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vii

Foreword

Science.as.inquiry.has.been.at.the.forefront.of.science.education.reform.
since.the.mid-1990s .Curricular.standards,.instructional.materials,.and.
authentic.assessments, coupled.with.the.National.Science.Teachers.As-

sociation’s. continuous. support. for. inquiry-based. science,.have. significantly.
raised.the.profile.of.science-as-inquiry.in.secondary.school.classrooms .

Even. today,.however,. the.phrase. science as inquiry continues. to.conjure.up.
multiple.meanings.and. images.of.practice .Although.the.science.education.
community.recognizes.inquiry.as.a.centerpiece.of.science.teaching.and.learn-
ing,.many.teachers.are.still.striving.to.build.a.shared.understanding.of.what.
science.as.inquiry.means,.and.at.the.more.practical.level,.what.it.looks.like.in.
the.classroom 

In.the.NSF.Foundations.series.monograph.(2000),.Inquiry: Thoughts, Views, 
and Strategies for the K–5 Classroom, experts.in.the.field.of.elementary.inquiry.
science.shared.their.insights.and.experiences.about.inquiry-based.science.in.the.
early,.formative.years .This.monograph.became.a.widely.used.resource.to.help.
elementary.science.educators.introduce,.implement,.and.sustain.inquiry.con-
tent.and.practices.in.their.K–5.schools,.classrooms,.and.preservice.programs .

Now,.with.Science as Inquiry in the Secondary Setting,.we.have.a.full.picture.
of.K–12. inquiry .Science as Inquiry in the Secondary Setting moves.beyond.
“inquiry.science.rhetoric”.and.connects.school.science.to.authentic.charac-
teristics.of. the. scientific. community .Addressing. the. critical. importance.of.
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viii Science aS inquiry in the Secondary Setting

a.high-quality.secondary.science.education,. this.book.brings. inquiry-based.
teaching.and.learning.together. in.a.conceptually.and.strategically.powerful.
way .The.authors.are.not.just.armchair.theorists .Their.work.and.research.are.
grounded.in.teachers’.classrooms,.and.the.rich.vignettes.and.examples.they.
include.help.the.reader.make.connections.between.the.information.presented.
and.what.it.looks.like.in.practice .

Whether.you.have.already.begun.your.journey.into.teaching.science.through.
inquiry.or.are.just.starting,.you.will.find.this.book.to.be.a.welcome.catalyst.
for.your.professional.growth .Although.individuals.can.gain.considerable.new.
knowledge.by. reading. this.book.on. their.own,.powerful.new. learning.will.
result.when.the.book’s.chapters.are.shared.through.discussion.with.fellow.sci-
ence.educators.at.all.levels,.including.preservice.teachers,.inservice.teachers,.
and.those.who.educate.teachers.of.science .Professional.learning.communities.
will.find.this.book.to.be.an.excellent.resource.to.provoke.thinking.and.stimu-
late.conversation.in.collaborative.settings .Reading.chapters.at.regular.inter-
vals.and.coming.together.as.a.learning.community.to.discuss.implications.for.
improved.teaching.and.learning.can.stretch.teachers.in.thinking.beyond.their.
current.practice,.stimulate.growth.and.renewal,.and.help.jump-start.future.
and.new.teachers.in.the.early.stages.of.their.careers .

By.moving.away.from.the.isolation.of.individual.classrooms.toward.support-
ing.science.classrooms.in.which.all.students.in.a.middle.or.high.school.are.
actively.engaged. in.authentic.science. learning,. teachers.will. see.measurable.
scores.of.skills.and.knowledge.increase .Just.as.important,.they.will.see.their.
students’. deeper. engagement.with,. interest. in,. and. appreciation.of. science.
grow.and.flourish 

Get.ready.for.an.intellectually.inspiring.and.challenging.experience.as.your.
journey. into. inquiry. either. begins. or. continues. with. this. book .Whatever.
your.level.of.teaching.experience.and.wherever.you.or.your.professional.learn-
ing. community. chooses. to. start. in. this. book,. each. chapter. will. challenge.
you.to.think.about.your.own.beliefs.about.learning,.teaching.practice,.and.
students.in.new.ways—ways.that.will.ultimately.help.all.students.to.succeed.
in.school.and.in.life 

—Page.Keeley.
....NSTA.President-Elect.2007–08

....Science.Program.Director,
....Maine.Mathematics.and.Science.Alliance
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Preface

Science as Inquiry in the Secondary Setting.and.its.companion.volumes,.Tech-
nology in the Secondary Science Classroom.(now.available.from.the.Nation-
al.Science.Teachers.Association.[NSTA]).and.Science Education Reform in 

the Secondary Setting.(in.development.at.NSTA),.have.a.long.and.interesting.
history .The. ideas. for. these.books.emerged. from.our.work.with. secondary.
science.teachers,.supportive.program.officers.at.the.National.Science.Founda-
tion,.and.the.science.education.community,.which.is.always.seeking.a.con-
nection.of.theory.and.practice .In.order.to.ensure.that.these.books.were.con-
nected.to.each.of.these.stakeholders,.we.adopted.a.writing.plan.that.involved.
representatives. from. all. three. groups . We. considered. novel. approaches. to.
identify.and.support.science.teachers.and.science.educators.to.participate.in.
the.project,.and.we.sought.guidance.from.program.officers.about.the.format.
and.dissemination.of.the.final.product 

To.begin.with,.we.identified.three.topics.of.interest.to.both.science.teachers.
and.science.educators—science.as.inquiry,.educational.technology,.and.sci-
ence.education.reform .We.wanted.the.community.of.science.educators.to.
help.define.the.content.of.each.book,.so.we.solicited.chapter.proposals.from.
science. teachers. and. science. educators . The. response. was. impressive,. with.
over.50.chapter.proposals.submitted.for.the.three.books .Our.selection.of.the.
chapters.was.based.on.the.clarity.of.the.topic,.the.type.of.idea.presented,.and.
the.importance.of.the.topic.to.science.teachers .
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x Science aS inquiry in the Secondary Setting

Chapter.authors.were.then.asked.to.generate.a.first.draft .These.chapters.were.
shared.among.the.authors.of.their.respective.books.for.review .We.met.as.a.
group.at. the.annual.meeting.of. the.Association.of.Science.Teacher.Educa-
tors,. in.Portland,.Oregon,. to.discuss.and.provide. feedback. to.one.another.
on.our.chapters .This.session.was.extremely.useful,.and.several.of.the.authors.
returned.to.their.chapters,.ready.for.another.revision 

Once.the.second.revision.was.complete,.we.wanted.to.draw.on.the.expertise.
of. science. teachers,.whom.we. felt. should.ground. this.work .We.contacted.
NSTA.and.placed.a.“call.for.reviewers”.in.their.weekly.electronic.newsletter .
Over.200.teachers.offered.to.review.our.chapters .Reviews.were.shared.with.
the.chapter.authors 

The.second.revision.was.also. shared.among.the.authors.within.each.book .
Each.author.now.had.external.reviews.from.teachers,.as.well.as.reviews.from.
other.authors .To.discuss.these.reviews.and.the.final.revision.of.the.chapters,.
we.met.one.more.time.at.the.annual.meeting.of.the.National.Association.for.
Research.in.Science.Teaching,.in.San.Francisco,.California .At.the.conclusion.
of.this.meeting,.chapter.authors.were.ready.to.write.their.final.versions 

When.the.chapters.were.completed.and.the.books.were.in.a.publishable.for-
mat,.we.approached.NSTA.about.publishing.them.both.in.print.and.online,.
so.that.they.would.reach.as.many.teachers.as.possible .NSTA.has.historically.
offered. one. chapter. of. a. book. for. free,. but. the. opportunity. to. break. new.
ground.by.offering.each.chapter.of.this.book.free.online.would.be.new.pub-
lishing.territory .Of.course,.paper.copies.of.each.book.are.available.for.pur-
chase,.for.those.who.prefer.print.versions .We.also.asked,.and.NSTA.agreed,.
that. any. royalties. from.the.books.would.go. to.NSTA’s. teacher. scholarship.
fund.to.enable.teachers.to.attend.NSTA.conferences 

This.process.has.indeed.been.interesting,.and.we.would.like.to.formally.thank.
the. people. who. have. been. helpful. in. the. development. and. dissemination.
of.these.books .We.thank.Carole.Stearns.for.believing.in.this.project;.Mike.
Haney.for.his.ongoing.support;.Patricia.Morrell.for.helping.to.arrange.meet-
ing.rooms.for.our.chapter.reviews;.the.100+.teachers.who.wrote.reviews.on.
the.chapters;.Claire.Reinburg,.Judy.Cusick,.and.Andrew.Cocke.of.NSTA.for.
their.work.on.these.books;.Lynn.Bell.for.her.technical.edits.of.all.three.books;.
and.the.staff.at.NSTA.for.agreeing.to.pilot.this.book.in.a.downloadable.for-
mat.so.it.is.free.to.any.science.teacher .

—Julie.Luft,.Randy.L .Bell,.and.Julie.Gess-Newsome
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8Scientific Inquiry: The Place of 
Interpretation and Argumentation
Stephen P. Norris, University of  Alberta
Linda M. Phillips, University of  Alberta
Jonathan F. Osborne, King’s College of  London

Secondary school students typically believe that scientific inquiry begins 
with a direct observation of the natural world and that scientific laws and 
theories become apparent from these observations. Many students even 

believe that scientific evidence is conclusive only if it is directly observable. 
We know, however, that scientific observation is an interpretation of nature 
rather than a direct reading and that the movement from observation to laws 
and theories involves enormous mental and physical effort and resources. Stu-
dents come by their overly simple view of science from a variety of sources, 
including science trade books (Ford 2006) and their textbooks.

This chapter suggests how secondary school science education can offer a 
more accurate picture by emphasizing the role of interpretation and argu-
mentation in scientific inquiry. Interpretation is concerned with questions of 
meaning and explanation. Argumentation is concerned with justifications of 
what to conclude and what to do. We provide an extended example demon-
strating strategies for making interpretation and argumentation more central 
to science instruction. We begin, however, with a shorter example to illustrate 
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88 Science aS inquiry in the Secondary Setting

how the simple view of science is connected to a general misconstrued under-
standing of learning as itself simple—as a process of locating information and 
memorizing facts. Learning, in this view, is like a conduit, carrying informa-
tion unobstructed from one person to another. On the contrary, however, all 
communication is fraught with complexities of comprehension and under-
standing (see Reddy 1979).

The Simple View of  Learning
Certain common testing practices illustrate well the simple view of learn-
ing. Try the following example that mimics standard tests of reading com-
prehension. Read the passage and answer the multiple-choice questions 
that follow.

Quantum Damping

We assumed that the atomic energy levels were infinitely sharp 
whereas we know from experiment that the observed emission and 
absorption lines have a finite width. There are many interactions 
which may broaden an atomic line, but the most fundamental one 
is the reaction of the radiation field on the atom. That is, when 
an atom decays spontaneously from an excited state radiatively, it 
emits a quantum of energy into the radiation field. This radiation 
may be reabsorbed by the atom. The reaction of the field on the 
atom gives the atom a linewidth and causes the original level to be 
shifted. This is the source of the natural linewidth and the Lamb 
shift. (Louisell 1973, p. 285)

1. The underlined word decays means: A. splits apart, B. grows small-
er, C. gives off energy, D. disappears.

2. According to the passage, observed emission lines are: A. infinitely 
sharp, B. of different widths, C. of finite width, D. the same width 
as absorption lines.

3. According to the passage, the most fundamental interaction that 
may broaden an atomic line is: A. the Lamb shift, B. the action of 
the atom on the radiation field, C. the emission of a quantum of 
energy, D. the reaction of the radiation field on the atom.

4. It can be inferred that when an atom decays it may: A. return only 
to a state more excited than the original one, B. not return to its 
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89chapter 8: interpretation and argumentation

original excited state, C. return to its original excited state, D. re-
turn to a state less excited than the original one.

5. It can be concluded from the information in this passage that the 
assumption that atomic energy levels are infinitely sharp is: A. 
probably false, B. false, C. true, D. still under question.

 The correct answers are found at the bottom of this page. 

How did you do? Almost everyone who has taken this little test has per-
formed well. 

So what is the point? If we constrain learning to the simple view, we must con-
clude that everyone who performed well on the test learned from reading the 
passage. They were able to locate information in the text, isolate facts, and answer 
various inferential questions. Yet, there is a problem with this conclusion. Except 
for a few, including perhaps some of you, most people who have taken this test 
do not have the faintest idea what the Quantum Damping passage means. 

Performing well on such items—which mimic many items that students face in 
school—does not imply understanding or learning, because all they test is word 
recognition and information location. Teaching according to the simple view of 
learning gives credit for performance that does not require the deep understanding 
that educators wish students to achieve in science education. As a consequence, 
students receive an inflated assessment of their ability in science, learn to believe 
that science does not have to make sense, and acquire a simple view of science.

The purpose of this chapter is to show how student understanding of science 
concepts can be enhanced through concerted attention to interpretation and 
argumentation, which are at the core of scientific inquiry.

Interpretation and Argumentation
Interpretation and argumentation are complementary aspects of scientific 
inquiry. We are each required to engage in interpretation whenever we wish 
to go beyond the plain and obvious meaning of something. Interpretation 
requires judgment and is one of the defining features of inquiry. 

Interpretation is iterative. It proceeds through a number of stages, each aimed 
at greater refinement: 

1-C; 2-C; 3-D; 4-C; 5-B
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90 Science aS inquiry in the Secondary Setting

•	 Lack of understanding is recognized.

•	 Alternative interpretations are created.

•	 Available evidence is used and new evidence is sought as necessary.

•	 Judgment is suspended until sufficient evidence is available for 
choosing among the alternatives.

•	 Interpretations are judged and, when necessary, modified or dis-
carded.

•	 Alternative interpretations are proposed, sending the process back 
to the beginning. 

Interpretation is also interactive. It involves a back-and-forth movement be-
tween evidence, the interpreter’s background knowledge, existing interpreta-
tions, and emerging interpretations. Progress is made by actively imagining 
new representations of the world—not as it is but as it might be—and then 
negotiating what is imagined against the evidence and existing background 
knowledge.

Finally, interpretation is principled. The principles are used to weigh and bal-
ance conjectured interpretations against the evidence and accepted science. 
Striving for completeness and consistency are the two main principles. Nei-
ther principle is enough by itself, and both must be used in tandem.

Because the meaning of scientific data can never be read directly, any interpre-
tation must be justified with an argument. In the sense we intend, argumen-
tation is the attempt to establish or prove a conclusion on the basis of reasons. 
A conclusion, in this context, is not simply the end of something; rather, it is 
a proposition someone is trying to support. Reasons is the most general term 
for the support offered for conclusions. In science, the term evidence is often 
used, especially when the support is provided by data. 

However, scientists also provide reasons for what research to pursue, for which 
data to collect, and for which procedures to use. Moreover, they frequently 
offer logical arguments for conclusions. Galileo, without appeal to evidence, 
argued that it is logically inconsistent to claim that heavier objects because 
of their natures fall at a faster rate than lighter objects. Einstein, also without 
appeal to evidence, argued that it is logically inconsistent to hold that all ob-
servers, regardless of their relative motion, would make the same judgments 
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91chapter 8: interpretation and argumentation

about the simultaneity of events. In these latter cases, reasons, not data, were 
brought to bear. 

Within the framework of this chapter, an argument is not a dispute. Ar-
gumentation, like interpretation, is a defining feature of scientific inquiry 
(Driver, Newton, and Osborne 2000). Both can be learned with the right 
experience.

The Experience Needed
From time to time during their secondary school science education, students 
need to experience extended inquiries. The aim of these experiences is to show 
the difficulty and complexity of reaching scientific conclusions. The activities 
we contemplate emphasize a depth of understanding over a breadth of under-
standing. Students are asked to linger on a topic, to resist closing off investiga-
tion too quickly, and to learn to be more skeptical and less credulous. General-
ly, they are to attend closely to the reasoning behind scientific understandings 
and to the interpretation and argumentation involved in securing them.

Extended inquiries can take several forms. In one sort of inquiry, students 
explore a scientific question starting from its inception, through the research 
design, data collection, and analysis, to the write-up and presentation of the 
results. These sorts of inquiries can be valuable, especially when the questions 
explored come from the students. The approach we describe differs in that it 
focuses on historical science and questions already settled. The inquiry relies 
on the teacher making salient for the students the question “How did we come 
to be so sure?” Students need to feel perplexed, as described in Chapter 4.

The lessons from such activities can be particularly valuable if the conclu-
sion in question is one that students take for granted. These lessons include 
the following:

•	 Plants grow by capturing light energy and converting it to chemi-
cal energy in a process called “photosynthesis.” 

•	 Much of what is now dry land was once under the oceans.

•	 The heart is a pump that circulates blood throughout the body.

•	 Water is a compound, each molecule of which is composed of two 
hydrogen atoms and one oxygen atom. 
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92 Science aS inquiry in the Secondary Setting

For each of these conclusions, ready sources of data are available, either through 
students’ own experience, observations, or experiments possible in the high 
school classroom. However, none of the conclusions is self-evident and argu-
ments must be constructed to justify all of them.

In summary, conditions conducive to showing the place of interpretation and 
argumentation in scientific inquiry are found in extended activities that

•	 Emphasize depth over breadth.

•	 Promote skepticism and challenge credulity.

•	 Examine everyday and cherished beliefs.

•	 Have data readily available.

•	 Can use data from students’ observations and experiments.

An Example of  Extended Inquiry
The following is an example of such an activity that builds on the question 
“Why do we experience day and night on Earth?” A teacher who introduces 
this as a question in the secondary classroom must first convince students 
that the question is meant as genuine. Likely, students will produce a quick 
and certain response that they learned in elementary school: “Day and night 
are caused by the spinning Earth.” You can initiate argumentation by asking 
something like “How do you know?” or “What makes you so certain of your 
knowledge?”

Students may provide responses that are legitimate appeals to authority: “My 
science textbook in eighth grade said so” or “Our teacher two years ago told 
us this was the reason.” However, the point of scientific inquiry is to get stu-
dents to wonder about the basis for what they know. You could keep the argu-
ment alive by asking the students why they believe the textbook or how their 
former teacher could know the answer, but we recommend another route.

Begin by asking students whether the answer is as self-evident as it seems. 
After all, during the course of a day, which appears to move—the Sun or the 
Earth? At this point you have a number of possible routes to follow. The class 
could be divided into two or more groups, each charged with mustering the 
most solid case they can for the conclusion. Alternatively, you could facilitate 
a whole-class discussion. In either arrangement, a good place to start is with 
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possible answers to the question. Begin by asking students to imagine that 
they do not know what causes day and night—indeed that nobody knows 
the answer. Ask them to think what might be its cause and what evidence and 
reasoning they can assemble to support their answer. To do that they have to 
start with conjectures.

Conjectures
Conjectures are interpretations held tentatively. The mode of thinking in-
volved in conjecturing is central to science: “If such-and-such were the case, 
would that explain the phenomenon?” This form of suppositional thinking 
is hardly ever easy. To the question of what causes night and day, secondary 
students should be able to imagine the two historical rivals: (1) the Earth 
spins, making a complete revolution each 24 hours, thus over the course of 
a day exposing varying parts of its surface to the Sun; and (2) the Sun orbits 
the Earth once per day, thus shining its light on different parts of the Earth’s 
surface as it does so. 

However, the phenomenon of day and night itself is not so cut and dried. Not 
all days are of equal length; in most places, days are longer in summer, shorter 
in winter, and in-between lengths in the fall and spring. Further complicating 
the phenomenon is that the longest days in the Northern Hemisphere cor-
respond to the shortest ones in the Southern Hemisphere and vice versa. 

Now the interpretive questions become:

•	 If the Earth were spinning, what would cause days of different 
length?

•	 If the Sun were orbiting the Earth, what would cause days of dif-
ferent length?

•	 What in each model would lead to differences between the two 
hemispheres? 

These questions are more difficult to answer, because models that will pro-
duce the effects are not easy to imagine. It is important in this phase to help 
students reflect on what they are doing. They are making tentative interpre-
tations. They are involved in creating ideas and judging whether they could 
explain the phenomenon of day and night. They are holding in abeyance a 
decision on the truth of those ideas while they pursue available evidence and 
judge its relevance.
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Relevance
Before the investigation can go much further, the issue of what is relevant 
must be addressed. A lot is known, but only some of it is pertinent to the 
question of why there is day and night. You have considerable discretion 
about when to bring new facts into play. However, it is important to have a 
number of potentially relevant facts at hand in order to introduce them in a 
timely fashion as provocations and to sustain the argument. Here are some 
such facts as an illustration:

•	 The stars appear to move in a counterclockwise circular direction 
around Polaris as the approximate center.

•	 There is seasonal change in the Sun’s altitude at noon and in its 
daily duration in the sky.

•	 There are monthly phases of the Moon.

•	 Seasonal transition times vary: spring to summer, 92 days; summer 
to fall, 94 days; fall to winter, 90 days; winter to spring, 89 days.

Relevance is sometimes difficult to judge, but it is a crucial judgment scien-
tists need to make; otherwise, they will be inundated with more informa-
tion than they can possibly handle. Students need to learn that judgments 
of relevance are part of the process of scientific inquiry, and students require 
practice making them. 

Consider the fact that the stars appear to rotate around one fixed star, and 
imagine students’ judging its relevance to the question. Your role is to frame 
the issue: “Is the fact relevant to the question of what causes night and day? If 
it is, why? If it is not, why not?” Students are asked not only to make a judg-
ment, but to defend it with reasons. 

The demand to provide reasons is what motivates arguments. Students may 
say that this fact is relevant, because if the Earth were spinning, then the stars 
would appear to turn. So the fact is evidence that the Earth is spinning. Your 
role now is to push for deeper thought: “If the Earth were spinning, wouldn’t 
you land on a different spot when you jumped straight up? What would hap-
pen if you jumped straight up in an airplane?” The aim in asking these ques-
tions is to bring the students to understand that some evidence (where you 
land when you jump) is irrelevant to deciding whether the Earth is spinning, 
because it stands neither for nor against the conjecture.
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Evidence
A point that should be made clear to students is that evidence is created 
through arguments such as those just considered. Evidence is not simply 
found. It is a fact that the stars appear to move in circular paths. For that fact 
to become evidence, it must be linked through an argument to an interpreta-
tion. The link is that a spinning Earth would create the appearance of stars 
moving in circular paths around the axis of spin. 

That is, if the Earth were spinning that would explain the circular motions of 
the stars as well as the occurrence of day and night. In contrast, the link from 
the fact of circular star movement to the idea that the Sun orbits the Earth is 
less direct. An additional and separate conjecture is needed to establish that 
connection—something like the stars also are spinning with respect to the 
Earth. According to this conjecture, the motion of the stars would not be ap-
parent, but real.

Counterevidence
The word evidence often is understood only in its positive connotation. In-
deed, there is research undertaken by social psychologists showing that there 
is a confirmation bias in people’s reasoning. People tend to see positive evi-
dence but overlook negative evidence, especially when the conjecture under 
test is a favorite idea (Nisbett and Ross 1980). However, just as there can be 
evidence for a conjecture, there can be evidence against it. It is important for 
students to learn that the surest guard against credulity is the disposition to 
seek counterevidence—in short, to be skeptical. 

What counterevidence could students find against the conjecture that the 
Earth spins? There are several challenges that can be mounted. If the Earth 
were spinning, then either it would spin under the air, making all clouds, 
birds, and other things in the sky appear to be carried the opposite way, or 
the air would spin, with the Earth making it difficult or impossible for birds 
and planes to fly against the wind created. That wind speed would be very 
high all the time, because at the equator the speed of rotation would have 
to be on the order of 1,600 kph. A spinning Earth would either burst from 
such motion, literally flying apart, or objects not fixed to the Earth would 
fly off. Furthermore, if the Earth were spinning, surely you would not land 
on the same spot when you jumped straight upward. But we know that we 
do land in the same spot. Students can create even more arguments against 
the conjecture of the spinning Earth.
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Each of these challenges is based upon an interpretation of what would hap-
pen were the Earth spinning. Students should be encouraged to provide ar-
guments both for and against these interpretations. That is, the interplay be-
tween interpretation and argumentation continues beyond the presentation 
of evidence and counterevidence, to further arguments—themselves based on 
evidence—that attempt to counter the counterevidence. In principle, there is 
no end to how long this back and forth reasoning can proceed. In practice, it 
ends when scientists conclude that the evidence and argument are sufficient 
to support one interpretation over the others. Closure, after all, is a goal of 
science. Scientists move to the next problem once the current one has a coher-
ent solution with sufficient evidence for it.

Coherence and Sufficient Evidence
Challenge students as follows: “Even if we accept the relevance of the coun-
terclockwise circular motion of the stars and accept that it is evidence for the 
claim that the Earth spins, is it sufficient evidence? If so, why? If not, why 
not?” Help students see that the occurrence of day and night cannot be con-
sidered in isolation from other phenomena. If day and night are explained 
by a spinning Earth, we are still left to explain the seasons, the variation in 
the altitude of the Sun, the opposition of the seasons in the Northern and 
Southern Hemispheres, the motion and brightness of the planets, and the 
phases of the Moon. However we explain these additional phenomena, the 
explanations must be consistent with the idea that it is the Earth that spins, 
or something must be abandoned. 

Students need to learn that interpretations of a single phenomenon rarely can 
be judged in isolation from the interpretations of other related phenomena. 
The accepted explanation of the Sun’s changing altitude is that the Earth’s axis 
of rotation is tilted 23.5° with respect to the plane of its orbit around the Sun. 
Some students might cite this explanation, but they should be challenged to 
show how it works. The comparative merits of a spinning and orbiting Earth 
on a tilted axis and an orbiting and oscillating Sun can be raised.

Conclusion
We started by identifying a simple view of science that many students hold 
even after years of science instruction—that the evidence for scientific beliefs 
must be directly observable. This misunderstanding of the nature of science is 
sufficiently problematic that it must be countered. Scientific ideas are imagi-
native and creative models of objects and processes that often are too small 
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to be seen or too large to be comprehended in a single observation. In short, 
they are models that must be defended with arguments. 

We have proposed a focus on the interpretation and argumentation required 
to come even to people’s most cherished scientific beliefs. For example, no-
body, even with all of our space travel, has directly observed that day and 
night are caused by the spinning Earth (at least nobody from this planet!). 

The aim of our extended example was to illustrate how to think about our 
certainty regarding well-established scientific facts with the purpose of teach-
ing important ideas about science: 

•	 Observation provides only highly inferential access to knowledge.

•	 All scientific knowledge, even the seemingly simple ideas, is hard 
won. 

Producing this knowledge requires going beyond what our senses tell us and 
imagining how the world might be. The example showed also that we can-
not judge interpretations of one phenomenon without considering many 
others. Science is an interconnected web of ideas. Tweaking, adding, or 
removing a strand in one place has ramifications throughout the structure. 
The rebalancing is a difficult job requiring strategies of interpretation and 
argumentation:

•	 Conjectures must be made.

•	 The relevance of available facts and information must be judged. 

•	 Evidence and counterevidence must be brought to bear upon each 
conjecture.

•	 The coherence and sufficiency of the evidence must be assessed.

A major aim of the science curriculum is for students to acquire an under-
standing of the scientific view of the world and to use scientific reasoning 
when appropriate. Ironically, this aim is undermined when students commit 
to memory a great deal of scientific knowledge but grasp little of the ground-
ing for that knowledge, even of the broad shape that grounding might take. 
We know it is impossible for anyone to know the basis of all the knowledge 
upon which he or she must be prepared to act. We must accept much of what 
we know on the basis of credible authority and without ourselves inquiring 
into the evidence. Wholesale skepticism is debilitating.
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Nevertheless, it is important to imbue students with a reasonable level of 
skepticism; otherwise, they may fall into another equally undesirable frame 
of mind—credulity. The science classroom is an appropriate site for learning 
that we can believe too easily and that what appears self-evident often is not. 
Ask yourself, how you would convince a serious skeptic that matter is made 
of atoms; that the Earth is not motionless; that nearly all the matter in a tree 
did not come from the ground; and more? 

Science education offers an important context for the critical examination of 
belief—a frame of mind that is as important outside of science as it is within 
science. Paying close and detailed attention at least occasionally to the inter-
pretation and argumentation that underwrite even the most taken-for-granted 
scientific facts is one means for promoting healthy levels of skepticism and for 
avoiding credulity—in short, for teaching scientific inquiry.
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