
Engaging Biology Students With Evidence From the Living World

ature

Readina

Matthew Kloser Sophia Grathwol

2000 M

CAT DO P

ra. All rights reserved. For more information, go to www.nstat.apg/permissional K, please visit www.nsta.org.store/product_defail.aspx?id=10.2505/978/681402802

Engaging Biology Students With Evidence From the Living World

> Matthew Kloser Sophia Grathwol

Arlington, Virginia

Claire Reinburg, Director Rachel Ledbetter, Managing Editor Deborah Siegel, Associate Editor Andrea Silen, Associate Editor Donna Yudkin, Book Acquisitions Manager ART AND DESIGN Will Thomas Jr., Director Himabindu Bichali, Graphic Designer, cover and interior design Inside figures and illustrations adapted and designed by Lindsay Huth (with permission from original sources) unless noted otherwise

PRINTING AND PRODUCTION Catherine Lorrain, Director

NATIONAL SCIENCE TEACHERS ASSOCIATION David L. Evans, Executive Director

1840 Wilson Blvd., Arlington, VA 22201 www.nsta.org/store For customer service inquiries, please call 800-277-5300.

Copyright © 2018 by the National Science Teachers Association. All rights reserved. Printed in the United States of America. 21 20 19 18 4 3 2 1

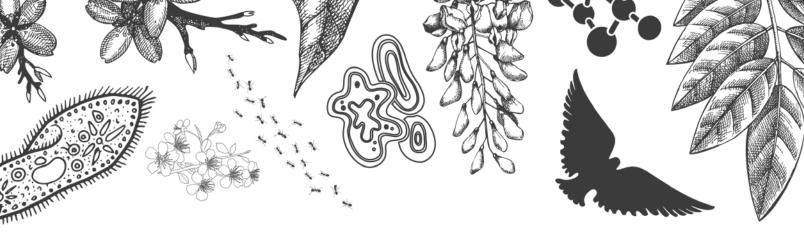
NSTA is committed to publishing material that promotes the best in inquiry-based science education. However, conditions of actual use may vary, and the safety procedures and practices described in this book are intended to serve only as a guide. Additional precautionary measures may be required. NSTA and the authors do not warrant or represent that the procedures and practices in this book meet any safety code or standard of federal, state, or local regulations. NSTA and the authors disclaim any liability for personal injury or damage to property arising out of or relating to the use of this book, including any of the recommendations, instructions, or materials contained therein.

PERMISSIONS

Book purchasers may photocopy, print, or e-mail up to five copies of an NSTA book chapter for personal use only; this does not include display or promotional use. Elementary, middle, and high school teachers may reproduce forms, sample documents, and single NSTA book chapters needed for classroom or noncommercial, professional-development use only. E-book buyers may download files to multiple personal devices but are prohibited from posting the files to third-party servers or websites, or from passing files to non-buyers. For additional permission to photocopy or use material electronically from this NSTA Press book, please contact the Copyright Clearance Center (CCC) (*www.copyright.com*; 978-750-8400). Please access *www.nsta.org/permissions* for further information about NSTA's rights and permissions policies.

Library of Congress Cataloging-in-Publication Data

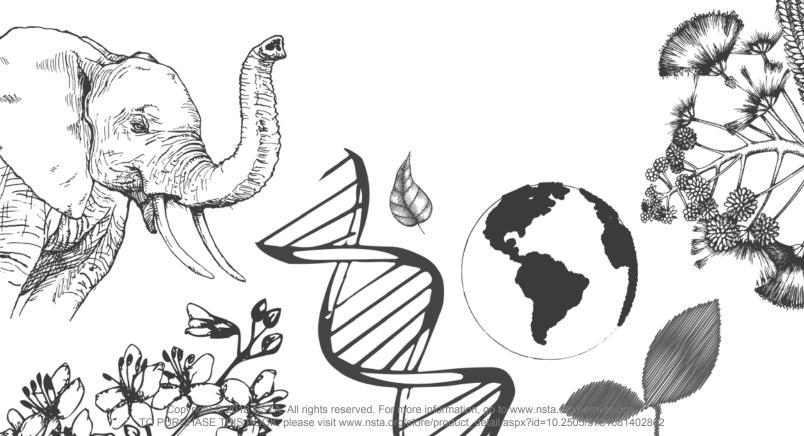

Names: Kloser, Matthew, 1979- author.

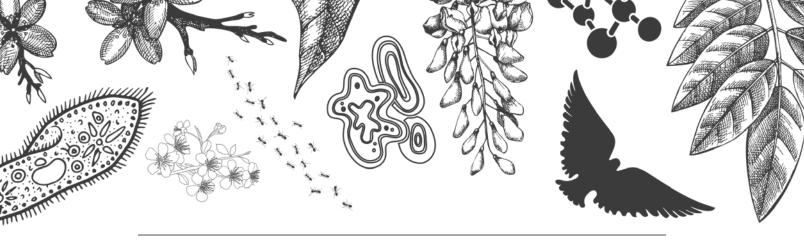

Title: Reading nature : engaging biology students with evidence from the living world / Matthew Kloser, PhD ; with contributions from Sophia Grathwol, MEd ; figures and illustrations adapted and designed by Lindsay Huth. Description: Arlington, VA : National Science Teachers Association, [2018] | Includes bibliographical references and index.

Identifiers: LCCN 2018007560 (print) | LCCN 2018013287 (ebook) | ISBN 9781681402819 (e-book) | ISBN 9781681402802 (print)

Subjects: LCSH: Biology--Study and teaching.

Classification: LCC QH315 (ebook) | LCC QH315 .K545 2018 (print) | DDC 570.76--dc23 LC record available at https://lccn.loc.gov/2018007560




Contents

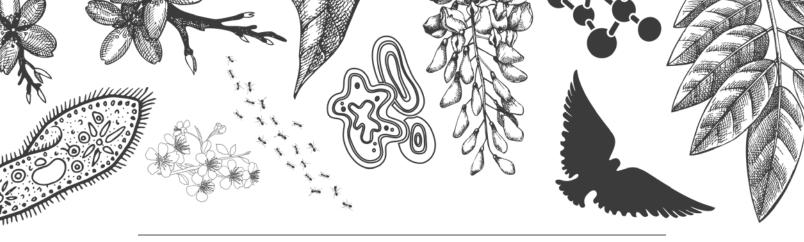
TEXT SOURCES	ix
ACKNOWLEDGMENTS	xi
ABOUT THE AUTHORS	xiii
INTRODUCTION	xv.

Teacher Guide	1
The Need for Alternative Text Types in Biology Classrooms	1
How Evidence-Based Texts Can Address a Need in Biology Education	
Using Evidence-Based Texts in Your Classroom	<u>1</u> 0
References	
Chapter 1: From Molecules to Organisms—Structures and Processes	
Text 1: The Fluid Mosaic Model of the Cell Membrane	
Chapter 2: Ecosystems—Interactions, Energy, and Dynamics	
Text 2: Competitive Exclusion Theory	35
Text 3: Social Group Theory	47
Text 4: Social Groups and Foraging	59
Text 5: Invasive Species	69
Text 6: Plant Defense	

Chapter 3: Heredity—Inheritance and Variation of Traits	
Text 7: Replication of DNA in <i>E. Coli</i>	
Text 8: Fire Ants and Genetic Differentiation	
Text 9: Genetic Variation and Elk Reintroduction	
Chapter 4: Biological Evolution—Unity and Diversity	
Text 10: Natural Selection and Darwin's Finches	
Text 11: Variation, Selection, and Guppy Survival	147
Text 12: E. Coli: A Long-Term Study of Evolution	
Text 13: Camouflage and Selective Advantage	
Chapter 5: Human Impacts on Earth Systems	
Text 14: Oil Spills and Seabird Reproduction	183

TEXT SOURCES

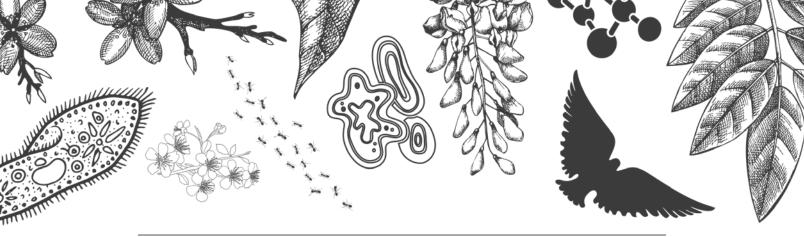
Text	Source(s)
Text 1	Frye, L. D., and M. Edidin. 1970. The rapid intermixing of cell surface antigens after formation of mouse- human heterokaryons. <i>Journal of Cell Science</i> 7 (2): 319–335.
	Gorter, E., and F. J. E. M. Grendel. 1925. On bimolecular layers of lipoids on the chromocytes of the blood. <i>Journal of Experimental Medicine</i> 41 (4): 439–443.
Text 2	Connell, J. H. 1961. Effects of competition, predation by <i>Thais lapillus</i> , and other factors on natural populations of the barnacle <i>Balanus balanoides</i> . <i>Ecological Monographs</i> 31 (1): 61–104.
Text 3	Kenward, R. E. 1978. Hawks and doves: Factors affecting success and selection in goshawk attacks on woodpigeons. <i>Journal of Animal</i> <i>Ecology</i> 47 (2): 449-460.
	Powell, G. V. N. 1974. Experimental analysis of social value of flocking by starlings (<i>Sturnus vulgaris</i>) in relation to predation and foraging. <i>Animal</i> <i>Behavior</i> 22 (2): 501–505.
Text 4	Pitcher, T. J., A. E. Magurran, and I. J. Winfield. 1982. Fish in larger shoals find food faster. <i>Behavioral</i> <i>Ecology and Sociobiology</i> 10 (2): 149–151.
Text 5	Walker, L. R., and P. M. Vitousek. 1991. An invader alters germination and growth of native dominant tree in Hawaii. <i>Ecology</i> 72 (4): 1449–1455.
Text 6	Mescher, M. C., and J. H. Tumlinson. 2001. Caterpillar- induced nocturnal plant volatiles repel conspecific females. <i>Nature</i> 410 (6828): 577–580.
	Sugimoto, K., K. Matsui, Y. Iijima, Y. Akakabe, S. Muramoto, R. Ozawa, et al. 2014. Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense. <i>Proceedings of the</i> <i>National Academy of Sciences</i> 111 (19): 7144–7149.


Continued

Reading Nature

TEXT SOURCES

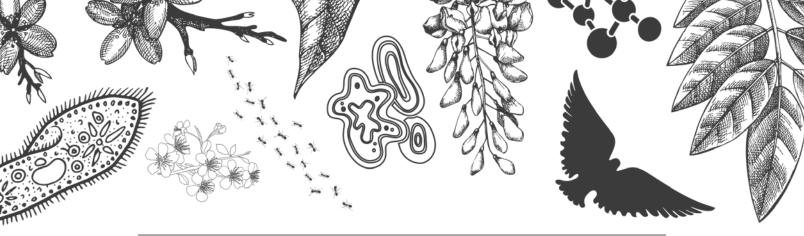
Text	Source(s)	
Text 7	Meselson, M., and F. W. Stahl. 1958. The replication of DNA in Escherichia coli. Proceedings of the National Academy of Sciences 44 (7): 671–682.	
Text 8	Keller, L., and K. G. Ross. 1998. Selfish genes: a green beard in the red fire ant. <i>Nature</i> 394 (6693): 573–575.	
Text 9	Lenney Williams, C., T. L. Serfass, R. Cogan, and O. E. Rhodes. 2002. Microsatellite variation in the reintroduced Pennsylvania elk herd. <i>Molecular</i> <i>Ecology</i> 11 (8): 1299–1310.	
Text 10	Boag, P. T., and P. R. Grant. 1981. Intense natural selection in a population of Darwin's finches <i>(Geospizinae)</i> in the Galápagos. <i>Science</i> 214 (4516): 82–85.	
Text 11	Olendorf, R., F. H. Rodd, D. Punzalan, A. E. Houde, C. Hurt, D. N. Reznick, and K. A. Hughes. 2006. Frequency-dependent survival in natural guppy populations. <i>Nature</i> 441 (7093): 633–636.	
Text 12	Blount, Z. D., C. Z. Borland, and R. E. Lenski. 2008. Historical contingency and the evolution of a key innovation in an experimental population of <i>Escherichia coli. Proceedings of the National</i> <i>Academy of Sciences</i> 105 (23): 7899–7906.	
Text 13	Vignieri, S. N., J. G. Larson, and H. E. Hoekstra. 2010. The selective advantage of crypsis in mice. <i>Evolution</i> 64 (7): 2153–2158.	
Text 14	Barros, Á., D. Álvarez, and A. Velando. 2014. Long- term reproductive impairment in a seabird after the <i>Prestige</i> oil spill. <i>Biology Letters</i> 10 (4): 20131041.	


NATIONAL SCIENCE TEACHERS ASSOCIATION

ACKNOWLEDGMENTS

We would like to thank the following friends and colleagues for making this book possible:

- Our spouses, Lauren Kloser and Michael Grathwol, and our wonderfully curious children who both inspired us and supported us during the creation of this book.
- Lindsay Huth, an incredibly talented graphic designer who helped make the complex figures of the scientific world elegantly simple, clean, and accurate.
- Members of the Center for STEM Education, Alliance for Catholic Education, and Institute for Educational Initiatives at the University of Notre Dame who freely provided advice and acted as a sounding board throughout this project.



ABOUT THE AUTHORS

Matthew Kloser is the founding director of the Center for STEM Education, an associate professor, and a fellow at the Institute for Educational Initiatives at the University of Notre Dame. His research focuses on the issues of teaching, learning, and assessment in science classrooms, with a special focus on biology education. He also teaches courses on science teaching methods, contemporary issues in science education, and research design. Matt received his MEd from the University of Notre Dame and taught high school science and math for four years prior to earning his MS in biology and PhD in science education from Stanford University. To learn more about Matt's work, visit *https://stemeducation.nd.edu*.

Sophia Grathwol is an educator with a passion for science and English as a New Language. She spent four years teaching middle school science and fostered students' interest in science outside the classroom through after-school programming. She also has experience teaching English to middle school students in Santiago, Chile, and adults in Cleveland, Ohio. Sophie earned her BS in biology and her MEd from the University of Notre Dame.

Reading Nature

INTRODUCTION

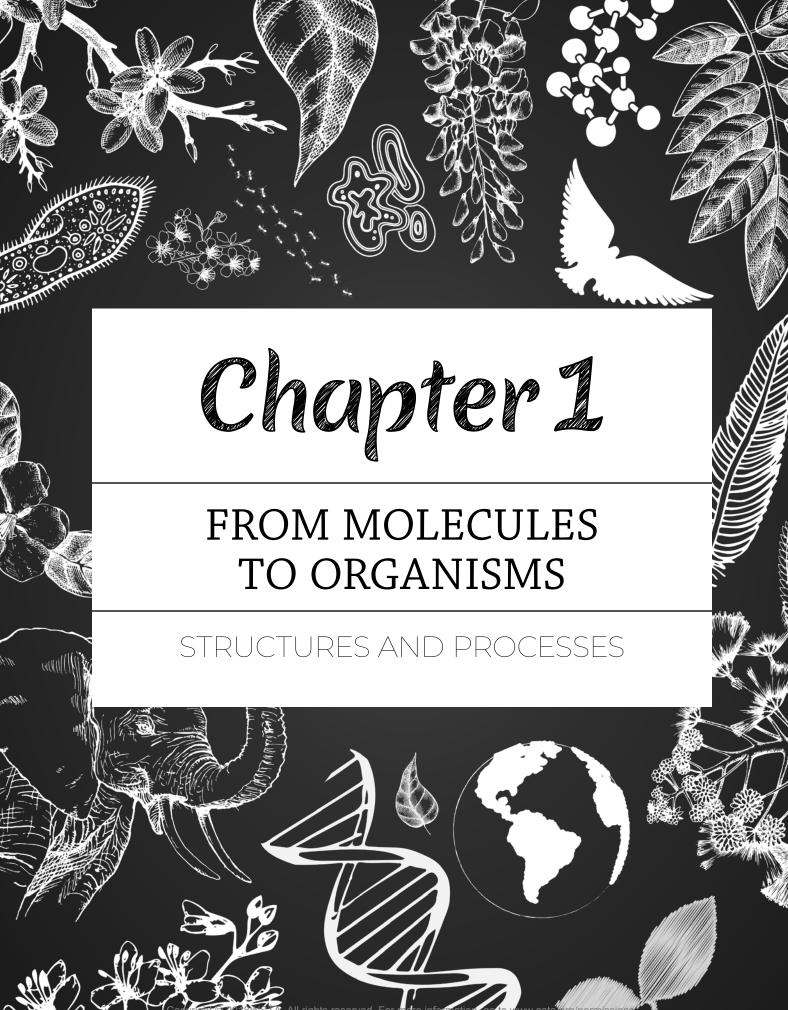
It is a rare textbook, indeed, which supplies enough of the structure of the discipline to let students know that [they are] dealing with a model or a possibility and not with a literal truth or literal falsehood (Schwab 1978, p. 236).

My own science education is defined by a contradiction. My report cards and transcripts from kindergarten through high school were filled with straight As in science. I could solve physics problems, identify the different parts of a cell, and balance chemical equations. Yet I never really knew much about science. The science I mastered focused mostly on facts, a form of school science that so many of us have experienced. This version of science is not wholly ineffective, but it misrepresents what science truly is—a creative, social, and tentative endeavor that is based on puzzling questions, using a variety of methods, and justified by evidence that does not always paint a definitive picture.

At the heart of this contradiction lies the important role that traditional textbooks played in my science classes, especially in the life sciences. These voluminous texts posed no questions, except perhaps at the end of chapter reviews. They portrayed science as a static body of knowledge passed down from a nameless source. Lost in the extensive vocabulary were the ingenious experiments that contributed to what we know about the amazing phenomena of living things.

The need for new science texts is imperative. The release of the *Next Generation Science Standards* (NGSS Lead States 2013) and the literacy standards in the *Common Core State Standards for English Language Arts* (NGAC and CCSSO 2010) emphasize the importance of informational texts across subject areas that better reflect the enterprise of science. This book provides a set of resources for teachers who want to focus on core science ideas while trying to shed light on how the stated claims are justified and why they matter. To mirror the importance of raising questions in our science classrooms, the Teacher Guide is not written declaratively, but rather as a set of questions about the structure of the texts that comprise this book; the research literature about the use of alternative science text types; and most importantly, suggestions for how these accounts may be used in high school biology classrooms as active tools for inquiry. Ultimately, I hope that these texts can push a few more students to look at the living world and ask both "why?" and "how do we know?"

Matt Kloser, September 2017


Reading Nature

XV

INTRODUCTION

References

- National Governors Association Center for Best Practices and Council of Chief State School Officers (NGAC and CCSSO). 2010. *Common core state standards*. Washington, DC: NGAC and CCSSO.
- NGSS Lead States. 2013. Next Generation Science Standards: For states, by states. Washington, DC: National Academies Press. www.nextgenscience.org/next-generation-science-standards.
- Schwab, J. 1978. *Science, curriculum, and liberal education: Selected essays,* eds. I. Westbury and N. J. Wilkof. Chicago: The University of Chicago Press.

aces IA. All rights reserved. For indre internation, gorto www.nsta.dom/permissions: FBDOK, please visit www.nsta.org/stere/product_detail.aspx?id=10.2505/978168140

ext j

THE FLUID MOSAIC MODEL OF THE CELL MEMBRANE

What structure influences cell membrane function?

The cell membrane is central to cell function. This outer layer controls what molecules pass in and out of animal and plant cells. **[Q1]** Given the microscopic nature of the membrane, scientists have had to use creative ways to identify its parts and structure. Over time, models of the cell membrane have been improved through investigations that build on each other.

- 10 The Gorter-Grendel Model
- In 1925, Evert Gorter and François Grendel did not have
 powerful enough microscopes to determine the structure
- 13 of cell membranes. They devised a set of experiments to
- 14 indirectly determine a cell membrane's structure. Pre-
- 15 vious studies proved that the membrane was made of

ADAPTED FROM

- Frye, L. D., and M. Edidin. 1970. The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons. *Journal of Cell Science* 7 (2): 319–335.
- Gorter, E., and F. J. E. M. Grendel. 1925. On bimolecular layers of lipoids on the chromocytes of the blood. *The Journal of Experimental Medicine* 41 (4): 439–443.

16 lipids (molecules similar to a fat), but these experiments did not explain how the lipids were arranged. Gorter and Grendel extracted the lipids from a known amount of red blood cells 17 from a variety of animals. Using a method previously developed by other scientists, Gorter 18 19 and Grendel dissolved the lipids for a given animal's red blood cells in a chemical called 20 benzene and placed this solution on a thin surface of water. This technique causes the for-21 mation of a single layer of lipids. Using this method, Gorter and Grendel realized that they 22 could determine the thickness of a cell membrane based on the surface area of the cell and 23 the surface area covered by the extracted fatty substances. [Q2] Gorter and Grendel gathered 24 the following data from the red blood cells of animals, shown in Table 1.1 (p. 24).

Reading Nature

Chapter **1** FROM MOLECULES TO ORGANISMS

Animal	Sample	Total Cell Surface (sq. μ)	Surface Occupied by All of the Fatty Substances (sq. µ)	Ratio of Total Cell Surface to Surface Covered by Fatty Substances
Dog A	1 2	31.3 6.2	62 12.2	2.0:2.0
Sheep 1	1 2	2.95 2.65	6.2 5.8	2.1:2.2
Rabbit A	1 2	5.46 0.27	9.9 0.54	1.8:2.0
Guinea Pig A	1 2	0.52 0.52	1.02 0.97	2.0:1.9
Goat 1	1 2	0.33 0.33	0.66 0.69	2.0:2.1
Man	1 2	0.47 0.47	0.92 0.89	2.0:1.9

44 45

25

[Q3–Q4]

Although Gorter and Grendel's work contributed to scientists' understanding of the lipid bilayer (or two-layer-thick) cell membrane, their model was later found incomplete as it did not include the proteins that are embedded within the cell membrane. These proteins were found to have an important structural and functional role for cell function.

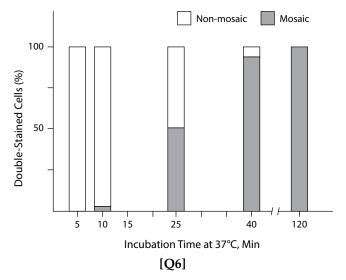
50 Are cell membranes rigid or moveable structures?

51 The Frye-Edidin Model

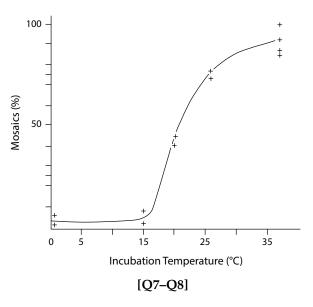
52 Gorter and Grendel's work did not address the presence of proteins and how they existed 53 as part of the cell membrane. In 1970, Larry Frye and Michael Edidin predicted that if cells 54 could change shape, then the proteins and lipids of the cell membrane must be able to 55 move past each other. To test their prediction, they used techniques that labeled the pro-56 teins on the outside of a cell with fluorescent colors that could be seen under a microscope.

57 However, the scientists realized that proteins on a cell membrane would all be labeled 58 with the same fluorescent color, making it difficult to distinguish whether or not they moved. 59 They needed to tag the proteins with at least two distinct colors that could be watched for 60 movement over time. To do this, the scientists used fluorescent labels that were dependent on 61 an organism's immune system. The immune responses from two different organisms would 62 allow cells from the organisms to be tagged uniquely. Thus, if Frye and Edidin were able to fuse, or combine, two cells from
different organisms, they would
have one big cell—half of which was
tagged with one fluorescent color,
while the other half was tagged with
a different fluorescent color. [O5]

The scientists hypothesized that 69 if the initially separated fluores-70 cent labels eventually resulted in 71 72 alternating, or "mosaic," patterns on the cell membrane, then move-73 ment of proteins and lipids must 74 75 be possible. If the two fluorescent 76 tags remained separated, then they could be confident that movement 77 does not take place. 78


To test their hypotheses, Frye and
Edidin used the Sendai virus to fuse
two different cells. They combined
human and mouse cells because the
immune system responses from the different organisms allowed proteins on the
cell surface to be tagged with two different

fluorescent colors. The scientists tagged the
proteins in the mouse membrane with a
green label and the proteins on the human
cell with a red label.


Frye and Edidin then took photographs
of the fused cells through their microscope
and looked at the position of the red and
green labels every few minutes. Their
results are shown in Figure 1.1.

95 After observing the mosaic cells through
96 their microscope, Frye and Edidin wanted
97 to know more about the mechanism for
98 this result. The scientists reasoned that if
99 the parts of the membrane were moving

Figure 1.1. Relationship of the red and green fluorescent labels on the fused mouse and human cell membrane

Figure 1.2. Effect of temperature on the appearance of mosaic cells

past each other, then they would see changes in the movement rate related to changes in
 temperature. They ran another experiment in which they placed different fused cells in
 different temperatures. Their results are shown in Figure 1.2.

Reading Nature

Chapter 1 FROM MOLECULES TO ORGANISMS

103 Conclusions and Discussion

Gorter and Grendel observed that the ratio of surface area covered by lipids to surface area of the cell was very close to 2.1 for all the animals tested. They concluded that the cell membrane structure was a bilayer—that is, a membrane two lipids thick. Because the cells existed in a watery environment, they deduced that the polar, or water-loving, part of the lipid existed on the outside of the membrane while the hydrophobic, or water-repelling, tails were pointed toward the middle of the double-layered membrane.

110 Frye and Edidin's results added more information that would help determine a model of the cell membrane. The scientists observed that the fluorescent markers initially remained 111 112 on their own sides of the fused cells. But, over time, the colors mixed throughout each 113 fused cell and the percentage of mosaic cells rose as temperatures increased. This evidence 114 added explanatory power to Gorter and Grendel's experiment, providing more details about the composition and physiology of the cell membrane. It was not until 1972 that 115 116 Seymour Singer and Garth Nicolson used data from multiple experiments and multiple scientists to create a detailed "fluid mosaic model" of the cell membrane that is still ref-117 118 erenced today. The model uses the term "fluid" because the proteins and the lipids have mobility and can move about like molecules in a liquid. The model is "mosaic" because the 119 proteins that form channels for particle movement into and out of the cell are distributed 120 121 throughout the bilayer. [Q9]

Group/Whole-Class Discussion Questions

- **Q1:** Why is it important for molecules to be able to pass into and out of the cell?
- **Q2:** In your own words, how does Gorter and Grendel's experiment help determine how many layers of lipids form the cell membrane? It may be helpful to draw a picture to explain your reasoning.
- Q3: Why did the scientists use cells from different animals in their experiment?
- **Q4:** What does the ratio of the surface area covered by fatty substances to the total surface area of the cell in each of the animal samples suggest about the structure of the cell membrane?
- **Q5:** After the cells were fused and labeled with the two different colors, what evidence might suggest that the parts of the cell membrane could move easily? What evidence might suggest that the parts could not move easily?
- Q6: What does the data in Figure 1.1 suggest about the structure of the cell membrane?
- **Q7:** Why might temperature affect the movement of molecules in the cell membrane?
- Q8: What conclusions can be drawn from the data in Figure 1.2?
- **Q9:** What questions remain about the structure and function of the cell membrane?

Chapter

FROM MOLECULES TO ORGANISMS

Teacher Supplementary Materials

Reading Level (Flesch-Kincaid Scale): 11.5 Related Next Generation Science Standards

PERFORMANCE EXPECTATIONS

MIDDLE SCHOOL

- MS-LS1-2: Develop and use a model to describe the function of a cell as a whole and ways the parts of cells contribute to the function.
- MS-PS1-1: Develop models to describe the atomic composition of simple molecules and extended structures.

HIGH SCHOOL

• HS-LS1-2: Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms.

SCIENCE AND ENGINEERING PRACTICES

- Asking Questions and Defining Problems
- Developing and Using Models
- Planning and Carrying Out Investigations
- Analyzing and Interpreting Data
- Constructing Explanations and Designing Solutions
- Engaging in Argument From Evidence
- Obtaining, Evaluating, and Communicating Information

DISCIPLINARY CORE IDEA

- Core Idea LS1: From Molecules to Organisms: Structures and Processes
 - » LS1.A: Structure and Function
 - » LS1.C: Organization for Matter and Energy Flow in Organisms

CROSSCUTTING CONCEPTS

- Scale, Proportion, and Quantity
- Structure and Function

Related Common Core State Standards for English Language Arts

- RH.9-10.8: Assess the extent to which the reasoning and evidence in a text support the author's claim.
- RST.9-10.2: Determine the central ideas or conclusion of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of that text.
- RST.9-10.6: Analyze the author's purpose in providing an explanation, describing a procedure, or discussing an experiment in a text, defining the question the author seeks to address.
- RST.9-10.7: Translate information expressed visually or mathematically (e.g., in an equation) into words.

Supplementary Information

Using a case study to trace the history of our understanding of the cell membrane effectively highlights the longitudinal nature of scientific research. Text 1 addressed only two of the many experiments conducted to understand the cell membrane. Although scientists began discussing the structure and function of the cell in the 17th century, it took more than 200 hundred years to complete a viable model for the cell membrane. As technology improved, the depth of understanding increased. For instance, by the middle of the 20th century, micrographs of the cell confirmed the bilayer structure that Gorter and Grendel had proposed with their indirect experiment back in the 1920s. Yet with each contribution, questions remained open. Furthermore, contemporary research has identified even greater nuances that help refine the initial theory.

Students will gain a better grasp of the quest to understand the cell by studying background information about the scientists' investigative techniques. Students are probably unfamiliar with the investigative technique of cell fusion via a virus. In Frye and Edidin's experiment, the formation of a mouse-human heterokaryon (a cell with at least two different nuclei) was performed using the Sendai virus. The Sendai virus is responsible for highly contagious respiratory diseases in small mammals. However, it has been used to fuse cells together for purposes such as creating large amounts of antibodies.

Students will likely also be unfamiliar with immunofluorescence, the technique Frye and Edidin used for coloring proteins. The term *immunofluorescence* did not appear in the text. Instead, terms like *cell labeling* or *fluorescent tags* were used to convey the same meaning in more accessible language. This technique leverages the ability of an organism's immune system to produce responses in order to fight disease. Antibodies are proteins used by the immune system to neutralize pathogens like bacteria and viruses, and they are specific to antigens—the disease-causing agent. Antibodies recognize particular structures of the antigen, bind to the antigen, and either neutralize it directly or destroy the invader with

Reading Nature

assistance from other parts of the immune system. Scientists use this immune response to bind fluorescent markers to particular proteins on a cell surface. Then, using a special fluorescent microscope, they can identify specific parts of the cell that are present or absent based on the fluorescent pictures that appear.

A free full-text version of Frye and Edidin's paper is available online at: *http://jcs. biologists.org/content/joces/7/2/319.full.pdf*. While the text is likely beyond the grasp of students, the figures provide full-color images of the green and red marked cells as well as the fused cell and the intermixing of the fluorescent markers.

Group Tasks

SAMPLE CLAIMS-EVIDENCE-JUSTIFICATION CHART

Note: Students should receive a blank table with only the header titles (p. 17). The completed chart below represents only a sample of possible responses. Final charts may vary.

Claims	Summarized Evidence	Justification
The cell membrane is composed of a lipid bilayer, not a monolayer.	Across six different mammals' cells, the ratios of lipid surface area to surface area of the cell are all 2:1.	If the cell membrane were one lipid layer thick, then the surface area of the lipids laid out side-by-side would be equal to the surface area of the corresponding cell. Since the data shows that the ratio is 2:1, there is likely a double layer of lipids to cover the same surface area.
Components of the cell membrane are able to move within the cell membrane.	The fused mouse-and-human cells were initially 100% nonmosaic. After two hours, 100% of the combined cells were mosaic.	Lipids form a structure around cells based on their properties. Proteins are found within the lipid cell membrane. When proteins in a fused cell membrane are tagged with different fluorescent colors, the two colors are initially separated when viewed under a microscope. Over time, however, images from a microscope show that the colors begin to mix and form a 100% mosaic cell. The only way for mosaic cells to occur is for the proteins to have the ability to change position fluidly among the lipids.
Temperature affects the movement of cell membrane components.	When cells were placed in temperatures ranging from 0°C to 15°C, about 10% of the fused cells were mosaic. When cells were in temperatures ranging from 15°C to 35°C, approximately 100% of the fused cells were mosaic.	Temperature affects the movement of molecules. As more heat energy is added to a system, the molecules begin to move more quickly. For lipids, the increased movement leads to more mosaic cells in a short period of time, with nearly 100% of the cells at 35°C showing a mosaic pattern. Lower temperatures, therefore, should result in less movement and fewer mosaic cells.

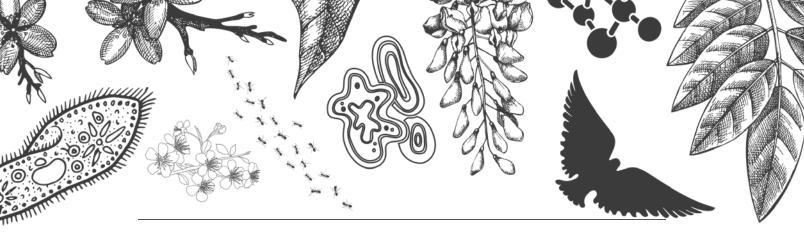
NATIONAL SCIENCE TEACHERS ASSOCIATION

WHY ARE THE RESULTS OF THIS INVESTIGATION IMPORTANT?

The focus of this text is important for understanding both science concepts and how science works. Membrane structure and movement across membranes are crucial parts of cell and organ physiology. The fluid mosaic model is represented in almost every biology textbook as a graphical image. However, little to no evidence is ever given for how we know the membrane is fluid and mosaic in nature. Thus, this text provides some of that evidentiary basis. Importantly, this text also shows that big ideas require the findings of many different scientists and that new knowledge builds on old knowledge. The historical narrative that spans multiple decades is an important reminder of the cumulative nature of science.

INVESTIGATION DESIGN TASKS

TASK A


Frye and Edidin could not determine exactly how the parts of the cell membrane moved. They narrowed the possibilities to: (1) the components slid past each other or (2) the components were ejected from the membrane and then re-integrated into the membrane at a different point. If you were able to use their techniques of labeling cells and fusing cells, plus any other techniques that would work at the cellular level, how might you be able to determine which of the two mechanisms for movement is correct? When designing your investigation be sure to include the following:

- Your hypothesis—what you think will happen and why you think this will happen based on your prior knowledge of biology and previous studies.
- Your methods—the samples you will study, how you will study them (procedures), and the different conditions of the study (e.g., treatment and controls).
- Your analysis plan—what data you would compare to test your hypothesis and what results you would expect from the different conditions if your hypothesis was supported.

TASK B

Cystic fibrosis is a disease that occurs when there is a double mutation for the gene that codes the CFTR protein. The CFTR protein is found in the cell membrane and controls the flow of water and chloride ions in and out of the cell. People with cystic fibrosis have a malfunction in the protein that does not allow the free flow of these ions. For many people with cystic fibrosis, mucus will build up in the lungs because ions are not flowing freely across the cell membrane, causing infection and difficulty breathing. Currently there is no cure for cystic fibrosis. If you were a cellular biologist working on a cure, what possible solutions might you investigate and why might your approach(es) address the problems caused by cystic fibrosis?

Copyright © 2018 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions. TO PURCHASE THIS BOOK, please visit www.nsta.org/store/product_detail.aspx?id=10.2505/9781681402802

INDEX

A

alleles, 128 alternative science texts need for, 1–2 student outcomes, 2-3 altruism, selective about, 107-111, 109, 110 claims-evidence-justification chart, 116 crosscutting concepts, 114 disciplinary core ideas, 113–114 group tasks, 116–118 group/whole-class discussion questions, 112 performance expectations, 113 related Common Core State Standards for English Language Arts, 114 related Next Generation Science Standards, 113-114 science and engineering practices, 113 supplementary information, 114-115 teacher supplementary materials, 113–114 analyzing and interpreting data camouflage and selective advantage, 176 competitive exclusion theory, 41 evolution, in E. coli, 164 fluid mosaic model of cell membranes, 28 genetic variation, 126 invasive species, 76 natural selection, 141

oil spills and seabird reproduction, 188 plant defense, 86 social groups and foraging, 63 social group theory, 53 variation, selection, and guppy survival, 152 asking questions altruism, selective, 113 camouflage and selective advantage, 176 competitive exclusion theory, 41 DNA replication, in E. coli, 101 evolution, in E. coli, 164 fluid mosaic model of cell membranes, 28 genetic variation, 126 invasive species, 76 natural selection, 141 oil spills and seabird reproduction, 188 plant defense, 86 social groups and foraging, 63 social group theory, 53 variation, selection, and guppy survival, 152

B

Balanus balanoides, 35–39, **37**, **38** barnacles, in ecosystems, 35–39, **37**, **38** (*See also* competitive exclusion theory) bottleneck effect, 128

INDEX

C

camouflage and selective advantage about, 171-174, 172 claims-evidence-justification chart, 178 crosscutting concepts, 177 disciplinary core idea, 176 group tasks, 178–179 group/whole-class discussion questions, 175 performance expectations, 176 related Common Core State Standards for English Language Arts, 177 related Next Generation Science Standards, 176-177 science and engineering practices, 176-177 supplementary material, 177-178 teacher supplementary material, 176-178 cell membranes, fluid mosaic model of about, 23-26, 24, 25 and cell function, 23-24 claims-evidence-justification chart, 30 crosscutting concepts, 28 disciplinary core idea, 28 Frye-Edidin model, 24-26, 25 Gorter-Grendel model, 23-24, 24, 26 group tasks, 30–31 group/whole-class discussion questions, 27 performance expectations, 28 related Common Core State Standards for English Language Arts, 29 related Next Generation Science Standards, 28 science and engineering practices, 28 supplementary information, 29-30 teacher supplementary materials, 28-31 Chthamalus stellatus, 35–39, 37, 38 claims-evidence-justification charts about, 16-17 altruism, selective, 116 camouflage and selective advantage, 178 competitive exclusion theory, 44 DNA replication, in E. coli, 104 evolution, in E. coli, 167

fluid mosaic model of cell membranes, 30 genetic variation, 129 invasive species, 79 natural selection, 143 oil spills and seabird reproduction, 191 plant defense, 88 social groups and foraging, 65-67 social group theory, 56–58 variation, selection, and guppy survival, 154 collaboration, 103 *Common Core State Standards for English Language* Arts commonly addressed standards, 9 competitive exclusion theory, 42 evolution, in E. coli, 165 fluid mosaic model of cell membranes, 29 genetic variation, 127 invasive species, 77 plant defense, 87 selective altruism, 114 social groups and foraging, 64 social group theory, 54 competition (See altruism, selective; competitive exclusion theory) competitive exclusion theory about, 35-39, 37, 38 claims-evidence-justification chart, 44 crosscutting concepts, 42 disciplinary core idea, 41 group tasks, 44–45 group/whole-class discussion questions, 40 performance expectations, 41 related Common Core State Standards for English Language Arts, 42 related Next Generation Science Standards, 41-42 science and engineering practices, 41 supplementary information, 42-43 teacher supplementary materials, 41-43 constructing explanations and designing solutions

camouflage and selective advantage, 176 competitive exclusion theory, 41 DNA replication, in *E. coli*, 101 evolution, in E. coli, 164 fluid mosaic model of cell membranes, 28 invasive species, 76 natural selection, 141 plant defense, 86 social groups and foraging, 63 variation, selection, and guppy survival, 152 crosscutting concepts about, 5-9, 7 cause and effect altruism, selective, 114 camouflage and selective advantage, 177 competitive exclusion theory, 42 evolution, in E. coli, 165 genetic variation, 127 invasive species, 77 natural selection, 142 oil spills and seabird reproduction, 189 plant defense, 87 social groups and foraging, 64 social group theory, 54 variation, selection, and guppy survival, 153 energy and matter—Flows, Cycles, and Conservation invasive species, 77 patterns camouflage and selective advantage, 177 competitive exclusion theory, 42 DNA replication, in E. coli, 102 evolution, in E. coli, 165 invasive species, 77 natural selection, 142 oil spills and seabird reproduction, 189 plant defense, 87 social groups and foraging, 64 social group theory, 54

variation, selection, and guppy survival, 153 scale, proportion, and quantity fluid mosaic model of cell membranes, 28 oil spills and seabird reproduction, 189 stability and change camouflage and selective advantage, 177 competitive exclusion theory, 42 evolution, in E. coli, 165 genetic variation, 127 invasive species, 77 natural selection, 142 oil spills and seabird reproduction, 189 variation, selection, and guppy survival, 153 structure and function altruism, selective, 114 DNA replication, in E. coli, 102 fluid mosaic model of cell membranes, 28 systems and system model genetic variation, 127

D

Darwin, Charles, 142 Dawkins, Richard, 108, 114 defining problems camouflage and selective advantage, 176 competitive exclusion theory, 41 DNA replication, in E. coli, 101 evolution, in E. coli, 164 fluid mosaic model of cell membranes, 28 genetic variation, 126 invasive species, 76 natural selection, 141 oil spills and seabird reproduction, 188 plant defense, 86 social groups and foraging, 63 social group theory, 53 variation, selection, and guppy survival, 152 developing and using models DNA replication, in *E. coli*, 101

INDEX

fluid mosaic model of cell membranes, 28 differential survival and reproduction, 178 DNA replication, in E. coli about, 93-99, 93, 94, 96, 98 claims-evidence-justification chart, 104 crosscutting concepts, 102 disciplinary core ideas, 102 group/whole-class discussion questions, 100 performance expectations, 101 related Common Core State Standards for English Language Arts, 102 related Next Generation Science Standards, 101-102 science and engineering practices, 101 supplementary information, 103 teacher supplementary material, 101–103

Ε

E. coli (See DNA replication, in E. coli; evolution, in *E. coli*) elk reintroduction (See species reintroduction) engaging in argument from evidence altruism, selective, 113 camouflage and selective advantage, 176 competitive exclusion theory, 41 DNA replication, in *E. coli*, 101 evolution, in E. coli, 164 fluid mosaic model of cell membranes, 28 genetic variation, 126 invasive species, 76 natural selection, 141 oil spills and seabird reproduction, 188 plant defense, 86 social groups and foraging, 63 social group theory, 53 variation, selection, and guppy survival, 152 English language learners, instruction of, 15–16 evidence-based science texts addressing Next Generation Science Standards and Common Core State Standards with, 5–9, 6, 7, 8, 9

claims-evidence-justification charts and, 16-17 close reading of, 11–12 conceptual framework, 6 creating written and visual summaries, 12-13 English language learners and, 15-16 example instructional sequence using, 14 impact of, 5 limitations of using, 10 structure of, 3-4 using this books', 10-13 evolution, in E. coli about, 157-162, 159, 160, 161 claims-evidence-justification chart, 167 crosscutting concepts, 165 disciplinary core ideas, 165 group tasks, 167–169 group/whole-class discussion questions, 163 performance expectations, 164 related Common Core State Standards for English Language Arts, 165 related Next Generation Science Standards, 164 - 165science and engineering practices, 164-165 supplementary information, 166-167 teacher supplementary material, 164-167

F

fluid mosaic model of cell membranes (*See* cell membranes, fluid mosaic model of)
founder effect, 128 *A Framework for K–12 Science Education* (NRC), 10
Frye-Edidin model, 24–26, 25

G

genetic variation about, 119–124, **121, 122, 123** claims-evidence-justification chart, 129 crosscutting concepts, 127 disciplinary core ideas, 127 group tasks, 129–131 group/whole-class discussion questions, 125 performance expectations, 126 related *Common Core State Standards for English Language Arts*, 127 related *Next Generation Science Standards*, 126–127 science and engineering practices, 126 teacher supplementary material, 126–128 genotypes, 128 goldfish, 64 Gorter-Grendel model, 23–24, **24**, 26 "green-beard effect," 108, 115 guppies (*See* variation, selection, and guppy survival)

Η

Hawaii, 69–74 human activity impact, 190

I

immunofluorescence, 29 inheritance, 177 interdisciplinary collaboration, 103 invasive species about, 69-74, 71, 72 claims-evidence-justification chart, 79 crosscutting concepts, 77 disciplinary core ideas, 77 group tasks, 79-80 group/whole-class discussion questions, 75 performance expectations, 76 related Common Core State Standards for English Language Arts, 77 related Next Generation Science Standards, 76-77 science and engineering practices, 76 supplemental information, 77-78 teacher supplementary materials, 76-78 isotopes, 87

L

lipid bilayers, in cell membranes, 23-24

Μ

minnows, 64

Ν

natural selection, and Darwin's finches about, 135-139, 137, 138 claims-evidence-justification chart, 143 crosscutting concepts, 142 group tasks, 143-145 group/whole-class discussion questions, 140 performance expectations, 141 related Common Core State Standards for English Language Arts, 142 related Next Generation Science Standards, 141-142 science and engineering practices, 141 supplementary information, 142 teacher supplementary material, 141-142 natural selection, evolution by (See evolution, in E. coli) Next Generation Science Standards altruism, selective, 113-114 competitive exclusion theory, 41-42 DNA replication, in E. coli, 101–102 evolution, in E. coli, 164–165 fluid mosaic model of cell membranes, 28 genetic variation, 126-127 invasive species, 76-77 plant defense, 86-87 social groups and foraging, 63-64 social group theory, 53-54

0

obtaining, evaluating, and communicating information altruism, selective, 113 camouflage and selective advantage, 177 competitive exclusion theory, 41 DNA replication, in *E. coli*, 101 evolution, in *E. coli*, 164 fluid mosaic model of cell membranes, 28

INDEX

genetic variation, 126 invasive species, 76 natural selection, 141 oil spills and seabird reproduction, 188 plant defense, 86 social groups and foraging, 63 social group theory, 53 variation, selection, and guppy survival, 152 oil spills and seabird reproduction about, 183-186, 184, 185 claims-evidence-justification chart, 191 crosscutting concepts, 189 disciplinary core ideas, 189 group tasks, 191–192 group/whole-class discussion questions, 187 performance expectations, 188 related Common Core State Standards for English Language Arts, 189 related Next Generation Science Standards, 188 - 189scientific practices, 188 supplementary information, 190 teacher supplementary material, 188–190 On the Origin of Species (Darwin), 142

Р

phenotypes, 128 planning and carrying out investigations altruism, selective, 113 camouflage and selective advantage, 176 DNA replication, in *E. coli*, 101 evolution, in *E. coli*, 164 fluid mosaic model of cell membranes, 28 invasive species, 76 natural selection, 141 oil spills and seabird reproduction, 188 plant defense, 86 social groups and foraging, 63 social group theory, 53 variation, selection, and guppy survival, 152 plant defense

about, 81-84, 82, 83 claims-evidence-justification chart, 88 crosscutting concepts, 87 disciplinary core ideas, 86-87 group tasks, 88-90 group/whole-class discussion questions, 85 performance expectations, 86 related Common Core State Standards for English Language Arts, 87 related Next Generation Science Standards, 86-87 science and engineering practices, 86 teacher supplementary materials, 86-87 population and resource scarcity, 177 Prestige oil tanker spill, 190 proteins, in cell membranes, 24-25 Punnett squares, 128

R

red imported fire ants, 108-111, 109, 110

S

science and engineering practices about, 5-9, 8 altruism, selective, 113 camouflage and selective advantage, 176-177 cell membranes, fluid mosaic model of, 28 competitive exclusion theory, 41 DNA replication, in E. coli, 101 evolution, in E. coli, 164–165 genetic variation, 126 invasive species, 76 natural selection, and Darwin's finches, 141 oil spills and seabird reproduction, 188 plant defense, 86 social groups and foraging, 63 social group theory, 53 species reintroduction, 126 variation, selection, and guppy survival, 152 science texts, alternative (See alternative science texts)

INDEX

science texts, evidence-based (See evidence-based science texts) seabird reproduction and oil spills (See oil spills and seabird reproduction) selective advantage (See camouflage and selective advantage) The Selfish Gene (Dawkins), 108, 114 social groups and foraging about, 59-61, 60 claims-evidence-justification chart, 65-67 crosscutting concepts, 64 disciplinary core ideas, 63 group tasks, 65-67 group/whole-class discussion questions, 62 performance expectations, 63 related Common Core State Standards for English Language Arts, 64 related Next Generation Science Standards, 63-64 science and engineering practices, 63 supplementary information, 64 teacher supplementary materials, 63-64 social group theory about, 47-51, 48, 49, 50 claims-evidence-justification chart, 56-58 crosscutting concepts, 54 disciplinary core ideas, 53 group tasks, 56–58 group/whole-class discussion, 52 performance expectations, 53 related Common Core State Standards for English Language Arts, 54 related Next Generation Science Standards, 53-54 science and engineering practices, 53 supplementary information, 54–55 teacher supplementary material, 53-55 species reintroduction about, 119-124, 121, 122, 123 claims-evidence-justification chart, 129

crosscutting concepts, 127 disciplinary core ideas, 127 group tasks, 129–131 group/whole-class discussion questions, 125 performance expectations, 126 related *Common Core State Standards for English Language Arts*, 127 related *Next Generation Science Standards*, 126–127 science and engineering practices, 126 teacher supplementary material, 126–128

Т

tree growth, 78 trenching, 78

U

using mathematics and computational thinking genetic variation, 126 oil spills and seabird reproduction, 188

V

variation, 177 variation, selection, and guppy survival about, 147-150, 149 claims-evidence-justification chart, 154 crosscutting concepts, 153 disciplinary core idea, 152 group tasks, 154–156 group/whole-class discussion questions, 151 performance expectations, 152 related Common Core State Standards for English Language Arts, 153 related Next Generation Science Standards, 152 - 153science and engineering practices, 152 supplementary information, 153 teacher supplementary material, 152-153

Reading Nature

Engaging Biology Students With Evidence From the Living World

"How can we teach our students to be critical readers of scientific information—especially if they have never had that experience? *Reading Nature* is just what is needed to address this conundrum. It explains carefully how to support a student's reading of scientific texts and provides excellent questions for further discussion and exploration. This book should be an essential part of all biology teachers' toolkits."

— Jonathan Osborne, Kamalachari Professor of Science Education, Stanford University

By making room for this book in your curriculum, you'll have a fresh way to motivate your students to look at the living world and ask not only "Why?" but also "How do we know?" Unique in both its structure and approach, *Reading Nature* is a supplemental resource that provides a window into science ideas and practices. You'll find the book useful because it

- Draws on carefully selected peer-reviewed articles so that students have an opportunity for text-based inquiry into scientific investigations. Each of these evidence-based texts ties into one of five disciplinary core ideas in the *Next Generation Science Standards*—from molecules to organisms, ecosystems, heredity, biological evolution, and human impacts on Earth systems.
- Is organized to make the source material easy for students to grasp and for you to teach. Within each of the book's five chapters, the authors have framed section headings as questions; highlighted the roles of people in the narrative; offered context and relevant data for the investigations; and provided supplementary teacher questions and prompts.
- Can be adapted to your needs as an active tool for inquiry. You may use the various texts in the book to introduce a unit or an investigation or to pull ideas together before a summative assessment. The texts are also useful as extensions of existing ideas.

Unlike traditional textbooks, *Reading Nature* makes it clear that biology is much more than dry facts and complicated vocabulary. It can help you prompt students to think deeply about the "endeavor of science" as it truly is—full of ingenious experiments, frustrating dead ends, and incredible finds that contribute to our understanding of the amazing phenomena of living things.

Copyright © 2018 NST TO PURCHASE THIS BOOK

National Science Teachers Association

Grades 6–12