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This is not a book about disciplinary core 
ideas (DCIs) in science. This is a book about 
teaching science organized around DCIs as 

defined in A Framework for K–12 Science Education 
(Framework; NRC 2012) and encapsulated in the 
performance expectations of the Next Generation 
Science Standards (NGSS; NGSS Lead States 2013). 
As anyone looking at this book knows, the Frame-
work and NGSS stress three dimensions in science 
learning: Students are not just learning the DCIs 
but are also engaging in science and engineering 
practices and understanding and applying a set 
of crosscutting concepts. Teachers must meld all 
three of these dimensions together to build effec-
tive science lessons, but before they can do that, 
they need to understand each dimension and the 
shifts in emphasis around each that are central to 
the definition and structure of the NGSS.

The Framework was developed based on the 
best available research knowledge on effective 
science teaching approaches. Central to effective-
ness is the recognition that students must build 
new knowledge by refining and revising prior 
knowledge (or their preconceptions, if the topic 
is new to them). Teaching that ignores what has 
come before and does not capitalize on research 
into what makes a topic difficult to learn is at 
best inefficient and at worst ineffective. Hence, 
it is important not just to have a science curricu-
lum for the current year but to have one that is 
designed to build knowledge and deepen under-
standing progressively across multiple years.

This book, then, is about how the NGSS are 
structured with regard to DCIs, how these ideas 

build across the grade levels, and what aspects 
are newly emphasized or de-emphasized at each 
level to achieve continuity and establish a firm 
base for further learning and use of that knowl-
edge beyond high school. For each DCI, the 
authors—who are experts in that area of science 
or engineering learning—discuss how the NGSS 
expectations at each grade band are structured, 
stressing shifts in emphasis and explaining some 
of the reasons for these shifts.

Teachers redesigning their instruction to bet-
ter support the NGSS will find that the material 
in this book provides useful background for that 
effort, but it will not serve as an instruction man-
ual. As every teacher knows, the art of teaching 
is the art of making choices, of choosing the right 
strategy at each moment and combining multiple 
factors in planning units or lessons to achieve 
desired outcomes. To make these choices well, a 
teacher needs both a near view (i.e., what are the 
goals of today) and a far view (i.e., which goals of 
today fit into and build toward an overall set of 
larger and longer-term goals). In the far view, the 
teacher knows both what came before and what 
comes after the current lesson, and even the cur-
rent year. This book helps a teacher engaged in 
developing or using NGSS-oriented curriculum 
with that view. In combination with other publi-
cations that provide a similar overview and per-
spective on the science and engineering practices 
and the crosscutting concepts and their develop-
ment across the K–12 school years, this book pro-
vides essential background for those who wish to 
be effective science teachers in the NGSS context.

Helen Quinn
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CHAPTER 5

CORE IDEA PS4
WAVES AND THEIR APPLICATIONS IN TECHNOLOGIES 

FOR INFORMATION TRANSFER

David Fortus and Joseph Krajcik

What Is This Disciplinary Core Idea, 
and Why Is It Important?
Although you may not realize it, and they cannot 
always be detected without special instruments, 
waves are everywhere. As you read this chapter, 
there are radio waves going through your body. 
Stop reading for a minute, close your eyes, and 
concentrate on your surroundings, your breathing, 
and your heartbeat. Can you hear anything, or is it 
completely silent? Most likely there is something 
you can hear, evidence that you are immersed in 
a sea of sound waves. Start reading again. How 
can you read this text? Light waves are being scat-
tered by the page (if you’re reading this on paper) 
or being generated by a screen (if you’re reading 
this on an electronic device) and reaching your 
eyes. Are there electric apparatuses near you? 
Every electric device generates electromagnetic 
waves. Think about cell phones, GPS devices,  
heat lamps, x-rays, microwave ovens, police 
radars, lasers, antennas, stereo systems, computer 
networks, ultrasound imaging devices, and MRI 
scanners. Think about contact lenses, sunburns, 
sunglasses, earthquakes, optical fibers, surfing, 
telescopes, and microscopes. Are these appara-
tuses and phenomena relevant to you and your 

students’ lives? Is it important that students have 
some understanding of how they work? If yes, 
then waves are important, because waves play 
a key role in each of these apparatuses and phe-
nomena and in many, many others things as well. 
In fact, many of the technologies developed in the 
20th century and those under development now 
are dependent on waves. For example, stealth 
technology is based on waves and uses ideas such 
as reflection, transmission, absorption, and super-
position (which will be described in detail later in 
this chapter) to render stealth planes nearly invisi-
ble to radars. Understanding wave properties and 
the interactions of electromagnetic radiation with 
matter is critical to the investigation of nature at 
all scales, including the invisible world of atoms 
and molecules and the far away world of stars and 
galaxies. Wave properties and interactions of elec-
tromagnetic radiation with matter explain how 
information can be transferred over long distances 
and stored as digital information.

In contrast to the National Science Education 
Standards (NRC 1996) and the AAAS Benchmarks 
for Science Literacy (AAAS 1993), A Framework for 
K–12 Science Education (Framework; NRC 2012) 
emphasizes the dependence of modern technolo-
gies, especially communications technologies, on 
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waves. It also highlights the role waves play in 
transferring energy and information from one 
location to another. The concepts of wave proper-
ties and the interaction of electromagnetic waves 
with matter explain many important phenomena 
in our world. We now present the components of 
the disciplinary core idea (DCI) in the Framework 
that deals with waves.

PS4: Waves and Their Applications in Technolo-
gies for Information Transfer provides answers to 
the question, “How are waves used to transfer 
energy and information?” This DCI is made up 
of three component ideas. PS4.A: Wave Properties 
examines the question, “What are the character-
istic properties and behaviors of waves?” PS4.B: 
Electromagnetic Radiation provides insights into 
three questions: “What is light?” “How can one 
explain the varied effects that involve light?” and 
“What other forms of electromagnetic radiation 
are there?” Finally, PS4.C: Information Technolo-
gies and Instrumentation builds understanding 
of answers to the question, “How are instruments 
that transmit and detect waves used to extend 
human senses?”

PS4.A Wave Properties
PS4.A: Wave Properties describes the properties 
of waves. It provides an answer to the question, 
“What are waves?” Think of a simple example 
that many of us have experienced: a stone thrown 
into a pond of water. Before the stone hits the 
pond, the water’s surface is relatively flat and 
smooth. After the stone hits the water and disap-
pears below the surface, circles centered where 
the stone hit spread out and away from where 
they were created (Figure  5.1). These spreading 
circles and the area between them on the surface 
of the water are an example of a wave.

The definition of a wave is a disturbance that 
propagates—that is, moves or spreads—through 
space. In the case that we just imagined of a stone 
being thrown into a pond, the disturbance was 
the deformation of the water’s surface caused 
by the entrance of the stone into the water (the 
stone applied a force to the water, which caused a 
change in the water’s motion; the water started to 
move down and away from the stone; see Chap-
ter 3, p. 33, on PS2: Motion and Stability: Forces 
and Interactions). The spreading out of the circles 
was the propagation of the disturbance. Because 
the wave is moving, it has energy (see Chapter 4, 
p. 55, on PS3: Energy).

Let’s see how this definition works in another 
case. If you knock on one end of a table with your 
knuckle, you can feel the knock with your other 
hand if you place it at the other end of the table, 
or you can hear the knock if you place your ear on 
the table. What does this have to do with waves? 
When your knuckle hits the table, it pushes 
down on the table, making a small deformation 
in the table’s surface. Although you can’t see it, 
this deformation expands out through the table, 
which is why you can feel and hear it at a dis-
tance. The spreading out of the deformation in 
the table’s surface is a wave.

FIGURE 5.1

Waves in a Pond
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CORE IDEA PS4
WAVES AND THEIR APPLICATIONS IN TECHNOLOGIES FOR INFORMATION TRANSFER 5

LONGITUDINAL AND TRANSVERSE WAVES

When you throw a stone into a pond, the water’s 
surface bobs up and down. (Actually, the move-
ment of any water particle near the surface is a 
combination of up and down and back and forth 
motions.) However, the wave generated by this 
up-down movement of the water’s surface moves 
horizontally. That is, the direction in which the 
wave moves is perpendicular to the direction in 
which the disturbance was made. This is called 
a transverse wave. There are many kinds of 
transverse waves. All electromagnetic waves are 
transverse waves. Think about a human wave in 
a football stadium. People get up and sit down 
in their seats, but the wave moves horizontally 
across the stadium (Figure 5.2). This is an exam-
ple of a transverse wave.

Now imagine a Slinky that is stretched and 
lying on the floor. One end is held stationary, 
and the other end is shaken sideways. A wave is 
generated and propagates through the toy. Try 
it! Is this a transverse wave? (A demonstration 
of transverse waves in a Slinky can be found at  

www.teachertube.com/viewVideo.php?video_
id=75927.) Now instead of shaking the Slinky’s 
end sideways, move it back and forth in the direc-
tion in which the Slinky is stretched. Once again, a 
wave is generated in the Slinky; however, this time 
the direction of the disturbance is the same as the 
direction in which the wave travels (Figure  5.3). 
This is called a longitudinal wave (for a demon-
stration of longitudinal waves in a Slinky, visit 
www.youtube.com/watch?v=y7qS6SyyrFU). Sound 
waves traveling through the air are longitudinal 
waves, with the air molecules moving back and 
forth in the direction in which the sound wave is 
traveling. Sound waves moving through solids 
(like when you knocked on the table with your 
knuckle) can be both transverse and longitudinal.

WHAT MOVES WHEN A WAVE MOVES?

Above we mentioned that a wave is a moving 
disturbance. In a pond wave, the disturbance is 
a depression of the surface of the water. When 
the wave spreads outward, does the water in the 
pond move outward with it? The answer is no, 
because otherwise there would be less water left 
in the area where the wave originated. The water 
near the top of the pond moves up and down in 

FIGURE 5.2

Stadium Wave

FIGURE 5.3

Waves in a Slinky

Longitudinal Wave

Transverse Wave
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a coordinated manner so that the water appears 
to be moving outward when it is actually only 
moving up and down. So no water really moves 
away from the wave’s source. You may have seen 
humans create a wave in a football stadium. As 
the wave moves across the stadium, do the specta-
tors making the wave actually move horizontally 
with the wave? No. Every spectator moves up and 
down in a coordinated manner, but each spectator 
stays in the place where she began—sitting.

This idea that no material moves permanently 
from its original location is true for all waves. In a 
sound wave, for example, the air molecules move 
a bit back and forth around their original location, 
but they stay on average where they were before 
the wave was generated and do not move with the 
wave. Flap your hand at your ear. You can feel the 
air that is being forced at your ear by your hand. 
The air molecules are being moved from their 
original location toward your ear. Now hold your 
hand near your ear and snap your fingers. You can 
clearly hear the snapping sound but not feel any 
wind moving toward your ear. So the sound wave 
generated by the snapping of your fingers does 
not cause the air molecules to move toward your 
ear. This can be seen very nicely in a simulation 
from Pennsylvania State University’s acoustics 
program at www.acs.psu.edu/drussell/Demos/waves/
Lwave-v8.gif. The simulation shows the propaga-
tion of a sound wave. Follow the red particle. You 
will see that it moves back and forth but does not 
propagate with the sound wave. Here, too, you 
can see why sound waves in the air are longitudi-
nal waves: The air particles move back and forth 
in the same direction in which the wave travels.

Some students consider sound to be an entity 
that is carried by individual molecules as they 
move through a medium (Linder and Erickson 
1989). Just as particles can have energy, they think 

that particles can have sound, that the particle 
picks up the sound at one place (e.g., a loud-
speaker or a tuning fork), carry it from that place 
to another (e.g., a microphone or an ear), and then 
release it there. In this view, the more particles 
that carry the sound, the louder the sound is. This 
conception of sound is based on the mistaken 
idea that the particles of the medium actually 
move along with the wave or that there are spe-
cial sound particles that differ from the particles 
that make up the medium. Accordingly, in this 
scenario, these sound particles are created at the 
sound’s source and destroyed when the sound is 
heard, which contradicts the law of energy con-
servation. Another problem with this notion is 
that there are infinitely different kinds of sound; 
in what way does the sound carried by the par-
ticles in one case differ from the sounds in other 
cases? Or are there an infinite number of different 
kinds of sound particles?

A more sophisticated conception than the 
one above, but still mistaken, is that sound is a 
physical entity that is transferred from one mol-
ecule to another through a medium. In this case, 
sound is still something carried by the particles 
of the medium, but instead of moving through 
the medium, the particles collide with each other 
and in each collision transfer some sound from 
one to another.

WAVE DIMENSIONALITY

Some waves spread out in three dimensions 
throughout space, others spread out in two dimen-
sions over a surface, and others spread out in one 
dimension. When you speak, you create sound 
waves. People in front of you, behind you, to your 
sides, above you, and below you can all hear you. 
This is lucky because it means that when you are 
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teaching you needn’t repeat yourself 30  times 
while facing every student in your class. The sound 
waves you generate spread out in all dimensions, 
so they are three-dimensional (3-D) waves.

When you knocked on the table, you couldn‘t 
hear the sound in the table unless you pressed 
your ear to the table because the sound in the 
table spread out only in the table (you could hear 
the sound of the knocking in the air, but that is 
because the knocking created a sound wave in 
the air as well as in the table). The table is rela-
tively thin, so you can say that the sound wave 
spreads out in the table only horizontally and not 
vertically, so the sound wave in the table is a two 
dimensional (2-D) wave.

If you take a pipe or a water hose and speak 
into it, nobody around you can hear you. How-
ever, if somebody holds up the other end of the 
hose to their ear, they can hear you quite well. In 
this case, the sound wave traveled in only one 
direction, along the water hose. Since it propa-
gated in only one direction, we say that it is a one 
dimensional (1-D) wave.

So a sound wave can be a 1-D, 2-D, or 3-D 
wave, depending on the structure or configura-
tion of the environment in which it propagates.

Why is the dimensionality of a wave impor-
tant? It turns out that the dimensionality of a 
wave determines the rate at which the intensity 
of the wave decreases. The relation between the 
rate at which a wave’s intensity decreases and its 
dimensionality is a result of the law of conserva-
tion of energy. When 3-D waves spread out, like 
sound waves disseminating from your mouth, the 
intensity of the waves decrease as the waves get 
farther from your mouth. This is why your voice 
sounds weaker the farther the listener is from 
you. Close up, it may be loud; far away, it sounds 
faint. It turns out that all 3-D waves decrease in 

intensity at the same rate, regardless of whether 
they are sound waves or electromagnetic waves 
or tectonic waves or any other kind of wave. The 
intensity of all 3-D waves depends on 1/r2, where 
r is the distance of the wave from its source. Thus, 
as the distance of a 3-D wave from its source dou-
bles, its intensity decreases fourfold.

When a 2-D wave spreads out, its intensity also 
decreases as it gets farther away from its source. 
However, the rate at which it decreases is differ-
ent from the rate at which a 3-D wave decreases. 
The intensity of all 2-D waves, regardless of what 
kind they are, decreases at a rate of 1/r , meaning 
that when the distance of the wave from its source 
doubles, the intensity of the wave is halved.

When a wave’s dimensionality is 1-D, it does 
not spread out; it just moves from one place 
to another. Its intensity does not decrease but 
remains the same. So the intensity of the sound 
from your mouth decreases as it gets farther from 
you unless the sound waves are channeled into 
a tube where it can travel long distances without 
getting weaker.

WAVELENGTH

When a stone is thrown into a pond, not just one 
ripple is made, but several. We see concentric 
circles traveling outward from the place where 
the stone hit the water (see Figure 5.1, p.  76). If 
we look a bit closer, we will see that the distance 
between the circles is the same and that this dis-
tance is maintained as the ripples move outward. 
The distance between any two ripples is called the 
wave’s wavelength. The Greek letter λ (lambda) is 
used to represent the wavelength.

Every wave has a wavelength. If you revisit the 
simulation of a sound wave mentioned on page 78, 
you will see that there is a constant distance 

Copyright © 2017 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions. 
TO PURCHASE THIS BOOK, please visit www.nsta.org/store/product_detail.aspx?id=10.2505/9781938946417



80 NATIONAL SCIENCE TEACHERS ASSOCIATION

5

between the areas of high particle density that 
move to the right. This distance is the wavelength.

SPEED

Waves also have a speed at which they spread out. 
Every type of wave has a speed which is depen-
dent on the medium through which the wave is 
traveling. Thus, the speed of sound is the speed 
at which sound waves travel through the air. 
This speed is temperature dependent but is about 
300 m/s at room temperature. Look again at the 
simulation of sound waves—you will see that the 
air of high density moves to the right at a constant 
speed. Sound can also travel through other media. 
The speed of sound in liquids and in most solids 
is much faster than in air. The speed of sound in 
helium is different from in air, which is why voices 
sound funny if one inhales helium and then speaks 
while exhaling.

FREQUENCY

Waves have a frequency. When a stone is thrown 
into a pond, the rings that move outward are gen-
erated at a certain frequency, that is, every second a 
certain number of rings are generated. Look again 
at the simulation of the sound waves. The areas of 
high particle density are generated on the left at a 
constant rate. This rate, the number of areas of high 
density that are generated every second, is called 
the wave’s frequency. Frequencies can be very 
low, less than one ripple or one high-density area 
per second, or very high, thousands or millions 
or even billions of times per second. Frequencies 
are measured in hertz (Hz). A sound wave with a 
frequency of 200 Hz has 200 areas of high density 
generated per second at the sound’s source.

There is a mathematical relation between a 
wave’s wavelength, its frequency, and its speed. 
The relation is true for all waves:

v = λ · f

Here v stands for the wave’s speed in [m/s], λ 
stands for the wave’s wavelength in meters, and 
f stands for the wave’s frequency in hertz. The 
relation between the wavelength and frequency 
of electromagnetic waves is the same as for all 
other waves.

AMPLITUDE

Every wave has an amplitude. The amplitude is 
the magnitude of the disturbance relative to the 
situation where there is no disturbance. In the 
case of the water waves, the amplitude is typically 
given as the maximum height the water reaches 
above the height of the water in the pond when 
there is no wave. In Figure 5.4, the original pond 
level is the horizontal line through the center of 
the graph, so the amplitude is the height of the 
tallest part of the wave where it touches the dotted 
line above the center line For a sound wave, the 
amplitude is the maximum change in the density 
of the particles, so it is the density of the particles 
at areas of maximum density minus the density  
of the particles when there is no sound wave. 
The square of the amplitude (A2) is a measure of  
the intensity of a wave; the greater the amplitude, 
the stronger the wave. Thus, a loud sound wave 
will have a larger amplitude and a soft sound 
wave will have a smaller amplitude.

SUPERPOSITION

When waves of the same kind (for example, 
two water waves) meet each other, they add up, 
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meaning that the height of the surface at any point 
in the pond will be equal to the height that point 
would have been if only one of the waves was in 
the pond plus the height of that point if only the 
second of the waves had been in the pond. Thus, 
new height = height(1) + height(2). In Figure 5.5, the 
height of the solid line at the crest of the wave and 
at the trough of the wave results from the sum-
mation of (a) plus (b). This summation of waves 
is called superposition. Notice, however, that the 
height of any point on a wave on the surface of the 
pond goes up and down, so that sometimes it is 
above the level of the surface of a quiet pond (posi-
tive height) and sometimes it is below this level 
(negative height). So, during the superposition of 
two waves the height of any point on the pond’s 
surface may be higher or lower than it would have 
been if there had been only one wave.

Superposition is important because it helps 
predict what happens when two or more waves 
meet in various ways. For example, consider 
two waves with the same height that interact out 
of phase—that is, when one wave is increasing 

while the other is decreasing. If these two identi-
cal waves are exactly out of phase, their sum will 
be zero and they will cancel out. An example of 
this being applied in real life is noise-canceling 
headphones. Noise-canceling headphones gener-
ate sound waves that are identical to those coming 
from the outside (the ambient noise) but opposite 
in phase. Because they are opposite in phase, the 
incoming noise is canceled out. DVD players pro-
vide another everyday example of superposition. 
Light is reflected from the DVD so that it is at the 
same phase or at the opposite phase as the wave 
that reached it. These two waves superimpose, 
making either a stronger wave (= 1) or canceling 
each other out (=  0). Because digital information 
is encoded as 1s and 0s, this superposition effect 
enables the digital storage and transfer of informa-
tion in DVD and CD players. Superposition also 
allows us to deconstruct complex waves into the 
sum of many simple waves.

AMPLITUDE DECAY

As was described before in the Wave Dimension-
ality section (p. 78), the intensity of 2-D and 3-D 

FIGURE 5.4

Amplitude and Wavelength

FIGURE 5.5

Superposition of Two Waves

(a+b)

(b)

(a)
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waves declines as the waves get farther away from 
their source. Since the square of a wave’s ampli-
tude is related to the wave’s intensity, this mean 
that the wave’s amplitude gets smaller as the wave 
gets farther away from its source. If you look at a 
water wave, you can see that it slowly dies out, so 
that after a certain distance from the spot where 
the stone entered the pond, the wave is no longer 
visible. When someone is far away from you, they 
need to shout to be heard because the amplitude 
(and the intensity) of the sound waves they create 
decrease as they get farther from the person, so by 
the time sound waves reach you, they are already 
much weaker than they were to begin with and are 
therefore harder to hear.

RESONANCE

Every object, or system, has natural frequencies, 
which are the frequencies at which waves natu-
rally propagate, or spread, through the system. 
For example, when the stone was thrown into 
the pond, the waves that were generated had a 
frequency. Every time you throw another stone, 
whether it is bigger or smaller, into the same 
pond, the waves generated will have the same 
frequency. Thus, this frequency is a natural char-
acteristic of the pond and has little to do with 
nature of the perturbation, or disturbance, that 
causes the waves (the stone entering the water). 
When you strike a tuning fork or pluck a guitar 
string, regardless of the force used, the sound 
wave generated always has the same frequency 
(in music, frequency is also called “pitch”). So, we 
say that the tuning fork or the guitar string have 
a natural frequency. However, systems can be 
forced to oscillate and generate waves at frequen-
cies that are different from the natural frequency 
of their materials. For example, the membrane 

of a speaker in a stereo system has a natural fre-
quency, but the amplifier can force it to vibrate 
at many different frequencies, generating a range 
of sound waves with different frequencies. When 
a system is forced to generate waves at a certain 
frequency, this is called the forced frequency. 
Sometimes, intentionally or unintentionally, the 
forced frequency is identical to the system’s nat-
ural frequency. When this happens, the waves 
generated can get larger and larger, even though 
the magnitude of the perturbation remains small. 
This situation is called resonance. It can be very 
useful, but it can also be catastrophic. It is the 
principle by which radios and musical wind 
instruments work. It can also cause a bridge to 
collapse, as happened to the Tacoma Narrows 
Bridge in 1940 as shown at http://en.wikipedia.org/
wiki/Tacoma_Narrows_Bridge_(1940).

INTERACTIONS WITH OBJECTS

All waves, when they reach a boundary between 
two objects or materials, behave in a combina-
tion of ways: They are reflected, transmitted, and 
absorbed. For example, how do we hear anything? 
Sound waves are absorbed by the eardrums, 
which transfers energy to them and makes them 
vibrate, generating a signal that is transmitted to 
the brain. How is an echo created? A sound wave 
is reflected off a large object, such as a cliff, which 
is far enough away that we hear the reflected echo 
noticeably later than we hear our original shout. 
How do we see? Light reflects off materials and 
onto our retinas, which transmit a message to 
the brain. Because different materials absorb dif-
ferent frequencies of light, we see light reflected 
back in different colors. We see a red sweater 
because the sweater reflects light with red fre-
quencies and absorbs other frequencies. How 
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does an ultrasound imager work? Ultrasound 
waves generated in a transducer are transmitted 
through our bodies and reflected at the interfaces 
between different tissues.  

Allow students to experience simple light phe-
nomena and provide them with relevant data. 
Next, have students construct models to explain 
the phenomena. Such experiences provide oppor-
tunities for students to make sense of phenomena 
using the important science practice of modeling 
and building knowledge of the DCI. This simple 
model can be expanded as students experience 
more phenomena and collect additional data.

PS4.B: Electromagnetic (EM) Radiation
PS4.B: Electromagnetic (EM) Radiation explores 
the question, “What are EM waves?” All elec-
trons create an electromagnetic field in the space 
around them. When these electrons are forced 
to move, the electromagnetic field they create 
changes, first near the electron, then farther away 
as the change to the electromagnetic field spreads 
out through space, making an electromagnetic 
wave. This can occur, for example, when an elec-
tric circuit forces electrons to move inside an 
antenna. If the circuit makes the electrons move 
at a certain forced frequency, the electromagnetic 
wave generated can be a radio wave or a micro-
wave, or any other wave in the electromagnetic 
spectrum. Just as we could see the waves on the 
surface of a pond or feel or hear the waves in a 
table, we can detect the electromagnetic waves 
generated by the electric current. Various instru-
ments such as cell phones or radio receivers can 
detect and react to certain electromagnetic waves. 
The water molecules in a piece of food in a micro-
wave can absorb electromagnetic waves created 
by a microwave. Our eyes, working with our 

nervous systems, can detect and react to electro-
magnetic waves in the visible region. Electromag-
netic waves have properties like all waves, such 
as frequency and wavelength.

THE DIMENSIONALITY OF EM WAVES

When you turn on a light bulb, it shines in all 
directions, so the wave that is being generated is a 
3-D wave. But what if light is shined into an optical 
fiber? The light can move through the fiber just as 
sound can move through a pipe. In this case, light 
propagates like a 1-D wave. Depending on the cir-
cumstances, EM waves can be 1-D, 2-D, or 3-D.

WAVELENGTH OF EM WAVES

EM waves are propagating perturbations—
moving or spreading disturbances—of the EM 
field. If the EM field were “still” (it never is), the 
strength and direction of the EM field at any point 
in space would never change. However, because 
there are waves, the strength and direction of 
this field changes with time, getting stronger, 
then weaker, then stronger, then weaker again, 
and so on, just as any point on the surface of a 
pond gets higher and lower repeatedly when 
there is a water wave. EM waves spread out 
from sources just like water waves, except they 
typically expand in 3-D, so they expand as ever-
increasing spheres rather than as circles. Just as 
in water waves, where water doesn’t really move 
from its position but just bobs up and down in a 
coordinated way, in EM waves, nothing moves; 
the field just gets stronger and weaker in a coor-
dinated way. Just as in water waves, where there 
is a constant distance between consecutive cir-
cles of the wave (areas where the water surface 
is high), there is a constant distance between 
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consecutive spheres of the EM wave (areas of 
maximum EM field strength). Again, this dis-
tance is called the wave’s wavelength.

SPEED

EM waves are the only type of wave that does 
not need a medium to propagate. Their speed 
in a vacuum, regardless of their wavelength, is 
the speed of light, which is about 300,000 km/s. 
When EM waves enter a medium, they move 
slower than they do in a vacuum, but not by 

much. Their actual speed in a medium depends 
on the type of medium.

FREQUENCY

The Greek letter ν is used instead of f to represent 
the frequency, and the letter c is used instead of v 
to stand for the speed, so the relation between an 
EM wave’s speed, wavelength, and frequency is 
shown in the following equation:

c = λ · ν

EM waves are grouped into categories 
according to their wavelengths and frequencies  
(Figure 5.6). Radio waves have the longest wave-
lengths and lowest frequencies; gamma rays 
have the shortest wavelengths and the highest 
frequencies.

AMPLITUDE

The amplitude of an EM wave is the difference 
between the maximum strength of the EM field 
due to the wave and the strength of the field if 
there were no wave, just as the amplitude of a 
water wave is the difference between the maxi-
mum height of the water’s surface due to the 
wave and the height of the water’s surface if there 
had been no wave. The greater the amplitude of 
an EM wave, the stronger its intensity.

RESONANCE OF EM WAVES

As described above, every object has natural 
frequencies, which are the frequencies at which 
waves naturally propagate through the system. 
A laser is an example of the resonance of EM 
waves.	 The term laser is an acronym that stands 
for “light amplification by stimulated emission 

FIGURE 5.6

The Electromagnetic Spectrum
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of radiation.” Lasers basically amplify light. EM 
waves are generated at a frequency identical to 
the natural frequency of an apparatus called a 
laser cavity, in which the waves combine and get 
stronger and stronger until they are released out-
side as a strong EM wave with a single frequency, 
called a laser beam. In “The Laser at 50,” Scien-
tific American (2010) provides an overview of the 
past, present, and potential future of lasers.

INTERACTION WITH MATTER

As with other waves, when EM waves reach a 
boundary, they can be reflected, transmitted, or 
absorbed. Light can be reflected in a single direc-
tion by a mirror or in many directions (scattered) 
by any object, which is how we see objects. Light 
is transmitted through glass, air, and many other 
substances. Many EM waves are transmitted 
through concrete, which is how we can use our 
cell phones inside buildings. Finally, EM waves 
are often absorbed by substances, which is why 
cars get hot in the Sun and food gets warm in a 
microwave oven. Whenever any type of wave is 
absorbed, some of its energy is transferred to the 
object absorbing it, and this energy enables some-
thing to happen in that object.

PS4.C: Information Technologies and 
Instrumentation
PS4.C: Information Technologies and Instrumen-
tation explores the question, “How are instru-
ments that transmit and detect waves used to 
extend human senses?”

How do you hear things? Your ears detect 
sound waves. The waves are absorbed by the ear-
drum, making it vibrate, which in turn generates 
a signal which is transmitted to the brain. How 

does a microphone detect sound waves? By the 
same principle: A membrane with a coil attached 
to it absorbs sound waves, causing it to vibrate, 
which generates an electric signal (Figure 5.7). 
For any kind of wave to be detected, it must be 
absorbed. The absorption of the wave transfers 
energy from the wave to the object absorbing the 
wave, and this energy enables something to hap-
pen (see Chapter 4, p. 55, on PS3: Energy).

Let’s look more closely at how a microphone 
works. Microphones are devices that convert 
energy from one form to another. A microphone 
converts sound waves into electric impulses. All 
microphones have one aspect in common: They 
all have diaphragms. A diaphragm is a thin piece 
of material (such as paper or aluminum) that can 
vibrate when struck by a sound wave. When the 
diaphragm vibrates, it causes others parts of the 
microphone to vibrate as well. These vibrations 
are converted into electric signals that become 
the audio signal. A speaker converts the electric 
signal back into a sound wave. The eardrum is 
also a diaphragm, that is, a piece of tissue that 
can vibrate. This idea of a wave being absorbed 
by a material is fundamental to how materials 
can detect and transfer information. So hearing 
is really the detection and conversion of sound 
waves into some other form of vibrations.

FIGURE 5.7

How a Microphone Works

Diaphragm

Audio Signal

Sound
Waves
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HOW DO YOU SEE THINGS?

How we see works on the same principle as how 
we hear. It is vibrations of waves—EM waves—
being absorbed and then converted into another 
signal. EM waves (in the form of light) from objects 
are transmitted to and through your eyes until 
they reach the retina at the back of the eyes where 
they are absorbed, generating a signal that is trans-
mitted to the brain. How does a camera detect light 
waves? Either the light is absorbed by a special 
chip called a charge-coupled device, which gen-
erates an electric signal, or the light is absorbed 
by a special film, causing a chemical reaction that 
creates bright and dark areas on the film. Smart-
phones, like cell phones, detect microwaves (a type 
of EM wave). An antenna absorbs these waves, 
making electrons in the antenna vibrate back and 
forth, thus creating an electric current that can be 
decoded or converted in audio and visual signals. 
GPS systems do the same. Similarly, when you put 
your hand near a heat lamp, your hand absorbs 
infrared light (a type of EM wave), causing your 
skin become warm. All information transfer occurs 
by the absorption and conversion of waves.

GENERATION OF WAVES

As described earlier, any perturbation or distur-
bance that propagates is a wave, so almost any-
thing has the capacity to generate waves. My 
tapping on the keyboard of my laptop generates 
sound waves that travel throughout the laptop 
and the air (that’s how I hear the tapping).

EM waves are generated by two primary 
mechanisms: (1) Any accelerating electric charge 
creates an EM wave. A charge that oscillates back 
and forth (as in an antenna) will generate an EM 
wave that has the same frequency as that of the 
charge’s oscillations. Atoms and molecules in all 

substances are always vibrating randomly. These 
particles have electric charges, so they emit EM 
radiation. At room temperature, this EM radiation 
lies in the infrared range. If it gets hot enough, the 
radiation will move to the visible range (which is 
why hot things glow). (2) In the quantum world, 
every object has possible energy levels. When an 
object transitions from a high energy level to a 
lower one, an EM wave is generated. This is how 
fluorescent lamps work, how solid-state lasers 
(such as the type in a CD player) work, and how 
gamma rays are generated; this is the principle 
underlying the operation of almost all appara-
tuses that use a single EM frequency.

TRANSMISSION OF INFORMATION USING 
WAVES

For information to be transmitted by a wave, it 
needs to be encoded. Information can be encoded 
in analog or digital form. In analog encoding, a 
wave is generated that is similar in “shape” (analo-
gous) to the information being encoded. For exam-
ple, when I say the word wave, my body forces 
the vocal cords in my throat to vibrate in a certain 
manner. These vibrations of my vocal cords change 
the density of the air next to them. This change is 
a perturbation that then propagates away from 
my vocal cords as a sound wave until ears or 
microphones or some other object absorbs part of 
the wave. This continues until it has insufficient 
energy to continue the perturbation to any measur-
able extent, or until other objects absorb the energy. 
If a graph were made of the change in air density 
over time due to this sound wave, it would look 
identical to the displacement of my vocal cords 
over time: They would have the same frequencies.

If you hold two paper cups with a thread 
stretched tightly between them and speak into 
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one end, your voice can be heard at the other 
end. How? The sound waves generated by your 
vocal cords are absorbed by the base of the paper 
cup, making it vibrate. The vibrations of the bot-
tom of the paper cup are analogous to those of 
the sound waves (and therefore analogous to the 
vibrations of your vocal cords). The vibrations of 
the paper cup pull and push on the thread, gener-
ating a sound wave (again, analogous to the prior 
vibrations and waves) which propagates along 
the thread to the other paper cup, and so on. The 
first paper cup acts like a microphone while the 
second is similar to a speaker.

Information can also be encoded digitally. In 
digital encoding, the information is “translated” 
into a code using on-and-off signals, which are 
then transmitted analogously. For example, 
in Morse code, a message is converted into a 
sequence of short signals, called dots, and long 
signals, called dashes, separated by short silences. 
Letters are encoded as unique combinations of 
dots and dashes. In digital media such as audio 
CDs, a sound or EM wave can be encoded in a 
similar way, where bits of information are repre-
sented by combinations of zeros and ones.

How Does Student Understanding 
of This Disciplinary Core Idea 
Develop Over Time?
One of the key features of DCIs is that they can 
be taught and learned over multiple grades at 
increasing levels of depth and sophistication. 
Let’s see how this progression plays out for waves 
and what kind of simple experiences that require 
no special equipment can support them. 

In the discussion below, what students should 
know related to a subcomponent of the core 

idea is shown in italics. This is followed by vari-
ous potential learning tasks that could support 
students as they develop this understanding. 
Learning tasks are described only until the end 
of middle school because most of the ideas that 
are appropriate for high school require the use of 
special equipment.

By the End of Grade 2
PS4.A: WAVE PROPERTIES

•	 Waves in water spread out in circles.

Possible tasks: Students should make repeated 
observations by dropping objects into a tub of 
water and throwing stones into ponds. Have stu-
dents look for patterns. Do the sizes of the waves 
change with the sizes of the rocks? What hap-
pens if the same rock is dropped from different 
heights? Have students make claims based on 
the patterns they observe. Safety note: Make sure 
students wear eye protection (safety glasses or 
goggles) for this task. Use caution when dropping 
objects so as not to injure feet. Immediately wipe 
up any water spilled or splashed on the floor to 
prevent a slip or fall hazard.

•	 The surface of the water moves up and down 
while a wave spreads outward.

Possible tasks: Students can observe this idea 
by first filling a large pot or tub with water, then 
tapping at the water near the center of the tub, and 
finally peering at the water waves with their eyes 
just a bit above the level of the water. Ask students 
to describe what pattern they see. They will clearly 
see the water move up and down. If a little boat is 
placed on the water, they will see it bob up and 
down but not move away with the wave. Have 
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students make claims about the movement of the 
boat based on their observations. Students are not 
expected at this stage to understand that the water 
does not move away with the wave. Safety note: 
Make sure students wear eye protection (safety 
glasses or goggles) for this task. Immediately wipe 
up any water spilled or splashed on the floor to 
prevent a slip or fall hazard.

•	 Vibrating solids can make sounds.

Possible tasks: A plucked guitar string makes a 
sound. Have students feel the string and describe 
what they feel. Students will feel it vibrate if they 
touch it lightly. If they look closely at the string, 
they will also see it vibrating. What happens if the 
string is plucked harder? What do they feel then? 
The same can be done with a tapped tuning fork, 
music triangle, or cymbal. Students can also use a 
rubber band (this type of activity does not neces-
sarily require special equipment). Have students 
stretch the rubber band to different lengths and 
then pluck it. How does this change the vibra-
tions? What happens if they pluck it hard? Have 
students describe the patterns they observe.

PS4.B: ELECTROMAGNETIC (EM) RADIATION

•	 Light is needed to see an object.

Possible tasks: Take a shoe box and cut a hole 
the size of an eye in one end using a utility knife 
(many shoe boxes already have a round hole in 
one end). Glue an object inside the box at the far 
end (away from the hole). With the cover securely 
fixed on the box, have students peek through 
the hole and try to see the object inside. Then, 
open a window on the side of the box near the 
end where the object is glued so that light can get 

inside and have the students look into the box 
again. (You will need to cut this window using a 
utility knife. Make sure you only cut on the sides 
and the bottom so that the window is a flap.) Can 
they see the object now? What is the difference 
between the two conditions? You can also shine 
a light through the hole to provide more light. 
Have students make claims about what is needed 
to see. Have them support their claims with evi-
dence. Safety note: Make sure students wear eye 
protection (safety glasses or goggles) for this task. 
Use extreme caution when working with utility 
knives. Sharps can puncture or cut skin!

•	 Mirrors can redirect light.

Possible tasks: Darken a room, then turn on a 
flashlight and aim it at the wall so that students 
understand that light is coming from the flash-
light and traveling to the wall. Next, place a mir-
ror in the path of the beam and move the mirror 
around so that it reflects the flashlight’s beam in 
different directions. Have students construct a 
model to explain their observations. Safety note: 
Make sure to move all fragile or sharp items 
out of the students' path to prevent injury when 
working in a dark room.

•	 Objects that are very hot give off light.

Possible tasks: Light a burner and hold a wire 
in the flame until it begins to glow. Take it out 
of the flame so that the students see that it still 
glows a bit. Burn a stick of wood under a fume 
hood and blow out the flame so students can see 
that the embers still glow. Show the students a 
video clip of molten metal, molten glass, and 
lava in a volcano. Have students describe the 
patterns they see. Have students make claims 
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based on their observations. Safety note: Make 
sure students wear eye protection (safety glasses 
or goggles) for this task. Use caution when work-
ing with active flames or hot objects. They can 
seriously burn skin!

•	 Some materials let light bounce off them, others 
let light shine through them fully or partially, 
and others don’t let any light get through them, 
creating shadows behind them.

Possible tasks: Obtain a flashlight, a mirror, a 
sheet of white paper, a piece of clear glass, a clear 
CD case, and a key. Darken the room and shine 
a light on a mirror. Have students describe what 
they see. Students should observe that the light 
from the flashlight bounces off the mirror. Hold 
the piece of paper perpendicular to a wall and 
shine the flashlight on it at a 45º angle. Have stu-
dents describe what they see now. An illuminated 
area on the wall will be seen, even though the 
flashlight is not pointing there, so the light must 
be bouncing off the sheet of paper. Now shine the 
flashlight at the glass and the CD case. Have stu-
dents describe their observations. Students will 
see that the light goes through the glass and the 
CD case. Now shine the flashlight at the key. Have 
students describe what they see. The flashlight 
cannot be seen from behind the key, so it must be 
blocking the light; a key-shaped shadow is made. 
Have students make claims about the behavior of 
light and support their claims with evidence from 
their observations. Safety note: Make sure to move 
all fragile or sharp items out of the students' path 
to prevent injury when working in a dark room.

PS4.C: INFORMATION TECHNOLOGIES AND 
INSTRUMENTATION

•	 People can detect light with their eyes, sound 
with their ears, and vibrations with their 
fingertips.

Possible tasks: Blindfold students using a good 
sleep mask that blocks the light, and then turn a 
flashlight on and off while its beam is aimed at 
the wall. Ask the students if they can tell when 
the flashlight is on and when it is off. Have stu-
dent explain why they can’t see anything. Have 
students cover their ears tightly and turn around 
so that they’re facing the back of the class. Do a 
few things that make sounds, such as tapping on 
a table, hitting a tuning fork, and whistling. After 
the students remove their hands from their ears, 
have them write down which sounds they heard 
you make. For feeling vibrations see the former 
activity on a vibrating string.

•	 Many different devices are used to communicate 
over a distance.

Possible tasks: Have students discuss in 
groups and build evidence statements showing 
that devices such as telephones, cell phones, and 
walkie-talkies communicate over a distance, with-
out delving into how the devices work. Have stu-
dents build a string telephone by attaching a 10 ft. 
string to two paper cups. First, cut a small hole in 
the bottom of one cup and thread the string through 
it. Then, secure the string by making a small knot. 
Next, make a small hole in the other paper cup and 
thread the string through it. Secure it by tying a 
knot. Now have students stretch the string. Have 
one student quietly talk into one of the cups and 
have the other listen by holding the other cup to 
his or her ear. Have students make models of how 
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they can hear each other talking using this method. 
Have them explore with different types of strings 
and cups. Have them also see how long a string 
can be before they can no longer hear each other. 
Safety note: Make sure students wear eye protec-
tion (safety glasses or goggles) for this task.

By the End of Grade 5
PS4.A: WAVE PROPERTIES

•	 Waves can have different amplitudes or 
wavelengths and can constructively or 
destructively interfere with one another.

Possible tasks: To help students understand 
that waves have these properties, use a stretched 
Slinky on the floor. Have one student hold one 
end fixed and another student move the other 
end of the Slinky back and forth sideways at a 
constant frequency. Waves will travel along the 
toy. Have students describe the pattern they see. 
The wavelength between consecutive peaks will 
be clearly visible. Next have the student moving 
the free end of the Slinky continue to do so at the 
same frequency but with smaller or larger move-
ments. Ask students to describe the changes they 
see. The change in the amplitude of the waves will 
be apparent. Then, have the student shaking the 
Slinky move the free end back and forth at a higher 
or lower frequency. What pattern do the students 
observe now? The faster the free end moves back 
and forth (i.e., the higher the frequency), the 
smaller the wavelength will be, meaning that the 
consecutive peaks will be closer to each other, and 
vice versa, the slower the free end moves back and 
forth (i.e., the lower the frequency), the larger the 
wavelength will be. Have students make claims 
about the types of waves they observe and have 
them support their claims with evidence.

Next, have both students move their ends of the 
Slinky, not back and forth, but only once, creating 
a single peak that travels along the Slinky (actu-
ally two peaks, one from each end, traveling in the 
opposite direction). The students should create 
the pulse at the same time, moving their hands in 
the same direction so that both peaks are on the 
same side of the Slinky. Ask students to describe 
what they observe now. When the two peaks 
meet each other, they pass through each other, but 
when they are one on top of the other, they com-
bine “constructively” so that the peak generated is 
the sum of both peaks. This is called constructive 
interference and is an example of wave superpo-
sition. Have the students repeat this exercise, but 
this time have them move their hands in opposite 
directions so that the peaks are on different sides 
of the Slinky. What pattern do students observe 
this time? When the peaks pass through each 
other, they combine “destructively” so that the 
new peak generated is smaller than each individ-
ual peak. There will be moments when there is no 
peak. This is called destructive interference and 
is another example of wave superposition. Safety 
note: Make sure students wear eye protection 
(safety glasses or goggles) for this task. Make sure 
there is a cleared path for Slinky movement on the 
floor or table top to prevent accidental damage.

PS4.B: ELECTROMAGNETIC (EM) RADIATION

•	 Light from an object needs to enter the eye to be 
seen.

Possible tasks: Glue a small object in a shoe box 
so that it is at the opposite end from the finger/ 
eye hole that most shoe boxes have (if the shoe 
box doesn’t have a hole, cut one into the box using 
a utility knife, being sure to keep the knife away 
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from students). Hold the cover tightly on the 
box so that no light can enter it. Now peer at the 
object through the hole (see a description of this 
exercise in the By the End of Grade 2 section for 
PS4.B, p. 88). Have students describe what they 
see. Students should not be able to see the object 
because no light is reaching it, so no light can be 
scattered by it to their eyes. Now lift the cover of 
the box just a bit so that a crack of light can enter 
at the side near the object (or cut a flap in the shoe 
box near the object). Once again, peer through 
the hole. This time students should be able to see 
the object because light is reaching it and being 
scattered by it to their eyes. Have students con-
struct a model that explains why they can see 
the object when the flap is open but not when 
the flap is closed. This model can be extended to 
explain why we can see through glass and why 
light reflects off a shiny surface such as that of a 
mirror. Safety note: Make sure students wear eye 
protection (safety glasses or goggles) for this task. 
Use caution when using a utility knife. Sharps can 
puncture or cut skin!

•	 The color of an object depends on the color of the 
light illuminating it and the properties of the 
object.

Possible tasks: Take a flashlight, a red apple, 
a green leaf, and two pieces of clear wrapping 
paper, one blue and one red. Go into a completely 
dark room. Place the apple and the leaf side by 
side. Illuminate them with the flashlight, holding 
the blue transparent paper between the flashlight 
and the objects so that both objects are illuminated 
with blue light. What do you see? What colors do 
the objects appear to be? Now replace the blue 
transparent paper with the red paper and repeat. 
What colors do the objects appear to be now? Have 

students make claims and support their claims 
with evidence. Safety note: Make sure students 
wear eye protection (safety glasses or goggles) for 
this task. Make sure there is a cleared path where 
students are moving in the dark to prevent injury.

•	 Lenses bend light and can be used to magnify 
images of objects.

Possible tasks: In a dark room, using a laser 
pointer, direct a beam of light at a table at an angle. 
Now place a lens between the laser pointer and the 
table so that the beam passes through it. Change 
the angle of the lens so that the laser reaches it at 
different inclinations. Have students describe their 
observations. The spot on the table illuminated 
by the beam should move around as you tilt the 
lens, showing that the lens is bending and redi-
recting the beam. Also, if the lens is thick enough, 
you should be able to see the beam going through 
the lens itself and changing directions as it enters 
and leaves the lens. Safety note: Caution students to 
never look directly at the laser light beam. Never 
intentionally direct a laser beam toward your eyes 
or the eyes of others. Direct eye contact can cause 
serious eye tissue damage! Do not point a laser 
pointer at a shiny or mirror-like surfaces such as 
polished metal or glass. The reflected beam can 
hit you or someone else in the eye. Some states and 
school districts do not allow the use of a laser pointer for 
classroom activities. Check state regulations and school 
board policies before using a laser pointer.

PS4.C: INFORMATION TECHNOLOGIES AND 
INSTRUMENTATION

•	 Information can be digitized and transmitted.
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Possible tasks: Show your students Morse 
code. Have them translate the sentence “Be my 
friend” into Morse, and then, using a flashlight, 
flash this message to other students. Have stu-
dents invent other simple three-word sentences, 
encode them into Morse, and send them to others 
with a flashlight for decoding. This is an example 
of sending information digitally.

•	 Technologies can be used to detect digitized 
signals.

Possible tasks: Have students use their cell 
phones to make videos of their friends sending 
them Morse-based messages with a flashlight (as 
described in the former activity). Or, have stu-
dents call each other on their cell phones, and 
then have them tap out a Morse-based message 
on their cell phones. Discuss how the video and 
wireless technologies in their cell phones have 
detected digitized signals.

By the End of Grade 8
PS4.A: WAVE PROPERTIES

•	 A wave is defined by its amplitude, wavelength, 
frequency, and medium.

Possible tasks: Repeat the first set of activities 
described above about wave properties for the 
end of grade 5 (p. 90) but use two or three differ-
ent Slinkys, for example, a metal and a plastic one 
or two metal ones of different diameters. Have stu-
dents make claims about the behavior of the Slinky 
and then support their claims. Different Slinkys 
can serve as different mediums, leading to different 
wave velocities. Have students measure the wave-
length and the frequency of the waves generated 
at different frequencies, and from them calculate 

the wave velocity for each Slinky. They should be 
different but almost independent of the wave fre-
quency. Safety note: Make sure students wear eye 
protection (safety glasses or goggles) for this task. 
Make sure there is a cleared path for Slinky move-
ment on the floor or table top to prevent accidental 
damage.

•	 Waves can be used to probe the Earth’s 
structure.

Possible tasks: Bring photos of an embryo 
made with an ultrasound imager and explain how 
the ultrasound imager uses high-frequency sound 
waves that are transmitted through the body and 
reflected at the surfaces of the different organs. The 
reflected waves are detected and then decoded 
to generate a picture of organs or an embryo. 
Likewise, seismic waves (sound waves traveling 
through the Earth) can be reflected from different 
parts and layers in the Earth and then detected by 
us at the surface. Decoding these waves allows us 
to learn about the structure of the Earth.

If you have a motion detector, you can use it 
to determine how far above the ground various 
objects are. A motion detector uses sonar waves 
and software to detect the distance of an object. You 
can use this feature to map the profile of a land-
scape you create in your classroom. Place boxes 
and other objects on the floor of the classroom and 
use the motion detector to trace the profile. Have 
students draw representations of the observations 
from the data of the motion detector. Safety note: 
Use caution when working around boxes on the 
floor. They are potential trip or fall hazards.

PS4.B: ELECTROMAGNETIC (EM) RADIATION

•	 When light shines on an object, it is reflected, 
absorbed, or transmitted through the object, 
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depending on the object’s material and the 
frequency (color) of the light.

Possible tasks: Repeat the activities about 
wave properties and color for the end of grade 5 
(pp. 90–92). Explain how the colored plastic wrap 
“colors” the white light from the flashlight by 
selectively allowing certain colors (wavelengths) 
to be transmitted and reflected while others 
are absorbed. Now explain how the apple and 
leaf selectively reflect certain colors of light and 
absorb others, and describe how this makes them 
appear different colors. Now take an object with 
a different color and have students explain why 
it has that color. Look though a prism at the edge 
of an object that is bright (preferably white) on 
one side and dark (preferably black) on the other 
side, such as a sheet of paper that is white on one 
half and black on the other half. Ask students 
to describe what they see. The visible spectrum 
should appear. Explain how all the different col-
ors of light, although they reach the prism in the 
same direction from the edge of the border, leave 
the prism in different directions because they are 
diffracted differently by the prism, which allows 
us to distinguish among them. Safety note: Make 
sure students wear eye protection (safety glasses 
or goggles) for this task.

PS4.C: INFORMATION TECHNOLOGIES AND 
INSTRUMENTATION

•	 Technologies allow us to detect and interpret 
waves and signals in waves that cannot be 
detected directly.

We are immersed in a sea of EM waves but are 
totally unaware of them. A cell phone can allow us 
to detect and interpret some of them, as can other 

appliances that have or act as antennas, such as 
ultraviolet beads or an ultraviolet intensity meter.

By the End of Grade 12
As mentioned earlier, learning tasks that can 
be used to support these understandings are 
not described here because all the ideas that are 
appropriate for high school require the use of 
special equipment. The Acoustics and Vibration 
Animations website (www.acs.psu.edu/drussell/
demos.html) from the University of Pennsylvania 
acoustics program contains a number of appro-
priate animations illustrating acoustics, vibration, 
waves, and oscillation phenomena. The PhET sim-
ulations (phet.colorado.edu/en/simulations/category/
physics/light-and-radiation) from the University of 
Colorado also have a number of interactives to 
illustrate light phenomena. A number of commer-
cial companies also sell light probes that will allow 
students to explore various wave properties.

PS4.A: WAVE PROPERTIES

•	 Waves of different frequencies can be combined 
to encode and transmit information.

•	 During resonance, waves in phase add up, 
growing in amplitude. Most objects have specific 
frequencies at which they resonate. This is the 
basis for the design of all musical instruments.

PS4.B: ELECTROMAGNETIC (EM) RADIATION

•	 EM radiation can be described as either waves 
of EM fields or as particles called photons.

•	 We can only identify an object with waves 
that have a wavelength that is similar to that 
of the object’s size because waves are not much 
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disturbed by objects that are small compared 
with their wavelengths.

•	 All EM waves travel through a vacuum at the 
speed of light. The speed of an EM wave in any 
medium depends on its wavelength and the 
properties of the medium.

•	 When EM radiation with a wavelength equal to 
or longer than that of visible light is absorbed 
by matter, its energy is generally converted into 
thermal energy within the matter. EM radiation 
with shorter wavelengths can ionize atoms 
and cause damage to living cells. Photovoltaic 
materials emit electrons when they absorb EM 
radiation of a high enough frequency.

•	 The atoms of each element and the nuclei of 
each isotope emit and absorb characteristic 
wavelengths of EM radiation.

PS4.C: INFORMATION TECHNOLOGIES AND 
INSTRUMENTATION

•	 Many modern technologies are based on an 
understanding of waves and their interactions 
with matter.

•	 Knowledge of quantum physics has enabled 
the development of semiconductors, computer 
chips, and lasers, all of which are now 
essential components of modern imaging, 
communication, and information technologies.

Conclusion
It is important for all students to construct a deep 
understanding of waves because waves are central 
to almost all 21st-century technologies and many 
older technologies. Wave phenomena allow sci-
entists to examine the very small world of atoms 
or explore galaxies that are very far away. Waves 
also allow us to communicate large amounts of 

information quickly and reliably over long dis-
tances. Waves are ubiquitous and play a role in 
many phenomena. Many of the central issues fac-
ing society today cannot be fully appreciated with-
out an understanding of waves. For example, a cell 
phone company wants to place cell phone anten-
nas at the end of the street near your home. Should 
you be concerned? Do these antennas pose a health 
hazard? One cannot understand many aspects of 
this issue without having a deep understanding 
of waves. Without this understanding, it is diffi-
cult to answer important questions such as these:  
How does the radiation from the antennae travel 
to my home? How does this radiation get through 
the walls in my home? How strong is this radiation 
when it reaches my family and me? What happens 
to my body when this radiation reaches it? A per-
son cannot be scientifically literate in this century 
without a basic understanding of waves. Waves are 
a big idea of science.
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Goals for science learning, vii, 4, 6, 281. See also 

specific disciplinary core ideas
Google Earth, 221
Gouvea, Julia Svoboda, 97
GPS systems, 75, 86
Grand Canyon, 189
Grant, Peter, 170
Grant, Rosemary, 170
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by end of grade 12, 94
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for plant growth, 68, 69, 105, 105, 109, 110, 

132, 135
redirection by mirrors, 85, 88, 89
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Lungs, 102, 108, 111, 150, 174
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Electromagnetic forces
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March of the Penguins, 136, 137–138
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conservation of, 20, 21, 21, 22
gravitational force and, 41, 42, 43, 49, 50, 
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in motion inversely related to, 38
measurement of, 132
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momentum and, 39
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approaches to teaching about, 27–29
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velocity and, 35
of waves, 80

earthquake waves, 219
electromagnetic waves, 84, 94
sound waves, 80

Sperm, 97, 103, 117, 149, 152
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effects, 44, 44
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stable vs. unstable systems, 44
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Stadium wave, 77, 77, 78
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life cycles of, 185, 187, 194
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release of energy from, 15, 25
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white dwarf, 194

Stellarium simulation, 197
Stem cells, 99, 103, 107, 114, 145, 150, 157
Stereo systems, 75, 82
Stomach, 102, 104, 111
Stream invertebrates study, 141–142
Structure and Function (LS1.A), 96, 99, 100–101, 

115, 283
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grades 3–5, 110–111
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grades 9–12, 114

Structure and Properties of Matter (PS1.A), 10, 
14–15, 283

development of understanding over time, 

14–15
grades K–2, 16–17
grades 3–5, 17, 18–20, 19
grades 6–8, 21, 22–23
grades 9–12, 25–26

Subatomic model, 16, 21, 24, 25–26, 30
Sun, 186–197

apparent motions in sky, 186, 187, 189, 190, 
191, 195, 197–198

energy released from, 15, 25, 69–70
for plant growth, 105, 113, 132, 177
weather, climate and, 212–214, 217, 

218, 219
formation of, 193, 194, 196, 198
gravitational forces applied by, 39, 49–50, 

191
orbiting of planets around, 44, 49, 51, 52, 

191, 192
size and distance from Earth to, 187, 

189–190, 192, 198
using physical models of, 197–198

Supernova, 57, 194
Superposition of waves, 80–81, 81

T
Tacoma Narrows Bridge collapse, 82
Tanner, K. D., 214
Tanner, Roberta, 72
Taste perception, 106, 111
Technology in Practice: Applications and 

Innovations curriculum, “Designing 
Environmental Solutions” module, 267, 273, 
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Telephones, 89
cell phones, 11, 43, 75, 83, 85, 86, 89, 92, 

93, 94, 273
Telescopes, 75, 188, 189, 264, 274–276, 275
Temperature, 60, 61, 64, 69, 132

of body, 114, 115
boiling point of different substances, 13, 

52, 52
of celestial objects related to distance from 

the Sun, 192, 212
changes in gas particle motion with, 29, 29
climate, weather and, 209, 211, 212, 218
detection by pop-up turkey timer, 271
in early universe, 187, 195
energy transfer and, 63
global increase in, 214, 229–230, 231, 233, 

234
kinetic energy and, 19, 57, 67
of oceans, 218
seasonal changes in, 188, 190–191, 194, 

197
species-specific tolerance for, 137
speed of sound related to, 80

Tetherballs hanging from a pole, 45–46
Theory of refraction, 275
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Transfer RNA (tRNA), 147, 162
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and Energy Transfer (PS3.B)
Transverse waves, 77, 77
Trisomy 21, 149, 150
Tsunamis, 226, 231
Tuning fork, 78, 82, 88, 89
Twins, 97, 151
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mediation of forces by four fundamental 
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U
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182, 185–201, 227
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187
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155, 157, 157
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Vibrations, sound waves generated by, 63, 64, 
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absorption, storage, and release of energy 
by, 210, 211

adding food coloring to, 19
boiling of, 2, 13, 24, 48
dissolving in, 24, 28, 210, 211, 219–220
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by end of grade 8, 92
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what moves when a wave moves?, 77–78
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by end of grade 2, 87–90
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Weathering, 190, 205, 216, 218, 219

chemical, 210
mechanical, 210, 219

Web-based Inquiry Science Environment’s 
(WISE) curriculum, 120

Weights hanging from string, 46, 48–49, 50
Welty, Ken, 257
WestEd’s SimScientists, 119, 119

Copyright © 2017 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions. 
TO PURCHASE THIS BOOK, please visit www.nsta.org/store/product_detail.aspx?id=10.2505/9781938946417



300 NATIONAL SCIENCE TEACHERS ASSOCIATION

INDEX

“Whispers of Willing Wind” unit, 265, 273, 277
Wildfires, 227
Wind, 68, 214, 215, 216
Wind turbines, 67, 266, 273

Wisconsin Fast Plants, 160

X
X-rays, 10, 75, 153

Y
Yager, Robert E., 265

Copyright © 2017 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions. 
TO PURCHASE THIS BOOK, please visit www.nsta.org/store/product_detail.aspx?id=10.2505/9781938946417



Grades K–12 PB402X
ISBN: 978-1-938946-41-7

Physical science 
core ideas  

explain phenomena 
as diverse as why 

water freezes and how 
information can be 

sent around the world 
wirelessly. 

Life science  
core ideas  

explore phenomena such 
as why children look 

similar but not identical 
to their parents and how 
human behavior affects 

global ecosystems.

Earth and space 
science core ideas  

focus on complex 
interactions in the Earth 

system and examine 
phenomena as varied as  
the big bang and global 

climate change. 

Engineering, 
technology, and 
applications of 

science core ideas  
highlight engineering 
design and how it can 
contribute innovative 
solutions to society’s 

problems. 

Disciplinary Core Ideas can make your science lessons more coherent and memorable, regardless 
of what subject matter you cover and what grade you teach. Think of it as a conceptual tool 
kit you can use to help your students learn important and useful science now—and continue 
learning throughout their lives.

Like all enthusiastic teachers, you want your students to see the connections between 
important science concepts so they can grasp how the world works now—and maybe even 
make it work better in the future. But how exactly do you help them learn and apply these 

core ideas? 

Just as its subtitle says, this book aims to reshape your approach to teaching and your students' 
way of learning. Building on the foundation provided by A Framework for K–12 Science Education, 
which informed the development of the Next Generation Science Standards, the book's four 
sections cover these broad areas:
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