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The Blank Signature (1965) by René Magritte j

he Belgian artist René Magritte (1898-1967) was a master of the visual pun and optical paradox. His fellow Surrealist
Salvador Dali called him “one of the most ambiguous painters of our time.”

Surrealism was a movement in art and literature that flourished in the 1920s and 1930s. There was no single Surrealist
style, as can be seen by looking at the work of such artists as Max Ernst, Joan Mird, and Paul Klee. Magritte’s approach was
to present minutely detailed, realistic depictions of an impossible or irrational world. By provoking a sympathetic response,
the painting induces the viewer to acknowledge the inherent “sense” of the irrational and logically inexplicable.

Perhaps you’ve had a similar feeling when confronted with the square root of -1 or non-Euclidean geometry. The way
Magritte plays with the notions of “subject” and “background” in this painting is not unlike the way scientists and mathe-
maticians play with assumptions and variables, producing valid concepts that fly in the face of common sense.

Even after you've figured out the “trick” in any particular painting by Magritte, it remains unsettling and uncanny and, if
you like that sort of thing, weirdly charming.
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Cover art by Sergey Ivanov

The surface pierced by the furious
bull’s horns is a hyperbolic par-
aboloid. It’s interesting that this
curved shape can be constructed from
two interlaced sets of straight lines:
any two lines belonging to one set are
askew, while any two lines from dif-
ferent sets always intersect. Also,
each point of the surface belongs to
just one line in each set.

Here’s a more precise description.
Imagine two points moving at the
same speed along two skewed lines.
The line joining them sweeps out a
hyperbolic paraboloid. In algebraic
terms, the equation for this surface
with respect to the appropriate space
coordinates is z = xy.

Our bull in his rage is unable to tell
green from red, just as persons suffer-
ing from color blindness have trouble
with these two colors. Strangely
enough, this medical condition has
something in common with our re-
markable surface—see “The Geome-
try of Population Genetics,” which
starts on page 24.
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Have you written an article that you
think belongs in Quantum? Do you
have an unusual topic that students
would find fun and challenging? Do
you know of anyone who would make
a great Quantum author? Write to us
and we'll send you the editorial guide-
lines for prospective Quantum con-
tributors. Scientists and teachers in
any country are invited to submit ma-
terial, but it must be written in collo-
quial English and at a level appropri-
ate for Quantum’s predominantly high
school readership.

Send your inquiries to:
Managing Editor
Quantum

1742 Connecticut Avenue NW
Washington, DC 20009-1171
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Science and
Math Events:

Connecting
and
Competing

When you are trying to build student
interest and enthusiasm in math and
science, few resources can match the
excitement generated by science clubs
and competitions. But how do you get
your high-school students involved? And
how do you keep them involved? With
plans for successful fairs, details on 25
national and international contests, and
commentary by 89 prize-winning
scientists, this new publication prepares
you and your students for

connecting and competing in the 1990s.
#PB-47, 1990, 196 pp. $7.00

All orders of $25 or less must be prepaid.
Orders over $25 must include a purchase order.
All orders must include a postage and handling
fee of $2. No credits or refunds for returns.

Send order to: Publications Sales, NSTA, 1742
Connecticut Ave. NW, Washington, D.C. 20009.
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(luantum in outer spiace
and the inner space of art

PACE TRAVEL: PERHAPS

nothing else symbolizes quite so

well the scientific aspirations and

achievements of our age. Count-
less generations of stargazers would
envy us as we explore the outer re-
gions, whether “in person” or by means
of sophisticated bundles of instrumen-
tation. Isay “we,” but how many of us
will ever get the chance to see an
Earthrise on the Moon, or conduct
experiments in orbit, or travel to an-
other planet? Well, I'll have to be
satisfied that my photograph has flown
in space—copies of the premier issue
of Quantum have been carried aboard
Soviet and American spacecraft. It’s
my belief that more than a few of you
will have the opportunity to explore
the outer reaches of space, and not just
in picture form!

In February a conference was held
in Deauville, France, on the Interna-
tional Space Year, which is set for
1992. An educational component was
co-chaired by Victor Borovishki, the
deputy editor in chief of Kvant maga-
zine in the USSR, and myself. Some
40 countries were represented. One of
the major recommendations to come
out of this conference is to designate
the January 1992 issue of Quantum an
official publication of the International
Space Year. Authors would be drawn
from as many countries as possible,
and the articles would be written by
some of the best scientists in those
countries. The magazine would be
translated into as many languages as
possible and distributed throughout

the world. It would cover many space
science topics of interest to students
in all these countries. This special
issue of Quantum would also contain
schedules of activities for the Interna-
tional Space Year, including student
exchanges, competitions, and other
kinds of events that are likely to oc-
cur. Iencourage all of you to partici-
pate in the International Space Year
activities. We'll try to keep you in-
formed through Quantum magazine,
especially the January 1992 issue.

I'D LIKE TO MAKE a few comments
about the illustrations provided to us
for Quantum by our colleagues in the
Soviet Union. Ever since I first
encountered Kvant magazine, I have
been fascinated by the differences
between Kvant artwork and the kind
of technical illustration we usually
encounter herein the United States.
Our illustrations are technically cor-
rect and simple, with nothing super-
fluous. Irecently had the opportunity
to explore this topic with Kvant’s art
director, Sergey Ivanov, who was among
the group of Kvant editors who visited
the Quantum offices in Washington
to participate in our advisory board
meeting.

A talented artist himself, Sergey
creates some of the artwork that ap-
pears in Kvant and Quantum. (In fact,
Sergey drew the cover of this issue
specifically for Quantum.) What I
discovered in talking with Sergey is
that the illustrations in Kvant are of-
ten prepared by leading artists in the

USSR. The technical aspect of the
illustration is always coupled with an
appeal to the aesthetic side of our
nature. Often the art draws upon a
fable, legend, or myth; sometimes it’s
related to a famous painting or sculp-
ture. (The picture of the three cows in
the Yaglom article, forinstance, was
inspired in part by a well-known sculp-
ture by Kanova, “The Three Graces,”
in the Hermitage Museum in Lenin-
grad.) Sometimes historical figures
and events are cleverly woven into the
artwork.

Whatever approach the Kvant art-
ist takes, the illustrations end up being
more meaningful. They convey far
more than the technical idea, impor-
tant as that is—they’re also pleasing
just to look at. Thope you enjoy the art
in Quantum. Because of differences
in printing technology, the art you see
is even more resplendent than it origi-
nally appeared in Kvant. Perhaps,
with the changes that are so rapidly
transforming the USSR, this will change
as well. But one thing I hope does not
changeis theartistic tradition repre-
sented by Sergey Ivanov and his fellow
artists. It seems to me this is one of
many areas where we can learn some-
thing from the Soviet Union.

—Bill G. Aldridge
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Art by Sergey lvanov

WHERE BIOLOGY MEETS PHYSICS

How tlo we breathe?

'In and out" is the silly answer, but the
Straight answer may surprise you

by K.'Y. Bogdanov

HAT DOES AN ELECTRO-
cardiogram tell us? How do
bats catch flies in the dark?
How do carrier pigeons find
their way home? The answers to
these and many other questions are
given by biophysics, the science that
studies physical phenomena in living
organisms. The biophysicist works
on the boundary between physics and
biology, using the latest achievements
of physics in biological investigations.
Armed with our knowledge of high
school physics, let’s try to answer a
seemingly simple biological question:
How do we breathe?

Our respiratory system

When our organism breathes nor-
mally, it consumes about 0.5 kg of
oxygen a day and exhales almost the
same amount of carbon dioxide. Oxygen
enters and carbon dioxide exits through
the lungs.

The inner space of the lungs com-
municates with the atmosphere via
the respiratory tract. The respiratory
tract consists of the nasal cavity (where
air is warmed and moistened), phar-
ynx, larynx, trachea, and the two prin-
cipal bronchi {which supply air to the
right and left lungs).

Each bronchus is divided into smaller
bronchi (bronchioli) and ends in mi-
croscopic bubbles, or “alveoli,” en-
cased in a thick network of blood

"It is now impossible to

clarify biological questions if

you don't know physics."
—Julius Mayer, 1842

vessels. An adult has 700 million of
these interconnected, air-filled alve-
oli(fig. 1). Atany given moment the
blood vessels surrounding the alveoli
contain approximately 70 ml of blood.
Carbon dioxide diffuses from the blood
into the alveoli, while oxygen diffuses
in the opposite direction. The huge
combined surface area of the alveoli
makes it possible to saturate the blood
with oxygen and cleanse it of excess
carbon dioxide.

Breathing and soap bubbles

Is it easy for us to take a breath?
How much does the air pressure in-
side the lungs (in the alveoli] exceed
the pressure outside (in the pleural
cavity) during the process of taking a
breath?

If each alveolusisassumedtobea
hollow ball made of an elastic mem-
brane, the pressure needed to keep it
inflated for a given external pressure is
determined completely by the ball’s
diameter and the membrane’s elastic-
ity. Is this correct?

In 1929 the Swiss scientist Karl von
Niirgard discovered that the pressure
needed to inflate the lungs can be
substantially reduced if the lungs are
filled with a physiological solution. In
no way did this accord with the idea
that alveoli are hollow elastic balls: if
in taking a breath we overcome only
elastic forces, our efforts don’t depend

on whether the lungs are filled with a
solution because elasticity doesn’t
depend on that. Niirgard’s data could
be explained when it was found that
the inside of each alveolus is coated
with a thin layer of liquid. This cir-
cumstance fundamentally alters the
mechanical properties of the alveolus.
In particular, the pressure needed to
inflate an alveolus is greater than that
needed to inflate a hollow ball made of
pulmonary tissue. Here’s why.

It’s known that the surface of a
liquid behaves like a piece of stretched
film—that is, it possesses surface ten-
sion. In order to estimate the role of
surface tension in the mechanics of an
alveolus, let’s consider a spherical film
made of a liquid. The simplest ex-
ample of such afilmis asoapbubble.
Because of the liquid’s surface ten-
sion, the air pressure inside the bubble
is always greater than the outside pres-
sure. The amount of excess pressure
inside a sphere of radius R is deter-
mined by Laplace’s relation Ap = 20/R,
where o is the coefficient of surface
tension for the film. The greater this
excess pressure, the smaller the radius
of the sphere. In a soap bubble film,
both the inside and outside surfaces
are in contact with air, so the coeffi-
cient o for the film is twice the coeffi-

Figure 1

The terminal branches of a lung are the
alveoli. The diameter of an alveolus is, on
average, 0.1 mm. The walls are 0.4 um
thick. The total surface area of alveoli in
an adult human being is about 100 m?—
just about half a tennis court!
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cient of surface tension for the liquid.
In alveoli, air-liquid contact takes place
only on one side, the inside.

Let’s estimate Ap. For intracellular
fluid, o= 5- 102 N/m. We'll also take
this value for the fluid that coats the
inner surface of the alveolus. Assum-
ingthat R=50um=>5-10"m, we get
Ap=2-10°N/m?

Figure 2 shows how the volume of
the lungs depends on the pressure
inside them (more exactly, how much
this pressure exceeds the external pres-
sure). It’s clear from the graphs that, if
not all, then at least a considerable
part of the pressure that expands the
lungs during a breath is spent to over-
come the forces of surface tension.
But when the lungs are filled with the
physiological solution, additional
pressure is needed only to overcome
the elastic properties of the pulmo-
nary tissue. It’s obvious that the dif-
ference between the two curves in
figure 2 represents the contribution of
surface tension to the lung’s elastic-
ity. In ordinary breathing, the volume
of a human being’s lungs is about 50%
of their maximum volume. It follows
from figure 2 that the contribution of
surface tension is more than 30%.
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The relation between lung volume and
pressure of the air (broken line) or liquid
(solid line) inside.

Butit's not all so simple

Our use of surface tension to ex-
plain the lung’s mechanical proper-
ties leads to a “paradox” when we
study the interaction between neigh-
boring alveoli. Figure 3 shows (in
outline) two neighboring alveoli of
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different sizes. First let’s assume that
the air cavities of the two alveoli are
not connected with each other (fig.
3a). The air pressure p, in the left
alveolus is greater than the pressure p,
in the right alveolus (since R, < R,}.
Now, as soon as we open an imaginary
valve connecting the air cavities of the
two alveoli, the air from the left alveo-
lus begins to flow into the right alveo-
lus until the pressure in both alveoli
becomes equal (fig. 3b). So when two
alveoli of different sizes are connected,
the larger alveolus will inflate and the
smaller one will deflate.

It’s obvious that such an interac-
tion between the neighboring alveoli
would cause all the lung’s small alve-
oli to deflate and the large alveoli to
burst. Asaresult, the lungwouldn’t
be able to function.

So how do we breathe?

Looking at the interaction between
neighboring alveoli, we assumed that
different alveoli have the same surface
tension, which doesn’t depend on the
state (inflated or deflated) of the alve-
oli. The surface tension of pure lig-
uids is indeed independent of the size
of the surface. But the coefficient of
surface tension of liquids containing
different impurities depends on the
size of the interface between the lig-
uid and gas.

Again nature has foreseen every-
thing. The liquid wetting the inside
surface of the alveoli contains, as an
impurity, a substance that controls
the value of the surface tension in
such a way that ¢ is minimal at the
beginning of an inhalation (minimum
surface) and maximal at the end
(maximum surface). So despite the
fact that the radius of an alveolus is
very small at the beginning of an inha-
lation, the contribution of surface ten-
sionissmall. This makesit possible
to blow up a deflated alveolus by means
of relatively low pressure. At the
same time, the increase in ¢ with the
radius of an alveolus prevents overin-
flation at the height of air intake. In
addition, this dependence of o on the
size of the alveolus regulates relations
between neighboring alveoli, prevent-
ing the appearance of the mechanism
shown in figure 3.

Why do impurities make surface

WD

Figure 3

A schematic depiction of two neighboring
spherical alveoli with different radii when
(a) the air cavities are isolated and (b) the
air cavities are connected.

tension dependent on surface area? As
arule, the impurities reducing o are
quite similar to ordinary soap in their
chemical structure. When they dis-
solve, they form a thin film on the
water’s surface. If the impurity con-
centration is high, so that the film can
cover the whole surface in a continu-
ous layer, then o for such a liquid is
equal to a certain value for the given
impurity. But when the concentra-
tion of the impurity is insufficient for
the film to cover the whole surface,
the value of the surface tension will be
somewhere between the correspond-
ing values of o for water and for the
impure liquid. An increase in the
liquid’s surface then leads to a de-
crease in the surface concentration of
the impurity and causes o to increase,
bringing its value nearer to o for water.
If the liquid’s surface area decreases, ¢
will also decrease.

Now look at figure 4. It shows how
surface tension depends on the size of
the air-liquid interface. Do you no-
tice that for the same surface area of
contact, the value of o at inhalation is
always greater than at exhalation? This
is because the impurity that reduces
surface tension is in the interior of the
liquid and not just on the surface.
When the surface area increases, the
impurity concentration on the sur-
face decreases. Some molecules of the
impurity rush to the surface, but equi-
librium isn’t established instantane-



ously. So when we begin to inhale, for
instance, the rapid increase in the lig-
uid’s surface area is accompanied by a
sharp increase in o because the impu-
rities dissolved in the liquid have no
time to emerge on the surface. Equi-
librium between impurity molecules
sets in only at the end of the inhala-
tion. In much the same way, the erid
of the exhalation corresponds to an
equilibrium state. This explains the
dependence of o on surface area shown
in figure 4.
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The dependence of o on the surface area of
liquid-air contact (1) for liquid isolated
from the alveoli of a healthy person and
(2) for liquid taken from the alveoli of
newboms unable to breathe independently.

So we have substances in our lungs
that reduce surface tension and make
our breathing easier. But where do
they come from? It turns out they're
synthesized by special cells located in
the alveoli walls. These “surface-
active substances” (SAS) are produced
throughout a human being’s life, from
birth to death. Curve 2 in figure 4
corresponds to pulmonary liquid with
areduced SAS content. You can see
that the minimum value of ois eight
times the norm. Some babies are borm
without the cells that generate SAS.
In these rare cases, the newborns can-
not breathe on their own. Unfortu-
nately, infants still die all over the
world, never taking their first breath,
because of a deficiency or absence of
SAS in their alveoli.

An exception to the rule

Many animals that breathe by means
of lungs do not suffer at all from the
absence of SAS in their alveoli. This

applies, for instance, to cold-blooded
animals—frogs, lizards, snakes, croco-
diles, and so on. Since these animals
don’t need to spend energy to heat
their own organisms, their need for
oxygen is, on average, ten times less
than that of warm-blooded animals.
So the surface area across which gas is
exchanged between blood and air is
less than in warm-blooded animals.
The relative reduction of the lung’s
surface areain cold-blooded animals
is due to the fact that the diameter of
their alveoli is approximately ten times
greater than the diameter of the alve-
oli of warm-blooded animals. The
comparatively larger radius of the al-
veoli makes it possible to inflate them
easily evenif thereisno SAS on their
inner surface. (In fact, Ap ~ 1/R.)
Another group of animals that have
no SAS in their lungs consists of warm-
blooded creatures that live a rather
fast-paced, active life: birds. Mam-
mals and birds of equal weight have
almost the same energy expenditures,
and a bird’s oxygen needs are great as
well. But a bird’s lungs have the
unique ability to saturate the blood
with oxygen when it is flying at great
altitudes (about 6,000 m), where the
concentration of oxygen is half that at
sea level. Mammals (including hu-
mans) at such a height start tofeel a
deficiency of oxygen, sharply limit
their activity, and sometimes even
become dazed. How can the lungs of a
bird, without any SAS, allow it to
breathe, saturating its blood with oxygen?
And why can’t mammals do this?
Let’s engage in a little self-criti-
cism. What’s wrong with our lungs?
For one thing, not all the inhaled air
takes part in the exchange of gases
with the blood. The air inside the
trachea and bronchi at the end of an
inhalation can’t give oxygen to the
blood and take carbon dioxide from it
because there are practically no blood
vessels in these parts of the lung. So
the portion of the lung occupied by the
trachea and bronchi is called “dead
space.” Asarule, the dead spaceina
human being’s lungs is about 150 cm?®.
You can artificially increase the vol-
ume of dead space by breathing through
a long pipe. If you try this, you'll
probably notice that you have to in-

crease the depth of your breathing
(that is, the volume of inhaled air).
Obviously, if the volume of dead space
is made equal to the maximum pos-
sible inhalation volume (about 4,500
cm3), you'll start to suffocate—no fresh
airenters thealveoliatall! The pres-
ence of dead space in the respiratory
system of mammals is a “mistake” of
nature. ‘

And nature made a second “mis-
take,” I would say, in its design of
mammalian lungs. This deficiency
has to do with the fact that air moving
in the lungs changes direction as inha-
lation is followed by exhalation. Almost
half the time the lungs are practically
idle—during exhalation fresh air doesn’t
enter the alveoli.

But nature again attained perfec-
tion in the bird family. Besides ordi-
nary lungs, birds have an additional
system consisting of five or more pairs
of air bags connected to the lungs (fig.
5). The cavities of these bags are
widely distributed throughout the body.

CONTINUED ON PAGE 42
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Figure 5

The respiratory system of a bird: (1) lungs;
(2-6) air bags. Arrows show the movement
of air when the bird (a) breathes in and (b)
breathes out.
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WHERE MIDDLING VALUES REIGN

Gonsiderations of continuity

If you continue reading long enough, you'll learn how to get
your wobbly kitchen stool to sit still

by S. L. Tabachnikov

OST OF THE PROBLEMS IN
your math textbook ask you to
solve equations, or compute a
certain specific value, or con-
struct a geometric figure with given
properties, and so on. This article is
devoted to problems of another sort:
you're merely asked to prove that the
required root, or number, or figure, or
whatever, actually exists. The method
we’'ll use to solve them is known as
“considerations of continuity.”

Plane sets

We'll start with the following prob-
lem: Given a certain set bounded by a
'/ closed curve in the plane, prove that
/ there exists a vertical line that divides

- F it into two parts of equal area.
: Let’stakeaverticalline to the left
i of the given set (fig. 1a) and start mov-
® rd ing it to the right. The line eventually
// touches the boundary of the set (fig.
Sl / 1b), then slides over the set (fig. 1c-1f)
¥ / untilit moves past it to the right (fig.
} 1g). Asthe line moved, how did the

o
/

area of the part of the set to the left of

{ \ \\ 1 the line (shown in red] vary? Obvi-

ol ously this area changed continuously

\\“ from zero (fig. 1a) to the total area S of

the set (fig. 1g). So at some time this

area was equal to exactly half of the

total area. At that precise moment the

; line divided the set into two parts of
equal area S/2.

What do you think of this solution?

It doesn’t give a method for construct-

ing the required line—it only estab-

3 lishes its existence. (Actually, it wouldn't
£ make sense to look for a recipe for con-
é iz structing this line—the given set is
E — arbitrary.) It shows that there exists a
= E ﬂ line of arbitrary direction dividing the
z v B set into two parts of equal area. Also,
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Figure 1 a o}

the solution implies that there is a
unique line in any given direction that
divides the set into parts of equal area.
We'll use this fact later.

Let’s look at the solution from a dif-
ferent angle. Choose a horizontal nu-
merical axis in the plane (fig. 2a). The
position of an arbitrary vertical line 1is
determined by the number x (the point
where the line intersects the numeri-
cal axis). Consider the area of the part
of our set to the left of line I as a
function f(x). The graph of this con-
tinuous function is shown in figure
2b. Finding a vertical line dividing our
set into two parts of equal area is then
the same as finding a point ¢ on the
numerical axis such that f(c) = S/2.

Now let’s consider the horizontal
line y = §/2 in figure 2b. The left part of
the graph of f(x) lies below this line
and the right part lies above it, since
fla)=0<S/2, while f(b) =S > §/2. So
there exists a point ¢ where the hori-
zontal line y = §/2 and the graph of f(x)
intersect. It’s precisely at this point ¢
thatwehavef(c)=S/2.

The property of continuous func-
tions used in this proof is known as
the “intermediate value theorem”—a
continuous function assumes all the
intermediate values between any two
of its values.

A more formal version of this theo-

/

a
T x y —
YA
s
b si2
7 G 5 >
Figure 2
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rem goes like this: If f(x) is a continu-
ous function on the closed interval
[a,b] and ¢ is some number between
the numbers f(a) and f(b), then there
exists a point x, on the interval [a,b]
suchthatf(x )=c.

For example, in our problem the
function f(x) assumes the value S/2
contained in the interval between the
valuesf(a)=0and#(b)=S.

The intermediate value theorem is
almost self-evident. Like many obvi-
ous statements, though, it’s not too
easy to prove. We'd have to go into an
in-depth treatment of the notions of
“continuous functions” and “real
numbers.” This would distract us
from the main topic of this article, so
let’s just leave it at that—the interme-
diate value theorem is simply obvious
to us.

And another thing: we didn’t prove
that the area to the left of our vertical
line continuously depends on its posi-
tion (thatis, that f(x)is a continuous
function). This is almost self-evident
too. Throughout the rest of this ar-
ticle, we'll dispense with proving the
continuity of functions arising in our
solutions.

Problems

1. {a) Given a convex set! and a point lying
outside it, prove that there exists a straight
line passing through this point that divides
the setinto two parts of equal area.

{b) What happens to this problem if the
point extends to infinity?

(c) Solve case (a) when the point is inside
the set.

(d) Is it true that there is only one solution
in cases(a)and|(c)?

2. (a) Given two convex sets (which may
intersect), prove that there exists a line that

'A “convex set” is a set that contains
all line segments joining any two of its
points. For example, a disk (the part of
the plane bounded by a circle) is convex,
while its boundary (the circumference
itself) is not.

f g

simultaneously divides each of the two sets
into two parts of equal area. (This problem is
often called the plane version of the ham-
and-cheese-sandwich problem: Can one always
cut such a sandwich with one slash of the
knife into two parts so that each contains as
much ham and as much cheese as the other?)

(b) What happens to this problem if one of
the sets contracts to a point?

(c] Suppose each of the sets in case (a) is a
parallelogram. Construct the required line.

3. Given a convex set, prove that there
exists a line that simultaneously divides the
area of the set and the length of its boundary
curve into equal parts.

4. (a) Given two convex sets, One con-
tained within the other, prove that there
exist two parallel chords of the bigger set,
tangent to the inner one, such that S = S, (fig.
3).

(b) What happens to this problem if the
inner set contracts to a point?

5. Prove that any convex set contains
equal and parallel chords dividing its area
into three equal parts.

6. Prove that a square can be circum-
scribed about any convex set.

Cliairg and squares

Imagine that the floor in your kitchen
is not too even (which is often the case
if it's covered by linoleum). A kitchen
stool will usually touch the floor with
only three of its legs, while the fourth
will be slightly up in the air. Is it
always possible to move the stool so
that all four legs touch the floor or, no

Figure 3
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Figure 4 a

matter how you move it, will it al-
wayswobble? Of course, we assume
that when the stool is on all four legs,
it doesn’t have to be absolutely level.
(Before you begin the mathemati-
cal solution of this problem, try to find
the experimental solution right in your
own kitchen. After you get a positive
answer to the question, come back to
the mathematics of the problem.)
We'll assume that the kitchen floor,
thoughnotaplane, doesn’t differ too
much from a plane surface. This as-
sumption allows us to ignore floors of
“pathological” shape—for example, the
floor of a cave covered with stalag-
mites (upside-down calcium icicles).
So let’s suppose that legs A, B, C of
our stool are on the floor, while the
fourth leg D hangs in the air (fig. 4a).
Without lifting legs A and C off the
floor, rotate the stool about line AC so
that legs B and D are both off the floor
at the same distance from it (fig. 4b—
the distance from the floor is counted
in the direction of the legs]. In this
position (two legs on the floor, the
other two at the same distance from
the floor) the stool can be moved.
Imagine for a minute that the floor
is made of soft clay into which the legs
of the stool can easily penetrate. Let’s
lower the stool until legs B and D just
touch the floor, while legs A and C
have been pushed into the clay below
floor level to the same depth (fig. 4c).
Now, going back to the setup in
figure 4b, let’s rotate the stool counter-
clockwise about its center so that legs

Figure 5 a
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A and C continue to barely touch the
floor, while the distance from floor
level (that is, the depth) of leg B re-
mains equal to that of D. After we've
rotated through an angle of 90°, legs A
and C will occupy the positions of legs
D and B in figure 4¢, while legs Band D
will take up the positions of legs A and
C in figure 4c. While the stool is being
turned, the distance of legs B and D
from the floor changes continuously.
At the outset (fig. 4b) this distance was
positive, since both legs B and D were
above floor level; at the final moment,
shown in figure 4c¢, it’s negative, since
legs Band D are below floorlevel. So
there must have been a moment when
that distance was equal to zero. At
that instant the stool was standing on
all four legs.

Our solution has not only theoreti-
cal but practical value. By rotatinga
stool about its center by less than 90°,
we can always find its stable position.
You can check this experimentally.

One more thing. Our solution is
based on the fact that the extremities
of the four legs of a stool form the
vertices of a square. Were they located
attheverticesofarectangle, orsome
other quadrilateral, our argument would
not have worked. Idon’t know if the
statement of the problem is true for
any quadrilaterals other than the square.
(In any case, it’s clear that the quadri-
lateral must be inscribed in a circle.] If
you're able to settle this question,
please let us know.

SR

Problems

7. Your math teacher asked the class to
prove that any convex set can be divided by a
pair of perpendicular lines into four parts of
equal area. One of your classmates proposed
the following solution: “Choosing an arbi-
trary direction, we can draw a unique line ]
that divides the area of our set in half (fig. 5a).
Each half can be divided by lines perpendicu-
lar to I (fig. 5b). Let’s begin to change the
direction of I, repeating the previous con-
figuration. After the direction changes by
180°, points A and B will change places. So at
some moment these points will coincide. At
that time figure 5b will look like figure 5¢
and we will have obtained the required pair
of perpendicular lines.”

(a) Find the error in this argument.

(b) Find a correct solution.

8. Prove that any convex set with a center
of symmetry possesses an inscribed square.
(Actually, a square can be inscribed in any
set. But for the proof of this statement, given
by the outstanding Soviet mathematician
L.G. Shnirelman (1905-1938), simple con-
siderations of continuity are no longer suffi-
cient.)

Figure 6
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9. Given two convex sets, one contained
inside the other, prove the following state-
ments:

(a) There are two parallel chords of the
bigger set that are tangent to the inner set
andare of equal length (fig. 6a).

(b) There is a point X of the bigger set from
which two equal tangents to the inner set
can be drawn (fig. 6b).

Hint: Among the chords of the bigger set

Si4
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that are tangent to the inner one there isa
longest chord. From its ends, draw tangents
totheinnerset.

10. Given three nested convex sets (fig.
7), prove that there exists a point X of the
biggest set from which tangents to the inner-
most set can be drawn so that the parts of
these tangents contained in the second larg-
estset are of equal length.

Figure 7

Roots and chords

You know, of course, that a quad-
ratic trinomial might not have areal
root. Such is the case, for instance,
with the polynomial x> + x + 1. But
what’s the situation with cubic poly-
nomials? We'll now prove that any
third-degree polynomial has at least
one real root.

First let’s consider a cubic polyno-
mial with leading coefficient 1:

f(x)=x3+bx’+cx+d.
We can rewrite it in the following form:
f(x)=x(1+b/x+c/x*+d/x3).

If the value of Ixl is very large, the
summands b/x, ¢/x?, d/x* become very
small. In that case the number in
parentheses is very close to 1 and is
certainly positive. So for large Ix| the
sign of f(x) is determined by the sign of
the number x*. Likewise f(x) is less
than 0 for negative x with large abso-
lute values, and f(x) is greater than 0
for large positive x.

Because a cubic polynomial, like
any polynomial, is a continuous func-
tion, we can apply the intermediate
value theorem. The theorem implies
that there exists an x such that f{x) =0,
so the cubic polynomial has a root.

The case of the general cubic poly-
nomial

f(x)=ax®+ bx*+cx+d

reducesto the case considered above
by dividing f(x) by a.

Our proof is a good illustration of
the strength and weakness of continu-
ity considerations. We obtained the
proof of a difficult fact—the existence
of aroot—almost “for free,” butitre-
mains unclear how to find this root for
a specific polynomial. (Actually, for-
mulas for the roots of cubic polynomi-
alsexist, but that’s an entirely differ-
ent topic.)

Here’s another example. Suppose
f(x) is a continuous periodic function
of period T. Prove thatits graphhasa
horizontal chord of length T/2.

The existence of a horizontal chord
of length I is equivalent to the relation
f(x) = f{x + 1) (fig. 8). So we have to prove
that there is an x such that f{x + T/2) =
f(x). In other words, we must show
that the function g(x) = flx + T/2) - f(x)
has a root—that is, g(x) = 0 for a certain
X.

Let’s take an arbitrary number a. If
gla) = 0, we're all done. So we’ll
assume that g(a) is nonzero. To be
definite, let’s suppose gfa) < 0. Let b=
a+T/2. We can easily compute g(b):

g(b)=gla+T/2)
=fla+T/2+T/2)—fla+T/2)
=fla+T)-fla+T/2)
=f(a)-fla+T/2)
=—gla).

Therefore, g(b) > 0.

The function g(x) is continuous,
since it’s the difference of continuous
functions. So once again we can use
the intermediate value theorem, which
implies that there is a number x be-
tween a and b such that g(x) =0.

The statement about horizontal
chords of graphs of continuous peri-
odic functions can be considerably
strengthened: The graph of such a
function has a horizontal chord of ar-
bitrary length.

But for graphs of functions defined
on a closed interval, the situation is
quite different. Suppose a continuous
function is defined on a closed intez-
val of length T and assumes equal
values at the endpoints of the interval.

If the number [ is of the form T/n,
where n is a positive integer, then the
graph of the function necessarily has a
horizontal chord of length ; if 1 is not
of that form, there exists a continuous
function with the same values at the
endpoints whose graph has no hori-
zontal chords of length 1.

y
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Figure 8

Problems

11. Prove that any odd-degree polyno-
mialhasaroot.

12. Yesterday at midnight it was colder
than it was at midnight the day before yester-
day and today. Prove that at some time today
the temperature was the same as yesterday
atthe same time.

13. Suppose f{x) is a continuous function
on some closed interval and that all its
valuesliein that same interval. Prove that
there exists an x such that f(x) = x.

14. The polynomial f(x) = ax* + bx + c is
such that the equation f(x) = x has no real
roots. Prove that the equation f(f(x)) = x also
has no roots.

15. Suppose f(x) is a continuous periodic
function (on the numerical line) of period T.
Prove that its graph has horizontal chords of
length 1, where (a) I= T/3, (b) 1= T/n, (c) 1= (p/
q)T,|d)1is any real number.

16. Suppose f(x/ is a continuous function
on a closed interval of length T whose values
at the endpoints are the same. Prove that the
graph of f(x) has a horizontal chord of length
I, where (a) 1= T/2, (b) 1= T/3, [c) 1= T/n. Also,
construct such a function whose graph doesn’t
have horizontal chords of length 27/3.

17. The “mean value of the function f(x)”
on the closed interval [a,b] is, by definition,
the number

1 »
Effl f(X)dX

Prove that if the mean value of a continuous
function on a closed interval is 0, then the
function assumes the value 0 in the interval.

18. Consider a function of the form f(x) =
asinx + a,sin2x + ... + a,sinnx + b cosx +
b,cos2x + ...+ b,coskx, where a , ..., a_ and b,
..., b, are real numbers. Prove that the

equation f(x) =0hasaroot.

Conclusion

We've worked out several problems
whose solutions are based on consid-
erations of continuity. In each of
them the relevant magnitude depended
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on one parameter. For example, the
arcaof thepartofasettoonesideofa
line passing through a fixed point
depended ontheline’s angle of incli-
nation. Considerations of continuity
also work when there’s more than one
parameter. Now isn’t the time to go
into a detailed account of this theme—
I'll just leave you with a few theorems
to mull over.

1. Given three bodies arbitrarily lo-
cated in space, there exists a plane that
divides the volume of each into two
equal parts. (This is the space version
of the ham-and-cheese-sandwich prob-
lem, the three bodies being the slice of
bread and the pieces of ham and cheese.?)

2. There are two diametrically op-
posed points on the planetright now
where both pressure and temperature
coincide.

3. A cube may be circumscribed
about any convex body. (This theo-
rem generalizes problem 6 to space.)

4. Imagine a sphere covered with
hair. Can it be combed smoothly—
thatis, so thateach hairis tangent to
the sphere and the directions of nearby
hairs do not differ too much? The
answer is no: there will always be a
hair that will stick out perpendicu-
larly to the sphere. This statement is
known as the “porcupine theorem” or
the “sphere-combing theorem.”

5. This is for those of you who
know complex numbers. We've shown
that any odd-degree polynomial has a
real root. What about complex roots?
It turns out any polynomial (except a
constant zero-degree polynomial) has
at least one complex root. This state-
ment is so important it’s often called
the fundamental theorem of algebra.
And one of the approaches to its proof
is based on—you guessed it—consid-
erations of continuity. O

2An open-faced sandwich!—Ed.

Want to show your students how
chemistry affects their lives?
OPPORTUNITIES IN CHEMISTRY:
TODAY AND TOMORROW
the resource book by Pimentel & Coonrod
$8.95 from OpsinChem, 754 Coventry Rd.
Kensington CA 94707 (415) 525-7543
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such, it will be a valuable teaching aid for classroom use
as well as for independent study.
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ISBN 0-387-97041-X
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Strategic Lessons on Fractals
(in cooperation with E. Maletsky, T. Perciante and L.E. Yunker)

Fractals for the Classroom
Strategic Computer Experiments on Fractals

lustrations from The Science of Fractal Images edited by H.-O. Peitgen and D. Saupe.

Springer-Verlag
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National Council of Teachers of Mathematics
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BRAINTEASERS

Justfor the fun of t

Problems offered for your enjoyment
by E. Chernyshov, N. Antonovich, A. Savin,
B. Proizvolov, |. Slobodetsky, and L. Aslamazov

B6

How can a goat, a head of cabbage, two wolves, and a dog be
transported across a river if it’s known that the wolf is
“culinarily partial to” goat and dog, the dog is “on bad
terms with” the goat, and the goatis “not indifferent to”
cabbage? There are only three seats in your boat, so you can
only take two passengers—animal or vegetable—at a time.

Thirty people took part in a shooting match. The first
participant scored 80 points, the second scored 60 points,
the third scored the arithmetic mean of the number of
points scored by the first two, and each subsequent com-
petitor scored the arithmetic mean of the number of points
scored by the previous ones. How many points did the last
competitor score?

SOLUTIONS ON PAGE 61

Art by Edward Nazarov

When we multiply multidigit numbers, we have to do
some addition as well—the final step is to sum up the
subtotals. Here’s a puzzle that exposes the steps and tags
the various digits as odd (“O”) or even (“E”):

EEO

x 00
EOEO

+ EOO
00000

Find numbers that satisfy this scheme.

A scuba diver loses his bearings deep in the ocean. How can
he tell which way to go to get to the surface?

Will a candle burn in a spaceship, where everything is
weightless?
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GETTING TO KNOW...

The chemical elements

Just like the old-timer who's “been around,”
many an elementhas a story totell...

Phosphorous

The first known discoverer of a
chemical element is the German al-
chemist Hennig Brand. In 1669 he
prepared the “light-bearing” element
by distilling a mixture of solid and
liquid excrement while trying to find
a liquid that would turn silver into
gold. Instead, he found a pearly-white
waxy stuff that glowed in the dark and
could light a pipe. Ironically, Brand’s
home town of Hamburg was virtually
destroyed by phosphorous bombs during
World War IL.

Mendelevium (Z =101)

Mendelevium is an artificial ele-
ment first made in California in 1955
and named after the pioneer of the
periodic table. {A.N. Znoiko in the
USSR suggested the name for element
number 97, whose properties he had
predicted, but it was named berke-
lium after the city of its discovery.)
Today, there are 21 such artificial ele-
ments. The first one, technetium
(Z = 43), was discovered in Italy in
1936, while the last three (Z = 107-109)
were made in Germany in the 1980s.
Plutonium is needed to make bombs
that must never be used.

Therareearths (I=5/-11)

The periodic behavior of the ele-
ments reflects the sequential filling
up of electron shells. These 15 ele-
ments are chemically similar because
they have two valence electrons but
varying numbers of electrons in an
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by Sheldon Lee Glashow

inner so-called 4f-shell. Their exis-
tence was first hinted at by the work of
the Finnish chemist Gadolin in the
very same year that Lavoisier died on
the guillotine. Rare earths are not so
rare and are used in the phosphors of
television tubes. A similar family, the
actinides (Z = 90-103), corresponds to
the completion of the inner 5f-shell.

Gallium

When Mendeleyev proposed his table,
he left three vacant spaces for ele-
ments not yet discovered and pre-
dicted their chemical and physical
properties. Gallium was found in 1875,
scandium in 1879, and germanium in
1886. Their names suggest where
they were found, and they had just the
expected properties. Gais a rare by-
product of aluminum manufacture and
an essential component of up-to-date
semiconductingdevices. Sovietand
American scientists now collaborate
inanexperimentusing 40 tons of Ga
(borrowed from the Soviet strategic
stockpile!) to study solar neutrinos.

The platinum metals

The platinum metals form a rec-
tangle in the table: ruthenium, rho-
dium, palladium, and below them
osmium, iridium, platinum. They are
chemically similar and found together.
Platinum metallurgy was developed
by American Indians in pre-Colum-
bian times. Along with coffee, to-
bacco, maize, and potatoes, Pt is a

Art by Sergey Ivanov




New World gift. Four related metals
were found in South American Pt ores
by two British chemists and friends in

the year 1803. Ruthenium was iso-
lated and studied by the Russian chem-
ist Karl Karlovich Klaus. Curiously,

all six metals of the Pt family are
laboriously separated from the same
rocks only to be recombined with one
another to make special alloys for

+ things like dental fillings, pen points,

and precision instruments.

J Argon

monia and got different answers. He
and William Ramsay solved the puzzle
in 1894 by showing that 1% of airis a
new element they called argon. They
went on to find several other noble
gases—chemically inert new elements
that did not fit into the original table.
Mendeleyev reluctantly added an ex-
tra column.

Rhenium

Rhenium is the last long-lived ele-
ment to be found. It was discovered by
a collaboration of three German chem-

Hydrogen

In 1745 the Russian poet-scientist
M.V. Lomonosov wrote, “On solu-
tion of any nonprecious metal in acid,
there emerges an inflammable vapor
that is nothing else than phlogiston.”
It was hydrogen, whose atom is the
simplest of all. Much later, Niels Bohr
computed its spectrum with his quan-
tum rules. The structure of all the
atoms and the meaning of the periodic
table was to be explained by quantum
mechanics.

ists in 1925, two of whom subsequently
(consequently?) married one another.

Lord Rayleigh measured the den- .
sity of nitrogen from air and from am- salﬂmum

Selenium is one of nine elements
named after heavenly bodies (the Sun,
the Moon, five planets, and the aster-
oids Ceres and Pallas). A tiny bit of Se
is essential to our diet, but too much is
toxic. In South Dakota, cows grazing
on plants that concentrate Se develop
“alkali disease.” Se powder smells
like rotting horseradish.

Chlorine

Lavoisier taught us that burning is
oxidation. He gave oxygen a name
meaning “acid maker” because he
thought it was in all acids. Humphry
Davy proved him wrong by showing
that “muriatic acid” is O-free HCI and
that Cl is an element. Fluorine, chlo-
rine, bromine, and iodine are halo-
gens—reactive nonmetals whose at-
oms have almost complete valence

shells.
Rubidium

Each element emits light of defi-
nite colors when heated. These ap-
pear as bright lines when the light
| passes through a prism. Many ele-
) ments were discovered this way and
given names from Greek or Latin for
the colors produced: rubidium (ruby-
red), thallium (bud-green), and cesium
([sky-blue). Helium’s lines were first
seen in sunlight, which is why it was
named for the sun. Ol

\ Sheldon Lee Glashow is the Higgins Professor
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of Physics and Mellon Professor of the
Sciences at Harvard University.

Dmitry Mendeleyev peers out at the world through the bars of his periodic table.
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WHERE SCALES ARE WEIGHED

Temperature, heat, and thermometers

What does it mean to “‘measure temperature”?

Why are there so many thermometer scales?

And how is heat related to temperature?

by A. Kikoyin

HE SHORT LIST OF PHYSICAL

notions we become acquainted

with before we begin toread, let

alone study physics, includes tem-
perature. In infancy we learn that the
words hot, warm, and cold that de-
scribe our sensations mean different
values of temperature; that in sum-
mer the temperature is high, in winter
it’s low. You probably can’t recall
when you became aware that a healthy
person’s temperature is “98-point-6”
and that a doctor should be called if
your temperature is much higher. You've
known that “all your life.”

Since temperature is so familiar to
us, we're not usually aware of the
special properties that distinguish it
from other familiar notions like length,
mass, or volume. But the difference is
crucial.

If we take ten rods, each one meter
long, and put them end to end so as to
formonerod, we get arod ten meters
long. Similarly, if we take ten bodies,
each with a mass of 1 kg, and lump
them together, we get a body with a
mass of 10 kg; and so on. But if we
combine ten bodies, each at a tem-
perature of 20°C, we end up with a
body whose temperature is 20°, not
200°C, because the temperatures of
bodies don’t add up when we put them
together, unlike their lengths, volumes,
masses, and so on. A temperature of
100 degrees is not the sum of tempera-
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tures of one degree each, just as a man
of 25 is not the same as 25 one-year-
old babies!

So the main thing about tempera-
ture is thatit’snot an additive quan-
tity, and this peculiar property will
affect how we measure it. To measure
the length of a body we have to com-
pare it to another body that’s consid-
ered the unit length; to determine the

Figure 1

mass of some body we have to com-
pare it to the unit mass. This is
because abody’slength and mass are
equal to the sums of the lengths and
masses of its parts. But temperature
can’t be measured this way.

How is temperature measured?

Ahitof history

Around 1592 Galileo devised the
first instrument for measuring tem-
perature (although the word “ther-
mometer” didn’t appear in print until
1624). Galileo’s method for measur-
ing temperature, shown schematically
infigure 1, is essentially the same as
that used nowadays. A small glass
bulb (a) is fused to the top of a long,
narrow tube (b) that is open at the
bottom. The bulb is warmed by some-
body’s hands and the lower end of the
tubeis dipped in a container of water
(c). Asthebulb cools to the tempera-
ture of the surrounding air, the level of
the waterin the tuberises above that
of the water in the container.

Galileo’s thermometer is obviously
based on the fact that the volume of
the gas in the bulb depends on its
temperature, so that one can judge a
change in temperature by the change
in the gas’s volume. But the instru-
ment has no scale, so we can’t assign a
numerical value to the temperature.
It’s not really a thermometer, it’s a
"“thermoscope”’—it shows temperature



Art by Leonid Tishkov
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but it doesn’t measure it. It took
almost 150 years to come up with a
scale.

The important point for now is
this. Galileo’s thermometer is based
on an idea we still find useful—that
you don’t measure temperature di-
rectly, you measure a quantity that is
dependent on temperature. The quan-
tity used in Galileo’s thermometer
was the volume of a gas. Inamodern
mercury thermometer, the quantity
that depends on temperature, and whose
change indicates a change in tempera-
ture, is again volume—Dbut this time
the volume of mercury, not a gas. For
this purpose we could also use other
physical quantities—for instance, the
pressure of a gas (at constant volume),
the length of a solid rod, or the electri-
cal resistivity of a metal.

A physical law that can't he tiscovered
Without a thermometer

The first crude thermometers and
even thermoscopes led to the discov-
ery of one of the most important physi-
cal laws, the law of thermal equilib-
rium. The date of its discovery, which
no scientist has claimed, is unknown,
perhaps because it seemed self-evi-
dent. The law asserts that any isolated
system of bodies eventually arrives at
a state in which all its components
have the same temperature. This state
is called the state of thermal equilib-
rium.

Obviously, the law of thermal equi-
librium could be discovered only after
the invention of the thermometer.
On the other hand, temperature meas-
urement itself by means of a ther-
mometer is based on this law. After
all, a thermometer is a body at some
temperature that indicates its own
temperature. So in order to assess a
body’s temperature with a thermome-
ter, this body must be in thermal equi-
librium with the thermometer—their
temperatures must be the same if the
thermometer is to indicate the body’s
temperature in addition to its own.
That’s why you always have to wait
for some time before reading a tem-
perature—you're waiting for thermal
equilibrium to be established.
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Some more history

To recap: the thermoscope appeared
at the end of the 16th century and
became the thermometer in the middle
of the 18th. But what does the ther-
mometer indicate—what is tempera-
ture? It took scientists another hundred

years to find the correct answer to this

question.
Temperature is a quantity that char-
acterizes the thermal state of a

Lomonosov, who wrote: “It is well
known that heatis generated by mo-
tion; hands are warmed up by their
mutual friction; wood can be ignited
by rubbing; sparks appear from strokes
of flint on steel; iron becomes hot
from hammering it with strong, rapid
strokes.” This led to the conclusion
that heat is not a substance but the
motion of the “imperceptible particles”
(as they called them then) that consti-
tute all bodies.

in temperature if temperature were
the concentration of heat in a body.

The true nature of temperature—
that quantity whose meaning remained
obscure for such a long time—became
clear only after the kinetic theory of
matter was worked out. To under-
stand how, we have to get a handle on
the basic ideas of this theory.

Molecular chaos and its laws

The kinetic theory of matter as-

body. Wesay that coldand hot
bodies have different tempera-
tures. So the nature of tempera-
ture comes down to this: how is
a cold body different from a hot
body?

The first answer to this ques-
tion was given by Galileo him-
self. He started from the easily
observed fact that when a cold
body is placed close to a hot one,
the hot body cools while the
cold one becomes warmer. Gali-
leo concluded that something
travels from the cold body to

Galileo’s motto:

“To measure that which is

measurable,
and to strive to make
measurahle

that which is not yet so.”

sumes that any physical body
consists of small particles—mole-
cules—that are in constant cha-
otic motion. Complex forces of
attraction and repulsion act be-
tween molecules. Butfor gases
under ordinary conditions, these
forces are small, and we may
even visualize a gas in which
any interaction between mole-
cules is absent. Such gas, owing
to its purely theoretical nature,
is called an “ideal gas.”

An ideal gas consists of a huge
number of molecules moving cha-

the hot body (though we might

just as well suppose that something
travels in the opposite direction). He
assumed that it is a specific substance,
and in the 17th and 18th centuries
most scientists accepted that point of
view. The substance was called the
“caloric fluid.”

According to caloric theory, a hot
body differs from a cold one in that it
contains more caloric fluid. When
thermal equilibrium is established,
this caloric fluid has passed from the
hot body to the cold one. So in this
view, a body is a mixure of two sub-
stances: the material of the body itself
(for example, water, copper, iron, glass)
and the caloric fluid in it. This is
where the name for the unit of tem-
perature, a “degree,” comes from—
the same unit was used to indicate
concentrations of aqueous solutions.

This concept of temperature was
generally accepted for some 200 years.
And that’s what they talked about—
“degrees of warmth.”

At the same time there was another
theory, based on the fact that a body
can be warmed up by mechanical
motion. One of the founders of this
theory was the Russian scientist
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Experiments carried out in the 18th
century led mostscientists to recon-
sider the caloric fluid theory. In 1760
the Scottish physicist and physician
Joseph Black showed that when the
same amount of heat is added to equal
masses of different substances, differ-
ent changesin temperatureresult. If
temperature were the concentration
of caloric fluidin abody, the acquisi-
tion of the same amount of heat by
equal masses should produce the same
change in temperature. So Black’s
results were incompatible with the
theory of caloric fluid. Black discov-
ered that different substances have
what we now call different “specific
heats.”

In 1764 Black observed that tem-
perature remains constant while ice
melts, even though meltingrequires
that a large amount of heat be added to
theice. From the time of Black’s ex-
periment this quantity of heat has
been called the “latent melting heat.”
Likewise, a certain amount of heat is
removed when water freezes, which
also takes place at a fixed temperature.
Obviously, heat could not be absorbed
or released by a body without a change

otically every which way in a
container at speeds of hundreds of
meters per second, colliding with each
other and the walls of the container.
The system as a whole, however, is
subject tovery strictrules. Since the
interaction between the molecules of
an ideal gas can be neglected, the rules
canbestatedin arathersimple form.
In particular, using the laws of me-
chanics we can find the pressure—
that is, the force with which the gas
acts on a unit area of the container’s
walls.

One can show by certain calcula-
tions that in a vessel of volume V
containing N molecules of gas, the
pressure on the walls equals

2 N &

p= 3V + E> * ll)
where E (which equals m¥%%/2) is the
mean kinetic energy of chaotic mo-
tion assigned to one molecule of gas.
Equation (1) indicates that gas pres-
sure is equal to 2/3 of the mean kinetic
energy of the chaotic motion of mole-
cules per unit volume (since N/V is
just the number of molecules per unit
volume).

Real gases require more sophisti-



cated calculations, but under appro-
priate conditions equation (1) can still
be used. It gives an approximate rela-
tion between p and E that is accurate
enough for small N/V and E. The
formula can be used for pressures of
about 1 atmosphere and lower.

Atfirst glance all this hasnothing
to do with temperature, which doesn’t
even appear in equation (1). To see
what’s really going on, let’s turn again
to temperature measurement.

Scales: feast aften famine

The first thermometers used for
practical purposes were liquid ther-
mometers made by a group of scien-
tists in Florence. Later they were
manufactured in other countries.
Different liquids were used, but the
most common ones were alcohol and
mercury (sometimes oil).

The liquid thermometer consisted
of a thin vertical glass tube that bal-
looned out at the bottom in the form
of a small bulb. The bulb and lower
part of the tube were filled with liquid.
In addition to being functional, the old
Florentine thermometers were quite
beautiful. If you saw them, you might
even consider them works of art—
such a refined artistic approach was
taken in creating these scientific in-

struments.

Various methods were used to con-
struct thermometer scales. Every
manufacturer or designer of thermome-
ters worked out a different one. By the
end of the 18th century there were
about twenty different thermometer
scales. Three of them (too many, in
fact) have survived to the present day.

The three survivors are variations
on a single theme. Earlier in the
century the German glassblower and
amateur physicist Daniel Gabriel
Fahrenheit and the Swedish astrono-
mer Anders Celsius came up with a
principle for constructing thermome-
ter scales that has since been generally
accepted. It’s based on the use of two
reference points—thermal states that
can be characterized as constant. The
points they chose for this purpose are
the temperature of melting ice and
that of boiling water at atmospheric
pressure. (The melting point of any
solid substance and the boiling point
of any liquid at a given pressure are
also constant, but water and ice are
more readily available.)

In 1742 Celsius proposed the fol-
lowing prescription for dividing up
the thermometer scale. A thermome-
ter is put in contact with melting ice.
Once heat equilibrium is established,
the height of the liquid in the ther-
mometer is marked. Then boiling
water is used
instead of ice,
and the new
level is marked
with a number
that differs
from the first
by 100. The
space between
the two marks
is divided into
one hundred
regular inter-
vals, each in-
terval corre-

sponding to the
change of one
degree in tem-
perature (fig. 2).
Curiously
enough, Cel-
sius took the
temperature of

boiling water as

0 and that of melting ice as 100. Eight
years later, however, this scale was in-
verted and has stayed that way for
more than 200 years.

Even before Celsius, in 1724 Fahr-
enheit manufactured thermometers
in which two reference points, melt-
ingice and boiling water, were taken
as 32 and 212, respectively, and the
interval between them was divided
into 180 regular intervals (degrees).
Like Celsius, the contemporary French
scientist René-Antoine Ferchault de
Réaumur took the temperature of melt-
ing ice as 0, but according to Réaumur’s
scale water boils at 80.

So we see there was alot of confu-
sion when it came to selecting tem-
perature scales. The number of inter-
vals between the two fixed points was
arbitrary, as were the values of these
reference points themselves. In fact,
there’s no reasonable argument in
support of assigning the temperature
0 to melting ice—as if melting ice had
no temperature!

Not only that, there’s an assump-
tion hidden in our division of the tem-
perature scale into equal parts—80,
100, 180, or whatever. We assume
that the volume of the liquid in the
thermometer is exactly proportional
to its temperature.

If we denote the volume of the
liquid at the temperature of melting
ice as V, and its volume at the tem-
perature of boiling water as V, and
these temperatures themselves as ¢,
and t, division of the temperature scale
into equal parts means that

V- V[)

=ty

where ¢ is a constant. If we assume ¢,
=0,then V-V =ct,or V=V +ct.

Can we verify that volume depends
on temperature as a linear function?
Obviously we can't, because we'd have
to use a thermometer in the verifying
experiment, and in constructing the
thermometer we've already assumed
that volume is linearly dependent on
temperature.

There’s an old story about a seaport
in which a gun was fired every day, ex-
actly at noon, so that ship captains
leaving the port could set their chro-
nometers (which were used to deter-
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mine longitude during the voyage) to
the time of the shot. One of the
captains wanted to know how confi-
dent he could be that the gun was
really fired at midday. He found out
that the artillery man determined the
time with the help of a local watch-
maker’s “very exact watch.” And the
watchmaker told the captain he set
his “very exact watch” by the shot in
the port. Obviously, under these cir-
cumstances, you can’t judge whether
the watch is of good quality or the gun
is fired exactly at noon. Similarly,
when we use a thermometer whose
scale is constructed on the assump-
tion that the volume of its liquid is
proportional to the its temperature,
we can't tell whether that assumption
is valid.

Equally important, in measuring
temperature we have to allow for the
fact that the actual readings depend on
the liquid used in the thermometer or
on some of its other physical proper-
ties. Weneed a standard thermome-
ter for grading all the others, so as to
malke their readings compatible. How
do we solve this problem? At present
the standard thermometer is the so-
called “gas thermometer of constant
volume.”

Gas thermometers and an absolute
femperature Scale

From experimentation we know
that the pressure of hot gas is greater
than that of cold gas. In the gas ther-
mometer, then, pressure at constant
volume is the quantity that indicates
the temperature. The thermometer
shown in figure 3 consists of a con-
tainer A filled with an “ideal gas” (that
is, any gas at low pressure) and a
manometer M attached to the con-
tainer to indicate the pressure. If we
put the container in melting ice, then
in boiling water, and measure the pres-
sure at these temperatures, we find
that the pressure at the boiling point is
1.3661 times greater than the pressure
at the meltingpoint. So we have

p :
£ _ 13661, (2)
p()

where pis the pressure at the temperature
T of boiling water and p, is the pres-
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Figure 3

sure at the temperature T, of melting
ice. Following the tradition of the Cel-
sius scale, let’s say

T-T,-100. 3)

The difference in pressure at the
temperatures of boiling water and
meltingiceis divided into 100 equal
intervals—that is, we still assume the
linear dependence of temperature on
pressure at constant volume. Of course,
we can’tjustify the assumption, just
as the captain couldn’t judge if the
watch was correct by the gunshot or
the gunshot was on time by the watch.
The assumption of linear dependence
is simply the basis for the method of
measurement.

Now, with the gas thermometer
we have no need to assign 0 to the tem-
perature of melting ice. We can calcu-
late it. In fact, if temperature is di-
rectly proportional to pressure, then

p_T
P, T (4)
0
Since theratio on the left side equals
1.3661, this is the same as T/T, =
1.3661, or T'= 1.3661T,. Substituting
this value for T in equation (3), we get
1.3661 T,-T, =100, which gives us

100
07 0.3661

We can see the difference between
this new scale and the old Celsius
scale (fig. 4). Accordingto thisscale,
the temperature of melting ice is not 0
but 273.15 degrees, and zero tempera-
tureis273.15 degrees lower than the
temperature of melting ice. This zero
temperature is called “absolute zero.”
It’s the temperature at which an ideal
gas must have a pressure equal to zero,
if such a temperature could be ob-
tained and the gas would remain in
the gaseous state. Since gas pressure
can’t be negative, the temperature in
this scale can’t ever be negative.

Perhaps you've already recognized
this new scale in my rough sketch. It's
the Kelvin (or absolute) scale. The
temperature in this scale is called “ab-
solute temperature,” whose standard
notation is T, and it’s measured in
degrees Kelvin. The temperature of
melting ice is 273.15°K, that of boiling
water 373.15°K, and so on.

But for most practical purposes, the
Celsius scale reigns throughout the
world (although most Anglo-Saxon
countries still use Fahrenheit). The
temperature in this scale is denoted as
t and is expressed in degrees Celsius
(abbreviated °C). According to this
scale, the temperature of meltingice
is 0°C, that of boiling water 100°C, and
so on. Obviously, #°C = (T-273.15)°K.
Those who use the Kelvin scale are
almost invariably physicists.

Andnow, finally, we’re in a posi-
tion to grasp the real meaning of tem-
perature.

S0 what s temperature?

Accordingto themethod of meas-
uring temperature I've just described,
the pressure of gas of mass M, consist-
ing of N molecules in volume V, is
proportional to its absolute tempera-
ture T. We can write equation (4)in
the form

= 273.15.

T’ (5)

which suggests that the ratio of pres-
sure to temperature of a gas at con-
stant volume is constant. On the
other hand, we have equation (1) for
gas pressure:

4
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Substituting this value of p in equa-
tion (5), we get

P\}

(

[=

T-= E. (6)

|
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=

(
This equation is true for a gas in'a
closed container at constant volume.
So the number of gas molecules Nis
constant, and the ratio T,/p, is also
constant, as we saw carlier. As a
result, the coefficient at E in equation
(6) is a constant for any gas, and we
have

=2AF . (7)
ZAE,

where A = N/V - T /p, (a constant).
Equation (7) means that the absolute
temperature of a gas is the mean ki-
netic energy of chaotic motion of one
molecule, measured in degrees Kelvin
and not in energy units (joules). The
coefficient A is a factor that relates the
energy and temperature units. The
situation is similar to the one we
encounter when working with differ-
ent units of length. For example, to

281

80

find a length in inches, we need to
know that 1 meter is about 40 inches.
Equation (7)is usually writtenin the

f
orm .

E=‘§kT, (8)
where
1 Vv Py
CATNT 9

The coefficient k is called the
“Boltzmann constant” after the Aus-
trian physicist Ludwig Boltzmann
(1844-1906).

From equation (9) we can infer how
to obtain the numerical value of the
Boltzmann constant. To do this, we
take a container of volume V and fill it
with gas of mass M (the mass can be
determined by weighing). Then we
put the container in melting ice (whose
temperature T, is 273.15°K) and meas-
ure its pressure with a manometer. If
we know the mass M, we can easily
determine the number of molecules
N. Infact, if the molar weight of the
gas in grams equals 1, the number of
moles of gas in the container equals
M/u. And since each mole contains
N, molecules (Avogadro’s number),

500

100

>

Figure 4

the number of molecules in the con-
taineris N = (M/wN,. So we can deter-
mine the Boltzmann constant k if we
know the mass M, the molar mass u,
the volume of the container V, and the
pressure p, of the gas at temperature
T,

Such measurements have been per-
formed many times, and all of them
give the same value for the Boltzmann
constant:

k=1.38-102]/°K.

You see how small k is. So we con-
clude that the mean kinetic energy of
chaotic motion of one molecule is a
tiny quantity.

It's precisely this energy that deter-
mines temperature. At 1°K, the mean
kinetic energy of a molecule E equals

m2 1381073

0o W

= 210" J/molecule.
This equation can be viewed as the
relation between one degree Kelvin
and one joule/molecule.

Before we leave the subject of tem-
perature, we should clarify the rela-
tionship between temperature and heat,
two concepts that have been consid-
ered virtually identical through the
centuries.

We know now that heat is the en-
ergy of chaotic motion of particles and
that this energy can be transferred
from one body to another during heat
exchange. So heatisn't a quantity that
characterizes the state of a body—we
can’t say it’s contained in the body.
But temperature characterizes the state
of abody because it’s determined by
the mean kinetic molecular energy.
There’s no essential relation between
temperature and heat. We can only
say this: If two bodies have different
temperatures, the body at the higher
temperature gives heat to the other.
Temperature is the quantity that de-
termines whether a body gives heat to
other bodies or gets it from them.

And that’s just how the great Scot-
tish physicist James Clerk Maxwell
(1831-1879) defined temperature way
back when.

[\

CONTINUED ON PAGE 49
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HOW DO YOU FIGURE?

Ghallenges in physics and math

Anchurian candidate & seven dwarfs, river raft & spaceship,
circles & cubes, expanding polygons & merging lines,
apan ofwater & a string of polarized digits—
that is to say, something for everyone

Math

Three equal circles. Three circles
with the same radius r all pass through
point H (fig. 1). Prove that the circle
passing through the points where pairs
of circles intersect (that is, points A, B,
and C)also has the sameradiusr.

Double parity. Prove that if each of
the numbers x, x,, ..., x_is equal to +1
or-1,andx x,+x,x,+...+X_ X +X X

n-1""n 1L

=0, thennis divisible by 4. (A. Leon-
tovich)

Two similar polygons. When the sides
of a convex polygon are moved out-
ward by the same distance 1, they fall
on the corresponding parallel sides of
a larger similar polygon. Prove that
circles can be inscribed in these poly-
gons. (N. Vasilyev)

M9

“Democratic” election. In the coun-
try of Anchuria, ruled by President
Miraflores, a presidential election is
coming around again. There are ex-
actly 20 million voters in the country
and only one percent of them (the
regular Anchurian army) supports
Miraflores. Naturally, Miraflores wants
to get reelected, but on the other hand
he wants the elections to appear demo-
cratic. By “democratic election” Mi-
raflores means the following.
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Figure 1

All the voters are divided into equal
groups, each group is again divided
into a certain number of equal smaller
groups, then these smaller groups are
divided into still smaller equal groups,
and so on. The smallest groups choose
representatives—known as “electors.”
These electors choose representatives
of the next larger groups, and so on.
Finally, the representatives of the larg-
est groups elect the president. The
election proceeds at all stages by ma-
jority vote—in a split vote, the opposi-
tion wins. Miraflores has the right to
divide the electors into such groups as
he wishes and can instruct his sup-
porters how to vote. Will he able to
organize such a “democratic election”
and get reelected? (32nd Moscow Math
Olympiad)

Seven dwarfs. Seven dwarfs sit around
a circular table waiting for Snow White.
Each of them hasabigcup, and some
of the cups contain milk. The first
dwarf pours out all his milk into the
other six cups, dividing it into six

equal portions. The dwarf to his right
then does the same. The next dwarf
follows suit. And so they continue
until the seventh dwarf pours out all
his milk into the other six cups (divid-
ing it into equal portions). Then it
turns out that each of the dwarfs has
exactly as much milk as when they
started. Find the amount of milk
originally contained in each cup if the
total amount was 3 liters. (V. Guten-

PhysicS

Imminent collision. The pilot of a
spaceship moving at velocity v = 1
km/s notices an asteroid of diameter d
= 7 km straight ahead at a distance of 1
= 8.5 km. The astronaut immediately
switches on the emergency engines,
which in a negligibly small interval of

7
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time impart an additional velocity of
Av =300 m/s to the ship. This addi-
tional velocity can be directed in any
way the astronaut chooses. Can a
collision be avoided? (A. Andrianov)

Raft on the river. A wooden raft is
pushed perpendicularly from a river-
bank such that its initial velocity is v.
The raft’s trajectory is shown in figure
2. The X on the trajectory shows
where the raft will be at time ¢ after the
operation began. Assuming that the
velocity of the current is constant and
equal to u, graphically plot where the
raft will be at times 2t, 3t, 4t ... . (L
Poterayko)

P8

Cooling water. A pan contains 1 liter
of water that can't be brought to a boil
by means of a 100-W heating element.
How longwillit take for the water to
cool 1°C when the heating element is
turned off? (A. Zilberman)

The cube’s magnetic field. The current
I flowing in a circuit formed by the
four edges of a cube creates a magnetic
field of induction B, in the center of
the cube (fig. 3). Find the value and
direction of the magnetic field created
in the center of the cube by the current
I flowing in the circuit formed by the
six edges displayed in figure 4. (M.
Tsypin)
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P10

Merging rails. Tmagine you're down at
the railroad tracks, looking far off down
the line. Calculate the distance at
which the rails seem to come together.
(It’s assumed you understand the physics
of the observed phenomenon and can
estimate the other magnitudes involved.)
(P. Zubkov]

SOLUTIONS ON PAGE 59
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Art by Sergey lvanov

WHERE BIOLOGY MEETS MATHEMATICS

The geometry of population genetics

The power of mathematical modeling is applied
to the phenomenon of hereditary change
from generation to generation

by I. M. Yaglom

ATHEMATICS OCCUPIES

a privileged position among the

sciences. Natural sciences such

as physics or chemistry study
the real world we live in; social sci-
ences study human society and its
features. These sciences have in
common the fact that they acquire
their knowledge from experience. In
contrast, mathematics studies such
abstractions as irrational numbers (for
example, 2%} and things like lines,
which by definition have no width but
only length. Mathematical knowl-
edge proceeds from the construction
of abstract concepts. A mathematical
concept can be defined by giving, as is
done in geometry, a full list of axioms
that adequately determine its proper-
ties.

The outstanding role played by
mathematics is largely due to the fact
that it can be applied to both the
natural and social sciences—that it
can, in fact, “model” physical and
human phenomena. Mathematical
modelinrg consists of establishing a
correspondence between specific fea-
tures of a phenomenon by using mathe-
matical methods. We'll use the ex-
ample of heredity—more precisely,
population genetics—to illustrate this
unique power of mathematics.

Heredity

Following the classical theory pro-
posed by Gregor Mendel,! we'll focus

our attention on a certain characteris-
tic, or “trait,” transmitted from one
generation to the next and therefore
called hereditary. The fur color of
guinea pigs, for example, is such a
trait. The physical unit of inheritance
is the gene. A trait is determined by a
pair of genes; either gene can be one of
two types, G and g. The first one,
denoted by the capital letter G, gives
the dominant form of the characteris-
tic (in our example, the color black];
the other, denoted by g, gives the re-
cessive form (the color brown). The
words “dominant” and “recessive”
mean that the outward appearance of
a hybrid guinea pig, H, with a genetic
makeup determined by the combina-
tion of genes (or “genotype”) Gg, is the
same as that of a dominant guinea pig,
D, with the genotype GG—that is,
hybrid guinea pigs are black. In con-
trast, recessive guinea pigs, R, with
the genotype gg, look different from
the dominant and hybrid ones—they're
brown.

The law of transmission of traits
canbe stated as follows: an offspring
receives one of its genes from the
father and another, independently of
the first one, from the mother; either

! The Austrian natural scientist
Gregor Johann Mendel {1822-1884), the
abbot of a monastery in what is now
Czechoslovakia, discovered the
fundamental laws of heredity that
underlie the modern science of genetics.

of the father’s genes (and either of the
mother’s) has the same odds of being
passed on to the offspring. So a pair of
black hybrid guinea pigs can give birth
to brown guinea pigs—in fact, one
quarter of their offspring will be brown,
if there are enough of them.

Problem

1. Find the proportion of dominant, hy-
brid, and recessive offspring among a suffi-
ciently large number of descendants of each
of six possible mating couples: (D,D), (D,R],
(R,R], (H,D), (H,R), and (H,H).

Biological populations and geometric
noints

A biological population is a suffi-
ciently large group of organisms that
belong to the same species and form
mating couples only within the group.
Population genetics studies the changes,
from one generation to the next, of the
proportions d, h, and r, which repre-
sent the numbers of dominant, hy-
brid, and recessive organisms relative
to the total population. So we can de-
scribe the population P by three non-
negative numbers (d,h,r) that are sub-
ject to the constraint

d+h+r=1.

This simple observation suggests that
we use the following device for the
mathematical modeling of biological
populations.
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If the side of triangle DHR is equal to 2a
(a=1/3’; since the altitude of the triangle
is equal to 1), its area is given by the
equation S, =a= S, + Syp+ Sipp = ad
+ah+ar. T 1erefore,lg+ h+r=1

Let’s consider an equilateral tri-
angle DHR whose altitude is equal to
1. It's important that, for any point P
of the triangle, the sum of the dis-
tances from that point to sides HR,
RD, DH is constant and equal to 1 (fig.
1). We'll call the numbers d, h, r
coordinates of the point P with respect
to triangle DHR and write P = P{d,h,7),
as for Cartesian coordinates. Their
relation to the usual three-dimensional
coordinates in space is illustrated in
figure 2.

In this way we can assign to each
population P—determined by the ra-
tios d, h, and r of the dominant, hybrid,
and recessive organisms—a point in
triangle DHR, which we'll denote by
the same letter P = P(d, h,z). It’s worth
noticing that populations consisting
only of dominant, hybrid, and reces-
sive organisms correspond to points
D(1,0,0), H(0,1,0), and R(0,0,1), respec-
tively.

Problem

2. Find the distance between points P(d,h,1)
and P|(d k1)) by means of their coordinates
withrespect totriangle DHR (usefigure2).

The heredity of a population is de-
termined by the composition of its
total “gene pool.” We can visualize
this by looking at our triangle. Let’s
denote the relative portions of G and g
genesby I'and y=1-T foracertain
population corresponding to point
P|d, h,r) in the triangle. It’s easy to see
thatT'=d+h/2, y=r+h/2,and that T
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and vy are the d- and r-coordinates of
the projection P, of point P onto side
DR. Consequently, populations that
have a fixed gene pool composition
given by theratioI":y(I"+y=1)corre-
spond to points lying on the perpen-
dicular to side DR passing through
point P(I’,0,y).

Now we've come to the main point
of our discussion. Let’s consider
population P, corresponding to point
P|\d h,r) in triangle DHR, and popula-
tion P, which represents the next gen-
eration of organisms bred by mating in
population P. Population P’ also cor-
responds to a point in triangle DHR.
So we have a transformation of point P

H

A

= D

Figure 2

Population P(dh,x) corresponds to point
P in space with coordinates (x,y,z) =
(2/3)*(d,h,x). All these points belong to
equilateral triangle DHR, which is the
intersection of planex+y+z= (2/3)"
with the positive octant (x> 0,y > 0, z
> 0). The distances from point P to the
sides of triangle DHR are equal to d, h,
L.

into point P’, which provides a mathe-
matical framework for studying the
transmission of inheritance from one
generation to the next.

Examples

Interbreeding with dominant or-
ganisms. Let’s suppose that organ-
isms in population P = P(d, h,r) inter-
breed only with the dominant ones,
D, so that one of the genes of every
descendant will be dominant. The
second gene, inherited from parents
belonging to population P, is chosen
in two steps, in effect: first, through

the random choice of a parent; second,
through the random choice of one of
the genes. It’s important that all genes
in the gene pool of the entire popula-
tion have the same opportinuty to par-
ticipate in the process so that the
proportion of descendants with the
second G gene is equal to the proportion
I'in the gene pool, while the propor-
tion of g genes equals y. In the first case
dominant organisms are formed, and
in the second—hybrid ones. So the
ratios d’, h’, and ¢’ of D, H, and R
organisms in the next generation are

d =T=d+h/2,
h' =y =h/2+r,
' =0.

Now let’s consider the structure of
the transformation f,: P—P’ of triangle
DHR that is generated by the equa-
tions given above. Comparing the
coordinates of points P/(T, y, 0) and
P,T,0,y)(notice that P is the projec-
tion of P onto DR—see figure 3|, we
see that point P’ lies on side DH ata
distance of DP’' = DP from vertex D.
Let P, be the intersection point of lines
P P and DH—that is, the projection of
P onto line DH in the direction per-
pendicular to DR. (In what follows
we'll simply say “in direction h.”) It's
evident that DP = 2DP,, or DP' =
DP /2. In other words, to get point P’
= f,(P) we first have to find point P,
which is the projection of P in direc-
tion h onto DH, and then find the mid-
point P’ of line segment P D.

And so the inherited transforma-
tion f, we've been examining in this

Py

DP~DPylcos 60=
=2DP,~2DP'

Figure 3
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section is the result of two transfor-
mations performed sequentially: first,
the parallel projection in direction h
onto line DH; second, the similitude
(“homothety”) with center D and scale
factor V5.

From this we can infer that the
transformation turns the entire tri-
angle DHR (the set of all possible
populations) into one line segment—
side DH (the set of all populations that
don’t contain recessive organisms). It's
important that the only point that
doesn’t move (the “fixed point” of the
transformation) is point D, which is
what we'd expect from our under-
standing of genetics. Generations that
follow P’ as descendants of the origi-
nal population will correspond to images
of point P’ after sequential similitudes
with center D and scale factor 14, and
they’ll tend to come closer and closer
to the pure dominant population D.

Interbreeding with hybrids. Now
suppose the organisms in population
P =P(d,h,r)interbreed only with the
hybrids H. Usingarguments similar
to those given above, we infer that half
the descendants acquire the G gene
from their parents and the other half
the g gene; then in either half the
proportion of descendants having G as
the second gene equals I', and those
having g as the second gene is y. So for
the next generation P'd’,h’,r') we have

d' =T/2=d/2+h/4,
B =T/2+v/2=1/2,
r =y/2=r/2+h/4.

Comparing the coordinates of points

P(I/2)2,v/2)and PT, 0, y), we see that
point P’ is obtained from P by the
similitude with center H and scale
factor 2 (fig. 4). This means the
transformation £, that turns P into P’
can be seen as a combination of (1) the
projection in direction h onto the line
joining midpoints M and N of sides
DH and HR of our triangle and (2) the
similitude with its center at midpoint
T of MN and ascale factor of %.

Looking at the construction given
above, we can easily see that the he-
reditary transformation f, changes
triangle DHR (the set of all popula-
tions) into line segment MN (the set of
all populations exactly half of which
are hybrids) and possesses a unique
fixed point T(¥4, ¥, V4)(a stable population
thatpreservesits composition). The
sequence of generations P/, P = f,(P’),
... 1s depicted as points of line MN;
each point is transformed into the
next by the similitude with center T
and scale factor ¥4. There’s no need by
now to make any projections. Conse-
quently, populations P, P”, ... approach
the stable population T.

Problem

3. Letf, be the transformation corre-
sponding to the interbreeding of population
P|d h,r) with a fixed population Pla,b,c). (Here
a,b,c>0anda+ b +c=1,of course.) For
example, f,, and f,  are the transformations
f, and f, discussed earlier. Find the formulas
for the transformation f,, andillustrate its
geometrical meaning. Also, find the stable
populations. What happens when multiple
repetitions of transformation f , are per-
formed?

Panmixia and the Hardy—Weinberg law

The hereditary transformations con-
sidered above are primarily of interest
to teachers. Scientistsin the field of
population genetics mainly study he-
reditary transformations P’ = f(P) such
that the population of descendants is
generated by a random choice of mat-
ing couples. This is called “panmixia”
(from the Greek words pan, “all,” and
mixis, “mixing” or “mating”). Obvi-
ously a random choice of mating couples
and then of genes actually amounts to
a random choice of gene pairs from the
gene pool of population P. Then the
frequency of GG pairs—that is, the
proportion d’ of dominant organisms
in the next generation P'—equals %

the frequency of Gg and gG pairs (the
proportion h’ of hybrids) is 2I'y; and
the frequency of gg pairs (the proportion
1’ of recessive organisms)isy?. Sowe
have

d =T*=(d+h/2),
h' =2Ty=2(d+h/2)(h/2 +1),
r =vy2=(h/2 +1).

(Notethatd' +h’+1r' =([+y)>=1.)

These formulas express one of the
principal laws of population genetics,
the so-called Hardy-Weinberg law,
which appearsin every modern text-
book on the subject. They describe
how the composition of a population
changes when there is panmixia—
that is, when there are no additional
factors that may influence the forma-
tion of mating couples. (It should be
pointed out that the male and female
portions of a population are assumed
to have equal shares of the dominant,
hybrid, and recessive types.)

Now let’s look at the geometrical
meaning of the transformation f de-
scribed above—that 1is, the
Hardy-Weinberg law. First of all, we
see that the composition of the gene
pools of populations P and P’ is the
same. This clearly follows from the
equations

F’=d’+]1’/2=1"1+1"y=["(1"+«/):r,

As we know, this means that points P
and P’ lie on the perpendicular to DR.
Let’sassume DP =x. Inthat case,

) vV 3
=xsin60° = x 5

&

v=T

2

In an ordinary (Cartesian) system of
coordinates, this equation gives the
arcIlof aparabolawhenO<x<DR=
2/3%fig. 5). The equation for a parab-
ola in our “coordinates relative to tri-
angle DHR" reads h* = 4dr, since h'” =
4T 22 =4d'r’. It’snot hard to see that
the parabola passes through points D,
R, and T (the midpoint of line segment
MN) and is tangential to lines DH,
RH, and MN at these points.

Point P’=f(P) is where the perpen-
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dicular to DR drawn from P intersects
the parabola, so that the transforma-
tion f is the projection of triangle DHR
on arc I1 of the parabola in direction .

From this it follows that all the
points of arc IT are fixed—that is, all
populations P(d,h,r) for which h? = 4dr
are stable with respect to transforma-
tion f. This result seems paradoxical.
It requires that, for a large enough
population in the absence of muta-
tions and selection (natural or artifi-
cial), evolution always proceeds in
one step. Any further interbreeding
doesn’t change the composition of the
gene pool: if P’ =f{P), P” = fAP"), and so
on, then P'= P’ = ... Butin real life the
ideal conditions of interbreeding that
we have assumed never hold—we can
expect only some crude approxima-
tions of them.

So we see that the Hardy-Weinberg
law only gives an initial approxima-
tion of the real processes that take
place in biological populations. Fur-
ther approximations are given by more
sophisticated mathematical models
(see, for example, problem 4). Obvi-
ously, we need to compare the results
obtained by these models with obser-
vations of living nature.

Problem

4. Let mating couples in population P be
formed randomly (as with panmixia), but
assume that the hybrids have less chance of
survival than the dominant or recessive or-
ganisms. More precisely, only the kth part of
the total number of hybrids of the next gen-
eration survives. (For k > 1 this means, on the
other hand, that only the 1/kth part of D and
R organisms survives.) Construct the corre-
sponding transformation of triangle DHR.
What's the nature of the transformation for k
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=0 (the total extinction of hybrids) and k =
infinity (the total extinction of D and R
organisms)?

The Hardy-Weinberg law was found
in 1908, independently, by a young
English mathematician, G.H. Hardy,
working at Cambridge, and an Aus-
trian physician, Wilhelm Weinberg,
in Vienna. Historians of science even-
tually discovered that the law had
been stated five years earlier, in a
somewhatdifferent form, by an Eng-
lish biologist, W.E. Castle, but the
work had gone unnoticed. Curiously
enough, Hardy, an eminent specialist
in number theory, was a partisan of
pure science. In his largely autobio-
graphical book, A Mathematician’s
Apology, he strongly supports the cause
of pure mathematics against applied
science, which he considered (perhaps
without sufficient reason) boring. Not
surprisingly, Hardy’s excellent calcu-
lus textbook is called A Course of Pure
Mathematics. Nonetheless, now more
than 90% of all references to Hardy in
scientific books and articles have to
do with his paper on population genet-
ics, which he wrote in his youth, and
not his brilliant papers on number
theory.

A few remarks on Daltonism

In the simple genetic scheme we've
been using, a trait that can exist in two
forms is determined by a pair of genes,
either of which can be of two types.
But the number of genes, as well as the
number of their types and laws deter-
mining their outward expression, may
be quite different. Let’s look at a more
sophisticated system for the trans-
mission of inherited traits.

Some hereditary diseases are much
more common in men than in women.
These include color blindness (an ina-
bility to distinguish certain colors,
usually red and green) and hemophilia
(a deficiency in the normal coagula-
tion of blood, which results in pro-
longed bleeding after even minor inju-
ries). Color blindness was first de-
scribed by the eminent English chem-
ist John Dalton [{1766-1844), and the
condition came to be called “Dalton-
ism.”

Dalton mistakenly considered color

blindness an exclusively male illness.
Statistics do, however, tell us that 8%
of men suffer from Daltonism while
only 0.5% of women do. The Ameri-
can biologist T.G. Morgan explained
the difference this way.

The gene for Daltonism, whose domi-
nant variant ensures normal vision
while the recessive produces color
blindness, is contained in the so-called
X-chromosome. This chromosome,
together with the Y-chromosome, de-
termines a person’s sex (as is the case
with other mammals and some in-
sects). The cells in a woman’s body
contain two X-chromosomes; a man’s
cells contain one X- and one Y-chro-
mosome. An individual inherits one
chromosome from the mother (the X-
chromosome, of course) and another,
which determines the sex, from the
father. Soa manreceives the unique
gene for Daltonism (or any other char-
acteristic related to sex—that is, re-
lated to the X-chromosome) from his
mother. Awomanreceives one gene
from her father and one gene from her
mother.

Now let’s consider population P
and its series of descendant popula-
tions P, P”, ..., generated by random
mating (panmixia). We want to study
the dynamics of the genetic structure
of these populations. In particular, we
want to determine the proportion of
recessive women and men with the
genotypes gg and g—that is, the per-
sons of each sex who suffer from Dal-
tonism.

Three female genotypes—GG, Gg,
gg—and two male genotypes—G, g—
are possible. We'll denote their pro-
portionsin the female and male sub-
sets of population P as d, h, r, 8, and p;

h o4

5']’1)

R(0,0,0) D(11,0)

D(1,0,0)

Figure 6
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the proportions of genes G and g in the
gene pool of the female subset of P are
I' and v. The corresponding quantities
for population P' are given by the
equations

d'=T8,h=Tp+yd,1r' =yp;
8 =T, p’ =1,
I'=(C+8)/2,v ={y+p)/2.

(Can you explain why?)

We'll use a geometric model to
study the transformation P—>P’. Ow-
ingto the constraintd+h+r=6+p=
I'+v =1, we can express all the parame-
ters determining the composition of
the population by means of three para-
meters—say, I, 6, and h. So to each
population we can assign the point
given by the Cartesian coordinates (T,
8, h). Since the inequalities

0<T'<1,
0<é<l,
0<h<2T,
h<2y=2(1-T)

must be satisfied (the last two because
of the constraint h/2 =T -d =y 1),
these points lie in the triangular prism
DHRD H R, bounded by the planes 6
=0,0=1,h=0 h=2Ih=2-2T|fig 6).
The hereditary transformation changes
point P (I, §, h)into point P’ (I'’, &, k')
such that point P’ and all subsequent
points P/, P, ... belong to surface S,
defined by the equation

h=2I-4I6+28.
This fact follows from the equation
h'=T(1-8)+(1-T)8

=T +5-2I%
= 2T —4T"8' + 28"

(see figure 6). Consequently, points
P’,P”, .. are uniquely defined by their
projections P, P, ... onto plane h =0
We can infer from the equations I'’ = (T
+98)/2, 8’=T, and figure 7 that segment
PP/ is parallel to line ], defined by & =
-2 T, and intersects diagonal RD | of
face RDD R, of the prism so that the
intersection point divides the segment
in the ratio of 2:1. We'll call the trans-
formation that tums P, into P, a “shear
compression” with a scale factor of
-1, It’snothard to see that the points
P/, P, ..obtained from P, by repeat-
ing the transformation belong to line
PP, and approach point P", which is
where this line intersects RD|. Point
P and all the points of segment RD,
are fixed during our transformations.
“Lifting” points from plane h = 0 onto
surface S, we obtain the following
statement: the composition of subse-
quent generations of population P tends
to approach (very quickly) that of stable
population P; the corresponding point,
like all points corresponding to stable
populations, belongs to the line of
intersection of surface S and plane I' =
3. (Show that thislineisaparabola!)
For any stable populationI' =8 we
can find all other quantities determin-
ing the composition of the gene pool:

o

p=y=1-9,d=8,h=205p,r=p"

In particular, for p = 0.08 we get r =
0.006. These values are roughly the
same as the ones given above for the
frequency of Daltonism among men
and women.

A final word

In this article I've tried to show how
geometrical methods illustrate prob-
lems in population genetics, enabling
us to solve them by elementary meth-
ods and obtain important results. I
hope you now feel capable of produc-
ing similar arguments and solving the
problems given below.

Problems

5. Letthescales alongthe axes h, I, d be
equal to 32, 1, 1, so that the prism DR ... H|
is regular. Prove that the distances from
point P(T, §, h) to the bases of the prism are
equal to dand p, and that the distances to the
lateral faces are proportional to the values d,
h,r.

6. Prove that the planes 6 = ¢ (a constant)

and & - 2T = ¢ intersect surface S along
straight lines, whereas the intersections of S
and all other planes parallel to axis h are
parabolas.

7. Find the coordinates of the limit
population P® by means of the coordinates
(T, 8, h) of the initial population P.

8. Let a population P(T, §, h) be interbred
with a fixed population P (T, &, k) as fol-
lows: female individuals of Pare 1andomly
coupled with males from P, while male
individuals of P are randomly coupled with
females from P, We'll denote the descen-
dant population by P, = f,(P).

(a) Find the coordinates ', 8, h and all
the rest of the parameters of population P, as
functions of the coordinates of Pand P,

(b) Let

Po=f(P), P, =f(P). ... P, = lim P,.
Find the coordinates of the population P as
functions of the coordinates of P and .

(c] Examine specific cases that corre-
spond to various compositions of the gene
pool P—for example, P = P (1,1,0), which is
the pure dominant population P;—as well as
the case where population P 1s one of the
many populations that are stable relative to
the transformation described in this article.

{d) Describe the maps f: P—>P andf :
P—>P  as transformations of the prism. [g)

.M. Yaglom is a doctor of physical and
mathematical sciences.
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IN YOUR HEAD

Balipark estimates

How to impress your date and amaze your friends
with off-the-cuff answers to questions of magnitude

OME PROBLEMSOF PHYSICS

involve calculations of the high-

est possible precision. Many prob-

lems, however, call for only an ap-
proximate answer. Physicists pride
themselves on being able to solve such
“order-of-magnitude problems” quickly
by breaking them down into their com-
ponents and making appropriate com-
mon-sense estimates.

Here’s a typical problem:

On average, how many atoms
of rubber are worn from an
automobile tire every time the
wheel goes around?

Problems of this kind are often called
“Fermi problems” after the great physi-
cist Enrico Fermi, who was a great
practitioner of the craft of proposing
them and solving them quickly and
cleverly.

No doubt you have a few questions.

Yes, [ do. Does this problem have
any practical significance?

Probably not. Although the prob-
lem is an interesting link between the
worlds of the very small (the atom) and
the very large (the automobile), its real
purpose is to help you understand how
to make estimates.

But there are no numbers. How can
we even start!

We have to estimate the starting
numbers—the radius of a tire, the amount
of wear ...

But that’s just guessing! How can
we possibly arrive at an accurate an-
swer!
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by David Halliday

If by “accurate” you mean an an-
swer good to three significant figures,
you're right. But in a problem of this
kind, “accurate” means “within a
factor of ten either way”—that is,
over or under. Actually, it’s hard to be
that far wrong in estimating the input
data.

Igetit. Where do we start?

We start with a plan. We'll esti-
mate the volume of rubber worn from
the tire and then divide by the vol-
ume of an atom. That will give us our
answer. Let’s deal with the tire first.

Okay. ButIdon’t see any way to
guess what volume of rubber is worn
from the tire every time the wheel
goes around.

We can get an estimate by guess-
ing the volume of rubber wom during
the life of the tire and then figuring
out how many revolutions the wheel
makes during that time. Dividing
will give the volume of rubber lost per
turn.

Let R be the outer radius of the tire,
W the width of the tread, h the depth
of wear, and L the distance traveled
during the life of the tire. The num-
ber of turns N is the total distance
traveled divided by the length of the
tire’s circumference:

__L
2nR’

in which 2aR is the circumference of
the tire. The volume of worn rubber
V is the volume of a cylinder of thick-
ness h:

V = (2nR|Wh.

The volume worn per turn is then

vV _CaRWh _ (27R)’Wh _ 40R* Wi _
N L/2nR L L

Notice that we've replaced n* by 10,
which is certainly close enough for
our purposes.

But there’s no need to replace n° by
10. My calculator shows 9.87.

You might feel that you're improv-
ing the precision of our answer by
doingthat, but you’re not. Ourother
estimates will be so approximate that
such precision is misplaced. Not-only
that, 10isamuch simpler number to
deal with.

I accept that. What next?

We've already made great progress.
We've reduced part of the problem to
quantities we can estimate. We'll do
that soon. Meanwhile, let’s think
about atoms.

I've been wondering about that.
What is a “rubber atom,” anyway?
I'msureyouwon’t find it in the peri-
odic table!

You're right, of course. Rubber is
made up of long chain molecules formed
from carbon, hydrogen, and oxygen
atoms. We're interested here only in a
sort of generic atom, whose radius we
label r.

I see. Then the volume V, of the
generic atom would be the volume of
a sphere of radius t, or (4n/3)r°. Right?

You could say that. It’s a little
better {and simpler) to put the volume
at (2r—that is, the cube of the diame-
ter. That treats the atoms as little
cubes and makes some allowance for




the empty space between them.
Now we divide to find our answer.
Right!
Right. The number of atoms worn
away per turn is

Vi _40R*Wh _ SR*Wh
Ve L 21’)3 Ly

Now we're ready for our estimates.
Let’stake them oneatatime:

n=

R [tireradius)=about 1 ftor30cm
' 0r3/10m,
F W (tread width) = about 4 in or 10
cmorl/l10m,
h|depth of tread wear) = about 1/6
inor4 mmor4/1000m,!
L (tire life) = about 50,000 mi or 8 -
107 m,
r (radius of an atom) = about 10-1°

m.?

In putting these numbers into the
above expression for n, we must be
careful to choose units consistently.
Using meters, we find

. 5:3:3:4

10-10-10-1000-8-10"- 107"

' You might estimate the depth of tread

wear to be 1/2 in (12 mm). If so, your
; calculations will be slightly different. That's
okay—these are estimates.—Ed.

2 Physicists always use this as an estimate
of the radius of an atom. It's a good number
to know. (Theradius of anucleus, by the
way, is estimated to be 10-* m.)—Ed.
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ShallI'work this out on my calcu-
lator for you!

No! It's a point of honor not to use
a calculator when solving Fermi prob-
lems. Let’s rewrite this equation by
collecting the integers and the powers
of ten:

_ .1017

S

You can easily see that the number
in the parentheses is about 20, so that

2. How many gallons of gasoline
are consumed each year in the United
States by private automobiles?  [@)

Adapted from the forthcoming book
Essentials of Physics by David Halliday,
Robert Resnick, and John Merrill with
permission of the publisher, John Wiley &)
Sons, Inc. David Halliday is professor
emeritus of physics at the University of
Pittsburgh.

n=2-10"%atoms per turn.

Shouldn’t we round that off to 10%

atoms per turn?

Yes, indeed. The “2” isn't
justified by the precision of
our estimates.

So—

When someone asks the
“tire question” at a party (and
itneverfailstocomeup, be-
lieve me!), you can now gaze
at the ceiling for a few min-
utesandsay: “About... 10
atoms per turm, more or less.”
That’s how quickly Fermi
himself solved problems like
this one!

Try your hand at finding
ballpark estimates for these
Fermi problems.

1. The population of Bos-
ton in 1980 was about 560,000.
How many high school teach-
erswere therein thatcityin
that year?

Large or snar?

Do you consider the answer to the tire problem
(10 atoms/turn) large or small? No answer is pos-
sible until you've answered the necessary auxiliary
guestion: Large or small relative to what? As a pure
number, 10" seems large. It's 10,000,000 times
greater than the number of stars in the Milky Way gal-
axy, for example.

But the problem deals with 10%® atoms, not 10™® as
a pure number. This number of atoms is about
10,000,000 times greater than the number of atoms
in a typical small bacterium but about 10,000,000
times smaller than the number of atoms in a glass of
water.

Our conclusion: You can only compare physical
quantities ofthe same kind. There are no absolute
standards of “large” or “small.”

Art by Nishan Akgulian
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CONTEST

When days arg months

“Then the tides gradually pushed her
far away: the tides that the Moon herself causes in the

EFarth's waters ...”’

by Arthur Eisenkraft and Larry D. Kirkpatrick

T SEEMS PARADOXICAL THAT
the Moon’s attractive force causes
it to move farther from the Earth,
but that’s exactly what happens.
The distance between the center of
the Earth and the center of the Moon
increases by about 3 to4 cm per year.
No doubt you're aware that the
Moon’s gravitational force produces

IFrom “The Distance of the Moon” in
Cosmicomics by the Italian writer Italo
Calvino (1923-1985).
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the Earth’s tides. As the water moves
to form the two bulges that we experi-
ence as two high tides each day, there’s
alot of friction of the water with the
ocean floor and with itself. There are
alsotidesin the “solid” earth. These
result in a conversion of some of the
Earth’s rotational kinetic energy into
heat at the rate of about 2 billion
horsepower (1.5 trillion joules) each
second.

This may seem like a lot of energy,
but it’s only a tiny, tiny fraction of the
total kinetic energy of the Earth. Small
as it is, though, this change is measur-
able. In order to lose kinetic energy
the Earth must slow down, but not
very much! The length of the day
increases by 1.6 milliseconds each
century.

But how does this cause the Moon
to move farther away? This occurs
because the total angular momentum
of the Earth-Moon system must re-
main the same. The loss in the Earth’s
angular momentum must equal the
gain in the Moon’s angular momen-
tum. This requires an increase in the
size of the Moon'’s orbit and a corre-
sponding increase in the length of the
month—that s, the length of time it
takes the Moon to go around the Earth
once. So both the length of the day and
the length of the month increase. At
some time in the distant future, a day
onEarthwill beamonthlong!

Although this synchronism of day
and month may seem very strange, it

already occurs in our solar system.
Plutoandits moon Charon have this
relationship. They move as if they
were two balls on the end of a massless
baton—each always has the same face
toward the other. Pluto’s rotational
period is equal to the revolutionary
period of Charon—6.4 Earth days.
This leads us to our contest prob-
lem: For the Earth-Moon system,
how long will an Earth day be when
it’s the same asamonth? Let’'smake
a few simplifying assumptions. We'll
neglect the revolution of the Earth and
Moon around the Sun, the motion of
the Earth around the Earth-Moon cen-
ter of mass, and the rotation of the
Moon on its axis. We'll assume that
the Moon’s orbit is a circle in the plane
of the Earth’s equator and that the
Earth and Moon are uniform spheres.
Please send your solutions to Quan-
tum, 1742 Connecticut Avenue NW,
Washington, DC 20009. The best
solutions will be published in the next
issue of Quantum and their creators
will receive free subscriptions to Quan-
tum for one year. Q

Arthur Eisenkraft is the chair of the science
department and a physics teacher at Fox
Lane High School in Bedford, New York.
Larry D. Kirkpatrick is a professor of physics
at Montana State University in Bozeman.
Drs. Eisenkraft and Kirkpatrick serve as
academic directors for the US Physics
Team that competes in the International
Physics Olympiad.
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At sixes and sevens

—a curious phrase that means “in disorder,”
but from chaos can come beauty, and order can lie
hidden in apparent randomness

N THE SECOND ROUNDOF
the USA Mathematical Talent Search
(sponsored jointly by Rose-Hulman

Institute of Technology and CO-
MAP) conducted in the pages of the
quarterly Consortium, students were
asked to find the smallest positive
integer multiples of 84, 88, and 89 that
could be expressed in base 10 using
the digits 6 and 7 only. Their response
was most encouraging. Nationwide,
over 150 students found the answers—
76776, 6776, and 667767, respectively—
and many provided beautiful analyses
leading to their solutions.

Mark Roseberry, a high school sen-
ior from Kentucky, also provided a
computer printout showing that all
positive integers less than or equal to
224 that are not multiples of 5 have an
integer multiple consisting of 6’s and
7’s only.

by George Berzsenyi

So here’s our challenge to you: Is
the Roseberry Conjecture true for all
integers that are not multiples of 52

If you don't yet feel strong enough
mathematically to tackle this prob-
lem, maybe you can turn on your
computers and—after devising effi-
cient search algorithms—gather fur-
ther evidence in favor of the claim. Or,
alternatively, you may wish to ad-
dress similar problems using digits
otherthan6and?.

The first problem I mentioned is
based on a problem in the 1984 AIME

7

(American Invitational Mathematics
Examination) that was originally posed
by Professor Andy Liu of Canada. His
problem asked for the smallest integer
multiple of 15 whose digits are either
0 or 8. If you know of a similar
problem, I'd appreciate a note describ-
ing where you came across it.

Please send your solutions to Quan-
tum, 1742 Connecticut Avenue NW,
Washington, DC 20009. The best
solutions will be published in the next
issue of Quantum and their creators
will receive free subscriptions to Quan-
tum for one year.

George Berzsenyi is the chairman of the
Department of Mathematics at Rose-
Hulman Institute of Technology. He was
on the committee in charge of the USA
Mathematical Olympiad for 11 years, chaired
the committee in charge of the AIME for 6
years, and is presently conducting the
USA Mathematical Talent Search.
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LOOKING BACK

The secret of the Vieneratile Cooper

It was an age-old time-saving trick everyone used,
but no one understood—that is, until
a certain mathematician's curiosity was piqued

OHANNES KEPLER (1571-1630),
the court mathematician of the
Austrian emperor Matthew I and
a famous astronomer, was ob-
serving with curiosity and admiration
as a young vintner called out, easily
and quickly, the capacities of a succes-
sion of wine barrels of different sizes.
Keplerrecalled the time-consuming
measuring procedure used in the vine-
yards of the Rhine country. The work-
ers there would painstakingly fill each
barrel using a container called an “am-
phora,” which served as a standard
unit of volume. They’d count the
number of amphoras the barrel held
and then burn the number into its side
with a red-hot iron so that—God for-
bid!—they wouldn’t have to repeat
this boring procedure for that particu-
lar barrel.
But here in Austria—what a differ-
ence! If you've never seen a barrel
close up, you might not notice it has a

N

D

Figure 1
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by M.B. Balk

hole, called the “bunghole,” on its
side right at the middle (that is, its
fattest part). The fellow would just
shove a brass measuring stick diago-
nally into the filled barrel’s bunghole
until it hit the lower edge of the bot-
tom cover (fig. 1). Then he’d simply
read off the number on the ruler where
it stuck out of the hole. The barrels
were all different—large and small,
“potbellied” and “skinny”—but this
didn’t worry the fellow at all. He’d
give the answer each time with the
same speed and confidence. An un-
kind thought occurred to Kepler: “He's
pulling a fast one!”

“Don’t worry, Honorable Mathe-
matician of His Majesty,” the young
man said, as if reading Kepler’s mind.
“This method of measurement is
sanctioned here in Linz by the city
authorities, and the cooper’s guild
vouches for the precision of its re-
sults”.

“For any barrel?”

“I don’t know about any barrel, but
for all barrels here in Austria for sure,”
joked the vintner.

“But how can you be sure this method
is correct?”

“What I don’t know, I don’t know.
I won't lie to you. People say that
years and years ago the Venerable Cooper
lived here, and he proposed this method.

But why he proposed it just this way—
I'msurelcan’ttellyou.”

Kepler recounts how he deciphered
the secret of Austrian cooper in his
book The New Stereometry' of Wine
Barrels, Mostly Austrian, As Having
the Most Advantageous Shape, and
the Remarkably Convenient Use of
the Cubic Ruler With Them, With an
Addendum on Archimedean Stere-
ometry. Although this book was pub-
lished nearly 375 years ago, it’s still
quite instructive today, as we shall
see.

Kepler first considered the case of a
cylindrical barrel (fig.2). Suppose ND
=1, thelength of the generatrix AB is
2x, and the diameter of the barrel’s
bottom ADis2y. Then

x? + 4y’ = )2, (1)

and the barrel’s capacity can be found

2x g
PA N Q
7
s
P
2y s
s
v
s
s

Figure 2

IThe old name for space geometry—
Ed.
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by applying the formula
v=lam (AN —x% x. (2)

It’s easy to express this capacity in
terms of the distance i and the ratio ¢
of the generatrix to the diameter of the
bottom (t = x/y). Equations (1] and (2}
imply

v =234 + 2312, (3)

o

“These formulas show,” argues
Kepler, “that the capacity of a cylin-
drical barrel doesnot depend only on
the distance k. To be able to use the
Austrian cooper’s method we must
deal only with barrels whose ratio ¢ is
fixed (t = ¢,). What is the best choice for
this ratio? What is the most profitable
choice for the ratio of the generatrix’s
length to the diameter of the barrel’s
bottom? Let’s argue from the vint-
ner’s point of view. His interest lies in
the choice, among all values of t, of
the value t = ¢ such that, of all bar-
rels with distance ND equal to
%, the one chosen has the maxi-
mum volume v,. Then he
can calculate this volume
according to equation (3).
And if the craftsman
who made the bar-
rel did not succeed
in achieving the
ideal ratio too
exactly but

was somewhat off the mark (not t=1¢,
thatis, butt >t ort<tg, the vintner
will not suffer because of the miscal-
culation: the actual capacity vof the
barrel will necessarily be less than v,..
And so the vintner will declare the
capacity v, and be paid accordingly by
the client, but in fact will give the
client slightly less wine, namely v.
“But then, no self-respecting
vintner wants to swindle his
clients. He wants the actual ‘
capacity of the barrel |corre-
sponding to the actual
choice of parameter t) to
differ as little as pos-
sible from the volume
v, corresponding to
the best value of
the parameter

(namely, t,]. The buyer’s inter-
est in this is even stronger. It
turns out that this state of affairs is
also achieved by choosing the
parameter t that yields the greatest
value for the barrel’s volume v.”
Since we are familiar with the no-
tion of derivatives, we can easily jus-
tify Kepler’s reasoning. (It was much
harder for Kepler—his book appeared
some 70 years before the differential
calculus was born!) Let’s malke use of
the following general principle. Assume
f(t) is a function of ¢ (for simplicity’s

s

sake, one that has a

first derivative for all

t > 0); and suppose that ¢,

is some fixed value of the

independent variable ¢. Then,

for a small increment h—that is,
t=t,+h, wehave

f(t)-f(t,)=F(t,) b+ a(h) - b,

where a(h)—>0 as h—>0 (se¢ any cal-
culus textbook].

Soif f'(t,) # 0, the deviation of f(t)
from f{t ) will be, for small values of b,
practically proportional to h. But if ¢,
is a maximum (or minimum)| point of
the given function, then f(¢ ) = 0 and
the deviation equals a(h] - h, where
a(h)—>0 as h—>0. This means that
near the extreme value t, asmall de-
viation of parameter t from ¢, affects
the variation of the function f(t) much
less than it does near some value of ¢
where f/(t) # 0. (Kepler calls the vari-
ation “insignificant.”) In our case—
see equation (3}—it’s most advanta-
geous to choose the parameter t in
suchaway (t =t ) that the cylindrical
barrel has the greatest capacity (v,). In

QUANTUM/LOOKING BACK 3/




this case, when there are small devia-
tions of ¢ from ¢, (which are inevitable
inpractice), the deviation of the bar-
rel’s volume v from the maximum
volume v, will be insignificant.

Kepler then computes (for a given
) the value of the ratio t that yields the
maximum capacity for the barrel. Using
the notion of the derivative, we can do
this much faster and more easily than
Kepler could. Let’s use equation (2) for
v. Then

v/(x)=Vam (A?-3x%) =0,

which works out to

e
Vv 3
Usingequation(1)togety, we get
9 A2 2 2}\.2
dy- =N -x"==—"—,
¥ X 3

I

a3

y=

So
z=€=\/_251.41. (4)

0

For this value of parameter ¢ the capac-
ity of the cylindrical barrel will be
greatest (for a given value of A) and will
equal

T 53
L . (5)
3WV'3
“Now I'will consider the more general
case,” Kepler writes, “in which the
staves (thatis, the boards that make
up the sides of the barrel) are bent, not
straight as they are for a cylindrical
barrel. Such a barrel can be repre-
sented with a sufficient degree of pre-
cision as two identical truncated cones
joined together along their larger cir-
cular bases.” (See figure 3.)

N

Figure 3

“QOf course,” Kepler continues, “I
am accepting a certain amount of
imprecision, but if the barrel is not too
“potbellied,” this error will be insig-
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| T 1 T
125 256 343 512 7

nificant. Then amongall the barrels
for which the distance ND equals the
given )k, [ will choose the one with the
greatest capacity.”

Following the procedure outlined
by Kepler, we can express the capacity
v of the barrel in terms of the distance
M, the radius y of the smaller base of
the truncated cone, and the distance z
= NF (where F is the foot of the perpen-
dicular dropped from point D to the
larger base of the cone). Let’s perform
these calculations, using the formula
for the volume of a truncated cone and
bearing in mind that the altitude of
the truncated cones here equals

DF =% k=22,

Simple manipulations then yield
2 P 2
v=3m Do) 43y

\ }\.:—Z:. (6}

Kepler was able to find the correla-
tions among the various barrel dimen-
sions (thatis, the valuesof yand z for
a given A) that produce maximum
barrel capacity. We can obtain Kepler's
results by solving the following prob-
lem: using derivatives, prove that
among all the barrels of the type de-
scribed (with a given value A for the
distance ND), the one that has the
greatest volume is the cylindrical bar-
rel whose generatrix is 2 times longer
than the bottom’s diameter.

Now let’s use Kepler’s idea that,
near an extreme value, a small devia-
tion of the independent variable leads
to an insignificant change in the func-
tion’s value. In our case, this means
thatif the dimensions of some barrel
don’t deviate much from those of the
best barrel (that is, a cylindrical barrel
with theratio AB: AD =27, these de-
viations will have an insignificant ef-
fect on the barrel’s volume. So the
volume of a barrel differing only slightly
from the “best” one can be computed
according to the same formula—equa-
tion (5).

“It is now clear,” writes Kepler,

Figure 5

“what an Austrian barrel really is: it is
one whose generatrix ANB is about
2”times longer than the bottom’s di-
ameter. Since in choosing the stave
length PNQ we have to take into
account the thickness of the top and
bottom of the barrel and the fact that
the staves stick out a little beyond the
top and bottom, the staves must be
about one and a half times longer than
the bottom’s diameter.”

Not only that, Kepler also under-
stoodhow to find the capacity of any
“ Austrian barrel” by means of an ordi-
nary ruler: just measure the distance
ND and apply equation (5) to find the
volume v,. “But the vintner called out
the capacities immediately, without
counting,” Kepler recalled. “Appar-
ently his ruler is not an ordinary one,
but has marks that are positioned dif-
ferently. How is this ruler calibrated?”

Kepler turned his attention to a se-
cret amphora the vintner mentioned.
He guessed that it was probably some
kind of little barrel as well, whose
capacity is taken as a unit of measure-
ment. Butif Austrian coopers produce
barrels with an optimal ratio of gen-
eratrix to diameter (that is, t = 1.5,
surely they must use the same ratio in
making the standard barrel-amphora.
Assume that for the standard barrel-
amphora the distance N,D, equals % (fig.
4). Then, taking the capacity of the
barrel-amphora as the unit volume,
equation (5) gives us

T3
3v3 !

Using equation (5) again, ‘we get the
following adequate approximation of

1=

N,

Figure 4




the volume of an “Austrian barrel”:
v, = (MM ) barrel-amphoras.

So, in order to find v,, it's enough to
know the ratio A/, (rather than the
actual value of ). In fact, you don’t
even have to know the ratio itself, just
its cube. The values of (A/\,)? are in
fact the markings on the ruler—that
is, we have to calibrate it according to
the “law of cubes.” At distances of .,
2),, 3k, ... from the end of the brass
ruler, the numbers 1, 8 (=23}, 27 (= 39),
... are written (fig. 5). To state the
general case: at a distance ki, (where
k is any positive integer] from the end,
the number k? is written. If you stick
this ruler into a barrel so that its tip
touches the lower edge of the barrel’s
bottom (point D}, the reading on the
ruler at the bunghole (point N) will
indicate how many barrel-amphoras
that barrel holds.

INTHE AUTUMN OF 1615, at Kepler’s
request, the Elder of the Cooper’s Guild

. LOOKING BACK

met with the Emperor’s Mathemati-
cian at the Linz City Hall.

“Honorable Elder,” began Kepler,
“Tam interested in the method Aus-
trian coopers and vintners use to meastire
the capacity of barrels.”

“Well, you see, Honorable Mathe-
matician of His Majesty,” objected
theelder, “thisisatrade secret of our
guild. This secret has been handed
down from generation to generation
by our craftsmen since the days of the
Venerable Cooper.”

“T had surmised that at one time
there existed an outstanding geome-
ter who taught this method to your
guild. I believe I have managed to
guess his secret”.

“Then tell me, Honorable Mathe-
matician of His Majesty, what the
secret of the Venerable Cooper is, in
your opinion, and I promise to con-
firm whatever parts of your explana-
tion are correct.”

“My reflections have led me to the
conclusion,” answered Kepler, “that

when the coopers of Linz construct a
barrel, they are guided by only one
consideration: that the staves be one
and a half times longer than the di-
ameter of the bottom.”

“ Absolutely correct!” affirmed the
startled cooper.

“Further, tomeasure the capacity
of the barrels you use a ruler calibrated
according to the law of cubes.”

“You are right again,” said the elder
of the cooper’s guild with even greater
surprise, looking apprehensively at
Kepler. “Are you endowed with su-
pernatural powers, Honorable Kepler?
I have heard that, as the Emperor’s
Astrologer, you can read the past and
the future from the disposition of the
stars. Could it be that the Venerable
Cooper’s secret was deciphered by means
of astrology?”

“No,” answered Kepler dryly, “I
computed it by means of mathemat-
ics.” Andthere wasnothingmore to
be said between the mathematician
and the cooper. O}

From the
prehistory of radio

This article originally appeared in 1984
to commemorate the 125th anniversary
of the birth of the great Russian physicist
Alexander Popov

by S.M. Rytov

ADIO IS ONE OF THE DISTINC-
tive features of modern civiliza-
tion. It’s a means of communica-
tion and an instrument for scien-
tific research, both on Earth and in

outer space. It exerts a tremendous
influence on our daily life.

Not that much time has elapsed
since the first experiments in radio
communication, so we might con-

clude that the entire history of radio is
confined to the 20th century. This
conclusion would be wrong. In look-
ingat the history of radio, we have to
remember that this technology stemmed
from discoveries in the theory of elec-
tricity. And the scientists who made
the most important contributions in
this field are Faraday, Maxwell, and
Hertz.

Faraday and his experiments

The most important discovery was
made by Michael Faraday in 1831.
Faraday found thatelectricity can be
generated by changes in a magnetic
field. This phenomenon is called
“electromagnetic induction.”

Faraday’s tremendous experimen-
tal work was guided by the concept of
interaction through a medium, which
he visualized as lines of force traveling
through space. This stood in direct
contrast to the concept of immediate
action at a distance, supported at the
time by the authority of Newtonian

QUANTUM/LOOKING BACK 39




Michael Faracay

physics and such eminent physicists
as Ampere, Weber, Kirchoff, and
Thomson (Lord Kelvin). Faraday’s ideas
encountered considerable opposition,
but he forged ahead and made one im-
portant discovery after another.

Faraday used little mathematics—
his method of research was almost
purely experimental. He derived his
ideas under the direct influence of
experiments, turned to experimenta-
tion as a way of testing the truth of his
ideas, and expressed his results in
nontechnical language.

Maxwell and his mathematics

James Clerk Maxwell understood
the profundity of Faraday’s ideas and
decided to create a mathematical frame-
work for them. This paved the way for
the systematic study of electromag-
netism. In his famous book A Treatise
on Electricity and Magnetism, he wrote:
“Thave therefore thought that a trea-
tise would be useful, which should
have for its principal object to take up
the whole subject in amathematical
manner, and which should also indi-
cate how each part of the subject is
brought within the reach of methods
of verification by actual measurement.”
Proceeding along these lines, he did
quite a bit more. Maxwell introduced
the concept of the electromagnetic
field, finally rejected the concept of
action at a distance, found that a change
in an electric field in time generates a
magnetic field, and derived the equa-
tions that bear his name. To do all this
Maxwell had to introduce a new physi-
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cal quantity (similar to electric cur-
rent, caused by electrical charges moving
in space) that he called “electric dis-
placement.” The discovery of electric
displacement was the direct result of
his efforts to create a mathematical
structure for electromagnetic theory.

The beauty of Maxwell’s equations,
which describe a multitude of physi-
cal phenomena, appeals to every physi-
cist or mathematician, and their mathe-
matical structure provides guidelines
for research in theoretical physics even
today.

An important conclusion that fol-
lowed from Maxwell’s theory was the
existence of transverse electromag-
netic waves, which have a finite propa-
gation velocity given by the equation

1

W E u
00

The constants of dielectric suscepti-
bility (E,) and magnetic susceptibility
(1,) had been measured previously.
The value of ¢ turmed out to be equal to
193,088 miles per second. This was
very close to the speed of light ob-
tained in optical experiments by Hip-
polyte Fizeau—193,118 miles per sec-
ond. Thisled Maxwell to conjecture
that light consists of electromagnetic
vibrations. Maxwell first mentioned
this brilliant discovery in a letter to
Faraday dated November 19, 1861.
Neither of the values given above are
quite accurate. Maxwell no doubt
understood that the speed of light had
been measured inaccurately, so he played
down the numerical disagreement.

C =

James Clerk Maxwell

Maxwell himself felt that the elec-
tromagnetic theory of light had been
created by Faraday. He wrote some-
thing to that effect in 1864, referring to
ideas that Faraday had expressed in
one of his papers in 1846. But perhaps
a distinction should be made between
a general idea and a precise statement
that can be verified by experiment.
Maxwell’s theory not only supplied a
general framework for previously known
electromagnetic phenomena, it also
provided a means of predicting new
phenomena and describing them quan-
titatively. The most important phe-
nomenon it predicted was the exis-
tence of electromagnetic waves. But
neither Faraday nor Maxwell (at least
at the early stages of his work) had
noticed the direct connection between
optics and electromagnetism, which
became apparent only after Maxwell
had worked out his theories explain-
ing phenomena in electricity and
magnetism.

Hertz and his living equations”

Electromagnetic waves were first
detected in the laboratory by the Ger-
man physicist Heinrich Hertz in 1888.
Hertz’s experiments have long been
considered remarkable examples of
experimental ingenuity and theoreti-
cal foresight. The Russian physicist
0.D.Khvolson called them “eternal
classics.” Hertz also made important
contributions to the mathematical
framework of Maxwell’s theory. He
admired its beauty and wrote that its
equations have a life of their own—
that they are wiser than we are, even
wiser than their creator, and give more
information than was put into them.
These words proved prophetic. The
second half of the 20th century has
seen the flourishing of so-called “gauge
theories,” which from the mathemati-
cal point of view are generalizations of
Maxwell’s equations to suit the needs
of subatomic physics.

Immediately after Hertz’s experi-
ments, many scientists proposed us-
ing electromagnetic waves for com-
munication without wires. It's inter-
esting to see what Hertz himself thought
about it.

In 1889 an engineer from Munich
named Guber put the question to Hertz



Heinrich Hertz

directly. In 1897, three years after
Hertz died, Guber sent Hertz’s reply
to a German research journal, where it
was published without comment. In
his letter Hertz wrote that the lines of
force of magnetic and electric fields
travel like light rays only when their
vibrations are very rapid. Then both
kinds of line forces are inseparable
from each other, so that the rays of
waves studied in Hertz's papers can be
called “magnetic” or “electric” inter-
changeably. But vibrationsin a tele-
phone wire are much slower. So radio
waves of very low frequency are re-
quired because (Hertz thought) the
frequency of the radio waves should
be the same as that of the transmitted
sound; consequently, the wavelength
would have to be very large. Hertz
suggested that radio waves could be
focused by concave mirrors to obtain a
signal strong enough to detect. He
saw no other means to achieve that
end. But for very long waves, these
mirrors would be the size of a conti-
nent!

I'll make no comment about this
letter either. Let’s just say that even a
genius has a hard time trying to guess
the solution to a technical problem
decades in advance—in this case, wire-
less telegraphy.

Of course, mere suggestions that
electromagnetic waves be used for
communication were insufficient. A
way had to be found to do it. Enter,
stage right, Alexander Popov and his
apparatus for detecting electric vibra-
tions.

Popov and his “thunder detector”

By the time Popov began to work
on the transmission of messages by
means of radio waves, the physical
phenomena involved and the main
parts of his apparatus were known. It
was well known, for example, thata
spark discharged by a Leyden jar, an
electrostatic machine, or lightning
consists of damping electric oscilla-
tions. Hertz had shown that such
oscillations generate electromagnetic
waves. So the means of generating
electromagnetic waves were already
available. The power of the spark had
to be increased, but this wasn’t con-
sidered a serious obstacle—it was a
mere technicality, so to speak.

The main problem was how to de-
tect signals at a distance. For this
purpose Hertz had used a small spark
generated in the tiny gap of a ring. But
this method, of course, couldn’t serve
any practical purpose.

Five years before Popov invented
his device, an apparatus called a
“coherer” had appeared. It consisted
of a glass tube with two electrodes at
each end and metal filings between
them. When an electromagnetic wave
travels through the tube, tiny sparks
run between the filings at their points
of contact so that the resistance of the
filings drops from hundreds of thou-
sands of ohms down to less than a
hundred ohms (or even less than ten).
The coherer is an excellent device for
allowing a high-frequency signal to
short a circuit with an electric battery
in it. Unfortunately, as soon as the
coherer has done its job, it quits. You
have to give it a shake to restore its
high resistance. So this device was ob-
viously not a receiver constantly ready
to detect a signal.

Popov transformed the coherer into
a reliable radio receiver by inventing a
method of restoring its large resis-
tance automatically. In an article that
appeared in January 1896, he wrote:
“Having achieved good results in making
the sensitivity constant by means of a
tube with platinum electrodes and

! This refers to Popov’s earlier work
on improving the parameters of the
coherer itself.

iron filings,' I aimed at constructing a
device that would automatically de-
stroy contacts between filings caused
by electric vibrations.” His invention
was a great step forward in radio tech-
nology. In constructing his apparatus
Popov not only achieved electrome-
chanical amplification but also used
what we now call feedback.

The new device could sense the
distant electrical discharges of light-
ning, so Popov called it a “thunder
detector,” even though it also detected
discharges from an electrostatic ma-
chine and a large Hertz vibrator as
well as the rapid strokes of an electri-
cally charged ebonite rod.

As we come to the end of this
article, I'd like to quote from Popov’s
report to the Physical Section of the
Russian Physico-Chemical Society on
May 7, 1895: “Concluding, I would
like to express the hope that my appa-
ratus, after further development, can
be used to transmit messages through
space by means of rapid electrical vi-
brations, as soon as a sufficiently
powerful source of these vibrations is
found.”

Actually, though, progress was made
during the early years of radio com-
munication byincreasing the height
of the receiving antennas. But ad-
vances on all fronts continued at such
a pace that as early as 1897 P.N. Ribkin,
Popov’s assistant, managed to trans-
mitradio signals to a distance of five
kilometers.

The 20th century has brought many
new inventions and improvements in

Alexander Shepénov/ch Popov
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radio technology—for example, tele-
vision, which plays an increasingly
important role in our lives. In 1931,
the centenary of Maxwell’s birth, G.G.
Thomson, himself an eminent experi-
menter, said that the discovery of ra-
dio waves has influenced the entire
development of civilization. Radio
waves help draw the Earth’s inhabi-
tants together and have led to social,
educational, and political changes that
we are still in the process of assimilat-
ing.

Outling and description of Popov’s
tevice

Here's an excerpt from Popov’s 1896
paper “An Apparatus for Detecting
Electric Vibrations”:

“The figure illustrates the positions
of the constituent parts of the appara-
tus. The tube with filings is sus-
pended horizontally between the two
clamps M and N by a light watch
spring, whichisbentinazigzagsoas
to be more elastic. There is an electric

bell above the tube; when it rings, it
hits the middle of the tube. (A rubber
ring keeps the tube from being bro-
ken.) Itis convenient to attach the
tube and bell on a common vertical
plank. The relay can be placed else-
where.

“The apparatus functions as fol-
lows. The current generated by a 4- or
5-volt battery flows from the contact
P to the platinum plate A, then across
the filings contained in the tube to the
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other plate B, and finally through the
coil of the electromagnetback to the
battery. The power of the current is
not sufficient to draw the anchor of
the relay; but if the tube is subjected to
the action of electric vibration, the
resistance instantly decreases and the
current increases enough for the relay
anchor to be attracted. At this mo-
ment the circuit running from the
battery to the bell that is interrupted
at point C closes, and the bell begins to
function. It shakes the tube, decreas-
ing its conductivity, and the relay breaks
the bell’s circuit. In my apparatus the
resistance of the filings aftera strong
shaking may reach 100,000 ohms, but
the relay (which has a resistance of
about 250 ohms)draws the anchorat
currents of 5 to 10 milliamperes (the
limits of adjustment)—thatis, when
the resistance of the whole circuit
drops below 1,000 ohms.” Q

CONTINUED FROM PAGE 7

They're even located inside some bones,
sometimes down to the small bones of
the feet. As aresult, the respiratory
system of a duck, for example, takes
up about 20% of its body volume (2%
for the lungs and 18% for the air bags),
while a human being's respiratory system
takes up only 5%. A bird’s lung, as
opposed to a mammal’s, is a set of thin
pipes connected in parallel, open from
both sides and surrounded by blood
vessels. The bags are connected to the
lung in such a way that air flows
through a bird’s lung in the same di-
rection during both inhalation and
exhalation. So in the breathing proc-
ess only the volumes of the bags change
while the volume of the lung remains
practically constant. Since there’s no
need to inflate the lungs, surface-ac-
tive substances aren’t needed in a bird’s
lungs.

Maybe you thought it was a silly
question, “How do we breathe?” 1
wonder now what you think of the
answer: “Not as well as birds!” [@)

K.Y. Bogdanov is a doctoral candidate in
physical and mathematical sciences.
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Isorder in the cout!

When “just the facts, maam”
just won't do

by V. Fabricant

N A PROVINCIAL TOWN OF CEN-

tral Russia at the turn of the cen-

tury, the owners of an electric power

plant caught a certain Ivanov in the
act of using electricity “free of charge,”
sotospeak, in hishome. He had sur-
reptitiously connected a wire to a power
line belonging to their enterprise. The
company sued Ivanov for theft of its
property, but the malefactor won the
case in court. According to the exist-
ing criminal code, theft was defined as
pertaining to an object possessing mass
and size. The Senate, however, which
considered the case on appeal, deter-
mined that electrical energy may be
viewed as property, “being mobile real
estate, without being a material en-

tity.” So the power company triumphed
in the end.

A more sophisticated legal issue
arosein another case. Beer produced
by a certain brewery was stored in a
cellar some distance away from the
bottling plant. The cellar was cooled
by pipes containing a circulating sa-
line solution that came from a central
cooling unit. The main pipe connect-
ing the cooling unit and the cellar
happened to pass near the cellar of a
retailer.

After a while, the owner of the
brewery discovered that the retailer
was using the saline solution to cool
his own cellar and sued the retailer for
theft. The judge, however, ruled: “In

accordance with Article 242 of the
Criminal Code, theft is the unlawful
appropriation of commodities belong-
ing to another party. In the present
case no theft has been committed,
since the saline solution was not mis-
appropriated; rather, it was returned
in its entirety to the brewery’s main
pipe.”

The brewery owner appealed this
judgment, now arguing his case this
way: “The issue is not the theft of
saline solution but the theft of energy.
If the saline solution is used to cool the
defendant’s cellar in addition to my
own, [ have to pay more for electricity
to operate the central cooling unit.”
The ruling of the Court of Appeals
was, from the point of view of physics,
only half convincing: “The saline
solution acquires heat from the re-
tailer’s cellar; therefore, energy be-
longing to the brewery is not being
stolen. On the contrary, the brewery
is receiving gratuitous energy from
the retailer.”

We all agree the judge was wrong,
but not everyone can correctly ex-
plain his error. Can you? @

The first story can be found in
Electricity and Heat by B. Bulyabash and
V. Gurevich, Moscow: Nauka
Publishers, 1978. The second story is
taken from a German scientific
monograph, “Questions of
Thermodynamical Analysis,” by P.
Grassman.—FEd.

ILL CAME TO MR. COHN'S

place right after lunch. At that

time of day the Texas sun turns

all the cheeses of Texas into gooey
cream cheese, all the water of Texas
into boiling water, while all the in-
habitants of Texas can only dream of a
quicker and less painful end.

When his temperature fell below
the boiling point of iron and all the ice
in the house had evaporated, Bill fi-
nally recovered the power of speech.

“You understand, mister Cohn, it’s
all because of that Stanley! He’s a
friend of mine, so tospeak. Until the
other day I only bet against him
once't.”

Aforseisahorse

(of courge,

0f course)

Even cowpokes get the blues
when they place a few bets
and lose, and lose ...

by A.S. Yarsky

QUANTUM/SMILES 13




“And how did that bet go?” Mr.
Cohn was struggling hard to stay awake.

“Well, mister Cohn, Stanley was
goin’ off on this trip—Natchez, I think
it was, in the upper straits of Red
River. Me, I been there, soIsays to
him:

“‘That’s seven days on horseback.’

“‘Aha,’ says Stanley, ‘and to Baton
Rouge?’

“'A day,’ I tell him.

“‘And to Lafayette?’

“‘About four days. It’s a tough
road.’

“'And how longto——?' Andhe
names this hole in the wall.

“ ‘Never been there,’ I says. ‘I guess
itbeatleasttenortwelvedays.’

“ “You know, Bill,’ says Stanley,
‘these four towns are situated smack
dab at the four vertices of a rectangle.’

“'So what?' I says.

“‘So this. I can tell ya exactly how
long it'll take ya to get to——' And he
names that hole in the wall agin.

““You mean you been there?’ I ask
him.

“ ‘Nope,” he says, ‘ain’t never been.’

“'Then how the heck d’ya know?
Somebody tell ya?’

“No siree. Tjust know it's eight
days!’

“Well, mister Cohn, the argument
goesonandonandendsupinabet. I
get on my palomino and—can you
beat this?—I make it to that hole in
the wallin exactly eight days! Wish
I'dneverseenit. Eight dayslaterI'm
back here, and Stanley tells me how
there’s this ‘theorem’ thing.! Turns
out I dragged my tail to the Red River
to prove some word I don’t even know
whatitis!”

“Your friend Stanley’s a clever fella.”
The heat was falling off, and Mr. Cohn
was recovering a bit.

“Too clever by a half,” Bill snorted.
“ And so, mister Cohn, the other day
this Stanley comes by to see me, we
shoot the breeze about the weather,
beef prices, and all that, and then he up
an’ says:

“ Listen, Bill, what d’ya think, can
Ifind a horse in these here parts that

1“1 ABCDisarectangleand Sisan
arbitrary point, then SA? + SC* = SB? +
SD2” Try and prove it.—FEd.
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you can’t handle but I'll be
able to ride?’

“And I answer without
battin’ an eye:

“'Well, Stanley, mark
my words: I'll use that
pony to take you to the
nearest graveyard.’

“But he keeps right on:

T figure there’s a horse
like that, Bill.’

“'OK,’Isays, ‘I bet ya
10 to 1 there ain’t. Digout
a buck and let’s have a
look!’

“ ‘Take your time, Bill,
and get your ten smacks
ready. The horse is right
here in your stable. Look!

“Then he picks up thisnotebook I
use to do my accounting, opens it to an
empty page, and writes:

a_c_a=<c
b d b-d (10)

“Well, mister Cohn, first thing, I
ask him:

‘Stanley, why’d ya start your count
from ten, there on the right, in paren-
zathes?’

“‘That’s how much you owe me.
And that’s the place to write the bill,
Bill—right in your account book!’

“Notsofast,’Itellhim. ‘S’beena
long time since I went to school, but I
can tell you this: your number ten
horse is lame on all four legs. And you
ain’t getting that ten spot ‘il it takes at
least one step.’

“‘Then take a gander at this,’ says
Stanley, and he writes:

" ‘Check for yourself,” he says, ‘and
fork over the dough!’

“Now tell me, mister Cohn, have
you ever seen a guy make a ass of
himself and then admitit? Ora guy
whohadnouse for ten bucks?

“ 'Hey, Stanley,’ I says, T1l bet you
another ten that your gelding can’t
take another step!’

“ 'Then fork over another ten, ‘cause
hereitgoes.” And he writes:

“Lose two races in row—that’s never
happened to me before, mister Cohn.

N2, & S\ U
TIPSRty

But then I remember the terms of the

bet, and I figure everything ain’t lost
yet.

“'Listen here, Stanley,’ I tell him,
‘that horse rides under you, no argu-
ment there. But you said I couldn’t
handle it. My twenty to your twenty
says I'll ride that mustang easy as pie!’

“‘All right, my twenty says you
won't.’

“Well, mister Cohn, I lost that race
too. Mister Cohn, you don’t make as
much money in a week teaching school
as I lost to that son of a gun Stanley in
half an hour ... And, dangit, Istill can’t
figure out how the heck that lame
mustang—I mean that incorrect equa-
tion—gives correct answers! In fact,
that’s what I came here to ask you
about.”

“Science requires sacrifices,” de-
clared mister Cohn, “and you, Billy
boy, were sacrificed at the altar of
science! First of all, whoever told you
anincorrect equation can'’t give cor-
rect results? Ba-lo-ney! Even the
biggest liar of them all can acciden-
tally tell the truth. And besides, while
you were telling me about your lost
‘races,’ one after the other, I discov-
ered the underlyinglogic of your dis-
grace. Take a peek at this formula:

£l

Never mind where I got it. What'’s
important is that this is just another
way of writing that same equation
(10). It looks a little different, but it’s
really the same equation. But now,

Art by Edward Nazarov



Billy, you can take any b and d and use
them to compute a and ¢! That’s it.
Simple and foolproof! Want an ex-
ample? Easy enough. Name any two
numbers. Two and seven? Fine. Let’s
take b=2,d=7,and work it out:

Q=2(2_2)_2 12 _24

¢ 7 7} 7 7 49
Sowecantakea=24,¢c=49,0ra=48,

c =98 ... Now let’s check it with
equation (10);

24 49 24-49

2 7 2-7 ’

48 98  49-98

2 7 2-7°

Incidentally, you can double, or triple,
the denominators, or numerators:

24 49 _24-49

6 21 6-21°
Multiply them by ten if you want to!”

Satisfied with his explanation, Mr.
Cohn took adeep breath. Bill looked
over the computations carefully and
summed it all up.

“Twenty at most. Won'’t win back
more than that from Stanley using
this trick.”

“Now hold on a minute,” said Mr.
Cohn impatiently, “this Stanley of
yours may already know the rule I
discovered. Buthere’s something he
most surely won’t be able to do, sim-
ply because it’s impossible! Bill, just
ask him the following question: Can
his number 10 horse rear its head!! In
other words, ask him to satisfy rela-
tion (10) for a > ¢! But don't forget, Bill,
that all these letters—a, b, ¢, and d—
must be positive integers. You got
that?”

’ 1S RELATION
| (10) POSSIBLE

Bill’s sullen face lightened up a bit.

“If everything is like you say, mis-
ter Cohn, I'll charge him five dollars
for every hour he sits around wracking
his brains. Five bucks an hour—that’s
fair enough, ain’t it?”

“Don't be so greedy, Bill,” Mr. Cohn
objected. “This is something that'll
set you up for life. Even fifty cents an

hour will net you the tidy sum of
twelve dollars a day ...!”

Mister Cohn fell silent for a mo-
ment.

“You know, Bill, you should assign
this impossible task to someone who's
richer than Stanley. Otherwise the
idea won't last for more than a couple
days.”

“Let me worry about that,” replied
Bill. “Butstill, I'd like to know why
that horse can’t rear its head. And one
other thing, mister Cohn: whatifhe
knows this one, too?”

“If he does”—mister Cohn was
getting hot—"let him find irreducible
fractions a/b and c¢/d that satisfy equa-
tion (10)!”

D E A
1S RELATION (10)

POSSIBLE
WHEN THE FRACTIONS

a C
z — AND —=

ARE IRREDUCIRLE, ?

~0 g &

“Allright,” said Bill. “But what if
he knows that one, too?”

“Enough, already!” Mr. Cohn cut
him off. “Thisis gettinga little tedi-
oso. Tell me, Bill, do you like the
fraction 19/952”

“Looks like a regular old fraction to
me. Reducible, ain’t it2...”

“Yes, indeedy,” Mr. Cohn exclaimed,
“it’s reducible all right! But how?
Look at this. Just cross out the identi-
cal digits—the last digit in the nu-
merator and the first digit in the de-
nominator:

19_1
g5 5
Check it out! Here’s another one:
1 _1
4" 4
And another: %
@« ) i "
g8 8’

A weird expression came over Bill’s
face. He grabbed a pencil and wrote
with a shaky hand:

5 77 338

55 77 333

“Look, mister Cohn,” he saidin a
whisper. “I made that up myself ...”

“These examples are trivial,” Mr.
Cohn declared pitilessly. “We won't
bother with them. Now, you ask your
friend Stanley to come up with one
more fraction that can be simplified
like this—and doesn't, of course, con-
sist of identical digits. Remember,
Bill—if there are two-digit numbers
in both the numerator and the de-
nominator, there are only four frac-
tions like that! I've written out three
of them for you. Let old Stanley find
the fourth one.

—_— @ C=—

WHAT FRACTION
DIDN'T M[ISTER
CORN NAME?

IS THERE ONLY ONEZ

—D O C>—

“Qh, yes, I almost forgot,” contin-
ued mister Cohn. “If you repeat the
last digit in the numerator several
times, and the first digit in the de-
nominator the same number of times,
ourincorrect canceling continues to
yield correct results. Trust me, Bill,
but verify, as someone once said:

19 199 1999 1

95~ 995 S 9995 5
You can dare Stanley to calculate this
in his head:
16666666666
66666666664
“Well, Bill, is that enough?”

. 3000times
4999...9

J99.798 &

8000 times

o
e

QUANTUM/SMILES 45




“Yes, mister Cohn, thanks. But—"
Bill got up, looking sheepish. “Idon’t
have ... Imean ... uh, until I win my
money back ...”

“How much?” asked Mr. Cohn,
getting right to the point.

Now poor Bill completely and ut-
terly embarrassed. He stood up, wiped
the sweat from his forehead, and heaved
a big sigh.

“Well, T actually need three sev-
enty-three”.

“Three dollars?” Mister Cohn cleared
his throat in disbelief. “Take forty for
starters.”

“No, mister Cohn. For what I have
in mind, I need exactly three seventy-
three... That’sright. Thanks, mister
Cohn ...”

About a week later, as you may
have guessed, Stanley came to visit
Mr. Cohn. His appearance was elo-
quent testimony to the fact that he
wouldn’t be a source of income for Bill
or for any other fast-talkin’, free-wheelin’,
wager-lovin’ cowpoke.

“Glad to see you,” said Mr. Cohn.
“Sit down. So tell me, how are things
gomg? "

“What can I say, mister Cohn? Life
goes on ... Ijust stopped by to show
you this little doohickey.”

Stanley walked up to the table,
took a sheet of paper, and wrote:
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“Clever little thing, ain’t it?” he
said. “The number three is incor-
rectly taken out from under the square
root sign, but the answer’s correct
anyway. But that trick didn’t do its
magic for me: Bill figured everything
outinfive minutes and even wrote a
generalizing equation! That totally
messed up my plans ... But no matter.
That isn’t why I came. Actually, I
cametoaskyou...Imean...well...”

“How much do you need, Stanley?”
mister Cohn asked point-blank.

“If it’s not asking too much, lend
me—" Stanley took a deep breath.
“Lend me three seventy-three. I'll pay
you back in a couple days.”

“You know, Stanley,” said Mr. Cohn,
handing over the money, “that’s the
second time this ridiculous sum of
$3.73 has cropped up. What's it all
about?”

“Qh, just a lot of nothin’, really,

mister Cohn. Less than nothin’...”
Stanley turned red, muttered some-
thing unintelligible, and ran off.

A few days later Mr. Cohn had to
visit a nearby town on business. Over
by the general store he noticed an
advertisement:

NOVELTY!!!
M.Y. Gardelman’s 2
Living mathematicks for the millions!
Useful and amusing applications!
Only $3.73!

In the corner of the poster someone
had written:

WEAT FORMULA
1S HIDTEN

BEHIND TREIS €)
SIMPLIFICATION !

—==D b & Q

2 An amalgam of the names Martin
Gardner (the great American puzzle
master and science writer) and Yakov
Perelman (the most famous Soviet
popularizer of physics and math}—FEd.
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Gonstructions with compass alone

—the geometers version of “one hand tied behind my back”

MONG THE COUNTLESS GEO-

metric construction problems there

are, one often encounters those

requiring construction of a figure
“with straight edge alone” or “with
compass alone.” Yet it has been known
for centuries that the lack of a straight
edge in no way narrows the circle of
possible constructions. Everything
that can be constructed with straight
edge and compass can be constructed
with compass alone.

The idea of constructing with
compass alone was suggested long ago
by the Italian scientist Giovanni Ba-
tista Benedetti (1530-1590). In 1672

by Dmitry Fuchs

the book Euclidius Danicus by the
Danish geometer Georg Mohr
(1640-1697) appeared. There it was
shown that all problems reducible to
quadratic equations can be solved
geometrically with compass alone. More
than a century later the problem was
restated and solved by the Italian Lorenzo
Mascheroni (1750-1800). Since then
the resulting statement has been called
the Mohr-Mascheroni theorem. A
proof of this theorem will be presented
below.

In all the construction problems
that follow I'll restrict myself to de-
scribing the construction. The proof

that it leads to the required result is
lefttoyouineach case.

Statement of the result

One can scarcely hope to draw a
straight line with a compass, so all our
problems will be to construct a certain
point (in the plane).

THEOREM. Suppose that a point M
can be constructed from the points A ,
., A_with straight edge and compass.
Then M can be constructed from A,
..., A_with compass alone.

To prove this theorem we have to
know precisely which constructions
can be performed with a straight edge—

|




that is, with a ruler. With aruler we
can draw a line through two given
points and find its intersection points
with straight lines and circles con-
structed earlier. But since at the very
outset we were only given some points,
each of our straight lines must have
been drawn through two points con-
structed still earlier; similarly, each of
our circles passes through a point
constructed earlier and has another
point constructed earlier as its center.
So in the course of the construction
the ruler must be used only to solve
one or the other of these elementary
problems:

Problem 1. For given points A, B,
C, D, construct the point where the
straight lines AB and CD intersect.

Problem 2. Foragivencircle S, its
center O, and points A and B, con-
struct the points where the circle S
and the straight line AB intersect.

Auxiliany constructions

From now on, by a “construction”
we mean a construction with com-
pass alone. We'll begin by solving four
auxiliary problems.

Problem 3. Let two different points
A, Bbe given. Construct the point C of
thehalfline ABsuchthat AC=2AB.

Construction (fig. 1). Draw a circle
with center B through point A and,
starting from point A, mark off three
subsequent arcs on this circle spanned
by segments of length AB. The end of
the third segment is the required point
G.

Problem 4. Let a circle with center
O and anarc ABon it be given. Con-
struct the point C dividing arc AB into
two equal parts.

Construction (fig. 2). Draw circles
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with centers A and B through point O
and then draw a circle with center O
and radius AB. Let P and Q be the
points where this circle intersects the
two circles constructed before; then
the arcs OP and OQ are equal to arc
AB. Now draw circles with centers P
and Q through points B and A, respec-
tively, and take their intersection point
R. Finally, draw a circle with radius
OR and center P (or Q, it makes no dif-
ference). The point where this last
circle intersects arc AB is the required
point C.

Problem 5. Let a circle S with
center O and a point P be given. Con-
struct the point P’ on the half line OP
such that OP- OP’ =12, whereris the
radius of circle S. (Such a point P’ is
called “symmetric to point P with
respect to circle S.”)

Construction. Case 1: point P lies
outside circle S (fig. 3). Draw acircle
with center P through point O. Let Q
and R be the points where it intersects
circle S. Now draw circles with centers
Q and R through point O. The point
where these circles intersect (other
than O)is our point P’. {This construc-
tion is also valid when point P lies
inside circle S but the distance from it
to point O is greater than r/2.)

Case2: point Pliesinside circle S.
Using the construction from problem
3, we construct the points P,, P,, ... on
the half line OP one after another such
that OP,=20P, OP,=30P, ... until we
reach a point P_that lies outside circle
S. Then, using the previous construc-
tion, we find the point P, symmetric
topoint P withrespectto S. Finally,
we construct the points P, P’,, ...on
the half line OP’, such that OF’, =
20P', OP,=30P',, ... Then P’ is the

Figure 3

~So

desired point.

Problem 6. Let a circle S with
center O and different points A and B
be given. Construct the circle passing
through point O and the points where
astraight line AB intersects circle S.
(We assume that line AB doesn’t pass
through the center O of circle S and
intersects this circle at two points.)
Prove that the constructed circle is
precisely the set of points symmetric
to the points of line AB with respect to
circle S.

Construction (fig.4). Through point
O draw circles with centers A and B.
Designate their other intersection point
P. Then construct the point P’ sym-
metric to point P with respect to circle
S (see problem 5) and draw the circle
with center P’ through point O.

Basic constructions

Construction for problem 2. 1f point
O does not lie on line AB, then we can
use the construction from problem 6
or even this simplified version: we
find the point P exactly as in the
problem 6 construction and then draw
the circle with center P and radius
equal to that of circle S (if we know the
center of the circle S, we can measure
its radius with a compass); the points
where this circle intersects the given

Figure 4 P'i
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circle S are the desired points. If point
O happens to lie on the straight line
AB, then thisconstruction won’t do:
point P will merge with point O. Then
we apply another construction (fig. 5):
we draw an arbitrary circle with center
A [or with center Bif A = O) that inter-
sects the circle at two points; then we
designate these intersection points C
and D and divide the arcs CD and DC

Figure 5

—Oo—— —_

into two equal parts each (see problem
4); the dividing points are the ones
we're looking for.

Construction for problem 1 (fig. 6).
Draw an arbitrary circle S such that all
the given points lie inside it and its
center O doesn’t lie on either of the
straight lines AB and CD. (This can
casily be done by sight, but such a
practice doesn't fit in with our “rigor-
ous” construction.] One may proceed
as follows: take an arbitrary circle
and, using the construction from prob-
lem 2, find the points where it inter-
sects lines AB and CD; take any point
of the circle (different from the points
previously found) as point O. Then
we follow the construction from prob-
lem 6 and get the circle S, that passes
through O and the points where circle
S intersects line AB; then we get the
circle S, that passes through O and the
points where circle S intersects line
CD. After that we denote as P the
point (other than O) where circles S,

Figure 6

and S, intersect and construct the point
P’ symmetric to point P with respect
tocircle S. Thisis our point.

Concluding emarks

If the construction problem data
do not consist of points only, then it
may turn out that a ruler is needed to
solve it. Consider this problem, for ex-
ample: given acurve ¢ (drawn in the
plane) and two points A, B, find the
points where curve ¢ intersects the
line AB. In general, it’s impossible to
do this without a ruler. Nevertheless,
a problem like this can sometimes be
reduced to problems of the kind we've
been looking at, and then they can be
solved with compass alone. Here’s an
important example: a circle is drawn
in the plane; findits center. Thiscan
be done in the following way: mark
three different points 4, B, C on our
circle; it’s well known that one can
construct the center of the circum-
circle of triangle ABC with straight
edge and compass; so this can be done
with compass alone. (This problem
has a much simpler solution—can you
find it?} By the way, we see that in
problems 2, 4, 5, and 6 it was necessary
to indicate the centers of the given
circles in advance.

Not every construction that can be
performed with straight edge and
compass can be performed with straight
edge alone. (A proof can be found in
Numbers and Figures by Rademacher
and Toepliz, for example.] Neverthe-
less, a theorem by Steiner asserts that
any construction that can be done
with straight edge and compass can be
performed with straight edge alone if a
single circle with the center marked is
drawn beforehand.

So if you’re going to make con-
structions with straight edge and
compass and discover that you've lost
your ruler, don’t despair: you can do
any of your constructions with com-
pass alone. It’s worse if you've lost
your compass, but everything will be
okay if you can borrow one from
somebody just for a moment: you
draw a circle, mark its center, and
return the compass to its owner—
now you can do without it.

The worst case, of course, is when
you’ve managed to lose both your

ruler and your compass. Science can
hardly bail you out then. Ol

Dmitry Fuchs is a researcher in .M.
Gelfand’s math and biology laboratory.
(His article “Bend This Sheet” appeared
in the January 1990 issue of Quantum.)

CONTINUED FROM PAGE 21

Do we really need this thing called
“temperature”?

Scientists had worked out the con-
cept of temperature and introduced it
as a physical quantity long before they
understood its real meaning. But now
that we know what it means, is it
worth keeping this archaic quantity?
Wherever we're accustomed to talk-
ing about temperature, degrees Kel-
vin, and so on, maybe we should think
of what they really are—the mean
kinetic energy of a particle—and measure
them in joules.

There are very good reasons why
we don’tdo this.

Do you think a doctor, for instance,
would find it convenient to diagnose
a patient as sick because of a mean
molecular kinetic energy of
6.64 -10-21]2 Tt's easier and more direct
to talk about a temperature of 100.4°F.

Besides, using joules instead of de-
grees might cause confusion. Con-
sider this: 100 J of energy usually
implies that 100 J of work can be done.
But if the temperature of a body is 100
J/molecule (a fantastic value for tem-
perature, by the way), that does not
mean we can get that amount of work
from it.

So let’s stick with degrees—agreed?

Exercises

1. Find the values that correspond to
absolute zero temperature in the Fahrenheit
and Réaumur scales.

2. Calculate the mean kinetic energy of a
molecule at 1,000°K.

3. A nuclear explosion generates a gas
ball at a temperature of approximately 20
million degrees Celsius. Find the mean
kinetic energy of one particle in the ball.

4. The unit of energy in atomic and
nuclear physics is the electron-Volt (eV).
Find the mean kinetic energy of a molecule
at room temperature in electron-Volts.

5. Calculate the Boltzmann constantin
the Fahrenheit scale. O
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MATHEMATICAL SURPRISES

Frigzing our way Into Summer

Introducing a new column on
mathematical oddities, quiddities, and just plain surprises

by John Convvay

ERE’'S A SIMPLE LITTLE ARITHMETICAL GAME.
You start with two rows of 1’s joined by a zigzag of 1's,
as in the example, where the dots mark the places in
which further numbers are to be inserted:

1 1 1 1 1 1 1 1 I

1 1 1 1 1 1 1 .
Now you fill in more numbers by the rule that whenever

four numbers form a diamond

N
4% E
S

the product EW must be 1 more than NS, so that
E=(NS+1)/W.

In our example, here’s what happens:

1 1 1 1 1 1 1 L.

Try it with other zigzag patterns. There are some odd
things you’ll notice when you play with these patterns.

1. All divisions “come out exactly” to give whole
numbers.

2. Eachline “closes” by gettingback to 1.
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3. There’s no need to continue the lines after this point,
because these 1’s form a zigzag just like the one you started
with but upside down, so that the complete pattern would
be a repeating one:

Can you explain why?

Some similar things happen when youreplace multi-
plication by addition. This time you start with two rows
of 0’s joined by a zigzag of 0’s, and you complete little
diamonds by using the formula

E+W=[N+S8)+1,
so that
E=(N+S+1)-W.

Of course, now 0’s close the rows:

Canyou explain why the numbers never gonegative,
why they close by getting back to 0’s, and why these 0’s
form an exact copy of the original zigzag, now the right
way up!?



Some interesting patterns turn up if we drop the require-
ment that there be a zigzag of 1’s joining the top and bottom
rows. Multiplicative frieze patterns arise in which all the
numbersin'any given row are the same and positive. For
instance,

1 1 1 1 1 1
1\/31\/31\51\/31\/?1

and

1 1 1 1 1 1
V3 V3 V3IV3V3
2 2 2 2 2 2

V3V3V3IV3V3
11 1 1 1 L

You can see that the numbers aren’t all whole any more.
What are they? Hint: The answer is connected with
polygons.

The multiplicative frieze patterns in which all the
entries are positive whole numbers are also connected
with polygons. Can you see how?

Another hint: The polygon for our first example is this:

T

N .

John Conway is a professor of mathematics at Princeton University.

What did the acorn say
when he final ly gr
e

p=

f 2y «awe syl \w“ .u'

Read this unusual collection of
limericks, riddles, jokes, and car-
toons that poke fun at the usually
serious subject of mathematics.

You'll find that mathematics can
be funny and that mathematicians
can laugh at themselves.

Share a good laugh with your
friends! Order your copy now.
58 pp., #266, $4.50.

National Council of Teachers of Mathematics
[NIC] 1906 Association Drive, Reston, VA 22091
QY el (703) 620-9840; fax (703) 476-2970
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IN THE LAB

WWalker in & winter wonder{and

But since it's almost summer, let’s fake the snow,
make some ice cream, and watch the smog roll in!

EARLD WALKER'S WONDER-

ful book The Flying Circus of

Physics has been translated into

Russian and has become so popu-
lar in the Soviet Union that it sold out
long ago, despite several print runs.!
Answers to many of the questions
posedin thisbookinvolve setting up
clever experiments or carrying out
interesting observations. In this ar-
ticle I'll follow up some of Walker’s
questions and supplement them with
some curious stories. I'll also describe
some additional preparatory experi-
ments. All these questions and ex-
periments have to something do with
cold phenomena—a last gasp of win-
ter before the lazy days of summer set
in.

“Stueak, sueak”—Nanook is
coming!

The great film director Sergey Eis-
enstein, famous for the classic film
The Battleship Potemkin, is also the
genius behind the film Alexander
Nevsky, which is still popular in the
Soviet Union though it was shot over

L"What’s aflying circus?” you ask?
The phrase dates back to World War I
and meant airplanes flying in formation.
As time went by, it came to include
stunt flying in air shows (no doubt
because vintage biplanes often take part
in them). And who is Jearld Walker?
He'’s a professor of physics at Cleveland
State University. His book, published by
John Wiley & Sons, is available in
paperback—in English!—Fd.
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by Alexander Borovoy

halfacenturyago. Thisepicwasone
of the first superproductions in the
movie industry. It’s renowned for the
alternately rousing, suspenseful, and
plaintive background music provided
by Sergey Prokofiev and for its render-
ing of the climactic battle scene on
Lake Chud. It was there that Russian
forces, led by Nevsky, defeated the
better trained and better equipped Teu-
tonic knights in 1242,

Few people, however, are aware
that the film’s central episode,
the battle on the ice, was actually
shot at the height of summer!
Thefilm shows snow andice on
Lake Chud, while in fact it was as
hot as 86°F. Here’s how they did
it. A large flat area was covered
with a mixture of naphthalene
and salt. When the actors walked
over this “snow,” it creaked just
as real snow does when it’s bit-
terly cold.

You can easily duplicate the -

“Nevskysolution” onasmaller =

scale by filling a plate with a
smooth layer of granulated sugar
or salt. Press a spoon against it—
you’ll hear a faint creak. Now
wet the granules or melt them
slightly on the stove—seeif you
can get them to creak some more.
Now I'll let Jearld Walker have
the floor: “Sometimes snow crack-
leswhenyouwalkinitbutonly
when the temperature is far enough
below freezing. What causes the
noise, and why does its produc-
tion depend on temperature?”

How to putthe “ice” inice cream

When ice cream first appeared, its
method of preparation was kept strictly
secret. At many European courts,
chefs tried using snow or ice to freeze
the mixture of cream, sugar, and fruit
juices—the mixture would be chilled,
but it wouldn’t freeze. They finally
had to resort to what is now called “in-
dustrial espionage.” And what did
these culinary spies find out?

“When my grandmother makes

Art by Edward Nazarov



homemade ice cream,” writes Walker,
“she packs ice around the ice cream
container, and then she salts the ice.”
So the secret is plain old salt! “Why
does she add the salt?” Walker asks.

Before trying to answer the ques-
tion, maybe you can conduct a couple
of simple experiments. Take some
crushedice from your refrigera-
tor and gradually add salt, mixing
it all together. (It would be nice—
but not essential for our purposes—
to make ice cream during the ex-
periment!) You should be able to
get the temperature of such a
mixture down to -20°C.

Everyday sodium chloride is
used most often for this kind of
cooling. But more arcane sub-
stances will also do: KCl, NaNO,,
and so on. In fact, the champion
temperature reduceris CaCl,. If you
mix 42 g of this salt with 100 g of
crushed ice, you can work the tem-
perature down to -55°C!

So how did your experiments turn
out? And what’s your answer to Walker's
question??

Skating bombs kirt state-of-the-art
armor

Engineers often prescribe lubrica-
tion to reduce friction. Different
materials play this role—sometimes,
it seems, the most unexpected and
inappropriate. By way of example, I'll
tell you about a case where steel acted
as a lubricant (though we can’t exactly
call it “cold, hard steel”).

At the end of the last century, the

2Can you figure out how to lower the
temperature of the ice-salt mixture
without extracting heat from it?—Ed.

English industrialist Harvey sent
samples of new armor plates for
warships to Russia. During test-
ing the shells from the huge heavy
guns, instead of breaking through
the plates, crashed against the
armor without damaging what-
ever was behind it. Then the
Russians asked that the tests be
repeated. In the second series of
tests, the shells broke through
the armor plates. Andinalater
series of tests, after certain im-
provements, the shells began to
pierce holes in the armor.

Why did that happen? How had the
design of the shell been modified?

The tips of the shells now had spe-
cial caps made of soft steel. The cap
would spread and melt upon impact.

This prevented the shell from crack-
ing, andit served as a kind of lubrica-
tion for the shell after it broke into the
armored plate. So, under tremendous
pressure, steel can serve as lubrica-
tion. Admiral Makarov, a talented
scientist and as well as a worthy sea-
man, invented this soft steel cap for ar-
tillery shells.

And now for something completely
different. “When you are ice
skating,” Walker asks, “why do
your skates slide along the ice
surface?” Thatis tosay, what's
the lubrication in this case? (Maybe
it’s not so completely different
after all.)

“Through the misty mist and the
usky tusk ...”

Damp winter days are always
misty. We're used to thinking of
the mist as gray, but it’s not al-

ways so. Here’s what the Russian
writer Constantine Paustovsky had to
say in his book The Golden Rose:

“The French artist Monet came to
London and painted Westminster Abbey.
Monet was working on an ordinary
foggy London day. In Monet’s picture
the Gothic outlines of the abbey ap-
pear through the mist. The picture is
now universally recognized as a mas-
terpiece.

“But when the painting was exhib-
ited, it caused confusion among the
Londoners. They were astonished that
Monet painted mist with a crimson
hue, even though everybody knows
that mist is gray.

“At first, Monet’s impertinence
caused indignation. But the indignant
Londoners went outside, looked at-
tentively at the mist, and saw for the
first time that it was indeed crimson.”

Walker also agrees with Monet. “If
you've lived in a large city,” he writes,
“you almost certainly have spent part
of your life in a haze. Why are such
hazes brown?”

What causes a mist’s coloring is not
an easy question to answer. It’s not by
accident that I've saved it for the very
end! Takeacloselook at the color of
fog, smog, or haze in your town and in
the countryside. Maybe you can even
do some experimenting and come up
with a method of producing “mists”
of different colors. If you do, tell us
about it—don’t hog your fog! Q

Alexander Borovoy, a doctor of physics
and mathematics, teaches in the School of
Natural Sciences at the Kurchatov Atomic
Energy Institute. He has recently worked
on problems associated with the Chernobyl
accident and was part of a scientific group
that examines the damaged nuclear power
plant.
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HAPPENINGS

Summep Study in New York and Tartu,
Maryland and Moscow

Students from different countries mix it up
academically and socially

ULY 1989 FOUND 15 SOVIET

students winging their way to

the United States, and amonth

later 47 American students flew
off in exactly the opposite direction.
They were all participants in the Sci-
ence and Mathematics International
Summer Institutes sponsored by Kvant
magazine (Moscow), the International
Educational Network (Washington, DC),
and the American Association of Physics
Teachers. The Soviet group basically
consisted of winners of Kvant’s prob-
lem contest who also had an active
command of English. The American
students had to pass some challenging
tests, but knowledge of Russian was
not demanded.

Rather than describe the program
in the abstract, we'll let two of the
participants give their candid impres-
sions. Ivan Arzhantsev was a student
at the Physics and Mathematics School
No. 45 in Kiev; Tania Edwards had
recently graduated from the Washing-
ton International School and now at-
tends Brown University.

OUR TRIP TO AMERICA Was preceded
by a two-week summer school where
we had daily classes in physics, mathe-
matics, and English (including prac-
tice in conversational English). This
experience was not only useful but
pleasant. We had interesting meet-
ings with members of the Kvant edi-
torial board, American scientists, and
even a businessman.

Of 26 candidates for the trip, 15
students were chosen. The others had
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the chance to attend the
Soviet-American school in Tartu [see
the essay below by Tania Edwards—
Ed.].

On July 11, after an 11-hour flight,
wearrived in Washington, where we
were met by representatives of the
American Association of Physics
Teachers. And late that night we were
already at the international summer
institute on Long Island in New York.

Classes were conducted in three
subjects: mathematics, physics, and
biology. Dr. Alexander Soifer of the
University of Colorado taught mathe-
matics; Dr. Edward Lozansky, direc-
tor of the summer institute, taught
physics along with Dr. Alexander Buzdin;
and Dr. E. Trifonov of the Weizman
Institute in Israel gave lectures in mo-
lecular biology.

The math classes were devoted to
combinatoric geometry and graph theory.
In addition to traditional problems,
several were proposed that were of
real scientific interest. And there was
a material reward for those who could
solve them.

Here are the problems. Let’s take a
convex quadrilateral of area 1 and a
point inside it. The vertices of this
quadrilateral and the internal point
form 10 triangles. Of these, let’s take
the triangle with the smallest area.
The task is to find the greatest possible
value of this area. Solutions to this
and a similar problem with a convex
pentagon were valued at 20 dollars
each. The next problem had to do
with convex polygons. In class we had

already shown that if we take 6 points
inside or on the border of an arbitrary
convex polygon of area 1, we can al-
ways select three such that the area of
the triangle with vertices at these points
islessthan ' (condition 1). Ithad also
been proved that, in an arbitrary con-
vex polygon of unit area, we can posi-
tion 4 points such that the area of any
triangle with vertices at these points
will be greater than %4. Here’s what we
had to determine: For which convex
polygons is 5 the least number of points
needed to satisfy condition 1, and for
which—6? A solution to this problem
was valued at 50 dollars. (We didn’t
manage to completely solve either of
these problems.)

In the physics classes we solved
problems from many branches of ele-
mentary physics, and there was a physics
tournament in which 12 teams com-
peted.

At thelectures on molecular biol-
ogy, Dr. Trifonov explained the geo-
metric and chemical structure of DNA
and described the latest experiments
in studying the inner structure of the
cell. The lectures were very interest-
ing and informal. (The level of biologi-
cal studies in American schools is
generally higher than in ours, which
cannot be said of the level of physics
and math.)

We also heard a series of lectures on
a wide variety of topics in physics,
brought together under the general
heading “Forces in Nature.” They
were given by the Nobel Prize-winner
Sheldon Glashow, and the views of



such a great specialist were of tremen-
dous interest to all of us. Another
Nobel Prize winner, Dr. Pronin, gave a
lecture on methods of determining
molecular structure, but we didn't
enjoy this lecture nearly as much.

The final days of the summer insti-
tute were taken up with math and
physics olympiads. The institute’s
organizers promised the winners free
trips to the US or France next sum-
mer.!

In addition to completing a broad
academic program, we also just re-
laxed a lot during those two weeks,
taking part in tennis and chess matches,
playing volleyball, and canoeing on
the river. Students from four coun-
tries participated in the program: the
USSR, the US, France, and Switzer-
land. We really got to know each other
because the room assignments en-
sured an international mix.

During the summer school we drove
into New York City, visited the
Brookhaven National Laboratory, and
hit the beaches of the Atlantic Ocean.
We were greatly impressed by our
visit to the suburban home of one of
the American families, where for sev-
eral hours we played volleyball and
tennis and swam in their pool.

The kids from each country put on
show one evening—an improvised
performance illustrating something from
the past or present of their country. It
was my fate to play the role
of Ivan the Terrible? ...

On the last day of the
summer school prizes were
awarded to the winners of
all the olympiads, tourna-
ments, and contests. A lot
of amusing prizes and sou-
venirs were given away, and
there was a little artistic
contest in which Mikhail
Kapustin gamered the most
points by improvising on
the piano.

The winners were Soviet
students in both instances: Ivar
Martin in physics and Ivan
Arzhantsev in math.—FEd.

?The Russian tsar who
ruthlessly centralized state
power in the 16th century.—

After school let out we took a three-
day trip to Washington in vans, stop-
ping at Princeton University, Phila-
delphia, and Baltimore on the way.
But the thingIremember most is our
visit to the Trump Plaza casino in
Atlantic City, where wallets are emp-
tied by the pitiless laws of probability
in the midst of feverish eyes and the
tinkle of coins. And finally, Maryland
University (right outside Washington),
where we spent the remaining 10 days.
Seventeen American kids who are
planning to visit the USSR came here
for three days. We attended several
lectures on physics and worked with
computers. We took several trips into
Washington and visited the National
Gallery of Art, the Library of Con-
gress, and NASA headquarters. A
highlight was our visit to the Soviet
embassy, where we met with Yuri
Ossipyan, Vice President of the Acad-
emy of Sciences and editor in chief of
Kvant.

Without a doubt, we got good lan-
guage practice on this trip, we studied
physics and mathematics pretty seri-
ously, but mainly we saw something
worth seeing—America!

—Ivan Arzhantsev

Last sumMER I HAD the incredible op-
portunity to participate in a unique
program. For the month of August,
together with about 40 other Ameri-

Ann Garlitski of New York works on a physics experiment with Mati
Pirn of Estonia at the Science and Mathematics International Summer
Ed Institute in New York. (Photo courtesy of Tatiana Lozansky)

cans, I went to study math and science
at the University of Tartu in Estonia.

My experience proved to be far beyond
the simply academic. Inot only learned
from some of the best professors in the
USSR Academy of Sciences, I also had
the opportunity to interact with Esto-
nians and Russians who taught me
about cultures very different from my
own and who had a tremendous im-
pact on how I perceive my country and
those around me.

The program involved studying for
three weeks and then traveling around
Estonia, Leningrad, and Moscow for
one week. At Tartu, we were received
very warmly since we were the first
Americans to ever stay there. Each
one of us had Estonian buddies who
showed us around the town, intro-
duced us to their friends and family,
told us about their life and traditions.
We, in turn, taught them about Amer-
ica, gave them T-shirts, and shared
our music.

In the morning we had math and
physics classes taught primarily by
Soviet scientists. It was very exciting
to be able to learn things we were
never exposed to in our schools, sur-
rounded by Soviet classmates. In the
afternoons we saw the city, went to
hear Estonian folk music, saw muse-
ums, played volleyball, and painted
cabins on the beach of the main lake as
asouvenir to the city. On weekends
we went to different
places such as the beau-
tiful old city of Tallinn,
the capital of Estonia,
where we stayed in an
Olympic hotel. We saw
forests, farms, and the
highest point in the re-
public, ate potatoes
around the clock, went
to concerts, and experi-
enced the public baths.
We also went camping
near the city of Pirnu
and on the island of
Saaremaa, where special
permission was required
to enter since it was a
military base. Endless
nights with the guitar
by the fire made us oblivi-
ous to everything around.
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Of course, these experiences were |
incredible, but what was most impor-
tant is that we got to really see how the |
political changes, spurred by glasnost,
were taking place all over the country.
Contrary to our expectations, we were
received by mayors and by well-known
activists, one of whom is a current
Estonian representative to the Con-
gress of People’s Deputies. We even
had opportunities to ask them ques-
tions about their personal views and
plans. Such contact was very exciting
and led to numerous political discus-
sions with the Soviet students.

On the negative side, in the camp |
itself we soon found ourselves right in ‘
the middle of the ethnic conflict be-
tween the Estonians and the Russians, |
who were also part of the program. |
The Russians were treated quite pootly.
They lived separately from us, didn’t
go on any of the trips, and hadno one
cheering for them at the games. When
we approached Estonians with ques-
tions, we received bitter responses:
“They were the occupiers, they don’t ‘
deserve to be treated well.” Our friend- |
ship with the Russians, however, greatly |
improved in the second part of the
program when we started to realize
what was happening. It was especially
good when we traveled to Russia—to
the ancient fortress-city of Pskov, the |
beautiful palaces of Leningrad, and
the museums and shows of Moscow.
Like the Estonians, the Russians were
eager to show us about their life and to
learn about ours.

When it came time to leave, no one
could believe that only a month had
gone by. It felt like we learned im-
mense amounts not only in classes
but from our new friends that we
couldn’t say good-bye to. When we
arrived in Paris, we walked around as
ifin afairy-tale world, bewildered by
the overflowing markets and the oblivi-
ous people walking by. When our
plane finally landed in New York, we
all burst into applause. We came
home different—more objective and
more knowledgeable about the world
around us. And I think the other
participants would agree that the feel-
ing we all shared was one of gratitude
for the country we live in.

—Tania Edwards
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The American Regions
Mathematics League

leamwork is the key in this summer
competition

by Mark Saul

ACH JUNE, OVER ONE THOU-

sand of North America’s most able

and interested young mathemati-

cians gather for a celebration of
their field of interest—the annual com-
petition of the American Regions Mathe-
matics League (ARML).

This competition is the largest on-
site event of its kind in North Amer-
ica, drawing more than sixty teams of
students from all over the United States
and from Canada. The teams engage
in a daylong sequence of events, com-
prising a variety of individual and team
contest questions.

Students begin arriving at the cam-
pus of the host college on a Friday
afternoon. For the past several years
this has been Pennsylvania State Uni-
versity. Some years, telecommunica-
tions have allowed simultaneous
competition at this site and at Duke
University in Durham, North Caro-
lina. Friday evening is devoted to
recreational activities, including talks
by noted mathematicians and teach-
ers.

The competition begins in earnest
on Saturday morning with the “power
question.” This event, unique to ARML,
consists of a single complex question,
often broken down into separate parts.
The team must work together for an
hour to produce a single answer paper,
typically including examples, proofs,
extensions, applications, and gener-
alizations.

Team questions follow. Teams attack
this set of ten “quick” problems by
dividing up the work in any way they
wish. This event is followed by a more
traditional event, consisting of pairs
of questions to be answered individu-
ally. The team score will be the sum of
the individual scores.

A relay round follows a break for
lunch. In this event, the team of
fifteem members is divided into three
or five subteams, working separately
on chains of questions. The answer to
each question forms part of the next
question, and only the final answer is
scored. Since an error in any one ques-
tion can skew the final answer, suc-
cess in this event demands a balanced
team in addition to nimble individual
minds.

At the conclusion of the competi-
tion, scores are tallied and prizes are
awarded to high-scoring teams and
individuals. Publishers and profes-
sional organizations donate books or
plaques. An awards ceremony honors
the winners.

Teams for ARML are formed in a
variety of ways. Many large cities and
suburban areas have longstanding tra-
ditions of these competitions, and teams
are often formed as a result. Rural
areas of a state often band together to
send a team. Some teams represent a
single state, and often a state chooses
two or more statewide teams to repre-
sent it. Teams from Canadian prov-



inces have recently joined those from
the United States. Criteria for team
membership are, for the most part, left
up to local tradition.

The backgrounds of team coaches
and chaperones vary as much as the
teams themselves. Frequently, a teacher
or math team coach assembles the
team, but sometimes the coach is from
the faculty of a local college or univer-
sity. Many teams are accompanied by
alumni of ARML, who have returned
as coaches to rekindle the enthusiasm

of their days on the team. Coaches
give generously of their time—and
sometimes of their money—in sup-
port of their teams.

An interesting by-product of the
ARML on-site format, and particu-
larly of the power question event, is
the possibility of continued investiga-
tion even after the conclusion of the
contest. ARML contest material is de-
signed by the authors to be open-ended.
Even the most humble relay question
can often have an interesting exten-

sion. ARML contest questions have
provided students with ideas for prize-
winning research projects and fine
€XPOsitory papers.

But the most important source of
stimulation at the ARML competi-
tion, and the one source that is diffi-
cult to find in other mathematical
contests and events, lies in the inter-
action of the students themselves., Team-
mates share ideas and pool intellec-
tual resources. Students on rival teams
meet informally, exchanging solutions

The 1939 ARML power question

A convex n-gon will be called “Pythagorean” if it has integer sides, it is
cyclic, and its longest side is a diameter for its circumscribing circle. It shall
be denoted by Pnor Pn:(a,b,...), wherea, b, ... are the lengths of its sides. We
shall always use the letter d for its longest side. (Thus P3 is a Pythagorean
triangle. Notice that it would be a right triangle.)

L. There is a theorem that states (in part): If a prime d is the hypotenuse of
a Pythagorean triangle, then d? is the hypotenuse of two Pythagorean tri-
angles, d° is the hypotenuse of three Pythagorean triangles, and so on.

L.A.Find two P3’s for which d = 25.

L.B.Find three P3’sforwhichd=125.

II. Ptolemy’s Theorem says: A convex quadrilateral is cyclic if and only if
the product of its diagonals equals the sum of the products of the two pairs of
opposite sides.

ILA. If the P3:(3,4,5) is reflected as shown in the figure, a quadrilateral EFGH
can be formed. (It will not be a P4, as FG is not an integer.) Multiplying each
side by 5 produces a P4. Find the sides of this P4.

E

ILB. Find a P4 with two equal sides and with d = 25 that is different from the
answer to part ILA. (Note: Two Pn’s are not considered different if their sides
are equal but in a different order.)

I.C. Show that a Pn must exist for all integers n > 3. (This may be done by
describing how to create such a Pn.)

III.A.For the P3:(a,b,d), d*> = a* + b2. Prove thatforthe P4:(a,b,c,d), d*> a*
+b?+ch

ILB. Given the P4:(a,b,c,d), prove that if d > 2, then d must be composite.

II.C. If all the diagonals of a Pn are integers, we will call it “super Pythago-
rean” and denote it by*Pn.

III.C.1. Show that the area of any P4 must be an integer. (Hint: One
approach might be to first show that the area of any SP4 must be rational and
its perimeter must be even.)

I.C.2. Assuming that the area of every SP3 and every P4 is an integer, show
that (for all n > 4) the area of every SPn must be an integer. (You may do this part

even if part I11.C.1 has not been completed.) SOLUTION ON PAGE 62

to problems and posing new
challenges to each other.
Some play the game of trying
to find flaws in the day’s
contest problems. These inter-
actions lead to the forma-
tion of a network of student
mathematicians. Friendships
started overlunch tables at
ARML are often continued
long after the day’s end. For
many students, the shared
enthusiasm of the ARML
competition becomes a cen-
tral experience in their lives.

For more information on
ARML, please write to Ste-
ven Adrian, ARML Execu-
tive Director, R.D. 5, Box
133, Kings Ridge Road,
Mahopac, NY 10541 USA,
or Barbara Rockow, ARML
Corresponding Secretary,
Bronx High School of Sci-
ence, 75 West 205th Street,
Bronx NY 10468 USA. [6]

Mark Saul is the computer
consultant/coordinator for
Bronxville School in New York
and president of the American
Regions Mathematics League.

The 1989 ARML contest
questions were created by
Gilbert W. Kessler, Canarsie
High School (retired), Brook-
fyn, NY; Harry Ruderman,
Hunter College Campus
School (retired), New York,
NY; and Larry Zimmerman,
Brooklyn Technical High
School, Brooklyn, NY.

QUANTUM/HAPPENINGS 87




... HAPPENINGS

Battery-iriven ideas earn Scholarships

The eighth annual Duracell NSTA
Scholarship Competition really got
the creative juices flowing. To enter
the competition, a student had to de-
sign and build a device that is educa-
tional, useful, or entertaining and is
powered by one or more Duracell bat-
teries. Jerry Pratt, a senior at Ashland
High School in Wisconsin, was awarded
a $10,000 scholarship for his “Knock-
Out” Keyless Door Lock. You pro-
gram the device’s microcomputer by
tapping out a rhythm (a favorite tune,
the Morse code of someone’s name,
whatever), and the door can’t be opened
from the outside unless the encoded
knock is repeated. Jerry says his Knock-
Out lock is an improvement over other
electrical locks because it’s tamper-
proof from the outside.

Five other students each received a
$5,000 scholarship. Theodore Gielow,
a senior at Newport Harbor High School
in California, invented the High-Effi-
ciency DC Light Dimmer, which
decreases the brightness of a light bulb
(for example, a night light on a camp-
ing trip) without wasting power by

Bulletin Board

reducing the time during which cur-
rent flows rather than cutting back
the current. Albert Masaki Hunting-
ton, a senior at Pleasant Hill High
School in Oregon, came up with the
Portasynth, a compact, lightweight,
highly efficient keyboard with 63 keys
designed to be practical for trips into
space. Matthew Jared Klam, a senior
at the Wisconsin School for the Deaf,
devised a Walkie-Talkie Device for
the Deaf, which incorporates a port-
able screen and keyboard for sending
and receiving messages. Robbie Glen
Seibert, a junior at Grand Rapids High
School in Minnesota, invented a Speech
Leader—a talking compass that uses a
directional sensor, speech processor
chip, leveler, and alarm clock. Kurt
Thorn, a sophomore at Shorecham-
Wading River High School in New
York, created the Multipurpose Angle
Measurer for recording the degree of
mobility in the joints of persons who
are in physical therapy after an acci-
dent, for example, or who are arthritic.
It’s based on a pendulum hookedtoa
variable resistor.

Ten students were given $500 schol-
arships, and 25 students received $100
cash awards. The top winners ex-
plained their devices to an audience of
educators and scientists at an awards
luncheon during the recent NSTA
annual convention in Atlanta, Geor-
gia.

To find outhow to enter theninth
annual Duracell NSTA Scholarship
Competition, write to Katie Rapp, Na-
tional Science Teachers Association,
1742 Connecticut Avenue NW, Wash-
ington, DC 20009, or call 202 328-
5800.

Free 3-0 report brings molecula
puzzies to lite

A colorful new report from the
Howard Hughes Medical Institute,
Finding the Critical Shapes, shows
how the answers to many riddles of
modem biology and medicine lie but-
ied in the intricate, three-dimensional
shapes of our bodies’ molecules. Re-
searchers in the field of “structural bi-
ology” increasingly depend on com-
puters not only to do their
» mathematical computations
| but to help them see their
results. This beautifully il-
lustrated report includes a
stereo viewer to help the reader
visualize molecular shapes
in three dimensions. This
kind of view provides in-
sights into the mechanisms
of previously untamed dis-
eases and helps scientists
design new drugs to combat
them.

For a free copy of Finding
the Critical Shapes, write to
the Howard Hughes Medi-
cal Institute, Communica-
tions Office, 6701 Rockledge
Drive, Bethesda, MD 20817.

Award-winning devices from the 1989 Duracell NSTA Scholarship Competition (left to right):
“Knock-Out” Keyless Door Lock, High-Efficiency DC Light Dimmer, Environmentally Directed
Watering Device, Speech Leader, Portasynth, Walkie-Talkie Device for the Deaf
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Math

For each of the three given circles,
draw radii from its center to the points
where it intersects the other two (the
thin lines to points A, B, C, H in figure
1). Three rhombi appear (with com-
mon vertex H) whose sides are all
equal to r. We can imagine them as
representing three faces of a parallele-
piped with common vertex H. Draw
the three other faces—that is, three
new rhombi with common vertex O.
Their new sides (the thick lines OA,
OB, OC in figure 1) are also equal to r.
And this is precisely what has to be
proved. (Notice that our reasoning
also holds when B lies outside triangle
AHC.) Figure 2 creates a more con-
venient view of the situation by break-
ing apart the parallelepiped and elimi-
nating the distracting portions of fig-
ure 1.

We'll leave it to you to find other
solutions to this problem and lots of
interesting facts of triangle geometry
related to it. Youmay have noticed,
for example, that triangle ABC is con-
gruent to the triangle with vertices at
the centers of the three given circles;
that B is the orthocenter of triangle
AHC; that the points symmetrical to
B relative to the sides of triangle AHC
lie on its circumcircle; and that all
four circumferences play equivalent
roles—that is, every group of three
circles has a common point.

SOLUTIONS

Figure 1

You can find a detailed discussion
of this problem in the remarkable book
Mathematical Discovery by George
Polya.

Imagine that the numbers x, x, ..., x_
are written clockwise around a circle.
Let k be the number of times the
number 1 is followed (clockwise) by
-1 in the sequence x, x,, ..., X, X,
(which we'll call the “basic sequence”).
Notice that the number of reverse
changes (from -1 to 1, clockwise) is
the same. (Why?] The total number of
negative 1’s among n products x x,,
X,X,, ..., X,X, (the “product sequence”)
is equal to the number of sign changes
in the basic sequence, which is 2k.
But the sum of the members of the
product sequence is 0 only if exactly

Figure 4

B
A C

A BE C
)
Figure 2 k/

half of the n products equals -1, and so
n=4k.

The strip between the exterior polygon
P, and the interior one P, can be cut
into rectangles with altitude 1 (whose
bases are the sides of P|) and quadrilat-
eralsleft near the vertices of P, when
the rectangles are removed (fig. 3).
Take these quadrilaterals and fit them
together by parallel translations so
that their inner vertices (the ones origi-
nally on P ) all coincide. We then
obtain a polygon P circumscribed to a
circle with radius 1. Its vertex angles
are the same as those of P (or P ) and
its sides are equal to the differences
between thesidesof P,and P,.

If the sides of P, are proportional to
the corresponding parallel sides of P,
with a coefficient k < 1, then the sides
of P are clearly proportional to those of
P, with a coefficient 1 - k. So P,and P,
are similar to P, and all of them are cir-
cumscribed to a circle.

In this solution we've tacitly as-
sumed that the similitude between P,
and P, is the natural one (that is, the
correspondence between the sides is
the one induced by the outward mo-
tion). It can be proved that if any
similitude exists, the natural one ex-
ists too. We'll give another solution,
however, that doesn’t rely on this as-
sumption.
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Let the inner polygon P, be the
image of P underasimilitude witha
coefficient k < 1. Then the image P, of
P, under this similitude can be con-
structed from P, in the same way as P,

was constructecll from P, but with a k-
fold reduction of all distances—that
is, by moving the sides of P, the dis-
tance k toward the interior (fig. 4).
Then the polygon P, (theimage of P, |
can be constructed by moving the
sides of P, the distance k* and so on.
The intersection of all the polygons
P,P, P, ..isasinglepoint O. Each
side of P, moves the distances 1, k, k?,
... toward O, so that the total distance
to O is equal to the sum of the infinite
geometric progression 1 + kK + k% + ... =
1/(1 -k). It follows that P and P, are
both circumscribed to circles with
center O.

Let's call Miraflores’s supporters “reds”
and the other voters “blues.” The
situation illustrated in figure 5, where
eight red voters out of a total of 27
voters guarantee the victory of the
reds in a 3-stage election, clarifies the
main principle: in each group where
the reds win, they have a minimal
majority, whereas in each group won
by the blues the vote is unanimous.
Using this principle, we see that M red
votes out of a total of N will win in an
appropriately organized r-stage elec-
tion if the ratio M/N can be repre-
sented as a product of r fractions each
larger than 1/2.
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Thus, 8/27 =(2/3)(2/3)(2/3) in the
previous example. Since we have

(3/5)7 - (9/16)
= 31/57.28
177,147/20,000,000,

it follows that a well-organized 9-stage
election will guarantee Miraflores’s
reelection with less than 200,000 red
voters. An even smaller number of
reds, 164,025 = 38 . 25, is sufficient in a
10-stage election, since

(3/5)7- 3/4 - (5/8)* = 164,025/ 20,000,000.

M10

Youmay have found it easy to guess
and verify the answer: the portions of
milkare0,1/7,2/7,3/7,4/7,5/7,6/7
liter. When the dwarf represented by
the solid circle in figure 6 has given his
portion of milk to the others, the dis-
tribution turns out to be the same as
the initial one but rotated by one-
seventh of a full turn. So after seven
iterations (repetitions), the original
distribution is recovered.

But it’s not so simple to prove the
answer’s uniqueness. Let 6x, be the
portion of milk that
the kth dwarf pours
out (x, liters to each
of the other dwarfs),
where k=1,2,..,7.
Without loss of
generality we can
assume x, > x, for
all &, since all the
dwarfs are equally

nice. After seven iterations the first

dwarf gets back all his milk; therefore,
60X, =X, + X, + ... + X,.

Since x, > x,, this is possible only if x,
=X, =..= X,. Suppose x is the smallest
portion of milk added; then by as-
sumption

X+2X+..+6x=3,

so that x = 1/7, and the answer follows.

Physics

In order to avoid a collision, the astro-
naut must change the velocity of the
spaceship so that the angle between
the initial direction toward the aster-
0id and the new heading is greater
than the angle o determined by the
condition

sina, - —42_

O 1+dr2
d

C21+d
0.292

(see figure 7). After the additional
velocity Av is imparted to the ship,
maximum deviation from the initial
heading is provided if the vector Av
turns out to be perpendicular to the
vectorv, =v+Av|(fig. 8)—thatis, if

sina=Av/v=0.3.

So by switching on the emergency
engines, the astronaut can change the
heading of the ship by an angle a. >
and there will be no collision with the
asteroid.

Let’s consider the raft’s motion in a
frame of reference anchored to the
current—that is, moving at a speed of
u. In this context the raft has an initial
velocity v/ = v — u and moves in a




straight line. Here the raft’s velocity
v’ is reduced because of the force of
water resistance. (If the resistance
were absent, in time t the raft would
be at point c with coordinates x_=ut,
y,=vt.) The displacement of the raft
relative to the riverbank in time tis a
combination of its displacement s, =
v’ t relative to the water and the dis-
placement of water s_ = ut (fig. 9).
During time 2t the water displace-
ment will be twice as great. From
point O let’s measure off a segment
with a length of 25, along the x-
axis and draw a straight line
parallel to s, (through the point
with coordinate 2s_ ). This line
intersects the raft’s trajectory
at the point marked by the blue
cross—the raft will be here at
time 2t after the raft was
launched.

Similar constructions can be
used to find where the raft will
be at times 3t, 4t, and so on.

It’s clear from the condition that the
power from the heating element is
equal to the energy leaving the water
and entering the environment over
time. (The temperature of the water
doesn’t change with time while the
elementison.) Soif the heatingele-
ment is turned off, the energy trans-
ferred over time by the water will be
100 W. Recalling that heat flow Q =
Cm - AT and that Q = Pt (where C is
specific heat, m is mass, T is tempera-
ture, and P is power), we find that the
water will cool down by one degree
during the time

=Cm~AT
P
_(42-10°)kg - °C) - 1kg - 1°C
- 100 W
=42s.

P9

From considerations of symmetry, it

follows that the induction B , of the

field created in the center of the cube

YA

(at point O) by the
current  flowingin

Figure 8

—>»

‘ the circuit ABCDA
—»
jz . Z Av (fig. 10) is parallel to
—

v, the y-axis. In fact,

by rotating it 90°

about the y-axis, circuit ABCDA is
transformed into itself, and so the
vector B, should also be transformed
into itself. Therefore, by the cork-
screw (or right-hand) rule the vector
B, mustbe directed along the y-axis.
In projections on the x-, y-, and z-axes,

B() = (BX/B/V/BZ) = (O/BO/O)'

To find the field B created by the
current flowing in the circuit ABCGHEA
(fig. 11), we use the superposition prin-
ciple. Notice that exactly the same

X

o

25 w 73 Sy

distribution of current on the edges of
the cube will be obtained if we take
three circuits, ABCDA, DCGHD, and
ADHEA, in each of which the current
is I. The combination of these three
circuits creates the required field B in
the center of the cube. According to
the superposition principle, B is equal
to the vector sum of the three fields
created by each of the circuits:

B =B +B +B

ABCDA DCGHD ADHEA
-(O,B,,0) +[-B,,0,0) +(0,0,B,)
= [~B,,B,,B,)-

o’
So the vector B is directed along the
cube’s principal diagonal DF and its
value is B 3"

The induction B can be found by
simply adding together the fields of all
six edges of the circuit, but this re-
quires more cumbersome calculations.

P10

You might proceed in the following
way. Draw two points on a sheet of

paper very close to each other—for
example, at the distance /= 1.5 mm.
Moving the sheet away from your
eyes, estimate the distance at which
the points merge into one point. If you
have normal eyesight, this distance
should be d =2 m. The angle o~ I/d is
the least angular distance between the
points at which they are distinguished
by the eye as two objects. This angle
characterizes your eyesight.

The rails will seem to merge when
the angular distance between them is
o. If the rails are I’ = 1.5 m apart, they
seem to come together at the distance
d~Tlo~Tdl=2km.

Brainteasers

Keeping the goat in the boat, take the
dog and then the cabbage across the
river. Take the goat back and leave it
on the riverbank (all by itself). Take
the two wolves across the river. Re-
turn with the dog. In the last crossing
take the dog and the goat across.

Theproblemisbased on the fact that
adding the mean value of a set of
numbers to this set gives a set with the
same mean value.
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88 285
X 39
2565
+ 855
11115

The diver can tell which way is up by
watching the bubbles coming out of
his breathing apparatus or by dropping
a pebble.

B10

Combustion occurs when there is an
influx of oxygen. Under ordinary
conditions on Earth the influx of oxy-
gen is due to convection: near the
flame heated air, which is lighter, ascends
together with the products of combus-
tion; colder air, containing oxygen,
takes their place. In the state of weight-
lessness there will be no convection,
and the flame will die from a lack of

oxygen.

Kaleidoscope

1. Particles of smoke take part in
Brownian motion and move off little
by little so that the density of the
smoke decreases.

2. The Brownian motion of the fat
droplets is weakened.

3. The number of collisions of a
liquid’s molecules with the surface of
a particle is proportional to the surface
area, whereas the mass of the particle
is proportional to its volume. So the
larger the particle, the harderit is for
molecules to move it. A Brownian
particle must also be small enough
that collisions with molecules will be
uncompensated.

4. The rate of diffusion increases as
temperature increases.

5. Because of frequent collisions,
the molecules move in zigzags. Their
actual paths are much longer than
their perceived change of position would
imply.

6. Water vapor diffuses slowly through
the film of lacquer so that the wood
dries evenly throughout and the ball
doesn’t crack.
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7. Since the atmosphere at those
heightsis very sparse, the number of
molecules per unit of volume is too
small to impart an appreciable amount
of energy when they collide with a sat-
ellite.

8. If the Moon ever had an atmos-
phere, it disappeared over the eons of
its existence. Amid the myriad mole-
cules of atmosphere, there were al-
ways some whose velocity of thermal
motion would achieve the escape ve-
locity for the Moon.

9. In putting the pieces back to-
gether, it’s practically (as opposed to
theoretically) impossible to position
the fracture surfaces at a distance where
the forces of molecular attraction will
be “noticeable.”

10. Because of close contact over a
long period of time, the atoms of the
nut and bolt intermix along the bound-
ary because of diffusion and the two
pieces “lock.”

11. Work to change the level of a
liquid in a capillary is performed by

the energy of molecular interaction.

12. The pressure would increase.

ARMIL power question

LA.(7,24,25) and (15,20,25), the sec-
ond of which is five times the sides of
(3,4,5).

I.B. (35,120,125),
(75,100,125), and (44,117,125).
The first two come from the
(7,24,25) and (3,4,5) triangles.
A general approach would
be to use the fact that the
expressions k{nm?— 1), k{21rmn)
and k{m? + n?), where k, m,
and n are positive integers
with m > n, produce all Py-
thagorean triplets. Setting
m?*+ n? =125 leads to m = 10,
n = 5, which produces
(75,100,125),orm=11,n=2,
which produces (44,117,125).
Setting m?+n?=251eads to
m = 4, n = 3, producing
(7,24,25), for which we then
usek=5.

ILA. Ptolemy’s Theorem produces
FG=7/5. The answeris (15,7,15,25)
(in any order).

I1.B. Using sides (a,x,a,25), where
each diagonal is (625 — %) leads to x =
25 -2a%/25. Positive integral x’s come
froma=5,10,0r15. Thelastleadsto
thesolutioninIl.A. The other possi-
bilities are (5,23,5,25) or (10,17,10,25).
(Either answer, in any order, is accept-
able.)

II.C. Apply the theorem given in
part I, for any appropriate d, to find n -
2 P3’s of hypotenuse d*2. Build these
triangles in a semicircle of diameter
d=2. Connecting successive points on
the semicircle produces an n-gon. Suc-
cessive applications of Ptolemy’s Theo-
rem to find each side of the n-gon
shows each must be rational. Multi-
plyingall sides by the least common
denominator involved produces a Pn.

IM.A. On diameter AD, draw the P4
ABCD, with AB=a, BC=c, CD =c,
AD =d, BD = ¢, and angle BCD = 6.
The law of cosines shows that d2 = g+
e?=a*+ b*+ c*-2bc cos 0. Since 6 must
be obtuse, cos 6 is negative, so d? is
greater than a? + b? + ¢2. Notice that
this easily extends to any Pn.

I11.B. Using the P4 described in so-
lution IIL.A, with AC = f, Ptolemy'’s
Theorem yields bd + ac = ef = [(d*> - a?)
(@2 - c*)]” Squaring both sides, simpli-
tying, and dividing each term by d
produces b*d + 2abc = d® — a*d - c2d.
Since all are integers, d must divide
2abc. If dis aprime greater than 2, it
must divide at least one of the g, b, ¢. If




A e e el =)

dla, for example, then a > d, which is
impossible. So d is composite or equal
to 2; therefore, d is composite.

IM.C.1.(1). Using the P4 described in
solution IIL.B, we first show that its
area must be rational. The area of
triangle ABD = ae/2, which is integral,
since one of the legs must be even (see
solution IL.B); the area of triangle BCD
= [bc/2) sin 6, which must be rational
sincesin 0 =¢/d (by the extended law
of sines); thus, the area of the P4 is
rational.

III.C.1.[2). We next show that the
perimeter of the P4 must be even. We
first note that all primitive Pythago-
rean triplets (generated by m? - n?,
2mn, and m? + 2, where m and n are of
opposite parities) must yield an odd
hypotenuse and exactly one even leg;
if a Pythagorean triplet has an even
hypotenuse, each leg must have at
least the same degree of evenness as
the hypotenuse. Now by Ptolemy’s
Theorem, b = (ef — ac)/d, and we are
given that this is integral. There are
now two basic possibilities: (1) d can
be even (then both ef and ac will be of
a higher degree of evenness, making b
even and the perimeter even) or (2) d
can be odd (then either e and f are even
while a and ¢ are odd, making b odd; or
eandfare odd while a and c are even,
making b odd; or e and f are of opposite
parities, as are a and ¢, making b even;
in each of these situations the perime-
ter will be even). Thus, the perimeter
is even in every case.

III.C.1.(3). With s as the semiperi-
meter, Hero’s Formula for an inscribed
quadrilateral gives area = [(s—a) (s —b)
(s—c)(s—d]]*; since s will be integral,
the area is the square root of an inte-
ger. But for the area to be rational also,
it must actually be integral!

II1.C.2. This is done by induction.
We will just indicate the basic ap-
proach here: GiventheSPn ABCD...
TUV,ondiameter AV, let the area of

mmiangle ABC be K, the area of ACD ...
TVbeK’,and theareaof TUVbe K”.
Weassume that theareaof any SP(n -
1) and Pin —2) are | (thisis our
“extended” Indnction assumption).

Then K + K* is imtegral and K’ is
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CHECKMATE!

Symmetry on the chesshoard

Sometimes it happens by chance, sometimes by design,
but it always has a certain charm

HE “SYMMETRY MOTIE”

arises often both in the composi-

tion of chess problems and in

actual play. This geometric theme
is a lot of fun and seemingly inex-
haustible.

Here’s a game from a published
collection of chess curiosities. It was
played at the championship of the
USSR in Moscow in 1931.

M. Botvinnik-N. Ryumin

1. d2-d4 d7-d5
2. ¢2-c4 c7-c6
3. Ngl-f3  Ng8-f6
4. e2-e3 e7-e6

5. Bf1-d3 Nb8-d7
6. 00 Bf8-d6
7. Nbl-d2  e6-e5
8. e3-ed 0-0

9. c¢4xd5 c6xd5
10. e4xd5 e5xd4

The opponents had played out the
Slavic Defense, and there wasno de-
sire to copy moves on black’s part, let
alone white’s. But after ten moves the
players were no doubt startled to see
the perfect symmetry on the board, as
well as the unusual concentration of
pieces on the d-file. Nevertheless, the
preference in a symmetrical position
generally goes to the player whose
move it is. In this case, Botvinnik
skillfully makes use of this advantage,
ably defending his d-pawn while at-
tacking his opponent’s.

11. Nd2-e4! Ni6xed
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12. Bd3xe4  Nd7-¢5
(12. ... Nd7-f6 would have been bet-
ter.)

13. Bed-c2 Bce8-g4
14. Qdlxd4 Bgdxf3
15. g2xf3 Rf8-e8
16. Rfl-dl Re8-e2
17. Bc2-f5 g7-g6
18. Bf5-h3 Nc5-d7
19. Bcl-e3 Bd6-e5
20. Qd4-c4  Re2xb2
21. Ral-cl

(Commenting on this game, Botvin-
nik noted that 21. d5-d6 would have
led to victory more quickly.)

21. .. Nd7-b6
22. Qcd-e4 Qd8-de?
(22. ... Be5-d6 would have been

stronger—now it’s all over.)

23. {34 Be5-g7

24. Be3-c5 Qdo6-ds8

25. Bce5-e7 Qd8-e8

26. d5-dé Qe8-b5

27. d6-d7 Nb6xd7

28. Bh3xd7

A few moves later, black resigned.

Thebasicidea of the “symmetry-
asymmetry” genre of chess problems
is that an externally symmetrical
position has an asymmetrical solu-
tion. Of course, there can’t be abso-
lute vertical symmetry on the chess-
board because of the presence of an
“extra” file. In fact, paradoxical situ-
ations arise precisely because of this
file. The following examples are all
problems based on this phenomenon.
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G. Adamson, 1924. To win.

1. Ne7-d5!

(Alternatives: 1. ..
g62.Be2-h5; 1. ...

2. Ke6-d6!

(But not 2. Be2-b5? Ke8-d8! 3
Bb5xd7—stalemate.)

2. .. Ke8-d8!

(2... Nd7 b8 won't save black: 3.
Be2- b5+ Ke8-d8 4. Nd5-b6 Nb8-c6! 5.
Kd6xc6!; nor will 2. ... Nd7-£8: 3. Be2-
h5+ K68 d8 4. Nd5- t6! Kd8-c8 5. Kd6-
e7.)

3. Be2-d3

Here are some possible ways of
working this position out: 3. ... Kd8-c8
4. Nd5-e7+ Kc8-d8 5. Ne7-c6+ Kd8-e8
6. Bd3-g6+; 3. ... Kd8-e8 4. Nd5-¢7+
Ke8-d8 5. Nc7-e6+ Kd8-c8 6. Bd3-a6+;
3....Nd7-b8 4. Nd5-b6 Kd8-e8 5. Kd6-
c7;3....Nd7-f8 4. Nd5-f6 Kd8-c8 5.
Kd6-€7! and the knight is caught. Why
wouldn’t 1. Ne7-f5 work? Let’s see
how it plays out: 1. ... Ne5-f7! 2. Ke6-
f6 Ke8-18 3. Be2-f3 Kf8-e8 4. Nf5-g7+
Ke8-f8 5. Ng7-e6+ Kf8-g8! As it tumns

Ne5-d7
. Ne5-f7 or Ne5-
Ne5-¢6 2. Be2-b5.)




out, the bishop needs one more file to
check the king.

Let’s look at another problem.

A. Seleznev, 1917—white king on
e5, bishop on a8, and pawn on e6;
black king on g4, knight on f4, and
pawnsonb4 andh4. Todraw.

"Where's the symmetry here?” you're
saying. It turns up after three moves:

1. Ba8-e4! Nfdxe6
0. Bedf5+ Kgdf3
3. Bf5xe6  Kif3-e3!

It seems white won’t be able to save
itself (one of the pawns will march on

to become a queen). And yet...
4. Ke5-d6! Ke3-d4
5. Kd6-c6 Kd4-c3
6. Kc6-d5! b4-b3
7. Kd5-e4 b3-b2
8. Be6-a2 h4-h3
9. Ked-£3

Both pawns are held back. If white’s
fourth move had been Ke5-{62, the
white bishop would not have found a
position at the right corresponding to
a). Tt appears that this is the first chess
problem in history with “symmetry—
asymmetry.”
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Y. Kneppel, 1967. To win.
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At first glance, it’s not clear what
significance the extreme left file has
in this pawn problem. After all, the
pawnisn’tinapositiontolandonit.

1. c3-c4! Ke6-16

(Alternatively: 1. ... Ke6-d6 2. Ked-
f5 g5-g4 3. Kf5xgd Kd6-e5 4. Kgd-h5
Ke5-d4 5. g3-g4 Kd4xc4 6. g4-g5 Ked-
d37.g5-g6¢c5-c4 8. g6-g7 c4-¢39.g7-
28Q ¢3-¢c2 10. Qg8-g5.)

2. Ked-d5 Kf6-15
3. Kd5xe5 Kf5-g4

4. Kc5-d4  Kgdxg3
5. c4-c5 g5-g4
6. c5-c6 Kg3-f2
7. cb-¢c7 g4-g3

8. ¢7-¢c8Q  g3-g2

The queen can easily manage the
black pawn. What if the g-pawn is
advanced first? 1. g3-g4? Ke6-d6! 2.
Ked4-f5 (2. c3-c4 Kd6-e6) 2. ... Kd6-d5 3.
Kf5xgh Kd5-c4 4. Kg5-f4 Kedxe3 5. g4-
g5 ¢5-c4 6. g5-g6 Ke3-b2 7. gb-g7 c4-c3
8. g7-g8Q c3-c2. The white pawn has
allowed black to get a draw (the stale-
mate idea)!
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O. Riikhimaa, 1942. To draw.

In this example, the h-file will be
used in a completely different way.
1. d5xe6! dé6xe5
(After 1. ... d6xc5 2. e6xf7 Kd8-e7 3.
e5-e6, the moves by black ultimately
lead only to a stalemate.)

2. e6xf7 Kd8-e7
3. Kd3-e4 Ke7xf7
4. Kedxe5 Kf7-e7
5. Ke5f5! Ke7-d7
6. Kf5-e5 Kd7-c7
7. Ke5-d4  Kc7-b8
8. Kd4-c4 Kb8-a7
9. Kc4-b4 Ka7-a6
10. Kb4-a4
Draw.

Opening to the other side won't
work, though: 1. d5xc6? d6xc5! 2.
c6xb7 Kd8-c¢7 3. Kd3-c4 Kc7xb7 4.
Kc4xc5 Kb7-¢7 5. Ke5-b5 Ke7-d7 6.
Kb5-c5 Kd7-e7 7. Kc4-d4 Ke7-18 8.
Kd5-e4 Kf8-g7 9. Ked-f4 Kg7-h6! Black
hasnow gained an advantage thanks
to the maneuver on the “extra” file on

the far right. @

Book One

Methods of Motion

An Introduction to Mechanics

How do objects move? Isaac Newton really believed that an object moving in
a straight line would continue with constant speed. Do your students? This
manual was created to help teachers introduce the sometimes daunting
subject of Newtonian mechanics to students in the middle grades. The 27
activities presented here use readily available materials to give students
visual, aural, and tactile evidence to combat their misconceptions. And the
teacher-created and tested modules are fun: Marble races, a tractor-pull
using toy cars, fettucini carpentry, and film container cannons will make
teachers and students look forward to class. Readings for teachers, a guide
for workshop leaders, and a master materials list follow the activities,
making this manual useful for inservice workshops.
#PB39, 1989, 168 pp. $16.50

from NSTA Publications

All orders of $25 or less must be prepaid. Orders over $25
must include a purchase order. All orders must include a

postage and handling fee of $2. No credits or refunds for
retums. Send order to: Publications Sales, NSTA, 1742 Con-
necticut Ave. NW, Washington, D.C. 20009.
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Dr. Robert Ballard is taking the robot JASON
and 250,000 students to the bottom of Lake
Ontario in May 1990 to look at War of 1812
shipwrecks. The NSTA Great Lakes JASON
Curriculum includes 360 pages of expedition
activities, a poster, map, and gameboard. Order

from NSTA Special Publications, 1742 Connec-
ticut Ave., NW, Washington, DC 20009. Include
check for $14.95. ‘ ' '
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