Names:

Ultraviolet Radiation and TiO₂ Nanoparticles: What do they do? Activity 1.

Students will work in teams. An assigned team leader will operate the UV lamp powered by AA batteries. All team members are required to wear gloves and safety splash goggles for the following activities. Do not look directly into the lamp or lasers!

Procedures:

A. Fill a microcentrifuge tube with 0.5 mL of AgNO₃ and H₂O solution using dropper pipet.

B. Using another <u>new</u> pipet, transfer 0.5 ml of CH_3OH into the microcentrifuge tube with the solution from A. Close the lid and mix the solution by gently shaking the tube.

C. Transfer <u>three drops</u> of above solution from step B (CH_3OH , $AgNO_3$ and H_2O solution) into each of the three depressions in the spot plate.

D. Now, using <u>another new dropper pipet</u>, transfer two drops of the nanoparticle solution (TiO_2) into the second depression and third depression of the spot plate. Using a clean toothpick for each depression gently stir the spot plate to mix the solution in each of the depression.

1. Observe all three depressions for 120 seconds under classroom light: Record your observations for each depression.

E. Now **cover the third depression** with the black fabric.

Place the **first and second depression** under a handheld UV lamp. Switch on the UV lamp. Record the color of each solution you observe at 20 second intervals for 80 seconds in the chart below.

Complete the following time vs color of the solution in the *first depression* using the coded color scale bellow. **Please turn off UV light when checking the color of the solution.**

Time vs Color change of TiO₂ Solution in depression 1

If there is no change (NC) or the color is off the scale use (NS)

Record the color changes by using the code number shown in above color scale.

Complete the following time vs color of the solution for depression two using the coded color

scale below. Please turn off UV light when checking the color of the solution.

Time vs Color change of TiO₂ Solution in depression 2

Record the color changes by using the code number shown in above color scale.

G. Remove the black rubberized fabric on top of the <u>third depression</u>. What's the color of the solution in this depression?

What do you expect will happen if you turn the UV lamp on the uncovered third depression?

_____ Try it. What were your results?

Complete the Following:

1. What was the purpose of irradiating the methanol and silver nitrate and water solution in the first depression of the spot plate?

2. What substances were the same in all three spot plate depression solutions? Why was the third depression covered with black rubberized fabric?

- 3. What changes did you observe when looking at the solution in the second depression, (including TiO₂, silver nitrate, water, and methanol solution) under UV light? How does it compare to the silver nitrate, water, and methanol solution under UV light in the first depression?
- 4. What do you think caused the changes you found in the second depression solution on spot plate?

- 5. What questions do you have about the results you found? What do you think would happen if you took the solutions out into sunlight? How would you develop an investigation to answer your question(s)?
- 6. Look at your Time vs Color Change Data. What do you notice about the changes in color for each solution over the time period? Explain
- 7. What are the two variables needed for the color change in the reaction?
- 8. What would a balanced equation for the reaction look like?
- 9. Would the reaction occur without TiO_2 ? How do you know?
- 10. Would the reaction occur without UV radiation? Explain
- 11. A catalyst is a substance that speeds up a reaction without being consumed by the reaction. Is there a catalyst involved in this reaction? If so, what do you think it is? What is your reasoning?
- 12. A photocatalyst is one that is triggered by light or radiation. Now consider TiO2 and UV radiation. What is the relationship?

Elaborate Rubric

Criteria	7	5	3	1	Score
Sets up and	Includes all	Includes most	Includes some	Includes few	
describes the	aspects of the	aspects of the	aspects of the	aspects of the	
solutions	design.	design.	design.	design.	
for the tests.	Set up is	Set up has few	Set up has several	Set up is not	
	appropriate.	minor errors.	errors.	appropriate.	
	Describes the	Describes the	Describes the	Few descriptions	
	solutions for	solutions for	solutions for	of the solutions	
	testing	testing with few	testing with	for testing	
		errors	some errors		
Creates a labeled	Creates a labeled	Creates a labeled	Creates a labeled	Records few	
table, records	table, records	table, records	table, records	findings for each	
findings for each	ALL findings for	findings for each	findings for each	laser in a table	
laser and	each laser	laser in a table.	laser in a table.	(may have many	
includes the	in a table.	May have minor	(may have major	error/omissions).	
wavelengths of	Includes the	errors.	errors/omissions).	Include the	
light emitted by	wavelengths of	Includes the	Includes the	wavelengths of	
each laser	light emitted by	wavelengths of	wavelengths of	light emitted by	
	each laser	light emitted by	light emitted by	each laser	
		each laser	each laser		
Draws appropriate	Draws	Draws	Draws	Lacks appropriate	
conclusions using	appropriate	appropriate	appropriate	conclusions has	
evidence to	conclusions	conclusions with	conclusions with	missing or	
support the	using evidence to	some minor	several errors;	inaccurate	
conclusion.	clearly support	errors with	some evidence	evidence to	
	the conclusion.	evidence to	missing to	support the	
		support the	support the	conclusion.	
		conclusion.	conclusion.		
				total	

Evaluation Rubric:

Criteria	7	5	3	1	Score
Describes how to	Describes how	Describes how to	Describes how to	Describes how	
identify the coated	to identify the	identify the	identify the coated	to identify the	
side of glass.	coated side of	coated side of	side of glass.	coated side of	
	glass.	glass (minor	(several errors in	glass but	
		errors in	description)	includes many	
		description)		missing	
				elements and	
				inaccuracies.	
Explanation	Explanation	Explanation	Explanation	Explanation	
includes	Includes ALL	Includes 5 terms	Includes 3 with	Includes 1	
appropriate use,	terms with	with correct	correct definitions,	correct	
definitions or	correct	definitions,	descriptions and	definition,	
descriptions of the	definitions,	descriptions and	appropriate usage	descriptions or	
following:	descriptions and	appropriate usage	of terms noted in	appropriate	
photocatalyst,	appropriate	of terms noted in	the criteria	usage of terms	
(TiO ₂),	usage of terms	the criteria		noted in the	
nanoparticle,	noted in the			criteria	
visible spectrum,	criteria.				
ultraviolet					
radiation,					
Equation includes a	Equation	Equation	Equation	Equation is	
labeled and	completed with	completed but has	completed but has	incomplete or	
balanced equation	accurate labels	minor errors	major errors	has many	
				omissions	
					Total

Chemical Preparation and Materials List

Chemical #1: Purchase silver nitrate solution commercially

Chemical #2: Methanol: commercial available >99% methanol 25 ml

<u>Chemical #3: TiO2 Solution</u>: Weight 10 mg TiO₂ nanoparticles (solid powder), and add 20 ml of water to make suspension of TiO₂ particles.

List of Supplies per Team:

Local stores:

- Plastic sheet to cover table top for experiment (Cut large 15 x15 inch plastic sheets from garbage bags)
- Black out cloth or plastic (5 x5 in square)
- Timer or stop watch (available at local stores)
- Measurement cup (at least one, plastic is fine)

Science Materials Supplier:

- Goggles (for all students)
- 3 to 5 pipettes (plastic is fine; there are three chemicals, thus a minimum of 3 pipettes is required per experiment)
- 2 centrifuge tubes attached lids (plastic is fine; provides means of rough measurement and to shake gently for complete mixture)
- Chemical solutions (3): silver nitrate solution, methanol, and TiO2 solution
- Wet well plate (depression plates)
- Ultra violet lamp and batteries (*This can be done outside but the timing is difficult to record as the change occurs rapidly*).
- Color strip for color coding (laminate colored activity sheet strips) or print the entire sheet with a color printer.