Construct-a-Glove

Developed by TERC
Lead author: Lee Pulis

This curriculum was developed by TERC, Cambridge, Massachusetts. Funded in part by a grant from the National Science Foundation.
The creation of the NSTA Science by Design series builds on five years of research and development at TERC. This work was funded by two National Science Foundation grants: ESI-9252894 and ESI-9550540 and was directed by John Foster, David Crismond, William Barowy, and Jack Lochhead.

We are especially grateful for the vision, guidance, and prodding of our program officer, Gerhard Salinger, who was our GPS in uncharted territory.

We were helped in innumerable ways by an especially insightful advisory board: Joan Baron, Goery Delacote, Andy DiSessa, Woodie Flowers, John Foster, Mike Hacker, Colleen Hill, Gretchen Kalonji, Robert McCormick, Jim Minstrell, Jim Neujahr, and David Perkins.

The members of the TERC team who contributed to the development and testing of the Science by Design units include:

- Tim Barclay
- William Barowy
- Cathy Call
- Judith Collison
- David Crismond
- Brian Drayton
- Christine DiPietrantonio
- Joni Falk
- John Foster
- June Foster
- Riley Hart
- Nathan Kimball

- Felicia Lee
- Jack Lochhead
- Tasha Morris
- Tracy Noble
- Alison Paddock
- Meghan Pfister
- Lee Pulis
- Jerry Touger
- Margaret Vickers
- Paul Wagoner
- Kelly Wedding
- Amy Weinberg

Special mention must be made of the enthusiasm, dedication, and long hours contributed by David Crismond and Earl Carlyon. The following hard-working consultants added greatly to our efforts: Hilton Abbott, Robert B. Angus, Carol Ascher, Warren R. Atkinson, Earl Carlyon, Michael Clarage, Jan Hawkins, Kathy Kittredge, Crispin Miller, James E. LaPorte, Kjell-Jan Rye, Rick Satchwell, Mike Stevens, and Ron Todd.

The authors of the final Science by Design units were William Barowy, Felicia Lee, Jack Lochhead, Alison Paddock, and Lee Pulis of TERC.

Science by Design: Construct-a-Glove was produced by NSTA Press: Shirley Watt Ireton, director; Beth Daniels, managing editor; Erin Miller, associate editor; Jessica Green, assistant editor; Michelle Treistman, assistant editor; Anne Early, editorial assistant. Beth Daniels was project editor for the Science by Design series. The cover design and book design are by Camden Frost and Vicky Robinson of Graves Fowler Associates.
Field testing of the *Science by Design* series depended on the dedication of dozens of teachers and the helpful cooperation of their school systems:

Jerian Abel, Northwest Regional Education Laboratory
Bruce Andersen, Buker Middle School
Dave Armstrong, Lawrence Middle School
Henry Bachand, Mansfield High School
Hilda Bachrach, Dana Hall School
Ronald Bjorklund, Leicester High School
Marcella Boyd, Manchester Junior High School
Karen Bouffard, Governor Dummer Academy
Althea Brown, Medford High School
Lee Burgess, Lawrence Middle School
David Corbett, Whittier Regional Vocational Technical High School
Steve Cremer, Braintree High School
Deborah Crough, Long Beach High School
Ron Daddario, McCall Middle School
Raymond P. Gaynor, Reid Middle School
Elizabeth George, Westborough High School
Pam Glass, Talbot Middle School
Rick Harwood, Ware High School
Gary Herl, Tantasqua Regional Junior High School
Kate Hibbitt, Lincoln School
Patrick Keleher, Norwood Junior High School
Marty Kibby, Minetron Technology Education Office
Matías Kvaternik, Chelmsford Public Charter School
Jeff Leonard, F.A. Day Middle School
Walter Lewandowsler, Bartlett High School
David R. Littlewood, Agawam Junior High School
John Matthews, Southwick Tolland Regional High School
Eileen McCormack, South Jr. High Brockton
Scott McDonald, Needham High School
Brian McGee, Lexington Middle School
Bob Meltz, Manchester Junior-Senior High School
Charles O’Reilly, Lexington High School
Constance Patten, Lincoln-Sudbury High School
Fred Perrone, East Junior High School
Joe Pignatiello, Somerville High School
Doug Prime, Lancaster Middle School
Michael Rinaldi, Bedford High School
Thomas Rosa, Walsh Middle School
Eugene A. Santoro, Silver Lake Regional High School
John Schott, Smith Academy
Bruce Seiger, Wellesley High School
Douglas Somerville, Woodword Middle School
John Stamp, Manchester High School
Mike Stevens, Maynard High School
Michael Sylvia, Charles E. Brown Middle School
Syd Taylor, Mahar Regional School
Ted Vining, Monument Regional High School
Frank Viscardi, Framingham High School

This project would not have been possible without the help and critique of hundreds of students whom we regretfully cannot mention by name.
Table of Contents

INTRODUCTION
- A Note from the Developers ... 1
- Key Ideas .. 2
- Assessment ... 3
- Standards and Benchmarks Connections .. 4
- sciLINKS ... 6
- Course Outline .. 7

ACTIVITY 1: Design Brief
- Student Activity Pages
 - Insulated Glove Design Brief ... 9
 - Snapshot of Understanding ... 10
- Teacher Pages
 - Overview—Design Brief ... 12
 - Teaching Suggestions ... 12

ACTIVITY 2: Quick-Build Model Boat
- Student Activity Pages
 - Quick-Build Insulated Glove .. 16
 - Identifying Factors and Variables .. 18
 - Team Situation Analysis .. 19
- Teacher Pages
 - Overview—Quick-Build ... 20
 - Teaching Suggestions ... 21
 - Side Roads ... 23

ACTIVITY 3: Research
- Student Activity Pages
 - Overview—Research .. 26
 - Individual Research Report .. 27
 - Investigating Heat Transfer and Insulation 27
 - “Fair Test” Comparison .. 29
- Teacher Pages
 - Overview—Research .. 30
 - Teaching Suggestions ... 31
 - Side Roads ... 33
Activity 4: Development

Student Activity Pages
Overview—Development ...35
Development Assignment ...36
Team Feedback ..37
Reflections on Design ..38

Teacher Pages
Overview—Development ...39
Teaching Suggestions ..40
Side Roads ..43

Activity 5: Communication

Student Activity Pages
Overview—Communication ...45
Creating a Product Prospectus ..46
Snapshot of Understanding ..48
Next Steps ..50

Teacher Pages
Overview—Communication ...51
Teaching Suggestions ..51
Next Steps ..52

Appendix A: Side Roads
Side Roads ..64
Sample Industry Handwear Description ..55
Thermal Factoids ...58
Information Search Strings ..61
Homework—Individual Information Search ...62
Inquiry Process ...63
Homeothermic Regulation ..65
Design Process ..67
Appendix B: Text Reconstruction

Text Reconstruction ... 70
Homeothermic Processes Text Reconstruction Exercise 71
Heat Energy Transfer Text Reconstruction Exercise 74
Homeothermic Processes Text Reconstruction Key 75
Heat Energy Transfer Text Reconstruction Key 77

Appendix C: Sample Answers

Identifying Factors and Variables .. 79
Team Situation Analysis ... 79
Investigating Heat Transfer and Insulation 80
“Fair Test” Comparison ... 81
Team Feedback .. 82
Reflections on Design ... 82

Glossary .. 83
References .. 85
INSULATED GLOVE DESIGN BRIEF

In this activity, you will be researching, designing, building, and improving an insulated glove system. You will use both technological design and scientific inquiry as processes to investigate and improve the performance of your prototype.

Your Design Challenge
As a member of a product research and development team, design an insulated glove system that keeps the tip of your index finger as warm as possible in uncomfortably cold surroundings, while maintaining dexterity for a specific function.

Scope of Work

Quick-Build: Build and test an initial glove design according to instructions.

Research: Investigate heat transfer and insulation and identify variables you can control to create an improved insulated glove.

Development: Specify function, redesign, build, and test; collect data and analyze patterns of results; then finalize your prototype for critical review.

Communication: Present a product prospectus that summarizes your team's final design, including documentation such as sketches, data, specifications, and limitations.
What I already know about Homeothermy, Heat Transfer, and Research and Development.

The unit of study you are about to begin will challenge you to design, build, and performance-test a prototype model of an insulated glove. To meet the performance specifications, you will have to investigate heat transfer physics, biological temperature regulation, and insulative effectiveness of materials and configurations. Before you begin, record a sample of what you already know by answering the questions below. This is not a test; rather it is a series of questions that ask about your current knowledge of key ideas in this unit. At the end of the unit, you will answer similar questions, and compare what you have learned.

1. What are the parts of the hand?

 (a) What are the functions of a hand (e.g., sensing, temperature regulation, manipulation, etc.)?

 (b) Make a sketch of a hand and label the important parts and functions.
2. List as many special purpose kinds of gloves as you can. Place a “T” by those specifically designed to provide thermal protection.

<table>
<thead>
<tr>
<th>Example</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Welding</td>
<td>T</td>
</tr>
</tbody>
</table>

3. Think of a time when your hands were really cold. What were you trying to do?

How did you warm them?

Which heat transfer process did you use? (e.g., radiation, conduction, convection)

4. What test(s) could you perform to determine if an animal is “warm-blooded” (homeothermic) or “cold-blooded” (poikilothermic)?

5. To maintain your relatively constant body temperature of 36°C, what does your body do automatically?

What are some things you do purposefully to make yourself warmer or cooler?

6. What are **temperature** and **heat**, and how are they related?
Teacher Pages: Activity 1

MATERIALS

Student Activity Sheets
- Course Outline
- Insulated Glove Design Brief
- Snapshot of Understanding

Ring, Pocket, or Folio Binder
- (student supplied) for keeping student activity sheets, notes, and drawings for reference and portfolio assessment

PREPARATION

- Read and become familiar with the entire unit.
- Prepare an introduction to motivate student interest.
- Define your assessment system with a clear, simple description.

OVERVIEW—DESIGN BRIEF

Give students the Insulated Glove Design Brief and the Snapshot of Understanding. Initiate class discussion and highlight important design issues.

Construct-a-Glove Challenge to Students

Each student, as a member of a product research and development team, is to design an insulated glove system that keeps the tip of the index finger as warm as possible in uncomfortably cold surroundings while maintaining dexterity for a specific function.

Students write short answers to questions about their prior knowledge of heat transfer, body temperature regulation, and research and design processes. (20 minutes suggested.)

TEACHING SUGGESTIONS

Introduction

Hand out the Insulated Glove Design Brief student activity sheet. Ask students to keep these and future sheets together in one place and to bring them to the classroom with other notes to serve as a record and reference for daily activity (and assessment) in the unit. Advise students that they will work in teams, use processes of technological design and scientific inquiry together, and that other teams will critique their prototype with respect to the challenge criteria. Students are also required to document their activity in order to both contribute effectively to the final team presentation and to enhance their individual portfolios. Be clear on your rubrics for assessing their work and share them with students. Indicate which activities will be individually graded and which will be given a team score. Be prepared to justify team scoring if some students (or parents) are not used to the idea.

Issuing the Construct-a-Glove Challenge

We encourage you to expand the challenge to accomplish additional learning objectives but be careful to think through what will be involved.
For example, a criterion of dexterity (such as the ability to pick up a marble with the insulated glove system) might be added to enrich the challenge if robotics or finger function is pertinent to your course objectives. But this addition will demand more sophisticated technical materials, involve greater construction difficulties, and require more student time.

Other Possible Criteria

- Let students specify the dexterity they have achieved after-the-fact, in their product prospectus.

- Let teams choose to design for one of several simulated bid invitations. You will need to prepare the bid request document (be sure to include dexterity task specifications).

- Set one uniform standard for all teams to achieve with the gloved hand immediately following a standardized immersion time in ice water. Example tasks might be picking up a pencil off a flat surface, operating a camera, using pliers, holding a nail for hammering, tuning a radio, using a keyed lock, placing a nut on a bolt, etc.

- Set a theme such as survival in snow country; orient toward natural insulation materials such as leaves and grasses that can be gathered outdoors; and specify necessary hand functions such as gathering firewood and signaling for help. (Define or supply the range of options so as not to damage the local environment.)

Pre-Assessment

Hand out the *Snapshot of Understanding*. Emphasize that this is not a test, and they will not be graded on this activity. Its purpose is self-diagnostic, to find out what they know initially about the unit’s key science and technology learning objectives. Making an inventory of their prior knowledge is an important learning tool. Not only can the inventory help to guide their learning toward the areas where students need to learn the most, but it also prepares their minds to accept new information in a manner that ties it meaningfully to what they already know. At the end of *Construct-a-Glove*, students will be able to compare answers to Snapshot questions given at the beginning of the unit to those they will answer at the end of the unit.

Allow about 20 minutes for students to complete the Snapshot, then collect and retain.
In the *Snapshot of Understanding*, students list as many special-purpose gloves as they can, given one example (welding). Some additional examples are:

- staining/painting/waxing
- food handling
- gardening
- dish washing
- skiing
- driving
- diving
- golfing
- meat cutting
- boxing
- baseball
- hockey
- fashion
- surgical
- wood cutting
- mountain biking
- cattle roping
- chemicals handling
- fire fighting
- traffic directing
- electrical line working
- space walking
- hunting
- archery
- ice fishing
- mountain climbing

Encourage a class discussion of differences among special purpose gloves; this can help students better relate form to function.