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Laocoon (c. 1610-16ru)by El Greco

T AOCOON, A MYTHICAL PRIEST OF TROY, IS
L deplcted above after incuring the wrath of the goddess
Athena. His crime? Hurling a spear at the Trojan horse
to prove it was hollow. Unfortunately for Laocoon, the
horse had been dedicated to Athena and she took offense
at his desecration of the object. Consecluently, vipers
were sent to dispatch Laocoon and his sons.

Because Laocoon's warnings were dismissed, Troy
fell and its denizens disappeared into the collective
melting pot of time. However, one only has to look
skyward (along with the reclining Laocoon) to find Tro-
jans in our modern world. Learn how the ancients'
spheres of influence continue to interact by reading
"When Trojans and Greeks Collide" on page 16.
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One }rurlp or tr,voi Unfortunately, the
answer lnay not alrva-vs be on the tip of
yolrr 1lose. If t1-re camel in cluestion is
some distance i1\\-a)-, the laws of physics
and optics clictate horv close you would
have to be to tlistrnglrish between the
two virrieties.

Fortunatell', calculating the distance
is a bit easier than, s:r1', tr'f ing to lcad a
c:rme1 through the e1,e oi a needle. To
irnd out iust how close yor,r'd have to be

to count thc protrusions, tllrn to " Physr-

cal Optics and Two Cantels" on page.l.l.
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Dry the hay. To dry freshly mown hay, one must stir and turn it over

frequently. Why?
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Eleclric multipoles

How a little order can weaken your potential

by A. Dozorov

HE ELECTRIC POTENTIAL GENERATED BY A
point charge at some point in space is inversely pro-
portional to the distance between the point and the
charge. At first glance, it seems that any arbitrary

set of electric charges located in some region would
create a potential that is also inversely proportional to
the distance to this cluster of charges. However, in gen-
eral this is not true. If we arrange the charges in a cer-
tain order, we can obtain a potential that is inversely
proportional to any integer power of the distance.

To prove this curious feature of the electric potential,
we need only one mathematical fact: if the absolute
value of lxl is less than one, the following formula is
valid:

+=1+x+ ,2 +x3 +x4 +... (1)
1-x

This is the well-known formula for the sum of an infi-
nite descending geometric progression.

Now we consider various systems of electrical
charges. The potential Q generated by a point charge 4
at some distance r is inversely proportional to the dis-
tance Q = kql*, where the proportionality coefficient k
depends on the accepted system of units. In SI (Interna-
tional System of Units), k = Il4nen. However, theoreti-

Figure 1

crans prefer to use CGSE (centimeter-gram-second elec-
trostatic system), because in this system k = 1 To iur-
ther simplify our problem/ we assume a1l charges to be
located in vacuum (e : 1).

f or exampic, consider three point charges located on
the same line at some distance from each other liig 11.

Let AB : n, AC = b, ar'd the charges be q, nq, and mq,
where n and m are integers. Now we calculate the elec-
tric potential at a point D located on the extension of
segment AC at a distance r from pornt A that is suiii-
cientl,v far irom all three charges. The latter condition
can be rvritten as 1 >> tt + b. According to the superpo-
sition principle, the potential Q at point D equals the al-
gebraic sum of the potentials generated by each charge:

Since r,ve consider the case when r >> a + b, we can ap-
p1y formula i1l. Thus, wc have

7 + n + tn na + tnb ni + tnb) na3 + n-tb3+4 . +q , +Q , +
t r' r t' o

C

This equation shows that atlarge distances the ab- ;
solute value of each subsequent term is much smaller f
than that of the previous one, provided the numerator 3
of the previous item is not zero. For example, if the sum I
of the charges is not zerc lc1 + nq + mq + Ol, the major i

, q nq lltq 4[, ,, ,,, I
r r_n r_n ,I y_! ,_;J

,=;[,*,,['* :.5.5. ). -l.i.+.5. )]
12)
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role in equation t2l is pla) ed br- the irrst term, so rhe to-
tal potential of the s)-stem oi charges itrl1 be inr-erselr-
proportional to the first por'r,er oi drstance. 81- contrast,
ii the sum of the charges is zero ithe system is neutral
as a whole), the key role will be played by the second
term: the potential will be inversely proportional to the
square of the distance between the charges and the test
point. However, we can place the charges in such away
that the first and second terms are both zero. Equation
(2) shows that the two recluisite conditions are

and

q\na+mb)=0. (3b)

Condition (3a) specifies that the total charge of the sys-
tem must be zerol so the charges cannot all have the same
sign. Eliminating the arbitrary charge cl from equations
(3a) and (3b), we get two equations with four parameters
nt mt at andb. This means that there is an in{inite num-
ber of variants of arrangements and values of the charges
that satisfy the set of equations (3). We can arbitrarily
choose any two parameters. Letb :2a (thatis, AB : BCl.
In this case ecluations (3a) and (3b) yield n = -2 and m : l.q + nq + mcl :0 {3a)

OUAlllTUlll/ItAIURI



Therefore, charge q must be placed at point A, charge

-Zcl atpoint B, and charge q at point C (figure 1). The dis-
tances between the neighbors must be equal: AB = BC = a.

Such a system of charges Senerates a potential de-

scribed (at large distances) by the following formula (see

formula (2)):

)oi 6oa'o=;+_., + .

Here the major role is given to the first term, so the
potential is inversely proportional to the third degree of
the distance.

When the following requirement is met in addition
to (3a) and (3b):

naz + mbz = 0, {3c)

formula (2) yietds a potential proportional to r-4. How-
ever, the system of equations (3a-3c) has no solutions.
Indeed, let's rnultiply ecluation (3b) bV a and compare
the result with (3c). In this way we obtain a = b, and (3b)

reduces to the equation n + m = 0, while (3a) leads to
the contradiction I = 0 (providedq+0, but the case q = 0

is of no physical interest). We obtain a similar result for
all other terms in formula (2).

Thus, depending on their values and relative loca-
tions, the three charges shorvn in figure 1 can generate
oniv potentials that at large distances are proportional
rol r I r-.orlr'

A iield generate,l bv an arbitrar\-s\-steln oi electric
charges can be consrdered rn a simrlar rr-ar-. In addition,
there exists an elegant method oi constructlll{ i :\'ste rr1

o{ charges that at large distances generat-s a iielj r'-rth
the potential

C-
d,,=-, j

where n is an integer and C, is a constant determined
by the values o{ the charges and their arrangement. The
charge system that generates a field with potential {4)
is cailed an n-order electric multipole or 2"-pole. The
simplest case r : 0 (Oth order multipole) corresponds to
a single point charge. In the general case the n-th order
multipole is formed by 2" charges. It turns out that if
we have an n-th order multipole (2"-pole), it is easy to
construct the (n + i )-th order multipole. To this end we
supply the initial a-th multipole {2"-pole) with the same

___?c

n-th order multipole (2"-pole)but shifted symmetrically
to some distance and composed of the opposite charges.

In this way we obtain a system composed of two oppo-
site 2"-poles. The resulting system forms a multipole of
the (n + 1)-th order with 2(n + ll charges (2".l-pole).

Let's consider some examples. A point charge -q is a
muitipole of the Oth order. As a first step/ we use it to
construct a multipole of the first order (2-po1e), called a

dipole. To this end, we shift the charge -q a distance I
to the right and change its sign. As a result, we obtain
the dipole shown in figure 2. It is characterized by the
so-called dipole moment d : ql (vector I is directed from
the negative to the positive charge, its value being equal
to the distance between the charges).

Let's calculate the potential Q1 generated by the di-
pole at a distant point D lying on the extension of the
line segment connecting the charges (AD : r >> 1l:

r)
n_-Q,4 _ql 1r I 

Iur =l- ,_t=;l_, *J 
l.r r-, ,[ ,_;)

Using formula (1) we get the maior term of potential
generated by a dipole:

If the observation point does not he on the extension
of the line connecting the charges, two coordinates de-

termine its position. The first coordinate is the distance
to one of the charges (for a distant observatron point
rrhere t' >> 1, it doesn't matter which of the two charges

rs :.e .l to this endl. The second coordinate may be the
ar.:-.- 5e :.,' e cn the clipole moment and the radius-vec-
ta,r i:;r.r'L ir', r:1 .r chatqc tagain for r r> I it doesn't mat-
te r \fnla:t :i;: a. r. -:l,..tl tir the obselation point. So,

point C fr; I :. c-t:,t.i::-l.i-;l br- the clistance p = BC
and angle 0. ln rhr. c:.r- ;a-c---::i:-i. ::t. itote nt1a1 is norc
difficuit. The tcrLrli r-

,1 COS 0

", = 
o 

-.1

To make the next step and construct a second-ort1er

multipole (22-pole or cluadrupole), we must add to our
dipole a similar dipole with opposite charges and shlft
it some distance (note, we do not rotate the original
dipole: both its charges are shifted idcntically). Let's
shift the dipole a distance 1 along the extension oi the
line connecting its charges (figure 3a). We could make
a smaller shift, but the calculations are iengthier.

When the charges are situated on the samc line, the
multipole is called axial.Frgure 3b shows such an axial
cluadrupole originated from the charge systeln g1\-c11 111

figure 3a. In the general casc (figure 3cl a qu:rc1ruf ,l1. rs

composed of unlike charges of equal \-a1L1c 1''..i '. : ': :he

(s)
old

Vl = . - r 't" r'

stPItltlEtR/0[I0BtR lSgg



1,.,

Figure 3

vertices of a parallelogram. According to formula (4), the
potential of a quadrupole Q, must be proportional to I f
l. Therefore, in series (1) we must take into account
only the numbers up to x2.

Now 1et's calculate the coefficient Crfor the axial
quadrupole shown in figure 3b. For a distant point D on
the axis of the quadrupole we have

The next step is to form a third-order multipole usu-
ally called an octttpole, because in general it has 8 equal-
magnitude charges. To this end we supply the axial
quadrupole {figure 3b) with the symmetrical axiai qua-
drupole as shou,n in figure 4a. As a result, we get an

-------.+
q-)qq

-- + --
a-q2qq

111
' ri:, _ _ _ "r. , _ - ::;t _ _ _ _ _ _ _ _ _ .t:,1-.:. - _ _ _ _ _ _ _ _.,,.iii _ _ _ _ _ _ _ _ _ _.

Dq -3q 3q -ct
b

4.;. -------- ,*14

-o..,-." ,/1 4,..t,,-." ,,'- -..--:--- -----------,i"tt,,,,,
, ,l

Circumventing the mathematical details, let's con-
sider the lines of force of a dipole and an axial quadru-
pole shown in figures 5a and 5b, respectively. For the
dipole (figure 5a) the electric field is obtained at each
point by computing the vector sum of the fields E* and
E_generated, respectively, by the positive and negative
charges: E : E* + E_. Figure 5a shows these vectors for
one point in space. A similar plot is shown ln figure 5b
for an axral quadrupole. At each point the total field E
is the sum of three vectors: two intensity vectors E+

produced by the positive charges, and one vector E_ cor-
responding to a negative charge with a magnitude equal
to the sum of the positive charges. Three-dimensional
plots of the lines of force for the electric dipole and qua-
drupole are obtained by rotating figures 5a and 5b about
the corresponding axes of symmetry.

In addition to electrical systems, we can consider
magnetic multipoles-systems composed of magnets or

l*w '- --ffiq-q
,&- 1ffi-.----@,-qq

."1--"7@ r_ ffi r #, _______.

A-dAqD
1"

wi1

axial octupole (figure 4b). In the general case a quadru-
pole (figure 3c) produces an octupole (figure 4c) with the
charges located at the vertices of a paralleiepiped. Ac-
cording to (4), the potential 03 of the electrostatic field
generated by an octupole must be proportional to I lf .

Let's find the potential generated by the axial octupole
at point D:

r4

The fields and potentials of the higher order multipoles
are calculated in a similar way.

The field of any system of electric charges can be
represented atlarge distances as a sum of the fields gen-
erated by multipoles of different orders. The higher the
order of the multipole approximating the analyzed sys-
tem, the more "neutral" this system is and the more
rapidly its field decreases with distance.

We have considered the electric potentials generated
by axial multipoles along their axes. For an arbitrary
point, the potential calculations are made in a similar
way, but they are rather cumbersome.

If the potential of a multipole is known ((n= Cnlr"*\|,
it determines the values of the electrical field E and the
force F = qE affecting a probe charge clby themultipole.
Since n > 0 for any multipole,

q-q
-(,.#.T.+)]

6ql'

p= I
"- ,n+Z'

(6)
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Figure 5

closed currents. However, a magnetic system has an
important distinction: single magnetic charges (mono-
poles) have not Lleen found in nature, so the elementary
unit oi the rnagnetic systern is a magnetic dipole. Fig-
ure 5c shorvs the lines of forces produced by a rnagnetic
dipole ge ne ratecl bv a circular clurent 1 whose plane is
perpendrcular to the plane ot the page. At large distances
the fie ld plots shorr'n 1n ii.qures 5a and 5c are identical.

The srrlrlarrtr-'L'rtrie en lrlagnetrc and electric dipoles
can be illustratci 1.,,' :r: :he : e:.imp1e. The neeclle of a
magnetic co1np.1ss is r l-n:i:r-iri Jtprlc orrented along
the hnes oi a magnetra:r;li. ]l a.i::-Li-:.r,,tirv an elec-
tric dipole turns in an erectric Ii.-r -:.,--..- :s.r-Lr-nes the
direction along the iincs .ri Irrrir: :i-.:;.--. :-:.i tr: th;
role of an " electt'ical c,-,mpa.= ir i-t: - '

Examples of electric rnultipole s drs .litiit: =::: ::-, -

ecules. If during the formation oi a molecuL. ::. --:;'
trons are redistributed between the atoms rn such a '', ...'

that the centers of " gravrty" of the positive and nega-
tive charges do not coincide, the molecule acqurres an
intrinsic dipole morrent and is called pctlat. For er-
ample, molecules of hydrochloric acid and rr-ater ate
polar (figure 7). If the unlike charges in such a molecule
are spaced by a distance about the radius of a hr-drogen
atom (7 = 0.5 . 10*8 cm), the dlpole moment of t1-re rnol-
ecule is on the order of d = el = 2.4 . l0 18 cm CGSE unrt
charge. (In the CGSE systeln, the charge of an ele ctron
is e = 4.8 . 10-10 CGSE). The order oi magnitude oi this
value cortesponds to the experimental data shorrn in
figure 7.

Ii a molecule is composed oi similar atoms lO., H,,
or Cl.1, the electrons cannot "tecognize" their "natir-e"
a:om and thus they are located homogeneously benr-een
.'::i .,-toms, u-hrch yields a dipole moment o{ zero. Such
::r -:;-,-:s are ca11ed nonpolar. Figure 7 shows a linear
::: -r;,--; ! ;:.rL.,on droride, COr, which is nonpolar.
-r. =::.,:.:;; ti thrs r-no1ecu1e suggests that the re-
j-s::-:*: . : =-.:::', ls l etrreen tlle atoms shouldpro-
i-ice :-:r ::r,.- -- *.::--: -,- .,-rlrpare it rl,ith figure 3b),
rr-hile :n.;-;-::-:- --.-:::1.1..:-j L.r- a carbon dioxide
molecule srr;-; -- -< ---<. :--,:, s': -','.--l :ll l:lr-rte iL-r ,but
in thc ollo.ri. j.:, -:. :.

More complicate d j-s:l:: *:- :t: , ;: ::t: ': j -1.c-
trons in rnolecules r-te ld r-t-L.t-:r:,'-;: -: :-r:t-: :l:t! O

Quantum on electro- and magnetostaua::
A. Eisenkraft, L. D. Kirkpatrrck, Ph1-srcs C--nie S:-

series of installments on electrostatrcs: .[ulr- Ar-rgiLst

1992, p. 24i lantary/February 1993, p.44; Novernber
December 1993,p. 46; Mayllune 1994, p. 40.

A. Stasenko, "Love and hate in the molecular wotld,"
November/December 199 4, pp. 10-13.

J. Wylie, "Magnetic monopoly," Mayflune 1995, pp.
4-9.

A. Mitrofanov, "Can you see the magnetic field?"
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M271
Systems engineeilng. Solve the

following system of equations:

where [x] denotes the integer part of
x (that is, the maximum integer value
not exceeding x) and {r} : , - [x] de-
notes the fractional part.

M272
Lookingfor x. Solve the equation p272

r. - 2(x+3)x+lx'-9 --' (x-B)''

M273
Locus pocus. An isosceles tri-

angle ABC (AB : BC) is given in a

plane. Find the locus of points M in
the plane such that ABCM is a con-
vex quadrilateral and LMAC
+ ZCMB :90".

M274
Cubic edge.The distances from all

vertices of a cube and from the cen-
ters of its faces to a certain plane (14
quantities in ali) take two different
values, and the lower value is 1. What
can the length of the cube's edge be?

M275
What's your anglel In a triangie

ABC, angle B is obtuse and its mea-
sure is s. The bisectors of angles A
ard C intersect the opposite sides at

HOW DO YOU
FIGURE?

ChallBltUE$

points P and M, respectively. Points
K and I are taken on side AC such
that ZABK= ICBL:2a- 180". Find
the angle between lines KP and LM.

Physics

P271
Pinocchio's cap. O1d Geppetto

made a cap out of thin tin for his
beloved creation Pinocchio . The cap
had a conical shape with height
H = 20 cm and vertex angle o = 60".
Will the cap be in stable equilibrium
sitting on Pinocchio's head if his
head is a sphere of diameter D
=15 cm? (S. Krotov)

De nihilo per asta. According to
one cosmological hypothesis, stars
are formed from interstellar gas and
dust due to compression produced
by gravitation. Evaluate the time
needed to make a star from a gigan-
tic spherical cloud with density
p = 2 . 16-zo g/gma. (We assume that
under compression the particles do
not pass one another. The gravrta-
tional constant G = 6.57 . 10-11
N.m2/kg2. ) (V. Skorovarov)

P273
Loop on a soap film. A loop of

thread of length I floats on a soap

film (figure 1). The part of the film
located inside the loop is carefully
pierced. What geometrical shape
will the loop assume? What is the
ecluilibrium tension in the thread if
the coefficient of surface tension for
the soap solution is o? (A. Buzdin, S.

Krotov)

P274
Electron in a magnetic field, An

electron flies into a homogeneous
magnetic field. At point A its veloc-
ity is v, which makes an angle u
with the direction of the magnetic
field (figure 2). For what values of

B

Figure 2

the magnetic field will the electron
arrive at point C? The electron's
charge is e, its mass m/ and the dis-
tance AC rs L.

P275
A lake in a desert Travelers in

the desert sometimes observe what
appears to be a sea or lake. At what
diitance from the ob'server does
such a mirage appear? Assume that
the speed of light near the ground
in the desert varies according to
the formula c(z)= cofi - az), where
co is the speed of light at the
ground and z is the altitude above
the ground. (B. Klyachin)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 51

lx 
+ly)+ {z}

lr +lzl+ {x}

l, + ["]+ {r}

= 3.9

= 3.5

-)

ti

Figure 1
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Thol'ouUhly model'lt Diophanlus

The arithmetic of elliptic curves

by Y. Solovyov

ODERN MATHEMATICS
hr. inh.'r'itcJ trorn antirluity
.c\ ct di grLJt \\ l-ltings. One of
thcrn rs the -{rlhtlEIrcrt by

Diophantus oi A1e:irndrra. \\'t.itten
in the third centur\' -\..r., rt tltsap-
peared ior tnore than 1000 \-e ars ill-tLl

was believed to be lost. It \\'as nL)t

seen again until 14(r,1, u-hen the
Gcntran :cieuti st Rcgiotnontltr u.
\1436-1476) found 6 of the 13 vo1-

umcs of Arithmetica. The first
Latin translation oi this book was
printed in 1575. Whcn the eclition
prepared by Claude-Gaspar Bachet
de Mdziriac appeared in 1621, it be-
came the reference book for many
mathcmaticians, such as Pierre de
Ferrnat (1601-16651 and Ren6
Descartes ( 1 596-i650).

The book clid not seem at all ob-
solete, despite the thousand years of
oblivion. In fact, it ieft the best
works on algcbra oi the sixteenth
century iar behincl. For example,
unlike European algcbraists of that
time, Diophantus operated freely
with negative and rational numbers,
usccl letter notation for ecluations,
and r-nclst important, was able to fincl
intcger ancl rational solutions of lin-
ear, cluadratic, ancl cubic ecluations
ancl of systems of ccluations with in-
teger coefficients in two or lrlore

10 stPTttltBtR/ocIoBtR tsss

variables. The solution of such eclua-

tions (now called diophantine) has
ever since remained an itnportant
subject of mathematical investiga-
tions.

Now we are ready to consider the
solutions of several diophantine equa-

tions ,I'r-e trred to choose the most
beautrtul oi theml. To solve these
equarlrrns, one must not only read
Diophantr-rs qreat l.,ook carefully, but
also get in touch rr-tth the latest
events rn modern rlathematics.

Dioilantus' tnefiod ol secanB
Let's illustrate thrs rrrerhod usLng

a particular case of a problem soir-eJ
by Diophantus in hts Arithnteitc,i.
Consider the following equatron:

xz -y2 = l. (1)

Figure 
.l

Suppose that we must find all lts
rational solutions-that is, all the
ordered pairs

(tt c\(r,v\=l;;)a,b,c,d =z

that satisfy equation (1J.

We can consider equation 1ir 1or

any other equation in the variables
x and y) as a curve on the coordrnate
plane. In the present case, it is a h1'-
perbola ({ig. 1). The solution i1, 0),

corresponding to the point P in
rrhrch the hyperbola meets the
-r-aris, strikes our eyes at once. Let's
drarr- a se cant hne through this
pL-rrnt 111lh slope k. It's ecluation
r'-r11 be

1' = i1-r - 11. i2)

Norv let us frnd the second point
where thrs line intersects the curve
with equation (1J. We iust substitute
the right side of equation (2) for y in
equation (1) and solve the resulting
quadratic equation {or x. We {ind
that

-k2+1  - -------------- -

l- k'

We already know one of the roots,
namely r, = 1 (it corresponds to the
point (1, 0)J, and the sccond root

-Yl
C
(0

>
-o
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k2+1,') - kz -l

gives us the desired second point of
intersection:

(k2+t 2k )
\xz,Yz) =[t, _r,trlJ (31

For all rational k (k + +1), this for-
mula determines a point on the
curve and thus a rational solution of
the given equation. (When k : +1,

the secant intersects the hyperbola
only at the point P (fis. 1).) And con-
versely, lor any rational solution (for
ar-.y rational point M on the curve),
secant PM is determined by equa-
tion (2) withrational k (because the
legs of the right triangle PMH are ra-
tional in this case).

Thus, when k takes all possible
rutional values (k + tl ), equation (3)

givas all possible rational solutions
of the equation (1).

Diophantus did not introduce a
coordinate system/ nor did he con-
sider the curve corresponding to the
given equation. In fact, the coordi-
nate approach in geometry first ap-
peared in the seventeenth century in
the work of Descartes. Diophantus
introduced the substitution from
ecluation (21 in a purely algebraic
way and then obtained equation (3)

(in different notation, of course).
Moreover, he realized that the
method illustrated was applicable
not only to the polynomial
* -J? - 1 but also to a general sec-

ond degree polynomial in two vari-
ables:

p(x, y) = a* + b*y * "f + dx + ey + f,

where a, b, ..., f are integers or ratio-
nal numbers, if one has found at
least one rational root of the equa-
tion.

Not every curve defined by a

second-degree polynomial contains
rational points. For example, there are
no such points on the circle * + f = 3
or on the ellipse * + 82y?: 3. Stiil,
there are rational points (alc, blc) on
the circle * * t' = 1. A triple of inte-
gers la, b, c) defined by such a point
is called a Pythagorean triple,because

Figure 2

it satisfies the relation az + b2 = c2,

which appears in the statement of the
trythagorean theorem. We can find all
Pythagorean triples using the method
of secants (as well as in other ways).

The problem of the existence of a
rational point on a second-degree
curve turned out to be very fifficult.
The first nontrivial advances were
made by Indian mathematicians
Brahmagupta (598-c. 6651 and
Bhaskara II (1114-c. 1185), and the
complete answer was not found un-
til 1768 by the famous French math-
ematician |oseph-Louis Lagrange
(1736-1813).

Diophantus did not confine him-
self to second-degree ecluations. He
successfully coped with cubic eclua-

tions and formulated a general ap-
proach to such equations, as we will
see in the following section.

Taltueltt to a cul'ue
In one problem from Arith-

metica, one must find a rational so-
lution of the equation

y(6-y)=f-x. (4)

Diophantus' solution is brief and
brilliant. Let's try, he wrote, the sub-
stitution x = 2y - 1. We obtain

5y-6f=81-t25P+4y.
If the 6 were a 4, then the linear
terms would have nicely vanished!
But the 4 appearedfrom the 2 in the
substitution x:2y - 1. So, let's re-

placeZwith 3-that is, let x = 3y - l.
Then the linear terms disappear and
we obtain

fley -71:0, (s)

andthus y:719 andx= l6f9.We've
found the rational solution 11619,
7 19) of cubic equation (4).

At first glance, there is nothing
special in this solution. We simply
guessed that we should use the sub-
stitution x = 3y - 1, which helped us
find the solution. What profound
idea is hidden here? To answer this
cluestion, let's look at the coordinate
plane once agail and draw the graph
of ecluation (41 [see fig. 2). (Later in
the article we explai-ir how to draw
such graphs.! The gray line in figure
2 is the linex - 3y * I : 0. It is tan-
gent to our curv-e at the point P(-1, 0)
(in fact, equation (5) has, in addition
to the root y : 719, two "equal
roots" )'r : 0!.

We could continue this procedure
by drarving another tangent to curve
(4) through the rational pornt (1519,

7l9l.The reader can confirm that
1[is line meets the curve in a third
rational point, and so on. But
Diophantus didn't take this step,
and more than 1500 years passed
until mathematicians could use
Diophantus' ideas in their full gen-
erality.

Grmudftfffi3
Continuing the geometric ap-

proach rse've used thus far, 1et's con-
centrate not on the solution of the
third-degree equations, but on the
follorrilg equivalent question:
\\that rational points are there on
the plaae curv-e determined by the
thXd-degree equation

flx, yl : a* + bx2y + ... + hx + iy + i : 0

with integer coeificients?

P';\r6le, 7 le\

lv-17- )livl + rzll-').1\--
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\, - l)/vl
'-.-,-r, ,
= x'+ nx'

.v = P(x)
:xl+ar2

Figure 5

We can divide all curves of this
sort into two huge classes. The first
class is composed of all the curves
with cusps (the reader is invited to
check that the origin is such a point
on the ctrve5P: #) or self-intersec-
tions (fig. 3) as well as all curves for
which there exists a decomposition
lfactorization)

f(r, y) = f Jr, yl frlx, v),

where f Jr, yl andf ,lx, y) are polyno-
mials of smaller degrees (fig. 4). Such
curves are called degenerate. The
second consists of all non-degener-
ate curves determined by third-de-
gree polynomials with integer coef-
ficients. Such curves are called
elliptic.l It is this, the most general
class, that attracts our attention. All
the elliptic curves that we will con-
sider wi1l be given in the canonical
form

JP:*+a*+bx+c (61

with integer coefficients a, b, and c,
such that the polynomial

P(x)=#+a*+bx+c
has no multiple roots.

The assumption that the equa-
tion of each of our curves can be
written in this canonical form does
not decrease the generality of our
reasoning: Each nondegenerate
cuwe f(x, y) = 0 can be rewritten in
the form of equation (6) using a suit-
able substitution. If the coefficients
of f(x, y) are integers, then the prob-
lem of finding all rational points on
the curve f(x, yl: 0 can be reduced
to the similar problem for a curve

lNot that these curves are not
themselves ellipses. The connection
between ellipses and these curves,
which is preserved in their name,
might make a good subject for another
article.

written in the form of equation (6)

with integers a, b, and c.

Gl'apfls ol sllhtic cut'tte$
First, let's find out what curve (6)

looks like. The easiest way to draw
it is as fo1lows. Take the graph of the
function

y=^l* +arl +bx+c

and reflect it with respect to the
x-axis. To draw the graph of this
function, we start with the graph
of y : x3 + ax2 + bx + c. It is well
known that every third-degree poly-
nomial (without multlple roots) has
either one or three real roots. There-

fore, thegraphofy:# + a* +bx+ c
looks as it is shown in figures 5a and
5b. Now we easily obtain the graph
of the function

y=tE'-o?*bx+c

(see fig. 6a) and thus the shape of the
elliptic ctsrve SP: # + a* + bx + c
(fig. 6b). Figure 6 illustrates the case
corresponding to figure 5a. We sug-
gest that the reader draw the curve,
corresponding to figure 5b. It will
consist of two parts (see fig. 9).

Note that the graphs of the func-
tionsy= /r1x) andy:-/i,1"1 ;oln
smoothly, without forming corners/
at the points X11 x2t and xr. This hap-
pens because the tangent to the
graph y : "Fg is vertical at these
points.

Addili0n 0lp0inls m all sllifiic cllt'll8
When applied to elliptic curve C,

the method of secants gives an un-
expected result. It turns out that we
carr " add" the points of C. That is,
we can define an operation, which
we will call "addition," on the
points o{ C based on the graphical
representation of the curve (fi+.7l.
Take two points P and Q on C and
draw a line through them. This line
will meet curve C at a third point.
Reflect this point with respect to the
x-axis. The result is called the sum
of P and Q. In figure 7 it is denoted
by P + Q. (However, not every line
through two points of C meets C at
a third point-for example, a verti-
cal line does not.)

Let's study the properties of our
new operation and compare it with
the operation of addition of num-
bers. The latter operationis commu-
tative-that ts, a + b = b + a-and as-
sociative-that is, (a * bl + c = a +
(b + c). Furthermore, this operation
has an identity element-anumber
O such that a + O = a for all a. Fi-
nally, for each number a there is an
inverse number-a number (-a)
suchthat a+(-a)=O.

And what happens on an elliptic
curve? First of all, the addition of
points is commutative.Infact, to find
Q + P, we start with the same line as
for P + Q. Therefor€, Q + P : P + Q-

13

Figure 7
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The associatiYity of the addition
of points of an elliptic curwe holds
too, but it is not easy to prove this.
We can see a geometric interpreta-
tion of this fact with the help of a
drawing.

Now let us take up the question
of the existence of an identity ele-
ment: a point E of the curve such
that P + E : P, for any other point P

of the curve. How can we find such
a point? Look at figure B. Take an ar-
bitrary point P on the curve. We
want to find something such that if
we draw a line through P and the
"something " take the intersection
of this line with the curve, and re-
flect it with respect to the x-axis,
then we will come back to P. Let R
denote the point symmetric to P
with respect to the x-axis. It follows
that the line through P and the
"something" must pass through P
and R, which is to say it must be
vertical. Therefore, if a point E exists
such that P + E : P, it can'tlie on the
plane, because it must belong to the
curve and to the vertical line at the
same time.

Since there is no such point E in
the plane (and because we need it
badly), we will simply attach it to the
plane and callitthe point at infinity.
What properties must it have? Every
vertical line tends to inJinity in two
directions:up and down. Let's require
that all these in-finities correspond to
one and the same point E. In other
words, we will regard E as the point
wherc allverticalknes meet. Point E,

the identity with respect to addition,
is correctly determined by this re-
quirement. By our definition of E, a
vertical line through P also passes

through E. Therefore, R, the second
point where this line meets the ellip-
tic curve, satisfies the relation

l4 stPIItrtBtR/otIoBtR lggs

P + R = E; thus, it is the inverse of P.

On the other hand, R is the point
symmetric to P with respect to the
x-axis. Therefore, every point P of
the curve has an inverse -P : R.
Thus, we've checked that the addi-
tion of points of an elliptic curve
satisfies all the properties of the
addition of numbers.

How does one compute P + P?

When points were different/ we
drew a secant. And now that they
coincide, it's clear that we must
draw a tangent (fig. 9).

And what about 3P? It is very
simple: we add 2P to P. Similarly,
4P :3P + P, 5P :4P + P, and so on.

Seal'rhinU lon nafiional ruin[s
Now that we are armed with the

operation of addition of points, we
will iook for the rational points. Let
P : lx, y1) and Q : lxz, 12) be two
rational points on the eiliptic curve

f = # + av,z + bx + c, where a, b, ar.d
c are integers, and let the line
through P and Q meet the curve at
a third point R = (4, ysl. Then R is a
rational point, also.

It is not at all difficult to prove
this statement. Indeed, i{ the iine is
determined by the equation

y: kx + d, l7l

then k ar,d d must be rational, be-
cause we can express them in terms
of the coordinates lx1, y1) andlxr, y2l

of the points P and Q by the formu-
las

, Yt-Yt
xl-X2

s ., 1,,, - xtY:-x:Yt
u - ) I - n  l - 

-.

xt-X)

Substituting t7l into the e.luation oi
the elliptic curve, we obtain the fol-

lowing third-degree ecluation in x
with rational coefficients:

lkx+dP:*+ax2+bx+c,
which can be rewritten as

# + \a- k2)x2 + lb - 2kd)x + c - d2

=0.

The relationship between the roots
and coefficients of a polynomial
equation implies that

xl+xl+x^:k)-a.
Since both x, and xz ate rational, x"
is rational/ tno/ and thus so is
-, _b- -A/.1 - r\^l I B'

Using this reasoning, we can eas-

ily derive the formula for the coor-
dinates of the point P + Q. By defi-
nition, I - Q is the 5\ rttrtt(tric
image oi R with respect to the r-
axis. Therefore, the coordinates 1rz,

v) of the point P + Q are given br-the
formulas

u=k2-d-xr-xl
and

v = -ku- d = -lk(u -r,l - l,l
Substituting k and d for the expres-
sions we've found above, u,e irnally
have

, '){Y, -Y,lu= \-(u-x, -r.1,
(xr -xr )

vr - vr rRl
\'-' - lxr -ri)-)'1.Xt-x2

Cle arlr , rrhen -r, = x,, these {ormu-
lirs are meaningless. In thrs case we
lTIu:I Icf laLr thr ctlUiltton Of a sc-

canr r. rth thc cquatiou ot a tall-
gent and repeat our reasoning. At
last, we obtarn

3x? +Zax, +b ,v=vt+*(u-xr).
2y,

Thus, if we know at least one ra-
tional point P ol an elliptic curve/ we
can use the above formulas to com-
puteZP,SP, andso on. Suppose, for
example, that the cun'e is given by

u=-Zxt-r-[ 3xl + t+b2ax.,

2y.
(e)

Figure 9Figure B



the equation J? : # -2 andP = (3,5).
Then we can find the new rational
point

1D,_(tz9 383 )
-t -t 

-,-- 

t-

\.100' 1000/

Now we can computeBP, 4P, and so
on. Note that the numbers we have
to deal with grow rapidly. If u, de-
notes the first coordinate of the
point nP, then

ut: 3,

t29
ua ---1 loo'

L64323*r 
z9z4t'

2340922881'+ 
sB6TsGoo'

30732610s747363

t6028094256452t'

Further coordinates grow even
faster. For instance, u, has 7l dig-
its in its numerator.

At the present time, no general
procedure is known that would a1-

low us to find all rational solutions
of the equationl? : # + a* + bx + c.
In the example we've considered, we
just guessed the first solution (3, 5)
of the equation y2 : x3 - 2. In the
general case no universal method ex-
ists for finding such a {irst solution.
Finding an effective procedure of get-
ting an initial rational solution of an
elliptic equation is one of the greatest
problems of numbertheory. However,
iJ we know one solutioq we can find
others by means of formulas (8) and (9).

0ndm olpoiril$ m an ellhfic ul'ue
Consider the sequence of points

nP, "muLttples" of the point P. We
must distinguish two essentially dif-
ferent cases. First of all, we might
obtain identity at some finite stage n.
In other words, there might exist a
number n such that nP : E.If mP + E
for all m < nt then we say that point
P has finite order n. For instance,
point P : (0, 2l on the cuwe 5P = # + 4
has order 3, point P : (2,3) on the
curve yz : * + t has order 6, and
point P : (3, 8) on the curve
J? = f - 43x + 165 has order 7. The

question then arises: how many
points with finite order are there, and
what are their orders?

ln L976 an outstanding result in
this field was attained by the Ameri-
can mathematician B. Mazur,2 who
showed that if P is a rational point
of the nh order, then n < 10 or n : 12;
on the other hand, there are at the
most 16 rational points of finite or-
det on an elliptic curve.

The second case we must con-
sider is that the points P, 2P, 3P, 4P,
and so ott, are all diJferent. In 1901
the {amous French mathematician
Henri Poincar6 (1854-L9I2) formu-
lated the hypothesis that for every
elliptic curve therc is a finite num-
ber of points P 1, ..., P r such that any
rational point P of the curve is ex-
pressible in their terms-that is, we
can represent it in the form

P = nrPr+ ... + nrP, + Q,

where rllr . . . t n, ate integers defined
in a unique way by P, and Q is a
point of finite order.And it is impos-
sible to express one of the points P,
..., Pras a combination of the others.
The number r is known as the rank
of the cuwe.

In 1922 the young English math-
ematician L. Mordell proved Poin-
car6's conjecture, but his reasoning
suggests no constructive method for
calculating the rank. It isn't even
known nowadays whether eiliptic
curves of arbitrarlly large rank exist.
Still, it was proved that the rank of
a curve can be estimated from the
coefficients a, b, and c of the equa-
tion5P :* + a* + bx + c, andthere-
fore any curve of alarge rank must
have large coefficients. For example,
one of the curves with rank r > 8 has

a = -32 .t487 .t873,

b:2s .32 .5.151 . 14551 .33353,

c :28 . 34 . 52 . 7 . tsP . t93. 273. t56307.

Cul't s$ ol mliFmy deurees
Here we've confined ourselves

to curves (and thus to diophantine

2See his article "Questioning
Answers" in the |anuary lEebruary
1997 issue of Quantum.-Ed.

equations) of degrees 2 and 3.
What happens for the degrees n >
4? In this case it is natural to point
out the class of non-degenerate
curves of the nth degree (one typi-
cal representative of such curves is
xn + y': 1). When n > 3 the picture
changes drastically. As early as
1931 Mordell conjectur ed that the
number of rational points on such
curves is always finite. For more
than half a century Mordeil's hy-
pothesis remained in the center of
mathematical studies all over the
world. The Russian mathemati-
cians I. R. Shafarevich, Y. I.
Manin, S. Y. Arakelov, A. N.
Parshin, and Y. G. Zarhin contrib-
uted to its solution. But the honor
of giving the final solution of this
problem fell in 1983 to the young
German mathematician Gerd
Faltings. At the 1985 Interna-
tional Mathematical Congress in
Berkeley, Calif ornia, he was
awarded the highest mathematical
prize, the Fields Medal, for this
achievement
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When Tl'oialt$ and 0t'eelts collide

The challenge of multi-body systems

by l. Vorobyov

I S IT POSSIBLE TO DESCRIBE
I the trarectorles ot booles tnat
I ir,.rr", according to the law oi
lrniversal gravitationi For ex-
ample, how do the planets move?
Assume that we know the Precise
coordinates and velocities of n
planets at some moment of time.
In addition/ we assume that the
planets are affected only bY the
forces of gravitational attraction
oi the other (n - 1) planets. We are
to find the subsequent positions
of the planets (that is, their trajec-
tories) using the initial condi-
tions.

The laws that describe planetarY
motion are well known: these are

Newton's second law and the law of
universal gravitation. No extra laws
are necessary to describe (and pre-

dict) the traiectories of moving plan-
ets. Is it an easy problem?

For a system composed of two
bodies, this problem was solved for
the first time in history by Sir Isaac

himself. In this very simPle case,

knowing the initial conditions (po-

sitions and velocities of the planets),

one can determine the future state
of the system at any moment and
with any precision.

However, when scientists consid-
ered systems composed of more than
two bodies, they met with huge

mathematical dif{iculties. One can-

not obtain the general solution even
{or the case of three bodies (n = 3).

Even to the present this three-body
problem has not been strictly solved
with known mathematical methods,
notwithstanding 250 years of efforts
by mathematicians around the
wor1d. For this reason/ "the n-bodY
problem" (this is how specialists re-

fer to this problem in the general
case) continues to atfiact the atten-
tion of mathematicians.

Another stimulus is the immense
importance of the n-body problem
{or celestial mechanics and astro-
nautics. No wonder that the total
number of papers devoted to this
venerable problem of mechanics
amounts to 2000, and every Year ar,-

other 15-20 works are added.
At present there are a number of

methods for obtaining approximate
solutions to the n-body problem for
a limited period of time, and for plot-
ting the trajectories of any specific
system of bodies with sufficier,t ac-

culracyt provided the initial condi-
tions are specified. The effectiveness
and reliability oi these methods has

been proved many times-for ex-
ample, in calculations of the trajec-
tories o{ spaceships and satellites.
Using such methods, |ohn Adams
and Urbain Leverrier discovered the

planet Neptune " attheend of a writ-
ing pen."

O.K., but why are the Troians
mentioned in the title of this article,
the reader may be wondering. The
point is that astronomers are de-

voted connoisseurs of mythologY,
and there is a group of asteroids with
this name that relates to the theme
of this article very closely. However,
we will talk about the Trojans some-

what later, and now continue the
story of the n-body problem.

Ihe pl,oblem ol laul'alt[e
The exact solution of the n-bodY

problem doesn't exist. Howevet, 200
years ago/ the outstanding French
mathematician f osePh Louis
Lagrange found the exact solutions
for a system of three bodies charac-
terized by some "specific" initial
conditions. His solutions (now
called "Lagtangean"l are the onlY
exact formulas for this problem
known up to now.

Consider three bodies not 1o-

cated on the same line that totate
with the same angular velocitY
along concentric circles lYing in
the same plane. These bodies can
be treated as the points of an
imaginary solid bodY that rotates
around the motionless axis (this
axis passes through the common
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center of the conientric circles,
the "orbits', of the bodies).

For what locations of the masses
is such motion possible? What must
the angular velocity of the imagi-
nary solid body be in order to main-
tain its integrity and not f1y to bits?
This was how the problem was
posed by Lagrange himself. Let,s try
to solve it, following the steps of this
great master of science.

Triangle olmasses
Let three bodies with masses m,,

mr, and m, revolve along concen-
tric circles with a common center
at point O (fig. 1). The radii of the
orbits r r, rr, and r.rand the distances
between the bodies are assumed to
be much greater than their sizes.
The acceleration ol any body re-
sults from its attraction to the other

two bodies, and it is dctermined bv
thc vector sum of thc respective
forccs of gravitational attraction.
The ecluations of motion of three
lrodies may l're written in vector
form as

lF,] * 4, = nt1al ,

]rr, n r,. = 171ta1 ,

lF,, *F,, =l?rlar.

_&:
"*'
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Here

m,m,
lFrl=G-;

,,1

is the attraction-that is, the force
with which body m, acts on body
m . Since all the bodies revolve
with the same angular velocity (by
the statement of the problem), we
have a, : -ro2 ty, t2 = -a2 tr, and
1z = -a2 rr. Here r, is the radius-vec-
tor of point mrdrawnfrom the cen-
ter of revolution O. We call the bod-
ies "points" because the distances
between them are far greater than
their sizes. Our further reasoning is
purely "mathematical," andat first
glance does not seem related to the
problem. However, this is the way
that leads to the solution of the first
part of the problem and results in
determining the configuration of
the bodies.

Let's add the equations of system
(1):

4z +Ea +Fr, +Fr, +Frr +F,
= mLAl + m2a2 + mBAZ

= -a2(mft + m2t2+ mrrr).

According to Newton's third law,
the sum of ali the internal forces in
a closed system is zero. More for-
ma1ly, the top line can be rewritten
AS

33

Iq,*14,=0,
i,i=\ ij=t

because Fr, = -Fi;. Thus, we get

m{t + m2t2 + mrtr: 0, (2)

because o * 0. Ecluation (2) de-

scribes thc posrtion oi the center
of revolution: it is located at a

point O such that the raclius vec-
tors of the bodies mr, 1lttr and m.
drawn frorn this poitrt tnust s.rti:fy
equation (2).

Now let's introcluce vectors R,
and R., as shown in figure 2. We have

t,=fr+R.,

r, : r, - Rr. ll)

The next stcp is to express 11 in
terms of R, and R.. To do this, we
multiply the first equation of (3)by
m.r, the second by m3, and add the
resulting equations:

m.\ + n13tl

= ffi2tz + mrRl + m3I3 + lzl.Rl.

Taking into account that mrr,
+ mlra: -mrtt (which follows from
equation (2)), we get

(m, + m, + m. )r, = mzR.r * rz1R1 ,

from which we obtarn

,. mrRr*flrR:
' -,+nl ,+n-l .l

Thus, vector r, is the sum o{ two
\-C C tOTS

: = 
1ilt 

R
lt) -fi1,rIT)1

and

_lI.
P:=-R:,

7?11r111.-111q

which are parallel to the sides R.
and R, ol' the trianglc oi tlr,I:.cr.

Now we draw the vectors for
the forces that act on the body m,
on the plot of the triangle of
masses (fig. 3). Here F,, is the
force acting on it from body m2,
and Fru from body mr. These
forces are directed along the sides
R, and R, of the mass triangle.
Their resultant force is directed
along vector 11 to point O (that is,
the vector of acceleration of body
m, is directed to the center of
revolution). This means that the
parallelogram of forces and the
parallelogram constructed on the
vectors p2 and p3 are similarl
Theref ore,

14rl:losl= lr,rl,lol,

and

^ lllr .lll r
ur'

R: 1771+1711+1771

1111
R_r

.- ml17l1 
.

R;

n1 .
J Rr.

ml + m2+ m3

Finally, cancellation yields ,R. = R..
In a similar way we can iin.l the

expressions for r-, and r, \ 1a the
srdes of thc mass triangle 1to this
cnd, vectors R,, and Rl, R, ancl R,
should be introduccd with corre-
sponding directions). By consrder-
ing the forces affecting the bod,v
mrlor m..)we obtain the eclualitres
R, : Ru ancl R, : R..

Thus, we havc arrived at a won-
derful result: R, : R. = R.t, so the
confrguratior-r of all thc bodies is an
equilater:r1 trranglel The first prob-
1em rs solr-cd, ancl u,e invite the
reader to solr-e thc se concl one (see

CrerCiSe 1r. \Lr\f \\ e ale reaCh' tO

visir tl-rc Troians.

ml

Figure 1

l8

mL

Figure 2

m1

Flgure 3
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/upiterTl'oians in a gnauitaflionalFal

OnFebruary 2,1906, the German
astronomer Maximilian Wolf dis-
covered the asteroid Achilles. Ac-
cording to preliminary data, it
moved with a speed of 13 km/s in a
nearly circular orbit. However, |upi-
ter has a similar quasi-circular tra-
jectory-and with the very sarne
speed! Thus, two celestial bodies,
large and small, shared the same or-
bit around the Sun.

Indeed, if a planet of mass m re-
volves around the Sun along an or-
bit of radius r, it is attracted to the
Sun with the force

- ^mMl=G ,t'

(M is the Sun's mass), which gives
the planet a centripetal acceleration
a = flf r, where v is the speed of the
planet. That is,

nmM
.)

I.
-r)

Consequently, the orbital radius

^Mr=G 
1v'

doesn't depend on the planet's mass
and is determined entirely by its
speed.

Perhaps the orbital planes of |upi-
ter and Achilles are inclined to each
other? No, researchers quickly
found that the asteroid really moved
along |upiter's orbit and ahead of the
venerable planet by 55.5'. Of course/
the scientists immediately recalled
the work of Lagrange. The Sun, |u-
piter, and Achilles formed a nearly
equrlateral triangle, revolving
around one of its vertices, the Sun.

Later new asteroids were found at
the vertices of two equilateral tri-
angles with a common Sun-|upiter
base. They were named after the
heroes of the ancient Trojan War.
Five of them (this family is called
the Trojans) are the rear-guard,
which lags behind |upiter, while the
advance-guard is formed of 10 war-
riors (called the Greeks, fig.4. These
asteroids are rather big, and the larg-

Greeks

Trojans

Figure 4

est of them, Patroclus, is 216 km
acrosS; the size of eight others is
smaller than 100 km.

In 1959 the Polish astronomer
Pan Kordylevsky found vast
clouds of space dust in the vertices
of the equilateral triangles drawn
on the Earth-Moon axis. The role
of the Trojans was played by
myriad dust specks trapped by the
combined attraction of Earth and
the Moon.

Thus, the mathematical solu-
tions published by Lagrange in 1772
and considered by him to be purely
theoretical results were related to
later astronomical discoveries.

Slalility olmolion
Did we consider all possible solu-

tions to the three-body problem?
No, there is a linear arrangement of
three bodies that can rotate as a
single body. However, such a con-
figuration is unstable. If a body is
slightly shifted from the line, the
balance of forces will be disturbed
and deviation will increase.

Is the triangle configuration of
gravitating bodies stable? Not al-
ways. Gachot, in 1843, was the first
to formulate the conditions of stabil-
ity for the Lagrangean triangle. He
showed that the configuration is
stable provided the masses of the
two large bodies that form the base
of the triangle are such that mrf m,
is a sufficiently sma1l ratio and

t,2lm,+m"l
\ I Lt _ 17
- m'- 'o''

If the mass of a space particle is
much smaller than m, and mr, and
it enters the region of the vertex of

any equilateral triangle constructed
ofl att ml-m, base with a relatively
small speed, it will be "trapped."
The particle can circumscribe quite
an intricate trajectory about the ver-
tex of the Lagrangean triangle, but
the whole configuration will rotate
as a single body.

The mass of fupiter is 1000 times
smaller than that of the Sun. The
total mass of the Troians is negli-
gible in comparison with the Sun or
|upiter, so the recluirements of sta-
bility are met with a high stability
margin. The inequality is true also
for the Earth-Moon system; their
masses differ by 81 times.

How could the conditions of sta-
bility be deduced? Perhaps there is a
simple deduction, but in general, the
problems of stability are rather com-
plicated and should be considered in
a special article.

Exercises
1. Prove that the angular velocity

of rotation of a Lagrangean triangle
is

t fi,+m2+m3
r.\L _ /

-R3 l

where R is the distance between the
bodies.

2. We considered the triangle of
masses as a rigid body. However, if
the values of the velocity vectors are
proportional to the distances to the
center of revolution and the vectors
are directed at the same angle to the
line segments connecting the bodies
with the center/ then the configura-
tion wi11be congruent to the initial
arangement at aty time. Thus, the
equilateral triangle will expand or
contract during its revolution. Try
to prove this on your own. O

Quantum on planetary motion:
Y. Osipov, "Catchas Catch Carr,"

I anuary fF ebruary 1992, pp. 3 B-43.
A. Byalko, "A Flight to the Sun,"

November/December 199 6, pp. 16-
20.

V. Surdin, "Swinging from Star to
Star," March/April 1997, pp. 4-8.

V. Mozhaey, "In the Planetary
Net," |anuary lFebruary 1998, pp- Q-3
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A Chehysheu poly[layul'ound

Recurrence relations applied to a famous sef of formulas

by N. Vasilyev and A. Zelevinsky

NE POPULARIMAGE OF TFtr, MATHEMATICIAN
is a person who is constantly performing tedious
calculations, writing down and transforming cum-
bersome formulas. Although some elegant and im-

poftant fields of mathematics exist that do without for-
mu1as, this opinion does have certain foundations. The
ability to look at formulas from an original point of
view, transform them, find new formulas, and discover
various relations among them plays an important role
in the work of a mathematician. In this article, we con-
sider a series of formulas related to the so-called
Chebyshev pollnomials and some powerful mathemati-
cal ideas that underlie them.

Tuuo mmal'kahle seqtteltcgs 0l Uolynomials
The polynomials in question occur in many prob-

lems of mathematical analysis/ computational math-
ematics, and algebra. These polynomials were first con-
sidered by the prominent Russian mathematician
Pafnuty Chebyshev in 1854 in connection with the fol-
lowing question.

Consider various pcllynomials of degree n with a

leading coe{ficient oi 1. Which of them deviates least
from zero in the intcrval [-1, 1]? We will answer this
question in two ways, depending on how we interpret
it.1 Suppose the polynomial is Fr(x) : x, +.7, ,l'-' *
... + atx + ao. Then we can interpret the phrase "devi-
ate least from 0" to mean that the quantity

t,, = max F' (x)l
l-t,rl

takes on the minimum value.
It turns out that this polynomial is

r,, (r) = .! r,, (t), 
)LrL

That is, it is the polynomial shown in the left column
oi table 1 divided bf its leading coefficient. For example,
among quadratrc trinortials, the one that deviates least
from zero, c,, is 1 l); and for any other trinomial
xl + px + q, this deviation rs greater. The cubic polyno-
mial with the least deviation from zero is xr - 13/-1)r. Its
deviation from zero is c, = ll4.In general, the polyno-
mial f,,(x) deviates from zero by c,, = 1,''{2" 1), which is
less than {or any other polynomial F-.ir) : f' + a,,- ,r'-'
+ ... + atx + ao of degree a.

We can measure the deviation of a polynomial from
zero in a different way, by requiring that the area be-

tween the graph of the polynomial and the x-axis, and
betrveen the lines x = 0 and r = 1, be minimal. If you
know calculus, you know that this is the quantity

1_

lHowever, wc will not give proofs that these ansrt'ers are
correct. An elementary proof can be found in reierence 1 at
tl-re end of the article.

n Tn un

0

1

2

3

4

5

6

7

1

x
l-] _ l

,lxr - 3r

Sxa-Sxr+ 1

I (rx5 - 20x3 + 5x

32x6-48rr+l8xr-1
64x' 112x5 + S(rx3 - 7x

t

2x

4X-- I

8r3 - 4x

16x4-12x2+1

32xi-32x3+6x
64x6- 80xa+24xr-l l

Jlr,(")lr"
-1

oa
(U

'a
(6

_o
t

Table 1 . Chebyshev pctlyrutttials of the ftust ttnd second
kind. If we mttltiply each polynontial by 2x, then subtract the
one ttbove it in tlte tttble, we obtttin the next p.)lynomiol.
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forr:l:
l: t,(r),

forr=2:
l'= Qrr(x)

for r = l'.
v: U,, 1(r),

rt = l'r, t(x)

Fig. 1. Take attansptuentsheetoipaper (0 tx<2nt',-1 -<J 
<r ,,:} tlre graphof thefttncti_ctt'ty= /.-os nxclrnstttottit.Rollutrt

tlti sheet into a c).lindu (trith cliarneter and height 2h); then r,;,:,^ ,ii it frorn its side irt such a way thttt the grnphs cn the itLtttt

and bttck pLti'ts oi tL':e c.vltndu uincide-you will see the gt,ip): ,--,- illc tlth Chebyshet, pcllynontial of the lirst kind, Frt n = 2. 3. :1,

5, tltese gtttphs ore shcl',n in tlte ttpy:er rott, of the figrtre (f ot t : , . r r .' rtbttttn the grttplts of ), : 7,.(x) ancl f or r : 2, the graflts t,i

,r-= Q-.rr/-.se e exet'cise 3). tlnder the graplt of the nth. poh Trorir..;,. :ts derivative divided by n is grttphed. This is tlte
In - 1 ltlt Clle byshey pollttonuttT ctf the .second kind-all /iI1ure -s i'"::rre d bltte ltttve eqttaL aroas.

For this interpretation of "least deviation [tom zero,"
the polynomial

o,(*) = lu ,(r),
2"

where Ur(x) is shown in the right-hand column of
table 1, has the minimum deviation. For U,(x), the
quantity l, (tbe blue area in fig. 1) equals 2. Thus, it
is ll2 t fior U,, and is greater lor any other polyno-
mial F,(x) = xn + ... of degree n (this is the content of
the Korkin-Z olot ar ev theorem ).

The {acts mentioned are related to the following
properties of the Chebyshev polynomials:

(1 ) The values of T, are equal in absolute value for all
the turning points and for the endpoints of the inter-
val [-1, 1]. The area ofeach of then + I regions bounded
by the graph of the polynomial

u,(*)=fir;-,1,1,

the x-axis, and lines x : +1 is the same (see fig. 1).

As it turns out/ the only pollmomials that possess this
property are those obtained from the ecluations y = U,(xl
andy : T,(x)bv a linear change of the variables x andy.

Property (1) follows from the following basic rela-
tions:

(2) Q (cos Q) : cos nQ, sin 0 U"-r (cos Q) : sin nQ.

In addition to the trigonometric relations (2), rvhich
cleterrninc the values of polynornials 7,, and U,. ior
r ( 1, there exist quite drfferent idcntities for r > 1:

(3)

I/,(x)=
(, *.,,,"', - r)".' - (, - .,,;- r)'.'

l.
\X--l

The roots of 7,, ancl L/,, can be found from the follow-
rng rdentities:

t'' , ,.r,=a 'Ir-.o, n 
][ ' .o'f l..l^ .n.'t"-"n'l,- t ---lnJ[ )tt) | ]rt 

J

t 
-n l[ ^-.,,'-]n 1..[ '.,-c,,. "tr ]U(v)=tl'-to'),,+ri\ )r-r) ! rr-rl

Thus, the roots and turning points of polynomial 7,,

are the projections of the vertices of a regulzrr 4n-gon in-
scribed in a circle whose diameter has cndpoittts (-1, 0J

and {1, 0) onto this diameter (see fig. 1).

In the following, we will prove, alrrong other relir-
tions, identltics (2)-(a) and use them to detlonstrate
some irnportant methods of algebraic transformations.

Any of the above formulas can be t:rkcn ior the .lcii-

stPItllilBtR/0cr0BrR lsss



nition of the Chebyshev polynomials. In this article, we
will take as our definition the simple recurrence rela-
tion presented in the caption to table 1. We will derive
all our othpr formulas from this relation.

It is more convenient for our purpose to deai with poly-
nomials obtained from Q and (Jnby scaling (see fig. 1):
t',lx) = un\l2), Q,(x) = zl,(xlz) For these polynomials,
the interval [2, 2] plays the same role that interval [-1,
1] plays for Tnand U,. The convenience of the new poly-
nomials is that their coefficients are integers and the lead-
ing coefficients are 1. Naturally, using the inverse trans-
formations P,(2x) : u,(x) and e,(Zx) = ZTnlx), we can
return to the original polynomials 4 and U, whenever
we like. As a rule, in this article, we will prove various
propositions for Pr. We invite the reader to prove similar
propositions for Q,. We recommend canying out all cal-
culations in detail, using small values ol n :2, Z, 4 first
(until everything becomes clear).

Rmurt'ence relatiotts and ittdmtiolt
Set 1),,(r) : 1, P,lr) - x, ancl

P,,_,ir) : r P,,(x)- P,, ,1r). (1)

Write dorvn thc first scveral clements of thrs scquencc:

P,(x) : rr 7,

Pr(x) :r(rr-1J x=f-2r,

Pr(x) - :r1# - 2r)- (xr - 1) : r,, - 3x2 + 1,

1'.(rJ :x(r* 3xr + 1)-(rr-2x) :x5-4rl +3r,

and so on (you can check your rcsults up t<t p,, using
tablc 21.

The polynomials P,,(r) occur in v:rrious situations. For
erarrtplc, c( )l\i(lcr the I r';retiorr:

R,1v1=r,R,1rl=r--], n,,r)-r- ]l 
.

Rr(r)=r--+,R5(x)=:s-

x--
x
1

' I '-- Iv --
x1 x--

Tlresc cc.tntinttetT fractictns provrcle :r useful tool for
solving variours problems involving tire approxirnation
of numbers ancl functions (Cl-rebyshev studied contin-
tte d l'r';rcti,,rr> r: rvclll.

Performing various manipulations, we obtain

r' I ol-)t

xxl

Table 2. Pttscal's triangle. Tlte nuntl'ters tl1(Lt Ltp])e(n'in the
ntlt red-ntarkecl clingonal tal<en witlt Ltlteruote si.qn,i are
cctefficients of ltol,vnornidls P,.(x) Exercises 6d and 6lt concern
1/ta rtrilr nI l,ittonli,tl tuctl.icic'ttt:.

(wc invite the rcacler to check this). We notice that thc
nlrmcrators and denominators of thesc fractions arc just
polynomials P,,tx).

Hcre is anothcr example. Consider the functron
sin ntp and try to rcpresent it in terms of sin Q and a poiy-
nomial in cos Q:

sin 2Q: sin Q . 2 cos Q,

sin 3Q = sin d (4 cos2 (l - t),
sin 210 : sinQ {8 coss Q - 4 cos Q).

It turns out that sin lQ: sin d p,. 12 cos Q) for all
n > 1. In other words, for sin d + 0,

P, (2c,,sa)='"t(,':')t. r,' sirtQ r:

These rclations can bc readliy obtajnetl by incluction
ancl fomrul:r (1). Indeed,

/i,.r(x)-t- 
=ll(,, (xJ

Therefore, if we assurnc that, for a ccrtain n,

l.r t ..\
R'(r)=-1"'j'

1r 1\^/

a similar relation for n + 1 can be ezrsily obtained from {11:

p tv\--_1,,, r(r)
a\ll+1 \7\/-z\ 

P,r(r)

xP,,(r)- P,, ,(r)
P,,(")

P,,*,(')

r,,(")

/? /vi_ x+ - 3xl + 1

x'-2r R'(x)- xs-4r3+3r

Similar manipuiations can be carried out for sines. If
we assume that for k : n - 1 and k : n

sin(k + l)Q = sin Q pke cos Q),

it follows from (1) that

23
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sin O P,,_,(2 cos Q) = 2 cos g sin q P,,(2 cos Q)

- sin Q . P,,_,(2 cos 0)
= 2 cos Q. sin (n + l)Q- sinnQ
= sin(n + 2J$.

Here we used the identity 2 cos cr sin B : sin (o + B) +

sin (B - u).
Notice that we carricd out the inductive step frotn

n - 1 ancl fl to lr + 1. In rnost proofs, thc inductive step
is madc {rom n to n + 1 Bccause of our r-rnusual "double
step," we rrust in this case verify the first two identi-
ties (for n = 0 ancl n : 1J separately.

Exercises
1. Prove by rncluction uslng the recurrence relation

(1J that the following identrty holds for lrl > 2:

(where k = l, 2, ..., n), P,rlx) serves as such a polynomial.
Indeed, substituting

r2nnfi
n+l' n+7'"'' n+l

for 0 in (2), we see that

^lt' = )t" $" n+l

are the roots of P,,(x). Now wc recal1 the factor theorent
of elementary algebra:r if y is a root of ct pol,vnomittl P(x),
then P (x) is divisible by , - y. The polynomial {,(x) must
be divisible by each of the binomials x - \k, and hence,
by their product. Since our polynomial is of degree n and
its leading coefficient is 1, it rs just the product

fl('-v,.)
l<k<n

Thus,

p,,(')= n f"-rcos*l (4)
I I r,'

Exercise 5. (a) Prove the idcntity

Q,,(x) = f[ [, - r.o, 
('u--')n]

r.r.,[ 
- L,-,"s )n ) {4']

(b) Verify identities (4) and (4') for n = 2, 3,:1, and 5.

Consider an interesting identity that can be derived
b,v comparing formulas (a) and (2).

For n: > 0, calculate Pr,r(0) in two different rvays and
culrldtc the expressions obtained. On the one hand, we
obtarn irorn 121:

(]nr + 1)n

t- o- r. -: ---= -.,"[i-,,,n.J=r-rr
s11t -

On the other hand, rte har-e frtrtrt J':

1,r,,,(o)= f] [-:.n.t=)t<i t:: '

Substituting

f -.n,1 ^ - 
An 'l)

\ \ )tn+l))
for each

kn
cos r*al

form+1<k<2m,weobtain

zFor many problems involving the factor ::rir:;:: >.e
Gradus ad Parnassum in Quantum: \larch -\::-- - - - :
May/fune 1998, and )u1y/August 199S -!:

(, * .'rt - +)".' - (, - r,r' - 4)"*'
P,, (r) = (3)

2"*lttxl - 4

Thrs identity r,vi1l bc also considered below.
2. Prove that (a) P..(21 : n + 1 ancl (b)(a)P,,(-2) = (-l)"'

in + 1). qProve it rn threc difierentways: using (1), pass-

ing to the hmrt in eclu:rtion 12) as q -+ 0 and Q + n, and
passing to the lrrtttt tn I .1. \ - -2 \

3. Consrder a serllrcnce of po11-nomials Qo(x), Q,(x),
Qr(x), . . . satrsi,ving etluation 11' :rnd the initial condi-
tions Qo(x) = 2 zrncl Q,i-xl =,r. \\'rite dorvn the tirst six
polynomrals Q,,(x). Prove the iollorr-ing idcntlties:

,r, 
tl (x) 

(therc arc n 1 minu. sisr-tsr;' (1,,(x) .. I

_r,
x-

(b) 2 cos rQ : Q,,(2 cos $); \2')
(c) for x1 > 2,

Q,(r)=
(' *,ir' - +)" * (, -.,,'r' - 4)"

4. Prove that any sequence of polynomials Ro(x),
Rr(x), . . . satisfying equation (1) can be expressed in
terms of the sequence Pnlx) as follows:

a,(x) : a,(x) ' t'n-r7) - ao(x) 't',-r(x).

In particula r, Qnlxl = xP ,_rlx) - Zl ,*rlx) : f ,lxl - P n-rlxl.
Derive all the identities in exercise 3 from this formula.

Roos ulpolynomiah altd prodtlct$

Many interesting formulas that involve symmetric
expressions depending on n numbers (or variables) can be
easily explained if these numbers are considered as the
roots of a certain polynomial of degree n. For n numbers

Tr = 2cos 
jl
n+t

(3',)

2"
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t 
- 

t. rl
Pr-(o) = (-I)- 

Lr-,.Ll-."'#h]
The exprbssion in brackets is positive, because it in-

volves cosines of acute angles on1y, and therefore, it
equals 1. Thus we obtain

rI ""'#h=# (5)
lSL<m

This relation has an elegant verbal formulation: for
m > 0, tha geometric mean of the cosines of the acute
angles that arc multiples of nl(Zm + l) is l12.

Exercises
6. (a)Find P,ltl, P,(-t), e,(t), and e,(-1).
Prove the following identities that aie similar to (5):

(0, *ll"'*=F. @>tt;

(") *{Lt" #r=^tTm+L @>r);

,0, *{J-"o'w#=ff,*ry
7. Find all values of m andn for which (a) p, is divis-

ible by P*; lb) Q, is divisible by Q-.

Genel'afiinu lunfiions, [[tllel' $Et'iB$, and cosllicisltB
In this section, we consider a very fruitful method

that is widely used in calculus, combinatorics, and prob-
ability theory: the method of generating functions. In
some cases/ this method allows us to find the separate
elements of a sequence and construct it piece by piece,
just as a building is constructed of bricks.

Consider a sequence ao,ar, a2, . . . The following ex-
pression is called the generating function of this se-
quence:

f (z) = ao + arz + a2r2 + ... =\a,2" .

n)0

Expressions of this kind are ca11ed formal power
series. Such series may be added, subtracted, and
multiplied like ordinary polynomials. One series
may be divided by another, if the constant term of the
divisor is not zero. Such a series may also be differ-
entiated or integrated term by term.3 AlI these opera-
tions can be used to obtain new sequences from those
already analyzed.It is often possible to find a simple
expression for the generating function from the re-

3See "Generating Functions," by S. M. Voronin and A. G.
Kulagin in the May/|une 1999 issue of Quantum.-Ed.

current relation that defines a sequence. Conversely,
sometimes it proves possible to find a general for-
mula for an element of the sequence or a relation
connecting several elements of the sequences given
its generating function.

For a finite sequence as, a1r a2, ., ao, the polyno-
mlal f(zl : ao + arz + . . + arz, serves as fhe generating
function. For example, the polynomial f ,(zl : f + z)" is
the generating fPnction for the sequence o{binomial co-
efficients C2,C'r, ... ,CX; these coefficients appear in the
nth row of Pascal's triangle (see table 2):

Zrx,ro =(t.+ z)" . ,0(k(n

We differentiate this identity k times and set z = 0 to obtain

n(n-1). (n-ft+1)
1.2.....k

Let's consider the identity (L + zl(l + z)" = (l + zl"*t
and write it as

By removing the parentheses and collecting the terms
zm,we obtain the important relation Cff + Cf,-t = Cfi.

Among infinite sequences/ the geometric progression
bo, bn= qbo_rhas an especially simple generating func-
tion. In the sum

f (r) = 
*\ob,r" 

= b *Zb,r",

replace eachbrwith qbn_, to obtain

f Q)=a + qr\bn-rrn-t =b + qzf (z).
n)1

We have f(zlfi - qzl = b, from which we obtain

f(z)=\a,'=:;' V)
n)0 L- Llz

This is the well-known formula for the sum of the
infinite geometric progression (for lqzl < 1).'The same
method can be used to obtain the generating functions
for the sequence of polynomials P,(x).

Deflne

@(r) =\t,(x)2" = L + xz +\n,(x)2" .

(t
(t+z)l L"X,u l= Zcl_,,u

\o.l<, ) o<k.n+t

c'i =

n>0 n22

(Here, x plays thc role of a parameter, and rve rl.il1 rrrrte
P,r,P,, r, . . . instead of P,,(x), Pr, ,(x), . . . for the sake oi
brevity. ) By relation ( i ), for I ) 2, -,ve replace each p for
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xPn-t- Pr_r. Then,

@(r) = I + xz +\xPnaz" -ZPn-rr"
, n>-2 n22

=l+ xz + *r.\rr-rrn-r - ,' .\Pn-rr"-'
n)-2 n22

=r+ xz + xz(a(z) -t)- z2o(z).

Therefore, @(zl . (22 - xz +Ll: I and

@(,)=-: 
- 

(B)
z' -xz+ I

This simple formula hides the entire intricate se-

quence of polynomials Pr. We can extract the individuai
P, from this sequence in two different ways.

'- 
(1) For lxl > 2, the quadratic equation z2 - xz + t has

two roots:

x+{* 4 x-i?=u=---, v=-- Z-

From the f.actoizationz2 -xz + I = lz-ullz- v), remem-
bering that uv = 1, we have

@(z\= =( '---1-)--1--\'t (u-z)(v-z) \u-, u-z)u-v

=( u 
- " ) 1 

-Sun*t-vn*l ,n.
\l- zu l- zv ) u-v F, 11-v

That is, n,(xl = ftf*r - v".rll(u - v). This is relation (3).

(2) The-coefficients of any polynomial P,(x) can be
found from (8) in the following way:

o(z) = 

-]- 
= ),(- -,,)o =I[ It-,1,"1*u-,,0-,1\ / I-lxz- zz) ?,_o r.>o\o<1<r )

the short formula (8) is wonderful.
A11 our manipulations with infinite series need to

be vindicated. The justification can be performed in
two different ways. First, we notice that all series
considered are convergent for small absolute values
o{ z lfor example, series (7) is convergent for lzl < ll
lql). Therefore, they are well-defined functions of z.
The other way is to check that formally defined op-
erations on infinite series (addition, multiplication,
and so on) possess all usual properties (when these
operations are performed, every coefficient of the
resulting series is expressed in terms of a finite num-
ber of coefficients of the operands, with z considered
merely as a symbol).

Exercises
8. Consider a sequence of Fibonacci numbers

uo: O, ul : l, un*l: un t un-..

(a) Prove that the generating function of this sequence is

l- z- /'

(b) Binet's formula gives the value of the nth Fi-
bonacci number explicitly in terms of n:

r [rt*.s'I' /t-'.s\'l..=+l[+] l+l l

Derive this formula from the generating function of the
Fibonacci sequence.

{c) Prove the identity

u, =\Ci, i t.
i

9. (a) Find the generating function for the sequence
of polynomials Qr(x) defined in exercise 3 and prove
that, for lxl > 2,

Q'(x) = 77" + v'1 
'

where u and v are defined by (9) {this formula was also
proved in exercise 3cl.

{b) (for those who are acquainted with complex num-
bers) Verify that, for xl < 2, {3) and (3'J turn into (2) and
(2'), respectively. (Hint: il x = 2cos 6, u = cos Q + i sin Q

andv=cos0-isinQ.) O
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=t'"hu t)'cL-' '"'')

(here, we used the formulas for the sum of the infinite
geometric progression (7), binomial coefficients (5), and
found the coefficient of zn, which is the required P,(x)).
Therefore,

p,(x)= 
I(-r),"1,_, xo-2i . (to)

i

For example,

P6(x)=cT*u -ctuxa +c?*'-c3=*u -sxa +5xz -!'

Certainly, formulas {3} and (10) can be proved by in-
duction without using generating functions. However,
the way they have appeared almost by themselves from
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The American Mathematics Competitions is pleased to announce a new conresr as well as new narnes
and a modified format for two ofthe current exams. TheAJHSME is now theAmerican Mathematics
Contest +B (AMC +8) and the AHSME is now the American Mathematics Contest + 12 (AMC
+12). ThenewcontestistheAmericanMathematicsContesr+10 (AMC+10),forstudentsingrades
10 and below. This new contest will give more young students a chance to successfully participate in
a significant mathematical problem solving experience.

\W4ry should my school sign up? Because the AMC +10 and AMC +12 provide an excellent
opportuniq, to challenge your students' mathematical abilities. It is but a means for furthering
mathematical interest and development.

The AMC + 10 and AMC + 12 will each be 75 minutes long and will consist of 25 questions each.
Each correct answer is worth 6 points and a blank is worth 2 points. The AMC + 1 0 and AMC + 12
will have several questions in common and will be given at the same time, on the Tiresday before the
third Monday in February (the current AHSME date). The students should choose berween AMC
+10andAMC+12. Studentsinl0'r'gradeandundermayrakeeithertheAMC*l0orAMC+12,
but 1 1 'h and 1 2'h grade students may nor take theAMC + 1 0. The school team score will be determined
from the AMC +12. To qualify for theNME a studenr musr score ar least 100 points on the AMC
412 or be in the top lo/o of theAMC +10 participants.

The registration fee for one or both conresrs is $30.00. One bundle of ten AMC + 12 is $12.00 and
one bundle of ten AMC + 10 is $ 10.00. The first bundle of the AMC + 10 will be free for the year
2000 only.
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2000 AMC exam dates:

AMC+8 - TUESDAY, Nor.en]ber 14. 2000

AMC+10 - TUESDAY, Februan' 1i, 2000

AMC+12 - TUESDAY, Februan' 1i, 2000

AIME - TUESDAY, March 28, 2000

USAMO - TUESDAY, Mav 2, 2000

lvww: http://www.unl.eduiamc

Titu Andreescu, Direcror
American Mathematics Competitions

University of Nebraska, Lincoln
PO. Box 81606

Lincoln, Nebraska 68501-1606
phone: 800-527-3590

fax: 402-472-6087
e-mail: titu@amc.unl.edu

A Program ofthe
Mathematical Association of America
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Figure 2

determine from the figure when the
bodies will meet?

Figure 3

5. Two balls rolling on the sur-
faces shown in figure 3 pass points
A simultaneously with the same
velocity. Will they arrive at points B

simultaneously? Neglect friction.
6. A body falls from the window

of a train. Wili the time to free fall
from the same height be equal in the
following cases: (a) the train is at
rest, (b) the train moves with a con-
stant velocity, lc) the train is uni-
formly accelerated.

7. An obfect is hurled at an angle
to the horizon. What will take a

longer time, the rise or fall of the
object, provided air resistance is not
neglected?

8. A fly sits on the bot-
tom of a closed tube. The
tube falls freely, always
in the vertical position.

HE QUEST FOR THE TRUE
nature of time has occupied hu-
manity for thousands of years.
Today there is no shortage of

speculation about time. Looking
through the pages of popular science
books, we encounter the notions of
"four-dimensional space-time,"
"the arrow of time," "waves of
time," "irreversibility of time,"
"time-traveling machin es," " ourY a-

ture of space and tirrre," and the like.
Admittedly, I approached the

problem of trme rvith con-
siderable trepidation, so

different and limitless it
seems. However, some
hints from scientific' treatises encouraged
me. For example, New-
ton differentiated be-

tween "granted from the
heavens" absolute time and "rela-
tive time," which is "self-evident"
and "usual," and can be measured
by a clock. Richard Feynman pro-
posed that instead of racking our
brains searching for a definition of
time we should simply learn how to
measure it properly.

To this end, people invented
clocks, and what marvelous devices
they arel And how many types have
been constructed! Water,
solar, sand, mechanical,
quartz-stabilized, atomic . . .

To make these clocks, sci-
entists found suitable peri-
odic processes, chose time
standards, and got the hang
of measuring very small fragments
of time. So, are we equal to the prob-
lem of time, after all?

Let's not jump to conclusions:
time still retains many of its mys-
teries. Solving them would mean
great progress in science. At present,

being in the framework of our
"usual til:r,.e," let's consider if time
is really so "commottplace," even in
school physics problems. As Naum
Korzhavin said:

Timel It is a given essence
not to be discussed.
Shouldyou thtnk of the evanescence
of your life that quickly passed!

Problems and questions
1. How should a sundial be con-

structed to provide correct readings
at afly time of year?

2. Will ink drops that fall from a
dropper attached to a uniformly
moving cart (fig.1) really mark equal

Figure 1

distances on the table (a well-known
high school physics experiment)?

3. Two boats traveled on ariver
in the same direction with differ-
ent speeds. Simultaneously they

met a raft that was
floating down-

stream. After half
an hour the boats
turned back and
traveled rvith the
same (relative to

the water) speeds. Which boat met
the raft first?

4. Figure 2 shows the dependence
of velocity on time for two bodies
moving along the x-axis. What is the
physicai meaning of the intersection
point of the figure? Is it possible to

I

I

I

i
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OSCOPE

Ulrnuwtime?
How will the time of fall change if
the fly flies from the bottom to the
top of the tube during the fal1?

9. A long rope passes over a sta-
tionary pulley. Two gymnasts of the
same mass hang onto the ends of the
rope at the same height above the
ground. The first gymnast begins to
climb with a constant speed relative
to the rope, and the second gymnast
starts to descend at one-haif this
speed. Who will reach the pulley
first?

10. Does the weight of an hour-
glass depend on whether the sand
flows in it?

11. Molly and Amy
skated across a frozen rler,
rushing from one shore to the
other after gaining some initial
speed. Molly stopped, and the ice
cracked under her. Why did this oc-
cur? The thickness of ice was iden-
tical everywhere.

12. Find the period of a math-
ematical pendulum in a spacecraft
after the engines are turned off.

13. A bob oscillates on a vertical
rubber cord. By how many times
will the period of oscillation of the
bob change if it is suspended on the
same cord folded in two?

14. Why do radars emit electro-
magnetic waves in short wave pack-
ets and not continuously?

15. Why is lightning seen for a
very short time, but its thunder lasts
for a much more longer period?

Microexperiment
Pass a rope through a hook on the

ceiling, attach a small bob to its end,
and start it swinging with a small
amplitude. Then gradually pull the
other end of the rope, thereby lifting
the bob. How will the period of os-
cillation of the bob change?

It is interesting that . . .
. . . in the second century B.c.

an ancient Greek astronomer
Hipparchus managed to calculate
the duration of the Earth's year with
marvelous accuracyi his figure was
only 6 minutes too long.

. . . during the first millenium
e.n., the Chinese reformed their
calendar 70 times, and their sys-
tem of chronology was modified 13
times.

. . . a sun-clock was constructed
that employed a gun and a 1ens.
The lens focused the rays of 

:

the Sun on the gun's primer
and fired the gun at a pre-

cise moment o{ time. In
this way the time
was announced all

through the neigh-
borhood.

. an ancient Greek water
clock lclepsydra) measured tirne ac-
cording to the water level in a ves-
sel, which had a small, leaky orifice.
To make the water leak out uni-
formly, the shape of the vessel must
satisfy a fourth-degree equation.

. . . In a watchmaker's shop in
some Alpine country there was a

banner on the wall: "This clock
reads the precise time." The watch-
maker corrected his clock daily ac-
cording to the chime of a bell in the
cloistral ollservatory. As it turned
out, the inhabitants of this cloister
determined time not from observa-
tions of the heavens, but from the
clock of the rural horologist.

. . . in L232 Emperor Friedrich II
got a present from an Egyptian Su1-
tan. It was a clock "with wheels and
weights." In addition ro time, it
showed the motions of the Sun,
Moon, planets, and stars.

. . . it was not till 1659, when

Christiaan Huygens solved an
important problem of con-
structing clocks. The clock
was tuned by changing the
pendulum's length. However,
there was no shortage of at-
tempts to dispute his priority;
the Italians insisted that the

the Government of Her Maj-
esty of Great Britain insti-

tuted a reward for the
construction of a ma-
rine clock suitable for
the precise measu.re-
ment of longitude.
The size of the re-

ward depended on the
accuracy of the device.

in the seventeenth
century variational principles
played an important role in the de-
velopment of optics and mechan-
ics. The most well-known of these
are Pierre de Fermat's principle,
which says that light always
chooses the path corresponding to
the minimum traveling time, and
|ohann Bernoulli's problem on the
brachistochrone, the curve of the
most rapid descent.

. . . the famous Russian self-edu-
cated inventor Ivan Kulibin spent
two years constructing ri unique egg-
shaped clock. It consisted of 427
parts discernible only with a magni-

CONTIA/UED ON PAGE 34
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PHYSICS
CONTEST

Bl'eakinU u[ is hal'd to do

by Arthur Eisenkraft and Larry D. Kirkpatrick

I If HE FISSION OF THE URA-
I niumnucleus canbe consid-

I ered a very interesting para-

I graph (but only a paragraPh)

in the story of physics." So stated
George Gamow, a noted physicist of
this century, rn L951. The techno-
logical products of the discovery of
fission, notably the atomic bomb
and nuclear power/ have greatly el-
evated its importance in our culture.

The entire development of the
bomb cannot be understood without
a comprehensive knowledge of the
events of World War II. The history
of the discovery of fission includes
many aspects of the politics prior to
the declaration of war. We recom-
mend that readers turn to Richard
Rhodes's outstanding book, The
Making of the Atomic Bomb, for a

stirring account of the history of
physics in this era. We also recom-
mend trying to locate Moments of
Discovery, Tha Discovery of Fission.
This out-of-print audiotape history
published h 1984 by the American
Institute of Physics (AIP) includes
recordings of many of the principal
players including Einstein, |. ).
Thomson, Rutherford, Bohr, Hahn,
Frisch, Compton, Szilard, and
Fermi. It is cluite a thrill to hear Ru-
therford state that "a nucleus is a
very small thing."

Our chore is somewhat modest in
comparison to both the science his-
tory and the political history sur-
rounding nuclear fission. We wish to
explore the details of fission, includ-
ing when it occurs and how we can
explain the enormous amounts of

O crucified Jove, do
you turn your iust eyes
away from us or is there

here prepared a
purpose secret and

beyond our
comprehension?

-Dante
energy that are available.

Let's begin with a recipe. The in-
gredients are 6 protons, 6 neutrons,
and 6 electrons; the product ts a car-

bon-12 atom.

6 protons 61L.007275 u)= 5.043655 ir

6 protons 6(1.008665 u)= 6.051990 u

6 protons 6(0.000549 u)= 0.003294 u

total mass =12.098940 tt

where u = 1 .66 ' 10-27 kg is the
atomic mass unit.

Surprise! The total mass of a neu-
tral carbon-12 atom is exactlY 12 u
(by definition). So, where did the
mass go? The missing mass, the
mass defect, is actually released as

energy when the nucleus is formed.
From a different perspective, the
carbon nucleus has a binding energy
that holds the nucleus together. Re-

moving a proton or neutron or sepa-

rating all of the protons and neu-
trons requires an expenditure of
energy. We have here a direct appre-

ciation of Einstein's startling discov-
ery in 1905 that mass and energY are

one and the same and that the con-
version factor for changing mass

units into energy units is the square
of the speed of 1ight. This most cel-
ebrated equation of all of science is
E: mc2.

This equation shows us that a mere
1 g (10i kg) of mass yields 9 ' ,gta 1 o{

energy. To put this in perspective, iI
sold as electricity, this energy has a
value of more than 2 million dollars.
Applying Einstein's equation, we find
that 1 u yields 931.5 MeV, where
1 MeV: 1.6' l0r3l.

Returning to the carbon nucleus,
the mass defect is 0.098940 u. This
has a corresponding binding energy
of 92 MeV. If we repeat the analYsis
for carbon-11, we find that the mass
of the atom is 11.011433 u and the
mass of the constituent Parts is
11.090275 u. The mass defect of car-

bon-11 is 0.078842 u or 73 MeV. The
removal of this neutron must have
recluired an expenditure of 19 MeV.
Students of introductory physics are
probably more familiar with the en-

ergy recluired to ionize a hydrogen
atom, 13.6 eV. Thus, 13.6 eV of en-

ergy must be given to the electron to
free it. Most of chemistry deals with
the exchange of electrons and effec-
tively deals with energies on the or-
der of a few eV per atom. In'contrast,
changes in nuclear structure have
corresponding energies of millions
o{ eV.

It is inJormative to compare the av- ;
erage binding energy per nucleon of fr
the two isotopes of carbon. Carbon-12 g

has an average binding energY of I
92112 MeY or 7.7 MeV per nucleon. !
Carbon-l1 has an averagebinding en- :
ergy of 73/11 MeV or 6.5 MeV Per i
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B/A(MeV/nucleon)
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Fig U f e 1 . Aveltge bindlng energy per nucleon ys. l?l.tss number, fot ntttttrully 
-

ocittrringisotopes. Tlte dots are based on meLtsured binding energies; the sntooth
curve is bnseclin the llquid-drcp model. The cttwe has tt tttttxjtnunt ttt A = 56 f ot
iron-56.

indeed also been detected. Frisch
mentioned fission to Niels Bohr,
who was on his way to America, and
en route Bohr and a colleague, Leon
Rosenfeld, mapped out the liquid
drop model of the atom that could
predict this surprising behavior.

The liquid drop model of the
nucleus treats the nucleus as a drop-
let of nuclear materiaL The nucle-
ons on the surface are held to the
drop by a surface tension. The model
is quantitative and leads to an equa-
tion that can accLrately predict the
binding energy curve. Our explana-
tion of the relevant equation follows
that of Ohanian in his text Modern
Physics.

To begin, we must recognize that
the nuclear radius is proportional to
4ll3, where A is the atomic mass.
This relationship is the result of
many scattering experiments. That
being the case, the volume of a
nucleus lalSxRs) is proportional to A
and the density of nuclear matter
(the ratio of mass to volume) must
be constant for a1l nuclei.

The most important term in the
derivation of a binding energy equa-
tion is associated with the number
of nucleons, since each nucleon at-
tracts every other one through the
short-ranged strong force. The bind-
ing energy must contain a term Pro-
portional to A. Since the nucleons
on the surface do not have as many
neighbors as nucleons within the
interior, the second term must ac-

count for this decrease in the bind-
ing energy. Since R2 is proportional
to A213, the correction term is pro-
portional rc Azl3 and is negative.
The Coulomb repulsion force be-
tween all of the protons tends to
drive the nucleus apart. This term is
proportional. to ?lArl3, wherc Z is
the number of protond in the
nucleus.

Finally, there is a quantum-me-
chanical correction that takes into
account the exclusion principle. |ust
as electrons cannot all be in the
same quantum state/ but fill succes-
sive shells, the nucleons must also
fill shells. This leads to a term that
is related to the numbers of protons
and neutrons and the total number

nucleon. A similar calculation can be
done for isotopes of all elements, and
the curve that is generated is shown
in figure 1. The ayerage binding en-
ergy for most nucleons is approxi-
mately B MeV/nucleon. The curve
has the interesting feature of having
a maximum at iron-56. Nuclei with
less mass and nuclei with more mass
have less binding energy per nucleon.
Thus, light nuclei combining to form
a heavier nucleus will release energy
in a process called fusion. A heavy
nucleus will release energy when it
splits into two lighter nuclei in a pro-
cess called fission.

The binding energy curve came
about after the discovery of fission.
When Hahn and Strassman first rec-
ognized the fission of uranium, it
startled them and the scientific
world. The discovery of the neutron
by Chadwick in 1932 had provided
a new research tool for nuclear phys-
ics. The neutron could enter the
nucleus without having to over-
come the Coulomb repulsive force
that a proton would experience.
Enrico Fermi, soon after the discov-
ery of the neutron, began bombard-
ing elements with neutrons and pro-

duced many new isotopes. Since
many of the isotopes Fermi pro-
duced emitted beta particles, when
he bombarded uranium he thought
that he had discovered a transuranic
element.

otto Hahn and his colleagues
Lise Meitner and Fritz Strassman
had been chemically analyzing ra'
dioactive elements for some time.
Unfortunately, Meitner was forced
by the Hitler regime to leave Ger-
many in fuly 1938. Hahn and
Strassman found that one of the e1-

ements emerging from the uranium
nucleus was barium. Their first hy-
pothesis was that it was radium,
which would have required two a1-

pha particles to leave the uranium
nucleus. Even this seemed un-
likely-a 1ow energy neutron
knocking two alphas from the
nucleus was beyond exPectation.
Barium was even more unlikely, but
barium it was. Meitner and her
nephew Otto R. Frischwere quick to
deduce that the addition of the neu-
tron caused instabiiity and the ura-
nium nucleus broke into two Parts.
If barium was one piece, the other
must be krypton. This element had
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present. The constants of propor-
tionality are found through numer-
ous experimental data. Weizsacker's
semi-empirical formula for the bind-
ing energy is

eV.

The smooth curve in figure 1 is
based on the licluid-drop model and
can be seen t0 fit the data exceed-
ingly we1l.

Assurling that a nucleus splits
into two equal parts 1Al), Zt) ior
each product), wc can calculatc the
drfference in [rinding cnelgi():

8,, =[ts.z.la -t'.ro-lJ-'
L

- o ?ro3 : 1l *.r,Al

Fission does not proceed directly but
requires an elongation of the nuclear
drop. This is more iikely to occur
when the additional neutron is
added to the uranium nucleus.

Enrico Fermi and Emilio Segre did
not discover the fissioning of ura-
nium, although fission did indeed
occur during their 1934 experi-
ments. Segre is quoted as saying,
"The whole story of our failure is a
mystery to me. I keep thinking of a
passage from Dante: 'O crucified
|ove, do you turn your just eyes
away from us or is there here pre-
pared a purpose secret and beyond
our comprehension?"' (from AIP's
Moments of Discovery audiotape).
The discovery of fission in 1939 led
immediately to the development of
the atomic bomb effort, which in-
cluded Fermi, who was then living
in the United States, How might
world history have been altered if
the discovery of fission had occurred
before the emigration of physicists
to the United States and well before
the start of Worid War [I? What does
this suggest about the role of chance
in history?

The contest problem this month
includes analysis of a number of fea-
tures of the fission process.

A. It is not hard to follow the rea-
soning Frisch and Meitner used to
calculate the energy released in fis-
sion. Consid er a typical fission reac-
tion:

'33u * j" -+ lffxe + er{sr +zjn.

The Xe rapidly.decays into tf!Ce
and the Sr into uofiZr, with the emis-
sion of electrons of negligible mass.
We now know the following masses:

'33u 2BS.oo4 u

j" 1.009 u

'f!c" ra9.9o5 u

?12" q3.906 
n4OLL t\

Calculate the energy released in the
fission reaction.

B. The discovery and the exploi-
tation of fission did not require
knowledge of E = mc2.In fact, at the

time the masses of the radioactive
daughter nuclei were not known
weli enough to make a good calcu-
lation. Frisch and Meitner calcu-
lated the energy release by a second
method (which was the only
method |oliot used).

Calculate the radii of the Ce and
Zr nuclei above using the approxi-
mate equation, R : KAtl3, where
K = 1.0 . 10-15 m. Assume that at the
moment the uranium breaks into
these fragments, the distance be-
tween the centers of the two frag-
ments is equal to the sum of their
radii. Calculate the electrostatic re-
pulsion between them. Using the
electrostatic potential, calculate the
work done to separate these two fis-
sion products. Compare this total
energy with that found in part A.

C. Surprisingly, the uranium
rarely breaks into two eclual prod-
ucts. Use the semi-empirical bind-
ing energy equation to show that the
energy released is greatest for the
symmetric rare fission.

tleuaffin physics

Sid Govindan and |apeck Tang,
two students of Art Hovey, physics
teacher at Amity Regionai High
School in Woodbridge, Connecticut,
submitted correct solutions to the
contest problem in the March/April
1999 issue. They reported that they
particularly enjoyed the problem in
part c.

In part A our readers were asked
to show that a ball dropped in an
elevator accelerating in the upward
direction will return to its original
height relative to the elevator floor
if its collision with the floor is com-
pletely elastic. Let's begin by writrng
equations for the positions of the
ball and elevator after the collision
with the floor using the same nota-
tion we used in developing the prob-
lem:

yL = yn + (v1+ v,)t - lstz
y'r =yn +v6t+!atz,

where y' 6 and y' 
, are the positions of

the ball and floor, respectively, y, is
the position of the floor at the time

tz t)l f
- 0.-101 - lMcV,('a1tY'1

]D DLD ) ) 7 ) - D ) 7

-l-^on'' *o)91'lno.,
L ,q' ' 

]

We have ignorecl the cluantr-rm rne-
chanical term, rt hich is sma1l rn
cornparison. If the nucleus \vere to
undergo iissron, the electrostatic
{orcc must be greater than the sur-
face tension.

-4.64) 
, *o26rZrt ,o

A)

-1t ,78.
A

In the case o{ 238U, we have Z = 92,
A = 238, and Zl I A = 192)2 lzes = 35.6,
which is certainly larger than 18.

.2

[!a-z)
.)1.77\ ) )

A
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t : 0 of the collision, vo is the veloc-
ity of the floor at t: O, v,is the rela-
tive velocity oi the ball and the floor
at t : O, and a is the upward accel-
eration of the elevator.

The height of the bal1h'above the
elevator floor is given by the differ-
ence of the coordinates of the ball
and floor:

h'=yL-yi=v,t-!B'12,

where g' : I + a is the effective ac-
celeration due to gravity in the el-
evator. Earlier we calculated v,:g't6,
where t, is the time for the ball to
fall to the floor. Substituting this
expression and using our results that
the time t, for the ball to rise to its
highest position above the floor
equals t6, wehave

7.t - r orr)tt _ jE ud.

Lastly, we use

,,=@-
!d

to show thath': h. Once again, we
obtain the same result that we
would get on the ground: the ball
returns to its original height.

Part B asks about dropping a bail
in a train with a constant horizon-
tal acceleration a. The effective
gravity g'is given by the vector dif-
ference of g and a and makes an
angle 0 with the vertical such that
tan 0 = alg. Tlr-e ball dropped in the
train falls along the direction of g'

' just like a ball dropped while stand-
ing on the ground falls along the di-
rection of g.

We use the idea of an effective
gravity to solve a very interesting
problem in a simple way. The door
on a car is slightly aiar. If the car
accelerates uniformly from rest,
how far will the car travel before the
door slams shut? We model the car
door as a rectangle with a uniform
mass distribution and a length I
from front to back and treat the door
as being acted on by a gravitational
force in the backward direction. We
can ignore the real gravitational
force, because the hinges do not al-
low motion up and down.

The torque acting on the door is
given by

1= jLmasinl,

where 0 is the angle between the
door and the side of the car. If we

assume that the door is thin, we can
think of the door as being con-
structed from a column of thin rods.
The moment of inertia of the door
about its hinges is then

r I *r)I - lttfL

Newton's second law for rota-
tional motion yields

x = Icx = lLmasin} = ! mI) u.

Therefore,
a^cu

0 - _sine.
2L

This is just the ecluation for a simple
harmonic oscillator if we make the
approximation that sin 0 = 0. The
period for this motion is

ET
T =Zrc-l'

V3a

The time for the door to close is just
one-fourth of this period.

Therefore, the distance traveled
by the car before the door slams shut
is

61=!at2 =!aT2 =$n2L.
o

CONTINUED FROM PAGE 29

fying glass. The clock struck on ev-
ery quarter hour, and every hour it
showed a performance of a minia-
ture theatre with music.

. . . bubble chambers, which are
used to detect elementary particles,
made it possible even in the 1950s to

determine the mean lifetime of a

particle with an accuracy of about
10-11 s.

. . . one of the wonder{ul predic-
tions of the theory of relativity, the
dilation of time in a gravitational
field, was not experimentally proved
until 1950. To measure this effect, a

fantastic accuracy of 3 . 10-12 percent
was achieved, which placed this ex-
periment into the record book of
modern physics.

. . . the shortest interval of time
that manifests itself in experiments
is less than 3 . lO-27 s. This is the
time needed for light to travel an
electron's diameter, known to be
less than 10-18 m.

. . . until recently the most precise

atomic clock was made in the United
States: it could measure 3 million

years with an acctJtacy of I s. How-
ever, Germany is ready to beat the
record and to measure I billion years

with the same l-second accuracy.0
-A. Leonovich

Quantum on clocks, time, eternity:
A. I. Chernoutsan/ "Time Ma-

chines and the Theory of Relativity,"
September/October 1992, Bp. 50-5 1.

I. Lalayants and A. Milovanova,
"Physics Frights Frauds," lanuary f
February 1993, pp.11-15.

V. M. Babovic, "Confession of a
Clock Lover," September/October
1996, pp. 44-48.

A. A. Mikhailov, "The Long Road
to Longitude," Marchf April 1997 ,

pp. 42-47.
V. I. Kuznetsov, "A Clock Wound for

A11 Time," May/|une 1997 , pp.26-30.
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AT THE
BLACKBOARD I

Alexandrian a$l'oltolny loday
by Case Rijsdijk

HE APPROACH OF THE LU-
nar eclipse of April I996
seemed an opportune time to
develop an exercise to calculate

the size of, and distance to, the
Moon as part of the South African
Astronomical Observatory's Science
Education Initiative.

This project led me to rediscover
some aspects of early Greek as-
tronomy as practiced by astronomers
who worked in the Great Library of
Alexandria from about 300 e.c. to
about e.p. 150. Aristarchus used a 1u-

nar eclipse to estimate the size of the
Moon; Hipparchus later improved on
this estimation. The same geometry
was used again much later by
Copemicus in "De Revolutionibus."

If the size of Earth is calculated
using Eratosthenes' method (which
is explained later in the article) and
an eclipse of the Moon is observed
and photographed, then the distance
to the Moon and the size of the
Moon can be found using some
simple equipment, straightforward
geometry/ basic trigonometry, and a
little ingenuity.

lmal' edhse Ueolnsmy
Triangle FGC lfig. 1) represents

Earth's shadow, and line KMO rep-
resents the Moon's orbit. Assuming
that the Sun is n times farther from
Earth than the Moon is, we have

SE: N,EM,

and substituting variables as indi-
cated below the figure yields

SE

EM

Earth-Sun distance ES: D
Earth-Moon distance EM: d

Sun's radius AS : R

Figure 1

As can be seen during an eclipse of
the Sun, the Sun and Moon appear to
be the same size, because they sub-
tend the same angle (approximately)
in the sky, so ZAES = ZMEN. There-
fore, triangles ASE and MNE are simi-
lar. (They don't look similar, because
the diagram is not drawn to scale.)
Then, using equation (1), we have

AS : n. NM.

Substituting variables yields

Earth's rodtus EF : t

Moon's rttdius.\I-\ - .r

Radius of Ettth's s},:dorr-,lIK = -s

Using the assigned symbols ancl sub-
stituting equations (1) and (2J rnto
equation (3) gives us

nd R*z
d r-s'

OI

na- rn= (41
1_S

We can rearrange equation (4) to obtain

n(a + s): rln + l).

Further manipulation yields

So to find the fistance to the Moon
d, we must find values fot t, n, ar-.d a
in terms o{ d and the ratio s/a. This
ratio canbe found during an eclipse of
the Moon. The radius of the Moon a
can be found in terms of d by measur-
ing the angular diameter of the Moon.
Using Eratosthenes' method, Earth's

t.3l radius r can be found and n, well, that
can be overcomel

35

Moon's orbit

ASR /al
MN a '-'

Triangles ATF and FPK are also
similar, and we obtain

D
d

'{'.;) ='('.:) (s)

TF AT
PK FP,
sE AS-7S
EM FE_PE

Therefore,

{1)
D
a

SE AS_FE

-=EM FE_ MK
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tarth'$ shadow

andlhe [lloon com[amd
The Moon.is photographed dur-

ing an eclipse to get an image that
looks similar to figure 2. This occurs
when the Moon is entering the um-

Figure 2

bra. It is best to take a series of pho-
tographs with a large telephoto lens
or telescope so that there is a selec-
tion to choose from. The photograph
is enlarged so that accurate mea-
surements can be made from it. If
there isn't a convenient eclipse to
photograph, it is also possible to
copy a picture from a magazine or
book of a previous eclipse.

The photograph is needed to find
the ratio of the radius of the Moon
to that of Earth's shadow, or how
many times the diameter of Earth's
shadow is larger than the diameter
of the Moon. There are several ways
to do this, but the best way is to use
the geometry of the circle and a scale
drawing. By making as large a pho-
tocopy of the photograph as pos-
sible, points C and D are marked in
such a way that they are as far apart
as possible along an imaginary ra-
dius extended.

Points A and B arc the points of
intersection of the circles. The per-
pendicular bisector of the chord of a

Figure 3

30

circle passes through the center of
that circle. Referring to figure 3, we
can see that N is the midpoint of AD
and M is the midpoint of DB. The
perpendiculars from these points
meet at P. Segment DP would then
be the radius of the Moon. Similarly,
OC is the radius of Earth's shadow

' at the distance of the Moon's orbit,
and we obtain the ratio

OCs
DPa

Angular size otlhe l[lloon

We can measure the angular size of
the Moon directly or indirectly. To
measure it dircctly, a slider is made to
move smoothly along a meterstick. A
small ball bearing (about 6 mm in di-

small ball
bearing
diameter W

small disk
v,ith hole

tnefte tule

Figure 4

ameter) is mounted on the slider. A
disk with a smal1hole in it is attached
to one end as shown in figure 4. The
meterstick is rested on something
firm, and the Moon is sighted through
the small hole in the fixed disk. The
slider is now moved so that the ball
bearing exactly covers the Moon. The
angle subtended by the ball bearing is
now the same as that subtended by
the Moon:

tan CX =

Therefore,

u = tan-r [. 171
L

Great care must be exercised when
taking these measurements/ as this
result is crucial to obtaining, afi ac-

curate result.

An indirect measurement of the
angular size of the Moon is possible
with the help of a pinhole camera.
Since the Sun and the Moon appear
to be the same size (subtend the
same angle), as shown during a solar
eclipse, it is possible to construct a

good size pinhole camera and get a
reasonable image of the Sun that can
then be marked. The ratio of image
size to image distance will yield the
recluired angle u.

tmulaling trflm$hglts$
Eratosthenes' experiment can eas-

ily be repeated using some shadow
sticks. First another school is found
on a N-S iine at least 500 km away.
Once contact has been established,
students at each location measure the
length of the shadow of a vertical
stick at the same time. Care must be
taken to ensure that the stick is ver-
tical by using a simple plumb line
made from a "bulldog" clip, some
string, and a lead sinker (fig. 5). For ex-

plttntb
line

Figure 5

ample, twoplaces W andThavebeen
chosen (fis. 5), and at each place the
length I of the shadow and height H
of the stick is measured at, say,12'.00

<.-
<--

sunlight
<-
<-_
+

(6)

w
T

bulldog clip

sIPTtllllEtR/0CI0BtR lgg9

Figure 6

ffi

],$rirllllr:
r,p i,i.
SJIAA:ol,tt



noon. The angle 0 can then be found:

L
tand = -H,

OI

l

Q=tan

Similarly, the angle B at T can be
calculated. We can then use geom-
etry to show that

e:B-0.

The distance WT : S is found from
an atlas, and then by simple propor-
tions we obtain

ses
C 360 2nr'

where C is Earth's circumference and
r its radius. This is rearranged to get

s. 360r=-. (8)
2n0

There are two main sources of er-
ror in this experiment. The first is
that, due to diffraction, there is
some difficulty in seeing a clear
shadow and in determining exactly
where the shadow ends; it usually
covers about 2 cm or so. The second
source of error is the stick not being
vertical. With some care this prob-
lem can be minimized. The first
source of error is best confronted by
making the stick as long as possible
and securing a Tpiece to its top. Ac-
curacy wili also be improved if
many different groups of students do
this part of the experiment and av-
erage the results.

Eal,tfi-to-tuloon dhtance
To find the fistance from Earth to

the Moon, we begin by using equa-
tion {5) and substituting the follow-
ing values that have been found:

o from equation (7), the angle cr

subtended by the Moon. This was
the angle subtended by the diam-
eter, for the radius half this value is
required. That is,

CIatan- = --"-- 2 d'
Therefore,

L

H

a=dtan!. I9l2 '',
t the ratso s I athat was obtained from

the eclipse and using equation (5).
o the value for r obtained using

the shadow sticks and equation (8).

This leaves n. Aristarchus real-
rzed that the Sun was farther away
from Earth than the Moon was, but
he did not know how many times
farther. He tried to work it out using
geometry/ but the value he got,20,
was too small. However, if it is as-
sumed that n is very large, then the
ratio lf n is very small and can be
neglected. This gives a minimum
value for the radius of the Moon of

'['*l)=',\ a)

from which we obtain
I

u--.
t+l

a

The value for a can now be found,
since all the other values are known.
Once a has been found, d can be
calculated using equation (9), from
which we get

1au--.
O(

tan -2

Alemttdnialt ttaltte$
Hipparchus used the following

values:
sla:813,
ct = 3L',

so ulZ : 15'5, and thus

a = d1220.

He uscd Eratosthenes' value for r of
6,500 km. SulrstitLrting, irrro cqua-
tion (5) givcs the following result:

L(r* 9)= r(,500 krn)[r - l)220\ .\) \ n)

Therefore,

d=(3eo,oook,n/r*1'l'\ n/
Then i{, as assumed, n is large:

d : 390,000 krn.

Using the fact that s, = 31', the diam-
eter of the Moon rs

(390,000 km) tan o. = 3,516 kr.n.

This figure doesn't colnpare too
badly with presently accepted iig-
ures:

diameter: 3,476 km
mean distance: 384,404 km (range
of 356,400 to 466,700 km).

Studsltt flslroltolners
Several schools in South Africa

took part in the project, and the
two results in table I arc farrly
typical.

While not accurate, these results
do give figures that are not too far
from the true values. It is fairly ob-
vious that the critical result in this
experiment is the angular size of the
Moon, and the statistical mean from
alarge number of readings appears to
be the best way to obtain an accu-
rate result. O
Case Riisdiik is responsible for science
and asftonomy education at the South
African Astronomical Observatory in
Observatory, South Africa. He can be
r eached at cas e@s a ao. ac. za.
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data collected school 1 school 2

ratlo ot' Earth shadowlMoon, \sla)
angular diameter of Moon
Earth's radius

1.O /
26',

6,383 km

457,731 km
3,4(r1 km

2.67
3t'

6,384 km

386,161 km
3,475km

ca cu ated values

distance to Moon ftom Earth
diatneter of Moctn

Table 1



GREAT CALAMITY OC-
curred in Great Britain in
1655 and 1666: the plague ran
its deadly course through the

population. Citizens of large
towns left their homes to save
themselves in the small viilages.
This is why the young philosopher
and mathematician Isaac Newton
left London and returned to his na-
tive town of Woolsthorpe. In this
period he was interested in the
problem of why the Moon revolves
about the Earth. What force keeps
it in orbit? For if there were no

LOOKING BACK

TheUreal law

by V. Kuznetsov

force, he reasoned, the Moon
would have left Earth iong ago.

We can imagine the course of
Newton's reasoning. He thought of
an apple as an astronomical bodY.
An apple always falls downward.
Why? It seems as if Earth attracts it.
If one body attracts another body,
then the first body should have an
attractive force proportional to its
mass. If this is true, the attractive
force generated by Earth and applied
to the Moon must be formidable.
Thus, both the apple and the Moon
are attracted by Earth. Perhaps this

is how Newton conceived of the law
of universal gravitation.

Let's make a calculation analo-
gous to that made by Newton. The
Moon's orbit is almost circular. Its
period of revolution 7* around
Earth ts 27.3 days. The distance
between Earth and the Moon is
about 60 times greater than
Earth's radius RE. If an obiect
moves along a circular traiectory
with a speed v, it has a centripetal
acceleratior, v2 f R. The radius of
the lunar orbit is R* = 384,400 km
and the Moon's orbital velocity

t
f' , u.

'-' 'r, d
*dt- :

'iil' 
I

". '.f-i- .:ti
i 'l:

" 
.;.
t:
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is v = 2nR*lT*: 3680 km/h, so
the centripetal acceleration is
a : vz f R- : o.oo27 m/sZ. we know
another value of centripetal accel-
eration: it is the acceleration of iree
fa1l at Earth's surface g = 9.81 m/s2,
rvhich is larger by far than the
Moon's centripetal acceleration.

Newton was not the onh- person
lvho thought abor-rt the attractivc
abilitl, of Earth Hrs colleague and
opponent Robert Hooke 1 (r35-1 703 

J

tried to mcasLlri hlrr rhe iorce of
gravity chan.{e s ir -:h llrrrude. To
this end he usc.l .r s:tr:ti scale ione
of his inventions ::::l ;.rrlred rt to
the top of a hill. H:r..-r.-;er on the
hilltop the loacl stre :cr. j :re spring
the sarne amount as a: :.a -:-, ;1. Stiil
Newton felt thrt rr., !-:-.:--qner-
ated attraction ilust i;::;.se rrrth
distance.

The ernpirical lar' i : :-,:r:tar\'
motion found br T, r::.,...:- K-p1cr
(1571-1630) helped \i.,t: -: :r::; the
simple law of horv thr ir..-'.'-:.:r, ,:-La1

attraction decreases rr iti: ;-.:,,-:::;: fu

the centers of two ba11s r,.:::: : :r:t-
geneously distribr,rted n.r::.: .:-:: a

distance r aparr, rhc Jtrrl,: ., I t-:
Fbetwccn thern i> dirc--:.*;- r.- .i.-
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the value of this iorce is J:r.-:,-. :: -

portronaJ to thc 1.1ofl111, :: -. ',---
flIasses lr, and il ., anj ::]..;r'5;--.
proportiOnai tu th. ..1u.t = : ::, --:-
tance -r:
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This law contains the gravrra-
tional constant G that must be ie -

termined by experirnent.
Now we return to the attractive

force acting on the Moon. The Moon
is situated at a distance from Earth
that rs 60 times Earth's radir-rs.
Therefore, the force of attraction and
the acceleration due to Earth-gener-
ated gravity at the distance of the
Moon's orbit are 602 times smaller
than at Earth's surface:

a:0.0027 mf s2.

This value agrees with the previ-
ously calculated lunar centripetal
acceleration.

In this way Newton couid test the
law of universal gravitation. How-
ever, his calculation did not demon-
strate an exact agreement between
the astronomicai and theoretical
values for the lunar centripetal ac-
celeration: living in Woolsthorpe,
Newton did not know the precise
value of Earth's radius. This value
was not measured with reasonable
accuracy until years 1ater.

Notwithstanding the rough
agreement of both values/ Newton
was not satisfied. There was the at-
traction of the apple to Earth to be
understood. Can one consider that
Earth attracts the apple with the
same force as if all of Earth's matter
were concentrated in one point, at
the center of the planet? In reai^ity,
the nearer parts of Earth attract the
apple much more strongly than the
more distant parts.

What to do? The creative genius
of Newton couldn't rest/ so he
switched his focus to optics. He
ground lenses, constructed an excel-
lent telescope, and devotedly stud-
ied optical spectra.

Sti1l, his thoughts kept gravitat-
ing back to the problem of the app1e.

He spent years inventing integral
calculus and with this powerful tool
proved a wonderful theorem: a

spherical shel1 with homogeneously
distributed mass attracts a body in
the same way as if the entire mass

of the shell were concentrated at its
center (figure 1a). Earth can be con-
sidered to be a set of concentric.
spherical shells (figure 1b). The force
generated by each sheli doesn't de-
pend on the other shells, and the
gravitational force is not diminished
(screened) by intervening she1ls. If
we accept these two conditions (the
second condition is the most won-
derful feature of gravitation), then it
is clear that Earth attracts an apple
just as Newton supposed.

So, there is a common cause of an
apple's fall and the attraction of the
orbiting Moon by Earth: the force of
gravity generated by our planet.
What forces control the motions of
the planets themselves? Since they
orbit the Sun, the gravitational force
must be generated by the Sun. Tak-
ing a small step further/ we can gen-
eralize: any two bodies attract eaeh
other with the force of gravity de-
scribed by equation (1).

|ohannes Kepler discovered the
laws of planetary motion at the be-
ginning of the seventeenth century.
Kepler's first law says that the plan-
ets move along ellipses, the Sun be-
ing at one of the foci. According to
his second law, the planets move
faster near the Sun and slower at
larger distances from it. Kepler
found a mathematicai law to de-
scribe this {eature of planetary mo-
tion: the line connecting the Sun
and a planet sweeps equal areas per
unit time. Kepler's third law com-
pares the orbits o{ different planets:
the squares of the periods of revolu-
tion of the planets are proportional
to the cubes of their mean distances
from the Sun.

Kepler found these laws on the
basis of many years of astronomical
records. By contrast/ Newton
showed that these lalds could be
deduced from his laws of motion
and universal gravitation.

Once upon a time, three celebri-
ties of the Royal Society met in a

London tavern. They were the fa-
mous architect Sir Christopher
Wren (1532-1723lrand the natural-
ists Robert Hooke and Edmond
Halley 11556-1742). Halley said that
he managed to obtain Kepler's third
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law by combining the law of univer-
sal gravitation with Newton's laws
of motion-but only in the case of
circular orbits. Indeed, the circular
motion is cau'sed by the centripetal
force MtPIR that pulls a planet to-
ward the center of the circle. This
force is generated by the Sun, so

^MsM Mv2
u-

R, R

For circular motion, v : ZnR lT. Pllry'
ging this into the formula, we im-
mediately obtain Kepler's third law:

4r R)

T'

= COnSt.

When Hal1ey finished his storY,
Sir Christopher raised his glass and
announced a prize to anyone who
could prove that the 1aw of univer-
sal gravitation also agrees with the
elliptical orbits of the planets.

After a while, Halley asked
Newton about this Problem. In
November 1684 Halley received
Newton's manuscript with the
solution of the problem. Several
years were necessary to edit and
publish the manuscript. At last, in
September 1587, Newton/s trea-
tise was published. It was the fa-
mous "Philosophiae Naturalis
Principia Mathematica."

The laws applied to the motion of
the planets yielded some important
predictions. For example, Sir Isaac
"weighed" the Sun by expressing its
mass in units of Earth's mass. In-
deed,

cM'Y'=M." =M,4n'Ri ,Ri -Rr -RrTt

n, _ 4:t2Rfi
rvLE - -"------;- t" GTrt

where R. and R* are the orbital ra-
dii of Earth and the Moon, respec-
tively. We get an interesting result.
The Moon is the satellite of Earth,
and Earth is a satellite of the Sun. In
every equation the mass of a satel-
lite is canceled out. In the first equa-
tion where the law of universal
gravitation is applied to the Sun and
Earth, it is the mass of Earth that is
canceled out, while in the second
equation the canceled term is the
mass of the Moon. Therefore, the
masses of Earth and the Sun are ex-
pressed in terms of values that are
readily measured by astronomers:
the orbital radii and the periods of
revolutions. Only one value re-
mained unknown-the gravita-
tional constant G. However, if we
take the mass ratio of the Sun and
Earth, the constant G is also can-
celed out, so we get the formula

r'rl, _ ai41 :f o, 'l'1,r* 
)'

-=-=l-
ME Rior.' I n* / [ r. .)

To calculate the Sun's mass in
common units, we need to know the
mass of Earth. Newton knew onlY
its volume, because the mean den-
sity of Earth's matter wasn't known
in his time. Only one thing was
firmly established: the continents
were denser than the oceans. But by
what factor was the mean density of
Earth iarger than that of the oceans?

Newton concluded that the average
density of Earth was somewhere
between 5 and 6 g/cm3. Eighty years
later Sir Henry Cavendish (1731-
1810) "weighed" Earth and obtained
the constant G using a torsion ba1-

ance. It turned out that Earth's den-
srty ls 5.5 g/cm".

How can one determine the mass
of the Moon? Unfortunately, it can-
cels from all the equations. Still Sir
Isaac found a way to estimate this
value as well.

He turned his mind to the phe-
nomenon that had ptzzled human-
kind for thousands of years. What

Figure 2

causes the tides in the oceans? The
Romans attributed the tides to the
position of the Moon in the sky. "It
was a full Moon and a great tide,"
wrote |ulius Caesar himself. Still,
nobody guessed what a close con-
nection the Moon had with the
tides. Newton was the first to find
the correct answer.

Let's consider the motion of three
plates of the same mass that lie freely
one upon another (figure 2). At some
time, three forces start to act on these
plates: Fr, Fr> F3. A1I the plates will
be set in motion. However, plate 3
will lag behind the central plate 2,

and plate i will move ahead of it. If
the outer plates are connected to the
central plate with some springs, the
stretching of the springs will coun-
terbalance the net forces Fr- F, and
Fr- Fr'

Earth and its hydrosphere can be
imagined as three bodies falling to-
ward the Moon: the hard core and
two layers of water: one facing the
Moon and the other located on the
opposite side of Earth. The Moon
attracts these imaginary "bodies"
differently. Let's first consider the
effect of lunar at:rracttonupon a unit
of terrestrial mass (figure 3). At an

Earth

Moon
A
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arbitrary point A this force is

F^ =C
MM

R2 cosz cx + (r - Rsin u)l

= c M-Y (t* z4riro).
r, \ r )

At point -K, sin n : l, and the attrac-
tion force is

L --\lttl, .R)f^ =(r --- |

t \ 7''

Simrlarly, at polnt l, sin cr : -i, so

L -/^Mt(, ',R)r/-u ) lr-zll.r- \ t I

Thus, the varlous parts of Earth are
attracted to the Moon by different
forces.

The Earth's sohd mass ancl its wa-
tery covering are connected by
"springs" of gravrty. In the center of
Earth, a unit mass is affected by the
force.F : GMrlr) of lunar gravitation.
This is the very force that determines
the motron of Ezrrth's core. At the
point I the ocean water "lags behind"
in the process of Earth "{zrl1ing" to-
ward the Moon, because here a unit
mass is a{fectcd by a {orcc smaller than
F.' F. - F,= -zGMMR/rl. By contrast,
at point K this force is larger than F,.,

so in the vicinity of this point, wa-
ter tries to run faster than Earth's
core. However, the "sprirrgs" ol'ter-
restrial gravitation don't allow it to
do so. The lunar gravitation slightly
"stretches" these springs with the
tidal f orce ZGM*R l13 . Theref ore,
tiLlal "htttnps' alll,ear on opposite
siJes ot Earth. They try ttr rrraintain
the same position relative to the
Moon. Ii the Moon cLdn't move rela-
tive to Earth, and Earth drd not ro-
tate about rts axis, the rr'ater shel1
would rnaintain rts shape elongated
toward the Moon. Hou-er-er, dr-re tcr

Earth's rotation, the tidirl rr-ar'..
rnoves relative to the contlncnt) ar
1800 km/h ancl lags relatir.e to the
Moon's motion.

While solar attraction rs much
stronge-r than Iunar attraction, ir is
more homogeneous due to the large
distance to the Sun relative to

Earth's size. Thus, the solar tidal
force F, =2GM.Rlrly is smaller than
the lunar tldal force. Indeed, the
Sun's mass is 27 million times
greater than the Moon's, but the dis-
tance betwcen the Sun and Earth is
389 tin-res the distance between
Earth and the Moon. Therefore,

).7 106 M^,
F' -2C#R=0.-l5Fr.

(38er)

Thus, the solar ticles are weaker
than hrnar tides. Twice a month the
Sun, Earth, irnd Moon are situatcd
on the same line. In this case the
solar ancl lun:rr tidirl forces rnterfere
constructrr-eh' ancl .qcncrate a large
tide. When the Earth-Sr,rn hne rs per-
pendicular to the Earth-\loon clrec-
tion, the solar ancl lunar trdal fcrces
act destructively and pro.lnce tr

small trde. Near small rsolatecl r..-
lands lost in an ocean u.here thu-

tides are not distorted by the conti-
nental shores, large tides raise the
water level 1.30 m, and small tides
lift it only 0.65 rn. The correspond-
ing calcr.rlations make it possible to
evaluate the ratio of soiar and lunar
masst:s using the parameters of the
tides.

Thus, the tides helped Newton
calculate the mass of the Moon. His
calculations were not particularly
precise. The problem ls compli-
catcd by the friction of huge water
rrasses with the oceanic bed, as
well as by other processes that can-
not easily be analyzed. The precise
valuc of thc lunar mass was found
only with the hclp oi artiiicial lunar
satellites. The traiectones and peri-
ods of revolution of the lunar orbit-
ers yielded data to determine a

mass of thc Ntoon that was only
roughl1, estimated bY Sir Isaac.
More o r,er, t he lunar orbiters
shou'e c'1 that the Moon's mass is
distributed uner-en1y throughout its
volume, so the lunar satellites do
not stnctll- iollor'r, Kepler's laws.

Bciore Nervton's tilnc astrono-
ners thought comets paid only a

srngle visrt to Earth. However, New-
ton showed that comets could move
along closed, elliptical orbrts. The
specific feature of these orbits is a

pronounced elongation. This is why
the comets fly away to great dis-
tances from the Sun. Accordingly,
they have a long period of revolu-
tion. Edmond Halley calculated the
moment of return of a famous
con-ret, whose appearance could be
traced in the ancient chronicles. The
prediction was a striking success:
the comet returned periodically at
the calculated times. It can be seen
every 76 years. Only one astrono-
rner, fohann Gottfried Galle (1812-
1910), who lived almost 100 years,
saw this cofiret two times. The re-
currence of comets is a strong argu-
lnent in favor of the law of univer-
sa1 gravitation. O
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IN THE LAB

An unsinkahle dislt

by A Luzin

OR THE EXPERIMENTS WE NEED A THIN
disk made of a material denser than water. We can
take a sheet of soft steel with a thickness of 0.2-0.3
mm, an aluminum sheet of 0.2-L.9 mm/ or a sheet

of Plexiglas of 0.3-6.0 mm. The most suitable disk will
have a diameter of 90-150 mm. In the center of the disk
a depression should be made with a diameter of 12-15
mm and a depth of 1.5-3.0 mm.

If we place such a disk on the surface of water, it floats
because of the surface tension of the liquid. Splash some
water on it, and the disk will surely sink, because it is
more dense than water.
Now hold the disk in your
hand and place it under a
jet of water. Note that wa-
ter pushes down on the
disk rather strongly (this
is the hydrodynamic pres-
sure of the water iet).
There is nothing super-
natural in the results of
our experiments-physics
can explain them.

Place the disk on the
water's surface and guide
a strong vertical jet into
the depression at its cen-
ter. You will see a para-
doxical phenomenon-
the jet pushes down on the disk but cannot sink it! A
spectacular experiment of this kind can be made with a

colored Plexiglas disk, through which the small objects
on the bottom of a vessel can be seen clearly. This ex-
periment can be easily demonstrated provided the wa-
ter jet is sufficiently even, smooth, and free of visible
vortices.

Why doesn't the disk sink? Watch it for a few min-
utes and note that there is a circular hump of water on
the disk's surface that is pushed by the diverging thin
layer of running water [ar frorr the center. As a result, a

region of decreased pressure appears between the disk's
center and the hump, and the difference of the forces ap-

plied to the upper and lower sides of the disk can be

cluite enough to keep it afloat, even with arather strong
water jet. This is an interesting manifestation of the re-
lationships given by Bernoulli's law, which says that a

thin, fast jet of liquid flowing radially on a disk pushes
away a high water hump in which the velocity of the
flow is small.

In hydraulics, the observed water "hump" has a spe-

cial name, thehydraulic iump.It is a sharp, steplike rise
of the water level in an open waterway where the char-
acter of motion changes from rapid and turbulent into

trancluil, laminar, and
steady flow. The hydrau-
1ic jump can be clearly
seen on the downstream
wall oi a dam, but in that
case its form is not circu-
lar but linear. A circular
hydrauiic jump can be
seen even without a disk
by letting the vertical
water iet {all onto the
bottom clf a sink, even if
the sink bottorn is not
precrsely i1at.

Thc nrath.'trtattcaI
descrrption oi a hydrau-
1ic iun-rp. rs based on
Bernoulli's 1:rw, which in

the case of a fluid flou-ing rn a horrzontal channel with
vertical wal1s ancl an r)prI1 \r;1tcr sr-lriace can be written
AS

__t _,),

/r -l= "'+h,,
l,' I o

or

Et: Ez,

where 1r is the clepth of the flow, v is its velocrty at sorle
cross-section of the channel, and E: h + vzl29 is the
value known in hyclraulics as the specific closs-scc-
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tional energy.If thc liquid is non-ideal but has a rather
small internal friction, then the above equation is re-
placed by the inecluality Er, E".In the simplest case of
a rectilinear hyclraulic jump, when the channel width
b is constant, thc inequality can be rewritten as
E(hr) > E(7rr), where

6J
E(ht=fi+r:_il,

and Q = vl:h is the f1ou, rate, rvhich in the case of
steady florv is the same at an\- cross-section of the
channel.

Thc speciiic cross-sectional energl- E can be consid-
ered to depend only on fi, and this dependence is
nonmonotonic. At some critical depth of flow fi., the
speci{ic cross-sectional energy is minimal, while as
h -+ * it grows due to the first term, and as h -+ 0 it also
grows due to the second term. The critical flow depth
can be obtained frorn the equation E(h.) = 0, which says
that the first derivative of E with respect to } must be
zeto:

We can see thar t\ro t_vpes of steady flow are possible,
correspondrng to the cases when (a) the velocity of the
flow is rather high, but its depth is relatively small
lh < h,), the latter grorving slowly along the channel,
while the speciirc cross-sectional energy slowly de-
creases, and 1b) the r-elocitv of the flow is rather sma11,
but the depth rs suiircier-rt1y large (h ,I.) and slowiy de-
creases along the channel together with the specific
cross-sectional energr'. E,rperience shows that a "conr-
posite" steady florr is l.ossiLrle that consists of the flows
of first and second t1-pes and a rather narrow region of
hydraulic jump between tl-rem.

It is not a simple problem oi hou. such a complcx
flow is formed and how the hr-draulic jump in it is
generated. In this article \^/e use on1y, approximate
and qualitative conceptions. C1ear11- a hydraulic
jump forms in a channel with a ilat horizontal bot-
torn, provided the kinetic energy oi the iluid at some
cross-section is sufficiently high ifi < h.). The energy
graclually decreases along the flow at larger clistances
from this place due to viscosity, and the florv depth
gradually increases and reaches the critical value
h = h,.The flow depth cannot grow any rnore, be-
cause this wou1c1 mean an increase in E, which con-
tradicts the lnecluality. Fluid is decelerated in the
piace where h = hr, and it accumulates there until the
flow bccomes stable. This process leads to a drastic
incrcase in thc flow depth.

A more detailed theoretical consideration of the de-
scribed experiments can be made using the so-called
"wave theory" of the hydraulic jump, which calculates

the height of the step, the abrupt change of pressure,
and the generated "Lifting" force that supports the disk
on the surface of water. You can read about it in prob-
lem 4.58 in the wonderful book by |earl Walker called
The Flying Circus of Physics (New York: fohn Wiley &
Sons, 1977). O

Quantum on fluid mechanics:
L. Guryashkin and A. Stasenko, "The history of a

[a\I," March/Apri1 1995, pp. 10-t5.
S. Kuzmin, "Spinning in a jet strean," September/

October 1994, pp. 49-52.
L. Leonovich, "Fluids and gases on the move," fanu-

ary fFebruary 199 6, pp. 28-29.
A. Mitrofanov, "Against the clrretttttt May/|une

1995, pp.22-29.
|. Raskin, "Foiled by the Coanda effect," lanuaryf

February 1994,pp.5-ll.
H. Schreiber, "A viscous river runs through it," No-

vember/December 1995, pp. 43-46.
A. Stasenko, "Whirlwinds over the runway, " lulyf Au-

gost 1997, pp.36-39.
I. Vorobyov, "Canopies and bottom-flowing

streams," |uly/August 1995, pp. 45-47.
V. E. Belonuchkin, "Turning the tides," Mayllune

1998, pp. l0-L4.

How do you get the
mostpizza slices with
the least number of
cuts? To go from point
A to point B in a down-
pour of rain, should you
walk slowly, jog moder-
ately, or run as fast as
possible to get least wet?
What is the length of the
seam on a baseball?

In this sequel to
his popu-lar Towing
Icebergs, Falling
Dominoes, Robert Banks
presents anot-her collec-

tion ofpuzdes for readers interested in sharpening
their minds and their math skills.
Cloth $24.95 ISBN 0-69r-05947 -O Due September

Princeton University Press
AT FINE BOOKSTORES OR CALL 800-777-4726. W\I(W.PUP.PRINCETON.EDU

Circle No. 2 on Reader Service Card

OUII[TU[I/Itll IIII I.IB

Q2

43

1

Slicing Pizzas
Racing TurtlGS,

and Further Adventures in Applied Ptathematics

Robert B. Banks



AT THE
BLACKBOARD II

Physical optics andtttuo camels

HAT IS THE FARTHEST
distance that you could be
from a camel and be able to
distinguish with unaided

eyes whether it has one or two
humps? What could be difficult in
answering a cluestion of such vital
importance to used camel salesper-
sons? Well, it turns out that the laws
of physical optics impose a principal
limitation on the very possibility of
accomplishing this task.

Let's start from the very begin-
ning. A broad parallel beam of light
with intensity /o-the energy flow-
ing through unit area per unit time,
|/(s ' m2)-shines from the left on a

nontransparent screen that has an
infinitely long slit of width d(fig.l).

Geometrical optics says that the
light behind the screen is also a par-
alle1 beam of width d. This width
doesn't vary with distance, so if we
place a white screen perpendicular
to the beam at arry fistance from the
s1it, we will see a light band of the
same width d and illumination 1o

(right side of fig. 1).

However, light has a spatial char-
actert parameterized by its wave-
length i". At this point an experi-
enced Quantum reader may
conclude that in the case under con-
sideration, the dimensionless ratio
)"/d must play an important role.
And our wise reader would be abso-
lutely correct.

Let's divide the slit into two lu-
minous bands of width dl2, Then
we concentrate the enerSy of these
bands into two infinite luminous
threads separated by a drstance dl2

by A Stasenko

(figure 2, left). Now thc problem is
reduced to two-b eaitt int erf erence,
and it becomes similar to the fa-
mous two-slit erpenment of Tho-
mas Young. Norr' 1et's determine
what pattcrn u,i1l appear on a white
screen placed at a dtstance x to the
right o{ the slit.

First, we calculate the path dif{cr-
ence A : rt - tt irom thrcads A and
ll to the point rr,ith coordinate y on
the screen. Since the slit is narrow
IAB .. r), the t\ro trlangles in {igrire
2 yield

By subtractrng thc first ecluation
from the second, wc get

,i - ,i = rdsin o.

shadow

L,

l; ult t

shttdow

The left side can be rewritten as
(rr- rr)(r2+ r,), where the first factor
is the path difference and the second
factor (rr+ r1l = 2r. Now we have

A = 4sino.
2

The same result can be obtained
immediateiy by replacing the
" clled" triangle ABC by the rect-
angular triangle ABC'.

Recall the basic concept of inter-
ference: if the path difference from
two sources to the same point is
equal to an integer number of wave-
lengths )", these waves augment
each other (constructive interfer-
ence), but if the path difference is an
odd number of half-wavelengths, the
waves cancel each other (destructive
interference). Thus, instead of a

steplike luminosity function shown
on the screen in figure 1 by a lover
of geometrical optics, a far more
complicated interf erence pattern ap-

...1
r r lcl\ ^ drl =r -l; | -2r:sin0,\+/ +
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pears that consists of alternating
bright and dark bands (figure 2). The
brightest illumination willbe in the
middle of the"screen on the line lo-
cated just opposite the slit (Y : O).

The brightness of other bands will
decrease with distance from the
middle line, because they are situ-
atedfarther from the luminous slit.

The most interesting thing ior
our problem concerns the locations
of the two dark bands that border the
central bright band. It follows from
our reasoning that at these places

d)"
-slnu, =t-,2z',

sin 0, =

This formula is a triumph for our ex-
perienced reader: indeed, the inter-
ference pattern generated by a slit
depends on that very importautPa-
rameter/ the dimensionless ratio of
the light's wavelength to the width
of the slit that the iight passes
through!

Now let's retum to our camels. hr
this case the pupil of an eYe PlaYs
the role of the "slit," although in
reality it is a round orifice, not an
infinite slit. The retina of the eye
plays the role of the screen on which
the interference pattern was ob-
served (figure 2). It turns out that a

similar interference pattern appears

on the retina! Of course, in this case

it is not composed of parallel bands,
but of concentric bright and dark
rings surrounding the central bright
spot. The radius of the first dark ring
corresponds to an angle (a little bit
larger than in the previous ease)
given by

sin0, = l'22I,

where d is the diameter of the pupil.
Each "point" of the remote obiect

(a camel), which sends a nearly Par
al1el beam of reflected solar light to
the eye, is projected onto the retina
as a bright spot surrounded bY a set

Figure 3

of rings. (Doesn't it look like the
wave pattern on a Pond's surface
producedby a pebble?) We must dis-
tinguish (physicists say "resolve")
two points of the object.

The interference pattern Pro-
duced by these points is qualita-
tively shown in figure 3. This figure
explains the condition of resolution:
if the maximum iliumination from
the second point (B) coincides with
the minimum illumination Pro-
duced by the first point (A) or is far-
ther from it, these points maY be
considered as separate (that is, they
are resolved). Otherwise, these
points blur into a single spot.

Note that the clearest image is
produced on the retina when the
pupil's diameter d :3 mm. At this
diameter the angular resolving
power of the eye as determined bY

the laws of physical optics is on the
order of

t.22.5.10-' m
= 50"0=

3.10-3 m

Here we have used the characteristic
wavelength ), :5 . 10-z m:500 nm.
When people want to clearly scruti-
nize an object, they turn their eYes

in such away that the image forms
on the so-called macula lutea lyel-
low spot) of the retina, which con-
tains about 15,000 cones (sensitive
cells) that occupy afi area with an

angular size of about 1.5'. This is the
area of greatest concentration of
cones in the eye. In tlne macula
lutea every cone subtends an angle
of about

6, _ 1.5'.3500"/" _50,,.
J1s000

It looks as if Mother Nature
knows interference theory perf ectly
well, doesn't it?

In this respect it is interesting to
read from |onathan Swift's Gulliver's
Traveis'.

Nature hath adapted tha eyes of
the Lilliputians to all obiects
propu for their view: they see

with great exactness, but at no
great distance. And to show the
sharpness of their sight towards
obiects that arc near, I havebeen
much pleased with observing a

cook pulling a lark, which was
not so large as a commonflY; and
a young girl threading an invis'
ible needle with invisible silk,

At the same time, Gulliver ascer-
tained that he was a dozen times
larger than a Lilliputian, and that all
objects in Lilliput were smaller than
ours by the same factor. Thus, a

Lilliputian had eyes with pupils 1/12
the diameter of ours. Therefore, the
interference angle for Lilliputians is
12 times that of ours, which means
that the image of a point light source
on his retina is also bigger than ours
by the same factor. Why should Na-
ture produce retina cells smaller than
that in Gulliver? It would be a waste
of cells! Will the Lilliputians'vision
really be better than ours even at
short fistances?

So, to resolve two Points, the (aP-

proximate) recluirement 
.

a ,t.22LQ>0,or7) d

must be met/ from which we get

r< od 
{.r

r.22X

Now we are ready to make a nu-
merical estimation. Let the distance

*v, I
ir)S

r)'i+x- q

B' A'
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between the camel's humps be
a = 0.5 m, the pupil's diameter be d
= 1 mm (remember that there is
bright sunlight in the desert!), and
the mean watelength of the sunlight
be i" = 0.5 pm. This yields

0.5 t0 3

t.22.0.5.rc-6
m=800 m.

Are the humps of a cailel the
rnost interesting obiects oi olrsen-a-
tion' Pcritaf: rt,,t, lt r: rt.,ccrrt.'i-
dence that telescope r-nakers tn- t.r
make a larger pupl1 lobtective : rn-
deed, the smallest angular distance
(Q) between two stars must be no
less than 0,. It is also clear why an
eagle must have a large pupil to dis-
cern a mouse on the ground from
high in the sky.

What would happen if we put to-
gether a telescope and a microscope?
At first glance, each component of
thrs system magnifies the image by

a thousand times-so the entire
"supettelescope" will magnify it by
a million timesl Would we see thc
pebbles on the Martian soil?

A1as, the image will be helplessly
spoiled by interference even at the
objective of the telescope, so the
details of objects smaller than that
specified by R ayleigh's condition (. )

will be lost forever. In addition,
there is interference at the objective
oi a microscope, which prevents the
rcsoiutron of two points spaced at a
drst:rnce less than the wavelength of
the illr,rmrnating light (this is why
micrcrbe s cannot be observed in op-
tical nrcroscrrpes .

So rrhat have \rc iearnedi Were
optical der.rces rnr-ente d simp11' to
ol-lserve interierenc a parrerns on
their "pupils" ? Certainlr- not. Those
who invented the tirsr rnrur.r:,,,pc:
and telescopes knew nothing of hghr
interference, because the advent oi
the wave theory of light was far over

the horizon. It seemed that the plots
of the light rays drawn according to
the laws of geometrical optics
opened an unlimited vista to in-
creased magnification by proper
choices of objectives and eyepieces,
as well as by their separations. How-
ever/ as usually occurs in physics,
the new theory revealed the limits
of an older, simplified theory. The
camels have served to remind us of
this old truth. O

Quantum on light interference:
P. V. Bliokh, "Make yourself use-

ful, Diana," March/Apil1992, pp.
34-39.

A. Eisenkraft and L. D.
Kirkpatrick, "Rising Stat," March/
April 1995, pp.37-38.

A. Eisenkraft and L. D.
Kirkpatrick, "Color Creation," No-
vember/December 1997, pp. 32-33.

V. A. Fabrikant, "Vavilov's Para-
dox," |uly/August L992, pp. 49-50.
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The AMS is pleased to announce the Student Mathematical Library, a new series of undergraduate stud es in maihe-
matics. This series is designed to introduce students to interesting, accessible topics of modern mathematrcs. For
detailed descriptions ol these and other AMS books in series, visit the AMS Bookstore at www.ams.org/bookstore .

An Introduction to the
Mathematical Theory of Waves
Roger Knobel, University of Texas-Pan Ameican, Edinburg

This book is based on an undergraduate course taught by the author
at the IAS/Park City lVathemalics lnstitute, on linear and nonlinear
waves. The inient of this book is to create a text suitable for inde-

pendent study by undergraduate students in mathematics, engineering,
and science. The content of the book is meani to be self-contained,
requiring no special relerence material.

Vo ume 3: 2000;1 96 pages Sollcover: SBN 0"821 I 2039 7: List 923 A Al\4S

members $1 8: 0rder code STl,/Lr3Q99

Lectures on
Contemporary Probability
Gregory F. Lawler. Duke University, Durhan, NC. and
Lester N. Coyle. Loyola College, Baltrmore. MD

This vo ume s based on classes n probability for advanced undergradu
ates held by the authors at the lASlPark City lvathematics lnst tute. lt s

derived from both eclures and computer s mulatons thatwere held
during the program.

Volume 2: I 999 .09 pages; Softcover: ISBN 0.8218-2029-X: List $1 7t A AMS
members $14: Order code STlvlL'2099

Miles of Tiles
Gharles Radin, University ofTexas, Austin

The common thread throughout this book is aperiodic tilings; the best-known
example is the "kite and dart" tiling. The presentation uses many different

areas of mathematics and physics to analyze the new features of such

tilings. lncluded are many worked examples and a large number of figures.

Volume 1 ; 1 999; 1 20 pages; Softcover; ISBN 0-821 8-1 933-X; List $1 6; All AMS
members $13; 0rder code STIVUl 099

Prime Numbers and Their Distribution
G6rald Tenenbaum, Universitd Henri Poincar6, Nancy l, France,

and Michel Mendds France, Universit1 Bordeaux l, France

From reviews for the French edition ...

This book is very well witten. lt is fun to read and at the same time
presents most of the fundamental concepts and ideas in analytic number
theorY' 

-Mathematical Reviews

There are two ways in which the book is exceptional. Firsl, some familiar
topics are covered with refreshing insight and/or lrom new points of view.

Second, interesting recent developments and ideas are presented that
shed new light on the prime numbers and their distribution among the
rest of the integers.

2000; approximately 1 20 pages; Softcover; ISBN 0-821 8.1 647-0; List $17; All AMS
members $14; Order code STML-TENENBAUQ99

All prices sublect to change. Charges for delivery are $3.00 per order. For optional air de very outside of the continental U. S., please inctude $6.50
pet iIem. Prepayment requred. arder lrom: American Mathematical Society. P. 0. Box 5904, Boston, NIA 02206-5904, USA. For credit card
orders. fax 1 '40 1 -455-4046 or call loll free 1-800-321 -4A|VS (4267) in the U. S. and Canada, 1 40 1 455 4000 worldwide. Or p ace your order
through the AMS bookstore at www.ams.org/bookstore/. Residefls of Canada, please fclude 7% GST.
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xH'0$$$cl8llc8 by David R. Martin

vt.2
-c5

1 2 3 5 6 8 9 l0 11 12 l3 t1 15 16 17 18

19 20 2l 22

23 )4 25 26

z7 28 29 30 3l

32 33 34 35

36 37 38 39 10

I 42 3 +4 45 46

17 48 19 50

51 52 53 54 55 56

51 58 59 t0

I 62 53

54 55 56 i'7 6tt 59 1O I

12 13 14 15

76 '77 78 79

80 81 82 83 8rl

35 86 87 88

39 90 91 2. -1 91

95 )6 9',7 9u 99

100 I01 102 103 10.+

105 106 107 t08

109 110 111 1t2

Across

1 Steals

5 Muscle pain
10 Head skin
15 Mincingly cute
19 Oriental nurse
20 Perch

21 Prank
22 fewish philosopher

- 
Haam

23 Space-time math-

ematician
26 Ascent
27 Geologic time

period

28 Superman's girl
29 Scottish island

30 Expert

32 Superconductivity
theorist

34 fiileteci
35 Sandstone

36 Physics assoc.

37 A racc of gods

lScand. myth.)
38 Crxr-rpor-rnds with

elcment 7

ull 

- 
metal (used in

flints)

44 Lane-- eclu:rtion

i{or stell:rr structure)
;15 Indian's home

4(r Moist
47 Width timcs length

48 "To 
-." 

(perfect)

49 Imitatcs
50 Protccted
51 Typc of gatc: abbr.

52 Black hole theorist

56 Cardlnal number
r / Long wavelcllgtll

racliation
59 Fossil resin
(r0 Stun with noise

61 Cavity: comb. form
62 french city
63 Gloom
6,1 National park in

Mainc
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67 Sick person

68 One dyne,'crrl
72 Linearly indepen-

dent vector set

73 Heisenberg's 

-principle
75 Silver iodide: abbr.

76 _ Struve {1897-
1963)

77 Cleveiand's lake
78 Srmple math

operator
79 61,159 (in base 16)

80 Mal de 

- 
(scasick-

ness l

81 Former
82 Clances at

8zl Diving birds
85 _ motion (of tiny

particles )

87 1972 Chem.
Nobelist Stanford

88 Elerlent 5: comb.

form
89 Horse sound

90 Puerto _ (Chilean

city)
91 Unlverse origin
95 "Athlcte of the

Half-Century"
97 _Lama
98 City near Madras

99 Twelve grams of

carbon- 1 2

100 Church song

101 X-ray star discor'-

CICI

105 To shelter
106 Happen

107 Weapon sr,rpplier

108 '14,525 (in base 16)

109 I1760 atmosphcre
110 Harnmer's partners
111 Lil<e a shade tree

112 Apportion

0own

1 Harlot oi ierichcr
2 Psi iollorrer
3 More naked
.1 Srnusoidal rlotion:

abbr.

5 Slender, open boats

6 Kidney secretlon
7 Appendages

8 1002

9 Carbohydrate r,r.ith

5 carbon atoms

10 Point n-raker

11 Criecl like a crow
12 Orbital point
13 Albanran money
I-l Hun-rans and

monkevs
15 N1atl-ren-ratician

Alfred _
1(r Type oi star

17 No diificultv
18 Cerman riler
24 _ nuli
25 Blood peptide

31 Land measur'e1-nenr

33 56,010 (in base 16'

34 Make wet
35 Window cleaners

need

37 Fix
38 8.686 declbels

39 978,926 (ln base 16)

zl0 Dutch painter

\1626-t679)
41 Long skirt
:12 Element ir-r steel
-13 Vassal
-14 Former hypothetical

medii-rn-r of space
,15 Stories
,18 Maior blood vessel

50 Military cap

52 Singer loplin
53 Ethiopian emperor

_ Sclassie {1892-
t97 5)

54 Type of wheat
55 The latc Siskcl's

partner

56 Football's Bradshaw

58 Type of galaxy

60 Conduits
62 Kinder
63 78A's partner

6:l Nuclcar weapon

65 Provide foocl

66 Star g:rzer
(r7 Negative particle
68 Kinematic

70 Silver cyanide

71 BBQ favorite
73 Bathsheba's

husband
74 Scparatcd
77 Fleabane and

horsewecd oi1

79 Nongrass herb

81 Type oI transistor
82 Submarine fincier

83 Havir-rg high water
coinciclence

84 15D's forte

91 Momentzrry
92 Form of ultrasonic

tomography
93 Musical group oi

nine
9:l Soar

95 "All's well 
- 

ends

well."
96 Woocl: comb. form
97 701

98 Latin consonant
souncl

102 Resort in SW Pcru

103 Mine output
104 Engine sha{t

SALUTION IN THE
NEXT ISSUE

relativity's Edward 86 Black hole theorist

-i 
1 896-19501 Isracl

69 German chemist 87 Tccth
Lambcrt 

- 
{1818- 88 Like some st!.rrs

1899) 90 Spot: comb. iorr.n
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GIFIs lon fie ukinU
Applications for the 2000 Growth

Initiatives For Teachers (GIFT) Pro-
gtam, a $12,000 grant for secondary
science and math teachers, are now
available. Through the GIFT Grant
Program, the GTE Foundation pro-
motes excellence in math and sci-
ence education. The GIFT program
is open to public and private school
math and science teachers, grades 7
to 12, in 35 eligible states and the
District of Columbia.

Each winning team shares a

$12,000 GIFT grant-$7,000 to
implement the school enrichment
project and $2,500 to each of the
participating teachers to help them
pursue professional development
activities.

To apply for a GIFT grant, team
members iointly submit a proposal
and budget for a school enrichment
project that must be based in the
team/s classrooms or school and di-
rectly involve both math and sci-
ence students for the 2000-2001
school year. Also, as part of the ap-
plication, team members submit
proposals and budgets for individual
professional development activities
that directly support implementa-
tion of the school enrichment
project and address their own needs
for professional growth, especially
regarding technology in education.

GiJt Fellows participate inayear-
long program designed to inspire
their teaching efforts through oppor-
tunities for professional growth. The
year begins with the GIFT seminar,
held in )une, for which the GIFT
Fellows travel to Boston and Wash-
ington, D.C. During the week-long
seminar, teachers attend presenta-

HAPPEN INGS

Bullelilt Boal'd

tions by noted scientists and educa-
tors/ tour GTE labs, and interact
with GTE employees and govern-
ment officials. A11 expenses are un-
derwritten by GTE.

To be eligible for the GIFT grant,
applicants must:

. hold a bachelor's degree and
state certification (where appli-
cable),

. have completed at least one year
of full-time paid teaching in the
same school district by |u1y I, 1999,

. teach grades 7 to 12 (grade 5
only if in a middle or junior high
school) at a regionally or state-ac-
credited non-profit school (public or
private),

o catry a full teaching load, with
more than half of the teaching
schedule in math andf or science,
both in the current year and the year
in which the grant will be applied,

. teach in Alabama, Arizona, Ar-
kansas, California, Colorado, Con-
necticut, District of Coiumbia,
Florida, Georgia, Hawaii, Idaho, Illi-
nois, Indiarta, Iowa, Kentucky,
Maine, Maryland, Massachusetts,
Michigan, Minnesota, Missouri,
Nebraska, New Hampshire, New
Mexico, North Carolina, Ohio,
Oklahoma, Pennsylvania, South
Carolina, Tennessee, Texas, Vir-
ginia, Washington, West Virginia, or
Wisconsin.

Teachers who would like to re-
ceive an application by mail are en-
couraged to call (800) 315-5010, or
send email to gift@gte.com. Applica-
tions are also available online at
www. gte. com/aboutegte/commu-
nity/gte f oundation/opportunities/
gift.html. Deadline for submissions
is |anuary 4,2000.

whala diflenence a tll,ord lllak0s
Due to a clerical error on our

partt a crucial word was left out of
the initial posting of this month's
CyberTeaser. The problem is cor-
rectly worded in this issue
(Brainteaser B27l); on the web,
the word "different" made a be-
lated appearafice. Luckily, some
of our ambitious readers assumed
the more difficult wording and we
received answers that satisfied
both conditions (denoted with an
asterisk below). This month's
winners are

Bruno Konder (Rio de faneiro, Bra-
z1ll.
forge G. Moya (Culiacan, Mexico)*
)erold Lewandowski (Troy, New
York).
Adam Cabrera (Billings, Montana)*
Theo Koupelis (Wausau, Wiscon-
sml
May Lim (Quezon City, Philippines)
Pattick Maxfield (Folsom, Califor-
nia)"
Vladimir Novakovski (Springfield,
Virginia)
Clarissa Lee (Petalin glay a,Selangor,
Malaysia)
Manny Dekermeniiian ( Sunnyvale,
California)

Congratulations to our winners,
who will receive a Quantimbutton
and a copy of this issue.

Everyone who submitted a cor-
rect answer before it was posted at
our Web site was eligible to win a
copy of our brainteaser collection
Quantum Quandaries. Visit http:ll
www.nsta.org/quantum to find out
who won the book, and while you're
there, try your hand at the new

50 $tPTEt'tItR/ocIoItB lsss
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M271
Add all three eqr,rations. Since

[x] + {x} : X, we obtain

2lx+y+z)--9.1,

frorr which we get x - )'+ z: f.-.
Now we add the first two etluation.
to obtain x + y + z + [y]+ {x} = z.+.
Thercfore, lyl * {"} = 7.4 - 4.7 = ).7.
Thus, [y] = Z and{xl = 0.7. Now, add-
ing the first ecluation to the thrrd one
and the second ecluation to the third
onei we find that [r] = 1, {z} : 0.1,

lr):0, and {y} : 0.8. Answer: x : 1.7,
y=2.8,andz=0.2.

M272
Denote the leit-hand side of the

given lqlration by y. Then, y - ,r

- rrl-9. Therefore, y - x ) O.

Square the last equation and repre-
sent x in terms o{ y:

y) +9
2y

(we can easily check thaty + 0J. Thc
inequality y - x >0 implies

v) +9 ,) -.)
-->ll I'2v)y

(a result that will be useful later \\-c
find that

{t - l,l
. - f = lr

and

- l\'- ll-._ 2- '

Zv

We then substitute these expres-
sions in the original ecluation to ob-
tain

. ayly + 3))
t=--.--J '

(y -.1)

ANSWERS,
H INTS &

SOLUTIONS

Now, our equation breaks into two
equations: ly - 3)2 : Zly * 3) and (y -
3P : -zly+ 3) or t' - 8y+ 3 = 0 and
f -4y + 15 = 0. The second equation
has no real roots, and the first one
has rwo roors: 4 t\ I.l . Only the
greater of these roots satisfies condi-
tron (11. Now we can return to the
origrnal unknown and {ind that x
= S - r13.

M273
Let O be the center of the circum-

crrcLe oi triangle AMC lhg.l). The
cc,nditions of the problem imply that
r',iiC is acute. The choice of point
O rmplres that ZMOC :LZ.MAC,
ani rornt O lies on the same side of
-1 

r.. as rrolnts B andC.Itis clearfrom
th- e qualrtl- MO = CO that

- '..C = e0 - 1112)zMoC
= 90'- ZMAC = ZBMC.

T:.r.reiLrre . the line MB contains point
C, Ir ,li ioes not coincide with B, then
-ts',1 r. r:le perpendicular bisector of
--t- a:: I :inrreflt BM must inrersect
si:1l-nr -iCr. ft O coincides with B,
rn.:: :,-'Lnr -\i lies on the correspond-
1ri :.r. ,i the circle. The desired locus
rS SiiL- r.,-n Ln itgure 2.

M274
Consider three diagonals of the

cube's faces incident to the same
Yertex. At least one of them is not

BB

parailel to the given plane: let it be
diagonal AC, andlet O be its center
(fig. 3). Then, the given plane must
intersect AC at the center of one of
the segments AO or C)C. Otherwise,
the distances from A, O, arrd C to
this plane would differ from each
other (since the mlnimum of the
given distances is 1, the plane can-
not contain any of these points). In
general, any diagonal of any other
face of the cube either intersects the
given plane in the manner described
or is parallei to this plane.

Now, it is not difficult to conclude
that there are only two possibilities:
(1) the given plane is parallei to two
faces of the cube and divides the per-
pendicular edges in the proportion
1:3, or (2) the intersection of the given
plane with the cube is the regular
hexagon whose vertices are the mid-
points of certain of its edges. In the
first case, the cube's edge is 4; in the
second case, it is 2J3.

M275
Notice that

ZCBK: a- (2u - 180") : 180o - cr,

which is to say that it is equal to the
exterior angle of triangle ABC at
vertex B. Thus, BC is the bisector of
the exterior angle of triangle ABK at
vertex B. By assumption/ AP is the
bisector of angle BAK. -therefore,

Figure 3

51

Figure 1 Figure 2
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Figure 4

point P is equidistant from lines AB,
BK, and AC. Consequently, KP is
the bisector of angle BKC. Similarly,
IM is the bisector of angle BLA.

Consider the situation illustrated in
figure 4. [r this case, o >2(2u- lB0'),
which means that o < 120". There-
fore, IKBL = 360'- 3u. Suppose, for
some numbers B and y, that ZBKL:
2y, ZBLK:28. Then, from triangle
BKL, 2B + 2y + (350' - 3u) = 180".
Therefore, F * y = 3al2 -90o. From
triangle KOL we find that IKOL =

180" - (9 * fl = 270' - ZulL.Now, the
angle between two lines is defined
as the smallest of the angles formed
at their intersection. Thus it cannot
be obtuse. In our case, ZKOL is not
acute. Therefore, if o S 120', the
angle between lines KP and ML is
3ul2- 90o, and if u> 120", this angle
rs 270 - 3a12.

Physics

P27 1

As a first step/ we must deter-
mine the position of the cap's cen-
ter of gravity CG. To this end we
" cut" the cone into a set of thin
rings of the same width dH ([ig, 5).
The mass of a ring grows linearly
from the vertex to the base of the
cap. The center of gravity of any ring
lies on the cone's axis.

Now we "flatten" the cap in such
a way as to transform every ring into
an equilateral trapezoid and the entire
cone into an isosceles triangle. The
center of gravity of any composite
part of the cap will remain at the
same place (on the axis), so the CG of
the system will not change. It is
known that the CG oI a triangular
plate is located at the point of inter-
section of its medians. Therefore, the
CG of the cap is located on its axis at

Figure 5 Figure 6

the distance l2l3)H from the vertex.
The state of equilibrium wi1lbe

stable if a small displacement of the
cap from this position would raise
the CG (and increase the potential
energy of the system). In this case an
unconstrained system will return to
the initial equilibrium state.

In order to have stable equilib-
rium for Pinocchio's cap on his
head, the cap's CG (point M in fig-
ure 6) must be lower than the CG of
Pinocchio's head (point O). Hence,
the inequality AM > AO must be
satisfied:

2H, R

3-^' a'sln-

or H > 3R:22.5 cm. We know from
the problem statement that
H = 20 cm. Therefore, the cap will
not be in stable equilibrium sitting
on Pinocchio's head.

P272
Let's consider a particle located at

a distance R from the spherical
cloud's center. It is known that the
resulting force affecting the particle
can be determined by accounting
only for that part of the spherical
cioud located inside a sphere of ra-
dius R. (see A. Stasenko's "The New
Earth" in the |ulyiAugust 1999
Quantuml.

From the problem statement/ we
know that the compressing particles
do not pass each other, so the total
mass that attracts the probe particle
remains constant. We may propose
that this mass is concentrated in the
center of the cloud. Now the problem
simplifies to calculating the time for
a particle to fa11 to the central mass.

We will consider the trajectory of
the particle as a part of a very elon-
gated ellipse with semimaior axis
RlZ.We compare the motion along

this trajectory with the revolution
aiong the circular orbit of radius R.
According to Kepler's third law,

'.' = o'
r? fR)''

tt.l

where 7" and T" are the periods of
revolution of the circular and ellip-
tic orbits, respectively. The period
T"canbe easily found with the help
of Newton's second 1aw and the 1aw

of universal gravitation:

-v)

from which we obtain

2nR lU,
- -ln tv \Gp

and

tT,t3,t
'e - ^.71) - ^lL \BGP

We see that the period T" doesn't
depend on R. Therefore, the duration
of the fall of a particle to the gravitat-
ing center (the time of formation),
which is equal to half the period of
revolution along the elliptic orbit,
doesn't depend on the size of the
cloud and is given by the formula

T^ I 3TET=j= J-=1.5.1013S
2 \ 32Cp

= 106 years.

P273
The remaining film will mini-

mize its surface after being pierced.
Therefore, the hole will form the
geometric figure of maximum area
for the constant perimeter l. It is
known from geometry that a circle
fulfills these requirements (figure 7).

In our case, the radius R is

a=1.
Zn

To find the tension in the thread,
let's consider a small element with
length AJ: RAQ (figure 8). It is affected

4

n -ffiM nmParR3
1lOR"R'
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by two tensions T, and T. lTt = Tz:
7) that act tangentially on the ele-
ment from neighboring parts of the
thread and the {orce 2F,, due to the
soap film. (F* is the surface tension
acting on the elernent due to one sur-
face of the film.J From the ecluilib-
rium condition for the element along
the radial direction, we get

,-A0 rE.!-1 
--/-rr=Q,
-):

Here we considered the sma1l srze oi
the element, and used the approxr-
mation sin Q = Q. To find the iorce F._,

we allow the film to contract (vrrtJ-
ally) even more, so the element AJ

will be displaced by AR. The energy
of the iilm will decrease by Af
= 2oAJAR due to the work performed
by the surface tension of the film AI4/
= 2FrrAR, frorrr whrch we get

A f 
- 

\ In'AL - lvv /

2oAJAR = 2_(,AR,
E - ^tlr\t - uJ.

Thus, the coefficient of sur{ace ten-
sion, which in this case character-
izes one of the suriaces of the soap
fi1m, may be thougl-rt of as the force
affecting a unit length of the bound-
ary in the drrection normal to the
boundary:

F.
J

Since 7Ao : 2Frr, the tension of the

thread will be

T=zIq=2oR =ol .A0 iE

We have considered this problem
in detail because it demonstrates the
origin of surface tension. It turns out
that a useful notion for calculations
is that the surface energy is equiva-
lent to the stretching of the surface
of a liquid. The stretching forces can
be considered as being applied to a
linear boundary of the film. If we
subdivide (virtually) a film into two
parts, they affect each other through
forces normal to their common
boundary. At first glance, this looks
very similar to the stretching of a
rubber film. However, there is a key
distinction: when liquid film is
stretched, the forces of surface ten-
sion remain constant, while the
analogous forces in a rubber film in-
crease. Thus, there is an analogybe-
tween liquid and rubber film, but it
is not ideal, so we must use it care-
ful1y.

P274
An electron moving in a mag-

netic field is affected by the Lorentz
force. Since this force is always per-
pendicular to the magnetic field, its
projection onto the direction of .the
field is always zero. Therefore, the
electron moves with constant veloc-
ity v cos q, in the direction of the
magnetic field. The projection of its
trajectory onto the plane perpen-
dicular to the vector B yields a cir-
cular motion with speed v sin 0,,

which is described by the equation

my2 sin2 g
= eBvstna,

from which the radius R and period
of revolution 7 can be found:

- mysinuu-_
eBl

ZrcR 2nm- ysinu eB '

Thus, the electron moves along a
helix: in the direction of the mag-
netic field, its motion is a uniform
translation, while in the plane nor-

mal to the field, the electron/s trajec-
tory is a circle.

Assume that the electron arrives
at point C having performed n com-
plete revolutions. Denoting the cor-
responding magnetic field by B n, we
obtain the time for the electron to
travel between points A and C:

L
I 

- 

-.

ycos0

On the other hand, the time nec-
essary to perform n complete revo-
lutions is

1, = 17Tt

OI

L Znm
- ft-ycosct aBo'

where fi = I, 2,3, . . . As a result, we
hqve a set of cluantized values for Bn,
which ensure that the electron hiii
the target point C:

- Znmv cosc*o'=-- 
uL -'

P275
The dependence of the speed of

light in the air on altitude results in
the bending (refraction) of the 1ight.
This phenomenon underlies the ob-
servation of "lakes" in deserts.

Consider an observer of height h
standing on the ground (figure 9).
Let's trace the rays emitted from
point A. The beam that forms an
angle cro with the vertical curves in
such a way that its trajectory con-
tacts the ground tangentially and
then heads to the sky. Rays emitted
at the angles 0 > 0o also go to the
sky. By contrast/ rays emitted at the
angles 0 . 0o hit the ground. Using
the principle of reversibility of rays,
we realize that the observer sees
sand up to the angle uo, bqt at larger
distances (and larger angles) the ob-
server sees blue sky. Paradoxically,
the "sky rays" atived at the ob-
server from beneath, so it looks like
a blue lake is spreading in the dis-
tance (subconsciously, a human be-
ing is aware that iight always propa-
gates along a straight line).

Now let's calculate the distance
H. According to the generalized law
of refraction for stratified media,
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8274
Each square of the graph paper

inside the rectangle either belongs
to a cutting line or not. We need the
total length of all segments that do

not belong to any cutting lines to be

the maximum. Consider ali pos-
sible figures composed of no more
than 5 squares/ and caiculate the
ratio of the number of segments
inside a figure to the number of
squares in it. The maximum value
of this ratio is 1, and it is reached for
two figures: a square of size 2 x 2
and the same square with an addi-
tional grid scluare (see figure 10).

Therefore, if we cut the given rect-
angle into such figures, we obtain
the desired result. This is easy to
achieve by cutting the rectangle as

shown in figure I 1.

8275
The surface area of the hay, from

which the water evaporates, is in-
creased by stirring it up. That's why
it dries more cluickly and uniformly.

lhleidosGo[s
1. The rod that casts the shadow

must be directed toward the North
Pole (in the Northem Hemisphere,
of course).

2. No, because the time intervals
between drops will ilcrease due to
the decreasing water ievel in the
dropper.

3. The boats met the raft simulta-
neously.

4. The point of intersection indi-
cates the time when the bodies have
equal velocities. The figure cannot
be used to determine when the bod-
ies meet.

5. The paths traveled by the balls
are identical. Since the mean veloc-
ity of the second ball is higher, it
will arrive at point B first.

5. The motion of the train doesn't
affect the vertical motion of the ob-
ject. Therefore, in all three cases the
time will be the same.

7. Due to air resistance, the ver-
tical component of acceleration of
the body at any altitude will be

H
ffi
Figure 10

Figure 9

sinoo -'(h)sinBo co '

where c(h) is the speed of light at
altitude h, Bn is the angle between
the tangent to the beam and the ver-
tical. Since F6 = 90'at the ground,
we get

c(h\
sinc6 =:l::1 =l-ah.

Cg

We must also take into account
that the speed of light changes very
slowly with altitude, so the curva-
ture of the rays is very small. There-
fore, we can assume that the beam
travels to point H along a straight
line. Figure 9 shows that H : h tan
cro. Using the 1aw of refraction, we
get:

u _ h(t- ah)

lah(z- ah)

Bnaintea$Br$

8271
Yes. For example, consider the

numbers 1,2,3, 4, 5, andx. Then, x
can be found from the equation

I +2+3 + 4 +5 +x: L'2' 3' 4' 5' x.

8272
When 625 ts raised to any power/

the result ends in 625. When 376 is
raised to any power/ the result ends
tn 375. To verify these facts, it is
sufficient to square each of these
numbers. Therefore, the last three
digits of the sum are 001.

8273
It is easy to verify that

1 1 1 1 1 1 tllz : 12345578987 654321.

Frgure r r

larger during the rise than during the
fall. Thus, the time of rise will be
smaller than the time of fall.

8. When the fly is moving up-
ward, the bottom of the tube sinks
relative to the center of mass of the
system, which fa1ls with the accel-
eration due to gravity. Thus, the bot-
tom of the tube will hit the ground
earlier in comparison with the case

when the fly is motionless.
9. The force of gravrtY and the

tension of the rope are the same for
both gymnasts. Therefore, they will
ative to the pulley simultaneously.

10. No, it doesn't, because the
decrease in the weight of the sand
is counterbalanced by the force of
the falling sand hitting the bot-
tom.

1 1. A person at rest affects the ice
for a longer time, thus producing a
larger deformation.

12. The period of oscillation will
be infinitely large. In other words,
the oscillation stops in the state of
weightlessness.

13. The period of oscillation will
be half as large, because the sPring
constant of the cord will increase by
a lactor of 4.

14. To measure the period be-
tween the transmission and receP-

tion of the wave.
15. As the extent of a lightning is

rather great/ sound generated from
the distant parts of it will arrive
later, so the thunder is protracted in
time. By contrast, the speed of light
is so large that the corresponding de-

lays are negligible, therefore we cb-
serve lightning as a single flash of
light.

Microexperiment
The period of oscillation de-

creases/ because the iength of the
pendulum decreases.
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COWCULATIONS

0ul Io Paslure

by Dr. Mu

ELCOI{E BACK FOR THE LAST TIME, TO
Cor,r,culatrons, the column devoted to prob-
lems best solr-ed rrith a computer algorithm.
Why the last tirrei \\:e11, in October a wind-

storm blew through the iarm and took out the sick
caif barn and one silo. The estimated replacement
costs calne to over $30,000, rrhich rr,as enough to
trigger a life altering decision to end our single fam-
ily dairy farm in Wisconsin. As his iather told
farmer Paul when passing the iarm on to him, the
hardest decision he would have to rlal<e rs t hen to
c1uit. The Nielsen farm has been in operation for
three generations, starting with Paul's grandfather

who bought it in 1936 and began milking with 24
Guernseys. By the late 60's, Paul had transformed
the herd into registered Holsteins that were sold all
over the world. Today, the rest of the world can
breed its own registered cows so that market is
gone. And there isn't enough money in raising cows
for milk alone, so Paul, with Mother Nature's help,
made the tough decision.

On March 22, a trtck pulled into the driveway to
pick up the last of the herd. We were all being relo-
cated to other farms throughout the state. I was leav-
ing for the green hills of western Wisconsin along the
Mississippi and would be put out to pasture. Farmer
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Paul was taking a regular iob at the Schmidt Farm

Implement Company in town. We parted as old
friends and promised to write often. I ieft a final trib-
ute to Paul on the barn door.

Dear Paul,
Into this barn we came each daY

To eat our ration of grain and haY.

We made a pact and kePt our word:
In exchange for milk, You fed the hed.
We worked together, taking and giving,
And created a life as well as a living.
Yow milking chores are over now.
Good Luck Paul, from Your last COW.

-Dr. Mu

collll l8
Here is the last Challenge Outta Wisconsin. The

digital product of a positive integer N is defined as the
product of its nonzero digits. The digital product root
^of 

a positive integer N is obtained by repeatedly tak-
ing digital products of each digital product until a

slngle digit is obtained. For example, the digital prod-

,"iroot of t23456789 is 8 by the following series of
products:

x)y means take the product of the nonzero digits in
x and create y.

123 45 67 89 -+3 52880 -+2304 -+24 -+8.

Find the digital product root of 12345ett0. 1v'

Mathematica, a one-line program can be written that
finds the answer in less than one second.

[0tIlI 17
In COW 17 you were asked to write a program that

takes as input an integer fl, fi 19, and finds all ways to
insert pluses or minuses between the digits 12345...n,

so the resulting expression sums to zero. l-2
-34+5+6+7+8+9 :0 is one solution for n:9. Find all of

them.

Soliliolt
The solution, submitted by Eric Rimbey, is a good

example of how clean a solution can be if con-
structed functionally. Let's see how it works. First,
notice that every possible expression to evaluate
must have either a +, a -' or a blank between two
consecutive digits. Thus the maximum number of
expressions that will need to be examined when n=9

is 38 or 6561. So, a brute force approach will easily
work. We need only to generate them all and check
out their total.

Begin by defining the list chars

chars = {tt*", tr-", \"}

and a digit sequence from 1 to 9

d.igitsequence = ToString /G Range[91

tL,2,3, 4,5, 6,'7, B, 9)

Next, generate all the possible sequences of chars

separated by commas and a comma at the end.

charsequenceE =
Distribute [.Ioin ITable Ichars, ( 8 ] L
{\z}1, tistJ;
There are 6,56I such character secluences. Here are

a {ew of them:

Short Icharsequences, 5]

{{+, +, +, +, +t +, +t +, }, {+, +, +t +t +t +, +, -, },

{+, +, +, +t +t +t +, }, {+, +t +, +, +, +, -, +, },
{+, +, +, +t +t +t -, -, }, {+, +, +, +r +, +, -, , },
<<6550>>, {,,,,, t t t }, {,,, t t t -,' }'
t,,,,,,,t,J, {,,, t L t t}, {" " " "}}
Now place the characters between the digits and

form the possible strings.

digit,char =
Flatten I Transpose [ ( digf itsequence'
#) I l& /Gcharsectueneesi

Here are a few of them:

Short Idigitchar, 5]

{ {1,
{L,
{r_,

{t,
{1,

+,2, +,3, +,4, +,5, +,6, +,1, +, B, +,9, j,
+,2, +,3, +, 4, +,5, +,6, +,1, +, B, -,9, j,

+,2, +,3, +,4, +,5, +, 6, +,'1, +, B, ,9, ), <<5556>>,

,2, ,3, , 4, ,5, ,6, ,7, , B, -,9, ),

,2, ,3, , 4, ,5, , 6, ,1, , B, -,9, jj

Next, join the digits and characters together to get all
possible expressions.

posEibl-e = Stringiloin /@ digitchar;

Short [poEsible, 4 I

{1+2+3+4+5+6+7+8+9, L+2+3 +4+5+6+7+8-9,
1,+2+3+4+5+6+7 +89, 1-+2+3+4+5+6+7 -8+9,
L+2+3+4+5+6+7 -8-9 , L+2+3+4+5+6+'7 -89 ,

1+2+3+4+5+6+'7 8+9, L+2+3+4+5+6+7 8-9,
L+2+3+4+5+5+789 , <<6544>>, L234567+8-9 ,

L234557+89, i-234567-8+9, L23456'7 -8-9,
L234557 -89 , L2345678+9, L23456'78-9 ,

123456',7 89 j

Finally, select out the expressions that sum to zero'

sotutions = Select [Possible,
ToE*presgion[#] == 0&l

{1,+2-34-56+7 8+9, L-2-34+5+6+7+8+9,
1,-23-4-56-7 +89 , 1"2+3+4-5-6-7 +8-9 ,

L2+3-4+5-6+'7 -8-9, 12+3 -45+6+7 +8+9,
1-2+34-56-7+8+9, 12-3 +4+5+6-'7 -8-9,
L2-3+4+56-7 8+9, 1-2-3-4-5+6-7 -8+9,
L2-3-4-5-6+7 +8-9j

These steps can all be gathered togethet to cteate a

new function called ZeroSum.

50 stPItllilBtR/0lI0BtR lSgS



ZeroSumlk_Integer? (0 < # < 10&)l :=
ModuLe[ {chars = ("*", \\-", ""},

digitsequence, charsequences),
d.igitsequence = ToString/@ Rangelkl ;
charsequenceg =
Dist,ribute lJoin [Table [chars, {k - 1} ] ,
{\"}1, Listl;

Select IStringiloin /@
( Flatten ITranspose [ { di git,seqluence,
#) I I& ./@ charsequences), ToExpression[#]
-= 0&l I

A11 solutions for n :9 canbe found in about one second.

ZeroSum[9] // Eiming

{1.1-5 Second, {1+2-34-56+78+9,
L-2-34+5+5+7 +B+9, 1--23-4-56-7 +89,
1-2+3+4-5-6-j +B-9 , 1-2+3-4+5-6+'7 -8-9 ,

L2+3-45+6+7+8+9, L2+34-56-7 +8+9,
L2-3+4+5+6-7 -8-9 , L2-3+4+56-7 8+9 ,

1-2-3-4-5+6-7 -8+9, L2-3-4-5-6+7+B-9 j ]
The problem was also solved by |oseph Post.

C0I1J l8 $oluliolt
The one-line solution to the l:rst CO\\- rs:

DigitalProductRootln_l :=
FixedPoint, IAppIy ITimes,
Select IIntegerDigits [#] , Positivel I e, nl

It works as follows: select the rnteger drgrts that
are positive, multiply them, and repeat thi"s Irrocess
until the answer remains fixed. What could bc more
naturall To get the answer to the last CO\\- rhe com-
mand DigitalProductRoot[123456'\el took,-- sec-
onds in Mathematrca -1.0 to run. The outl.,ut rs e ,1ua1

to {armer Paul's liietirne rankrng as a \\-rsconsu-r
dairy farrner-number 1.

Thank you, Mark Brennerllan, tor vour rnsprred r11us-

trations. Goodbye, it was a kick. CI
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Boger Knobel, University of Texas-Pan

Anerican, Edinburg

This book begins with a description of one-

dimensional waves and their visualization

through computeraided techniques, Next,

travelrng waves are covered, such as solitary

waves for the Klein-Gordon and KdV equa-

tions. Finally, the author gives a lucid

discussion of waves arising from conservation

laws, including shock and rarefaction waves

As an application, interesling models of traffic

flow are used to illustrate conservation laws

and wave phenomena.

This book is based on a course given by the

author at the IAS/Park City Mathematics lnsti-

tute. lt is suitable for independent study by

undergraduate students in mathematics, engi-

neering, and science programs.

Student Mathematical Library; Volume 3;2000i

1 96 pages; Soltcover: ISBN 0'821 8-2039-7: List $23;

All AN4S members $18: 0rder code STN.'1U3199

Gregory F. Lawler, Duke Universtty,

Durham, NC. and Lester N. CoYle,

Loyola College. Baltinore, MD

Based on lectures and computer labs held at

the lASi Park City Mathemalrcs lnstitute, this

book presents areas of current research in

modern probability that are accessible lo

undergraduate students. The subjects include:

random walks, Brownian motion. card shuf-

fling, spanning trees, and Markov chain Monte

Carlo. There are computer simulatlons for

random walks, Markov chains, stochastic

difierential equations as applied to finance,

and olher topics.

Student Mathematical Library, Volume 2; 1999;

99 pages; Softcover; ISBN 0-8218-2029 Xl List $171

All AMS members $1 4; OrdeI code ST[/112199

Charles Radin, University of Texas,

Austin

The common thread throughout this book is

aperiodic tilings, such as the "kite and dart"

tiling, which has been widely discussed, espe-

cially in connection with quasicrystals. Although

many people are aware of the existence of

aperiodic tilings, and maybe even their origin in

a question in logic. not everyone is familiar with

their subtleties and the underlying rich mathe-

matical lheory. For the nterested reader, this

book fills that gap.

Understanding these tilings requires an

unusual variety of specialties from mathe-

matics and physics. This interdisciplinary

approach also leads to new mathematics

seemingly unrelated to the tilings. lncluded

:1.
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ft::
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EI{GAGING BOOKS FOR THE SERIOUS STUDENT
These books are designed to build on and expand the mathematical experien_ce of the advanced

student. For undergraduates, we are proud to introduce our new series, Ihe Student Mathematical

tiOrary. For gradua'les, we offer these latest titles in Graduate Studies in Mathematics. For more

detailed on i-hese and other AMS publications, visit the AMS Bookstore at www.ams.org/bookstore/.

are many worked examples and a large

number of figures. The book's multidisciplinary

approach and extensive use of illustrations

make it useful for a broad mathematical audi'

ence.

Student Mathematical Library, Volume 1 : 1 999;

120 pagesi Soltcover; ISBN 0-82'18-1933 X; L st $16;

All Al\.4S members $13; Order code STI\IUll99

G6rald Tenenbaum, Universitd Henri

Poincar6, Nancy I, France, and Michel

Mendds France, Universitd Bordeaux I

One notable new direction this century in the

study of primes has been the influx of ideas

from probability. The goal ol this book is to

provide insights into the prime numbers and to

describe how a sequence so tautly deter-

mined can incorporate such a striking amount

of randomness.

The book opens with some classic topics of

number theory. lt ends with a discussion of

sone of the outstalding con;ectt'es in

number theory. in between are an excellent

chapter on the stochastic properties of primes

and a walk through an elementary proof of the

Prime Number Theorem.

Student Mathematical Library; 2000: approximateLy

1 20 pages; Softcover; ISBN 0-821 8-1 647 0: List $l 7: ALI

AMS members $14: Order code STIIIL'TENENBAU 99

Alberto Candel, California lnstttute of
Technol ogy, P asade n a, and Lawrence

Conlon, Washtngton University, Sl. Louls

This comprehensive volume has something to

offer a broad spectrum of readers: from begin-

ners to advanced students to professional

researchers. Packed with a wealth of illuska-

tions and copious exanples at varying

degrees of difficulty, this hrghly-accessible text

oflers the firsl full treatment in the literature of

the theory of levels for foliated manifolds of

codimension one. lt would make an elegant

supplementary text for a topics course at the

advanced graduate level.

Graduate Studies in Mathematics; 2000;

approximately 393 pages: Hardcover; ISBN 0-821 8'

0809-5; List $54; All A[,4S menrbers $43;

0rder code GSM'C0NLONl99

John B. Conway, UniversitY of
Tennessee, Knoxville

Thrs text covers the central themes of oper-

ator theory, presented wilh the excel ent clarity

and style that readers have come to associate

with Conway's writing.

Early chapters introduce and review material

on C"-algebras, normal operators, c0mpact

operators and non-normal operators. Later

chapters cover more advanced lopics, such

as representattons of C"-algebras, compact

perturbations and von Neumann algebras.

The last chapter gives an introduction to

reflexive subspaces, Le., subspaces of opera-

tors that are determined by their invariant

subspaces. These more advanced toplcs are

at the hearl of cunent research.

Prof essor Conway's authoritative treatment

makes this a compelling and rigorous course

text, suitable for graduate students who have

had a standard course in functional analysis.

Graduate Studies in Mathematics; 1999; approxts

mately 387 pages; Hardcoveri ISBN 0-821 8-2065-6;

List $49 (tentai ve)i 0rder code GSI\,4 CONWAYI99

Robert E. Gompl, University of Texas,

/ustln, and Andrds l. StiPsicz, ELIE.

TTK, Budapest, Hungary

The past two decades have brought exploslve

growth in 4-manlfold theory. Many books are

currentiy appearing that approach the toplc

fronl viewpoints such as gauge theory or alge-

braic geometry Thts vo ume. however. offers

an expositron irom a topologrcal polnl of view,

11 bridges the gap to other disciplines and

presents classical but rmportant topological

technlques that have not previously appeared

n the literature. Numerous illustrations and

exercises are tncluded.

Graduale Studies in Malhematics, Volume 20:

1 999r approxlmately 576 pages; Hardcover; ISBN 0-

821 8-0994-61 L st $65; All AMS members $52; 0rder

code GS[//20199

Gtinter R. Krause, UniversitY of
Manitoba, Wtnntpeg, Canada and

Thomas H. Lenagan, UnrversitY of
Edinburgh, Scotland

The Gelfand-K rillov d mension has emerged

as a very usefu and powerful tool for studying

non-comrnutat ve a!gebras. The first edition of

this book has becon're the standard reference

on the topic.

For th s revised edrtion, items have been

rephrased, the layout has been made easier to

read. and any errors in the original text have

been corrected. The newly added Chapter 12

provrdes overviews of the developments of the

ast few years, with references to the literature

Graduate Studies in Mathematics; 2000; 212 pages;

Hardcoven ISBN 0-8218-0859 1; List $39; A I AN.4S

members $31, 0rder code GSN/ KBAUSEI99

Al,rstucsr.r MAIHEMATTcAi- Socrnrv
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