

CITIZEN SCIENCE

Edited by
NANCY M. TRAUTMANN
JENNIFER FEE
TERRY M. TOMASEK
AND NANCYLEE R. BERGEY

Claire Reinburg, Director Andrew Cooke, Senior Editor Amanda O'Brien, Associate Editor Wendy Rubin, Associate Editor Amy America, Book Acquisitions Coordinator Art and **D**esign Will Thomas Jr., Director Joe Butera, Senior Graphic Designer, cover and interior design

PRINTING AND PRODUCTION Catherine Lorrain, Director

NATIONAL SCIENCE TEACHERS ASSOCIATION David L. Evans, Executive Director David Beacom, Publisher

1840 Wilson Blvd., Arlington, VA 22201 www.nsta.org/store
For customer service inquiries, please call 800-277-5300.

Copyright © 2013 by the National Science Teachers Association. All rights reserved. Printed in the United States of America. 16 15 14 13 4 3 2 1

NSTA is committed to publishing material that promotes the best in inquiry-based science education. However, conditions of actual use may vary, and the safety procedures and practices described in this book are intended to serve only as a guide. Additional precautionary measures may be required. NSTA and the authors do not warrant or represent that the procedures and practices in this book meet any safety code or standard of federal, state, or local regulations. NSTA and the authors disclaim any liability for personal injury or damage to property arising out of or relating to the use of this book, including any of the recommendations, instructions, or materials contained therein.

PERMISSIONS

Book purchasers may photocopy, print, or e-mail up to five copies of an NSTA book chapter for personal use only; this does not include display or promotional use. Elementary, middle, and high school teachers may reproduce forms, sample documents, and single NSTA book chapters needed for classroom or noncommercial, professional-development use only. E-book buyers may download files to multiple personal devices but are prohibited from posting the files to third-party servers or websites, or from passing files to non-buyers. For additional permission to photocopy or use material electronically from this NSTA Press book, please contact the Copyright Clearance Center (CCC) (www.copyright.com; 978-750-8400). Please access www.nsta.org/permissions for further information about NSTA's rights and permissions policies.

Cataloging-in-Publication Data are available from the Library of Congress for both the print and e-book versions of this title.

This material is based upon work supported by the National Science Foundation under a number of grants. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

CONTENTS

Acknowledgments

İΧ

About the Editors

Xi

Preface

Why Citizen Science?

XIII

Chapter 1

What Is Citizen Science?

1

Chapter 2

Why Use Citizen Science in Your Teaching?

7

Chapter 3

Implementation Strategies

15

Chapter 4

Case Study: Connecting With Students Through Birds

by Jennifer Fee, Liam Curley, and Nancy M. Trautmann

23

Chapter 5

Case Study: The Mysteries of Monarchs

by NancyLee R. Bergey

33

Chapter 6

Case Study: Amphibians and Reptiles

by Terry M. Tomasek

41

Chapter 7

An Integrative Approach to Studying Our Changing Planet

by Nancy M. Trautmann

CONTENTS

L E S S

Lesson 1

Whale Song Project

by Debra Taylor Hall

57

Lesson 2

It's Been a Hard Day's Flight: Determining Daily Flight Distances of Monarch Butterflies

by Heather Brubach

65

Lesson 3

Terrestrial Invertebrates

by Susan Sachs

77

Lesson 4

Signs of Spring: Earthworm Inquiry

by Jill Nugent

85

Lesson 5

Animated Maps for Animated Discussions

by Jennifer Fee

93

Lesson 6

Bird Migration Patterns in My Area

by Jennifer Fee

101

Lesson 7

Habitat Matters: YardMap Your School Yard

by Nancy M. Trautmann, Jennifer Fee, and Jennifer Goforth

113

Lesson 8

Winter Twig Investigation

by Patricia Otto and Jane Ulrich

121

Lesson 9

Flight of the Pollinators:
Plant Phenology
From a Pollinator's Perspective

by Brian Haggerty, Alisa Hove, Susan Mazer, and LoriAnne Barnett

131

Lesson 10

Ozone Bio-Monitoring Garden Study

by Susan Sachs

N S

Lesson 11

Turtle Trackers
by Jill Nugent
149

Lesson 12

Who's Out There? A Calling Amphibian Survey

by Terry M. Tomasek and Jill Nugent

155

Lesson 13

Wetland Discovery

by Terry M. Tomasek and Danielle Marchand

165

Lesson 14

Using Inland and Coastal Citizen Science Opportunities to Study Marine Food Webs

by Melissa K. Demetrikopoulos, Lee G. Morris, and Wesley D. Thompson

173

Lesson 15

Tree Squirrels: Narrators of Nature in Your Neighborhood

by Steve Sullivan, Kristi Backe, and Michelle Rabkin

185

Appendix 1

Lessons Mapped to Scientific Practices

Appendix 2

Lessons Mapped to Crosscutting Concepts 201

Appendix 3

Lessons Mapped to Key Science Topics 203

Appendix 4

Lessons Mapped to Science Process Skills 205

Appendix 5

Lessons Mapped to Primary Location and Season 207

Index

Acknowledgments

This book was inspired by conversations at an NSTA National Conference among educators involved in citizen science. It represents extensive collaboration between curriculum specialists, science teachers, and scientists, some of whom are named as lesson authors and others of whom contributed vital reviews of lesson strategies and scientific content. The lessons were selected through a competition that yielded more high-quality lessons than we were able to include, and we extend deep thanks to all who participated. Jennifer Goforth served as our indispensible research and writing intern, and Irka Elsevier as a key editorial advisor. Many of the citizen science and education efforts represented in this book have been supported by grants from the National Science Foundation.

About the Editors

Nancy M. Trautmann is Director of Education at the Cornell Lab of Ornithology, where she leads a team that creates educational resources and experiences aiming to spark curiosity, build science skills, and inspire conservation action (www.birds. cornell.edu/education). She is lead author in the Cornell Scientific Inquiry Series published by NSTA Press, with titles including Assessing Toxic Risk, Decay and Renewal, Invasion Ecology, and Watershed Dynamics. She holds a doctorate in computer supported collaborative learning, and her academic interests center on engaging students in scientific research and citizen science, supporting effective teacher professional development, and exploring the potential of educational technology in supporting student collaboration and project-based learning.

Jennifer Fee is the Manager of K–12 Programs at the Cornell Lab of Ornithology. She is the lead author of the BirdSleuth curriculum (*www.birdsleuth.org*), with modules including Most Wanted Birds, Afterschool Investigators: Nature Detectives, and Investigating Evidence. She is interested in sharing citizen science and inquiry-based teaching with educators, particularly through curricula and online and inperson professional development workshops. She is a graduate from Truman State University (BS in Biology) and Illinois State University (MS in Behavior, Ecology, Evolution, and Systematics).

Terry M. Tomasek is an Associate Professor in the Department of Teacher Education at Elon University (North Carolina) where she is the Secondary Science Program Coordinator and teaches courses in Educational Assessment, Principles of Learning and Teaching, and General Studies. She is broadly interested in herpetology and engaging high school students in scientific investigations. She received her PhD in Science Education from the University of North Carolina at Greensboro, and her academic interests center on engaged learning and supporting effective teacher professional development.

NancyLee Rodenberg Bergey teaches science in elementary and middle schools as Associate Director of Teacher Education at the Graduate School of Education at the University of Pennsylvania. Before coming to Penn full-time, NancyLee taught, primarily science, for 29 years in schools that spanned the public/independent, urban/suburban, and elementary/middle school range. She also served as an adjunct professor at several colleges as well as writing for and teaching in a number of museums. Her current work focuses on improving science teaching in urban schools through the involvement of undergraduate science students and a focus on urban environmental issues.

Preface

Why Citizen Science?

Observing the life cycle of monarch butterflies and following their remarkable migratory journeys between Canada, the United States, and Mexico...

Tracking climate change by recording the dates of first leaf, flower, and fruit of local trees, shrubs, flowers, and grasses...

Discovering which bird species migrate, where they go, and when...

Exploring life cycles and population dynamics of frogs, toads, and other animals in nearby ponds...

itizen science projects such as those listed above gather data through public collaboration in scientific research. Who are the "citizens" who take part in such efforts? Some are students and others are interested or concerned individuals from all walks of life. Together, professional and volunteer scientists collaborate to investigate biological and environmental trends over regions and timelines far broader than anyone could tackle individually.

For teachers, citizen science offers a way to motivate and inspire students through participation in research that is relevant both locally and globally. Students build meaningful connections to the natural world as they make observations, collect data, and view their findings within the broader scope of the project. When students design and conduct their own investigations, they also build science practice understandings and analytical reasoning skills through their involvement in citizen science.

In this book, we profile several scenarios of middle school classes engaging in citizen science and provide 15 lessons that present specific ways to build citizen science data collection and analysis into your science teaching. The lessons are organized around the 5E Instructional Model to progress from engagement and exploration through explanation, elaboration, and evaluation, and they engage students in the full range of science practices delineated in the *Next Generation Science Standards* (*NGSS*).

We invite you to dig in and become part of the exciting and rapidly growing citizen science movement. Your students will not only learn science, they will be scientists, and their projects will bring biological and environmental science to life in your classes. What better way to fulfill the *NGSS* mandate to couple science practice with content and give students a real-world context in which to apply what they are learning?

Bird Migration Patterns in My Area*

by Jennifer Fee, Cornell Lab of Ornithology

Overview

Students consider indicators of climate change, interpret various representations of eBird citizen science data, and reflect on how their actions as citizen scientists can assist in better understanding bird migration as a local indicator of climate change.

Learning Objectives

Students will be able to:

- Define *migration* and relate it to habitat preferences of individual bird species
- Use citizen science data outputs to interpret trends in bird migration occurrence and timing
- Name at least two factors that impact changes in animal populations over time

Big Idea

Trends in citizen science data collected over time can indicate the influence of changes in habitat, including those caused by climate change.

Citizen Science Connection

eBird (http://ebird.org)

Time Required/Location

90-120 minutes, indoors

^{*} Modified from Bird Migration: A Local Indicator of Climate Change, by Julia Skolnik and Jessica Jones, The Franklin Institute

Resources Needed

- Computers with internet access
- Projector and screen
- Speakers
- Handout
- Additional resources on bird migration patterns (optional)

Background Information

Although migrating birds use photoperiod (length of daylight) as their major guide during migration, they will use local favorable weather conditions to their advantage as well. eBird is a citizen science project in which anyone, anywhere in the world, can submit their bird sightings online. The massive database housing these results is proving valuable to scientists conducting research on a variety of topics including adaptations of bird species to changes in climate or other aspects of the environment. A recent study using eBird data found that many migratory species, including the red-eyed vireo and scarlet tanager, tend to arrive at their nesting grounds earlier in warm years and later in cold years. However, other species such as the barn swallow and eastern wood-pewee do not seem to be adapting in this way to climate variation, and their populations may be suffering as a result (Hurlbert and Liang 2012).

See Chapter 4, "Case Study: Connecting With Students Through Birds," for further information and stories about teachers integrating eBird and animated maps into their science teaching.

Conducting the Activity

Engage

- 1. Ask students about the birds they have observed in their yards, at school, or at a local park:
 - a. What kinds of birds have you seen? If you don't know the names, what do they look like?
 - b. Which species do you notice year-round? Are there others that you see only in the summer or only in some other season? What is migration?

- c. Where do you typically see birds?
- d. Are the birds you see usually alone or in groups? What are they doing?
- 2. Watch video about changes in timing of bird behavior at *www.fi.edu/birds* (Bird Behavior). Engage students in a discussion about observed changes in bird behavior.
 - a. Ask: What evidence of changes in migration timing were noted in the video? What is changing about birds' behavior patterns? What have scientists noticed? What did the scientists say this could mean?
 - b. Why do you think this is happening? Do you think it is a problem? Why or why not?

In a warmer than usual spring, insects emerge and plants bloom earlier than usual. Migratory birds may not arrive in time to sync with these food sources because they cannot perceive and respond to cues when they are in their wintering ground hundreds or perhaps even thousands of miles away.

3. Ask students, "What is citizen science?"

Citizen science refers to efforts in which volunteers partner with professional scientists to collect or analyze data. In the eBird citizen science project, any person anywhere in the world can submit information about the birds they have observed. This is creating a massive database with over one million new bird observations entered each month! The data are useful for exploring bird population dynamics and relationships to habitat. For example, we will use eBird data to find out what bird species live in our area, and which of them migrate. The data also are useful in tracking responses to global climate change such as changes in location of individual species or the timing of their migratory flights. See Chapter 1, "What Is Citizen Science?" for more information.

Explore

1. Using eBird's "Explore Data" function, select "Bar Charts" and select your state or other region of interest. Figure 6.1 shows an example chart for New York State. Take a look at the bar charts for your area. Do you see any species with thick green bars stretching across the entire year? (These species

FIGURE 6.1.

Bar chart showing monthly occurrence of bird species in New York State

(Only a portion of the full list is shown here.)

are present year-round.) And other species for which the green bars get much shorter or disappear entirely in certain seasons? (These species are migratory.) Looking at the bar chart for your area, what are some species that remain year-round? Are there others that migrate to your area for the summer breeding season? Are others present only in winter months, or pass through and are seen only during the spring and fall migratory periods?

In Figure 6.1, for example, you can see that eastern bluebirds and American robins are seen in New York year-round, whereas veeries and wood thrushes are seen there only in summer months. The gray-cheeked thrush migrates through New York in spring and fall, but isn't present in summer or winter.

2. Using eBird's "Line Graphs" function, create a graph comparing frequency of sightings of two bird species—one that is migratory and another that is resident year-round. For example, in Figure 6.2 you can see that yellow warbler sightings drop almost to zero in winter months in New York, whereas northern cardinals are commonly seen year-round.

FIGURE 6.2.

Frequency of sighting of northern cardinals and yellow warblers in New York State

3. Discuss the meaning of *frequency* as used in these graphs.

In eBird, "Frequency" refers to the percentage of birding checklists within a defined region and range of dates that include that particular species. A simpler way to think about this is that it represents the chance you would see this species if you were to go birding in that region at that time of year.

4. Ask students why they think one species stays through the winter and another migrates to a different wintering ground?

In this case, the yellow warbler eats insects, which are not present in New York in the winter. In contrast, the northern cardinal eats seeds that are available all winter long. The beaks of these two species are quite different and adapted for eating these specific types of foods.

Explain

As a group, investigate whether migratory species in your area have changed their migratory habits over the years.

- 1. List up to five species that are found in your area only during the summer. These are migratory species that breed in your state. For example, using Figure 6.1, the Veery and Wood Thrush would be excellent choices.
- 2. Again navigate to the "Explore Data" tab and click on the "Line Graph" option. Select up to five species of interest that migrate. Set Location to your state and Date Range to "1900–1965." Grab a screen capture of the resultant graph (see Figure 6.3 as an example, p. 108). Then run again with the date set to "2010" ending with the current date (see Figure 6.4, p. 109). Again grab a screen capture so you will be able to compare to the historic query.

Note differences in the two graphs (and look up explanations if possible). In this example, it is evident that the turkey vulture overwinters in New York in recent years, but didn't arrive until March in the historic query. What are some explanations?

Climate change is one possible explanation. However, other habitat changes also could be responsible. For example, a student could suggest that more automobile traffic is leading to more road kill. More dead animals means more food for scavenging turkey vultures, an explanation that has nothing to do with climate change. Also note that the differences in sample size could also account for some differences—with more checklists entered in recent years, there is a greater chance that someone will detect a species.

The wood Thrush arrives around the same date historically and today (around April 15), but it is reported less frequently today than in the past. What are some explanations?

According to the All About Birds website, wood thrush is a forest species that has declined 43% since 1966, with threats to both its North American breeding grounds and Central American wintering grounds. Forest fragmentation in North American forests has resulted in both increased nest predation and increased cowbird parasitism, significantly reducing their reproductive success. Another factor is acid precipitation. A study by the Cornell Laboratory of Ornithology was the first large-scale analysis that linked acid rain to this thrush's decline, attributed to loss of carbon needed to create the birds' eggs. For further information, see Chu and Hames (2002).

Elaborate

- 1. Invite students to think about migratory birds they know in their area. Ask: "What birds live here, and when do they come and go?" Have students select a migratory species of interest. Using sources such as the All About Birds website, the "Range and Point Maps" feature in eBird, or a printed field guide, ask students to identify the summer (breeding) and winter (non-breeding) regions for their species. Where do birds of that species go when not in your region?
- 2. Draw students' attention to bird migration patterns as a possible local indicator of climate change. Highlight the parts of the video (shown in the Engage portion of this lesson) that noted bird migration patterns. Ask students why they think studying bird migration can help us understand more about changes in our global climate. Summarize other possible explanations for changes in arrival and departure dates and frequency of sightings.

Evaluate

Encourage students to work in pairs or groups with the eBird database and
the "Bird Migration in My Area: eBird Data Collection Table" to determine
the recent arrival and departure dates of five species of migratory birds in
your county or state and to organize these species according to the timing of
their migratory flights. Tell them to be prepared to share these trends with
the class.

FIGURE 6.3.

Frequency of sightings of four migratory species in New York State, 1900–1965

FIGURE 6.4.

Frequency of sightings of the same four species in New York State, 2010 to present

Note the difference in scales between Figures 3 and 4 (In the frequency graph, the historic scale ranges up to 70%, whereas the modern scale is only 40%; the sample size scale is only 160 historically but goes up to 7,000 sightings in the modern graph).

- Ask students to describe at least two factors that might impact changes in animal populations over time.
- After students have documented trends, encourage them to share preliminary findings they have made based on the eBird database.
- Note if any students found conflicting trends, and encourage them to use sufficient evidence to support their explanations.

Extend

Consider implementing additional lessons from the Franklin Institute's Communicating Climate Change curriculum (Skolnik and Jones 2011). One option is to take students outside to observe birds. You could invite a local bird expert to accompany your class on a field trip to a local birding hotspot. After registering your class with an eBird account, your students can record bird sightings and submit a collated class list to eBird. For a longer-term study, they could go birding once a week (or other interval of your choice), and submit each collated class list to eBird. The Cornell Lab of Ornithology offers a curriculum kit that supports learning about bird diversity and identification and supports teachers and students participating in eBird and querying the eBird database (Fee, Rosenberg, DeRado, and Trautmann 2011).

Lesson Resource

Bird Migration in My Area: eBird Data Collection Table

On the Web

- All About Birds (www.allaboutbirds.org): Photos and information about behavior, habitat preferences, and range maps of bird species
- eBird (http://ebird.org): A citizen science project that collects and displays data about birds from around the world
- NASA, Global Climate Change (http://climate.nasa.gov): A website that documents the
 evidence, causes, and effects of climate change

References

Chu, M., and S. Hames. 2002. Wood thrush declines linked to acid rain: Citizen scientists collected key data. *BirdScope* 16 (4): Autumn. *www.birds.cornell.edu/Publications/Birdscope/Autumn2002/wood_thrush.html*

- Fee, J. M., A. Rosenberg, L. DeRado, and N. M. Trautmann. 2011. *BirdSleuth most wanted birds, Version 2*. Ithaca, NY: Cornell Lab of Ornithology.
- Hurlbert A. H., and Z. Liang. 2012. Spatiotemporal variation in avian migration phenology: Citizen science reveals effects of climate change. *PLoS ONE* 7 (2): e31662. *www. plosone.org/article/ info%3Adoi%2F10.1371%2Fjournal.pone.0031662*
- Skolnik, J., and J. Jones. 2011. *Bird migration: A local indicator of climate change*. Philadelphia, PA: The Franklin Institute.

Additional Resources

- Walther, G., E. Post, P. Convey, A. Menzel, C. Pamresan, T. J. C. Beebee, J. Fromentin, O. Hoegh-Guldberg, and F. Bairlein. 2002. Ecological responses to recent climate change. Nature (416): 389–395. www.nature.com/nature/journal/v416/n6879/full/416389a.html Summary: A scientific article about evidence of the ecological impacts of recent climate change on flora and fauna from polar to tropical environments
- Wood, C., B. Sullivan, M. Iliff, D. Fink, and S. Kelling. 2011. eBird: Engaging birders in science and conservation. *PLoS Biology* 9 (12): e1001220. *www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1001220*Summary: In-depth explanation of eBird and scientific models produced with its data

Index

```
A Field Guide to the Animals of Vernal Pools, 166
A Framework for K-12 Science Education, 1, 15
  crosscutting concepts in, 16
    lessons mapped to, 201-202
  disciplinary core ideas in, 15
  scientific practices in, 15-16
     lessons mapped to, 199
Abbott, Taylor, 28-29
Abry, Harrison, 131-141
Adaptation, lessons mapped to topic of, 203
Adopt-a-Vernal Pool Endangered Plant Monitoring Project (California), 165
All About Birds website, 98, 100, 107, 110
All Taxa Biodiversity Inventory, 53
Amphibian studies
  frog call investigations, 4, 8, 41-42, 155, 158-160, 162
  FrogWatch USA, 155, 159, 161
  North American Amphibian Monitoring Program, 4, 41, 42, 47, 155, 4, 41, 42,
        47, 155-158
  Turtle Trackers lesson, 149-154
  Who's Out There? A Calling Amphibian Survey lesson, 155–163
Amphibians and Reptiles case study, 9-10, 41-47
  aquatic turtle and box turtle mark and recapture studies, 43-45
  calling amphibian surveys, 41-42
  citizen science participation, 46
  other types of survey projects, 45-46
Animal behavior, lessons mapped to topic of, 203
Animal Diversity website, 162
Animated Maps for Animated Discussions lesson, 26-27, 93-100
  background information for, 94
  big idea of, 93
  citizen science connection of, 93
  conducting activity for, 94-99
  extensions of, 99-100
  learning objectives of, 93
  mapped to crosscutting concepts, 201
  mapped to key science topics, 203
  mapped to primary location and season, 207
  mapped to science process skills, 205
```

```
mapped to scientific practices, 199
  overview of, 93
  resources needed for, 93
  time required and location for, 93
Anstey, Mary, 8
Aquatic species and habitats, 3, 52
  Amphibians and Reptiles case study, 9-10, 41-47
  Turtle Trackers lesson, 149–153
  Using Inland and Coastal Citizen Science Opportunities to Study Marine Food
        Webs lesson, 173-183
  Wetland Discovery lesson, 165-170
Argumentation, 16, 17, 44, 61
  lessons mapped to practice of, 199
Arkansas Box Turtle Survey, 149
Arkansas Natural Heritage Commission, 153
Ashuelot Valley Environmental Observatory (New Hampshire), 165
Asking questions and defining problems, 16
  lessons mapped to practice of, 199
Atwood, Frederick, 30
Authentic student investigation, 5, 7, 10-11, 12, 13, 19, 44, 173
В
Backe, Kristi, 185-197
Barnett, LoriAnne, 131-141
Bergey, NancyLee, xi, 33-39
BioBlitzes, 52-53
Biodiversity, 52-54, 79, 146, 165, 175, 181-182
  lessons mapped to topic of, 203
Biological interdependence, lessons mapped to topic of, 203
Biotic/abiotic interdependence, lessons mapped to topic of, 203
Bird feeders, 8, 23-26, 97, 117, 118
Bird Migration Patterns in My Area lesson, 50, 101–112
  background information for, 102
  big idea of, 101
  citizen science connection of, 101
  conducting activity for, 102-110
  extension of, 110
  learning objectives of, 101
  mapped to crosscutting concepts, 201
  mapped to key science topics, 203
  mapped to primary location and season, 207
  mapped to science process skills, 205
  mapped to scientific practices, 199
  overview of, 101
  resources needed for, 102, 110, 112
  time required and location for, 101
```

```
Bird studies, xiii, 1, 4, 5, 9
  BirdSleuth Investigator, 26, 28, 29, 30
  Christmas Bird Count, 1, 4
  Connecting With Students Through Birds case study, 23-30
  eBird, 4, 5, 9, 12, 19, 23-30, 50-51, 54, 93-96, 99-105, 107, 110, 112, 118
  Project FeederWatch, 4, 23, 30
Brubach, Heather, 65-75
BSCS 5E Instructional Model, xiii, 15. See also specific lessons
Bucket of Bugs game, 79
Burne, Matthew, 166
Butterfly gardens, 36, 71
Calhoun, A. J. K., 169
Carolina Herp Atlas, 2, 46, 149
Case studies
  Amphibians and Reptiles, 41-47
  Connecting With Students Through Birds, 23-30
  The Mysteries of Monarchs, 33-39
Cause and effect, 16, 201
  lessons mapped to concept of, 201
Christmas Bird Count, 1, 4
Citizen science approach to teaching, 7–13
  for authentic student investigation, 5, 7, 10-11, 12, 13, 19, 44, 173
  benefits of, 7
  connecting with local experts for, 12-13, 110, 118
  cross-curricular connections of, 7-8
  for data analysis and interpretation, 11–12
  to encourage students to identify as scientists, 12–13
  for healthier kids and healthier planet, 8-9
  implementation strategies for, 15-20
  motivation and skill building in, 10
  potential hurdles to, 18-19
  for real scientific research, 9-10
Citizen Science Central, 17, 20, 153, 170
Citizen science lessons, xiii, 5
  adaptation of, 17
  alignment with A Framework for K-12 Science Education, 15-16
  Animated Maps for Animated Discussions, 26–27, 93–100
  Bird Migration Patterns in My Area, 101-112
  computer access for, 18
  connections to Common Core State Standards, 17-18
  field access for, 18
  Flight of the Pollinators: Plant Phenology From a Pollinator's Perspective,
         131-141
  Habitat Mattters: YardMap Your School Yard! lesson, 113-118
```

```
It's Been a Hard Day's Flight, 65-75
  mapped to crosscutting concepts, 201-202
  mapped to key science topics, 203
  mapped to primary location and season, 207
  mapped to science process skills, 205
  mapped to scientific practices, 199
  Ozone Bio-monitoring Garden Study, 143-147
  Signs of Spring: Earthworm Inquiry, 85-91
  Terrestrial Invertebrates, 77–83
  time required for, 18
  Tree Squirrels: Narrators of Nature in Your Neighborhood, 185–197
  Turtle Trackers, 149-154
  use of BSCS 5E Instructional Model in, xiii, 15
  Using Inland and Coastal Citizen Science Opportunities to Study Marine Food
        Webs, 173-183
  Wetland Discovery, 165-170
  Whale Song Project, 3, 57-64
  Who's Out There? A Calling Amphibian Survey, 155-163
  Winter Twig Investigation, 50, 121-129
Citizen science projects
  citizen scientist activities in, 3
  data collection and analysis for, xiii, 1, 2, 3, 8 (See also Data collection and
        analysis)
  definition of, 1, 59, 67, 97
  global, xiii, 2, 5, 24, 41, 85, 137
  inquiry and, 27-30
  integrative approach to, 49-54
  Internet resources for, 5, 20, 30, 39, 46–47, 54, 62–63, 71–72, 100, 110, 139,
        153-154, 162, 170, 183
  rationale for, xiii
  scope and time frames for, 2
  topics of, 2
  uses of data from, 4-5
Classroom BirdScope, 26
Climate change, xiii, 2, 49-50, 54, 79, 110, 123
  amphibian populations and, 160
  bird migration patterns and, 49, 50, 101, 103, 106, 107
  habitat effects of, 50
  insect pollinators and, 49, 50, 131, 137
  lessons mapped to topic of, 50, 203
  monitoring of, 49-50
  spring earthworm sightings and, 50
  wetlands and, 50, 166
Coforth, Jennifer, 113–118
Common Core State Standards for English language arts and mathematics,
      17-18, 20
```

```
Communication, 11, 13, 16
  lessons mapped to practice of, 199, 203
  of research results, 11, 13
Computational thinking, 16, 199. See also Mathematics
Computer lab access, 18
Connecting With Students Through Birds case study, 23-30
  from data to modeling, 26-27
  going beyond, 29
  inquiry and citizen science, 27-29
  from inquiry into action, 30
  learning with citizen science data, 24-26
Conservation studies, 2, 4, 16, 52, 54
  Amphibians and Reptiles case study, 46
  Animated Maps for Animated Discussions lesson, 93-100
  Connecting With Students Through Birds case study, 23-30
  Flight of the Pollinators lesson, 131–139
  Habitat Matters lesson, 113-118
  lessons mapped to, 202, 203
  lessons mapped to topic of, 203
  Mysteries of Monarchs case study, 33-39
  Turtle Trackers lesson, 153
  Wetland Discovery lesson, 165-170
Constructing explanations, 11, 16, 17
  lessons mapped to practice of, 199
Cooper, Caren, 1
Coral Reef Fish Count website, 178
Cornell Lab of Ornithology, xi, 9, 26, 28, 29, 30, 62, 93, 97, 100, 101, 107, 110,
      113
Critical-thinking skills, 11, 65, 93
Cross-curricular connections, 7-8, 33
Crosscutting concepts, 16, 201–202
  lessons mapped to, 201
Curley, Liam, 23-30
D
Data collection, analysis, and interpretation, xiii, 1, 2, 3, 8
  for authentic student investigation, 5, 7, 10-11, 12, 13, 19, 44, 173
  doubts about student capability for, 18-19
  interpretation, 11–12
  lesson mapped to practice of, 199
  level of student participation in, 20
  math skills for, 8
  online tools for, 5, 7, 11, 19
  for real scientific research, 9-10
  volume of data submitted, 9
Data utilization, 4-5
```

```
Demetrikopouolos, Melissa K., 173-183
Designing solutions, 16
  lessons mapped to practice of, 199
Disciplinary core ideas, 15
Don't Be A Buckethead website, 62
Ducks Unlimited Canada, 169
Ε
Earthworms. See Signs of Spring: Earthworm Inquiry lesson
eBird, 4, 5, 9, 12, 19, 23-30, 50-51, 54, 101-105, 107, 110, 112, 118
  animated maps, 93-100
Ecosystem dynamics, lessons mapped to topic of, 203
Endangered species or habitats, 51-52, 54, 62, 166, 167
Energy and matter, 16, 202
  lessons mapped to concept of, 201
English language arts, 8. See also Writing activities
  Common Core State Standards for, 17
Environmental monitoring projects, 2, 3, 8
  amphibians and reptiles, 9-10, 41-47
  climate change, 49-50
Eubanks, Elizabeth, 29
Explanations from evidence, 11, 17
Fee, Jennifer, xi, 23-30, 93-118
Field guides
  for birds, 107
  class creation of, 149, 153, 162, 169
  for plants, 135
  for reptiles and amphibians, 46, 150, 159
  for wetland habitats, 166
Fitzpatrick, John, 9
5E Instructional Model, xiii, 15. See also specific lessons
Flight of the Pollinators: Plant Phenology From a Pollinator's Perspective lesson,
      50, 131-141
  background information for, 132-133
  big idea of, 131
  citizen science connection of, 131
  conducting activity for, 133-138
  extensions of, 138
  learning objectives of, 132
  mapped to crosscutting concepts, 201
  mapped to key science topics, 203
  mapped to primary location and season, 207
  mapped to science process skills, 205
  mapped to scientific practices, 199
```

```
overview of, 131
  resources needed for, 132, 138, 140-141
  time required and location for, 131
FrogWatch USA, 155, 159, 161
Geography studies, 2, 8, 11, 19, 33, 50, 79, 87, 151, 157
Gerstman, Liron, 9, 12
Giles, Charmaine, 33
Global citizen science projects, xiii, 2, 5, 24, 41, 85, 137
  integrative approach to, 49-54
Great Smoky Mountains National Park, 53, 77–79, 143
Greene, Harry, 9
Griffin, Norma, 23, 27-28
Growth and development of organisms, lessons mapped to topic of, 203
Gund, Susannah, 33-34, 37-39
Н
Habitat, lessons mapped to topic of, 203
Habitat Mattters: YardMap Your School Yard! lesson, 113-118
  background information for, 114
  big idea of, 113
  citizen science connection of, 113
  conducting activity for, 114-118
  extension of, 118
  learning objectives of, 113
  mapped to crosscutting concepts, 201
  mapped to key science topics, 203
  mapped to primary location and season, 207
  mapped to science process skills, 205
  mapped to scientific practices, 199
  overview of, 113
  resources needed for, 114
  time required and location for, 113
Haggerty, Brian, 131-141
Hall, Debra Taylor, 57-63
Hands on the Land, 2, 19, 53, 54, 77, 79-80, 83, 143, 146
Healey, Sara, 131-141
Healthier kids and healthier planet, 8-9
Hove, Alisa, 131-141
Humason, Katie, 24
Hypothesis generation and testing, 2
ı
Implementing citizen science teaching, 15–20
  alignment with A Framework for K-12 Science Education, 15-16
```

```
connections to Common Core State Standards, 17-18
  finding the right fit for, 19-20
  potential hurdles to, 18-19
  use of 5E Instructional Model, xiii, 15
  using online data visualization tools for, 5, 7, 11, 19
Inquiry-based teaching, 7, 15, 18, 20
  citizen science and, 27-30
Integrative approach, 49-54
  to aquatic habitats, 52
  to climate change, 49-50
  to invasive species, 50-51
  to rare and endangered species, 51-52
Internet resources, 5, 20, 30, 39, 46-47, 54, 62-63, 71-72, 100, 110, 139, 153-
      154, 162, 170, 183
Invasive species, 4, 30, 50-51
It's Been a Hard Day's Flight lesson, 65-75
  background information for, 66-67
  big idea of, 65
  citizen science connections of, 65
  conducting activity for, 67-70
  extensions of, 70-71
  learning objectives of, 65
  mapped to crosscutting concepts, 201
  mapped to key science topics, 203
  mapped to primary location and season, 207
  mapped to science process skills, 205
  mapped to scientific practices, 199
  overview of, 65
  resources needed for, 66, 71, 73-75
  time required and location for, 65
Izaak Walton League of Save Our Streams Program, 3, 5
J
JellyWatch, 3, 5
Journey North, 4, 5, 33–35, 39, 50, 54, 65, 71, 85, 87, 88.90
Κ
K-W-Q-L chart, 87, 89
Kahler, Phil, 24, 29
Kenney, Leo, 166
Killian, Pat, 28
Life cycles, xiii, 4, 7, 12, 50, 85, 88, 122, 131, 153, 160
  lessons mapped to topic of, 16.203
Lincoln-Petersen Index formula, 44
```

Listen for Whales project, 60, 62 Literacy skills, 17. See also Writing activities Literature review, 11 Lost Ladybug Project, 3, 5, 51–52, 54

Macaulay Library of Animal Audio and Video Recordings, 62 Maliakal, Sanjiv, 26 Maps, 5. See also Animated Maps for Animated Discussions lesson Marchand, Danielle, 165-170 Marine food webs. See Using Inland and Coastal Citizen Science Opportunities to Study Marine Food Webs lesson Massachusetts Turtle Atlas, 149 Mathematics, 5, 8, 16, 17-18, 29, 33, 38, 178 Common Core State Standards for, 17 lessons mapped to, 199 Mazer, Susan, 131-141 Migration, lessons mapped to topic of, 203 Modeling, 7, 15, 16, 26-27, 59-60, 93-95, 99, 202 lessons mapped to practice of, 199, 201, 205 Monarch butterfly studies, xiii, 4 building butterfly gardens, 36, 71 It's Been a Hard Day's Flight lesson, 65-75 Monarch Larva Monitoring Project, 4, 5, 39, 72 Monarch Monitoring Project, 33, 38, 39, 72 Monarch Watch project, 33, 35-37, 39, 65-74 MonarchLab, 71 The Mysteries of Monarchs case study, 33–39 Morales-Santos, Araceli, 41 Morris, Lee G., 173-183 Motivating students, xiii, 10, 24, 29 The Mysteries of Monarchs case study, 33-39 cross-curricular connections of, 33

N

NASA, 110, 179
National Audubon Society, 1
National Oceanographic and Atmospheric Administration (NOAA), 63, 123
National Park Service, 145
Natural history data, 2, 4, 7–8, 26, 49, 51, 151, 153

deep understanding developed by, 37

monitoring marked monarchs, 35-36

social nature of science and, 38-39

doing it by the numbers, 38 improving habitat, 36

the power of many, 34-35

```
Nature's Notebook, 2, 49, 54, 131, 132, 135, 137, 141
Neighborhood Box Turtle Watch, 153
Nest boxes, 30, 118
Next Generation Science Standards (NGSS), xiii, 5, 7, 15
North American Amphibian Monitoring Program (NAAMP), 4, 41, 42, 47, 155-158
North American Pollinator Protection Campaign, 139
Nova Scotia Vernal Pool Mapping and Monitoring Project, 165
Nugent, Jill, 85-91, 149-163
Ohio Vernal Pool Partnership, 165
Online data visualization tools, 5, 7, 11, 19
Oscarson, D. B., 169
Otto, Patricia, 121-129
Ozone Bio-monitoring Garden Study lesson, 143-147
  background information for, 144
  big idea of, 143
  citizen science connection of, 143
  conducting activity for, 144-147
  extension of, 147
  learning objectives of, 143-144
  mapped to crosscutting concepts, 201
  mapped to key science topics, 203
  mapped to primary location and season, 207
  mapped to science process skills, 205
  mapped to scientific practices, 199
  overview of, 143
  resources needed for, 144
  time required and location for, 143
Parks as Classrooms project, 77, 143
Patterns, 16, 201
  lessons mapped to concept of, 201
Phelps, Laurel, 131-141
Phytoplankton. See Using Inland and Coastal Citizen Science Opportunities to
      Study Marine Food Webs lesson
Pillot, Howard, 30
Planning and carrying out investigations, 16
  lessons mapped to practice of, 199
Pollination. See Flight of the Pollinators: Plant Phenology From a Pollinator's
      Perspective lesson
Project BudBurst, 2, 8, 121-126
Project FeederWatch, 4, 23, 30, 50, 51, 54
Project Squirrel, 3, 185-193
Protection of species or habitats, 4, 9, 30, 49, 50, 51
```

Animated Maps for Animated Discussions lesson, 94 Flight of the Pollinators lesson, 139 Turtle Trackers lesson, 149, 150-151 Using Inland and Coastal Citizen Science Opportunities to Study Marine Food Webs lesson, 181 Wetland Discovery lesson, 169 Whale Song Project lesson, 58, 62 Who's Out There? A Calling Amphibian Survey lesson, 157 Public participation in research, xiii, 1 Publication of research results, 11 R Rabkin, Michelle, 185-197 Rare species, 1, 51-52, 81, 166 Reading skills, 17 Real-world connections, xiii, 7, 12, 24, 29 REEF project, 173, 178 S Sachs, Susan, 77-83, 142-147 Save Our Streams (SOS) Program, 3, 5 Scaglione, Margaret, 23 Scale, proportion, and quantity, 16, 202 lessons mapped to concept of, 201 Science notebooks, 87-88, 89, 122, 124, 126 Science process skills, lessons mapped to, 205 Scientific argumentation, 16, 17, 44, 61 lessons mapped to practice of, 199 Scientific habits of mind, 15 Scientific method, 7, 29 Scientific practices, 7, 15-16, 77, 160 lessons mapped to, 199 Scientists encouraging student identification as, 12-13, 27 stereotypes of, 12 SciStarter, 17, 20, 153, 170 Sea of Sound curriculum, 62 Signs of Spring: Earthworm Inquiry lesson, 50, 85-91 background information for, 86 big idea of, 85 citizen science connection of, 85 conducting activity for, 86-89 extensions of, 89-90 learning objectives of, 85 mapped to crosscutting concepts, 201

mapped to key science topics, 203

```
mapped to primary location and season, 207
  mapped to science process skills, 205
  mapped to scientific practices, 199
  overview of, 85
  resources needed for, 86, 90-91
  time required and location for, 85
Skill building, 10
Social nature of science, 38-39
Squirrels. See Tree Squirrels: Narrators of Nature in Your Neighborhood lesson
Stability and change, 16, 202
  lessons mapped to concept of, 201
Statistics, 17, 37
Structure and function, 16, 202
  lessons mapped to concept of, 201
Students
  benefits of citizen science for, 7
  developing an appreciation of nature, 8-9
  doubts about research capability of, 18-19
  encouraging identification as scientists, 12-13, 27
  engaging in authentic investigations, 5, 7, 10-11, 12, 13, 19, 44, 173
  level of research participation by, 20
  motivation of, xiii, 10, 24, 29
  real scientific research by, 9-10
  role as citizen scientists, xiii, 1
Sullivan, Steve, 185-197
Systems and system models, 16, 202
  lessons mapped to concept of, 201
Teale, Edwin Way, 85
Technology, 8
Terrestrial Invertebrates lesson, 53, 77–83
  background information for, 78-79
  big idea of, 77
  citizen science connection of, 77
  conducting activity for, 79-82
  extension of, 82
  learning objectives of, 77
  mapped to crosscutting concepts, 201
  mapped to key science topics, 203
  mapped to primary location and season, 207
  mapped to science process skills, 205
  mapped to scientific practices, 199
  overview of, 77
  resources needed for, 78, 82, 83
  time required and location for, 77
```

```
Texas Turtle Watch, 149, 154
Thompson, Wesley D., 173-183
Tomasek, Terry, xi, 155-163, 165-170
Transdisciplinary approach to teaching, 7–8
Trautmann, Nancy M., xi, 23-30, 49-54, 113-118
Tree Squirrels: Narrators of Nature in Your Neighborhood lesson, 3, 185–197
  background information for, 187
  big idea of, 185
  citizen science connection of, 185
  conducting activity for, 187-192
  extensions of, 193
  learning objectives of, 185
  mapped to crosscutting concepts, 201
  mapped to key science topics, 203
  mapped to primary location and season, 207
  mapped to science process skills, 205
  mapped to scientific practices, 199
  overview of, 185
  resources needed for, 186, 193, 194-197
  time required and location for, 185
Turtle Survival Alliance, 154
Turtle Trackers lesson, 149–154. See also Amphibians and Reptiles case study
  background information for, 150
  big idea of, 149
  citizen science connections of, 149
  conducting activity for, 150-153
  extensions of, 153
  learning objectives of, 149
  mapped to crosscutting concepts, 201
  mapped to key science topics, 203
  mapped to primary location and season, 207
  mapped to science process skills, 205
  mapped to scientific practices, 199
  overview of, 149
  resources needed for, 150
  time required and location for, 149
U
Ulrich, Jane, 121-129
U.S. Forest Service, 139, 166
Using Inland and Coastal Citizen Science Opportunities to Study Marine Food
      Webs lesson, 173-183
  background information for, 174-175
  big idea of, 173
  citizen science connections of, 173
  conducting activity for, 175-181
```

extensions of, 181–182
learning objectives of, 173
mapped to crosscutting concepts, 201
mapped to key science topics, 203
mapped to primary location and season, 207
mapped to science process skills, 205
mapped to scientific practices, 199
overview of, 173
resources needed for, 174, 182, 183
time required and location for, 173

٧

Venn diagrams, 94–95, 126, 160 Vermont Vernal Pool Mapping Project, 165, 170 Vernal Pool Association, 165, 169, 170 Vernal pools. See Wetland Discovery lesson Victoria Experimental Network Under the Sea, 63

W

Water quality monitoring, 3, 173, 179, 181 Wetland Discovery lesson, 50, 165-170 background information for, 166 big idea of, 165 citizen science connections of, 165 conducting activity for, 167-169 extensions of, 169-170 learning objectives of, 165 mapped to crosscutting concepts, 201 mapped to key science topics, 203 mapped to primary location and season, 207 mapped to science process skills, 205 mapped to scientific practices, 199 overview of, 165 resources needed for, 166 time required and location for, 165 Wetlands, lessons mapped to topic of, 203 Whale FM project, 3, 59 Whale Song Project lesson, 3, 57-64 background information for, 58 big idea of, 57 citizen science connection for, 57 conducting activity for, 58-62 extensions of, 62 learning objectives of, 57 mapped to crosscutting concepts, 201 mapped to key science topics, 203

```
mapped to primary location and season, 207
  mapped to science process skills, 205
  mapped to scientific practices, 199
  overview of, 57
  resources needed for, 58, 62, 64
  time required and location for, 57
Whales, Dolphins, and Sound website, 63
Who's Out There? A Calling Amphibian Survey lesson, 42, 155-163
  background information for, 156
  big idea of, 155
  citizen science connections of, 155
  conducting activity for, 156-160
  extensions of, 160-162
  learning objectives of, 155
  mapped to crosscutting concepts, 201
  mapped to key science topics, 203
  mapped to primary location and season, 207
  mapped to science process skills, 205
  mapped to scientific practices, 199
  overview of, 155
  resources needed for, 156, 162, 163
  time required and location for, 155
Wildlife Sightings, 181
Wildlife Watch, 181
Winter Twig Investigation lesson, 50, 121-129
  background information for, 122
  big idea of, 121
  citizen science connection of, 121
  conducting activity for, 122-126
  extensions of, 126-127
  learning objectives of, 121
  mapped to crosscutting concepts, 201
  mapped to key science topics, 203
  mapped to primary location and season, 207
  mapped to science process skills, 205
  mapped to scientific practices, 199
  overview of, 121
  resources needed for, 122, 127-129
  time required and location for, 121
World Water Monitoring Challenge, 173, 181
Writing activities, 8, 70
  in Flight of the Pollinators lesson, 137, 138
  in Habitat Matters lesson, 115, 118
  in It's Been a Hard Day's Flight lesson, 69
  in Ozone Bio-monitoring Garden Study lesson, 145
  science notebooks, 87-88, 89, 122, 124, 126
```

```
in Using Inland and Coastal Citizen Science Opportunities to Study Marine
Food Webs lesson, 175, 181
in Wetland Discovery lesson, 168
in Whale Song Project lesson, 61
in Winter Twig Investigation lesson, 124, 126
```

X

Xerces Society, 139

Υ

YardMap project, 4, 36, 53, 54, 113-118

"Observing the life cycle of monarch butterflies and following their remarkable migratory journeys between Canada, the United States, and Mexico...

"Tracking climate change by recording the dates of first leaf, flower, and fruit of local trees, shrubs, flowers, and grasses...

"Discovering which bird species migrate, where they go, and when...

"Exploring life cycles and population dynamics of frogs, toads, and other animals in nearby ponds...

"Citizen science projects such as these gather data through public collaboration in scientific research... We invite you to dig in and become part of this exciting and rapidly growing movement. Your students will not only learn science, but they will also be scientists, and their projects will bring biological and environmental science to life in your classes."

— from the preface

he editors of this book have a straightforward goal: to inspire you to engage your students through public collaboration in scientific research—also known as citizen science. The book is specifically designed to get you comfortable using citizen science to support independent inquiry through which your students can learn both content and process skills. *Citizen Science* offers you the following:

- Real-life case studies of classes that engaged in citizen science and learned authentic scientific processes and the habits of mind associated with scientific reasoning.
- 15 stimulating lessons you can use to build data collection and analysis into your teaching.
- Plenty of flexibility. You can use the lessons with or without access to field
 or lab facilities; whether or not your students can collect and submit data
 of their own; and inside your classroom or outside through fieldwork
 in school yards, parks, or other natural areas in urban or rural settings.

You do not need an advanced degree in science to guide your students in productive participation in a variety of citizen science projects. As the editors note, "Such involvement can scaffold teachers' entry into facilitating student investigation while connecting students with relevant, meaningful, and real experiences with science."

Grades 6-12

National Science Teachers Association

PB344X ISBN: 978-1-936959-08-2

