print-
maker M. C. Escher was a master of
this.

The ski1l of transforming a 2D
image into a 3D model of real life is
what children learn to do from the
first days of life by touching objects
that they see. In this sense, vision is
sometimes described as an acquired
skill. When translating the 2D im-
ages into 3D ones, our brains use a
special "dictionary" of possible
models stored in memory. This dic-
tronary is highly individual and is
compiled in accordance with spe-
cific life experiences, including
one's profession. Indeed/ every per-
son will complete the Droodles,
those fragmentary sketches that
pose riddles, in a unique way. And
having seen something unusual in
the sky, each of us will fill in the
details in our own way and will
reach our own conclusions as to the
nature of the event. Only experience
in astronomical observations will
make us more or less confident in
our interpretation of what we see in
the firmament.

The llying [lloon
On windy and cloudy moonlit

nights you have no doubt witnessed
a surprising effect-the "tlight" of
the Moon. When the Moon is seen
through gaps in the clouds, its appar-
ent sideways motion will catch your
eye, and you will involuntarily turn
your head to fo11ow its rapid move-
ment. After a few seconds you real-
ize that the Moon isn't moving, it is
the clouds that are moving across
the sky. If the cloud cover is dense
and the gaps far between, you may
not see the Moon again for a long
time. Then you may be left with the
certainty that you saw some bright,
round object flying rapidly across
the clouds. There are cases of UFO
reports based on this phenomenon.

How do physiologists explain the
flying moon effect?

As we have said, the eye does not
send all of the visual information to
the brain, but processes it to select
the most important part. How does
the eye know what is important and
what can be ignored? In the course of
biological evolution, every human
organ has acquired traits which are
conducive to survival. The eye is no
exception. It has acquired the ability
to select that part of the visual infor-
mation that deals with potential prey
or dangerous predators. Both predator
and prey are usually moving-attack-
ing or running away. No wonder that
our visual system learned to detect
motion as the most important thing.
This system is very efficient in de-
tecting even slight changes in the
visual field.

The visual signal undergoes com-
plex transformations on its way
from the retina to the cerebral cor-
tex. On the whole, it is greatly sim-
plified and carries only the data of
vital importance, the lack of which
could mean death for a human be-
ing. Information on displacement
relative to the retina is not only pre-
served, it is augmented, while other
data are discarded. Immobile ob-
jects, whose images do not move on
the retina, are not even noticed by
the eye after a while. Therefore, in
order to maintain a picture of the
immobile background, the eye must
continually perform microscopic
movements of 2-3 minutes of arc,
thereby producing artificial displace-
ments of the object on the retina.
This is the reason that when looking
at stars we sometimes see them
jump-in reality, these jumps result
from microscopic motions of the
eyes.

Another important feature of the
eyes originates from the nonuniform
distribution of the light-sensitive
ceils in the retina. The region of
sharpest vision is iocated in the cen-
ter of the retina and has an angular
size of only a few degrees, while the
resolving power of other parts of our
visual fieid is low.

Now imagine that you are a

hunter looking over the motionless

landscape, hoping to spot a ptey.
The clever prey may sense the dan-
ger and react in ayery effective way:
it simply "freezes," making it harder
to spot.

Consider another possibility: the
prey doesn't see the hunter and con-
tinues to graze calmly. There are
two modes of action for the eye: to
fix the view on the landscape or on
the moving prey. If the eyes are fixed
on the landscape, the image of the
prey is the only irritating stimulus
moving on the retina. In this case
the corresponding visual signal is
weak, because it originates from
oniy a small part of the retina. In ad-
dition, the cluality of the image is
Iow, since it quickly leaves the area
of sharpest vision on the retina.

Evolution has chosen the other
way. Our eyes are fixed on the mov-
ing prey; its image is locked persis-
tently at the center of the retina, in
the area of sharpest vision. In this
mode of vision, the landscape is
moving on the retinat producing a
powerful visual volley of nerve im-
pulses to the brain and stimulating
attention. This is a standard situa-
tion, and the brain knows how to
interpret it: in reality, the small
fixed image at the center of the vi-
sual field is a moving object, while
the surrounding moving image is
the motionless background land-
scape.

Now what happens when we
look at the night sky and see the
motionless Moon (or a bright star
or a planet) occasionally peeking
through gaps in a bank of fast-mov-
ing clouds? The eye (or, more pre-
cisely, the brain) responds to this
picture in the usual way-it inter-
prets the clouds as the stationary
background and the Moon as mov-
ing. It takes some time and con-
scious effort to suppress the i1lusion,
to make the Moon stop and the
clouds move. This is no problem for
those who are accustomed to view-
ing astronomical phenomena.

Interestingly, this same manner
of detecting the moving object is the
working principle of electronic im-
age stabilization (EIS) systems in
portable yideo cameras. If the pic-
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ture is shifted as a whole, the EIS
system returns it to the frame
boundarles on the assumption that
the shift was caused by a jerk of the
operator's hand. In contrast/ if only
a small part of the picture is moving,
the EIS system doesn't interfere, on
the assumption that this shift repre-
sents the motion of an individual
object. Therefore, when a video
camera is aimed at a cloudy sky
with the Moon behind, it will try to
stop the clouds and let the Moon
move-just as our brain does.

Perlnl'mance ol pel'ipfiel'al uision
To best see an object, we look at

it directly. The image is projected
onto the center of the retina, where
the dense away of cones provides
chromatic and very sharp vision.
Everything that lies outside the cen-
tralpart of the retina is blurred and
deprived of bright colors. However,
the peripheral vision has its own
virtues.

First, there are almost none of the
very light-sensitive rods in the cen-
ter of the retina. Recall that it is the
rods that provide twilight vision.
Although there are plenty of cones
in the central retina, their sensitiv-
ity is lower than that of the rods,
because their spectral range is lim-
ited to a certain color. In addition,
the cone-filled central part of the
retina is not large: its angular size is
only a few degrees. In contrast, the
periphery of the retina contains
many rods, which are very sensitive
to light but cannot distinguish col-
ors. Therefore at night our periph-
eral vision will detect dim objects
that can't be seen when looked at
directly.

The peripheral vision is often
used by astronomers to view faint
stars or nebulas that are too dim to
be seen when looked at directly. You
may try this on your own. Use an
astronomical chart to determine the
Iocation of the Andromeda Nebula
(figure 4). Most probably you will
not see it at the location indicated
(especially in a city sky). However,
if you shift your eyes slightly away
from the targett you will see an oval
spot resembling the flame of a

G

uC Androntedtt
Nebttltt

B

Andromeda

Figure 4. paa the Andromeda
Nebula with the help of yow peripheral
vision. Fix your eyes on the star
Andromedae or skghtly to the left of it.

candle-this is the famous Androm-
eda Nebula, a giant steilar system
similar to our Miiky Way Galaxy. It
is not surprising that it is difficult to
discern with the naked eye. Indeed,
the wonder is that we can see it at
all (if only with the help of our pe-
ripheral vision), since this galaxy is
hundreds of times farther away than
the stars making up the familiar
constellations.

Thus peripheral vision is a valu-
able tool for astargazer. Ifyou learn
the skill of using it, it will serve you
wel1. However, this physiological
phenomenon may play a trick on
the uninltiated. Catching sight of a
bright object at the periphery of your
visual field, you turn your head to
examine it carefully, but you do not
see anything. Sometimes such
events produce legends about UFOs.

There is another important fea-
ture of peripheral vision: it has bet-
ter time resolution than central vi-
sion. Test it on your own: look at a
fluorescent lamp first directly, then
with your peripheral vision. In the
first case you will see a steady light,
but in the second case you can see
the flickering that results from the
alternating nature of the power sup-
ply to the lamp (50 or 60 Hz), which
produces flickering at twice the fre-
quency. A similar experiment can be
carried out with a TV screen: when
you look at it directly, you do not

see the rapid changes of the {rame.
However, you can easily observe the
flashing of the frames with your pe-
ripheral vision.

Presumably, this feature of our
vision was developed in the evolu-
tionary period when people were
hunted by many dangerous preda-
tors which attacked from behind or
from the side. It is therefore impor-
tant that the peripheral vision of a
prey should work very quickly and
report danger to the brain without
delay. It is not important that the
sharpness of the peripheral vision is
poor. It makes no difference for the
prey what beast is attacking-a
striped tiger or a spotted leopard. It
is of vital importance only to detect
the attack quickly and get away fast.
In modern times the quick reaction
provided by peripheral vision is im-
portant for drivers and pedestrians.
Therefore, train your peripheral vi-
sion and keep in mind its distinctive
characteristics when observing vari-
ous optical phenomena-both celes-
tial and terrestrial. O
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M2B1
Take a walk. ProfessorZlata and

her assistant Bruce live not far from
each other and like to stroll in the
evening from one house to the other
and back, traveling the same route
several times. One day they each left
home at the same time. The first
time they encountered each other
was at a distance of 55 m from the
professor's house, and the second
time, at a distance of 85 m from the
assistant's house. There is a news-
stand located 25 m from the
assistant's house, and there is an ice
cream stand near the professor's
house. It is known that after each
had left home, the professor and the
assistant passed the nearer stand at
exactly the same time. What is the
distance between the two stands?

M2B2
X-ponent. Solve the equation

_. 1

"lz'

M283
Don't forget your calculus. Prove

that the inequality sin x + arcsin x
> 2x holds for all values of x such
that0<x<1.

M2B4
Locus-Pocus. A chord AB is

drawn in circle O, of radius z. Points
P and Q are tal<en on its extension
beyond points A and B, respectively,
such that AP: BQ. As P and Q vary
along line AB, they determine two
pairs of tangents to circle O. These
four tangents, in turn, determine

HOW DO YOU
FIGURE?

ChallErUo$
four new points of intersection with
each other. Find the locus of all such
points of intersection.

M2B5
At an intersection. Side BC of tri-

angle ABC has length a, andthe op-
posite angle has degree-measure o.
The line passing through the mid-
point D of BC and the center of the
circle inscribed in the triangle inter-
sectsAB andAC atpoints MandP,
respectively. Find the area of the
(nonconvex) cluadrilateral B MP C.

Physics

P281
Trapped baLL. A small, heavy ball

flies through a hole into the smooth
interior of a sphere of the Same
mass. The ball passes along a line
lying a distance R12frornthe center
of the sphere, where R is the radius
of the sphere. After the ball is
trapped, the hole is closed automati-
cally. Assuming that the collisions
of the ball with the wali of the
sphere are perfectly elastic, find the
trajectories of the ball and the cen-
ter of the sphere in the reference
frame in which the sphere was ini-
tially at rest. Determine the pararrr-
eters of these trajectories and mark
the points on them where collisions
occur. (B.Bukhovtsev)

P282
lust a bubble. The outer radius of

a soap bubble is R, and thickness of
its wall is ft. What is the air pressure
inside the bubble? What is the pres-
sure inside the soap film? Consider
the film to be thin (n * R). The pres-
sure of the air surrounding the

bubble is Po. The surface tension of
the soap solution is o.

P283
What's passingl Two capacitors

with capacitances of 2 F and 3 F are
connected in series and hooked up
to a battery with eml'd = l2O Y,
whose midpoint is grounded (fig. 1).

The wire connecting the capacitors
can also be grounded with a switch
S. Find the charges e1, e2, and qu that

?=

Figure 1

pass in the indicated directions
through the cross sections I-I, [-II,
and III-I[, respectively, after the
switch is closed. (I. Slobodetskii)

P2B4
A11 aglow. Two identical coils

each with inductance I are wound
on a circular (toroidal) ferromagnetic
core having a very large magnetic
permeability. They are connected

C

Figure 2
in series with a capacitor of capaci-
tance C lft1. 2). You examine the
circuit using a test lamp and avart-

CONTINUED ON PAGE 27
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Cmlinued ll'aclions

When close enough is good enough

by Y. Nesterenko and E. Nikishin

OMETIMES A FIELD OF RE.
search that seems promising
and important fails short of ex-
pectations; the number of re-

searchers working in the field de-
clines, and it loses its importance.
One such area of mathematical re-
search is the theory of continued
fractions. Until the end of the nine-
teenth century/ continued fractions
o{ various kinds often appeared in
mathematical works. Many impor-
tant theorems on continued frac-
tions were proved in the nineteenth
century and a 1ittle earlier. There
was hope that a complete under-
standing of the structure of contin-
ued fractions could lead to new re-
sults in number theory and
mathematical analysis. These ex-
pectations were only partially ful-
filled. Later the development of
powerful new methods, especially in
number theory, caused the study of
continued fractions to be largely
abandoned.

However, just as the North Pole
always attracts some visitors, prob-
lems involving continued fractions,
which often have a simple formula-
tion and seem easy/ entice mathema-
ticians to explore the nature of these
strange objects. Many important
problems of modern mathematics
and physics lead to objects similar to

continued fractions. For this reason/
methods developed for continued
fractions prove to be useful for many
other problems. In this article, we
consider only problems related to
number theory, where the theory of
continued fractions originated.

Calenda[ loothed tllheels,

altda[hmdlthlony
How many days are in a year?

Everybody knows that a common
year has 365 days and a leap year has
366.Leap years are those divisible
hy 4, Ior example, 1904, 1908, ...,
1980, 1984, ... 1996. However, 1800,
1900, 2100, and 22OO are not leap
years, while 2000 and 24OO are.Why
is this?

The explanation is rather simple.
The Earth rotates uniformly about
its axis, making one revolution per
day. It takes Earth 365.24219878...
days to make one revolution around
the Sun. This period is called the
year. The extra 0.242... days may
seem small. Flowever, if we set the
year to 365 days, the error will accu-
mulate. In ancient times, when the
length of the year was known only
approximately, the accumulated er-
ror could be rather 1arge. For ex-
ample, in 46 BC in ancient Rome,
the lag became as much as 90 days.

To {ind a law for the alternation
of common and leap yearst we must
choose the length of the cycle c1@{-

ter which the sequence of common
and leap yearsrcpeats) and the num-
ber of leap years in the cycle, p. Let
us write the length of the year as 365
+ u, where u = 0.242.... Positive in-
tegers p and q must be chosen so
that the cluantity

9: qa- p

is as small as possible without hav-
ing p and qbe very large. Actually,
only clneeds to be chosen, and then
p will be the integer closest to qa.
Then 365q + p days will pass in q
years. It follows from the equation
365 q + p = q(365 + ct) - B that rn 365q
+ p days the Earth will make

-Bq- =q' 365+u
revolutions around the Sun. A one-
day eror accumulate. otily in 1/B
such cycles or in qlB years. At
present/ we use the Gregorian calen-
dar, rn which q = 4OO. Of these 400
yearst 303 are common and97 are
leap years. Leap years are those di-
visible by 4 with the exception of
centennial years which are not leap
years unless exactly divisible by 400.
Thus, the average length of the year
according to the Gregorian calendar

o
C
cd

C)
o)
c)a

_o
t
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clar with IZB-year cycles would be
less convenient E1;Clidt al$gnilhm A;1d lhe C3ntinUed

.",*:",I;,tJo";il'##?T Hf* haction Hpa;1sig;' ola numbe''

rs 355.242500. Such an approxima-
tion is quite satisfactory'. a one-day
error accumulates only in about
3300 years. If we took q : I28 and
p :31 , an even better approximation
couldbe obtained. However, a calen-

a, find sufficiently small integers p
and q such that the number

b=qa-p
is as small as possible.

A similar problem arises in design-
ing gears. For transferring the rota-
tional motion from one gear wheel to
another, one must cut q teeth on the
first wheel andp teeth on the second,
so that the ratio plq is as close as

possible to the given number ro (rrl is
the desired ratio of rotational veloci-
ties). It is clear that for reasons of
economy/ p and q should be chosen
as small as possible.

There are rrrarry other examples
that lead to the problem of the best
approximation of real numbers by a
rational. Examples include the mu-
sical scale, applications in computa-
tional mathematics, and theoretical
problems of celestial mechanics.

Continued fractions provide a
tool for finding the best (in a certain
sense) rational approximations.
Continued fractions have been ap-
plied for computational purposes for
avery longtime. As early astn1572,
the Italian mathematician and engi-
neer R. Bombelli (15267-1572) used
them to compute u/i 3 . Later, the En-
glishman W. Brouncker {1620-16841
used them to refine the value of rc.

The prominent physicist, astrono-
mer, and mathematician C. Huygens
(the inventor of the pendulum clock)
was the first to describe the sense in
which continued fractions give the
best approximation of real numbers.
The great E;r;Jer 11707-17831proved
certai n theorems conceming contin-
ued fractions and found a continued
fraction for the number e (the base of
natural logarithms). After Euler, nu-
merous mathematicians made con-
tributions to the theory of continued
fractions, so that it is difficult to list

them all. The works of the promi-
nent Russian mathematician P.L.
Chebyshev ( 1 82 1-1 894) initiated the
active development of a theory deal-
ing with functions defined by contin-
ued fractions.

Let p afld q be two positive inte-
gers. Performing a succession of di-
visions with remainder, we have:

P:aoT+Qt,O<Q1 <4,
4: at4t+ Qz,O < Q2< Q1,

Q1= a2Q2+ 4a,0 < 4s< Qz,

4k-Z= Llk-11lk, + c7r., 0 < Q1r< 4p-1,
4p-1= LtpQL'

Since the scrluunce et, ,,t,..., 41 is
a strictly dccreasing seqllence of non-
negative integers, onc of them must
eventually be 0 irn fact, it would be

eL * r in the notation used above), and
so the sequencc of ecluations above
must be finite. Thrs process is known
as Eucltd's dlgorithm. It can be
provecl that the nurnber 4* obtained
is the greatest cotrrmon divisor of p
and q. We lvon't use this fact in this
article, and thus rve omit its proof.

The alri,rr-c relations give

P q _. 1

-U *o
Q ,l dr+L

(It

I
-u0, I

.Lul ,

Ao l "' 1

ap

The following process yields the
same result. Let cr be a real number.
Set

a=ao+L,
cx,1

where ao is an integer and o, > 1. If
o,, is not an integer, we continue the
process by representing cx,, as o,, = d,
+ 7 f ar, where aris a positive integer
and o,, > 1. Thus,

1a= ao * 
tatt-'

cx1

If o, is not an integer, the process
can be continued. Thus at the kth
step we have the relation

Iu=ao* t (1')

tf,l T-' a)+iii t'+-

The "multi-story" notation (1') of
the fraction is very inconvenient, so
we wili use the following, more
compact notation:

(t:a.-, '' *,L-...* ' . I 
,1ll

lat ld: ldr. r l0l

where 0t , 1.

It is easy to proYe that if a = plcl
is a rational number, then for some
k, uo will be an integer. It is also
clear that if, for some k, oo is an in-
teger, then cr is rational. However, if
s is irrational, this process never ter-
minates, and an infinite continued
fraction is obtained:

rltl
u= ao+i + j+...+;-_r+,-L+... i2ll$ laz la*.t lur

The ec1ual sign here is provi-
sional, since it is not clear what the
expression on the right means. To
give it meaning, consider {inite
sums of the form

I
ttk - uO T -----------l- r

4I +::i+ r

ap

which are called convergents of the
continued fraction (2). We define the
right-hand side of l2l as the limit of
the convergents:

lim n,
K+€

The foilowing set of problems pre-
sents the properties that underlie the
elementary theory of conti4ued frac-
tions; in partictlar, equality (2J is es-

tablished in them. (Note: You won't
need to know calculus to do most o{
these problems. Proof by mathemati-
cal induction is sufficient.)

Basic U'opmties 0t cnlttiltued ll'afiions
1. Let no = pplepbe a convergent

of the continued fraction (2). Prove
the following recuffence relations:

Pg = agt P1 = a6a, + l, "' , Pk*t
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: ak*tPk+ Pk-t, ...
Qo:1, Q1 : a1r..., Qki: ak*rQk

+ Qk-t, ...
for k = 1,2, 3, ...

Hint. IJse mathematical induc-
tion.

2. Prove the following relations:

(1) q,p,-t-Pneo-1: FLl", n2ri
lii) qpPt -z-PpQt -t: (-l)k- t, k>2,

/_I)"
(iii) n,-1 -n,: t '' .r, l,

QnQn-t

(__.k l
(iv) n7.-2 - nk = 

l-I) ak 
, k>2.

elret _z

Hint. Use prob. I and mathemati-
cal induction to prove (i) and (ii) and
use (i) and (ii) to prove (iii) and (iv).

3. Prove that the convergerrts nsr rE2t

tr4t ... at? monotonically increasing:

ft}.ftz<TEO<116<...r

and that the convergentS 7r1r ft3, fi5,
... are monotonically decreasing:

ftt > ft3, fi5 , ...,

Hint. See (iii) and (iv) above.
4. Let uo the numbers be defined

by (t). Prove the relation

-_Pl.tap+Plr-z 1rs1
Or. r0-r.*Ot. ,

Hint. Use mathematical induc-
tion.

5. Prove the inequaiity

I, I

- 
<lqnu- pnl3 .

lln+l Q n.I

Hint. Use prob. 4 with R : n, and
prob. 1.

6. Prove that
lim r,, = u.
K'6

Hint. In fact, you have only to
show that e, grows to infinity. Then
the result of prob. 5 is equivalent to
the definition of limit.

We can see from prob. 1-5 that
the convergents 7rn give a rather good
approximation of o,. Thus, it follows
from the estimates in prob. 5 and the
inequality en*t > entlat if u is irra-
tional, then the inequality

lt
l"-Ll. t

I ,t"l qZ

holds for al1 convergents ftn : p*let
of the continued fraction for cl.

Nummicaleilalnlh$
The continued fraction (2) for u is

sometimes written as lao; a1, a2t ... r ap
...]. It can be proved that, for any se-
quence of integers as, a1, a2,... (ao 2 0
and a,2 1 for i > i), there exists a
unique positive number cr such that

u: [ag; ay, a2, ...1.

If thesequertc? ast all a2t ...
is known, then the sequence of
convergents no: pplepcan be easily
calculated by using the relations ob-
tained in prob. 1 to fill in the table 1.

Example 1. Find the continued
fraction expansion of "{i. We have

ao: l,

o, =i . =^[2+l,ar=2,' "12 -r
o, = ]= = 42 +1, ar:2.' ^12 -r

It is clear that in the sequence u,,
i : | , 2, . .., all elements are equal tb
J2 * l,and in the sequence a,, i = l,
2,..., all elements are equal to 2.
Thus,

"li : U;2,2,2, ...1.

Filling in table 2, we calculate a
few first convergents for Ji.

Thus, we obtain a sequence of
convergents i/1, 312, 715, 17l12,
41129,99170, ... .

It follows from prob. 5 that

ltr-221 <10-4| 701 70 16e -

Table 2

Thus, the rational fraction 99170
approximates /2 with an error less
than 0.0001.

Example 2. Consider the periodic
continued fraction

l2; r,l,1,4, l,l,1,4, r,l,1,4, ...).

This is written in a "shorthand"
notation aslz;y l, y +]. The num-
ber corresponding to this fraction
can be found as follows. CalI this
number u. We have the equation
(why?)

1l ilI Ia=2+J+l+-l+-----l-
It lt lr 

'lz+u,
or, after simple manipulations,

2l + Bcx
u--

8+3cr

From this, we find that a2 : 7,
and, since cL > 2, we have o : f .

It is easy to see that this method
can be used to calculate the value of
any periodic continued fraction.

Be$t a[profimalions and continued

lt'afiions

The best approximation to a
number u is a fraction plq b, 0)
such that

lq a- p'l > lqu - pl

for al1 I q'. q and alLp'. The follow-
ing theorem holds.

Theorem. Any best approxima-
tion of a is a convergent of a; for
k > l, The converse is also true; that
is, any convergent pelOe(for k, 1l is
a best approximation for a.

25

Table 1

a an a, 0, a
t)

41, ak*t ak*,

p 1 4..
t,

pl p2 Pp, Pr

o 0 1 qt q2 4*.-, Qp

a 1 2 2 2 2 2 2

p 1 1
fJ 7 t7 4l 99

q 0 I 2 5 12 29 70 169
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The proof of this theorem is not
difficult, and it is left for the reader.
If you cannot do it yourself, the
proof can be found in S. Lang's book,
Introduction to Diophantine Ap-
pr oximations, Addison-Wesley,
Reading, Mass. 11966l.

tquiualence olnumlel's
Two numbers s and B are called

equivalent if
aB+b
cB+d'

where a, b, c, and d arc integers, and
ad-bc = 1 or-1.

We denote by o and o1 (where k is
an integer) the operations defined as

follows:
I

oo =;, ooo,: k + cr.

It is clear that by applying o and
6k to any number 0,/ we obtain an
equivalent number. It is also clear
that the operations

oo7.o( = -+,O(+K
, 1 ka+l

OkOo=.6.r-=
C)(, C)(,

also yield numbers equivalent to the
given number cr.

Problems
7. Prove that if u and B are equiva-

1ent, then there exist integers k1, k2,

..., k, such that

B = 61,661, O.. .6k,0

8. Assume that cr and B have the
same continued fraction expansion
beginning with certain numbers k
and s. respectively' that is,

ttltl
d= r^ +--l+--L+...+' +--L+-f+..." lr, lr, lro ld, ld, '

tI11111ll
0=ho+;r+;r-...-;' r I r

nt Ft ,r, ' ld, 
' ldr' 

"'

(3)

Prove that s and B are equivalent.
9. Prove that if u and B are equiva-

lent, their continued fractions have
the form (3).

0uadl'alic surds
Irrational numbers that are roots

of cluadratic equations with integer
coefficients are called quadratic

20 JAtuUAnY/TtBRUABY 2ooo

surds. They can be written as

,P+rD
O

where P, Q, and D are integers, and
D is not a perfect square. For ex-
ampJe, the numbers Jz , 'Jl , I * nE ,

and (5 - '17 )12 belong to this cat-
. egory. ln 1770, Lagrange proved the
following theorem.

Theorem. Quadratic surds and
only quadratic surds have periodic
continued fractions,

As in the case with periodic deci-
mal expansions (of rational num-
bers), the period may begin at a cer-
tain place within the expansion.

The fact that the value of a peri-
odic continued fraction is a qua-
dratic surd is proved in the same
way as in Example 2. The proof of
the inverse proposition is much
more difficult.

We will prove it only for one im-
portant particular case: for reduced
surds. A quadratic surd u is call.edre-
duced if u > 1 and the second root 0,'

of the quadratic ecluation for u (the
so-called coniugate of cr) satisfies the
inequalities

-1 <o/<0.

Problems
10. Prove the following: If cr is a

reduced quadratic surd, then

P+r.D
(-l

where

0<P<1,,,D. (51

In addition, P2 - Dis divisiblc by Q
11. If cx is a recluced quadratic surd

and

a"=t1o+L,
c/'t

wherc (la = la"lt then ur is also a re-
.luccrl (luildratic sul J.

It follows from problem 11 that
all numbers c,, in the sequcncc de-
fined by the equations

1
U.rr= A,r+ -, arr= 1a"7.)

CI.. ,

will also be reduced. Here [r] de
notes the integer part of r, 1.c., the
grcatcst integer that does not cxceed

x. Furthermore, they will all be rep-
resented by formula (4) with the
same D. Now, it {ollows from in-
ecluality (5) that this sequence con-
tains only a finite number of differ-
ent numbers, that is, for certain
numbers n and m,

ar= a*'

Then urr.1 :0-* lr 0z+ z= um*2,
and so on. Thus, the sequence {o,} is
periodic. The theorem is proved for
reduced surds.

If cris an arbrtrary quadratic surd,
then the sequence {u,} must contain
a reduced number. From this fact
the proof of the theorem in the gen-
eral case follows without difficulty.
To prove this fact, crn can be ex-
pressed explicitly in terms of prob. 4
and of the numerators and denomi-
nators of the convergents of cr. The
factthatthe convergents of cr tend to
cx prob. 5 must also be used. With
these hints the interested reader
should be able to complete the proof.

It can be proved that the period of
the continued fractions for reduced
quadratic surds starts at the very
beginning of the expansion. Such
continued fractions are caLled purely
periodic. The inverse assertion is
also true. This fact was first proved
in 1828 by the French mathemati-
cian Evariste Galois (who was still
in high school at the time).

Pet'iods ol conlinued lraclions ol

qtladratic $ut'd$

The properties of the periods are
not only very elegant in themselves,
but are also useful for solving certain
equations. Let's establish some of
them.

Consider the number

ul7 +2
ao

It is easy to show that it is re-
duced. Simple manipulations yield
the following continued fraction ex-
pansion with a period of length 4:

":[1, 1, I, 4]

The conjugate of a is

(4)

U-, : -"8 +z

.
:



Expanding the number
13 _ ,l ,l- v/cL' "17 -z

in a contiirued fraction, we obtain

lr_-::14 1, IJ]
0-'L

The period of our fraction has in-
verted. Is this accidental?

Problem 12.If a quadratic surd cr

is represented by a purely periodic
continued fraction

lao;at -" a"l,

then the numb er -I f u' , where u' is the
conjugate of u, is represented by the
purely periodic continued fraction

l'"'fl*, -" ql
with the period equal to that of u but
written in the reverse order.

If D is a positive integer but not a
perfect square, and an = tJo l, then
u" : ao + @ i. a reduded number (u'
- ao "lO and-L . oo- ,D . 0).
Therefore,

{D * ao=t w ""-" r"1
and

' "- zrol (6)4D:las;ar;...,
Using the assertion of problem

12, it is easy to prove the following
fact.

Problem 13.If D is not a perfect
square, then the continued fraction
of D has the form of equation (6),

where ao:l...[D ] and the part a1r a2t

... , ano{ the period is symmetric.

The PollBufllion
In the 3rd century BC, the great

Greek scientist Archimedes formu-
lated his famous cattle problem. We
will not state it completely here (it
would take more than a whole page).
It is sufficient to note that for its
solution, it is necessary to introduce
10 variables obeying 7 linear and
two quadratic equations. After
transformation and elimination of
variables, the problem reduces to the
equation

* - 4729494JP = t, (.)

which must be solved in integers.

Archimedes and his contemporaries then
could not solve this problem.

ln general, the equation

*-Df:t, (71

where D is a positive integerl that is
not a perfect square, is called the
Pell equation. It is a Diophantine
equation; that is, an algebraic equa-
tion with integer coefficients that
must be solved in integers.

How can the Pell equation be
solved? The first idea is a straightfor-
ward search: we can successively
substitute the numbers X: 1, 2,3, ...
in the formula

,v-

until the radicand becomes a perfect
square. Flowever, the following ex-
ample demonstrates that this ap-
proach is impracticable. The equation

* *991J? = |
has integer solutions (*s,ysl, but the
smallest xo among them is

37 9,516,m,W,8 I 1,93q 639,0 r 4,gg 6,offi .

Even the fastest computer cannot
find this solution by a simple search!

Continued fractions provide a

convenient instrument for solving
the Pell equation. Flere, we describe
the algorithm, but don't give its
proof.

For any positive integer D that is
not a perfect square, equation (7) has
an infinite number of positive inte-
ger solutions. All of them can be
found by the formula

x * y ,[D : l*o* yo^[D )k, k = l, 2, ...,

where (x6, ysl is the solution with
the smallest value of y. To find the
least solution(xo, yp1l, we can expand
JD as a continued fraction. If

fi =foo, "r;:n;;rrrl
a\4 pnlq, is the nth convergent of
JD, then

P'n-Dq": (- tl"-t. (8)

If n is odd (the period is even),

1 If D : m2, m e N, then equation
(7) has no integer solutions (why not?).

Pn= Xg, 4": Yo

is the least solution to the Pell equa-
tion. If the period is odd (n is even),
then the least solution is found from
the formula

xo * yoJ o =(n, * ,1,"1o)' .

Example 3. Consider the equation

* -7)? = t.

From the expansion 
^17 

= 12,
l" l" ry1, we find

Since the period is even, the least
solution is xo = 8, yo = 3; any other
integer solution is obtained by the
formula

t^ rrkx+y47 =(B+3r/7) .

For k = 2, we have x: 127, y = 48.
Example 4. Consider the equation

P-IBJP=t.
From the expansion ,/i3 = [3;

L L 1" Wl, we find

p+ "rl I1l tl 18..--lr l-

e+ l1 ll 11 11 5'
The period is odd; therefore, the

least solution is found from the for-
mula

, 

-.1xo t yoJta = (t a+ sJie)" = 649 +t 80v/i3;

CONTINUED ON PAGE 51

CONTINUED FROM PAGE 21

able-frequency ac power generator.
How does the brightness of the lamp
vary with frequency? What will hap-
pen if the leads of one of the coils are
interchanged? (A.Zilberman)

P285
Inner circie. If a capillary tube is

viewed from the side, its apparent
inner radius is r. What is the true
value of the inner radius? The refrac-
tive index of the glass is n. The outer
diameter of the capillary tube is
much greater than its inner diameter.

SOLUTIONS ON PAGE 46
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KALEIDOS(

HE IDEA OF THE ATOMIC
structure of matter undoubt-
edly sprang from the age-old
tendency of human beings to

impose some order on the surround-
ing world. The search for an eternal
and immutable substance of which
a1l objects are made began in re-
mote antiquity and has contin-
ued for centuries, right up to
the present day. Although
there is still no "final solu-
tion" to this problem/ some
marvelous discoveries have
occurred along the way. The
atom and its nucleus have
turned out to have a compos-
ite nature. The nucieus is made

". . .these priiltive
particles. . . are

incomparably harder
than any porous bodies
compounded of them;
even so very hard, as
never to wear away, or

break in pieces."

-lsaac 
Newton

up of particles that cannot live for
long outside of it. Other discoveries
include radioactivity, transforma-
tions of one kind of elementary par-
ticle into another, chain and ther-
monuclear reactions, and many
other phenomena. The last few de-

cades have brougl-rt a

flood of discoveries
that have rac'1i-

cally altered the
scientific views
on the struc-
ture of matter
and have raised
an enormous

number of new
problems to study.

The nature of physical
experiments has changed dramati-
cally. Nowadays an experiment can
recluire the coordinated efforts of
thousands of people. The practical
applications of the methods of
atomic and nuclear physics have
turned out to be wonderfully versa-
tile.

In this short column we can only
sketch the broad outlines of the in-
tricate world hidden in the smallest
particles of matter.

Problems and questions
1. How many quanta of different

energy can be emitted by a hydrogen
atom if its electron occupies the
third energy level?

Doyotlknmalnmsilt

2. In what way is the tendency to
rninimize potential energy mani-
fested in the electron shell of the
atom?

3. Is there a relationship between
the frequency of revolution of an
electron about the nucleus and the
frequency of emitted light?

4. Bombardment of boron atoms
with fast protons in a Wilson cloud
chamber produces three almost
identical tracks of particles moving
in different directions. What are
these particles?

5. Why are all types of radioactiv-
ity not accompanied by changes in
the chemical properties of the sub-
stance?

6. In what cases can the activity
of aradioactive substance be consid-
ered constant?

7. Which is longer: three half-
lives or two mean lifetimes of the
nuclei of the same radioactive ele-
ment?

8. The energy of alpha particles
emitted by a radioactive substance
can assume only discrete values.
What conclusions can be drawn
about the possible values of the en-
ergy of the nucleus?

9. Why can't the alpha particles
emitted by radioactive substances
cause nuclear reactions in heavy e1-

ements?
10. Why do the alpha particles

emitted by a given sort of nuclei all
have the same energy, while the
energies of beta particles emitted by
nuclei of a given soft are different?

11. If nucleons can atfract each
other, why haven't all the nuclei fused
into a single huge supemucleus?

12. Why atett't the elements oc-

I

I
<1
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)OSCOPE

i altd lhein nuclei?

cupying the middle and end of the
Periodic Table suitable for use as
neutron moderators?

13. The rest mass of a nucleus is
always smaller than the sum of the
rest masses of its constituent nucle-
ons. Can we say that conservation of
mass is violated in the formation of
nuclei?

Microexperiment
Heat an iron nail "white-hot"

with a gas burner. Can you heat a
piece of glass to produce similar 1u-
minance?

I

I

I

\

It is interesting that...
... Thales of Miletus,

the founder of Antic
philosophy and sci-
ence, traced all the di-
versity of matter and
phenomena to one
primary substance:' water. Anaximenes, his

pupil and a member of the
Miletus philosophic school, gave
the role of the primary sub-
stance to arr, the compres-
sion and rarefaction of
which gives rise to all mat-
ter. By contrast/ a contem-
porary of Thales', Heraclitus
of Ephesus, preferred tire,by
which he also meant soul
and intelligence.

... The planetary model of
the atom, which has been as-
sociated with Rutherford's name af-
ter his experiments/ was devised
theoretically as early as 1901 by the
French physicist Iean Baptiste
Perrin, famous for his experimental
study of Brownian motion. The title

of his paper was "The Nuclear-P1an-
etary Structure of the Atom."

... As early as 1815, William Prout,
a medical doctor from Edinburgh,
advanced the hypothesis that
ai1 chemical elements were
composed of hydrogen at-
oms. And in 1911, Ruther-
ford proposed that nuclei
were made up of alpha par-
ticles.

... Rutherford supposed that
the charge of a nucleus is pro-
portional to the atomic weight
of the element. The correct
idea that the nuclear charge is
proportional to the number of the
element in the Periodic Table was
advanced by the Dutch amateur
physicist Van der Brook. Rutherford
was skeptical of this hlpothesis and
regarded it as an amusing but unsub-
stantiated idea.

...If Enrico Fermi had managed to
completely explain the results of his
experiments on artificial radioactiv-
ity, humanity would have known

that it was in principle possible to
construct an atomic bomb as
early as 1934. Rutherford, who

-.= was still living at the time, cat-
egorically refuted the possibility

of making practical use of nuclear
energy.

...The methods of nuclear physics
are successfully used in criminol-
ogy, where they make it possible to
examine substances with a mass of
less than i0-10 g. For example I aper-
son can be identified from a tiny
piece of ahair.

...To warm the interior of
Lunokhod (the first lunar rover) and
maintain its operation for many

months on the sur-
face of the Moon, it
was equipped with a

heating unit contain-
ing sealed am'
poules filled with
radioactive substances.

...The intrinsic radioactivi-
ties of men and women are

different because they
contain different con-
centrations of the ra-
dioactive isotope po-
tassium-40.

-A. Leonovich

Quantum on atoms
and nuclei:

S. L. Glashow, "The Elementary
Particles, " September/O ctober 1990,
pp.49-51

M. Digilov, "A Strange Box and a
Stubborn Brrt," MarchlAprll L99l,
pp.26-27.

S. R. Filonovich, "The Power of
Likeness, " September/O ctober 199 l,
pp.23-27.

L Lalayants and A. Milovanova,
"Physics Fights Frauds," lanuaryf
February 1993, pp. I 1-16.

A. Eisenkraft and L. D. Kirk-
patrick, "Focusing Fields," lanuary f
February 1996, pp.30-31, |uly/Au-
gust !996, pp.32-33.

H. D. Schreiber, "The Name
Game of the Elements," September/
October 1996, pp. 24-30.

Y. Bruck, M. Zelnikov, and A.
Stasenko, "Wobbling Nuclear
Drops, " I anuary fF ebruary 1997, pp.
t2-17.

A. Korzhuyev, "Bohr's Quantum
Leap," lanuaryfFebruary 1999, pp.
42*46.
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OW DO YOU LIKE THEM
apples? The Garden of Eden
variety brought about knowl-
edge and led to banishment.

Newton's variety extended enlight-
enment and led to a revolution in
science and thought that echoed
through politics, poetry, logic, and
philosophy.

Newton was certainly not the
first person to see an apple fall from
a tree. He may, however, have been
the first to imagine the apple and the
Moon to be one and the same. The
apple falls to the ground. This is a
good observation, but nothing par-
ticularly special. To declare that the
Moon also falls to the ground, when
everyone knows it does not get any
closer to the Earth, requires genius.
Newton had been thinking of the
gravitational force that attracts the
apple to the Earth. To Newton, the
Moon was merely a much larger
apple that is very much further from
the Earth. The Moon also fal1s to the
Earth. It is the tangential velocity of
the Moon that prevents it from get-
ting any closer to the Earth. It is the
gravitational force that holds the
Moon in orbit.

Newton had begun to think of a
gravitational force of attraction be-
tween the Earth and the apple. He
then rcabzed that the force is be-
tween any two masses and decreases
as the square of the distance be-
tween them.

PHYSICS
CONTEST

Tunnel tl'ouhle

by Arthur Eisenkraft and Larry D. Kirkpatrick

I wonder if I should fall
right through the earth!
How funny it'll seem to
come out among the
peaple that walk with

their heads downwards.

-Lewis 
Carroll,

Alice in Wonderland

The proportionality constant G
was not determined experimentally
until a hundred years later by
Cavendish in 1 798. Cavendish hung
pairs of 15 kilogram and 125 kilo-
gram masses and observed the tiny
attraction between them. The force
o{ attraction is cluite smal1 indeed
but it was enough to twist a tiny
wire, and Cavendish was able to
measure that twist and determine
that G : 6.67 . 10_n N . m2/kg2.

Returning to Newton, one can't
help but be blown away by
Newton's insistence that we cannot
be cajoled into agreeing that the dis-
tance between two spheres should
be measured from the center of one
sphere to the center of the other.
Newton invented integral calculus
to prove that the small attractions of
each piece of Earth on the apple are
equivalent to the attraction of the
entire mass of the Earth if the entire
mass was located at its center/ one
Earth radius from the apple.

The success of this treatment can
be seen in the two calculations of
the Moon's acceleration. In the first

calculation, we look at the approxi-
mately circular orbit of the Moon
about the Earth. The Moon's period
is 27.3 days and its distance to the
Earth is 60 Earth radii. One Earth
radius RE = 6.37 ' 106 meters. The
centripetal acceleration of the Moon
can then be calculated:

RT2

: O.OO29 m/s2 .

An inverse square relationship for
gravity would predict that the accel-
eration of the Moon would be (60)2

or 3500 times less than that of the
appie.

(9.8 rnls2ll3600 : 0.0027 rnf s2

When Newton arrived at this in-
verse-square conclusion, it is said
that he "could hear God thinking."
Newton showed us that the apple is
like the Moon and, simultaneously,
that the Earth is like the heavens.
This law of gravitation describes the
planets about the Sun, the Sun about
the Galaxy, and the dance of all clus-
ters of galaxies in our Uniierse.

The gravitational force allows us
to calculate the orbit of a satellite in
Iow Earth orbit. The idea of a satel-
lite orbiting the Earth first appears in y
Newton's landmark Principia, p"b- E

Cm.m.
L'._ T L
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Therefore, the orbrtal periocl is given
by

T =2n

which yields a period of 8B minutes.
A more sophisticated problem is

to calculate the period of an apple
that travels through a hole created
along a diameter of the Earth. Since
on its travel through the tunnel, the
apple experiences a force due to each
part of the Earth, some of the mass
of the Earth will be pulling inward
and some will be pulling outward. A
useful observation is that the force
at ary position is equivalent to that
of all of the enclosed mass on1y, as

if that mass was located at the
Earth's center. The mass in the ex-
ternal shel1 has no contribution to
the force. At an arbitrary point a dis-
tance r from the center/ the attrac-
tive enclosed mass is then

M'=pV =p+
.)

where p is the density of the Earth.
Assuming that the density is con-
stant and that there is no friction in
our tunnel, we can solve for the
force on the apple at any point in the
tunnel.

, _Gp4ryrim _(arGpm ), = o,,2 -t 3 J'-"'
When the r is toward the right,

the force is toward the 1eft, and the
correct form of this equation is

F: -kr
We recognize this as the ecluation

of a mass on a spring and as the sig-
nature of simple harmonic motion.
The apple will oscillate back and
forth through the Earth. The period
of oscillation 7is given by the equa-
tion

ellite. Should it be?

This month's contest problem
mixes some classic problems with
some new twists.

A. Reprinted in Halliday, Resnick,
and Walker is a 1946 Moscow
Olympiad problem. A spherical hol-
low is made in a lead sphere of ra-
dius R such that its surface touches
the outside surface of the lead sphere
and passes through the lead sphere's
center. (See figure 1.) The mass of
the sphere before hollowing was M.
With what force will the lead sphere
atfiact a smal1 sphere of mass m,
which lies at a distance d frorn the
center of the lead sphere on the
straight line connecting the centers
of the spheres and of the hollow?

Figure i

Figure 2

B. A tunnel is drilled along a

chord of the Earth connecting points
A and B. (See figure 2.) Calculate the
period for an apple to travel from A
to B. Comment on the feasibility of
such a tunnel for global travel.

C. Does a straight tunnel provide
for the fastest journey from A to B?

If not, can you find a tunnel of two
straight segments that requires a

smaller time?

lmage chal'0e
In the |uly/August 1999 issue of

Quantum we asked our readers to
use the method of image charges
and the uniclueness theorem to find
the force of attraction between a

charge q and a grounded metal sur-
face.PafiA asked readers to find the
force for the case when the charge
was equidistant from two large
metal plates forming a right-angle

Figure 3

corner as shown in figure 3. Using
the results for a charge in front of an
infinite metal plate calculated in the
article and our knowledge of images
formed by plane mirrors, we can
guess that the image charges are
those shown in figure 3. You can
easily verify that the electrostatic
potential is equal to zero along each
of the two metal surfaces and at in-
finity.

The electrostatic force felt by the
charge is the same as that exerted by
the three image charges. The two
negative image charges attract the
original charge toward the intersec-
tion of the two metal plates with a

force

- ^kq'I 1 kq'L' 
- 

tr
'ncp -o i r- 

2{, dz 
," l\d)' "t z

while the positive image charge re-
pels the image charge with a force

kqt I kc1).po, , B d)
\2"12d)

Therefore the net attractle force
toward the corner is

F :( f:- 1)4d = o.z'kQ-'(2J2 8)d' d)

Note that this is very close to the
{orce obtained for the infinite metal
sheet.

In part B we asked for the force
when the charge q is located a dis-
tance d from the center of a grounded
metal ball with a radius c < d. Let's
choose an image charge Q located a
distance D < c from the center of the

T 1_ 111 1_ JJl]

-=

\ k \ 4nGpin

Assuming that the density of the
Earth is 5.5 . 103 kg/m3, we get a
period of 84 minutes. This is very
close to the period of an orbiting sat-

3n

Gp
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Figure 4

ball. As shown in figure 4, let's de-
note the distances from the real
charge and the image charge to a

point on the surface of the ball as r
and R, respectively. The electrostatic
potential at this point is given by

kq kQ
.rR

where

P:d2*Zdccos0+c2
and

R2: D2 -2Dc cos 0 + c2.

Since the electrostatic potential is
zero at ali points on the surface of
the ball,

Qr = -qR.

We now square both sides of this
relationship, piug in the values of r
and R, and group terms in powers of
cos 0 on each side to obtain

Qzldl * c2) - 2dcQ2 cos 0

: q2\D2 * c2l -ZDcqz cos0.

Because this relationship must be
valid for all values of cos 0, the co-
efficients of each power of cos 0

must be equal on the two sides of
this equation. This yields

e2d: q2o
and

Qzld2 * czl: q2(D2 + czl.

We now solve both equations for
the ratio Qzlqz and ecluate them to
ol"ltain

D D2 +cz
-=-d d2+cz

This is a quadratic equation in D
that has two roots:

D:d,c2fd.

The first root corresponds to the

case where the real charge and the
image charge are superimposed and
the potential is zero everywhere. We
are interested in the second root, for
which

^Dce=__4 =_Aq.
c

(Note that the location of the im-
age is not the same as that for an
object outside a spherical convex
mirror. )

Using this image charge and im-
age distance, the attractive force on
the charge outside a grounded con-
ducting sphere is

r = pn'( .'d .).- -'-/ \d'-c')
It is interesting to check the limit-

ing cases. As the charge approaches
the surface of the spherg d approaches
c and force becomes very iarge. And as

the charge is moved to very large dis-
tances/ the force decreases to zero.
Both of these behaviors are expected
and agree with the case for the inJinite
conducting plane. o

,fus:aa., '-{i.{:{.e:s 
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Stephen Smale: The mathematician
who broke the dimension barrier
Steve Batterson. Enary Untversity, Atlanta, GA

ln 1957 Stephen Sma e startled the mathematical world by showing

thal it ls possib e to turn a sphere ins de out without cutting, tearing, or

crimp nq A iel,lears Iater from the beaches of Rio, he ntroduced

the horseshoe n'rap dentonstrating that simple functions could have

chaotic cr.a'1.s il s next stunning mathematica accomplishment

was to so,.'e :": ' gl.er-dimens onal Po ncar6 conjecture, thus

demonstrat ng r"a: r- crsr d mensions are simpler than the more familiar

three. ln 1966 n li,lcsci,,;. re was awarded the Fields lvedal, the most

prestigious pr ze n matlematrcs.

There are few good b c!rachies of mathematic ans. Th s makes sense

when consider ng that to p ace the r ves in perspective requires some

appreciation of their theoreris B ograph cal writers are not usua ly

trained in mathemat cs. a.d mathemat cians do not usual y write biogra-

phies. Though the author. Sieve Batterson s primarily a mathematic an,

he has long been intrigued Dy ihe not on of working on a b ography of

Sma e. In this book, Batterson records and makes known the life and

accompl shments of th s greal malhemat c an and significant frgure in

intel ectua hlstory.

'Transparent Peach Evers on coler arl LSed ri th perm ss on from the Outs de lf '

videoproiect generatedattheGe0melrvCenter(Unvelsltyol[.4N);distributedby
A. K. Peters (Nat ck, IMA)

2000; approx malely 265 pages: Hardcover SBN 0-8218-2045-1: List S35; All AMS

members $28;0rder code l\/BDBQ01

All prices subjecl to change. Charges for delivery are $3.00 per order. For optional air delivery outside ol th9 99!!inental U. S., please include 56.50

pei tlen. Prepayment req-uired. Oider tron: Arnerican Mathematical Society, P 0. Box 5904. Boston, N,4A 02206'5904. USA FoT credit card orders,

iax 1-401.455",i046 or call ioli {ree 1-800"321-4AMS (4267) in the U. S. and Canada,1"401-455"1000 worldwide.0r place yorr orderlhrough lhe

Ai\,'lS bookstore at www.ams.orq/bookstore/. Residents of Canada, please include 7% GST.

@
Mathematics: Frontiers and Perspectives
Vladimir Arnold, university of Paris X, France, and Steklov Mathematical

tnstitute, Moscow Bussia, Michael Atiyah, University of Edinburgh,

Scottanct, UK, Peter Lax, NewYork University-Courant lnstitute, NY, and

Bany Mazur, Haruatd University, Cambridge, MA, Editors

This remarkable book is a celebration of the state of mathematics at the

end of the millennium. The volume consists of 28 articles written by

some of the most influential mathematicians of our time. Authors of 14

contributions were recognized in various years by the IMU as recipients

of the Fields Medal, from K. F. Roth (Fields Medalist, 1958) to W, T,

Gowers (Fields Medalist, 1998), The articles offer valuable reflections

about the amazing mathematical progress we have witnessed in this

century and insightful speculations about the possible development of

mathematics over the next century.

Some articles formulate important problems, challenging fu'iure mathe'

maticians.others pay explicit homage to ihe famous set of Hilbert

Problems posed one hundred years ago, giving enlightening commen-

tary. Yet other papers offer a deeply personal perspective, allowing

insight into the minds and hearts of people doing mathetnatics today.

Mathenatics: Frontiers and Perspectives is a unique volume that

pertains to a broad mathematical audience of various backgrounds and

levels of interest. lt offers true and unequaled insight into the world of

mathematics at this important juncture: the turn of the millennium.

lndividual members of mathematical societies of the lMu member counlries can

purchase this volume ai the AMS member price when buying directly from the A[IS.

20oo; 433 pages; Hardcover; ISBN 0-8218-2070-2; List $49; All A[4S members $39;

0rder code MFPQo1
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DIGIT
DEMOGRAPHICS

Reparlilioninu the wol1d

Population and the powers of two

by V. Arnold

proved even more. Recall that any
real numbet c can be uniquely rep-
resented as the sum of an integer
(called the integer part of cl and a

fractional part lc] belonging to the
interval [0, 1).

Theorem. Let x be an furational
number. Then the sequence of the
fr actional p arts, lnxl of the numb er s

nx (n: O, 1,2, ...1 is uniformly dis-
tributed on the interval (0, l).

This means that l/N times the
number of values of n (0 < n < N) for
which the fractional part of nx falls
into any fixed segment of length a
tends to a as N increases to infinity.

In other words, consider the mo-
tion of a point along the circumfer-
ence of a circle where at integer
moments of time (n) the point jumps

ahead by an angie 2nx which is in-
commensurable with 2n (see {ig. 1).

The theorem asserts that the time
spent by the moving point on any
arc of the circle is asymptotically
proportion al (at large observation
times) to the length of the arc (and
depends neither on the position of
the arc on the circle, nor on the ini-
tial point, nor even on the value of
the angle).

The distribution of the first digits
of the numbers 2n can now be ob-
tained as follows. Consider the se-
quence of numbers Logro(Z1 : nx.
The number x = logro2 is irrational.
By Weyl's theorem, the sequence of
the fractional parts of nx is uni-
formly distributed on (0, 1).

The first digit, i, of 2" is deter-
mined by the interval between the
numbers logro(i + 1) and logrrr in
which the fractionalpartof the num-
ber 1ogro2" falls. By the theorem, the
fraction of the numbers 2" b.eginning
with the digit i l: 1,2,..., 9) is equal
to p; : logro(r + 1) - logroi. For ex-
ample, for the first digit i : 1, this
fraction is 1og,o2 = 0.301 (the fact that
this number is close to 3llO reflects
the fact that 2ro = lo24 is close to
1000 : 103). This is why the percent-
age of ones among the first digits of
the numbers 2" is about 30%. The
fractions made up by the different
digits (in percent) are given in table 1.

HE FIRST DICIT OF THE
number 2" is equal to 1 about
six times more often than it is
equal to 9. The {irst digits of

the populations and surface areas of
the countries of the world are dis-
tributed in the same way. The ex-
planation of this fact suggested be-
low has led to many mathematical
hypotheses, some of which have
been proved and some of which are
only supported by computer experi-
ments and still await rigorous
proof.

Powms oltwo
The sequence of the first digits of

the numbers 2 (n : 0, I , 2, ... ) begins
with

1,2, 4, B, 1,3, 6, 1,2, 5, l, ...

It can be verified by continuing
the calculations that ones constitute
about 30% of this sequence (while
nines make up less than 5%). The
same distribution is obtained for the
sequence of the first digits of the
numbers 3n, and, in general, for al-
most any geometric progression.
(Progressions with the ratios 10,
{0 , and, in general, 1golo, where p
and q are integers, are obvious ex-
ceptions.)

The proof of this surprising
proposition was obtained by H.
Weyl aimost 100 years ago. He

Figure 1 . rne traiectory of a point
whenrctated again and againtfuough
an angJe incommensurable with Lfi.
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1 1 2 o 4 5

100 x p- 30 t7 l2 10 8

1 6 7 8 9

100 x p- 7 6 5 5

Table 1

Nines are about six times less
common than ones (see fig. 2).

301

176
125 96 79 67 58lstl+a

123456789
Figure 2. oistibutionof theftust
digits of powers of two.

One conclusion that can be
drawn from the above is important
for further considerations: the
strangely nonuniform distribution
of the first digits of the numbers 2"
is explained by the uniform distribu-
tion of the fractional parts of the
logarithms of these numbers.

This conclusion explains the
similar distribution of the first dig-
its of many different sequences (e.g.,
of the geometric progressions 2 and
3", but other kinds of sequences as

well).

Populailions ol counFies
About 20 years ago, N.N. Kon-

stantinov called to my attention the
factthat the first digits of the popula-
tion of different countries are distrib-
uted in the same way as the first dig-
its of the powers of two (see table 2).

Table 2

first digit I 2 .) 4 5

number of
countties
l%), r99s

29 2l 10 11 6

first digit 6 7 B o

number of
countties
(%1, 1995

6 8
1
J 6

Here is the explanation to this
f.act that I gave then. According to
Malthus' theory, the population of
each country grows in a geometric
progression. It follows from Weyl's
theorern (see the previous section)
that the first digits of the popula-
tion of a given country are distrib-

'uted in the same way as the first dig-
its of the powers of two (see fig. 2).
According to the ergodic theorem
{or, more correctly, the ergodic
principle), the mean with respect to
time can be replaced by the mean
with respect to space/ i.e., the dis-
tribution over different countries
for one year must be identical to the
distribution in one country in dif-
ferent years.

To verify this conjecture, I con-
sidered the distribution of the num-
ber of pages in the books of my li-
brary, the lengths of rivers, and the
heights of mountains. In all these
cases/ the proportion of ones and
nines among the first digits of the
numbers obtained proved to be prac-
tically equal: p iL l9 . Books, rivers,
and mountains do not grow in geo-
metric progression, so Malthus'
theory is not applicable. Thus the
difference between the statistics of
the first digits of numbers represent-
ing population and, sly, river
lengths provides a kind of indirect
confirmation of Malthus' formula
(by which population grows in a geo-
metric progression).

However, about 10 years ago,
M.B. Sevryuk found that not only
the population, but also the areas of
countries obey the same law of dis-
tribution of the first digits as the
powers of two. Since Malthus'
theory is not apparently applicable
to areas/ the question arises as to
how this behavior of the areas can be
explained. Let me try to answer this
question.

Amas 0tc0u]lll'i8$
The preceding examples show

that the cause of the strange distri-
bution of the first digits of the ar-
eas of countries should be sought
in their relationship to geometric
progressions. History tells us that
the areas of countries (especially of

empires) sometimes increase and
sometimes decrease, by the joining
together and splitting apart of
countries. First, consider the most
primitive model of this phenom-
enon. Assume that in a unit of
time a country splits into two
equal parts with a probability of
0.5 or joins with another country
having the same area with a prob-
ability of 0.5.

Theorem. The distribution of the
fractional parts of the logarithm of
the area occupiedby such a county
at time n tends to a uniform distri-
bution on the interval (0, 1) as n
tends to infinity,

In other words, the probability
that the first digit of the area will be
I tends to logro2 = 0.301, ..., and the
probability that this digit will be 9 is
approximately 0.046.

Indeed, consider the secluence 1, =
logroS(n), where S(n) is the area at
time n. At the next momerrt, n + l,
the point l, shifts either to the left
or right by logro2 with equal prob-
ability (certainly the choice of what
to do-merge or divide-is indepen-
dent of the choices at other mo-
ments of time). According to the
laws of the probability theory, the
distribution of 1, for large n is
mainly concentrated on a long seg-
ment (of order "vE ) and is gently
sloping and symmetric (see fig. 3).
When we pass to fractional parts
(i.e., when we wind the axis 1on the
circle J mod 1), this distribution on
l gives a nearly uniform distribution
on the circle (for large n). The details

rE lrl

Fi g ure 3. Wher', the straight line with
a gentLy sloping distibtttjon is wound
ttp on the circle, a nearly uniform
distribution is obtdined.

d e f Ia c h
I
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of the proof are left for the reader to
complete. It is important that the se-
quence of fractional parts of the
numbers nalogrn2 is distributed uni-
formly.

There are numerous more com-
plex models for the repartitioning of
the world that produce the same ef-
fect in numerical experiments. It'is
likely that the uniformity of the dis-
tribution of the fractional parts of
the logarithms of the areas of coun-
tries in the limit can be rigorously
proved for whole classes of such
models. Here are some examples.

1. Initially there are k countries,
with the areas Sr, ..., So. At each suc-
ceeding moment/ one (randomly
chosen) country divides in two with
a 50% probability or unites with
another (randomly chosen) country
with a 50% probability. Of course,
the choices made at different times
are assumed to be independent, and
any two countries are equally likely
to be chosen.

The computations performed by
M.V. Khesina (the University of
Toronto, lune, 19971 show that for
S;: r, k : 100, the distribution of
the first digits of the areas is prac-
tically the same as the distribution
of the first digits of powers of two
after only 100 steps.

2. If we al1ow division into un-
equal parts with a certain law of dis-
tribution of the parts (e.g., uniform),
we obtain the same result.

3. In models that a11ow only for
neighbors to unite, the same fistri-
Table 3

bution of the first digits is reached.
For example, in one of F. Aicardi's
models (Trieste, lune, 19971, coun-
tries are represented by arcs of a

circle, and areas are represented by
the lengths of these arcs. A distribu-
tion that is almost the same as the
distribution of the first digits of
powers of two is very soon reached.

4. In another of Aicardi's models,
the world is represented by a graph
that describes the decomposition of
a sphere into triangles (whose nve?
tices represent n countries with an
area randomly distributed on the
interval (1, nll.The graph is con-
structed beginning with the icosahe-
dron by iterations of the following
operation: a triangular face is ran-
domly chosen, a vertex is added at
its center, and it is connected with
all three vertices oi this face.

In this model, the repartitioning
of the world is organized as follows.
At each moment in time a vertex r
is randomly chosen and then the
number of countries is increased

A-,A
Figure 4. Seporation ctf a new country
i from the collntry i.

W-X
FigUfe 5. Federation of two countries,
i and i.

with probabiiity p or decreased with
a probability | - p.In the first case,
a triangular face containing the ver-
tex r is randomly chosen and a new
vertex is created at the center of the
face. This vertex is connected to the
three vertices of the face, and the
newly created country acquires a
fraction cr of the areaof the country
i (see fig. 4).

In the second case, a vertex 7 ad-

iacent to the Yertex r is randomly
chosen and the countries i and i arc
united; in the process/ the edge il
and the two triangular faces divided
by this edge are deleted (see fig. 5).
Table 3 shows the values of the pa-
rameters in three experiments, A, B,
and C. Table 4 shows the average
values of the proportion of ones, ...
nines among the first digits of the
areas of the countries obtained after
50 repetitions of the experiment
with different initial values. The last
row (D) of this table shows the fre-
quency of the first digits of powers
of two.

It would be interesting not only
to prove a general theorem that
specified the domain of applicability
of the uniform distribution of the
fractional parts of logarithms but
also to check whether, for example,
the size of companies or their rev-
enues obey this law.

The occurrence of the strange dis-
tribution of the first digits in many
different situations has been dis-
cussed in numerous papers. How-
ever, I have never run across any
mathematical theorems or hypoth-
eses (like the ones discussed in this
paper) that explained the inevitabil-
ity of this distribution (except, of
course/ for Weyl's theorem). O

Table 4

1 2 3 4 D 6 7 8 o

A 0.297 0.1 83 0.t23 0.107 0.073 0.0s8 0.065 0.046 0.049

B 0.309 0.1 80 0.\23 0.106 0.069 0,059 0.058 0.050 0.045

C 0.294 0.181 0.111 0.091 0,084 0.077 0.059 0.052 0.048

D 0.301 0.r76 0.12s 0.096 0.079 0.067 0.058 0.0s1 0.046

A B C

initittl nttntber
of countries, n

100 62 100

number of
iteration steps, T 200 150 200

(Nerage number
of countries at
time T

98 tt4 898

probability of
division, p 0.5 0.5 0.5

part of area
detached, u 0.5 0.5 0.3
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I I arrlr-that was rhe sub-
U iu"t of Mr. Lund's speech!

The time is nigh when the Moon
will be decorated by a hole. This
hole will belong to Great Biltain."
(Anton Chekhov)

It is impossible that such a colos-
sal project would not produce
something useful. Let's simply drop
some object (say, a household iron)
into this shaft, which passes di-
rectly through the Moon's center
(figure 1). Near the surface {point N)
the force acting on the iron will be
mg*, where m is the mass of the
iron and 8*is the acceleration due
to gravity at the Moon's surface (ap-

proximately ll5 of that at the
Earth's surface). When the iron
passes through the center of the
Moon (point O), the force of gravity
wili be zero (tf the Moon has spheri-
cal symmetry), because at that
point the elementary gravitational

N

Figure 1
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forces generated by all the mass el-
ements of the Moon counterbal-
ance one another. Therefore, atthat
point the iron's speed is no longer
increasing, and after passing
through the center of the Moon the
iron will begin to slow down. Intu-
ition tells us that the iron will
come to a stop at point S, which is
diametrically opposite to point N.
Indeed, since the Moon has no at-
mosphere and the iron doesn't con-
tact the walls of the shaft, its mo-
tion is frictionless. Therefore, the
iron will not lose energy/ and it can
repeat its fall from the point S if it
is not caught there. It will pass un-
impeded through the center of the
Moon and on to the surface at point
N-and so on. This oscillatory mo-
tion could go on forever.

As we have said, the acceleration
due to gravity has different values at
the Moon's center (zero) and at its
surface (Sy). Therefore, the accelera-
tion due to gravity is some function

of the distance from the center of the
Moon. The simplest dependence
would be linear (keep in mind that
this is stiil a hypothesis):

sr =-8m;fr. ir)

Now let's hurl the same iron
along the lunar surface (in other
words, horizontally or tangentially)
in such a way that it could reach
point S again (figure 2). To do this we
must impart to the iron the orbital
speed v' Recall that this value can
be found by ecluating the accelera-
tion due to gravity (which is con-
stant for all points on the spherical
surface) to the centripetal accelera-
tion g*: f1lRm, whence

',=,/g*Rr' 
(z)

This orbital speed is also called
the first cosmic speed and carries the
subscript 1. Note that although the
value of the iron's speed is the same
at alry point on the circular traiec-
tory, its motion is nevertheless ac-
celerated, because the velocity vec-
tor is constantly changing direction
(rotating).

At some time t the iron willbe
located at point C on the circle,
with angular coordinate 0 (the po-
lar angle). Its distance from the
starting point N (corresponding to
r: 0, e : 0) measured along the arc
NC is v,t. Let's project all kine-
matic parameters of the iron at
this point (its radius vector Rr1,
velocity v, and acceleration gr)
onto the shaft axis sN (that is, the
y-axis, figure 2):

l.
s sl

Figure 2
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y = R* cos 0, (3)

yy: -yr sin 0, l4l

8, = -8y cos 0. (5)

Note that the central angle 0 is
the length of the circular arc divided
by its radius: 0 : vrt/R*. Equations
(3) and (5) yield a formula for g,

which coincides exactly with (1).
Again, this is not a proof of formula
(1), but it does hint at the actual be-
havior of the force on a body inside
the lunar tunnel.

Clearly, if the projections of the
acceleration, velocity, and position
of an orbiting iron onto a diameter
of the Moon are aLI exactly equal to

the corresponding values for an
identical iron moving along the
same diameter, then both the orbit-
ing and falling (oscillating) irons will
get to point S simultaneously. Then
they will also return to the starting
point N at the same instant. This
reasoning is correct, provided that
formula (1) is true. In reality, this
linear dependence is correct only in
the case of a uniform planet with a
constant density throughout its vol*
ume.

In the last 300 years this subject
has been discussed in many classics
of the exact sciences. A modern stu-
dent knows from elementary sci-
ence classes that a ball of mass M
and radius r atttacts a body of mass
m located at its surface with the
Newtonian force of gravity F :
GMml?, as if the entire mass of the
ball were concentrated at its center.
Plugging M : 14l3lnr3p6 into
Newton's formula (po is the density
of the uniform ball) yields

F : mg: mc(alSlnporslf ,

which gives

s(rl = Glalslnpar.

This means that the acceleration
is indeed proportional to the dis-
tance from the center. A very impor-
tant feature in this reasoning is that
the mass of a spherical layerlying on
a surfacez = const does not affect the
force of gravity (or the acceleration
due to gravity) in the region enclosed
by this surface. This result is non-
trivial. Infact, Newton held off pub-
lishing the Principla for nine years
until he could prove it.

Now formula (3), written in the
form

/ = Rlnl cos (vrt/Ry),

is the "timetable" for the motion of
the iron in the lunar shaft. This for-
mula describes a harmonic oscilla-
tion (figure 3, solid curve). Accord-
ing to (4), the speed will vary as

vy: -vt sin (vrt/RnaL

reaching maximal values at those
times when y: 0, that is, at the cen-
ter of the Moon (figure 3, dashed
curve).

OUAI'lIUfr!/AI IIII BI.ACI(BOARO I 3g



Figure 3

This last formula shows that at
the center of the Moon, the iron will
reach the first cosmic speed (the or-
bital speed of a lunar satellite). At
this point in the exposition the prac-
tical mind of a bright student may
flash on an idea: Why should the
iron be allowed to swing idly from
pole to pole? The price of fuel on the
Moon is astronomical, so why not
save some with the help of the gravi-
tational field?

To harness the Moon's gravity
for useful work we replace the iron
by a very big rock (VBR) and attach
a weightless inelastic cord of
length R, to it. The other end of
the cord wi1l be hooked to a space-
craft or a satellite to be launched.
While falling into the shaft, the
VBR will accelerate the spacecraft
in the horizontal direction on the
Moon's surface (presumably with-
out friction). When the VBR passes
the center of the Moon, the space-
craft will be just over the shaft. At
this precise moment we unhook it
from the cord, because both bodies
will have attained the first cosmic
speed vr. The space vehicle will
then orbit about the Moon, while
the VBR will proceed on its way to
the opposite pole S. At that pole
another space vehicle could be
hooked on. Thus the oscillating
VBR could launch one satellite af-
ter another instead of aimlessly
rocking in the shaft. Such a project
would provide a great economy of
fuel, which is of extreme impor-
tance on the Moon.

We have tacitly made a very im-
portant assumption. We have as-
sumed that the mass of the VBR is
much greater than the masses of the
accelerated vehicle and the cord. In
short, the VBR must be a VERY big
rock.

Let's take things one step further.
Equations (3) and (a)yietd

sine = -L
v1

We square each equation and add
the resulting ecluations together:

=sinl 0+cos20=1.

Dividing this ecluation by 2 and
plugging in the expression for v,
from formula (2), we get

,l *!s*y' -ul - SnRn t(.tl
2'2 RM Z Z rul

Doesn't this look familiar? Of
course, this is the good old energy
conservation law for a unit mass.
The first term on the left-hand side
is the kinetic energy of the falling
body at distance y from the center.
The second term depends only on
the location of the body, so it must
be its potential energy. The sum of
the two terms is constant (equal to
the right-hand side of ecluation (6)).

This constant ecluals either the ki-
netic energy at the center of the
Moon (where the potential energy is
zero) or the potential energy on the
Moon's surface at the entrance to
the shaft (where the speed and ki-
netic energy are zerol.

Thus potential energy of a body
with mass m located at distance y
from the center of the Moon is
written in the form (llzlmgNtt4lRNl
= 11l2)mg,y. Note that the energy
conservation Iaw for a body
thrown vertically upward above
the Earth's surface to an altitude y
looks like

mr) mvA

2 *m\oy:;=ffi80Y-^*,

where vo is the initial speed im-
parted to the body and /,,,r" is its

maximum altitude. In this case the
potential energy is mgoy, and it is
equal to the work that must be per-
formed to raise the body to an alti-
tude y. In contrast, when a body
falls into a long shaft, it is acted
upon by a variable force of gravity
(1), so the potential energy in this
case is one-half the usual product of
mg, times y, because in geometri-
cal'terms it is the area of the shaded
triangle in figure 4.

l?18\,

RM

Figure 4

What should we do if the rock is
not VERY big, that is, when its
mass is comparable to that of the
satellite and the cord? In this case
the energy conservation iaw (6)

must be modified to take into ac-
count the energy oi the satellite and
cord. This exercise is a good "night-
cap" before going to bed. Keep in
mind that as the rock fa11s into the
shaft, an ever-increasing fraction of
the cord will be inside the shaft.
The weight of this part of the cord
will also contribute to the accelera-
tion of the satellite. O

Quantum on space travel and
gravitational catapults:

Y. Osipov, "Catch as Catch
Can," |anuaryfFebruary 1992, pp.
38-43.

A. Byalko, "A Fligh.t to the
Sun, " November/December 1996,
pp. 16-20.

V. Surdin, "swinging from Star
to Star, " Marchf April 1997, pp.
4-8.

V. Mozhaev, "In the Planetary
Net," lamaryfFebruary 1998, pp.
4-8.

A. Stasenko, "From the Edge of
the Universe to Tartarus," Marchf
April,1996, pp. 4-8.

cose=-I-,
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0lympiad fionol's
Competing against teams repre-

senting 8l countries, a team of six
American high school students won
six medals at the 40th International
Mathematical Olympiad (IMO) held
in Bucharest, Romania, this past
summeL

This year's team was chosen
solely on the basis of the 2Bm annual
USA Mathematical Olympiad held
last April. Team members included
gold-medalist Reid Barton from Ar-
lington, Massachusetts, gold-medal-
ist Paul Valiant from Milton, Mas-
sachusetts, silver medalist Gabriel
Carroll from Oakland, California,
silver medalist Po-Shen Loh from
Madison, Wisconsin, silver medalist
Melanie Wood from Indianapolis,
Indiana, and bronze medalist
Lawrence Detlor from Brooklyn,
New York.

HAPPEN INGS

Bullelilt Boal'd

U.S. team leader Titu Andreescu,
director of the American Math-
ematics Competitions, asserted:
"The competition is getting
tougher and tougher. There are
more and more strong countries.
We consider this year's participa-
tion a success. Two of our students
received a gold medal, and the two
first-time IMO participants on our
team received a silver and bronze
medal. It appears that next year's
U.S. team will include four gold
medalists, two from 1998 and two
from 1999. We will have a stronger
tearrrt and all six team members
will go for the go1d."

The {ollowing is a list of the top
10 teams and their scores (out of a
possible 252 points).

China (182), Russia (182), Viet-
narn ll77), Romania (173), Bulgaria
(170), Belarus (167), Korea (164),han
(159), Taiwan (153), USA (150).

Here is a sample question from
this year's olympiad:

Determine all functions / from R
to R such that

fV - flyl) = f(f$l) + xf(y) + flxl - |
for all x and y in R.

GdlinU m fiB $quffi rmt ul fiB Wtlem
Depending on your world view-

base ten or binary-there were actu-
ally two correct answers to this
month's contest. An asterisk denotes
those who chose the binary approach
to solving the CyberTeaser. This
month's winners are:
Maxim Bachmutsky (Kfar-Saba, Is-
rael)
Fred Witkowski (Bydgoszcz, Poland)
Bruno Konder (Rio de laneiro,Brazll)
Shvachko Nikita (San Carlos, Cali-
fornia)
Michael L. Marfil (Camalig, Albay,
Philippines)-
Nick Fonarov (Staten Island, New
York)
ferold Lewandowski (Troy, New
York)
Lena Oleynikova (Waldorf, Mary-
land).
Sergio Moya (Culiacans, Sin,
Mexico)
Igor Astapov (Kingston, Ontario,
Canada)

Congratulations to our winners,
who will receive a Quantum button
and a copy of this issue.

Everyone who submitted a cor-
rect answer before it was posted at
our website was eligible to win a

copy of our brainteasers collection
Quantum Quandaries. Visit trttp ll
www.nsta.org/quantum to find out
who won the book, and while you're
there, try your hand at our new
CyberTeaserl

0llil'tTtl il/fl[P PIilIit0s

From figltt to left: Tjttt Andreesctt (USA tettnt letttler). Reicl Barton, Melttnie
Wood, Po-Slten Loh, Gabilel Carutll, Pdttl Vttliunt, Lttwrence Detlor, Wtrlter
Mientka ( U SA ob s erv er ). CI
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The [Ulal'kotlequiltion
by M Krein
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I il'
l[:]Jt:li:13*:lm:l:
The solution uses only the sim-
plest properties of integers and
"Vieta's theorem"l for quadratic tri-
nomials. It can therefore easily be
understood by students who have
taken an elementary algebra class.
Our solution is based on a number
of statements whose proofs have
been left as problems for the reader.

In 1879 , at Petersburg University,
a young man of 23 defended a

master's dissertation entitled Bi-
nary Quadratic Forms with Positive
D eterminants. This dissertation
gave the solutions of some very dif-
ficult problems of number theory
and started a new line of investiga-
tion in that field. The author of the
dissertation was Andrei A. Markov
ll\55-1922), who later became a
prominent mathematician.

The main part of the dissertation
was based on two articles published
in the well-known mathematical
journal Mathematische Annalen in
lB79 and 1880. However, it was
only after more than 30 years had
passed that these works of Markov's
were "discovered." In 1913, the
prominent German mathematician

lThis theorem says that the sum of
the roots of the quadratic equation ax2
+ bx + c = 0 rs -bla, and the product of
the roots is cf a. There is an important
generalization to equations o{ higher
degree, and the theorem is often (but
not in American textbooks) attributed
to the French algebraist Frangois Vidte
or Vieta.

42 JlrrtlIRY/TTBRUARY zooo

Georg Frobenius (1849-1917) prb-
lished a memoir called On Markov's
Numbers. He wrote in the preface
that even though Markov's investi-
gations are " extraordinarily impor-
tant and remarkable," they appear
to have remained little-known.
Frobenius attributed this to the
complexity of the presentation
(Markov made systematic use of
continued fractions, which were
unpopular in this field at that time2).

2There is an article on continued
fractions in this issue of Quantum.

In this article I will not try
to present even a simplified ac-
count of Markov's profound in-
vestigations. It happens, how-

ever, that in the course of his
studies Markov considered the fo1-

lowing auxiliary Diophantine equa-
tion (now called the Markov equa-
tion):

* *f + z2:3xyz. (I)

It is wonderful that Markov ob-
tained all the solutions to equation
(1) using only the methods of el-
ementary mathematics (among
them Vieta's theorem for quadratic
trinomials played a central role).

Before presenting a solution to
equation (1), let me say a few words
about Diophantine equations in gen-
eral.

[iopltanline Euatoffi
A Diophantine equation for inte-

ger-valued variables x, y, ..., w is an
equation that can be reduced to the
form

P(r, v, ..., wl: o,

where P is a polynomial in the given
variables with integer coefficients.

Sometimes, rather simple prob-
lems lead to Diophantine equations.
For example, the problem of finding
ways to pay a sum of n kopecks with
coins of value 1, 2,3, and 5 kopecks
(a11 of which existed in the old So-

viet Union) leads to the Diophantine
equation

x+2y+32+5w:n.
The problem of constructing a

right triangle with pairwise com-



mensurable sides arose as early as in
ancient Babylon. That the sides are
commensurable means that there
exists a scale in which the legs and
the hypotenuse are expressed by in-
teger numbers x, y, and z. Then,

*+5P:22.
Thus the Babylonian problem re-

duces to the problem of construct-
ing all triples of positive integers x,
y, and z satisfying the above equa-
tion. The Pythagoreans knew a
method for constructing a1l solu-
tions to this equation. It is possible
that this method had been found
even earlier, in ancient Babylon or
India. In any case/ solutions lr, y, z)
to the equation x2 * y2 : z2 ate
called Pythagor ean tripless.

The problem of finding solutions
of a Diophantine equation (even if
the equation itself looks simple) is
often difficult. There is no uniform
method (no algorithm) for finding
out whether a Diophantine equation
has integer solutions or not. Analy-
sis of particular Diophantine equa-
tions c.ontinues to this day; in recent
years, considerable progress has
been made with the help of the com-
plicated formalism of modern alge-
braic geometry. However, the
Markov equation can be solved by
elementary means.

tnmily FBo oltfie Mal'ltou erualior
An ordered triple of integers (a, b,

c) is called a solution to a Diophan-
tine equation in the unknowns x, y,
z if this equation is converted into a
valid numerical equality by the sub-
stitution x: a, y : b, arrd z: c.The
numbers a, b, and c of the solution
(a, b, cl will be called the coordi-
nates of the solution. For the
Markov equation (1) we will con-
sider only nonzero solutions (it is
easy to see that if one of the coordi-
nates of a solution to (1) is zero, all
the other coordinates must be zero
as well).

The left-hand side of (1) is posi-
tive for any solution la, b, c); thus,

sPythagorean triples were discussed
in the article "As easy as (a, b, cl?" in
Qu antum, I anuary f F ebruary 1999 .

either aII a, b, and c are positive or
two of them are negative. In the lat-
ter case, (lal,lbl,lcl) is a solution to
(1) with positive coordinates. Con-
versely, if la, b, c) is a solution with
positive coordinates, then by chang-
ing the sign oi two arbitrary coordi-
nates/ we obtain another solution.
For this reason/ without loss of gen-
erality, we will consider only solu-
tions with positive coordinates.

It follows from the symmetry of
equation (1) that 7f la, b, c) is a solu-
tion, then

la, b, c), (c, a, bl, (b, c, al,
(b, a, cl, (a, c, bl,lc, b, al

are solutions as well. That is, triples
obtained from a solution la, b, clby
various permutations of the coordi-
nates are also solutions.

Thus we may consider all six so-
lutions obtained from each other by
permutations to be a single solution;
that is, only the values of the coor-
dinates are essential, and their order
may be neglected.

The Markov equation (1) has the
easily guessed solution (1, 1, 1). Let
us now see how, knowing one solu-
tion, we can find other solutions. If
(a, b, cl is a solution to the Markov
equation, then a is a root of the qua-
dratic equation

r,(x) : * + bz + c2 - 3bcx : 0.

By Vieta's theorem, this equation
has another root x = a' such that

a + a' :3bc, aa' :b2 + c2. l2l
It is clear (from the second condi-

tion above) that a' > 0 and that la', b,
c) is also a solution to equation (1).

It is ca1led the adiacent solution
with respect to the coordinate a.
Clearly, if (a', b, c) is the adjacent
solution to (a, b, c), then (a, b, cl is
the adjacent solution to (a', b, cl
with respect to the coordinate a'.

Similarly, we can obtain solu-
tions adjacent with respect to the co-
ordinates b and c.

Let us find the solution adjacent
to the solution (1, 1, 1). To do this we
must solve the quadratic equation

*+12+12-3.1.1.x:0.
hr addition to the root x: 1, this

equation has the root x = 2. Thus we
have obtained another soluti on (2, I, I).
These two solutions, (1, 1, 1) and
12, l, l), play an important role. Fol-
lowing Markov, we shall call them
the singular solutions.

The singuiar solutions are the
only ones with two coordinates
equal.

Problem 1. Prove that a solution
la. b, cl to the Markov equation is a
singular solution if and only if two
of its coordinates are equal.

The first singular solutioq (I, I, L),

has only one adjacent solution. The
second singular solution has two ad-
jacent solutions: (1, 1, 1) and12,5,l).
The latter solution is adiacent to
12, I, l) with respect to the coordi-
nate 1 and is obtained from the
equation

2'*f+12:3.2.y.1.
In turn, the solution (2, 5, llhas

three adjacent solutions: one of
them is, naturally (2, l, Il, and the
other two are (13, 5, 1) and (2, 5, 29lr.
Generally, every nonsingular solu-
tion(a, b, cl generates three adjacent
solutions

(a', b, cl, la, b', cl, la, b, c'1,

where (compare with (2))

a' :\bc - a, b' :\ac - b,
c'=3ab-c.

Problem 2. Prove that if the solu-
tion(a, b, cl is nonsingular, one of its
adjacent solutions has a smaller maxi-
mum coorfinate, and the other two
have a greatet maximum coordinate.

Markov's theorem. Any solution
to equation (1) can be linked by a
chain of adlacent solutions to the
singular solution (1, 1, 1).

Proof. Let (a, b, cl bea nonsingular
solution to equation (1). Then it has
an adjacent solution (a, b, cr) with
a smaller maximum coordinate
(problem 2). If this solution is also
nonsingular, it has an adjacent solu-
tion lar, b, cr) with a still smaller
maximum coordinate, and so on.
But positive integers cannot {orm an
infinite decreasing sequence. Thus,
this process inevitably terminates.
The terminal solution (a,, b,, col
will have equal coordinates; that is,
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the terminal solution is singular
(Problem 1). If this solution is (1, 1, 1),

then the proposition is demon-
strated; otherwj.se, it is (2, 1, 1), which
is known to have the adjacent solu-
tion (1, 1, 1). Thus the theorem is
proved.

It follows from Markov's theorem
that, starting from the singular solu-
tion (1, 1, 1) and successively going
to adjacent solutions with a greater
maximum coordinate, we can ob-
tain all solutions. In the process/ we
obtain a f amily tree lsee figure 1).

Figure 1

Using this tree, given N ) 1, we can
find, in a finite number of steps, all
the solutions to the Markov equa-
tion whose coordinates do not ex-
ceed N.

Problem 3. Prove that coordinates
of any solution to the Markov equa-
tion are pairwise relatively prime.

The uclusiuily 0lfie tulankou sqtlaliolt
Consider the following problem,

which may seer-n rather strange at
first glance: if the sum of the squares
of three positive integers is divisible
by their product, what values may
the quotient have!

This problem is equivalent to the
following: for which positive inte-
gers k does the Diophantine equa-
tion

X2 + Y2 + 22 = kXYZ (3)

have a nonzero solution? For k :3,
this equation is the Markov equa-
tion.It is easily seen that equation (3)

has solutions for k = 1; for example,
(3, 3, 3). Hurwitz and Frobenius
analyzed equation (3) and proved

that it has solutions only for k = 3
and k = 1. This result can be ob-
tained by elementary means.

First, consider the case k = 1. It
turns out that the search for solu-
tions in this case reduces to solving
the Markov equation.

Problem 4, Let A, B, and C be
. positive integers. Then the remain-

der upon division of A2 + 82 + Czby
3 equals the number of numbers
among A, B, and C that are not di-
visible by 3 if there are fewer than
three of these; otherwise, the re-
mainder is zero.

Problem 5. Prove that all of the
solutions to the equation

*+Y+4=xyz (s)

are given by the formulas

A=3a,8=3b,C:3c,
where (a, b, cl is an arbitrary solu-
tion to the Markov ecluation

**y2+?=3xyz. (6)

Now let's turn to the case k : 2.
Problem 6. Let A, B, and C be

positive integers. Prove that the re-
mainder upon division of A2 + 82 +
C'by 4 equals the number of odd
numbers among A, B, and C.

Problem T.Prove that equation (3)

has no solutions for k = 2.
Theorem. Equation (3) has a non-

zerc solution onJy for k = | and k = 3.

Proof. For k : 1 the solutions are
obtained as described in Problem 5.
For k = 2, equation (3) has no solu-
tions, as was proved in Problem 7.

Consider the case k > 3.
Suppose that equation (3) has a

solution (a, b, cl for a certain k > 3.
We prove that its coordinates a, b,
and c must be pairwise distinct. For
example, Iet b : c. Then a2 : kab2 -
262 : lka - 2)b2; thus, a : bd, where
d is an integer. Therefore, we have
b2d2 : lkbd -21b2, d2 = kbd -2, and
2: d(kb - d). Thus 2 is divisible by
d, andtherefore d = 1 or d : 2.In
both cases, kb = 3, which contra-
dicts the condition k > 3.

Thus, for k > 3, any solution to
equation (3) has pairwise distinct
coordinates. Without loss of gener-
ality, we may assume that a > b > c.

Using the quadratic trinomial

P(xl:*+b2+c2-kxbc,
we can find for the solution la, b, cl
an adjacent solution (a', b, cl with
respect to the coordinate a. Since

Plb):2b2 + c2 -kb2c <3b2 -kb2c
<3b2 -kb2 <0,

we see that b lies between the roots
a artd a'of the polynomial (x); that
is, a > b > a'. Therefore, the maxi-
mum coordinate of the solution (a',
b, cl is less than that of the solution
(a, b, cl. Thus, for every solution (a,

b, c), we can find a solution lot,br,
cr) with a smaller maximum coor-
dinate. This construction can be re-
peated to obtain a solution (or,br,
cr) with a still smaller maximum
coordinate. Since the coordinates of
every solution are pairwise distinct,
this process can be repeated infi-
nitely to obtain an infinite se-
quence of solutions to equation (3)

with a decreasing maximum coor-
dinate. However, this is impossible,
since the coordinates are positive
integers. Thus the theorem is
proved.

Corollary. For any solution (a, b, c)

to the Markov equation, the numb er s

a, b, and c are pairwise relatively
prime.

Proof. Suppose that a and b have
a common divisor d > l.By virtue of
equation (I), d is also a divisor of c.
Therefore, there exist numbers X Y,

and Z such that a = dX, b = dY, and
c : dZ. By virtue of (1), we have X2
+ Y2 + Zz : 3dXYZ. which contra-
dicts the theorem iust proved.

The following equation is a
straightforw ard generultzation of the
Markov equation for the case of n
variables (n > 3l:

*, * 4* ... * *t: nxrxr...xn l7l

It is easy to see that some of the
above propositions can be generalized
for this case (there exists a singular
solutionx, = l, xz= L, ...,Xn= l;for arry
solution, there exist adjacent solu-
tions, and so on). However, I don't
know of any place where a complete
theory of equation (7) has been elabo-
rated. The construction of such a
theory could be a subject for a small
independent research project. O
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1 2 -1 5 6 7 10 ll t2 13

t1 15 16

t1 18 l9

20 2t 22 23 4

25 26 2l 28 29

30 31 32 33 34 35

36 37 38

39 40 1 42 43

14 15 46 11 48

+9 50 51

52 53 54

55 .56 57 58 i9 5i) 61

62 53 64 5 66 6'7

68 69 10

71 "72 73

ACR0SS

I Shoo

5 Drenchcs
10 1936 medicine

Nobeirst Sir Henry

l+ nteloal'
15 Burgr-rndr. grapc

16 Indir-ul arsenide

i 7 Heart graphs

18 Acluatrc plant
19 Ova

20 Planet 9

22 Arm bone

221 Employ
25 Arch platc
28 

- 
de mcr

30 Bibie book: abbr.

32 Concert hal1s

33 Crowing in pairs

36 Patriotic group:

abbr.

37 Olfactory scnsation
38 County near Belfast

39 Pollster _ Roper
(1900-19711

41 A1loy used in
watchcs

xGt'0$$$GtBllGg

43 Swcdish botanist

_ Afzelius {1750-
1 837)

44 Orbitai extremum
46 Zets' shicld ia1t.

sp.)

'18 Anger
49 Kaph followers
50 White: comb. form
51 Sr,r,iss river
51.3818 qin base 16)

53 Eler-r-rer-rt (r7

i5 Trig. iunctior.r

.i7 Onde de _
59 Drstance tir-ne

62 Invcrtebrate l-iair
(r4 Nir.nble
(r7 Type oi engrne
(rB Caked deposit

69 Despiser
70 Element l0
71 

- 
black (carbon

pigment)

72 Two dimension:rl
qu:1ntulTl particle

73 1948 Chemistry
Nobelist _
Tiselius

OOll1lllj

I _-clown trans-

former
2 Cupror-rs chloridc
3 lor

4 Secd coat

5 Health resort
6 Mixturc of hydrocar-

bons
7a
il Australian tree-

clweller
9 British gun

10 Threacling device

11 Astronorler's
lrcilsurement

12 Trails
13 Exist iin Francc)

21 Ntelville opus

23 60 Coulombs: abbr.
2(r Murphy and Van

Halcn
27 Ponce de _
29 Pilaster at the end

of a wal1

30 Type of gas

31 Occanic tunicate
33 Element 56

by David R. Martin

34 Pope's crown
.35 Type of whc:rt
,10 Molding shapc
zl2 Gebang pahn fiber
45 60,844 {in base 16)

47 Winter sport

equipment
53 Golfer Ben

54 "Once tirle ..."
55 Cesium chloride

56 10r2: pref.

58 L:rugh sound

60 Engllsh college
(r1 Finished
63 Glycolysis chemi-

cal: abbr.

65 Physicist _ Szilard
66 Sca eagle

SOLUTION IN THE
NEXT ISSUE

4'
a?E-c5

SOLUTIAN TO THE NOVEMBER/DECEMBER
PUZZLE

M A Y o E u A S S P A a

o I L A C E N E E A S T

S U P E R P L A S T I U I T Y

S E e A R N A R Y

U IV B R A S M A R T I N

R E Y E R A M E N T M o L

E T T A D D E E E A E

A R E L o D A R S A G A N

E e C A P E S T R E S S

T
ILl A M E A L E M S D

S U P E R S A T U R A T I o N

N A S T T I T L E C A T A

o R E S P R o A A L E S

IUAI'ITUlltl/CRISSCR0SS SCltllCE 45

A D T E E N

Ao S A R T o M



tUlalh

M281
The ratios of the distances trav-

eled by the professor and her assis-
tarLt at each encounter (or in any
interval of time) is constant, and is
equal to the ratio of their rates of
walking. We can use this relation-
ship to solve this problem. But what
distances have they traveled at each
encounter? They must meet "head-
ort" at the first encounter. But ana-
lyztng,the second encounter is more
complicated.

Let S be the distance between the
two houses. We can distinguish
three cases.

(a) At the time of the second en-
counter/ each had traveled the entire
route once and had started back. The
ratios we mentioned give

55 S+85
s-55 = 25-g5'

Now the proportion alb : cld is
equivalent to the proportion af (a + bl
: cl{c + d) (the reader can verify this,
for example, by looking at the cross
products). Applied to the present
case, this means that we have
55/S : (S + 85)/35, or 155 : S + 85.
But then S : 80, and the second en-
counter could not have occurred
85 m. from the assistant's house.
This case is not possible.

(b) The professor reaches the
assistant's house and turns back,
overtaking the assistant before he
reaches her house. In this case the
proportion gives

55 _ S+85.
s-55 85

ANSWERS,
HINTS &

SOLUTIONS

This leads to arather complicated
quadratic equation.

However, we can also reason as

follows. In this case, while the assis-
tant walks 85 m, the professor walks
twice that distance plus a bit more.
So her speed must have been more
than twice that of the assistant, and
the distance traveled by the assis-
tarrt at the time of the first encoun-
ter would have been less than half of
the distance traveled by the profes-
sor; that is, less tt.ar. 5512 = 27.5 m.
Then the distance between their
houses would be less than 55 + 27.5
: 82.5 < 85 m, and this case is also
not possible.

The same conclusion would have
been reachedby solving the compli-
cated quadratic equation.

(c) The assistant reaches the
pro{essor's house and turns back,
overtaking the professor before she
reaches his house. In this case the
proportion gives

55 S-85
s- 55 25-85

Again, we use equivalent propor-
tions. The reader is invited to check
that alb : cld is equivalent to alb :
(c - zallld - zbl.It follows that each
of the fractions in our proportion is
equal to lS - 1951125. Therefore, by
the time the assistant had traveled
25 m, the professor had traveled S -
95 m, and w as at a distance of 195 m
from the assistant's house. Thus the
distance between the two stands is
195 - 25 : 170 m.

M282
We take the base-2logarithm of

each member of the equation to be
solved:

xlog2, = -12'

Let us write a possible solution in
the form

I _
2*

Then the above equation be-
comes

Z__.(_m):_2_r,

which simplifies to

m:zm-l'
Some astute guessing shows that

this last equation has two roots: ml
: 1 and mz: Z.The respective val-
ues of x are xL = ll2 and xr: ll4.

Using some calculus/ we can now
prove that this original equation
cannot have more than two roots.
We can write the original equation
in the form x . lnx : a, where a =

-lll2) 1n2. Assume that the func-
tion y = x .lnx takes some value a at
three different points. Then its de-
rivative, y' : I + lnx, must vanish at
at least two points, which is impos-
sible. Thus the number of roots can-
not be more than two, and we have
found all the solutions.

Answer: xr: I12 andxr: lf 4.

M2B3
Figure I shows curves y : sin x,

x = sin y, and y : x. On these
curves/ points A(xo, sin xo) , B(xo, xsl,
C{sin xo, xo), and D(xo, arcsin xo) are
marked. It is clear that poihts C and
D lie on the same curve y = arcsin x.
and that curves OA and OC are
symmetric about the bisector OB ol
the angle between the axes. Now
the derivative oI y = sin x (curve OA)
is y' : cos x < 1. Hence the slope of
OA cannot exceed I at any point. It
follows that the slope of curve OC
(which is symmetricto OA with re-
spect to line OB) cannot be less than

4 I J[iltlIRY/tEBRUARY 2ooo



0U sinxo xo 1 x

Figure 1

I at any point. Therefore the slope of
the segment CD is greater than 45".
ConsequentLy, BD > BC and BD -
AB = BD - BC is positive. Thus we
have

sin xo + arcsin xo = EA + ED
: (EB - ABI + (EB + BDI

:zEB + (BD - ABI > zEB :2*0.

M284
Consider two cases (figure 2).

(i ) Pairs of tangents that are sym-
metric about perpendicular OC
(where C is the midpoint of AB)will
intersect on this perpendicular lhy
symmetry). Conversely, for any
point of the line OC not on diameter
DE, one can draw apair of tangents

that meet line AB at points P and Q
such that PA : QB. Thus a part of
the desired locus consists of those
points of the perpendicular OC
which lie outside the circle. If AB is
a diameter, this is the entire locus.

2) Consider an asymmetric pair of
tangents LQM and PKM. We will
show that the line connecting their
points of tangency passes through C.
Indeed, connect O with P and Q, and
draw radii to the points of tangency.
We obtain a pair of congruent tri-
angles POK and QOL (ZPKO =
ZQLO :90", OK = OL, and PO :
QO). Since ZOKP: ZOCP:90",
points P, O, C, and K lie on the same
circle with diameter PO. Therefore,
IPCK : ZPOK. Similarly, points I,
O, C, and Q lie on the circle with di-
ameter OQ, so ZLCQ : ZLOQ.
Thus ILCQ = ZPCK, and points K,
L, and C lie on the same line. This
proves that arly chord that connects
the points of tangency passes
through the midpoint of chord AB.

Next we drop a perpendicular
MN onto the extension of OC.
Since MO subtends right angles at
N, K, and I, all the points M, N, K,
O, and I lie on the circle with di-
ameter OM. Drawing this circle, we
see that ZKNO: IOKL, since they
are subtended by equal chords OI
: OK. Thus triangles OCK and
OKN are similar. It follows that
ON : OK2|OC, a ratio which does
not depend on the position of points
P and Q. Thus for any pair of points

P and Q, segment ONis of constant
length, and the desired part of the
locus is a line parallel to AB.In
more advanced work, this line is
called the polu line of point C.

Second solution. The line ob-
tained in item (2) canbe obtained in
another way. Notice that POQM is
an inscribed cluadrilateral, since
ZOPM + ZOQM: IOQL + ZOQM
: 180'. Therefore IOMP: IOQP:
ZOPC and LOMN : ZOMP +

ZPMN = ZOPC + IQPM: IOPK.
These equalities imply the similar-
ity of the following pairs of triangles:
OMK and OPC, and OMN and
OPK. Therefore, OKf OM = OCIOP
and ON I OM : OKI OP.Dividing the
second equality by the first, we have
ONIOK = OKIOC. Thus we have
once more ON : OK2lOC, which
again does not depend on the posi-
tions of P and Q.

Answer: A line paralle1 to AB,
plus the part of line OC lying out-
side the circle (where O is the cen-
ter of the circle and C is the mid-
point of chud ABl.

M2B5
Since D is the midpoint of BC, it

follows that Su*o= Sorwcand Sor, =
Sr"r. Hence we have

Srroc= Sstto + Sprc

: S"*, * Spos : Sepmc.

Now we recail the theorem that
the area of a cluadrilateral (convex or
non-convex) is given by half the
product of its diagonals and the sine
of the angle they form. Thus

s-..- : c - - = !srv.CPsina."BMPC-"armc- 2

Let us set ZABC :28, ZACB :2y,
and zPDC: Q. Using'the law of
sines in triangle BMD, we find that

BM BM al2
sinZBDP sinQ sinZBMD'

OI

BM = o")'q
2sin(d - 2B)

Similarly, from the law of sines in
triangle PCD, wehaveFigure 2
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Figure 3

CP: ,'i,Q
zsin(q +2y)

Substituting these expressions in
the formula for the area of quadrilat-
eral BMPC, we obtain:

Srrr" a2 sin2 q
(-)

ssin(Q - 2B)sin(Q +2y)

Furthermore, {rom the formula for
the sine of the sum of two angles, we
have

sm(o - zB)

--# = cos20-sin2B cot Q {t)srn d)

and

sin(<tr + 2v)----\r -rl =sin2y.cot 0+ cos2y. (21
sin d

We must now express cot O in
terms of B and y. In figure 3, l is the
center of the circle inscribed in tri-
angle ABC, x is the projection of ID
onto BC, and r is the radius of the
inscribed circle. Without loss of gen-
erality, we assume that B < y. We
have:

LI +x
cotp=2 , coty=

f

x
/ cotQ=-

T

Now we subtract thc second
equation from the first to obtain

2cotQ=cotB-coty. (3)

We use tltesc rclations to tran5-
{orm equations ll) and (2).

We obtain:

sm(o - zB) ' 1D 'n 2B.coto
a"a ,h - LL'5 zP - 11

=sin [3((cot- u l) cotp(crrt[i-coty)J

= sin2 F(cot0 coty - 1)

_ sing(co-F cosT-sinD siny)

sin Y

sinB ^ :inB u
- 'Clrltj-',, l= '5111-

sin'7 sin 7 )

Sirnilarly,

sirrllT-o) 
= 

srrrTrirrq 
r),1

:tno sinB 2 \'

Substituting (1') and (2') for the
corresponding expressions in (- ), we
find thar thc dcsircd arca is

P281
Let the ballfly through the hole

with a velocity v in the reference
frame in which the sphere was at

Physius

rest before the first collision. Evi-
dently, all subsequent motion will
take place on the plane in which the
center of the sphere and the vector
v lie.

Since the masses of the ball and
sphere are equal, the center of mass
(CM) of the system will move with
velocity vlZ along the straight line
that lies in the same plane at the
distance Rl4 [rom the center of the
sphere. Since no external force acts
on the system/ the motion of the
CM will not change regardless of
any collisions occurring inside the
sphere.

From the statement of the prob-
lem, the collisions are perfectly eias-
tic, and the interior surface of the
sphere is smooth. Therefore, at a

point of collision the tangential
component of the ball's velocity re-
mains constant, while the normal
component changes sign after each
impact. Therefore, a collision
doesn't affect the magnitude of the
ball's velocity relative to the sphere
(it remains always equal to vl, and
the angles of incidence and reflec-
tion are equa1. The ball's trajectory
relative to the sphere follows an in-
scribed equilateral triangle with a

side equal to .,[Salthe red triangle in
figure 4). The period between two
successive collisions ls "'6R/v.

The CM of the system moves
relative to the sphere with one-half
the velocity, and its trajectory is also
an equiiateral triangle,I:ut the
length of its sides is only "l ZA 1Z 1tt're
black triangle in figure 4).

Consider a uniformly moving ref-
erence frame in which the CM is at
rest instead of the sphere. In this
new reference frame the velocity of
the ball and the center of the sphere
are equal in magnitude (both are
equal to vfZ), and the motion takes
place along the trajectories shown
by the corresponding colors in fig-
ures 5 and 6.

Finally, we should return to the
initial reference trarrte, in which the
sphere was at rest before the first
collision. In this frame the ball ini-
tially moves with velocity v, and the
CM moves with a constant velocity
v 12 (figure 7). To perform this trans-

a
--x2

I

tlu_cot_
42

7,4, "'

Figure 6

Figure 4

Figure 5

Figure 7
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formation, we must add a vector v/2
to all the velocity vectors drawn in
figures 5 and 6. We find that before
the first collision (or after the virtual
" zeroth" collision and then after the
3"1, 6th,... 3nth collisions) the bail
lnoves with a speed v which is di-
rected parallel to the velocity (and
trajectory) of the CM. During the
time until the next collision the ball
travels a rlistancc ',iR, while the
sphere cloes not move at all.

After the first (and 4'h, 7th, ...
(3n+1)") collision the velocity of the
ball is directed at an anglc of (-n/3)
to the CM velocity. Its speed is eclual
to vl2. Until the second collision thc
ball travels a distancc of 

' 3R 72.
Corrcspondingly, the velocity of the
sphere is directed at an angle oi r.l6
to the same vector, irnd its speed is
r3vl2. On this leg the sphere trar,-
els a distance 3Ril..

After the seconcl land 5tl', Sth, ...
(31 + 21"d1 collision the ball's veloc-
ity is clirected at an angle of rl3 to
the velocitl' of the CM. Both vectors
have the same speecl, ec1ua1 to vl2.
The distance rrar-e1ed b1. the ball is
the same as beiore, that is, \ 3R/2.
The inclination oi the r-e1ocit1- of the
sphere on this 1eg rs -;i (r, and the
speed and distance trar-eled are
t3vl2 and 3R12, respectn-e1r-.

Subsequently the proce.r 1s rc-
peated: the sphere is at rest benr een
the third and the fourth collisions,
while the ball is again moving r^,'rth
velocity v, and so on.

P2B2
The well-known spherical shape

o{ a soap bubble results from surface
tensicln. Indeed, if the potential en-
ergy of the soap film in the gravita-
tional field is negligible in compari-

son with its surface energy (this is
correct for a thin fihn), the observed
geometry of a soap bubble is deter-
rnined by the surface energy alone.
Since the volume of air trapped in-
side the bubble is constant, the
bubble should have the minimal
surface area for a constant volume,
that is, it must be a ball. Therefore,
in equilibrium the soap film forms
a spherical surface.

Let's mentally divide the spheri-
ca1 shell into two equal halves and
consider one of them (figure 8). Our
aim is to forrnr-rlate ecluilibrium con-
ditions for the cxternal and internal
spherical surfaces of the upper hemi-
sphere.

The external spherical surfacc of
radrus R is affectecl by the down-
r,r,ard force of the external pressure
F, =.PonRllcalcr.tlate rt on your
own), the downward force of sur-
face tension F.t = o . ZnR, and the
counterberlancing upward force clf
the compressed licluid (the curved
liquid film) F, = PrrR).In equilib-
rlum/

F,+Fr-F,:0,

OI

PrnR2 +ZnRo=PrnRz,

rr,hich gives us the pressure inside
the iilm:

ZoP:: Po -P 
'

Thc- internal spherical surface (of
radius R - Jrl is affected by the down-
rvard iorce oi the compressed liquid
Fr = P. n1R - } )1, the downward force
of suriace tension F. = o . 2nlR - 1t),

and the upruarcl force of air pressure
inside the bubble F,.: Prn\R - h)).
The equilibnurn condition {or the
intcrnal hernrsphere is

F_- F-_ - F,,:0,

which gives us the air pressure in-
side the bubble:

D -D , 2o
11 

- 
l^ T- R-h'

or

- (r I )P,=Pn+2ol:+ ' 
I(R R-h )'

P2B3
Since the capacitors are con-

nected in series, the charges on them
are equal before the switch is closed:

C,C"
ct:-(..' cr+ c,

After the switch was closed, the
voltage across each capacitor be-
comes tr,f2, so their charges are

lt
e,=)C,g and 4,,_ - n *

'J. ,"'u'

Therefore, the following charges
flow in the indicated directions
through the cross sections I-I and
II-II:

C,(C, _C"\
Ot:O -O- :' '*

2(C, + Cz)

:-2.4. I0 s C

and

c" (c, - c"')
4z=4-Q = *lL z(Cr+Cr) a)

: -3.6. 10-s C.

The total charge on the intercon-
nected plates of the capacitors was
zero before the switch was closed,
while after the closing it becomes
q" - q'. Clearly this charge flows
through the cross section Itr-III, that
is

1

43=e,,-q,=i(Cz-Cr)Z),'
=6.10-5C.

P284
When the leads are connected in

one of the possible ways, the voltage
across the capacitor will always re-
main zero. In that case the current
in the left part of the circuit is zero,
and al1the current flows through the
right coi1. Therefore, the lamp will
become dim monotonically as the
frequency of the alternating currentFigure B
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Figure 9

rises, because the inductive imped-
ance of a coil is proportional to the
frequency.

If we interchange the leads of ei-
ther coil, the voltages across the
coils remain the same, but now they
add instead of subtract. We analyze
the resulting two-pole circuit in the
following way (figure 9). We apply
an ac voltage V(t) : Vo cos alt to its
poles and determine the current sup-
plied by the source. The voltage drop
across one of the coils equals the
voltage of the source. Since the mag-
netic fluxes threading both coils are
identical, the voltage drop across the
second coil will also be equal to the
source voltage. Therefore, twice the
voltage is applied to the capacrtor,
and the cuffent Ir= -ZVoaC sin rrrt.

The field threading the turns of each
coil is determined by the difference
of their currents (this follows from
the directions chosen for the cur-
rents in figure 9):

LlIt' - I2') = Vo cos ot.

Integration of this differential equa-
tion yields

I, -r, -Erirrr.
(r)L

The total current is

Ir+1, = (1, - Ir)+21,
(t \

=Vol -; -4aC lsinort,"\r,ll )
and the impedance assumes

l- 4a2LC

Such a dependence of the imped-
ance Z on the frequency is charac-
teristic of a parallel circuit with a
coil of inductance L and a capacitor

of capacitance 4C. Evidently, at low
frequencies the two-terminal net-
work behaves like a coil, while at
higher frequencies it looks like a
capacitor. At the resonance fre-
quency a,= lf (z^ltC) the imped-
ance of the twd-terminal network
assumes very high values. There-
fore, the lamp is very dim. At higher
frequencies the lamp will increase
in brightness.

P285
Denote by OC the line connect-

ing the eye with the center of the
tube. Point A is the end point of the
inner diameter of the tube (figure
10). The distance from the virtual
image of point A to axis OC equals
the apparent radius r of the inner
channel.

One of the laws of geometrical
optics states that all the rays di-
verging from point A at small
angles will travel a{ter refraction in
such a way that they appear to
come from a virtual point source
A*. Since we are not interested in
the exact position of this point, but
only in its distance from OC, it
will be sufficient to consider the
trajectory of only one rayl ABD,
which travels parallel to OC a{ter
emerging from the tube. Indeed,
the virtual image of point A will
lie somewhere on the extension of
this ray (figure 10).

The distance between the rays
BD and OC is r, and the distance
we are iooking for is AO : ro. Since
the outer diameter of the tube is
much greatr'x than its inner diam-
eter, the angle of incidence u will
be smali. From triangle OEB we
obtain r : Ro"n (R is the outer di-
ameter of the tube), and from tri-

angle OAB we obtain zo: Ro. Thus
ro= rf n.

Bl'ainlna$Br'$

8281
The minimum possible number

of operations is 3. For example, we
can turn glasses L, 2, 3, 4, and5 first;
then turn glasses l, 2, 3, 6, and 7;

and, finally/ turn glasses I,2, 3, 8,
and 9. Two moves cannot be
enough, because if only two moYes
are made, some glass must be turned
exactly twice, and so will not re-
main upside down.

B282
It is impossible to turn 9 glasses

by turning 6 glasses at a time. In-
deed, every glass must be turned an
odd number of times. Since there are
9 glasses, the total number of opera-
tions must be odd. On the other
hand, if we turn an even number of
glasses each time (6), the total num-
ber of operations is also even. This
contradiction proves our assertion.

8283
This number is divisible by 3,

but not by 9 (since the sum of its
digits is divisibie by 3, but not by 9).
Therefore it cannot be a perfect
square.

8284
One possible construction is il-

lustrated in figures 11 and 12. In the
first case (fig. 11), we draw two arbi-
trary circles centered on the given
line and passing through point A and
find the second point of intersection
of these circles (A'). Line AA' is the

1

I' 
-4aCaL

aL
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decay. They carry away part of the
energy/ the amount being widely
variable.

11. Even in the first transuranic
elements the Coulomb repulsion of
the constituent protons leads to in-
stability of the nuclei.

12. The energy imparted to an
atom in a collision with a neutron is
higher for lighter atoms.

13. No. The missing mass is car-
ried away by gamma rays emitted
during the formation of the
nucleus.

Microexperiment
The valence electrons in metals

are easily transferred to an excited
state by absorbing thermal energy.
By the same token, they arc ready to
return to the ground state, giving up
the extra energy in the form of pho-
tons (light). In glass, however, all
the electrons are tightly bound to
the nuclei of the atoms, and it is
therefore very difficult to change
their energy state. Much highei
temperatures are needed to obtain
visible luminescence of a glass. 0

Figure 12

desired perpendicular. In the second
case (fig. l2l, we draw an arbitrary
circle whose center lies off the given
line and which passes through point
A; the other point of intersection of
this circle with the given line is a
point B. Then we draw the fiameter
BC. Line AC is the desired perpen-
dicular.

8285
Snow is ayery poor conductor of

heat, and its specific heat of fusion
is very large. It therefore melts
very slowly and can last for a long
time at temperatures not much
above 0 "C.

l(aleidu$cope
1. Three.
2. When an excited atom emits a

photon, its potential energy de-
CICASCS.

3. No.
4. Alpha particles:

'is*1p:B[He
5. The charge of a nucleus deter-

mines the chemical properties of the
atom. For example, the nuclear
charge is not changed during gamma
emission.

6. When the period of observation
is small compared to the half-life of
the radioactive substance.

7. Three half-lives.
8. The energy of a nucleus can as-

sume only discrete values.
9. The energy of an alpha particle

is not sufficient to overcome the re-
pulsion force of a heavy nucleus,
which carries a large electric
charge.

10. In addition to electrons, neu-
trinos are also emitted during beta

CONTINUED FROM PAGE 27

that is, xo:649, yo: 180. The gen-
eral solution is

x + ynEi = (e+l+ r 80 r[ 3)r .

Problem 14. Find the least solu-
tion to the equation

*-6LJ?:r.
Answer: yo = 226,I53,980.
Note that the name of the English

mathematician |. Pell (1610-1685)
was related to equation (5) as aresult
of an error on Euler's part. Before
Pell, this equation was studied by
his compatriots |. Wallis aild W.
Brouncker, and by the French math-
ematician P. Fermat. As to the
Archimedes cattle problem, it was
solved only in 1880. The least solu-
tion to equation (*) contains 41 dig-
its, and the total number of cattle is
an astonishingly large number, on
the order of 10206,545.

Tllee[uartion 12+y2=p
It can be proved that if p is an odd

prime of the form 4k + l, then the
period of the continued fraction for

^lp 
is odd.It follows from prob. 13

that the expansion is

i i =1n,,4ml
Denote by a^*, the number hav-

ing the following continued fraction
expansion:

Um * I : [a*, a"r-r 
- 

a1,2au ar, -- , a*].

Since this fraction is purely peri-
odic, clc- * , is a reduced number, and
by virtue of prob. 10

A* 
^E0m*1:

where A > O and B > 0. It follows
from the assertion of problem 12
that -If a'**, has the same contin-
ued fraction expansion as cr- * r. It
follows from the uniqueness of the
continued fraction that

1

U-*l= - 
";,

in other words, 0-. I d'* * r: -I.

, A-,P
CI !=4.ilt + I

b

then

A' 
=P =-r

82

orA2+B'=p.
This reasoning gives an algorithm

for finding the integer solution to
the equation

**f=p. (el

It can be proved that such a solu-
tion is unique (up to the interchange
of x and y) and that equation (9) has
no integu solutions for primes p of
the form 4k + 3.

Example 5. Find the integer solu-
tion to the equation

* *f:1009.
The continued fraction expansion

of "u/ioo9 is

.Jtooq :pt,l" 4 s, lu a1.
Therefore,

3r + \[r009 l7+ Ji00e*, : +B ,d)= 4g ,
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28 +.'ri009
03=

15

Thus, the pair of numbers x = 28,
y = 15 is the desired solution. This
method of solving equation (9) was
invented by the French mathemati-
cian Legendre (1808).

Problem 15. Find the integer solu-
tion to the equation

**f:LLzg.

Ihe equation )t2 - hyz =-1
Ii the period, n + l, of a continued

fraction representing uD is odd,
then equation (8) implies that the
numbers

xg: pn, yo= e"

are solutions to the Diophantine
equation

* - DJP : -1. (10)

All solutions to this equation can
be obtained from the formula

x + y{D = (*, * vo^lD12k*1 ,

k = 0,1,2, ... .

For example, the solutions to

*-tss?:-t
are given by the formula

x + y,,l't e= (ta + 5^,'i3)'o*',

k :0, 1,2, ... .

It can be proved that if the period
of the continued fraction expansion
of 

^tD 
is even, then equation (10)

has no integer solutions.

tenUth olfie pel'iod ol

I[e continued lractim ol r 0

The speed of the algorithms de-
scribed above depends on the length
of the period of the continued frac-
tion of JD . Howevert Yery little is
known about this dependence. The
period length is very peculiar. For
example, for D = 985,045 : 519999L,
the expansion

has a period of length 6. However,
the period length of the expansion of

nDo lsl is zos.

It is known that for all D, the pe-
riod length doesn't exceed

+"lolno.
On the other hand, it can be

proved that numbers D : 52k t I |rrr"
periods not less than

I

],D1r" o;'' .
J

Thus the period increases rapidly
with k. A vast amount of numerical
material supports the hypothesis
that there exist infinitely many
numbers D which are not divisible
by the square o{ any integer and for
which the period length of the
continued fraction for 

^l 
D is greater

16^rylt'12-e for any fixed positive e.

The fact that the period of the
continued fraction o{ ,E is odd for
primesp of the form 4k + 1 was proved
by Legendre in 1785. Later, the
German mathematician Dirichlet
proved a similar theorem for D : p .

q, where p and 4 are primes satisfying
certain conditions. Only quite re-
cently, in 1980, the American math-
ematician Lagarias found an algo-
rithm for determining whether
equation (10) has integer solutions or
not (or, equivalently, whether the pe-

riod of the continued fraction of "lD
is odd) in about (1og D)s.'operations.

Continued fractions lon

pal'ticulal' llulnh8rs

We already know that quadratic
surds and only quadratic surds have
expansions in periodic continued
fractions. Thus, the structure of the
continued fractions of quadratic
surds is rather well defined. It is
natural to wonder what other
classes of surds have well-structured
expansions in continued fractions.
However, we don't have a satisfac-
tory answer. For example, it is not
yet known whether the partial quo-
tients ag, a1, a2, ... , ak,... of thecon-
tinued fraciion expansion of Qli,

ilrl
tl1 -. I I 

' Lr,tL _uo_ 
lor_ lor_... 

,

are bounded or not.
Several thousand of the first num-

bers ao, art ... wete calculated by

computer. Here is the beginning of
the sequence:

\D :lt, B, r, s, r, r, 4, r, L, B, r, 14,
r, 10,2, l, 4, 12,2,3,2, l, 3, 4, l, l,
2, 14,3, 12, l, 15,3, l, 4, 534, l, l,
5, l, r, lzl,1,2,2,4,10,3,2,2,41,
l, l, l, 3, 7,2,2, 9, 4, r, 3, 7 , 6, l, r,
2, 9, 2, 3, 3, l, l, 59, l, 12, ...1.

It is seen from this expansion that
the sequence ao, a1t ... behaves like
a bounded sequence/ and only iso-
lated overshoots (for example, 534 or
121) disturb the picture.

Moreover, sufficient information
about the continued fraction expan-
sion does not exist for even one a1-

gebraic number that is not a qua-
dratic surd (an algebraic number is
one that is a root of a polynomial
with integer coefficients).

Of particular interest are the con-
tinued fraction expansions of certain
classical constants. There are very
few of these for which the continued
fraction expansion is known.

L. Euler found the following con-
tinued fraction expansion for e

ilIlille=2+ir.lr*i,*1,*F* (1r)

where the partial quotients as1 a1t ...
are given by the formula

aO=2, at= l, a2=2, a3= l, a+: l,
a5= 4' "''

aB^ = aB*_2: l, ar^_, : 2m,
lm: 1,2, ..,).

Recall that

: 2.7 t828r828459045...

Although not elementary, the
derivation of formula (1 1) is not dif-
ficult. A similar " good" e4pansion
of n in a continued fraction is not
known.

In this article, we have discussed
only a small fraction of the problems
in which continued fractions are use-
ful. They have a very wide range of
applications, especially if functions
defined by continued fractions are
considered. This is a very rich and
complex branch of mathematics that
is still {ar from being completed. 0

e=r*n(r*1.]" = i t
n--[ n ) -kl- (:Ll
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INFORMATICS

Canlor Chee$E

by Don

ELCOME TO A NEW COLUMN THAT VTTILL
explore problems in Informatics-the science of
applying computer algorithms to model and
manage the world we live in. Informatics is a

term commonly used in Europe to represent what is
called Computer Science in the United States. However,
Informatics is actually a broader term that has been
adopted by fields outside of computer science. Many ar-
eas of science are now using computer algorithms to
model and manage their world. Bioinformatics is an ex-
cellent example. It refers to the fast growing area in mo-
lecular biology of using computers to build models of
molecules and to write computer programs for high
speed genomic mapping and sequencing.

One of the goals of this column is to seek out and
present interesting computer algorithms that are simple
to understand and write. Another goal is to get young
readers hooked on programming as a problem solving
tool of the 2lst Century. Being able to develop algo-
rithms is similar to being able to construct good math-
ematical proofs. Both skills recluire the ability to take a
set of givens/ sequence together small logical steps, and
end up with the desired goal. The best way to leam both
programming and mathematics is to "just do it." Of
course it helps a great deal to be curious about a prob-
lem and want to know what makes it tick. Hopefully,
the problems presented will pique your curiosity.

I will often include graphics, because pictures are fun
to make and inherently interesting. I will be working with
a high level programming tool called Mathematica. This
general purpose computer-programming environment
integrates several features into a unified framework: nu-
merical and symbolic calculations, functional, proce-
dural, rule-based, and graphics programming as well as
animations. With Mathematica, how we think about a
problem and how we code it are reasonably close. Young
people, with no preconceived notion of what a program-
ming language is, should find it natural. At least that's the
outcome I'm shooting for. So let the games begin.

Recul'sion
Recursion is an indispensable tool in Informatics. Its

well-known mathematical cousin is called induction.
Proofs in mathematics by induction require one to prove

Piele

two steps: problemsolved[1], and problemsolved[n] given
you have problemSolved[n - i ]. If you can prove these two
steps, then problemsolved[n] is true for all n. In
informatics, we perform a similar process. We first define
problemSolved[1]. Then, assuming problemsolved[k],
k < n is done, we define problemSolved[n]. Let's look at
a simple example of a recursive definition to see how it
works. Our task is to define SUM[n] recursively as the
sum of the positive integers from 1 to n.

Recursive delinition 0lthe SU[tl olrusitiue inteUers

(* define SUM from 1
Sultll = 1i
(* defiae StM[nl in

and n *)

uptol*)

terms of SIrMln - 1l

SIIMIn-I := SUMIn - 1l + n i
(*compute $nI[100]*)
sI,M[100]
5050
srrM I2551
32640
sI,M[2s5]
$Recursionf,imit: :recfim : Recursion depth

of 256 exceeded.
32895 + HoldlSUMt2 - 1l l
If you try to compute SUM[25 6) rn Mathematica you

will not get an answer, because you have run into the
default recursion limit. This is a service to you in case
you define a recursive function badly and it runs on
indefinitely. This can easily happen, for example, if you
forget to assign a value to SUM[1]. By default,
Mathematicawlllgo back 255 steps in a recursive defi-
nition but not more. You can change the recursion limit
in Mathematica by giving the system variable
$Recursionlimit a new value.

$Recursiont imit = Infinity;
srrM [ 10 001
500500

Many efficiencies can be built into recursive defini-
tions. For example, you can remember what you have
computed so you don't waste time doing it again. (This,
by the way, is the secret behind dynamic program-
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ming-a topic for another column.) Now let's turn to
graphics designs done with recursion.

Becunsiue desiuns

Recently I was reading the book "Computers and the
Imagination," by Clifford A. Pickover, when I came
across an intriguing graphic with the name Cantor
Cheese. Being from Wisconsin, cheese will always catch
my attention. You may recall the famous Cantor set,
describedby Cantor (1845-1918), that is constructedby
taking the unit interval [0, 1] and removing its open
middle third interval(113,2/3). This leaves two smaller
intervals {[0, 1/3], 1213,lll, each one third the length of
the original interval. Continue deleting the middle one
third from these intervals and repeat the process. Let
Cantorfn] be the set of 2n- I closed intervals remaining
after n extractions of the middle one third. The Cantor
set is equal to the Intersection of Cantor[n] for all n.

Cantor Cheese is made in a similar way, beginning
with a unit disk and removing everything except two
interior subdisks. An example is shown in figure 1

where each of the interior subdisks is shrunk in radius
by half. Let's see how this graphic was created using
recursion.

First a bit of housekeeping. The following command
in Mathematica rrrakes sure that circles are drawn cor-
rectly and that we reserve a region in the plane for our
cheese.

SetOptions lGraphics, AspectRatio -->

Automatic, PlotRange -+ ((-1), LlTi
First we need to know how to make a simple disk of

cheese with center lx, yl and radius r. This is done with
the built-in Disk[{x,y} ,r] command that draws a disk
with center lx, yl ard radius r. Hue[0] is the color red.

Figure
CantsorCheese[x-, y-, t_,, 0, shrink-] 3=

{Hue[0], Disk[{x, y}, rl }

The recursive step defines CantorCheese at step n in
terms of the CantorCheese you know how to make at
step fl - 1. The shrink factor is under your control and
should be < l12. You should be curious about why
CantorCheese[x - r12, y, shrink*r, n - l,shrink] and

CantorCheeselx + rf 2, y, shrink*r, n - l,shrink] place the
next disks on the a axes, one to the left and one to the
right. Here is the recursive definition. Examine it care-
fully.

CantorCheeselx-, y-, t_-, n-, shrink-]
s= {{Huel .15 nl, Disk[{x, y}, i!\,
CantorCheeselx - r/2, y, s]rrink*r, rr - 1,
shrinkl, CantorCheesel* + r/2, y,
slrrink*r, n - L, shrinkl )

ShowlGraBhicslCantorCheese[0, 0, L, 5,
.5] I I

GDOOOOY
-U

ffiF\o0o\#
-ry

oonry
Figure 1

Figure 2

Here is CantorCheese being made at stage
shrink factor of ll3.

Show [Graphice lCantorCheese [ 0, 0,
L. /3111

4 with a

L, 4,

J

Siet'pinsfti tt.ialtils
The Sierpinski triangle has a recursive construction

similar to Cantor Cheese. The first graphic below shows
the construction of an equilateral triangle using the
built-in Mathematica command Polygon. Given a list
of points, Polygon builds the polygon that connects
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these points. Now divide up the triangle into four equal
subtriangles and extract the middle one. Continue this
process recursively on the remaining triangles as we did
in the con.struction of Cantor Cheese. The Sierpinski
triangle is the outcome when we set shrink = 1/2.

SetOptions [Graphics, AspectRatio -) Auto-
matsic, PlotRange -+ {0, 1}1,

SierpinskiTrianglelx_, y_, t_, O, shrink_l
3= {Hue[0], Polygonl{{x, y}, {x + r, y}, {x

J'+.5r,y*2r))l);
SierpinskiTriangle Ix_, y_, r_, n*,

shrink_l := {{Hue[ .17 n], Polygonl{{x, y},

{x + r, y}, {x + .5 r, y .* r}}l},
SierpinskiTriangLe[ x, yt s]rrink*r, n -

1, shrinkl ,
SierpinskiTrianglelx + shrink*r, y,

shrink*r, rr - 1, shrink],
SierpinskiTrianglef x + shri-nk*r/2, y +

shrink*f r/2. , shrinJ<*r, rr - 1, shrinkl)
ShowlGraphics ISierpinskiTriang].e [0, O,

L, 5, .5ll]

Figure 4

Here are the stages rn the construcrion oi the
Siepinski triangle.

^'AAAAAfi^^*.#"4

Ihut' lul,n
Now it is your turn to try your hand at building some-

thing recursively. Programming is not a spectator sport/
and to learn anything you must just do it. Try building
the following Cantor-Cheese-like object below by divid-
ing a square into four equal parts and throwing away
two of the squares. Continue the same division with the
subsquares. Here is what the stages should iook like:

Figure 6

ltlle[ pa$s $tlruort
Waiting for two months to see a solution is not nec-

essary today thanks to the Internet. Therefore, all solu-
tions to the problems presented in this column are avail-
able by going to the Informatics web page: http:ll
www.usaco. org/inform atrcs f .

1 000 lnlennational 0lympiad h lmnnnllffi
The eleventh IOI is now history, and I have just re-

turned from the site of this competition in Antalya,
Turkey. USA team members, Daniel Wright from Colo-
rado, Ben Mathews from Texas, Percy Liang from Ari-
zona, andDavid Cheng from Delaware, are back home
after a week-long event held on the shores of the Medi-
terranean. Fortunately, each member of the team man-
aged to score high enough to receive a medal. A total of
257 students from 65 countries competed for 22 gold,
42 silver, and 64bronze medals. Out of 600 points pos-
sible the median score was 135, rather low by previous
IOI standards. Our youngest team members, David and
Percy, who still have a year of eligibility, received
bronze medals. Our retiring seniors, Ben and Daniel,
who are back in their freshman dorms at Cal Tech and
Stanford, received silver medals.

The top score of 480 points went to Hong Chen from
China, for which he received the gold first place trophy.
Second place was shared by Mathijs Vogelzang of the
Netherlands and Roman Pastoukhov of the Russian
Federation. We were fortunate to have had Mathijs join
us at our training camp last summer/ so watching him
receive the first gold medal ever for the Netherlands was
a special treat.Figure 5
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Looking back over the past week, there are many
memorable moments. Here are some of them.

Team Leader Rob Kolstad and I met up in Chicago
with three of,the team members, while Deputy Team
Leader Brian Dean from MIT escorted David Cheng on
a flight from New York. We allmet up in Istanbul and
took a short one-hour flight together to Antalya,
Turkey's principal holiday destination. As soon as we
left the airport, we were met by our'student guide who
escorted us by bus to Sirene City Resort, an impressive
five star vacation tetteat on the sunny shores of the
Mediterranean.

That evening when we entered the outdoor dining
faclhty for the first time, we saw before us an incred-
ible buffet of salads, cheeses, main dishes, meats,
chicken, fish, breads, and then, if you possibly had
any room left, desserts without end. Occasionally at
an IOI, you will hear someone complain about the
food-but not this year.It was clear from our very
first meal that there would be only accolades for the
food at Sirene City. The same wide variety of choices
was available morning/ noon/ and night. Great food
is clearly one of the advantages of holding an IOI at a
five star resort.

Sunday
The opening ceremony was held at the beautiful

Talya Hotel in downtown Antalya on a bluff overlook-
ing the Mediterranean Sea. Professor Namik Kemal Pak,

Director of Tribitak, relayed a message sent by the Presi-
dent of Turkey, Suleyman Demirel. Professor Gokttirk
Ugoluk followed with a brief iourney through the his-
tory of computer science, ending with a string and ball
demonstration of a constant time algorithm for finding
the shortest path between two nodes. Native dancers
performed amal:.rage dance that began with a camel ride
for the bride and a shave for the groom.

A tour of the Antalya Kaleiqi Marina and old city be-
gan near the elegant, fluted minaret of the Yivli
Manareli Mosque built in the 13th century. The day
ended with a look at the ancient Roman statues housed
at the Antalya Museum. The museum is rich with rel-
ics from the Roman andByzantine periods.

That evening, students and team leaders separated.
We were housed in separate quarters in order to en-
sure there would be no contact between the team
leaders and the students once the problem selection
process had begun. The general assembiy began the
question selection process at9:00 p.m. It took longer
than expected, and translations from English into
each native language began in the wee hours of the
next day. Some countries were stil1 translating when
the sun came up the next morning, making for a long
and tiring night.

Yes, the sun did come up each morning, and further-
more, it stayed visible all day. We were in sun bathers'
heaven all week. The vacationers to this area, mostly
Germans, lounged by the two huge outdoor pools or

soaked up the sun on the beach. For as far as the eye

could see, beach umbrellas lined the coast in front of
resort after resort, with people dedicated to one task-
getting baked.

tt|londay
The students were up early, had breakfast, and were

1ed into a huge convention room that was partitioned
off and filled with 300 computers, all networked to-
gether. They spent the next five hours trying to solve
three tough problems by writing programs in Turbo
Pascal or Turbo C/C++. The team leaders were in a com-
pletely separate location and never saw the students in
action. The IOI competition has never been a spectator
sport. Once the clock began, many team leaders headed
off to their rooms or to the pool for some well-deserved
rest.

Iuesday
This was a day of relaxation that began with a visit

to a carpet and jewelry mall. We watched women
making the carpets and were told they can do this iob
for only two to four hours a day because of the inten-
sity of the work. The beautiful silk rugs with the
highest density of knots were truly works of art. We
were led into a large room and seated against the wall,
and then the show began. Our "Master of Rugs" gave

the history of each carpet, and attendants rolled them
out as he snapped his fingers. The smaller rugs were
sent spinning airborne with dramatic flair. Once the
show was over, many salesmen came out of the wood-
work looking for prey. If they spotted a likely buyer,
he or she was invited to a private room where the real
bargaining would begin. Both team leaders, Rob and
Brian, who never dreamed they would come home
with a rug, did. Of course, they each "really got a good

deal."
The rest of the day was spent at Kemer for lunch and

then on to Phaselis on the west coast of Antalya. Here
we toured an impressive site of Roman ruins, walking
under an aqueduct and down a main street of gray-white
marble biocks with bath houses on either side. A visit
to a Roman amphitheater finished the tour, and we
loaded up for a high-speed bus ride back to the hotel. It
appeared that the bus drivers were very eager to be done
for the day, Kim, the team leader from Holland, who
was sitting in front, walked back and annqunced, in
disbelief, "We're going 95 miles per hour." Enroute we
marvelled that we never once had to stop for a red light.
It turned out that we were in a highspeed, police es-

corted, motorcade.

ltlednesday
The second round of competition was arepeat of the

first round. Again, several delegation leaders were up a1i

night making their translations. After the competition
ended, everyone headed {or some R&R beside the pools

or on the sandy beach.
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Thursday
Best described as an antiquities and na-

ture tour/ Thursday began with a short bus
ride to Perge, a beautifully complete Ro-
man city. We learned that Appollonius of
Perge, known as the Great Geometer, in-
troduced the terms Ellipse, Hyperbola, and
Parabola. Next we visited the two beauti-
ful waterfalls at Kursunlu Fal1s. The tour
ended with a visit to the Aspendos Amphi-
theater, one of the largest and best pre-
served theaters of antiquity. It was built
during the rein of Marcus Aurelius (2nd
century BC) and can hold 20,000 people.

We returned to the resort hotel and our
final evening general assembly. First, the
cut off scores for the medals were quickly
decided. Then we began discussing another
recommendation that came from the New
Environments Committee. This was a plan
to create an IOI Scientific Committee (ISC)

that would assist each country's Scientific Committee
in the formulation and review of problems and test data.
It was explained that as the competition advanced in
complexity, we should try to provide a level of conti-
nuity from competition to competition, so that each
country need not start from ground zero. As it was ex-
plained by our team leader Rob, "It is far better to have
cooperation between countries and help raise the level
of all IOI's than to have a competition for the dubious
title of "Best IOI." In this way the last IOI will always
be the "Best IOI," since it will be constantly improving.
The IOI Scientific Committee would provide another
level of review to ensure that the competition problems
and test data are consistently of high cluality. Another
recommendation was to create an IOI software team
(IST). It would be responsible for the creation, mainte-
nance/ and distribution of evaluation software. Both rec-
ommendations were approved by the General Assem-
bly. It was clear to me that the General Assembly was
receptive to new ideas that are needed, well docu-
mented, and properly presented.

tniday
The closing ceremonies were held at the Dedeman

Hotel in Antalya. Those responsible for major portions
of the IOI were given the honor of handing out the
awards. When their names were called, the audience re-
sponded with warm applause to express their thanks for
a job well done. The Deputy Prime Minister of Turkey
was in attendance and helped distribute the gold med-
a1s. Finally, the orange and white IOI flag was handed
over by Gokttirk Ugoluk of Turkey toZtde Du of China.
Zide then invited everyone to come to the 12th IOI in
Beijing, China, September 23-30, 2000.

A finai dinner followed in the dining hall of the ho-
tel overlooking the blue waters of the Mediterranean
Sea. This was my last chance to photograph the teams

Tobias Tltierer ,:r (]ct'nttutt' lcelter) ioins US tettnt mentbers (left to ilght)
Percy Liang, Drir-i,? Clielg, Ben Mnthew,s, Daniel Wrigltt for a nteal.

ancl reiu-r-r leaders togcthcr/ ancl I took advantage of it.
During the rr.eek I had taken well over 250 digital pho-
tographs rrhich I had ioacled onto my laptop. I was plan-
ning to sclc-ct thc bcst and make them available on our
website rr.hen I return.

The r-rert clar- rre f1cu, from Antalya to Istanbul and
then hc:rcled back to the United States. As usual, we
seemccl to har-c bccr-r gone much longer than a week,
since wc had clonc ;rnd seen so much. The 11th IOI was
anothcr fantastic e\Lrr'rience ior stLldents, team leaders,
ancl me. The entrrc Tnrkish org:rnizing cclrlmittee de-
serves ollr most sinccre congratulatrons ior a truly im-
prcssive lzrst IOI oi the mrllcnnrr,rrl.

Finally...

To participate fr-r111' rn thrs colun-rn, r ctu u il1 need tcr

havc access to Mathenttrtrc.r. Rcaclets rrho :rre students
in any school or coilege rl:r.v pnrchase the stutlent edi-
tion of Mathentaticrz-which is a corlpletc \-crqlon-ar
the bargain price of S139. Go to tl-re Woliranr rr-cbsite for
details at http ://www.wolfram. co1-nrproclllcts,'' studentl.

If you are interested in participating rn the USA Com-
puting Olympiad, go to http:// ww\v.usaco.org. To find
solutions to all problems used in this column, go to
http ://www.usaco. org/Inf ormatics/.

Pictures of IOI'99 are available on the IISACO web
site at: http://www.uwp.edu/acadernic/rnathernatrcs/
usaco/ 1 999 I ioi I ioi lhtm.

The complete competition results ancl the qucstions used
at IOI'99 are available at: http://w,w-w.ioi99.org.tr/ O
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lnvestigoti ng Air

What is air made of?

How does air work?

Do humans impact air quality?

How does air quality impact humans?

Do we have a right to clean air?

Investigating Air provides the
investigations and information that lead
students to the answers to these and other
questions. Students use data generated by
researchers, and generate their own data,
in situations analogous to real air quality
issues-increases in atmospheric CO,
acid deposition, ozone issues, and visibil-
ity. This resource culminates in a decision
making investigation that builds on the
science and equity knowledge students
have developed.
(grades 9-12, 1998, 78 pp.)

Produced by the National Science
Teachers Association with support from
the US Environmental Protection Agency.

'lH:i";"ff::,i.m

#PB1 4BX $1s.e5

To order, coll
l-800-722-NSTA

NSTA Pub Soles, 
.l840 

Wilson Blvd.

Arlington , VA 22201-3000
w\ Aru. nsto.orglscistore
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both a teacher and student section.)
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2) Home and Personal Energy Consumption
3) Calculating lndividual Air Intake and

Expenditure & Measuring lndoor Air
Volume and Quality

4) Measuring Air's CO, Content
5) Energy Conversion & the Internal

Combustion Engine
6) Air Quality and the Weather
7) Air Quality, Acid Deposition, and pH
B) Effects of Acid Deposition
9) Visibility
10) Deciding on Public Regulatory Policies
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