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A Boy on a Sled (late 1560s) by Jost Amman

T THE SAME TIME THAT THE BOY DEPICTED

above was sledding down a hill in Germany, a young
Galileo Galilee {1564-1642) may have been sliding
down a slope on the other side of the Alps in Italy. Per-
haps it was during such an outing that Galileo became
interested in the brachistochrone—the trajectory of
most rapid descent from one point to another. Then

again, maybe he was just having fun. Alpine athletes in
general are affected by an overwhelming number of
complex physical forces that are impossible to consider
during their activities. You, however, can look back
from the warmth and comfort of your winter lodge to
consider what these downhill daredevils are up against
by turning to page 20.
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Running landscape. When you look out of the window of a moving
train, it seems that everything outside is moving counter to your direc-
tion of motion. However, the farther an object is away, the more slowly
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The Feuertach theorem

INNER CIRCLES

Exploring the inscribed and escribed circles of triangles

by V. Protasov

N THE FIRST HALF OF THE

previous century, the German

mathematician Karl Wilhelm

Feuerbach proved one of the most
elegant theorems of plane geometry.
This article is devoted to that theo-
rem and related topics.

The nine-point circle

Let ABC be a triangle, and A’ B,
and C” be the midpoints of its sides.
The triangle A’B’C”is called the mid-
point triangle for ABC. The circle y
circumscribed about A’B’C”is called
the Euler circle for triangle ABC. In
what follows, we will say “circle
XYZ,” meaning the circle passing
through three given points X, Y, and
Z. First, we consider a few introduc-
tory propositions. We assume that
the reader is familiar with the Euler
(or nine-point) circle, and with the
concept of homothecy. If you don't
know about these concepts, any
book on advanced Euclidean geom-
etry will fill you in! The notation
used is shown in figure 1.

Exercise 1. Prove that:

(I) the center of the circle circum-
scribed about a triangle lies at the

For example, H. S. M. Coxeter and
S. L. Greitzer: Geometry Revisited,
Mathematical Association of America,
New Mathematical Library, 1967.
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point of intersection of the altitudes
of its midpoint triangle.

(IT) the radius of circle yis half of
that of circle ABC.

(IIT) the centroids (points of in-
tersection of the medians) of tri-
angles ABC and A’B’C’ coincide,
and triangles ABC and A’B’C” are
homothetic with respect to their
common centroid with a coeffi-
cient of -2.

Figure 1

A
Figure 2

(IV) (Euler’s theorem) for any tri-
angle ABC, its orthocenter H, the
center O of circle ABC, and the cen-
troid M lie on a straight line (Euler’s
line), and 20M = MH.

V) the center of the Euler circle of
triangle ABC coincides with the
center of segment OH.

Hint. The perpendicular to seg-
ment A'C’at point B”intersects the
straight line OH at the point O for
which OM/MO’= B'M/MB”'=2/1 so
that B”M = (1/2)B’M.

Similarly, the other perpendicular
bisectors of A’B’C’ pass through
point O,

Why is the Euler circle called the
nine-point circle? The explanation is
given by the following theorem,
which was known to Euler.

Theorem 1. Let v be the Euler
circle of triangle ABC. Then, the fol-
lowing six points lie on this circle in
addition to the midpoints of the
sides: the feet of the triangle’s alti-
tudes and the midpoints of the seg-
ments connecting its vertices with
the orthocenter.

You can prove this theorem by
solving the following exercise.

Exercise 2. Prove that if B is the
foot of the altitude drawn from ver-
tex B, and line B’O”intersects BB at

a point K, then BK = KH = B'O and




Figure 4

B’O’= O (fig. 2] (use Exercise 1,
parts III and IV).

It follows from the result of Exer-
cise 2 that B’K is the diameter of the
Euler circle; that is, points B and K
lie on this circle, which proves the
theorem.

In this article we won’t use the
properties of the nine-point circle
that are proven in Exercises 1 and 2.
However, we recommend that you
complete these exercises in order to
get a better knowledge of the object
whose deeper properties are ana-
lyzed in this article.

The Feuerfach theorem

Recall that the escribed circle of
triangle ABC corresponding to side
AB |or to vertex C) is the circle that
is tangent to AB and to the exten-
sions of sides AC and BC. Any tri-
angle has three escribed circles. The
center of the escribed circle corre-
sponding to vertex C is the intersec-
tion point of the bisector of angle C
and the bisectors of the external
angles at A and B of triangle ABC
(the reader is invited to prove this
fact).

Thus, if three lines make up a tri-
angle, there exist exactly four
circles that each touch all three
lines (fig. 3).

Now we can formulate the main
theorem of this article.

Feuerbach’s theorem. The nine-
point circle is tangent to the in-
scribed circle and to all the escribed
circles of a triangle.

We'll see later that in fact the
Euler circle is tangent not only to
the inscribed circle and all the
escribed circles, but also to 60 other
circles related to the triangle.

The segment theorgm

To facilitate the discussion, it will
be convenient to slightly redefine the
way we talk about angles and arcs.
We will, for the discussion below,
make the following definitions.

Definition 1. The angle between
two different lines a and b that in-
tersect at point O is the angle by
which line a must be turned coun-
terclockwise about point O until it
coincides with Iine b. (Such an angle
is often called an oriented angle.)

In figure 4a, o is the angle be-
tween lines a and b, and J is the
angle between b and a (it is clear
that o + p = n). This definition of an
angle makes clear which of two
supplementary angles is considered
in any particular case. The angles be-
tween two rays a and b emanating
from a common point are defined in

Figure 5

a similar way. In figure 4b, o is the
angle between rays a and b, and B is
the angle between b and a (in this
case o + B = 2x).

Definition 2. An arc AB of a
given circle is the arc that is tra-
versed by a point moving along this
circle counterclockwise from A to B.

Two points divide a circle into
two arcs. With this definition, it is
clear which of these two arcs is
named by the symbol AB .Itis clear
that arcs AB and BA comprise the
entire circle.

Finally, recall that the angular
measure of arc AB of a given circle
is the angle between rays OA and
OB, where O is the center of the
circle, and the angular measure of
arc BA is the angle between rays OB
and OA. Thus, AB + BA =2r.

Now we formulate a theorem
that is very important for further
analysis and is interesting in its own
right.

Theorem 2 (segment theorem). A
number ¢ is given, where 0 < ¢ < 2,
and a circle y centered at I is in-
scribed in the angle formed by lines
a and b (figs. 5-8). Arbitrary points
A and B are chosen such that line
AB touches circle v (figs. 5-7), and a
circle o is drawn through points A
and B for which AB = 0. Then there

a
Figure 6

QUANTUM/FERTURE 0




a
Figure 8

exist two fixed circles that are tan-
gent to lines AO and OB and circle o.

If one of these circles touches
these lines at points N, and N,, and
the second one, at points M, and
M,, then ZAN,I= ¢/4 and £IM O =
(2m — 0)/4 (so that triangle N,IM is
a right triangle).

Certainly it is difficult to make
sense of such a complicated propo-
sition. To begin to think about it,
imagine that points A and B move
along rays OA and OB so that circle
yremains inscribed in triangle AOB

Figure 10
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(fig. 5a). Let us construct an arc of a
circle passing through points A and
B equal to ¢ on the outer side of tri-
angle AOB (this arc, together with
segment AB, bounds the pink region
in figure 9). Then, the variable circle
o containing arc ¢ touches two fixed
circles, shown in red in figures 5-9.

Figure 9 illustrates one case of the
segment theorem. Another possibil-
ity is shown in figures 6a and 6b.
Here the angle ¢ is small (more pre-
cisely, ¢/2 < ZAOB| and the point N,
“has moved” to the extension of ray
AO beyond point O (why?), so that
the red circle touching line a at
point Na is inscribed in the angle
vertical to ZAOB rather than in
ZAOB itself.

Finally, circle ycan be not only in-
scribed, but also escribed for triangle
AOB. This situation gives rise to
two more cases (figures 7 and 8).

Our definitions of angle and arc
have made it possible to put forth a
unified formulation of the segment
theorem that includes all these
cases at once. For the time being, let
us take the segment theorem for
granted, without proof, and obtain
several consequences.

Exercises.

3. Prove that line BK is parallel to
the tangent to circle y drawn from
point N, (figure 5b).

4. (I) Points A and B move on the
sides of angle O so that triangle
AOB has a tixed inscribed circle .
Prove that the circumscribed circle
for this triangle is tangent to a fixed
circle inscribed in angle AOB, and
that the points of tangency of this
fixed inscribed circle to the angle’s
sides and the center of ylie on a
line.

(IT) Prove proposition (I) if yis the
fixed escribed circle of triangle AOB
corresponding to vertex O.

5. (I) Prove that the circle in-
scribed in the right angle C of tri-
angle ABC and internally tangent
to its circumscribed circle is
homothetic to the inscribed circle of
triangle ABC with respect to point
C with a coefficient of 2:1.

(IT) Prove that the circle inscribed
in the right angle C of triangle ABC
and externally tangent to its circum-
scribed circle is homothetic to the
escribed circle of triangle ABC with
respect to point C with a coefficient
of 2:1.

(ITT) Prove the Feuerbach theorem
for a right triangle.

6. Two nonintersecting circles v,
and v, are given. An arbitrary circle
externally is tangent to y, and vy, and
intersects their common internal
tangents at points A, B, C, and D (fig.
10]. Prove that

(I) the angular measures of arcs
AB and CD are constant and equal
to twice the angles formed by lines
AB and BD with the common exter-
nal tangent of y, and v,.

(IT) Triangles AOB and COD have
fixed inscribed circles.

7. The previous exercise is just a
statement of the proposition con-
verse to the case of the segment
theorem illustrated in figure 6. For-
mulate and prove similar proposi-
tions for the cases illustrated in fig-
ures 7 and 8.

8. Two circles v, and vy, are given,
tangent externally at point O. A
circle m is externally tangent to both
of them. Prove that the common
internal tangent to y, and v, (drawn
at point O) divides w into two arcs
equal to twice the angles between
this tangent and other common ex-
ternal tangent to y, and v,.




9 (the lune problem). An angle
with vertex at point O and two num-
bers ¢, and ¢, are given such that
0<o¢,<2n and 0 < 0, < 2m. Points A
and B move along the sides of the
angle, and two arcs passing through
points A and B equal to ¢, and ¢, are
constructed on the outer side of tri-
angle AOB, forming a “lune”. Prove
that if the circle containing the first
arc is tangent to a fixed circle in-
scribed in angle O, then the circle
containing the other arc is tangent to
a fixed circle inscribed in this angle.

This assertion can be made even
stronger: the circle containing arc o,
is tangent to two fixed circles (how-
ever, the second circle may be in-
scribed in the angle vertical to the
given one rather than in the given
angle itself).

In a certain sense, Exercise 9 is a
strong generalization of the segment
theorem. The latter is a particular
(or, more precisely, a limiting case),
when ¢,= 0, so that one of the arcs
of the lune degenerates into a line
and the lune itself degenerates into
a segment. Nevertheless, the solu-
tion of the general lune problem fol-
lows from this limiting case.

Proof of the segment theorem

Let us prove (using the notations
shown in figure 5b) that the circle
that touches lines a and b at points
N, and N,, respectively, is tangent
to circle . The proofs for the second
circle and for other cases are quite
similar. The following proposition is
a strengthening of the well-known
theorem about the angle between a
tangent and a chord.

Lemma 1. Let points A and B be
given on a circle. Suppose line a is
tangent to this circle at point A.
Then, the angle between lines a
and AB is equal to one-half of arc
AB. Conversely, if the angle be-
tween a line a passing through
point A and a chord AB of a circle
(also passing through A) is equal to
AB/2, then line a is tangent to the
circle at point A.

Exercise 10. Prove Lemma 1.

Lemma 2. If M is a point inside a
convex quadrilateral ABCD such that
ZCMB = Z/MAB + Z/MDC (fig. 11),

then circles AMB and CMD are tan-
gent to each other at point M.
Proof. Consider a point K inside
the angle CMB such that ZKMB =
£ZMAB and £ZKMC = £MDC |the
statement of the lemma guarantees
that such a point exists). Since
ZKMC = ZMDC = CM /2, circle
CMD is tangent to line MK at point
M by Lemma 1. Similarly, /KMB =
ZMAB = BM /2, and thus circle MAB
is tangent to line MK at point M.
Thus circles CMD and BMA are
tangent to each other, since KM is
their common tangent at point M.
We preface the proof of the seg-
ment theorem with several observa-
tions. On the sides of some triangle
AOB (fig. 12), we lay off points N,
and N, such that ON, = ON,. Let I
be the center of circle y, and ZAN I
= ZIN,B = o. < /2. Let V be the sec-
ond intersection point of circles
AIN,and BN, I. Since ZIN, B = ZIVB
(as angles inscribed in circle BN, )
and, similarly, ZAN I = ZAVI, we
see that ZAVB = 2a. If we now draw
circle ABV, we see that AB = 4oy
that is, the size of arc AB is indepen-
dent of the choice of points A and B.
It remains to set ¢ = 40, and prove
the following proposition: if ZAN I
= ZIN,B = 0/4, then the circle that
is tangent to AO and OB at points
N, and N, is also tangent to circle »
at point V.
Now we can complete the proof
of Theorem 2. It follows from the

B C

2 D
Figure 11

O N

a

Figure 12

aforesaid that point V lies on circle
o. It remains to prove that circle
N,VN, touches lines 4, b, and circle
o.

The rest of the proof is based on
a calculation of various angles,
which we are going to perform.

First of all, ZON,N, = ZON N, =
(t — ZAOB)/2. On the other hand,
ZN,VN, = 2n - LIVN, - ZIVN, =
AIAN + LN Bl = (ZOBA + LOAB)/

=(n- LAOB)/Z. Thus, ZON,N, =
ZN,VN, = ZN,N, O, and, by Lemma
1, circle N,VN, touches lines OA
and OB at points N, and N, respec-
tively.

To prove the fact that circles
N,VN, and o are tangent to each
other, it is sufficient to verify
(Lemma 2) that

ZVN,N, + ZBAV = ZBVN,. (1)
First of all, notice that
LBAV = ZBAI + ZIAV.
However,
ZIAV = ZIN V = ZAN V
— ZAN,I = ZAN,V - /4.
Therefore,
ZBAV = ZAN,V —0/4+ ZBAOJ2. (2]
By Lerﬁma 1,
ZVN N, = ZVN,B. (3]

Therefore, the left side of equation
(1) (with (2) and (3) taken into ac-
count| is equal to

ZVN,B+ ZAN V - 0/4 + ZBAOJ2. (4)
Finally,
ZBVN,, = ZBIN, =t — ZIN,B

- /N,BI = - 6/4 - ZLOBA[2. (5)

Quadrilaterals N, VIA and N, VIB
are inscribed (each in its own mrcle)
therefore, :

ZANV = - ZVIA,

ZVN,B =n— £BIV.
Then,

ZANV + LVN,B = 2n - LVIA
~ ZBIV = ZAIB.

Therefore, expression (4) is equal to
ZAIB - 0/4 + ZBAO/2 = 1t — /4 -
Z0OBA/2; that is, it coincides with

QUANTUM/FEATURE 1




the right side of equation (5), which
was to be proved. Thus, the segment
theorem is proved.

Exercise 11. Consider all other
cases yourself.

The following exercises concern
an arbitrary curvilinear triangle
ABC consisting of segments CA,
CB, and arc AB of a circle.

Exercises.

12. Using a compass and straight-
edge, construct a circle inscribed in a
given curvilinear triangle ABC. Is
such a construction always possible?

13. The inscribed circle of a cur-
vilinear triangle ABC touches its arc
AB at a point V. Prove that the bi-
sector of angle AVB passes through
the center of the circle inscribed in
the rectilinear triangle ABC.

14. The inscribed circle of a cur-
vilinear triangle ABC touches side
AC at a point M and arc AB at a
point V. Prove that circle MVA
passes through the center of the
circle inscribed in the rectilinear tri-
angle ABC.

15. Let ABC be a rectilinear tri-
angle. A circle inscribed in angle C
internally touches circle ABC at a
point M, T'is the midpoint of arc AB
containing point C, and I is the cen-
ter of the inscribed circle of triangle
ABC. Prove that points I, T, and M
lie on a line.

Proof of the Feuertiach theorem

We will see that the Feuerbach
theorem is a particular case of the
segment theorem when the angle
between lines ¢ and b is (21 - ¢)/2.

Let A’B’C’ be the midpoint tri-
angle of the given triangle ABC (fig.
13), N and N’ be the points of tan-
gency of line BC with the circles
inscribed in triangles ABC and
A’B’C, respectively, and I” be the
center of the circle inscribed in tri-
angle A’B'C.

We prove that the circle inscribed
in triangle ABC touches circle
A’B’C’, that is, the nine-point circle.

Triangles CAB and CB’A” and,
therefore, their inscribed circles, are
homothetic with respect to point C
with a coefficient of 2:1. Therefore,
CN =2CN’, CN’= NN’ and triangle
CI'N is isosceles.

8 NOVEMBER/DECEMBER 1999

We apply the segment theorem,
setting ¢ = 2(nr_—~ LACB). We have
A'B'=2n—- B’ A'=2n-2£LA'C'B’=2xn
- 2£ACB (we use here the fact that
LA'C'B’= ZACB, since CB'C’A’is a
parallelogram). Thus, A’B’ = ¢. In
addition, ZI'NC = (2n - ¢)/4 (since tri-
angle I'CN is isosceles, then ZI'NC
= ZICN = £LABC/2 = (2 — 0)/4 by the
choice of the number ¢).

By the segment theorem, the
circle o that passes through A’and B
for which A’B’ = ¢ (this is just the
nine-point circle) must touch the
circle inscribed in angle ACB and
line CB at point N (since for point N,
ZI'NC = (21 - ¢)/4); this is the in-
scribed circle of triangle ABC.

Replacing the word inscribed by
escribed in the preceding reasoning,
we obtain the desired result (for the
escribed circles of triangles ACB and
A’C’B’ corresponding to vertex C).
Thus, the Feuerbach theorem is
proved.

Notice that in the first part of the
proof, only a half of the segment
theorem was used (the theorem as-
serts the existence of two fixed
circles tangent to circle o). In this
case, one of them is the inscribed
circle of triangle ABC. And where is
the second circle? The answer to
this question is given in the follow-
ing exercise.

Exercise 16. An isosceles triangle
AKL with base AK is cut from an
acute triangle ABC by a line tangent

Figure 13

A
Figure 14

to the inscribed circle (fig. 14). Prove
that the circle inscribed in triangle
AKL is tangent to the nine-point
circle of triangle ABC.

Since a small triangle like this
one may be cut from each of the
three angles of triangle ABC, we
obtain three circles tangent to the
nine-point circle (by the way, why
only three and not six?).

What if we carry out this proce-
dure for the escribed circles?

Exercise 17. Consider the exten-
sions past vertex A of sides BA and
CA of acute triangle ABC. Take
points M and N on the extensions of
BA and CA, respectively, such that
line MN is tangent to the escribed
circle of triangle ABC corresponding
to vertex C, and triangle AMN is
isosceles with base AM. Prove that
the escribed circle of triangle AMN
corresponding to vertex N is tangent
to the nine-point circle of triangle
ABC.

Points M and N could also be
taken on the extensions of sides AB
and CB beyond point B, which
would give us one more circle tan-
gent to the nine-point circle.

Exercise 18. Let the escribed
circle of triangle ABC touch the con-
tinuations of sides CA and CB at
points K and L, respectively. A point
M is taken on segment CK and a
point N on segment CL such that
line MN is tangent to this escribed
circle and triangle CMN is isosceles
with base CM. Prove that the circle
inscribed in triangle CMN is tangent
to the nine-point circle of triangle
ABC.

Exercises 17 and 18 assign to each
escribed circle three circles tangent
to the nine-point circle. Since every
triangle has three escribed circles,
we obtain 9 circles.

Now it’s time to sum up. We
have already constructed the follow-
ing circles tangent to the nine-point
circle: the inscribed circle, the 3
escribed circles, the 3 circles from
exercise 16, and the 9 circles from
exercises 17 and 18, which gives 16
circles in all.

However, these are not all the
circles yet!

Exercise 19. Let H be the intersec-




tion point of the altitudes in triangle
ABC. Prove that triangles ABC,
AHC, AHB, and BHC have a com-
mon nine-point circle.

Each of the triangles mentioned
in exercise 19 has its own set of 16
circles tangent to the nine-point
circle, which gives us 64 circles tan-
gent to the nine-point circle. This
number deserves to be entered into
the Guinness Book of World
Records!

Let us conclude with a discussion
of the points of tangency. In Exer-
cises 20-22, F denotes the point of
tangency of the nine-point circle of
triangle ABC with its inscribed
circle.

Exercises.

20. The sides of a triangle A, B, C,
are parallel to the sides of triangle
ABC and are tangent to its nine-point

\
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circle (fig. 15). Prove that lines A A,
B,B, and C,C intersect at point F.

21. Prove that the nine-point
circles of triangles AIB, BIC, and
CIA intersect at point F, where I is
the center of the inscribed circle of
triangle ABC.

22. Let A, B’ and C’be the mid-
points of sides BC, AC, and AB of
triangle ABC, respectively (the ver-
tices are listed counterclockwise).
Prove that the three lines connect-
ing the centers of the inscribed
circles of triangles AC’B’, B’AC, and
C’BA’” with the respective midpoints
of arcs B’C’, A’B’, and C’A’ of the
nine-point circle of triangle ABC
meet at point F.

In conclusion, note that the seg-
ment theorem seems to have many
other interesting consequences.
There are two free parameters—the
angle O between lines g and b and
angle 0. We considered only two par-
ticular cases: ZAOB = ¢/2 (Exercises
4 and 5) and ZAOB = (2n - ¢)/2 (the
Feuerbach theorem). (@

Message from afar

by David Arns

"nce upon a weeknight dreary,

I beheld an image smeary,

Captured by a telescope that’s been in space from days of yore,
As T sat with eyelids drooping,

A strange and unexpected grouping

Of celestial objects caught my eye like none had done before—
I knew I had to find out more.

I didn’t know what I was seeing,

But I thought, “Another being

From another galaxy, perhaps an alien ‘Signal Corps,’
Created this configuration

To confer some information

To a random listener. Yes, surely that is what it’s for!”
Thus I let my fancy soar.

Then I stopped and gripped the table,

Forced my thoughts to be more stable,

Realizing I would need some proof, some evidence, and more.
So I called to book the Hubble—

To my surprise, I had no trouble

Getting seven hours’ observation time, that day at four.

Now I'd give them proof galore!

So I made my observations,

Measurements, and calculations,

Disbelief and wonder nearly left me breathless on the floor.
This was proof beyond ignoring—

Sweat was from my brow outpouring—

I could see my name in scientific journals evermore!

(I'd been a no-name heretofore.)

Five weeks, and almost all was ready,
(I'd show those stuck-up folks at SETT!
I merely had to translate all these symbols I had grabbed before.

Already I had seen a pattern: The spectrogram’s bright lines were scatterin’
In ways that shocked, amazed, bewildered, stunned and shook me to the core

A message from a distant shore!

Methodically, I put together
Facts and data, heedless whether

Days were passing, pizza mould'ring, knocks and calls outside my door.

Finally, it was translated,
And I stood aghast, deflated:

The message from afar, for which I'd launched into my eight-week chore,

Read only, “Made in Singapore.”
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MAXWELL'S DEMON

On the quantum nature of heat

Finding direction in chaos

by V. Mityugov

ECENTLY I CAME ACROSS

the following problem given at

a school Olympiad on physics:

“Make and demonstrate a de-
vice that moves directionally under
the influence of chaotic forces.” I
didn’t need to rack my brains over
this problem—the answer appeared
immediately. I remembered the
summer months of the post-war
years, which Tusually spent in a vil-
lage with my relatives. The country
boys showed me a game: when you
are going to walk a long way, put a
piece of wheat chaff under your shirt
near the belt and forget about it.
After a while the chaff can be found
in different places—in the sleeve, at
the back, or somewhere else. The
reason is clear, but the result is al-
ways surprising.

One can think of quite a number
of examples of such “mechanical
rectifiers” which convert the en-
ergy of chaotic movements into
translation motion. Mechanical
rectification is the working prin-
ciple of tidal power stations built in
suitable ocean bays. At high tide
the bay is closed off from the ocean
by some kind of sluice gates, and
during the following ebb a hydrau-
lic turbine generates remarkably
cheap energy. During the rising half
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period of the tides everything can
be reversed, with the same result.!

Is this a good example of the con-
version of chaotic motion into di-
rected motion? Not really: the tidal
ebbs and flows are related to the
motion of the Moon, and there is
nothing chaotic in them. What will
change if, instead of regular tides, we
have some irregular up-and-down
fluctuations of the water level—say,
the wind-driven surge of water in
the Gulf of Finland (you may read
the details in “The Bronze Horse-
man” by Alexander Pushkin). Evi-
dently, in this case one would need
special instrumentation that would
provide the data needed to operate
the gate properly.

A working model of such a power
station could be constructed on a
small lake or river where suitable
hydrophysical conditions exist, or
even in a basin or a pool. Classical
mechanics and its subdivision hy-
drodynamics generally allow the
wide use of scale modeling, so that
large phenomena can be studied in
small models and vice versa.

For example, before a large ship is

ITidal power stations are discussed
in a recent Quantum paper: V. E.
Belonuchkin, “Turning the tides,”
May/June 1998, pp. 10-14.

built, its hydrodynamic stability and
rolling and pitching motions under
storm conditions are studied using a
small model. How small can it be?
It is important that the wave prop-
erties of the water surface be com-
pletely similar to those in a real
storm. A model ship cannot be made
arbitrarily small because at small
scales the wave structure depends
strongly on the surface tension. The
surface tension, in turn, is caused by
molecular attraction, which is de-
scribed by quantum laws.

Suppose we make a very small
model of a large lathe. With a suit-
able electric motor we can simulate
all of its idle spinning motions.
However, if we try to turn metal on
such a model device, it will not
work. The “scale invariance” prin-
ciple of classical mechanics is not
valid in this case because of the
granular polycrystalline structure of
a metal. This structure obeys the
laws of quantum mechanics. The
miniature cutter in a model lathe is
made of a real metal, and for this
reason it cannot work properly.

Let’s return to chaotic (random,
stochastic) motion. In 1871, the En-
glish physicist James Clerk Maxwell
invented a hypothetical creature
(which he called a “demon”) who

Art by Leonid Tishkov
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could rectify the chaotic molecular
motion of a heated gas. By manipu-
lating a small gate, Maxwell’s de-
mon could sort the fast and slow
molecules into two compartments
of a vessel. The fact that Maxwell
called it a demon indicates that he
didn’t believe in the possibility that
such a microscopic physical device
could exist. If he had believed it to
be possible in principal, he would
have called it a controller, operator,
watchman, or the like. He felt intu-
itively that there was something
wrong with such a hypothetical
creature. What is wrong with it?

In Maxwell’s day the kinetic ori-
gin of cold and heat was well known
due to the works of Daniel Bernoulli
and Michael Lomonosov. The ac-
cepted views on the nature of heat as
chaotic motion of corpuscles in a
heated body had driven out of sci-
ence once and for all the concept of
a special substance, “phlogiston,”
which played the role of the heat
carrier. However, the language (a
very conservative thing!) had pre-
served traces of this concept in such
expressions as the “flow of heat.” As
to the quantum theory, there was no
inkling of it at that time.

In many respects, the logical
structure of classical mechanics is
similar to geometry, a very “math-
ematical” discipline. Both have the
property of scale invariance we men-
tioned earlier. This means that a si-
multaneous and arbitrary change of
all spatial scales does not disturb the
nature of the laws of motion and
geometrical relationships. Indeed,
the properties of the medians in a
triangle, the Pythagorean theorem,
and similar relationships do not de-
pend on the scale. Similarly, the
elastic collision of two small par-
ticles is quite similar to that of large
ones. When Sir Ernest Rutherford
proposed the now universally famil-
iar planetary model of the atom, it
immediately provoked fictional sto-
ries of intelligent inhabitants of the
electron-planets. Thus it seems that
at that level of understanding of the
laws of physics, nothing may pre-
vent one from designing a reason-
able automatic device which should
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work as the hypothetical Maxwell’s
demon. The skepticism came from
another direction.

As early as 1824, a French physi-
cist named Sadi Carnot formulated
the famous theorem on the limita-
tion of the transformation of heat
into useful mechanical work. Two
decades later, this theorem was gen-
eralized by Rudolf Clausius and Sir
William Thomson (Lord Kelvin),
who raised it to the rank of a fun-
damental physical principle, the
second law of thermodynamics.
Thermodynamics turned into a self-
sufficient, well-grounded, and axi-
omatic science seemingly indepen-
dent of classical mechanics. It gave
clear and reasonable solutions to
important practical problems. For
example, is it possible to take energy
of thermal motion from a cold body
and transfer it to a warm body with-
out performing work? No, it is not.
Can we obtain useful (that is, mac-
roscopic mechanical) work due to a
temperature difference of two bod-
ies? Yes, we can.

The formal system of thermody-
namics agreed with practically all
observations in the natural sciences,
from biological metabolism and
chemical reactions to the planetary
processes of re-radiation of solar en-
ergy into cold space. If the funda-
mental principles of Clausius,
Kelvin, and Carnot were somehow
cast into doubt, then much in our
understanding of the living and non-
living worlds would need to be com-
pletely rethought (and in a way that
is not yet known).

Actually, violation of the second
law of thermodynamics would
mean that we could completely ex-
tract, “free of charge,” the heat (or
cold, on a hot day) from the “sea” of
thermal energy, and, when we were
done with it, simply return this en-
ergy to its original chaotic state.
This is called a perpetuum mobile
(perpetual motion machine) of the
second kind, and it doesn’t violate
the law of energy conservation!

It is doubtful that Maxwell
could not see the radical conse-
quences that the realization of his
antithermodynamic demon would

entail. It is more likely that this de-
mon served to demonstrate the key
scientific paradox that pointed to
the logical dilemma that would con-
front the development of all system
of natural sciences in the near fu-
ture. Which way to turn? One pos-
sibility is to deny the absolute
character of the thermodynamic
restrictions on extracting useful
mechanical work from thermal
chaos. If that were the case, it would
be puzzling that no living creature
had learned to do it during the mil-
lions of years of evolution. The other
possibility is that there exists a new
fundamental law which works at
the atomic level and which cannot
be derived in Newtonian mechan-
ics. An intrinsic feature of this new
law would be violation of scale in-
variance in the transition from mac-
roscopic motion to molecular ther-
mal agitation.

Now is the moment to recall some-
thing. We intentionally forgot about
quantum theory for a while—just to
feel how badly we need it as a guide
in the microcosm. Here we shall not
consider the history of this wonderful
discipline, however dramatic and fas-
cinating it has been. Instead we focus
on scientific paradoxes, which, like
magic portals, lead us to unknown
worlds. The next “magic portal” on
our way is the famous Einstein-
Podolsky-Rosen paradox.

Let’s consider the elastic collision
of two particles. In classical physics,
this extremely simple model is
widely used to study the conserva-
tion laws for energy and momentum.
If the momenta of the colliding par-
ticles before the collision are known,
then Newtonian mechanics can cal-
culate (and thus predict) with abso-
lute precision the respective values
after the collision. It is a'school prob-
lem which evidently has no hidden
intrigue—at least if the particles are
large enough to be considered as
something like billiard balls.

The paradoxical situation is met
when we try to apply quantum me-
chanics to describe the elastic
collision of microscopic particles.
Although in this case the total mo-
mentum and energy are conserved as



in the classical case, it is impossible
to assign individual momenta and en-
ergies to the particles after the colli-
sion. Isn't this a paradox? During the
centuries of its development, the old
classical physics never encountered
situations in which the states of the
subsystems (the particles) became in-
determinate, while the state of the
whole system (consisting of both par-
ticles) was completely determined
from a physical standoint. Such a situ-
ation would be a nightmare for the
classical physicist. Nevertheless, the
logic and mathematical structure of
quantum theory do provide for such a
possibility.

Attempts to discuss the phenom-
ena of the quantum microcosm with
the language and images of classical
physics lead to inferences which con-
tradict elementary common sense.
Werner Heisenberg repeatedly
pointed out the necessity of develop-
ing a new physical intuition and a
corresponding language of quantum
mechanics. This doesn’t mean that
the new quantum images are inher-
ently alien to conventional human
reasoning. Even the good old classical
physics is far from being “natural” for
the human brain—it looks self-evi-
dent just because we adapted to it over
the course of centuries. A certain old
lady in IIf and Petrov’s famous novel
The Twelve Chairs did not believe in
electricity, and for this reason alone
she did her cooking on a kerosene
burner. And think how long it took
before humankind accepted the idea
that the Earth is round!

It may seem that we have gone
astray from our original course. But
in fact we have reached the crucial
point in the story: evidently, the
idea of scale invariance should be re-
jected when entering the precincts
of the microcosm. There is a specific
indeterminacy that is inherent in
quantum mechanics. In the case of
colliding particles it “disperses” the
information about their prehistory
among the “degrees of freedom.” It
is clear now how naive the idea of
Maxwell’s demon appears after the
overthrow of the postulate that
physical laws are independent of the
spatial scale.

Without too much detail, viola-
tion of scale invariance can be il-
lustrated by a dimensional analy-
sis of the physical quantities. To
make such a violation possible in
the case of colliding particles,
there must be one more combina-
tion of parameters of the motion
with dimensions of length—in ad-
dition to the size of the particles
and the extent of the effective in-
teraction region in the collision.
This is possible only if an addi-
tional dimensional constant of a
universal nature is introduced into
mechanics. By the way, the three
laws of Newton have no such con-
stant: in classical mechanics the
mass, size, energy, and velocity
are measured in arbitrary units.
Accordingly, the choice of space-
time scale (rulers and watches) is
also arbitrary. This is the very rea-
son why classical mechanics im-
poses no constraints on scaling.

In contrast, quantum mechanics
has the necessary constant: this is
the famous Planck’s constant h =
6.63 - 10347 - s. Instead of the pre-
cise coordinates used in Newtonian
mechanics, in quantum theory the
motion of a particle is described
with the help of a wave function.
The free motion of a particle with
mass m and velocity v is described
by the propagation of a wave packet
in which the spatial oscillations are
characterized by the de Broglie
wavelength A = h/(mv). This is what
we were looking for! The ratio of A
to the purely geometrical length
gives the necessary dimensionless
parameter which tells us whether
classical or quantum mechanics
should be applied in a particular
case. For example, if a 9-g bullet has
a speed of several hundred meters
per second, then A is about 10-3* m.
Clearly, in this case Newton's laws
will work with tremendous accu-
racy. In contrast, the de Broglie
wavelength for an electron with an
energy of a few electron-volts is
about the size of the hydrogen atom
or of the characteristic interaction
length for two colliding electrons.

Although the quantum collision
process is wonderfully simple, it is

very unusual. On the whole, the sys-
tem of two colliding particles is not
subjected to a kind of “chaotization”
in the mechanical or any other sense.
At the same time, the state of an in-
dividual particle becomes uncertain,
and during subsequent collisions and
contact with other objects (or with an
observer’s devices) it will behave as
a child of chaos.

It is at this very point that me-
chanical motion can be joined with
thermodynamic principles. One
cannot help admiring the beauty of
this physical picture. Indeed, some
specific “nonredundancy” of the
quantum description of matter un-
derlies the nature of heat. There is
nothing extra in the description be-
yond that which is sufficient to de-
scribe everything.

The Chinese are famous for their
skill in inscribing poems on the sur-
face of a tiny grain of rice. In con-
trast, it is impossible to “write” on
an electron any information which
is not equivalent to the parameters
of the electron’s state. In acquiring
new information about the state of
the partner particle in the collision,
the electron “forgets” information
about its own previous state. There-
fore, an individual electron is an in-
herently unpredictable object. Let’s
point out once again that although
there are no words in the common
language to describe this quantum
phenomenon, the mathematical for-
malism copes with it quite nicely.

Using the new principles and the
respective mathematical formalism
of the quantum theory of open sys-
tems, scientists have provided a strict
mathematical description of the ther-
modynamic laws which were clev-
erly inferred in the last century.
However, the previous picture of the
“thermal chaos” of molecules has
acquired some unusual features. The
original mechanistic views consid-
ered thermal motion as a destructive
phenomenon. It looked as if the cha-
otic collisions irreversibly destroy
the traces of previous states of a
physical system, irretrievably annihi-
lating any information about them.

CONTINUED ON PAGE 30

QUANTUM/FEATURE 13




Garl Friedrich Gauss

Nothing can be considered completed
if anything remains to be done.

by S. Gindikin

N 1854, GAUSS’ HEALTH

took a turn for the worse, and the

Privy Councilor, as Gauss had

been dubbed by his colleagues at
the University of Gottingen, could
no longer take the daily strolls from
the observatory to the literature mu-
seum that had been part of his rou-
tine for twenty years. The professor,
who was approaching his eightieth
year, was finally persuaded to con-
sult a doctor. In summer, he felt bet-
ter and even attended the opening of
the Hannover-Gottingen railway. In
January of 1855, Gauss agreed to sit
for the artist Heseman for a medal-
lion. After Gauss’ death in February
of 1855, a medal was struck in his
honor from this medallion, with the
inscription Mathematicorum prin-
ceps (Prince of Mathematicians)
under his bas-relief. The history of
every real prince begins with a child-
hood surrounded by legends. Gauss
was not an exception.

Brunswick, 1777—179%

Gauss didn’t inherit his title, al-
though mathematics was not alto-
gether alien to his father, Gerhard
Diederich. A jack of all trades, he
was an expert on fountains and also
worked as a gardener. He was also
known for his art in calculating.
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During fairs in Brunswick and even
Leipzig, merchants used his ser-
vices, and he had a steady job at the
largest mortuary in Brunswick (a job
which he would hand down to his
son by his first marriage, Georg, a
retired soldier).

Carl Friedrich was born on the
30th of April, 1777, in house 1550
on the Wendegraben canal in
Brunswick. It is believed that he in-
herited good health from his father
and outstanding intellect from his
mother. His uncle Friederich, a skill-
ful weaver, was closest to the future
scientist. According to Gauss, his
uncle was “a born genius.” About
himself, Gauss said that he could
count before he could talk. The ear-
liest mathematical legend about
him tells that at the age of three he
watched his father settling accounts
with some masons who had been
working for an hourly wage, when
suddenly he corrected his father and
turned out to be right.

At the age of seven, Carl Friedrich
entered Catherine’s School. In that
school students were not taught
how to count until the third grade,
so for the first two years nobody paid
attention to little Carl.

The children usually got to the
third grade at the age of 10 and

MATH ROYALTY

stayed in that grade until confirma-
tion (at the age of 15]. The teacher
Bittner had to devote himself si-
multaneously to children of differ-
ent ages and knowledge. For this rea-
son, he often gave some of the
students long exercises in calcula-
tion in order to be able to talk to
other students. Once, he asked a
group of students, among them
Gauss, to sum up all natural num-
bers from 1 to 100. As a student fin-
ished the calculations, he would
place his slate on the teacher’s desk.
The order of the slates was taken
into account when giving marks.
Ten-year-old Gauss turned in his
slate as soon as Blittner had finished
assigning the task. To everybody’s
surprise, only Gauss’ answer turned
out to be correct. The explanation
was simple: as the teacher had been
dictating the task, Gauss found a
trick for summing a general arith-
metic progression! The fame of the
infant prodigy spread all over
Brunswick.

A certain Bartels was the teacher’s
assistant at the school. His main
duty was to sharpen pens for junior
schoolboys. Bartels was interested
in mathematics and had some math-
ematics books. Gauss and Bartels
began to study mathematics to-

by Vadim lvanyuk
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gether. They got to know Newton's
binomial theorem, infinite series,
and so on.

It’s a small world! Later, Bartels
became professor of mathematics at
the University of Kazan and would
have a student named Lobachevsky.

In 1788, Gauss entered the Gym-
nasium. However, mathematics
wasn’t taught there—students stud-
ied classical languages. Gauss
learned languages with enthusiasm
and made considerable progress, and
he even entertained the idea of be-
coming a philologist.

Gauss became known at Court.
He was introduced to Carl Wilhelm
Ferdinand, Duke of Brunswick. The
boy came to the palace and amused
the courtiers by his mastery of the
art of calculating. Thanks to the
Duke’s sponsorship, Gauss was able
to enter the University of Gottingen
in October 1795. First, he attended
lectures on philology and hardly at-
tended mathematics lectures at all.
However, this does not mean that he
didn’t study mathematics.

The favorite science of the greatest
mathematicians

This was one of the numerous
epithets that Gauss bestowed on
arithmetic (number theory). By that
time arithmetic had become a
branch of mathematics rather than
a collection of uncoordinated propo-
sitions and observations.

Later, Gauss would write: “Most
important, we are indebted to re-
cent research—certainly not exten-
sive, but deserving of great praise—
by mathematicians such as Fermat,
Euler, Lagrange, and Legendre, who
have discovered an entryway to the
treasury of this divine science, and
shown us its riches.” However, the
boy of Brunswick didn’t know all
this yet, and was rediscovering at an
astonishing rate the facts which had
taken his great predecessors many
years to find. Here are some topics
in which Gauss was interested at
that time.

Gauss noticed that the remain-
ders upon division of squares of in-
tegers by a prime p cannot take on
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arbitrary values. For example, if the
divisor is 3, the remainder can only
be 0 or 1; if the divisor is 5, the re-
mainder can only be 0, 1, or 4. How-
ever, we may consider this situation
from another standpoint. We can
ask for which primes p do numbers
n? exist such that when divided by
p they give a remainder of g? For g
=1, any pwill do (n = p + 1). How-
ever, some values of p can give a re-
mainder of p — 1, while others can-
not. For example, when the square
of an integer is divided by p = 3 a re-
mainder of 2 does not occur,
whereas p = 5 can give a remainder
of 4 (when n = 3). The values p = 7,
11, and 19 do not produce a remain-
derof p—1,butp=13 and 17 do give
such a remainder. Observations sug-
gest the following hypothesis: if p =
4k — 1, then no n? can give a remain-
derof p -1, but if p = 4k + 1, such
an n? does exist. Gauss didn’t know
that this hypothesis had been formu-
lated by Fermat and proved by Euler.

“I have accidentally run across
an amazing arithmetical fact. Since
it not only seemed elegant in itself
but also suggested that it was con-
nected with other outstanding facts,
I got down to proving it and finding
the principles on which it is based.
After I had at last achieved this
goal, the beauty of these studies
captivated me, and I could no
longer do without them.”

Gauss tried to determine the val-
ues of p for which there exist num-
bers n? giving remainders of g = 2,
g =3, and so on. For ¢ = 2, he guessed
that the matter hinged on the re-
mainder upon division of p by 8
(Euler had failed to prove this fact,
but it was proved by Lagrange). For
q = 3, it depends on the remainder
upon division of p by 12. The general
proposition asserts that all primes p
that have the same remainder upon
division by 4¢g can either simulta-
neously give a remainder of ¢ when
divided into a certain n?, or they can-
not. Gauss called this proposition
the “golden theorem”; now it is
called the law of quadratic reciproc-
ity.

The “golden theorem” didn’t
yield to the first attack of young

Gauss. He wrote that this theorem
had tormented him an entire year
but had refused to yield to the most
intensive efforts. However, this was
the point when Gauss had caught
up with the mathematics of his
time: every effort of the most
prominent mathematicians to
prove the law of quadratic reciproc-
ity had failed.

Here is another topic of Gauss’
studies. He noticed that if 1 is di-
vided by p, the decimal digits re-
peat, which gives an infinite peri-
odic decimal fraction. It is not
difficult to prove the periodicity,
but how can we find the length of
the period? Gauss investigated
prime numbers one after another
and wrote out the corresponding pe-
riods. It seems to be a very tedious
job (for example, for 97 the period is
96 digits long). However, Gauss in-
vestigated all p < 1000. He found
that the length of the period always
divides p — 1. (This fact can be de-
rived from Fermat’s “little” theo-
rem, which Gauss proved indepen-
dently.) Gauss was interested in
those p for which the period is ex-
actly p — 1. For this to be true, it is
sufficient that the set of remainders
upon division of 10, 10?%, ..., 107!
by p contain all the nonzero re-
mainders. We don’t know even now
whether the number of such primes
is infinite or not.

Gauss noticed that the set of re-
mainders upon division of the num-
bers3,9,27, ..., 31 by 17 contains all
of the possible nonzero remainders
1,2, .., 16. This observation stimu-
lated the first great discovery made
by Gauss—the construction of the
regular 17-gon.

Gauss knew that for n = 3, 4, and
5, regular n-gons can be constructed
with compass and ruler’(or, equiva-
lently, a circle can be divided into n
equal parts). Certainly, this is also
possible for n = 2%, 2k.3 2k.5 and
15(1/3 —1/5 = 2/15). Apparently,
Gauss knew that the ancients had
been unable to construct n-gons for
any other n.

The mathematics of the modern
era has made it possible to reduce
the problem of construction of a



regular n-gon to an algebraic prob-
lem. The possibility of constructing
such a polygon with straightedge
and compass reduces to representing
the roots of the equation z7 -1 =0
in terms of quadratic irrationalities.
If we ignore the root z = 1, we can
limit our investigation to the equa-
tionz?~l4+2z2-24 4+z4+1=
0, and we need to ex-
press these roots us-
ing integers, and re-
peatedly applying
arithmetic opera-
tions and the opera-
tion of extracting
square roots (but no
other roots).

This reduction
allows for a uni-
form consider-
ation of all cases
known to the an-
cients, while the
ancients themselves
had to find an original
method for each indi-
vidual case.

Gauss pondered over the cycloto-
mic equation (which is what the
above equation is called), and simul-
taneously studied the divisibility of
numbers. On the 30th of March,
1796, when awakening, he suddenly
recognized the relationship between
these two problems.

Let n = 17. If € is a root of the
equation z10 + z15 + .+ z+1 =0,
then €2, €3, ..., e are its other roots.
Gauss rearranged the roots in such
a way that the root &/ was assigned
a number k if 3% has remainder I
upon division by 17. Thus each of
the 16 roots was assigned a number.
We denote the roots enumerated in
suchawaybyt, t;, ..., t .. Defineu,
=h+ G+t Uy=th+ G+ +
Lo Vi=li+ ts+tg+ 1y, Vo=t + Lo+
Lot Ly Va=t3+ Lo+t + 15 V=1,
tlg+ by + g W=t + Ly, Wy=1,+
tigs -+ Wg=tg+ tic. It turns out that
u, and u, are the roots of a quadratic
equation with integer coefficients;
vy, V,, V5, and v, are the roots of the
quadratic equation with coeffi-
cients that are expressed in terms of
u, and uy; w, w,, ..., W, can be simi-
larly expressed in terms of v, v,, v,

and v,; and finally, ¢, t;, ..., t,, are
expressed in terms of w, w,, ..., wg.
As a result, we obtain the desired
representation of the roots of our
equation.

Thus, Gauss made progress in
solving a problem about which
nothing new had been done since
Euclid. Since the formulation of the
problem was quite elementary, this
discovery was reported in the news-
papers.

Later, Gauss gave a complete so-
lution to the cyclotomic problem. It
reduces to the case where n is prime.
For primes n of the form 2% 1
(these are the so-called Fermat’s
primes), the construction proceeds
by the same scheme as for n = 17.
The next n of this form is 257. There
is evidence that Gauss performed
the detailed construction for this
case as well. Gauss also proved (but
didn’t publish his proof) that for

primes that do
not admit such a
representation
the construc-
tion is im-
possible (in
particular,
forn=7and
11).

It became
clear that Gauss’ destiny was to be
a mathematician, not a philologist.
In the later years of his life, Gauss re-
called how at that time ideas had
boiled up in his head. He hardly had
time to make fragmentary records of
them. Gauss began to keep a diary.
The first record dated the 30th of
March, 1796. It concerned the con-
struction of the regular 17-gon. The
second record (dated the 8th of April)
shows that Gauss proved the law of
quadratic reciprocity. We know
from the diary that the great math-
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ematician continued studying, accu-
rately completing “student” exer-
cises.

In 1798, Gauss graduated from
the university and returned to
Brunswick to systematize his re-
sults in number theory. In 1801, he
published his famous Disquisitiones
Arithmeticae [Arithmetic Investiga-
tions). This huge book (over 500
large-format pages) contained
Gauss’ main results: the law of qua-
dratic reciprocity, the cyclotomic
problem, and the question of
representability of integers in the
form a®>+ bmn + cn? (in particular, as
a sum of two squares|. The book was
dedicated to the Duke, who also pro-
vided the means for publishing it.
The printed version of the book con-
tained seven parts (there was not
enough money to print the eighth
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part). This

eighth part was

to contain a generali- /o
zation of the law of “» !
quadratic reciprocity for powers
greater than two, and in particular,
the law of biquadratic reciprocity. A
complete proof of this law was ob-
tained by Gauss only on the 23rd of
October, 1813. Gauss recorded in his
diary that this event coincided with
the birth of his son.

Aside from Disquisitiones Arith-
meticae, Gauss did practically no
more work in the field of number
theory. He mainly systematized and
completed what was conceived in
those years. For example, he gave six
more, proofs of the law of quadratic
reciprocity. The Disquisitiones
Arithmeticae was far ahead of its
time. When writing this book,

Gauss had been out of contact with
contemporary mathematicians, and
for a long time the book hadn’t been
available to German mathemati-
cians. In France, where the book
might have interested such scien-
tists as Lagrange, Legendre, and oth-
ers, a misfortune occurred. The
bookseller who was to sell it went
bankrupt, and more than half of the
copies were lost. As a result, Gauss’
students had to copy parts of the book
by hand. The situation in Germany
began to change only in the 1840s,
when Dirichlet thoroughly studied
Disquisitiones Arithmeticae and
lectured on it. However, the book
reached Bartels and his disciples in
Kazan as early as 1807.
Disquisitiones Arithmeticae had
a great impact on the development
of number theory. Starting from
Gauss’ treatment of the cycloto-

mic problem, Galois studied the
/' problem of the solvability of al-
gebraic equations in radicals. To
this day the laws of reciprocity
occupy a central place in alge-
braic number theory.

Helmstadt dissertation

In Brunswick, mathematics
1 books were scarce, so Gauss
- often went to Helmstadyt,
where there was a good li-
brary. In 1798, working in
this library, Gauss wrote a
dissertation devoted to the
proof of the fundamental
theorem of algebra, which
asserts that any polyno-
mial with complex (and in particu-
lar, with real) coefficients has at
least one root (which in the general
case is complex). If we do not want
to go beyond the field of real num-
bers, the fundamental theorem of al-
gebra can be formulated in the fol-
lowing way: any polynomial with
real coefficients can be factored into
a product of polynomials of the first
and second degree. Gauss analyzed
all previous attempts at proving this
theorem and thoroughly imple-
mented an idea of d’Alembert. How-
ever, the proof wasn't flawless, since
the rigorous theory of continuity
had not yet been developed. Later,



Gauss suggested three more proofs
of the fundamental theorem of alge-
bra (the last one in 1848).

The Lemniscate and the arithmetic-
jeometric mean

In this section, we tell about yet
another line of Gauss’ research that
began as early as in his childhood.

In 1791, when Gauss was 14, he
played the following game of num-
bers: he took two numbers a,and b,
and calculated their arithmetic
mean

~ ap + by
1 2

and geometric mean b, = /apby .

Then he calculated the means of a,
and b;:

~ a +b
2 2

and b, = \/ab; , and so on. Gauss cal-
culated both sequences with high
accuracy. In a few steps, a, and b,
were impossible to differentiate: all
the decimal digits computed coin-
cided. In other words, both se-
quences rapidly converged to a com-
mon limit M(a, b,), called the
arithmetic-geometric mean.

At the same time, Gauss studied
a curve called the lemniscate or the
lemniscate of Bernoulli. This is a set
of points such that the product of
their distances to two fixed points
O, and O, (the foci) is constant and
equal to

1 2
[E|OIOZ|J (fig. 1).

In 1797, Gauss began a system-
atic study of the lemniscate. He had
been trying to find its length for a
long time, until he guessed that it
was equal to

T
M(~2,2)

(where M denotes the arithmetic-

geometric mean defined above).
We don’t know how Gauss

guessed this. However, we know

that he did it on the 30th of May,
1799. At first, Gauss had no proof of
this formula, so he calculated both
values to 11 decimal places! He also
defined functions for the lemniscate
similar to trigonometric functions of
the circle. For example, for the lem-
niscate in which the distance be-
tween the foci is v/2 , the lemniscate
sinus sl(t) is simply the length of the
chord corresponding to the arc of

Y

Ol OZ X

Figure 1

length ¢ (fig. 1). Gauss spent the last
years of the eighteenth century on
the development of the theory of
lemniscate functions. For them, he
obtained addition and reduction
theorems similar to those for trigo-
nometric functions.

Then Gauss began to study ellip-
tic functions, which are a generali-
zation of lemniscate functions. He
realized that it was a quite new
branch of mathematical analysis.
After 1800, Gauss didn’t devote
enough time to the theory of ellip-
tic functions and didn’t develop it to
the degree that would satisfy him in
completeness and rigor. From the
very beginning, he decided not to
publish intermediate results, hoping
to publish everything in a final book
as was the case with his arithmetic
research. However, he never had
time to carry out this plan.

In 1808, he wrote to his friend and
student Schumacher: “We can eas-
ily manipulate trigonometric and
logarithmic functions; however, a
magnificent golden spring that
hides the secrets of higher functions
remains almost terra incognita. [
worked hard on this topic, and I am
going to publish a major work,
which I have already hinted at in
my Disquisitiones Arithmeticae.
One is amazed by the wealth of ex-
tremely interesting facts and rela-
tions presented by these functions.”

Gauss was sure that there was no
need to hurry with the publication
of his results—it had been that way
for 30 years. But in 1827, two young
mathematicians—Jacobi and Abel
—published many of the results that
had been earlier obtained by Gauss.
He wrote:

“The results obtained by Jacobi
are a part of my own large work,
which I hope to publish if the Al-
mighty grants me strength and
peace of mind.” (A letter to
Schumacher)

“By presenting the results with
great rigor and elegance, Abel an-
ticipated a lot of my own thoughts
and facilitated my task by about a
third. Abel went the same road as I
did in 1798; thus it is not surprising
that we obtained similar results.
This similarity extends even to the
form and sometimes to the nota-
tion, so that many formulas seem to
be rewritten from mine. However,
this fact shouldn’t be interpreted in
the wrong way, I don’t remember a
single instance when I discussed
these questions with outsiders.” (A
letter to Bessel)

At last, in a letter to Crelle (May,
1828), Gauss wrote: “Since Abel
demonstrated such an insight and
elegance in his presentation, I feel
that I can refrain from publishing
my results.”

It must be noted that a remark in
Disquisitiones Arithmeticae that
cyclotomy theory can be extended
to the lemniscate had a great impact
on Abel. He wrote: “I had been pon-
dering over these questions for a
long time, and at last I was able to
lift the veil of mystery over Gauss’
cyclotomy theory. Now his reason-
ing is quite clear to me.”

CONTINUED IN THE NEXT
ISSUE
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ALPINE INCLINE

Solving for the slalom

Once you understand the forces, it's all downhill from there
by A. Abrikosov

N THE WORLD OF WINTER

sports, downhill (or alpine) skiing,

the luge, and the bobsled are in a

class by themselves. Watching
competitions in these sports, you
may wonder if there is a reasonable
way of descending a hill the fastest.
Maybe the time of descent in such
a competition is purely stochastic.

By now you have all solved the
problem of a body sliding down an
inclined plane (figure 1). The system
of equations describing this motion
yields the acceleration of the body at
the start, the speed of the steady-
state motion, and the duration of the
motion from start to finish. Using
this analogy we arrive at a paradoxi-
cal result: the time of descent
doesn’t depend on the actions of the
participant. However, the skill of
the participant has been omitted
from these equations. Let’s see how
we might factor in the skill.

Before we begin, we should think
about friction and air resistance. The
coefficient of friction is determined
by the choice of wax. The role of

o>
aerodynamics should not be under- é
estimated for lugers and ski jumpers s
(and for the downhill and super G 5
events, too). Not only is it vital to °
have the correct stance, but even the " Eﬂ
material and cut of the ski suit are 2
important. -
<
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Figure 1. A body on an incline: mg
is the force of gravity, N the normal
force, ¥, and ¥, the forces of friction
and air resistance (drag). The equa-
tion of motion of the body is

ma=mg+N+F, +F,.

An impressive example is the leg-
endary victory of the French down-
hill racing team. The French were
the first to realize that wearing flap-
ping numbers on their chests is a
luxury at a speed of 100 km/h. Un-
der a barrage of jokes they glued the
numbers onto their ski suits. No-
body laughed when they were first
at the finish line.

Nowadays hundredths of a sec-
ond are at stake—so skaters put on
“ultrastreamlined” suits, and down-
hill racers are even tested in wind
tunnels. Bent ski poles help skiers
take the optimal stance. New ski
waxes and other coatings are tested,
and novel alloys for bobsled runners
are composed. The theft of a ski
wax, described by the popular
children’s writer Leo Kassil in the
novel The White Queen’s Move, is
child’s play compared to the compe-
tition for Olympic gold.

However, the modern equipment
of all the participants is more or less
equivalent. The key role is the indi-
vidual qualities of the athlete: a
strong will to win, physical condi-
tioning, and special training.

Let’s see how the laws of mechan-
ics can turn one’s physical attributes
and the desire for victory into pre-
cious seconds. In analyzing the prin-
ciples of skiing we shall not discuss
the high-speed downhill event,
where the main roles are played by
aerodynamics, control, and the
choice of trajectory, but rather the
slalom—a downhill race along a zig-
zag course. In such a race an athlete

must succeed by his or her own ef-
forts and at times display an almost
acrobatic dexterity.

Forces

Let’s return to the forces that af-
fect a skier. As spectators, we ob-
serve the skier in an inertial (labora-
tory) reference frame fixed to the hill
or the television camera. By con-
trast, skiers observe the world from
their own noninertial reference
frames, which are fixed to them. Al-
though it is not a simple system for
calculations, let’s view the course
from the skier’s eyes.

Assume that the skier slides
along an arc at a constant speed. In
addition to the real forces such as
gravity, friction, the normal force,
and air resistance, there is another
force in the skier’s noninertial refer-
ence frame: the centrifugal force F,
which is directed from the center of
the arc and is given by

F = mv?/R,

where v is the speed of the skier and
R is the radius of the arc (figure 2).
The skier’s center of mass is fixed
in the moving reference frame.
Therefore the sum of all forces ap-
plied to the skier (the resultant force)
is zero at any point in time. Thus the
reactive force of the snow must be
tilted toward the center of the arc,
since this is the only force that can
counterbalance the centrifugal force
F . In bobsled the necessary tilt of
the reactive force is provided by tilt-
ing the runners of the sled. Skis have
metal edges to improve their bite on

inertial frame

the snow. When turning, a skier
turns the skis on edge to “grip” the
snow—just as skaters do on ice. In
the inertial (laboratory) reference
frame the horizontal component of
the reactive force imparts a centrip-
etal (directed toward the center) ac-
celeration to the skier. To provide a
sure grip on treacherous hard-
packed and icy slopes, the edges
should be sharpened regularly, espe-
cially before competitions.

What loads act on a skier? Let’s
estimate them. The mean speed of a
slalom racer is about 10 m/sec, and
the radius (radius of curvature) of the
arc is about 5 m; therefore F,; = mv?/
R =m - 20 m/sec?, which is twice as
large as the weight of the skier. This
force should be added to the compo-
nent of the force of gravity normal to
the slope of the hill, which has a
value of mg cos o (usually o < 30°, so
cos o > 1/2). Thus the total load is
larger than 2g and is applied pre-
dominantly to the “outside” leg (an
attempt to “stand” on the inside leg
usually results in a fall). The charac-
ter of these loads is very similar to
the loads produced by a vibrational
testing machine. Now you see why
professional downhill skiers train
their muscles even in summer (for
example, they do squats with
weights).

Tngjectory

Let’s decompose successful rac-
ing into individual components.
Why can’t a skier be treated as a
bead sliding along a smooth curved
wire? First, because the skiers

noninertial frame

Fcf

v
Y

Figure 2. Inertial and noninertial reference frames. A centrifugal force acts
on the skier in the noninertial reference frame. Here and in the following
figures the blue arrows denote the direction of the fall line.
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Figure 3. variants of a slalom track.
The red line is the optimal track.

choose their own paths within the
corridor set by the flags (or by the
chute in bobsled). From a physical
viewpoint the slope of a hill is a two-
dimensional space where a skier
(even if considered to be a material
point) must find the optimal trajec-
tory. In contrast, the motion of a
bead on a wire is one-dimensional.
It may simulate bobsled racing (the
most “one-dimensional” kind of
racing), where the trajectory is more
or less fixed and the racing time de-
pends predominantly on how well
the crew accelerates the bobsled at
the start.

The optimal trajectory is deter-
mined by a combination of several
factors. First of all, it is desirable to
ski the shortest path, minimizing the
deviations from the fall line (figure 3).
Here the benefit results not only
from the path length but also from an
increase in the mean steepness of the
trajectory: the steeper the slope, the
greater the motive force and the
smaller the friction. Therefore, sla-
lom racers try to ski as close as pos-
sible to the flags: they even touch
them with their shoulder or torso.

We can estimate the loss of time
due to lengthening the path trav-
eled. Let the deviation from the op-
timal curve be only 10 cm. A slalom
course usually has 50 gates. At a
mean speed of 10 m/sec, the lost
time will be quite noticeable:
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At={50-0.1 m)/(10 m/sec) = 0.5 sec.

By contrast, in the high-speed
downhill event or in the giant sla-
lom, where the number of gates is
smaller and the mean speed is
larger, small deviations from the
optimum path are not very signifi-
cant. However strange it may seem,
to “race to the flag” (that is, to
straighten the trajectory between
the flags) is also disadvantageous.
First, skiers must decrease their
speeds to carve sharper turns. Sec-
ond, the time of travel along a
straight line is not necessarily the
shortest.

Let’s consider a simple example.
A bead slides with zero initial speed
from point A to point B along two
trajectories: first along an arc, then
along the subtending chord (figure
4). If the angular size of the arc is
small, the duration of the motion in
the first case is one-fourth of the
period of oscillation of a simple pen-
dulum of length R (we neglect fric-
tion):

T
T 3 R/g.

The length of the chord is
I = 2Rsin(6/2), and the acceleration
of the bead in the second case is
a = gsin(8/2), so the corresponding
duration of the descent will be

T, =2l/a=2R/g.

Since T,/T, = /4 < 1, the bead that
slides along the arc will be first to
the finish.

Figure 4. Beads on wires. The time
required to slide down along the arc
AB is shorter than that along the
subtending chord.

Figure 5. Telemark turn: The skier
takes a step forward with the outside
ski and uses the arms for balance.
However, modern downhill equip-
ment doesn’t allow one to perform
this kind of turn.

This is not a miracle: although
the path along the arc is longer, it
starts with a steeper slope. There-
fore, the bead accelerates more rap-
idly, and in this case the advantage
gained in speed is more important
than the disadvantage suffered in
total path length. We may guess that
a trajectory composed of two
smoothly joined arcs is also better
than a trajectory with alternating
drastic turns and straightened seg-
ments.

Even in his day Galileo was in-
terested in the shape of the
brachistochrone, which is the name
given to the trajectory of most rapid
descent from one point to another.
He believed that the curve in ques-
tion is a circular arc (as in our ex-
ample). However, in 1697 Johann
Bernoulli showed that in the ab-
sence of friction this “magic” curve
is not a circular arc but a cycloid.
The equation of the brachistochrone
is used to design bobsled runs and
roller coasters, but it is impossible to
calculate the optimal trajectory of a
slalom skier by purely theoretical
means. Ski racers need intuition
and experience. They must carefully
examine the arrangement of flags on
the course. As the famous French



Flgure 6. Snowplow (or wedge) turn:
Standing on the inside ski, the skier
pushes against the snow with the
outside ski.

alpine skier Jean-Claude Killy ad-
vised, they must think five gates
ahead.

ks

In alpine skiing, as in many other
sports, progress in sports technique
goes hand in hand with improve-
ment of the equipment. Just as one
couldn’t dream of 6-meter pole
vaults before the invention of the
fiberglass pole, so it was impossible
to imagine the style and technique
of modern alpine skiers with the
old German hickory skis and
“Kandahar” bindings.

Fast skis must not only slide with
minimal friction, they must hold
the slope and not slide in the trans-
verse direction. Indeed, the formula
for centrifugal force says that the
speed in a turn is proportional to
square root of the transverse reac-
tion force F of the snow:

v=.FR/m.

However, this is not the only rea-
son to avoid side-slipping, or skid-
ding. More importantly, skidding
takes energy — precious kinetic en-
ergy is spent scraping snow from the
slope. Usually skiers employ skid-
ding when they need to slow down
in order to negotiate a steep place,
where novices are not confident of

Figure 7. A parallel turn performed
by skidding (Christy). The parallel
skis sweep less area in comparison
with the snowplow turn, resulting in
less braking.

their skill, or just to smooth out the
course after training. But if a skier
skids on a turn in competition, the
stopwatch will register it immedi-
ately. Now we see why skiers set
their skis at as large an angle to the
slope as possible and to cut the edges
into the snow. (Nowadays this re-
veals the trademark of the manufac-
turer on the bottom of the skis.)

Downbhill skiing owes its origins
to Fridtjof Nansen, a great Norwe-
gian polar explorer, politician, and
Nobel Price winner, who was also
the author of the first book on down-
hill skiing.

In the time of Nansen, skiers
were equipped with soft leather
boots attached to rigid skis without
metal edges. The first tool of the
downhill skier was the telemark
turn (figure 5). This beautiful turn
requires skill and carries the risk of
a fall.

The telemark turn was replaced
by the more popular wedge or snow-
plow tum (figure 6). Nowadays most
skiers start out by learning this turn.
It is the simplest way to perform a
turn, but unfortunately it is also the
slowest.

The “last word” in turns is the
parallel turn, in which the skis are
kept parallel. This turn was continu-

Figure 8. A “carved” turn. The skis

are bent and they do not scrape snow,

allowing minimal braking.

ally improved, and in time it firmly
took hold as the main element in
the technique of a downhill skier. At
first, the parallel turn was performed
with skidding (the Christy; figure 7).
The inside ski is unloaded; the
skier’s body is a little bit forward, so
the tip of the ski holds the snow
better than the heel. Therefore the
heels skid slightly in performing the
turn. This turn was faster and safer
than the previous ones.

Further progress in turning tech-
nique comes naturally. It is the so-
called “carved” turn (figure 8), for
which the resistance to motion is
minimal. As speeds increased, the
old requirements on ski equipment
were replaced by just the opposite
ones. Modern ski boots are made of
rigid plastic with high tops. They
transfer forces directly from the
lower leg to the ski and permit good
edging. The ski itself is flexible, so
it can be bent along the arc to in-
scribe a turn, leaving a narrow
carved track. To make it easier for
the ski to assume an arc shape, it is
made somewhat narrower just un-
der the boot (figure 9). When edging,
the skis hold the snow more
strongly at their ends, so the pres-
sure curves them in the proper way.

It is not easy to make good skis
A manufacturer must meet at least
two conflicting requirements. First
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Figure 9. In order to make it easier for
a ski to bend on the turns, it is made
with a “waist,” which is a small
narrowing in the middle. When
performing “edging,” the pressure of
the foot will bend the ski as needed.

the ski must bend elastically along
an arc in the longitudinal direction.
Second, to keep it from skidding, the
ski should be rather rigid to resist
twisting into a “propeller” shape.
The skis should also “maintain di-
rection” and not curve in the plane
of the slope (that is, they must not
curve into a saber shape).

To find a happy combination of
just these two features alone is a
very difficult problem for the manu-
facturers, and there is no clear-cut
solution. In the standard slalom
with its steeper turns but lower ve-
locities, skiers use more flexible and
shorter skis than those used in the
giant slalom. Snow and weather
conditions also make their de-
mands. Therefore, just before the
start of the race the future champion
will choose a particular pair of skis
from a set carefully prepared before-
hand.

Fortunately, amateur downhill
skiers do not need to worry about
such things. Those special skis we
see on TV represent only the very tip
of the iceberg. While professional
sports equipment is very demanding
and unforgiving of minor mistakes,
millions of simpler and more com-
fortable skis serve faithfully for the
many amateur athletes who are the
fans of this major sport.

Some tricks

Now we consider the most im-
portant element, without which
the technique of modern slalom
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and giant slalom is impossible. Al-
though the basic physical principles
of this element are clear, some of
what we say may be controversial.
Some specialists do not believe that
downhill skiers can increase their
speed by their own maneuvers,
even though films of outstanding
skiers prove it. The hidden possi-
bilities of active skiing were dem-
onstrated by Ingemar Stenmark at
the very beginning of his fantastic
career. The “Swedish Hurricane”
outstripped his competitors by
more than one second, while they
were desperately fighting for mere
tenths of a second.

What we have to say next may
sound unbelievable to those who
know how to ski. While recognizing
the validity of their experience, here
we shall describe the process from
our own physical point of view.

Is there a clue to the phenomenon
of acceleration in downhill skiing to
be found in some other sport? Yes,
in ordinary cross-country skiing!
Nowadays the “skating” technique
is very much in fashion (figure 10a).
This technique has led to new rac-
ing records. Can slalom racers adapt
it to their own needs?

The idea is not new. The skating
technique was actually first tried in
alpine skiing before it spread to the
flats. On a hillside slope it looks like
this: every turn is taken with a
single push of the outside ski, so the

%

Figure 10. The skating technique
on a flat site (a) and on a slope (b).
The red curves are the trajectories of
the skier’s center of mass, while the
black curves are the tracks of the skis.

tracks diverge slightly from the be-
ginning to the end of the arc (figure
10b). The origin of the speed gain is
obvious, but there are paybacks to be
made. First, the skating technique
requires very fine coordination of
the legs and keeping one’s balance at
the moment when the load is shifted
to the inside leg. Second, it prolongs
the transition from one turn to the
next. At the crossing points of the
trajectory and fall line the skier
changes one arc for another and car-
ries his center of mass over the skis.
Then comes the next turn. If the skis
are wide apart, the transfer of center
of mass will take longer, so the lin-
ear portion of the trajectory will
grow. In addition, the skis will be
“unedged” for a longer period, so the
skier will be slowed by side-slipping.
This effect manifests itself on trails
where it is very difficult to hold on
to the slope. Thus the skating tech-
nique is not the fastest way to go.
It would be ideal both to acceler-
ate and to keep the skis closer to-
gether. Can this really be done? Let’s
analyze the skating technique once
again (figure 10a). The center of
mass of a cross-country skater traces
a wavy trajectory (the red line in fig-
ure 10a). The athlete’s body moves
ahead of the supporting ski and at
some angle to it. It is at this period,
and not during the change of the
supporting ski, that the skier per-
forms work and gains speed.
Haven’t we encountered this

_kind of motion previously? Yes, in-
7

deed. The slalom skier also has a
zigzag motion, and his body doesn’t
slavishly follow the skis. At the end
of a turn the skier’s center of mass
overtakes the skis, passes over them
and goes ahead, that is, to the inside
of the subsequent arc. Can a push be
added to it? The answer is yes.
However, this push looks quite
different from the skating tech-
nique and is rarely seen by the in-
experienced eye. In reality, it is a
particular type of motion that has
two phases: bending and unbend-
ing. Initially, when the skiers come
to the point at which the arcs are
joined (that is, the point where the
trajectory crosses the fall line and




where the body overtakes the skis)
they bend their knees as if absorb-
ing the shock of a bump. This bend-
ing (sometimes it is rather abrupt)
makes it possible to retain the
speed gained and to avoid side-slip-
ping. The knees are straightened
immediately after passing the point
where the arcs are joined, and this
move pushes the body slightly for-
ward, imparting an extra impulse in
the direction of the fall line. At the
end of the arc the skis again run
ahead of the skier, and the cycle of
bending (absorbing shock) and un-
bending (pushing off) is repeated.
All this is performed on narrowly
set skis.

By the way, when observing
downbhill skiers, you may have seen
that in many cases the skiers take
side steps from ski to ski. This
doesn’t contradict our reasoning:
first, the ski course is not perfectly
even; second, these small steps help
them keep their balance, and third,
even great masters can make a mis-
take, after all.

To clarify the physics of skiing,
we now turn to quite another enter-
tainment that is far from winter
sports.

Summer analogy

Let’s leave downhill skiing for a
while and recall the good old sum-
mer time and large park swings. Af-
ter passing the lowest point, the
swing goes up with gradual decelera-
tion. At the moment when it stops
at the highest point, we squat down
and rush earthward, the wind whis-
tling in our ears. At the lowest point,
where the overload is maximum, we
stand up and again fly upwards with
a fluttering heart—and this time we
go a little bit higher than before.
During this swinging, the center of
mass of the system describes a “fig-
ure eight” (figure 11).

Increasing the amplitude in an
oscillatory system due to changes
of its parameters (in our swing it is
the distance from the suspension
to the center of mass) is called
parametric resonance. By standing
up at the lowest point, we perform
positive work against the com-

bined centrifugal and gravitational
forces (considering the motion in
the noninertial reference frame).
At the uppermost point the cen-
trifugal force is zero, and the only
acting part of the gravitational
force is mg cos o. Thus the nega-
tive work performed in squatting
(with the same amplitude) is
smaller in absolute value. The to-
tal work performed during a cycle
is positive, so the energy of the
system continually grows.

In a similar way we may estimate
the energy balance of a downhill
skier. Here a surprise is waiting. At
tirst glance, everything is similar to
what takes place on a swing. The
centrifugal and gravitational forces
also act on a skier who moves along
an arc (figure 12). The angle between
these forces varies, so the resultant
force is minimal at the beginning of
the arc (F), while it attains its
maximum value (F,) at the end of
the arc. In squatting down, the skier
performs negative work, while in
standing up again he performs posi-
tive work. However, when he
straightens up at the beginning of
the arc, he is affected by a smaller
force than when he bends his legs at
the end of the arc. Thus the total
work performed during the bending-
unbending (or absorb-and-push)
cycle is negative! Isn’t this a para-
dox? It would make more sense for
the skier to do positive work to in-
crease his kinetic energy.

Figure 11. Trajectory of the center
of mass during swinging on a swing.

mg

Figure 12. The resultant of the
gravitational and centrifugal forces at
the beginning and the end of an arc:
BBy,

There is no mistake here—in-
deed, the skier performs work to
damp speed! Up till now we haven’t
concerned outselves with the energy
balance but have thought only about
gaining speed and minimizing the
losses. In this theoretical haste it is
no wonder that we have stubbed our
toe. Now it is time to dot the i’s and
cross the t's. We write the law of
energy conservation on some por-
tion of the path as

A(mvz)
AE = mgAh + T

=W + Wy, +W.

On the left-hand side of this equa-
tion are the changes in potential
(mgAh) and kinetic (A(mv?)/2) ener-
gies of the skier, while on the right
are the work performed by the skier,
by friction, and by the air resistance
or drag. What are the comparative
values of these components?

Let’s start our analysis on the left-
hand side of the equation. The mean
speed of a skier does not vary much
along the course. Thus the second
term is not particularly important,
and we may drop it from the energy
balance equation, that is, we set
Almv?)/2 = 0. By contrast, the first
term is large. Indeed, to gain the
speed typical for such an event (v ~
10 m/sec), a slalom racer needs to
descend only Ah = v?/2g = 5 m. This
is a tiny amount on the slalom

skier*
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courses where the drops in elevation
are counted in the hundreds of
meters.

Now look at the right-hand side
of the energy equation. The braking
of the skis during a carved turn is
very small. The air resistance is
larger, and it depends on speed.
However, both of these decelerating
forces will not prevent a skier from
gaining a speed of about 100 km/h
(28 m/sec). (Although the friction of
the skis in a slalom turn is greater
than in the downhill event, the dif-
ference is not enough to alter our
conclusion.) At such a speed the
tlags along the course would look
like a picket fence, and the course
would be impassable. Thus, the
main concern of a skier is not to gain
but to lose speed! Therefore, the
negative work performed by the
skier in the bending-unbending
cycle is a necessary condition to
meet the requirement of energy bal-
ance:

1% < 0.

skier

In order to win a skier must do
work, and the negative sign by no
means makes this work easier. We
see that physics conforms to the
rule: one must work hard to win.

Why is this mode of decreasing
energy more efficient than the
gradual energy dissipation during a
skidding turn? First, the static loads
are replaced by less tiring dynamic
ones. Now one does not brace with
all his might against the snow with
the ski edges and lose speed at the
end of an arc. Second, recall the ex-
ample of the two beads on wires (fig-
ure 4). If the skier’s energy is spent
to overcome friction, the motion
along an arc can be roughly consid-
ered as uniformly accelerated like
that of a bead on a straight wire.
When executing a turn with accel-
eration, a skier performs work and
gains speed at the beginning of the
arc and loses speed at the end of it.
Consequently, the mean speed is
greater, and a shorter time is needed
to make a turn (just as for a bead on
a wire). Thus, the bending-unbend-
ing mode of racing provides an addi-
tional way to control speed.
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In contrast to bobsled and luge,
downhill skiing is distinguished by
freedom of movement and unique
dynamic possibilities. In this respect
it is similar to skateboarding. By the
way, skateboarding is a good ex-
ample of the fact that the “skating”
technique is not the only way to ac-
celerate oneself—where can one
step when both feet are standing on
a single skateboard? Acceleration
gained by parametric resonance
makes it possible to climb small el-
evations on a skateboard. Its work-
ing mechanism is the same: the
body is inclined inside the arc, so
bending at the beginning of the arc
is followed by unbending at the end,
thereby yielding a resultant impulse
in the direction of motion. One
should not be misled by the fact that
a skateboarder accompanies bending
with a vigorous swivel at the waist:
that helps him hold the arc.

From the external observer’s
point of view, the main role is
played by the normal (to the axis of
the skateboard) component of the
frictional force, which is similar to
the component of the reactive force
of the snow during edging of down-
hill skis. This force alternates in
value and direction during a zigzag
motion, but on average it is directed
forward.

And so the whole secret is re-
vealed. But do not think that you
know everything there is to know
about downhill skiing: our theoreti-
cal “sit down-stand up” model is
greatly oversimplified. Swimming
must be learned in water! There is
no downhill skier who has not
plowed a couple of large snowdrifts
with his body.

Gonclugions

Downhill skiing is accompanied
by an incomparable feeling of won-
derful freedom, with the whole
world rushing toward you, sparkling
with frosty snow. This can not be
described by formulas. Small chil-
dren learn to ski by imitating elders
while knowing nothing of the phys-
ics of skiing. However, knowledge is
power, and so Newton’s laws show
us another way to master skiing—

from the head to the legs, so to
speak.

There are some points we did not
even touch on in our analysis. For
example, a skier is affected not only
by forces, but also by their mo-
ments. In other words, a skier is not
a material point, but a rotating
physical body. Perhaps in this av-
enue the lovers of downhill skiing
will find the answers to some un-
solved problems.

What if you are not a ski enthu-
siast? Now that you know some-
thing of skiing theory, wouldn’t you
like to apply your knowledge to
some other sport? Why not try? As
for me, if downhill racing is not hap-
piness itself, it will do nicely as a
substitute. (@
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Physics

P276

Dummy Earth. A dummy Earth
is made for one of Spielberg’s films.
It has the same size and mass as the
real Earth, but its construction is
different: there is a small ball of ex-
tremely dense matter inside a very
light outer plastic ball. Due to some
inaccuracy during assembly, the
center of mass of the heavy ball is
shifted in the equatorial plane by a
distance d = 100 km from the cen-
ter of the outer shell. Find the mini-
mal period of revolution of a satel-
lite orbit in the equatorial plane. (A.
Zilberman)

P277

Soapy bubble. A soap bubble is
inflated with gaseous nitrogen. At
what diameter will it float in atmo-
spheric air of the same tempera-
ture? The surface tension of the
soap solution 6 = 45 mN/m, the
molar mass of air M, = 29 g/mol, the
molar mass of nitrogen My, = 28 g/
mol, and the atmospheric pressure
Do =10° Pa. Neglect the mass of the
soap film. (A. Sheronov)

P278

Electrical sandwich. A plane or
sandwich capacitor consists of three
parallel metal plates of area S. The
space between the plates is filled with
dielectrics characterized by dielectric
constants ¥, and «, and resistivities p,
and p,. The thicknesses of the dielec-

HOW DO YOU
FIGURE?

Ghallenges

trics are d, and d,. The capacitor is
connected to a constant voltage
source V. Find the charge on the
middle plate when the current in the
circuit has reached its steady state.

P279

Toroidal transformer. Three iden-
tical coils are wound symmetrically
on a toroidal core. One of the coils
is connected to an AC source, the
second is left open, and the third is
connected to a voltmeter. In this
case the voltmeter reads 1/2 of the
source voltage. What will it read if
the second coil is short-circuited?
Neglect the resistance of the coils,
and consider the voltmeter and the
voltage source to be ideal. The mag-
netic permeability of the core
doesn’t depend on the magnetic
flux. (A. Andrianov)

P280

News and views. You are given a
prism with the cross-section shown
in figure 1 and index of refraction n.
ZABC is a right angle and ZBAC =
ZACB. Faces AC and BC are smooth
and face AB is frosted (figure 1). The
prism is placed on a newspaper with
face AC down. What fraction of the
text (by area) can be read through the
smooth face BC? (S. Gordyunin, P.

Gorkov) 5

Figure 1

Math
M276

Pyramidal structure. Five edges
of a triangular pyramid are of length
1. Find the sixth edge if it is given
that the radius of the sphere circum-
scribed about this pyramid is 1.

M277

Algebra quiz. Solve the following

system of equations:
x-1 y-2 3-x-y

Xy—S_Xy—4_7_X2_y2'

M278

Trigonometry quiz. Solve the
equation

lcos 3x — tan x| + Icos 3x + tan x| =
Itan? x — 31.

M279

Abacus workout. Without using
a calculator, find which of the fol-
lowing numbers is greater: 292002151
or 54773590,

M280

Smallest angle. Let M be the
midpoint of side BC of a triangle
ABC and let Q be the point of in-
tersection of its bisectors. It is
given that MQ = QA. Find the
minimum possible value of angle
MQA.

ANSWERS, HINTS & SOLUTIONS
ON PAGE 55
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KALEIDOSCOPE

Returning to a former state

N MY CHILDHOOD, T WAS

fond of the kaleidoscope. Look

into the magic tube and you see a

magnificent mosaic. Rotate the
kaleidoscope a little, and a new pat-
tern appears; another turn brings yet
another pattern, and so on.

When I first saw Rubik’s Cube, I
just rotated it as I would a kaleido-
scope to admire the play of colors
on its faces. Soon, I was tired of
aimlessly rotating it and tried to
bring the cube back to its original
arrangement. After several hours of
unsuccessful attempts to find an al-
gorithm to bring the cube into or-
der, T looked up a magazine article
and, in about an hour, learned how
to do it.

Then I began to rotate the cube
more carefully so as to be able to
return it to its original state. I ro-
tated a face once, then three more
times (fig. 1), and the cube returned
to its original state.

Figure 1

What if we rotate two neighbor-
ing faces in turn, say, in the same
direction? First face, second face—
the first pair of operations; first face,
second face—the second pair; first
face, second face—the third pair; and
so on (fig. 2). At the time, I already

Figure 2
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by A. Savin

knew that the cube would return to
its original state after a certain num-
ber of pairs of rotations. My fingers
grew tired, I lost track of the count,
and still the cube wouldn’t return to
its original state. Only after 105
pairs of rotations did the colors
come back into order.

Why was I so sure that this mo-
ment would necessarily come? Ijust
thought about the problem a bit.
The cube has only a finite number of
states, although this number is very
large. Therefore, it cannot come to
a new state every time—sooner or
later, the cube will come to a state
that has already occurred. We call
this state A, and the original state
of the cube will be called E (fig. 3).

Figure 3

A pair of rotations brings the cube to
a state B, then from the state Bto a
state C, etc. until it comes to the
state A again; then everything re-
peats. Mathematicians say that the
states of the cube repeat periodi-
cally. We now formulate this result
for objects of any sort, rather than
only for Rubik’s Cube.

Periodicity Theorem: Assume
that an object can be in a finite num-
ber of states and an operation is de-
fined that unambiguously brings
each state to another state. Then,
successive application of this opera-
tion gives a periodically repeated se-
quence of the object’s states.

This sounds like a law of nature
or a mathematical theorem, and in-

deed it is. Moreover, this proposition
makes it possible to obtain very in-
teresting results.

However, let us first complete
our reasoning concerning Rubik’s
Cube. Notice a property of our op-
eration: for any state the previous
state can be unambiguously deter-
mined. To get it, one must rotate
first the second face and then the
first face of the cube in the opposite
direction as before. Look at figure 4.

A

Figure 4

Moving backward from the state A
obtained for the first time, we come
to the state E in a certain number of
steps. Therefore, from the state A
obtained for the second time, the
same number of backward steps
brings us to the state E. Thus be-
tween the first and the second states
A the cube must necessarily “visit”
state E.

Such was my reasoning before I
began to rotate the cube according
to the above rule. Of course, the
number of pairs of rotations could
be very large, since the total num-
ber of states of Rubik’s Cube is
huge—43 252 003 274 489 856 000.
I tried rotating the faces in two dif-
ferent directions—one face clock-
wise and the other face counter-
clockwise. In this case, the cube
returns to its original state after 63
pairs of rotations; if three faces are

Art by Vadim lvanyuk



rotated in turn in the same direc-
tion, the cycle terminates in 80
triples of rotations. If you have a
Rubik’s Cube at hand, you can ex-
periment with other combinations
of rotations. If not, take a sheet of
paper and a pencil, and start experi-
menting with numbers. A calculator
or personal computer can be of use;
however, we can do without them.

Repeating digits

Let us divide 136 by 11. By the
way, do you know a test for divisibil-
ity by 11? Here it is: a number is
divisible by 11 if the difference be-
tween the sum of the digits in its
even decimal places and the sum of
digits in its odd decimal places is di-
visible by 11. In our case, (1 + 6) -3
=4, and therefore 136 is not divisible
by 11. What if we try to divide 136
by 11 (fig. 5)? It is easily seen that

Figure 5

digits after the decimal point repeat
periodically. Such a decimal fraction
does not terminate and is called an
infinite periodic decimal fraction. It
is written as 12.36, where the group
of repeating digits is written in pa-
rentheses.

What other integers give periodic
decimal fractions when divided by
other integers? In fact, any integers
will, provided that the divisor is not
zero (we can consider any finite pe-
riodic decimal fraction as an infinite
one by continuing it with zeros af-
ter the last decimal place). Why is
this so? To prove it, we will use the

Periodicity Theorem formulated
above. Consider the difference under
the bar as the object that appears in
the theorem. In our case, this differ-
ence is 2, then 4, then 7, then 4
again, 7 again, etc. Consider the op-
eration that is performed on this
object. First, we add a digit to the
right of it, then subtract the maxi-
mum multiple of the divisor not
exceeding this new number, and the
difference obtained is the result of
the operation.

At first, the digit that is added on
the right depends on the dividend,
however, after a certain number of
steps (in our case, beginning with the
second step), the digit that is added
on the right is always zero. Now the
conditions of the proposition are sat-
isfied: the object (the difference ob-
tained when we subtract) can be in a
finite number of states (nonnegative
integers less than the dividend). The
operation is well-defined: it takes a
number to another number. There-
fore, the sequence of numbers ob-
tained will repeat periodically.
Therefore, the digits in the quotient
will also repeat periodically. Thus,
the proposition is proved.

Repeating sums

What if we take the sum of the
digits of a number, then the sum of
the digits of the number thus ob-
tained, and so on? For example, for
the number 1987, everything is
clear:

What about other numbers? It is

easily seen that any number is

greater than the sum of its digits (ex-
cept for one-digit numbers); thus the
operation of taking the sum of dig-

its makes the number smaller until
it becomes a single digit, and our op-
eration takes any one-digit number
to itself. Therefore, we have proved
that the sequence thus obtained is
periodic (with period 1), beginning at
a certain place.

What is the digit that is repeated
in this sequence? This question is
easy to answer without writing out
the sequence. If the initial number is
not divisible by 9, then it is the re-
mainder upon its division by 9, and
otherwise it is 9. Why is this so? In
fact, because of the test for the divis-
ibility by 9. However, you most prob-
ably know this test in a “shortened”
form: in order for a number to be di-
visible by 9, the sum of its digits
must be divisible by 9. However, a
stronger proposition holds: any num-
ber and the sum of its digits have the
same remainder upon division by 9.

Now it is clear that every number
in the sequence has the same re-
mainder upon division by 9 as does
the initial number. All one-digit
numbers, except for 0 and 9, have
different remainders upon division
by 9. However, the sum of the dig-
its of any nonzero number is greater
than zero, and so our proposition is
proved. A periodic sequence with
period 1 is called a sequence with a
fixed point.

Stuares of digits

What if we consider the sum of
squares of the digits of a number
rather than the sum of the digits
themselves? Again, consider the
number 1987 (fig. 7). We obtain the

Figure 7
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following periodically repeating se-
quence: 145,42,20, 4, 16,37, 58, 89.

For the number 133, we obtain a
sequence with a fixed point of 1 (fig. 8).

Figure 8

Does the operation of taking the
sum of squares of the digits always
give a periodic sequence? If yes, then
what sequences can be obtained?

For the operation under consid-
eration, the following assertions
hold:

1. Any number less than 200 goes
into a number less than 200.

2. Any number greater than or
equal to 200 (or even 100) becomes
smaller under this operation.

The first assertion is easily veri-
fied. Indeed, among the numbers
less than 200, 199 has the maximum
sum of squares of the digits, and this
sum is 163, which is less than 200.
Thus, for all other numbers less
than 200, the sum of squares of the
digits is also less than 200.

The second assertion is also easy
to see (it is sufficient to test several
big numbers to satisfy yourself that
it is true). Below, we give a rigorous
proof of this fact.

Assume that a certain number N
= a,...a;a,a, is less than the sum of
squares of its digits:

a, - 10%+..+a, - 102+

) 2 2
a 10+a0<an+...+ao.
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Then,
a (10" —a )+ ... +a,(10% - a,) +
a,(10 - a,) + ay(1 - ay) 107 - a< 0

In this sum, all terms, except for
the last one, are nonnegative, and
this last term is greater or equal than
91 -9)=-72.1f at least one digit a ,
forn>2,is nonzero (1 <a, <9), then

a, (107 -a )<107-92>091,

and the total sum is positive. There-
fore, n <1 and N < 100.

It follows from Propositions 1 and
2 and the Periodicity Theorem that
the operation of taking the sum of
squares of the digits of a number
necessarily leads to a periodic se-
quence.

It remains for us to find which
periodic sequences can be obtained.
It turns out that whatever the initial
number may be, this sequence will
be either 145, 42, 20, 4, 16, 37, 58, 89
or the “singleton” sequence 1.
Verify this fact for yourself. It is suf-
ficient to take numbers less than
200 as the initial numbers (why?) or
even the numbers less than 161.

What if we consider the sum of
the cubes of the digits rather than
the sum of their squares? Try to
solve this problem yourself.

In conclusion, let us consider an
unsolved problem. Take a number.
If it is even, divide it by 2. Other-
wise, multiply it by 3 and add 1.
Again, if the number obtained, N, is

even, take N/2, and otherwise take
3N + 1, and so on. For the number
34, this process is illustrated in fig.
9. It gives a periodic sequence 4, 2,
1,4,2,1, .. with period 3.

Figure 9

Various initial numbers have
been tried, and all of them lead to
the same sequence. However, this
fact has not been proved so far.

We don’t hold much hope that
any of our readers will solve this
problem. However, try to solve the
following similar problem: if the
number is even, divide it by 2, and
if it is odd, add 101 to it. What se-
quences can be obtained? (@)

CONTINUED FROM PAGE 13

Now it turns out that only indi-
vidualized local information van-
ishes, but the Universe remembers
everything. The universal “coher-
ent” memory is not only preserved
but is continuously being enriched
as long as history goes on. The tran-
sition from past to future looks more
like the formation of a hologram
than some permutations of persis-
tent objects.

However, no analogy can be
strictly precise. Having managed to
solve some old physical puzzles, we
have obtained new ones! This is the
beauty of science, isn't it? Q)
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NEW CONTEST, NEW FORMAT, NEW NAMES

The American Mathematics Competitions is pleased to announce a new contest as well as new names
and a modified format for two of the current exams. The AJHSME is now the American Mathematics
Contest =8 (AMC =8) and the AHSME is now the American Mathematics Contest =12 (AMC
=12). The new contest is the American Mathematics Contest = 10 (AMC = 10), for students in grades
10 and below. This new contest will give more young students a chance to successfully participate in
a significant mathematical problem solving experience.

Why should my school sign up? Because the AMC =10 and AMC =12 provide an excellent
opportunity to challenge your students’ mathematical abilities. It is but a means for furthering
mathematical interest and development.

The AMC =10 and AMC =12 will each be 75 minutes long and will consist of 25 questions each.
Each correct answer is worth 6 points and a blank is worth 2 points. The AMC =10 and AMC =12
will have several questions in common and will be given at the same time, on the Tuesday before the
third Monday in February (the current AHSME date). The students should choose between AMC
=10and AMC=12. Students in 10" grade and under may take either the AMC =10 or AMC =12,
but 11%and 12" grade students may not take the AMC = 10. The school team score will be determined
from the AMC =12. To qualify for the AIME a student must score at least 100 points on the AMC
=12 or be in the top 1% of the AMC =10 participants.

The registration fee for one or both contests is $30.00. One bundle of ten AMC =12 is $12.00 and
one bundle of ten AMC =10 is $10.00. The first bundle of the AMC =10 will be free for the year
2000 only.

Titu Andreescu, Director
American Mathematics Competitions
University of Nebraska, Lincoln
P.O. Box 81606
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phone: 800-527-3690

fax: 402-472-6087

e-mail: titu@amc.unl.edu

2000 AMC exam dates:

AMC=8 - TUESDAY, November 14, 2000
AMC=10 - TUESDAY, February 15, 2000
AMC=12 - TUESDAY, February 15, 2000
AIME - TUESDAY, March 28, 2000
USAMO - TUESDAY, May 2, 2000

www: http://www.unl.edu/amc
A Program of the

Mathematical Association of America
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A question of complext

by Arthur Eisenkraft and Larry D. Kirkpatrick

HAT WOULD HAPPEN IF

a volcano erupted under a gla-

cier? Can we solve such a

problem? Can we do it with
elementary physics? At the 1998
International Physics Olympiad
(IPhO) in Iceland, the competitors
were asked to solve this problem
using data from an eruption that oc-
curred in Iceland a year or two be-
fore the Olympiad took place.

Many problems at the IPhO are
presented in the context of problems
that physicists solve to understand
the physical world. Geophysicists
can generate rather elaborate three-
dimensional computer codes to ana-
lyze the volcanic event, but they can
get a “feeling” for what happens by
simplifying the problem. For in-
stance, they can simplify the geom-
etry by assuming that the hot lava
melts a conical cavity in the ice.
They also assume that thermal con-
duction away from the cavity is
small and that the water does not
flow away. And this is what was pre-
sented to the competitors. Solving
the simplified problem did not re-
quire any knowledge of physics be-
yond what is typically learned in the
first-year university physics se-
quence.

What happens when you are
given a problem that is either too
complex to solve or one where there
are crucial ingredients missing? We
have observed three types of stu-
dents. The first mentions that there
is a piece of missing information (for
example, we don’t know the angle
between the particle and the field)
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Man is an over-
complicated organism.
If he is doomed to
extinction he will die out
for want of simplicity.

—FEzra Pound

and refuses to solve the problem.
The second mentions that we don’t
know the angle but goes on to as-
sume that it is 90° and solves the
problem. The third assumes that the
angle is 90° solves that problem, and
then describes how the solution
changes if the angle were not 90° It’s
the third student who has the flair of
a physicist.

Many problems in the real world
are very complex and cannot be
solved if all the complexity is in-
cluded. If, however, we are able to
simplify the problem without losing
the key elements, we can often re-
duce a complex problem to a prob-
lem (or a series of problems) that we
already know how to solve.

At other times a problem may
appear to be very complex because
of the context in which it is pre-
sented. When we were academic di-
rectors of the US Physics Team, stu-
dents would comment that the
difference between the more diffi-
cult problems in an introductory
physics text and problems given at
the International Physics Olympiad
is that you only realized that Olym-
piad problems are easy after you
have solved them!

This is nicely illustrated by the
first problem on the theoretical
exam given at the IPhO that was
held in Padua, Italy, in July. (See
Happenings for a report on the suc-
cess of the US Physics Team at the
IPhO and a description of the other
problems.) The text of this problem
runs for an entire typewritten page,
but can be summarized as follows:
A vertical cylinder filled with gas
and capped by a moveable glass
plate is illuminated for a finite time
by a laser. As the gas absorbs the
light, the glass plate is observed to
move upward. The competitors
were then asked a series of quanti-
tative questions about the situa-
tion.

What possible assumptions about
the physics could provide a pathway
from complexity to simplicity? Let’s
begin with the friction between the
glass plate and the cylinder walls. If
we know nothing about the friction,
we assume that the friction between
the glass plate and the cylinder walls
is sufficient to damp any oscillations
that occur but not large enough to
produce any significant loss of en-
ergy relative to the other energies in-
volved in the problem.

What assumptions do we usually
make when solving gas problems?
We first assume that the gas is in
thermal equilibrium. Unless other-
wise stated, we usually assume that
the gas is ideal and that the amount
of gas is constant. In this case we
assume that the cylinder does not
leak gas around the piston. This al-
lows us to use the ideal gas law
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PV = nRT,

where P is the pressure, Vis the vol-
ume, n is the number of moles of
gas, R = 8.31 J/K - mol is the univer-
sal gas constant, and T is the tem-
perature in kelvin.

Then we need to decide whether
the system is thermally isolated,
that is, can thermal energy enter or

leave the cylinder? We have previ-

ously solved problems of both types,
so if this is not explicitly stated, we
will need to infer this from the con-
text of the problem.

If we are not given any informa-
tion about the coefficient of thermal
conductivity between the cylinder
walls and the glass plate, we sim-
plify the problem by assuming a
very low thermal conductivity and/
or a very short time so that thermal
losses can be neglected. In this prob-
lem, the competitors were told that
the cylinder walls and the glass plate
had very low thermal conductivi-
ties.

The detailed text told the com-
petitors that light from a constant
power laser was shined through the
glass plate into the cylinder for a
specified time interval. The radia-
tion passed through the air and the
glass plate without being absorbed
but was completely absorbed by the
gas in the cylinder. The molecules
absorbing the radiation were excited
to higher energy states and then
quickly cascaded back to their
ground states by emitting infrared
radiation. This infrared radiation
was reflected by the cylinder walls
and the glass plate and absorbed by
other molecules.

What was this telling the com-
petitors? Independent of the details,
the gas was being heated at a con-
stant rate, and this energy increased
the average kinetic energy associ-
ated with the chaotic motion of the
molecules.

The data often provides other
hints about how to simplify. In this
problem, competitors were given
the following values:

Atmospheric pressure:

P =101.3 kPa
Room temperature:
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T, = 20.0°C

Inner diameter of the cylinder:
2r = 100 mm

Mass of the glass plate:

m = 800g

Quantity of gas:

n =0.100 mol

Molar specific heat at constant
volume:

¢, =20.8 J/(mol - K]
Wavelength of the laser:

A =514 nm

Irradiation time:

At=100s

Displacement of glass plate:
As = 30.0 mm

Even though the initial tempera-
ture of the gas is not given in the
data table, the problem stated that
the gas was initially in equilibrium
with its surroundings. Therefore,
the initial temperature of the gas is
the same as the room temperature.

The pressure of the gas is not
given. However, we’ve done piston
problems before. Because the glass
plate is in equilibrium, the force on
the lower surface must exceed that
on its upper surface by the weight
mg of the glass plate. Moreover, this
must be true after the heating as
well as before. That is, the initial
and final pressures are the same.

We are left with another problem
that we have solved in other simpler
contexts. What is the increase in
temperature of a gas kept at con-
stant pressure when the volume in-
creases by a specified amount? The
wrinkle in this problem is that we
need to calculate the initial height of
the piston first.

Notice that the power of the laser
is not given. Therefore, we need a re-
lationship between the properties of
the gas and the energy added to the
gas. This is provided by the first law
of thermodynamics,

AU=Q-W,

where U is the internal energy of the
gas, Q is the heat added to the gas,
and W is the work done by the gas.
To use this law to obtain the heat Q,
we need to know the other two
quantities. Calculation of the work
is straightforward, but where are we

to find the change in internal energy
of the system? Looking at the data
gives us a hint. Because we are given
the molar specific heat at constant
volume for the gas, we are prompted
to recall that

AU = ch(Y}— T).

When we are asked about the
number of photons emitted by the
laser per second, we must remember
that the laser beam consists of pho-
tons with energy hf and hope that
the beam has a single frequency.
According to the data it does.

In this problem absorption of op-
tical energy produces a change in the
gravitational potential energy of the
glass plate. How efficient is this pro-
cess? The word “efficiency” brings
to mind its definition:

n ol
where W is the part of the work done
to increase the gravitational poten-
tial energy of the glass plate and Q
is the energy received from the laser.

Many assumptions are required
to illuminate our understanding of a
gas absorbing light. Once we solve
the simpler problem, we can then
begin to allow the complexity to
creep back in to refine our under-
standing.

As our contest problem for this
month we present the quantitative
questions from the IPhO problem
that we’ve been discussing.

A. What are the temperature and
pressure of the gas after the irradia-
tion?

B. How much mechanical work
does the gas perform? (Hint: don’t
forget the external pressure.)

C. How much radiant energy was
absorbed by the gas?

D. What was the power-of the la-
ser and the number of photons emit-
ted per second?

E. What was the efficiency of con-
verting optical energy into gravita-
tional potential energy of the plate?

E. If, after the irradiation, the cyl-
inder is slowly rotated by 90° so that
its axis is horizontal, do the tem-
perature and pressure of the gas
change? If so, what are their new



values? (What simplifications do
you need to make? Is the process
adiabatic?)

Please send your solutions to
Quantum, 1840 Wilson Boulevard,
Arlington VA 22201-3000, within a
month of receipt of this issue. The
best solutions will be noted in this
space.

The eyes have it

Our contest problem on vision
and optics in the May/June issue of
Quantum inspired correct solutions
from two consistent teacher con-
tributors, H. Scott Wiley of Wescaco
HS in Texas and Art Hovey of Am-
ity Regional HS in Connecticut.

A.If the human eye is modeled as
a simple lens, we can use the lens
equation

1 1 1
S
f Do Di

to find the focal lengths required for
near and distant objects. Plugging in
the values D, = 2.50 cm and D = 20
cm yields f = 2.22 cm. Likewise, us-
ing the values D, = 2.50 cm and D,
= 2000 cm vyields f = 2.50 cm.

However, the eye is not a simple
lens, as the rays that enter the cor-
nea/lens from air do not return to
air. Let’s use the equation derived in
the article for a single refracting sur-
face:

H2 —Hl

L.
D, D, R

Since f = D, when D, — oo, the right-
hand side of the equation must be
equal to n, /f. Therefore,

A P

DO Dl f
or
1_n /1, +L.
f Do Di

Given that n, = 1.376 and n, =
1.000, plugging in the values D,
2.50 cm and D, = 20 cm yields f =
2.29 em. Using D, = 2.50 cm and D,
= 2000 cm we get f = 2.50 cm.

B. If the human eye accommo-
dated for distance by moving the
lens and changing the image dis-
tance, we would get the following

D, [cm)

50 A
40 A
30 A
20 A
10 4

O T T T T T T T
0 50

Figure 1

D, (cm)

results given a constant focal length
of 2.50 cm and using the simple lens
equation: D, = 20 cm yields D. = 2.86
cm and D, = 20 cm yields D, = 2.50
cm. The range of lens movement
would be 0.36 ¢cm.

C. The only difference in the
image after removal of half the
lens will be in its lowered inten-
sity due to some of the light not
converging on the image. Research
conducted with many people sug-
gests that a misconception arises
whereby these people think of the
two or three rays drawn in ray dia-
grams as the only rays which con-
tribute to the image. This is per-
haps why people do not appreciate
that removal of half the lens will
not produce half an image. Simi-
larly, the size of the object does not
have an impact on the complete-
ness of the image. Once again, stu-
dents may assume that if the ray
we choose to draw from the top of
the object parallel to the principal
axis is not able to hit the lens, part
of the image may disappear. It is
worthwhile to conduct experi-
ments to see how changes in the
lens shape or object size affect im-
ages.

D. Given the data in the problem
and the simple lens equation, you
can find the focal length for each
pair of measurements and find an
average of 7.99 cm.

The lens equation can be derived
from a graph of D, versus D, shown
in figure 1. We recognize this as a
hyperbola that has been translated
by y =fand x=f. We also notice that
in the general equation for a hyper-
bola (xy = C), the value of C appears
to be f2. Assuming this to be true,
we obtain the Newtonian form of

the lens equation:

(D, = fND; = f1=f*.

This can be rearranged to obtain

D

2 —f(D;+D,)=0
b~ fiDi+ D)
1 1 1
—=—t—.
f Do Di

E. To find the conditions for a
thick lens to have no chromatic ab-
erration for two different colors we
require the lens to have the same
focal length for the corresponding
two indices of refraction.

Multiplying both sides of the
equation by R R,n,n, and redistrib-
uting and canceling terms yields

n,(mn, Ry —mn, R, —nyn,d +d)
= HZ(HlanZ = H1H2R1 = Hlnzd + d)

Since n, # n,,

and
= mn, (R, =R .

mny —1

Notice that the dispersion n,- n,
is not part of the solution—only the
product of the indices appears. Since
the indices of refraction are greater
than 1 and the thickness of the lens
is positive, we conclude that

R,-R;>0.

The first result is that the lens
cannot be plano-convex or plano-
concave since those lenses require
an infinite radius of curvature and
would require an infinite thickness.

The second result is that a double
concave (diverging) lens is possible
if R, is negative and R, is positive.

The third result is that a converg-
ing lens is possible with either R, >
R,or R, < —R, . The converging lens
cannot be symmetric (R, # R,). [@
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Selecting the best alternative

N HIGH SCHOOL AND IN

university entrance exams, stu-

dents are often given prob-

lems that require setting
up an equation. The stu-
dent must first translate
the conditions of the
problem from natural
language into the lan-
guage of mathematics
and then solve the
equations and in-
equalities obtained.
For the situation de-
scribed in the problem
the student is to find
certain quantities given
some other quantities.
For example, here are the
first and last phrases of typi-
cal problems found in a high
school problem book:

Two typists have a manuscript to
type... How many hours does it take
each typist to type the entire manu-
script!

A motor launch heads down-
stream from a river depot... How
much time did it take the cyclist to
go from the town to the tourist cen-
ter!

A copper-zinc alloy containing 5
kg of zinc is fused with 15 kg of
zinc... What was the initial mass of
the alloy?

It is important to know how to
solve such problems, which come
up often in industry and econom-
ics, where one needs to calculate
and combine various indicators,
analyze the operation of a com-
pany, etc. Such an analysis results
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in a better understanding of the
current situation. The next natural
step is to plan future activities.
Here, of course, there are numer-
ous alternatives available, and one
wants to choose the best of them.

The statement and solution
of such problems are the subject
of mathematical programming.
The Russian mathematician L.
V. Kantorovich (1912-1986) was
one of the first to use mathematics
for solving practical problems of this
kind. In 1939, he published a book
called Mathematical Methods for
Organization and Planning of Pro-
duction. In the introduction to this
book he wrote:

“There are two ways to increase

the efficiency of a shop, a fac-
tory, or an entire branch of
industry. One way is to
improve the technol-
ogy, i.e., to provide
new capabilities
of the individual
machines, to
modify the tech-
nological pro-
cesses, or to find
new and better
kinds of raw ma-
terials. The other,
still underutilized
way is to improve the
organization and plan-
ning of the production
process. The distribution
of tasks among the ma-
chines in a factory, the distribu-
tion of orders between factories,
and the distribution of various
kinds of raw materials, fuel, etc.,
fall into this category.”

Many years have passed since the
publication of that book, and math-
ematical programming has developed
into a large branch of mathematics
based on economic-mathematical
methods and the extensive use of
computers. :

In real problems of planning and
management one deals with a very
large number of variables simulta-
neously. In this article, however, we
consider only simple examples with
a small number of variables; in these
examples, the solution can be ob-
tained by using methods familiar
even to first-year algebra students,
such as proportions, properties of
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linear functions of a single variable,
exhaustive testing of a small num-
ber of possibilities, and common
sense.

Ghoosing the site of a hathhouse

The village of Soap has 100 in-
habitants and the village of Towel
has 50. Choose a site for a bath-
house on the road connecting these
villages such that the total distance
traveled to the bathhouse by all 150
inhabitants of the two villages is
minimal.

Let us reformulate the condition
of the problem in the language of
mathematics. Let the distance be-
tween the villages be a km, and let
the bathhouse be a distance of x
km from the village of Soap. Thus,
0 < x < a. The 100 inhabitants of
Soap have to walk a total of 100x km
to the bathhouse, and the inhabit-
ants of Towel have to walk 50(a - x)
km. Thus, the total distance trav-
eled by all inhabitants of both vil-
lages is S = 100x + 50(a — x) km.

We have obtained the following
mathematical problem: find the
minimum value of the quantity
S = 50x + 50a under the condition
0< x<a, where a is a fixed number.

This problem is very easy. To
solve it, just notice that S decreases
as x decreases; therefore, S takes the
minimum possible value when x
takes the minimum admissible
value; that is, x = 0, and the bath-
house must be built at Soap.

Let us discuss this result. Al-
most everyone we asked this ques-
tion answered that the bathhouse
should be built at a place that is
twice as far from Towel as from
Soap. It is likely that they used the
following physical model: a simple
see-saw with two people at the
ends of it, one of them twice as
heavy as the other.

If the bathhouse is built at the dis-
tance of a/3 from Soap, its inhabit-
ants altogether will walk the same
distance in total as the inhabitants of
Towel: 100 - a/3 = 50 - 2a4/3. This no
doubt seems like the fairer solution
if instead of considering all the in-
habitants we set one village in oppo-
sition to the other and try to find an

“equilibrium point.” However, this
is the solution of a quite different
mathematical problem: what is the
value of x (0 € x < a) for which the
quantity f = 1100x - 50(a — x)| takes
the minimum value!

It is clear that the phrase “best al-
ternative” can be interpreted in dif-
ferent ways. In order to assign a spe-
cific meaning to this phrase, we
define an objective function. In our
problem it was the function S = 50x
+ 50a, and in the other problem it
was the function f = [150x - 50al.
Finding the value of x for which the
objective function takes the mini-
mum value gives the best result
(from a given standpoint).

It is clear that the inhabitants of
Towel may disagree with either of
these solutions and can possibly
come up with strong arguments. For
example, it may well happen that
there are more senior citizens and
children in Towel than in Soap, that
there are fewer cars in Towel, or that
there is better water supply in
Towel, and so on. If we take into
account all these arguments, we
obtain another mathematical prob-
lem or, in other words, a different
mathematical model.

We hope that the somewhat
whimsical subject of our bathhouse
problem does not give the reader the
wrong impression. Here are some
similar problems of a serious nature:
choose a place for a lunchroom on
the grounds of a big plant with sev-
eral shops. What is the best way to
schedule the serving of the workers
in the lunchroom?

In this case the choice of the ob-
jective function is rather clear (to
minimize the serving time). How-
ever, the optimal plan depends not
only on the number of workers in
the different shops but on specifics
of the production process and other
considerations.

The best way o reach a railway station

Mr. Smith must get to the rail-
way station as quickly as possible.
He may call a taxi, which will take
24 minutes to arrive, and then go by
taxi at a speed of 30 km/h, or he can
walk at a speed of 6 km/h. Which

method is better if the distance to
the railway station is (a) 2 km; (b)
3 km; (c) 5 km!

In order to better compare the
motion of the pedestrian and the car,
let us introduce one more person,
Mr. Smith’s wife.

Suppose that Mr. Smith started
walking to the railway station, and
as soon as he went out, his wife no-
ticed that he had left his ticket. She
immediately called a taxi, waited for
it, and started after her husband.

Let us calculate the time needed
to catch up with him. At time ¢ af-
ter leaving home, Mr. Smith will be
at a distance of 6t km from his
home. If t > 24 min = 2/5 h, the taxi
will travel 30(t - 2/5) km.

The taxi can catch up with Mr.
Smith when

6t = 30(t — 2/5);

that is, at t = 1/2 h. If the walk to the
railway station takes less than 1/2 h,
the wife will not be able to catch up
with her husband; otherwise, she
will catch up with him and take him
to the railway station. In 1/2 hour,
Mr. Smith can walk 3 km. As a re-
sult, we arrive at the following con-
clusion: if the distance to the rail-
way station is less than 3 km (as in
case (a)), it is better for Mr. Smith to
walk there; if the distance is 3 km,
walking and going by taxi are
equivalent, and in case (c), it is bet-
ter to go by taxi.

The solution can be understood
more easily if it is represented in
graphic form (see figure).

S
5kmt _
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) Sb min t

When solving this problem, we
implicitly made certain assump-
tions: the pedestrian and taxi move
uniformly, the call and departure of
a taxi are instantaneous (in practice,
this is not so), etc. In addition, we
are implicitly assuming that the
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most valuable resource for Mr.
Smith was time. However, in case
(b), we have two alternatives that are
equivalent from this point of view.
To choose one of them, we must
involve another consideration: ei-
ther the cost of the trip (in which
case Mr. Smith will probably prefer
walking) or convenience (he’ll go by
taxi).

One hicycle for two

Two brothers, Tom and Dick,
want to visit their grandmother
who lives 40 km away. They have a
bicycle, which they have loaded
with their things. Tom can walk as
fast as 6 km/h and ride a bicycle at
20 km/h; Dick walks at 4 km/h and
rides at 30 km/h. The bicycle may
be left on the road unattended.
What is the quickest way to reach
their grandmother’s?

Let us suppose that the brothers
arrive at their grandmother’s si-
multaneously, and calculate the
time required. Then we’ll prove
that one of them cannot reach
their grandmother’s in less time;
that is, if one of them spends less
time on the road, the other will
inevitably arrive later than in the
case when they arrive simulta-
neously.

Assume that Tom went x km by
bicycle and walked the other (40 — x)
km, and Dick, conversely, walked x
km and rode (40 — x) km. Then Tom
spent (x/20 + (40 — x)/6) hours on the
road and Dick spent (x/4 + (40 — x|/
30) hours. If they arrived simulta-
neously, then

x 40-x x 40-x
—+ =—+
20 6 4 30

From this equation, we find that x
= 16 km, and it took the two of
them 4%4/5 hours to reach their
grandmother’s.

This solution might be imple-
mented in the following way. Tom
starts off from home on the bicycle,
rides 16 km, and then leaves the bi-
cycle on the road and starts walk-
ing. Dick starts off from home on
foot, walks to where Tom left the
bicycle for him, and then goes by
bicycle.
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Let us verify that one of them
cannot reach their grandmother’s
house in less time. Indeed, if Tom
rides less than 16 km, he must walk
the extra distance and will thus
spend more time than in the first
solution. If Tom rides more than 16
km, then Dick will have to walk
this extra distance and so he will
arrive later than before.

In this problem, the simplest
practical considerations led us to
the optimal solution: the brothers
must bring the bicycle to their
grandmother’s and arrive simulta-
neously. It is clear that if the
brothers stop to rest, it will only
add to their time of arrival.

In this problem we again have
several options. In fact, there exists
an infinite number of solutions that
provide the minimum travel time:
each brother may leave the bicycle
for the other several times, provided
that Tom walks 16 km and Dick
walks 24 km in total. You may
judge for yourself which solution is
best.

Minimize copper

There are three alloys in a labo-
ratory. The first one contains 40%
copper and 60% nickel; the second
one contains 60% copper and 40%
cobalt; and the third contains 60%
cobalt and 40% nickel. An experi-
ment requires one kg of a new alloy
containing 40% cobalt and as little
copper as possible (see the table
below). How can it be made!

Cu Ni Co
I]|40% | 60% —
II | 60% — 40%
| - 40% | 60%

Let us construct a mathematical
model of the problem. Take x kg of
the first alloy, y kg of the second,
and z kg of the third.

The problem requires that x + y
+z = 1. The new alloy will contain
0.4y + 0.6z of cobalt. So we have 0.4y
+ 0.6z = 0.4. The new alloy will also
contain 0.4x + 0.6y of copper.

Thus the following mathematical
model of the problem is constructed:

find nonnegative numbers x, y, and
z that satisfy the following system
of equations:

x+y+z=],
04y +0.6z=04

and are such that the quantity m =
0.4x + 0.6y takes on the minimum
possible value.

Using this system of equations,
we express x and z in terms of y and
substitute them in the expression
for m; then we find the minimum of
the resulting function of y (taking
into account that all variables x, y,
and z must be nonnegative).

From the second equation, we
have:

Substituting this value of z in the
first equation, we obtain

el L
3 37

Therefore,
w2l
15 15

We see that the smaller the value
of y, the smaller the corresponding
value of m. However, the minimum
possible value of y is 0. In this case,
m =2/15and x = 1/3, z = 2/3. Thus
we must take 1/3 kg of the first alloy
and 2/3 kg of the third. The second
alloy is not used at all.

Notice that in this case we again
have a linear function:

2.7
157 157"

which takes the minimum value at
the minimum possible value of y
(here y = 0). If we expressed m in
terms of x or z rather than in terms
of y, it would be more difficult to
find an interval in which to seek its
minimum value. The problem of
choosing a variable in terms of
which the object function should be
expressed is very important.

We could do without these ma-
nipulations if we noticed the follow-
ing circumstance. In order for the
new alloy to contain 40% cobalt and
as little copper as possible, it must

m



contain as much nickel as possible.
Therefore, the second alloy, which
might seem appropriate because it
already contains 40% cobalt, is ac-
tually better left out, since it con-
tains no nickel at all (see the table
above). Thus we must fuse the first
and the third alloys. If we take a kg
of the first alloy, we must take
(1 —a) kg of the third. The new alloy
will then contain 0.6(1 - a) kg of
cobalt. Then 0.6(1 — a) = 0.4. There-
fore, a = 1/3, which gives the desired
result.

Chiristmas problem

There is a budget of $100 dollars
to buy Christmas tree ornaments.
Ornaments are sold in sets. A set
containing 20 items costs $4, a set
containing 35 items costs $6, and a
set containing 50 items costs $9.
Which sets should be chosen in or-
der to buy the maximum possible
number of ornaments?

Each item in the first set costs
1/5 dollar, each item in the second
set costs 6/35 dollars, and each item
in the third set costs 9/50 dollars.
Let us list these numbers in ascend-
ing order: 6/35 < 9/50 < 1/5. We see
that the second set contains the
cheapest ornaments, and the first set
contains the most expensive ones.

1| n|m 1| o | m
20 | 35 | 50 1|1 1
$4 | $6 | $9 | |$1/5]$6/35]$9/50

In order to buy as many orna-
ments as possible for $100, we cer-
tainly must buy as many cheap or-
naments as possible. Thus, we can
buy at most 16 sets of the second
type (6 dollars each), which cost a
total of $96. For the remaining $4,
we can buy only the first set, which
gives us 16-35 + 20 = 580 decora-
tions.

This seems to be the best choice.
To make sure, let us check one other
possibility. If we buy fifteen $6 sets,
we'll have $10 dollars left, which we
may spend on one $9 set or two $4
sets. In either case the total number
of ornaments turns out to be less
than 580.

Thus the best solution is to buy
sixteen $6 sets and one $4 set. This
gives 580 ornaments in total.

We obtained this solution using
the simple consideration: the
cheaper the ornaments, the more of
them can be bought.

Our reasoning seems very sound.
But how do we know, for instance,
that things won’t turn out better if
we buy 14 of the cheapest sets?
Let’s now give a more rigorous so-
lution.

Let x be the number of the sets of
the type I, v the number of type II,
and z the number of type III. We
must find nonnegative numbers x, v,
and z such that 4x + 6y + 92 < 100
and the quantity S = 20x + 35y + 50z
is as large as possible.

Since
4X+6y+9z:£5’+ix+§zzi_$
35 7 7 35"’

we find that

S s<100,

35
which implies that

S< 5831.

3

Since S is an integer divisible by
5, we have S<580. Forx =1, y=16,
and z = 0, all conditions of the prob-
lem are satisfied and S = 580.

This problem pertains to integer
programming, which is one of the
most complex divisions of math-
ematical programming.

Problems

1. Three shop assistants, George,
Jacob, and Leo, must be assigned to
three sections of a department store:
radio, photo, and musical instru-
ments. The director asked a psy-
chologist to help him make the as-
signments in the best way. The
psychologist tested the knowledge
and inclinations of the shop assis-

radio | photo | music
George 5 4 7
Jacob 6 7 3
Leo 8 11 2

tants for each of the fields and as-
sessed them in points as shown in
the table.

How must the director make the
assignments to obtain the maxi-
mum possible number of points?
(For example, if George is assigned
to the radio department, Jacob is as-
signed to the music department, and
Leo is assigned to the photo depart-
ment, the total sum of points is 5 +
3+11=19)

2. A frying pan can hold two
lambchops. They can be fried in 10
minutes on both sides. What is the
quickest way to fry 3 lambchops on
this pan?

3. Two points, A and B, lie on the
same side of a line. How must a seg-
ment MK of length a be placed on
this line so that the polygonal line
AMKB will have the shortest pos-
sible length?

4. Three brothers bought a bi-
cycle. They must get it home, 30 km
away from the shop. Each of the
brothers walks at a speed of 4 km/h
and rides the bicycle at 20 km/h.
What is the minimum time in
which they can reach their home?
(The bicycle may be left on the road
unattended.)

5. Nils can eat a cake in 10 min-
utes, eat a jar of jam in 8 minutes,
and drink a carton of milk in 4 min-
utes. Karlsson can do the same
things twice as fast. What is the
smallest amount of time it will take
them together to consume a break-
fast consisting of a cake, a jar of jam,
and a carton of milk?

6. Each of four vessels contains 1
liter of a mixture of acid with water.
The percentage of acid in them is
10%, 30%, 60%, and 80%, respec-
tively. A laboratory assistant has to
prepare a 50% mixture of acid with
water. What is the maximum quan-
tity of such a mixture that can be
obtained by mixing the mixtures
available?

7. It is required to prepare an al-
loy containing 40% tin. There are
three alloys available containing
60%, 10%, and 40% tin. The price
of 1 kg of these alloys is $4.30, $5.80,
and $5.50, respectively. Which al-
loys and what proportions should be
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used to make the new alloy as
cheaply as possible?

8. Three types of apartment
blocks can be constructed from
building components of two types.
To build a 12-apartment block re-
quires 70 components of the first
type and 100 components of the sec-
ond type, a 16-apartment block re-
quires 110 and 150 components of
the first and second types, respec-
tively, and a 21-apartment block
requires 150 and 200 components,
respectively. There are 900 compo-
nents of the first type and 1300 com-
ponents of the second type available.
How many apartment blocks of
each type must be built in order to
obtain the maximum possible num-
ber of apartments?

9, There are three warehouses and
three shops on a circular road: the
distance between two neighboring
points is 1 km. The following figure

-300

-400

shows the availability of goods at
the warehouses (indicated with a
plus sign) and the demand of the
shops (indicated with a minus sign)
in tons. You must draft the most ef-
ficient plan of delivery to transport
all the goods from the warchouses to
the shops in such a way that the to-
tal sum of ton-kilometers trans-
ported is minimal. (Give the best
plan of delivery and present your
reasoning.)
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Heating water from the top

EOPLE HEAT WATER EV-

ery day, and in almost every

case they place the heater un-

der the container. This is
quite understandable: convection
occurs throughout the entire vol-
ume of water, thereby uniformly
heating all the water to the desired
temperature.

What will happen if we place the
heater at the top of water instead?
This is not an idle question. Recall
that 70% of the surface of the Earth
is covered with water, which is
heated from the top by the Sun.
Thus heating from top to bottom
occurs on a large scale in Nature.
Many processes involved in this way
of heating are so complicated that
there is no universal agreement on
the mechanisms.

For example, not long ago it was
found that temperature in the
depths of the ocean does not change
gradually but by abrupt jumps.
These jumps occur in a very narrow
region between layers of constant
temperature. Besides the tempera-
ture, the density and the salinity
(concentration of salts) are also con-
stant within each layer. With time
the jumps are smoothed out (tem-
perature much more rapidly than
salinity), but the boundaries be-
tween the layers remain unshifted
and persist for nearly the entire
time.

It is natural to wonder why this

When the author wrote this paper,
he was a 10th-grade student in Kiev
(Ukraine).

by V. Pentegov

occurs. Before attempting to explain
it, let’s turn to some simple experi-
ments and observations.

Twvo quite different liguids:
Watep and... watep

Take a 3-liter jar of water and an
electric immersion heater. Immerse
the heater not very deeply into the
water (figure 1), turn it on, and wait
until the water in the upper part of
the jar boils or is near the boiling
point (at this moment large bubbles
will break from the heater). Now
tint the water with ink. You will see
that two zones are formed in the
water: the upper zone is tinted,
while the lower zone remains clear.
These zones are separated by a dis-
tinct boundary, through which the
molecules of the dye do not pen-
etrate (figure 2, a). Temperature
measurements in these zones yield
the following data: the temperature
in the upper layer is the same every-
where and is approximately equal to
the boiling point (95 °C), while in the

Figure 1. Experimental setup.

lower layer the temperature doesn’t
rise higher than 40-45 °C. In other
words, there is a temperature jump
of 50-60 °C at the boundary between
the layers, and the water in the up-
per and lower parts behaves like two
different, immiscible liquids.

Waves under wate

Transverse waves can arise at the
boundary surface. (By the way, the
interlayer boundary can be observed
even without tinting the water, be-
cause the waves at the boundary sur-
face reflect and scatter light.) This
means that there is a surface tension
at the boundary. A clear illustration
of this fact is the reflection of vortex
rings from the boundary.

Turn the heater off (to reduce the
movement of water in the hot layer)
and drop some ink from a dropper
into the jar from a height of 1-2 cm
above the water level. A vortex ring,
moving downward, will form in the
water. If the energy of the ring is not
too high, it will be reflected elasti-
cally from the boundary (the latter
will bend a little) and then disinte-
grate. By contrast, if the ring’s en-
ergy is high enough, it can pass
through the boundary, only to disin-
tegrate immediately below it.

Moving boundary

After watching the interlayer
boundary for some time, you will
notice that it moves. Experimental
plots of the upper layer thickness h
versus the time t and of the speed
v of the boundary versus the upper
layer thickness or, strictly speak-
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Figure 3. Thickness h of the upper layer versus time t (data of two

experiments).

ing, the difference of the levels h - h,
(figure 1) are shown in figures 3 and
4. The measurements were ob-
tained for a 3-liter container, using
a heater with a power of approxi-
mately 120 W.

A significant shift of the bound-
ary only occurs when the tempera-
ture of the upper layer is near or at
the boiling point: when the heater is
switched off, motion of the bound-
ary stops. It can be supposed that the
motion of the boundary results from
intensive mixing in the hot layer,
which occurs specifically at high
temperatures. To test this hypoth-
esis, let’s take the next step. We turn
the heater off (the boundary will
stop moving) and cautiously begin
to mix the water in the upper layer.
As expected, the boundary starts
moving again.

Based on the above facts, one may
propose the following mechanism to
explain the boundary motion. Con-

v{cm/min)

0.18
0.14

0.1
0.06

0.02

6 h-hj(cm)

Figure 4. Velocity v of the boundary
versus the depth h —h, (data of two
experiments).
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sider a small domain at the bound-
ary surface separating the cold and
hot water layers (figure 5, a: the red
and blue points show molecules of
hot and cold water, respectively). As
a result of diffusion and collisions
between the molecules, the “hot”
molecules penetrate below the
interlayer boundary. A thin layer of
water becomes hot, and after a while
it is carried away by convective

Figure 5. Mlustration of the mecha-
nism by which the boundary shifts.

flows of hot water (figures 5, b and
¢). The result of this molecular pro-
cess is a sinking of the boundary.

Thus when water is heated from
the top, heat is transferred not only
by thermal conduction (which is
quite natural) but also by the motion
of the boundary due to convection of
the water in the hot layer. This con-
vection brings about a practically
uniform temperature in all parts of
the upper layer.

Now let’s try to answer yet an-
other question raised by these ex-
periments: does the motion of the
interlayer boundary depend on the
power of the heater? Clearly the
thickness of the upper layer cannot
be smaller than the depth of the
level a-a (figure 1), because at the
higher levels convection occurs all

the time. On the other hand, the
initial thickness cannot be greater
than the depth of level b-b, because
there is not yet any convection be-
low it (if the heater is pointlike or
flat, the two levels a-a and b-b coin-
cide). Hence, a certain initial thick-
ness of the upper layer should exist
which is determined mainly by the
depth of immersion of the heater.
Motion of the boundary begins with
the start of vigorous mixing of wa-
ter in this layer. As we have said
above, it occurs at a temperature
near the boiling point. Thus the
heater should be capable of heating
a liquid layer of the initial thickness
virtually to the boiling point under
real experimental conditions, where
some heat is dissipated in the sur-
roundings. This condition deter-
mines the minimum heating power
needed for motion of the boundary.

The experiments showed that
when the heating power is greater
than the minimum, the speed of the
boundary motion will change lin-
early with this power (see the Ap-
pendix for details).

Experimental results

We may draw a number of con-
clusions from our experiments:

1. The boundary between warm
and cold water can exist for a long
time and maintain its integrity only
in the presence of convective flows
of water near the boundary: these
flows counterbalance the diffusion
and maintain the boundary.

2. The boundary moves with a
speed determined by the tempera-
ture difference. As the temperature
difference decreases, the speed of the
boundary decreases until it stops
completely, but the boundary itself
is maintained as long as there is a
flow of water near it.

3. In our experiments the large
temperature jumps (and high tem-
perature of the heated water) were
needed only for producing intense
convective flows in the hot water. If
the flows of water on the two sides
of the boundary are maintained in
some other way (say, by a mechani-
cal device), the temperature jump
could be small.



Guesses and hypotheses

Now let’s return to the problem
of the heating of oceanic water by
the Sun, and try to answer some
questions. Why do the boundaries
between different layers in the
ocean remain in place even though
a gradual leveling of the temperature
and salinity occurs? And why does
the leveling of the salinity take so
much longer than the establishment
of temperature equilibrium?

Again this can be explained by
convection, which in the ocean oc-
curs in every layer (in contrast to our
experiments, where it went on only
in the hot layer).

Consider two neighboring layers.
Diffusion and molecular collisions
produce “hot” and “cold” molecules
on both sides of the boundary. They
are carried away from the boundary
by convective flows. If the convec-
tion is equally strong on both sides
of the boundary, the boundary
doesn’t move, although energy
transfer takes place, resulting in a
gradual leveling of the temperature.

Salinity equilibrium is estab-
lished much more slowly. This is
because of surface tension at the
boundary. It is known that the coef-
ficient of surface tension of a saline
solution is greater than that of pure
water. Like every physical system,
the boundary “tries” to minimize its
energy. Therefore, the ions produced
by the decomposition of salt mol-
ecules are predominantly located far
from the boundary, and a marked
diffusion of them begins only after
the surface tension at the boundary
has fallen significantly.

The formation of a boundary be-
tween cold and warm water could
probably explain not only the lami-
nated structure of oceanic water but
may also underlie the distinct and
stable boundaries of oceanic cur-
rents, the recently discovered giant
oceanic vortices, and many other
wonders.

Appentlix
We denote by W the power of the

heater (it should be larger than the
minimum power). Although some

part of the heater’s energy is spent
evaporating water, this loss is stable
at constant temperature. Therefore,
for convenience, let’s introduce the
net power W,, which is equal to the
difference between the power of the
heater and the power expended on
evaporation. We assume the net
power to be constant.

It is natural to suppose that the
power W, dissipated to the sur-
roundings through the lateral sur-
face of the container is proportional
to the thickness h of the hot layer:
W, = kh. The proportionality factor
depends on the experimental condi-
tions and doesn’t vary during an ex-
periment.

Let the boundary shift by a dis-
tance dh over a time dt. This means
that a water layer of thickness dh
has been heated from the tempera-
ture of the cold layer to that of the
hot layer, that is, by AT degrees. This
process requires a thermal energy
dQ = cpSATdh = k,dh (here c is the
specific heat of water, p is its den-
sity, and S is the horizontal cross-
sectional area of the container|. Ac-
cording to energy conservation,

W, dt = dQ + W,dt,
or
W,dt = k,dh + khdt.

First, we rearrange the equation:

dn  dt
W,-kh k'

and then we integrate it to obtain
the dependence of the thickness h of
the hot layer on time ¢:

h=a-be,

where a= W, /k, b= W,/k-h,, and
o = k/k, are constant coefficients,
and h, is the initial depth where the
boundary is formed.

Now let’s find the speed v of the
boundary motion:

V_@_Wl—kh
dt ko

It is seen that the speed of the
boundary depends linearly on the
layer thickness, and at a certain
thickness (which is equal to W,/k)

the speed must be zero. This is be-
cause the energy losses grow with
thickness, and there will come a
time when all the energy from the
heater will leak to the surroundings.
In the region where the boundary
comes to rest, the adjacent convec-
tive flows become so weak that the
movement of liquid comes practi-
cally to a stop, and the boundary will
gradually disperse on account of dif-
fusion and thermal conductivity.[®]

Quantum on the heating of water:

V. Mayer and E. Mamayeva,
“Two Physics Tricks,” March/April
1991, p. 35.

A. Abrikosov, “The Story of a
Dewdrop,” September/October
1992, pp. 34-38.

A.Buzdin and V. Sorokin, “Double,
Double Toil and Trouble,” May/
June 1992, pp. 52-53.

T. Polyakova, V. Zabolotsky,
and O. Tsyganenko, “Stirring up
Bubbles,” March/April 1997, pp.
52-55.

I. Mazin, “Physics in the Kitchen,”
September/October 1997, pp. 54-56.
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Olitaining symmetric inequalities

by S. Dvoryaninov and E. Yasinovyi

EXTBOOKS AND MATHEMATICAL COMP-

etitions often include problems in which one

must prove an inequality in several variables. Nu-

merous papers and books are dedicated to general
theorems and various methods of proving such in-
equalities.

Here we examine Muirhead’s theorem, which
concerns inequalities between certain types of sym-
metric polynomials. This theorem was proved in
1903. It is remarkable not only for its generality, but
also because combinatorial concepts related to this
theorem (Young diagrams and their majorization)
also occur in various fields of pure and applied
mathematics.

We will deal with inequalities involving homoge-
neous polynomials. Some examples of such inequalities

are:
x% + y2 > 2xy, (1)
x° + y2 2 x3y2 + y3xE, (2)
X2 +y2+ 222 xy + yz + zx, (3)
x3 + 33 + 232 3xyz, (4)
X292 + y222 + 222 > X2yz + y?xz + 22Xy, (5)
X+ vzt whz dxyzw. (6)

These inequalities hold for all nonnegative values of
the variables. For the case of two variables, they can be
easily proved by grouping the terms and factoring. For
example, let us prove inequality (2) for all nonnegative
x and y. For this purpose, consider the following differ-
ence:

Rt i S OIS
= [x* - y3)(x* - ¥7).
We can see that the last product is nonnegative, because

both factors are either nonnegative (for x = y 2 0) or
nonpositive (for y > x > 0).

44 NOVEMBER/DECEMBER 19448



It is more difficult to devise a symmetric proof
for inequalities in three or more variables. For the
time being, we demonstrate the general idea by
way of example (5). In this case, it will be conve-
nient to move all terms to one side of the inequal-
ity, multiply them by 2, and arrange them in three
groups:

xYy? - 2yz + Z22) + yAx2 - 2xz + Z2) + Z4(x% = 2xy + y2)
=xMy-zP + Y x-zP + Z2x-y)> 2 0.

Exercise 1. Prove inequalities (1), (3), and (6).

To learn how inequalities of this type can be proved,
and to formulate a general theorem, it is necessary to
become familiar with some new concepts described in
the next section.

Symmetrization of a monomial

Suppose we are given several nonnegative variables—
for example, the three variables x, y, and z, which take
on nonnegative values. Suppose also that we are given
a set of the same number of nonnegative integers:
o= (k, j, i), where k > > i, which we will call exponents.
Let us draw a table consisting of three squares and in-
sert the corresponding exponent in the upper right cor-
ner of each square. We insert the three variables into the
squares to obtain the monomial x*y/z., Now, we insert
these variables into the table in a different order to ob-
tain another monomial, for example, y*x'z! (fig. 1). We
can easily count the number of different monomials
that can be obtained in this way. Each of the three vari-
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Figure 1
N Tia, 1)(X’ y, z) = 2(x3yz + y3zx + z3xy)
[ |
311
: T(4, 2, 1)1X/ v, z) = x*y2z + yiz2x + z4y2x +
x4z%y + y*x2z + z*x%y
|
4 21
T(Z, 0, O)(XI Y, Z) = Z(XZ + yZ + Zz)
200
Figure 2

ables x, y, and z can be placed into the first square,
which gives three possibilities. Then, any of the two re-
maining variables can be placed in the second cell,
which gives 3 - 2 = 6 possibilities. (The placement of two
variables determines which variable we place in the
third cell, so these are the only six possibilities for fill-
ing cells with variables.) Then we add all the monomi-
als we've just written down to obtain a polynomial in
three variables, x, y, and z, which we will denote by
Ty s 4%, v, z), or T [x, y, z), or just by T (T stands for
the word Table). Polynomials of this kind are called sym-
metric, because they do not change if the variables are
permuted. The degree of each monomial is s =k +7 + 1.
Here are some examples:

Ty 1 0% ¥, 2) = X2y + y2x + 22x + X%z + Y2z + Z%y,

T3 1% ¥, 2) = X3yz + y3xz + Z3xy + X°zy + yozx + Z3yx
= 2(x3yz + yizx + Z3xy),

T[z, 2, 21(X/ y, z) = 6x*y*2.

The last two examples show that if there are equal num-
bers among the exponents, we can collect like terms in
T, and present it in a shorter form.

If the set of exponents o = (o, o, . . ., o) consists of
n numbers, the table must contain n squares, and we
must use n variables x,, x,, . . ., x,. Then, the polyno-
mial T,(x,, ... x,)involvesn! =1-2 ... n terms (be-
fore like terms are collected).

Thus, a polynomial T, is assigned to every set of in-
tegers o = (o, O, . .., o ), where o, 20, 2.. .20, 20.
This polynomial is called the symmetrization of the
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monomial with exponents o, o, . . ., 0.

Any such set o can be represented by a “staircase”
consisting of 11 steps, the height of each step being equal
to the corresponding exponent and the width of each
step being 1. Such a staircase can be drawn on a sheet
of graph paper: the total number of squares will be equal
to the power of the polynomial T, s =0, + 0, + ... + ot,..
Figure 2 shows several staircases that correspond to the
polynomials occurring in the inequalities mentioned in
this article. These staircases have a scientific name:
they are called Young diagrams, and they prove to be
useful in various problems involving combinatorics, al-
gebra, and calculus.

Exercise 2. Write the polynomials T, and draw the
corresponding staircases for the following sets o (3, 2.);
(3/ 27 1)/ (31 3/ O/ O)/ (4/ 1/ 1/ 0)/ (5/ O/ 0/ 0/ O)/ (1/ 1/ 1/ 1/ 1)

Comparing Young diagrams

Figure 3 shows the pairs of staircases that correspond
to the inequalities (1), (2), and (4)-(6). We see that the
steeper staircase corresponds to the greater of the two
polynomials. The more sloping staircase can be ob-
tained from the steeper one by moving several bricks to
the right and downward (fig. 4). We now formulate a
more precise definition of the word steeper. We do this
for staircases consisting of three steps.

Let o = (o, 0, 0i5) and B = (B,, B,, B;) be two sets of in-

"qHrm A o
5 = ]
(2) ] ]
E e (6) —
] “ [T 111
Figure 3
> _'\*—-‘ >
| [ [T
(3,0, 0) (2,1, 0) (1,1, 1)
| = . ]
(4, 0, 0) (3, 1, O) (2, 1, 1)
Figure 4



tegers such that s = o) + 0, + oty = B, +B, + By, o 2 0, 2 @1,
and B, 2B, = Bs: We say that o > B (0. majorizes B) if the
following condition is met: 3 can be obtained from o by
performing the following operation several times (or
only once or not at all):

(k, 7, 1)
PR TN )
(k-1,7+1,1)k-1,j,i+1)k j-1,1+1)

This condition can also be written in another, equiva-
lent, form: o > B if

(XIZBII
o + 0y 2By +P,,
O + 0y + 03 2B, +B, +P3-

(**)

Similarly, for nonincreasing sets of nonnegative in-
tegers o= (o, Oy, ..., o )and B=(B,, By, ..., B,) we write
o > Bif

rO(IZBII

o +0, 2B +B,,
O+ 0y + -t 0y g 2Py +Bg +--+B, g,
Oy +0y +--+0, =BI+B2+'”+BH'

For example, (4,2, 1) > (3,2,2), since 4>3,4+22>3+2,
and4+2+1=3+2+2.

The relationship > between two sets is similar to the
order relationship > between two numbers: o > o, and
if o> B and B > vy, then o > y. However, this order rela-
tion is only a partial one: it may happen that two sets
with equal sums are incomparable (see exercise 6).

Exercises

3. Verify that conditions (*) and (**) are met for the
pairs of Young diagrams shown in figure 3.

4. Prove that conditions (*) and (**) are equivalent;
that is, if inequalities (* *) hold, the set B can be obtained
from o by moving the bricks to the right and downward.

5. Draw all staircases consisting of s = 4 bricks in
decreasing order, beginning with the steepest one, (4, 0,
0, 0), and ending with the most sloping, (1, 1, 1, 1). Do
the same for the staircases of 5 bricks.

6. (a) Verify that Young diagrams (4, 1, 1) and (3, 3, 0)
are incomparable—neither of them majorizes the other.
Do other incomparable sets with the sum 6 exist?

(b) Find all incomparable pairs of sets for s = 7.

Muirhead's theorem

Now we are ready to formulate the basic theorem.

Leto=(oy, oy ..., 0 )and B =B, B,, ..., B,) betwo
sets of exponents with the same sum. If o > B, then
T(x,%,...,x)> TB(Xl, X,, ..., X,) for all nonnegative

i

Figure 5

Ko Bgg 5
o> B.

We will not formally prove this theorem for the gen-
eral case (this proof can be found in references 1 and 2
at the end of the article, and reference 2 is completely
dedicated to variations of the majorization relationship,
its applications, and generalizations). Instead, we de-
scribe the basic ideas underlying the proof and demon-
strate them by way of several examples.

The proof of the second part of the theorem’s asser-
tion—the necessity of the assumption o > B—follows
from the simple fact that of two polynomials in one
variable ¢ (with positive leading coefficients), the poly-
nomial with the greater power is greater for large t (see
exercise 8).

The proof of the sufficiency of the assumption o >
is based on two ideas. The first is the idea of moving
bricks to the right and downward. Two sets o > B can
be connected by a chain of sets so as to make two neigh-
boring sets in the chain differ at only two places. We can
pass from each set of the chain to the next by moving a
brick from one step to the next on the corresponding
staircase. The second idea is that of symmetrical group-
ing: the difference between the polynomials correspond-
ing to neighboring sets can be represented as the sum
(over all sets of variables x and y) of identical groups of
the form

., X,. Conversely, if this inequality holds, then

( Xp+1yq + yp+IXq _ Xpyq+r _ prL]+I) 7

(see fig. 5), where Z is the product of other variables cor-
responding to identical exponents in the neighboring sets.
The last expression can be factored, and it can be easily
verified that it is nonnegative for p > g and r = 0.

If the reader analyzes several examples by carefully
writing out all manipulations, everything will become
clear. Here, we give two examples. >

Inequalities involving means

The inequality between the arithmetic and geomet-
ric means of three nonnegative numbers is as follows:

ay+a, +a [
MZS/aaa'
3 L b

Introducing the notation a, = x%, a, = y3, and a, = 23, we
arrive at inequality (4). We prove it by following

QUANTUM/AT THE BLACKBOARD I 47




Muirhead’s method. Looking at figure 4a, we see that
we must prove the two following inequalities:

T(3/ 0, 0](X/ Y/ Z) 2 T(z/ 1/ oj(X/ y/ Z) 2 T(L 1, 1)(X/ y/ Z)'
Let’s consider the first of them and take the difference

Ry = T(S/ 0, O)(X/ ¥ &)~ T(g/ 1, o)(X/ v, 2)
=2x3+y3+ 28) - xy - ylz - Z2x - X%z - y2x - 22y,

We rearrange the terms in groups of four according to the
following principle: for each pair of variables, we include
in a group all terms in which the exponents of these vari-
ables change from (3, 0) to (2, 1) (and the common expo-
nent of the third variable is equal to zero). Thus, we have:
Ry =(y? + 2% - y?z - 2%) + (x® + y° - X’y - y’x]

+ (2% + x3 - 22x - X%2)

= -2y -z + (@ -y x-y)+ (22 -x)z-x]=0

for all nonnegative x, y, and z.
We now prove the second inequality.

Ry = Tp 1, 0l% ¥, 2) = Ty, 1%, ¥, 2)
= X%y + y2z + z%x + x27 + y?x + 2%y - 6xyz.

Here, the common exponent of the variable y is equal

to 1, and the exponents (2, 0) of the variables x and z

change to (1, 1). We have

R, = x(y* + 22 - 2yz) + y[z? + x? - 2zx) + z[x? + y? - 2xy)
=x(y-zP+ylz-xP + z[x - y}* 20,

which proves inequality (4).

Another inequality

Now we look at the inequality

a+b> br+c? F+d?
+ +
2c 2a 2b

3 3 3
a® b c
< —+—+ .
bc ca ab

a+b+c<

One possible way of proving this inequality is
Muirhead’s method. Multiplying both sides of this in-
equality by 2abc, we can reduce it to the following
“Muirhead” type:

2a* +b*+ct2a¥b+bPa+bic+ b+ cta+adc, (7)

a3b + BPa + bPc + b + Aa + a®c > 2{a’be + bac + c2ab). (8)

The corresponding Young’s diagrams are shown in fig-
ure 4b. The difference between the left-hand and right-
hand side of each inequality can be written, as before,
as a sum of three groups consisting of four terms each.
To save space, we write down only one group (the oth-
ers can be obtained by replacing variables g, b, and ¢ by
b, ¢, a and ¢, a, b, respectively.
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Proof of (7):
(a*+b*—a®b-bla)+...=(a® - B3 a-b)+...
Proof of (8):
(@b + Pb-a%b-c*ab)+...=bla2-cHla-¢)+ ...

Thus, the initial inequality is proved.

More Exercises and Problems
7. Write down all the Muirhead inequalities for
polynomials of degree 4.

8. Let T(a],al,as)(x,y,z) > T(Bsz,Ba)(X' v,z). Prove that

inequalities (**] hold. (Consider several cases: x=y =z =t,
Xx=y=tz=1,x=t, v=2z=1, and compare the powers of
the polynomials obtained.)

9. Prove the following inequalities (for nonnegative
X, v,z v, and wi:

(a) x*y2z+ y*x2z+ 2tyx? + x4 2ty + 2%y

> 2(X3y222 + y?’zzx2 + ZSXQ)/Q),
(b} %° +9° 427 2 ¥tz + it x4+ 2%y,
(c) x3+y3+ 28 +v3 2 xyz+ xyv + x2V + y2ZV.

10. Derive the inequality for the arithmetic and geo-
metric means of n nonnegative numbers from
Muirhead’s theorem. How many bricks must be moved
for the set (n, 0, 0, . . ., 0] to be transferred to the set
(1,1,... 1)2

11. Formulate and prove Muirhead’s theorem for all
nonnegative exponents (not necessarily integers).

12. For certain sets of exponents (with an even sum s,
the inequality in Muirhead’s theorem holds for all val-
ues of the variables (and not only for nonnegative ones).
Try to describe all such cases.
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Art by Yury Vashchenko

'COMMENTARY

The toy that drove the universe

ECENTLY, I PURCHASED

a toy: a hollow, transparent

sphere about 10 cm across, into

which I placed sixty 5-mm-di-
ameter white beads. Each bead was
imprinted with a number from 1 to
60. The sphere can be rotated by a
motor and a simple circuit arranged
so that one button makes a curved
arm stir the beads and another but-
ton causes the arm to move in the
opposite direction and pick up one of
the beads for viewing.

The beads are nearly identical—
in any case, their differences do not
make one more likely to be chosen
than the other. The device was made
for games of chance, and it can be
considered a good randomizer. The
other morning, my friend Julie ran
the machine 100 times, each time
with a full load of beads. Here is the
output:

06, 31, 42, 29, 33, 05, 26, 01, 05, 28,
22, 32,59, 59,09, 57, 16, 46, 12, 13,
16, 25, 45, 14, 12, 38, 37, 51, 10, 34,
21, 10, 09, 35, 21, 23, 60, 09, 04,
33,12,32,32,13,28, 11, 54, 46, 58, 33,
25,07, 09, 02, 19, 60, 52, 23, 29, 48,
52, 35, 18, 13, 57, 45, 15, 24, 28, 24,
05, 59, 03, 03, 45, 22, 48, 53, 27, 18,
49,01, 59, 37, 17, 51, 36, 33, 09, 41,
04, 43, 06, 39, 31, 60, 32, 06, 17, 41.

The probability p of getting this se-
quence is 1/(60'%9), or approximately

p=15-10-7,

Each turn of the machine takes
about one second; producing an-
other sequence of this length would
therefore take about 100 seconds. To
have a fifty-fifty chance of repeating

by Jef Raskin

this sequence, you’d have to turn
out approximately 1078 more se-
quences, which would take about
1089 seconds. The age of the Uni-
verse, 12 billion years (one current
estimate), is “only” about 4 - 107
seconds. So even if the machine gen-
erated sets of 100 numbers for the
next few billion years, the sequence
shown above would not likely turn
up again.

If the force of gravity was ever so
slightly different, if the coefficient of
friction of the surface of the balls
changed just a touch, if the charge
on the moving electrons that drove
the motor were a shade off, or if any
of a number of other physical laws
or constants had changed, the se-
quence would have come out differ-
ently. In other words, the result of
this experiment depended on the

nature of the Universe, the interplay
of its laws, the value of its constants,
and its unique history. Can we
therefore conclude that “all the par-
ticular laws and regularities in na-
ture are united in a single principle
law: Somewhere in the universe this
machine must create this particular
sequence”?

If this argument seems peculiar
and unjustified—that because of a
highly improbable result we can
conclude that behind the laws of the
Universe lies a need to evoke this
result—then your thinking cap is on
straight. If the phrase at the end of
the previous paragraph sounds fa-
miliar, perhaps that’s because it is a
paraphrase of the last sentence in A.
Kuzin’s article, “The Anthropic
Principle,” in the January/February
1999 issue of Quantum.

The anthropic principle is the te-
leological belief that the Universe
was “tuned” to make the creation of
life—and in particular, human, con-
scious life—inevitable. Teleology is
the notion that causality works
backwards, with a later event influ-
encing a prior event—that somehow
a system “knows” to head toward a
“desired” outcome.

Kuzin begins his article by say-
ing, “The discovery of the vastness
of the Universe has led to a funda-
mental problem: Does a human be-
ing mean anything in this im-
mense Universe?” As a scientist, I
cannot justify the term “im-
mense.” Sizes, of course, are rela-
tive. We can say that the Sun is far
larger than a rabbit. But is the Sun
large? It’s small relative to our gal-
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axy. Is the rabbit small? It’s large
relative to a proton or a protozoa.

The impulse to make the Uni-
verse revolve around us has ancient
roots. One of humankind’s great
achievements was to discover that
Earth is not the center of the Uni-
verse, not even the center of our so-
lar system. More recently, we have
come to understand that humans are
not the end product of evolution; we
are not a goal to which other life
forms are only stepping-stones. We
should not make a similar mistake
and base our judgment of absolute
sizes on the size of humans. In other
words, there is no inherent measure
of length, and the universe is neither
immense nor tiny.

But that’s merely a quibble.
Kuzin’s opening sentence also poses
the seemingly deeper question of
whether a human being “means”
anything. What are the implications
of a human being having a “mean-
ing”? In fact, what is the “meaning”
of any object? For an object x to have
ameaning implies that x encodes, is
a symbol for, or represents some-
thing else—say, y. The red dot la-
beled “You Are Here” on a map in
the park symbolizes your location
on the map. The red dot and its lo-
cation are an object x, and the loca-
tion of the map itself in the park is
y. For the red dot to have meaning to
us, we must realize that y is repre-
sented by x, and we must be able to
interpret the map. In Kuzin’s article
we must ask, what entity would in-
terpret the “meaning” of a human
being?

Much more can be said about the
question of meaning (a library’s
worth of books have been written on
the subject), but even this elemen-
tary view reveals the problems in
Kuzin’s approach. Meanings are
separate from the objects them-
selves. When a male coyote marks
its territory with urine, the urine
becomes a symbol for “I live here;
keep away” to other male coyotes.
What is a human being a symbol of,
and to whom is the signal directed?
Kuzin does not specify, and without
such specification his words are
empty.
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Kuzin says that “the anthropic
principle is the child of a mental
experiment. In this experiment we
assume some change in the natural
laws and then see whether or not a
human could exist in the modified
world.” Unfortunately for his thesis,
my experiment with the ball-choos-
ing machine and the sequence that
it picked is just as valid. There is no
difference between choosing hu-
mans and my machine’s sequence as
the “goal” of the “evolution of the
Universe.”

We also have to be very careful
when we use the word “evolution”
with physical systems. In biology,
the term “evolution” describes
change in species through natural
selection. Evolution increases the fit
between an organism and its envi-
ronment. Changes in systems which
do not have a selective mechanism,
such as our galaxy, are not evolution
in the same sense—they are merely
changes over time. In common par-
lance, we find a third usage of “evo-
lution”: an improvement or ad-
vancement. Because of these varied
meanings, we must be very careful
in using the term in scientific dis-
course. In particular, we should re-
member that in biology, evolution
does not imply increasing complex-
ity, but a better fit to the current
environment. For example, many
cave-dwelling species are simpler
than their ancestors (numerous
cave-dwelling organisms no longer
have eyes].

A large part of Kuzin’s article is
devoted to what is known about the
sequence of events that make up the
history of the Universe (what he
calls the “evolution” of the Uni-
verse). The point of this extended
discussion is that “due to a long
chain of ‘coincidences’... much car-
bon is produced [by stars], which is
so important for life in the Uni-
verse,” as if what seems to be a low-
probability event can be explained
only by its eventually being
“needed” to create humans. Kuzin
also points to the limited tempera-
ture range required for organic
chemical reactions as signifying
their unlikelihood. However, as my

opening example shows, unlikeli-
hood does not justify teleology.
Once something has happened, the
probability that it happened is 1.
What Kuzin sees as essential for in-
telligent life reveals his anthropo-
centric bias and perhaps a lack of
imagination regarding the possibili-
ties for other forms of sentient be-
ings. It’s narrow-minded to assume
that any sentient being would have
to be similar to ourselves. The Uni-
verse has always had a great capac-
ity to overturn our prejudices and
presumptions, and I see no reason
for it not to happen with our ideas
on possible life forms.

The last section of Kuzin’s argu-
ment observes that we have more
equations representing physical
laws than universal constants.
This fact might point, as he be-
lieves, to potential unification of
these laws. He does not stop to
consider other alternatives though,
such as other essential constants;
perhaps whole classes of phenom-
ena are as yet undiscovered. His
observation leads him to venture
that “the very structure of the
natural laws hides some extremely
important principle. At present we
don’t know how to describe this in
mathematical language... Every-
thing we presently know is just the
consequence of this main prin-
ciple.” But he has presented no
basis for thinking there is such a
principle. Then he makes another
leap beyond logic, and continues,
“All the particular laws and regu-
larities in nature are united in a
single principle law: Somewhere in
the Universe a human being must
appear.” As I have already noted,
the last phrase can, with equal jus-
tification (or, rather, equal lack of
justification) be replaced with,
“All the particular laws and regu-
larities in nature are united in a
single principle law: Somewhere in
the Universe a little plastic ma-
chine must create this particular
sequence.” Kuzin’s version of the
anthropic principle is neither a
principle nor a part of science, but
a quasi-religious belief disguised as
a scientific argument.
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Across

1 Surgeons William
James and Charles
Horace _
Neurologist Antonio
___ Moniz (1874-
1955)

9 Health clubs

13 Certain constella-

O3]

tion: abbr.

14 Polycyclic compound

15 Plant geneticist
Edward __ (1879-
1938)

16 Great flexibility

19 ___ number (of
motor oils)

20 Scandinavian gods

21 Not any

22 Mine entrance

23 Type of parity

25 Shadow regions

28 1952 chem.
Nobelist Archer

31 French composer

32 Mentally retarded
person

34 Twelve grams of
Carbon-12

o~
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9 10 |11 12

15

36 Singer __ James
37 909,038 (in base 16)
38 ___ -particle duality
39 100 square meters
40 Direction finder

41 Astronomer Carl

42 ___ velocity

44 Strain’s partner

45 Eskers

46 Elemental particle

47 Chess, e.g.

49 Turkish flag

50 Star Wars Program
\abbr.\

53 Humidity above
100%

57 Publisher Conde
__ [1874-1942)

58 Name

59 Down: pref.

60 Mine products

61 Malayan boat

62 Anthropologist __
Hrdlicka (1869-
1943)

Down

1 Measure of inertia
2 Greenish-blue
3 Cry of fright

4 Spanish cheer

5 Fanfare

6 Equipment

7 Solution: abbr.

8 Collection

9 Trigonometric
function

10 __ production

11 Bryozoan colony

12 Pigpen

14 Orbital point

17 Plane detector

18 Like a noble gas

22 Width times
length

23 Moslem ruler

24 1982 Physiol.
Nobelist John _

25 Carbamide

26 Unit of length (Brit.
sp.)

27 Data units

29 Real or virtual
follower

30 Exploding stars

32 Totaler

33 ___culpa

35 Focusing device

37 Dihydroxyphenyl-
alanine

38 Heat up

40 Monochromatic
radiation source

41 Leaf pore

43 Small planets

44 One cubic meter

46 Bird wing part

47 Cluster bean

48 Church part

49 107'8: pref.

50 Granitic layer

51 Bestow love

52 Indium arsenide

53 Stannous oxide

54 1 atm. and 0 °C: abbr.

55 It’'s mostly Nitrogen

56 ___cycle (Kreb’s
cycle)
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HAPPENINGS

Three golds and two silvers in laly

HREE MEMBERS OF THE

1999 United States Physics

Team, Peter Onyisi, Andrew

Lin, and Benjamin Mathews,
won gold medals at the XXX Inter-
national Physics Olympiad held in
Padua, Italy, July 18 through July 27.
Natalia Toro and Jason Oh received
silver medals. This was the second-
best US finish in the 14 years the US
has been competing. While the com-
petition is among individuals, unof-
ficial rankings placed the US third
after Russia and Iran. Russia also had
the top student, Konstantin Kravtsov,
who scored 49.8 out of 50 points.
Iran’s team was the only team with
five gold medals. Overall 291 students
from 62 countries competed.

Peter Onyisi of Arlington, Vir-
ginia, was the top US competitor,
placing 10th. He had previously won
a bronze medal at the 1998 Olym-
piad in Iceland. Peter graduated from
Phillips Exeter Academy where his
physics teacher was Cynthia Beals.
This fall he is attending the Univer-
sity of Chicago.

Two US representatives, Andrew
Lin and Benjamin Mathews, tied for
14th place. Andrew Lin of Cheshire,
Connecticut, was a silver medalist
in last year’s competition. He gradu-
ated from Choate Rosemary Hall
where he studied physics with
Jonathan Gadoua. He is currently
attending Yale University. Benjamin
Mathews of Dallas, Texas, gradu-
ated from St. Mark’s School of
Texas. His physics teacher was
Stephen Balog. This fall Benjamin is
a student at Cal Tech.
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by Mary Mogge and Leaf Turner

Silver medalist Natalia Toro of
Boulder, Colorado, graduated from
Fairview High School and was
nominated by her counselor, Karen
Petterson. Natalia won the top
award of the Intel Science Talent
Search this year. At 14 years of age,
she is the youngest person to have
ever won that award. Natalia is en-
rolled at the Massachusetts Institute
of Technology. Jason Oh is a senior
at the Gilman School in Baltimore,
Maryland, this fall. His physics
teacher is Edwin Lewis.

Selection and Training

The selection of the 1999 U.S.
Physics Team began in January
when high school teachers through-
out the country nominated almost

1200 students. The first round of ex-
aminations in late January produced
approximately 175 semi-finalists
who were given a second screening
examination in March. Using the
results of the second examination,
transcripts, and letters of recom-
mendation, the 24 members of the
team were selected.

The team members met at the
University of Maryland for an eight-
day extensive training camp in early
June. Their activities at the camp
included tutorials, laboratories,
problem sets, examinations, and
guest lectures on current research
topics. At the end of the training
camp, five team members were se-
lected to represent the US at the
Olympiad.

Medal winners (left to right): Peter Onyisi, Benjamin Mathews, Andrew Lin,
Natalia Toro, Jason Oh.



They and alternate Nilah Monnier
reconvened at the University of
Maryland July 12-15 for a mini-
camp devoted to enhancing their
laboratory skills. On July 15, the five
team representatives flew to Italy
accompanied by coaches Mary
Mogge and Leaf Turner and Director
Bernard Khoury.

Padua—The City of Galileo

The travelers arrived in Italy two
days before the start of the compe-
tition to reset their internal clocks
six hours ahead to Central European
Time. The first day in Italy was
spent wandering with the pigeons
and other travelers around Venice's
Piazza San Marco under an incred-
ibly clear blue sky. Then it was time
to investigate gelato (the delicious,
rich Italian ice cream) as an antidote
to jet-lag.

The Olympiad was held at the
University of Padua. Founded in
1222, it is the second-oldest univer-
sity in Italy. Copernicus studied
medicine there. Galileo taught at
Padua from 1592 until 1610 and dis-
covered the four satellites of Jupiter
that bear his name. The rostrum
Galileo’s students constructed for
him is still on display at the univer-
sity. Both the Physics Department
and a street in Padua are named for
Galileo.

The Exams

The five-hour experimental ex-
amination on July 20 was an inves-
tigation of the properties of a torsion
pendulum. The pendulum consisted
of an outer cylinder and an inner
threaded rod that was not removable
but could be screwed in or out to
adjust its length and rotational iner-
tia. The students used their mea-
surements of the pendulum’s center
of mass, equilibrium angle, and pe-
riod to determine its torsion elastic
constant, moment of inertia, and the
length of the threaded rod.

The five-hour theoretical exam
on July 22 consisted of three prob-
lems. The first dealt with a gasin a
cylindrical container capped with a
movable glass plate. Laser light en-
tered and was absorbed by the gas

United States Physics Team and coaching staff.

inside. The students considered two
theoretical models of the magnetic
field due to a V-shaped current car-
rying wire in the second problem.
The third problem modeled a
method frequently used to acceler-
ate space probes—the slingshot ef-
fect.

Giotto and Gelato

When not challenged by interest-
ing physics problems, the students
toured the attractions of Padua and
northeastern Italy. They saw the
Giotto frescos that cover the walls
and ceilings of the Scrovegni
Chapel. Completed in 1305, the fres-
cos marked a turning point in art.
While their papers were graded and
their scores debated, the students
toured the Dolomites, an area of the
Alps noted for rough, jagged pin-
nacles and spectacular scenery.
They also visited Venice, 40 km
away, rode a gondola, and returned
laden with souvenirs for their fam-
ily and friends.

Meals were eaten in the student
canteens. Food was very good and
abundant. A typical meal featured a
“first plate” of pasta, a “second
plate” of meat or fish with veg-
etables, a salad, and fruit for dessert.
The travelers also had a chance to
sample Italian pizza, which has
much thinner crust, sauce, and
cheese than the American version.

Fortunately competition sites were
spread out and everyone got a lot of
exercise. Water fountains were
nonexistent. Drinking water came
in bottles and was “gassed” or
“ungassed.” The US travelers devel-
oped many ingenious ways to ungas
a bottle of gassed water.

Prato della Valle is a huge 88,620-
m? elliptical plaza containing a
statue-lined canal. Paduans use it as
an open air market during the day
and in-line skating track during the
evening. It was hot and humid the
evening coaches and students met
to discuss the just-finished experi-
mental exam. Everyone decided to
stay outside and be treated to gelato.
Discussing physics and eating gelato
while sitting on a canal bank in the
middle of a giant roller rink was
truly a most memorable experience.

The 1999 United States Physics Team
The other members of the US
Physics Team (with their teachers
and high schools) are: Owen Baker
(Michael Morrill, Columbia HS,
Maplewood, NJ), Raymond Cassella
(Dominick Capozzi, Baldwin Senior
HS, Baldwin, NY), Tanner Fahl
(Carey Inouye, Tolani School, Hono-
lulu, HI), Nicholas Guise (Penny
Valentini, Centerville HS,
Centerville, OHJ, Devon Haskell
(Robert Shurtz, Hawken School,
Gates Mills, OH), Steven Hassani
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(Gregory Matthes, Robert E Lee HS,
Springfield, VA), Charvak Karpe
(Pratima Karpe, home schooled,
Stillwater, OK), Abraham Kunin
(Deborah Ormond, Virgil I Grissom
HS, Huntsville, AL), Nilah Monnier
(Caroline Evans, Brookline HS,
Brookline, MA), Anthony Nannini
(Alan Kersey, Waubonsie Valley HS,
Aurora, IL), Paul Oreto (Caroline
Evans, Brookline HS, Brookline,
MA), Marc Popkin-Paine (Mark
Kinsey, St. John’s School, Houston
TX), Tomokazu Sato (Jeff Levy,
Horace Mann School, New York,
NY), Alexander Schwartz (Mary
Quinlan, Radnor HS, Radnor, PA],
Katherine Scott (Virginia Baner,
Montgomery HS, Skillman, NJ),
Dmytro Taranovsky (Robert
Siskind, Long Reach HS, Columbia
MD), Ryan Timmons (Leonard
Klein, Wylie E Groves HS, Beverly
Hills, MI), Kevin Wang (Robert
Shurtz, Hawken School, Gates
Mills, OH), Joseph Yu (Glenn Malin,
University HS, Irvine, CA).
Assisting the authors were War-
ren Turner—coach (Brunswick
School, Greenwich, CT), Boris
Zbarsky—junior coach (MIT under-

graduate, member of the 1996 and
1997 teams, and gold medallist in
1997), Jennifer Catelli—senior lab
assistant and Ryan McAllister—Ilab
assistant, (both University of Mary-
land graduate students). The support
staff is headed by Maria Elena
Khoury and Patrick Knox at the
American Association of Physics
Teachers. Major financial support is
provided by AAPT, the American
Institute of Physics, and its member
societies.

The XXXI International Physics
Olympiad will be held in Leicester,
England from July 8 to 16, 2000. If you
are interested in applying or nominat-
ing a student and do not receive an
application by early December, please
contact Maria Elena Khoury at AAPT
[telephone: (301) 209-3344 or email:
mkhoury@aapt.acp.org). Q

Mary Mogge (professor of Physics at
California State Polytechnic Univer-
sity—-Pomona) has been a coach of the
US Physics Team since 1995 and is
currently academic director.

Leaf Turner (physicist in the Theoreti-
cal Division of Los Alamos National
Laboratory) served as senior coach
this year and has been a member of
the coaching staff since 1997.

Bullet

The milk bottle of human kindness

Relying on the kindness of your
neighbors was the key to this
month’s CyberTeaser, which in-
volved trading in empty milk bottles
for full ones. To learn how to make
the most out of your limited re-
sources, turn to inside back cover.
This month’s winners are

Christian Grothaus (Bielefeld,
Germany)

Steven Buczkoski (Malden,
Massachussets)

Bruno Konder (Rio de Janeiro,
Brazil)

Jorge G. Moya (Culiacan, Mexico)
Michael Marfil (Quezon City,
Philippines)
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Board

Yiming Yao (New Westminster,
British Columbia, Canada)

Nick Fonarov (Staten Island, New
York)

Igor Astapov (Kingston, Ontario,
Canada)

Jerold Lewandowski (Troy, New
York])

Congratulations to our winners,
who will receive a Quantum button
and a copy of this issue.

Everyone who submitted a cor-
rect answer was eligible to win a
copy of our brainteaser collection
Quantum Quandaries. Visit http://
www.nsta.org/quantum to find out
who won the book, and while you're
there, try your hand at the new
CyberTeaser! (e
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Math
M276

Let all edges of the pyramid
ABCD, except for AD, be of length
1. Let O be the center of the sphere
circumscribed about this pyramid.
All edges of pyramids ABCO and
BCDO are of length 1; that is, each

D

A
Figure 1

of them is a regular tetrahedron with
unit edge. Edge AD equals twice the
altitude of the unit regular tetrahe-
dron and thus, its length is 2~/6 /3.

M277

Let each of the fractions be equal
tot. Wehavex -1 =txy-3), y-2
=tlxy-4),and3 -x -y = t(7 - x*
- y2). Add these equations to obtain
0 = t[x — y)%. Thus either t = 0 or x
=y. Then the solution proceeds in
an obvious way. The system has two
solutions: (1, 2) and (-1, -1).

M278

First, consider the case when
ltan x| < 1. Since the left side is
+2 tan x or £2 cos 3x, it is less than
2 in absolute value in this case,
whereas the right side is greater than
2. Therefore, Itan xI>1, and the left
side is 2 tan x. Thus the solutions
to our equation satisfy one of the
equations tan® x — 3 = +2 tan x.

ANSWERS,
HINTS &
SOLUTIONS

Therefore, tan x = +1 or tan x = +3.
It is easy to see that all solutions to
these equations are also solutions to
the initial equation.
Answer:

T T

I + E k
and

=arctan 3 + k.

MZ279

Multiply both numbers by 24521,
We wobtain 292002200521 54
33005300949 Tt is easily seen that 53 <
27 (since 125 < 128) and (29 - 2)2 < (3
- 5)3 (since 3364 < 3375). Therefore,
521 < 249 and 292002200 < 3500530[)_
Multiplying the first of these in-
equalities by the second, we obtain
292002200521 < 33005300249_ Thus,
292002151 < 52793300.

M280

Point Q is the center of the circle
inscribed in the given triangle. We
assume that Q lies inside triangle
ABM (fig. 2). Denote by P, L, and E
the points of tangency of this circle
with the sides of the triangle (as
shown in the figure). Triangles APQ,
MLQ, and AEQ are congruent right
triangles (they are congruent by hy-

A
P
E
Q

B L M C

Figure 2

A
p 30°

B &

Figure 3

potenuse-leg). Therefore, ZQAP =
ZQML. Quadrilateral ACMQ can be
inscribed in a circle, since ZQAP +
ZQMC = 180°. If LAQM = v, then
ZACM = 180° —v. Now, ZAQM has
the minimum possible value if
ZACM has its maximum. In addi-
tion, BA = BE + EA = BL + LM = BM.
Therefore, BC = 2BA. Thus we ob-
tain the following problem: find the
maximum value of angle BCA if BC
= 2BA. If points B and C are fixed,
then point A must belong to the
circle centered at B with a radius
equal to half of BC (fig. 3). The maxi-
mum possible value of angle BCA is
attained at a point A such that CA,
is tangent to this circle (£BA,C =
90°). For this triangle, ZBCA,, = 30°.
Therefore, the minimum value of
angle AQM is 150°.

Physics

P276

Let’s find the “minimal” orbit of
a satellite. It should be tangent to
the Earth’s surface at point A, which
is the nearest to the displaced cen-
ter of mass (figure 4). Acceleration of
the satellite at this point is perpen-
dicular to the velocity v, and is de-
termined by the gravitational attrac-
tion of the “Earth”:

Figure 4
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Note that we used R for the radius in
the last term because the radius of
curvature of the orbit cannot be less
than the Earth’s radius R. From this
equation we can obtain the smallest
possible velocity at point A:

JGMR

R-d
Now let's consider the farthest or-
bital point B. If we denote the alti-
tude of the satellite above the
Earth’s surface by x, then the dis-
tance from the satellite to the cen-
ter of mass for this point will be R +
d + x. To determine the relationship
between the speeds at the nearest
and most distant points of the trajec-
tory, we use angular momentum
conservation (Kepler’s second law]:

V=

Vz(R"F d+X) = VI(R_ d),
and energy conservation:

GMm mv}

B N ~ GMm mvs
R-d 2

=- +
R+d+x 2

Note that the gravitational potential
energy for the interaction of the sat-
ellite and the Earth is negative and
there is nothing “dummy” about
that!

Plugging in the value v, taken
from the previous equation and
eliminating v,, we find the alti-
tude x:

2d*

- = 3200 m.
¥ R-2d m

This is a very small altitude; there-
fore, the length of the semimajor
axis of the orbital ellipse is practi-
cally equal to the radius of the Earth.

Thus the period of revolution T,
is almost equal to T, = 2n\/R/g =
5060 s (the period of an orbit around
the Earth along a circular trajectory
of radius R). The ratio of these peri-
ods can be found with the help of
Kepler’s third law:

Q_(Rm/z

372
J =1.0004.

Note: Figure 4 shows a very elon-
gated ellipse, but our calculations
showed that the trajectory should be
almost circular.
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In addition to atmospheric pres-
sure, the nitrogen inside the bubble is
compressed by the pressure due to the
surface tension Ap = 86/d, where d is
the diameter of the bubble. This for-
mula can be obtained most simply by
“cutting” the bubble into two equal
parts with a plane passing through the
center. Let’s consider the equilibrium
conditions for these hemispheres. If
the additional pressure inside the
bubble is Ap, the halves are driven
away from each other by a force
Aprd?/4. On the other hand, they are
attracted by the surface tension of the
soap film, which acts along the circu-
lar perimeter nd. This force is equal to
2ond (the coefficient 2 appears be-
cause the soap film has two surfaces,
the inner surface and the outer sur-
face). Setting these forces equal, we
get the value of the additional pres-
sure in the bubble.

The bubble will float when the
buoyancy (which is equal to the
weight of the air displaced by the
bubble at atmospheric pressure p,)
becomes larger than the weight of
nitrogen in the bubble, which is
compressed by the pressure p,+ Ap.
According to the ideal gas equation,

M, pynd® . My(po + Ap)nd3

!

6RT 6RT
which gives
dz _ 8oMy =10 m.
pO(Ma - MN)

P278

The combined capacitor is
equivalent to two capacitors con-
nected in series. We denote the elec-
tric fields in them by E, and E,, the
surface charge densities by 6, and 5,,
and the voltages across them by V,
and V,, respectively. The charges on
the two sides of the middle plate
have opposite signs, so the total
charge on the middle plate is

g=(0,-06,)S.
When the charge distribution is

steady, we can use the formulas of
electrostatics.

Therefore,

01
El = /
€oKy

)

E2= ’
€oKo

Vl :Eldll Vz :Ezdz, Vl +V2 =V.

On the other hand, since electric
current flows in the circuit, the ca-
pacitors can be considered as con-
ductors with the corresponding re-
sistances R, = p,d,/S and R, = p,d,/
S. According to Ohm’s law,

prdy
¢’

Solving the system of eight equa-
tions simultaneously, we get

V1=Ipl—sdl, Vy =1

KoPp —K1Pg
=—== ¢ VS.
dypy +dpy °

P279

In the first case only the coil con-
nected to the voltage source gener-
ates a magnetic field. The magnetic
flux in this coil is

®1 :LIII

where L is inductance of the coil and
I, is the current in it. Clearly the
magnetic flux in the third coil is also
proportional to current I, that is

CD3 = MII/

where M is the mutual inductance
of the coils. The voltage ratio for
these coils is

Vs _
v, @® ® L 2

5 _P M _1

In the second case electric current
flows in two coils: in the primary
coil (connected to the voltage
source) and in the short-circuited
coil. Neglecting the resistance of the
circuit, we get:

®, = LI, + MI,,
@, = MI, + MI,,
®, = MI; + LI, =0,

and so

. - M
IZZ—IIT

and



V, ®; M +Ml, M-M*/L
v, @ LI +MI, L-MYL
M1-M/L M 1 1
TLi-Mr L1+ML 3

Therefore, in this case the voltmeter
will read one-third of the source
voltage.

P280

The object to be observed is situ-
ated below the boundary of two me-
dia, the glass and air. It would be
wrong to consider the paper as an
object immersed in glass. If that
were the case, the paper could be ob-
served for all values of the index of
refraction, because the
radiate in the glass in all dir:; ions
and some fraction of them would
leave the prism through the trans-
parent face without being trapped by
total internal reflection.

Of course, the rays radiated by the
object under the glass also travel in
all directions, but they cross the air-
glass boundary and are refracted.
The rays only enter the prism
within a cone with an apex angle
given by 20, = 2 arcsin (1/n). Some
of the rays may not reach the face
BC (see fig. 5).

If o,y > m/4, that is, n < 1/sin (/4]
= v2, the entire text will be seen
through BC. Even the points near
vertex A will send rays to BC, and
their angles of incidence will be
smaller than nt/4 (that is, they will
leave the prism after refraction).

At higher n (and, accordingly,
smaller o) all the rays of the cones
emitted by some points near the
vertex A will hit the frosted face AB.
To find the invisible part AD, note
that ZABD = r/4 - 0,, and recall the
law of sines for triangle ABD, from
which we can determine the visible
fraction of the text k = DC/AC:

rays would

Figure 5

142
sin(n/2+0,)’

-k
sin(n/4—o)

k:l(1+tanoco)=l 1+; ]
2 2 Jn? -1

However, in order for at least
some of the rays that hit face BC to
be able to cross it, the smallest angle
of incidence on this face, n/4 — o,
must be less than o, that is, o, > 7t/
8, and nn < 1/sin (r/8) = 2.61. For the
limiting value n,

ki = L l+tan— |=07.
g 8

Thus the entire text is seen when
n < ~2, while at /2 < n < 1/sin (r/
8) only a fraction

kzi[u,;]
2 \n? -1

of the text is visible. When n > 1/sin
n/8), the text cannot be seen at all.

Brainteasers

B276

It is not hard to see that the fam-
n drink 6 + 1 = 7 bottles of
then it will have three
es left. Then, the family
one empty bottle, ex-

A hOTTOTAT

Cdll DUIITUW

ch for one more bottle of rmlk
dri t *:_i then return the bottle
borrowed. Thus, the family can
drink eight bottles of milk.

ible. For example, a
n can be covered by

B279

Yes, it is possible. For example, an
isosceles triangle with a base of
length 8000 and the altitude to the
base of length 0.5 has an area of
2000. Readers are invited to verify
that each altitude is less than 1.

Figure 6
Figure 7

B280

The apparent size of an object
depends not only on its inherent size
but also on the distance from the
observer. Indeed, you can “cover up”
the moon with a match head. Every-
thing you see from the train moves
relative to you the same distance in
a unit of time. However, the farther
the object is away, the smaller this
distance appears to be. Thus the ap-
parent velocity decreases with dis-

tance from the observer.

Grah that chain
of thought!

Did an article in this issue of Quan-
tum make you think of a related
topic? Write down your thoughts.
Then write to us for our editorial
guidelines. Scientists and teachers
in any country are invited to sub-
mit material, but it must be writ-
ten in colloquial English and at a
level appropriate for Quantum’'s
target readership of high school and
college students.

Send your inquiries to:
Managing Editor
Quantum
1840 Wilson Boulevard
Arlington VA 22201-3000 J
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