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A smoothly varying family of lines in the plane almost
always forms folds and cusps. This family of lines was
generated as the set of normals to the curve that sweeps
through. Although this figure is a construction in the
plane, it gives a definite impression of three-dimen-
sionality. In his article on developable surfaces, Dmitry
Fuchs offers a three-dimensional interpretation arising
from the bendingof paper—see page 16.
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PUBLISHER'S PAGE

Welcome to Quantum!

ALL oF Us at the National Science Teachers Association
are very excited about the premier issue of Quantum
magazine. Working with the American Association of
Physics Teachers and the National Council of Teachers of
Mathematics, and in cooperation with the Soviet Acad-
emy of Sciences, we're looking forward to producing a
magazine of the highest quality. We expect Quantum to
provide interesting and stimulating material for the in-
quisitive, bright young people of our country. When
Quantum contains equal amounts of material from both
the US and USSR, we hope it will be published in both
countries so that students around the world can share the
challenges and pleasures of Quantum’s problems, articles,
and other features.

Our new magazine is extremely fortunate to have three
top-notch scholars as its editors-in-chief. Academician
Yuri Ossipyan is a physicist, vice president of the Academy
of Sciences of the USSR, and editor-in-chief of our sister
publication Kvant, the Russian-language magazine of physics
and math for secondary school students. He is also a
member of Congress of People’s Deputies, a Soviet legisla-
tive body similar in function to the US House of Represen-
tatives. Dr. Sheldon Lee Glashow is a professor of physics
at Harvard University who has taught at summer science
and math institutes for gifted high school students for the
last several years. In 1979 he was awarded the Nobel Prize
for physics. Dr. William P. Thurston, a professor of
mathematics at Princeton University, is also committed
to motivating academically gifted students. He has worked
closely with the National Council of Teachers of Mathe-
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Clockwise from top: Sheldon Glashow, Yuri Ossipyan, Bill
Aldridge, Edward Lozansky, and NSTA president Hans Andersen.

matics and currently serves as vice president of the Ameri-
can Mathematics Society. In 1982 he received the coveted
Fields Medal for his achievements in mathematics.

The staff of Quantum looks forward to working closely
with the members of the advisory boards, who are scien-
tists, mathematicians, and teachers of the highest caliber.
They'll provide support in selecting translations from
Kvant, soliciting original material, and reviewing it for
technical accuracy. From their vantage points closer to the
“action,” they’ll also help us tailor the magazine to fit your
needs and interests.

THE PICTURE BELOW was taken at the celebrated
statue of Einstein on the grounds of the National Academy
of Sciences in Washington, DC. As the great physicist
gazes at the celestial map at his feet, he seems todraw us
into his “joy and amazement at the beauty and grandeur of
this world of which man can just form a faint notion...”

The great Russian scientist and poet Mikhail Lomono-
sov, a chemist of international reputation who helped
create Moscow University in 1755, was moved to utter
similar sentiments by a display of the northern lights.
“Nature, where are your laws? The dawn appears from the
dark northern climes! Does not the sun there set up its
throne? Are not the ice-bound seas emitting fire? Behold,
acold flame has covered us! Behold, the day has trod the
earth at night!”

As he addresses nature in his ode, Lomonosov runs
through a list of fairly technical questions: “What causes
bright rays to vibrate in the night? Why does a thin flame
strike the firmament? How does lightning without thun-
derclouds race from the earth to the zenith? How can it be
that frozen steam generates a conflagration in the midst of
winter?” He concludes by telling nature, “What you say
about the things nearby is doubtful. So tell us, if you can,
how vastis the universe? What lies beyond the smallest
stars?”

We hope this magazine will inspire in you the sense that
the pursuit of scientific truth is a grand and never-ending
adventure.

Quantum is the just first of a number of cooperative
projects undertaken by US and Soviet science and educa-
tion organizations. We invite you to take part in some of
the student exchanges planned, and we hope your teachers
will participate in our teacher exchanges as well.

If you have comments, suggestions, or ideas about this
premier issue of Quantum, please write tome. The next
issue will be out in the spring, and we’ll begin publishing
quarterly in the fall of 1990.

—Bill G. Aldridge
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LETTERS FROM THE EDITORS

IT GIves ME great pleasure
to introduce this first issue
of Quantum magazine to
the American reader. This
publication is the result of
cooperation between Soviet
and American scientists and
educators and is based on
material from Kvant, a
unique popular science
monthly magazine that has
circulated in the USSR for
20 years. During this period
Kvant (which means “quan-
tum” in Russian, as you
must have guessed) has become the favorite magazine of
all Soviet high school students interested in mathematics,
physics, and science in general. Its current readership is
over 200,000.

Reading Kvant or Quantum isn't always easy, but if you
really like science, I'm sure you'll find it exciting. Of
course, the magazine contains recreational material, lively
illustrations, humor, and amusing anecdotes from the
history of science. But its core and main source of interest
are articles in physics and math that necessitate thinking,
sometimes pretty hard thinking, to be understood. Experi-
enced Kvant readers sometimes even resort to pencil and
paper while reading the articles to work out equations or to
make their own sketches. Certainly a lot of brainwork and
some paperwork are required to solve the problems in our
Problem Corner, intended for those of you who like
Olympiads and other problem-solving competitions. But
all this work doesn’t go unrewarded—few experiences are
as intensely exhilarating as the feeling “I've got it!” that
comes as a flash when you’ve solved an intricate problem
or grasped a profound idea.

My American colleagues and I hope that in the future
the cooperation between Quantum and Kvant will result
in the simultaneous publication in English and
Russian of issues with almost the same content
so that Soviet and American high school stu-
dents will be working on the same materials at
the same time, competing peacefully and coop-
erating in the spirit of the present rapproche-
ment between our two great countries. Whether
you have already developed an interest in math
or science, or have gathered from school courses
that these subjects are boring (as I did in my
early teens), I hope Quantum will help you
discover the excitement inherent in mathe-
matics and the natural sciences.

—Yuri Ossipyan
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MATHEMATICS AND PHYSICS can be downright fun. Ilove
to think about mathematical puzzles, quantum riddles,
and the latest elementary particles, and I get paid for doing
it! If you become a professional scientist or a teacher, you
too may find it difficult to tell the difference between your
hobby and your job—an enviable situation.

I wish Quantum had been around when I was a stu-
dent—it would have made it a lot easier for me to have
found fulfillment as a physicist. Although it has existed for
some 20 years in its original Russian avatar, until now it
has been unavailable to American students.

Almost every Soviet physicist I know either writes for
Quantum
or got into
physics by |
reading the |
magazine
and doing
its prob-
lems. Hun-
dreds of
thousands
of Soviet
students are
avid sub-
scribers to
the Russian
version. Finally, an English-language edition has become
available to you!

In this premier issue, we have translated some of the
classic original Russian articles. In future issues, we plan
to publish contributions from scientists throughout the
world. Read Quantum and enjoy it, and let us know how
we can make it even better.

Asa cHILD, I OFTEN HATED arithmetic and mathematics
in school. Pages of exercises were tedious and dull. They
weren’t fun or challenging, they were
justachore. I'd find somethingelse to
entertain myself whenever I could. I
doodled, Iread books under the desk, I
stared out the window and let my mind
wander. Sometimes I tried to puzzle
something out. Could you propel a
sailboat with a big fan on the boat to
blow on the sail? Might V2 eventually
be periodic if you write it out in base 12
instead of base 102 How many ways are
there to fold a map into sixteenths, in
quarters each way?

When I became a mathematician I
was surprised and heartened to find a



community of people who also take
pleasure in the kinds of things I enjoy,
who like to really dig in and try to
understand.

With the modern emphases on test
scores, on “basics,” on mathematics
as a competitive sport, on getting
“ahead” in math, and so on, it often
seems that the diversity, richness,
liveliness, and depth of mathematics
has been pruned away from the school
experience. Mathematicsisn't a palm
tree, with a single long straight trunk
covered with scratchy formulas. It's a
banyan tree, with many interconnected
trunks and branches—a banyan tree
that has grown to the size of a forest,
inviting us to climb and explore. (If
you’ve never seen a banyan tree, it’s
worth going out of your way for.)

I have great hopes that Quantum
will open up a road to some of the
breadth, wonder, and excitement of
math and physics.

I'd like to post a warning, though, at
the beginning of the road. Science
writing, and math writing in particu-
lar, tends to be dense and full of haz-
ardous turns and treacherous sand-
pits. When I'was a child I took pride in
how many pagesIreadinanhour. In
college I learned how foolish that was.
When reading mathematics ten pages
a day can be an extremely fast pace.
Evenone page aday can be quite fast.
On the other hand, if you already
understand something, you may get
more by skimming than by reading
every word. Youneed tobealertand
suspicious; you need to question and
think about what you're reading in
your own way.

Quantum articles aren’t written
like articles in scientific journals, but
some of the same reading habits still
apply. Don't be afraid to stop in midpara-
graph or midsentence when some-
thing surprises or puzzles you. Speed
isn’t the issue. Don’t assume some-
thing is obvious just because an au-
thor treats it that way. What you work
out on the side, even though it takes
much more time, will have immensely
more value than what you read straight
through.

—William P. Thurston
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ARTISTIC LICENSE REVOKED

It's heautiful—Hut is it science?

There's something fishy about those waves

by Albert Stasenko

EEP AND FREEZING COLD IS
the rippled blue surface of the
river. Festively decorated boats
with gaily colored sails glide

alongtheriver. Their elevated bows

are decorated with dragon heads.

The bright colors blaze in the

sun. . . . The Vikings’ voyage was

long and dangerous.” Thisishow V.

P. Knyazeva describes Nikolay Re-

rikh’s painting “Merchants from

Overseas” (1901), which hangs in

the Tretyakov Gallery in Moscow.

We'll make use of this striking
poetical picture to ponder a few topics
in physics—the law of conservation
of energy, dimensional analysis, and
statistical analysis of experimental
results. What has the painting got
to do with all that? Well, I guess we
only need it to liven things up a bit.

Seriously, though, don’t you think
it’s a challenge to try and find the
speed at which the Vikings are trav-
elling just by looking at the paint-
ing? Relative to the moving water
and not the riverbanks, of course.

And what is there in the painting to

provide us with the necessary infor-

mation? First of all, there is the
wave formed on both sides of the
bow upon which the dragon rears its
head. Andlook at the circular waves
moving on the water away from the

8 Quantum/Janvary 1880

boat. They look like circles all
centered at some point of the plane
containing the boat’s waterline. Add
to these the position of the yard and
sail relative to the boat’s symmetry
plane.

Maybe you’ll find something else
that provides data on the direction
and velocity of the boat, wind, and
river. In the following sections,
though, we’ll concentrate on just
two phenomena related to waves on
water.

The wave at the how

Why is the bow wave formed?
Suppose the water is flowing sym-
metrically at velocity V (the veloc-
ity of the boat relative to the water)
around a wedge (the bow of the boat)
with vertical faces forming an angle
of 2a.(fig. 1). At the tip of the wedge
we can split the vector into two

Figure 1

components: one (V, ) parallel toone
of the faces (sides of the boat) and the
other (V | perpendicular toit. So the
flow of water relative to the side of
the boat really combines two move-
ments: it slips along the side at
velocity V, = Vcos a and crawls up
on it at velocity V, = Vsin a.

The perpendicular flow comprises
several layers: the lower layers dive
under the hull (fig. 2); the upper
layer rises vertically, and we can
easily estimate how high it reaches.
Indeed, each water particle from the
upper layer that possesses energy
mV */2 and abruptly changes direc-
tion can reach the height h where its
potential energy mgh won't be
greater than its kinetic energy:

V2
mgh<m — :
hence, 2
2
A
28

Therefore, by the law of conser-
vation of energy and the principle of
superposition of motion, we can
estimate the boat’s velocity: V * >
2gh, which gives

2, 280 (1)

i
sin?q



Figure 2

All we have left is to measure the
angle a.and the height h of the wave
at the bow. The relevant computa-
tion will be carried out below, but
first we’ll consider the second avail-
able source of information on the
boat’s motion.

Strface waves

Surface waves are rather difficult
to investigate, but we can find a
great deal from very simple consid-
erations based on the physical quan-
tities involved in the phenomenon.
First, we must elucidate the cause
of the phenomenon. The wave is a
traveling oscillation. And why does

Quantum/Feature




the surface of the water oscillate
when its equilibrium state is dis-
turbed? Any oscillation is the result
of the interplay of two factors: iner-
tialeading to displacement from the
equilibrium state and the force re-
storing the equilibrium state.

If a “hump” appears on the wa-
ter’s surface, then a restoring force,
such as the gravitational force F
proportional to the acceleration of
gravity g, can bring water particles
back to their equilibrium state (fig.
3a). Falling down, the hump will by
its own inertia drop below its equi-
librium state, another crest will be
forced out nearby, and so on. Conse-
quently, a wave specified by veloc-
ity wand wavelength A (the distance
between humps) will move forward.
In the case treated here, the density
p of the oscillating water is a meas-
ure of its inertia.

Thus, the propagation of a wave
on the surface of a liquid is evalu-
ated in terms of the following quan-
tities (with their units of measure-
ment supplied): u (m/sec), A (m),
g (m/sec?), p (kg/m?).

How are they connected? For in-
stance, how can we evaluate the
velocity u of the wave in terms of
the other quantities A, g, p? Here the
units used for the quantities given
above will help us.

We can see that among the units
foru thereissec’!. Among the other
three quantities only g contains the
time unit (namely, sec?). Hence, u
~ g 2, and it is obvious that g has
played its role and can be of no
further use to us—it has provided
the required sec™! for u. But at the
same time g' has given us m!?,
whereas we need a “straight” m. So
we must multiply g2 by A2 to get
everything in order—the quantity

(g1)V? will have the necessary units
m/sec. Thus, u (m/sec) ~ [g (m/sec?)
A (m)] 172,

Notice that we’ve obtained a
proportion, not an equality, since
any dimensionless factor k can stand
in front of (g\)'>—that is, u =
k(g\)'». We may have k = 0.5 or
perhaps k = 10. At this juncture our
dimensional analysis is powerless
to help us, but it has already eluci-
dated the main point—the physics
of the phenomenon. The exact solu-
tion of the problem leads to k =
1/(2r)}>—that is,

U=,/ 2. (2)

And where is p (kg/m?3)? It isn't
there, simply because there is no-
where to put the kg unit given by
p—it won't cancel out so as to provide
u with only the units m/sec. This is
clear from the physical point of view:
both the weight of the hump, accel-
erating it downward, and the mass
of the hump, determining its iner-
tia, are proportional to p—hence, p
cancels out and density does not ap-
pear in equation (2). (A similar phe-
nomenon occurs in the case of a
mathematical pendulum with string
of length I whose period t = 2n
(A/g)* doesn’t depend on the mass
for the same reason as above.)

But if the waves become slight
and ripple-like (later we'll specify
what “slight” is), the humpis pulled
back to its equilibrium state by
another force, surface tension, which
depends on the coefficient of sur-
face tension o (n/m). This is similar
to pushing a taut rubber film with
your finger. Because of the film’s
tension, a downward force F_ ~ o is
exerted on your finger (fig. 3b). In
our case, wave propagation can be

Figure 3
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described in terms of the quantities
u (m/sec), A(m), 6 (n/m), p (kg/m?)—
u_denotes the velocity of waves due
to surface tension, in contrast to the
u in equation (2).

Now that we have some experi-
ence in the use of dimensional analy-
sis, let’s deduce the expression for
the velocity of waves:

o (kg/sec?)
u_(m/sec)~ , |[—————
° p (kg/m3) x A (m)

(bearing in mind that 1 n = 1 kg m/
sec?). If we want to replace the pro-
portionality sign with the equal sign,
we have to take into account the
missing nondimensional factor.
According to the exact theory, it's
equal to (2m)'/2. Hence,

_ [210
u = o (3)

Isn’t it remarkable that practi-
cally “free of charge”—without re-
course to any physical theories—we
have obtained the essential thing:
the nature of the relationship be-
tween the relevant physical quanti-
ties! At this point it will be perti-
nent to recall the words of the great

u(cm/sec)

100

80

60}
u
40} y
20}
0 I | O ———
12 4 6 ] 10 V Aem)
Ve vy
Figure 4

physicist Enrico Fermi: “Physics is
no place for muddled thinking. . . .
Those who really understand the
nature of a phenomenon can obtain
fundamental laws from dimensional
thinking.”

For ice-cold water, ¢ = 80 dynes/
cm=8x102n/m, p=1 g/cm?®=10°
kg/m3. Bearing this in mind, we can
plot the velocity of surface waves
defined by equations (2) and (3)
against A2 (fig. 4). The two curves
intersect when A =A_=2 cm. So at




Figure §

very small wavelengths (A<<) ) wave
velocity is determined by surface
tension and at large wavelengths
(A>>)A ) by the pull of gravity. In the
intermediate region (A = A ) the ve-
locity of surface waves is determined
by both gravity and surface tension.
The expression for wave velocity be-
comes more complex: ug = (u® +
u ?)'2. The plot of u, versus A!'? is
shown in figure 4 by the dotted line.

It often happens in physics that
it’s much simpler to treat certain
limiting cases (A approaches 0 and A
approaches infinity, in our case) than
the intermediate region. Fortu-
nately, the intermediate region is of
no concern to us because we can
safely state, just by glancing at the
Rerikh painting, that the circle
waves clearly have a wavelength
greater than A_. Hence, the velocity
of such waves is determined by equa-
tion (2). To find it we must

“measure” A. The necessary com-

putations will be performed below,

but first we'll take another step.
When a water bug runs on water

i

Figure 8.  This photograph shows the
breaker waves formed when a disk with
a needle moves in a gas at a velocity
greater than the speed of sound—that is,
the speed of wave propagation in a gas.

or abullet flies through the air faster
than sound, distinctive accompany-
ing “breakers” appear. The greater
the object’s speed Vcompared to the
speed u at which the disturbances
caused by the object propagate, the
closer these breakers are to the
moving object. The three typical
cases are shown in figure 5: if V<,
the waves outrun the object and are
merely condensed in the direction
of travel; if V = u, the wave crests
crawl on one another at one point (in
the direction of travel); if V > u, the
object outruns the waves and break-
ers are formed. (Figure 6 illustrates
the third case.)

Looking at the Rerikh painting,
we see that it illustrates the first
case. There’s no evidence that the
waves in the direction of travel are
compressed, we have to conclude
that the velocity of the boat is much
less than that of the waves:

V<<u. (4)

Therefore, judging by the pattern of
the circular surface waves, the boat
is practically standing still.

Now let’s turn to computations.
In order to perform them, we must
“measure” the height h of the wave
at the bow, the angle 20, and the
wavelength A of the surface waves.

Measurements

We could try to measure the re-
quired quantities more accurately
by taking into account perspective,
projection, foreshortening, and so
on. But this is all very difficult and
time consuming. We would also be

putting ourselves in a ridiculous
position—treating a fairy-tale paint-
ing as if it were an experimental
photograph is downright absurd.
Besides, we don’t know such things
as the height of the bow , the size of
the shields, and so on. There’s one
characteristic feature in the paint-
ing, however, that has apparently
changed very little since the days of
the Vikings: head size.

Before reading on, try to estimate
h and A yourself, if only with the
help of this “standard.” This will be
your own personal “measurement.”
Keep in mind, though, that each
onlooker will have an individual
perception of the painting. Show
this painting to your classmates and
ask each one about the values of A,
h, and o. (It’s best to conduct the
poll such that each student doesn't
hear the answers of the others. In
this way the “readings” obtained
will resemble the independent read-
ings of a measuring device.) Record
the answers given, then plot the
values of h along the horizontal axis
and, along the vertical axis, the
number of students n who have put
forward the value h.

I conducted such a poll among 30
colleagues and obtained the graphs
shown in figures 7 and 8. It’s inter-
esting that most estimates of h and
Awere multiples of 5 cm; some were
multiples of 2-2.5 ¢cm; but none were
multiples of a smaller number. (For
example, nobody put forward the
value h=27.1357891439 cm.) It was
as if those polled were using a ruler
with ascale thatreads down to2-2.5
cm.

n(h)
7 =

6F

+——

5k 4

10 20

}30 40 50 60 70 h(cm)

(h)
Figure 7
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With the help of these graphs, we
can calculate the averages <h> and
<A> and regard them as sufficiently
fair.

The procedure for calculating the
averages is standard. Each value h,
must be multiplied by the number
of people n, who suggested it; then
all values of i must be added and
divided by the total number of par-
ticipants in the poll. As aresult, we

get
30
Z hini 30
zi=t -1 -
<h> 0 30i§1 hin;

S
i=1
=L [(1x10)+ (2 x 12)
30

+ (5 X 15)+ (7 x 20) + (4 x 25)
+ (6 X 30) + (2 x 40)+ (1 x 50)
+ (1 x60) + (1 x 70)]

=189 =26 cm = 0.26 m.
30

®)

Similarly,

<A>=L[2x10)+@3 x 12)
30

+(4 x 15+ (1 x 18)+ (8 x 20)
+(2 X 25) + (2 x 30)+ (1 x 40)
+ (3 x50)+ (1 x70)+ (1 x90)
+ (1 x 120) + (1 x 150)]
=34 cm = 0.34 m. (6)
These averages are indicated by
red arrows in figures 7 and 8.

The accuracy of the measure-
ments in our poll can be roughly
estimated by the width of the smooth
curve at half its height (the red lines
infigures 7 and 8). A comprehensive
theory of errors in physical experi-
ments has been developed and is
very similar to the one we’ve used.
In an experiment, of course, the poll
is conducted among measuring de-
vices (not people).

And how about the angle o?
Those polled agreed that 2 is be-
tween 90° and 180° (the bow of the
boat in the painting is rather blunt).
Hence,

sin45° < sino < sin90°,

Y 2 gina<l. (7)
2
Now we’ve obtained all the data
necessary to estimate the velocity of
the boat and surface waves.

The Results

Substituting the values of h, 2,
and sin « given by equations (5], (6),
and (7) into equations (1) and (2), we
get

V> \/2 % 9.8 (m/sec’) x 0.26 (m)
272
= 2.7 (m/sec),
> v 2 % 9.8 (m/sec®) x 0.26 (m)
1
= 2.3 (m/sec);

®)

ye v 9.8 (m/sec’) x 0.34 (m)
2n

= 0.7 (m/sec). ©

Now we come to a surprising
result: equations (8) and (9) do not
agree with equation (4). Indeed,
according to the height of the bow
wave, the velocity of the boat Vis at
least 2.3 m/sec; but if we base our
judgment on the circular surface
waves (which are almost concentric
in the painting), the velocity of the
boat must be considerably less than
the velocity of these waves u = 0.7
m/sec, which is already less than V.

If you pay enough attention to
detail, you'll discover physical in-
consistencies in other works of art
(which is probably due to the fact
that art has its own aims and laws).
You can still admire the works of art
and derive aesthetic pleasure from
them, but you can also use them as
attractive illustrations when dis-
cussing the laws of physics with
your little brother or sister. O]

Albert Stasenko, doctor of technical sciences,
is a professor at the Moscow Physics and
Technological Institute, where his specialty
is aerodynamics and gas dynamics. He en-

joys sailing in his spare time.
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" One problem after another

—but I failed to see the links

by B. M. Bolotovsky
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HE FIRST THING I WANT To TELL YoU is that I have no idea where
these problems came from. I heard some of them from Oleg Dolgov.
Soviet readers of our magazine have seen him on TV—for a few years
he was the captain of a team on the very popular quiz show “What?
Where? When?” But even Dolgov, who can be considered an expert in

things like this, doesn’t know who
the author is. In addition to the
problems Dolgov told me, I'd heard
other problems of this kind; but no
matter how hard I tried, I couldn't
find who made them up. Person-
ally, I liked the problems so much I
decided to publish them. Ihope you
enjoy them too, and I secretly hope
that one of you will be able to help
us find the authors. Or maybe the
authors themselves will see their
problems published and will step
forward. And now, without further
ado. ..

Problem 1. How many opera-
tions are needed to put a hippopota-
mus into a refrigerator?

After Dolgov had posed the prob-
lem, I fell to thinking . . . Dolgov
came to the rescue. “T'll tell you
how to solve the first problem. You
have to perform three operations to
put a hippopotamus into a refrigera-
tor:

1. Open the refrigerator;

2. Put the hippopotamus in;

3. Close the refrigerator.”

This solution helped me under-
stand the meaning of the word “op-
eration.” Every action shown in the
solution was actually an operation.
Another problem followed.

Problem 2. How many opera-
tions are needed to put a giraffe into
the refrigerator! ’

Having thought a little, I said,
“More operations are probably
needed to put the giraffe into the re-
frigerator than to put the hippopota-
mus there.”

“Why?” Dolgov asked me.

“Because the refrigerator won't
hold the giraffe. The giraffe must be
folded up before it can be put in.”

“There’s no need to fold the poor
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animal,” Dolgov said. “The refrig-
erator’s big enough. The giraffe can
easily fit into it if it’s empty.”

“So it’s enough to perform three
operations, as before: open the re-
frigerator, put the giraffe in, and
close the refrigerator.”

“Wrong,” Dolgov said.
operations are required.”
enumerated them:

1. Open the refrigerator;

2. Take the hippopotamus out;

3. Put the giraffe in;

4. Close the refrigerator.

Need I explain? I'd forgotten the
refrigerator was full. The hippo-
potamus was still there after the
first problem.

And the problems kept coming.

Problem 3. The hippopotamus
and the giraffe are a kilometer away
from a river. Which of them will
reach the riverbank first!

When solving problems like this,
it’s useless to think. Nevertheless,
I thought a little before saying, “The
giraffe will get there first—its legs
are longer.”

“Wrong again,” said Dolgov.

“What's the right answer then?”

“The hippopotamus will reach
the river first.”

“Obviously! Why?”

“Because the giraffe is still in the
refrigerator.”

I laughed and decided to keep
trying my luck.

Problem 4. How many hippo-
potamuses can a five-ton truck
hold!?

I started to think again, but
Dolgov didn’t let me think for long.

“Don’t waste your time. I'll tell
you the right answer. It’ll hold five
tons of hippopotamuses—a full
load. Solve the next problem your-
self—and be quick!”

Problem 5. How many giraffes
can the five-ton truck hold?

“Five tons of giraffes,” I said, not
quite sure of myself.

“Wrong! Not a single one.”

IIWhy?//

“Because the truck is full of hip-
popotamuses.”’

Sure enough—after problem 4 the
hippopotamuses were still in the
truck. No one had taken them out.

“Four
And he
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Iliked the problems so much that
I memorized them and told them to
my daughter Katya when I got
home. She’s in the sixth grade. To
my great surprise, Katya solved the
problems in no time, one after the
other, and gave me another problem
to solve.

Problem 6. A boy fell down from
the fourth step of a staircase and
broke his leg. How many legs will
the boy break if he falls from the
fortieth step?

Not sure of the answer, I said,
“Forty steps . . . are ten times as
many as four steps . . . so the boy
should break ten legs. But that’s
probably wrong.”

“It is,” said my daughter.

“What's the right answer?”

“The boy will break only one
leg.”

“Why?”

“Because he already broke one
and he only has two.”

Then Katya and I decided it
wasn’t very good of us to pose the
problem about the boy because we
telt sorry for him—it’s very painful
to break a leg. So we changed the
problem so that it was about a
chair—a chair falls down the stairs
and breaks its legs. We felt sorry for
the chair too, though not as much as
for the boy. Besides, the problem
seemed very interesting to us. One
chair isn’t too much to sacrifice for
a problem like this.

Weirr, I've toLp vou all the
“chain problems” T know. Do you
know any others? If so, send them
to Quantum and amuse your fellow
readers.

v
llventures of
Hans Piaall
and Fatty
Pyecratt

The deflating physics
of two strange fictions

by V. Nevgod

NE OF EDGAR Arian Por’s

lesser-known “Tales of the

Grotesque” is entitled “The

Unparalleled Adventure of One
Hans Pfaall.” The hero of the tale
makes a remarkable discovery—he
obtains an extraordinary gas whose
density is 37.4 times less than that
of hydrogen. A balloon containing
such a gas possesses an incredible
lift force. With the help of this bal-
loon, Poe tells us, Hans Pfaall suc-
ceeds in reaching the moon.

It’s common knowledge that
there is no gas in nature that’s
lighter than hydrogen—no proof of
that will be given here. (But can you
explain this fact?) Nevertheless, the
following problem is of interest: if
such a gas existed, by what factor
would it increase the lift force of the
balloon (as compared to hydrogen)?

Despite the simplicity of the
problem, many people fail to give a
correct answer at first. A “logical”
conclusion would seem obvious:
since the gas is lighter than hydro-
gen by a factor of 37.4, if follows
that its lift force is greater by the
same factor. Perhaps Poe counted
on such a hasty conclusion by read-
ers when he wrote his tale. Then
again, it’s equally possible he him-



self made that same error by follow-
ing a seemingly logical pattern of
thought.

Simple calculations, however,
show that the gain in lift force is so
small that it should be considered
negligible. We’ll prove this by find-
ing the lift force of a hydrogen bal-
loon and that of a balloon contain-
ing Hans Pfaall’s gas.

Consider a balloon with a vol-
ume of 1 m3. The density of air is
0.00129 g/cm3; of hydrogen—
0.00009 g/cm?; and of Hans Pfaall’s
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gas—0.0000024 g/cm3. The lift
force of a balloon is equal to the
difference between the buoyancy
force (equal to the weight of the air
displaced by the balloon) and the
weight of the gas contained in the
balloon (the shell of the balloon
being considered weightless). The
lift force of a hydrogen balloon,
then, is about 12 newtons; that of a
balloon containing Hans Pfaall’s gas
is 12.9 newtons.

So the gain in lift force is only
about 0.9 newton! The result is so
insignificant that it wasn’t worth
Hans Pfaall’s (or Edgar Allan Poe’s)
effort to discover the miraculous
superlight gas and violate the laws
of nature to boot. (To be fair, we
should remember that the Mendele-
yev periodic table had not yet been
drawn up in Poe’s lifetime.) What
led to the blunder? The low weight
of hydrogen.

Were it possible to obtain a gas
lighter than hydrogen by a factor of
1,000, it wouldn’t significantly help
boost a balloon’s lift force. The
limit of such an increase is 0.9
newton—the weight of the hydro-
gen itself.

H. G. WeLLs wrote a popular fan-
tasy called “The Truth About
Pyecraft.” In it a funny-looking fat
man, named Pyecraft, desperately
wants to lose weight. He takes a
mysterious Indian remedy and loses
more than his excess weight—he
loses all his weight! Day after day
he floats under the ceiling of his
study, not daring to go outdoors—
he’s afraid of floating away like a
balloon. Eventually someone ad-
vises Pyecraft to order a special suit
with lead sewn into the lining.

Donning lead-soled boots in addi-
tion to his lead suit and carrying a
bag of solid lead, he’s able to go
outside again like a normal person.

The obvious question pops up:
how much lead does Pyecraft need
to walk around? Let’s perform a
simple calculation. Suppose fatty
Pyecraft weighs 1,000 newtons (his
mass being 100 kg). His body vol-
ume would then be about 0.1 m?.
On becoming weightless, poor
Pyecraft sort of turns into a
strangely shaped balloon of the
same volume. Its lift force would be
only about 1.3 newtons!

So what’s the real “truth about
Pyecraft”? Even in his ordinary
clothes, Pyecraft didn’t have to float
under the ceiling of his study—he
could sit at his desk (though not too
steadily) and could even walk care-
fully around the room (avoiding
abrupt movements). He’d have no
need of a lead suit or lead boots—he
could go outside in his regular
clothes, maybe with the addition of
a heavy briefcase to protect him
from a strong wind. He’d be in no
danger of floating up into the upper
atmosphere.

It turns out that Pyecraft’s “air-
worthiness” and the problems he
faced were greatly exaggerated. It's
doubtful, of course, that H. G. Wells
failed to notice this when writing
the story. Most likely, he deliber-
ately ignored the relevant data so he
could depict more colorfully and
eloquently the comic misadven-
tures of the hapless Pyecraft. No
doubt the author was convinced
that his readers, carried away by the
bizarre plot, wouldn't spot the exag-
gerations.
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AKE A SHEET OF PAPER AND BEND IT
without crumpling it. You get a
piece of a surface whose shape

i depends on how you bend the
sheet. Some possible shapes are

shown in figure 1.
It’s certainly not true, though,

that any surface can be formed by

. bending a sheet of paper. For ex-

BUZ‘ O'O not fO/d, Sfap/e, or mut//ate ample, it’s common knowledge that
you can’t bend a sheet of paper into

a sphere—if you press a piece of

by Dmitry Fuchs paper onto a globe, folds necessarily
appear. Of course, you can roll a

sheet of paper into a tube or paper

GEOMETRY WITH A TWIST

Figure 1
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Figure 2

cone, but it’s impossible to furl it up
in four like a handkerchief without
creating folds (fig. 2).

DerNITION. Surfaces that can be
represented as bent sheets of paper
are called developable surfaces.

“That’s not a definition at all,
that’s nonsense—nothing useful can
come of it,” the pedantic reader will

say, and we have to agree. It’s not
that there’s anything wrong with our
definition. It’s just that this finicky
reader shouldn’t bother to read on—
we won’t be offering any rigorous
definitions or proofs here.

Let’s just say that all our proofs,
as in an ancient manuscript on ge-
ometry from India, will pretty much
consist of one word: “Look!”

However, for the perceptive reader
(not the pedantic one, who has
closed the magazine by now) we can
add that two essential physical prop-
erties of paper sheets are assumed
here. The first is unstretchability
(incompressibility), which means
that a curve drawn on the sheet can
change its shape when the paper is
bent but must always preserve its
length. The second property is flexi-
bility, which means that there are
no other constraints on the nature
of the bending.

THE FACT THAT not all surfaces
are developable is evident from the
fact that every developable surface
is a ruled surface. This means you
can place a knitting needle any-
where on the surface so that the
needle touches the paper along an
entire line segment containing any
chosen point. (Proof: try it, as in
figure 3.) In other words, a develo-
pable surface consists of straight
line segments that are contained en-
tirely within it. These segments are
called the linear rulings (or simply
the rulings) of the surface.

If some point of a developable sur-
face is an internal point of two dif-

Figure 3

Figure 8
ferent rulings, then a whole section
of the surface near this point is flat
(tig. 4). We'll exclude this case from
consideration and require that no
part of our surface, no matter how
small, be a piece of a plane.
Therefore, exactly one ruling
passes through each point of our
surface. These rulings form a con-
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Figuee 7

tinuous family of segments sweep-
ing out the surface (fig. 5). Some of
the segments can degenerate into
points on the boundary of our piece
of surface. (This last remark is
aimed at the shadow of the pedant
hovering in the background.)

Now YOU SHOULDN'T THINK
that every ruled surface is
developable. There are plenty
of ruled surfaces—a line seg-
ment moving in space sweeps
out a ruled surface, for in-
stance.

Let’s take any ruled surface,
make a linear ruling, and for
each point of the ruling draw
the line perpendicular to the
ruling and tangent to the sur-
face (fig. 6). We'll obtain a pat-
tern similar to a Christmas
garland (fig. 7)—our perpendiculars
protrude haphazardly as they turn
on the ruling. For any developable

Figure 8
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surface, however, all such perpen-
diculars must belong to the same
plane. In other words, not only can
you place a knitting needle on a
developable surface at any given
point, you can lay the flat of a ruler
tangent to the surface along the
same line as well (fig. 8). (Try it and
see.] This property of developable
surfaces is sufficient—that is, any
surface possessing this property is
necessarily developable.

By the way, have you ever come
across a hyperboloid of one sheet, or
a hyperbolic paraboloid (fig. 9)? If
not, no matter—we don’t need them
here. But if you’re familiar with
them, notice that they are not de-
velopable. Why not? Because a pair
of rulings passes through each point
of these surfaces, which is impos-
sible for developable surfaces.

Figure 9

Look AT FIGURE 5 again. Recall
that we’re not dealing with an infi-
nite surface but only a piece of it.
(Indeed, a sheet of paper can’t be in-
tinite!] The piece is delineated by
the rulings. What will happen if we
try to extend them in one direction
or another?

At first the question seems quite
innocent. If you extend the rulings
of the surface in figure 5 “up” toward
where they fan out, nothing interest-
ing will happen—the surface will
just grow, becoming flatter and flat-
ter (fig. 10).

But what if you extend the rulings
in the opposite direction? Take a

Figure 10

sheet of paper, bend it approxi-
mately as shown in figure 5, and try
to imagine the shape of the surface
obtained by extending the rulings in
the direction where they converge
(fig. 11). Put the magazine aside and
really think about it. Then
come back and look at the
answer.

The answer is this: the
surface will no longer be
smooth—a cuspidal curve
will appear (fig. 12a). (If you
guessed it on your own,
you're a true geometer!) A
cuspidal curve is a curve in
whose neighborhood the pla-
nar section of the surface
looks approximately as
shown in figure 12b.

I PrOMISED TO avoid proofs.
It’s not that I dislike proofs {that cer-
tainly isn’t true). And it’s not be-
cause the proofs of my statements,

Figure 11




Figure 12

and of my last statement in particu-
lar, are so complex they can’t be ex-
plained to a high school senior who
knows a little calculus (that’s true
only to a certain extent). It’s just
that the proofs of the theorems in
this article—at least the proofs that
I know—involve playing around
with formulas: defining the surface
by an equation, expressing develo-
pability in terms of derivatives, and
so on and so forth. I don’t want to
present a proof that isn’t likely to
clarify anything. But I still have to
convince you that certain state-
ments are correct even if I don’t
prove them.

Take one more look at figure 5.
As with any depiction of an object
in space, that object is projected onto
a plane (for example, onto this maga-
zine page). Thus, we have a family
of lines on the plane. Copy it on a
separate sheet of paper and extend all
the lines. You'll find that these

Figure 18

Figure 13

lines accumulate around a certain
curve to which they’re all tangent
(fig. 13). Now, a very simple theo-

Figure 15

rem in calculus states that any con-
tinuous family of lines, unless
they’re all parallel or pass through a
fixed point, will have such an “en-

e e

Figure 17

Figure 14

velope.” (A similar theorem is true
for a family of curves.) So we have
“caught” the cuspidal curve.

“But wait a minute,” you (the
perceptive reader) will object. “You
can apply this argument (if it de-
serves that name) to any ruled sur-
face. For example, the one-sheet
hyperboloid (fig. 9) has a line to
which the rulings projected onto the
picture plane are tangent (the con-
tour hyperbola), but there’s no cus-
pidal curve on this surface.”

You're right, as always. But I
have an argument stashed away that
will probably convince you. The
curve you have in mind is the edge,
or visible contour, of the depicted
surface. At each point on this curve
the plane tangent to the surface is
perpendicular to the picture plane.
(See figure 14, where the visible
contour of a sphere is shown.) But
for a developable surface, the tan-
gent plane is one and the same at all

Figure 18
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A wnml or fwo more about
llevelnnahle surfaces

(and a mcdel to help vxsuallze them)

”Hmw PAPER BENDS” sounds at
first like the most mundane (and in-
nocent) of topics, but Dmitry Fuchs
shows how intriguing (and tricky)
_ an ordinary sheet of paper can be.

content to bend paper and imagine

in my head what happens as the
lines are extended, even though I
knew something about developable
surfaces from studying differential
geometry. It’s hard to visualize the
cuspidal curves of a developable
surface, let alone a swallowtail. 1
 made some models and some com-

puter pictures—maybe you’d hke to

try some for yourself.

- The simplest spatlal curvek that
doesn’t lie in a plane is a helix (like
Imagine a
straight line segment tangent to the
helix, touching it at the midpoint of
the segment. Now imagine the surface

the coils of a spring).

20 Quantem/January 1080

swept out by the hne segment as 1t
moves along the helix. Fuchs shows

that this surface has a sharp crease,
or “cuspidal curve,” along the helix.

~ This is weird. How can a straight
- AsIwas reading his article I wasn’t

line sweep out a surface with a crease?
Computer pictures help a little.

The figure below shows schemati-

cally what happens. The sinusoidal
curve weaving up the center is the
projection of the helix (cos ¢, sin ¢, t)
onto the x-z plane. The dotted curves
are a cross section of the surface

'swept out by the lines tangent to the
helix. You can see the cusps along

the helix. Canyou v1suahze thls2 It

really is strange.
A convincing demonstratmn can

be made with paper. You need thin,

 straight sticks of some type to con-
trol the direction of the rulings. I
used wooden skewers (like long

toothplcks} from the chal _grocery

- two sheets of paper.

‘store, but stiff wire like coat hangers

or bicycle spokes should also work.

Cut out circles about size of a pea-
nut butter jar lid from the middle of
Throw away
the circles and join the sheets along
the edges of the holes. To do this,

lay lengths of tape flat along the

circle so that they overhang the hole.

Cutslits from the edge of the tape up

to the circle, fold the flaps of tape

_under, and squeeze together.

_ Cut a slit in both sheets from the

circle out to an edge so you'll be able

~ to open the model later to form a
helix.

Now, one by one, lay the thin,

straight sticks between the two sheets

of paper so that they nestle against

the circle where they're joined. Tape

the clockwise end of each stick to
the lower sheet of paper and tape the
counterclockwise end to the upper
sheet of paper. With about

six or eight sticks the model
will have reasonable stiff-
ness.

The sinusoidal curve in the
center of the illustration at
left is a helix (for example, a
spring) as seen from the side.
If you take a line tangent to
the helix and move it along
the helix so that it remains
_ tangent, it sweeps out a
surface. This surface is an
example of a “developable
surface,” one that can be
modeled by bending sheets
of paper in three dimensions.
The dotted curves on either
side of the helix are cross
sections of the surface. This
surface interpenetrated itself
and has a sharp cusp, or
crease, Where it meets tbe
. helix.




Now open the model so that the
circle becomes a helix, the sticks be-
come lines tangent to the helix, and
the paper becomes a developable
surface swept out by the tangent
lines of the helix. You can stretch it
so that the helix is very long or
flatten it until the helix is very shal-
low. You'll see the cusp where the
two sheetsjoin. The cross section of
the model is like the figure at left.

Despite all the sticks, the model
still has considerable flexibility. If
you know about the curvature of
curves in space, the circle can be
bent to the shape of any other curve
with the same curvature.

You can form additional turns of
the helix, if you like, by joining
more sheets of paper to the first two.
You end up with a large paper screw.
It will look nicest if you trim each
sheet of paper to be a circle concen-
tric with the hole and cut the wooden
ribs so that they just reach the outer
circle at both ends.

Just FOR THE RECORD, I tried a
quick model of the swallowtail, but
I'm not proud of the result. Try it for

yourself! If you find a good con-
struction technique, I'd like to hear
about it.

—William P. Thurston

The family of lines at right is the set
of normals to the curve (t*— 12 t)
weaving through the center of the
figure. You can see the folds where
the lines are tangent and the cusps
where the folds reverse direction.

The figure above is a close-up of

becomes arbitrarily sharp as the

scale gets finer.

e figure on page 20, showing how the cusp
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Figure 19
points on the ruling (remember the
ruler lying flat on the surface!), and
it’s obviously not perpendicular to
the picture plane at points that
don’t belong to the hypothetical
cuspidal curve. This means that the
tangent plane isn’t perpendicular to
the picture plane at the points on
this curve either—it’s positioned as
shown in figure 15. This undenia-
bly proves that our curve is a cuspi-
dal curve and a visible contour isn’t.
We can look at this from another
angle. A developable surface (whose
rulings aren’t parallel and don’t all
pass through one point) consists of
straight lines tangent to one curve—
the cuspidal curve. So you can con-
struct a developable surface by tak-
ing a spatial curve (with no flat
stretches) and drawing all its tan-
gents (fig. 16). These tangents will
sweep out a developable surface, and
the original curve will be its cuspi-
dal curve. Any noncylindrical or

Figure 24
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Figure 20

nonconical developable surface can
be obtained in this way (Euler’s
theorem).

Figure 23

Is THAT ALL? No, as you'll soon
see. Let’s mentally enlarge the de-
velopable surface until we're able to
walk along it, and let’s choose a

Figure 22

path perpendicular to the rulings
(fig. 17). Since rulings are tangent to
the cuspidal curve, we’ll either
quickly approach or quickly move
away from it. What might the tran-
sition between the two states con-
sist of? Look at figure 18: a sheet of
paper, rulings, and two segments of
the cuspidal curve. But what’s be-
tween the segments? A smooth
curve like the dotted line in the fig-
ure? No, that would be too incred-
ible—a curve like that can’t be tan-
gent to the rulings at every point. So
only one possibility is left: the cus-
pidal curve itself must have a cusp
(fig. 19).

How is the surface near this in-
conceivable point structured? Let’s
start with a picture. The surface
itself is shown in figure 20. In ad-
dition to a cuspidal curve, it must
have a self-intersection line. Figure
21 shows several parallel planes
cutting through this surface. To




convince ourselves (to some extent,
at least) that the surface really does
look like that, we’ll do what we did
with the Euler theorem—we’ll take
the hypothetical cuspidal curve and
draw all its tangents.

To construct a “typical” spatial
curve with a cusp, take a planar
curve with such a point and bend its
plane a bit (fig. 22). Now draw all the
tangents to this curve and look at the
result from above. Divide each tan-
gent into three parts as shown in fig-
ure 23. Now draw the first, second,
and third parts of all the tangents
separately (fig. 24). In the first pic-
ture we get a slightly flexed upper
membrane stretched between the
two branches of the cuspidal curve.
In the second picture a two-piece
joint spanning the branches of the
cuspidal curve and the self-intersec-
tion line will appear. And finally in
the third picture we'll get the rest of
our surface. (Notice that the figures
drawn in the second and third pic-
tures have a “fracture” along the
self-intersection line.) The entire
surface is called a swallowtail—it
really looks like one, doesn’t it?

So we see that an arbitrarily bent
(but not crumpled) sheet of paper,
after infinite extension of its linear
rulings, turns into a surface with a
cuspidal curve that itself has at least
one cusp. Near each cusp this sur-
face looks like a swallowtail and has
self-intersections.

Would you have imagined that a
garden-variety sheet of paper has

Figure 25

such interesting geometrical ramifi-
cations? Now you know why the
swallow is perched at the beginning
of this article!

IN  concrusionN I'll add a few
words about the swallowtail itself.
This surface appears quite fre-
quently in three-dimensional ge-
ometry, and many natural problems
in calculus and mechanics are re-
lated to it. However, the picture
(though not the name, which was
not coined until the 1960s by the
famous French mathematician R.
Thom) first appeared on the pages of
19th-century algebra textbooks in
the following context.

Consider the equation x” + a x>
+a,x®+...+a_, =0. The number
of solutions can vary from zero to n.
For example, the equation x® + ax +
b = 0 can have 1, 2, or 3 solutions.
In order to find the actual number,
we have to draw the discriminant
curve 4a® + 27b% = 0 on a plane with
coordinates (a,b) (fig. 25). If the point
(a,b) belongs to the interior of the
shaded domain, the equation has 3
solutions. If it lies on its boundary
(exception for the cusp), the equation
has 2 solutions. In the remaining
cases it has 1 solution.

An analogous problem for the
fourth degree equation x* + ax? + bx
+ ¢ = 0 leads to a swallowtail, simi-
lar to the one in figure 20, located in
space with coordinates (a,b,c). If the
points (a,b,c) lie

— inside the trihedral “box,” the

equation has 4 solutions;

- on its boundary, except for the
cuspidal curve and the self-intersec-
tion line, it has 3 solutions;

- on the lines, except the vertex,
it has 2 solutions—the same num-
ber as for any point lying above the
surface (and not in the box);

- on the whole surface, except for
the boundary of the box but includ-
ing the vertex, it has 1 solution;

- below the surface, there are
no solutions.

Dmitry Fuchs is a graduate of Moscow Uni-
versity, where he now works as a leading re-
search fellow in I. M. Gelfand’s math and bi-
ology laboratory. Fuchs has published a
dozen books and over 100 research papers in
algebraic topology. He has written many
articles for Kvant and has been very active
in math Olympiads (he is a former winner
himself). In his free time Fuchs enjoys poetry
and painting.

READINGS FOR
ENRICHMENT IN
SECONDARY SCHOOL
MATHEMATICS
Edited by Max. A. Sobel

Academically talented students, this
book will expand the mathematics
curriculum for you! (It is also appro-
priate for use by students of varying
abilities.) The material contained has
something mathematically exciting
for everyone. This book will save you
time; it is a compilation of articles
from the Mathematics Teacher, En-
richment Mathematics for High
School (NCTM’s 28th Yearbook),
and Topics for Mathematics Clubs.
It also features three new chapters on
the harmonic mean, rotation matrices
and complex numbers, and how
computers and calculators perform
arithmetic. 1988; 298 pp.; #374; $11.
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NATIONAL COUNCIL OF
TEACHERS OF MATHEMATICS
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Reston, VA 22091
(703) 620-9480, FAX (703) 476-2970
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MATHEMATICS ON THE FLY

Pigeons in every

...andNew Yorkers, and chess

pieces. ..

by Alexander Soifer and Edward Lozansky

HE PIGEONHOLE PRINCIPLE, ALSO
known as the Dirichlet principle
after the famous mathematician
Peter Gustav Dirichlet (1805-1859),
plays a special role in mathematics as
well as in problems at mathematical
competitions. The principle is very
simple: If kn + 1 pigeons (k and n are
positive integers) are placed in n pi-
geonholes, then at least one of the
holes contains at least k + 1 pigeons.
It’s very easy to prove this.
Assume that there are no holes that
containatleast k + 1 pigeons. Then

the 1st hole contains < k pigeons

the 2nd hole contains < k pigeons

the nth hole contains < k pigeons
the total number of pigeons < k x 1.

This contradicts the given fact that
there are kn + 1 pigeons. Therefore,
there is a hole that contains at least k
+ 1 pigeons.

This simple principle works won-
ders. It’s amazing how easy it is to
understand this idea yet how difficult
sometimes it is to discover that this
idea can be applied! After all, you, the
problem solver, have to create pigeon-
holes and pigeons. The areas of appli-
cation of the principle include num-
ber theory, combinatorics, and geome-

try.

Let’s take a look at some problems,
from easy ones to those that may be
not so easy for many of you.

1. New York City has 7,100,000
residents. The maximum number of
hairs that can grow on a human head is
500,000. Prove that there are at least
15 residents of New York City with
the same number of hairs.

Solution: Let’s set up 500,001
pigonholes labeled by integers O to
500,000 and put residents of New York
into the holes labeled by the number
of hairs on their heads. Because 7,100,000
> 14 x 500,001 + 1, we conclude by the
pigeonhole principle that there is a pi-
geonhole with at least 14 + 1 “pi-
geons”’—that is, there are at least 15
residents of New York with the same
number of hairs.

2. Given n integers, prove that one
of them is a multiple of 11, or some of
them add up to a multiple of n. (From
the Third Annual Colorado Mathe-
matical Olympiad, 1986)

Solution: Denote the given inte-

gersbya,, a,, ..., a,. Define:
S, =a,
S,=a,+a,

S =a,+a,+...+4a,.

Ifone of thenumbers S, S,, ..., S,
is a multiple of n, we're done. Assume
now that none of thenumbers §,, S,,
..., S, is a multiple of n. Then all
possible remainders upon the division
of these numbers bynarel,2,...,
n - 1—that is, we get more numbers (1,
which are our “pigeons”) than pos-
sible remainders (n — 1, which are our
“pigeonholes”). Therefore, among the
numbers S, S,, ..., S thereexist two
numbers—say, S, and S, —that give
the same remainders upon division by
n.

We are done, because

(1) S,,,— S, isamultiple of n;
(2) = Sy =G + Gy * -+ g

In other words, we found some of the
given numbers—namely, a,_ ,, g, ,,
..., a,,,, whose sum is a multiple of n.

3. Given a real number r, prove that
amongits first 99 multipleszr, 2z, .. .,
99r there is at least one that differs
from an integer by not more than
1/100.

Solution: Let’s roll the number line
on a roller with a circumference equal
to 1 (fig. 1). All integers will coincide
on the roller with zero. Now we
divide the circumference into 100 arcs
of equal length (fig. 2). If at least one of
the given multiples kr lies on one of
the arcs (99/100,0) or (0,1/100), then
we are done—kr differs from an inte-
ger by not more than 1/100.

Figure 1

A

Figurg 2
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Assume now that none of the mul-
tipleskr,r=1,2,...,99, lies on the two
arcs above. We have 99 pigeons [numbers
r,2r,...,99r)in 100 -2 = 98 pigeon-
holes (the remaining 98 arcs). There-
fore, by the pigeonhole principle, at
least two of the multiples—say, kr and
tr (k > t)—lie on the same arc of length
1/100. All there isleft tonotice is(a)
kr-tr=(k-t)risone of the given 99
multiples; (b) kr - tr lies on one of the
arcs (99/100,0) or (0, 1/100), which
contradicts our assumption.

4. Given nine points in a triangle
(interior plus perimeter) of area 1, prove
that three of them form a triangle of
area not exceeding 1/4.

Solution: Midlines partition the
given triangle into four congruent tri-
angles of area 1/4 (fig. 3). These con-
gruent triangles are our pigeonholes,
and the given points are our pigeons.
Now nine pigeons are sitting in four
pigeonholes. Since 9=2x4+1, there
isatleast one pigeonhole containing
at least three pigeons.

If you feel that nine points are ex-
cessive to guarantee the result in prob-
lem 4, you're quite right. But in order
to prove the stronger statement in

Figure 3

problem 5, we need to allow the pi-
geonholes to be different in size and
shape.

5. Given seven points in a triangle
of area 1, prove that three of them form
a triangle of area not exceeding 1/4.

Solution: Since 7 =2x3 + 1, it
would be nice to have three pigeon-
holes—then at least one of them would
have at least three pigeons! Okay,
let’s draw only two midlines in the
given triangle (fig. 4). We get three pi-
geonholes. Atleastone of them con-
tains at least three pigeons. If one of
the triangles contains three given points,

28 Quantum/January 1890

we're done.

If the parallelogram contains three
given points, then all we have left to
prove is a simple lemma: The maxi-
mum area of a triangle inscribed in a
parallelogram of area 1/2 is equal to
1/4. We leave the proof of this lemma
to you.

We can almost hear you asking:
“Well, is seven the smallest number
of points guaranteeing the result in
problems 4 and 5?” The answer is no.
The smallest numberis. .. Butno—
you try and find it on your own.

VAN

Figure 4

6. All vertices of a convex pentagon
lie on the intersections of a grid. Prove
that the pentagon (interior plus pe-
rimeter) contains at least one more
intersection of the grid.

Solution: Let’s introduce the coor-
dinate system on the grid (fig. 5). To
each vertex M of the pentagon with
coordinates (x,y) we assign the ordered
pair of the remainders upon division
of coordinates (x,y) by 2. There are
only four possible outcomes of this
operation: (0,0),(0,1),(1,0),and (1,1).
These are our pigeonholes. Since we
have five pigeons (the vertices of the
pentagon), there are two vertices, M,
and M,, that give the same pair of re-
mainders. In order to complete the
proof, all thereisleft tonotice is that
the midpoint of the segment M M, has

A
—

Figure 5

integral coordinates and lies on the in-
terior or perimeter of the pentagon.

7. Forty-one rooks are placed on a
10 x 10 chessboard. Prove that you can
choose five of them that are not at-
tacking each other. (We say that one
rook “attacks” another if they are in
the same row or column of the chess-
board.)

Solution: Let’s make a cylinder out
of the chessboard by gluing together
two opposite sides of the board and
color the cylinder diagonally in 10
colors (fig. 6).

Now we have 41 =4 x 10 + 1 pigeons
(rooks) in 10 pigeonholes (one-color
diagonals). Therefore, there is at least
one hole containing at least 5 pigeons.
But the 5 rooks located on the same
one-color diagonal do not attack each
other!

We'd like to thank Boris Dubrov, a
student at Minsk High School No. 107
in the USSR, for his valuable contri-
butions. We thank you, our readers,
foryourinterest and wish youhappy
sailing through the following prob-
lems.

Additional problems

1. A three-dimensional space is
painted in three colors. Prove that
there are two points exactly one mile
apart painted in the same color.

continued on page 32
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QUANTUM is being launched by the National Science Teachers Association (NSTA) in cooperation with the American
Association of Physics Teachers (AAPT) and the National Council of Teachers of Mathematics (NCTM). A board of
editors, including physicists from AAPT and mathematicians from NCTM, will provide technical review for Quantum. Jack
Wilson, Executive Officer of the American Association of Physics Teachers, and the Association’s members and staff want
to thank everyone who has worked so hard to make this project a reality. The

American Association of Physics Teachers

: is an organization dedicated to improving physics education, includes student members, and invites you to join! Here is some
of what AAPT has to offer to you:

¢ The International Physics Olympiad

Through tests given at your school, 20 high-school students are
chosen to come to the University of Maryland at College Park
for intensive training and more testing. Five of those students
are selected to attend the Olympiad, which is usually held over-
seas. In 1989, the United States had its first gold-medal winner,
Steven Gubser of Cherry Creek High School in Colorado. Steven
was one of 150 students from 30 different countries.

¢ Soviet-United States Exchange Program
The increasing freedom allowed Soviet citizens was reflected in
the student-exchange program that took place in the summer of
1989. Fifteen Soviet students came to the United States to study
and learn about our culture, while seventeen American students
went to the Soviet Union. These students were chosen by testing
and through teacher recommendations.

e Contests
Several contests and awards programs for students are publi-
cized in AAPT'’s news magazine, the Announcer (which is sent
to all members). One award, the Metrologic High School Phys-
ics Contest, is administered by AAPT (sponsored by Metrologic).
This year, 30 student winners will receive a laser for their school.

¢ Books, Audiovisuals, Posters, and T-shirts
AAPT has a products catalog full of books and audiovisual aids
that make physics real and fun. Some favorites are Guilty or
Innocent? You Be a Car Crash Expert— A Physics Scenario
Hypercard Stack, Toys in Space, and The Puzzle of the Tacoma
Narrows Bridge Collapse. For those who want to publicize their
enjoyment of physics, there are T-shirts and posters. All mem-
bers receive a subscription to The Physics Teacher, a colorful,

v monthly magazine full of ideas and experiments.

For more information about AAPT or a free products catalog, contact:
American Association of Physics Teachers
5112 Berwyn Road
College Park, MD 20740
301/345-4200
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IN THE LAB

Holding up under pressure

Bridges of stone, concrete—and paper

IGIDITY IS ONE OF THE MOST

important properties of any engi-

neered structure. Obviously, the

structure must not change shape
from the force of its own weight or
under the influence of the external
load it must carry.

Actually, it’s impossible to avoid
deformation altogether, but an engi-
neer must choose the material and
the types of components so as to keep
deformation within a certain calcu-
lated limit. This ever-present prob-
lem for engineers is related to require-
ments to make the structure as simple,
inexpensive, and lightweight as pos-
sible, using the least amount of mate-
rials. In the aircraft industry, for ex-
ample, the balance between maximal
rigidity and minimal mass is vitally
important, so engineers try to accom-
modate these mutually exclusive re-
quirements by finding a solution that
is in fact the optimal compromise.

Nature is the greatest of all inven-
tors. Long ago it solved a lot of prob-
lems that still draw the attention of
engineers, and in the course of natural
selection it created such masterpieces
as the bird’s feather, the bamboo stem,
the hollow bones of land animals, and
so on. Notice that all these structures
have one feature in common—they're
all tubular.
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Why are structures based on the
hollow cylinder so widespread? To
find an answer to this question, we’ll
begin with a very simple experiment.

THis EXPERIMENT is known in the
literature as the “Umov experiment,”
named after the eminent Russian
physicist N. A. Umov (1846-1915). A
professor at Moscow University for
almost 20 years, his most important
papers deal with the problem of en-
ergy transfer. In fact, he first intro-
duced the concept of energy flow and
energy density.

The Umov experiment, otherwise
known as “the strength of the tube,”
can be performed at home with the
simplest materials. Cut two rectan-
gular sheets of thick paper, approxi-
mately 20 cm long and 8 cm wide.
Next, using two piles of books as
props (fig. 1), place one of the sheets on
them and load it with small weights
(if none are available, you can use
coins). You see that under a small
weight the sheet, which we can visu-
alize as a kind of bridge, will sag quite
abit (fig. 1a).

It turns out, though, that the rigid-
ity of our structure can be enhanced
tenfold by a very simple method. Let’s
roll the second sheet into a cylinder, or
tube, and wrap a thread around it so

that it doesn’t unfurl. You'll see that
the tube doesn’t bend significantly
under the same weight. Only a sub-
stantially greater weight makes it de-
flect appreciably (fig. 1b).

It’s worth noting that we have ob-
tained a simple method for testing
structures. For example, we may evalu-
ate the rigidity of bird feathers by
carrying out an experiment similar to
that with the paper cylinder. The
author did it and found that a goose
feather 10 cm long could withstand
theloadof a0.5-kgweight. Next, we
may apply the Umov method to so-
called “sections” (fig. 2}—angle pieces,
T- and I-sections, and corrugated sheets,
which we can make of identical sheets
of paper—and verify that they all have
far greater rigidity than the initial
sheet of paper. You may carry out a
series of Umov experiments yourself,
comparing the magnitude of deflec-
tion measured for different loads (or
obtaining the same deflection by load-
ing structures with different weights).

Now we NEED to understand, at
least qualitatively, what determines
the structure’s rigidity with respect to
deflection.

Let’s do another experiment. We'll
need a rectangular bar of rubber or
other elastic material 10 cm long with
across section of approximately 1-2
cm?, Draw a grid of longitudinal and
transverse straight lines (fig. 3a) and
bend the bar. The grid deforms (fig. 3b)
so that the transverse lines remain
straight but are no longer parallel,
while the longitudinal lines bend. It’s
easy to see that the bar’s material is
subject to stress on one side and strain
on the other. But there’s alongitudi-
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nal line in the middle whose length
doesn’t change. Obviously the entire
layer of material behind this line expe-
riences no deformation either. For
this reason it’s known as the “neutral
layer” (or “neutral surface”).

We may infer from the experiment
that the farther a region of the bar is
from the neutral layer, the greater the
stress, or strain, it’s subject to. But,
according to Hooke'’s law, the force of
elastic resistance becomes greater as
the distance from the neutral layer
increases, and the main contribution
to the bar’s rigidity is from the layer far

strain

from the neutral one. Consequently,
to enhance the structure’s rigidity, we
must place the main body of its mate-
rial as far as possible from the neutral
layer. This is why the sheet of paper in
the Umov experiment can withstand
only a very small load while the I-
section made of the same material
proves to be far more rigid.

But we should not be too fond of
separating the main body of material
from the neutral layer. For example, if
the I-section bar is too thin in the
middle, it becomes unstable and twists.
On the other hand, if designed prop-
erly it is four times lighter than a solid
bar with a square cross section that
has the same rigidity.

In many situations the hollow cyl-
inder turns out to be the best type of
structure because of its axial symme-
try—no matter how it is loaded, it be-
haves in the same way in every direc-
tion, and its material is far enough
from the neutral layer. Compared to a
solid cylindrical bar, the hollow one
loses little in resistance to bending
and gains a lot in material savings. For
example, if inside a solid cylinder of
diameter d we make a hole of diame-
ter d/2, the bar’s rigidity will decrease
only by 6-7% and approximately 25%
less material will be used in construc-
tion.

Now we see why nature uses tubu-
lar structures so extensively. When
life existed mainly in the oceans, there
was no particular need for the skele-
ton to have a small mass because
buoyancy forces helped animals carry
their own weight. Some sea species—
sharks, forexample—have inherited
massive cartilage skeletons from their
ancestors. But when animals began to
crawl on land, the skeleton’s strength
had to be combined with the lowest
possible mass. Over millions of years
cartilage tissues evolved into tubular
bones, resulting in a strong, light-
weight structure that uses material
very economically.

IN OUR ATTEMPTS to build a paper
bridge between two piles of books, we
learned from experience that the bridge
must not be made flat and that shaped
structures as in figure 2 are more desir-
able.

Another way to enhance the bridge’s
rigidity is to use a structure called a
truss. You can easily make a very
simple truss on your own (fig. 4). Glue
a strip edgewise across the middle of a
sheet of paper and connect it with taut
threads to the ends of the sheet. (Think
of some way to fasten the ends of the
threads securely.) Now if you load the
bridge, it begins to sag and the threads
will be strained even more. Since it’s
difficult to break the threads, the struc-
ture is far more rigid than the flat
sheet. Trusses are widely used in
building bridges (fig. 5) because they
transform bending tension into stress
or strain on the bars and beams, whose
role in our experiment is played by
threads.

We might also mention another
structure, the arched bridge (fig. 6),
which has been known since ancient
times—almost as far back as the 4th
millennium B.c. It’s based on the idea
of transforming vertical loading into
lateral compression of the arch, which
is transmitted downward to the bridge’s
foundations.

Figure 4

No doubt you’ve noticed that there
are many different kinds of bridges. In
addition to solving engineering and
economic problems when construct-
ing a bridge, the architect must design
a beautiful shape that is in harmony
with its surroundings. Perhaps it’s a
blessing in disguise that there is no
general prescription for bridge-build-
ing. Indeed, a Russian will immedi-
ately recall Leningrad’s bridges, which
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present a magnificent variety of pos-
sible solutions, while an American
might think of the Golden Gate Bridge,
the Mackinac Bridge, or the venerable
Brooklyn Bridge.

Finally, it’s worth pointing out that
many famous inventors and engineers
took their first career steps by making
models of various machines and struc-
tures. “My interest in engineering
arose during my early teens,” wrote

Figure 8

V. N. Obraztsov, an eminent Soviet
scientist and transportation engineer.
“Ienjoyed making models of various
structures—not just models but scaled
miniature copies.”

An arched bridge constructed early in this century by the Swiss engineer Robert
Maillart. Photos and blueprints of it can be found in almost any treatise on architecture.
The bridge overwhelms the viewer with its bold form and flawless construction.

We can see from our experiments
that building a solid and beautiful
paper bridge, using whatever “con-
struction materials” come to hand, is
not an easy task. If this activity fires

your imagination and you make an
interesting model, send us a photo-
graph and a description of it—perhaps
we can share it with your fellow read-
ers of Quantum. Ol

“Pigeonhole” from page 26

2. Given a square of size 1 x 1 and five
points inside it, prove that among the
given points there are two not more
than 212/2 apart.

3. A number of people (more than one)
came to a party. Prove that at least
two of them shook equal numbers of
hands during the party.

4, Prove that among any 12 distinct
two-digit numbers there are two numbers
such that their difference D written in
the decimal system looks like aag,
where ais a digit.

5. Prove that among any 15 distinct
positive integers not exceeding 100
there are fournumbers a, b, ¢, d such
that a + b = ¢ + d, or there are three
numbers g, b, ¢ forming an arithmetic
progression.

6. Little grooves of the same width are
dug across a long (very long!) straight
road. The distance between the cen-
ters of any two consecutive grooves is
212, Prove that no matter how narrow
the grooves are, a man walking along
theroad with astepequal to 1 sooner
or later will step into a groove. (We
assume that the man’s “feet” are so
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small that his footprints look like
dots.) (Problem created by I. M. Gel-
fand)

7. Grandmaster Lev Alburt plays at
least one game of chess a day to keep
in shape and not more than 10 games
a week to avoid tiring himself out.
Prove that if he plays long enough
there will be a series of consecutive
days during which he will play ex-
actly 23 games. (From the First An-
nual Southampton Mathematical
Olympiad, 1986)

8. An organization consisting of n
members (n > 5) has n + 1 three-
member committees, no two of which
have identical membership. Prove
that there are two committees that
have exactly one member in com-
mon. (First Annual Southampton
Mathematical Olympiad)

9. Prove that for any 99 points located
in a square of area 1 there is a circle of
radius 1/9 that contains at least three
points.

10. Prove that among any 6 points
located in a 3 x 4 rectangle there are at
least two points not more than 5!/2
apart.

11. Prove thatthereexistsaninteger

divisible by 1989 whose last four dig-
its in decimal representation are 1990.
12. Is there a positive integer n such
that the last four digits of the decimal
representation of 3 are 00012

13. Given 51 distinct two-digit num-
bers, prove that you can choose six of
them such that any two of the six
numbers have distinct digits in the
“ones’place and distinct digits in the
“tens” place. (Soifer and Slobodnik)
14. Givenrx 105! + 1 distinct k-digit
numbers, 0<r<9, prove that youcan
choose r + 1 of them such that any two
of the r + 1 numbers in any decimal

location have distinct digits. (Soifer
and Slobodnik)

Alexander Soifer is a professor of mathematics
at the University of Colorado at Colorado
Springs. He is a founder of the Colorado Mathe-
matical Olympiad and the author of several
collections of math problems. His outside
interests include hiking, skiing, and art his-
tory.

Edward Lozansky is president of the Interna-
tional Educational Network in Washingion,
DC. He received his master’s degree from the
Moscow Institute of Physical Engineering and
his Ph.D. in theoretical and mathematical
physics from the Moscow Institute of Atomic
Energy. In his leisure time he plays piano and
enjoys skiing.



PROBLEM CORNER

Puzziers in math and physics

1
Prove that for every odd number a there
exists a natural number b such that
2b-1isdivisible by a.

Several circles are drawn inside a unit
square. Prove thatif the sum of their
circumferences is equal to 10, there exists
a straight line that intersects at least four
circles.

Four ones and five zeros are written on
a circle in arbitrary order. The follow-
ing operation is performed: a zerois
written between any two equal num-
bers and a one between any two distinct
numbers, then the previous numbers
are removed. Prove that after any number
of such operations you will never ob-
tain nine zeros.

Every side of an equilateral triangle is
divided into n equal parts. Lines paral-
lel to the sides of the triangle are drawn
through these points, thus dividing the
triangle into n? smaller triangles. Let’s
call any sequence of different triangles
a chain if every two successive triangles
have a common side. What is the greatest
possible number of triangles in a chain?
(M. Serov)

Figure 1

M5 _ .

(a) LetE, F, Glieonthesides AB, BC,
CA of triangle ABC and AE/EB =
BF/FC=CG/GA=k,whereO<k<1.
Let K, L, M be the intersection points
of the lines AF and CE, BG and AF, CE
and BG, respectively. Find the ratio of
the areas of triangles KLM and ABC.
(b) Use six lines to cut a triangle into
parts such that it is possible to compose
seven congruent triangles from them.
(A. Soifer)

Physics

Figures 1 and 2 show the boundaries of
disturbance regions created by a ship in
two stretches of its route. The red arrows
indicate the direction of the ship’s travel.
There is no current in the first stretch
(fig. 1). The direction of the current in
the second stretch (fig. 2) is indicated
by the blue arrow. Determine the
current’s velocity if the ship’s velocity
relative to the banks is the same in both
cases—18 km/h. (V. Belonuchkin)

You've probably noticed that as soon
as you set foot on wet sand, its color
becomes lighter. This is due to the fact
that the sand becomes dryer. But as soon
as you remove your foot, water imme-
diately occupies the footprint. Explain
this phenomenon. (L. Aslamazov)

Figure 2

V/%?en the humidity 7, of air is 50%, wa-
ter poured into a saucer evaporates in
the openairin ¢, =40 min. How long
will it take for the water to evaporate if
1,=80%? (A.Zilberman)

Three uncharged capacitors of capaci-
tance C,, C,, C,are connected to one
another and to points A, B, D at poten-
tialsg,, 9,, ¢, (fig.3). Determine the
potential ¢, atpoint O. (Moscow Physics
Olympiad, 1984)

Why does the presence of the ultravio-
let component in the spectrum decrease
the sharpness of pictures obtained on
photographic film? (L. Ashkenazy)

Solutions on page 53

B D

Figure 3
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The superfluidity of

A slippery idea
that stuck

by Alexander Andreyev

HE DISCOVERY OF LIQUID HELIUMS

special properties was one of

the greatest achievements of

modern physics. By now these
startling and paradoxical properties
have been unified within the con-
cept of superfluidity, the phenome-
non discovered in 1938 by the Soviet
physicist P. L. Kapitsa. Superfluidity
doesn’t reduce to a simplistic quali-
tative statement—"liquid helium
flows much better than any other
liquid.” As the Soviet physicist L. D.
Landau showed in 1941 in his theory
of superfluidity, the properties of su-
perfluid helium are the most strik-
ing evidence of general laws that
govern the behavior of any substance
at very low temperatures. This is
why studying liquid helium has had
such a profound influence on many
diverse fields in physics.

Properties of superfluid hefium

Helium is rightly said to be an
inert gas. Its atoms interact very
weakly with other atoms, and espe-
cially among themselves. This is
why helium turns into liquid from
gas at a record low temperature
(4.2°K at normal atmospheric pres-
sure) without becoming solid at still
lower temperatures (down to abso-

lute zero). Helium exists in a solid state
only at higher pressures (about 25 at-
mospheres at temperatures close to ab-
solute zero) when the decrease in inter-
atomic distances enhances interaction
between its atoms, resulting in solidifi-
cation.

At temperatures from 4.2°K to 2.2°K,
liquid helium behaves in all respects as
an ordinary, “normal” liquid. At 2.2°K,
helium transforms from the normal
liquid state (so-called helium I} into a
special state (helium II) possessing the
property of superfluidity. In the follow-
ing pages only a few experiments with
helium II—the most important ones—
will be described. You'll see that their
results utterly contradict our under-
standing of the concept of ordinary lig-
uid and require new ideas to explain
them.

Viscosity and superfluidity

In studying the viscosity, or internal
friction, of helium II, we're confronted
with the first puzzle of superfluidity.
There are two methods of determining
the coefficient of viscosity; with ordi-
nary liquids they produce the same
result.

The first consists of measuring the
liquid’s flow through a narrow capillary
under the force of gravity. (See figure 1,

R A N S = M ARRAMSIOr]  in which the length of the arrows rep-

resents the velocity of the liquid.) Be-
cause of intrinsic friction, the flow
velocity is different at different points
of a cross section of the capillary—it’s
greatest in the middle and decreases
toward the walls, which exert a back-
ward drag on the fluid. Measuring the
amount of liquid passing through the
capillary per unit of time, we can find
the viscosity coefficient.

The second method consists of
studying the damping of torsional
oscillations of a disk immersed in the
liquid. Here we have a physical pic-
ture very similar to the previous one.
The fluid is practically at rest in re-
gions far from the disk, while the disk
exerts a drag on the layer close to it.
Different layers of fluid move at differ-
ent velocities, and internal friction
between them transforms the energy
of torsional vibrations into heat. We
can find the viscosity coefficient by
measuring the damping time of the
oscillations.

Measurements of viscosity by the
first method showed that the viscos-
ity of helium I is appreciable and
measurable, but at transition to he-
lium 1T it suddenly drops to a quantity
too small to measure, which in all
likelihood is zero. By all appearances
there might be a chance of consider-
ing helium II a liquid subject to cus-
tomary laws but with very low viscos-
ity. Measuring the viscosity of he-
lium IT with the rotating disk method,
however, gives a quantity of the same
order of magnitude as that for heli-
um]I. Thus, in contrast to the behav-
ior of ordinary liquids, helium II doesn’t
show any signs of viscosity under some
conditions, while under others its
viscosity is appreciable.

o

Figure 1
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Transter of Heat and Motion

In normal liquids there are two
mechanisms for heat transfer: heat
flow and convection.

“Heat flow” means that heat is
transferred from one region to another
exclusively because of a difference in
temperature. To explain this more
clearly, let’s consider the following
experiment. A stationary heater H
emits energy in the direction given by
the arrow (fig. 2), while the liquid
remains at rest. To generate heat
transfer in this direction by heat flow,
the temperature T, recorded on the
left must be higher than the temperature
T,recorded on the right. Quantita-
tively, the rate of heat flow is deter-
mined by thermal conductivity, which
is the ratio of the heat to the tempera-
ture difference. Soforthe same tem-
perature difference there’s greater heat
flow from one region of the liquid to
another when the thermal conductiv-
ity is greater. Toputitthe other way
around, a smaller temperature differ-
ence is needed to produce the same
heat flow.

“Convection” occurs when heat is
transferred by the actual motion of
the fluid. Therefore, in the situation
discussed above, convective heat trans-
fer may take place at the same ther-
mometer readings T, and T, if the
fluid starts to move from left toright
for some reason. Convection is gener-
ally associated with large heat trans-
fer. If heat transfer is small enough,
we can usually neglect the portion
due to convection and determine the
thermal conductivity by measuring
heat flow and temperature difference.

If we use helium IT in this experi-
ment, we'll find that extremely small
differences in temperature are suffi-

Figure 2
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cient to produce large heat transfer.
We reach a twofold conclusion. On
the one hand, let’s assume that in
helium II, as in ordinary liquids, we
may neglect convection when heat
transfer is small and assume that heat
flow plays the major role. We must
then assign infinite thermal conduc-
tivity to helium II. On the other hand,
we may suggest that heat transferin
helium I is always caused by convec-

Helium 11is both viscous
and nonviscous—it
tiepents on how you

Measure viscosity.

tion and, consequently, temperature
differences are absent.

To see which of the hypotheses is
in agreement with real life, let’s put a
petal P that can rotate freely about a
fixed axis A in a bath of helium II (fig.
2). We'll find that the petal always
turns in the direction of heat transfer
whenever it occurs in helium II. This
is a clear indication that motion of the
liquid accompanies heat transfer.
Therefore, the second hypothesis is
verified.

But the situation is far more com-
plicated than it seems at first glance.
Let’s consider the experiment Kapitsa
performed in 1941. A heater H is
placed in a closed container partially
filled with helium II (fig. 3}; the con-
tainer has an outlet to a surrounding
bath of helium II. The same petal P
with axis A is placed close to the
outlet. If we turn on the heater, heat
transfer caused by the liquid’s motion
should flow from inside the container
to the outside. And in fact the petal
turns to the right, indicating that he-
lium flows from the container. But
the crucial point here is that the lig-
uid’s level doesn’t drop during the ex-
periment. To all appearances, the lig-
uid keeps flowing but the level stays
the same.

This last result is convincing proof
that the motion of helium II is subject
to laws different from those for ordi-
nary liquids. In particular, the nature

of convection in helium II is quite
unusual.

The theory of Superfluidity

At room temperature certain sol-
ids, liquids, and gases may exist. If we
increase the temperature, all liquids
and solids turn into gases—that is,
systems of single molecules moving
freely. If we increase the temperature
still further, the thermal motion of
the constituent atoms becomes so vio-
lent that molecules begin to decom-
pose into separate atoms. At still
higher temperatures—of the order of a
few tens of thousands of degrees centi-
grade—atoms decompose into elec-
trons and nuclei. At these high tem-
peratures any substance is a gas con-
sisting of electrons and nuclei.

Superfluid helium I is a liquid that
exists only at sufficiently low tem-
peratures (2.2°K and lower). Conse-
quently, to explain its properties we
first need to know the general laws
governing the changes of thermal motion
in any substance when the tempera-
ture is lowered.

Elementary excitations

Let’s assume the temperature is
being lowered, beginning from tens of
thousands of degrees centigrade. What
happens when electrons and a nu-
cleus unite to form an atom? Before
unification, each of the electrons and
the nucleus have three degrees of free-
dom (which means they can move
freely in three-dimensional space), while
after unification only the atom as a
whole can move freely. Thus, the
total number of degrees of freedom is
diminished. We may say that lower-
ing the temperature brings about a de-
crease in the possible types of thermal
motion. In fact, other types of thermal

Figure 3



motion disappear, or freeze out, as the
temperature drops still further.

Because the motion of electrons
relative to nuclei and of atoms relative
to the centers of mass of molecules
has frozen out at room temperature
(or lower temperatures), we may ig-
nore the fact that molecules consist of
atoms and assume that thermal mo-
tion is merely the motion of mole-
cules considered to be separate par-
ticles. It should also be noted that
when a gas or liquid becomes solid, its
molecules have no means of moving
freely in space to any appreciable dis-
tance and can only effect small oscil-
lations at certain equilibrium sites.

The process of freezing out various
kinds of thermal motion also takes
place, of course, below room tempera-
ture. Because all kinds of thermal
motion must disappear at absolute
zero, we may assume that for any
substance there is a region of suffi-
ciently low temperaturesin which a
unique kind of thermal motion—the
one most resistant to being frozen
out—persists. This kind of thermal
motion is called “elementary excita-
tion.” Different materials exhibit different
kinds of elementary excitation, so the
main point in studying a substance at
very low temperatures is to determine
the nature of its elementary excita-
tions.

The elementary excitations of lig-
uid helium II are not motions of single
helium atoms, if only because the
concept of thermal molecular motion
is the very basis for the theory of nor-
mal liquids—which, as we have seen,
the properties of helium Il obviously
contradict. Therefore, the elementary
excitations we need are to be found
among other kinds of thermal mo-
tion. Landau suggested that the ele-
mentary excitations of helium I are
collective motions of the liquid’s at-
oms—that is, sound vibrations; he
demonstrated that a consistent the-
ory of superfluidity can be built on
this concept.

There are simple arguments indi-
cating that the hypothesis is in accord
with real life. The point is that for
ordinary substances the process of
freezing out the motion of single mole-
cules is related to the solidification of

liquid in that it is accompanied by a
transition to a collective, soundlike
motion of molecules as a whole.

To see this, let’s recall that in solid
bodies molecules can perform only
small oscillations at certain equilib-
rium sites, and the oscillations inter-
act among themselves. In fact, oscil-
lations of a molecule are immediately
passed on to its neighbors. As a result,
vibrations of the whole set of mole-

Sound waves are the only
kind of thermal motion in
felium Il—all others have
heen frozen out.

cules appear—that is, the whole solid
body vibrates. These vibrations are
sound waves.

Of course, sound can propagate in
liquids, too. In normal liquids, though,
it fades out because its energy is trans-
formed into the thermal motion of
separate particles. Since we have a
liquid (helium TI) in which motion of
single particles is frozen out, sound
inevitably becomes the only kind of
thermal motion.

In fact, this process of freezing out
must occur at sufficiently low tem-
peratures so that only soundlike, col-
lective motion remains. But tempera-
tures that cause all other substances
to become solid don't lead to solidifi-
cation of helium because there’s vir-
tually no interaction among atoms.
Consequently, the transition from in-
dividual to collective motion in he-
lium occursin theliquid state.

This property of liquid helium singles
it out from all other fluids and, as we’ll
see later, provides the basis for all the
unusual phenomena we discussed earlier.
The statement that elementary exci-
tations in helium Il are sound waves
means the thermal motion in liquid
helium at low temperatures is due to
the presence of sound waves that propa-
gate in all directions. Consequently,
the energy of the sound waves must
also increase as the internal energy of
the liquid increases with tempera-
ture.

Someproperties of Sound wavesin liquids

The first important property of sound
waves in liquids is that the propaga-
tion of sound is accompanied by a
transfer of mass in the same direction.
In fact, if we look at the motion of a
particle in the liquid, we’ll see that a
slow translational motion is superim-
posed on its oscillations and has the
same direction of propagation as the
sound wave. But the presence of mass
transfer in a system of particles means
that the system has a nonzero mo-
mentum. Hence, a sound wave in a
liquidhasa momentum in the direc-
tion of its propagation. This can be
verified by a number of experiments.
For example, when a sound wave hits
awall, momentum is an exchanged.
The force acting on the wall is called
“sound pressure.”

Sound waves that determine ther-
mal motion usually travel in various
directions and don’t generate any trans-
fer of mass. In contrast, if sound
waves under some conditions acquire
a privileged direction of propagation,
mass transfer does occur.

It should be noted here that in order
to emit sound, a body moving in a
liquid at subsonic speed must vibrate.
If, however, the body is traveling at
supersonic speed, it can generate sound
waves (like a jet airplane breaking the
sound barrier) even though it doesn’t
vibrate. We can also turn the picture
around: assuming the liquid moves
and the body is at rest, we must infer
that there is no sound emission if the
liquid’s velocity is subsonic.

An explanation of hefium I1's properties

Helium IT’s superfluidity arises di-
rectly from the properties of sound
waves in liquids. In fact, the friction
from the flow of a normal liquid through
a capillary causes the kinetic energy
of the liquid to turn into heat because
of the interaction of particles of the
fluid with the roughness of the walls.
Since the thermal motion in helium II
is due to sound waves, energy transfer
would cause the emission of sound.
But, as we have seen, this is impos-
sible at low speeds of flow.

continued on page 40
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A.N. Kolmogorov

NDREY NikoLAvevicH Kormo-

gorov was one of the greatest

scientists in Russian history. His

work in probability theory, tur-
bulence, and dynamic systems was
fundamental and is now considered
classic. The range of his contributions
was enormous—{rom poetics to stra-
tigraphy, from genetics to celestial
mechanics, from topology to mathe-
matical logic and algorithmic com-
plexity theory.

Kolmogorov was born on April 25,
1903, in the central Russian city of
Tambov. At 17 he graduated from the
secondary school there and entered
the University of Moscow. Early on
he showed a keen interest in Russian
history. His first work was a scientific
paper on the registration of real estate
in the medieval Novgorod republic.
But when he found out that history
professors required at least five differ-
ent proofs of every assertion, he switched
to mathematics, where one proof suf-
fices! At this time Kolmogorov found
himself attracted to the ancient Rus-
sian arts as well, and he retained this
interest for the rest of his long life.

At the age of 19 Kolmogorov con-
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structed an integrable function with a
Fourier series divergent almost every-
where. This unexpected result cre-
ated a tremendous sensation and made
Kolmogorov an internationally recog-
nized mathematician overnight.

Atthat time, mathematics gradu-
ate students at Moscow University
had to pass 14 examinations in vari-
ous mathematical subjects, but it was
possible to substitute an original ar-
ticle on a relevant topic in place of the
exam. Kolmogorov never took any of
the examinations, choosing instead to
write the kind of papers he would
make his life’s work. Even at the
outset of his career, his articles con-
tained new results in function theory,
set theory, topology, mathematical logic,
probability theory, and other topics.

In May 1934, a little before James
Alexander came up with the same
idea, Kolmogorov introduced the co-
homology ring, one of the most im-
portant topological invariants of a space.
The idea came to him from physics.
He generalized such notions as the
distributions of charges and currents
in space, on surfaces, and on lines,
considering the similar “functions of
sets” for a more abstract mathemati-
cal situation.

Though educated in abstract, set-
theoretical mathematics, Kolmogorov
was always interested in the natural
sciences and other applications, in which
he would put aside the shackles of
mathematical rigor to obtain a con-
crete result. But after guessing a re-
sult, he invariably tried to formulate it
rigorously as a mathematical theorem
or conjecture whose proof might be
deduced from the fundamental postu-
lates of the theory.

Kolmogorov’s work in 1941 on tur-
bulent motions changed the face of
the theory of turbulence. Here he in-

troduced the ideas of self-similarity
and scaling, leading to the famous
Kolmogorovlaw of 2/3. Theseideas,
and the modern developments they
spawned, are now crucial elements of
statistical physics and field theory.

What did Kolmogorov consider his
most difficult achievement? His work
from 1955 to 1957 on the 13th Hilbert
problem, which involved the repre-
sentation of continuous functions of
many variables as the superposition of
continuous single-variable functions
and on the summation operation.

Kolmogorov’s last work before re-
tiring from active research was dedi-
cated to applying the ideas of informa-
tion theory to the theory of algorithmic
complexity and to the foundations of
probability theory. He proved, for
instance, that any “computer” con-
taining N elements of fixed diameter
related to no more than k other ele-
ments by “wires” of fixed thickness
may be packed in a cube with an edge
of approximately v/ N. He had guessed
this result by starting from the obser-
vation that the gray substance of the
brain (the neurons) forms its surface,
while the white substance (the junc-
tions) is inside.

In addition to his many mathe-
matical theories, Kolmogorov ex-
pounded a theory of a more human
sort: that it is impossible to do good
mathematical research aftertheage
of 60. And so, after half a century of
original and often pathfinding work,
he became a high school teacher. This
was his main occupation for the last
20 years of his life. He was also ap-
pointed chairman of the Commission
for Mathematical Education in the
Academy of Sciences of the USSR and
in that position instituted new pro-
grams to more fully develop the scien-
tific interests of schoolchildren.



In 1970, together with I. K. Kikoyin,
Kolmogorov created a new magazine
for Soviet youth—Kvant. He wrote
articles for it and remained active in
managing it right up until his death in
1987.

Kolmogorov once told a student of
his that he thought of humanity as
individual flames wandering in a fog,
each only vaguely aware of the light

given off by the others. A lifetime
spent enlightening his fellow human
beings belied this somber worldview.

A. N. Kolmogorov stood out among
the great mathematicians of the 20th
century in that he revolutionized both
mathematics and physics, much as
Newton had done two centuries ear-
lier. His mind roamed freely in many
fields and tirelessly sought connec-

tions. A brilliant guesser and a hard
worker, Kolmogorov was a mentor to
students and younger colleagues. And
even in his retirement Kolmogorov
nurtured yet another generation—your
fellow readers of Quantum in the Soviet
Union.

—V. I Arnold, Physics Today
(abridged and adapted)

Sally Ride

Flying high on solid ground

HEN THE SPACE SHUTTLE

Atlantis roared into the clear

Florida sky in October, the

center of attention was the
Jupiter-bound Galileo space probe.
Environmentalists had expressed
concern about the probe’s nuclear
reactor and the risk of serious atmos-
pheric contamination if an accident
occurred during takeoff or when the
probe zipped past the Earth after its
boomerang trip around the sun. Many
scientists, on the other hand, were
eager to see the long-delayed probe
sent on its way toward the giant planet,
about which Voyager had transmitted
such tantalizing information.

Once Galileo was released, the five-
member crew could turn toits many
other tasks—measuring the amount
and height distribution of ozone in the
Earth’s atmosphere, aiming a 70-milli-
meter camera at various terrestrial
targets, studying the causes of space
motion sickness (which afflicts nearly
half of all shuttle passengers), and so
on.
Dr. Ellen S. Baker, a physician, con-
ducted the motion sickness tests. Her
trip into space was accompanied by no
fanfare. She was accompanied instead
by another woman—Dr. Shannon W.
Lucid, abiochemist. Three men and
two women in a space vehicle—no big
deal.

But when Sally Ride became the
first American woman in space six
years earlier, it was a big deal. True,

the Soviet Union had been sending
women into space for years. Maybe
that’s why the anticipation had been
so great—the US space program was
finally “catching up,” as the vocabu-
lary of competition has it.

Because of the fame she instantly
achieved on June 18, 1983, simply by
being in orbit, Sally Ride risked being
pigeonholed as “America’s first woman
in space,” as if “woman in space” is a
career choice. Thefactis, Ridewasa
physicist before she was an astronaut
and while she was an astronaut. She is
a physicist today.

Sally K. Ride was born on May 26,
1951, in Encino, California. She at-
tended Stanford University, earning a
B.S. in Physics and a B.A. in English in
1973;an M.S.in 1975;and aPh.D. in
1978. Her research in physics has
focused on free-electron lasers. Seeing
that English degree tucked away in
that list, one is reminded of Werner
Heisenberg’s remark that “even for
the physicist the description in plain
language will be a criterion of the
degree of understanding that has been
reached.”

Ride began astronaut training in
1978. At this time she was also a part-
time adjunct professor of space sci-
ence at Rice University in Houston.
As part of her preparation, she served
as the capsule communicator at Mis-
sion Control for the first two shuttle
missions.

In addition to her flight in 1983,

Ride took part in a shuttle mission in
October 1984. On both flights she was
in charge of the scientific experiments
aboard. During her first flight, the
crew deployed and retrieved a satellite
with the shuttle’s robot arm for the
first time and conducted materials
and pharmaceutical research. Her second
flight lasted eight days, during which
the crew deployed a satellite, con-
ducted scientific observations of the
earth, and demonstrated the potential
for satellite refuelling by astronauts.

In January 1986 Ride’s training for a
third shuttle flight was interrupted by
the Challenger explosion. For the
next six months, Ride served on the
Presidential Commission investigat-
ing the accident. She was then as-
signed to NASA headquarters in Wash-
ington, DC, where she created the
Office of Exploration and produced a
report on the future of the US space
program.

As if taking Heisenberg’s injunc-
tion to heart, Dr. Ride wrote a book for
children, To Space and Back, describ-
ing her experiences as a shuttle astro-
naut in simple yet evocative language.

In 1987 Ride left NASA to become
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a Science Fellow at the Stanford Uni-
versity Center for International Secu-
rity and Arms Control, where she worked
as a physicist. In July 1989 she was
appointed director of the California
Space Institute and professor of phys-
ics at the University of California, San
Diego. As director of Cal Space, Ride
will oversee a $3.3 million research
institute headquartered at the univer-

sity’s Scripps Institution of Oceanog-
raphy.

Now that women routinely ride
the space shuttle to work, will we see
more women running physics labora-
tories and teaching mathematics on
terra firma? That depends on those
who open doors—and the women who
would walk through them. Not so
longago, Albert Stasenko’s article in

this issue of Quantum would have
ended with the suggestion that works
of art be used “when discussing the
laws of physics with your little
brother”—period. The achievements
of Sally Ride demonstrate that “little
sisters,” too, are capable of reaching
great heights in science and math.

—Timothy Weber

“Helium Il” from page 37

Let’s take a closer look at helium I
flowing through a capillary. At any
temperature other than zero, there are
sound waves in the liquid because of
thermal motion. To study their inter-
action with the walls, let’s imagine a
coordinate system moving with the
liquid so that we can consider the
liquid to be at rest while the walls
move in the opposite direction. Su-
perfluidity means that the walls don’t
exert a drag on the fluid. Nonetheless,
they interact with the sound waves.
As a result, there is an exchange of
momentum between them and a privi-
leged direction for the propagation of
the sound. Consequently, there is
transfer of mass in the liquid because
of the drag on the liquid by the walls of
the capillary, although the mass of the
liquid involved in the motion is far
less than the total mass of the liquid
because at low temperatures the en-
ergy of sound waves is very small.

We may visualize helium II as though
it consists of two components that
can move independently of each other.
The motion of one of them isn’t ac-
companied by friction; therefore, it’s
called the superfluid component. The
other, called the normal component,
exerts a drag on the walls and has
internal friction like that of normal
liquids. The sum of the components’
masses is equal to the total mass of the
liquid.

Of course, separating helium II
into two components is only a man-
ner of speaking. As we have seen,
there are two kinds of motion in he-
lium II, each accompanied by its own
mass transfer; the sum of the masses is
equal to the total mass of the liquid.
One motion is related to the propaga-
tion of sound waves and is accompa-
nied by friction; the other is superfluid
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motion. All helium atoms participate
in both motions—they aren’t divided
into “superfluid” and “normal” at-
oms.

The mass of the normal compo-
nent increases as the energy of sound
waves increases at higher tempera-
tures, so that at a certain point it
equals the total mass of the liquid.
Then superfluid motion disappears
because there’s no more mass to be
transferred, and helium II turns into
heliumI, which behaves as a normal
liquid capable only of normal motion.

If a body moves at subsonic speed in
helium II, the resulting superfluid motion
doesn’t resist it. In fact, if the force of
resistance isn’t equal to zero, we need
to use a force that performs some
work to move the body. The work can
only tumn into heat—that is, can only
result in emitting sound. This, as we
know, is impossible. Therefore, we
may say there is no pressure exerted
on the body by the superfluid compo-
nent flowing around it. On the con-
trary, sound waves falling on the body’s
surface exchange momentum with it
(as explained above in the example of
capillary flow). So there is pressure on
the body from the normal component.

Now it’s not so hard to explain the
helium II experients described earlier.

If we measure viscosity by the first
method (capillary flow), we don't find
any viscosity in helium IT because the
superfluid component flows out very
rapidly through the leak. It doesn't
matter at all thatits density is some-
what less than the overall density
because any normal, viscous fluid will
flow through a narrow enough leak far
more slowly. Measuring the viscosity
by the rotating disk method gives a
value different from zero because the
disk moves in a fluid that has two

components; the oscillations are damped
through interaction with the normal
component.

We may say that the superfluid
component shows itself in the experi-
ment with the capillary flow and the
normal component in the experiment
with the rotating disk.

In helium I, the process of emitting
sound waves releases heat, which is
transferred in a certain direction be-
cause the energy of the sound waves in
that direction is greater than in the op-
posite direction. Therefore, the direc-
tion of heat transfer is at the same
time the direction of privileged propa-
gation of sound waves and the related
mass transfer of the normal compo-
nent. Thus, heat transfer in helium I
is always accompanied by a convec-
tive motion of the normal compo-
nent. Thisis why in the experiment
shown in figure 2 the thermometer
readings are always the same yet the
petal always turnsin the direction of
heat transfer—the normal component
is flowing around it.

In the case of heat transfer in a con-
tainer filled with helium II (fig. 3),
there is no mass transfer in one direc-
tion because the pressure difference
due to heat transfer generates a flow of
the superfluid component in the op-
posite direction. The velocity of su-
perfluid motion is such that total mass
transfer is absent and the liquid’s level
doesn’t change. The deviation of the
petal indicates that the normal com-
ponent flows out of the innerregion,
but the superfluid flow remains con-
cealed because it doesn'’t result in pres-

sure on bodies. [@
Alexander Andreyev is an academician and
deputy director of the Vavilov Institute of Physics
Problems. He is a theoretical physicist who
works primarily in the field of solid-body and
low-temperature physics.



BRAINTEASERS

Justiorthe funofit

It’s easy to show that the sum of the five acute angles of a regular star (like the | Thege problems were proposed by Al-
onesinthe American flagor the onein the Soviet flag)is 180°. Prove thatthe | exander Korshkov (10th grade), A. P.

sum of the five angles of an irregular star (fig. 1) is also 180°. Savin, A. M. Domashenko, A. A. Panov,
and B. B. Proizvolov.

Using each of the numbers 1, 2, 3, and 4 twice, I succeeded in writing out an
eight-digit number in which there is one digit between the ones, two digits
between the twos, three digits between the threes, and four digits between the
fours. What was the number?

Write the numbers 1 to 8 in the eight
circles shown in figure 2 so that any
two numbers inside circles joined by a
linedifferbynolessthan2.

Figure 1

My grandfather’s clock behaves in a strange way. During the first half hour of
every hourit’s 2 minutes fast, but during the second half hour it’s 2 minutes
slow. How can that be explained?

An arbitrary point in- Figure 2

side an equilateral tri-
angle is joined to the
three vertices and per-
pendicular lines are
dropped down to the
three sides (figure 3).
Show that the sum of
the areas of the three
red triangles equals that
of the three blue ones.

SOLUTIONS
ON PAGE 53 Figure 3
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Rooman's
challenge

and Viete's triumph

by Yury Solovyov

N THE FIRST DAYS OF October 1594,
the king of France strolled along
the beautiful lanes of Fontaine-

bleau Park with the envoy from
the Republic of the United Nether-
lands (better known as Holland—the
name of its largest province). Having
come into being as the result of a long
and persistent struggle against Span-
ish dominion, the republic was very
young—it was only in its twentieth
year. The war with Spain was still
continuing, and the Dutch govern-
ment was determined to find new
allies.

In France the flames of the long re-
ligious civil war had recently died out,
and Henry of Navarre, overcoming
furious resistance, had just become
king of France. Henry the Fourth did
nothidehisinterestin Holland as an
ally in the struggle with Spain, but
above all he was interested in the rapid
growth of Dutch trade and seafaring.
For this reason, walking in Fontaine-
bleau Park, he listened very atten-
tively to the envoy’s story—about new
silk manufactures in Rotterdam, pa-
per mills in Utrecht, and shipyards in
Zandam.

“There are a lot of talented engi-
neers and scientists in Holland,” the
envoy recounted. “The mathemati-
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cian and engineer Simon Stevin is
working out a new system of locks
and dams, new fortresses are being
constructed according to the projects
of the mathematician Ludolph Van
Ceulen, while our mathematician
Adriaen Van Rooman has become
tamous for his puzzling calculations.
By the way,” the envoy continued,
“not so long ago, Van Rooman chal-
lenged all the mathematicians of the
world. He sent a letter to many coun-
tries defying anyone to solve a prob-
lem of his own invention. But so far no
one has succeeded.”

“The winner will certainly be a
Frenchman,” the king laughed.

“Your Majesty,” remarked the envoy,
“T have this letter with me, but appar-
ently France doesn’t have any out-
standing mathematicians, because Van
Rooman didn’t mention a single French-
man among those to whom he ad-
dresses his challenge.”

“But nevertheless, I've got such a
mathematician, and a rather extraor-

dinary one,” Henry the Fourth an-
swered. “Call Viete!”

That was how, on this fine autumn
day in 1594, the destinies of two very
dissimilar men crossed.

Adriaen Van Rooman wasbornin
1561 in the city of Leuven in the
Spanish Netherlands (now Belgium).
He studied medicine and mathemat-
ics at Leuven University, where he
obtained his doctor’s degree. He was a
lecturer in mathematics at Leiden and
Wiirzburg universities.

Van Rooman studied geometry and
trigonometry and also dealt with prac-
tical astronomy and navigation prob-
lems. He worked on the problem of
expanding the functions sin nx and
cos 1x in powers of sin x and cos x, and
met with some success. He deter-
mined the numerical value of & to sev-
enteen decimal places, which was the
greatest precision achieved at the time
in Europe. During his lifetime, Van
Rooman was very famous in Holland




and Germany, but as time went by his
works lost their significance. Nowa-
days his name can only be found in
the largest encyclopedias.

Francois Vieéte (or Franciscus Vieta
in Latin) was born in the French town
of Fontaine in 1540. He began study-
ing law in 1559 but was drawn to
mathematics and astronomy. In 1571
he moved to Paris, where he contin-
ued his career as a lawyer and became
acquainted with Parisian mathemati-
cians. In 1573 Viete started working
as a counsellor of Brittany’s parlia-
ment and later became Royal Privy
Counsellor to Henry III. In 1580 he
obtained the post of Royal Reporter on
Requests.

During the last years of Henry’s
rule, Viete was a cipher clerk, study-
ing the correspondence between the
Spaniards and the king’s enemies. He
discovered the key to the difficult
Spanish cipher used by Philip II, king
of Spain. When Philip found out from
intercepted French letters that his secret
information was being read by the
French, he complained to the pope,
pointing out angrily that the French
were using sorcery and black magic
against him. After Henry III was
murdered in August 1589, Viete of-
tered his services to Henry of Navarre.

The author of numerous papers on
algebra, geometry, trigonometry, and
astronomy, Viete discovered the rela-
tionship between positive roots and
coefficients of algebraic equations, still
known as the Viete formulas. He
found the formula for expanding the
functions sin nx and cos nx in powers
of sin x and cos x, and he is the author
of a contemporary system of algebraic
notation. His works, written in com-
plicated language, were incomprehen-

sible to his contemporaries, and only
half a century after his death did they
begin to influence the development of
algebra and geometry.

Bur LET’s RETURN to Fontaine-
bleau. When Viete appeared, the en-
voy took out Van Rooman’s letter.
The letter proposed solving the fol-
lowing equation:

45x - 3795x3 + 95634x5

- 1138500x” + 7811375x%°
—-34512075x"+ 105306075x'3
—282676280x" + 384942375x"7
- 488494125xY+ 483841800x*
—378658800x> + 236030652.x%
- 117679100x* + 46955700x%
- 14945040x* + 3764565x3

-~ 740259x% + 111150x%
-12300x% + 945x4

—45x¥+ x*%=q,

in particular when

azleé_ s [1 [%
‘N 4 V 16 8 V64

To simplify the problem, Van
Rooman gave the answers for two
other values of a, expressed in a rather
cumbersome way.

Viete read the letter and immedi-
ately wrote down the answer. The
envoy said there was a sealed enve-
lope with Van Rooman’s answer at
his residence and that he would open
itin the presence of a notary to see if
Viete was right. The next day the
Dutchman confirmed the correctness
of Viete’s answer, and Viéte, in turn,
presented 22 other answers, unknown
to Van Rooman. In addition, Viete
pointed out a mistake in the state-
ment of the problem, made by the
copyist or by Van Rooman himself.

Let’s try to reconstruct how Viete
found the solution for such a mon-
strous (at first sight) equation.

To this end, we must analyze some
of his mathematical papers. His main
trigonometrical results were formu-
las for the sines and cosines of mul-
tiple arcs. Viete obtained them in the
form of arule for mechanically com-
puting them. It resembles the stan-
dard rule except that, instead of Pas-
cal’s triangle, Viete used the follow-
ing table:

6 21 56 126 252 ...
7 28 84 210 462 ...

11 1 1 1 1
12 3 4 5 6 ...
13 610 15 21 ...
141020 35 56 ...
151535 70126 ...
1

1

Every number here is the sum of the
number to its left and the number
above it. It’s worth mentioning that
Viete didn't express sin nx and cos nx
in terms of sin x and cos x, as we do,
but expressed 2 sin nxand 2 cosnxin
terms of 2 sin x and 2 cos x. If we
assume that the values of 2 sin nx and
2 cos nx, expressed in that way, are
known, we get an equation of the nth
degree for the unknown quantities
2 sinxand 2 cos x.

Viete’s original aim was to find the
formulas for expressing the sines of
multiple arcs in terms of the sines of
the small arcs—that is, by construct-
ing tables of sines. Later these formu-
las were used in algebra and geometry.
In particular, to solve the geometrical
problem of trisecting angle o, Viete
used the equation 3x - x* = g, which is
satisfied by the valuesa=2sino; x =
2 sin { a/3). Viete interpreted the posi-
tive solutions as the chords corre-
sponding to the arcs 20,/3 and (360° -
20)/3. He didn’t take the negative
roots into consideration at all, which
was accepted practice at the time.
Likewise, to divide an angle into 5
equal parts, Viete considered the equa-
tion 5x - 5x3 + x° = a, which is satisfied
by the values a = 2 sino,, x = 2 sin(a//5).

Now it’s clear howViete succeeded
insolving Van Rooman’s problem so
quickly. He saw at once that the
proposed value of a is the length of the
side of a regular polygon of fifteen
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sides inscribed in the unit circle (check
that!) or, which is the same, the chord
corresponding to the arc 24°, Coeffi-
cients for the first and subsequent
terms of the left side of Van Rooman’s
equation suggested that the left side is
nothing more than the expression of
2sin450interms of 2 sina. Sincea =
2 sin 12°, then o = 12°/45 = 4°/15,
which means that x = 2 sin (4°/15). Itis
this specific solution that Viete gave
to the Dutch envoy.

After the royal audience, Viete
checked his supposition. Unfortu-
nately, after the necessary calcula-
tions, he discovered that theleft side
of the given equation did not coincide
with the expansion of 2 sin 45 ¢ in
powers of 2 sin a, contrary to what
he’d expected after glancing at Van
Rooman’s challenge!

At that moment he probably didn’t
feel too good. Most likely, he felt just
awful. What had happened? Maybe
there was a mistake in his exhaustive
calculations? Apparently at that
moment Viéte found a totally differ-
ent—geometric—approach to the
expression of 2 sin 45 o in terms of 2
sin o in order to divide the arc into 45
parts, it’s first necessary to divide it
into five parts, then every part into
three, and each of those into three
parts again. In short, the left side of
Van Rooman’s equation can be ob-
tained from the system

3z-2z%=a,
3y—y3=Z,
5x-5x% +x°=y.

Only after analyzing Van Rooman’s
answers for the two other values of a
was Viete sure that it was a question of
dividing the arc into 45 parts, and he
corrected the mistake in the state-
ment of the problem without any doubts.
But Viete didn’t limit himself to find-
ing one solution. The 22 other solu-
tions, which he announced the next
day, took the following form:

5 i 360°K+12° _ ) . 120%+4°
45 5
k=1,2,...,22.

So Viete succeeded in finding all
the positive roots (remember, only
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positive roots were regarded as solu-
tions in his time).

We could end here, but perhaps we
should mention that the mathemati-
cal competition between Viete and
Van Rooman continued. After a while,
Viete proposed the following problem
to Van Rooman: With compass and

ruler, construct a circle tangent to
three given circles (Apollonius’s prob-
lem). Viete himself soon came up
with a beautiful geometric solution.
It’s said that, after his second de-
feat, Van Rooman became a zealous
admirer of Viéte and even came to
Paris to study under him. O

0f amoehias and men

A true tale of topology gone awry

by Alexey Sosinsky

HIS IS ATRUE STORY. It happened
along time ago in Moscow at the
International Congress of Mathe-
maticians. August 1966—Iwas
still a postgraduate student back then.

After one of the ICM workdays, a
group of mathematicians, mostly to-
pologists, gathered for a very informal
discussion. Besides the host and other
well-known Soviet mathematicians,
the group included the outstanding
British algebraic topologist J. F. Adams;
his fellow countryman E. C. Zeeman,
an equally famous geometric topolo-
gist; and Colin Rourke, a postgraduate
student of Zeeman'’s.

The conversation turned to one of
the ageless topics in mathematical
discussions—the comparative merits
of geometry and algebra. The enthusi-
astic geometer Zeeman attacked the
rather aloof and phlegmatic Adams,
accusing him (and thereby all algebra-
ists) of a complete lack of imagination
and practical ineptitude.

“With all your sophisticated alge-
braic invariants, you’re totally inca-
pable of solving the simplest topologi-
cal problems,” Zeeman was saying.
“For instance, this one.”

Zeeman joined the index fingers
and thumbs of his left and right hands,
forming interlocking rings (fig. 1).

“Is it possible to unlock these rings
without moving a thumb or index
finger apart?” he asked. “Can I change
from that position to this one”—he
unlinked his two hands and dramati-
cally moved his arms sideways and
upwards, joining the fingers of each
hand again but with his hands at a
distance from each other—"if my
thumbs and index fingers are glued to
each other?

“QOf course,” he continued, “this is
atopological problem, which means
that my body can change its shape at
will, without any tearing, cutting, or
gluing—like an amoeba.”

Adams didn’t hurry to answer. The

Figure 1



Figure 2

detached and somewhat bored expres-
sion on his face hid what must have
been an intense attempt to solve the
problem in his mind. Quite unexpect-
edly Rourke, who until then had re-
mained modestly silent, as a graduate
student should, joined the conversa-
tion.

“Can’t be done, sir,” he said.

This really surprised me. I knew
the correct answer to the problem—
it’sfairly well known among topolo-
gists—and I couldn’t understand how
Rourke could make such an obvious
blunder. Zeeman'’s surprise, however,
was much greater.

“You ... but...Imean” he
spluttered, “I can understand that one
of these algebraists . . . But you! You're
supposed to be a pupil of mine. This is
a perfectly trivial problem for anyone
who claims to be a geometer!”

But Rourke held his ground and, as
often happens when two Englishmen
don'’t agree on something, the argu-
ment resulted in a bet. The terms
having been agreed upon, Zeeman
immediately took a paper napkin and,
right then and there, sketched the
required transformations of the amoeba
(fig.2).

“Yes, of course,” said Rourke, “but
your jacket, sir.

Zeeman'’s expression changed from

triumph to bewilderment, and he began
to reason out loud.

“Certainly all the amoeba’s trans-
formations can be carried out without
taking off the jacket—all you have to
do is twist and stretch it in places. But
then after the hands are unlinked, the
jacket will be wrapped around the
amoeba in a very incongruous way.
And it won't be fair to say that I will
look the way I claimed I would. In
fact, one sleeve of the jacket is enough
to get me all swaddled up in fabric
after all those transformations, so I
won't be able to take the sleeve off
without cutting it . . . Colin, I concede
I've lost.”

While a pound note was changing
hands, Adams added to Zeeman’s misery
by addressing him in a bored mono-
tone:

“Oh by the way, Chris, how do you
prove that you can’t take off your
jacket without unlocking your fingers
if you don’t use invariants?”

As AN EXERCISE in three-dimen-
sional topology, try to imagine what
the jacket looks like after the amoeba
has unlocked its fingers. Figure 3
shows where the right sleeve of the
dinner jacket ends up. As for invari-
ants—perhaps Quantum will turn to
that topic in upcoming issues. O
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AT THE
BLACKBOARD

Don’t unplug your brain just yet,
but when it comes to weeding out false assumptions . . .

Equations think for you

OLVING A  COMPUTATIONAL
problem in physics usually in-
volves two stages: first, we
think over the conditions of the

problem, analyze the physical laws

describing the given phenomenon, and
find the appropriate system of equa-
tions; second, we try to find an effi-
cient method for obtaining the solu-
tion in general form. In a sense, we're
physicists during the first part of our
work, mathematicians during the
second. But, havingobtained the an-
swer, we turn to physics again to see
whether our result is reasonable—for
example, whether it stands the test of
physical dimension analysis.
Sometimes a review of the result
shows that it’s absurd. Problems where
this happens generally have a feature
in common: they require a careful
preliminary examination of the physi-
cal process involved and suggest sev-
eral versions, or scenarios, that are all
reasonable enough at first sight. Ulti-
mate success depends on a wise choice
of the scenario, and it should be noted
thatalittle bit of mathematics helps
us make that choice. Indeed, suppose
we choose a scenario, come up with a
system of equations, solve it, and then
convince ourselves that the answer is
absurd. The conclusion is that we
should have chosen another scenario
to analyze with our mathematical tools.

Eventually (and we can be thankful

that physical laws severely restrict

the number of possible scenarios),
mathematics will indicate the right
one.

Let’s consider a few examples.
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Problem 1. There is a pulley at the
top of a rough inclined plane (fig. 1).
Two bodies of masses m, =3 kg and
m, = 2 kg are attached to the ends of a
rope slung over therim of the pulley.
Find the acceleration of the system
and the friction between the first body
and the plane if the coefficient of fric-
tion W= 0.5 and the plane’s angle of in-
clination o. = 30° from the horizontal.

Three different scenarios are clearly
possible: (1) the second body moves
downward and the pulley rotates clock-
wise; (2) this body moves upward and
the pulley rotates counterclockwise;
(3) the system does not move at all.

Figure 2

The first two cases differ from the
third in that they are concerned with
kinetic (sliding) friction between the
first body and the inclined plane, whereas
the third is concermed with static fric-
tion. These two kinds of friction are
quite different. The length of the
vector for kinetic friction is given by
the equation F, = uN, where N is the
length of the vector of normal reac-
tion. For static friction, the only re-
quirement is that its force be less than
that of kinetic friction.

Let’s choose the first scenario. By
writing Newton’s second law, we may
resolve the forces acting on the first
body as those parallel to the inclined
plane and those perpendicular to it; for
the second body, we need to consider
only the vertical direction. The equa-
tions read

T-m,gsino—puN=maq,
N-mgcosa=0,
m,g-T=m,a.

It should be noted that the accelera-
tion a is positive because of the choice
of directions (fig. 2). But solving the
system, we get a negative a:

mz—umlcosoc—mlsinoc

= _1.6m/sec?.

a=g
m +m,

Therefore, we must reject the first
scenario.

Let’s take a look at the second one.

At this point, a common mistake is to

settheaccelerationa=1.6m/sec? on

the grounds that we have reversed all

directions. But the force of friction



a=g

remains negative, and the equations
take the form

mgsina-T-uN=ma,
N-m gcosa=0,
T-m,g=m,a;

so that

m, sinOL—um1 coso—m,
=-3.6m/sec?.

m +m,
We see that the acceleration is again
negative, and we must reject the sec-
ond scenario. The only option left is
the third one—that is, a = 0. Then
friction is static, and the formula F, =
uN doesn’t hold any longer. We have
found the solution, at least partially.
To find the force of friction, notice
that the forces acting on the first body
parallel to the inclined plane are the
projection of the force of gravity (m,g
sin o = 15 newtons) and the rope’s ten-
sion, equal to the weight of the second
body (T'=m,g=20newtons). Conse-
quently, the force of static static fric-
tion is directed parallel to the plane
downward:
F =T-m gsin o =5newtons.
This is, in fact, less than that of
kinetic friction: I, |

|
UN=pum gcoso=13newtons. ¥

Problem 2. Two kilograms of
water at temperature +80°C are
poured into a calorimeter con-
taining three kilograms of ice at
-10°C. What temperature establishes
itself inside the calorimeter as the
result of heat transfer! (The heat
capacity of the calorimeter should
not be taken into account.)

Obviously, the final temperature T,
is greater than —-10°C and less than
+80°C. The main point is that the
specific heat of water and that of ice
are different, and the process of melt-
ing requires some additional heat. There-
fore, the process of heat transfer essen-
tially depends on whether some ice
melts or some amount of water freezes.
To find out which possibility actually
occurs, we'll consider the equations of
thermal balance for three different cases:

(1) T,>0°C; 2) T,< 0°C; (3] T,= 0°C.
Fll‘St let s suppose T, > O"C—that
is, the calonmeter w1ll end up con-
taining only water. We can visualize
the heat transfer as follows: the mass
m, (3 kg| of ice is heated from T, =
-10°C to 0°C, the ice melts, the water
obtained from the ice is heated from
0°C to T, and the mass m, (2 kg) of
water initially contained in the calo-
rimeter is cooled from T, = 80°C to L.
The thermal balance equat1on reads

c,m,(0-T,)+Am, +c,m, (T~ 0) +
cm(T T) 0,

Figure 3

Figure 4

where ¢, ¢, represent the specific heat
of ice and of water and A is the specific
heat of melting. Hence,

- clmlT1+C2m2T2—km1
f
cz(m1+m2)

However, for our numerical data T
turns out to be less than 0°C, so there
is a contradiction with the hypothesis
we had assumed.

Suppose T, < 0°C—that is, the calo-
rimeter W111 contain only ice. Heat
transfer should proceed as follows:
theiceisheated from-10°C to T,and

the water is cooled down to 0°C, freezes,
and cools down, in the form of ice, to
T,. The thermal balance equation
then reads

¢,m(T,~T,)+c,m,(0-T,)
+c¢,m,(T,—0)-Am, =0,

which for our numerical data gives
T,>0°C. Consequently, the second
hypothesis is also wrong, so we come
to the conclusion T, = 0°C.

At this point you may be irritated
with me and asking yourself: “Why
does he purposely select examples in
which all initial hypotheses turn out
to be wrong and such cumbersome so-
lutions lead to the comparatively simple
results a =0, T,=0°C? Why doesn't he
take these 31mple cases right off the
bat?”

The answer is that such an ap-
proach is possible, but generally it
doesn’t result in serious simplifica-
tions. For example, in the first prob-
lem we could assume that the system
is at rest, write out equations, solve
them, and find the force of friction.
But then we have to find the force of
kinetic friction to convince our-
selves that it’s greater than the
static friction. If, on the other
hand, for some numerical values
kinetic friction had turned out to
be the lesser quantity, we would
have to start from scratch.

In the second problem, if we
had merely assumed T,=0°C, we
wouldn't have known how to write
the equations of heat balance be-
cause, without making any as-
sumptions about the process taking
place in the calorimeter, we don’t know
whether some ice melted or some
water froze. Of course, we could sug-
gest some way out of these difficul-
ties, but the number of possible op-
tions would be even greater than in
the solutions discussed above.

R;

Problem 3. Find the currents in all
parts of the circuit given in figure 4.
HereE =E,=E=1volt,r,=1,=1r=1
ohm, andR,=R,=R,=R=100hms.

The key to solving this problem is
to find the right directions of the cur-
rents, which determine the equations
of charge balance at the nodes, or
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branching points, of the electrical cir-
cuit. First, let’s suppose that the cur-
rents, I, I, aredirected asshownin
figure 4. Electrical charges may not
accumulate at the branching points of
a circuit because incoming and outgo-
ing charges counterbalance each other;
consequently, we have the equation
for the currents I, = I, + I, in accor-
dance with the hypothesis concerning
their directions.

Let’s choose two loops inside the
circuit—for example, the left and the
right one—and choose a certain direc-
tion for tracing a path—for example,
counterclockwise. The energy con-
servation principle requires the alge-
braic sum of electromotive forces to
be equal to the algebraic sum of volt-
ages:

E-E=IR+Ir+Lr+LR,
-E=-I,R-1,r+L,R.

For the numerical data of the prob-
lem these equations read

I=1+1,
101, +1,+1,+10I,=0,
101, +1,-101,=1,

and have the solution
I,=-1/31A,I,=1/31A, ,=-2/31 A.

Note that the first and third cur-
rents are negative, whereas the as-
sumption we made about the direc-
tions of the currents requires them to
be positive. If we reverse the direc-
tions of the first and third currents,
we’ll obtain the right answer—three
positive values of I, I, I,, whose abso-
lute values equal those obtained above.
It should be noted that the equation
for current conservation in this case
reads, =1 +1,.

Problem 4. A body is thrown straight
up at an initial speed v, = 25 m/sec. In
what time will it reach the height h =
40 m!?

Let’s write the equation for the

height of the body:
_. 8
h= Vot = —2—,
48 Quantum/Janvary 1880

where v, is the initial velocity and g is
the free-fall acceleration. From the
equation we infer

v, T/ vé— 2gh
7 :

Substituting v, = 25 m/sec, h =40 m,
and g = 9.81 m/sec?, we obtain a nega-
tive number under the square root.
Obviously, the result indicates that
the body will not reach this height. In
fact, the maximum height is given by
h__ =v}2g=315m|thatis, less than
40 m).

So, in order to obtain reasonable
answers, we must ask reasonable ques-
tions.

The English naturalist T. H. Hux-
ley used to compare mathematics to
millstones, which grind only the seeds
poured between them—nothing more.
The problems discussed above are ex-
amples of this general principle, but
they also teach us that, in helping us
reject incorrect assumptions, mathe-
matics gives us a clue about the direc-
tion that will lead to a solution.

=

Exerciges

1. A lever with a mass of 10 kg leans
on a prop 25 cm from its left end. The
lever is 1 m long. A weight with a
mass of 2 kg is suspended from the left
end of the lever. What force must be
applied at theright end at an angle of
30° above the horizontal so that the
lever is in equilibrium?

2. A 500-gram mass of steam at
100°C is put inside a calorimeter con-
taining 1 kilogram of ice at 0°C. What
temperature results after heat transfer
has taken place? (The heat capacity of
the calorimeter should be ignored.)

3. Abody is thrown straight up at
an initial speed of 15 m/sec. What

height does it attain in 2 sec?

Flights of Imagination
An Introduction to Aerodynamics

Go fly a kite, and share with your
students the excitement of seeing
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and updated projects provide stu-
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HAPPENINGS

The Tournament of Towns

A more relaxed approach to math competition

HE TOURNAMENT OF TOWNS

resembles ordinary mathemat-

ics olympiads in that high

school students get together to
solve math problems. It differs in
many ways, however, from math
olympiads as they are traditionally
organized in the USSR. For instance,
olympiads are multistage competi-
tions at the school, city, region, re-
public, national, and finally interna-
tional levels. In contrast, the Tour-
nament of Towns is a one-day affair
in which any high school student
can participate without leaving his
or her home town.

The tournament takes place each
year in the spring and autumn si-
multaneously in many cities of the
Soviet Union and—in the last couple
of years—in a few cities in Poland,
Bulgaria, and Australia as well. All
these cities have their own organiz-
ing committees consisting of local
educators and research mathemati-
cians who advertise, organize, and
supervise the competition and cor-
rect the papers.

The central organizing commit-
tee (based in Moscow) provides the
problems and sums up the overall
results. In particular, it double
checks the grades given to the best
papers, which are sent to Moscow
by the local organizers for that pur-
pose.

If there is no organizing commit-
tee in your city, it’s possible to have
one set up. All that’s needed is a
group of math problem enthusi-
asts—teachers, research mathema-
ticians, or college students—who
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by Nikolay Konstantinov

Some of the new tournament
problems will undoubtedly
hecome part of the classical

folkiore of math competitions.

should write to Kvant magazine
(Moscow 103006, ul. Gorkogo 32/1,
Kvant, Tournament of Towns) for
more details, competition problems,
and instructions (which need not be
dogmatically complied with— our
traditions allow local organizers to
modify the rules to suit local condi-
tions).

I think the problems used in the
competition are the most interest-
ing feature of the Tournament of
Towns. During the 10 years the
tournament has been in existence,
214 problems have been proposed to
the competitors. These include a
certain number of “practice prob-
lems,” usually chosen from past
olympiads, but almost all the con-
test problems are original. Some of
the new problems are real master-
pieces—beautiful discoveries in
miniature that will be remembered
for a long time by the contestants
(whether they solved them or not)
and will undoubtedly become part
of the classical folklore of math com-
petitions.

The authors of many of the best
problems are past winners of vari-
ous contests—Moscow, Leningrad,
Riga, and national math olympiads

aswell as the Tournament of Towns
itself. Most of the authors are con-
nected with Kvant in one way or
another—as subscribers, readers,
authors, or editorial board members.
It’s traditional in the Soviet Union
to send new mathematics problems
to Kvant, where a highly competent
team of problem specialists, headed
by N.B. Vasilyev, picks out the best
ones to use in the Tournament of
Towns or publish directly in Kvant’s
problem section.

An important feature of the choice
of problems for the tournament is
thatitinvolves two levels of compe-
tition—one for beginners and one
for experienced problem solvers.
Here experience is not synonymous
with age. There are easier and harder
problems for the two age groups
participating in the tournament.

It should also be pointed out that
the selection of the winners is not,
by any means, the main goal of the
Tournament of Towns. Participa-
tion in the competition often helps
confirm a beginner’s interest in
mathematics. In order to deempha-
size the purely competitive stimu-
lus of problem solving (doing as
much as you can within a given
time limit under stressful condi-
tions) and to avoid transforming the
tournament into something that
helps produce young “professional
math problem solvers,” the central
organizing committee has recently
been sending participants “research
topics” on which they can work at
their leisure, without the nervous
strain involved in a timed contest.



Problems from the
10thTournament of Towns

To give you a more specificidea of
the competition, here are the prob-
lems from the spring round, March
1989.

Grades 7 and 8 (ages 1310 15),
(level (beginners)

1. The positive numbers a, b, ¢
satisftya>b>canda+b+c< 1. Prove
thata?+3b%+5c¢< 1. (3 points)

2. Let AM be the median of triangle
ABC. Can the radius of the incircle
inside triangle ABM be exactly twice
that of ACM? (3 points)

3. What digit must be written in-
stead of the question mark in the
number 888...882999...99 (there are 50
eights and as many nines in it} in order
to make the number divisible by 77 (3
points)

4. Is it possible to draw a closed
curve on the surface of Rubik’s cube
so that it goes through each colored
square exactly once without passing
through any vertex? (3 points)

Grades 7 and 8, A-level
("professionals”)

1. A stairway has 100 steps. Nick
intends to go down the stairway in a
special way. He starts at the top and
jumps down, then jumps up, then
down, then up again, and so on. He
may jump 6 steps up or down (say,
from the ninth step to the fifteenth or
to the third one) or 7 steps or 8 steps,
and he may not jump onto the same
step twice. Will he make the descent?
(3 points)

2. A pawn is placed in one of the
squares of a chessboard (8 x 8 squares).
Two players move the pawn in suc-
cession to any other square but each
move (beginning with the second) must
be longer than the previous one. The
player who cannot make such a move
loses. Who wins in an errorless game?
(The pawn is always placed in the
exact center of a square.) (3 points)

3. Convex quadrilaterals ABCD
and PQRS are cut out of cardboard and
paper, respectively. Let’s say that they
fit each other if the following condi-

tionshold: (1) The cardboard quadri-
lateral can be placed on the paper one
so that its vertices A, B, C, D lie on the
“paper sides,” one vertex on each side;
(2) if the four visible paper triangles are
then folded over the cardboard quadri-
lateral, they cover it entirely without
overlapping. Prove that (a) if two quad-
rilaterals fit each other, the paper one
either has two parallel sides or has per-
pendicular diagonals (2 points); (b) if
PQRS is a paper parallelogram, it’s
possible to cut out a cardboard
quadrilateral ABCD that fits it (3 points).

4. Prove thatif miseven, thenthe
integers from 1 to m — 1 can be written
in sequence so that no sum of succes-
sive numbers in the sequence is divis-
ible by m. (5 points)

5. The end points of n unit vectors
with origin at the center of a unit
circle divide its circumference into n
equal parts. Some of the vectors are
blue, the others are red. Calculate the
sum of all the angles from a red vector
to a blue one (measured counterclock-
wise) and divide it by the total number
of all red-blue pairs of vectors. Prove
that the “mean value” of the angle
obtained in this way is always 180°. (7
points)

6. Prove that (a)if3ncellsofa2nx
2n square table are marked by stars,
then n rows and n columns of the table
can be crossed out so that all the stars
will be crossed out (4 points); (b) 3n + 1
stars may be placed in the table (21 x
2n) so that crossing out any n rows and
any n columns leaves at least one star
not crossed out. (4 points)

Grades 9 and 10 (15 and older),
0-level

1. The positivenumbersa, b, ¢, d
satisfy a<b<c<d anda+ b+ c+d>1.
Prove that a? + 3b% + 5¢* + 7d*>1 (3
points)

2. A circle can be inscribed in
trapezium ABCD. Prove that the circles
whose diameters are the nonparallel
sides of the trapezium are tangent. (3
points)

3. Find six different positive inte-
gerssuch that the product of any two
is divisible by their sum. (3 points)

4. Isit possible to draw a diagonal

on each of the colored squares of Ru-
bik’s cube so as to obtain a connected
line without self-intersections? (3 points)

Grades 9and 10,
A-evel

1. Find two six-digit numbers whose
concatenation (the number obtained
by writing them one after another)is
divisible by their product. (3 points)

2. The point M is chosen inside
triangle ABC so that BMC = 90° —
BAC/2 and the line AM contains the
circumcenter of triangle BMC. Prove
that M is the incenter of triangle ABC.
(4 points)

3. One thousand linear functions
are given:

fulx)=px+q, k=1,2,...,1000.

Prove that to find the value of their
composition

%) = Frol ool ol %))
at the point x, no more than 30 stages
of “parallel computations” are required.
At each stage any arithmetical opera-
tions are allowed on any pairs of numbers
obtained at the previous stages. (At
the first stage the given numbers p,,
q, X,aretobeused.) (5 points)

4. An exclusive tennis club with 11
members is ruled by a directorate
consisting of three or more club
members. The club’s charterforbids
having the same directorate twice. At
each meeting of the club the director-
ate must be changed—either a new
member is added to it or an old mem-
ber is excluded from it. Can it happen
one day that all imaginable director-
ates (of three or more members) will
have ruled? (6 points)

5. Given n lines (n > 1) in general po-
sition (no three of them intersect at
one point, no two of them are parallel)
in a plane, prove that each of the parts
into which the lines divide the plane
can be labeled by a nonzero integer
whose absolute value is not greater
than n so that the sum of the integers
in each of the two sides of each of the
linesisequal to 0. (7 points)

6. Given 101 rectangles whose sides
are integers not greater than 100, prove
that there are three (A, B, C)that can
be placed one inside another. (8

points) O
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Bulletin Board

We invite you to submit reports of interesting events, especially if you have taken part in them yourself and
can provide firsthand impressions. And we ask you to send us announcements of exciting things to come—math
and physics events that our readers around the country (and the world) can attend. We want to be your bulletin
board and diary—let Quantum know what’s happening!

A PROMYS trom Boston University

Ambitious high school students
from all over the United States are
invited to take part in Boston Uni-
versity’s summer Program in Mathe-
matics for Young Scientists {PRO-
MYS). Students entering this six-
week residential program take a
challenging course in number the-
ory and may also study algebra.
Returning students choose from
algebra, the theory of equations, and
experimental dynamical systems.
PROMYS emphasizes active prob-
lem solving, including the formula-
tion, criticism, and modification of
conjectures. Special lectures by
outside speakers help give a broad
view of mathematics and its role in
the sciences.

For more information, write to
PROMYS, Department of Mathe-
matics, Boston University, 111
Cummington Street, Boston, MA
02215, or call 617 353-2560.

Moscow conference to focus
on energy-efficiency

Scientific, political, and spiritual
leaders from around the world will
gather in Moscow in January for a
week of interdisciplinary workshops
and forums on critical environ-
mental and development issues. The
Global Forum on Environment and
Development for Survival will fea-
ture such luminaries as astronomer
Carl Sagan, oceanographer Jacques
Cousteau, and Soviet scientist
Yevgeny Velikhov.

tation, and nuclear waste, the exhi-
bition will emphasize the potential
for massive energy savings in the
large-scale use of new technologies
in transportation, building, lighting,
appliances, heating, and cooling.
Compact fluorescent lights, for ex-
ample, use only one-fourth as much
electricity as their incandescent
cousins.

Further information about the fo-
rum can be obtained from the Cen-
ter for Global Change, University of
Maryland at College Park, Execu-
tive Building, Suite 401, 7100 Balti-
more Avenue, College Park, MD
20740.

New source of competition info

Early in 1990 the National Sci-
ence Teachers Association is pub-
lishing a booklet on cooperating and
competing in science and math.
Along with a detailed and annotated
list of science and math competi-
tions at national and international
levels, the book provides advice on
organizinginterest groups and start-
ing fairs. In addition, it publishes
the results of surveys about contest
experiences provided by competi-
tion sponsors and judges, by student
contestants and their teacher/men-
tors, and by Nobel Prize and Medal
of Science winners.

Several U.S. I

senators are expected to attend, and |

Soviet President Mikhail Gorbachev
will address the 600 participants.
An exhibition of energy-efficient
technologies will serve as a center-
piece of the forum. In the context of

global warming, acid rain, defores- L
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Problem corner

Consider a + 1 numbers 2°- 1,21,
...,29-1. Since there are only a
different remainders modulo a, we
can find two of the above numbers
giving the same remainders modulo a
(the Dirichlet principle). If these num-
bers are 2¥— 1 and 2 - 1 with k < m,
then (27— 1)—(2%-1) = 252mk_1)is
divisible by a. Since ais odd, 2™* -1 is
divisible by a.

One can also prove a more general
fact: if a and c are coprimes, there
exists a natural number b such that
cP-1isdivisible by a.

Project all the circles perpendicularly
onto some side AB of the square (fig. 1)
and assume that every line intersects
no more than three circles. Any point
of the segment ABis thus covered by
projections of circles no more than
three times. It follows that the length
of all projectionsisless than or equal
to 3. But this length is also equal to the
sum of the diameters of all the circles.
Thus, the sum of the circumferences
of the circles is less than or equal to 3.
Since 37 < 10, this contradicts the
original assumption that this sum is
equal to 10.

We'll prove an even more general state-
ment: If there is an odd number N of

—--

-

—————— ==

Figure 1

SOLUTIONS

units and zeros (and
both units and zeros
are actually present),
one will never obtain
N zeros. Assume the
converse. If N zeros
are obtained after t
operations for the first
time, then aftert—1
operations you have
N equal numbers dif-
ferent from zero—that
is, N ones. It follows
that aftert-2 opera-
tions every two neigh-
boring numbers are Figure3

different, which contradicts Nbeing
odd.

M4

The answer is 77— n + 1. A chain of this
length is shown in figure 2. To prove
that chains can’t be any longer, paint
the triangles alternately in two colors
(as shown in the figure). It is easily
seen that there are n white triangles
more than colored ones. On the other
hand, the colors of triangles in a chain
must alternate. So there can be at
most one white triangle more than
colored ones. Thus, at least n— 1 white
triangles do not belong to any chain.

(a) Denote the area of any triangle
XYZ by S(XYZ). Since the ratio of the
area of two triangles with the same
altitudes (with respect to their bases)
is equal to the ratio of their bases (with
respect to their altitudes), it’s easy to
see that

S(ACK) =%S(ABK) = k;—ZIS(AEK)

k+1 k

=KL _guEc)=—*—suso).
Bik+1 Btk+1
Similarly,
S(BLA)=S(CMB)=——%—s(4BC).
kK+k+1

Thus,

SKLM)_ | 3k _ (1=K’ _(1-K’
SABC)  K+k+1l KB+k+l 1-K

(b) Note that if k = 1/2, the above ra-
tioisequal to 1/7 and each of the seg-
ments AF, BG, CEis split by the two
others in the ratio 3:3:1. If you draw
lines through points K, L, M parallel to
the segments AF, BG, CE, every side
of triangle ABC will be split in the
ratio 2:1:1:2.

Now it isn’t difficult to compose 7
equal triangles from the 13 parts shown
(fig. 3). (One of these 7 triangles is
merely triangle KLM).

Let’s combine the figures from the
problem into a new figure (fig. 4 be-
low). From an arbitrary point A on the
ship’s route we drop a perpendicular
onto the boundary of the disturbance
region in the stretch where there is no
curent. The length of the perpendicu-
lar (AB or AB') determines the dis-
tance traversed by the wave during the
time the ship traveled the distance
AO. Thedistance BC (or B'C') deter-

Figure 2
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mines the drift of the disturbance re-
gions’s boundary due to the current
during the same interval of time. Hence,
the ratio BC/AO (or B'C'/AQO) deter-
mines the ratio of the current’s veloc-
ity v to the ship’s velocity v,. From
the figure we find v/v,:1/5::v:3.6
km/h.

In order to explain what occurs with
sand on a riverbank, we’ll begin with
some background on “close packing.”
Identical balls can be placed on a plane
so that each of them touches six other
balls. We can create anotherlayerby
placing balls in the spaces between
balls in the first layer. Each of them
will touch three balls in the lower
layer and six balls in its own layer, and
soon. The arrangement obtained in
this way is called close packing of the
balls. If we disturb the close packing
by takingballsin onelayer out of the

Figure 4

spaces between balls in the lower layer,
the gaps between the balls will grow.
The volume of the whole system will
also increase. This means that if a
system of closely packed balls is acted
upon by forces leading to a distur-
bance of the close packing, the vol-
ume of the system increases because
the gaps between the balls increase.
Any granular medium behaves like
this. Take, for example, millet grains
(or coffee beans), fill a glass with them,
and shake it slightly so that the grains
form the closest possible packing, Then
press the grains. The pressure will
cause an increase in the volume occu-
pied by the grains—that is, it will dis-
turb the close packing. Some of the
grains will pour out. If we now tap the
glass so that the grains become closely
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packed again, the glass will not be
filled to the brim.

Now let’s return to the sand on the
riverbank, which is also closely packed.
When pressure is exerted on the sand,
the close packing is disturbed and the
volume of the sand grows because of
an increase in the gap between the
grains of sand. Water from the upper
layers of sand moves deeper down,
filling the increasing gaps. The sand
seems to dry out. When you remove
your foot the close packing is restored,
and the water forced out of the re-
duced gaps fills the footprint.

Along with evaporation, condensa-
tion also occurs. The evaporation rate
in both cases (r, = 50% and r, = 80%] is
the same—it depends only on the
temperature of the liquid. But the
condensation rate is proportional to
the concentration of vapor molecules
in air—that is, it’s proportional to the
relative humidity; so it’s higher in the
second case than in the first.

Obviously, the rate of decrease of
waterinthesaucerisv, =v -v (v v,
are the rates of evaporation and con-
densation). At 100% humidity v =v.

Taking into account all that has
been said, we may write:

atr, =50%,v,=v, -v, =1/2v ;
atr,=80%,v,=v -v,=1/5v,

Since t,: t, : v, : v, the time ¢, during
which water would evaporate at r, =
80% isequalto

t,=v,t,/v,=5/2t =100 min.

171
Note: If the air convection over the surface
of the liquid is insufficient, a layer of
saturated vapor forms near the surface and
the rate of water decrease will be lower. In
our solution we have ignored this effect.

Taking into account the relation be-
tween the capacitance, voltage, and
charge of a capacitor, we can write the
following equations for the three ca-
pacitors:

0,~9,=4,/C,,
(pB_ (po = qZ/CZ/
Opr—Ps= Q3/C3/

where C,, C,, C, are the capacitances
of the corresponding capacitors and
q, 4, 4, are the charges on their
plates. According to the law of charge
conservation, g, + g, + g, = 0; hence,
the potential of the common point O
is
9, = 9,.C, +9,C, + 0, C;.
C +C,+C,

The refraction index of glass and,
consequently, the focal distance of a
lens depend on the wavelength of the
radiation. By selecting the shape and
material of the lens and the optimum
distance to the film plane, we practi-
cally exclude blurring when we pho-
tograph using visible light. But when
ultraviolet rays fall on film, blurring
occurs because the refraction index
for ultraviolet light differs from the
index used in designing the lens. To
overcome this deficiency, photogra-
phers use filters that eliminate the ul-
traviolet component. For the same
reason some lenses have a separate
scale marked on them for photograph-
ing in the infrared range.

Figure

Brainteasers

Join two of the star’s adjacent verti-
ces—say, A and E (fig.5). Since the
angles at M of triangles AME and BMD
are congruent, the sum of the angles B
and D of triangle BMD equals the sum
of the angles A and E of triangle AME;
but then the total sum of angles at the
vertices of the star is equal to the sum
of the angles of triangle ACE—that is,
180°.



B2

There are two such numbers: 41312432
and 23421314.

The solution is shown in figure 6. You
first determine that the numbers 1
and 8 must be put in the middle (since
they are each joined to 6 other circles);
then the position of the numbers 2 and
7 can be uniquely determined; then
the number 3 and the others can be

Figure 6

placed. (Obviously, the solution can
be flipped along its vertical axis, in
which case the outer pairs 3-5 and 4-6
would swap positions.)

The clock keeps time correctly, but
the minute hand is slightly loose on
its spindle—it can move freely 2 min-
utes from its correct position. Under
the action of the force of gravity, the
minute hand always stays below its
correct position. In the left half of the
clock dial, this makes the clock two
minutes slow; in the right half, two
minutes fast.

If lines parallel to the sides of the
triangle are drawn through the chosen
point, pairs of congruent triangles of
different colors are formed (figure 7).

Figure 7

SOLUTION TO COVER PROBLEM

Figure 8 shows the diagonal section of the cube with inscribed spheres.
Triangles O,0,M, and AO D, are similar. So are triangles O,0,M, and AOD,
andsoon. Notealsothat AO =3 0,D,=r,=1;and 0,0, = £ +1,0,0,=1,
+1,,and so on. Therefore,

0102=AO1 3 0302 _ AO1 < o/ (1)
OIM1 01D1 OZMZ 01D1
or
T tr, 3 141, V3
r-r e e (2)
-+ B
C
Figure 8
From (2)we get

LoVl VBl =[\/?—1Tr _

2 V3+1 V3 VB2 W3kl Y

We can continue this process indefinitely. Therefore,
{ \/—3_ 1 J1990
vV 3+1 '

"l990~

The sum of all diameters can be found by using the formula for the sum of an
infinite geometric progression with the factor Iql < 1; that is,

d
z-4

where
VvV 3-1
\/§+1'

Of course, the same result can be obtained without any calculations by simply
realizing that the infinite series of diameters will converge to half of the cube’s
diagonal plus the radius of the first sphere.

d1=2, q:
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CHECKMATE!

Invincible Mephisto

A devilishly good computer chess program

byY. Gik
HE G6TH WORLD CHAMPIONSHIP with commentary on the the more 36. Rdl-el Rb8-d8
for microcomputer chess was held  interesting episodes in the games. 37. Rc6-c8 Rd8-d2
in Rome, where for the first time 38. Bf5-h3 g7-86
the computer crown was decided i —Cnhi 39. c3-c4 Rd2-b2
in tournament play. Three copies of Mem“sm A slmmx A 40. c4-c5 Kg8-g7
Richard Lang’s renowned Mephisto, a English Opening 41. Rc8-c7 Nf8-h7
three-time world champion, consti- 1. c2-c4 e7-e5 The correct moves would have been
tuted one team; three copies of D. 2. Nbl-c3 Ng8-f6 41. ... Nf8-e6! 42. Bh3xe6 Rb2xg2
Levy’s less well known Sphinx made 3. Ngl-f3 Nb8-c6 stalemate.
up the other. 4. e2-e3 Bf8-e7 42. {3-f4 Nh7-t6
The competition raged through six 5. d2-d4 e5xd4 43. c5-c6 Nf6-d5
rounds—the three Mephistos (A, B, 6. Nf3xd4 0-0 The activity of the black pieces
and C) played the three Sphinxes (also 7. Bf1-d3 Nc6-e5 compensates for the lack of a pawn.
A, B, and C) in two games each: white 8. e3-e4 Be7-c5 Mephisto, though, is carrying out an
and black. The results were disap- 9. Bd3-e2 Bc5-b4 exchange combination, preserving its
pointing for the Sphinxes—the Me- 10. Bcl-g5 h7-h6 chances for success.
phistos won all six rounds and gar- 11. Bg5xf6 Bbdxc3+ 44. Re7x{7+! Kg7x{7
nered the crown for the fourth straight 12. b2xc3 Qd8xf6 45. Bh3-e6+ Kf7-f6
time. 13. Nd4-b5 Qf6-g6 46. Be6xd5 Ra2-a7
Alongwith the basic competition 14. 0-0 Qgbxed 47. g2-g3 Rb2-d2
in Rome another battle was taking 15. Nb5xc7 Ra8-b8 48. Bd5-£3 Ra7-a2
place, a sort of “junior world champi- 16. Nc7-b5 b7-b6 49. Bf3-e4 Ra2-a4
onship.” Seven programs for personal 17. Nb5-d6 Qed-c6 50. Rel-cl Radxed
computers participated in a round- 18. Qd1-d5 Ne5-g6 51. c6-¢c7 Red-e8
robin tournament. The winner—Psion 19. Be2-f3 Qcb6-c5 52.c7-¢8Q Re8xc8
Chess; its creator—Richard Lang again. 20. Ral-dl Bc8-a6 53. Relxc8 Rd2-d1+
It's interesting that, despite his great 21. Rfl-el Ng6-f4 54. Kgl-g2 Rd1-d2+
expertise in computer science, Lang is 22. Qd5xc5 b6xc5 55. Kg2-h3 hé-h5
anything but an “absent-minded pro- 23.Rel-e7 Rb8-b2 56. Rc8-cl Kf6-f5
fessor.” Between computer competi- 24, a2-ad Nf4-g6 57.Rcl-hl Rd2-d3
tions he runsin marathons, and does 25. Re7xd7 Ng6-€5 Simplest of all would be to force a
quite well atit. 26. Rd7xa7 Ba6xc4 draw: 57. ... gb-g5. Now white’s
Here are some samples of com- 27. Nd6xcd Neb5xcd efforts are crowned with success.
puter play at the Rome tournament 28. Ra7-c7 Rb2-a2 58. Kh3-h4 Rd3-d2
29. Bf3-d5 Ra2xad 59.h2-h3 Kf5-f6
" i 30. Re7xc5 Ncd-b6 60. g3-g4 RA2-£2
_= = 31. Bd5-b3 Rad-a7 61. Kh4-g3 Rf2-c2
32. Re5-¢6 Nb6-d7 62. Rhl1-bl Rc2-c3+
33. 2-f3 Rf8-b8 63. Kg3-h4 Rc3-c5
e L w N 34. Bb3-c2 Ra7-a2 64. Rbl-b6+ Kf6-f7
NN RN EEN 35. Bc2-£5 Nd7-8 65. f4-f5 g6xf5
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66. g4-g5 Kf7-g7
67. Khdxh5 Rc5-¢7
68. h3-h4 Rc7-a7
Black resigns.
Plimat—Cirrus
Sicilian Defense
1. e2-e4 c7-c5
2. Ngl-f3 Nb8-c6
3. d2-d4 c5xd4
4. Nf3xd4 Ng8-f6
5. Nbl-c3 d7-d6
6. Bcl-g5 e7-e6
7. Qd1-d2 a7-a6
8. 0-0-0 Bc8-d7
9. 12-f4 Bf8-e7
10. Nd4-f3 b7-b5
11. ed-e5 b5-b4
12. e5xf6 b4xc3
13. Qd2xc3 g7xt6
14. Bg5-h4 d6-ds
15. Kcl-bl 0-0
16. Nf3-d4 Nc6xd4
17. Qc3xd4 Kg8-h8
18. g2-g4 a6-a5
19. g4-g5 Qd8-c7
20. Rd1-d3 Rf8-b8
21. Rd3-b3

Black’s position contains some dan-
gers, but it suddenly finds a way of
forcing a draw.
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=8 % TN/ A 2
=’ i 2 Wh .
[ ] =
R . %
- v F—

)
e

-
bt
[&

=) \\E /7.

(twenty-first game) against Korchnoi,
Karpov chose 10. ... Rf8-e8; at Merano
in 1981 (eleventh game), he selected
10. ... Bc5-€7. And the rook move to d8
has frequently been seen in actual
games. The standard reaction by white
is 11. Nf3-d2, while advancement of
the pawn b2-b4 has never been exam-
ined in theory. Nevertheless, the

Yet another blunder (24. ... Ra8-b8
would have been better), allowing white
to solidly take control of the c-file.
White flawlessly plays through to the
end.

25. Bfl-a6! Bf7-e6
26. 0-0 Rd8-d7
27. Re7xd7 Be6xd7
28. Rfl-cl Bd7-e8
29. Rel-c7 Kg8-f8
30. g2-g3 h7-h5
31. h2-h4 g7-86
32. Kgl-f2 Be8-f7
33. Kf2-e3 Bf7-b3
34.13-f4 e5xf4
35. Ke3xf4 Bb3-e6
36. Kf4-g5 Be6-£7
37. Kg5-16 Bf7-b3
38. Kf6xgb Ra8-e8

Black finally wakes up and brings
the rook into play, butit’s too late.

39.
40.

41

42.
43.
44,
45.
46.
47.

48

Rc7xa7
Kg6xh5
. Kh5-g5
Ra7-a8+
Ba6-b7
Bb7xa8
h4-h5
h5-h6
Ba8-c6
. Bc6-e8
. Be8xb5
. Bb5-e8
. Be8-gb6
. h6-h7

Black resigns.

Re8xe4
Red-a4
Bb3-c4
Kf8-e7
Radxa8
Bce4-d3
Ke7-e6
Ke6-e5
Bd3-h7
b6-b5
Ke5-e6
Ke6-e7
Bh7-g8

Chet—Kempelen

Incorrect Opening

To close, here’s an amusing ex-
ample of how a person can still count
on an electronic opponent to make a
mistake.

21. ... e6-e5! future “junior world champion” chooses
22. Qd4xd5 Bd7-c6 this very move, and its debut brings
23. Qd5-c4 Qc7-d8 Success.
24. Rb3-d3 Qd8-b6 11. b2-b4!? Nc6xb4
25. Rd3-b3 Qb6-d8 12. a3xb4 Bc5xb4
26. Rb3-d3 Qd8-b6 13. Rdl-cl Nf6-e4
27. Rd3-b3 Qb6-d8 14. Bf4-e5 7-f6
Draw. 15. Be5-d4 e6-e5
Everything is being forced. Black is
Psmn ﬂhﬂsS—P"mﬂ[ winning back a piece and will be left
. . with an extra pawn. Yet, incredibly,
Queen's Gamit the ensuing endgame eventually works
1.d2-d4 Ng8-16 out in white’s favor!
2. c2-c4 e7-e6 16. Nif3xe5 Nedxc3
3. Nbl-c3 Bf8-b4 17. Bd4xc3 f6xe5
4. Qdl-c2 c7-c5 18. c4xd5 Bc8-f5
5. d4xc5 0-0 19. Bc3xb4 Qab5xb4+
6. Ngl-f3 Nb8-c6 20. Qc2-c3 Qb4xc3+
7. Bcl-f4 Bb4xc5 21. Reclxc3 Bf5-e4
8. e2-e3 d7-d5 22. f2-£3 Bedxd5
9. Ral-dl Qd8-a5 23. e3-¢e4 Bd5-£72
10. a2-a3 Rf8-d8 An unforgivable error. Black had

1.d2-d4 7-5

2. h2-h3 Ng8-6
3.g2-g4 f5xgd
4. h3xg4 Ni6xgd
5. Qd1-d3 Ng4-16
6. Rhixh7 Nf6xh7
7. Qd3-g6#

This exchange of moves produced
a well-known position, one that oc-
curs in world championship matches.
(Bravo, computers!] At Bagio in 1978

been confidently engaged in tactical
skirmishing; 23. ... Bd5-c6 would have
solidified its clear advantage.

24. Re3-¢7 b7-b6?




During the War‘m‘ 1812, the warships Hamilton énd the Scourge sank in a sudden

squaﬁ onlLake Ontano Thns sprmg Woods Hole scientist Dr. Robert Ballard will lead

Advancesintechnology have resulted inanew iype
of communication link between JASON and its
surface vessel—fiber optic cable and a modu-
lated laser. The fibers of ultra-pure glass
n transmit 100 million bits of digitized
data per second as opposed to just over
~ahundred thouéandbits per second that ‘

'canbe transmttted through copper cable




