

REBECCA HITE • GINA CHILDERS
MEGAN ENNES • M. GAIL JONES

National Science Teaching Association

Studies for Grades 6-12

Studies for Grades 6-12

REBECCA HITE • GINA CHILDERS MEGAN ENNES • M. GAIL JONES

Arlington, Virginia

Claire Reinburg, Director Rachel Ledbetter, Managing Editor Andrea Silen, Associate Editor Jennifer Thompson, Associate Editor Donna Yudkin, Book Acquisitions Manager

ART AND DESIGN

Will Thomas Jr., Director Himabindu Bichali, Graphic Designer, cover Joe Butera, Senior Graphic Designer, interior design

PRINTING AND PRODUCTION Catherine Lorrain, Director

NATIONAL SCIENCE TEACHING ASSOCIATION David L. Evans, Executive Director

1840 Wilson Blvd., Arlington, VA 22201 www.nsta.org/store
For customer service inquiries, please call 800-277-5300.

Copyright © 2020 by the National Science Teaching Association. All rights reserved. Printed in the United States of America. 23 22 21 20 4 3 2 1

NSTA is committed to publishing material that promotes the best in inquiry-based science education. However, conditions of actual use may vary, and the safety procedures and practices described in this book are intended to serve only as a guide. Additional precautionary measures may be required. NSTA and the authors do not warrant or represent that the procedures and practices in this book meet any safety code or standard of federal, state, or local regulations. NSTA and the authors disclaim any liability for personal injury or damage to property arising out of or relating to the use of this book, including any of the recommendations, instructions, or materials contained therein.

PERMISSIONS

Book purchasers may photocopy, print, or e-mail up to five copies of an NSTA book chapter for personal use only; this does not include display or promotional use. Elementary, middle, and high school teachers may reproduce forms, sample documents, and single NSTA book chapters needed for classroom or noncommercial, professional-development use only. E-book buyers may download files to multiple personal devices but are prohibited from posting the files to third-party servers or websites, or from passing files to non-buyers. For additional permission to photocopy or use material electronically from this NSTA Press book, please contact the Copyright Clearance Center (CCC) (www.copyright.com; 978-750-8400). Please access www.nsta.org/permissions for further information about NSTA's rights and permissions policies.

Library of Congress Cataloging-in-Publication Data

Names: Hite, Rebecca, 1979- author.

Title: Discovery engineering in biology : case studies for grades 6-12 / Rebecca Hite, Gina Childers, Megan Ennes, M. Gail Jones.

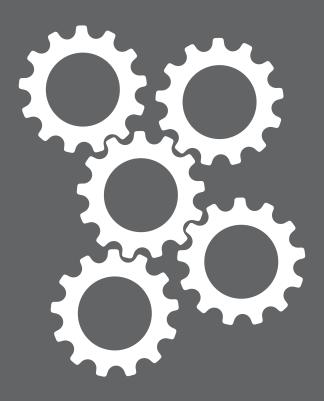
Description: Arlington, VA: National Science Teaching Association, [2020] | Includes bibliographical references and index. | Identifiers: LCCN 2019028752 (print) | LCCN 2019028753 (ebook) | ISBN 9781681406145 (paperback) | ISBN 9781681406152 (adobe pdf)

Subjects: LCSH: Biotechnology--Study and teaching (Secondary) | Bioengineering--Study and teaching (Secondary) | Discoveries in science--Study and teaching (Secondary)

Classification: LCC TP248.22 .H58 2020 (print) | LCC TP248.22 (ebook) | DDC 660.607--dc23

LC record available at https://lccn.loc.gov/2019028752

LC ebook record available at https://lccn.loc.gov/2019028753



This book is dedicated to all teachers and students who share a love of science and engineering.

Contents

About the Authors	ix
Acknowledgments	xi
Introduction	l

1	Quit Bugging Me Controlling Mosquitoes to Stem Malaria Infection	13	11	Power Plants Algal Biofuels	221
2	Game of Knowns John Snow's Research Into the Cause and Spread of Cholera	31	12	A "Sixth Sense" Using Sensors for Monitoring and Communication	239
3	Thalidomide Hidden Tragedy and Second Chances	49	13	In Hot Water The Discovery of Taq Polymerase	257
4	Vindicating Venom Using Biological Mechanisms to Treat Diseases and Disorders	69	14	Cows and Milkmaids The Discovery of Vaccines	277
5	Forbidden Fruit The Discovery of Dangerous Drug Interactions	89	15	2X or Not 2X "Y" Should Mixed-Sex Test Subjects Be Used in Medical Research?	299
6	Listen to Your Heart The Accidental Discovery of the Pacemaker	117	16	Revealing Repeats The Accidental Discovery of DNA Fingerprinting	325
7	Overexposure Treating Anaphylaxis Due to Allergies	135	17	Mr. Antibiotic, Tear Down This (Cell) Wall The Prokaryotic Resistance of Penicillin	349
8	Crashing the Party Combating Chronic Alcohol Abuse	157	18	Hidden in Plain Sight Darwin's Observations in the Galápagos Islands	373
9	The Triumph of the Pika Understanding Environmental Impacts on Species	179	19	More Bark Than Bite Using Bioprospecting to Find Cures for Disease	395
10	Seeing the Earth Glow From Space Plants That Glow	205	20	Cutting It Close Using CRISPR to Microedit the Genome	415
	Image Credits			439	

About the Authors

Rebecca Hite is a former high school science and geography teacher and is currently an assistant professor of science education at Texas Tech University.

Gina Childers is a former middle and high school science teacher and is currently an assistant professor of science education at Texas Tech University.

Megan Ennes is a former museum educator and is currently the assistant curator of museum education at the University of Florida.

M. Gail Jones is a former middle and high school biology teacher and is currently a professor of science education at North Carolina State University. She leads the STEM Education Research Group investigating effective ways to teach science.

Acknowledgments

The authors wish to thank the many people who inspired, reviewed, and helped craft *Discovery Engineering in Biology*. Our special gratitude goes to Sabrina Monserate, Laurel McCarthy, and Kendall Rease. We also thank the teachers who piloted the activities and provided us with important feedback to refine the cases.

THE TRIUMPH OF THE PIKA

Understanding Environmental Impacts on Species

A Case Study Using the Discovery Engineering Process

Introduction

Climate change threatens the survival of many species, especially those that overheat in higher temperatures. This is particularly true of the pika (Figure 9.1, p. 180), an animal related to rabbits. This small, herbivorous (plant-eating) mammal lives in the mountains of the American West. Pika are known for being habitat specialists, meaning they can only survive in a narrow range of environmental conditions. (This is opposite from species that are generalists, which can survive in a wide range of environmental conditions.) Pika can easily overheat and are sensitive to changes in the environment. So, when a wildfire destroyed an entire forest, scientists were surprised to find that the pika population had survived. In uncovering the mystery of the pika's survival, the scientists learned valuable information about protecting wildlife in the face of climate change.

FIGURE 9.1

The American Pika

Lesson Objectives

By the end of this case study, you will be able to

- explore how species are impacted by human-influenced changes in the environment;
- examine and then model how change in the environment can alter species populations; and
- create an environmental assessment (EA) to evaluate the ecological impact of (proposed) human activity on a specific species in a specific location.

The Case

Read about research on the pika conducted by Dr. Johanna Varner and her colleagues. Their accidental observation of a wildfire while studying pika populations

is helping to construct a better understanding of how wildfires affect species. This is extremely important, because scientists believe that wildfires will grow in both frequency and severity due to climate change. Once you are finished reading, answer the questions that follow.

In August 2011, ecologist Johanna Varner was conducting a field study on a pika population living in an Oregon gorge. Pika typically live in the mountains, not in gorges where the elevation is near sea level. Dr. Varner wanted to understand this unique population. They served as her experimental group. To have a basis of comparison, she also observed a second pika site at Mount Hood. This was her control group. Like most other pika, the Mount Hood population made dens in mountainside rock fields. As part of her observation, Dr. Varner installed temperature-recording devices in the pika's dens. In September, a sudden wildfire broke out at the Mount Hood site, seemingly ruining the experiment.

However, the wildfire led to a novel research opportunity. Natural disasters are on the rise, yet they remain hard to predict and, therefore, study. Science is based on careful and thoughtful design and observation, making investigating natural disasters as they are occurring very rare. But because Dr. Varner and her team already had an experiment set up at the wildfire site, they were in a unique position to study the disaster. And they realized that the wildfire could provide insight into the way such events affect wildlife. The researchers reconsidered their original plan and decided to focus their study on how the pika fared during the wildfire.

It soon became clear that the pika were still abundant at Mount Hood despite the fire. Dr. Varner and her team collected more data on the animals. They looked at the number of dens and the number of pika in each den, both before and after the fire. They also looked at temperature (or thermal) data from the temperature recorders, which had remained intact during the blaze. This gave them an idea of how hot the dens were before, during, and after the fire. They found the temperature in the dens did not rise above 64.4°F (18.5°C), although the fire outside exceeded 932°F (500°C). Varner and her research team found that the rock face provided a way to buffer the temperature, insulating the pika from the extreme heat. Also, the rock face provided a natural barrier to prevent the fire from moving throughout the forest, acting as a fire break. Another factor that allowed for pika survival is that, although these animals are habitat specialists, they are dietary generalists, meaning they can eat a variety of plants to survive. After a fire, the first plants that grow are mosses, which the pika are able to eat.

The results of Dr. Varner's study highlight the importance of maintaining natural features (like rock faces for pika dens) to provide refuges for sensitive species during natural disasters like wildfires. Also, it is important to maintain local, indigenous wildlife, so that after such events animal and plant species may rebound.

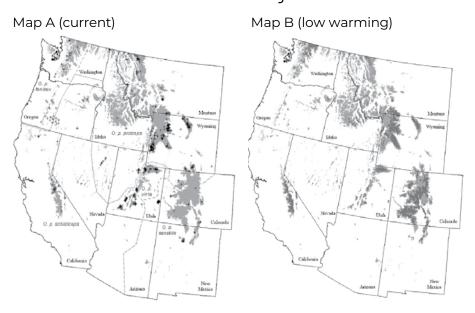
Recognize, Recall, and Reflect

- 1. In Dr. Varner's experiment, which pika population was the experimental group? Why? Which pika population was the control? Why?
- 2. Pika are described as habitat specialists, yet dietary generalists. What does this mean?
- 3. What were two recommendations made by the researchers to help sensitive species after natural disasters?

Investigate and Explain

Climate change poses a threat to many species. To better understand how wild-life populations like the pika may be affected by future warming trends, scientists make models that depict various outcomes. Figure 9.2 includes four maps. The first one, labeled Map A, shows current pika populations and the amount of suitable habitats available to them. The pika are shown as black spots; the suitable habitats are shown in light gray. Each consecutive map shows the amount of suitable pika habitats at different levels of warming: Map B shows low warming, Map C shows medium warming, and Map D shows high warming. For these maps, the suitable habitats are shown in dark gray. Current suitable habitat areas still appear on these maps in light gray for comparison. After examining the data, answer the questions that follow.

- Look at Map A. In which two states do most of the observed pika (black spots) live? Why are there suitable pika habitat areas (light-gray areas) that don't actually have any pika?
- 2. As temperatures increase from low (Map B), to medium (Map C), to high (Map D), what is the general trend of the American pika's habitat (dark-gray areas)?
- 3. Look at Map D. In this scenario, what state would have the largest habitat range for the pika? Why do you think that geographic location would be the last refuge for the pika in the highest temperatures?


Activity

Imagine you work as a wildlife ecologist, researching how environmental changes can influence the entire population of a single species. You are studying one famous case that illustrates this phenomenon. In the second half of the 18th century, Europe was engaged in the Industrial Revolution, when factories began to dot the countryside. These factories churned out black dust (soot) that blanketed the nearby villages and forests, covering both trees and rocks.

Prior to the Industrial Revolution, the peppered moth population in England was mostly composed of a light-colored variety; a smaller number of the moths

FIGURE 9.2

Pika Habitats in Scenarios of Climate Change

Map C (medium warming)

Map D (high warming)

- + Pika occurence
- Current habitat
- Habitat after warming

were a darker-colored (melanic) variety (Figure 9.3). The lighter moth's coloration worked as camouflage, allowing it to blend in with surroundings like trees and lichens in order to hide from predators such as birds. In the mid-1800s, several decades after the Industrial Revolution began, people noted that the light-colored moths had become fewer and fewer in number. Instead, people saw more of the darker variety resting on the trees and rocks.

In the 1950s, Bernard Kettlewell conducted experiments to understand what had happened to these moths. He found that the change in the environment caused by the Industrial Revolution had influenced moth predation. During the Industrial Revolution, soot from factories darkened the forests. The darker surroundings caused the light-colored moths to stand out to predators. Because they were easier to hunt, light-colored moths often didn't live long enough to repro-

FIGURE 9.3

Two Types of Peppered Moth

duce. Meanwhile, the darker-colored moths were able to camouflage themselves better in the now-dark environment, which allowed them to live longer, mate, and pass on their genes for dark color to their offspring. This, in turn, shifted the peppered moth populations from the lighter phenotype, or appearance, to the darker phenotype.

To understand how this occurs, you will explore data on phenotypes of peppered moth populations in 19th-century England. You will conduct a two-part ecological investigation in which you explore the change in the physical appearance of peppered moths, and then create a model to examine how environmental changes can influence populations of species.

Part I

To begin your ecological study, you analyze data from 1860 (several decades after the start of the Industrial Revolution), which was collected during a random sampling of peppered moths from all over England. The summary of that data is in Table 9.1. After completing this part of the activity, answer the questions that follow.

(*Note:* These are mock statistics that reflect the type of frequency differences you might have found in areas of England affected by pollution from the Industrial Revolution. These are not data points that were actually collected.)

TABLE 9.1

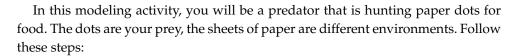
Ecological Survey Data of Light and Dark Peppered Moths in 1860s England

Sampling Location #	Location in England	Distance to Closest Factory	Number of Light-Colored Moths Observed	Number of Dark-Colored Moths Observed	Total Number of Moths Observed
1	Northwest England and Ireland	8 km to 10 km	698	228	926
2	Northeast England and Scotland	More than 20 km	923	22	945
3	Central England	Less than 1 km	18	928	946
4	Southwest England	More than 10 km	840	92	932
5	Southeast England	2 km to 5 km	280	641	921

ACTIVITY QUESTIONS, PART I

- 1. You will now create a pie chart map of your data. Follow the steps below.
 - a. Calculate the percentage of each moth per sampling area in the chart below. (The first one has been done for you.)
 - b. Use the calculations to create a pie chart for each sampling area. (The first one has been done for you.)

Sampling Location #	Percent Light- Colored Moths	Percent Dark- Colored Moths	Pie Chart	Geographic Location
1	698/926 = 0.754	228/926 = 0.246		Northwest England
	$0.75 \times 100 = 75\%$	0.25 × 100 = 25%	O	and Ireland
2			\circ	
3			0	
4			0	
5			0	


- c. Plot your data to the correct geographic area on this outline map of England.
- 2. In which regions are light-colored moths most prevalent? In which regions are dark-colored moths most prevalent? How does distance from a factory affect the prevalence of each moth variety?

Part II

Next, you will model how a sudden change in the environment can indirectly influence wildlife populations. Once you're done, answer the questions that follow.

MATERIALS

- ✓ 5 pieces of 8.5 × 11 in. construction paper, one of each color: green, black, yellow, white, and red
- ✓ 2 pieces of 8.5×11 in. patterned paper or fabric
- ✓ 1 bag of green, black, yellow, white, and red paper dots (at least 50 in all, 10 of each color)
- ✓ 1 pair of tweezers (to capture dots)

- 1. First, place down a piece of green construction paper (Trial 1).
- 2. Then, dump the dots from the bag onto the paper and spread them out.
- 3. Close your eyes. When you open them, quickly pick up the dot that stands out the most.
- 4. Once you have picked up your dot, put it back into the bag.
- 5. Repeat Steps 2 through 4 until about half (25 or so) of the dots are left.
- 6. Count up the number of dots that you snagged by color, recording the data in the Paper Dot Hunting Chart. Then, add up the data in each row.
- 7. Put all 50 of the dots back into the bag.
- 8. Repeat Steps 1 to 7 but with the next "environment," or sheet of paper (Trials 2 through 7).

Environment (Paper Color)	Prey A (Green Dots)	Prey B (Black Dots)	Prey C (Yellow Dots)	Prey D (White Dots)	Prey E (Red Dots)	Total Caught
Trial 1: Green						
Trial 2: Black						
Trial 3: Yellow						
Trial 4: White						
Trial 5: Red						
Trial 6: Pattern 1						
Trial 7: Pattern 2						

ACTIVITY QUESTIONS, PART II

- 1. In this modeling activity, what were the relationships between totals (frequencies) of prey (dot colors) to their environment (paper colors)?
 - a. When was the prey the easiest to see?
 - b. When was the prey most difficult to see?
 - c. How does the environment affect the traits that are common in a population?

Apply and Analyze

Read this short article from Carolina Biological about using a technique called *mark-release-recapture* (MRR) to determine populations of freshwater turtles: *http://class-room.jc-schools.net/coleytech/climate/Carolina*%20*Tips.pdf*. After reading, answer the questions that follow.

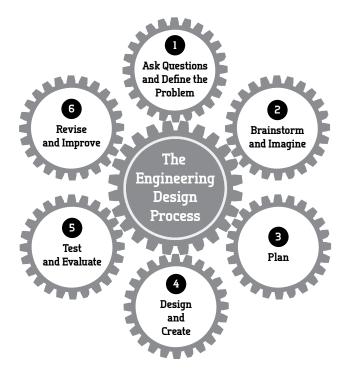
1. Imagine you were conducting an MRR study of the Mexican spider monkey, a critically endangered species. (According to the International Union for Conservation of Nature, a critically endangered species is defined as having an extreme risk of extinction in the wild.) You are able to mark 75 monkeys (categorized as Marked, or M) and release them back into their habitat. When you return, you capture 75 monkeys and note that 45 are recaptures (categorized as Recaptures, or R) and 30 are not marked (categorized as Unmarked, or U). Using this equation (X = [(U + R)/R]M),

what is the total number (X) of monkeys you estimate to be in the wild population? Show your work: X =_____

2. The Mexican spider monkey is one of five subspecies of the Geoffroy's spider monkey species. The other subspecies are the Nicaraguan spider monkey, the hooded spider monkey, the ornate spider monkey, and the Yucatán spider monkey. It is important during MRR studies that the correct species or subspecies is captured, marked, recaptured, and counted. What are three ways you would ensure that you and your research team are marking and recapturing the correct monkeys?

1.		
2		
۷.		
3		

Design Challenge


The case study in this lesson illustrates how scientific observations can lead to potential solutions to problems. Observations and discoveries often spark inno-

vations, especially in the field of engineering. Engineering is the application of scientific understanding through creativity, imagination, and the designing and building of new materials to address and solve problems in the real world. You will be asked to take the science you have learned in this case and design a process or product to address a real-world issue.

Engineers use the engineering design process (Figure 9.4) as steps to address a real-world problem. Environmental engineers provide information for environmental assessments (EAs). Now, you will use the engineering design process to create your own EA. In this case, you are asking questions (Step 1) about species that are threatened or endangered by climate change or other environmental changes. You will then learn about the components of an EA and brainstorm

FIGURE 9.4

The Engineering Design Process

(Step 2) a topic for your own EA—a proposed activity in your community that may affect threatened or endangered local species. After gathering research, you will make a plan (Step 3) for your EA. Then, you will create (Step 4) your EA. Afterward, a peer will evaluate (Step 5) your EA and provide feedback. Finally, you will consider improvements (Step 6) to your EA based on the feedback.

1. Ask Questions

The pika is just one animal species that is threatened by climate change and other environmental issues. What are some other plants and animals that are threatened or endangered? What actions and activities are harming them?

2. Brainstorm and Imagine

An EA outlines the positive and negative environmental effects of a proposed action (usually, an action taken to benefit people). The EA is supposed to (1) demonstrate the need for a human action, (2) consider how that human action would impact the environment, and (3) develop ways to mitigate (or reduce) unintended impacts to endangered or threatened animal or plant species. Examples of proposed actions may include the following:

- Industry: siting and constructing a new factory, farm, business, etc.
- <u>Energy</u>: siting and constructing a new energy source (wind farm, nuclear power plant, etc.)
- <u>Transportation Infrastructure</u>: siting and constructing a new road, bridge, railroad, airport, etc.
- <u>Development</u>: siting and developing land for a subdivision, park, nature refuge, etc.

Think about something your town, city, or county might need to do in order to grow or recover economically or environmentally. Which of the examples listed above are the most relevant in your local context? Conduct some research on your town, city, and county websites to find out what the needs are in your community. Discuss your thoughts and ideas with your classmates.

Choose one action that your city, town, or county might take in order to meet a need. Look at the Environmental Assessment Components section. Think about what information you'll need to create your EA. Keep this in mind (and refer back to the EA description) as you conduct research on your chosen action in Step 3.

Environmental Assessment Components

EAs contain the following five parts: introduction, purpose, need, alternatives, and environmental impacts.

- 1. **Introduction.** The introduction should include a brief, one-paragraph description of the project background. Include a summary of the need for human action.
- 2. Purpose. The purpose is a statement of the proposed human action and two to three of its objectives. The purpose should be general in nature, whereas objectives are more specific to the actual location of the project. For example, a purpose could be to "put a new park in town." One objective could then be to "find what lots are available for that park."
- 3. **Need.** Identifying and explaining the need is critical in an EA. The need is the specific problem the project is intended to address. The need should be specific and stated as a problem, not a solution. The need should be described in a manner that allows for multiple ways of addressing the problem. The need should not be defined by the proposed action.
 - Example 1: The need is not "to build a dam" but rather "to control flooding and prevent future flood damages and losses."
 - Example 2: The need is not "to build a 300-foot communications tower" but rather "to improve public safety and interoperable communications among first responders during an emergency event."
- 4. **Alternatives.** There should be some discussion of various alternatives to justify the EA.
 - No Action Alternative: This is what will happen if no action is taken or this proposed idea does not happen.
 - Action Alternatives: If this course of action is not taken, what are other courses of action? If the proposed project cannot happen, how else could the need be met?
- 5. Affected Environment and Potential Impacts on a Single Animal or Plant Species. In this section, describe the physical setting where the action will take place and give information on the existing environment for a species of concern. Then, discuss how that species may be affected by the proposed action and alternatives.

(Continued)

- Potential effects to the environment (e.g., ecosystem, climate)
- Describe how that environmental change may have potential impacts to your chosen plant and/or animal species (e.g., impacts on threatened or endangered status, habitat, food resources)

Example of an EA Topic

Texas is a very large state. With a land area of 268,597 square miles and almost 30 million people, transporting people from town to town is a serious need. Several times a week, more than 50,000 Texans travel back and forth between Houston and Dallas/Fort Worth. A high-speed rail system could help connect people from the southern part of the state (Houston) to northern parts of the state (Dallas/Fort Worth) in 90 minutes, helping to reduce road traffic and conserving gasoline and productive time lost to commuting.

However, where to locate the rail is important, as the 240-mile route may impact ecosystems and wildlife. Therefore, an ecological study was conducted to determine how wildlife may be affected. One concern is for the whooping crane, an endangered bird that migrates along the proposed high-speed rail route. The rail system may take away needed habitat and resources for the crane, driving it toward extinction. Therefore, the rail will avoid locating near or along major bodies of water (salt marshes and wetlands) where whooping cranes live and travel.

Alternatives are too costly (air travel) or take too long (automobile). High-speed rail also produces less carbon dioxide (CO₂) than airplanes and cars. It will also reduce cars on the road, which could reduce deaths by motor vehicles. If there is no action, Texans will lose jobs and economic gains.

3. Create a Plan

Conduct research on your chosen action in order to gather the information you will need to write your EA. Then create a plan for your EA. In your plan, make sure to (1) identify the community you want to work with, (2) describe one need of that community (either in industry, energy, transportation, or development), (3) identify the action that could be taken to meet that need, and (4) summarize the effects of that action on the environment. Use the Create a Plan graphic organizer (p. 193) for guidance.

4. Design and Create

Write your EA in these five parts: introduction, purpose, need, alternatives, and environmental impacts. Remember to reflect on the following questions:

- How does this action potentially affect the environment?
- What is an endangered or threatened species that would be affected?
- What are alternatives to this action?
- What happens if no action is taken?

5. Test and Evaluate

Share your EA with a peer for feedback. Ask for an evaluation of your work and consider ways your EA could be clearer. Have you made the best case for your EA?

6. Revise and Improve

Revise and make improvements to your EA based on feedback from your classmate. What are some ways you can use the input to refine your plan? You may choose to accept all or only some of the feedback. Be sure to justify your reasoning for using or not taking suggestions.

Create a Plan

Industry Need	Energy Need	ize an action that could be t Transportation Need	aken to address this ne Development Need
			\
action to Meet Need	Action to Meet Need	Action to Meet Need	Action to Meet Need

TEACHER NOTES

THE TRIUMPH OF THE PIKA

UNDERSTANDING ENVIRONMENTAL IMPACTS ON SPECIES

A Case Study Using the Discovery Engineering Process

Lesson Overview

In this lesson, students explore the impact of environmental change on wildlife. The case study focuses on the pika, a mammal related to the rabbit. Although pika are very sensitive to heat, a group of them were able to survive a wildfire. A team of ecologists who happened to be using the animals as a control group in an experiment were able to figure out that they survived by using available natural resources as a buffer against the fire. Students will use data and maps to understand how environmental changes (including climate change) impact endangered and threatened species. They will also create a model to illustrate the effects of environmental change, using data on peppered moths from 19th-century England. Last, students will create environmental assessments (EAs) to evaluate an action taken in their community to meet a human need. In their EAs, they will evaluate the potential impacts of the action on local endangered or threatened species.

Lesson Objectives

By the end of this case study, students will be able to

- explore how species are impacted by human-influenced changes in the environment;
- examine and then model how change in the environment can alter species populations; and
- create an EA to evaluate the ecological impact of (proposed) human activity on a specific species in a specific location.

Use of the Case

Due to the nature of these case studies, teachers may elect to use any section of each case for their instructional needs. They are sequenced in order (scaffolded) so

students think more deeply about the science involved in the case and develop an understanding of engineering in the context of science.

Curriculum Connections

Lesson Integration

This lesson may be taught during a unit on ecology and population dynamics for beginner biology courses. This lesson fits well into topics related to natural selection and human impacts on the environment.

Related Next Generation Science Standards

PERFORMANCE EXPECTATIONS

- MS-LS2-4. Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.
- MS-LS2-5. Evaluate competing design solutions for maintaining biodiversity and ecosystem services.
- MS-ESS3-3. Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
- MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
- HS-ESS3-1. Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity

SCIENCE AND ENGINEERING PRACTICES

- · Asking Questions and Defining Problems
- Developing and Using Models
- Planning and Carrying out Investigations
- Analyzing and Interpreting Data
- Constructing Explanations and Designing Solutions
- Engaging in Argument From Evidence

CROSSCUTTING CONCEPTS

- Cause and Effect
- Systems and System Models
- Stability and Change

Related National Academy of Engineering Grand Challenges

- Restore and Improve Urban Infrastructure
- Develop Carbon Sequestration Methods
- Engineer the Tools of Scientific Discovery

Lesson Preparation

Before starting the lesson, it is helpful for students to have some understanding of human impacts on the environment, climate, and natural selection. Review the concepts of a controlled experiment and ecological succession before beginning the lesson so students can understand how scientists support what they know about climate change. Also review how to interpret data from maps and analyze layered data.

You will need to make copies of the entire student section for the class. Students will need internet access at various points in the lesson. Alternatively, you can project videos or print and distribute copies of online content for the class. Look at the Teaching Organizer (Table 9.2) for suggestions on how to organize the lesson.

For the Activity section, we suggest using green, black, yellow, white, and red construction paper. For the patterned pieces of paper or fabric, choose ones that have many of the same colors as the construction paper. Students can work in pairs. Each group will need five sheets of construction paper (one of each color), two patterned sheets of paper or fabric, and one bag of green, black, yellow, white, and red dots. Use a hole punch to create the dots. Groups will need 10 dots of each color. So for a class of 30 in which you would have 15 groups of two, punch out 150 dots per color. Place 10 dots of each color into a resealable bag for each group.

Materials

Per group

- ✓ 5 pieces of 8.5 × 11 in. construction paper, one of each color: green, black, yellow, white, and red
- ✓ 2 pieces of 8.5×11 in. patterned paper or fabric
- ✓ 1 bag of green, black, yellow, white, and red paper dots (at least 50 in all, 10 of each color)
- ✓ 1 pair of tweezers (to capture dots)

Time Needed

Up to 115 minutes

TABLE 9.2

Teaching Organizer

Section	Time Suggested	Materials Needed	Additional Considerations
The Case	10 minutes	Student pages	Activity done individually in class or as homework prior to class
Investigate and Explain	10 minutes	Student pages	Activity done individually or in pairs
Activity	20 minutes	Student pages; 5 pieces of 8.5 × 11 in. construction paper (one of each color: green, black, yellow, white, and red); 2 pieces of 8.5 × 11 in. patterned paper or fabric; 1 bag of green, black, yellow, white, and red paper dots (at least 50 in all, 10 of each color); 1 pair of tweezers (to capture dots)	Activity done individually or in pairs
Apply and Analyze	10–15 minutes	Student pages, internet access	Individual activity
Design Challenge	45–60 minutes	Student pages, internet access	Small-group activity

Vocabulary

- camouflage
- · climate change
- · control group
- dens
- ecologist
- endangered
- · environmental assessment
- · experimental group
- extinct
- dietary generalists
- dietary specialists
- habitat specialists
- habitat generalists

- herbivorous
- indigenous
- insulated
- introduced
- invasive
- mammal
- mark-release-recapture
- melanic (melanin)
- phenotype
- pika
- population
- species
- wildlife

Extensions

- The Activity section can be expanded to further explore population dynamics. Tell students that when they "prey" on their dots, the dots that "survive" can go on to "reproduce." After each round in a trial, students can add three more dots of the same colors that have survived to represent the offspring with the same traits as the surviving parent. You can elect to have students time their rounds with a stopwatch to keep up the pace of the activity.
- The Apply and Analyze section can be extended by modeling population size estimation (www.learner.org/jnorth/tm/monarch/EstimateMRR.html).
 This activity requires minimal materials, and students will garner a better understanding of the MRR method.
- The Design Challenge can be extended into an environmental impact assessment, or EIA (https://link.springer.com/referenceworkentry/10.1007% 2F1-4020-4494-1_117). The EIA expands upon an EA with more information into the mitigation strategies discussed in the EA.

Assessment

Use the Teacher Answer Key to check the answers to section questions. You can evaluate the students' EAs to assess the Design Challenge. Their EAs should be divided into five parts: introduction, purpose, need, alternatives, and environmental impacts. The students should include all the information requested in the Environmental Assessment Components template on page 190. In their EAs, students should identify an action that might be taken in their community to address a human need. They should include research on how that specific action may impact a threatened or endangered species within an environmental context. During the Design Challenge, students should also be able to provide constructive peer reviews on classmates' EAs and incorporate the feedback of others into their own EAs.

Teacher Answer Key

Recognize, Recall, and Reflect

1. In Dr. Varner's experiment, which pika population was the experimental group? Why? Which pika population was the control? Why?

Experimental Group: Pika living in the gorge. Pika normally only live in the mountains, so it is strange to find a pika population at sea level. Control Group: Pika living on Mount Hood. This is because Pika normally only live in the mountains, so it is a "normal" group for comparison.

2. Pika are described as habitat specialists, yet dietary generalists. What does this mean?

Pika can only live in a narrow range of environmental conditions (i.e., only in mountain areas, cool temperatures). This makes them habitat specialists. However, they can eat a wide variety of plants, making them dietary generalists.

3. What were two recommendations made by the researchers to help sensitive species after natural disasters?

First recommendation: Maintain natural features like rock faces to provide refuges for sensitive species during natural disasters like wildfires. Second recommendation: Maintain local, indigenous wildlife so that after a natural disaster, animal and plant species may rebound.

Investigate and Explain

1. Look at Map A. In which two states do most of the observed pika (black spots) live? Why are there suitable pika habitat areas (light-gray areas) that don't actually have any pika?

Utah and Wyoming. The black spots represent locations where pika populations have been observed in the wild. Habitat areas are places that could support the pika, but that does not mean pika actually live there.

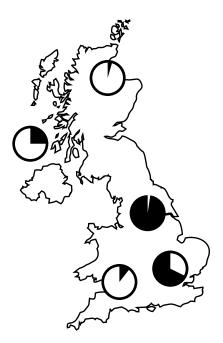
2. What is the general trend of the American pika's habitat (dark-gray areas) as temperature increases from low (Map B), to medium (Map C), to high (Map D)?

As temperature increases, the habitats available for the pika decrease.

3. As temperatures increase from low (Map B), to medium (Map C), to high (Map D), what is the general trend of the American pika's habitat (dark-gray areas)?

California. Student answers may vary. They could hypothesize that California has more protected areas or rock faces that provide thermal buffers (mentioned in the case study) to protect the pika. California also has stricter government regulations that may help protect vulnerable species.

Activity Questions, Part I


- 1. Visualize the data so you can begin to draw conclusions. Create a pie chart using the outline of England. The first location has been done for you.
 - Calculate the percentage of each moth per sampling area.
 - b. Use the calculations to create a pie chart for each sampling area.
 - c. Plot your data to the correct geographic area on the map of England provided.

The key to the chart and map are shown on the following page.

Sampling Location #	Percent Light- Colored moths	Percent Dark- Colored Moths	Pie Chart	Geographic Location
1	698/926 = 0.754 0.75 × 100 = 75%	228/926 = 0.246 0.25 × 100 = 25%		Northwest England and Ireland
2	923/945 = 0.977 0.98 × 100 = 98%	22/945 = 0.023 0.02 × 100 = 2%	\bigcirc	Northeast England and Scotland
3	18/946 = 0.019 0.02 × 100 = 2%	928/946 = 0.981 0.98 × 100 = 98%		Central England
4	840/932 = 0.901 0.90 × 100 = 90%	92/932 = 0.098 0.10 × 100 = 10%		Southwest England
5	280/921 = 0.304 0.30 × 100 = 30%	641/921 = 0.695 0.70 × 100 = 70%		Southeast England

2. In which regions are light-colored moths most prevalent? In which regions are dark-colored moths most prevalent? How does distance from a factory affect the prevalence of each moth variety?

Student answers may vary but should relate these concepts from the data: The melanic moth phenotype is most prevalent in Central and Southeastern England. The prevalence of melanic moths increases with proximity to a factory.

Activity Questions, Part II

1. In this modeling activity, what were the relationships between totals (frequencies) of prey (dot colors) to their environment (paper colors)?

Students' answers may vary but should relate the following concepts from the data.

a. When was the prey the easiest to see?

When the color of the prey contrasted with the environment, meaning the prey was not camouflaged.

b. When was the prey most difficult to see?

When the color of the prey was the same as the environment, meaning the prey was camouflaged.

c. How does the environment affect the traits that are common in a population?

Individuals in the population that are most noticeable to predators (not camouflaged to the environment) are eaten. Those that are eaten do not reproduce and pass on their traits (demonstrated as phenotypes) to the next generation. Therefore, the population's traits will shift to those that can survive predation (and reproduce) by being best to the environment adapted (camouflaged, and therefore able to avoid predators).

Apply and Analyze

1. Imagine you were conducting an MRR study of the Mexican spider monkey, a critically endangered species. (According to the International Union for Conservation of Nature, a critically endangered species is defined as having an extreme risk of extinction in the wild. You are able to mark 75 monkeys (categorized as Marked, or M) and release them back into their habitat. When you return, you capture 75 monkeys and note that 45 are recaptures (categorized as Recaptures, or R) and 30 are not marked (categorized as Unmarked, or U). Using this equation (X = [(U + R)/R]M), what is the total number (X) of monkeys you estimate to be in the wild population? Show your work:

$$X = 125 = [(30 + 45)/45]75)$$

2. The Mexican spider monkey is one of five subspecies of the Geoffroy's spider monkey species. The other subspecies are the Nicaraguan spider monkey, the hooded spider monkey, the ornate spider monkey, and the Yucatán spider monkey. It is important that during MRR studies that the correct species or subspecies is being captured, marked, recaptured, and counted.

What are three ways you would ensure that you and your research team are marking and recapturing the correct monkeys?

Students' answers may vary but should be aligned to methods delineated in the article to reduce human sampling error in ecological fieldwork. Here are some examples:

- Making a close examination of field marks to ensure the animal is the correct subspecies
- Ensuring that the MMR occurs in the exact habitat of the subspecies
- Using appropriate trapping techniques
- Differentiating between adults and juveniles
- Accounting for male and female sex differences

Resources and References

- Journey North. Counting all butterflies: Estimating population size. University of Madison-Wisconsin. https://journeynorth.org/tm/monarch/EstimateMRR.html.
- Federal Emergency Management Agency (FEMA). 2011. Guidelines for preparing an environmental assessment for FEMA. www.fema.gov/media-library-data/ 20130726-1758-25045-3460/guidelines_for_preparing_an_environmental_assessment_for_fema. pdf.
- Gibbons, J. W. 1988. Turtle population studies. Carolina Tips 51 (12): 45-47.
- Hollick, M. 1999. "Environmental Impact Assessment (EIA), Statement (EIS)." In Encyclopedia of Earth Science. Springer, Dordrecht. Online ed. https://link.springer.com/refer enceworkentry/10.1007%2F1-4020-4494-1_117.
- Office of NEPA Policy and Compliance. DOE environmental assessments. U.S. Department of Energy. www.energy.gov/nepa/listings/environmental-assessments-ea.
- U.S. Department of the Interior (DOI). 2010. Effects of climate change on the distribution of pika (*Ochotona princeps*) in the western United States. https://gapanalysis.usgs.gov/blog/effects-of-climate-change-on-the-distribution-of-pika-ochotona-princeps-in-the-western-united-states.
- Varner, J., M. S. Lambert, J. J. Horns, S. Laverty, L. Dizney, E. A. Beever, and M. D. Dearing. 2015. Too hot to trot? Evaluating the effects of wildfire on patterns of occupancy and abundance for a climate-sensitive habitat specialist. *International Journal of Wildland Fire* 24 (7): 921–932. http://dearing.biology.utah.edu/Lab/pdf/2015_varner_too_hot_trot.pdf.
- Wildlife Medical Clinic. Adaptations: Specialist and generalist. College of Veterinary Medicine, University of Illinois at Urbana-Champagne. http://vetmed.illinois.edu/wildlifeencounters/grade9_12/lesson2/adapt_info/specialist.html.

Index

Note: Page references in **boldface** indicate information contained in figures or tables.

```
Alexander, Albert, 351
                                                                                               case, 136-138, 137
absorbance, 207-208, 209, 219
                                             algae, 221-223, 222
                                                                                               Create a Plan (graphic organizer),
                                                  bioprospecting, 403
accelerometer, 241-242, 242, 245, 253
                                                                                                  143, 145
acetaldehyde dehydrogenase, 159
                                                  collecting, 224-225, 225, 234-236
                                                                                               curriculum connections, 148-150
acetylcholine, 70-74, 73, 83, 87
                                                  wet mount for observation, 225,
                                                                                               design challenge, 142-147, 143
                                                     225-227, 234-235
adaptive radiation, 375, 376
                                                                                               Evaluation Plan (graphic
airplanes, algal biofuel for, 222
                                             algae farming, 228-231, 236
                                                                                                  organizer), 144, 147
alcohol abuse (case study), 157-177
                                             algae skimmer, 224-225, 225, 234-236
                                                                                               extensions, 151
     activity, 161-164
                                             algal biofuels (case study), 221–238
                                                                                              introduction, 135-136, 136
    apply and analyze, 164
                                                  activity, 224-227, 225
                                                                                               investigate and explain, 138,
                                                  apply and analyze, 227
                                                                                                  138-139
    assessment, 174
    case, 159
                                                  assessment, 236
                                                                                               lesson integration, 148
                                                 case, 221-222
                                                                                              lesson objectives, 136, 148
    Chronic Alcoholism Treatment
        Proposal (worksheet), 166, 168
                                                  Create a Plan (graphic organizer),
                                                                                              lesson overview, 148
     Create a Plan (graphic organizer),
                                                     229, 231
                                                                                               lesson preparation, 150-151
        165, 167
                                                  curriculum connections, 232-233
                                                                                               Medical Treatment Proposal
    curriculum connections, 171-172
                                                                                                  (worksheet), 144, 146
                                                  design challenge, 227-231, 228
     design challenge, 164-169, 165
                                                  extensions, 236
                                                                                               related National Academy of
                                                  introduction, 221, 222
     Evaluation Plan (graphic
                                                                                                  Engineering Grand Challenge,
                                                 investigate and explain, 223,
                                                                                                  150
        organizer), 166, 169
     extensions, 174
                                                     223-224
                                                                                               related Next Generation Science
    introduction, 157-158, 158
                                                  lesson integration, 232
                                                                                                  Standards, 149
     investigate and explain, 160-161,
                                                  lesson objectives, 221, 232
                                                                                               resources and references, 155
        160-161
                                                  lesson overview, 232
                                                                                               symptoms of anaphylaxis, 137
                                                  lesson preparation, 233-236, 235
                                                                                               teacher answer key, 151-154
    lesson integration, 171
    lesson objectives, 158, 170
                                                  related National Academy of
                                                                                               teacher notes, 148-155
    lesson overview, 170
                                                     Engineering Grand Challenge,
                                                                                               teaching organizer, 150
     lesson preparation, 172-173
                                                                                               use of case, 148
     Public Service Announcement
                                                  related Next Generation Science
                                                                                               vocabulary, 151
         (PSA), 158, 162-164, 170, 172,
                                                     Standards, 233
                                                                                         anemone toxin, 136–137, 152
        176-177
                                                  resources and references, 238
                                                                                         animal models, 299-301
                                                  teacher answer key, 237-238
     related National Academy of
                                                                                         Anopheles mosquito, 13, 15-16, 419
        Engineering Grand Challenge,
                                                  teacher notes, 232-238
                                                                                         Antabuse, 159, 164, 170, 172, 174
                                                  teaching organizer, 235
                                                                                         antibiotic resistance (case study),
     related Next Generation Science
                                                  use of case, 232
                                                                                             349-372
                                                                                              activity, 353–359, 354, 357–358
        Standards, 171-172
                                                  vocabulary, 236
     resources and references, 177
                                             allergic reaction, 135-155. See also
                                                                                              apply and analyze, 359
    storyboard script, 162-164, 170,
                                                anaphylaxis (case study)
                                                                                              assessment, 369
        176-177
                                             allergy testing, 139-141, 140, 154
                                                                                               Bacteria Colony Survivability
     teacher answer key, 174-177
                                             American ginseng. See ginseng
                                                                                                  Chart, 357-358
     teacher notes, 170-177
                                             analog observation, 381
                                                                                               case, 350-351, 350-352
                                             anaphylaxis (case study), 135-155
     teaching organizer, 173
                                                                                               Create a Plan (graphic organizer),
     use of case, 170
                                                  activity, 139-141, 140
                                                                                                  361, 363
                                                                                               curriculum connections, 366-367
     vocabulary, 173
                                                  apply and analyze, 142
alcoholism, symptoms and effects of, 158
                                                  assessment, 151
                                                                                               design challenge, 359-364, 360
```

Evaluation Plan (graphic	biopiracy, 396, 413	cholera fact sheet, 37
organizer), 362, 364	bioprospecting, 261–263, 269	malaria, 13, 19–20
extensions, 369	algae, 403	Chain, Ernst, 351–352, 369
introduction, 349, 349-350	biopiracy and, 396, 413	Chang, C. C., 70
investigate and explain, 352-353,	overview of, 395	cheese, CRISPR and, 415, 417
353	bioprospecting (case study), 395-414	chlorophyll
lesson integration, 366	activity, 399 , 399–402, 401	extraction from spinach, 205,
lesson objectives, 350, 365	apply and analyze, 403	209–210, 217
lesson overview, 365	assessment, 412	fluorescence, 205–208, 209 , 219
lesson preparation, 367–368, 368	case, 397 , 397–398	in algae, 221
related National Academy of	Create a Plan (graphic organizer),	cholera (case study), 31–47
Engineering Grand Challenge,	404, 406	activity, 34–37, 35
367	curriculum connections, 409–410	apply and analyze, 37
related Next Generation Science	design challenge, 403 , 403–407	assessment, 46
Standards, 366–367	extensions, 411	case, 32–33, 33
resources and references, 372	introduction, 395–396, 396	Create a Plan (graphic organizer),
		39, 40
teacher answer key, 369–372	investigate and explain, 398, 398	•
teacher notes, 365–372	lesson integration, 409	curriculum connections, 42–43
teaching organizer, 368	lesson objectives, 396, 408	design challenge, 38–40
use of case, 365	lesson overview, 408	extensions, 46
vocabulary, 368	lesson preparation, 410–411, 411	introduction, 31 , 31–32
antibiotics, 349–350. <i>See also</i> antibiotic	Letter to the FDA (worksheet), 405,	investigate and explain, 33, 34
resistance (case study)	407	lesson integration, 42
antigens, 135–136, 148, 150	related National Academy of	lesson objective, 32, 41
antihistamines, 136, 142	Engineering Grand Challenge,	lesson overview, 41
arrhythmia, 117, 121, 132	410	lesson preparation, 43–45, 45
aspirin, 395	related Next Generation Science	related National Academy of
assistive technology, 308–314	Standards, 409–410	Engineering Grand Challenge,
Assistive Technology Design for Men	resources and references, 414	43
and Women (graphic organizer), 310,	teacher answer key, 412–413	related Next Generation Science
313	teacher notes, 408-414	Standards, 42–43
Assistive Technology Intervention	teaching organizer, 411	resources and references, 47
for a Genetic Disease or Disorder	use of case, 409	teacher answer key, 46-47
(worksheet), 310, 312	vocabulary, 411	teacher notes, 41–47
autosomal trait, 303–305, 321	blood clot, 88	teaching organizer, 45
autosomes, 303	blood pressure medications, effect	use of case, 41
,	of grapefruit juice on, 91–92, 100,	vocabulary, 45
В	109–110	Choosing a New Use for DNA
bacteria	Botryococcus braunii, 229	Fingerprinting Technology
antibiotic resistance (case study),	Botti, Jean, 222	(worksheet), 334, 336
349–372	Brock, Thomas, 258, 262, 274	chronic alcohol abuse. <i>See</i> alcohol abuse
optimum temperature for, 260 ,	Brown, Melissa, 300–301	(case study)
260–261	bungarotoxins, 70	Chronic Alcoholism Treatment Proposal
spacers of DNA in, 416–418, 433	bungarotoxino, ro	(worksheet), 166, 168
structure, 349	С	cladogram, 376–380, 377 , 393
Taq polymerase (case study),	cancer treatment	climate change, 29, 179–182, 183 , 188–
257–275	allergy treatments and, 142	189, 194, 196, 206, 219, 380
		cobra/cobra venom, 69 , 69–74, 83, 87. <i>See</i>
Bacteria Colony Survivability Chart,	Antabuse, 164, 177	
357–358	immune system and, 142	also venom (case study)
banded krait venom, 70	Taxol, 397–398	colistin, 359, 372
Barrangou, Rodolphe, 417	thalidomide, 51–55, 52–54, 61,	colorblindness, 309–310
base pairing, DNA, 46, 416	65–66	competitive inhibition, 72–74, 73 , 78,
benefits-sharing, 263, 274	venom, 71	83, 86
binge drinking, 160–161, 160–161,	cardiac cycle, 118, 119	complete heart block, 120
175–176	Cas9, 417, 417, 433	congenital deformations, thalidomide
biofluorescence, 205–207, 211, 215–219	case study approach, 3–4	and, 50, 61, 63–64
biofuels. See algal biofuels (case study)	Centers for Disease Control and	contour map, 35, 35 , 44
biological gold, 403, 413	Prevention (CDC)	coral, biofluorescence and, 206
bioluminescence, 205, 207, 207, 211,	alcohol abuse, 160, 162, 170	cowpox, 278–280, 279 , 290, 293–294
215–219	allergic reactions, 138, 151	

cows, DNA profiling and, 328-330, 329,	CRISPR, 431	dinosaurs, cladogram of, 377, 377, 393
345	Darwin's observations in the	discovery engineering
Create a Plan (graphic organizer)	Galápagos Islands, 388	description of, 1–2
alcohol abuse, 165, 167	DNA fingerprinting, 342	difference from other engineering
algal biofuels, 229, 231	drug interactions, 108	designs, 2–3
anaphylaxis, 143, 145	environmental impact on species,	Diseases and Vaccines Chart, 281, 292,
antibiotic resistance, 361, 363	196	295–296
bioprospecting, 404, 406	fluorescence, 216	disulfiram, 159, 164
cholera, 39, 40	genetic disorders, 317	DNA (deoxyribonucleic acid)
Darwin's observations in the	malaria (case study), 25	base pairing, 46 , 416
Galápagos Islands, 382, 384	pacemaker, 129	gel electrophoresis, 327, 327
drug interactions, 101, 103	sensors, 250	information in, 415
environmental impact on species,	Taq polymerase, 271	sample collection, 327
191, 193	thalidomide, 62	spacer sequences, 416–418, 433
malaria, 20, 22	vaccines, 291	structure of, 325, 326
pacemaker, 124, 126	venom, 85	to protein, 416
•	venoni, 65	<u>*</u>
sensors, 245, 247	D	DNA database, 332–333, 347
thalidomide, 56, 58	Damain's observations in the Calénages	DNA fingerprinting
venom, 78, 80	Darwin's observations in the Galápagos	discovery of, 326–327, 344
CRISPR (case study), 415–437	Islands (case study), 373–394	PCR and, 259, 327
activity, 420–422	activity, 376–380, 377–378	uses of, 325, 326–327
apply and analyze, 422, 423 , 424	apply and analyze, 381	DNA fingerprinting (case study),
assessment, 433	assessment, 391	325–348
case, 416–417 , 416–418	case, 375	activity, 330 , 330–332, 338–340
curriculum connections, 430–431	Create a Plan (graphic organizer),	apply and analyze, 332–333
design challenge, 424, 424–429	382, 384	assessment, 344
Evaluating a Grant Proposal	curriculum connections, 387–388	case, 326–328, 327
(worksheet), 426, 429	design challenge, 380–385, 381	Choosing a New Use for DNA
extensions, 433	Developing an Observation Plan	Fingerprinting Technology
Grant Proposal Rubric, 436	(worksheet), 382, 385	(worksheet), 334, 336
introduction, 415, 416	extensions, 391	curriculum connections, 342–343
investigate and explain, 418-419,	introduction, 373–374, 374	design challenge, 333 , 333–340
418–420	investigate and explain, 375–376,	DNA Profile Comparison Chart,
lesson integration, 430	376	331–332, 346
lesson objectives, 415, 430	lesson integration, 387	Evaluation Plan (graphic
lesson overview, 430	lesson objectives, 374, 386	organizer), 335, 337
lesson preparation, 432	lesson overview, 386	extensions, 344
Planning a Grant Proposal	lesson preparation, 388–390, 390	introduction, 325, 326
(worksheet), 425, 428	related National Academy of	investigate and explain, 328-330,
Potential Global Issues (graphic	Engineering Grand Challenge,	329
organizer), 425, 427	388	lesson integration, 342
related National Academy of	related Next Generation Science	lesson objectives, 326, 341
Engineering Grand Challenge,	Standards, 387–388	lesson overview, 341
431	resources and references, 393	lesson preparation, 343, 343–344
related Next Generation Science	teacher answer key, 391-393	related National Academy of
Standards, 431	teacher notes, 386–394	Engineering Grand Challenge,
resources and references, 437	teaching organizer, 390	343
teacher answer key, 433-436	use of case, 386	related Next Generation Science
teacher notes, 430–437	vocabulary, 390	Standards, 342
teaching organizer, 432	Darwin, Charles, 373–375, 386	resources and references, 348
use of case, 430	deep-vein thrombosis, 69, 88	teacher answer key, 344–347
vocabulary, 432	denaturing proteins, 257, 258	teacher notes, 341–348
CRISPR RNA (crRNA), 416, 433	Developing a New Vaccine (graphic	teaching organizer, 343
crosscutting concepts	organizer), 286, 288	use of case, 341
alcohol abuse, 171	Developing an Observation Plan	vocabulary, 344
algal biofuels, 233	(worksheet), 382, 385	DNA polymerase, 258–260, 269. See also
anaphylaxis, 149	diaphragm	Taq polymerase (case study)
antibiotic resistance, 367	cobra venom and, 70, 71	DNA Profile Comparison Chart, 331–
	model, 74–75, 75	332, 346
bioprospecting (case study), 410 cholera, 42	dichotomous key, 226–227	552, 5 1 0
CIUICIA, 42	aicholomous key, 220–221	

DNA profiling, 325, 327–333, 329, 338–	algal biofuels, 228 , 228–231	Epidemiologist Field Report
341, 345. See also DNA fingerprinting	anaphylaxis, 142–147, 143	(worksheet), 36–37
DNA replication, 329	antibiotic resistance, 359–364, 360	epidemiology, 33. See also cholera (case
dogs	bioprospecting, 403, 403–407	study)
communication, 239, 239 , 252	cholera, 38 , 38–39	Escherichia coil (E. coli), 349, 353–354, 370
rescue-and-recovery training,	CRISPR, 424 , 424–429	Evaluating a Grant Proposal
242–244, 243 , 253–254	Darwin's observations in the	(worksheet), 426, 429
sensor technology use with, 241-	Galápagos Islands, 381, 381–385	Evaluation Plan (graphic organizer)
244, 242–243 , 252–254	DNA fingerprinting, 333, 333–340	alcohol abuse, 166, 169
dominant trait, 304, 321	drug interactions (case study),	anaphylaxis, 144, 147
Drug Interaction Treatment Proposal	100–10 2, 101	antibiotic resistance, 362, 364
(worksheet), 102, 104	environmental impact on species,	DNA fingerprinting, 335, 337
drug interactions (case study), 89–116	188 , 188–193	drug interactions, 102, 105
activity, 95–99, 97–98	fluorescence, 210–214, 211	genetic disorders, 311, 314
apply and analyze, 99–100	genetic disorders, 308–314, 309	malaria, 21, 23
assessment, 109	malaria, 19–21, 20	thalidomide, 57, 60
case, 90–92, 92	pacemaker, 123–125, 124	vaccines, 287, 289
Create a Plan (graphic organizer),	sensors, 244 , 244–247	venom, 79, 82
101, 103	six-step approach, 8, 8	evolution, 373, 378, 386–388, 391, 393,
curriculum connections, 107–108	Taq polymerase, 263–268, 264	410
design challenge, 100–102, 101	thalidomide, 55–57, 56	extreme environments, 264–268
Drug Interaction Chart, 92–94,	vaccines (case study), 284–289,	Extreme Habitats Research (graphic
110–114	285–286	organizer), 265, 267
Drug Interaction Treatment	venom, 77, 77–79	extremophiles, 261–265, 269
Proposal (worksheet), 102, 104	environmental assessment (EA), 180,	
Evaluation Plan (graphic	188–194, 199	F
organizer), 102, 105	components of, 190–191	FDA. See Food and Drug Administration
extensions, 109	example of EA topic, 191	(FDA)
introduction, 89, 90	environmental impact assessment (EIA),	fermentation, 157
investigate and explain, 92	198	finches, Galápagos, 373–376, 376
lesson integration, 107	environmental impact on species (case	firefly, bioluminescence in, 207, 207
lesson objectives, 90, 106	study), 179–203	Fleming, Alexander, 350–352, 369
lesson overview, 106	activity, 182, 184–185, 184–187	Florey, Howard, 351–352, 369
lesson preparation, 108 , 108–109	apply and analyze, 187–188	flu vaccine, 280, 294
related National Academy of	assessment, 199	egg allergies and, 142, 154
Engineering Grand Challenge,	case, 180–182	fluorescence (case study), 205–220
108	Create a Plan (graphic organizer),	activity, 209–210
related Next Generation Science	191, 193	apply and analyze, 210
Standards, 107–108	curriculum connections, 195–196	assessment, 219
resources and references, 116	design challenge, 188 , 188–193	case, 206–207, 207
teacher answer key, 109-116	extensions, 198	curriculum connections, 216
teacher notes, 106–116	introduction, 179, 180	design challenge, 210–214, 211
teaching organizer, 108	investigate and explain, 182, 183	extensions, 218
use of case, 106	lesson integration, 195	introduction, 205
vocabulary, 109	lesson objectives, 14, 180	investigate and explain, 207-208,
drug transporters, 91, 92	lesson overview, 194	208–209
_	lesson preparation, 196–198, 197	lesson integration, 216
E	related National Academy of	lesson objectives, 205, 215
EADS, 222	Engineering Grand Challenge,	lesson overview, 215
egg allergies, flu vaccines and, 142, 154	196	lesson preparation, 217–218, 218
electrical system/activity of the heart,	related Next Generation Science	New Product/Process for Plant
118, 120, 123	Standards, 195–196	Fluorescence (worksheet), 212,
electricity, treating diseases through,	resources and references, 203	214
123–127	teacher answer key, 199–203	related National Academy of
electrocardiogram (ECG/EKG), 118, 120,	teacher notes, 194–203	Engineering Grand Challenge,
132–133	teaching organizer, 197	216
elephants, sensor technology to	use of case, 194–195	related Next Generation Science
communicate with, 244, 254	vocabulary, 198	Standards, 216
engineering design process (EDP), 2, 3	enzymes, 91, 92 , 100, 108–109	resources and references, 220
alcohol abuse, 164–169, 165	acetaldehyde dehydrogenase, 159	teacher answer key, 219–220

teacher notes, 215–220	related Next Generation Science	intensity of binge drinking, 161, 161, 175
teaching organizer, 218	Standards, 316–317	interview, in cholera case study, 36
use of case, 215	resources and references, 323	
vocabulary, 218	teacher answer key, 319-322	J
fluorescence-based monitoring tool,	teacher notes, 314–323	Jacobsen, Erik, 159
designing, 211–214, 219	teaching organizer, 317	Jeffreys, Alec, 326, 328, 344–345
food allergies, 138–140	use of case, 315	Jenner, Edward, 278–280, 279, 285, 290,
Food and Drug Administration (FDA)	vocabulary, 318	293
allergens, 151	Genetics Home Reference website, 433	
approval process, 52	genotypes, 303, 305–307, 317, 321	K
disulfiram, 159	geographic information system (GIS), 32,	Kelsey, Dr. Frances Oldham, 50, 51
food and drug interactions, 92, 101	35, 41, 43	Kettlewell, Bernard, 182
letter to review committee	germ theory of disease, 31, 32, 46	knockout, 301
		KHOCKOUL, 301
(worksheet), 56–57, 59	ginseng, 399 , 399–402, 401 , 413	L
Letter to the FDA (worksheet), 405,	Global Positioning System (GPS), 240	
407	global warming, malaria and, 16, 28	Laveran, Charles Louis Alphonse, 14–15
paclitaxel approval, 398	Grand Challenges for Engineering in the	27
thalidomide and, 50	21st century, 0	Lawrence Hal of Science, 380
food and drug interactions. See drug	grant proposal	Lee, C. Y., 70
interactions (case study)	designing, 425	Letter to the FDA (worksheet), 405, 407
forensics, DNA and, 327, 330–332,	Evaluating a Grant Proposal	Link, Jamie, 240
346–347	(worksheet), 426, 429	live-attenuated vaccine, 279, 285
Framework for K-12 Science Education, 4-5	Grant Proposal Rubric, 436	London, cholera outbreaks in, 1, 31–33,
furanocoumarin, 91	Planning a Grant Proposal	34, 41, 46
	(worksheet), 425, 428	
G	grapefruit/ grapefruit juice, 89–92, 90,	M
Galápagos Islands, 373–374, 374, 376	92, 100, 106, 110	malaria (case study), 13–29
garlic, 404	graphic organizers, 9	activity, 17–18, 18
gel electrophoresis, 327, 327	Greatbatch, Wilson, 118–120, 131	apply and analyze, 18–19
gene drive, 419 , 419–420, 434	Greenhouse Gases Observing Satellite	assessment, 27
gene editing, 415, 417–418, 433. See also	(GOSAT), 206	case, 14 , 14–15
CRISPR (case study)	gyroscopes, 241, 245	Create a Plan (graphic organizer),
advantages and disadvantages of,	8)	20, 22
422, 423 , 424	Н	curriculum connections, 25–26
genetic code, 326	Hald, Jens, 159	design challenge, 19–21, 20
genetic disorders (case study), 299–323	heart. See also pacemaker (case study)	Evaluation Plan, 21, 23
activity, 303–307, 304–307	cardiac cycle, 118, 119	extensions, 27
apply and analyze, 307–308	electrical system/activity, 118, 120,	introduction, 13 , 13–14
117	123	
assessment, 318–319		investigate and explain, 15–16,
Assistive Technology Design for	hemophilia, 303, 305 , 305–306, 320	16–17
Men and Women (graphic	histamines, 135–136, 142	lesson integration, 25
organizer), 310, 313	HIV vaccine development, approaches	lesson objectives, 14, 24
Assistive Technology Intervention	for, 286	lesson overview, 24
for a Genetic Disease or	homeostasis, 70, 83–84, 107, 117, 128,	lesson preparation, 26–27
Disorder (worksheet), 310, 312	130–131, 149, 171	related National Academy of
case, 300 , 300–301	Hope Diamond (activity), 330 , 330–332,	Engineering Grand Challenge,
curriculum connections, 316–317	338–340, 346–347	26
design challenge, 308–314, 309	Hughes, Reverend Griffith, 89	related Next Generation Science
Evaluation Plan (graphic		Standards, 25
organizer), 311, 314	I	resources and references, 29
extensions, 318	immunization, 279. See also vaccines;	teacher answer key, 27–29
introduction, 299	vaccines (case study)	teacher notes, 24–29
investigate and explain, 302,	implantable pacemaker. See pacemaker	teaching organizer, 26
302–303	(case study)	use of case, 24
lesson integration, 316	Industrial Revolution, 182, 184	vocabulary, 27
lesson objectives, 300, 315	inheritance	malaria, CRISPR use for control of,
lesson overview, 315	Darwin and, 375, 392	418–420, 419 , 434
lesson preparation, 317 , 317–318	of hemophilia, 303, 305 , 305–306,	mark-release-recapture (MRR), 187–188,
1 1	320	± 1
related National Academy of		198, 202–203
Engineering Grand Challenge,	pedigree analysis, 303–308, 304 –	mast cells, 135
317	307, 320–322	measles, 284, 290

Medical Treatment Proposal	natural selection, 375, 386, 388, 392	related Next Generation Science
(worksheet), 144, 146	naturalistic observation, 380–385, 386	Standards, 129
medicinal bacteria and fungi, 360	neurotransmitters, 70, 72, 87. See also	resources and references, 133
Mexican spider monkey, 187–188,	acetylcholine	teacher answer key, 131-133
202–203	New Product/Process for Plant	teacher notes, 128–134
miasma theory, 31, 32, 46	Fluorescence (worksheet), 212, 214	teaching organizer, 130
mice, as animal model, 299–301	Next Generation Science Standards (NGSS)	Treatment Plan Evaluation Form,
microsensors, accidental discovery of,	alcohol abuse, 171–172	125, 127
240, 248	algal biofuels, 233	use of case, 128
milkmaids, 278–279	anaphylaxis, 149	vocabulary, 131
minoxidil, 56	± *	Pacific yew tree, 397, 397 , 408, 412
	antibiotic resistance, 366–367	
missing children, DNA testing and,	bioprospecting, 409–410	paclitaxel, 397–398, 408, 412
332–333, 347	cholera, 42–43	Panax quinquefolius, 399 , 399–402, 401
mixed-sex test subjects, 299–303, 315, 320	CRISPR, 431	passive infrared detectors, 241, 245
mosquitoes, 13 , 13–16, 16 , 18–19, 28–29.	Darwin's observations in the	PCR. See polymerase chain reaction
See also malaria (case study)	Galápagos Islands, 387–388	(PCR)
genetic modification of, 418–422,	DNA fingerprinting, 342	pedigree analysis, 303–308, 304–307 ,
434–435	drug interactions, 107–108	320–322
moth, peppered, 182, 184–185, 184–186,	environmental impact on species,	penicillin, 350-352, 360, 365
194, 200–201	195–196	Penicillium, 350–351 , 350–352, 360,
motion-based data, sensors to collect,	fluorescence, 216	369–370
241	genetic disorders, 316-317	peppered moth, 182, 184-185, 184-186,
MRR (mark-release-recapture), 187–188,	malaria, 25	194, 200–201
198, 202–203	pacemaker, 129	performance expectations, NGSS
Mullis, Kary, 258–259	recommendations for teaching	alcohol abuse, 171
multiple myeloma, 51, 65	engineering practices, 4–8, 6 , 10	algal biofuels, 233
multiple sclerosis (MS), 300–301, 301 ,	sensors, 249–250	anaphylaxis, 149
		1 2
315, 319	Taq polymerase, 270–271	antibiotic resistance, 366
myasthenia gravis, 70–71, 83	vaccines, 291	bioprospecting (case study), 409
N.Y	venom, 84–85	cholera, 42
N		CRISPR, 431
National Academy of Engineering	0	Darwin's observations in the
Grand Challenge, 9	observation, naturalistic, 380–385, 386	Galápagos Islands, 387
alcohol abuse, 172	oil, produced by organisms, 222-224,	DNA fingerprinting, 342
algal biofuels, 233	223, 228–229, 237	drug interactions, 107
anaphylaxis, 150	On the Origin Species (Darwin), 375, 386	environmental impact on species,
antibiotic resistance, 367	optimum temperature for bacterial	195
bioprospecting, 410	growth, 260 , 260–261	fluorescence, 216
cholera, 43	oscillator, 118–119	genetic disorders, 316
CRISPR, 431		malaria (case study), 25
Darwin's observations in the	P	pacemaker, 129
Galápagos Islands, 388	pacemaker (case study), 117–134	sensors, 249
DNA fingerprinting, 343	activity, 121–123, 122	Taq polymerase, 270
drug interactions, 108	apply and analyze, 123	thalidomide, 62
environmental impact on species,	assessment, 131	vaccines, 291
196	case, 118–120, 119	· ·
		venom, 84
fluorescence, 216	Create a Plan (graphic organizer),	phenotypes, 303, 305–307, 317, 321
genetic disorders, 317	124, 126	photosynthesis
malaria, 26	curriculum connections, 128–129	fluorescence to monitor, 205–206
pacemaker, 129	design challenge, 123–125, 124	in algae, 221
sensors, 250	extensions, 131	in leaves, 208
Taq polymerase, 271	introduction, 117, 117	phylogenetic trees, 398–399, 398–399
vaccines, 291	investigate and explain, 120, 121	pika, 179–182, 180, 183, 189, 194, 199–200
venom, 85	lesson integration, 128	pit viper venom, 76, 88
National DNA Index System, 330	lesson objective, 118, 128	Planning a Grant Proposal (worksheet),
National Institute on Alcohol Abuse and	lesson overview, 128	425, 428
Alcoholism, 165	lesson preparation, 130–131	plant fluorescence. See fluorescence (case
National Institutes of Health (NIH), 299,	related National Academy of	study)
301, 320	Engineering Grand Challenge,	plants
National Park Service, 263, 274	129	•

bioprospecting, 395 (see also	bioprospecting (case study), 410	storyboard script, 162–164, 170, 176–177
bioprospecting (case study))	cholera, 42	Streptococcus thermophilus, 417
medicinal, 395, 396	CRISPR, 431	Т
phylogenetic trees, 398–399, 398–399	Darwin's observations in the	=
	Galápagos Islands, 387	Taq polymerase (case study), 257–275
Plasmodium, 14 , 14–15, 26, 28 Poisons: Their Effects and Detection	DNA fingerprinting, 342 drug interactions, 107	activity, 261–263 apply and analyze, 263
22	8	11)
(Blyth), 72	environmental impact on species,	assessment, 272
pollen, 135, 136	195	case, 258–259, 259
polymerase chain reaction (PCR), 258–	fluorescence, 216	curriculum connections, 270–271
261, 259 , 272–273, 327	genetic disorders, 316	design challenge, 263–268, 264
poppy, 395	malaria (case study), 25	extensions, 272
Portier, Paul, 136, 138, 151–152	pacemaker, 129	Extreme Habitats Research (graphi
Potential Global Issues (graphic	sensors, 249	organizer), 265, 267
organizer), 425, 427	Taq polymerase, 270	introduction, 257, 258
power lines, UV light from, 210, 220	thalidomide, 62	investigate and explain, 260,
pregnancy, thalidomide use during,	vaccines, 291	260–261
49–50	venom, 84	lesson integration, 270
prevalence of binge drinking, 160, 160 ,	scientific method, 6–7, 7	lesson objectives, 257, 269
175	sensors (case study), 239–255	lesson overview, 269
prey-environment relationship,	activity, 242–244, 243	lesson preparation, 271, 271–272
modeling, 186–187, 202	apply and analyze, 244	related National Academy of
probiotics, 417	assessment, 252	Engineering Grand Challenge,
prokaryotes	case, 240 , 240–241	271
antibiotic resistance (case study),	Create a Plan (graphic organizer),	related Next Generation Science
349–372	245, 247	Standards, 270–271
structure, 349	curriculum connections, 248-249	Research Presentation Planner, 265
proteins	design challenge, 244 , 244–247	268
denaturing, 257, 258	extensions, 252	resources and references, 275
DNA to, 416	introduction, 239, 239	teacher answer key, 272-274
protists, 221	investigate and explain, 241-242,	teacher notes, 269–275
Public Service Announcement (PSA),	242	teaching organizer, 271
158, 162–164, 170, 172, 176–177	lesson integration, 249	use of case, 269
Punnett square, 307–308, 322	lesson objectives, 240, 248	vocabulary, 272
1 , ,	lesson overview, 248	Taxol, 397–398
R	lesson preparation, 250–251, 251	teaching engineering practices, NGSS
rail system, environmental assessment	related National Academy of	recommendations for, 4–8, 6 , 10
and, 191	Engineering Grand Challenge,	teaching organizer
recessive trait, 304, 309, 321–322	250	algal biofuels, 235
repurposing drugs	related Next Generation Science	anaphylaxis, 150
Antabuse, 164, 177	Standards, 249–250	antibiotic resistance, 368
thalidomide, 55–60, 66 (See also	resources and references, 255	bioprospecting, 411
thalidomide (case study))	teacher answer key, 252–254	cholera, 45
rescue-and-recovery dog training, 242–	teacher notes, 248–255	CRISPR, 432
244, 243 , 253–254	teaching organizer, 251	Darwin's observations in the
Research Presentation Planner, 265, 268	use of case, 248	Galápagos Islands, 390
respiratory system, 71	vocabulary, 251	DNA fingerprinting, 343
Richet, Charles, 136–138, 151–152	SEPs. See science and engineering	drug interactions, 108
rooftop farming, 229	practices (SEPs)	environmental impact on species,
Rosalind Franklin Institute for	sex chromosomes, 303	197
Genomics, 425–426		
Rothia, 361	sex-linked trait, 303–305, 309, 320–322	fluorescence, 218
Kotnut, 501	silicon chip, 240, 240	genetic disorders, 317
c	skin cancer, 78	malaria, 26
S science and engineering practices (SERs)	smallpox, 277–280, 278 , 290, 293–294	pacemaker, 130
science and engineering practices (SEPs),	snake venom. See venom (case study)	sensors, 251
4–5, 7–8	Snow, John, 1, 31–33, 41, 46	Taq polymerase, 271
alcohol abuse, 171	solar-induced chlorophyll fluorescence,	thalidomide, 63
algal biofuels, 233	206–207	vaccines, 292
anaphylaxis, 149	Staphylococcus aureus, 350–353, 353 , 370	venom, 86
antibiotic resistance, 366	Stokes-Adams attacks, 120	thalidomide (case study), 49–67

activity, 53–55, 54	Evaluation Plan (graphic	Venom-Based Medication Proposal
apply and analyze, 55	organizer), 287, 289	(worksheet), 78, 81
assessment, 64	extensions, 293	Victoria, Queen, 305, 305–306, 320
case, 50–51, 51	introduction, 277, 278	video presentation, 265, 268
Create a Plan (graphic organizer),	investigate and explain, 280, 280	virus
56, 58	lesson integration, 290	diseases and vaccines, 280, 280-282,
curriculum connections, 61–63	lesson objectives, 278, 290	292, 294
design challenge, 55–57, 56, 58–60	lesson overview, 290	smallpox, 277–280, 278 , 290,
Evaluation Plan (graphic	lesson preparation, 292 , 292–293	293–294
organizer), 57, 60	related National Academy of	spacer DNA sequences in bacteria
extensions, 64		and, 416–418, 433
	Engineering Grand Challenge, 291	
introduction, 49 , 49–50		structure, 286
investigate and explain, 52–53,	related Next Generation Science	vocabulary
52–53	Standards, 291	alcohol abuse, 173
lesson integration, 61	resources and references, 297	algal biofuels, 236
lesson objectives, 50, 61	teacher answer key, 293–297	antibiotic resistance, 368
lesson overview, 61	teacher notes, 290–297	bioprospecting, 411
lesson preparation, 63, 63	teaching organizer, 292	cholera, 45
Letter to the FDA (worksheet),	use of case, 290	CRISPR, 432
56–57, 59	vocabulary, 293	Darwin's observations in the
resources and references, 67	Varner, Johanna, 180–182, 199	Galápagos Islands, 390
teacher answer key, 64-66	venom (case study), 69–88	DNA fingerprinting, 344
teacher notes, 61–66	activity, 74–76, 75	drug interactions, 109
teacher organizer, 63	apply and analyze, 76	environmental impact on species,
use of case, 61	assessment, 86	198
vocabulary, 63	case, 70–71, 71	fluorescence, 218
Thermus aquaticus, 258, 269, 274	Create a Plan (graphic organizer),	genetic disorders, 318
toxins, 77, 136–137, 152		
	78, 80	malaria, 27
Treatment Plan Evaluation Form	curriculum connections, 84–85	pacemaker, 131
(pacemaker case study), 125, 127	design challenge, 76–79, 77	sensors, 251
tube wells, 34–37, 41, 47	Evaluation Plan (graphic	Taq polymerase, 272
turtles, freshwater, 187	organizer), 79, 82	thalidomide, 63
	extensions, 86	vaccines, 293
U	introduction, 69, 69	venom, 86
UV light, visible to animals, 210, 220	investigate and explain, 72–74, 73	
	lesson integration, 84	W
V	lesson objectives, 70, 83	Wall, Monroe, 397
vaccines	lesson overview, 83	Wani, Mansukh, 397
diseases, viruses and, 280, 280-282,	lesson preparation, 85–86	water contamination. See cholera (case
292, 294	model diaphragm, 74–75, 75	study)
HIV vaccine development,	related National Academy of	wet mount for algae observation, 225,
approaches for, 286	Engineering Grand Challenge,	225–227, 234–235
live-attenuated, 279, 285	85	wild type, 301
vaccination coverage, 283–284, 297	related Next Generation Science	wildfires, 179–181, 194
vaccines (case study), 277–297	Standards, 84–85	World Health Organization (WHO), 34,
. 1	` .	
activity, 281–283	resources and references, 88	36
apply and analyze, 283–284	teacher answer key, 87–88	antibiotic resistance, 359
assessment, 293	teacher notes, 83–88	malaria, 13, 17
case, 278–280, 279	teaching organizer, 86	•
curriculum connections, 290–291	use of case, 83	Y
design challenge, 284–289, 285–286	Venom-Based Medication Proposal,	Yellowstone National Park, 257–258,
Developing a New Vaccine (graphic	78, 81	269, 274
organizer), 286, 288	vocabulary, 86	yogurt, CRISPR and, 415, 417
Diseases and Vaccines Chart, 281,	venom, types of, 78	
292, 295–296	venom-based drugs, developing, 77-82,	Z
	86	Zika, 420

"Careful observations and discovery-based research can be inspired by the natural world, leading to new ideas and applications sourced from biology itself. The key to harnessing this potential is a careful and imaginative eye, along with a mindful process of engineering to address and solve everyday problems."

-From the introduction to Discovery Engineering in Biology

DISCOVERY ENGINEERING BIGGS BIGGS

¬ how your students how amazing it can be to just "see what will happen" when they blend biology, engineering, and serendipity. Focusing on innovations sparked by accidental or unexpected observations, the case studies in this resource are a lively way to integrate engineering and experimentation into your biology classes. Middle and high school students will learn fundamental science processes while using their natural curiosity to explore ideas for new applications and products. They'll also find out that small, plant-eating mammals called pikas helped scientists find new ways to survive extreme weather events and that algae can be used as airplane fuel.

The book's 20 easy-to-use investigations help you do the following:

Use real-world case studies to bring accidental inspiration to life.
 Each investigation starts with an actual scientific discovery that students explore through primary documents or historical accounts.

Case Studies for Grades 6-12

- Let students be the innovators. The investigations task your classes
 to investigate biological concepts, do research, examine data, create
 models, and use their own personal ideas to design new products or
 problem-solving applications.
- Apply the content in flexible, interesting ways. You can implement the
 investigations in part or as a whole, and you can use them to teach one
 or more science concepts while exposing students to the unpredictable
 nature of science. Students will be intrigued by investigations with
 titles such as "Vindicating Venom: Using Biological Mechanisms to
 Treat Diseases and Disorders" and "Revealing Repeats: The Accidental
 Discovery of DNA Fingerprinting."

Discovery Engineering in Biology is not only ideal for the classroom. It's also perfect for informal education at STEM camps, science centers, and more. You'll help your students see that just as there is no one way to do science, there are many paths that lead to innovations in engineering. And who knows what might happen? Maybe your students will engineer the next amazing survival product inspired by pikas!

Grades 6-12

All rights reserved. How more introduce for 1go to www.nsta.org.secis/pin/euct, detail.aspx?id=

PB444X2 ISBN: 978-1-68140-614-5

Copyright © 2020 NSTA: All rights reserved. He was into the ion, go to www.nsta.org/permissions. TO PURCHASE THIS BOOK, please visit http://www.nsta.org/sco.je/project_detail.aspx?id=10.2505/9781681406