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The Blank Signttture (1965) by Ren6 Magritte

fhe Belgian artrst Ren6 Magritte t1898-19(r7l \,\ras a master of thc visual pun and optical paradox. His fe1low Surrealist
I Salvador Dalr called hirn "one of thc most an.rbiguous pirinters of our time."

Surreahsrn was a moverrent ln arr antl literature that ilourishecl in thc 1920s and 1930s. There was no single Surrealist
style, as can be seen by looking at thc u-ork oi sr,rch artists i1s Max Ernst, foan Mrr6, ancl Paul Klee. Magritte's approach was
to present rninutely detailed, realistrc clepictions oi an impossible or irrational world. By provoking a sympathetic response,
the painting induces thc vieu,cr to acknorr-lec1ge the inherent "sense" of the irration:rl and logically inexplicable.

Perhaps you've l-rac1 a similar fccling rr.hen conirontecl rr,ith the sqr-r;rre root oi -1 or non-Euclideirn geometr).. The t,er)'
Magritte plays with the notions oi "s,.rbie ct" ar-rcl "background" in this painting is not unlikc thc rvay scientists and ilathe-
maticians play with assumptiolls ancl r.ariabLcs, proclucLr-rg r-a1id concepts that ilr- rn the face oi colnnlon s!-nsc.

Even after you've figured out the "trLCk" in anv partrcr-rlar painting br'\{agr-rtte, rt r'emains LlnsettLlng ancl uncannr- ,:nl r,
you like that sort of thing, weirdl,v chamring.
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The surface pierced by the furious
bull's horns is a hyperbolic par-
aboloid. It's interesting that this
curved shape can be constructed {rom
two interlaced sets of straight lines:
any two lines belonging to one set are
askew, while any two lines from dif-
ferent sets always intersect. Also,
each point of the surface belongs to
just one line in each set.

Here's a more precise description.
Imagine two points moving at the
same speed along two skewed lines.
The line joining them sweeps out a
hyperbolic paraboloid. In algebraic
terms, the equation for this surface
with respect to the appropriate space
coordinates is z: xy.
' Our buli in his rage is unable to tell

green from red, iust as persons suffer-
ihg from color blindness have trouble
With these two colors. Strangely
enough, this medical condition1ras
something in common with our re-
markable sur{ace-see "The Geome-
try of Population Genetics," which
starts on page24.
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Have you written an article that you
thinkbelongs in Quantum? Doyou
have an unusual topic that students
would find fun and challenging? Do
you know of anyone who would make
agrcAt Quantum author? Write to us
and we'1l send you the editorial gurde-

lines {or prospective Quantum con-
tributors. Scientists and teachers iri
any country are invited to submit ma-
terial, but it must be written in collo-
quial English and at a level appropri-
ate {or Quonrum's predominantly high
school readership.

Send your inquiries to:

Managing Editor
Quantum
17 42 Connecticut Avenue NW
Washingtoq DC 20009-1 171

Be a lacton in the

OUANTUM
Equalioll!

Sciencc and
Math Events:

Connecting
and
Competing

When you are trying to build student
interest and enthusiasm in math and

science, few resources can match the
excitement generated by science clubs

and competitions. But how do you get

your high-school students involved? And
how do you keep them involved? With
plans for successful fairs, details on 25

national and international contests, and

commentary by 89 prize-winning
scientists, this new publication prepares

you and your students for
connecting and competing in the 1990s.
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Orders over $95 must inilude a purchase order.
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ConnecticutAve. NW, Washington, D.C. 90009.
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PACE TRAVEL: PERHAPS
nothing else syrnbolizes quite so

well the scientific aspirations and
achievements of our age. Count-

less generations o{ stargazerswould
envy us as we explore the outer re-
gions, whether "in person" or by means

of sophisticated bundles of instrumen-
tation. Isay "we," but how many of us
will ever get the chance to see an
Earthrise on the Moon, or conduct
experiments in orbit, or travel to an-
other planet? Wel1, I'11 have to be
satisfied that my photograph has flovrn
in space-copies of the premier issue
of Quantum have been caried aboard
Soviet and American spacecraft. It's
my belie{ that more than a few of you
will have the opportunity to explore
the outer reaches of space, and not just
in picture form!

In February a conference was held
in Deauville ,Fratrce, on the Interna-
tional Space Year, which is set for
1992. An educational component was
co-chaired by Victor Borovishki, the
deputy editor in chief of Kvant maga-
zine in the USSR, and myself . Some
40 countries were represented. One o{

the major recommendations to come
out of this conference is to designate
thelanuary 1992 issue oI Quanntm an

official publication of the Intemational
Space Year. Authors would be drawn
from as many countries as possible,
and the articles wouldbe written by
some of the best scientists in those
countries. The rnagazine would be
translated into as many languages as

possible and distributed throughout

the world. It would cover many space

science topics of interest to students
in all these countries. This special
issue of Quantum would also contain
schedules of activities for the Intema-
tional Space Year, including student
exchanges, competitions, and other
kinds of events that are likely to oc-
cur. I encourage all of you to partici-
pate in the International Space Year
activities. We'Il try to keep you in-
formed through Quantum magazine,
especially the ]anuary 1992 issue.

I'n rrre ro MAKE afewcotnments
about the illustrations provided to us
tor Quantum by our colleagues in the
Soviet Union. Ever since I first
encountered Kvant magazine,I have
been fascinated by the differences
between Kvant artwork and the kind
of technical illustration we usually
encounter here in the United States.
Our illustrations are technically cor-
rect and simple, with nothing super-
fluous. I recently had the opporturuty
to explore this topic with Kvant's afi
director, Sergeylvanov, who was among
the group of Kvant editors who visited
the Qu antum off ices in Washington
to participate in our advisory board
meetilg.

A talented artist himself, Sergey
creates some of the artwork that ap-
pears in Kvant and Quanrum. {In fact,
Sergey drew the cover of this issue
specifically for Quantum.) What I
discovered in talking with Sergey is
that the illustrations rn Kvant are ot'
ten prepared by leading artists in the

USSR. The technical aspect of the
illustration is always coupled with an
appeal to the aesthetic side of our
nature. Often the art draws upon a

fable, legend, or myth; sometimes it's
related to a famous painting or sculp-
ture. (The picture of the three cows in
the Yaglom article, for instance, was
inspired in part by a well-knov,n sculp-
ture by Kanova, "The Three Graces,"
in the Hermitage Museum in Lenin-
grad.) Sometimes historical figures
and events are cleverly woven into the
artwork.

Whatever approach the Kvant afi-
ist takes, the illustrations end up being
more meaningful. They convey far
more than the technical idea, impor-
tant as that is-they're also pleasing
iust to look at. I hope you enjoy the art
in Quantum. Because of dif{erences
in printing technology, the art you see

is even more resplendent than it origi-
nally appeared in Kvant. Perhaps,
with the changes that are so rapidly
ransfonrring theUSS& this will change

as welI. But one thrng I hope does not
change is the artistic tradition repre-
sented by Sergey lvanov and his fel1ow
artists. It seems to me dhlr is one of
many areas where we can leam some-
thing irom the Soviet Union.

-Bill G. Aldridge
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Howdutttlehl'eathe?

"ln and out" is the silly answer, but the
straight answer may surprise you

by K. Y. Bogdanov 'lt is now impossible to
clarify biolog tcal questions if
you don't know phystcs."

-Julius 
Mayer, 1842

vessels. An adult has 700 million of
these interconnected, air-filled alve-
oli 1fig. 1). At any given moment the
blood vesseis surrounding the alveoli
contain approximately 70 ml of blood.
Carbon dioxide diffuses from the blood
into the alveoli, while oxygen diffuses
in the opposite direction. The huge
combined surface area of the alveoli
makes it possible to saturate the blood
with oxygen and cleanse it of excess
carbon dioxide.

Bl'ealhing altd $oil [ulhles
Is it easy for us to take a breath?

How much does the air pressure in-
side the lungs (in the alveoli) exceed
the pressure outside (in the pleural
cavity) during the process of taking a

breath?
If each alveolus is assumed to be a

hollow ball made of an elastic mem-
brane, the pressure needed to keep it
in-{1ated for a glven extemal pressure is
determined completely by the ball's
diameter and the membrane's elastic-
ity. Is this correct?

In 1929 the Swiss scientist Karl von
Niirgard discovered that the pressure
needed to inflate the lungs can be
substantially reduced if the lungs are
filled with a physiological solution. In
no way did this accord with the idea
that alveoli are hollow elastic balls: if
in taking a J:reath we overcome only
elastic forces, our efforts don't depend

on whether the lungs are filled with a
solution because elasticity doesn't
depend on that. Niirgard's data could
be explained when it was found that
the inside of each alveolus is coated
with a thin layer of liquid. This cir-
cumstance fundamentally alters the
mechanicai properties of the alveolus.
In particular, the pressure needed to
in{late an alveolus is greater than that
needed to inJlate a hollow ball made of
pulmonary tissue. Here's why.

It's known that the surface of a

liquid behaves like a piece of stretched
film-that is, it possesses surface ten-
sion. In order to estimate the role of
surface tension in the mechanics of an
alveolus, let's consider a spherical film
made of a liquid. The simplest ex-
ample of such a film is a soap bubble.
Because of the liquid's surface ten-
sion, the air pressure inside the bubble
is always greatil than the outside pres-
sure. The amount of excess pressure
inside a sphere of radius R is deter-
mined by Laplace's relation Lp =ZolR,
where o is the coefficient of surface
tension for the film. The greater this
excess pressure/ the smaller the radius
of the sphere. In a soap bubble film,
both the inside and outside surfaces
are in contact with air, so the coeffi-
cient o for the film is twice the coeffi-

HAT DOES AN ELECTRO-
cardiogram tell us? How do
bats catch flies in the dark?
How do carrier pigeons find

their way home? The answers to
these and many other questions are
given by biophysics, the science that
studies physical phenomena in living
organisryrs. The biophysicist works
on the boundary between physics and
biology, using the latest achievements
of physics in biologrcal investigations.

Armed with our knowledge of high
school physics, let's try to answer a
seemingly simple biologrcal question:
How do we breathe?

0ur l'esphalory syststn
When our organism breathes nor-

mally, it consumes about 0.5 kg of
oxygen aday andexhales almost the
same amount of carbon dioxide. Oxygen
enters and carbon dioxide exits through
the lungs.

The inner space of the lungs com-
municates with the atmosphere via
the respiratory tract. The respiratory
tract consists of the nasal ca\,,lty (where
air is warmed and moistened), phar-
ynx, laqmx, trachea, and the two pnn-

p cipal bronchi (which supply air to the
S right and left lungs).

$ Eachbronchus is dividedinto smaller

S bronchi (bronchioli) and ends in mi-
A croscopic bubbles, or "alveoli," en-
5 cased in a thick network of blood

Figure 1

Tlte tenninal branches of a lttng tte the
ttlveoli. The ditu'neter of ttn alveolus is, on
overLtge. 0.1 mm. The tralls ttre 0.4 ptnt
thicl<. Tlte totttl sttrf ace ttrett of alveoli in
an aduhhuntanbeingis about 100 m2-
jttst abottt ltalf a tennis ccttu't!
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cient of surface tension for the liquid.
In alveoli air-liquid contact takes place
only on one side, the inside.

Let's estimate Ap. For intracellular
fluid, o:5 . 10'z Nim. We'llalso take
this value for the fluid that coats the
inner surface of the alveolus. Assum-
ing that R = 50 pm = 5 . 10-s m, we get
Lp:2.103N/m2.

Figure 2 shows how the volume of
the lungs depends on the pressure
inside them (more exactly, how much
this pressure exceeds the extemal pres-

sure). It's clear from the graphs that, if
not all, then at least a considerable
part of the pressure that expands the
Iungs during a breath is spent to over-
come the forces of surface tension.
But when the lungs are filled with the
physiological solution, additional
pressure is needed only to overcome
the elastic properties of the pulmo-
nary tissue. It's obvious that the dif-
ference between the two curves in
figure 2 represents the contribution o{
surface tension to the lung's elastic-
ity. hr ordinary breathing, the volume
of a human being's h.rngs is about 50%
of their maximum volume. It follows
from figure 2 that the contribution of
surface tension is more than 30%.

Figure 2
The rclation between lungvolume and
pr e s sw e of the air ( br oken line ) or li qui d
(solid line) inside.

Bulil's ttotall $o $ilnple
Our use of surface tension to ex-

plain the lung's mechanical proper-
ties leads to a "paradox" when we
study the interaction between neigh-
boring alveoli. Figure 3 shows (in
outline) two neighboring alveoli of

different sizes. First let's assume that
the air caviti.es of the two alveoli are
not connected with each other (fig.
3al. Thc air pressure p, rn the left
alveolus is pleater than the pressure pr
in the right alvcolus lsincc R < R,l.
Now, as soon as we opulr an inragilary
valve connecthg the air cavities oi the
two alveoli, the air from the left alveo-
lus begins to flow into the right alveo-
lus until the pressure in both alveoli
becornes equal (fig.3b). So when two
alveoli of dijferent sizes are corurected,
the larger alveolus will inflate and the
smaller one will cleflate.

It's obvious that such an interac-
tion between the neighboring alveoli
would cause all the lung's small alve-
oli to deflate and the large alveoli to
burst. As a result, the lung wouldn't
be able to {unction.

So how do we breathe?
Lookrng at the lnteraction between

neighboring alveoli, we assumed that
different alveoli have the sirme surfacc
tensron, which cloesn't depend on the
state (inflated or cleflated) of the alve-
oli. The surface tension of pure 1ic1-

uicls is indeed independent of the size
oi the suriace. But rhc cociiicrcnt oi
sr.rrface tension of liquids contarning
different impurities depends on the
size of the interface bcnr.ccn the 1ic1-

uid and gas.

Again natLu e lia. lorcscen cver\'-
thing. The licluicl u,etting the insidc
surfacr of rhe.r]r coli contarns, as atr

impuriil', :r substance that controls
thc r alr.re oi the surircc tcnsion in
sr-ich a \{ay that o is minimal at the
begindng of :rn inhalation {minimum
surface) and rnzrximal at the end

{rlaximurn surfaceJ. So despite the
fact that the radius of an alveolus Ls

very small at the beguning oi ar-r urha-
lation, the cotttribr.ttion ot 5t1ri.1.L tL:l-
sion is small. This makes it prp551l.l3

to blow up a deflated alr'eolus L.r'r-ne.rns

of relatrvely 1o.,v pre ssule . -\t the
same tirne, the increase Ln . r\ 1th the
radius of ln alr c,,11.- pt-r',n1. Lr\-crilt-
flation at the hergi-rr ot a1r rntake. In
addition, thrs clepen'lelce oi o on the
size of the alr-eolr-r. rcsulate s relations
befil.een nei.qhlrc,i.urg a1r-eoh, prevent-
ing the aFpcarilnce r,,i the rlechanism
shorrn rn trgtrre l.

\\:hr .lo rr-r"rpnrrties rnake surface

\
P >D p

t)

Figure 3
A schematic deltiction of two neighboilng
spherictil alveoli v,ith diff erent urdii when
(tt) tlte di cavities are isolated t:utd (b) the
ttit' ctlt ities ate corute ctetl.

tension dependent on surface area? As
a rule, the impurrties reducing o are
cluite srmilar to orclinary soap in their
chernical structure. When they dis-
soh.e, they form a thin fihn on the
\\'ater s suriace. If the irnpurity con-
centration is high, so that the film can
covcr the whole slrrlace in a continu-
ous layer, thcn o for such a liclurd is
equal to a certain value for the given
impurity. But r,vhen the concentra-
tion of the irrpurity is insufiicicnt tor
the {ihn to cover the whole suriace,
the value of the surf;rce tension u-i1l be
somewhere bcnr.cen the corrcspond-
ing values oi cr ior \\'ater and ior the
impure liquid An incleirse in the
liquid's sllrtacc then leac'1s to a de-
crease ir-i the sr-rriace concentration of
t1t. rrrtl'r.r rrr .'il]11 cau.cs o to increase,
1.r ut:rt. r:- r-.t1r.tc ncarer to o tor water.
If t:e Liqr-rrcl s surface area decreases, o
rrrlL also decrease.

\ou iook at figurc 4. It shows how
surface tension depends on the size of
the arr-liquid interface. Do you no-
rice that for thc sanre surfrce arefl oI
contact, the value of o at inhalation is
always geater than at exhalatron? This
is because the irnpurl.ty that reduces
suriace tension rs in the interior of the
liquid and not jr-rst on the str.rface.
When the surface area increases, the
irnpr-rrity concentration on the sur-
face decreases. Some molecr-rles oi tl-re
impuntl'r-ush to the silrface t,ut e .lur-
hbntttn rsrl'I e:tab-hrlt..l t :: -: -. :-. :,, ti c-
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ously. So when we begin to inhalg for
instance, the rapid increase in the liq-
uid's surface area is accompanied by a

sharp increase in o because the impu-
rities dissolved in the liquid have no
time to emerge on the surface. Equi-
librium between impurity molecules
sets in only at the end of the inhala-
tion. In much the same way/ the erid
of the exhalation corresponds to an
equilibrium state. This explains the
dependence of o on surface area shown
in {igure 4.

, €l""qn of .tuufaes azu,"{
l-igure 4 a l
The dependence of o onthe swface arca of
liquid-atu contact (1) for liquid isolated
fuom the alveoli of a healthy percon and
(2) for liquid taken from the alveoli of
newboms unable to breathe independently.

So we have substances in our lungs
that reduce surface tension and make
our breathing easier. But where do
they come from? It turns out they're
slmthesized by special ceils located in
the alveoli walls. These "surface-
active substances" (SAS) are produced
throughout a human being's li{e, from
birth to death. Curve 2 in frgure 4
corresponds to pulmonary liquid with
a reduced SAS content. You can see
that theminimumvalue of ois eight
times the norm. Some babies are bom
without the cells that generate SAS.
hr these rare cases/ the newl:oms can-
not breathe on their own. Unfortu-
nately, infants still die all over the
world, never taking their first breath,
because of a deficiencv or absence of
SAS in their alveoli.

An uceilion lo lhs ruls
Many animals thatbreatheby means

of lungs do not suffer at all from the
absence of SAS in their alveoli. This

applies, for instance, to cold-blooded
animals-frogs, lizards, snakes, croco-
diles, and so on. Since these animals
don't need to spend energy to heat
their own organisms, their need for
oxygen is, on average, ten times less
than that of warm-blooded animals.
So the surface area across which gas is
exchanged between blood and air is
less than in warm-blooded animals.
The relative reduction of the lung's
surface area in cold-blooded animals
is due to the fact that the diameter of
their alveoli is approximately ten times
greater than the diameter of the alve-
oli of warm-blooded animals. The
comparatively larger radius of the al-
veoli makes it possible to inflate them
easily even if there is no SAS on their
inner surface. (In fact, Lp - llR.)

Another group of animals that have
no SAS rn their lungs consists of warrn-
blooded creatures that live a rather
fast-paced, active life: birds. Mam-
mals and birds of eclual weight have
almost the same energy expenditures,
and a bird's oxygen needs are great as

well. But a bird's lungs have the
unique ability to saturate the blood
with oxygen when it is flying at great
altitudes {about 6,000 m), where the
concentration of oxygen is half that at
sea level. Mammals (including hu-
mans) at such a height start to'feel a

deficiency of oxygen, sharply limit
their activity, and sometimes even
become dazed. How can the lungs of a
bird, without any SAS, allow it to
breathg saturating its blood with oxygen?

And why can't mammals do this?
Let's engage in a little self-criti-

cism. What's wrong with our lungs?
For one thing, not all the inhaled air
takes part in the exchange of gases

with the l:lood. The air inside the
trachea and bronchi at the end of an
inhalation can't give oxygen to the
blood and take carbon dioxide from it
because there are practically no blood
vessels in these parts of the lung. So

the portion of the lung occupied by the
trachea and bronchi is called "dead
space. " As a rule, the dead space in a

human being's lungs is about 150 cms.
You can artificially increase the vol-
ume of dead space bybreathing through
a long pipe. If you try this, you'll
probably notice that you have to in-

crease the depth of your breathing
(that is, the volume of inhaled air).
Obviously, i{ the volume of dead space

is made equal to the maximum pos-
sible inhalation volume {about 4,500
cm3), you'Il start to suffocate-no fresh
air enters the alveoli at alll The pres-
ence of dead space in the respiratory
system of mammals is a "mistake" of
nature.

And nature made a second "mis-
take," I would say, in its design of
mammalian lungs. This deficiency
has to do with the factthat ar moving
in the lungs changes duection as inha-
lation rs followedby exhalanon. Almost
half the time the lungs are practically
idle--during exhalation fresh air doesn't
enter the alveoli.

But nature again attained perfec-
tion in the bird family. Besides ordi-
nary lungs, birds have an additional
system consisting of five or more pairs
of air bags connected to the lungs (fig.

5). The cavities of these bags are
widely distributed tfuoughout the body.

CONTINUED ON PAGE 42

Figure 5
The respiator.v system of tt bid: (1) hmgs;
P4) an'bttgs. Auotus show the ntoventent
ctf atr when the btud (a) brettthes in and (b)

breatltes out,
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Considel'alions ol coilinuily
lf you continue reading long enough, you'll learn how to get
your wobbly kitchen stool to sit still

bvs L Tabachnikov

OST OF THE PROBLEMS IN
your math textbook ask you to
solve equations, or compute a
certain specificvalue/ or con-

struct a geometric figure with given
properties, and so on. This article is
devoted to problems of another sort:
you're merely asked to prove that the
recluired root/ or number, or figure, or
whatever, actually exists. The method
we'll use to solve them is known as

"considerations o{ continuity."

Plane sels
We'll start rl,ith the iollorving prob-

lem: Given a certaur set bor-rnded b,v a

closed curve in the plzrne, pror,e that
there exists a vertical hne that drvrdes
it into two parts of equal area.

Let's take a vertical line to the ieft
of the grven set (iig. 1al and start mov-
ing it to the right. The line eventually
touches the bor-rndary of the set (fig.
1b), then slides over the set (fig. 1c-1f)
until it moves past it to the right (frg.

1S). As the line movecl, horv did the
area of the part oi the set to the leit oi
the line {shown rn recll r.arr'l Obvi-
ously this area changed ccuttinttctttsls'
from zero 1fig. 1a) to thc total area S of
the set (iig. 1g1. So at sorle tn-ne this
area was eqr-ra1 to ex.rcth-ha1i of the
total are:r. At that:i--cc1sc mornent the
line rlrr-r.1..1 r..., --: -nr ,r\ro p,rlrt of
e.lu:il ar.a -i l.

\\ l-1...: .r,r i'c,'.r tiruil< of this solr.rtion?
It Jr'-s:r i aIi .1 method ior construct-
1r: r:. :u.lLlrrccl line-it only cstab-

.:1.. :L. J,-i)fc]]c?. 1Actua1ly, it wotildn't
:::.,--<e sense to look for a recipe for con-
.t:r--ctrng this line-the given set is
.ilL.,itrarJ-.) It sholrrs that there exists a

llrle oi drbitrary dfuection dividlng the
set into two parts of equal errea, Also,

o

Ea
c
i
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Figure 1 a b

the solution implies that there is a

unique line in any given direction that
divides the set into parts of equal area.

We'lI use this fact later.
Let's look at the solution from a diJ-

ferent ang1e. Choose a horizontal nu-
merical axis in the plane (fig. 2a). The
position of an arbitrary vertical line I is
determinedby the number x (thepoint
where the line intersects the numeri-
cal axis). Consider the area of the part
of our set to the left of line I as a
finctionf(x). The graph of this con-
tinuous function is shown in figure
2b. Frnding a vertical line dividing our
set into two parts of equal area is then
the same as finding a point c on the
numerical axis such that f(c) = Sl2.

Now let's consider the horizontal
line y: S/2 rn figure 2b. The left part of
the graph of f (x)lies below this line
and the right part lies above it, since
f(a) :o < S/2, while f (b) : S > S/2. So

there exists a point c where the hori-
zontd line y= Sl2afithegraphof f(x)
intersect. It's precisely at this point c
thatwehavef (c): S12.

The property of continuous func-
tions used in this proof is known as

the "intermediate value theorem"-a
continuous function assumes all the
intermediate values between any two
of its values.

A more for:rnal version of this theo-

rem goes like this: II f(x) is a continu-
ous function on the closed interval
la,bl and c is some number between
the numbers f (a) andf (b), then there
exists a point xo on the intervalla,b)
such that//xoi = c.

For example, in our problem the
function /(x) assumes the value S/2
contained in the interval between the
valuesf (a)=0 andf(b)= S.

The intermediate value theorem is
almost self-evident. Like many obvi-
ous statements, though, it's not too
easy to prove. We'd have to go into an
in-depth treatment of the notions of
"continuous functions" afid "real
numbers." This would distract us
from the main topic of this article/ so

let's just leave it at that-the ilterme-
diate value theorem is simply obvious
to us.

And another thing: we didn't prove
that the area to the left of our vertical
line continuously depends on its posi-
tion (that is, that f1x) is a conti nuous
function). This is almost self-evident
too. Throughout the rest of this ar-
ticle, we'll dispense with proving the
continuity of functions arising in our
solutions.

Problems
1. (a) Given a convex setr and apoint iying

outside it, prove that there exists a straight
line passing through this point that divides
the set into two parts of equal area.

{b) What happens to this problem if the
point extends to infinity?

(c) Solve case (al when the point is inside
the set.

(d) Is it true that there is only one solution
in cases (a) and (c)?

2. (a) Given two convex sets {which may
intersectJ, prove that there exists a line that

1A "convex set" is a set that contains
all line segments ioining any two of its
points. For example, a disk (the part of
the plane bounded by a circle) is convex,
while its boundary (the circumference
itself) is not.

fg
simultaneously divides each of the two sets
into two parts of equal area. {This problem is
often called the plane version of the ham.-
and-cheese-sandwich problem: Can one always
cut such a sandwich with one slash o{ the
knife lnto two parts so that each contains as

much ham and as much cheese as the other?)
(b) What happens to this problem i{ one o{

the sets contracts to a point?
(c) Suppose each of the sets in case (a) ls a

parallelogram. Construct the required 1ine.
3. Given a convex set/ prove that there

exists a line that simultaneously divides the
area of the set and the length of its boundary
curve ilto equal parts.

4. (a) Glven two convex sets, one con-
tained within the other, prove that there
exist two parallel chords of the bigger set,
tangent to the inner one, such that S,= S, (fig.

3).
(b) What happens to thls problem if the

inner set contracts to a point?
5. Prove that any convex set contains

equal and parallel chords dividing its area
into three equal parts.

6. Prove that a square can be circum-
scribed about any convex set.

Chail's altd sqtlares
Imagine that the floor in your krtchen

is not too even (which is often the case

if it's covered by linoleum). A kitchen
stool will usually touch the {1oor with
only three of its legs, while the fourth
will be slightly up in the air. Is it
always possible to move the stool so
that all four legs touch the floor or, no

Figure 2 Figure 3
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Figure 4

matter how you move it, will it al-
ways wobble? Of course/ we assume
that when the stool is on all {our legs,
it doesn't have to be absolutely level.

(Before you begin the mathemati-
cal solution of this problem, try to find
the experimental solution right in your
own kitchen. AJter you get a positive
answer to the question, come back to
the mathematics of the problem.)

We'lI assume that the kitchen floor,
though not a p1ane, doesn't differ too
much from a plane surface. This as-
sumption allows us to ignore floors of
"pathologrcal" shape-for example, the
floor of a cave covered with stalag-
mites (upside-down calcium icicles).

So let's suppose that legs A, B, C oI
our stool are on the floor, while the
{ourth leg D hangs in the air (fig. 4a).
Without lifting legs A and C off the
floor, rotate the stool about Lrne AC so

that legs B and D are both off the floor
at the same distance from it (fig. ab-
the distance from the floor is counted
in the direction of the legs). In this
position (two legs on the floor, the
other two at the same distance from
the floor) the stool can be moved.

Imagine for a minute that the floor
is made of soft clay into which the legs
of the stool can easily penetrate. Let's
lower the stool until legs B and D just
touch the floor, while legs A and C
have been pushed into the clay below
floor level to the same depth (fig. 4c).

Now, going back to the setup in
figure 4b, let's rotate the stool counter-
clockwlse about its center so that legs

b

A and C continue to barely touch the
floor, while the distance from floor
level (that is, the depth) of leg B re-
mains equal to that of D. AJter we've
rotated through an angle of 90o, legs A
and C will occupy the positions of legs
D and B in figure 4c, while legs B ard D
will take up the positions of legs A and

C in figrre 4c. While the stooi is berng
turned, the distance of legs B andD
from the floor changes continuously.
At the outset (fig ab) this distance was
positive, since both legs B and D were
above floor level; at the final moment/
shown in figure 4c, it's negative, since
legs B andD arebelowfloorlevel. So

there must have been a moment when
that distance was equal to zerc. At
that instant the stool was standing on
all four legs.

Our solution has not only theoreti-
cal but practical value. By rotating a

stool about its center by less than 90o,

we can always find its stable position.
You can check this experimentally.

One more thing. Our solution is
based on the fact that the extremities
of the four legs of a stool form the
vertices o{ a square. Were they located
at the vertices of a rectangle, or some
other quadrilateral, our argument would
nothave worked. I don't know if the
statement of the problem is true for
any quadrilaterals other than the square.
(In any case, it's clear that the quadri
Lateralmust be inscribed in a circle.) If
you're able to settle this question,
please let us know.

tv

Problems
7. Your math teacher asked the class to

prove that any convex set can be divided by a
pair of perpendicular lines into four parts of
equal area. One of your classmates proposed
thefollowingsolution: "Choosing an arbi-
trary direction, we can draw a unique iine 7

that divides the area of our set in hal{ ({ig. 5a).

Each hal{ can be divided by lines perpendicu-
1ar to 1 (fig. 5b). Let's begin to change the
directron of 7, repeating the previous con-
figuration. After the direction changes by
180', points A and B will change places. So at
some moment these points will coincide. At
that tlme figure 5b will look like figure 5c
and we will have obtained the requlred pair
of perpendicular lines."

(a) Find the error in this argument.
(b) Find a correct solution.
B. Prove that any convex set with a center

of symmetry possesses an lnscribed square.
(Actually, a square can be inscribed in any
set. But for theproof of this statement, given
by the outstanding Soviet mathematician
L.G. Shnirelman (1905-1938), simpie con-
siderations of continuity are no longer suffi-
cient.)

Figure 6

ab
9. Gir.en t\vo convex sets, one cont:rined

insidc t1-re other, prove the follou,rng state-
1-ncnts:

ial The rc are t\v(-) parallel chorcls oi the
bigger set that arc tangent to the lnner set
ancl arc oi ecpral length (fig. 6a).

(bl Thcre is a point X of the bigqer set irorr
rvhich nvo equal tangcnts to the inner set
can be c1r:ru,n lirg (lbl.

Hlrt: Among the chords of the bipg;cr sct

a

Figure 5 b
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that are tangent to the inner one there is a

longest chord. From its ends, draw tangents
to the inner set.

1 0. Given three nested convex sets {fig.
7), prove thai there exists a point X of the
biggest set from whlch tangents to the irtrler-
most set can be drawn so that the parts of
these tangents contained in the second larg-
est set are of equal length.

Rool$ altd chords

You know, of course, that a quad-
ratic trinomial might not have a real
root. Such is the case, for instance,
with the polynomial xz + x + 1. But
what's the situation with cubic poly-
nomials? We'll now prove that any
third-degree polynomial has at least
one real rcot.

First let's consider a cubic pol1no-
mial with leading coefficient 1:

f(r) =r' + bx2+ cx + d.

We can rewrite it in thefollowrng forrn:

f (x)=*lr +bf x+ cl*+ dl*).

If the value of lxl is very large, the
summands b f x, cf *, d/t' become very
small. In that case the number in
parentheses is very close to 1 and is
certainly positive. So for iarge lxl the
sigrr of l/x) is detenninedby the sign of
the number t'. Likewise /(x) is less
than 0 for negative xwith large abso-
lute values, and f (x) is greater than 0
for large positive x.

Because a cubic polynomial, like
any polynomial, is a continuous func-
tion, we can apply the intermediate
value theorem. The theorem implies
that there exists an x such that f(x) = O,

so the cubic polynomial has a root.
The case of the general cubic poly-

nomial

7

f(x)=ax3+bx2+cx+d

reduces to the case considered above
by dividing f(x)by a.

Our proof is a good illustration of
the strength and weakness of continu-
ity considerations. We obtained the
proof of a difficult fact-the existence
o{ a root-almost "f or free, " but it re-
mains unclear how to find this root for
a specific polynomial. (Actualiy, for-
mulas for the roots of cubic pollmomi-
als exist, but that's an entirely differ-
ent topic.)

Here's another example. Suppose

f(x) rs a continuous periodic function
of period 7. Prove that its graph has a
horizontal chord of length Tl2.

The existence of a horizontal chord
of length 1 is equivalent to the relation
f(") = f(" + 1) lfrg.8). So we have to prove
that there is an x such that f(x + Tl2) =
f(x) .In other words, we must show
that the function S&) = f(x + Tl2)-f(x)
has a root-thatis, g(x) = 0 for aceraun
x.

Let's take an arbitrary number a. II
Sk) = 0, we're all done. So we'll
assume that g(a) is nonzero. To be
defirute, let's suppose Sb) .0. Let b :
a +T12. We can easily computeg(b):

s(b) = s(a +T12)
: f( a * T 12 + T l2) - f( a + T l2)
:f(a*T)-f(a+Tl2)
:f(a)-f (a +rl2)
:-sb).

Therefore, gb) ,0.
The {unction g(x/ is continuous,

since it's the difference of continuous
functions. So once again we can use
the rntermediate value theorem, which
implies that there is a number x be-
tween d and b such that g(x) :0.

The statement about horizontal
chords of graphs of continuous peri-
odic functions can be considerably
strengthened: The graph of such a

function has a hoilzontal chord of ar-
bitrary length,

But for graphs of {unctions defined
on a closed interval, the situation is
quite different. Suppose a continuous
function is defined on a closed inter-
va1 of length T and assumes eclual
values at the endpoints of the interval.

If the number I is of the form Tf n,
where n is a positive integer, then the
graph of the function necessarily has a
horizontal chord of length l; i{ 7 is not
of that form, there exists a continuous
function with the same values at the
endpoints whose graph has no hori-
zontal chords of length l.

Figure B

Problems
11. Prove that any odd-degree polyno-

mial has a root.
12. Yesterday at midnight it was colder

than it was at midnight the day before yester-
day and today. Prove that at some time today
the temperature was the same as yesterday
at the same time.

13. Suppose f(x) is a continuous function
on some closed interval and that all its
values lie in that same interval. Prove that
there exists an xstchthatf (x) = x.

14. The polynomtal f(x) = a* + bx + c rs
such that the equation /(x) = x has no real
roots. Prove that the eryationf(f(x)) = x also
has no roots.

15. Suppose l(xl is a continuous periodic
frlnction (on the numerical line) of period T.
Prove that its graph has horizontal chords o{
lengh ! where (a) 1 = Tl3, lb) 1 = Tfn, lcl I = lpl
.i) T, (d) 7 is any real number.

16. Suppose l(x/ is a continuous function
on a closed interval of length Twhose values
at the endpoints are the same. Prove that the

sraphol f(x) has a horizontal chord oi length
I where (a) 1 = Tl2, lb) I = Tl3, lc) 1 = Tln. Nso,
construct such a function whose graph doesn't
have horlzontai chords o{ length 2fl3.

17. The "mean value of the function /(x)"
on the closed interval la,blis, by de{inition,
the number

)-e ft*M*.D-a -

Prove that iJ the mean value of a continuous
function on a closed interval is 0, then the
function assumes the value 0 il the iaterual.

18. Consider a {unction o{ the ftorrt f(x) =
a,sinx + arsin2x + ... + a,,sinnx + b,cosx +

brcosZx+... + bocoslcr, where ar, ..., anartdb,
..., bu are real numbers. Prove that the
equationl(x/ = 0has aroot.

Conclusion

We've worked out several problems
whose solutions are based on consid-
erations of continuity. In each of
them the relevant magnitude depended

Figure
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on one parameter. For example, the
area o{ the part of a set to one side of a
line passing through a fixed point
depended on the line's angle of incli-
nation. Considerations of continuity
also work when there's more than one
parameter. Now isn't the time to go
into a detailed account of this theme-
I'11 just leave you with a few theorems
to mull over.

l. Given three bodies arbitrarily lo-
cated in space, there exists a plane that
divides the volume of each into two
equal parts. (This is the space version
of the ham-and-cheese-sandwich prob-
1em, the three bodies being the slice of
bread and the pieces of ham and cheese.2)

2. There are two diametrically op-
posed points on the planet right now
where both pressure and temperature
coincide.

3. A cube may be circumscribed
about any convex body. (This theo-
rem generalizes problem 6 to space.)

4. Imagine a sphere covered with
hair. Can it be combed smoothly-
that is, so that each hair is tangent to
the sphere and the directions of nearby
hairs do not differ too much? The
answer is no: there will always be a
hair that will stick out perpendicu-
larly to the sphere. This statement is
knor,m as the "porcupine theorem" or
the "sphere-combrng theorem. "

5. This is for those of you who
know complex numbers. We've shown
that any odd-degree polynomial has a
real root. What about complex roots?
It tums out any polyrromial {except a

constant zero-degree polynomial) has
at least one complex root. This state-
ment is so important it's often called
the fundamental theorem of algebra.
And one of the approaches to its proof
is based on-you guessed it-consid-
erations of continuity. CI

2An open-faced sandwich! -Ed.

Want to show your students how
chemistry affects their lives?

OPPORruNITIES IN CHEMISTRY:
TODAY AND TOMORROW

the resource book by Pimentel & Coonrod
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Kensington CA 94707 (415) 52$7543

OUANTUM
lllalG$ a [srlsctgill!

Use the response card below to order Quantum for your child, $andchild,
nephew; niece, mother,lather, friend ... Four colorful, challenging/ enter-
taining issues for only $9.951

Factor x into fhe Quanlum equation,
where x is any potentialQuantum reader you know!

9-
ea
H
o
H

.D

a
a
.D

c
a
a-o

o
-,?

Don't Miss Out on This Inspiring Guide
to the World of Fractals!
Springer-Verlag, in colperatiln with the National
Council of Teachers of Mathematics, presents . . .

Fractals for the Classroom
By the award-winning authors:
Heinz-Otto Peitgen, Hartmut Jiirgens, and
Dietmar Saupe.
Advised by leaders from the teaching community:
Evan Maletsky, Terry Perciante, and
Lee E. Yunker.
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various communities of teachers and students, Fractals
for the Classroom is written especially for teachers
and is intended for the high school and college level. As
such, it will be a valuable teaching aid for classroom use
as well as for independent study.

l990/approx. 450 pp., many illus./Hardcover $29.OO (tent.)
rsBN 0-387-9704r-X

Forthcoming!
Fractals for the Classroom will be supplemented by two special
volumes by the same authors:

Fractals for the Classroom
Strategic Lessons on Fractals
(in eaoperation with E. Maletsky, T Perciante and L. E. Yunker)

Fractals for the Classroom
Strategic Computer Experiments on Fractal*

Illustrations from The Science of Fractal Images edited by H.-O. Peitrm cnd D. Saup€.

Springer-Verlag
New York Berlin Heidelberg Vienna London Paris Tokyo Hong Kong

I75 Fifth Avenue, New York, NY 10010 (212) 160-1500

National Council of Teachers of Mathematics
1906 Association Drive , Reston, VA2209l (703) 620-9840
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BRAINTEASERS

Jusl lol' thg lun ol it
Problems offered for your enioyment

by E. Chernyshov, N, Antonovich, A, Savin,
B. Proizvolov, l. Slobodetsky, and L, Aslamazov

B6
fr-oil "* a goatt a head of cabbage, two wolves, and a dog be

transported across a river if it's known that the wolf is
"culinarily partialto" goat and dog, the dog is "on bad

terms with" the goat, and the goat is "not indifferent to"
cabbage? There are only three seats in your boat, so you can

only take two passengers-animal or vegetable-at a time.

B7
t-hirty people took part in a shooting match. The first
participant scored 80 points, the second scored 60 points,
the third scored the arithmetic mean of the number of
points scored by the first two, and each subsequent com-
petitor scored the arithmetic mean of the number of points

scored by the previous ones. How many points drd the last

competitor score?

SOLUT/O/VS ON PAGE 61 BB
W["e" we multiply multidigit numbers, we have to do

some addition as'well-the final step is to sum up the
subtotals. Here's aptzzle that exposes the steps and tags

the various digits as odd ("0") or even ("E"):

EEO
xOO

EOEO
+ EOO

ooooo

Find numbers that satisfy this scheme.

B9
Ascuba diver loses his bearings deep in the ocean. How can

he tell which way to go to get to the surface?

810
Witti candle burn in a spaceship, where everything is
weightless?

o
6
N
6
Z
c
o
=cU
a ffi
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GETTING TO KNOW

The chemical elemenls

Just like the oldiimer who's "been around,"
many an element has a story to tell ...

by Sheldon Lee Glashow

Phosphonous

The first known discoverer of a

chemical element is the German al-
chemist Hennig Brand. In 1669 he
prepared the "light-be arirtg" element
by distilling a mixture of solid and
Liquid excrement while trying to find
a liquid that would turn silver into
gold. Instead, he found a pearly-white
waxy stuff that glowed in the dark and
could light a pipe. Ironically, Brand's
home town of Hamburg was virtually
destroyed by phosphorous bombs during
World War tr.

tltlendehuium [ = 101)

Mendelevium is an artificial ele-
ment {irst made in CaLifomia in 1955
and named after the pioneer of the
periodic table. (A.N. Znoiko in the
USSR suggested the name {or element
number 97, whose properties he had
predicted, but it was named berke-
lium after the city of its discovery.)
Today, there are 21 such arti{icial ele-
ments. The first one, technetium
lZ = 431, was discovered in Italy in
1935, while the last three(Z:107-lo9l
were made in Germany in the 1 980s.
Plutonium is needed to make bombs
that must never be used.

Ihe l'al'e earth$ fl = 57-71 )
The periodic behavior of the ele-

ments reflects the sequential filling
up of electron shells. These 15 ele-
ments are chemically similar because
they have two valence electrons but
varying numbers o{ electrons in an

inner so-called 4/-shell. Their exis-
tence was first hinted at by the work of
the Finnish chemist Gadolin in the
very same year that Lavoisier died on
the guillotine. Rare earths are not so
rare and are used in the phosphors of
television tubes. A similar family, the
actinides (Z =90-103), corresponds to
the completion of the inner 5f-she11.

Gallium

When Mendeleyev proposed his table,

he left three vacant spaces for ele-
ments not yet discovered and pre-
dicted their chemical and physical
properties. Gallium was found in 1875,

scandium in I879, and ger rnanium in
1886. Their names suggest where
they were found, and they had just the
expected properties. Ga is a rare by-
product of alumrnum mamrfacture and
an essential component of up-to-date
semiconducting devices. Soviet and
American scientists now collaborate
in an experiment using 40 tons of Ga

iborrowed from the Soviet strategic
stockpile!) to study solar neutrinos.

The plalinum lnstals
The platinum metals form a rec-

tangle in the table: ruthenium, rho-
dium, palladium, and below them
osmium, iridium, platinum. They are
chemically simrlar and found together.
Platinum metallurgy was developed
by American Indians in pre-Colum-
bian times. Along with coffee, to-
bacco, maize, and potatoes, Pt is a
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New World gift. Four related metals
were found rn South American Pt ores
by two British chemists and friends in
the year 1803. Ruthenium was iso-
lated and studiedby the Russian chem-
ist Karl Karlovich Klaus. Curiously,
all six metals of the Pt family are
laboriously separated from the same
rocks only to bi recombined with one
another to make special a11oys {or
things like dental fillings, pen points,
and precision instruments.

Al'Uon

Lord Rayleigh measured the den-
sity of nitrogen from air and from am-

monia and got different answers. He
and William Ramsay solved the puzzle
in 1894 by showing that l'/" of air is a
new element they called argon. They
went on to find several other noble
gases----chemically inert new elements
that did not fit rnto the original table.
Mendeleyev reluctantly added an ex-

tra column.

Bhenium

Rhenium is the last long-lived ele-
ment to be found. It was discovered by
a collaboration of three German chem-
ists rn 1925, two of whom subsequently
(consequently? ) married one another.

]lydt'rUen
In 1745 the Russian poet-scientist

M.V. Lomonosov wrote, "On solu-
tion of any nonprecious metal in acid,
there emerges an inflammable vapor
that is nothing else than phlogiston."
It was hydrogen, whose atom is the
simplest of all. Much Iater, Niels Bohr
computed its spectrum with his quan-
tum rules. The structure of all the
atoms and the meaning of the periodii
table was to be explained by quantum
mechanics.

Selenium

Selenium is one of nine elements
named after heavenly bodies (the Sun,
the Moon, five planets, and the aster-
oids Ceres and Pallas). A tiny bit of Se

is essential to our diet, but too much is
toxic. In South Dakota, cows grazing
on plants that concentrate Se deveiop

"alkali disease." Se powder smells
like rotting horseradish.

Chlu'ine
Lavoisier taught us that burning is

oxidation. He gave oxygen a name
meaning "acid maker" because he
thought it was in all acids. Humphry
Davyproved him wrongby showing
that "muriatic acid" is O-free HCI and
that Cl is an element. Fluorine, chlo-
rine, bromine, and iodine are halo-
gens-reactive nonmetals whose at-
oms have almost complete valence
shells.

Rubidium

Each element emits light of defi-
nite colors when heated. These ap-
pear as bright lines when the light
passes through a prism. Many ele-
ments were discovered this way and
given names from Greek or Latin for
the colors produced: rubidium (ruby-
red), thallium (bud-green), and cesium
(sky-blue). Helium's lines were first
seen in sunlight, which is why it was
named for the sun. O

Sheldon Lee Glashow is the Htggins hofasor
of Physics and Mellon Professor of the
Sciences at Harvard University.
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Tempel'alure, heal, and lhel'momeler$

What does it mean to "measure temperature"?
Why are there so many thermometer scales?
And how is heat related to temperature?

by A Kikoyin

HE SHORT LIST OF PHYSICAL
notions we become acquainted
with before we begin to read, let
alone studyphysics, includes tem-

perature. In inlancy we leam that the
words hot, warm, and cold that de-
scribe our sensations mean different
values o{ temperature; that in sum-
mer the temperature is high, in winter
it's 1ow. You probably can't recall
when you becarne aware that a healthy
person's temperature is "98-point-6"
and that a doctor should be called if
your temperature is much higlrer. Youte
known that "a11your li{e."

Since temperature is so familiar to
us, we're not usually aware of the
special properties that distinguish it
from otherfamfiar notions like lengttl
mass, or volume. But the difference is
crucial.

If we take ten rods, each one meter
long and put them end to end so as to
form one rod, we get a rod ten meters
long. Simiiariy, i{ we take ten bodies,
each with a mass of 1 kg, and lump
them together, we get a body with a

mass of 10 kg; and so on. But if we
combine ten bodies, each at a tem-
perature of 20"C, we end up with a

body whose temperature is 20o, not
200"C, because the temperatures of
bodies don't add up when we put them
together, unlike their lengths, volumes,
masses/ and so on. A temperature of
100 degrees is not the sum of tempera-

tures of one degree each, just as a man
of 25 is not the same as 25 one-year-
old babiesl

So the main thing about tempera-
ture is that it's not an additive quan-
tity, and this peculiar property will
affect how we measure it. To measure
the length of a body we have to com-
pare it to another body that's consid-
ered the unit length; to determine the

mass of some body we have to com-
pare it to the unit mass. This is
because a body's length and mass are
eclual to the sums o{ the lengths and
masses of its parts. But temperature
can't be measured this way.

How is temperature measured?

Alilolhistmy
Around 1592 Galileo devised the

first instrument for rneasuring tem-
perature {although the word "ther-
mometer" didn't appear in print until
1624). Galileo's method {or measur-
ing temperature, shown schematically
in figure 1, is essentially the same as

that used nowadays. A sma11 glass
bulb (a) is fused to the top of a long,
narrow tube (b) that is open at the
bottom. The bulb is warmed by some-
body's hands and the lower end of the
tube is dipped in a container of water
(c). As thebulb cools to the tempera-
ture of the surrounding air, the leve1 of
the water in the tube rises above that
of the water in the container.

Galileo's thermometer is obviously
based on the fact that the volume of
the gas in the bulb depends on its
temperature, so that one can judge a
change in temperature by the change
in the gas's volume. But the instru-
ment.has no scale, so we can't assign a

numerical value to the temperature.
It's not really a thermometer, it's a

"therrrroscop e" -it shows temperatureFigure
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but it doesn't measure it. It took
almost 150 years to come up with a

scale.
The important point for now is

this. Galileo's therrrrometer is based
on an idea we still find useful-that
you don't flreasure temperature di-
rectly, you measure a quantity that is
dependent on temperature. The cluan-

tity used in Gahleo's thermometer
was the volume of a gas. In a modern
mercury thermometer, the quantity
that depends on temperature, and whose
change indicates a change in tempera-
ture, is againvolume-but this time
the volume of mercury, not a gas. For
this purpose we could also use other
physical cluantities-for instance, the
pressure o{ a gas (at constant volume),
the length of a solid rod, or the electri-
cal resistivity of a metal.

A physhal law lhal calt'l [e discouel'ed

tnlithottla thsrlnolnslgl'
The first crude thermometers and

even thermoscopes led to the discov-
ery of one of the most important physi
cal laws, the law of therrnai equilib-
rium. The date of its discovery, which
no scientist has claimed, is unknown,
perhaps because it seemed self-evi-
dent. The law asserts that any isolated
system of bodies eventually arrives at
a state in which all its components
have the sarne tellrperature. This state

is called the state of thermal equilib-
rium.

Obviously, the law of thermal equi-
librium could be discovered only after
the invention of the thermometer.
On the other hand, temperature meas-

urement itself by means of a ther-
mometer is based on this law. After
all, a thermometer is a body at some
temperature that indicates its own
temperature. So in ordel to assess a

body's temperature with a thenlome-
ter, this body must be in thermal equi
librium with the thermometer-their
temperatures must be the same if the
therrrometer is to indicate the body's
temperature in addition to its own.
That's whyyou always have to wait
for some time before reading a tem-
peratLue-you're waiting for thermal
equilibrium to be established.
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Some more [islory
To recap: the thermoscope appeared

at the end of the 16th century and
became the thennometer in the middle
of the 18th. But what does the ther-
mometer indicate-what is tempera-
ture? It took scientists another hundred
years to find the corect answer to this'
question.

Temperature is a quantity that char-
acterizes the thermal state of a

body. We say that cold andhot
bodies have different tempera-
twes. So the nature of tempera-
ture comes down to this: how is
a cold body different from a hot
body?

The first answer to this ques-

tion was grven by Galileo him-
self. He started from the easily
observed fact that when a cold
body is placed close to a hot ong
the hot body cools while the
cold one becomes warrner. Gali-
leo concluded that something
travels from the cold body to
the hot body (though we might
just as well suppose that something
travels in the opposite direction). He
assumed that it is a specific substance,
and in the 17th and 1Sth centuries
most scientists accepted that point of
view. The substance was called the
" caloric fluid."

According to caloric theory, a hot
body differs from a cold one in that it
contains more caloric fluid. When
thermal equilibrium is established,
this caloric fluid has passed from the
hot body to the cold one. So in this
view, a body is a mixure of two sub-
stances: the material of the body itself
(for example / watert copper/ rron, glass)

and the caloric fluid in it. This is
where the name for the unit of tem-
perature/ a " degree," comes from-
the same unit was used to indicate
concentrations of aqueous solutions.

This concept of ternperature was
generally accepted for some 200 years.

And that's what they talked about-
"degrees of warmth."

At the same time there was another
theory, based on the fact that a body
can be warmed up by mechanical
motion. One of the founders of this
theory was the Russian scientist

Lomonosov, who wrote: "It is well
known that heat is generated by mo-
tion; hands are warmed up by their
mutual friction; wood can be ignited
by rubbing sparks appear from strokes
of {lint on steel; iron becomes hot
from hammering it with strong rapid
strokes." This led to the conclusion
that heat is not a substance but the
motion of the "imperceptible particles"
(as they called them then) that consti-
tute all bodies.

Galileo's motto:
"To measure that which is

lneasunatle,
and to stniue to make

lneasunalle
tftat which is not yet so."

Experiments camed out in the 18th
century led most scientists to recon-
sider the caloric fluid theory. In 1760
the Scottish physicist and physician
|oseph Black showed that when the
same amount of heat is added to ec1ual

masses of different substances, differ-
ent changes in temperature result. If
temperature were the concentration
of caloric fluid in a body, the acquisi-
tion of the same amount of heat by
equal masses shouldproduce the same
change in temperature. So Black's
results were incompatible with the
theory of caloric fluid. Black discov-
ered that different substances have
what we now call different "specific
heats."

In 1764 Black observed that tem-
perature remains constant while ice
melts, even though melting requires
that a large amount of heat be added to
the ice. From the time of Black's ex-
periment this quantity of heat has
been called the "latent melting heat."
Likewise, a certain amount of heat is
removed when water freezes, which
also takes place at a fixed temperature.
Obviously, heat could not be absorbed
or released by a body without a change

Muhculan rham and ils laws

in temperature if temperature were
the concentration of heat in a body.

The true nature of temperature-
that quantity whose meaning remarned
obscure for such a long time-became
clear only a{ter the kinetic theory of
matter was worked out. To under-
stand how, we have to get a handle on
the basic ideas of this theory.

The kinetic theory o{ matter as-
sumes that any physical body
consists of sma11 particles-mole-
cules-that are in constant cha-
otic motion. Complex forces of
attraction and repulsion act be-
tween molecules. But for gases

under ordinary conditions, these
forces are sma1l, and we may
even visualize a gas in which
any interaction between mole-
cules is absent. Such gas, owrng
to its purely theoretical nature,
is called an " ideal gas."

An ideal gas consists of a huge
number of molecules movrng cha-
otically every which way in a

container at speeds of hundreds of
meters per second, colliding with each
other and the walls of the container.
The system as a whole, however, is
su.bject to very strict rules. Since the
interaction between the molecules of
an ideal gas can be neglected, the rules
can be stated in a rather simple form.
In particular, using the laws of me-
chanics we can find the pressure-
that is, the force with which the gas

acts on a unit area of the container's
walls.

One can shorv by certain calcula-
tions that in a vessel of volume V
containing N moiecules of g:rs, the
pressure on the walls equals

where f lwhlch equals m? I2l is the
mean kinetic energy of chaotic mo-
tion assigned to one molecule of gas.
Equation ( I ) indicates that gas pres-
sure is equal to 213 of the mean kinetic
energy of the chaotic motion of mole-
cules per unit volume (since N/V is
just the number of molecules per unit
volume).

Real gases require more sophisti-

(1)
2,V=t)=-'-+L.' .lv
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cated calculations, but under appro-
priate conditions equation (1) can still
be used. It gives an approximate rela-
tion between p and E that is accurate
enough for small N/V and E. The
formula can be used for pressures of
about I atmosphere and lower.

At first glance all this has nothing
to do with temperature, which doesn't
even appear in equation (1). To see

what's really going on, let's tum again
to temperature measurement.

Scales: least allsr lamine

The first thermometers used for
practical purposes were licluid ther-
mometers made by a group of scien-
tists in Florence. Later they were
manufactured in other countries.
Different licluids were used, but the
most common ones were alcohol and
mercury {sometimes oil).

The liquid thermometer consisted
of a thin vertical glass tube that bal-
looned out at the bottom in the form
of a small bulb. The bulb and lower
part of the tube were filled with liquid.
hr addition to berng functional, the old
Florentine thermometers were cluite
beautiJul. If you saw them, you might
even consider them works of art-
such a refined artistic approach was
taken in creating these scientific in-
struments.

Various methods were used to con-
struct thermometer scales. Every
manufacflrrer or designer of thermorrre-
ters worked out a different one. By the
end of the lBth century there were
about twenty di{ferent thermometer
scales. Three of them (too many, in
fact) have survived to the present day.

The three survivors are variations
on a single theme. Earlier in the
century the German glassblower and
amateur physicist Daniel Gabriel
Fahrenheit and the Swedish astrono-
mer Anders Celsius calne up with a

principle for constructing thermome-
ter scales that has silce been generally
accepted. It's based on the use of two
reference points-thermal states that
can be characteized as constant. The
points they chose for this purpose are

the temperature of melting ice and
that of boiling water at atmospheric
pressure. (The melting point of any
solid substance and the boiling point
of any liquid at a given pressure are
also constant, but water and ice are
more readily available.)

In 1742 Celsius proposed the fol-
lowing prescrj.ption for dividing up
the thermometer scale. A thermome-
ter is put in contact with melting ice.
Once heat ecluilibnum is established,
the height of the licluid in the ther-
mometer is marked. Then boiling

water is used
instead of ice,
and the new
level is marked
wrth anumber
that differs
from the first
by 100. The
space between
the two marks
is divided into
one hundred
regular inter-
vals, each in-
terval corre-
spondingto the
change of one
degree in tem-
perature {fig.2).
Curiously
enough, Cel-
sius took the
temperature o{
boilmgwateras

0 and that of melting ice as 100. Eight
years later, however, this scale was in-
verted and has stayed that way for
more than 200 years.

Even before Celsius, in 1724Fahr-
enheit manuf actured thermometers
in which two reference points, melt-
ing ice and boiling water, were taken
as 32 and 212, rcspectively, and the
interval between them was divided
into 180 regular lntervals (degrees).

Like Celsius, the contemporary French
scientist Ren6-Antoine Ferchault de
R6aumur took the temperature of melt-
ing ice as 0, but according to R6aumuls
scale water boils at 80.

So we see there was a lot of confu-
sion when it came to selecting tem-
perature scales. The number of inter-
vals between the two fixed points was
arbitrary, as were the values of these
reference points themselves. In fact,
there's no reasonable argument in
support of assigning the temperature
0 to meltrng ice-as if meltrng ice had
no temperaturel

Not only that, there's an assump-
tion hidden in our division of the tem-
perature scale into equal parts-S0,
100, 180, or whatever. We assume
that the volume of the liquid in the
thermometer is exactly proportional
to its temperature.

If we denote the volume of the
liquid at the temperature of melting
ice as Vo and its volume at the tem-
perature of boiling water as V, and
these temperatures themselves as to

and t, division of the temperature scale

into equal parts means that

v-vo
t-t

0

where c is a constant. If we assume t0

= 0, then V -Vo= cttotv =Vo+ ct.
Can we verify that volume depends

on temperature as a linpar function?
Obviously we can'q because we'd have
to use a thermometer in the verifying
experiment, and in constructing the
thermometer we've already assumed
that volume is linearly dependent on
temperature.

There's an old story about a seaport
in which a gun was fired every day, ex-
actly at noon, so that ship captains
leaving the port could set their chro-
nometers (which were used to deter-Figure 2
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mine longitude during the voyage) to
the time of the shot. One of the
captains wanted to know how confi-
dent he coultl be that the gun was
really fired at midday. He found out
that the artillery man determined the
time with the help of a local watch-
maker's "very exactwatch." And the
watchmaker told the captain he set
his "very exact watch" by the shot in
the port. Obviously, under these cir-
cumstances, you can't judge whether
the watch is of good quality or the gun
is fired exactly at noon. Similarly,
when we use a thermometer whose
scale is constructed on the assump-
tion that the volume of its liquid is
proportional to the its temperature,
we can't tell whether that assumption
is valid.

Equally important, in measuring
temperature we have to allow for the
fact that the actual readings depend on
the liquid used in the thermometer or
on some of its other physical proper-
ties. Weneed a standard thermome-
ter for grading all the others, so as to
make ther readings compatible. How
do we solve this problem? At present
the standard thermometer is the so-
called "gas thermometer of constant
volume."

Gas thermomstsrs altd an a[snlule

lemperalure scale

From experimentation we know
that the pressure of hot gas is greater
than that of cold gas. In the gas ther-
mometer, then, pressure at constant
volume is the quantity that indicates
the temperature. The thermometer
shown in figure 3 consists of a con-
tainer A filled with an "ideal gas" (that
is, any gas at low pressure) and a

manometer M attached to the con-
tainer to indicate the pressure. If we
put the container in melting ice, then
in boiling water, and measure the pres-

sure at these temperatures/ we find
that the pressure at the boiling pornt is
1.3661 times greater than the pressure
at the meltingpoint. So we have

f : r.:oor. (2)
Y0

where p is theprcssue atthe temperatwe
7 of boiling water and po is the pres-

20

sure at the temperature 7o of melting
ice. Following the tradition of the Cel-
sius scale, let's say

7- To: 100. (3)

The di{ference in pressure at the
temperatures of boiling water and
melting ice is divided into 100 equal
intervals-that is/ we still assume the
linear dependence of temperature on
pressure at constant volume. Of course,

we can't iustify the assumption, just
as the captain couldn't judge if the
watch was correct by the gunshot or
the gunshot was on time by the watch.
The assumption of linear dependence
is simply the basis for the method of
measurement.

Now, with the gas thermometer
we have no need to assigr 0 to the tem-
peraturc of melting ice. We can calcu-
late it. In fact, if temperature is di-
rectly proportional to pressure, then

PTi=, 14)
'(l 'o

Since the ratio on the left side equals
1.3661, this is the same as TlTo =
1.3661, or T = 1.3661T0. Substituting
this value for 7in equation (3), we get
1.3661 To-To= 100, which gives us

- 100r =_=_73. l-i.0 0.3661
We can see the difference between

this new scale and the old Celsius
scale (fig. 4). According to this scale,
the temperature of melting ice is not 0
but 27 3.LS degrees, and zerc tempera-
ture is 2 73 . 1 5 degrees lower than the
temperature of melting ice. This zero
temperature is called "absolute zero."
It's the temperature at which an ideal
gas must have a pressure equal to zero,
if such a temperature could be ob-
tained and the gas would remain in
the gaseous state. Since gaspressure
can't be negative, the temperature in
this scale can't ever be negative.

Perhaps you've aheady recognized
this new scale in my rough sketch. It's
the Kelvin {or absolute) scale. The
temperature in this scale is called "ab-
solute temperature," whose standard
notation is 7, and it's measured in
degrees Kelvin. The temperature of
melting ice is 273.1SoK, that of boiling
water 373.15oK, and so on.

But for most practical purposes, the
Celsius scale reigns throughout the
world (although most Anglo-Saxon
countries still use Fahrenheit). The
temperature in this scale is denoted as

t and is expressed in degrees Celsius
(abbreviated "C). According to this
scale, the temperature of melting ice
is 0"C, that of boiling water 100"C, and
so on. Obviously, fC : (7- 273.15)'K.
Those who use the Kelvin scale are
almost invariably physicists.

And now, finally, we're in a posi-
tion to $asp the real meaning of tem-
perature.

So wlalis lemrct'atul'e?
According to the method o{ meas-

uring temperature I've just described,
the pressure of gas of mass M, consist-
ing of N molecules in volume V, is
proportional to its absolute tempera-
ture 7. We can write equation (4) in
the form

which suggests that the ratio of pres-
sure to temperatlue of a gas at con-
stant volume is constant. On the
other hand, we have equation (1) for
gas pressure:

I

M

(s)
P Prt

T T.
(l
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Substituting this value of p in equa-
tion (5), we get

This equatron is true for a gas in'a
closed container at constant volume.
So the number of gas molecules Nis
constant/ and the ratio Tof psis also
constant, as we saw earlier. As a

result, the coefficient at E in equation
(6) is a constant for any gas, and we
have

1 r-tT='-AE, l/)
^)

where A = NIV . Tolpo (a constant).
Ecluation (7) means that the absolute
temperature of a gas is the mean ki-
netic energy of chaotic motion of one
molecule, measured in degrees Kelvin
and not in energy units (loules). The
coefficient Ais afactor that relates the
energy and temperature units. The
situation is similar to the one we
encounter when working with differ-
ent units of length. For example, to

281 440

find a length in inches, we need to
know that 1 meter is about 40 inches.
Equation (7) is usually written in the
form

, u =10r. t8)
wnere

The coefficient k is called the
"Boltzmann constant" after the Aus-
trian physicist Ludwig Boltzmann
(1844-t9o6l.

From equation (9)we can inJer how
to obtain the numerical value of the
Boltzmann constant. To do this, we
take a container of volume V and fill it
with gas of mass M lthemass can be
determined by weighing). Then we
put the container in melting ice (whose

temperature To is 27 3.15'K) and meas-
ure its pressure with a manometer. If
we know the mass M, we can easily
determine the number of molecules
N. In fact, if the molar weight of the
gas in grams equals p, the number of
moles of gas in the container equals
Mlp". Andsince each mole contains

\ molecules {Avogadro's number),

227 s00

the number of molecules in the con-
taineris 

^f 
= (M/p)Nr. So we can deter-

mine the Boltzmann constant k if we
know the m ass M,the molar mass pr,

the volume of the container V, and the
pressurep0 of the gas at temperature
To

Such measurements have been per-
formed many times, and all of them
grve the same value for the Boltzmann
constant:

k = 1.38 . 10 23J/"K.

You see how small k is. So we con-
clude that the mean kinetic energy of
chaotic motion of one molecule is a
tiny quantity.

It's precisely this energy that deter-
mines temperature. At 1"K the mean
kinetic energy of a molecule E equals

m?12 : 3. r.38. lo-23
2

= 2' 1.0-23 J/molecule.
This equation can be viewed as the
relation between one degree Kelvin
and one joule/molecule.

Before we leave the subject of tem-
perature/ we should clarify the rela-
tionship between temperature and heag
t\Mo concepts that have been consid-
ered virtually identical through the
centuries.

We know now thatheat is the en-

400 elSV o{ chaotic motion of particles and

.-q-, that this energy can be transferred
5/J . 1 1kom one body to another during heat

exchange. So heat isn't a quantity that
characterizes the state of a body-we

3A0 can't say it's contained in the body.

2 7 3 But temperature charucterues the state
of a body because it's determined by
the mean kinetic molecular energy.
There's no essential relation between

2A0 temperature and heat. We can only
say this: If two bodies hqve differcnt
temperatures, the body at the higher
temperature gives heat to the other.

a A A Temperature is the quantity that de-IUU ,.r*irr.. whether a btdy gives heat to
other bodies or gets it from them.

And that's lust how the great Scot-
tish physicist Iames Clerk Maxwell
( 183 1-1879) defined temperature way

0 back when.

CONTINUED ON PAGE 49
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HOW DO YOU FIGURE?

Challeltuo$ in ilysics and malh

Anchurian candidate & seven dwarfs, river raft & spaceship,
circles & cubes, expanding polygons & merging lines,

a pan of water & a string of polarized digits-
that is to say, something for everyone

tUlath
M6
Three equal circles. Three circles
with the same radius z all pass through
point H (fig. 1). Prove that the circle
passing through the points where pairs
of circles intersect (that is, points A, B,
and C) also has the same radius z.

M7
Double parity. Prove that if each of
the numbers x11 X2r ...r x, is equal to +1

or-1, andx, x2+ x2x3+ ... + xn_rxn+ xnxl
= 0, then n is divisible by 4. (A. Leon-
tovich)

M8
TWo similar polygons. When the sides
of a convex polygon are moved out-
ward by the same distance 1, they fall
on the corresponding parallel sides of
alarger similar polygon. Prove that
circles can be inscribed in these poly-
gons. (N. Vasilyev)

M9
"Demouatic" election. In the coun-
try of Anchuria, ruled by President
Miraflores, a presidential election is
coming around again. There are ex-
actly 20 million voters in the country
and only one percent of them (the
regular Anchurian army) supports
Miraflores. Naturally, Miraflores wants
to get reelected, but on the other hand
he wants the elections to appear demo-
ctatic. By "democratic election" Mi-
raflores means the following.

22 ottAilrtll.,tit.lAY loso

All the voters are divided into eclual
groups, each group is again divided
into a certain number of equal smaller
groups/ then these smaller groups are
divided into still smaller equal groups,
and so on. The smallest groups choose
representatives-known as "electors. "
These electors choose representatives
of the next larger groups/ and so on.
Finally, the representatives of the larg-
est groups elect the president. The
election proceeds at all stages by ma-
jority vote-in a split vote, the opposi-
tion wins. Miraflores has the right to
divide the electors into such groups as

he wishes and can instruct his sup-
porters how to Yote. Will he able to
organize such a "democratic election"
and get reelected? (32nd Moscow Math
Olympiad)

M10
Swen dwarfs. Seven dwarfs sit around
a circular table waiting for Snow White.
Each of them has a big cup, and some
of the cups contain milk. The first
dwarf pours out all his milk into the
other six cups, dividing it into six

equal portions. The dwarf to his right
then does the same. The next dwarf
follows suit. And so they continue
until the seventh dwarf pours out all
his milk into the other six cups (divid-
ing it into equal portions). Then it
turns out that each of the dwarfs has
exactly as much milk as when they
started. Find the amount of milk
originaily contained rn each cup if the
total amount was 3 liters. (V. Guten-
macher)

Physics
P6
Imminent collision. The pilot of a
spaceship moving at velocity y = 1

km/s notices an asteroid of diameter d
= 7 km straight ahead at a distance of I
= 8.5 km. The astronaut immediately
switches on the emergency engines,
which in a negligrbly small interval of

l>
u

-> x

r gure r

Figure 2



time impart an additional velocity of
Av = 300 m/s to the ship. This addi-
tional velocity can be directed in any
way the astronaut chooses. Can a
collision be avoided? (A. Andrianov)

P7
Ra:t't on the river. A wooden raft is
pushed perpendicularly from a river-
bank such that its initial velocity is v.
The raft's traiectory is shown in figure
2. The X on the traiectory shows
where the raft wili be at time t after the
operationbegan. Assuming that the
velocity of the current is constant and
equal to u, graphically plot where the
raft will be at times 2t,3t, 4t ... . I
Poterayko)

P8
Coolingwater. Apan contains 1 liter
of water that can\be brought to a boil
by means of a 100-W heating element.
How longwill it take for the water to
cool loC when the heating element is
turned off? (A. Z:Iberman)

ru
The cube's magneticfield. The current
l flowing in a circuit formed by the
four edges of a cube creates a magnetic
field of induction Bo in the center of
the cube (fig. 3). Find the value and
direction of the magnetic field created
in the center of the cube by the current
l flowing in the circuit formed by the
six edges displayed in figure 4. lM
Tslpin)

P10
Mergingrails. Imagine you're down at
the railroad tracks, looking far off down
the line. Calculate the distance at
which the rails seem to come together.

{It's assumed you understand the physics

of the observed phenomenon and can
estimate the other magnitudes invoived.)
(P. Zubkov)

SOLUI/ONS ON PAGE 59
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. Internatiornl Physics Olympiad
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Olympiad. Five of those students travel overseas to compete with students from thirty other countries. This
year, the Ollmpiad will take place in The Netherlands.
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Once again, AAPT is sponsoring a student exchange between Washington, DC and Moscow. Fifteen students
from the Soviet Union will visit and study here, while American students do the same in the Soviet Union. Both
groups will also meet together for ten days at the University of Maryland (ust ouside Washington, DC).
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T-shirts, and computer programs.
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E tterediry

of the father's genes (and either of the
mother's)has the same odds of being
passed on to the offspring. So a pair of
black hybrid gurnea pigs can glve birth
to brown guinea pigs-in fact, one
quater of their offspring wi1l be brown,
if there are enough o{ them.

Problem
1. Find the proportion of dominant, hy-

brid, and recessive offspring among a suffi-
ciently large number of descendants of each
of six possible mating couples: \D ,D), lD,R),

lR,R), lH,D), \H,R), and \H,Hl.

BioloUiual Npttlatiolts altd Usllnetric

poillt$

A bioiogical population is a suffi-
ciently large group of organisms that
belong to the same species and form
mating couples only within the group.
Population genetics studies the changes,

from one generation to the next, of the
proportions d, h, and r, which repre-
sent the numbers of dominant, hy-
brid, and recessive organisms relative
to the total population. So we can de-

scribe the population P by three non-
negative numbers ld,h,r) that are sub-
ject to the constraint

d+h+r=1.

This simple observation suggests that
we use the following device for the
mathematical modeling of biological
populations.

The UBulnBIry 0l puptllalion UBltEIis$

The power of mathematical modeling is applied
to the phenomenon of hereditary change
from generation to generation

by l. M Yaglom

ATHEMATICS OCCUPIES
a privileged position among the
sciences. Natural sciences such
as physics or chemistrY studY

the real world we live in; social sci-
ences study human society and its
features'. These sciences have in
common the fact that they acqulre
their knowledge from experience. In
contrast/ mathematics studies such
abstractions as irrational numbers {for
example, 2hl and things like lines,
which by definition have no width but
only length. Mathematical knowl-
edge proceeds from the construction
of abstract concepts. A mathematical
concept can be defined by grr.rng as is
done in geometry, a full list of axioms
that adequately determine its proper-
ties.

The outstanding role played by
mathematics is largely due to the fact
that it can be applied to both the
natural and social sciences-that it
can, in fact, "modeI" physical and
human phenomena. Mathematical
modelirrg consists of establishing a

correspondence between specific fea-

tures of a phenomenon by using mathe-
matical methods. We'll use the ex-
ample of heredity-more precisely,
population genetics-to illustrate this
unique power of mathematics.

Following the classical theory pro-
posed by Gregor Mendel,l we'll focus

our attention on a certain characteris-
tic, or "trait," transmitted from one
generation to the next and therefore
called hereditary. The {ur color of
guinea pigs, for example, is such a

trait. The physical unit of inheritance
is the gene. A trait is determined by a
pair of genes, either gene can be one o{
two types/ G and g. The {irst one,
denotedby the capital letter G, gives
the dominant form of the characteris-
tic (in our example, the color black);
the other, denoted by g, gives the re-
cessive {orm (the color brown). The
words "dominant" and "recessive"
mean that the outward appearance of
a hybrid guinea pig, H, with a genetic
makeup determined by the combina-
tion of genes (or "genotype") Gg, is the
same as that of a dominant guinea pig
D, with the genotype GG-that is,
hybrid guinea pigs are black. In con-
trast/ recessive guinea pigs, R, with
the genotype gg, look different {rom
the domrnant and hybrid ones-they're
brown.

The law o{ transmission of traits
can be stated as {ollows: an offspring
receives one of its genes from the
father and another, independently of
the first one, frorl the mother; either

I The Austrian natural scientist
Gregor Johann Mendel I1822-1884), the
abbot of a monastery in what is now
Czechoslovakia, discovered the
fundamental laws of heredity that
underlie the modem science of genetics
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and y are the d- andr-coordinates of
the projection Po of point P onto side
DR. Consequently, populations that
have a fixed gene pool composition
givenby the ratio I : y {r * y : I ) corre-
spond to points lying on the perpen-
dicular to side DR passing through
point Po{f,0,1).

Now we've come to the main point
of our discussion. Let's consider
population P, correspondrng to point
Pld,h,rl in triangle DHR, andpopula-
tion P', which represents the next gen-

eration of organisms bred by mating in
population P. Population P'also cor-
responds to a point in triangle DHR.
So we have a transfortnation of point P

the random choice of a parent; second,
through the random choice of one of
the genes. It's important that all genes

in the gene pool of the entire popula-
tion have the same opponinuty to par-
ticipate in the process so that the
proportion of descendants with the
second G gene is equal to the proportion
f in the gene pool, while the propor-
tion of g genes equals y. h the fust case

dominant organisms are formed, and
in the second-hybrid ones. So the
tatios d', h', and t' of D, H, and R
organisms in the next generation are

-d+h12,
- l. l) - ,

Now let's consider the structure of
the transformation /,: P->P'of triangle
DHR that is generated by the equa-
tions given above. Comparing the
coordinates of pornts P'll, \,0) and
P0(f, 0, y) (notice that Po is the prolec-
tion of P onto DR-see figure 3), we
see that point P' lies on side DH at a
distance of D P' : DP ofromvertex D.
Let P, be the intersection point of lines
PoP and DH-that is, the projection o{
P onto line DH in the direction per-
pendicular to DR. (In what follows
we'11 simply say "in direction h.") k's
evident that DP, = zDPo, or DP' =

DP 112. In other words, to get point P'
= /,{P) we first have to find point P,i
which is the projection of P in direc-
tion h onto DH, ard then find the mid-
point P' of line segment P,D.

And so the inherited transforma-
tionf, we've been examining in this

Figure 1 '
If the side of tiangJe DHR is equal to 2a
(a : 1l?t: since the altitude of the triangle
is equal to 1), its area is given by the
ecptation So* : 3: Snr,, - So.,- + S*. = ad
+ ah+ ar. Therefore,d- h- r= l.'

Let's consider an equilateral tri-
angle DHR whose altitude is equal to
1 . It's important that, for any point P
of the triangle, the sum of the dis-
tances from that point to sides HR,
KD, DH is constant and equal to 1 (fig.

1). We'll call the numbers d, h, t
coordinates of the point P with respect
to triangle DHR andwrite P = Pld,hSl,
as for Cartesian coordinates. Their
relation to the usual three-dimensional
coordinates in space is illustrated in
figure 2.

In this way we can assign to each
population P-determined by the ra-
ttos d,h, and r of the dominan! hybrid,
and recessive organisms-a point in
triangle DHR, which we'1ldenote by
the same letter P : Pld,h,r).It's worth
noticing that populations consisting
only of dominant, hybrid, and reces-
si.ve organisms correspond to points
D(l,O,Ol, Hl},l,O), and R(0,0,1), respec-
tively.

Problem
2. Find the distance between points P(d,h,z)

ar,d Prld'h'rr) by means o{ their coordinates
with respect to triangle DHR (use iigure 2).

The heredity of a population is de-
termined by the composition of its
total "gene poo1. " We can visualize
this by looking at our triangle. Let's
denote the relative portions of G and g
genesby f and y = I - f fora certain
population corresponding to point
Pld,h,4 in the triangle. It's easy to see

thatf = d+h12, y =r +hf 2, andthat f

20

-9

t

d,:f
ltt - .,

r':0,
H

ffi\
a-

t\

Figure 2
Pc4tulatictn Plclh,rl utrteslxntcls to point
P in sltoce yvitlt cctordlnate s (x.y,z) :
(213) d,hfl . N tltese polttts bdong tct

eclttilateral tilangle DF{R. r.r.hich is rhe
j111p1'.1'6ljo11 ol 1t1,117,'x- ) - z =,) 7t

v.ith the pctsitive octdnt (x, 0, y > 0, z
, 0), Tlte clistunces ficutt poittt P to tlte
sides of tritutfle DHR Lte equal to cl,h,

into poir-rt P', which provides a rn;rthe-
matical framework for studying the
transrnission of inheritance frorr one
gcnelation to thc ncxt.

txamples

Interbreeding with dominant or-
ganisms. Let's suppose that organ-
isms in population P = Pld,h,r) inter-
breed only with the dominant ones,
D, so that one of the genes of every
descendant will be dominant. The
second gene, inherited from parents
belonging to population P, is chosen
in two steps, in effect: first, through

OUAlllTUlt4/ltllAY 1 SSO
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Figure 4

,""tio, i, the result of two transfor-
mations performed sequentially: first,
the parallel projection in direction fi
onto line DH; second, the similitude
("homothety") with center D and scale
facarVz.

From this we can infer that the
transformation turns the entire tri-
angle DHR (the set of all possible
populations) into one line segment-
side DH (the set of all populations that
don't contain recessive organisms). It's
important that the only point that
doesn't move (the "fixed point" of the
transformation) is point D, which is
what we'd expect from our under-
standrng of genetics. Generations that
follow P'as descendants of the origi-
nal populaaon will correspond to images
of pornt P' after sequential similitudes
with center D and scaie f actorYz, and
they'll tend to come closer and closer
to the pure dominant population D.

Interbreeding with hybrids. Now
suppose the organisms in population
P = Pld,hsl interbreed only with the
hybrids H. Using arguments similar
to those given above, we infer that haU
the descendants acquire the G gene
from their parents and the other half
the g gene; then in either half the
proportion of descendants having G as

the second gene equals l, and those
having I as the second gene is y. So Ior
the next generation P'ld',h',r') we have

d'=f12=dlZ+h14,
h'=f 12+y12:112,
r'=y12:rl2+h14.

Comparing the coordinates of pornts

P|fl21/, ,y l2) mdPo{f, 0, y), we see that
point P' is obtained from P by the
similitude with center H and scale
factor Yz (fig. a). This means the
transformation /, that turns P into P'
can be seen as a combination of ( 1) the
projection in drection h onto the line
joining midpoints M and N of sides
DH ard HR of our triangle and {2) the
similitude with its center at midpoint
7 of MN and a scale tactor of Vz.

Looking at the construction given
above, we can easily see that the he-
reditary transformation f , changes
triangle DHR (the set of all popula-
tions) into line segment MN (the set of
all populations exactly half of which
are hybrids) and possesses a unique
fixed point Tl/4, y2,, %) (a stable populanon
that preserves its composition). The
sequenceof generations P', P" = f2lP'1,
... is depicted as points of line MN;
each point is transformed into the
next by the similitude with center 7
and scale factor 1/2. There's no need by
now to make any projections. Conse-
quendy, populations P', P", ... approach
the stable population 7.

Problem
3. Letf ,,r,,be the transformation corre-

sponding to the interbreeding of population
Pld,h,rl with a fixed population Pla,b,c). lHere
a,b,c, 0 and a + b + c= 1, of course.) For
example, f ,* arrd f oro 

are the transformations
f , and f ,discussed earlier. Find the formulas
for the transformation /,,,. and illustrate its
geometrical meaning. Also, find the stable
populations. What happens when multlple
repetitions of transforrnation {,,,. are per-
formed?

Panmixia and lhe ]lat'dy-Weinheru law
The hereditary transformations con-

sidered above are primarily of interest
to teachers. Scientists in the field of
population genetics mainly study he-
reditary transformations P' = /{P) such
that the population of descendants is
generated by a random choice of mat-
rng couples. This is called "panmixia"
(from the Greek words pan, " all," and
mixis, "mixing" ot"rnattng" ). Obvi-
ously a random choice of mating couples
and then of genes actually amounts to
a random choice of gene pairs from the
gene pool of population P. Then the
frequency ol GG pairs-that is, the
proportion d' of dominant organisms
in the next generation P'-equals f2;

the frequency oi Gg and gG pairs {the
proportion -h' of hybrids) is 2fy; and
the ftequency of g pairs (the proportion
z' of recessive organisms) is y2. So we
have

d'=12=ld+hl2)2,
h' : Zty :Zld + hl2l lh12 + r),
.t _ ^,)_lLt) , ")).

(Note that d' + h' + r' = (l + y)2 = 1.)

These formulas express one of the
principal laws of population genetics,
the so-called Hardy-Weinberg law,
which appears in every modern text-
book on the subject. They describe
how the composition of a population
changes when there is panmixia-
that is, when there are no additional
factors that may influence the forma-
tion of rnating couples. {It should be
pointed out that the male and female
portions of a population are assumed
to have ec1ual shares of the dominant,
hybrid, and recessive types.)

Now let's look at the geometrical
meaning of the transformation / de-
scribed above-that is, the
Hardy-Weinberg law. First of all, we
see that the composition of the gene
pools oi populations P and P'is the
same. This clearly follows from the
equations

l' = d' +h' 12 =f2 + ly =f(f +y) = f.

As we know, this means that points P
arrd P' lie on the perpendicular to DR.
Let's assum eDPo= x.In that case,

'/ : r'rr : -t sin 60"

so that

h' - 2ty :2(r-y)y : J3.(r-.+)
In an orfinary (Cartesian) system o{

coordinates, this equation gives the
arc fI of a parabola when 0 < x < DR =
2 I 3'\Iig. 5 ). The equation for a parali-
ola in our "coordinates relative to tri-
angle DHR" reads -h2 = 4dr, since h'2 :
4l'y'= 4d'r' . It's not hard to see that
the parabola passes through points D,
R, and 7(the midpoint of line segment
MN) and is tangential to lines DH,
RH, and MN at these points.

Point P'=flP) is where the perpen-

2t
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dicular to DR drawn from P intersects
the parabola, so that the transforma-
tion f is the proiection of triangle DHR
on arc fI of the parabola in direction h.

From this it follows that all the
points of arc II are fixed-that is, all
populations P(d,h,rl for which h1 = 4dr
are stal:le with respect to transforma-
tion /. This result seems paradoxrcal.
It requires that, for a large enough
population in the absence of muta-
tions and selection (natural or artifi-
cial), evolution always proceeds ln
one step. Any further interbreeding
doesn't change the composition oi the
gene pool: iI P' = flPl, P" = f(P'\, and so
orl then P' = P" = ... . But in real h{e the
ideal conditions of interbreeding that
we have assumed never hold-we can
expect only some crude approxima-
tions of them.

So we see that the Hardy-Weinberg
law only gives an initial approxima-
tion of the real processes that take
place in biological populations. Fur-
ther approximations are given by more
sophisticated mathematical models
(see, for example, problem 4). Obvi-
ously, we need to compare the results
obtained by these models with obser-
vations of living nature.

Problem
4. Let mating couples in population P be

formed randomly (as with panrnixia), but
assume that the hybrids have less chance o{
survival than the doilinant or recessive or-
ganisms. More precisely, only the kth part oi
the total number of hybrids of the next gen-
eration surwives. (For k > 1 this means, on the
other hand, that only the l/kth part of D and
R organisms survives.) Construct the corre-
sponding transformation of triangle DHR.
What's the nature of the transfonnation for k

28

= 0 (the total extinction of hybrids) and k :
infinity (the total extinction of D and R

organisms)i

The Hardy-Weinberg law was found
in 1908, independently, by a young
Engiish mathematician, G.H. Hardy,
working at Cambridge, and an Aus-
trian physician, Wilhelm Weinberg,
in Vienna. Historians of science even-
tually discovered that the law had
been stated five years earlier, in a
somewhat di{ferent form, by an Eng-
lish biologist, W.E. Castle, but the
work had gone unnoticed. Curiously
enough, Hardy, an eminent specialist
in number theory, was a partisan of
pure science. In his largely autobio-
graphical book, A Mathematician's
Apology, he strongiy supports the cause
of pure mathematics against applied
science, which he considered (perhaps
without sufficient reason) boring. Not
surprisingly, Hardy's excellent calcu-
lus textbook is called A Course of Pwe
Mathematic.s. Nonetheless, now more
than9O"h of all references to Hardy in
scientific books and articles have to
do with his paper on population genet-
ics, which he wrote in his youth, and
not his brilliant papers on nurnber
theory.

A lew remat'ks on [altonism
In the simple genetic scheme we've

been using atrattthat can exist in two
forms is determined by a pair of genes,

either of which can be o{ two types.
But the number of genes, as well as the
number of their types and laws deter-
mining their outward expression, may
be qute different. Let's look at a more
sophisticated system for the trans-
mission of inherited traits.

Some hereditary diseases are much
more corrunonin menthan inwomen.
These include color blindness (an ina-
bility to distinguish certain colors,
usually red and green) and hemophilia
{a deficiency in the normal coagula-
tion of blood, which results in pro-
longed bleeding after even minor inju-
ries). Color blindness was first de-
scribed by the eminent English chem-
ist |ohn Daltorr(1766-1844), and the
condition came to be called "Dalton-
i.sm."

Dalton mistakenly considered color

blindness an exclusively male illness.
Statistics do, however, tell us that 8"/"
of men suffer from Daltonism while
only0.5% of womendo. TheAmeri-
can biologist T.G. Morgan explained
the difference this way.

The geneforDaltonism, whose domr-
nant variant ensures normal vision
while the recessive produces color
bhndness, is contained in the so-calIed
X-chromosome. This chromosome,
together with the Y-chromosome, de-
termines a person's sex (as is the case
with other mammals and some in-
sects). The cells in a woman's body
contain two X-chromosorrres; a lTran's
cells contain one X- and one Y-chro-
mosome. An individual inherits one
chromosome from the mother (the X-
chromosome, of course) and another,
which determines the sex, from the
father. So a man receives the unique
gene for Daltonism (or any other char-
acteristic related to sex-that is, re-
lated to the X-chromosome) from his
mother. A wornan receives one gene
{rom her father and one gene from her
mother.

Now let's consider population P
and its series of descendant popula-
tions P', P" , ..., generated by random
mating {panmixia). We want to study
the dynamics of the genetic srl.tlcrure
of these populations. In particular, we
want to determine the proportion of
recessive women and men with the
genotypes gg and g-that is, the per-
sons of each sex who suffer from Dal-
tonism.

Three female genot),pes-GG, Gg,
gg-and two male genotypes-G, g-
are possible. We'll denote their pro-
portions in the female and male sub-
sets of population P as d,h,r,6, and p;

R(0,0,0)

a

Figure 5

D(1,0,0)
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the proportions of genes G and g in the
gene pool of the female subset of P are

f and'y. The corresponding quantities
for population P' are given by the
equations

d' =16, h' =lp+y5, r' = y p,

6,=f,p,=y;
f '= (f + 6ll2,y' : ly * pl12.

(Can you explain why?)
We'll use a geometric model to

study the transformation P->P'. Ow-
ingto the constraint d + h + r= 5 + p =
f + y = 1, we can express all the parame-

ters determining the composition of
the population by means of tfuee para-

meters-say, l, 6, and l. So to each
popula+ion we can assign the point
given by the Cartesian coordinates (1,

6, 1i). Since the inequalities

0<l<1,
0<6<I,
0 <h <2r,
h.2y = 2(1-r)

must be satisfied {the last two because
of the constraint hlz = f - d : y - r),
these pornts iie in the triangular prism
DHRD rH 1R, bounded by the planes 6
= 0, 6 = l, h = 0, h = 21, h = 2 -2t (hg. 6).

The hereditary transformation changes
point P {f, 6, h) into point P' (l', 6', h'l
such that point P' and all subsequent
points P" , P"' , ... belong to surface S,

defined by the ecluation

h=2I-4f5+26.

This fact follows from the equation

h'=t(t -6)+ (1-r)6
=f+6-2f6
=21'-41'6'+26'2

(see figure 6). Consequently, points
P ', P " ,... are uniquely defined by their
projections P6', Ps" ,... onto plane ft : 0.

We can infer from the equations f '= (f
+ 6)i2, 6'= f, andfigtue 7 that segment
Po%, ir parallel to line I definedby 6 =

-21, and intersects diagonal RD, of
face RDD,R, of the prism so that the
intersection pornt divides the segment
in the ratio of 2:1. We'll call the trans-
fonnation that tums Po into Po' a"shear
compression" with a scale factor of
- 72. It's not hard to see that the points
Ps', Ps" ,... obtained from Po by repeat-
ing the transformation belong to line
PrPo' andapproach point Po-, which is
where this line intersects RD,. Point
Po- and all the points of segment RD,
are fixed during our transformations.
"Liting" points from plane -h = 0 onto
surface S, we obtain the following
statement: the composition of subse-
quent generations of population P tends
to approach (very quicldy) that of stable
population P"; the cortesponding point,
like all points coresponding to stalale
populatrons, belongs to the line of
intersection of surface S and plane I =

6. (Show that this llne is aparabola! )

For any stable population I = 6 we
can find all other quantities determin-
ing the composition of the gene pool:

p = y = 1 - 6, d = 62, h :26p, r = pz.

In particular, for p = 0.08 we get I =
0.006. These values are roughly the
same as the ones given above for the
frequency of Daltonism among men
and women.

A linalwond
In this article I've tried to show how

geometrical methods illustrate prob-
lems in population genetics, enabling
us to solve them by elementary meth-
ods and obtain important results. I
hope you now feel capable of produc'
ing similar arguments and solving the
problems given below.

Problems
5. Let the scales along the axes h, l, 5 be

equd,to 3"'12, 1, 1, so that the prism DR ... Hl
is regular. Prove that the distances from
point P(f, 6, h) to the bases of the prism are
equal to 6 and p, and that the distances to the
lateral faces are proportional to the values d,
h, t.

6. Prove that the planes 5 = c (a constant)

ancl r\ - 2I- : r' intersect surf;rcc ,S along
straight lines, r'r,hereas thc rntcrscctitxs of 5
ancl a11 other plrnes para1lc1 to axis 7r arc
p:rr:rbolas.

7. Find thc coorclinates oi the lirnit
popnlattot-t f'' [r1, 11.,trrt of the coorclir-r:rtes
( I-, c\, fi ) of thc initial population 1r.

8. Lct a popnlation P(t, i\,7r1 bc t-rtcrbrcd
rvitl-r a iixed popul.rtion l),,(f,., b,, 7r .) :rs fo1-
I.r,r .1 1 1'111.1]. 1,,.1 1,,,111.1 I r r rl l.r rr' r';rtr,lotrrll
couplc'cl t,ith r-nales frot-n |, lvhile male
individr-rals oi 1'are ranLlornly couplcd r,ith
ieurales irom P,,. Wc'11 dcr-rotc the c'lescen-
dant pr4rulation by P, : t,(1']1.

(a1 Frnclthe coorclnates f., b., l. andall
thc rcst of thc parar-nctcrs of poptilation P irs

Iun(lt,rtt\ ol t]tt c,,,,rrlitt;ttc. (,l l.llt,l I.
1b) Lct

P. = f\tlP ). r'. = f(P.). ... P, = l,!- 
p,, 

.

frncl thc coorclinatcs oi thc popnlatron -P,,, rrs

functions oi thc coorclir-r:rtes of P ancl 1),,.

icl Exarnine specific c:rses that corre-
sponcl to r,rrrioLrs con-rpositions oi the gene
pool 1', for cxarrp.ls, f, : P i 1, 1 ,01, u.hrch is
the pure chmin:rnt popul:rtion P,, as n cll as

the casc u,herc popnlation P is onc of thc
rlanv 1.ro1ulations that arc stablc rclatirrc tcr

the transiormrtron tlescribecl in thrs article.
ldl Describc thc n-raps 1,,: 1) >2 and /-,,:

P >P ,, as tr;lnstonnirtions oi thc pnsm. Q
I.M. Yaglorr is tt tlctctctt' r.ti plty5j6al 4pi
rn ath ent ttti t: tr 1 sclcrrcl s.

lftl]tal's happeninU?
SL..rnrner stuciy . comcetlrons ner,v books
. . ongo ng act v t es c uDs and assocra-
t o.rs f ree samp es . contesis urtrat-
ever t s f yor tr nk t s of nterest to
Qttantum readers. et us Knovr aboLrt ll
He p us f Happenings and tre Bu iet n

Board \,! tn shoi't ner,'rs items frrsthand reporls

and anno!ncerxents of upcon';rg events

tftl]tatt ott yottt' lniltd?
lvrte to !sl We \,,/art to knolv,lhat you trink
ol Qtanlun. What do you ke the most?
What,r,,ou d you ke to see more of" And
yes ,rhat don t you ke about Oir.-,niiirn?

We \ilant to .nake t even better bri r,ie

need your ne p.

lIUltal's our addre$s?

Quantum
17 42 Connecticut Avenue NW
Washington, DC 20009-1 171

Becomealactorinlhs

OUANTUM
eqmtio]l!
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IN YOUR HEAD

Ballpark eslimales

How to impress your date and amaze your friends
with offlhe-cuff answers to questions of magnitude

OME PROBLEMSOF PHYSICS
involve calculations of the high-
est possible precision. Many prob-
lems, however, call for only an ap-

proximate answer. Physicists pride
themselves on being able to solve such
"order-of-magnitude problems" quicldy
by breaking them down into their com-
ponents and makrng appropriate com-
mon-sense estimates.

Here's a tlpical problem:

On average, how many atoms
of rubber are wom from an

automobile tire every time the
wheel goes around?

Problems of this kind are often called
"Fermi problems" a{ter the great physi
cist Enrico Fermi, who was a great
practitioner of the craft olproposing
them and solving them cluickly and
cleverly.

No doubt you have a few questions.
Yes, I do. Does this problemhave

any pr a ctic al s ignif ic anc e !
Probably not. Although the prob-

lem is an interesting link between the
worlds of the very small {the atom) and
the very large (the automobile), its real
purpose is to help you understand how
to make estimates.

But there arc no numbers. How can
we even start!

We have to estimate the starting
numbers-theradius of atirg the amount
of wear ...

But that's iust guessing! How can
wepossibly aruive at an accurate an-
swer!

by David Halliday

Ifby " accurate" you mean an an-
swer good to three sigrrificant figures,
you're right. But in a problem of this
kind, "accurate" means "within a

factor of ten either way"-that is,
over or under. Actua11y, it's hard to be
that far wrong in estimating the input
data.

I get it, Where do we start!
We start with a plan. We'I1 esti-

mate the volume of rubber wom from
the tire and then divide by the vo1-
ume of an atom. That will give us our
answer. Let's deal with the tire fust.

Okay. But I don' t see any way to
guess what volume of rubber is worn
from the tfue every time the wheel
goes around.

We can get an estimate by guess-
ing the volume of rubber wom during
the life of the tire and then figuring
out how many revolutions the wheel
makes during that time. Dividing
will give the volume of rubber lost per
tum.

Let R be the outer radius of the tire,
I4l the width of the tread, h the depth
o{ wear, and I the distance traveled
during the life of the tire. The num-
ber of tums N is the total distance
traveled dividedby the length of the
tire's circumference:

L
2nR'

in which 2ruR is the circum{erence of
the tire. The volume of wom rubber
V is the volume of a cylinder of thick-
ness h:

V = l1nR)Wh.

1

The volume wom per tum is then

,, _v _(4E)w!_(2nR):Wh _40R:wh-u'=,v= 
u.2"R = t = t

Notice that we've replaced nzby 10,
which is certainly close enough for
our purposes.

But there's no need to replace n2 by
10, My calculator shows 9.87,

You might feel that you're improv-
ing the precision of our answer by
doing that, but you're not. Our other
estimates will be so approximate that
such precision is mrsplaced. Not-on1y
that, 10 is a much simplernumber to
deal with.

I accept that. What next!
We've aheady made great progress.

We've reduced part of the problem to
quantities we can estimate. We'l1 do
that soon. Meanwhile, let's think
about atoms.

I've been wondefing about that,
What is a "rubber atom," anywayl
I'm sureyouwon'tfind it in the peri-
odic table!

You're right, of course. Rubber is
made up of long chain molecules formed
from carbon, hydrogen, and oxygen
atoms. We're interested here only in a
sort of generic atom, whose radius we
labe1 z.

I see. Then the volumeY 
^of 

the
geneilc atom would be the volume of
a sphere of radius r, or (4x13)f . Right!

You could say that. It's a little
better (and simpler) to put the volume
at(2rli-thatis, the cube o{ the diame-
ter. That treats the atoms as little
cubes and makes some allowance for

r

T

,J
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the empty space between them.
Now we divide to fud our answer.

Right!
Richt. The number of atoms wom

away per tum is
vr 4oR2wh 5R2wh'" vo Ler\3 Lr3

Now we're ready for our estimates.
Let's take them one at a time:

R (tire radius) = about I ft or30 cm
or3/10 m,

W ltreadwidth)= about 4 in or 10

cmor 1/10m,
fr (depth of tread wear) : about I /6

in or 4 mm or 4/1000 m,1
I (tire life) : about 50,000 mi or B .

107 m,
r (radius of an atom) = about 10-10

m.2

In putting these numbers into the
above expression for n, we must be
careful to choose units consistently.
Using meters/ we find

5.3.3.4
tt--.

10. 10. 10' 1000 . 8. 107. 10-30

1 You might estimate the depth of uead
wear to be LlZ in (12 mm). If so, your
calculations will be sLiglrtly different. That's
okay-these are estimates.-Ed.

2 Physicists always use this as an estimate
of the radius o{ an atom. It's a good number
to know. (The radius of a nucleus, by the
way, is estimated to be 10 rs m.)-Ed.

Shalll workthis out onmy calcu-
lator for you!

Nol It's a point o{ honor not to use
a calculator when solving Fermi prob-
lems. Let's rewrite this ecluation by
collecting the integers and the powers
of ten:

/5 .3 .3 '4', = [arr, *) . ,0,, .

You can easily see that the number
in the parentheses is about 20, so that
n = 2 . 1018 atoms per turn.

Shouldn't we round that o;t'f to L018

atoms per turn!
Yes, indeed. The "2" isn't

justified by the precision of
our estimates.

So-
When someone asks the

"tire question" at aparty land
it never fails to come up, be-
lieve me!), you can r,ow gaze

at the ceilingtor afew min-
utes andsay: "About... 1018

atoms per tum/ more or less."
That's how quickly Fermi
himself solved problems like
this onel

Try your hand at finding
ballpark estimates {or these
Fermi problems.

1. The population of Bos-
ton in 1980 was about 56Q000.
How many high school teach-
ers were there in that city in
that year?

2. How many gallons of gasoline
are consumed each year in the United
States by private automobiles? O

Adapted from the forthcoming book
Essentials of Physics by David Halliday,
Robert Resnick, and lohn Merrill with
permission o'f the publisher, lohn WiJey o)
Sons, Inc. David Halliday is professor
emeritus of physics at the University of
Pittsbwgh.
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Lafge or srnarr?

Do you consider the answer to the tire problem
(1018 atoms/turn) large or small? No answer is pos-

sible untilyou've answered the necessary auxiliary
question: Large or small relative to what? As a pure

number, 1018 seems large. lt's 10,000,000 times
greater than the number of stars in the Milky Way gal-

axy, for example.
But the problem deals with 1018 atoms, not 1 018 as

a pure number. This number of atoms is about
10,000,000 times greater than the number of atoms
in a typical small bacterium but about 10,000,000
limes smaller than the number of atoms in a glass of
water.

Our conclusion: You can only compare physical
quantities of the same kind. There are no absolute
standards of "large" or "small."
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CONTEST

When days ore monlhs
"Then the tides gradually pushed her

far away: the tides that the Moon herself causes in the
Earth's waters

by Arthur Eisenkraft and Larry D. Kirkpatrick

I T SEEMS PARADOXICAL THAT
I the Moon's attractive force causes

I ,, ,o move lartner lrom tne Eartn,
I br, ,hr,, exactly what happens.
The distance between the center of
the Earth and the center of the Moon
increases by about 3 to 4 cm per year.

No doubt you're aware that the
Moon's gravitational {orce produces

rFrom "The Distance of the Moon" in
Cosmicomics by the Italian writer Italo
Calvino 11923-1985).

the Earth's tides. As the water moves
to fom the two bulges that we experi-
ence as two high tides each day, there's
a lot of friction of the water with the
ocean floor and with itself. There are
also tides in the "solid" earth. These
result in a conversion of some of the
Earth's rotational kinetic energy into
heat at the rate of about 2 billion
horsepower (1.5 trillion loules) each
second.

This may seem like a lot oi energy,
but it's only a trny, trny fraction of. the
total kinetic energy of the Earth. Sma11

as it is, though, this change is measur-
able. In order to lose kinetic energy
the Earth must slow down, but not
very much! The length of the day
increases by 1.6 milliseconds each
century.

But how does this cause the Moon
to move father away? This occurs
because the total angular momentum
of the Earth-Moon system must re-
main the same. The loss rn the Earth's
angular momentum must ec1ual the
gain in the Moon's angular momen-
tum. This requires an increase in the
size of the Moon's orbit and a corre-
spon&ng increase in the length of the
month-that is, the length of time it
takes the Moon to go around the Earth
once. So both the lengh of the day and
the length of the month increase. At
some time in the fistant future, a day
on Earth will be a month long !

Although this slrrchronism of day
and month may seem very strange, it

aheady occurs in our solar system.
Pluto and its moon Charonhave this
relationship. They move as if they
were two balls on the end of a massless
baton-each always has the same face
toward the other. Pluto's rotational
period is ec1ua1 to the revolutionary
period of Charon-6.4 Earth days.

This leads us to our contest prob-
lem: For the Earth-Moon system/
how long will an Earth day be when
it's the same as a month? Let's make
a few simpli{ying assumptions. We'l1
neglect the revolution of the Earth and
Moon around the Sun, the motion of
the Earth around the Earth-Moon cen-
ter of mass, and the rotation of the
Moon on its axis. We'I1 assume that
the Moon's orbit is a circle in the plane
of the Earth's ecluator and that the
Earth and Moon are uni{orm spheres.

Please send your solutions to Quan-
tum,7742 Connecticut Avenue NW,
Washington, DC 20009. The best
solutions will be published in the next
issue of Quantum and their creators
will receive free subscriptions to Quan-
tum for one year.

Arthr.u Eisenl<rak is the chab of the science
department and a physics teacher at Fox
Lane High School in Bedford, New York.
Larry D. Kir\patrick is a professor of physics
at Montana State Univercity in Bozeman.
Drs. Eisenkr aft and Kirkp atick serv e as
academic djrectors for the US Physics
Team that cofipetes in the International
Physics Olympiad.

o
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CONTEST

Al sirres and $EUEn$

-a curious phrase that means "in disorder,"
but from chaos can come beauty, and order can lie

hidden in apparent randomness

by George Berzsenyi

@fu-

So here's our challenge to you: Is
the Roseberry Coniecture fiuelor all
integers that are not multiples of 5?

If you don't yet feel strong enough
mathematically to tackle this prob-
lem, maybe you can turn on your
computers and-after devising effi-
cient search algorithms-gather fur-
ther evidence in favor of the claim. Or,
alternatively, you may wish to ad-
dress similar problems using digits
other than 6 and7 .

The first problem I mentioned is
based on a problem in the 1984 AIME

(American Invitational Mathematics
Examination) that was originally posed

by Professor Andy Liu of Canada. His
problem asked for the smallest integer
multiple of 15 whose digits are either
0 or B. If you know of a similar
problem, I'd appreciate a note describ-
ing where you came across it.

Please sendyour solutions to Quan-
tum,1742 Connecticut Avenue NW,
Washington, DC 20009. The best
solutions willbe published in the next
issue of Quantumand their creators
will receive free subscriptions to Quan-
tumforoneyear. O

George Berzsenyi rs the chairman of the
Department of Mathematics at Rose-
Hulman Institute of Technology. He was
on the committee in charge of the USA
Matlpmatical Olympiad for 1 1 years, chaired
the committee in charge of the AIME for 6
years, and is presently conducting the
t l S A Mathematical T alent S e ar ch.

o
6
I
c
6
o)
o
c-o
c
G
O

c

I N THE SECOND ROUNDOF
I ,n" USe n U,h.matical Talent Search

I lsponsored jointly by Rose-Hulman
I Institute of Technology and CO-
MAP) conducted in the pages oi the
quarterly Consortium, students were
asked to find the smallest positive
integer multiples of 84, 88, and 89 that
could be expressed in base 10 using
the digrts 5 andT only. Their response
was most encouraging. Nationwide,
over 150 students found the answers-
7 677 6, 677 6, ar:d 557 7 67, respecavely-
and many provided beautiful analyses
leading to their solutions.

Mark Roseberryt ahigh school sen-
ior from Kentucky, also provided a
computer printout showing that all
positive integers less than or equal to
224that are not multrples of 5 have an
integer multiple consisting of 6's and
7's only.
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LOOKING BACK

The $Bct'sl 0l the Uenel'ahle Coopet'

It was an age-old time-saving trrck everyone used,
but no one understood-that is, until

a certain mathematrcian's curiosity was piqued

by M.B. Balk

OFTANNES KEPLER ( 1 571-1 630),
the court mathematician of the
Austrian emperor Matthew I and
a famous astronomer, was ob-

serving with curiosity and admiration
as a young vintner cailed out, easily
and cluicldy, the capacities of a succes-
sion of wine barrels o{ different sizes.
Kepler recalied the time-consuming
measuring procedure used in the vine-
yards of the Rhine country. The work-
ers there would painstakingly fill each
barrel using a container called an "am-
phota," which served as a standard
unit of volume. They'd count the
number of amphoras the barrel held
and then bum the number into its side
with a red-hot iron so that-God for-
bid!-they wouldn't have to repeat
this boring procedure for that particu-
1ar bar:rel.

But here in Austria-what a differ-
ence! If you've never seen abaruel
close up, you might not notice it has a

Figure 1

38 [ttANrtlttl/trtAY 1 sso

hole, called the "bunghole," on its
side right at the middle (that is, its
fattest part). The fellow would just
shove a brass measuring stick diago-
nally into the filled barel's bunghole
until it hit the lower edge of the bot-
tom cover (fig. 1). Then he'd simply
read o{f the number on the mler where
it stuck out of the hole. The barrels
were all different-large and sma11,

"potbellied" and "skinny"-but this
didn't worry the fellow at all. He'd
give the answer each time with the
same speed and confidence. An un-
kind thought occurred to Kepler: "He's
pulling a fast one!//

"Don't worry/ Honorable Mathe-
matician of His Majesty," theyoung
man said, as if reading Kepler's mind.
"This method of measurement is
sanctioned here in Linzby the city
authorities, and the cooper's guild
vouches for the precision of its re-
sults".

"For anybaruel?"
"I don't know about any batel, btt

for all banels here in Austria for sure,"
joked the vintner.

"But how can you be sure this method
is correct?"

"What I don't know, I don't know.
I won't lie to you. People say that
years andyears ago theVenerable Cooper
lived herg and he proposed this method.

But why he proposed it just this way-
I'm sure I can't tell you. "

Kepler recounts how he deciphered
the secret of Austrian cooper in his
bool< The New Stereometryl of Wine
Barrels, Mostly Austrian, As Having
the Most Advantageous Shape, and
the Remarkably Convenient Use of
the Cubic Ruler With Them, With an
Addendum on Archimedean Stere-
ometly. Although this book was pub-
lished nearly 375 years ago, it's still
cluite instructive today, as we shal1
see.

Kepler first considered the case of a

cylindrical barrel (fig.2). Suppose ND
= ),, the length of the generatrixAB is
2x, and the diameter of the barrel's
bottomADis2y. Then

x2 + 4Y) =)vz, (1)

and the barrel's capacity can be found

Figure 2

Ed,

tThe old name for space geometry-



by applying the formula

v =rhn ()'r -rr)r
It's easy to express this capacity in

terms of the distance ), and the ratio I
of the generatrix to the diameter of the
bottom lt = xly\. Ecluations (lland 12)

imply

v-Zil.1,4+l)'r. il\
"These formulas show," argues

Kepler, "that the capacity of a cylin-
clrical barrel does not deper-rd only on
the distance i. To be able to usc the
Austrian cooper's method we nlust
deal only with barrels lvhose ratio / is
flxed 1r = ro). What is the best choice {or
thrs ratio? What is thc rlost profitable
choice for thc ratio ot thc gcncratrix's
length to the diameter of the barrel's
bottorll Let's argue from the vint-
ner's poilt of view. His interest hes tn
the choice, arrong all values of t, of
the value t: Iu such that, of all bar-
rels with distance ND equal to
7., the one chosen has the nraxi-
mum volurne v,,. Then he
can calculate this volurne
accordrng to equation (3).

And if the craftsman
who made the bar-
re1 did not succeed

was somervhat off the mark (not t = t,,,

that is, but f > r0 or I < t,,), the vintner
will not suffer because of the miscal-
culation: the actual capacity vof the
barrel will necessarily be Jess than q,.
And so the vintner will declare the
capacity vo and be paid accordrnglv by
the client, but in fact wili give the
client slightly less wine, namely v.

"BLrt thcrr, no self-respccting,

,./

I

.,tr,'{l'
':, ,. "' sake, one that has a

;.' 
' first clerivative for all

,,',::' r > 0); and suppose that Io

is some fixed value of the
rndependent variable t. Then,

for a small increment fi-that is,

t = to + -h, we have

f (t) * f (to) = f' lt u) ]t + slh\ . h,

where cr(h)->O as h->0 (see any cal-
culus textbook).

So ii /'(t,,) t 0, the deviation of //tJ
fuon f(tr) will be, for small values of h,
practically proportional to h. But il to

is a maximum (or rninimura) point of
the given function, then/'(ro) : 0 and
the deviation equals alhj . h, where
a(fi)->O as h->0. This rneans that
near the extreme value t0, a sma1l de-

viation o{ parameter t from to affects
the variation of the function l/tl much
less than it does near some value of t
where "t''lt) *0. (Kepler calls the vari-
ation "insignificant.") In our case-
see equation (3)-it's trost advanta-
geous ro choose the pararneter I i1')

such a way (t : tn) that the cylindrical
bar:rel has the greatest capacity (1,). tn

12)

\

ixii*ti'i:J'" \
e)octb,llut i \

sible fron-r the volume

n corresponcling to
the best value of ,. ,

the parameter

lltlt., ,,i,, (namely, I,,). The buyer's inter-

1,1,f est in this is even stronger. It
";liir tums ol-rt that this state o{ affairs rs

,'.1 ,i.: t: also achieved by choosing the

, ,.-,il! parameter t that yielcls the greatest
'' .,:.' value for the b:rrrel's volume v."

ri."" Since we are familiar with the no-
tion of derivatives, we can easily ius-
tify Kepler's reasoning. (It was much
harder for Kepler-his book appeared
some 70 years be{ore the differentral
calculus was bom!) Let's rnake use of
the following general prhciple. Assune
f (t) is a function of t {for simplicity's
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this case, when there are small devia-
tions of t from ro (which are inevitable
in practice), the deviation of the bar-
rel's volume v from the maximum
volume vo will be insignificant.

Kepler then computes (for a given
)") the value of the ratio t that yields the
maximum capacity for the barrel. Using
the notion of the derivative, we can do
this much faster and more easily than
Kepier could. Let's use equation (2) for
v. Then

v' lx) =Yzx(),2 - 3x2) = 0,

which works out to
I
/^VJ

Using equation (1) to gety I we get

, ) ..2 , 2)'"1+)'-=t- -x-=

,,,:i= {1=1.1t

For this value of parameter t the capac-
ity of the cylindrical barrel will be
greatest (for a grven value o{ },) and will
eclual

fi ..1

'o=ir,,/rn' (5)

"Now I will corsider the more general

case," Kepler writes, "in which the
staves (that is, the boards that make
up the sides of the barrel) are bent, not
straight as they are for a cylindrical
barrel. Such a barrel can be repre-
sented with a sufficient degree of pre-
cision as two identical trtncated cones
joined together along their larger cir-
cular bases." (See figure 3.)

N

K
Figure 3

"Of course," Kepler continues, "I
am accepting a certain amount of
imprecision, but i{ the banel is not too
"potbellied, " this error will be insig-

o
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/ r Sinrl'tle tn.tnipulations tltcn y'icl.1
l+l ').
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ni{icant. Then arnong all the barrels
for which the distance ND equals the
given )", I will choose the one with the
greatest capacity."

Following the procedure outlined
by Kepler, we can express the capacity
v of the barrel in terms of the distance
),, the radius y of the smaller base of
the truncated cone, and the distance z
= Atr (where F is the foot of the perpen-
dicular dropped from point D to the
larger base of the cone). Let's perforrn
these calculations, using the formula
for the volume of a truncated cone and
bearing in mind that the altitude of
the truncated cones here ecluals

Kepler was able to find the correla-
tions among the various barel dimen-
sions {that is, the values ol y andz1.or
a given ).) that produce maximum
barrel capacity. We can obtarn Kepler's
results by solving the following prob-
lem: using derivatives, prove that
among all the barrels of the type de-
scribed (with a given value ), for the
distance ND), the one that has the
greatest volume is the cylindrical bar-
rel whose generatrix is 2/'times longer
than the bottom's diameter.

Now let's use Kepler's idea that,
near an extreme value, a small devia-
tion of the rndependent vanable leads
to an insignificant change in the func-
tion's value. In our case/ this means
that if the dimensions of some barrel
don't deviate much from those of the
best barrel (that is, a cylindrical barrel
with the ratio AB: AD =2'/), these de-
viations will have an insignificant ef-
fect on the barrel's volume. So the
volume of abanel differirlg only slightiy
from the "llest" one can be computed
according to the same formula-ec1ua-
tion (5).

"It is now clear," writes Kepler,

Figure 5

"what an Austrian barrel real1y is: it is
one whose generatrix ANB is about
2y'times longer than the bottom's di-
ameter. Since in choosing the stave
length PNQ we have to take into
account the thickness of the top and
bottom of the barrel and the fact that
the staves stick out a little beyond the
top and bottom, the staves must be
about one and a half times longer than
the bottom's diarneter."

Not only that, Kepler also under-
stood how to find the capacity o{ any
"Austrian baruel" by means of an ordi-
nary ruler: just measure the distance
ND and apply equation (5) to iind the
volume vo. "Butthe vintner called out
the capacities immediately, without
counting, " Kepler recalled. "Appar-
ently his ruler is not an ordinary one,
but has marks that are positioned dif-
ferently. How is this ruler calibrated?"

Kepler turned his attention to a se-

cret amphora the vintner mentioned.
He guessed that it was probably some
kind of little barrel as well, whose
capacity is taken as a unit o{ measure-
ment. But i{Austrian coopers produce
barrels with an optimal ratio of gen-
eratrix to diameter (that is, t = 1.5),
surely they must use the same ratio in
makrng the standard barrel-amphora.
Assume that for the standard barrel-
amphora the distance I'1,O, equals I,(fiS.
4). Then, taking the capacity of the
barrel-amphora as the unit volume,
ecluation (5) grves us

1 = --r-13.
3\/31

Using equation {5) again, \are get the
following adequate approximation of

i6)

l/ z

/trr
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the volume of an "Austrian barrel":

vo : (tr/)',)3 barrel-amphoras.

So, in ordelr to find v, it's enough to
know the ratio )"/)", (rather than the
actual value of )"). In fact, you don't
even have to know the ratio itsel{, just
its cube. The values of ()"/),,)3 are i4
fact the markings on the ruler-that
is, we have to calibrate it according to
the "law of cubes." At distances of trr,

}l't,3Xt,... from the end of the brass
ruler, the numbers 1, B (= 23), 27 l= 31,
... are written (fig. 5). To state the
general case: at a distance kl., (where

k is any positive integer) from the end,
the number k3 is written. If you stick
this ruler into a barrel so that its tip
touches the lower edge o{ the barrel's
bottom (point D), the reading on the
ruler at the bunghole (point l/) will
indicate how many barrel-amphoras
that barrel holds.

IN rsr auruuN or 1 6l 5, at Kepler's
request/ the Elder of the Cooper's Guild

. LOOKING BACK

met with the Emperor's Mathemati-
cian at the Linz City Hall.

"Honorable Elder," began Kepler,
"I am interested in the method Aus-
ffian coopers andvintners use to measure
the capacity of barrels."

"We11, you see/ Honorable Mathe-
matician of His Majesty," objected
the elder, " this is a trade secret o{ our
guild. This secret has been handed
down from generation to generation
by our craftsmen since the days of the
Venerable Cooper."

"I had surmised that at one time
there existed an outstanding geome-
ter who taught this method to your
guild. I believe I have managed to
guess his secret".

"Then tellme, Honorable Mathe-
matician of His Majesty, what the
secret of the Venerable Cooper is, in
your opinion, and I promise to con-
firm whatever parts of your explana-
tion are corect."

"My reflections have led me to the
conclusion," answered Kepler, "that

when the coopers of Linz construct a

barrel, they are guided by only one
consideration: that the staves be one
and a half times longer than the di-
ameter of the bottom."

"Absolutely correctt " affirmed the
startled cooper.

"Further, to measure the capacity
of the barrels you use a mler calibrated
according to the law of'cubes."

"You are nght again," said the elder
of the cooper's gurld with even greater
surprise, looking apprehensively at
Kepler. "Are you endowed with su-
pematural powers/ Honorable Kepler?
I have heard that, as the Emperor's
Astrologer, you can read the past and
the future from the disposition of the
stars. Could it be that the Venerable
Cooper's secret was deciphered by means
of astrology? "

"No," answered Kepler dtyly, "I
computed it by means of mathemat-
ics. " And there was nothing more to
be said between the mathematician
and the cooper. o

Fl'om lhe

prehistot'y ol radio

This article originally appeared in 1984
to commemorate the 125th anniversary

of the birth of the great Russian physicist
Alexander Popov

by S.M. Rytov

ADIO IS ONE OF TI-{E, DISTINC-
tive features of modern civlliza-
tion. It's a means of communica-
tion and an instrument for scien-
research, both on Earth and in

outer space. It exerts a tremendous
influence on our daily life.

Not that much time has elapsed
since the first experiments in radio
communication, so we might con-

clude that the entire history of radro is
confined to the 20th century. This
conclusion would be wrong. In look-
ing at the history of radio, we have to
remember that this technology stemmed
from discoveries in the theory of elec-
tricity. And the scientists who made
the most important contributions in
this field areFaraday, Maxwell, and
Hertz.

taraday and his eil[Bl,ilneltts

The most important discovery was
made by Michael Faraday in 1831.
Faraday found that electr.icity can be
generated by changes in a magnetic
field. This phenomenon is called
" electromagnetic inciuction. "

Faraday's tremendous experimen-
tal work was guided by the concept of
interaction through a medium, which
he visualized as lines of force traveling
through space. This stood in direct
contrast to the concept of immediate
action at a distance, supported at the
time by the authority of Newtoniantific
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physics and such eminent physicists
as Ampdre, Weber, Kirchoff, and
Thomson {Lord Kelvin). Faraday's ideas
encountered considerable opposition,
but he forged ahead and made one im-
portant discovery a{ter another.

Faraday used little mathematics-
his method of research was almost
purely experimental. He derived his
ideas under the direct influence of
experiments, turned to experimenta-
tion as a way of testmg the truth of his
ideas, and expressed his results in
nontechnical language.

lli|laruuell and his lnatholnatis$

f ames Clerk Maxwell understood
the profundity of Faraday's ideas and
decided to create a mathematical frame-
work for them. This paved the way for
the systematic study of electromag-
netism. In his famous book ATreatise
on Electicity cmd Magnetism, he wrote:
"I have therefore thought that a trea-
tise would be use{u1, which should
have for its principal object to take up
the whole subiect in a mathematical
manner, and which should also indi-
cate how each part of the subject is
brought within the reach of methods
of verification by actual measurement.//
Proceeding along these 1ines, he did
qurte a bit more. Maxwell introduced
the concept of the electromagnetic
field, finally rejected the concept of
action at a distance, found that a change
in an electric field in time generares a

magnetic field, and derived the equa-
tions that bear his name. To do all this
Maxwell had to introduce a new physi-

40

cal quantity (similar to electric cur-
reng caused by electncal charges moving
in space) that he called "electric dis-
placement." The discovery of electric
displacement was the direct result of
his efforts to create a mathematical
structure for electromagnetic theory.

The beauty of Maxwell's ecluations,
which describe a multitude of physi-
cal phenomen4 appeals to every physi
cist or mathematician, and ther mathe-
matical structure provides guidelines
for research in theoretical physics even
today.

An important conclusion that fol-
lowed from Maxwell's theory was the
existence of transverse electrornag-
netic waves, which have a finite propa-
gation velocity given by the equation

1( =-
V En $,,

The constants of dielectric suscepti-
bility (Eo) and magnetic susceptibility
(po) had been measured previously.
The value of c tumed out to be equal to
193,088 miles per second. This was
very close to the speed of light ob-
tained in optical experiments by Hip-
polyte Fizeau-L93,118 miles per sec-

ond. This 1ed Maxwell to conjecture
that light consists of electromagnetic
vibrations. Maxwell {irst mentiqned
this brilliant discovery in a letter to
Faraday dated November 19, 1861.
Neither of the values given above are
quite accurate. Maxwell no doubt
understood that the speed of light had
beenmeasured soheplayed
down the numerical disagreement.

Maxwell himself felt that the elec-
tromagnetic theory of light hadbeen
created by Faraday. He wrote some-
thing to that effect 1n 1864, refemng to
ideas that Faraday had expressed in
oneof hispapercin 1846. Butperhaps
a distinction should be made between
a general idea and a precise statement
that can be verified by experiment.
Maxwell's theory not only supplied a
general framework for previously known
electromagnetic phenomena, it also
provided a means of predicting new
phenomena and describing them quan-
titatively. The most important phe-
nomenon it predicted was the exis-
tence of electromagnetic waves. But
neither Faraday nor Maxwell iat least
at the early stages of his work) had
noticed the direct connection between
optics and electromagnetism, which
became apparent only after Maxwell
had worked out his theories explain-
ing phenomena in electricity and
magnetism.

ller[ and his "liuing Bqtlaliolt$"
Electromagnetic waves were {irst

detected in the laboratory by the Ger-
man physicist Heinrich Hertz in 1888.
Hettz's experiments have long been
considered remarkable examples of
experimental ingenuity and theoreti-
cal foresight. The Russian physicist
O.D. Khvolson called them "eternal
classics." Hertz also made important
contributions to the mathematical
framework of Maxwell's theory. He
admired its beauty and wrote that its
equations have a life of their own-
that they are wiser than we arel even
wiser than their creator, and give more
information than was put into them.
These words proved prophetic. The
second half of the 20th century has
seen the flourishing of so-called "gauge
theories," which from the rhathemati-
ca1 point of view are generalizations of
Maxwell's equations to suit the needs
o{ subatomic physics.

Immediately af.ter Hertz's experi-
ments, many scientists proposed us-
ing electromagnetic waves for com-
munication without wires. It's inter-
esting to see what Hertz himseJ{ thoug}rt
about it.

In 1889 an engineer from Munich
named Guber put the question to Hertz

Michael Faraday

James Clerk Maxwell
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directly. In 1897, three years after
Hertz died, Guber sent Hertz's reply
to a German research foumal, where it
was published without comment. Ll
his letter Hertz wrote that the lines of
force of magnetic and electric fields
travel like light rays onlywhen their
vibrations arc y ery rapid. Then both
kinds of line forces are inseparable
from each other, so that the rays of
waves studied in Hertz's papers can be
called "magnetic" or "electric" inter-
changeably. But vibrations in a tele-
phone wire are much slower. So radio
waves o{ very low frequency are re-
quired because lHel.tz thought) the
frequency of the radio waves should
be the same as that of the transmitted
sound; consequently, the wavelength
would have to be very large. Hertz
suggested that radio waves could be
focused by concave mirrors to obtain a

signal strong enough to detect. He
saw no other means to achieve that
end. But for very long waves, these
mirrors would be the size o{ a conti-
nent!

I'11 make no comment about this
letter either. Let's just say that even a
genius has a hard time trying to guess

the solution to a technical problem
decades in advance-in this case, wire-
less telegraphy.

Of course, mere suggestions that
electromagnetic waves be used for
communication were insuf{icient. A
way had to be found to do it. Enter,
stage right, Alexander Popov and his
apparatus for detecting electric vibra-
tions.

Popou and his "lhunder deteclor"'
By the time Popov began to work

on the transmission of messages by
means of radio waves/ the physical
phenomena involved and the main
parts of his apparatus were known. It
was well known, {or example , that a
spark discharged by a Leyden 1ar, an
electrostatic machine, or lightning
consists of damping electric oscilla-
tions. Hertz had shown that such
oscillations generate electromagnetic
waves. So the means of generating
electromagnetic waves were already
available. The power of the spark had
to be increased, but this wasn't con-
sidered a serious obstacle-it was a
mere technicalrty, so to speak.

The mainproblem was how to de-
tect signals at a distance. For this
pulpose Hertz had used a sma11 spark
generated in the tiny gap of a ring. But
this method, of course, couldn't serve
any practical purpose.

Five years before Popov invented
his device, an apparatus called a

"coherer" had appeared. It consisted
of a glass tube with two electrodes at
each end and metal filings between
them. When an electromagnetic wave
travels through the tube, tiny sparks
run between the filings at their points
of contact so that the resistance of the
filings drops from hundreds of thou-
sands o{ ohms down to less than a

hundred ohms (or even less than ten).
The coherer is an excellent device for
allowing a high-frequency signal to
short a circuit with an electric battery
in it. Unfortunately, as soon as the
coherer has done its job, it quits. You
have to give it a shake to restore its
high resistance. So this device was ob-
viously not a receiver constantly ready
to detect a signal.

Popov transformed the coherer into
a reliable radio receiver by inventing a
method of restoring its large resis-
tance automatically. kr an article that
appeared in fanuary 1896, he wrote:
"Having achieved good results in making
the sensitivity constant by means o{ a
tube with platinum electrodes and

I This refers to Popov's earlier work
on improving the parameters of the
coherer itself.

iron filings,l I aimed at constructing a

device that would automatically de-
stroy contacts between filings caused
by electric vibrations." His invention
was a great step forward in radio tech-
nology. k1 constructing his apparatus
Popov not only achieved electrome-
chanical amplification but also used
what we now call feedback.

The new device could sense the
distant electrical discharges of light-.
ning, so Popov called it a "thunder
detector," even though it also detected
discharges from an electrostatic ma-
chine and a large Hertz vibrator as

well as the rapid strokes of an electri-
ca1ly oharged ebonite rod.

As we come to the end of this
article, I'd like to quote {rom Popov's
report to the Physical Section of the
Russian Physico-Chemical Society on
May 7,1895: "Concluding, I would
like to express the hope that my appa-
ratus, after further development, can
be used to transmit messages through
space by means of rapid electrical vi-
brations, as soon as a sufficiently
powerful source of these vibrations is
found."

Actually, though, progress was made
during the early years of radio com-
munication by increasing the height
of the receiving antennas. But ad-
vances on all fronts continued at such
a pace that as early as 1897 P.N. Ribkrn,
Popov's assistant, managed to trans-
mit radio signals to a distance of five
kilometers.

The 20th century has brought many
new inventions and improvements in
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Al exan d er Ste panovi ch Popov
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radio technology-for example, tele-
vision, which plays an increasingly
important role in our lives. In 1931,
the centenary of Maxwell's bifth, G.G.
Thomson, himsel{ an eminent experi-
menter/ said that the discovery of ra-
dio waves has influenced the entire
development of civilization. Radio
waves help draw the Earth's inhabi-
tants together and have led to social,
educational, and political changes that
we are sti1l in the process of assimilat-
ing.

0utline and desct'iiliolt olPorutt's

deuhe
Here's an excerpt from Popov's 1896

paper "An Apparatus for Detecting
Electric Vibrations":

"The figure illustrates the positions
o{ the constituent parts of the appara-
tus. The tube with filings is sus-
pended horizontally between the two
clamps M and -A/ by a light watch
spring, which is ben t rn aztgzagso as

to be more elastic. There is an electric

bell above the tube; when it rings, it
hits the middle of the tube. (A rubber
ring keeps the tube from being bro-
ken.) It is convenient to attach the
tube and bell on a common vertical
plank. The relay can be placed else-
where.

"The apparatus functions as fol-
1ows. The current generated by a 4- or
S-volt battery flows from the contact
P to the platinum plate A, then across
the filings contained in the tube to the

other plate B, andfinally through the
coil of the electromagnetback to the
battery. The power of the current is
not sufficient to draw the anchor of
the relay; but il the tube is subjected to
the action of electric vibration, the
resistance instantly decreases and the
current increases enough for the relay
anchor to be attracted. At this mo-
ment the circuit running from the
battery to the be1l that is interrupted
at point C closes, and the bell begins to
{unction. It shakes the tube, decreas-
ing its conductir,rty, and the relay breaks
the bell's circuit. In my apparatus the
resistance of the filings after a strong
shaking may reach 100,000 ohms, but
the relay (which has a resistance of
about 250 ohms) draws the anchor at
currents of 5 to 10 milliamperes {the
limits of adjustment)-that is, when
the resistance of the whole circuit
drops below 1,000 ohms." O

CONTINUED FROM PAGE 7

They're even located inside some bones,

sometimes donm to the smal1 bones of
the feet. As a result, the respiratory
system of a duck, for example, takes
up about 20% of its body volune (2%

for the lungs and l8'/. for the air bags),

while a human bemg's respratory systern
takes up only 5%. A bird's lung, as

opposed to a mammal's, is a set oi thin
pipes connected in paral1eI, open from
both sides and surrounded by blood
vessels. The bags are connected to the
lung in such a way that air flows
through a bird's lung in the same di-
rection during both inhalation and
exhalation. So il the breathing proc-
ess only the volumes of the bags change
while the volume of the hing remains
practically constant. Since there's no
need to inflate the lungs, surface-ac-
tive substances aren't needed rn a bird's
lungs.

Maybe you thought it was a silly
question, "How do we breathe?" I
wonder now what you think of the
answer: "Not as well as birds!" O

K.Y. Bogdanov is a doctorul candidate in
physical and mathematical sciences,
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Disol'del' in lhe coul'l!

When "jrtst the facts, ma'am"
just wonT do

by V. Fabricant

I N A PROVTNCTAL TOUA{ OF CEN-

I tral Russia at the turn of the cen-

I turv, the owners of an electric power
I pr*. caugnt a ceftaln Ivanov m the
act of using electricity " fuee of. charge,"
so to speak, inhis home. Hehad sur-
reptitiously connected a wue to a power
line belonging to their entelprise. The
company sued Ivanov for theft of its
property, but the malefactor won the
case in court. According to the exist-
ing criminal code, theft was defined as

pertarning to an object possessing mass
and size. The Senatg however, which
considered the case on appeal, deter-
mined that electrical energy may be
viewed as propefty/ "being mobile real
estate/ without being a material en-

tity." So the power mmpany triumphed
in the end.

A more sophisticated legal issue
arose in another case. Beer produced
by a certain brewery was stored in a
cellar some distance away from the
bottling plant. The cellar was cooled
bypipes containing a circulating sa-

line solution that came from a central
cooling unit. The main pipe connect-
ing the cooling unit and the cellar
happened to pass near the cellar of a
retailer.

After a while, the owner of the
brewery discovered that the retailer
was using the saline solution to cool
his own cellar and sued the retailer for
theft. The judge, however, ruled: "[r

accordance with Article 242 of the
Criminal Code, theft is the unlawful
appropriation of commodities belong-
ing to another pafiy. In the present
case no theft has been committed,
since the saline solution was not mis-
appropriated; rather, it was returned
in its entirety to the brewery's main
pipe."

The brewery owner appealed this
judgment, now arguing his case this
way: "The issue is not the theft of
saline solution but the theft of energy.
If the saline solution is used to cool the
defendant's cellar in addition to my
own, I have to pay more for electricity
to operate the central cooling unit."
The ruling of the Court of Appeals
was, from the pornt of view of physics,
only half convincing: "The saline
solution acquires heat from the re-
tailer's cellar; therefore, energy be-
longing to the brewery is not being
stolen. On the contrary, the brewery
is receiving gratuitous energy from
the retailer."

We all agree the judge was wrong,
but not everyone can corectly ex-
plain his error. Can you? O

The first story can be {ound in
Electicity and Heat by B. Bulyabash and
V. Gurevich, Moscow: Nauka
Publishers, 1978. Thesecond story is
taken from a German scientific
monograph, "Questions of
Thermodlmamical Analysis," by P.

Grassman.-Ed.

ILL CAME TO MR. COHN'S
place right a{ter lunch. At that
time of day the Texas sun turns
all the cheeses of Texas into gooey

cream cheese, a1l the water of Texas
into boiling water, while al1the in-
habitants of Texas can only dream of a
quicker and less painlul end.

When his temperature fell below
the boiling point of iron and all the ice
in the house had evaporated, Bill fi-
nally recovered the power of speech.

"You understand, mister Cohn, it's
a1l because of that Stanleyl He's a

friend of mine, so to speak. Until the
other day I only bet against him
once't."

Ahol'$E is a hol'se

(ol cout'$E, ol cout'$g)

Even cowpokes get the blues
when they place a few bets

and lose, and lose ...
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"And how did that bet go?" Mr.
Cohn was struggling hard to stay awake.

"WelI, mister Cohn, Stanley was
goin'off on this trip-Natchez, I think
it was, in the upper straits of Red
River. Me, I been there, so I says to
him:

" 'That's seven days on horseback.'
" 'Aha,'says Stanley, 'and to Baton

Rouge?'
"'Aday,' Itellhim.
z rr$d toLafayette?'
" 'About four days. It's

road.'
"'Andhowlongto-2/

names this hole in the wall.
" 'Never been there,' I says. 'I guess

itbe atleast ten or twelve days.'
" 'You know, Bi11,'says Stanley,

'these four towns are situated smack
dab at the four vertices of a rectangle.'

" 'So what?'I says.

"'So this. I can te1lya exactlyhow
long it'lltake ya to get fs 

-./ 
And he

names that hole in the wall agin.
" 'You mean you been there?'I ask

him.
" 'Nope,'he says, 'ain't never been.'
" 'Then how the heck d'ya know?

Somebody tellya?'
" 'No siree. I just know it's eight

days!'
"Welf mister Cotm, the argument

goes on and on and ends up in abet. I
get on my palomino and-can you
beat this?-I make it to that hole in
the wall in exactly eightdays! Wish
I'd never seen it. Eight days later I'm
back here, and Stanley tells me how
there's this'theorem' thing.l Turns
out I dragged my tail to the Red River
to prove some wordl don't even know
whatitis!"

"Your friend Stanley's a clever fella."
The heat was falling off, and Mr. Cohn
was recovering a bit.

"Too cleverby aha7[," Bill snorted.
"And so, mister Cohn, the other day
this Stanley comes by to see me/ we
shoot the breeze about the weather,
beef prices, and all that, and then he up
an'says:

" 'Listen, Bill, what d'ya think, can
I find a horse in these here parts that

1 "Il ABCD is a rectangle and S is an
arbitrary point, then SA2 + SC2 = SB2 +

5D2." -fry andprove it.-Ed.
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you can't handle but I'll be
able to ride?'

"And I answer without
battin'an eye:

"'Well, Stanley, mark
my words: I'11 use that
pony to take you to the
nearest gtaveyard.'

"But he keeps right on:
tt tIfiglte there's a horse

Like that, Bi11.'

" 'OK/ I says, /I bet ya
10 to 1 there ain't. Dig out
a buck and let's have a

look!'
" 'Take your time, Bi1l,

and get your ten smacks
ready. The horse is right
here in your stable. Look!'

"Then he picks up this notebook I
use to do my accounting/ opens it to an
empty page, and writes:

aca-c
b d b-d' (10)

"We11, mister Cohn, {irst thing, I
askhim:

" 'Stanley, why'dya start your count
from ten, there on the right, in paren-
zathes?'

" 'That's how much you owe me.
And that's theplace to write thebill,
Bill-right in your account book!'

"'Not so fast,' I tell him.'S'been a

long time since I went to school liut I
can teIl you this: your number ten
horse is lame on all four legs. And you
ain't getting that ten spot'til it takes at
least one step.'

" 'Then take a gander at this,' says
Stanley, and he writes:

89 8-9
,-1: 2-3'

" 'Check for yourself,' he says, 'and
fork over the dough!'

"Now tell me, mister Cohn, have
you ever seen a guy make a ass of
himself and then admit it? Or a guy
who had no use for ten bucks ?

" 'Hey, Stanley,'I says, 'I'11 bet you
another ten that your gelding can't
take another step!'

" 'Then fork over another ten, 'cause
here it goes.' Andhe writes:

595-9-42
39 3-9 -6 3'

"L,ose two races in row-that's never
happened to me before, mister Cohn.

But then I remember the terms of the
bet, and I figure everything ain't lost
yet.

" 'Listen here, Stanley,'I tell him,
'that horse rides under you/ no argu-
ment there. But you said I couldn't
handle it. My twenty to your twenty
says I'11 ride that mustang easy as pie!'

" 'All right, my twenty says you
won't.'

"We11, mister Cohn, I lost that race
too. Mister Cohn, you don't make as

much money in a week teaching school
as I lost to that son of a gun Stanley in
half an hour ... AnO dang it, I still can't
figure out how the heck that lame
mustang-I mean that incorrect equa-
tion-gives correct answers ! In fact,
that's what I came here to ask you
about."

"Science requires sacrifices, " de-
clared mister Cohn, "and you, Billy
boy, were sacrificed at the altar of
science! First of all, whoever told you
an incorrect equation can't give cor-
rect results? Ba-lo-ney! Even the
biggest liar of them all can acciden-
tally tel1 the truth. And besides, while
you were telling me about your lost
'races,'one after the other, I discov-
ered the underlying logic of your dis-
grace. Take a peek at this formula:

q 
=Q(2_Q\c- aV d)'

Never mind where I got it. What's
important is that this is just another
way of writing that same equation
(10). It looks a little dilferent, but it's
really the same ecluation. But now,

a tough

Andhe
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Billy, you cantake arry b mddanduse
them to compute a and cl That's it.
Simple and foolproofl Want an ex-
ample? Easy enough. Name any two
numbers. Two and seven? Fine. Let's
take b : 2, d = 7, andworkit out:

a 2/^ 2\ 2 12 24
-:-t, -. t:.c 7\- 71 7 7 49'

Sowecantal<e a:24, c=49, or a=48r
c = 98 ... Now let's check it with
equation (10):

24 49 24-49
1111

48 98 49-98
11a1L I L_I

Incidentally, you can double, or triple,
the denominators/ or numerators:

24 _49 _24-49
6 21 6-2t'

Multiply them by ten i you want to!"
Satisfied with his explanation, Mr.

Cohn took a deep breath. Bill looked
over the computations carefully and
summed it all up.

"Twenty at most. Won't win back
more than that from Stanley using
this trick."

"Now hold on a minute," said Mr.
Cohn impatiently, "this Stanley of
yours may already know the rule I
discovered. But here's something he
most surely won't be able to do, sim-
plybecause it's impossible! Bill, just
ask him the following question: Can
his number 10 horse rear i* head!! In
other words, ask him to satisfy rela-
tion (i0) for a > c! But don't forgeg Bi11,

that all these letters-a, b , c, and d-
must be positive integers. You got
that?"

Bill's sullen face lightened up a bit.
"If everything is like you say, mis-

ter Cohn, I'll charge him five dollars
for every hour he sits around wracking
his brains. Five bucks an hour-that's
fair enough, atn'tit?"

"Don'tbe so greedy, Bilt" Mr. Cohn
objected. "This is something that'll
set you up for life. Even fi{ty cents an

IS RETATIONT
(to)PossrBIrp
I,ITIIEII a,>c ?

,,€ # @-
"A11 right," said Bill. "But what if

he knows that one, too?"
"Enough, aheady!" Mr. Cohn cut

him off . "This is gettrngalittletedi-
oso. Tell me, Bill, do you like the
{raction 19195?"

"Looks like a regular old fraction to
me. Reducible, ain't it?..."

"Yes, indeedy," Mr. Cohn exclaimed,

"it's reducible all rightl But how?
Look at this. fust cross out the identi
cal digits-the last digit in the nu-
merator and the first digit in the de-
nominator:

lg1
9s: 

'Check it out! Flere's another one:

16 _!
64 4'

And another: '
49 4"
98 8'

A weird expression came over Bill's
face. He grabbed a pencil and wrote
with a shaky hand:

s7 _72_3V6
5s n &az'

@@

hour will net you the tidy sum of "Look,misterCohn,"hesaidina
twelve dollars a day ...1" whisper. "I made that up mysel{ ..."

Mister Cohn fell silent for a mo- "These examples aretivial," Mr.
ment. Cohn declared pitilessly. "We won't

"You know, BiJt you should assign bother with them. Now, you ask your
tlis impossible task to someone who's friend Stanley to come up with one
richer than Stanley. Otherwise the more fraction that can be simplified
idea won't last for more than a couple like this-and doesn't, of course, con-
days." sist of identical digits. Remember,

"Let me wory about that, " replied Blll-if there are two-digit numberc
Bill. "But still, I'd like to knowwhy in both the numerator and the de-
that horse can'trear its head. And one nominator, there are only four frac-
otherthing, misterCohn: whatifhe tions likethat! I'vewrittenout three
knows this one, too?" of themforyou. LetoldStanleyfind

"If he does"-mister Cohn was the fourth one.
getting hot-"let him find irreducible
fractions alb and.cldthatsatisfuequa- 

,a @ @ELtion(ro)!,, wl{AT r&AcTI?N
__.@ #s @.-, Dr0Jy'r $ffsrgB

Is kvr.tAwav (ra) CI0$$fiI r,[#fififrr_

'r#f#iififl.Iyg^s 's 
trygffry CINsr

ARfrIRRNWCBIIN?

"Oh, yes, I almost forgot," contin-
ued mister Cohn. "Ityou repeat the
last digit in the numerator several
times, and the first digit in the de-
nominator the same number of times,
our incorrect canceling continues to
yield correct results. Trust me, Bill,
but veri{y, as someone once said:

19 tgg 1gg9 1

ss: g%= gggs= s'
You can dare Stanley to calculate this
in his head:

t6666666666
66666666664'

"We11, Bill, is that enough?"
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"Yes, mister Cohn, thanks. Bg1-//
Bill got up, iooking sheepish. "I don't
have ... I mean ... uh, until I win my
money back ..."

"How much?" asked Mr. Cohn,
getting right to the point.

Nowpoor Bill completely andut-
terly embarrassed. He stood up, wiped
the sweat fromhis forehead, andheaved
a big sigh.

"Well, I actually need three sev-
enty-three".

"Three dollars?" Mister C-ohn cleared

his throat in disbelief. "Take forty for
starters."

"No, mister Cohn. For what I have
in min{ I need exactly three seventy-
three . .. That's right. Thanks, mister
Cohn..."

About a week later, as you may
have guessed, Stanley came to visit
Mr. Cohn. His appearance was elo-
quent testimony to the fact that he
wouldn't be a source of income for Bill
or for any other fast-talkin', free-wheelin',
wager-lovin' cowpoke.

"G1ad to see you," said Mr. Cohn.
"Sit down. So tel1me, how are things
going?"

"What can I say, mister Cohn? Life
goes on ... I just stopped by to show
you this little doohickey."

Stanley walked up to the table,
took a sheet of paper, and wrote:

40 otlAirTrtrt/rrtAY rsoo

;:127
.1 z-s

k ^EV's:'Vs'
"Clever Iittle thing, ain't it?" he

said. "The number three is incor-
rectly taken out from under the square
root sign, but the answer's correct
anyway. But that trick didn't do its
maglc for me: Bill figured everything
out in five minutes and even wrote a
generalizing equationl That totally
messed up my plans ... But no matter.
That isn't why I came. Actual1y, I
came to askyou... I mean... well ..."

"How much do you need, Stanley?"
mister Cohn asked point-b1ank.

"If it's not asking too much, lend
11s-tt Stanley took a deep breath.
"Lend me three seventy-three. I'11 pay
you back in a couple days."

"You krrow, Stanley," said Mr. Cohn,
handing over the money/ "that's the
second time this ridiculous sum of
$3.73 has cropped up. What's it all
about?"

"Oh, just a lot of nothin', really,

mister Cohn. Less than nothin' ..."
Stanley turned red, muttered some-
thing unintelligible, and ran off.

A few days later Mr. Cohn had to
visit a nearby town on business. Over
by the general store he noticed an
advertisement:

NOVELTY!!I
M.Y. Gardelman's 2

Living mathemadcks for the millionsl
Useful and amusing applicationsl

Onlv $3.731

In the comer of the poster someone
had written: _,

3y14J

4y 4'
13

-€sCe=*
WHAT F8BilTUfi,&

[S HIBDESI
BEHTffiD THXS 6)

SI}TF&EFTCATIf,IE {__a* * @> O

2 An amalgam of the names Martin
Gardner (the great American puzzle
master and science writer) and Yakov
Perelman {the most famous Soviet
popularizer of physics and math)-Ed.
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AT THE BLACKBOARD

Cunstl'uclims with colnpa$s alone

-the 
geometers version of "one hand tied behind my back"

by Dmitry Fuchs

MONCTFtr,COUNTLESS GEO
meffic consff uction problems there
are/ one often encounters those
requiring construction of a figure

"with straight edge alone" or "with
compass alone." Yet it has been known
for centuries that the lack of a straight
edge in no way narrows the circle of
possible constructions. Everything
that can be constructed with straight
edge and compass canbe constucted
with compass alone.

The idea of constructing with
compass alone was suggested long ago
by the Italian scientist Giovanni Ba-
tista Benedetti ( 1 530-1 5 90). In 167 2

the book Euclidius Danicus by the
Danish geometer Georg Mohr
{1640-1697) appeared. There it was
shown that all problems reducible to
quadratic equations can be solved
geometrically with mmpass alone. More
than a century later the problem was
restated and solved by the Italian Itxerwn
Mascheroni (1750-1800). Since then
the resulting statement has been called
the Mohr-Mascheroni theorem. A
proof of this theorem will be presented
below.

In all the construction problems
that follow I'll restrict myself to de-
scribing the construction. The proof

that it leads to the required result is
left to you in each case.

Staftemenlollhe nesult

One can scarcely hope to draw a

straight line with a compass/ so all our
problems will be to construct a certain
point (in the plane).

TsroRr,n. Suppose that a point M
can be constructed from the points A,,
.." A, with straight edge and compass.
Then M can be constructed from A,,
..., A, with compass alone.

To prove this theorem we have to
know precisely which constructions
can be performed with a straiglrt edge-
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Figure 2

with centers A and B through point O
and then draw a circle with center O
and radius AB. Let P and Q be the
points where this circle intersects the
two circles constructed before; then
the arcs OP and OQ are equal to arc
AB. Now draw circles with centers P
and Q through pornts B and A, respec-
tively, and take their intersection point
R. Finally, draw a circle with radius
OR and center P (or Q, it makes no di[-
ference). The point where this last
circle intersects arc,4B is the required
point C.

Problem 5. Let a circle S with
center O and a point P be given. Con-
struct the point P' on the half line OP
such that OP . OP' = 12, wherezis the
radius of circle S. (Such a point P'is
called "symmetric to point P With
respect to circle S.")

Construction Case 1: point P lies
outside circle S (fig. 3). Draw a circle
with center P through point O. Let Q
and R be the pornts where it intersects
circie S. Now draw circles with centers

Q andR throughpoint O. Thepoint
where these circles intersect (other
than O)is owpoint P'. (This construc-
tion is also valid when point P lies
inside circie S but the distance from it
to point O is greater thar' rl2.l

CaseZ: point P lies inside circle S.

Using the construction from problem
3, we construct the pomts P, Pr, ... on
the half line OP one after another such
that OPr=LOP, OP5=\OP,... untilwe
reach a point { that lies outside circle
S. Then, using the previous construc-
tion, we find the point P', s).rynmetric
to point { with respect to S. Finally,
we construct the points P' ,, P' ,, ... ort
the half line OP', such that OP'z:
\OP' t, OP's:3OP' t, ... . Then { is the

Figure 3

desired point.
Problem 6. Let a circle S with

center O and different points A and B
be given. Construct the circle passing
through point O and the points where
a straight line AB intersects circle S.

{We assume that line AB doesn't pass

through the center O of circle S and
intersects this circle at two points.)
Prove that the constructed circle is
precisely the set of points symmetric
to the points of line AB with respect to
circle S.

Construction (fig.4). Tkough point
O draw circles with centers A and B.
Designate their other rntersection point
P. Then construct the point P'sym-
metric to point P with respect to circle
S (see problem 5) and draw the circle
with center P' through point O.

Basic construclions

Corntuction for problem 2. I{ point
O does not lie on line,43, then we can

use the construction from problem 6
or even this simplified version: we
find the point P exactly as in the
problem 6 construction and then draw
the circle with center P and radius
equal to that of circle S (iI we know the
center of the circle S, we can measure
its radius with a compass); the points
where this circle intersects the given

Fioure 4 P'ot
I

o
P

that is, with a ruler. With a ruler we
can draw a line through two given
points and find its intersection points
with straight lines and circles con-
structed earlier. But since at the very
outsetwe were only given some points,
each of our straight lines must have
been drawn through two points con-
structed still earlier; similarly, each of
our circles passes through a point
constructed earlier and has another
point constructed earlier as its center.
So in the course of the construction
the ruler must be used only to solve
one or the other of these elementary
problems:

Prcblem 1. For given points A, B,

C, D, construct the point where the
straight lines AB arrd CD intersect.

Prob\em2. For a given circle S, its
center C), and points A and B, con-
struct the points where the circle S

and the straight line AB intersect.

Auxilial'y coltslr'ttction$

From now on, by a "construction"
we mean a construction with com-
pass alone. We'lIbegin by solving four
auxiliary problems.

Problem 3. Let rr,vo different points
A, B be grven. Consffuct the point C of
thehalf lineAB such thatAC:2A8.

Construction (fig. i). Drawacircle
with center B through point A and,
starting from point A, mark off three
subsequent arcs on this circle spanned
bysegmentsof length AB. Theendof
the third segment is the recluired point
C.

Problem 4. Let a circle with center
O and an arcAB on itbe given. Con-
struct the point C dividing arc AB into
two equal parts.

Construction ttis.2l. Draw circles

48 OUAIiTUltl/ll/lAY l SSO
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circle S are the desired points. If point
O happens to lie on the straight iine
AB, then this construction won't do:
point Pwillmergewithpoint O. Then
we apply another construction (fig. 5):

we draw an arbrtrary circle with center
A (or with center B fi A : O) that inter-
sects the circle at two points; then we
designate these intersection points C
and D and divide the arcs CD andDC

into two equal parts each (see probiem
4); the dividing points are the ones
we're looking for.

Constructionfor problem 1 (hS.6l.
Draw an arbitrary circle S such that all
the given points lie inside it and its
center O doesn't lie on either of the
straight lines AB and CD. (This can
easily be done by sight, but such a

practice doesn't iit in with our "rigor-
ous" construction.) One may proceed
as follows: take an arbitrary circle
and, using the construction from prob-
Iem}, find the points where it inter-
sects Lines AB and CDi tal<e any point
of the circle (different from the points
previously found) as point O. Then
we follow the construction from prob-
lem 6 and get the circle S, that passes

through O and the points where circle
S intersects line AB; then we get the
circle S, that passes through O and the
points where circie S intersects line
CD. After that we denote as P the
point (other than O)where circles S,

and S, intersect and construct the point
P' symmetric to pointP with respect
to circle S. This is our point.

Conuluding relnarfi$
If the construction problem data

do not consist of points only, then it
may fifin outthat a ruler is needed to
solve it. Consider this problem, for ex-
ample: given a curve c (drawn in the
plane) and two points A, B, find the
points where curve c intersects the
line AB. In general, it's impossible to
do this without a ruler. Nevertheless,
a problem Like this can sometimes be
reduced to problems of the kind we've
been looking at, and then they can be
solved with compass alone. Here's an
important example: a circle is drawn
in the plane; find its center. This can
be done in the following way: mark
three different points A, B, C on our
circle; it's well known that one can
construct the center of the circum-
circle of triangle ABC with straight
edge and compass; so this can be done
with compass alone. (This problem
has a much simpler solution---+an you
find it?) By the way, we see that in
problems 2,4,5, and 6 it was necessary
to indicate the centers o{ the given
circles il advance.

Not every construction that can be
performed with straight edge' and
compass can be pedormed with str aight
edge alone. (A proof can be found in
Numbers and Figwes by Rademacher
and Toepliz, for example.) Neverthe-
less, a theorem by Steiner asserts that
any construction that can be done
with straight edge and compass can be
performed with straight edge alone i{ a
single circle with the center marked is
drawn beforehand.

So if you're going to make con-
structions with straight edge and
compass and discover that you've lost
yourruler, don't despair: you can do
any of your constructions with com-
pass alone. It's worse if you've lost
your compass, but everything will be
okay if you can borrow one from
somebody just for a moment: you
draw a circle, mark its center, and
return the compass to its owner-
now you can do without it.

The worst case, of course, is when
you've managed to lose both your

ruler and your compass. Science can
hardly bail you ott then. O

Dmitry Fuchs js a researcher in l.M.
G elf and' s m ath and b iology lab or atory.
(His article "BendThis Sheet" appeared
in the I anuaty 1990 issue o/ Quantum.)

CONTINUED FROMPAGE 21

[o we really need fiis iling called

"telnpel'aUre"?

Scientists had worked out the con-
cept of temperature and introduced it
as a physical quantity long before they
understood its real meaning. But now
that we know what it means, is it
worth keeping this archaic quantity?
Wherever we're accustomed to talk-
ing about temperature, degrees Kel-
vin, and so on, maybe we should think
of what they really are-the mean
kinetic energy of a particle-and measure
them in joules.

There ate vety good reasons why
we don't do this.

Do you think a doctor, for instance,
would find it convenient to diagnose
a patient as sick because of a mean
molecular kinetic energy of
5.64 . l0 zt 

J? It's easier and more direct
to talk about a temperature of 100.4"F.

Besides, using joules instead of de-
grees might cause confusion. Con-
sider this: 100 | of energy usualiy
implies that 100 ) of work canbe done.
But if the temperature of a body is 100

|/molecule (a fantastic value for tem-
perature/ by the wayl, that does not
mean we can get that amount of work
from it.

So let's stick with degrees-agreed?

Exercises
1. Find the values that correspond to

absolute zero temperature in the Fahrenheit
and Rdaumur scales.

2. Calculate the mean kinetic energy of a
molecule at 1,000"K.

3. A nuclear explosion geoerates a gas

ball at a temperature of approximately 20
million degrees Celsius. Find the mean
kinetic energy of one particle in the bali.

4. The unit o{ energy in atomic and
nuclear physics is the electron-Volt (eV).
Find the mean kinetic energy of a molecule
at room temperature in electron-Volts.

5. Calculate theBoltzmann constant in
the Fahrenheit scale.
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lntroducing a new column on
mathematical oddities, quiddities, and just plain surprises

by John Conway

ERE'S A SIMPLE LITTLE ARITHMETICAI GAME.
You start with two rows of I's joined by a zigzag of t's,
as in the example, where the dots mark the places in
which further numbers are to be inserted:

11111111
1

1

1

I
1

1

1 1 I I I 1 1...

Now you fill in more numbers by the rule that whenever
four numbers form a diamond

N
WE

s

the productE14/mustbe 1 more than NS, so that

E:(Ns +t)lw.

In our example, here's what happens:

111111i11
t22421

13771
i 10 12 3 I

13r7521
t25731

13241
1 1 I 1 1 1 1 1.

Try it with other zigzagpatterns. There are some odd
things you'll notice when you play with these patterns.

1. A11 divisions "come out exactly" to give whole
numbers.

2. Eachline "closes" by gettingback to 1.

3. There's no need to continue the lines after this point,
because these l's form a ngzaglxtlike the one you started
with but upside down, so that the complete pattern would
be a repeating one:

1111111111
t22421324r

1377r2s731
1 10 12 3 I 3 17 5 2 I

1 3 17 5 2 I 10 t2 3 1

1257313771
132412242r

1111I1111L
Can you explain why?

Some similar things happen when you replace multi-
plication by addition. This time you start with two rows
of 0's joined by a zigzag of 0's, and you complete little
diamonds by using the formula

E +W = (l/+ S)+ 1,

so that

E:{N+S+t)-142.

Of course, now 0's close the rows:

0 0 0 0 0 0 0 0 0...
01256430.

026109620
05101210410

0281112720
014810840

02365410
0 0 0 0 0 0 0 0...

Can you explain why the numbers never go negative,
why they close by getting back to 0's, and why these 0's
form an exact copy of the originalzigzag, now the right
way up?
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and

Some interestrng pattems tum up if we drop the require-
ment that there be azigzagof l's joining the top and bottom
rows. Multiplicative hiezepattems arise in which all the
numbers in any given row are the same and positive. For
instance,

J2 vt, 12 /2 v511111

/^ r- - /= /-VJVJVJVJVJ
22222
\/3 J3 \/3 \/3 v'51 I 1 1 1 1.

You can see that the numbers aren't all whole any more.
What are they? Hint: The answer is connected with
polygons.

The multiplicative frieze patterns in which all the
entries are positive whole numbers are also connected
with polygons. Can you see how?

Another hint: The polygon for our first example is this:

|ohr-r Conway is tt ytrofess. u' oi trtatltentatics ttt Prxtceton Lltit,elsits,.

CI

Comic relief for the serious student.

MATHEMATICS AND HUMOR
Edited by Aggie Azzolino, Linda Silvey, and Barnabas Hughes

Read this unusual collection of
limericks, riddles, jokes, and car-
toons that poke fun at the usually
serious subject of mathematics.

You'll find that mathematics can
be funny and that mathematicians
can laugh at themselves.

Share a good laugh with your
friends! Order your copy now.
58 pp., #266, $4.50.

National Council of Teachers of Mathematics
1906 Association Drive, Reston, VA2209l
Tel. (703) 620-9840; fax (703) 476-2970

What drd the zcorn say
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IN THE LAB

half a century ago. This epic was one
of the first superproductions in the
movie industry. It's renowned for the
alternately rousing, suspenseful, and
plaintive background music provided
by Sergey Prokofiev and for its render-
ing of the climactic battle scene on
Lake Chud. It was there that Russian
forces, led by Nevsky, de{eated the
better trained and better equipped Teu-
tonic knights in 1242.

Few people, however, are awate
that the film's central episode,
the battle on the ice, was actually
shot at the height of summer!
Thefilm shows snowandice on
Lake Chud, while in fact it was as

hot as 85"F. Here's how they did
it. A large flat areawas covered
with a mixture of naphthalene
and salt. When the actors walked
over this "snow," it creaked just
as real snow does when it's bit-
terly cold.

You can easily duplicate the
"Nevsky solution" on a smaller

scale by filling a plate with a
smooth layer of granulated sugar
or sa1t. Press a spoon against it-
you'l1 hear a faint creak. Now
wet the granules or melt them
slightly on the stove-see if you
can get them to creak some more.

Now I'111et |earld Walker have
the floor: "sometimes snow crack-
les when you walk in it but only
when the temperature is far enough
below freezing. What causes the
noise, and why does its produc-
tion depend on temperature?"

Jlowlo rutths "ice" ilt ice cl'eam

When ice cream first appeared, its
method of preparation was kept stnctly
secret. At many European courts,
chefs tried using snow or ice to freeze
the mixture o{ cream, sugar, and fruit
juices-the mixture would be chilled,
but it wouldn't freeze. They finally
had to resort to what is now cal1ed "in-
dustrial espionage." And what did
these culinary spies find out?

"When my grandmother makes

T
\'

"L

Ullalker in a tnliltler tnloltderlilltd

But since it's almost summer, let's fake the snow,
make some ice cream, and watch the smog roll in!

by Alexander Borovoy

EARLD WALKER'S WONDER-
ful book The Flying Circus of
Physics has been translated into
Russian and has become so popu-

lar in the Soviet Union that it sold out
long ago, despite several print runs.1
Answers to many of the questions
posed in this bookinvolve settingup
clever experiments or carrying out
interesting observations. In this ar-
ticle I'l1follow up some of Walker's
questions and supplement them with
some curious stories. I'11 also describe
some additional preparatory experi-
ments. All these questions and ex-
periments have to something do with
cold phenomena-a last gasp of win-
ter before thelaz-l days of srmmer set
in.

"$queak, squeak"-lllanmk is

collliru!
The great {ilm firector Sergey Eis-

enstein, famous for the ciassic film
The Battleship Potemkin, is also the
genius behind the film Alexander
Nevsky, which is stil1 popular in the
Soviet Union though it was shot over

1 "What's a flying circus ? " you ask?
The phrase dates back to World War I
and meant airplanes {lyrng rn formation.
As time went by, it came to include
stunt flying in air shows (no doubt
because vintage biplanes often take part
in them). Andwho is |earldWalker?
He's a professor of physics at Cleveland
State University. His book, published by
|ohn Wiley & Sons, is available in
paperback-in English!-Ed
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homemade ice ctear-rr," writes Walker,
"she packs ice around the ice cream
container, and then she salts the ice."
So the secret is plain old salt! "Why
does she add the salt?" Walker asks.

Before trying to answer the ques-
tion, maybe you can conduct a couple
of simple experiments. Take some
crushed ice from your refrigera-
tor and gradually add salg mixing
it all together. (It would be nice-
but not essentialfor ourpurposes-
to make ice cream during the ex-
perimentl) You shouldbe able to
get the temperature of such a
mixture down to *20'C.

Everyday sodium chloride is
used most often for this kind of
cooling. But more arcane sub-
stanceswillalso do: KCI NaNOy
and so on. In fact, the champion
temperature reducer is CaClr. If you
mix 42 g of this salt with 100 g of
crushed ice, you can work the tem-
perature down to -55"C!

So how did your experiments turn
out? And what's your answer to Walkels
question?2

sl0tillu homls skirl $tat8-01-l]l8-art

arlll0r
Engineers of ten prescribe lubrica-

tion to reduce friction. Different
materials play this role-sometimes,
it seems, the most unexpected and
inappropriate. By way of example, I'11

tel1 you about a case where steel acted
as a lubricant (though we can't exactly
call it "cold, hard steel").

At the end of the Iast century, the

2Can you figure out how to lower the
temperature of the ice-salt mixture
without extracting heat from it?-Ed.

English industrialist Harvey sent
samples of new armorplates for
warships to Russia. Dunng test-
ing the shells from the huge heaq,
guns, instead of breaking through
the plates, crashed against the
armor without damaging what-
ever was behind it. Then the
Russians asked that the tests be
repeated. Inthe second series of
tests, the shells broke through
the armor plates. And in a later
series of tests, after certain im-
provements, the shells began to

pierce holes in the armor.
Why did that happen? How had the

design of the shell been modified?
The tips of the shells now had spe-

cial caps made of soft steel. The cap
would spread and melt upon impact.

This prevented the shell from crack-
ing, and it served as a kind of lubrica-
tion for the shell after it broke into the
armored plate. So, under tremendous
pressure/ steel can serve as lubrica-
tion. Admiral Makarov, a talented
scientist and as well as a worthy sea-
man, invented this soft steel cap {or ar-

tillery shells.
And now for something completely

different. "When you are ice
skating, " Walker asks, "why do
your skates slide along the ice
surface? " That is to say, what's
the iubrication in this case? (Maybe

it's not so completely different
after all.)

"Tfil'ottgh l]te misly misland t[e

dt.slry dusk ..."
Damp winter days are always

misty. We're used to thinking of
the mist as grayt but it's not al-

ways so. Here's what the Russian
writer Constantine Paustovsky had to
say in his bookThe Golden Rose:

"The French artist Monet came to
l.ondon and painted Westrninster Abbey.
Monet was working on an ordinary
foggy London day. Lr Monet's picture
the Gothic outlines of the abbey ap-
pear through the mist. The picture is
now universally recognized as a mas-
terpiece.

"But when the painting was exhib-
ited, it caused confusion among the
Londoners. They were astonished that
Monet painted mist with a crimson
hue, even though everybody knows
that mist is gray.

"At first, Monet's impertinence
caused indigrration. But the indignant
Londoners went outside, looked at-
tentively at the mist, and saw for the
first time that it was indeed crimson."

Walker also agrees with Monet. "If
you've lived in alarge crty," hewrites,
"you almost certainly have spent part
of your life in ahaze. Why are such
hazes brown?"

What causes a mist's coloring is not
an easy question to answer. It's not by
accident that I've saved it for the very
endl Take a close look at the color of
fog smog orhaze in your town and in
the countryside. Maybe you can even
do some experimenting and come up
with a method of producing "mists"
of different colors. If you do, tell us
about it--don't hog your fog! O

Alexander Borovoy, a doctor of physics
and mathematics, teaches in the School of
Natwal Sciences atthe Kwchatov Atomic
Eneryy Institute, He has recently worked
on problems associaud with the Chemobyl
accident andwas pafi of a scienffic group
that examines the damaged nuclear power
plant.
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HAPPENINGS

ULY 1989 FOUND 15 SOVIET
students winging their way to
the United States, and a month
later 47 American students flew

off in exactly the opposite direction.
They were all participants in the Sci-
ence and Mathematics Intemational
Summer Instrtutes sponsored by Kvant
magazine (Moscow), the Intemational
Educational Network (Washingtor! DC),
and the American Association of Physics
Teachers. The Soviet group basically
consisted of winners oI Kvant'sprob-
lem contest who also had an active
command of English. The American
students had to pass some challenging
tests, but knowledge of Russian was
not demanded.

Rather than describe the program
in the abstract, we'll let two of the
participants give their candid impres-
sions. Ivan Arzhantsev was a student
at the Physics and Mathematics School
No. 45 in Kiev; Tania Edwards had
recently graduated from the Washing-
ton Intemational School and now at-
tends Brown University.

Oun rnrp ro AmERrcAwas preceded
by a two-week summer school where
we had daily classes in physicg mathe-
matics, and English (including prac-
tice in conversational English). This
experience was not only useful but
pleasant. We had interesting meet-
ings with members oI the Kv ant edi-
torial board, American scientlsts, and
even a businessman.

Of 26 candidates for the trip, 15

students were chosen. The others had

Summor in llleul Yol'k illtd Tarlu,

ltdaltd [Uluscotnl

Students from different countries mix it up
academically and socially

the chance to attend the
Soviet-American school in Tartu [see
the essay below by Tania Edwards-
Ed.l.

On |uly ll, after an 1l-hour flight,
we arrived in Washington, where we
were met by representatives of the
American Association of Physics
Teachers. And late that night we were
already at the international summer
institute on Long Island in New York.

Classes were conducted in three
subjects: mathematics, physics, and
biology. Dr. Alexander Soifer of the
University of Colorado taught mathe-
matics; Dr. Edward Lozansky, direc-
tor of the summer institute, taught
physics along with Dr. Alexander Buzdiq
and Dr. E. Trifonov of the Weizman
krstitute in Israel gave lectures in mo-
lecular biology.

The math classes were devoted to
mmbuutoric gmmetry and gaph thmry.
In addition to traditional problems,
several were proposed that were of
real scientiJic interest. And there was
a material reward for those who could
solve them.

Here are the problems. Let's take a
convex quadriiateral of area 1 and a
point inside it. The vertices of this
quadrilateral and the internal point
form 10 triangles. Of these, let's take
the triangle with the smallest area.
The task is to find the greatest possible
value of this area. Solutions to this
and a similar problem with a convex
pentagon were valued at 20 dollars
each. The next problem had to do
with convex polygons. hr class we had

a1rcady shown that i{ we take 6 points
inside or on the border of an arbitrary
convex polygon of. area 1, we can al-
ways select three such that the area ol
the triangle with vertices at these points
is less than 7+ (condition 1 ). Ithad also
been proved that, in an arbitrary con-
vex poiygon of unit area, we can posi-
tion 4 points such that the area of any
trianglewithvertices at thesepoints
will be greater than l+. Here'swhat we
had to determine: For which convex
polygons is 5 the least number of points
needed to satisfy condition 1, and for
which--{? A solution to this problem
was valued at 50 dollars. (We didn't
manage to completely solve either of
these problems.)

In the physics classes we solved
problems from many branches of ele-
mentary physics, and there was a physics

tournament in which 12 teams com-
peted.

At the lectures on molecular biol-
ogy, Dr. Trifonov explained the geo-
metric andchemical structure of DNA
and described the latest experiments
in studying the inner structure of the
cell. The lectures were vqry interest-
ing and informal. (The level of biologi-
cal studies in American schools is
generally higher than in ours, which
cannot be said of the level of physics
and math.)

We also heard a series of lectures on
a wide variety of topics in physics,
brought together under the general
heading "Forces in Nature." They
were given by the Nobel Prize-winner
Sheldon Glashow, and the views of
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such a great specialist were of tremen-
dous interest to all of us. Another
Nobel Prizewinner, Dr. Pronin, gave a
lecture on ryrethods of determining
molecular structure/ but we didn't
enjoy this lecture nearly as much.

The final days of the summer insti-
tute were taken up with math and
physics olympiads. The institute's
organizers promised the winners free
trips to the US or France next sum-
mer.1

In addition to completing a broad
academic program/ we also just re-
laxed a lot during those two weeks,
ukingpart in tennis and chessmatches,
playing volleyball, and canoeing on
the river. Students from four coun-
tries participated in the program: the
USSR, the US, France, and Switzer-
land. We rea11y got to know each other
because the room assignments en-
sured an international mix.

During the zummer school we drove
into New York City, visited the
Brooldraven National Laboratory and
hit thebeaches of the Atlantic Ocean.
We were greatly impressed by our
visit to the suburban home of one of
the American families, where for sev-
eral hours we played volleyball and
tennis and swam in their pool.

The kids from each countryput on
show one evening-an improvised
performance illustrating something from
the past or present of their country. It
was myfate to play therole
of Ivan the Terrible2 ...

On the last day of the
summer school prizes were
awarded to the winners of
all the olympiads, touma-
mentq and contests. A lot
of amusing prLes and sou-
venirs were given away, arrd
there was a little artistic
contest in which Mikhail
Kapustin gamered the most
points by improvising on
the piano.

rThe winners were Soviet
students in both instanc€s: Ivar
Martin in physics and Ivan
Arzhantsev in math.-Ed.

2The Russian tsar who
ruthlessly centralized state
power in the 16th century.-
Ed,

After school let out we took a three-
day trip to Washington in vans/ stop-
ping at Princeton University, Phila-
delphia, and Baltimore on the way.
But the thinglremembermost is our
visit to the Trump Plaza casino in
Atlantic City, where wallets are emp-
tied by the pitiless laws of probability
in the midst of feverish eyes and the
tinlde of coins. And finally, Maryland
University (right outside Washingon),
where we spent the remaining 10 days.

Seventeen American kids who are
planning to visit the USSR came here
for three days. We attended several
lectures on physics and worked with
computers. We took several trips into
Washington and visited the National
Gallery of Art, the Library of Con-
gress, and NASA headquarters. A
highlight was our visit to the Soviet
embassy, where we met with Yuri
Ossipyan, Vice President of the Acad-
emy of Sciences and editor in chief of
Kvant.

Without a doubt, we got good lan-
guage practice on this trip, we studied
physics and mathematics pretty seri-
ously, but mainly we saw something
worth seeing-America!

-Ivan 
Arzhantsev

Lesr suraunn I nAD the incredible op-
portunity to participate in a uniclue
program. For the month of August,
togetherwith about 40 otherAmeri-

cang I went to study math and science
at the University of Tartu in Estonia.

My experience proved to be far beyond
the simply academic. I not only leamed
from some of the best professors in the
USSR Academy of Sciences, I also had
the opportunity to interact with Esto-
nians and Russians who taught me
about cultures very different from my
own and who had a tremendous im-
pact on how I perceive my country and
those around me.

The program involved studying for
three weeks and then traveling around
Estonia, Leningrad, and Moscow for
one week. At Tartu, we were received
very warmly since we were the first
Americans to ever stay there. Each
one of us had Estonian buddies who
showed us around the town/ intro-
duced us to their friends and family,
toid us about their li{e and traditions.
We, in tum/ taught them about Amer-
rca, gave them T-shirts, and shared
our music.

In the morning we had math and
physics classes taught primarily by
Soviet scientists. It was very exciting
to be able to learn things we were
never exposed to in our schools, sur-
rounded by Soviet classmates. In the
afternoons we saw the city, went to
hear Estonian folk music, saw muse-
ums, played volleyball, and painted
cabins on the beach of the main lake as

a souvenir to the city. Onweekends
we went to different
places such as the beau-
tiful old city of Taihnn,
the capital of Estonia,
where we stayed in an
Olympic hotel. We saw
forests, farms, and the
highest point in the re-
public, ate potatoes
around the clock, went
to concerts/ and experi-
enced the public baths.
We also went camping
near the city of Pdrnu
and on the island of
Saaremaa, where special
permission was required
to enter since it was a
military base. Endless
nights with the guitar
bythefue made us oblivi-
ous to everything around.

Ann Gailitski of New York works on a physics experiment with Mati
Pim of Estonia at the Science and Mathematics Intemational Summer
Institute in New York. (Photo cowtesy o;f Tatiana Lozansky)
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Of course, these experiences were
incredible, but what was most impor-
tant is that we got to reaily see'how the
political changes, spurred by gJasnost,

were taking place all over the country.
Contrary to or.1l expectations, we were
received by mayors and by well-known
activists, one of whom is a current
Estonian representative to the Con
gress of People's Deputies. We even
had opportunities to ask them ques-
tions about their personal views and
plans. Such contact was very exciting
and led to numerous political discus-
sions with the Soviet students.

On the negative side, in the camp
itselJ we soon found ourselves right in
the middle of the ethnic conflict be-
tween the Estonians and the Russians,
who were also part of the program.
The Russians were ffeated quite poody.
They lived separately from us, didn't
go on any of the trips, and had no one
cheering for them at the games. When
we approached Estonians with clues-
tions, we received bitter responses:
"They were the occupiers, they don't
deserve to be treated we11." Our friend-
ship with the Russiang howeveg geatly
improved in the second part of the
program when we started to realize
what was happening. It was especially
good when we traveled to Russia-to
the ancient fortress-city of Pskov, the
beauti{ul palaces of Leningrad, and
the museums and shows of Moscow.
Like the Estonians, the Russians were
eager to show us about their life and to
leam about ours.

When it came time to leavg no one
could believe that only a month had
gone by. It felt like we learned im-
mense amounts not only in classes
but from our new friends that we
couldn't say good-bye to. When we
arrived in Paris, we walked around as

if in afairy-taleworld, bewilderedby
the overflowingmarkets and the oblivi-
ous people walking by. When our
plane finally landed in New York, we
all burst into applause. We came
home different-more objective and
more knowledgeable about the world
around us. And I think the other
participants would a$ee that the feel-
ing we all shared was one of gratitude
for the country we live in.

--Iania Edwards

HAPPENINGS

The Americalt Heuiotts

[Ulalhglnatics League

Teamwork is the key in this summer
competition

by Mark Saul

ACH ILINE, OVER ONE THOU-
sand of North America's most able
and interested young mathemati-
cians gather for a celebration of

their field of interest-the annual com-
petition of theAmerican R.egrons Mathe-
matics League (ARML).

This competition is the largest on-
site event of its kind in North Amer-
ic4 drawing more than sixty teams of
students from all over the United States

and from Canada. The teams engage
in a daylong sequence of events, com-
prising a variety of individrral and team
contest questions.

Students begin aniving at the cam-
pus of the host college on a Friday
afternoon. For the past several years
this has been Pennsylvania State Uni-
versity. Some years, telecommunica-
tions have allowed simultaneous
competition at this site and at Duke
University in Durham, North Caro-
lina. Friday evening is devoted to
recreational activities, including talks
by noted mathematicians and teach-
ers.

The competition begins in eamest
on Saturday momingwith the "power
question." This event, unique to ARML,
consists of a single complex question,
often broken down into separate parts.
The team must work together for an
hour to produce a single answer paper/

typically including examples, proofs,
extensions, applications, and gener-
alizations.

Team questions follow. Teams attack
this set of ten "quick" problems by
dividing up the work in any way they
wish. This event is followedby a more
traditional event/ consisting of pairs
of cluestions to be answered individu-
ally. The team score will be the sum of
the individual scores.

A relay round follows a break for
iunch. In this event, the team of
fifteem members is divided into three
or five subteams, working separately
on chains of questions. The answer to
each question forms part of the next
question, and only the final answer is
scored. Since an error in any one ques-

tion can skew the final answer/ suc-
cess in this event demands a balanced
team in addition to nimble individual
minds.

At the conclusion of the competi-
tion, scores are tallied and prizes are
awarded to high-scoring teams and
individuals. Publishers and profes-
sional organizations donate books or
plaques. An awards cererr\ony honors
the winners.

Teams for ARML are formed in a
variety of ways. Many large cities and
suburban areas have longstanding tra-
ditions of these competitions, andteams
are often formed as a result. Rural
areas of a state often band together to
send a team. Some teams represent a
single state, and often a state chooses
two or more statewide teams to repre-

sent it. Teams from Canadian prov-
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inces have recently joined those from
the United States. Criteria for team
membership are, fot the most part, left
up to local tradition.

The backgrounds of team coaches
and chaperones vary as much as the
teams themselves. Frequently, a teacher
or math team coach assembles the
team, but sometimes the coach is from'
the faculty of a local college or unlver-
sity. Many teams are accompanied by
alumni of ARML, who have retumed
as coaches to rekindle the enthusiasm

of their days on the team. Coaches
give generously of their time-and
sometimes of their money-in sup-
port of their teams.

An interesting by-product of the
ARML on-site format, and particu-
larly of the power question event, is
the possibility of continued investiga-
tion even after the conclusion of the
contest. ARML contest material is de-
signed by the authors to be open-ended.
Even the most humble relay question
can often have an interesting exten-

sion. ARML contest questions have
provided students with ideas forpize-
winning research projects and fine
expository papers.

But the most important source of
stimulation at the ARML competi-
tion, and the one source that is diffi-
cult to find in other mathematical
contests and events/ lies in the inter-
action of the students themselves. Team-
mates share ideas and pool intellec-
tual resotuces. Students on rival teams
meet informally, exchanging solutions

to problems and posing new
challenges to each other.
Some play the game of uying
to find flaws in the day's
contest problems. These inter-
actions lead to the forma-
tion of a network of student
mathematicians. Friendships
started over lunch tables at
ARML are often continued
long after the day's end. For
many students, the shared
enthusiasm of the ARML
competition becomes a cen-
tral experience in ther lives.

For more injormation on
ARML, please write to Ste-
ven Adrian, ARML Execu-
tive Director, R.D. 5, Box
133, Kings Ridge Road,
Mahopac, NY 10541USA,
orBarbaraRockow, ARML
Corresponding Secretary,
Bronx High School of Sci-
erce,75 West 205th Street,
Bronx NY 10468 USA. O

Mark Saul is the computer
consuhantfcoordinator for
Bronxville School in N ew York
and president of the American
R egions M ath em atic s Lea gu e.

The 1989 ARML cantest
questions were created by
Gilbert W. Kess/er, Canarste
Htgh School (tetil ed/. Braa^-
lyn, NY. Harry Ruderman,
Hunter College Campus
SCnoal \teltted). t\e* Yor(
NY, and Larry Zimmerman,
Brooklyn Technical High
School Brooklyn, NY.
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A convex n-gon will be called "Pythagorean" if it has integer sides, it is
cyclic, and its longest side is a diameter for its circumscribing circle. It shall
be denoted by Pn or Pn:(a,b,...),where a,b, ... are the lengths of its sides. We
shall always use the letter d for its longest side. (Thus P3 is a Pythagorean
triangle. Notice that it would be a right triangle.)

L There is a theorem that states (in part): If a prime d is the hlpotenuse of
a Pythagorean triangle, then d2 is the hlpotenuse of two Pythagorean tri-
angles, d3 is the hypotenuse of three Pythagorean triangles, and so on.

I.A. Find two P3's for which d : 25.
LB. Find three P3's forwhich d: 125.
II. Ptolemy's Theorem says: A convex quadrilateral is cyclic if and only if

the product of its diagonals equals the sum of the products of the two pairs of
opposite sides.

II.A. If the P313,4,51is reflected as shown in the figure, a quadrilateral EFGH
can be formed. (It will not be a P4, as FG is not an integer.) Multiplying each
sideby5 produces aP4. Findthe sides of this P4.

II.B. Find a P4 wirh two equal sides and with d = 25 that is different foom the
answer to part tr.A. (Note: Two lln's arenot considered different if their sides
are equal but in a different order.)

tr.C. Show that a Pn must exist for all integers n > 3. (This may be done by
describing how to create such a Pn.)

III.A. For the P3:(a,b,dl, d2: a2 + b2. Provethat for the P 4:(a,b,c,d), d2 > az
+b2+cz.

Itr.B. Given the P4:(a,b,c,d), prove that iJ d > 2, then d must be composite.
Itr.C. If all the diagonals of a Pn are integers, we will call it "super Pythago-

rean" and denote it by sPn.

m.C.1. Show that the area of any sP4 must be an integer. (Hint: One
approach mlght be to first show that the area of any sP4 must be rational and
its perimeter must be even.)

m.C.2. Assuming that the area of every sPB and anery sP4 is an integer, show
that (for all n > 4l the areaof every slln must be an integer. (You may do this part
even if part ltr.C.l has not been completed.) 
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HAPPENINGS

Batlel'y-dl'iutn ideas earn scholal'shhs
The eighth annual Duracell NSTA

Scholarship Competition really got
the creative juices flowing. To enter
the competition, a student had to de-

sign and build a device that is educa-
tional, useful, or entertaining and is
powered by one or more Duracell bat-
teries. |erry Pratt, a senior at Ashland
Higfu School inWisconsrr, was awarded
a $10,000 schoiarship for his "Knock-
Out" Keyless Door Lock. You pro-
gram the device's microcomputer by
tapping out a rhythm {a favorite tune,
the Morse code of someone's name,
whatever), and the door can't be opened
from the outside unless the encoded
knock is repeated. |erry says his Knock-
Out lock is an improvement over other
electrical locks because it's tamper-
proof from the outside.

Five other students each received a

$5,000 scholarship. Theodore Gielow,
a senior at Newport Hafior High School
in Califomia, invented the High-Effi-
ciency DC Light Dimmer, which
decreases the brightness of a light bulb
(for example, a night light on a camp-
ing trip) without wasting power by

Bulletilt Boal'd

reducing the time duringwhich cur-
rent flows rather than cutting back
the current. Albert Masaki Hunting-
tont a senior at Pleasant Hill High
School in Oregon, came up with the
Portasynth, a compact/ lightweight,
higlrly efficient keyboard with 63 keys
designed to be practical for trips into
space. Matthew |ared Klam, a senior
at the Wisconsin School for the Deaf,
devised a Walkie-Talkie Device for
the Deaf, which incorporates a port-
able screen and keyboard for sending
and receiving messages. Robbie GIen
Seibert, a junior at Grand Rapids High
School in Minnesota, invented a Speech

Leader-a talking compass that uses a
directional sensor/ speech processor
chip, leveler, and alarmclock. Kurt
Thorn, a sophomore at Shoreham-
Wading River High School in New
York, created the Multipu4)ose Angle
Measurer for recording the degree of
mobility in the joints of persons who
are in physical therapy after an acci-
dent, for example, or who are arthritic.
It's based on apendulum hooked to a
variable resistor.

Ten students were given $500 schol-
arships, and25 students received $ 100
cash awards. The top winners ex-
piained their devrces to an audience of
educators and scientists at an awards
luncheon during the recent NSTA
annual convention in Atlanta, Geor-
gia.

To find out how to enterthe ninth
annual Duracell NSTA Scholarship
Competition, write to Katie Rapp, Na-
tional Science Teachers Association,
1742 Connecticut Avenue NW, Wash-
ington, DC 20009, or call 202 328-
s800.

Fl'ee 3-[ relort brings lnohular

[ltrl8$lolil8
A colorful new report from the

Howard Hughes Medical Institute,
Finding the Critical Shapes, shows
how the answers to many riddles of
modem biology and medicine lie bur-
ied in the intricatg three-dimensional
shapes of our bodies' molecules. Re-
searchers in the field of "structural bi-
ology" increasingly depend on com-

puters not only to do their
mathematical computations
but to help them see their
results. This beautifully il-
lustrated report includes a
stereoviewer to help the reader

visualize molecular shapes
in three dimensions. This
kind of view provides in-
sights into the mechanisms
of previously untamed dis-
eases and help.s scientists
design new drugs to combat
them.

For a free copy oi Finding
the Crilical Shapes, write to
the HowardHughes Medi-
cal Institute, Communica-
tions Office, 5701 Rockledge
Drive, Bethesda, MD 20817.

Award-winning devices from the 1989 Dwacell NSTA Scholarship Competition (left to right):
"I(nock-Out" Keyless Door Lock, High-Ef t'iciency DC Light DimmeL Envtuonmentally Dtuected
Watering Deuice, Speech Leader, Portaslmth, Wakie-Takie Device for the Deaf
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M6
For each of the three given circles,
draw radii from its center to the points
where it intersects the other two (the
thin lines to points A, B, C,H in figure
1 ). Three rhombi appear (with com-
mon vertex H) whose sides are ai1

equal to r. We can imagine them as

representing three faces of a parallele-
pipedwith commonvertexH. Draw
the three other faces-that is, three
new rhombi with common vertex O.
Their new sides (the thick iines OA,
OB, OC in figure 1) are also equal to r.
And this is precisely what has to be
proved. (Notice that our reasoning
also holds when B lies outside triangle
AHC.I Figure 2 creates a more con-
venient view of the situation bybreak-
ing apart the parallelepiped and elimi-
nating the distracting portions of fig-
ure l.

We'llleave it to you to find other
solutions to this problem and lots of
interesting facts of triangle geometry
related to it. You may have noticed,
for example, that triangle ABC is con-
gruent to the triangle with vertices at
the centers of the three given circles;
that B is the orthocenter of triangle
AHC; that the points symmetrical to
B relative to the sides o{ttarrgle AHC
lie on its circumcircle; and that all
f our circumf erences play equivalent
roles-that is, every group of three
circles has a common point.

SOLUTIONS

You can find a detailed discussion
of this problem in the remarkable book
M ath em atic al D is cov ery by George
Polya.

M7
Imagine that the numbers x1, x2, ..., xn

are written clockwise around a circle.
Let k be the number of times the
number 1 is followed (clockwise)by
-l in the sequence xt, xz, ...t xnt xl
(which we'll call the "basic sequence").
Notice that the number of reverse
changes (from -1 to l, clockwise) is
the same. [Aary?) The totalnumber of
negative 1's among n products xlx2l
Xrx3t ...t x;r' {the "product sequence")
is equal to the number of sign changes
in the basic sequence, which is 2k.
But the sum of the members of the
product sequence is 0 only if exactly

Figure 2

hal{ of the n products equals -1, and so

n=4k.

Tfestrip between the exteri.or polygon
Po and the interior one P, can be cut
into rectangles with altitude I (whose
bases are the sides of P,) and quadrilat-
erals left near the vertices of Po when
the rectangles are removed (fig. 3).
Take these quadrilaterals and fit them
together by parallel translations so
that their irrner vertices (the ones origi-
nally on P,) all coincide. We then
obtain a polygon P circumscribed to a
circle with radius 1. Its vertex angles
are the same as those of P, (or Po) and
its sides are equal to the differences
between the sides of Po and P, .

If the sides of P, are proportional to
the corresponding parallel sides of Po

with a coefficient k < 1, then the sides
of P xe clearly proportional to those of
Po with a coefficient 1 -k. So Po and P,
are similar to P, and al1 of them arc ctr-
cumscribed to a circle.

In this solution we've tacitly as-
sumed that the similitude between Po

and P, is the natural one (that is, the
correspondence between the sides is
the one induced by the outward mo-
tion). It can be proved that if any
similitude exists, the natural one ex-
ists too. We'l1give another solution,
however, that doesn't rely on this as-
sumption.Figfre Figure 4
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Let the inner polygon P, be the
image of Pn under a similitude with a

coefficient k < 1. Then the image { of
P, under this similitude can be con-
structed from P1 in the same way as P,
was constructed from Po but with a k-
{old reduction of all distances-that
is, by moving the sides of P, the dis-
tance k toward the interior (fig. a).
ThenthepolygonP, (theimage of Pr)
can be constructed by moving the
sides of P, the distance ft2, and so on.
The intersection of all the polygons
P o, P 1, P 2, . . . is a single point O. Each
side of Po moves the fistances l, k, k2,

... toward O, so that the total distance
to O is equal to the sum of the infinite
geometric progression 1 + k + k2 + ... =
llft -kl. It follows that P and P, are
both circumscribed to circles with
center O.

M9
Let's call Miraflores's suppofters "reds"
and the other voters "blues." The
situation illustrated in figure 5, where
eight red voters out of a total of 27
voters guarantee the victory of the
reds in a 3-stage election, clari{ies the
main principle: in each group where
the reds win, they have a minimal
majority, whereas in each group won
by the blues the vote is unanimous.
Using this principle, we see that Mred
votes out of a total of Nwili win in an
appropriately organized r-stage elec-
tion if the ratio M/N can be repre-
sented as a product of r fractions each
larger than If 2.

Thus, Bl27 = (213)(2l3ltzl3) in the
previous example. Since we have

(315l[ .p116l,
= 3111/.5? .28:|

= L77,t47l2o,ooo,ooo,

it follows that a well-orgarized9-stage
election will guarantee Miraflores's
reelection with less than 200,000 red
voters. An even smaller number of
reds, 154,025 = 38 .25, is sufficient in a
lO-stage election, since

(3 I sY . 3 I 4 . (s l9l' = t64,O2s I 20,000,000.

M10
You may have found it easy to guess

and verify the answer: the portions of
milk are 0, | 17, 217, 3 17, 417, 5 17, 6 17
liter. When the dwarf represented by
the solid circle in figure 5 has given his
portion of milk to the others, the dis-
tribution turns out to be the same as

the initial one but rotated by one-
seventh of a full turn. So after seven
iterations (repetitions), the original
distribution is recovered.

But it's not so simple to prove the
answer's uniqueness . Let Sxobe the
portion of milk that
the kth dwarf pours
out (xu Jiters to each
of the other dwarfs),
wherek =1,2,...,7.
Without loss of
generality we can
assume x, > xo for
all k, since all the
dwarfs are equally

nice. After seven iterations the first
dwarf gets back all his mil( therefore,

5xr: xr+ x3 + ... + x7.

Since x, >xo, this is possible only if x,
= xz= ...: xr. Suppose xis the smallest
portion of milk added; then by as-
sumption

x+2x+...+5x=3,

so that x = ll7, and the answer follows.

p6 Physius

In order to avoid a collision, the astro-
naut must change the velocity of the
spaceship so that the angle between
the initial direction toward the aster-
oid and the new heading is greater
than the angle cxo determined by the
condition

sln (r^ :
ll

=

1+dlZ
d

2l+d
0.292

(see figure 71. Nter the additional
velocity Av is imparted to the ship,
maximum deviation from the initial
heading is provided if the vector Av
turns out to be perpendicular to the
vector v1 = v + Av (fig. 8 )-that is, if

sina= Lv/v=0.3.

So by switching on the emergency
engines, the astronaut can change the
heading of the ship by an angle 0 > Gc,

and there will be no collision with the
asteroid.

P7
Let's consider the raft's motion in a
frame of reference anchored to the
current-that is, moving at a speed of
u. In this context the raft has an initial
velocity v' = v - u and moves in a

Figure

) sl7

alt

t 317

tul, o i
sl7 217

qlz tlr

$[l otllrTUrir/l,tAY l sso

Figure

ilz
zlz I



Figure Figure B

-+

(at point O) by the
current lflowing in

paper very close to each other-for
example, at the distance 1= 1.5 mm.
Moving the sheet away from your
eyes, estimate the distance at which
the points merge into one point. If you
have normal eyesight, this distance
should be d = 2 m. The angle ct - l/d is
the least angular distance between the
points at which they are distinguished
by the eye as two objects. This angle
char acterizes your eyesight.

The rails will seem to merge when
the angular distance between them is
o. If the rails are l' = 1.5 m apartl they
seem to come together at the distance
d' - l'f a* l' dll =21<n.

Brainlea$8r$
B6
Keeping the goat in the boat, take the
dog and then the cabbage across the
river. Take the goat back and leave it
on the riverbank (all by itsel{). Take
the two wolves across the river. Re-
tum with the dog. In the last crossing
take the dog and the goat across.

B7
Theproblem isbased on thefact that
adding the mean value of a set of
numbers to this set gives a set w'ith the
same mean value.

D
Figure 10

D
ilgure r r

0l

straight line. Here the ra{t's velocity
v'is reducedbecause of the force of
water resistance. (If the resistanc6
were absent, in time t the raft would
be at point c with coordinates x c: 1tt t

y"= vt.l The displacement of the raft
relative to the nverbank in time t is a
combination of its displacement s,:
v't relative to the water and the dis-
placement of water s- = ut (fig. 9).

During time 2t the water displace-
ment will be twice as great. From
point O let's measure ofl a segment
with a length of 2s-along the x-
axis and draw a straight line
parallel to s, {through the point
with coordinate2s*|. This line
intersects the raft's trajectory
at the point markedby the blue
cross-the raft will be here at
tirrre 2t after the raft was
launched.

Similar constructions can be
used to find where the raft will
be at times 3t, 4r, and so on.

PB
It' s clear from the condition that the
po\{,er frorn the heating element is
equal to the energ.v leavlng the water
and entcring tht cttr irrlnttlent o\ ut'

trme. (The temfre rature oi the u'ater
doesn't change u,ith trme rrhile the
element is on.) So ii the heatrng e1e-

ment is turned off, the energ)- trans-
ferred over time by the u,ater rvl11 be

100 W. Recalling that heat flow Q :
Cm. LT and that Q = Pt (where C is
speci-fic heat, m is ntass, 7 is tcmpera-
ture, and P is power), we find that the
water will cool down by one degree
during the time

, =9!i'LT
P

(,1.2 . 103J/kg .'c) . lkg . .l'c

100 w
=42s.

P9
From considerations of symmetry, it
follows that the induction Bo of the
field created in the center of the cube

about the y-axis, circuit ABCDA is
transformed into itself, and so the
vector Bo should also be transformed
into itself. Therefore, by the cork-
screw (or right-hand)rule the vector
Bo must be directed along the y-axis.
kr projections on the x-, y-, and z-axest

Bo= lB,,Br,B,l = lO,Bo,Ol.

To find the field B created by the
current flowing in the circuit lB CGHEA
(fig. I l ), we use the superposition prin-
ciple. Notice that exactly the same

distnbution of current on the edges of
the cube will be obtained iI we take
three circuits, ABCDA, DCGHD, ar-.d

ADHEA, il each oi which the curent
is 1. The combination of these three
circr-rits creates the reqr-rired iield B in
the center oi the cube. According tcr

the superposition pnncrple, B is equal
to the vector sum oi the three fieids
cruateJ l',r-cach of thc crtcuits:

B :B.r.,.r, - B,'c;.i. * B.,--.r.,

=\o,8,/o' -,-B o or - \o,o,B \

: \-B , 
',8 

,'r,B ,',\.

So the vector B is directed along the
cube's principal diagonal DF and its
value is Bo3Yl C

The induction B can be found by
simply adding together the fields of all
six edges of the circuit, but this re-
quires more cumbersome calculations.

Pl0
You might proceed in the following
way. Draw two points on a sheet of

ii
/I

Figure 9
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x39

2555.+855
11115

B9
The fiver can tell which way is up by
watching the bubbles coming out of
his breathing apparatus orby droppiirg
a pebble.

810 d
Combustion occurs when there is an N

influx of oxygen. Under ordinary *
conditions on Earth the in{lux of oxy- !
gen is due to convection: near the E

I.B. 135,t20,t25l,,
V S,lm )251, arrd (44,117,125).

The first two come from the
17 ,24,251 and 13,4,51triangies.
A general approach would
be to use the fact that the
orpressions k(ff? - r?1, k\nn\
andklmz + nzl,wherek, m,
and n are positive integers
with m > n, produce all Py-
thagorean triplets. Setting
m2 + t*: 125leads to m: lQ"
n - 5, which produces
(75,1N,125), ot rri:ll, n=2,
which produ crcs 144,117,1251.
Settingm2 + n2 = 25leads to
m:4,n=3,producing
(7,24,251, for which we then
usek = 5.

tr.A. Ptolemy's Theorem produces
FG =715. The answer is(15,7,15,251
(in any order).

II.B. Using sides (a,x,a,25), where
each diagonal is(625 - aLlvileadsto x=
25 -2a2125. Positive integral /s come
from a: 5, 1 0, or 1 5. The last leads to
the solution in II.A. The other possi-
bilities are 15,23,5,251 or (lO,l7 ,10,251.
(Either answer/ in any order, is accept-
able.)

tr.C. Apply the theorem given in
part t for any appropriate d, to find n -
2 P3's of. hypotenuse d"e. Build these
triangles in a semicircle of diameter
d"e. Connecting successive points on
the semicircle produces an n-gon. Suc-
cessive applications of Ptolemy's Theo-
rem to find dach side of the n-gon
shows each mustbe rational. Multi-
plying all sides by the least common
denominator involved produces a Pn.

IILA. On diameter AD, draw the P4
ABCD,withAB: a, BC = c, CD: c,
AD : d, BD = e, and angle BCD = 0.

Thelaw of cosines shows that * = a2 +

d = az + W + c2 -2k,cos 0. Since 0 must
be obtuse, cos 0 is negative, so d2 is
gteater than az + b2 + c2. Notice that
this easily extends to any Pn.

III.B. Using the P4 described in so-
lution III.A, with AC: f , Ptolemy's
Theorem yelds bd + ac = ef =ll* - a'l
(il - c2ll4 Squaring both sides, simpli-
fying, and dividing each term by d
produces bzd + Zabc: da - a2d - czd.
Since all are integers, d must divide
2abc. If d is a prime greater than 2, it
must divide at least one of the a, b, c. IL

flame heated air, which is fufrter, ascends i
together with the products of combus- i
tion; colder air, containing oxygen,
takes their place. [r the state of weigfrt-
lessness there will be no convection,
and the flame will die from a lack of
oxygen.

l(aleidoscoru
1. Particles of smoke take part in

Brownian motion and move off little
by little so that the density of the
smoke decreases.

2. The Brownian motion of the fat
droplets is weakened.

3. The number of collisions of a
liquid's molecules with the surface of
a particle is proportional to the surface
area, whereas the mass of the particle
is proportional to its volume. So the
larger the particle, the harder it is for
molecules to move it. A Brownian
particle must also be small enough
that collisions with molecules will be
uncompensated.

4. The rate of diffusion increases as

temperature increases.

5. Because offrequent collisions,
the molecules move in zigzags. Their
actual paths are much longer than
their perceived change of position would
imply.

6. Water vapor diffuses slowly thrcugh
the film of lacquer so that the wood
dries evenly throughout and the ball
doesn't crack.

7. Since the atmosphere at those
heights is very sparse/ the number of
molecules per unit of volume is too
small to impart an appreciable amount
of energy when they collide with a sat-
ellite.

8. If the Moon ever had an atmos-
pherg it disappeared over the eons of
its existence. Amid the myriad mole-
cules of atmosphere, there were a1-

ways some whose velocity of thermal
motion would achieve the escape ve-
locity for the Moon.

9. In putting the pieces back to-
gether, it's practically (as opposed to
theoretically) impossible to position
the fracture surfaces at a distance where
the forces of molecular attraction will
be "noticeable."

10. Because of close contact over a
long period of time, the atoms of the
nut andbolt intermix along the bound-
arybecause of diffusion and the two
pieces "lock."

11. Work to change the level of a
liquid in a capillary is performed by
the energy of molecular interaction.

12. The pressure would increase.

ARIUIL potnlet' quesliolt

I.A. (7,24,251 and ll5,2O,25), the sec-
ond of which is five times the sides of
(3,4,5).
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dla, for example, then a > d, which is
impossible. So d is composite or equal
to 2; therefore, d is composite.

m.C.l.( 1). Using the P4 described in
solution III.B, we first show that its
area must be rational. The area of
triangle ABD = aef2,whichis integraf
since one of the legs must be even (see

solution I.B); the areaoftriangle BCD
= lbclzl sin 0, which must be rational
since sin 0 = e I d (by theextended law
oi sines); thus, the area of. the P4 is
rational.

m.C.1.(2). We next show that the
perimeter of the P4 must be even. We
first note that all primitive Pythago-
rean triplets (generated by tn2 - n2,

Zmn, andm2 + n2, where mandn areol
opposite parities) must yield an odd
hypotenuse and exactly one even leg;

if a Pythagorean triplet has an even
hypotenuse, each leg must have at
least the same degree of evenness as

the hypotenuse. Now by Ptolemy's
Theorem, b: lef - ac)ld, and we are
given that this is integral. There are
now two basic possibilities: (1) d can
be even {then both ef and ac will be of
a higher degree of evenness, making b
even and the perimeter even) or 12) d
can be odd (then either e and / are even

while a and c areodd, making b odd; or
e and f are odd while a and care even,
makrng b odd; or e artd f are of opposite
parities, as are a and c, making b eveni
rn each of these situations the penme-
ter will be even). Thus, the perimeter
is even in every case.

m.C. 1.(3 ). With s as the semiperl-
meter/ Hero's Formula for an inscnbed
cluadrilateral grves area = fis - a) (s - b]
(s - c) (s - d)l'1; since s will be integral,
the area is the square root of an inte-
ger. But for the area to be rational a1so,

it must actually be integral!
I1I.C.2. This is done by induction.

We will just indicate the basic ap-

nroachhere: Given the sPn ABCD ...
- --l- ondiameterAV, letthe areaol
::-= . =!C be K, the area of ACD ...

I, :. ,: =-: :he area of TUVbe K" .

\\-: ," -:. - -.-.:-.:---: ::'ra nf anr lln -
1'a::; -- --- - - .:. -:-:-lj' :hrs is our
"trI:::--:- - ---'. - ,-:-:::'-: :'l .

T.t t' *r\ -n ----:.:--
K" is rnt-=,

SUMMER PROGRAM IN MATH AND
SCIENCE FOR

HIGH SCHOOT STUDENTS AI\D TEACHERS
You are invited to participate in an exciting US-Soviet exchange program: the

1990 Science and Mathematics International Summer Institutes to be held at

LaSalle Academy, Long Island; the University of Maryland, College Park; Moscow
State University, USSR; and the University of Tartu, Estonia.

HIGHLIGHTS OF THE PROGRAM
* Advanced mathematics, physics, computer science, and molecular biology

courses
* Russian language and literature
* Irctures by prominent scientists
* Visits to scientific laboratories
* Discussions and debates
* Cultural enhancement from the international group of participants
* Excursions to New York and Washington in the US and to Leningrad and

Moscow in the USSR
* Chess, sports, sandy beaches, films, concerts, and more

The Institutes are coordinated by the National Science Teachers Association
(NSTA), American Association of Physics Teachers (AAPT), National Council of
Teachers of Mathematics (NCTM), and International Educational Nefwork in
cooperation with the Brookhaven National Laboratory and the USSR Academy of
Sciences.

For more information, please ffll out the coupon and mail to:

Dr. Edward D. Lozansky
NSTA
77 42 Connecticut Avenue, NW
Washington, DC 20009
(202)362-7855 or (202) 328-s800

Please clip and mail

Last Name First Name

Address

State zip

Home Phone (

Please check ifyou are a high school student or teacher:

_ High school teacher
main subject you teach

_ High school student

Pl;.s; send me _ additional brochures and application forms to circulate among

:.:. -: : .::11 \:uJents u ho might be interested in participating in this program.
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CHECKMATE!

Symmetry ott lhs uhesshoal'd

Sometimes it happens by chance, sometimes by design,
but it always has a certain charm

by Yevgeny Gik

12. Bd3xezl Nd7-c5
(12. ... Nd7 f(r would have been bet-

ter. )

13. Bel-c2 Bc8-94
l+. Qtll xd+ Bg4xr3
15. g2xf3 Rf8-e8
16. Rf1 dl Re8-e2
17. Bc2-f5 s7-s6
18. Bf5-h3 Nc5-d7
19. Bc1-e3 Bc16-e5

20. Qd4-c4 Re2xbL
)1. R:r1-c1

lCorlmentilg on this garre, Bon-ur-
nik notecl that 21 . d5-d(r rrould hale
lecl to r.ictorl' lrore r1-rickh-. 1

G. -\.larlson 1921. To rvin.

1. \e'-d5l Ne5-d7
,Altern:rtives: 1. ... Ne5-f7 or Ne5-

g(.2. Be2 h5; 1. ... Ne5-c6 2. Be2-b5.)
). Ke6-d(rl

lBut not 2. Be2-b5? Ke8-d8l 3.
Bb5xd7-stalemate. J

2. Ke8-d8l

{2. ... Nd7 b8 won't save black: 3.
Be2-b5+ Ke8-d8,1. Nc15 b6 Nb8-c6l 5.

Kd(rxc6l; nor rvill 2. ... 5d7-f8: 3. Be2-
h5+ Ke8-d8 4. Nc15 i6l KdS c8 5. Kd6-
e7.\

3. Be2-d3
Here arc- some possible ways of

workrng tlls positron out: 3. ... Kd8-c8
21. Nd5-e7+ KcS d8 5. Ne7-c6+ Kd8-eB
6. Bd3-g(r*; 3. ... Kd8-e8 4. Nd5 c7+
KeB d8 5. Nc7-e(r+ KdB-cS 6. Bd3-a6+;
3. ... Ndz b8:1. Nd5-b(r Kd8-e8 5. Kd6
c7i 3. ... Nc17 f8 4. Nd5-f6 Kd8-c8 5.

Kd6-e7l and the knight is caught. Why
r,r,ou1cln't i. Ne7-f5 work? Let's see

hon, it p1a.vs out: 1. ... Ne5-i7l 2. Ke6-
f6 Kc8-f8 3. Be2-f3 KiS-e8 4. Nf5-g7+
Ke8-f8 5. Ng7-s(1KfS g8! As it tums

HE "SYMMETRY MOTIF"
arises often both in the composi-
tion of chess problems and in
actual play. This geometric theme

is a lot of fun and seemingly inex-
haustible.

Flere's a game from a published
collection of chess curiosities. It was
played at the championship of the
USSR in Moscow in 1931.

M. Botvinnik-N. Rlrrmin

1. d2-d4 d7-d5
2. c2-c4 c7-c6
3. NgI-f3 Ng8-f6
4. e2-e3 e7-e6
5. Bf r-d3 Nb8-d7
6. 0-0 Bf8-d6
7. Nbl-d2 e6-e5
B. e3-e4 0-0
9. c4xd5 c6xd5
10. e4xd5 e5xd4

The opponents hadplayed out the
Slavic Defense, and there was no de-
sire to copy moves on black's part, let
al0ne white's. But after ten moves the
players were no doubt startled to see

the perfect symmetry on the board, as

well as the unusual concentration of
pieces on the d-file. Nevertheless, the
preference in a symmetrical position
generally goes to the player whose
move it is. In this case, Botvinnik
skillfully makes use of this advantage,
ably de{ending his d-pawn while at-
tacking his opponent's.

11. Nd2-e4! Nf5xe4
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zt. Nd7 b6
22. Qc4-e4 Qd8-d6?

122. ...Be5-d6 would have been
stronger-now it's all over.)

23. f3-f4 Be5-g7
24. Be3-c5 Qd6-d8
25. Bc5-e7 Qd8-e8
26. d5-d6 Qe8-b5
27. d6-d7 Nb6xd7
28. Bh3xd7

A few moves later, black resigned.

The basic idea of the "symmetry-
asymmetry" genre of chess problems
is that an externally symmetrical
position has an asymmetrical solu-
tion. Of course, there can't be abso-
lutevertical symmetry on the chess-
board because of the presence of an

"extra" file. In {act, paradoxical situ-
ations arise precisely because of this
file. The following examples are all
problems based on this phenomenon.
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out, the bishop needs one more file to
check the king.

Let's look.at another problem.

A. Seleznev, l9l7-white king on
e5, bishop on a8, and pawn on e6;

black king on 94, knight on f4, and
pawns onb4 andh4. To draw.

"Wherds the qrmmetryhere?" yotfte
saying. It tums up after three moves:

1. Ba8-e4! Nf4xe6
2. Be4-f5+ Kg4-f3
3. Bf5xe6 Kf3-e3l

It seems white won't be able to save
itself (one of the pawns will march on
to become a queen). Andyet...

4. Ke5-d6! Ke3-d4
5. Kd6-c6 Kd4-c3
6. Kc6-d5! b4-b3
7. Kd5-e4 b3-bz
B. Be6-a2 h4-h3
9. Ke4-f3

Both pawns are held back. U white's
fourth move had been Ke5-f6?, the
white bishop would not have found a
position at the right corresponding to
a2. It appears that this is the first chess
problem in history with "symmetry-
asymmetry."

Y. Kneppel, 1967. To win.

At first glance, it's not clear what
significance the extreme left file has
in this pawn problem. After all, the
pawn isn't in a position to land on it.

1. c3-c4! Ke6-f6
(Altematively: 1. ... Ke6-d6 2.Ke4-

f5 95-g4 3. Kf5xg4 Kd6-e5 4. Kg4-h5
Ke5-d4 5. 93-g4 Kd4xc4 6.g4-g5Kc4-
d3 7 . 95-96 c5-c4 8. 96-97 c4-c3 9. 97 -

gSQ c3-c2 10. Qg8-s5.)
2. Ke4-d5 Kf5-fs
3. Kd5xc5 Kf5-g4

4. Kc5-d4 Kg4xg3
5. c4-c5 S5-54
6. c5-c6 Kg3-f2
7. c6-c7 g4-SB

8. c7-c8Q S3-52
The queen can easily manage the

black pawn. What if the g-pawn is
advanced first? 1. g3-g4? Ke6-d6! 2.
Ke4-f5 (2. c3-c4 Kd5-e6) 2. ... Kd6-d5 3.
K{5x95 Kd5-c4 4,K95-14 Kc4xc3 5. 94-

95 c5-c4 6. 95-96 Kc3-b2 7. 96-97 c4-c3
8. S7-S8Q c3-c2. The white pawn has
allowed black to get a draw (the stale-
mate idea)l

O. Riildrimaa,1942. To draw

In this example, the h-file will be
used in a completely di{ferent way.

1. d5xe6! d6xe5
(AIter 1. ... d6xc5 2. e6xl7 Kd8-e7 3.

e5-e5, the moves by biack ultimately
lead only to a stalemate.)

2. e6xI7 KdB-e7
3. Kd3-e4 Ke7xI7
4. Ke4xe5 KI7-e7
5. Ke5-f5l Ke7-d7
6. Kf5-e5 Kd7-c7
7. Ke5-d4 Kc7-b8
8. Kd4-c4 Kb8-a7
9. Kc4-b4 Ka7-a6
10. Kb4-a4

Draw.
Opening to the other side won't

work, though: 1. d5xc5? d6xc5! 2.

c6xb7 KdB-c7 3. Kd3-c4 Kc7xb7 4.
Kc4xc5 Kb7-c7 5. Kc5-b5 Kc7-d7 6.
Kb5-c5 Kd7-e7 7. Kc4-d4 Ke7-f8 B.

Kd5-e4 Kf8-g7 9.Ke4-t4 Kg7-h6! Black
has now gained an advantage thanks
to the maneuver on the "extta" file on
the far right. o
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How do objects move? Isaac Newton really believed that an object moving in
a straight line would continue with constant speed. Do your students? This
manual was created to help teachers introduce the sometimes daunting
subject of Newtonian mechanics to students in the middle grades. The 27

activities presented here use readily available materials to give students
visual, aural, and tactile evidence to combat their misconceptions. And the
teacher-created and tested modules are fun: Marble races, a tractor-pull
using toy cars, fettucini carpentry, and film container cannons will make
teachers and students look forward to class. Readings for teachers, a guide

for workhop leaders, and a master materials list follow the activities,
making this manual useful for inservice workshops.
#P839, 1989, 168 pp. $16.50

from A/S714 Publicotions
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Methods ofMotion
An lntroduction to lvlechanics

BookOne

All orders of $25 or less must be prepaid. Orders over $95

must include a purchase order. All orders must include a

postage and handling fee of $2. No credits or refunds for
returns. Send order to: Publications Sales, NSTA, 1142 Con-
necticut Ave. NW !(ashington, D.C. 90009.



Dr. Robert Ballard is taking the robot JASON
and 250,0@ students .to the bottom of Lake
Ontario in May 1990 to look at War of 1812
shipwrecks. The NSTA Great I-akes JASON
Curriculum includes 360 pages of expedition
activities, a poster, map, and gameboard. Order
from NSTA Special Publications, 1742 Connec-
ticut Ave., N'S7, Washington, DC 200@. include
check for $14.95.
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