CONTENTS

About the Editors and Authors .. vii
Acknowledgments ... ix

Part 1: The STEM Road Map: Background, Theory, and Practice

1. Overview of the *STEM Road Map Curriculum Series* ... 1
 - Standards-Based Approach .. 2
 - Themes in the *STEM Road Map Curriculum Series* ... 2
 - The Need for an Integrated STEM Approach .. 5
 - Framework for STEM Integration in the Classroom ... 6
 - The Need for the *STEM Road Map Curriculum Series* ... 7
 - References ... 7

2. Strategies Used in the *STEM Road Map Curriculum Series* ... 9
 - Project- and Problem-Based Learning .. 9
 - Engineering Design Process ... 9
 - Learning Cycle ... 11
 - STEM Research Notebook .. 12
 - The Role of Assessment in the *STEM Road Map Curriculum Series* 13
 - Self-Regulated Learning Theory in the STEM Road Map Modules 16
 - Safety in STEM ... 18
 - References ... 19

Part 2: Natural Hazards: STEM Road Map Module

3. Natural Hazards Module Overview ... 23
 - Module Summary .. 23
 - Established Goals and Objectives ... 23
 - Challenge or Problem for Students to Solve:
 - Natural Hazard Preparedness Challenge ... 24

Copyright © 2019 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
TO PURCHASE THIS BOOK, please visit www.nsta.org/store/product_detail.aspx?id=10.2505/9781681404868
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content Standards Addressed in This STEM Road Map Module</td>
<td>24</td>
</tr>
<tr>
<td>STEM Research Notebook</td>
<td>24</td>
</tr>
<tr>
<td>Module Launch</td>
<td>25</td>
</tr>
<tr>
<td>Prerequisite Skills for the Module</td>
<td>25</td>
</tr>
<tr>
<td>Potential STEM Misconceptions</td>
<td>27</td>
</tr>
<tr>
<td>SRL Process Components</td>
<td>27</td>
</tr>
<tr>
<td>Strategies for Differentiating Instruction Within This Module</td>
<td>29</td>
</tr>
<tr>
<td>Strategies for English Language Learners</td>
<td>30</td>
</tr>
<tr>
<td>Safety Considerations for the Activities in This Module</td>
<td>31</td>
</tr>
<tr>
<td>Desired Outcomes and Monitoring Success</td>
<td>32</td>
</tr>
<tr>
<td>Assessment Plan Overview and Map</td>
<td>33</td>
</tr>
<tr>
<td>Module Timeline</td>
<td>36</td>
</tr>
<tr>
<td>Resources</td>
<td>41</td>
</tr>
<tr>
<td>References</td>
<td>41</td>
</tr>
<tr>
<td>Natural Hazards Lesson Plans</td>
<td>43</td>
</tr>
<tr>
<td>Lesson Plan 1: Let’s Explore Natural Hazards</td>
<td>43</td>
</tr>
<tr>
<td>Lesson Plan 2: Natural Hazard Quest!</td>
<td>70</td>
</tr>
<tr>
<td>Lesson Plan 3: Our Natural Hazard Preparedness Plans</td>
<td>97</td>
</tr>
<tr>
<td>Transforming Learning With Natural Hazards and the STEM Road Map Series</td>
<td>115</td>
</tr>
<tr>
<td>Appendix A: STEM Research Notebook Templates</td>
<td>119</td>
</tr>
<tr>
<td>Appendix B: Assessment Rubrics</td>
<td>161</td>
</tr>
<tr>
<td>Appendix C: Content Standards Addressed in This Module</td>
<td>165</td>
</tr>
<tr>
<td>Index</td>
<td>173</td>
</tr>
</tbody>
</table>
ABOUT THE EDITORS AND AUTHORS

Dr. Carla C. Johnson is executive director of the William and Ida Friday Institute for Educational Innovation, associate dean, and professor of science education in the College of Education at North Carolina State University in Raleigh. She was most recently an associate dean, provost fellow, and professor of science education at Purdue University in West Lafayette, Indiana. Dr. Johnson serves as the director of research and evaluation for the Department of Defense–funded Army Educational Outreach Program (AEOP), a global portfolio of STEM education programs, competitions, and apprenticeships. She has been a leader in STEM education for the past decade, serving as the director of STEM Centers, editor of the School Science and Mathematics journal, and lead researcher for the evaluation of Tennessee’s Race to the Top–funded STEM portfolio. Dr. Johnson has published over 100 articles, books, book chapters, and curriculum books focused on STEM education. She is a former science and social studies teacher and was the recipient of the 2013 Outstanding Science Teacher Educator of the Year award from the Association for Science Teacher Education (ASTE), the 2012 Award for Excellence in Integrating Science and Mathematics from the School Science and Mathematics Association (SSMA), the 2014 award for best paper on Implications of Research for Educational Practice from ASTE, and the 2006 Outstanding Early Career Scholar Award from SSMA. Her research focuses on STEM education policy implementation, effective science teaching, and integrated STEM approaches.

Dr. Janet B. Walton is a senior research scholar and the assistant director of evaluation for AEOP at North Carolina State University’s William and Ida Friday Institute for Educational Innovation. She merges her economic development and education backgrounds to develop K–12 curricular materials that integrate real-life issues with sound cross-curricular content. Her research focuses on mixed methods research methodologies and collaboration between schools and community stakeholders for STEM education and problem- and project-based learning pedagogies. With this research agenda, she works to bring contextual STEM experiences into the classroom and provide students and educators with innovative resources and curricular materials.

Dr. Erin Peters-Burton is the Donna R. and David E. Sterling endowed professor in science education at George Mason University in Fairfax, Virginia. She uses her experiences from 15 years as an engineer and secondary science, engineering, and mathematics
teacher to develop research projects that directly inform classroom practice in science and engineering. Her research agenda is based on the idea that all students should build self-awareness of how they learn science and engineering. She works to help students see themselves as “science-minded” and help teachers create classrooms that support student skills to develop scientific knowledge. To accomplish this, she pursues research projects that investigate ways that students and teachers can use self-regulated learning theory in science and engineering, as well as how inclusive STEM schools can help students succeed. During her tenure as a secondary teacher, she had a National Board Certification in Early Adolescent Science and was an Albert Einstein Distinguished Educator Fellow for NASA. As a researcher, Dr. Peters-Burton has published over 100 articles, books, book chapters, and curriculum books focused on STEM education and educational psychology. She received the Outstanding Science Teacher Educator of the Year award from ASTE in 2016 and a Teacher of Distinction Award and a Scholarly Achievement Award from George Mason University in 2012, and in 2010 she was named University Science Educator of the Year by the Virginia Association of Science Teachers.

Dr. Andrea R. Milner is the vice president and dean of academic affairs and an associate professor in the Teacher Education Department at Adrian College in Adrian, Michigan. A former early childhood and elementary teacher, Dr. Milner researches the effects constructivist classroom contextual factors have on student motivation and learning strategy use.

Dr. Tamara J. Moore is an associate professor of engineering education in the College of Engineering at Purdue University. Dr. Moore’s research focuses on defining STEM integration through the use of engineering as the connection and investigating its power for student learning.

Dr. Vanessa B. Morrison is an associate professor in the Teacher Education Department at Adrian College. She is a former early childhood teacher and reading and language arts specialist whose research is focused on learning and teaching within a transdisciplinary framework.

Dr. Toni A. Sondergeld is an associate professor of assessment, research, and statistics in the School of Education at Drexel University in Philadelphia. Dr. Sondergeld’s research concentrates on assessment and evaluation in education, with a focus on K–12 STEM.
ACKNOWLEDGMENTS

This module was developed as a part of the STEM Road Map project (Carla C. Johnson, principal investigator). The Purdue University College of Education, General Motors, and other sources provided funding for this project.

See www.routledge.com/products/978138804234 for more information about STEM Road Map: A Framework for Integrated STEM Education.
NATURAL HAZARDS MODULE
OVERVIEW

Andrea R. Milner, Vanessa B. Morrison, Janet B. Walton, Carla C. Johnson, and Erin Peters-Burton

THEME: Cause and Effect

LEAD DISCIPLINE: Science

MODULE SUMMARY

In this module, students learn about the effects of natural hazards on people, communities, and the environment and consider how threats to human safety from natural hazards can be minimized. They also explore the economic effects of natural hazards from the perspectives of human and natural resources. Student teams are challenged to create a plan for how people can prepare for a natural hazard to minimize its impacts on the environment and on humans (adapted from Koehler, Bloom, and Milner 2015).

ESTABLISHED GOALS AND OBJECTIVES

The goal of this module is for students to understand and demonstrate their knowledge about the influence of natural hazards on people and on other animals. At the conclusion of this module, students will be able to do the following:

- Identify various natural hazards
- Identify the basic causes of natural hazards
- Use technology to gather research information and communicate
- Identify ways that natural hazards can impact people and communities
- Identify features of structures designed to withstand earthquakes and construct models of structures that incorporate these types of features
- Identify ways that natural hazards can impact animals’ homes
- Model natural hazards
• Identify the steps of the engineering design process (EDP)
• Use the EDP to complete team projects
• Identify effective collaboration practices and reflect on their teams’ efforts to collaborate
• Identify models for measuring, calculating, comparing, and evaluating numbers related to the probabilities of weather occurrences
• Identify bar graphs and infographics as ways that numbers can be displayed graphically
• Create bar graphs and infographics for data sets
• Identify ways that people and communities can prepare for natural hazards to mitigate their impacts on people and property
• Communicate information about natural hazards and natural hazard preparedness to a target audience
• Identify tall tales as a type of fictional literature and create their own tall tales
• Identify the basic parts of a story

CHALLENGE OR PROBLEM FOR STUDENTS TO SOLVE: NATURAL HAZARD PREPAREDNESS CHALLENGE
Students are challenged to work in teams to develop and communicate a plan for people to prepare for one type of natural hazard, such as a flood, tornado, earthquake, volcano, wildfire, thunderstorm, or hurricane. The plan should focus on keeping people safe if a natural hazard should strike their community. As part of this plan, students produce a public service announcement about how the community can prepare for the natural hazard.

CONTENT STANDARDS ADDRESSED IN THIS STEM ROAD MAP MODULE
A full listing with descriptions of the standards this module addresses can be found in Appendix C. Listings of the particular standards addressed within lessons are provided in a table for each lesson in Chapter 4.

STEM RESEARCH NOTEBOOK
Each student should maintain a STEM Research Notebook, which will serve as a place for students to organize their work throughout this module (see p. 12 for more general
discussion on setup and use of the notebook). All written work in the module should be included in the notebook, including records of students’ thoughts and ideas, fictional accounts based on the concepts in the module, and records of student progress through the EDP. The notebooks may be maintained across subject areas, giving students the opportunity to see that although their classes may be separated during the school day, the knowledge they gain is connected. The lesson plans for this module contain STEM Research Notebook Entry sections (numbered 1–31), and templates for each notebook entry are included in Appendix A (p. 119).

Emphasize to students the importance of organizing all information in a Research Notebook. Explain to them that scientists and other researchers maintain detailed Research Notebooks in their work. These notebooks, which are crucial to researchers’ work because they contain critical information and track the researchers’ progress, are often considered legal documents for scientists who are pursuing patents or wish to provide proof of their discovery process.

MODULE LAUNCH

Following agreed-upon rules for discussions, hold a whole-class discussion about natural hazards, asking students questions such as the following:

- What are natural hazards?
- Are there different types of natural hazards?
- What kinds of natural hazards are there?
- What causes natural hazards?
- Can people make or cause natural hazards?
- Where and when have you seen natural hazards?

This discussion gives students an opportunity to express their conceptions of natural hazards and the influence of natural hazards. Show a video about natural hazards such as “Natural Disasters” at www.youtube.com/watch?v=_smfJ13x90oM. Then, hold a class discussion about the various natural hazards featured in this video.

PREREQUISITE SKILLS FOR THE MODULE

Students enter this module with a wide range of preexisting skills, information, and knowledge. Table 3.1 (p. 26) provides an overview of prerequisite skills and knowledge that students are expected to apply in this module, along with examples of how they apply this knowledge throughout the module. Differentiation strategies are also provided for students who may need additional support in acquiring or applying this knowledge.
Table 3.1. Prerequisite Key Knowledge and Examples of Applications and Differentiation Strategies

<table>
<thead>
<tr>
<th>Prerequisite Key Knowledge</th>
<th>Application of Knowledge by Students</th>
<th>Differentiation for Students Needing Additional Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science</td>
<td>Science</td>
<td>Science</td>
</tr>
<tr>
<td>• Understand cause and effect.</td>
<td>• Determine how natural hazards affect humans, communities, and animals’ homes.</td>
<td>• Provide demonstrations of cause and effect (e.g., dropping egg [cause] and observing breakage [effect]), emphasizing that cause is why something happens, effect is what happens.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Read aloud picture books to class and have students identify cause-and-effect sequences.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Create a class T-chart to record causes and related effects students observe in the classroom, in nature, and in literature.</td>
</tr>
<tr>
<td>Mathematics</td>
<td></td>
<td>Mathematics</td>
</tr>
<tr>
<td>• Demonstrate number sense.</td>
<td>• Measure, calculate, compare, and evaluate numbers when exploring natural hazards.</td>
<td>• Model measurement techniques using standard and nonstandard units of measurement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Read aloud nonfiction texts about temperature, rainfall, wind, and measurement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Provide opportunities for students to practice measurement in a variety of settings (e.g., in the classroom and outdoors).</td>
</tr>
<tr>
<td>Language and Inquiry Skills</td>
<td></td>
<td>Language and Inquiry Skills</td>
</tr>
<tr>
<td>• Visualize.</td>
<td>• Make and confirm or reject predictions.</td>
<td>• As a class, make predictions when reading fictional texts.</td>
</tr>
<tr>
<td></td>
<td>• Share thought processes through keeping a notebook, asking and responding to questions, and using the engineering design process.</td>
<td>• Model the process of using information and prior knowledge to use predictions.</td>
</tr>
<tr>
<td>• Make predictions.</td>
<td></td>
<td>• Provide samples of notebook entries.</td>
</tr>
<tr>
<td>• Record ideas and information using words and pictures.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Ask and respond to questions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speaking and Listening</td>
<td>Speaking and Listening</td>
<td>Speaking and Listening</td>
</tr>
<tr>
<td>• Participate in group discussions.</td>
<td>• Engage in collaborative group discussions in the development of natural hazard plans and about how to communicate those plans.</td>
<td>• Model speaking and listening skills.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Create a class list of good listening and good speaking skills.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Read picture books that feature collaboration and teamwork.</td>
</tr>
</tbody>
</table>
POTENTIAL STEM MISCONCEPTIONS

Students enter the classroom with a wide variety of prior knowledge and ideas, so it is important to be alert to misconceptions, or inappropriate understandings of foundational knowledge. These misconceptions can be classified as one of several types: “pre-conceived notions,” opinions based on popular beliefs or understandings; “nonscientific beliefs,” knowledge students have gained about science from sources outside the scientific community; “conceptual misunderstandings,” incorrect conceptual models based on incomplete understanding of concepts; “vernacular misconceptions,” misunderstandings of words based on their common use versus their scientific use; and “factual misconceptions,” incorrect or imprecise knowledge learned in early life that remains unchallenged (NRC 1997, p. 28). Misconceptions must be addressed and dismantled for students to reconstruct their knowledge, and therefore teachers should be prepared to take the following steps:

- Identify students’ misconceptions.
- Provide a forum for students to confront their misconceptions.
- Help students reconstruct and internalize their knowledge, based on scientific models. (NRC 1997, p. 29)

Keeley and Harrington (2010) recommend using diagnostic tools such as probes and formative assessment to identify and confront student misconceptions and begin the process of reconstructing student knowledge. Keeley’s Uncovering Student Ideas in Science series contains probes targeted toward uncovering student misconceptions in a variety of areas and may be a useful resource for addressing student misconceptions in this module.

Some commonly held misconceptions specific to lesson content are provided with each lesson so that you can be alert for student misunderstanding of the science concepts presented and used during this module. The American Association for the Advancement of Science has also identified misconceptions that students frequently hold regarding various science concepts (see the links at http://assessment.aaas.org/topics).

SRL PROCESS COMPONENTS

Table 3.2 (p. 28) illustrates some of the activities in the Natural Hazards module and how they align with the self-regulated learning (SRL) process before, during, and after learning.
Table 3.2. SRL Process Components

<table>
<thead>
<tr>
<th>Learning Process Components</th>
<th>Examples From Natural Hazards Module</th>
<th>Lesson Number and Learning Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEFORE LEARNING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motivates students</td>
<td>Students brainstorm about natural hazards before watching a video on the subject.</td>
<td>Lesson 1, Introductory Activity/Engagement</td>
</tr>
<tr>
<td>Evokes prior learning</td>
<td>While watching a video, students document their own experiences with natural hazards.</td>
<td>Lesson 1, Introductory Activity/Engagement</td>
</tr>
<tr>
<td>DURING LEARNING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Focuses on important features</td>
<td>Students participate in the Earthquake Shake activity, in which they simulate earthquake conditions and observe the effects of the earthquake on various structures. Students use the most earthquake-resistant designs to identify important design features.</td>
<td>Lesson 2, Activity/Exploration</td>
</tr>
<tr>
<td>Helps students monitor their progress</td>
<td>Students create simulated earthquakes and earthquake-resistant structures using the Define, Learn, Plan, Try, Test, and Decide steps of the engineering design process, and then share their products. During the Test step, students decide whether to improve their designs based on the structures' earthquake resistance.</td>
<td>Lesson 2, Activity/Exploration</td>
</tr>
<tr>
<td>AFTER LEARNING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluates learning</td>
<td>Students present public service announcements about how to prepare for a natural disaster and receive peer feedback to improve their products before video recording them for viewing by other students and parents.</td>
<td>Lesson 3, Explanation</td>
</tr>
<tr>
<td>Takes account of what worked and what did not work</td>
<td>The whole class discusses and analyzes strengths and weaknesses of each group’s natural hazard preparedness plan. Groups can meet to improve and adapt their plans based on discussion.</td>
<td>Lesson 3, Elaboration/Application of Knowledge</td>
</tr>
</tbody>
</table>
STRATEGIES FOR DIFFERENTIATING INSTRUCTION WITHIN THIS MODULE

For the purposes of this curriculum module, differentiated instruction is conceptualized as a way to tailor instruction—including process, content, and product—to various student needs in your class. A number of differentiation strategies are integrated into lessons across the module. The problem- and project-based learning approach used in the lessons is designed to address students’ multiple intelligences by providing a variety of entry points and methods to investigate the key concepts in the module (for example, investigating solar power from the perspectives of science and social issues via scientific inquiry, literature, journaling, and collaborative design). Differentiation strategies for students needing support in prerequisite knowledge can be found in Table 3.1 (p. 26). You are encouraged to use information gained about student prior knowledge during introductory activities and discussions to inform your instructional differentiation. Strategies incorporated into this lesson include flexible grouping, varied environmental learning contexts, assessments, compacting, tiered assignments and scaffolding, and mentoring. The following websites may be helpful resources for differentiated instruction:

Flexible Grouping. Students work collaboratively in a variety of activities throughout this module. Grouping strategies you might employ include using student-led grouping, grouping students according to ability level or common interests, grouping students randomly, or grouping them so that students in each group have complementary strengths (for instance, one student might be strong in mathematics, another in art, and another in writing).

Varied Environmental Learning Contexts. Students have the opportunity to learn in various contexts throughout the module, including alone, in groups, in quiet reading and research-oriented activities, and in active learning in inquiry and design activities. In addition, students learn in a variety of ways, including through doing inquiry activities, journaling, reading texts, watching videos, participating in class discussion, and conducting web-based research.

Assessments. Students are assessed in a variety of ways throughout the module, including individual and collaborative formative and summative assessments. Students have the opportunity to produce work via written text, oral and media presentations, and modeling. You may choose to provide students with additional choices of media for their products (for example, PowerPoint presentations, posters, or student-created websites or blogs).
Compacting. Based on student prior knowledge, you may wish to adjust instructional activities for students who exhibit prior mastery of a learning objective. Since student work in science is largely collaborative throughout the module, this strategy may be most appropriate for mathematics, social studies, or ELA activities. You may wish to compile a classroom database of research resources and supplementary readings for different reading levels and on a variety of subjects related to the module’s topic to provide opportunities for students to undertake independent reading.

Tiered Assignments and Scaffolding. Based on your awareness of student ability, understanding of concepts, and mastery of skills, you may wish to provide students with variations on activities by adding complexity to assignments or providing more or fewer learning supports for activities throughout the module. For instance, some students may need additional support in identifying key search words and phrases for web-based research or may benefit from cloze sentence handouts to enhance vocabulary understanding. Other students may benefit from expanded reading selections and additional reflective writing or from working with manipulatives and other visual representations of mathematical concepts. You may also work with your school librarian to compile a classroom database of research resources and supplementary readings for different reading levels and on a variety of topics related to the module challenge to provide opportunities for students to undertake independent reading. You may find the following website on scaffolding strategies helpful: www.edutopia.org/blog/scaffolding-lessons-six-strategies-rebecca-alber.

Mentoring. As group design teamwork becomes increasingly complex throughout the module, you may wish to have a resource teacher, older student, or volunteer work with groups that struggle to stay on task and collaborate effectively.

STRATEGIES FOR ENGLISH LANGUAGE LEARNERS

Students who are developing proficiency in English language skills require additional supports to simultaneously learn academic content and the specialized language associated with specific content areas. WIDA (2012) has created a framework for providing support to these students and makes available rubrics and guidance on differentiating instructional materials for English language learners (ELLs). In particular, ELL students may benefit from additional sensory supports such as images, physical modeling, and graphic representations of module content, as well as interactive support through collaborative work. This module incorporates a variety of sensory supports and offers ongoing opportunities for ELL students to work collaboratively.

When differentiating instruction for ELL students, you should carefully consider the needs of these students as you introduce and use academic language in various language domains (listening, speaking, reading, and writing) throughout this module. To adequately differentiate instruction for ELL students, you should have an understanding
of the proficiency level of each student. The following five overarching preK–5 WIDA learning standards are relevant to this module:

- **Standard 1: Social and Instructional Language.** Focus on following directions, personal information, collaboration with peers.

- **Standard 2: The Language of Language Arts.** Focus on nonfiction, fiction, sequence of story, elements of story.

- **Standard 3: The Language of Mathematics.** Focus on basic operations, number sense, interpretation of data, patterns.

- **Standard 4: The Language of Science.** Focus on forces in nature, scientific process, Earth and sky, living and nonliving things, organisms and environment, weather.

- **Standard 5: The Language of Social Studies.** Focus on community workers, homes and habitats, jobs and careers, representations of Earth (maps and globes).

SAFETY CONSIDERATIONS FOR THE ACTIVITIES IN THIS MODULE

The safety precautions associated with each investigation are based in part on the use of the recommended materials and instructions, legal safety standards, and better professional safety practices. Selection of alternative materials or procedures for these investigations may jeopardize the level of safety and therefore is at the user’s own risk. Remember that an investigation includes three parts: (1) setup, in which you prepare the materials for students to use; (2) the actual hands-on investigation, in which students use the materials and equipment; and (3) cleanup, in which you or the students clean the materials and put them away for later use. The safety procedures for each investigation apply to all three parts. For more general safety guidelines, see the Safety in STEM section in Chapter 2 (p. 18).

We also recommend that you go over the safety rules that are included as part of the safety acknowledgment form with your students before beginning the first investigation. Once you have gone over these rules with your students, have them sign the safety acknowledgment form. You should also send the form home with students for parents or guardians to read and sign to acknowledge that they understand the safety procedures that must be followed by their children. A sample elementary safety acknowledgment form can be found on the National Science Teaching Association’s Safety Portal at http://static.nsta.org/pdfs/SafetyAcknowledgmentForm-ElementarySchool.pdf.
DESIRED OUTCOMES AND MONITORING SUCCESS

The desired outcome for this module is outlined in Table 3.3, along with suggested ways to gather evidence to monitor student success. For more specific details on desired outcomes, see the Established Goals and Objectives sections for the module (p. 23) and individual lessons.

Table 3.3. Desired Outcome and Evidence of Success in Achieving Identified Outcome

<table>
<thead>
<tr>
<th>Desired Outcome</th>
<th>Evidence of Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will understand and can demonstrate their knowledge about the influence of natural hazards on people and on animals’ homes.</td>
<td></td>
</tr>
<tr>
<td>• Students complete a variety of investigations related to natural hazards.</td>
<td>Students are assessed using the Observation, STEM Research Notebook, and Participation Rubric.</td>
</tr>
<tr>
<td>• Student teams develop and communicate natural hazard preparedness plans.</td>
<td></td>
</tr>
<tr>
<td>• Students each maintain a STEM Research Notebook that includes what they have learned, responses to questions, and observations.</td>
<td></td>
</tr>
</tbody>
</table>
ASSESSMENT PLAN OVERVIEW AND MAP

Table 3.4 provides an overview of the major group and individual products and deliverables, or things that students will produce in this module, that constitute the assessment for this module. See Table 3.5 (p. 34) for a full assessment map of formative and summative assessments in this module.

Table 3.4. Major Products and Deliverables in Lead Discipline for Groups and Individuals

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Major Group Products and Deliverables</th>
<th>Major Individual Products and Deliverables</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>• Vortex Bottles</td>
<td>• STEM Research Notebook entries #1–11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Weather Tall Tale</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Lesson assessment</td>
</tr>
<tr>
<td>2</td>
<td>• Earthquake Shake structures</td>
<td>• STEM Research Notebook entries #12–22</td>
</tr>
<tr>
<td></td>
<td>• Group presentations of Earthquake</td>
<td>• “Animals in a Natural Hazard” story</td>
</tr>
<tr>
<td></td>
<td>Shake structures</td>
<td>(creative writing)</td>
</tr>
<tr>
<td></td>
<td>• Hazard Sleuths research and poster</td>
<td>• Lesson assessment</td>
</tr>
<tr>
<td>3</td>
<td>• Community infographics</td>
<td>• STEM Research Notebook entries #23–31</td>
</tr>
<tr>
<td></td>
<td>• Our Natural Hazard Preparedness</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plans public service announcements</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Lesson assessment</td>
</tr>
</tbody>
</table>
Table 3.5. Assessment Map for Natural Hazards Module

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Assessment</th>
<th>Group/Individual</th>
<th>Formative/Summative</th>
<th>Lesson Objective Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>STEM Research Notebook entries</td>
<td>Individual/Group</td>
<td>Formative</td>
<td>• Identify various natural hazards.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Identify the causes of various natural hazards.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Identify ways that mathematics can be used to describe natural phenomena.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Use a model to explain the behavior of debris in a tornado.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Identify several impacts natural hazards can have on people and communities.</td>
</tr>
<tr>
<td>1</td>
<td>Vortex Bottle Investigation</td>
<td>Group</td>
<td>Formative</td>
<td>• Identify examples of physical models.</td>
</tr>
<tr>
<td></td>
<td>performance task</td>
<td></td>
<td></td>
<td>• Create a model of tornado winds.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Use a model to explain the behavior of debris in a tornado.</td>
</tr>
<tr>
<td>1</td>
<td>Weather Tall Tale creative</td>
<td>Individual/Group</td>
<td>Formative</td>
<td>• Identify the characteristics of a tall tale.</td>
</tr>
<tr>
<td></td>
<td>writing rubric</td>
<td></td>
<td></td>
<td>• Identify the basic parts of a story.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Create a tall tale related to weather events.</td>
</tr>
<tr>
<td>1</td>
<td>Lesson assessment</td>
<td>Individual</td>
<td>Formative</td>
<td>• Identify various natural hazards.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Identify the causes of various natural hazards.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Identify examples of physical models.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Understand that mathematical models are used to predict weather.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Identify several impacts natural hazards can have on people and communities.</td>
</tr>
</tbody>
</table>

Continued
<table>
<thead>
<tr>
<th>Lesson</th>
<th>Assessment</th>
<th>Group/Individual</th>
<th>Formative/Summative</th>
<th>Lesson Objective Assessed</th>
</tr>
</thead>
</table>
| 2 | STEM Research Notebook entries | Individual/Group | Formative | • Explain that the movement of tectonic plates can cause natural hazards.
• Identify natural hazards associated with movements of tectonic plates.
• Identify several impacts that natural hazards associated with the movement of tectonic plates can have on people and communities.
• Identify the influence natural hazards can have on animals, with an emphasis on animals’ homes.
• Use bar graphs to model earthquake data and identify geographic patterns. |
| 2 | Earthquake Shake structures and group presentations | Group | Formative | • Identify the steps of the engineering design process (EDP).
• Use the EDP to complete a group task.
• Understand that design features of structures can help protect people during natural hazard events and apply that understanding to create structures designed to withstand a simulated earthquake. |
| 2 | Hazard Sleuths research and poster | Group | Formative | • Use technology to gather research information and communicate about natural hazards.
• Identify several impacts that natural hazards associated with the movement of tectonic plates can have on people and communities.
• Identify several ways that people can remain safe during a natural hazard occurrence.
• Communicate information about natural hazards in a visual format. |
| 2 | “Animals in a Natural Hazard” story creative writing rubric | Individual | Formative | • Identify the influence natural hazards can have on animals, with an emphasis on animals’ homes.
• Identify several ways that people can remain safe during a natural hazard occurrence. |

Continued
Table 3.5. (continued)

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Assessment</th>
<th>Group/Individual</th>
<th>Formative/Summative</th>
<th>Lesson Objective Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lesson assessment</td>
<td>Individual</td>
<td>Formative</td>
<td>• Identify several impacts that natural hazards associated with the movement of tectonic plates can have on people and communities.</td>
</tr>
</tbody>
</table>
| 3 | STEM Research Notebook prompts | Individual/Group | Formative | • Identify impacts of natural hazards on people and the environment.
 • Create a preparedness plan that can mitigate the impacts of a natural hazard on people and the environment.
 • Use technology tools to gather data about natural hazards. |
| 3 | Community infographics performance task | Group | Formative | • Understand that community characteristics can be expressed numerically and in text.
 • Organize numerical and textual information about students’ communities in an infographic. |
| 3 | Our Natural Hazard Preparedness Plans public service announcements performance task | Group | Summative | • Identify impacts of natural hazards on people and the environment.
 • Create a preparedness plan that can mitigate the impacts of a natural hazard on people and the environment.
 • Communicate understanding of natural hazard preparedness through a PSA.
 • Understand that community characteristics can be expressed numerically and in text.
 • Use technology to communicate about natural hazards. |
| 3 | Lesson assessment | Individual | Summative | • Identify impacts of natural hazards on people and the environment. |

MODULE TIMELINE

Tables 3.6–3.10 (pp. 37–40) provide lesson timelines for each week of the module. These timelines are provided for general guidance only and are based on class times of approximately 30 minutes.
Table 3.6. STEM Road Map Module Schedule for Week One

<table>
<thead>
<tr>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesson 1 Let's Explore Natural Hazards</td>
</tr>
<tr>
<td>- Launch the module by holding a group discussion about natural hazards and showing a video.</td>
<td>- The class classifies natural hazards according to their causes.</td>
<td>- Show a video about tornadoes.</td>
<td>- Conduct Vortex Bottle Investigation (Predict and Observe).</td>
<td>- Conclude Vortex Bottle Investigation (Explain).</td>
</tr>
<tr>
<td>- Introduce a current natural hazard.</td>
<td>- Begin vocabulary chart.</td>
<td>- Introduce the Predict, Observe, Explain (POE) process.</td>
<td>- Conduct an interactive read-aloud of That's a Possibility!: A Book About What Might Happen, by Bruce Goldstone.</td>
<td>- Students begin planning and writing their Weather Tall Tales.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Introduce modeling.</td>
<td>- Discuss weather forecasting and probabilities.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Introduce the use of numbers to describe natural hazards, and conduct an interactive read-aloud of pages 4–21 of Hurricanes (Real World Math: Natural Disasters series), by Barbara A. Somervill.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.7. STEM Road Map Module Schedule for Week Two

<table>
<thead>
<tr>
<th>Day 6</th>
<th>Day 7</th>
<th>Day 8</th>
<th>Day 9</th>
<th>Day 10</th>
</tr>
</thead>
</table>
| Lesson 1
Let's Explore Natural Hazards
• Discuss floods and conduct an interactive read-aloud of *Flood Warning (Let’s-Read-and-Find-Out Science 2)*, by Katharine Kenah.
• Continue writing Weather Tall Tales. | Lesson 1
Let's Explore Natural Hazards
• Conduct lesson assessment.
• Complete Weather Tall Tales. | Lesson 2
Natural Hazard Quest!
• Discuss movement of tectonic plates as a cause of earthquakes and associated natural hazards.
• Conduct an interactive read-aloud of the book *Earthquakes*, by Ellen Prager.
• Discuss animal habitats and the impacts of natural hazards on animals’ homes.
• Conduct an interactive read-aloud or show the video of *A House Is a House for Me*, by Mary Ann Hoberman | Lesson 2
Natural Hazard Quest!
• Discuss impacts of natural hazards on people and communities, and show and discuss before-and-after images of natural disasters.
• Investigate and document financial costs associated with a natural hazard that occurred recently. | Lesson 2
Natural Hazard Quest!
• Introduce the engineering design process.
• Create class collaboration rules and contracts.
• Begin Earthquake Shake activity (Define and Learn). |
Table 3.8. STEM Road Map Module Schedule for Week Three

<table>
<thead>
<tr>
<th>Day 11</th>
<th>Day 12</th>
<th>Day 13</th>
<th>Day 14</th>
<th>Day 15</th>
</tr>
</thead>
</table>
| **Lesson 2**
Natural Hazard Quest!
- Continue Earthquake Shake activity (Plan, Try, and Test).
- Introduce bar graphs.
- Conduct interactive read-aloud of *Lemonade for Sale*, by Stuart J. Murphy. | **Lesson 2**
Natural Hazard Quest!
- Share Earthquake Shake activity designs, and test best class designs.
- Students create bar graphs for current earthquake magnitudes by continent. | **Lesson 2**
Natural Hazard Quest!
- Conduct research for Hazard Sleuths activity.
- Introduce U.S. regions and earthquake statistics for these regions.
- Continue planning and writing stories about animal homes in natural hazards. | **Lesson 2**
Natural Hazard Quest!
- Continue research for Hazard Sleuths activity.
- Students create bar graphs for earthquake magnitude by U.S. region.
- Continue writing stories about animal homes in natural hazards. |

Table 3.9. STEM Road Map Module Schedule for Week Four

<table>
<thead>
<tr>
<th>Day 16</th>
<th>Day 17</th>
<th>Day 18</th>
<th>Day 19</th>
<th>Day 20</th>
</tr>
</thead>
</table>
| **Lesson 2**
Natural Hazard Quest!
- Create posters for Hazard Sleuths activity.
- Continue writing stories about animal homes in natural hazards. | **Lesson 2**
Natural Hazard Quest!
- Create posters for Hazard Sleuths activity.
- Complete stories about animal homes in natural hazards.
- Conduct lesson assessment. | **Lesson 3**
Our Natural Hazard Preparedness Plans
- Introduce natural hazard preparedness through class discussion.
- Introduce PSAs through class discussion and video.
- Introduce numerical information about the community and infographics. | **Lesson 3**
Our Natural Hazard Preparedness Plans
- Discuss thunderstorm preparedness through an interactive read-aloud of *Flash, Crash, Rumble, and Roll* by Franklyn M. Branley.
- Students create community infographics. | **Lesson 3**
Our Natural Hazard Preparedness Plans
- Introduce use of the engineering design process and storyboards for PSAs.
- Class decides on types of information that should be included in PSAs (Define). |
Table 3.10. STEM Road Map Module Schedule for Week Five

<table>
<thead>
<tr>
<th>Day 21</th>
<th>Day 22</th>
<th>Day 23</th>
<th>Day 24</th>
<th>Day 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesson 3
Our Natural Hazard Preparedness Plans
• Conduct research for PSAs (Learn).</td>
<td>Lesson 3
Our Natural Hazard Preparedness Plans
• Create storyboards for PSAs (Plan).</td>
<td>Lesson 3
Our Natural Hazard Preparedness Plans
• Teams practice PSAs (Try).
• Teams give feedback to and receive feedback from one other team (Test).
• Teams decide how to improve their PSAs (Decide).</td>
<td>Lesson 3
Our Natural Hazard Preparedness Plans
• Teams present their PSAs.</td>
<td>Lesson 3
Our Natural Hazard Preparedness Plans
• Teams discuss possible improvements to PSAs based on class discussion.
• Conduct lesson assessment.</td>
</tr>
</tbody>
</table>
RESOURCES

The media specialist can help teachers locate resources for students to view and read about natural hazards, habitats, animal homes, and related content. Special educators and reading specialists can help find supplemental sources for students needing extra support in reading and writing. Additional resources may be found online. Community resources for this module may include meteorologists, climate scientists, emergency services personnel, and public safety officials.

REFERENCES

INDEX

Page numbers printed in boldface type indicate tables, figures, or handouts.

A
Activity/Exploration
Let’s Explore Natural Hazards lesson plan, 60–63
Natural Hazard Quest! lesson plan, 87–90
Our Natural Hazard Preparedness Plans lesson plan, 108–110
after learning, SRL theory, 16, 18
application of knowledge, 26
assessment
assessment maps, 15–16
assessment plan overview and map, 33, 34–36
assessment rubrics, 161–164
comprehensive assessment system, 14 differentiating, 29
differentiating instruction, 29–30
embedded formative assessments, 14–15
internet resources, 67
role of, 13–16
uncovering STEM misconceptions via, 27
See also Evaluation/Assessment; performance tasks

Let’s Explore Natural Hazards lesson plan, 48
Natural Hazard Quest! lesson plan, 75
Our Natural Hazard Preparedness Plans lesson plan, 101
summary table, 167–168

Common Core State Standards for Mathematics (CCSS Mathematics)
Let’s Explore Natural Hazards lesson plan, 47
Natural Hazard Quest! lesson plan, 74
Our Natural Hazard Preparedness Plans lesson plan, 100
summary table, 167

compacting, 30
comprehensive assessment system, 14
differentiating instruction, 29
connection to the challenge
Let’s Explore Natural Hazards lesson plan, 58–59
Natural Hazard Quest! lesson plan, 84–85
Our Natural Hazard Preparedness Plans lesson plan, 106
cost standards
Let’s Explore Natural Hazards lesson plan, 46, 46–49
Natural Hazard Quest! lesson plan, 72, 72–76
Natural Hazards module overview, 24
Our Natural Hazard Preparedness Plans lesson plan, 98, 99–102
summary table, 165–171
crosscutting concepts
Let’s Explore Natural Hazards lesson plan, 47
Natural Hazard Quest! lesson plan, 74
Our Natural Hazard Preparedness Plans lesson plan, 100
summary table, 166

B
before learning, SRL theory, 16, 17
books, suggested, 112–113

C
career information, 54, 68
cause and effect theme, 3, 23, 116
challenge or problem to solve, 24
climatologist, 54
Cloudy With a Chance of Meatballs (Barrett), 44, 65
Colli Albani volcano, 94
Common Core State Standards for English Language Arts (CCSS ELA)
Natural Hazards, Grade 2
INDEX

D
Danger! Earthquakes (Simon), 112
differentiating instruction, 26, 29–30
disciplinary core ideas
 Let’s Explore Natural Hazards lesson plan, 46–47
 Natural Hazard Quest! lesson plan, 73–74
 Our Natural Hazard Preparedness Plans lesson plan, 99–100
summary table, 166
during learning, SRL theory, 16, 17–18
Dynamic Plates app, 54

E
Earthquakes (Branley), 105, 112
Earthquakes (Frazer), 71, 85, 105
Earthquakes (Sipiera), 113
earthquakes and associated natural hazards, 77–79, 84, 93, 94, 95
ecologist, 54
Elaboration/Application of Knowledge
 Let’s Explore Natural Hazards lesson plan, 65–67
 Natural Hazard Quest! lesson plan, 91–93
 Our Natural Hazard Preparedness Plans lesson plan, 111
embedded formative assessment, 14–15
engineering, 79–80, 82, 94
engineering design process (EDP), 80–81, 114
described, 9–11, 10
internet resources, 94–95
 Natural Hazard Quest! lesson plan, 88
 Our Natural Hazard Preparedness Plans lesson plan, 108–109
English Language arts (ELA)
 Let’s Explore Natural Hazards lesson plan, 48, 59, 60, 66
 Natural Hazard Quest! lesson plan, 75, 85, 90, 91, 92
Our Natural Hazard Preparedness Plans lesson plan, 101, 107, 108, 110, 111
summary table, 167–168
Framework for 21st Century Learning skills
 Let’s Explore Natural Hazards lesson plan, 49
 Natural Hazard Quest! lesson plan, 76
 Our Natural Hazard Preparedness Plans lesson plan, 102
summary table, 170

G
geographer, 54
goals and objectives
 Let’s Explore Natural Hazards lesson plan, 43–44
 Natural Hazard Quest! lesson plan, 70
 Our Natural Hazard Preparedness Plans lesson plan, 97
graphic representations, 30
grouping strategies, 29

H
Heat Waves and Droughts (Burby), 113
A House Is a House for Me (Hoberman), 71, 86
How Much Is a Million? (Schwartz), 113
hurricanes, 83–84, 95
Hurricanes! (Gibbons), 113
Hurricanes (Real World Math: Natural Disasters series) (Somervill), 44
Hurricanes (Simon), 113

I
If You Made a Million (Schwartz), 113
innovation and progress theme, 3, 116
interactive read-alouds, 55–56, 64
Cloudy With a Chance of Meatballs (Barrett), 44, 65
Earthquakes (Branley), 105
Earthquakes (Prager), 71, 85, 105
Flash, Crash, Rumble, and Roll (Branley), 98, 105
Flood Warning (Let's-Read-and-Find-Out Science 2) (Kenah), 44, 66
A House Is a House for Me (Hoberman), 71, 86
Hurricanes (Real World Math: Natural Disasters series) (Somervill), 44
internet resources, 68–69
Lemonade for Sale (Murphy), 71, 90
That's a Possibility!: A Book About What Might Happen (Goldstone), 44, 64
Violent Weather: Thunderstorms, Tornadoes, and Hurricanes (Collins), 44, 60, 105
internet resources
Let's Explore Natural Hazards lesson plan, 67–69
Natural Hazard Quest! lesson plan, 93–96
Our Natural Hazard Preparedness Plans lesson plan, 112
Introductory Activity/Engagement
Let's Explore Natural Hazards lesson plan, 58–65
Natural Hazard Quest! lesson plan, 84–87
Our Natural Hazard Preparedness Plans lesson plan, 106–108
K
key vocabulary
Let's Explore Natural Hazards lesson plan, 46, 50–51
Natural Hazard Quest! lesson plan, 76–77
Our Natural Hazard Preparedness Plans lesson plan, 102
Kilauea volcano, 94
KLEWS (Know, Learning, Evidence, Wonder, Scientific Principles) charts
internet resources, 68
Let's Explore Natural Hazards lesson plan, 55
Natural Hazard Quest! lesson plan, 85
L
learning cycle, 11–12
LEGO Education WeDo platform, 54, 68
Lemonade for Sale (Murphy), 71, 90
Let's Explore Natural Hazards lesson plan, 43–69
common misconceptions, 56, 57
content standards, 46, 46–49
essential questions, 43
goals and objectives, 43–44
internet resources, 67–69
key vocabulary, 46, 50–51
learning components, 58–67
Activity/Exploration, 60–63
Elaboration/Application of Knowledge, 65–67
Evaluation/Assessment, 67
Explanation, 63–65
Introductory Activity/Engagement, 58–60
materials, 44–45
preparation for lesson 1, 58
safety notes, 45
teacher background information, 51–56
career connections, 54
interactive read-alouds, 55–56
KLEWS charts, 55
natural hazards, 51–53
optional classroom technology tools, 53–54
working with large numbers, 56
time required, 44
listening and discussion skills rubric, 162
M
materials
Let's Explore Natural Hazards lesson plan, 44–45
Natural Hazard Quest! lesson plan, 71–72
Our Natural Hazard Preparedness Plans lesson plan, 97–98
materials engineer, 54
mathematical model, 64
mathematics
Let's Explore Natural Hazards lesson plan, 47, 59–60, 63, 64, 67
Natural Hazard Quest! lesson plan, 74, 86–87, 89–90, 91
Our Natural Hazard Preparedness Plans lesson plan, 100, 107, 108, 110, 111
summary table, 167
mentoring, 30
meteorologist, 54, 64
misconceptions, potential STEM, 27
Monster Guard app, 53
Mount St. Helens volcano, 94
movements within the Earth, 52
N
National Association for the Education of Young Children (NAEYC) Standards
Let's Explore Natural Hazards lesson plan, 49
Natural Hazard Quest! lesson plan, 76
Our Natural Hazard Preparedness Plans lesson plan, 101–102
summary table, 169
natural hazard preparedness, 112
Natural Hazard Quest! lesson plan, 70–96
common misconceptions, 81, 82

Natural Hazards, Grade 2
INDEX

content standards, 72, 72–76
essential questions, 70
goals and objectives, 70
internet resources, 93–96
key vocabulary, 76–77
learning components, 84–93
 Activity/Exploration, 87–90
 Elaboration/Application of Knowledge, 91–93
 Evaluation/Assessment, 93
 Explanation, 90–91
 Introductory Activity/Engagement, 84–87
materials, 71–72
preparation, 83–84
safety notes, 72
teacher background information, 77–81
 earthquakes and associated natural hazards, 77–79
 engineering, 79–80
 engineering design process, 80–81
time required, 71
natural hazards, 51–53, 57, 82, 104
internet resources, 67–68
Natural Hazards module overview, 23–41
 assessment plan overview and map, 33, 33, 34–36
 challenge or problem to solve, 24
 content standards addressed, 24
 desired outcomes and evidence of success, 32, 32
 differentiating instruction, 26, 29–30
 English language learners strategies, 30–31
 established goals and objectives, 23–24
 lead discipline, 23
 module launch, 25
 module summary, 23
 potential STEM misconceptions, 27
 prerequisite skills, 25, 26
 resources, 41
 safety considerations, 31
 SRL process components, 27, 28
 STEM Research Notebook, 24–25
 theme, 23
timeline, 36, 37–40
Next Generation Science Standards (NGSS)
 Let’s Explore Natural Hazards lesson plan, 46–47
 Natural Hazard Quest! lesson plan, 72–74
 Our Natural Hazard Preparedness Plans lesson plan, 99–100
 summary table, 165–166
NOAA cost of natural disasters, 95

O
observation of listening and discussion skills rubric, 162
On Beyond a Million: An Amazing Math Journey
 (Schwartz), 113

optimizing the human experience theme, 5, 117
Our Natural Hazard Preparedness Plans lesson plan, 97–113
 common misconceptions, 104
 content standards, 98, 99–102
 essential questions, 97
 goals and objectives, 97
 internet resources, 112
 key vocabulary, 102
 learning components, 106–112
 Activity/Exploration, 108–110
 Elaboration/Application of Knowledge, 111
 Evaluation/Assessment, 111–112
 Explanation, 110–111
 Introductory Activity/Engagement, 106–108
materials, 97–98
preparation, 104–106
safety, 98
suggested books, 112–113
teacher background information, 103
time required, 97
outcomes, desired, 32, 32

P
participation rubric, 162
performance expectations
 Let’s Explore Natural Hazards lesson plan, 46
 Natural Hazard Quest! lesson plan, 72–73
 Our Natural Hazard Preparedness Plans lesson plan, 99, 112
performance tasks
 Let’s Explore Natural Hazards lesson plan, 67
 Natural Hazard Quest! lesson plan, 93
 Our Natural Hazard Preparedness Plans lesson plan, 112
physical modeling, 30
POE (Predict, Observe, Explain), 61–63
 Natural Hazard Quest! lesson plan, 88
preparation for lesson
 Let’s Explore Natural Hazards lesson plan, 58
 Natural Hazard Quest! lesson plan, 83–84
 Our Natural Hazard Preparedness Plans lesson plan, 104–106
prerequisite skills, 25, 26
probes, 27
process components, self-regulated learning theory (SRL), 16, 16–18
products and deliverables, 33
project- and problem-based learning, 9
public service announcements (PSAs), 103, 112

Copyright © 2019 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
TO PURCHASE THIS BOOK, please visit www.nsta.org/store/product_detail.aspx?id=10.2505/9781681404868
INDEX

R
reading standards
Let’s Explore Natural Hazards lesson plan, 48
Natural Hazard Quest! lesson plan, 75
Our Natural Hazard Preparedness Plans lesson plan, 101
summary table, 167

the represented world theme, 4, 116
rubrics, assessment, 161–164

S
safety
Let’s Explore Natural Hazards lesson plan, 45
Natural Hazard Quest! lesson plan, 72
Natural Hazards module overview, 31
Our Natural Hazard Preparedness Plans lesson plan, 98
in STEM, 18–19
scaffolding, 30
science
Let’s Explore Natural Hazards lesson plan, 59, 60, 63, 65
Natural Hazard Quest! lesson plan, 85, 87, 90–91
Our Natural Hazard Preparedness Plans lesson plan, 106, 108, 110, 111

science and engineering practices
Let’s Explore Natural Hazards lesson plan, 46
Natural Hazard Quest! lesson plan, 73
Natural Hazards lead discipline, 23
Our Natural Hazard Preparedness Plans lesson plan, 99
summary table, 166

Seismograph app, 54
self-regulated learning theory (SRL), 16, 16–18
process components, 27, 28
sensory supports, 30
social studies
Let’s Explore Natural Hazards lesson plan, 59–60, 63, 65–66
Natural Hazard Quest! lesson plan, 86–87, 89–90, 91

speaking and listening standards
Let’s Explore Natural Hazards lesson plan, 48
Natural Hazard Quest! lesson plan, 75
Our Natural Hazard Preparedness Plans lesson plan, 101
summary table, 168

STEM Research Notebook, 24–25
described, 12–13
Let’s Explore Natural Hazards lesson plan, 59–65
Natural Hazard Quest! lesson plan, 85–90
Our Natural Hazard Preparedness Plans lesson plan, 108–111
rubric, 162
templates, 119–160

STEM Road Map Curriculum Series
about, 1
cause and effect theme, 3, 116
ingineering design process (EDP) described, 9–11, 10
framework for STEM integration, 6–7
innovation and progress theme, 3, 116
learning cycle, 11–12
need for, 7
need for integrated STEM approach, 5–6
optimizing the human experience theme, 4, 116
project- and problem-based learning, 9
the represented world theme, 4, 116
role of assessment in, 13–16
safety in STEM, 18–19
self-regulated learning theory (SRL), 16, 16–18
standards-based approach to, 2
STEM Research Notebook, 12–13
sustainable systems theme, 4–5, 116–117
themes in, 2–3
transformation of learning with, 115–117
storyboarding, 112
success, evidence of, 32, 32
sustainable systems theme, 4–5, 116–117

T
teacher background information
career connections, 54
earthquakes and associated natural hazards, 77–79
engineering, 79–80
engineering design process, 80–81
interactive read-alouds, 55–56
KLEWS charts, 55
natural hazards, 51–53
natural hazards preparedness, 103
optional classroom technology tools, 53–54
public service announcements (PSAs), 103
working with large numbers, 56
technology tools, 53–54
That’s a Possibility!: A Book About What Might Happen (Goldstone), 44, 64
described, 23
tiered assignments, 30
timeline
Natural Hazards module overview, 36, 37–40
Tornado Alert (Branley), 113
tornadoes, 52–53, 68, 84, 95
Tornadoes! (Gibbons), 113
INDEX

Tornadoes (Simon), 113
Tremor Tracker app, 54
tsunamis, 78, 84, 93–94, 95
Twisters and Other Terrible Storms (Osborne and Osborne), 113

U
Uncovering Student Ideas in Science (Keeley), 27
urban planner, 54

V
varied environmental learning contexts, 29
Violent Weather: Thunderstorms, Tornadoes, and Hurricanes (Collins), 44, 60, 105
vocabulary. See key vocabulary
volcanoes, 79, 84, 94, 95
Volcanoes: Map, Alerts & Ash app, 54
Vortex Bottle Investigation, 61, 62–63

W
weather, 52, 57
Weather Tall Tales, 66–67
writing standards
Let’s Explore Natural Hazards lesson plan, 48
Natural Hazard Quest! lesson plan, 75
Our Natural Hazard Preparedness Plans lesson plan, 101
rubric, 163–164
summary table, 167
What if you could challenge your second graders to help communities prepare for disasters ranging from floods and wildfires to earthquakes and hurricanes? With this volume in the STEM Road Map Curriculum Series, you can!

Natural Hazards outlines a journey that will steer your students toward authentic problem solving while grounding them in integrated STEM disciplines. Like the other volumes in the series, this book is designed to meet the growing need to infuse real-world learning into K–12 classrooms.

This interdisciplinary module uses project- and problem-based learning to help young children explore cause and effect. Working in teams, your second graders will draw on science, English language arts, mathematics, social studies, and the engineering design process to do the following:

- Identify various natural hazards, their basic causes, and how they affect people, animals, and communities.
- Model natural hazards.
- Identify features of structures designed to withstand earthquakes and then construct models of those structures.
- Learn about predicting weather, including measuring, calculating, and evaluating numbers involved in probabilities.
- Create their own “Weather Tall Tales.”
- Identify ways that people and communities can prepare for natural hazards and then communicate about the hazards to a target audience.

The STEM Road Map Curriculum Series is anchored in the Next Generation Science Standards, the Common Core State Standards, and the Framework for 21st Century Learning. In-depth and flexible, Natural Hazards can be used as a whole unit or in part to meet the needs of districts, schools, and teachers who are charting a course toward an integrated STEM approach.