Supplementary Materials for "From Strawberry Fields to the Chemistry Classroom" The purpose of the case study is to provide students with an engaging, group-discussion oriented resource for learning the substitution reactions of alkyl halides. The case study encourages students to mature their understanding of alkyl halides, reagents, the curved-arrow formalism, and to tone their verbal explanations. Participants had access to several handouts throughout the workshops to facilitate peer-to-peer dialogue. The handouts include: - A flowchart that summarizes the factors that influence the substitution reactions of alkyl halides based on the classification of the α -site - A mechanism template with examples of each type of reaction (S_N1 and S_N2) - A chart depicting structures of strong and weak nucleophiles - A chart depicting structures of protic and aprotic solvents Flow chart depicting possible reaction pathways for substitution reactions of alkyl halides ^{*}S_N2: When the reaction occurs at a chiral center of a pure sample of a single enantiomer, a single enantiomer product with inversion of the chiral configuration is formed. ^{**} If the leaving group in an S_N1 reaction is attached to a chiral center, a pair of enantiomers will be formed as products. ## MECHANISM TEMPLATES (S_N1 and S_N2) First, the carbon-halogen (C-X) bond breaks, forming a CARBOCATION intermediate. In the next step, the WEAK nucleophile attacks the carbocation to form the product. The nucleophile can approach the carbocation from either side of the plane and as a result a pair of enantiomers will be formed as products. In ONE step the STRONG nucleophile attacks the alpha carbon - kicking off the leaving group, and forming the product. Nuc: + $$H$$ $$= \begin{bmatrix} H \\ Nuc - C - Br \end{bmatrix}^{\ddagger}$$ $$= \begin{bmatrix} H \\ Nuc - C - Br \end{bmatrix}$$ Transition State The nucleophile attacks the carbon from the opposite side of the leaving group (back-side attack). The alkyl halide and the nucleophile come together in the transition state of the one-step reaction. When the starting material has a chiral center, a single enantiomer product with inversion of the chiral configuration is formed. Generalized mechanisms of S_N1 and S_N2 reactions of alkyl halides. "From Strawberry Fields to the Chemistry Classroom" by Walker, Doan, Heuett, & Jaber ## Strong/Weak Nucleophiles | STRONG
(Negatively charged) | | WEAK
(Neutral) | | |--------------------------------|----------------------------|-------------------|------------------------| | CH3Ö: | [⊝] :C ≡N | сн₃ён | H, Ö, H | | ;öH
⊝.: | ë∷∺H | H.S.H | ÖН | | Ö | ∴N. | / | ∼;;
NH ₂ | ## **Protic/Aprotic Solvents** | PROTIC (Have N-H or O-H bonds) | APROTIC (No N-H or O-H bonds) | | |--|--|--| | H^{O} $H_{2}O$ | Dimethyl Sulfoxide (DMSO) | | | H Formic Acid | N≡C — CH ₃ Acetonitrile Dimethyl Formamide | | | CH ₃ OH Methanol | (DMF) | | | OH Ethanol | Hexamethylphosphoric Acid Triamide | | | —————————————————————————————————————— | Hexane | | | OH TENT-Butanon | Acetone | | | Acetic Acid | CI Dichloromethane | | | | Tetrahydrofuran
(THF) | | | | Ethyl Acetate (EtOAc) | | | | Diethyl Ether Et ₂ O | | | | Toluene | | [&]quot;From Strawberry Fields to the Chemistry Classroom" by Walker, Doan, Heuett, & Jaber