Supplementary Materials for "From Strawberry Fields to the Chemistry Classroom"

The purpose of the case study is to provide students with an engaging, group-discussion oriented resource for learning the substitution reactions of alkyl halides. The case study encourages students to mature their understanding of alkyl halides, reagents, the curved-arrow formalism, and to tone their verbal explanations. Participants had access to several handouts throughout the workshops to facilitate peer-to-peer dialogue. The handouts include:

- A flowchart that summarizes the factors that influence the substitution reactions of alkyl halides based on the classification of the α -site
- A mechanism template with examples of each type of reaction (S_N1 and S_N2)
- A chart depicting structures of strong and weak nucleophiles
- A chart depicting structures of protic and aprotic solvents

Flow chart depicting possible reaction pathways for substitution reactions of alkyl halides

^{*}S_N2: When the reaction occurs at a chiral center of a pure sample of a single enantiomer, a single enantiomer product with inversion of the chiral configuration is formed.

^{**} If the leaving group in an S_N1 reaction is attached to a chiral center, a pair of enantiomers will be formed as products.

MECHANISM TEMPLATES (S_N1 and S_N2)

First, the carbon-halogen (C-X) bond breaks, forming a CARBOCATION intermediate. In the next step, the WEAK nucleophile attacks the carbocation to form the product. The nucleophile can approach the carbocation from either side of the plane and as a result a pair of enantiomers will be formed as products.

In ONE step the STRONG nucleophile attacks the alpha carbon - kicking off the leaving group, and forming the product.

Nuc: +
$$H$$

$$= \begin{bmatrix} H \\ Nuc - C - Br \end{bmatrix}^{\ddagger}$$

$$= \begin{bmatrix} H \\ Nuc - C - Br \end{bmatrix}$$
Transition State

The nucleophile attacks the carbon from the opposite side of the leaving group (back-side attack). The alkyl halide and the nucleophile come together in the transition state of the one-step reaction. When the starting material has a chiral center, a single enantiomer product with inversion of the chiral configuration is formed.

Generalized mechanisms of S_N1 and S_N2 reactions of alkyl halides.

"From Strawberry Fields to the Chemistry Classroom" by Walker, Doan, Heuett, & Jaber

Strong/Weak Nucleophiles

STRONG (Negatively charged)		WEAK (Neutral)	
CH3Ö:	[⊝] :C ≡N	сн₃ён	H, Ö, H
;öH ⊝.:	ë∷∺H	H.S.H	ÖН
Ö	∴N.	/	∼;; NH ₂

Protic/Aprotic Solvents

PROTIC (Have N-H or O-H bonds)	APROTIC (No N-H or O-H bonds)	
H^{O} $H_{2}O$	Dimethyl Sulfoxide (DMSO)	
H Formic Acid	N≡C — CH ₃ Acetonitrile Dimethyl Formamide	
CH ₃ OH Methanol	(DMF)	
OH Ethanol	Hexamethylphosphoric Acid Triamide	
——————————————————————————————————————	Hexane	
OH TENT-Butanon	Acetone	
Acetic Acid	CI Dichloromethane	
	Tetrahydrofuran (THF)	
	Ethyl Acetate (EtOAc)	
	Diethyl Ether Et ₂ O	
	Toluene	

[&]quot;From Strawberry Fields to the Chemistry Classroom" by Walker, Doan, Heuett, & Jaber