Influence of Waves

STEM Road Map for Elementary School

Grade 1

Edited by Carla C. Johnson, Janet B. Walton, and Erin Peters-Burton

Copyright © 2019 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.

TO PURCHASE THIS BOOK, please visit https://www.nsta.org/store/product_detail.aspx?id=10.2505/9781681405049
NSTA is committed to publishing material that promotes the best in inquiry-based science education. However, conditions of actual use may vary, and the safety procedures and practices described in this book are intended to serve only as a guide. Additional precautionary measures may be required. NSTA and the authors do not warrant or represent that the procedures and practices in this book meet any safety code or standard of federal, state, or local regulations. NSTA and the authors disclaim any liability for personal injury or damage to property arising out of or relating to the use of this book, including any of the recommendations, instructions, or materials contained therein.

Permissions
Book purchasers may photocopy, print, or e-mail up to five copies of an NSTA book chapter for personal use only; this does not include display or promotional use. Elementary, middle, and high school teachers may reproduce forms, sample documents, and single NSTA book chapters needed for classroom or noncommercial, professional-development use only. E-book buyers may download files to multiple personal devices but are prohibited from posting the files to third-party servers or websites, or from passing files to non-buyers. For additional permission to photocopy or use material electronically from this NSTA Press book, please contact the Copyright Clearance Center (CCC) (www.copyright.com, 978-750-8400). Please access www.nsta.org/permissions for further information about NSTA's rights and permissions policies.

ISBN: 978-1-68140-504-9
e-ISBN: 978-1-68140-505-6

The Next Generation Science Standards ("NGSS") were developed by twenty-six states, in collaboration with the National Research Council, the National Science Teaching Association and the American Association for the Advancement of Science in a process managed by Achieve, Inc. For more information go to www.nextgenscience.org.
CONTENTS

About the Editors and Authors .. vii
Acknowledgments ... ix

Part 1: The STEM Road Map: Background, Theory, and Practice

1 Overview of the STEM Road Map Curriculum Series .. 1
 Standards-Based Approach ... 2
 Themes in the STEM Road Map Curriculum Series 2
 The Need for an Integrated STEM Approach ... 5
 Framework for STEM Integration in the Classroom 6
 The Need for the STEM Road Map Curriculum Series 7
 References .. 7

2 Strategies Used in the STEM Road Map Curriculum Series 9
 Project- and Problem-Based Learning ... 9
 Engineering Design Process ... 9
 Learning Cycle .. 11
 STEM Research Notebook ... 12
 The Role of Assessment in the STEM Road Map Curriculum Series 13
 Self-Regulated Learning Theory in the STEM Road Map Modules 16
 Safety in STEM ... 18
 References .. 19

Part 2: Influence of Waves: STEM Road Map Module

3 Influence of Waves Module Overview ... 23
 Module Summary .. 23
 Established Goals and Objectives ... 23
 Challenge or Problem for Students to Solve:
 Show Me the Waves Challenge ... 24
CONTENTS

Content Standards Addressed in This STEM Road Map Module ... 24

STEM Research Notebook .. 24

Module Launch ... 25

Prerequisite Skills for the Module .. 25

Potential STEM Misconceptions .. 27

SRL Process Components .. 27

Strategies for Differentiating Instruction Within This Module ... 29

Strategies for English Language Learners .. 30

Safety Considerations for the Activities in This Module ... 31

Desired Outcomes and Monitoring Success .. 32

Assessment Plan Overview and Map ... 32

Module Timeline .. 36

Resources ... 40

References ... 40

4 Influence of Waves Lesson Plans... 41

Lesson Plan 1: Let’s Explore Waves! .. 41

Lesson Plan 2: Sounds Like Fun! .. 62

Lesson Plan 3: Lighting It Up! ... 86

Lesson Plan 4: Show Me the Waves Challenge ... 107

5 Transforming Learning With Influence of Waves and the STEM Road Map Curriculum Series ... 123

Appendix A: STEM Research Notebook Templates ... 127

Appendix B: Lesson Assessments and Assessment Rubric ... 161

Appendix C: Content Standards Addressed in This Module ... 171

Index .. 179
ABOUT THE EDITORS
AND AUTHORS

Dr. Carla C. Johnson is executive director of the William and Ida Friday Institute for Educational Innovation, associate dean, and professor of science education in the College of Education at North Carolina State University in Raleigh. She was most recently an associate dean, provost fellow, and professor of science education at Purdue University in West Lafayette, Indiana. Dr. Johnson serves as the director of research and evaluation for the Department of Defense–funded Army Educational Outreach Program (AEOP), a global portfolio of STEM education programs, competitions, and apprenticeships. She has been a leader in STEM education for the past decade, serving as the director of STEM Centers, editor of the School Science and Mathematics journal, and lead researcher for the evaluation of Tennessee’s Race to the Top–funded STEM portfolio. Dr. Johnson has published over 100 articles, books, book chapters, and curriculum books focused on STEM education. She is a former science and social studies teacher and was the recipient of the 2013 Outstanding Science Teacher Educator of the Year award from the Association for Science Teacher Education (ASTE), the 2012 Award for Excellence in Integrating Science and Mathematics from the School Science and Mathematics Association (SSMA), the 2014 award for best paper on Implications of Research for Educational Practice from ASTE, and the 2006 Outstanding Early Career Scholar Award from SSMA. Her research focuses on STEM education policy implementation, effective science teaching, and integrated STEM approaches.

Dr. Janet B. Walton is a senior research scholar and the assistant director of evaluation for AEOP at North Carolina State University’s William and Ida Friday Institute for Educational Innovation. She merges her economic development and education backgrounds to develop K–12 curricular materials that integrate real-life issues with sound cross-curricular content. Her research focuses on mixed methods research methodologies and collaboration between schools and community stakeholders for STEM education and problem- and project-based learning pedagogies. With this research agenda, she works to bring contextual STEM experiences into the classroom and provide students and educators with innovative resources and curricular materials.

Dr. Erin Peters-Burton is the Donna R. and David E. Sterling endowed professor in science education at George Mason University in Fairfax, Virginia. She uses her experiences from 15 years as an engineer and secondary science, engineering, and mathematics
teacher to develop research projects that directly inform classroom practice in science and engineering. Her research agenda is based on the idea that all students should build self-awareness of how they learn science and engineering. She works to help students see themselves as “science-minded” and help teachers create classrooms that support student skills to develop scientific knowledge. To accomplish this, she pursues research projects that investigate ways that students and teachers can use self-regulated learning theory in science and engineering, as well as how inclusive STEM schools can help students succeed. During her tenure as a secondary teacher, she had a National Board Certification in Early Adolescent Science and was an Albert Einstein Distinguished Educator Fellow for NASA. As a researcher, Dr. Peters-Burton has published over 100 articles, books, book chapters, and curriculum books focused on STEM education and educational psychology. She received the Outstanding Science Teacher Educator of the Year award from ASTE in 2016 and a Teacher of Distinction Award and a Scholarly Achievement Award from George Mason University in 2012, and in 2010 she was named University Science Educator of the Year by the Virginia Association of Science Teachers.

Dr. Andrea R. Milner is the vice president and dean of academic affairs and an associate professor in the Teacher Education Department at Adrian College in Adrian, Michigan. A former early childhood and elementary teacher, Dr. Milner researches the effects constructivist classroom contextual factors have on student motivation and learning strategy use.

Dr. Tamara J. Moore is an associate professor of engineering education in the College of Engineering at Purdue University. Dr. Moore’s research focuses on defining STEM integration through the use of engineering as the connection and investigating its power for student learning.

Dr. Vanessa B. Morrison is an associate professor in the Teacher Education Department at Adrian College. She is a former early childhood teacher and reading and language arts specialist whose research is focused on learning and teaching within a transdisciplinary framework.

Dr. Toni A. Sondergeld is an associate professor of assessment, research, and statistics in the School of Education at Drexel University in Philadelphia. Dr. Sondergeld’s research concentrates on assessment and evaluation in education, with a focus on K–12 STEM.
ACKNOWLEDGMENTS

This module was developed as a part of the STEM Road Map project (Carla C. Johnson, principal investigator). The Purdue University College of Education, General Motors, and other sources provided funding for this project.

See www.routledge.com/products/978138804234 for more information about STEM Road Map: A Framework for Integrated STEM Education.
INFLUENCE OF WAVES
MODULE OVERVIEW

Andrea R. Milner, Vanessa B. Morrison, Janet B. Walton, Carla C. Johnson, and Erin Peters-Burton

THEME: Cause and Effect

LEAD DISCIPLINE: Science

MODULE SUMMARY
This module introduces students to the concept of waves as traveling disturbances that move through space and substances to transfer energy. Students apply their understanding and observations of waves in water to understanding sound waves to prepare them for an increasingly sophisticated understanding of the role of sound in communicating over distances. Students also investigate the properties of light and its role in communicating over distances. Students investigate how humans interact with sound and light. The focus on sound and light will lead to the final module challenge in which students use the steps of the engineering design process (EDP) to create musical instruments and work with lighting to stage a musical performance (adapted from Koehler, Bloom, and Milner 2015).

ESTABLISHED GOALS AND OBJECTIVES
At the conclusion of this module, students will be able to do the following:

• Know that there are different forms of waves
• Identify types of waves (e.g., waves in water and sound waves)
• Know that there are various sources of sound and light
• Describe how sound waves travel
• Explain that the body organs (e.g., eyes, ears, and skin) respond to sound and light
• Use technology to gather research information and communicate
• Describe and apply the EDP
Influence of Waves Module Overview

- Design, construct, test, and evaluate models to demonstrate how humans experience and interact with sound and light
- Discuss concepts associated with sound and light when working on models to demonstrate how humans experience and interact with sound and light
- Identify impacts of sound and light on culture and society

CHALLENGE OR PROBLEM FOR STUDENTS TO SOLVE:
SHOW ME THE WAVES CHALLENGE
Students will be challenged to design and create musical instruments for a musical show that will demonstrate how sound waves can be used to communicate over distances. Students will also incorporate light, another wave phenomenon, into their shows. Students will present musical performances that demonstrate how sound and light can be used to communicate and entertain.

CONTENT STANDARDS ADDRESSED IN THIS STEM ROAD MAP MODULE
A full listing with descriptions of the standards this module addresses can be found in Appendix C. Listings of the particular standards addressed within lessons are provided in a table for each lesson in Chapter 4.

STEM RESEARCH NOTEBOOK
Each student should maintain a STEM Research Notebook, which will serve as a place for students to organize their work throughout this module (see p. 12 for more general discussion on setup and use of the notebook). All written work in the module should be included in the notebook, including records of students’ thoughts and ideas, fictional accounts based on the concepts in the module, and records of student progress through the EDP. The notebooks may be maintained across subject areas, giving students the opportunity to see that although their classes may be separated during the school day, the knowledge they gain is connected. The lesson plans for this module contain STEM Research Notebook Entry sections (numbered 1–33), and templates for each notebook entry are included in Appendix A.

Emphasize to students the importance of organizing all information in a Research Notebook. Explain to them that scientists and other researchers maintain detailed Research Notebooks in their work. These notebooks, which are crucial to researchers’ work because they contain critical information and track the researchers’ progress, are often considered legal documents for scientists who are pursuing patents or wish to provide proof of their discovery process.

Copyright © 2019 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
TO PURCHASE THIS BOOK, please visit https://www.nsta.org/store/product_detail.aspx?id=10.2505/9781681405049
MODULE LAUNCH

Following agreed-upon rules for discussions, launch the module by holding a class discussion about waves, asking students these questions:

- What are waves?
- Are there different types of waves?
- What kinds of waves are there?
- What makes waves?
- Where and when have you seen waves?

Students will share their ideas with the whole class. After students have shared their ideas about waves, show a video about ocean waves such as the drone video found at www.wtkr.com/2014/01/17/this-drone-shot-video-of-surfers-in-hawaii-will-blow-your-mind. Then, hold a class discussion about what students observed about waves in this video.

PREREQUISITE SKILLS FOR THE MODULE

Students enter this module with a wide range of preexisting skills, information, and knowledge. Table 3.1 provides an overview of prerequisite skills and knowledge that students are expected to apply in this module, along with examples of how they apply this knowledge throughout the module. Differentiation strategies are also provided for students who may need additional support in acquiring or applying this knowledge.

Table 3.1. Prerequisite Key Knowledge and Examples of Applications and Differentiation Strategies

<table>
<thead>
<tr>
<th>Prerequisite Key Knowledge</th>
<th>Application of Knowledge by Students</th>
<th>Differentiation for Students Needing Additional Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science</td>
<td>• Understanding cause and effect</td>
<td>• Science • Determine in investigations how sound and light behave and interact with human organs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Science • Provide demonstrations of cause and effect (e.g., dropping egg [cause] and observing breakage [effect]), emphasizing that cause is why something happens and effect is what happens. • Read aloud picture books to the class and have students identify cause-and-effect sequences.</td>
</tr>
</tbody>
</table>

Continued
Table 3.1. (continued)

<table>
<thead>
<tr>
<th>Prerequisite Key Knowledge</th>
<th>Application of Knowledge by Students</th>
<th>Differentiation for Students Needing Additional Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
<td>Mathematics</td>
<td>Mathematics</td>
</tr>
<tr>
<td>• Number sense</td>
<td>• Measure, calculate, compare, and evaluate numbers when investigating sound and light.</td>
<td>• Model measurement techniques using standard and nonstandard units of measurement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Read aloud nonfiction texts about temperature, rainfall, wind, and measurement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Provide opportunities for students to practice measurement in a variety of settings (e.g., in the classroom and outdoors).</td>
</tr>
<tr>
<td>Language and Inquiry Skills</td>
<td>Language and Inquiry Skills</td>
<td>Language and Inquiry Skills</td>
</tr>
<tr>
<td>• Visualizing</td>
<td>• Make and confirm or reject predictions.</td>
<td>• As a class, make predictions when reading fictional texts.</td>
</tr>
<tr>
<td></td>
<td>• Recording ideas and information using words and pictures</td>
<td>• Model the process of using information and prior knowledge to use predictions.</td>
</tr>
<tr>
<td></td>
<td>• Asking and responding to questions</td>
<td>• Provide samples of notebook entries.</td>
</tr>
<tr>
<td>Speaking and Listening</td>
<td>Speaking and Listening</td>
<td>Speaking and Listening</td>
</tr>
<tr>
<td>• Participating in group discussions</td>
<td>• Engage in collaborative group discussions in creating musical instruments and planning team Show Me the Waves presentations.</td>
<td>• Model speaking and listening skills.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Create a class list of good speaking and listening skills.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Create a class list of good collaboration practices.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Read picture books that feature collaboration and teamwork.</td>
</tr>
</tbody>
</table>
POTENTIAL STEM MISCONCEPTIONS

Students enter the classroom with a wide variety of prior knowledge and ideas, so it is important to be alert to misconceptions, or inappropriate understandings of foundational knowledge. These misconceptions can be classified as one of several types: “pre-conceived notions,” opinions based on popular beliefs or understandings; “nonscientific beliefs,” knowledge students have gained about science from sources outside the scientific community; “conceptual misunderstandings,” incorrect conceptual models based on incomplete understanding of concepts; “vernacular misconceptions,” misunderstandings of words based on their common use versus their scientific use; and “factual misconceptions,” incorrect or imprecise knowledge learned in early life that remains unchallenged (NRC 1997, p. 28). Misconceptions must be addressed and dismantled for students to reconstruct their knowledge, and therefore teachers should be prepared to take the following steps:

- Identify students’ misconceptions.
- Provide a forum for students to confront their misconceptions.
- Help students reconstruct and internalize their knowledge, based on scientific models. (NRC 1997, p. 29)

Keeley and Harrington (2010) recommend using diagnostic tools such as probes and formative assessment to identify and confront student misconceptions and begin the process of reconstructing student knowledge. Keeley’s Uncovering Student Ideas in Science series contains probes targeted toward uncovering student misconceptions in a variety of areas and may be a useful resource for addressing student misconceptions in this module.

Some commonly held misconceptions specific to lesson content are provided with each lesson so that you can be alert for student misunderstanding of the science concepts presented and used during this module. The American Association for the Advancement of Science has also identified misconceptions that students frequently hold regarding various science concepts (see the links at http://assessment.aaas.org/topics).

SRL PROCESS COMPONENTS

Table 3.2 (p. 28) illustrates some of the activities in the Influence of Waves module and how they align with the self-regulated learning (SRL) process before, during, and after learning.
Table 3.2. SRL Process Components

<table>
<thead>
<tr>
<th>Learning Process Components</th>
<th>Example From Influence of Waves Module</th>
<th>Lesson Number and Learning Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEFORE LEARNING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motivates students</td>
<td>Students will experience waves in water by watching a video and sharing what they learned about waves as a whole class and in their STEM Research Notebooks.</td>
<td>Lesson 1, Introductory Activity/Engagement</td>
</tr>
<tr>
<td>Evokes prior learning</td>
<td>Students share what they know about waves from experience and respond to the following questions about waves: • What are waves? • Are there different types of waves? • What kinds of waves are there? • What causes waves? • Where and when have you seen waves?</td>
<td>Lesson 1, Introductory Activity/Engagement</td>
</tr>
<tr>
<td>DURING LEARNING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Focuses on important features</td>
<td>Students participate in the What's the Buzz? investigation by predicting, observing, and explaining how sound waves behave in a communication device.</td>
<td>Lesson 2, Activity/Exploration</td>
</tr>
<tr>
<td>Helps students monitor their progress</td>
<td>After conducting an investigation about light’s interaction with various materials, students consider how they could use their findings to use light in their musical performances. Teachers monitor students’ responses and help students understand concepts if there are misconceptions.</td>
<td>Lesson 3, Explanation</td>
</tr>
<tr>
<td>AFTER LEARNING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluates learning</td>
<td>Students demonstrate how humans experience and interact with sound waves and light waves through a Show Me the Waves musical performance. Students create guitars and use these guitars and the drums they created in a previous lesson, along with their voices and flashlights wrapped with colored materials, to present a musical performance that demonstrates how sound waves and light can be used to communicate and entertain.</td>
<td>Lesson 4, Activity/Exploration</td>
</tr>
<tr>
<td>Takes account of what worked and what did not work</td>
<td>Students compare their predictions for the Singing Strings activity with actual results. Groups use what they learned from creating drums and guitars to create new instruments in the Incredible Instruments activity.</td>
<td>Lesson 4, Activity/Exploration</td>
</tr>
</tbody>
</table>
STRATEGIES FOR DIFFERENTIATING INSTRUCTION WITHIN THIS MODULE

For the purposes of this curriculum module, differentiated instruction is conceptualized as a way to tailor instruction—including process, content, and product—to various student needs in your class. A number of differentiation strategies are integrated into lessons across the module. The problem- and project-based learning approach used in the lessons is designed to address students’ multiple intelligences by providing a variety of entry points and methods to investigate the key concepts in the module (for example, investigating waves via scientific inquiry, literature, journaling, and collaborative design). Differentiation strategies for students needing support in prerequisite knowledge can be found in Table 3.1 (p. 25). You are encouraged to use information gained about student prior knowledge during introductory activities and discussions to inform your instructional differentiation. Strategies incorporated into this lesson include flexible grouping, varied environmental learning contexts, assessments, compacting, tiered assignments and scaffolding, and mentoring.

The following websites may be helpful resources for differentiated instruction:

Flexible Grouping. Students work collaboratively in a variety of activities throughout this module. Grouping strategies you might employ include student-led grouping, grouping students according to ability level or common interests, grouping students randomly, or grouping them so that students in each group have complementary strengths (for instance, one student might be strong in mathematics, another in art, and another in writing).

Varied Environmental Learning Contexts. Students have the opportunity to learn in various contexts throughout the module, including alone, in groups, in quiet reading and research-oriented activities, and in active learning in inquiry and design activities. In addition, students learn in a variety of ways through doing inquiry activities, journaling, reading a variety of texts, watching videos, participating in class discussion, and conducting web-based research.

Assessments. Students are assessed in a variety of ways throughout the module, including individual and collaborative formative and summative assessments. Students have the opportunity to produce work via written text, oral and media presentations, and modeling.

Compacting. Based on student prior knowledge, you may wish to adjust instructional activities for students who exhibit prior mastery of a learning objective. Since student
work in science is largely collaborative throughout the module, this strategy may be most appropriate for mathematics, English language arts (ELA), or social studies activities. You may wish to compile a classroom database of research resources and supplementary readings for a variety of reading levels and on a variety of topics related to the module’s topic to provide opportunities for students to undertake independent reading.

Tiered Assignments and Scaffolding. Based on your awareness of student ability, understanding of concepts, and mastery of skills, you may wish to provide students with variations on activities by adding complexity to assignments or providing more or fewer learning supports for activities throughout the module. For instance, some students may need additional support in identifying key search words and phrases for web-based research or may benefit from cloze sentence handouts to enhance vocabulary understanding. Other students may benefit from expanded reading selections and additional reflective writing or from working with manipulatives and other visual representations of mathematical concepts. You may also work with your school librarian to compile a classroom database of research resources and supplementary readings for different reading levels and on a variety of topics related to the module challenge to provide opportunities for students to undertake independent reading. You may find the following website on scaffolding strategies helpful: www.edutopia.org/blog/scaffolding-lessons-six-strategies-rebecca-alber.

Mentoring. As group design teamwork becomes increasingly complex throughout the module, you may wish to have a resource teacher, older student, or volunteer work with groups that struggle to stay on task and collaborate effectively.

STRATEGIES FOR ENGLISH LANGUAGE LEARNERS

Students who are developing proficiency in English language skills require additional supports to simultaneously learn academic content and the specialized language associated with specific content areas. WIDA (2012) has created a framework for providing support to these students and makes available rubrics and guidance on differentiating instructional materials for English language learners (ELLs). In particular, ELL students may benefit from additional sensory supports such as images, physical modeling, and graphic representations of module content, as well as interactive support through collaborative work. This module incorporates a variety of sensory supports and offers ongoing opportunities for ELL students to work with collaboratively. The focus on sound and light issues affords an opportunity for ELL students to share culturally diverse experiences with music and hearing and their experiences with visual impairments.

When differentiating instruction for ELL students, you should carefully consider the needs of these students as you introduce and use academic language in various language domains (listening, speaking, reading, and writing) throughout this module. To adequately differentiate instruction for ELL students, you should have an understanding
of the proficiency level of each student. The following five overarching preK–5 WIDA learning standards are relevant to this module:

- **Standard 1: Social and Instructional Language.** Focus on following directions, personal information, leisure activities, collaboration with peers.
- **Standard 2: The Language of Language Arts.** Focus on nonfiction, fiction, sequence of story, elements of story.
- **Standard 3: The Language of Mathematics.** Focus on basic operations, number sense, interpretation of data, standard and metric measurement tools.
- **Standard 4: The Language of Science.** Focus on light, scientific process, senses, sound.
- **Standard 5: The Language of Social Studies.** Focus on community workers, jobs and careers, representations of Earth (maps and globes).

SAFETY CONSIDERATIONS FOR THE ACTIVITIES IN THIS MODULE

The safety precautions associated with each investigation are based, in part, on the use of the recommended materials and instructions, legal safety standards, and better professional safety practices. Selection of alternative materials or procedures for these investigations may jeopardize the level of safety and therefore is at the user’s own risk. Remember that an investigation includes three parts: (1) setup, in which you prepare the materials for students to use; (2) the actual hands-on investigation, in which students use the materials and equipment; and (3) cleanup, in which you or the students clean the materials and put them away for later use. The safety procedures for each investigation apply to all three parts. For more general safety guidelines, see the Safety in STEM section in Chapter 2 (p. 18).

We also recommend that you go over the safety rules that are included as part of the safety acknowledgment form with your students before beginning the first investigation. Once you have gone over these rules with your students, have them sign the safety acknowledgment form. You should also send the form home with students for parents or guardians to read and sign to acknowledge that they understand the safety procedures that must be followed by their children. A sample elementary safety acknowledgment form can be found on the National Science Teaching Association’s Safety Portal at http://static.nsta.org/pdfs/SafetyAcknowledgmentForm-ElementarySchool.pdf.
DESIRED OUTCOMES AND MONITORING SUCCESS

The desired outcomes for this module are outlined in Table 3.3, along with suggested ways to gather evidence to monitor student success. For more specific details on desired outcomes, see the Established Goals and Objectives sections for the module (p. 23) and individual lessons.

Table 3.3. Desired Outcomes and Evidence of Success in Achieving Identified Outcomes

<table>
<thead>
<tr>
<th>Desired Outcome</th>
<th>Evidence of Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students understand and can demonstrate their knowledge of how sound and light</td>
<td>• Students complete a variety of investigations related to waves, sound, and light.</td>
</tr>
<tr>
<td>can be used to communicate and how humans interact with sound and light.</td>
<td>• Student teams develop and present a musical performance that incorporates sound and</td>
</tr>
<tr>
<td></td>
<td>light to demonstrate how sound and light can be used to communicate and how humans</td>
</tr>
<tr>
<td></td>
<td>interact with sound and light.</td>
</tr>
<tr>
<td></td>
<td>• Students each maintain a STEM Research Notebook that includes what they have</td>
</tr>
<tr>
<td></td>
<td>learned, responses to questions, and observations.</td>
</tr>
<tr>
<td></td>
<td>Students are assessed using the Observation, STEM Research Notebook, and Participation</td>
</tr>
<tr>
<td></td>
<td>Rubric.</td>
</tr>
</tbody>
</table>

ASSESSMENT PLAN OVERVIEW AND MAP

Table 3.4 provides an overview of the major group and individual products and deliverables, or things that students will produce in this module, that comprise the assessment for this module. See Table 3.5 for a full assessment map of formative and summative assessments in this module.
Table 3.4. Major Products and Deliverables in Lead Discipline for Groups and Individuals

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Major Group Products and Deliverables</th>
<th>Major Individual Products and Deliverables</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Waves in Motion investigation</td>
<td>STEM Research Notebook entries #1–8</td>
</tr>
<tr>
<td></td>
<td>Wave measurements</td>
<td>Lesson assessment</td>
</tr>
<tr>
<td>2</td>
<td>What’s the Buzz? communication devices</td>
<td>STEM Research Notebook entries #9–18</td>
</tr>
<tr>
<td></td>
<td>I Can Hear the Music instruments</td>
<td>Lesson assessment</td>
</tr>
<tr>
<td>3</td>
<td>Lighting the Way investigation</td>
<td>STEM Research Notebook entries #19–29</td>
</tr>
<tr>
<td></td>
<td>Shady Shadow Puppets investigation</td>
<td>Shadow image pictures</td>
</tr>
<tr>
<td></td>
<td>Shady Shadow Puppets show</td>
<td>Partner description pictures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lesson assessment</td>
</tr>
<tr>
<td>4</td>
<td>Singing Strings activity</td>
<td>STEM Research Notebook entries #30–33</td>
</tr>
<tr>
<td></td>
<td>Incredible Instruments activity</td>
<td>Lesson assessment</td>
</tr>
<tr>
<td></td>
<td>Show Me the Waves musical performance</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.5. Assessment Map for Influence of Waves Module

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Assessment</th>
<th>Group/Individual</th>
<th>Formative/Summative</th>
<th>Lesson Objective Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Waves in Motion Investigation performance task</td>
<td>Group</td>
<td>Formative</td>
<td>• Demonstrate how waves in water move.</td>
</tr>
<tr>
<td>1</td>
<td>STEM Research Notebook entries</td>
<td>Individual</td>
<td>Formative</td>
<td>• Explain that waves transfer energy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Demonstrate how waves in water move.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Identify properties of waves.</td>
</tr>
<tr>
<td>1</td>
<td>Wave drawing and descriptions end of lesson assessment</td>
<td>Individual</td>
<td>Summative</td>
<td>• Explain that waves transfer energy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Demonstrate how waves in water move.</td>
</tr>
</tbody>
</table>

Continued
Table 3.5. (continued)

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Assessment</th>
<th>Group/Individual</th>
<th>Formative/Summative</th>
<th>Lesson Objective Assessed</th>
</tr>
</thead>
</table>
| 2 | STEM Research Notebook entries | Individual | Formative | • Understand that there are various sources of sound waves and identify sources of sound.
• Demonstrate a basic understanding of the human anatomy associated with hearing.
• Explain that sound can be used to communicate over distances.
• Evaluate the influence sound waves have on culture and society. |
| 2 | What’s the Buzz? investigation | Group | Formative | • Design, construct, test, and evaluate models that demonstrate how humans experience and interact with sound waves.
• Explain how sound waves travel to reach human ears.
• Explain that sound can be used to communicate over distances. |
| 2 | I Can Hear the Music Instruments investigation | Group | Formative | • Design, construct, test, and evaluate models that demonstrate how humans experience and interact with sound waves.
• Explain that sound can be used to communicate over distances. |
| 2 | Drawing and description of sources of sound and basic ear anatomy end of lesson assessment | Individual | Summative | • Understand that there are various sources of sound waves and identify sources of sound.
• Demonstrate a basic understanding of the human anatomy associated with hearing. |
| 3 | STEM Research Notebook entries | Individual | Formative | • Identify the Sun as a natural source of light.
• Describe how light reaches our eyes.
• Understand how human eyes respond to light via a basic exploration of the human anatomy of sight.
• Identify materials that are transparent, translucent, or opaque.
• Identify several ways that humans experience and interact with light waves.
• Explain how light can be used to communicate over distances. |

Continued
<table>
<thead>
<tr>
<th>Lesson</th>
<th>Assessment</th>
<th>Group/Individual</th>
<th>Formative/Summative</th>
<th>Lesson Objective Assessed</th>
</tr>
</thead>
</table>
| 3 | Lighting the Way *investigation* | Group | Formative | • Identify materials that are transparent, translucent, or opaque.
• Explain concepts associated with light when working on models to demonstrate how humans experience and interact with light waves.
• Explain how light can be used to communicate over distances. |
| 3 | Shady Shadow Puppets *investigation* | Group | Formative | • Identify several ways that humans experience and interact with light waves.
• Describe and demonstrate how shadows are formed.
• Explain how light can be used to communicate over distances. |
| 3 | Shady Shadow Puppets *performance task* | Group | Formative | • Describe and demonstrate how shadows are formed. |
| 3 | Shadow image pictures *performance task* | Individual | Formative | • Identify the Sun as a natural source of light.
• Explain concepts associated with light when working on models to demonstrate how humans experience and interact with light waves.
• Describe and demonstrate how shadows are formed. |
| 3 | Partner description pictures *performance task* | Individual | Formative | • Demonstrate an understanding of the use of descriptive words and imagery in art and literature. |
| 3 | Light drawings and descriptions *end of lesson assessment* | Individual | Summative | • Identify several ways that humans experience and interact with light waves.
• Explain how light can be used to communicate over distances.
• Identify materials that are transparent, translucent, or opaque. |
Table 3.5. (continued)

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Assessment</th>
<th>Group/Individual</th>
<th>Formative/Summative</th>
<th>Lesson Objective Assessed</th>
</tr>
</thead>
</table>
| 4 | STEM Research Notebook entries | Individual | Formative | • Explain that the pitch of a sound is influenced by properties of the material through which the sound waves move.
• Demonstrate their understanding of the engineering design process (EDP) by applying it to create musical instruments. |
| 4 | Singing Strings performance task | Group | Formative | • Explain that the pitch of a sound is influenced by properties of the material through which the sound waves move.
• Explain that sound can be used to communicate over distance and create models that demonstrate this. |
| 4 | Incredible Instruments performance task | Group | Formative | • Demonstrate their understanding of the EDP by applying it to create musical instruments.
• Explain that sound and light are used to communicate over distances and identify several examples of this. |
| 4 | Musical Show performance task | Group | Summative | • Explain that sound can be used to communicate over distances and create models that demonstrate this.
• Explain that light can be used to communicate over distances and create a model that demonstrates this.
• Demonstrate how humans can experience and interact with sound and light through a musical performance. |
| 4 | Sound and light drawing and descriptions end of lesson assessment | Individual | Summative | • Identify several ways that humans experience and interact with sound and light.
• Explain that sound can be used to communicate over distances and create models that demonstrate this.
• Explain that light can be used to communicate over distances and create a model that demonstrates this. |

MODULE TIMELINE

Tables 3.6–3.10 (pp. 37–39) provide lesson timelines for each week of the module. The timelines are provided for general guidance only and are based on class times of approximately 30 minutes.
Table 3.6. STEM Road Map Module Schedule for Week One

<table>
<thead>
<tr>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesson 1</td>
<td>Lesson 1</td>
<td>Lesson 1</td>
<td>Lesson 1</td>
<td>Lesson 1</td>
</tr>
<tr>
<td>- Launch the module with group discussion and video about waves in water.</td>
<td>- Conduct interactive read-aloud of Waves: Energy on the Move, by Darlene Stille.</td>
<td>- Conduct Waves in Motion investigation.</td>
<td>- Measure wave amplitudes and wavelengths and make graphs.</td>
<td>- Discuss cultural implications of living near an ocean.</td>
</tr>
<tr>
<td>- Introduce STEM Research Notebooks.</td>
<td>- Introduce wave properties.</td>
<td>- Conduct interactive read-aloud of The Great Wave: A Children’s Book Inspired by Hokusai, by Veronique Massenot.</td>
<td>- Create bar graph of students’ wave measurements.</td>
<td>- Create a class list of adjectives to describe The Great Wave picture.</td>
</tr>
<tr>
<td>- Discuss and demonstrate energy.</td>
<td></td>
<td></td>
<td>- Conduct lesson assessment.</td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2019 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
Table 3.7. STEM Road Map Module Schedule for Week Two

<table>
<thead>
<tr>
<th>Day 6</th>
<th>Day 7</th>
<th>Day 8</th>
<th>Day 9</th>
<th>Day 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesson 2
Sounds Like Fun!
• Introduce sound and hearing.
• Conduct interactive read-aloud of What Is Sound? by Charlotte Guillain.
• Observe sound waves using plastic forks.</td>
<td>Lesson 2
Sounds Like Fun!
• Students describe sounds using adjectives.
• Discuss how sound is used for communication.
• Introduce hearing disabilities.
• Conduct an interactive read-aloud of The Sense of Hearing, by Mari Schuh.</td>
<td>Lesson 2
Sounds Like Fun!
• Conduct interactive read-aloud of Sounds All Around, by Wendy Pfeffer.
• Introduce pitch.
• Begin What’s the Buzz? Investigation.</td>
<td>Lesson 2
Sounds Like Fun!
• Complete What’s the Buzz? investigation.
• Conduct interactive read-aloud of A Birthday for Ben, by Kate Gaynor.</td>
<td>Lesson 2
Sounds Like Fun!
• Introduce sound measurements (decibels) and estimates.
• Introduce the I Can Hear the Music activity and the engineering design process.
• Create class list of collaboration rules.</td>
</tr>
</tbody>
</table>

Table 3.8. STEM Road Map Module Schedule for Week Three

<table>
<thead>
<tr>
<th>Day 11</th>
<th>Day 12</th>
<th>Day 13</th>
<th>Day 14</th>
<th>Day 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesson 2
Sounds Like Fun!
• Begin the I Can Hear the Music design activity.</td>
<td>Lesson 2
Sounds Like Fun!
• Complete the I Can Hear the Music design activity.
• Discuss ways to experience sound waves without hearing through discussion and video.</td>
<td>Lesson 2
Sounds Like Fun!
• Introduce American Sign Language.
• Conduct lesson assessment.</td>
<td>Lesson 3
Lighting It Up!
• Introduce light and sight.
• Conduct interactive read-aloud of All About Light, by Lisa Trumbauer.</td>
<td>Lesson 3
Lighting It Up!
• Introduce the concept of the speed of light.
• Conduct an interactive read-aloud of Day Light, Night Light, by Franklyn M. Branley.
• Introduce vision disabilities.</td>
</tr>
</tbody>
</table>
Table 3.9. STEM Road Map Module Schedule for Week Four

<table>
<thead>
<tr>
<th>Day 16</th>
<th>Day 17</th>
<th>Day 18</th>
<th>Day 19</th>
<th>Day 20</th>
</tr>
</thead>
</table>
| **Lesson 3 Lighting It Up!**
- Introduce Lighting the Way investigation.
- Conduct interactive read-aloud of *Thomas Edison and His Bright Idea*, by Patricia Brennan Demuth | **Lesson 3 Lighting It Up!**
- Conduct Lighting the Way investigation.
- Introduce braille.
- Conduct an interactive read-aloud of *Six Dots: A Story of Young Louis Braille*, by Jen Bryant. | **Lesson 3 Lighting It Up!**
- Conduct Shady Shadow Puppets activity.
- Students create shadow pictures.
- Conduct interactive read-aloud of *My Shadow*, by Robert Louis Stevenson. | **Lesson 3 Lighting It Up!**
- Students present puppet shows.
- Introduce eye anatomy and vision with an interactive read-aloud of *Eye: How It Works*, by David Macaulay.
- Students create partner description pictures. | **Lesson 3 Lighting It Up!**
- Conduct interactive read-aloud of *Light Is All Around Us*, by Wendy Pfeffer.
- Conduct an interactive read-aloud of *The Black Book of Colors*, by Menena Cottin.
- Students create partner description pictures. |

Table 3.10. STEM Road Map Module Schedule for Week Five

<table>
<thead>
<tr>
<th>Day 21</th>
<th>Day 22</th>
<th>Day 23</th>
<th>Day 24</th>
<th>Day 25</th>
</tr>
</thead>
</table>
| **Lesson 3 Lighting It Up!**
- Conduct interactive read-aloud of *Sending Messages With Light and Sound*, by Jennifer Boothroyd.
- Discuss achievements of person with vision impairment.
- Conduct lesson assessment. | **Lesson 4 Show Me the Waves Challenge**
- Discuss use of sound and light in musical shows.
- Conduct interactive read-alouds of *I Know a Shy Fellow Who Swallowed a Cello*, by Barbara S. Garriel, and *A Picture Book of Helen Keller*, by David A. Adler.
- Introduce Singing Strings activity. | **Lesson 4 Show Me the Waves Challenge**
- Finish Singing Strings activity.
- Introduce Incredible Instruments activity.
- Conduct interactive read-aloud of *Stand in My Shoes: Kids Learning About Empathy*, by Bob Sornson. | **Lesson 4 Show Me the Waves Challenge**
- Complete Incredible Instruments activity.
- Students practice for musical performance.
- Teams create poster with team name. | **Lesson 4 Show Me the Waves Challenge**
- Students do their musical performance.
- Conduct lesson assessment. |
RESOURCES

The media specialist can help you locate resources for students to view and read about waves, sound, light, and related physics content. Special educators and reading specialists can help find supplemental sources for students needing extra support in reading and writing. Additional resources may be found online. Community resources for this module may include musicians, audiologists, optometrists, and mechanical engineers.

REFERENCES

INDEX

Page numbers printed in boldface type indicate tables, figures, or handouts.

A
Activity/Exploration
 Let’s Explore Waves! lesson plan, 55–57
 Lighting It Up! lesson plan, 95–102
 Show Me the Waves Challenge lesson plan, 116–119
 Sounds Like Fun! lesson plan, 75–78
after learning, SRL theory, 16, 18
All About Light (Trumbauer), 87, 95
American Sign Language (ASL), 73, 82, 83
anatomy of the ear, 83, 85
anatomy of the eye, 104
application of knowledge, 25–26
assessment. See also Evaluation/Assessment;
 performance tasks
 assessment maps, 15–16
 assessment plan overview and map, 32, 33, 33–36
 comprehensive assessment system, 14
 differentiating, 29
 differentiating instruction, 29–30
 embedded formative assessments, 14–15
 formative assessment, 59
 for lesson plans, 161–170
 role of, 13–16
 uncovering STEM misconceptions via, 27

B
before learning, SRL theory, 16, 17
A Birthday for Ben (Gaynor), 63, 78
The Black Book of Colors (Cottin), 87, 102
books, suggested, 120–121
braille, 104

C
cause and effect theme, 3, 23, 124
challenge or problem to solve, 24
collaboration, 80
Common Core State Standards for English
 Language Arts (CCSS ELA)
 Let’s Explore Waves! lesson plan, 44–45
 Lighting It Up! lesson plan, 90–91
 Show Me the Waves Challenge lesson plan, 112
 Sounds Like Fun! lesson plan, 66–67
 summary table, 173–174
Common Core State Standards for Mathematics
 (CCSS Mathematics)
 Let’s Explore Waves! lesson plan, 44
 Lighting It Up! lesson plan, 90
 Show Me the Waves Challenge lesson plan, 111
 Sounds Like Fun! lesson plan, 66
 summary table, 173
 compacting, 29–30
 comprehensive assessment system, 14
 content standards
 Influence of Waves module overview, 24
 Let’s Explore Waves! lesson plan, 43, 43–45
 Lighting It Up! lesson plan, 88, 89–91
 Show Me the Waves Challenge lesson plan, 110, 110–113
 Sounds Like Fun! lesson plan, 65, 65–67
 summary table, 172–177
 crosscutting concepts
 Let’s Explore Waves! lesson plan, 43
 Lighting It Up! lesson plan, 89
 Show Me the Waves Challenge lesson plan, 111
 Sounds Like Fun! lesson plan, 66
 summary table, 172
INDEX

D
Day Light, Night Light (Branley), 87, 95
decibel measurement, 83
Diaz-Merced, Wanda, 104
differentiating instruction, 26, 29–30
disciplinary core ideas
 Let’s Explore Waves! lesson plan, 43
 Lightning It Up! lesson plan, 89
 Show Me the Waves Challenge lesson plan, 111
 Sounds Like Fun! lesson plan, 65
summary table, 172
during learning, SRL theory, 16, 17–18

E
ear, anatomy of, 69, 83, 85
Elaboration/Application of Knowledge
 Let’s Explore Waves! lesson plan, 58
 Lightning It Up! lesson plan, 102–103
 Show Me the Waves Challenge lesson plan,
 119–120
 Sounds Like Fun! lesson plan, 80–82
electromagnetic spectrum and human vision, 92–93, 104
energy, 47
engineering, 70, 83
engineering design process (EDP), 9–11, 10, 70–71,
 80–81, 83, 84
English language arts (ELA)
 Common Core State Standards for English Language
 Arts (CCSS ELA), 44–45, 66–67, 90–91, 112,
 173–174
 Let’s Explore Waves! lesson plan, 55, 56–57, 57–58
 Lightning It Up! lesson plan, 94–95, 100, 101–103
 Show Me the Waves Challenge lesson plan,
 115–116, 118–119
 Sounds Like Fun! lesson plan, 74–75, 79, 82
English Language Development (ELD) Standards, 177
English language learner (ELL) strategies, 30–31
environmental learning contexts, 29
essential questions
 Let’s Explore Waves! lesson plan, 41
 Lightning It Up! lesson plan, 86
 Show Me the Waves Challenge lesson plan, 107
 Sounds Like Fun! lesson plan, 62
estimating, 79
Evaluation/Assessment
 Let’s Explore Waves! lesson plan, 59
 Lightning It Up! lesson plan, 103
 Show Me the Waves Challenge lesson plan, 120
 Sounds Like Fun! lesson plan, 82–83
Explanation
 Let’s Explore Waves! lesson plan, 57–58
 Lightning It Up! lesson plan, 100–102
 Show Me the Waves Challenge lesson plan, 119
 Sounds Like Fun! lesson plan, 78–80
eye, anatomy of, 104
Eye: How It Works (Macaulay), 87, 100

F
flexible grouping, 29
formative assessment, 59
Framework for 21st Century Learning skills
 Let’s Explore Waves! lesson plan, 45
 Lightning It Up! lesson plan, 91
 Show Me the Waves Challenge lesson plan, 113
 Sounds Like Fun! lesson plan, 67
summary table, 176
framework for STEM integration, 6–7
frequency, 68–69, 83

G
goals and objectives
 Let’s Explore Waves! lesson plan, 41
 Lightning It Up! lesson plan, 86
 Show Me the Waves Challenge lesson plan, 107
 Sounds Like Fun! lesson plan, 62
graphic representations, 30
The Great Wave (Hokusai), 49–50, 59
The Great Wave: A Children’s Book Inspired by Hokusai
 (Massenot), 42, 50, 56
grouping strategies, 29

H
hearing, sound and human, 68–69
hearing loss, 83
Hokusai, Katsushika, 49–50, 59
“How This Deaf Dancer Hears the Music” (video), 82,
 83

I
I Know a Shy Fellow Who Swallowed a Cello (Garriel), 108,
 115
images, 30
Influence of Waves module overview, 23–41
 assessment plan overview and map, 33, 33, 33–36
 challenge or problem to solve, 24
 content standards addressed, 24
desired outcomes and evidence of success, 32, 32
differentiating instruction, 25–26, 29–30
English language learners strategies, 30–31
established goals and objectives, 23–24
lead discipline, 23
module launch, 25

180
NATIONAL SCIENCE TEACHING ASSOCIATION
module summary, 23
potential STEM misconceptions, 27
prerequisite skills, 25, 25–26
resources, 40
safety considerations, 31
SRL process components, 27, 28
STEM Research Notebook, 24
theme, 23
timeline, 36, 37–39
innovation and progress theme, 3, 124
interactive read-alouds, 50–51, 60
A Birthday for Ben (Gaynor), 63, 78
A Picture Book of Helen Keller (Adler), 108, 116
All About Light (Trumbauer), 87, 95
Day Light, Night Light (Branley), 87, 95
Eye: How It Works (Macaulay), 87, 100
I Know a Shy Fellow Who Swallowed a Cello (Garriel), 108, 115
Light Is All Around Us (Pfeffer), 87, 101
My Shadow (Stevenson), 87, 101
Sending Messages With Light and Sound (Boothroyd), 87, 102
Six Dots: A Story of Young Louis Braille (Bryant), 87, 100
Sounds All Around (Pfeffer), 63, 75
Stand in My Shoes (Sornson), 108, 119
The Black Book of Colors (Cottin), 87, 102
The Great Wave: A Children’s Book Inspired by Hokusai (Massenot), 42, 50
The Sense of Hearing (Schuh), 63, 75
Thomas Edison and His Bright Idea (Demuth), 87, 96
What Is Sound? (Guillain), 63, 74
What Makes a Shadow? (Bulla), 87, 98
internet resources
Let’s Explore Waves! lesson plan, 59–60
Lighting It Up! lesson plan, 104
Sounds Like Fun! lesson plan, 83
Introductory Activity/Engagement
Let’s Explore Waves! lesson plan, 53–55
Lighting It Up! lesson plan, 94–95
Show Me the Waves Challenge lesson plan, 114–116
Sounds Like Fun! lesson plan, 73–75
K
key vocabulary
Let’s Explore Waves! lesson plan, 46
Lighting It Up! lesson plan, 92
Show Me the Waves Challenge lesson plan, 113
Sounds Like Fun! lesson plan, 68
KLEWS (Know, Learning, Evidence, Wonder, Scientific Principles) charts, 59
Let’s Explore Waves! lesson plan, 50, 54
Sounds Like Fun! lesson plan, 74, 75
L
learning cycle, 11–12
Let’s Explore Waves! lesson plan, 41–61
common misconceptions, 51, 52
content standards, 43, 43–45
essential questions, 41
goals and objectives, 41
internet resources, 59–60
key vocabulary, 46
learning components, 53–59
Activity/Exploration, 55–57
Elaboration/Application of Knowledge, 58
Evaluation/Assessment, 59
Explanation, 57–58
Introductory Activity/Engagement, 53–55
materials, 41–42
preparation, 52
safety notes, 42–43
teacher background information, 46–51
ELA connection, 49–50
energy, 47
interactive read-alouds, 50–51
KLEWS charts, 50
light, 49
sound, 48
waves, 47–48
time required, 41
light, 49
Lighting It Up! lesson plan, 86–106
common misconceptions, 93, 93
content standards, 88, 89–91
essential questions, 86
goals and objectives, 86
internet resources, 103
key vocabulary, 92
learning components, 94–103
Activity/Exploration, 95–102
Elaboration/Application of Knowledge, 102–103
Evaluation/Assessment, 103
Introductory Activity/Engagement, 94–95
materials, 87–88
preparation for lesson, 93–94
safety notes, 88
teacher background information
electromagnetic spectrum and human vision, 92–93
time required, 86
Light Is All Around Us (Pfeffer), 101
INDEX

M
- materials
 - Let’s Explore Waves! lesson plan, 41–42
 - Lighting It Up! lesson plan, 87–88
 - Show Me the Waves Challenge lesson plan, 107–109
 - Sounds Like Fun! lesson plan, 62–64
- mathematics
 - Common Core State Standards for Mathematics ((CCSS Mathematics), 44, 66, 90, 111, 173)
 - Let’s Explore Waves! lesson plan, 54, 56, 57, 58
 - Lighting It Up! lesson plan, 95, 96, 101, 103
 - Show Me the Waves Challenge lesson plan, 115, 116, 119
 - Sounds Like Fun! lesson plan, 74–75, 79, 82
- mentoring, 30
- misconceptions, potential STEM, 27
 - *My Shadow* (Stevenson), 87, 101

N
- National Association for the Education of Young Children (NAEYC) Standards
 - Let’s Explore Waves! lesson plan, 45
 - Lighting It Up! lesson plan, 91
 - Show Me the Waves Challenge lesson plan, 112–113
 - Sounds Like Fun! lesson plan, 67
 - summary table, 175
- Next Generation Science Standards (NGSS)
 - Let’s Explore Waves! lesson plan, 43
 - Lighting It Up! lesson plan, 89
 - Show Me the Waves Challenge lesson plan, 110–111
 - Sounds Like Fun! lesson plan, 65–66
 - summary table, 172
- “Numbers 1 to 30: ASL” (video), 83

O
- observation rubric, 170
- ocean waves, 59, 60
- optimizing the human experience theme, 5, 125
- outcomes, desired, 32, 32

P
- participation rubric, 170
- performance tasks
 - Let’s Explore Waves! lesson plan, 59
 - Lighting It Up! lesson plan, 103
 - Show Me the Waves Challenge lesson plan, 120
 - Sounds Like Fun! lesson plan, 82
- physical modeling, 30

R
- read-alouds. See interactive read-alouds
- reading standards
 - Let’s Explore Waves! lesson plan, 44
 - Lighting It Up! lesson plan, 90
 - Show Me the Waves Challenge lesson plan, 112
 - Sounds Like Fun! lesson plan, 66
 - summary table, 173
- the represented world theme, 4, 124
- rubric, assessment, 170

S
- safety
 - Influence of Waves module overview, 31
 - Let’s Explore Waves! lesson plan, 42–43
 - Lighting It Up! lesson plan, 88
 - Show Me the Waves Challenge lesson plan, 109
 - Sounds Like Fun! lesson plan, 64
 - in STEM, 18–19
- scaffolding, 30
- science and engineering practices
 - Let’s Explore Waves! lesson plan, 43
 - Lighting It Up! lesson plan, 89
 - Show Me the Waves Challenge lesson plan, 110
 - Sounds Like Fun! lesson plan, 65
 - summary table, 172
- science
 - Influence of Waves module lead discipline, 23
 - Let’s Explore Waves! lesson plan, 55, 57, 58
 - Lighting It Up! lesson plan, 94–95, 96, 100, 102
 - Show Me the Waves Challenge lesson plan, 115, 116, 119
 - Sounds Like Fun! lesson plan, 74, 75, 78, 82
- self-regulated learning theory (SRL), 16, 16–18
- process components, 27, 28
 - *Sending Messages With Light and Sound* (Boothroyd), 87, 102
- *The Sense of Hearing* (Schuh), 63, 75

182

Copyright © 2019 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
TO PURCHASE THIS BOOK, please visit https://www.nsta.org/store/product_detail.aspx?id=10.2505/9781681405049
INDEX

sensory supports, 30
Show Me the Waves Challenge lesson plan, 107–121
common misconceptions, 113
content standards, 110, 110–113
essential questions, 107
goals and objectives, 107
key vocabulary, 113
learning components, 114–120
Activity/Exploration, 116–119
Elaboration/Application of Knowledge, 119–120
Evaluation/Assessment, 120
Explanation, 119
Introductory Activity/Engagement, 114–116
materials, 107–109
preparation for the lesson, 114
safety notes, 109
suggested books, 120–121
teacher background information, 113
time required, 107
social studies
Let’s Explore Waves! lesson plan, 55, 57, 58
Lighting It Up! lesson plan, 95, 100, 102, 103
Show Me the Waves Challenge lesson plan, 119
Sounds Like Fun! lesson plan, 75, 78, 79, 82
sound, 48
sound and human hearing, 68–69, 85
Sounds All Around (Pfeffer), 63, 75
Sounds Like Fun! lesson plan, 62–85
common misconceptions, 71, 71–72
content standards, 65, 65–67
essential questions, 62
goals and objectives, 62
internet resources, 83
key vocabulary, 68
learning components, 73–83
Activity/Exploration, 75–78
Elaboration/Application of Knowledge, 80–82
Evaluation/Assessment, 82–83
Explanation, 78–80
Introductory Activity/Engagement, 73–75
materials, 62–64
preparation for lesson, 72–73
safety notes, 64
teacher background information, 68–71
engineering, 70
engineering design process, 70–71, 84
sound and human hearing, 68–69, 85
time required, 62
speaking and listening standards
Let’s Explore Waves! lesson plan, 45
Lighting It Up! lesson plan, 91
Show Me the Waves Challenge lesson plan, 112
Sounds Like Fun! lesson plan, 67
summary table, 173–174
Stand in My Shoes (Sornson), 108, 119
STEM Research Notebook, 24
described, 12–13
Let’s Explore Waves! lesson plan, 54–58
Lighting It Up! lesson plan, 95, 96–98, 99–103
rubric, 170
Show Me the Waves Challenge lesson plan, 117–119
Sounds Like Fun! lesson plan, 74–76, 77–80, 81–82
templates, 127–160
STEM Road Map Curriculum Series
about, 1
cause and effect theme, 3
engineering design process (EDP)
described, 9–11, 10
framework for STEM integration, 6–7
innovation and progress theme, 3
learning cycle, 11–12
need for, 7
need for integrated STEM approach, 5–6
optimizing the human experience theme, 5
project- and problem-based learning, 9
the represented world theme, 4
role of assessment in, 13–16
safety in STEM, 18–19
self-regulated learning theory (SRL), 16, 16–18
standards-based approach to, 2
STEM Research Notebook, 12–13
sustainable systems theme, 4–5
themes in, 2–3
success, evidence of, 32, 32
sustainable systems theme, 4–5, 124–125
T
teacher background information
ELA connection, 49–50
electromagnetic spectrum and human vision, 92–93
energy, 47
engineering, 70
engineering design process, 70–71, 84
interactive read-alouds, 50–51
KLEWS charts, 50
light, 49
sound, 48
sound and human hearing, 68–69, 85
theme, 23
Thomas, Trevor, 104
Thomas Edison and His Bright Idea (Demuth), 87, 96
tiered assignments, 30

Influence of Waves, Grade 1

183

Copyright © 2019 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.

TO PURCHASE THIS BOOK, please visit https://www.nsta.org/store/product_detail.aspx?id=10.2505/9781681405049
INDEX

timeline
 Influence of Waves module overview, 36, 37–39
 Let's Explore Waves! lesson plan, 37, 41
 Lighting It Up! lesson plan, 38–39, 86
 Show Me the Waves Challenge lesson plan, 39, 107
 Sounds Like Fun! lesson plan, 38, 62

U
Uncovering Student Ideas in Science (Keeley), 27

V
varied environmental learning contexts, 29
vision, human, electromagnetic spectrum and, 92–93, 104
vocabulary. See key vocabulary

W
wave properties, 59, 61
Waves: Energy on the Move (Stille), 42
What Is Sound? (Guillain), 63, 74
What Makes a Shadow? (Bulla), 87, 98
writing standards
 Let's Explore Waves! lesson plan, 44
 Lighting It Up! lesson plan, 90
 Show Me the Waves Challenge lesson plan, 112
 Sounds Like Fun! lesson plan, 66–67
 summary table, 173
What if you could challenge your first graders to create instruments they can play in their own “Show Me the Waves” musical show? With this volume in the STEM Road Map Curriculum Series, you can!

Influence of Waves outlines a journey that will steer your students toward authentic problem solving while grounding them in integrated STEM disciplines. Like the other volumes in the series, this book is designed to meet the growing need to infuse real-world learning into K–12 classrooms.

This interdisciplinary module uses project- and problem-based learning to help young children explore cause and effect. It introduces them to the concept of waves as disturbances that travel through space and substances to transfer energy. Students will draw on physical and biological science, mathematics, engineering, and English language arts to do the following:

• Discover that there are different types of waves, such as water and sound, that come from different sources and travel in various ways.
• Find out that eyes, ears, and skin respond to sound and light.
• Use technology to gather research and communicate.
• Design, test, and evaluate models to demonstrate how people experience and interact with sound and light.
• Put on a show that combines voices and flashlights with guitars and drums they’ve made themselves to demonstrate how sound waves and light can be used to communicate and entertain.

The STEM Road Map Curriculum Series is anchored in the Next Generation Science Standards, the Common Core State Standards, and the Framework for 21st Century Learning. In-depth and flexible, Influence of Waves can be used as a whole unit or in part to meet the needs of districts, schools, and teachers who are charting a course toward an integrated STEM approach.