Grading sheet.

Bonding concepts

 Most atoms are chemically bonded to other atoms. The three major types of chemical bonding are ionic, covalent, and metallic. In general, atoms of metals bond ionically with atoms of nonmetals, atoms of metals bond metallically with each other, and atoms of nonmetals bond covalently with each other. Atoms in molecules are joined by covalent bonds. The bond length between two atoms in a molecule is the distance at which the potential energy of the bonded atoms is minimized. The octet rule states that many chemical compounds tend to form bonds so that each atom—by gaining, losing, or sharing electrons—shares or has eight electrons in its highest occupied energy level. A single bond is a covalent bond in which a pair of electrons is shared between two atoms. Covalent bonds with more than one pair of shared electrons are called <i>multiple bonds</i>. Bonding within many molecules and ions can be indicated by a Lewis structure. Molecules or ions that cannot be correctly represented by a single Lewis structure are represented by resonance structures. An ionic compound is a three-dimensional network of positive and negative ions that are mutually attracted to one another. Because of the strong attraction between positive and negative ions, ionic compounds tend to be harder and more brittle and to have higher boiling points than materials containing only covalently bonded atoms. Metallic bonding is a type of chemical bonding that results from the attraction between metal atoms and mobile electrons floating in a conduction band between metal atoms. Metallic bonding, the lack of a band gap between valence and conduction bands gives metals their properties of high electrical conductivity, malleability, ductility, and luster. Intermolecular forces, such as dipole-dipole forces and London dispersion forces, exist between certain types of molecules. Hydrogen bondi	Donui	ng concepts
 In general, atoms of metals bond ionically with atoms of nonmetals, atoms of metals bond metallically with each other, and atoms of nonmetals bond covalently with each other. Atoms in molecules are joined by covalent bonds. The bond length between two atoms in a molecule is the distance at which the potential energy of the bonded atoms is minimized. The octet rule states that many chemical compounds tend to form bonds so that each atom—by gaining, losing, or sharing electrons—shares or has eight electrons in its highest occupied energy level. A single bond is a covalent bond in which a pair of electrons is shared between two atoms. Covalent bonds with more than one pair of shared electrons are called <i>multiple bonds</i>. Bonding within many molecules and ions can be indicated by a Lewis structure. Molecules or ions that cannot be correctly represented by a single Lewis structure are represented by resonance structures. An ionic compound is a three-dimensional network of positive and negative ions that are mutually attracted to one another. Because of the strong attraction between positive and negative ions, ionic compounds tend to be harder and more brittle and to have higher boiling points than materials containing only covalently bonded atoms. Metallic bonding is a type of chemical bonding that results from the attraction between metal atoms and mobile electrons floating in a conduction band between metal atoms. In metallic bonding, the lack of a band gap between valence and conduction bands gives metals their properties of high electrical conductivity, malleability, ductility, and luster. 	1.	Most atoms are chemically bonded to other atoms.
 bond metallically with each other, and atoms of nonmetals bond covalently with each other. 4. Atoms in molecules are joined by covalent bonds. 5. The bond length between two atoms in a molecule is the distance at which the potential energy of the bonded atoms is minimized. 6. The octet rule states that many chemical compounds tend to form bonds so that each atom—by gaining, losing, or sharing electrons—shares or has eight electrons in its highest occupied energy level. 7. A single bond is a covalent bond in which a pair of electrons is shared between two atoms. Covalent bonds with more than one pair of shared electrons are called <i>multiple bonds</i>. 8. Bonding within many molecules and ions can be indicated by a Lewis structure. Molecules or ions that cannot be correctly represented by a single Lewis structure are represented by resonance structures. 9. An ionic compound is a three-dimensional network of positive and negative ions that are mutually attracted to one another. 10. Because of the strong attraction between positive and negative ions, ionic compounds tend to be harder and more brittle and to have higher boiling points than materials containing only covalently bonded atoms. 11. Polyatomic ions are charged groups of atoms held together by covalent bonds. 12. Metallic bonding, its a type of chemical bonding that results from the attraction between metal atoms. 13. In metallic bonding, the lack of a band gap between valence and conduction bands gives metals their properties of high electrical conductivity, malleability, ductility, and luster. 14. Intermolecular forces, such as dipole-dipole forces and London dispersion forces, exist between certain types of molecules. Hydrogen bonding is a special case of dipole-dipole 	2.	The three major types of chemical bonding are ionic, covalent, and metallic.
 other. 4. Atoms in molecules are joined by covalent bonds. 5. The bond length between two atoms in a molecule is the distance at which the potential energy of the bonded atoms is minimized. 6. The octet rule states that many chemical compounds tend to form bonds so that each atom—by gaining, losing, or sharing electrons—shares or has eight electrons in its highest occupied energy level. 7. A single bond is a covalent bond in which a pair of electrons is shared between two atoms. Covalent bonds with more than one pair of shared electrons are called <i>multiple bonds</i>. 8. Bonding within many molecules and ions can be indicated by a Lewis structure. Molecules or ions that cannot be correctly represented by a single Lewis structure are represented by resonance structures. 9. An ionic compound is a three-dimensional network of positive and negative ions that are mutually attracted to one another. 10. Because of the strong attraction between positive and negative ions, ionic compounds tend to be harder and more brittle and to have higher boiling points than materials containing only covalently bonded atoms. 11. Polyatomic ions are charged groups of atoms held together by covalent bonds. 12. Metallic bonding is a type of chemical bonding that results from the attraction between metal atoms and mobile electrons floating in a conduction band between metal atoms. 13. In metallic bonding, the lack of a band gap between valence and conduction bands gives metals their properties of high electrical conductivity, malleability, ductility, and luster. 14. Intermolecular forces, such as dipole-dipole forces and London dispersion forces, exist between certain types of molecules. Hydrogen bonding is a special case of dipole-dipole 	3.	In general, atoms of metals bond ionically with atoms of nonmetals, atoms of metals
 Atoms in molecules are joined by covalent bonds. The bond length between two atoms in a molecule is the distance at which the potential energy of the bonded atoms is minimized. The octet rule states that many chemical compounds tend to form bonds so that each atom—by gaining, losing, or sharing electrons—shares or has eight electrons in its highest occupied energy level. A single bond is a covalent bond in which a pair of electrons is shared between two atoms. Covalent bonds with more than one pair of shared electrons are called <i>multiple bonds</i>. Bonding within many molecules and ions can be indicated by a Lewis structure. Molecules or ions that cannot be correctly represented by a single Lewis structure are represented by resonance structures. An ionic compound is a three-dimensional network of positive and negative ions that are mutually attracted to one another. Because of the strong attraction between positive and negative ions, ionic compounds tend to be harder and more brittle and to have higher boiling points than materials containing only covalently bonded atoms. Metallic bonding is a type of chemical bonding that results from the attraction between metal atoms and mobile electrons floating in a conduction band between metal atoms. In metallic bonding, the lack of a band gap between valence and conduction bands gives metals their properties of high electrical conductivity, malleability, ductility, and luster. Intermolecular forces, such as dipole-dipole forces and London dispersion forces, exist between certain types of molecules. Hydrogen bonding is a special case of dipole-dipole 		bond metallically with each other, and atoms of nonmetals bond covalently with each
 The bond length between two atoms in a molecule is the distance at which the potential energy of the bonded atoms is minimized. The octet rule states that many chemical compounds tend to form bonds so that each atom—by gaining, losing, or sharing electrons—shares or has eight electrons in its highest occupied energy level. A single bond is a covalent bond in which a pair of electrons is shared between two atoms. Covalent bonds with more than one pair of shared electrons are called <i>multiple bonds</i>. Bonding within many molecules and ions can be indicated by a Lewis structure. Molecules or ions that cannot be correctly represented by a single Lewis structure are represented by resonance structures. An ionic compound is a three-dimensional network of positive and negative ions that are mutually attracted to one another. Because of the strong attraction between positive and negative ions, ionic compounds tend to be harder and more brittle and to have higher boiling points than materials containing only covalently bonded atoms. Metallic bonding is a type of chemical bonding that results from the attraction between metal atoms. In metallic bonding, the lack of a band gap between valence and conduction bands gives metals their properties of high electrical conductivity, malleability, ductility, and luster. 		other.
 energy of the bonded atoms is minimized. 6. The octet rule states that many chemical compounds tend to form bonds so that each atom—by gaining, losing, or sharing electrons—shares or has eight electrons in its highest occupied energy level. 7. A single bond is a covalent bond in which a pair of electrons is shared between two atoms. Covalent bonds with more than one pair of shared electrons are called <i>multiple bonds</i>. 8. Bonding within many molecules and ions can be indicated by a Lewis structure. Molecules or ions that cannot be correctly represented by a single Lewis structure are represented by resonance structures. 9. An ionic compound is a three-dimensional network of positive and negative ions that are mutually attracted to one another. 10. Because of the strong attraction between positive and negative ions, ionic compounds tend to be harder and more brittle and to have higher boiling points than materials containing only covalently bonded atoms. 11. Polyatomic ions are charged groups of atoms held together by covalent bonds. 12. Metallic bonding is a type of chemical bonding that results from the attraction between metal atoms. 13. In metallic bonding, the lack of a band gap between valence and conduction bands gives metals their properties of high electrical conductivity, malleability, ductility, and luster. 14. Intermolecular forces, such as dipole-dipole forces and London dispersion forces, exist between certain types of molecules. Hydrogen bonding is a special case of dipole-dipole 	4.	
 6. The octet rule states that many chemical compounds tend to form bonds so that each atom—by gaining, losing, or sharing electrons—shares or has eight electrons in its highest occupied energy level. 7. A single bond is a covalent bond in which a pair of electrons is shared between two atoms. Covalent bonds with more than one pair of shared electrons are called <i>multiple bonds</i>. 8. Bonding within many molecules and ions can be indicated by a Lewis structure. Molecules or ions that cannot be correctly represented by a single Lewis structure are represented by resonance structures. 9. An ionic compound is a three-dimensional network of positive and negative ions that are mutually attracted to one another. 10. Because of the strong attraction between positive and negative ions, ionic compounds tend to be harder and more brittle and to have higher boiling points than materials containing only covalently bonded atoms. 11. Polyatomic ions are charged groups of atoms held together by covalent bonds. 12. Metallic bonding is a type of chemical bonding that results from the attraction between metal atoms and mobile electrons floating in a conduction band between metal atoms. 13. In metallic bonding, the lack of a band gap between valence and conduction bands gives metals their properties of high electrical conductivity, malleability, ductility, and luster. 14. Intermolecular forces, such as dipole-dipole forces and London dispersion forces, exist between certain types of molecules. Hydrogen bonding is a special case of dipole-dipole 	5.	
 atom—by gaining, losing, or sharing electrons—shares or has eight electrons in its highest occupied energy level. 7. A single bond is a covalent bond in which a pair of electrons is shared between two atoms. Covalent bonds with more than one pair of shared electrons are called <i>multiple bonds</i>. 8. Bonding within many molecules and ions can be indicated by a Lewis structure. Molecules or ions that cannot be correctly represented by a single Lewis structure are represented by resonance structures. 9. An ionic compound is a three-dimensional network of positive and negative ions that are mutually attracted to one another. 10. Because of the strong attraction between positive and negative ions, ionic compounds tend to be harder and more brittle and to have higher boiling points than materials containing only covalently bonded atoms. 11. Polyatomic ions are charged groups of atoms held together by covalent bonds. 12. Metallic bonding is a type of chemical bonding that results from the attraction between metal atoms and mobile electrons floating in a conduction band between metal atoms. 13. In metallic bonding, the lack of a band gap between valence and conduction bands gives metals their properties of high electrical conductivity, malleability, ductility, and luster. 14. Intermolecular forces, such as dipole-dipole forces and London dispersion forces, exist between certain types of molecules. Hydrogen bonding is a special case of dipole-dipole 		
 highest occupied energy level. 7. A single bond is a covalent bond in which a pair of electrons is shared between two atoms. Covalent bonds with more than one pair of shared electrons are called <i>multiple bonds</i>. 8. Bonding within many molecules and ions can be indicated by a Lewis structure. Molecules or ions that cannot be correctly represented by a single Lewis structure are represented by resonance structures. 9. An ionic compound is a three-dimensional network of positive and negative ions that are mutually attracted to one another. 10. Because of the strong attraction between positive and negative ions, ionic compounds tend to be harder and more brittle and to have higher boiling points than materials containing only covalently bonded atoms. 11. Polyatomic ions are charged groups of atoms held together by covalent bonds. 12. Metallic bonding is a type of chemical bonding that results from the attraction between metal atoms and mobile electrons floating in a conduction band between metal atoms. 13. In metallic bonding, the lack of a band gap between valence and conduction bands gives metals their properties of high electrical conductivity, malleability, ductility, and luster. 14. Intermolecular forces, such as dipole-dipole forces and London dispersion forces, exist between certain types of molecules. Hydrogen bonding is a special case of dipole-dipole 	6.	
 A single bond is a covalent bond in which a pair of electrons is shared between two atoms. Covalent bonds with more than one pair of shared electrons are called <i>multiple bonds</i>. Bonding within many molecules and ions can be indicated by a Lewis structure. Molecules or ions that cannot be correctly represented by a single Lewis structure are represented by resonance structures. An ionic compound is a three-dimensional network of positive and negative ions that are mutually attracted to one another. Because of the strong attraction between positive and negative ions, ionic compounds tend to be harder and more brittle and to have higher boiling points than materials containing only covalently bonded atoms. Polyatomic ions are charged groups of atoms held together by covalent bonds. Metallic bonding is a type of chemical bonding that results from the attraction between metal atoms and mobile electrons floating in a conduction band between metal atoms. In metallic bonding, the lack of a band gap between valence and conduction bands gives metals their properties of high electrical conductivity, malleability, ductility, and luster. Intermolecular forces, such as dipole-dipole forces and London dispersion forces, exist between certain types of molecules. Hydrogen bonding is a special case of dipole-dipole 		
 atoms. Covalent bonds with more than one pair of shared electrons are called <i>multiple bonds</i>. 8. Bonding within many molecules and ions can be indicated by a Lewis structure. Molecules or ions that cannot be correctly represented by a single Lewis structure are represented by resonance structures. 9. An ionic compound is a three-dimensional network of positive and negative ions that are mutually attracted to one another. 10. Because of the strong attraction between positive and negative ions, ionic compounds tend to be harder and more brittle and to have higher boiling points than materials containing only covalently bonded atoms. 11. Polyatomic ions are charged groups of atoms held together by covalent bonds. 12. Metallic bonding is a type of chemical bonding that results from the attraction between metal atoms and mobile electrons floating in a conduction band between metal atoms. 13. In metallic bonding, the lack of a band gap between valence and conduction bands gives metals their properties of high electrical conductivity, malleability, ductility, and luster. 14. Intermolecular forces, such as dipole-dipole forces and London dispersion forces, exist between certain types of molecules. Hydrogen bonding is a special case of dipole-dipole 		
 bonds. 8. Bonding within many molecules and ions can be indicated by a Lewis structure. Molecules or ions that cannot be correctly represented by a single Lewis structure are represented by resonance structures. 9. An ionic compound is a three-dimensional network of positive and negative ions that are mutually attracted to one another. 10. Because of the strong attraction between positive and negative ions, ionic compounds tend to be harder and more brittle and to have higher boiling points than materials containing only covalently bonded atoms. 11. Polyatomic ions are charged groups of atoms held together by covalent bonds. 12. Metallic bonding is a type of chemical bonding that results from the attraction between metal atoms and mobile electrons floating in a conduction band between metal atoms. 13. In metallic bonding, the lack of a band gap between valence and conduction bands gives metals their properties of high electrical conductivity, malleability, ductility, and luster. 14. Intermolecular forces, such as dipole-dipole forces and London dispersion forces, exist between certain types of molecules. Hydrogen bonding is a special case of dipole-dipole 	7.	
 8. Bonding within many molecules and ions can be indicated by a Lewis structure. Molecules or ions that cannot be correctly represented by a single Lewis structure are represented by resonance structures. 9. An ionic compound is a three-dimensional network of positive and negative ions that are mutually attracted to one another. 10. Because of the strong attraction between positive and negative ions, ionic compounds tend to be harder and more brittle and to have higher boiling points than materials containing only covalently bonded atoms. 11. Polyatomic ions are charged groups of atoms held together by covalent bonds. 12. Metallic bonding is a type of chemical bonding that results from the attraction between metal atoms and mobile electrons floating in a conduction band between metal atoms. 13. In metallic bonding, the lack of a band gap between valence and conduction bands gives metals their properties of high electrical conductivity, malleability, ductility, and luster. 14. Intermolecular forces, such as dipole-dipole forces and London dispersion forces, exist between certain types of molecules. Hydrogen bonding is a special case of dipole-dipole 		-
 Molecules or ions that cannot be correctly represented by a single Lewis structure are represented by resonance structures. 9. An ionic compound is a three-dimensional network of positive and negative ions that are mutually attracted to one another. 10. Because of the strong attraction between positive and negative ions, ionic compounds tend to be harder and more brittle and to have higher boiling points than materials containing only covalently bonded atoms. 11. Polyatomic ions are charged groups of atoms held together by covalent bonds. 12. Metallic bonding is a type of chemical bonding that results from the attraction between metal atoms and mobile electrons floating in a conduction band between metal atoms. 13. In metallic bonding, the lack of a band gap between valence and conduction bands gives metals their properties of high electrical conductivity, malleability, ductility, and luster. 14. Intermolecular forces, such as dipole-dipole forces and London dispersion forces, exist between certain types of molecules. Hydrogen bonding is a special case of dipole-dipole 		
 represented by resonance structures. 9. An ionic compound is a three-dimensional network of positive and negative ions that are mutually attracted to one another. 10. Because of the strong attraction between positive and negative ions, ionic compounds tend to be harder and more brittle and to have higher boiling points than materials containing only covalently bonded atoms. 11. Polyatomic ions are charged groups of atoms held together by covalent bonds. 12. Metallic bonding is a type of chemical bonding that results from the attraction between metal atoms and mobile electrons floating in a conduction band between metal atoms. 13. In metallic bonding, the lack of a band gap between valence and conduction bands gives metals their properties of high electrical conductivity, malleability, ductility, and luster. 14. Intermolecular forces, such as dipole-dipole forces and London dispersion forces, exist between certain types of molecules. Hydrogen bonding is a special case of dipole-dipole 	8.	
 9. An ionic compound is a three-dimensional network of positive and negative ions that are mutually attracted to one another. 10. Because of the strong attraction between positive and negative ions, ionic compounds tend to be harder and more brittle and to have higher boiling points than materials containing only covalently bonded atoms. 11. Polyatomic ions are charged groups of atoms held together by covalent bonds. 12. Metallic bonding is a type of chemical bonding that results from the attraction between metal atoms and mobile electrons floating in a conduction band between metal atoms. 13. In metallic bonding, the lack of a band gap between valence and conduction bands gives metals their properties of high electrical conductivity, malleability, ductility, and luster. 14. Intermolecular forces, such as dipole-dipole forces and London dispersion forces, exist between certain types of molecules. Hydrogen bonding is a special case of dipole-dipole 		
 mutually attracted to one another. 10. Because of the strong attraction between positive and negative ions, ionic compounds tend to be harder and more brittle and to have higher boiling points than materials containing only covalently bonded atoms. 11. Polyatomic ions are charged groups of atoms held together by covalent bonds. 12. Metallic bonding is a type of chemical bonding that results from the attraction between metal atoms and mobile electrons floating in a conduction band between metal atoms. 13. In metallic bonding, the lack of a band gap between valence and conduction bands gives metals their properties of high electrical conductivity, malleability, ductility, and luster. 14. Intermolecular forces, such as dipole-dipole forces and London dispersion forces, exist between certain types of molecules. Hydrogen bonding is a special case of dipole-dipole 		
 10. Because of the strong attraction between positive and negative ions, ionic compounds tend to be harder and more brittle and to have higher boiling points than materials containing only covalently bonded atoms. 11. Polyatomic ions are charged groups of atoms held together by covalent bonds. 12. Metallic bonding is a type of chemical bonding that results from the attraction between metal atoms and mobile electrons floating in a conduction band between metal atoms. 13. In metallic bonding, the lack of a band gap between valence and conduction bands gives metals their properties of high electrical conductivity, malleability, ductility, and luster. 14. Intermolecular forces, such as dipole-dipole forces and London dispersion forces, exist between certain types of molecules. Hydrogen bonding is a special case of dipole-dipole 	9.	· · · ·
 tend to be harder and more brittle and to have higher boiling points than materials containing only covalently bonded atoms. 11. Polyatomic ions are charged groups of atoms held together by covalent bonds. 12. Metallic bonding is a type of chemical bonding that results from the attraction between metal atoms and mobile electrons floating in a conduction band between metal atoms. 13. In metallic bonding, the lack of a band gap between valence and conduction bands gives metals their properties of high electrical conductivity, malleability, ductility, and luster. 14. Intermolecular forces, such as dipole-dipole forces and London dispersion forces, exist between certain types of molecules. Hydrogen bonding is a special case of dipole-dipole 		
 containing only covalently bonded atoms. 11. Polyatomic ions are charged groups of atoms held together by covalent bonds. 12. Metallic bonding is a type of chemical bonding that results from the attraction between metal atoms and mobile electrons floating in a conduction band between metal atoms. 13. In metallic bonding, the lack of a band gap between valence and conduction bands gives metals their properties of high electrical conductivity, malleability, ductility, and luster. 14. Intermolecular forces, such as dipole-dipole forces and London dispersion forces, exist between certain types of molecules. Hydrogen bonding is a special case of dipole-dipole 	10	
 11. Polyatomic ions are charged groups of atoms held together by covalent bonds. 12. Metallic bonding is a type of chemical bonding that results from the attraction between metal atoms and mobile electrons floating in a conduction band between metal atoms. 13. In metallic bonding, the lack of a band gap between valence and conduction bands gives metals their properties of high electrical conductivity, malleability, ductility, and luster. 14. Intermolecular forces, such as dipole-dipole forces and London dispersion forces, exist between certain types of molecules. Hydrogen bonding is a special case of dipole-dipole 		
 12. Metallic bonding is a type of chemical bonding that results from the attraction between metal atoms and mobile electrons floating in a conduction band between metal atoms. 13. In metallic bonding, the lack of a band gap between valence and conduction bands gives metals their properties of high electrical conductivity, malleability, ductility, and luster. 14. Intermolecular forces, such as dipole-dipole forces and London dispersion forces, exist between certain types of molecules. Hydrogen bonding is a special case of dipole-dipole 		
 metal atoms and mobile electrons floating in a conduction band between metal atoms. 13. In metallic bonding, the lack of a band gap between valence and conduction bands gives metals their properties of high electrical conductivity, malleability, ductility, and luster. 14. Intermolecular forces, such as dipole-dipole forces and London dispersion forces, exist between certain types of molecules. Hydrogen bonding is a special case of dipole-dipole 		
 13. In metallic bonding, the lack of a band gap between valence and conduction bands gives metals their properties of high electrical conductivity, malleability, ductility, and luster. 14. Intermolecular forces, such as dipole-dipole forces and London dispersion forces, exist between certain types of molecules. Hydrogen bonding is a special case of dipole-dipole 	12	
 metals their properties of high electrical conductivity, malleability, ductility, and luster. 14. Intermolecular forces, such as dipole-dipole forces and London dispersion forces, exist between certain types of molecules. Hydrogen bonding is a special case of dipole-dipole 		
14. Intermolecular forces, such as dipole-dipole forces and London dispersion forces, exist between certain types of molecules. Hydrogen bonding is a special case of dipole-dipole	13	• • • •
between certain types of molecules. Hydrogen bonding is a special case of dipole-dipole		
	14	· · ·
forces.		between certain types of molecules. Hydrogen bonding is a special case of dipole-dipole
		forces.

Period:	Date	:

ът		
	ame	٠
ΤM	anne	٠

Vocabulary

Total number of vocabulary words used: ____/35

Extra credit

Number of vocabulary words over requirement $\times \frac{1}{4} =$

Introduction

- \Box chemical bond
- \Box covalent bonding
- \Box ionic bonding
- \Box metallic bonding
- non-polar covalent bonding
- □ polar
- polar-covalent bonding

Covalent bonding

- \Box bond energy
- \Box bond length
- \Box chemical formula
- □ diatomic molecule
- \Box double bond
- \Box electron dot notation
- □ Lewis structure
- \Box lone pair electrons
- molecularcompound
- □ molecular formula
- □ molecule
- □ octet rule
- □ resonance
- \Box single bond
- \Box structural formula
- \Box triple bond
- □ unpaired electrons

Ionic

- \Box formula unit
- \Box ionic compound
- \Box lattice energy
- \Box polyatomic ion

Metallic

 \Box band gap

- $\hfill\square$ conduction band
- □ ductility
- □ electrical
- conductivity
- $\hfill\square$ heat of vaporization
- □ luster
- □ malleability
- \Box thermal conductivity
- $\hfill\square$ valence band

Intermolecular forces

- □ dipole
- □ hydrogen bonding
- □ instantaneous dipole-dipole attraction
- \Box intermolecular force
- \Box London dispersion force
- \Box molecular polarity
- permanent dipole-dipole attraction