dies **eachCritical** hinkin

Clyde Freeman Herreid Nancy A. Schiller Ky F. Herreid

Copyright © 2012 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.

UsingCase Studiesto **TeachCritical** Thinking

Copyright © 2012 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.

 $Copyright @ 2012 \ NSTA. \ All \ rights \ reserved. \ For \ more \ information, \ go \ to \ www.nsta.org/permissions.$

Using Case Studiesto **TeachCritical** Thinking

Clyde Freeman Herreid Nancy A. Schiller Ky F. Herreid

Arlington, Virginia

Copyright © 2012 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.

Claire Reinburg, Director Jennifer Horak, Managing Editor Andrew Cooke, Senior Editor Wendy Rubin, Associate Editor Agnes Bannigan, Associate Editor Amy America, Book Acquisitions Coordinator

ART AND DESIGN

Will Thomas Jr., Director

PRINTING AND PRODUCTION

Catherine Lorrain, Director Jack Parker, Electronic Prepress Technician

NATIONAL SCIENCE TEACHERS ASSOCIATION

Francis Q. Eberle, PhD, Executive Director David Beacom, Publisher 1840 Wilson Blvd., Arlington, VA 22201 *www.nsta.org/store* For customer service inquiries, please call 800-277-5300.

Copyright © 2012 by the National Science Teachers Association. All rights reserved. Printed in the United States of America. 14 13 12 11 4 3 2 1

NSTA is committed to publishing material that promotes the best in inquiry-based science education. However, conditions of actual use may vary, and the safety procedures and practices described in this book are intended to serve only as a guide. Additional precautionary measures may be required. NSTA and the authors do not warrant or represent that the procedures and practices in this book meet any safety code or standard of federal, state, or local regulations. NSTA and the authors disclaim any liability for personal injury or damage to property arising out of or relating to the use of this book, including any of the recommendations, instructions, or materials contained therein.

PERMISSIONS

Book purchasers may photocopy, print, or e-mail up to five copies of an NSTA book chapter for personal use only; this does not include display or promotional use. Elementary, middle, and high school teachers may reproduce forms, sample documents, and single NSTA book chapters needed for classroom or noncommercial, professional-development use only. E-book buyers may download files to multiple personal devices but are prohibited from posting the files to third-party servers or websites, or from passing files to non-buyers. For additional permission to photocopy or use material electronically from this NSTA Press book, please contact the Copyright Clearance Center (CCC) (*www.copyright.com*; 978-750-8400). Please access *www.nsta.org/permissions* for further information about NSTA's rights and permissions policies.

Library of Congress Cataloging-in-Publication Data

Herreid, Clyde Freeman.

Science stories : using case studies to teach critical thinking / by Clyde Freeman Herreid, Nancy A. Schiller, and Ky F. Herreid.

p. cm. Includes bibliographical references and index. ISBN 978-1-936137-25-1 1. Science--Study and teaching--Case studies. 2. Critical thinking--Study and teaching. I. Schiller, Nancy A., 1957- II. Herreid, Ky F., 1965- III. Title. Q181.H394 2011 507.1-dc23

2011036547

eISBN 978-1-936959-91-4

ContentsContentsContentsConte

	Introduction	
	Clyde Freeman Herreid	vii
Section I:	The Nature of Science	
Chapter 1	The Scientific Method Ain't What It Used to Be Clyde Freeman Herreid	1
Chapter 2	Learning About the Nature of Science With Case Studies Kathy Gallucci	11
Chapter 3	Can Case Studies Be Used to Teach Critical Thinking? Clyde Freeman Herreid	21
Chapter 4	The "Case" for Critical Thinking David R. Terry	25
The Case S	Studies	
Section II:	Historical Cases	35
Chapter 5	Childbed Fever: A 19th-Century Mystery Christa Colyer	
Chapter 6	Mystery of the Blue Death: John Snow and Cholera Susan Bandoni Muench	45
Chapter 7	Salem's Secrets: On the Track of the Salem Witch Trials Susan M. Nava-Whitehead and Joan-Beth Gow	57
Chapter 8	The Bacterial Theory of Ulcers: A Nobel-Prize-Winning Discovery Debra Ann Meuler	69
Section III:	Experimental Design	
Chapter 9	Lady Tasting Coffee Jacinth Maynard, Mary Puterbaugh Mulcahy, and Daniel Kermick	
Chapter 10	Memory Loss in Mice Michael S. Hudecki	95
Chapter 11	Mom Always Liked You Best Clyde Freeman Herreid	
Chapter 12	PCBs in the Last Frontier Michael Tessmer	109
Chapter 13	The Great Parking Debate Jennifer S. Feenstra	113
Chapter 14	Poison Ivy: A Rash Decision Rosemary H. Ford	121
Section IV:	The Scientific Method Meets Unusual Claims	129
Chapter 15	Extrasensory Perception? Sarah G. Stonefoot and Clyde Freeman Herreid	133
Chapter 16	A Need for Needles: Does Acupuncture Really Work? Sarah G. Stonefoot and Clyde Freeman Herreid	
Chapter 17	Love Potion #10: Human Pheromones at Work? Susan Holt	147
Chapter 18	The "Mozart Effect" Lisa D. Hager	159
Chapter 10		
Chapter 19	Prayer Study: Science or Not? Kathy Gallucci	

ContentsContentsContentsConte

Section V:	Science and Society	183
Chapter 21	Moon to Mars: To Boldly Go or Not Erik Zavrel	
Chapter 22	And Now What, Ms. Ranger? The Search for the Intelligent Designer Clyde Freeman Herreid	
Chapter 23	The Case of the Tainted Taco Shells Ann Taylor	
Chapter 24	Medicinal Use of Marijuana Clyde Freeman Herreid and Kristie DuRei	213
Chapter 25	Amanda's Absence: Should Vioxx Be Kept Off the Market? Dan Johnson	
Chapter 26	Sex and Vaccination Erik Zavrel and Clyde Freeman Herreid	
Section VI:	Science and the Media	
Chapter 27	Tragic Choices: Autism, Measles, and the MMR Vaccine Matthew Rowe	
Chapter 28	Ah-choo! Climate Change and Allergies Juanita Constible, Luke Sandro, and Richard E. Lee Jr	
Chapter 29	Rising Temperatures: The Politics of Information Christopher V. Hollister	
Chapter 30	Eating PCBs From Lake Ontario Eric Ribbens	
Section VII:	Ethics and the Scientific Process	
Chapter 31	Mother's Milk Cures Cancer? Linda L. Tichenor	
Chapter 32	Cancer Cure or Conservation Pauline A. Lizotte and Gretchen E. Knapp	
Chapter 33	A Rush to Judgment? Sheryl R. Ginn and Elizabeth J. Meinz	
Chapter 34	How a Cancer Trial Ended in Betrayal Ye Chen-Izu	
Chapter 35	Bringing Back Baby Jason: To Clone or Not to Clone Jennifer Hayes-Klosteridis	
Chapter 36	Selecting the Perfect Baby: The Ethics of "Embryo Design" Julia Omarzu	
0 1 07		
Chapter 37	Studying Racial Bias: Too Hot to Handle? Jane Marantz Connor	
Chapter 37 Chapter 38	Studying Racial Bias: Too Hot to Handle? Jane Marantz Connor Bad Blood: The Tuskegee Syphilis Project Ann W. Fourtner, Charles R. Fourtner, and Clyde Freeman Herreid	
Chapter 37 Chapter 38	Studying Racial Bias: Too Hot to Handle? Jane Marantz Connor Bad Blood: The Tuskegee Syphilis Project Ann W. Fourtner, Charles R. Fourtner, and Clyde Freeman Herreid	
Chapter 37 Chapter 38	Studying Racial Bias: Too Hot to Handle? Jane Marantz Connor	
Chapter 37 Chapter 38	Studying Racial Bias: Too Hot to Handle? Jane Marantz Connor	
Chapter 37 Chapter 38	Studying Racial Bias: Too Hot to Handle? Jane Marantz Connor	
Chapter 37 Chapter 38	Studying Racial Bias: Too Hot to Handle? Jane Marantz Connor	
Chapter 37 Chapter 38	Studying Racial Bias: Too Hot to Handle? Jane Marantz Connor	315 329 341 345 361 369 371

Introduction Introduction Introduction

Clyde Freeman Herreid

Critical thinking is like Mark Twain's quip about the weather everybody talks about it, but nobody does anything about it.

eachers are fascinated by facts, esoteric minutiae that beguile, tantalize, and titillate their fancies. They spend their time in the classroom trying to convince students to appreciate the same ideas. Yet when you ask teachers what they prize most, they will say critical thinking. They claim they want this most of all in their students—the ability to reason (Yuretich 2004). But teachers love their Krebs cycle, Henderson-Hasselbalch equations, tooth formulae, digestive enzymes, hormones, bones, and scientific nomenclature too much to give them up. Nor would I want them to. But let's face the facts: They are not teaching critical thinking.

Most teachers cannot define critical thinking. To take only one example, in 1995, the California Commission on Teacher Credentialing and the Center for Critical Thinking at Sonoma State University initiated a study of college and university faculty throughout California to assess current teaching practices (Paul, Elder, and Bartell 1997). Of the faculty surveyed, 89% said critical thinking was a primary objective in their courses, but only 19% were able to explain what critical thinking is and only 9% were teaching critical thinking in any apparent way. Furthermore, 81% of the faculty believed that graduates from their departments acquired critical-thinking skills during their studies, but only 9% could articulate how they would determine if a colleague's course actually encouraged critical thinking.

Experts do not really agree on a precise definition of critical thinking. But I like Moore and Parker's (2004) approach that critical thinking is the careful, deliberate determination of whether one should accept, reject, or suspend judgment about a claim and one's degree of confidence about one's position. So, critical thinking involves evaluating evidence and examining relevant criteria for making a judgment. It involves logic and clarity, credibility, accuracy, precision, relevance, depth, breadth, significance, and fairness in dealing with an argument. These are the topics of textbooks on critical thinking. Major emphasis is placed on informal logic (often said to be equivalent to critical thinking). Informal logic deals with analyzing and evaluating arguments and addresses how to avoid many of the major mistakes that humans can make. These qualities are said to constitute critical thinking.

To varying degrees, all of these qualities are desirable for anyone, not just scientists. But can they be taught, and how best to do so? We make the argument in this book that such habits of mind can be taught, and case studies are one avenue to achieve this end. In the chapter "The 'Case' for Critical Thinking," David R. Terry

brings the critical thinking literature to bear on this issue.

Another approach to critical thinking is seen in Bloom's 1956 taxonomy of "learning domains" in approaching problems. The cognitive domain is especially relevant. Bloom and his team ranked learning in a hierarchy, starting with simple knowledge at the bottom, then comprehension, application, analysis, synthesis, and evaluation at the top of a pyramid. Bloom's original domain arrangement is shown on the pyramid in Figure 1. Anderson et al. (2001) revisited the categorization and produced the arrangement on the right in Figure 1. The differences are small. The new version has translated the original terms into action verbs and switched the order of the top two domains.

Where does critical thinking fit into these schemes? For our purposes, critical thinking corresponds to the learning categories on the upper part of both diagrams. In contrast, in traditional science courses taught by the lecture method, the focus is on the lower part of the pyramids. Students are asked to remember facts, terms, and concepts—hardly critical-thinking exercises. In contrast, the upper part of the pyramid—which deals with application, analysis, synthesis, and evaluation—fits squarely in the critical-thinking camp. So the first goal of this book is to provide a way for teachers to enhance student skills in these areas. But as cognitive scientist Daniel Willingham (2009) points out, critical thinking cannot be taught with abstract exercises. It must be taught in the context of a discipline. Critical thinking in art, music, English literature, or history is not the same as it is in natural science.

What, if any, are the unique features of critical thinking in science, and how do case studies help teach these skills? I argue that it boils down to that hoary chestnut, the scientific method. Recall the steps of the classic scientific method (sometimes called the hypothetico-deductive method): We ask a question, propose a hypothesis to answer the question, devise a test or experiment to test the hypothesis, collect the data from the test, and reach a conclusion. With repeated iterations of the process, the question is solved and science marches on. In Kathy Galluci's chapter "Learning About the Nature of Science With Case Studies," she examines the nuances of the method in detail. You will notice that much of this process is not special. People ask questions and make guesses all the time. But few of us ever do much testing and retesting to see if the data we collect are consistent with our hypotheses. This single feature is the essence of the scientific enterprise and the essence of critical thinking in science. Yes, science is a collection of facts and principles about the physical world, but what is essential to us is that it is a *way of knowing*.

Consequently, if we want to teach students about science, we need to do two things: Give them science content, and teach them the critical-thinking skills that scientists use. We need our students to have a good grounding in science content so they will be able to ask intelligent and relevant questions, suggest hypotheses, and know how to interpret data to reach reasonable conclusions that are consistent with what we already know. But if we are to teach our students about how scientists really

go about their business, we need to help them learn about experimental design. We must look closely at the third step in the scientific method.

In short, we want them to know about controlled and uncontrolled experiments, the importance of replicability, the fact that correlation is not the same as cause and effect, falsification, prospective versus retrospective tests, the differences between historical and experimental science, blind and double-blind tests, the placebo effect, human error, fraud, and wishful thinking, as well as how the peer-review process helps identify and prevent flaws and mistakes. So throughout this book, there is an emphasis on experimental design—in fact, it is the dominant theme. If we can get students to be respectful skeptics—the major emphasis of my chapter "Can Case Studies Be Used to Teach Critical Thinking?"—we have gone a long way toward achieving our goal of developing scientifically literate citizens.

Source: L. O. Wilson, Ed.D., Professor Emerita, School of Education, University of Wisconsin-Stevens Point. *http://www4.uwsp.edu/education/lwilson/curric/newtaxonomy.htm.* Used with permission, 2011.

The Case Study Approach

There is a price to pay for our typical approach in science, technology, engineering, and math (STEM) education, and for our devotion to facts, the lecture method, and multiple-choice tests. Let's mention the obvious: We lose large numbers of excellent students who choose to major in other fields. Sheila Tobias (1990, 1992) reported that our beloved lecture is the prime culprit. Science majors have a high tolerance for boring material that seems to have nothing to do with their lives—a kaleidoscope of facts without apparent rhyme or reason. These presumptive scientists have faith that these facts will eventually become relevant in time. Nonscientists have no such faith, and, without context, they decide to leave the game. They are not intrigued by the detailed structure of the atom or the cell. It is not that they do not think it is important; they simply do not see why it should be important to them. We have not shown them how the cavalcade of facts relates to global warming, the debate over creationism versus evolution, natural disasters, cancer, AIDS, sex, or anything else they might care about.

We certainly have not helped them understand the scientific process either. They leave our STEM classrooms filled with revealed truths, believing that is what science is all about—a grab bag of oh-my-gosh facts. They certainly do not have a clue about the long, hard struggle that is involved in digging out the answers to even minor questions. Jon Miller's (1988) pronouncement that only 5% of the American public is scientifically literate did not help the situation. To illustrate the point, he used as his example of American science illiteracy that few people know what DNA is or how the seasons of the year are produced. These might be important factoids, but it is hardly sufficient to gauge scientific literacy. Far more relevant is to have a public that can make intelligent decisions about issues such as oil spills, vaccinations, alternative medicines, health insurance, cloning, and energy. Facts are important, but critical thinking is essential too, and we are doing a poor job of teaching it.

Teaching with case studies can make a difference. Why? Because whatever else they may do, they put learning into context. Case studies tell stories, and people love stories. That's why we have novels, movies, reality shows, and bedtime stories. Stories entertain us, and the best of them leave us memories and scaffolding on which to hang our facts. Jesus told parables. Aesop told fables. Homer told heroic adventures, and the brothers Grimm told fairy tales. And these stories have been remembered for centuries.

This is a storybook of case studies that show critical thinking in action in science. We have chosen these particular cases because they emphasize how science is really done. Our aim is to put flesh and bones on the scientific method, but not the classic method that schoolchildren memorize and parrot back: observation, question, hypothesis, experiment, data collection, and conclusion. A moment's reflection will reveal that not all scientists proceed along these lines. Astronomers and paleontologists have difficulty doing experiments (they are historical scientists), but they do test their ideas against the data. Theoretical physicists do not run experiments

themselves, as they work with pen and paper or computers. Yes, the hypotheticodeductive method (the "scientific method") is the *modus operandi* for the scientific enterprise for part of the process. But it is also much more than that.

Our overarching purpose is to show scientists in action—to show how they operate and the rules that they live by. The first chapter, "The Scientific Method Ain't What It Used to Be," as the title suggests, aims to correct the common misconception that many first-year science textbooks perpetuate—namely, that science proceeds by a linear series of steps. The chapter emphasizes how scientists interact with each other and society at large. We want students to recognize how the discoveries and failures of science can affect the general public. We want them to know how results can be manipulated, distorted, and reinterpreted by folks with different experiences and agendas. We deeply care about ethical concerns. We want scientists to keep their part of the bargain to follow the canons and traditions of the discipline. We want students to know how changing social mores can force a reinterpretation of what is ethical. We want them to learn how our technological tours de force have created new ethical dilemmas that future generations must solve. Case studies perhaps can do all of this better than most other ways of dealing with the material because they place the students in the position of making decisions about real-world problems; they put learning into context.

The cases in this book are drawn from our website for the National Center for Case Study Teaching in Science (*http://sciencecases.lib.buffalo.edu/cs*). In this book, we present each case and an abbreviated version of its teaching notes, including a section on misconceptions that the case addresses. These misconceptions, common among our students, reveal flaws in critical thinking. More complete teaching notes for the cases can be found on our website, along with answer keys where available. The book is designed for college and high school teachers (and may also be of interest to middle school science teachers), who can select case exercises for use in their classrooms. We expect that teachers who plan to use the cases will download the individual case PDFs from the website itself, where the teaching notes are displayed.

To help teachers choose cases for their classes, Appendix A provides summary information about each case; Appendix B shows how each case is aligned with the National Science Education Standards for grades 9–12; and Appendix C is a discussion of ways to evaluate student work.

To give students a real sense of how scientists go about their work, we first present four historical cases in section II. These cases involve real events and people, such as Ignaz Semmelweis, whose simple observation about hand-washing and mortality rates among women in a hospital maternity ward saved countless lives, and John Snow, another physician, who set out to discover the source of cholera in Victorian London. We also meet in this section Nobel Prize winners J. Robin Warren and Barry Marshall, who discovered that ulcers were caused by a bacterium that could

be treated with antibiotics. There is also a case that explores the Salem witch trials that took place in Massachusetts in the late 1600s. What caused the hysteria? Could there be a scientific explanation for what happened? Students will attempt to find a plausible explanation for a mystery that remains unsolved.

Douglas Allchin (from the University of Minnesota) has written extensively on the subject of historical cases. His article "How Not to Teach Historical Cases in Science" is a valuable resource (Allchin 2000). He is also the co-author of *Doing Biology* (Hagen, Allchin, and Singer 1996), a set of 17 historical case studies, and he maintains a website devoted to historical problem-based cases (*http://ships.umn. edu*). It is important to note that his focus is on the historical features of the stories. In this book, we focus on the discovery process and how the elements of scientific methodology are highlighted by these cases.

Next, in section III, we present six cases of scientific inquiry. When most people think of a scientist, they think of someone in a lab cooking up experiments. A lot of scientists do just that. They pose questions, make hypotheses and predictions, think up ways to test them, collect the resulting data, and draw conclusions. The cases we have selected put students through many of these same steps, all in one or two class periods. In this section, you will find cases such as the one based on the true story of statistician Ronald Fisher, who designed an experiment to test a woman's claim that she could always tell if milk was added before or after her tea had been poured into the cup. Other case studies challenge students to re-create experiments probing such matters as a possible cause for Alzheimer's disease, preferential feeding behavior in coots, how PCBs wind up in remote Alaskan lakes, whether drivers really leave their parking spaces faster if others are waiting, and whether a traditional Native American remedy relieves the skin's allergic reaction to the toxin found in poison ivy.

In section IV, we examine six cases that verge on the edges of pseudoscience, claims that are not in the mainstream of science, claims of questionable validity. Of course, we know that many of the world's most important discoveries were initially met with skepticism. With repeated testing, some of these ideas were vindicated—but not all. As Carl Sagan reminds us, "The fact that some geniuses were laughed at does not imply that all who are laughed at are geniuses. They laughed at Columbus, they laughed at Fulton, and they laughed at the Wright Brothers. But they also laughed at Bozo the Clown" (Sagan 1980, p. 34). Certainly claims of extrasensory perception and the healing power of prayer, for example—just two of the topics explored in the cases collected here—require close and careful scrutiny.

In sections V and VI, we present cases that explore the effects of science on society and society on science and show some of the ways that the news media puts spin on the scientific process. We finish in section VII with some of the ethical dilemmas that confront scientific researchers. All along we try to present cases that examine real data even as we deal with the sociology of science.

Long after students have left the classroom and forgotten glycolysis, Avogadro's

number, Fresnel's transmission coefficient, biostratigraphy, and the ideal gas law, they will need to read newspapers and blogs and listen to CNN, or the future equivalents. After college, for the next 60 years of their lives, they will be bombarded by problems infused with science. They need to be able to consider claims that will be made and ask the first and most important questions of a critical thinker: Is it true? Why should I believe this? What is the evidence? Is there counterevidence that should be considered? And then they will need to look carefully at the logic of the argument, identify *ad hominem* attacks when they occur, and consider the consequences of their (and others') actions. We hope this book helps them on the way.

References

- Allchin, D. 2000. How not to teach historical cases in science. *Journal of College Science Teaching* 30 (1): 33–37.
- Anderson, L. W. et al., eds. 2001. A taxonomy for learning, teaching, and assessing: A revision of Bloom's taxonomy of educational objectives. Boston: Allyn & Bacon (Pearson Education Group).
- Bloom B. S. 1956. *Taxonomy of educational objectives, handbook I: The cognitive domain.* New York: David McKay.
- Bloom, B. S., and D. R. Krathwohl. 1956. *Taxonomy of educational objectives: The classification of educational goals, by a committee of college and university examiners. Handbook I: Cognitive domain.* New York: Longmans, Green.
- Hagen, J. B., D. Allchin, and F. Singer. 1996. *Doing biology*. New York: HarperCollins College Publishers.
- Miller, J. 1988. The five percent problem. American Scientist 72 (2): iv, 18.
- Moore, B., and R. Parker. 2004. Critical thinking. New York: McGraw-Hill Co.
- Paul, R. W., L. Elder, and T. Bartell. 1997. California teacher preparation for instruction in critical thinking: Research findings and policy recommendations. California Commission on Teacher Credentialing, Sacramento California, 1997. Dillon Beach, CA: Foundation for Critical Thinking.
- Sagan, C. 1980. Broca's brain: Reflections on the romance of science. New York: Ballantine.
- Tobias, S. 1990. *They're not dumb, they're different: Stalking the second tier*. Tucson, AZ: Research Corporation.
- Tobias, S. 1992. *Revitalizing undergraduate science: Why some things work and most don't.* Tucson, AZ: Research Corporation.
- Willingham, D. 2009. Why don't students like school? San Francisco, CA: Jossey-Bass & Sons.
- Yuretich, R. F. 2004. Encouraging critical thinking: Measuring skills in large introductory science classes. *Journal of College Science Teaching* 33 (3): 40–46.

er 36 Chapter 36 Chapt

The Case

The research team assembled quietly in the lab. There were some difficult decisions to be made today. Kelly, a new research assistant, looked forward to the discussion. Privately, she hoped Dr. Wagner and the rest of the team would agree to help the couple that had appealed to them.

"Good morning, everyone," Dr. Wagner said to begin the meeting. "We have a lot to talk about. I'll summarize this case for those of you who may not have had time to read the file. Larry and June Shannon have been married six years. They have a fouryear-old daughter named Sally who has been diagnosed with Fanconi's anemia. Sally was born without thumbs and with a hole in her heart. Shortly after her birth, she began suffering symptoms related to impaired kidney function and digestion that have only increased in severity. Fanconi's anemia is a progressive disease that often results in physical abnormalities and a compromised immune system. Sally needs a lot of special care and has already had several surgeries. She can't digest food normally or fight off infections as easily as a normal child would. If she doesn't receive a bone marrow transplant, she will develop leukemia and die, most likely within the next three to four years. Neither Larry nor June had any clue they were both carriers of this disease."

"A frightening diagnosis," said Kevin, a research technician.

"Difficult to live with, as well. Not only will they probably lose this child, they must be crushed about the possibility of having another child with this illness," commented Liz Schultz, the team's postdoctoral researcher in gynecology and fertility.

"Exactly their problem," continued Dr. Wagner. "The Shannons are interested in having another child and have approached us regarding pre-implantation genetic diagnosis (PGD). They are aware of the risks and the odds of success. They are anxious to begin the process as soon as possible." "Kelly, you're new to the team, so let me summarize the PGD process for you. It's a three-step process, with chances of failure and complications at each step. First, in vitro fertilization (IVF) is performed. Some of June's ova would be removed and fertilized with Larry's sperm outside of June's womb. If this procedure works, we should have several viable, fertilized embryos. Our second step is to perform genetic analysis on the embryos, removing a cell from each and testing for the presence of the Fanconi's anemia genes. If we find embryos that are free of Fanconi's, we can then perform the third step, which would be implanting the healthy embryos back into June's uterus."

"Wait a minute," said Kelly. "How many embryos are we talking about? They just want one child, not a half dozen."

Dr. Wagner laughed. "Yes, I know. But during the invitro fertilization and implantation processes, we almost always have embryos that do not survive. There is only about a 23% chance of any implanted embryo thriving. There is a better chance for a positive outcome when we remove and fertilize multiple ova. In this particular case, the odds of a multiple pregnancy are very small, given the limitations on the ova we will be able to implant."

"Okay, I know I don't understand all of this. But how can Mrs. Shannon produce that many eggs all at the same time?" asked Kelly. "She wouldn't normally do that, would she?"

"No," said Liz. "So before we even begin any of these procedures, June would have to take hormones to increase the number of ova she releases. As Dr. Wagner said, there are risks involved with every step of this procedure. Hormone therapy can have some side effects, including mood and cognitive effects. Some women suffer physical complications as well, although this is relatively rare. There are some studies that link hormone therapy to increased risks of ovarian cancer, although there is other research that contradicts that."

"Plus," Dr. Wagner added, "along with the risks to June, there is no guarantee that the procedure will be successful. Many couples must undergo the IVF procedure more than once before the implantation is successful in producing a healthy, fullterm baby. In this case, it will be even more complicated because we cannot use all of the fertilized embryos but must limit ourselves only to those that are free of Fanconi's anemia."

"But we've done several of these types of procedures with a pretty high rate of success," said Kevin. "Why should this one be different? You've screened the couple, right, and you said they're aware of the risks?"

"Yes, but this case is very complicated." Dr. Wagner sighed. "The Shannons have requested not only a Fanconi's-free child, but one that will be a perfect bone marrow match for Sally. Sally's illness may be treated with a transplant of healthy cells into Sally's bone marrow. Because Fanconi's patients are so fragile, however, the donor's cells have to be a near perfect match, and that's hard to find. Siblings are the best bet. In the meantime, Sally's condition is deteriorating. The Shannons naturally want to give Sally as many years of normal life as possible so they want to take aggressive action. They want to cure Sally's disease by planning and creating another child with specific genetic markers."

"How would that work?" asked Kelly.

"You've heard of stem cell research?" began Liz. "Stem cells are special cells that can produce all the different organs and tissues of the human body. They are found in embryos or fetuses, and are usually obtained for research from embryos that die or are rejected in fertility procedures. That is the kind of research that has been so politically controversial. But a less potent type of stem cell is also found in adult humans and can also be obtained from umbilical cord blood. If we were to help the Shannons and the procedure was successful, the blood from their new baby's umbilical cord could be used for Sally's bone marrow transplant, resulting in no injury at all to the baby and a possible cure for the worst symptoms of Sally's illness."

"The Shannons are suggesting that we perform the PGD procedure as we normally do, but select only those embryos that are both free of Fanconi's anemia *and* are also a perfect match for Sally," said Dr. Wagner. "This presents some real ethical dilemmas for us. We have never tried this before. People have had PGD done to detect and prevent a variety of illnesses in their children, just as we have done here before. But what we are proposing now would be selecting for a specific combination of genetic traits, a combination that will not benefit the planned child but will save an existing child. We will be selecting an embryo and then using it essentially as a blood donor for its sibling. It will be umbilical cord blood, which would be discarded anyway, but it's still a controversial procedure. If we agree, it also means we will be destroying embryos that are perfectly healthy, but are just not a match for Sally. I'm interested in pursuing this, but these are serious issues to consider. Not the least of which is that we may have trouble getting it approved. Before I run it past the review board, I want to know how you all feel about trying it."

"Well, I say go ahead with it. It will be a genetic breakthrough. In time, we'll be able to prevent all kinds of problems with this procedure. Why not start now?" urged Kevin.

Another doctor on the team who had remained silent nodded in agreement.

"I'm not sure yet how I feel about this," said Liz. "I feel a little uncomfortable with the precedent this might set. We'll be opening the door to who knows what type of genetic selection. Do we want the responsibility for that?"

A couple of others on the team seemed to side with her.

"Yes," said Kelly. "But think about the poor Shannons. And especially Sally. Does she deserve to suffer just because we're arguing about ethical problems of the future?"

"Well, it sounds like we all need to talk about this some more before we can reach a real consensus," Dr. Wagner concluded. "I don't want to start on a case this important without everyone's agreement."

Questions

- 1. How could baby Sally inherit Fanconi's anemia even though neither parent suffers from it?
- 2. What other illnesses or developmental disabilities can be inherited in this way?
- 3. What are the odds that the Shannons' second child would also have this disease?
- 4. What are the basic processes of IVF and PGD?
- 5. What risks are involved in this whole procedure?
- 6. How could a sibling's blood help cure Sally?
- 7. How could PGD be used to create a sibling to help cure Sally?
- 8. What is so unusual about the PGD proposed by the Shannons?
- 9. What are some ethical issues related to the use of IVF? What are some ethical issues related to the use of PGD? What do you think about those issues?
- 10. What do you think the research team should do? What should the Shannons do?

Teaching Notes

Introduction and Background

This dilemma and discussion case was designed for an introductory course in developmental psychology but it can be used in many introductory science classes. Although the debate and doctors described are fictional, the case is based on actual events from the late 1990s that were extensively reported in the public press and in a documentary film.

In 1994, Jack and Lisa Nash had a daughter, Molly, who inherited a rare genetic disorder called Fanconi's anemia. By having another child with specific genetic markers, the Nashes could use stem cells from the new baby's umbilical cord blood to effectively cure Molly. Their search for doctors to provide this type of pre-implantation genetic diagnosis and treatment was controversial. Screening their embryos to eliminate the genetic disorder in a second child was not the problem. The controversial step was to eliminate some healthy embryos and implant only those that matched Molly's needs. Eventually they were successful in obtaining the treatment. Molly now has a little brother whose umbilical cord blood was used to treat her. Currently, she appears to be doing fine.

Prior to my use of cases in the classroom, I used the story of Jack and Lisa Nash to initiate student discussion. Students were eager to debate the ethical issues of genetic manipulation and fertility treatment. I observed that in previous semesters students easily identified with the parents in the story and with the suffering child. I wanted

them to approach the issue from the scientist's point of view, so I wrote the fictional research team debate to frame the story.

Objectives

- To demonstrate a basic understanding of how developmental disorders can be transmitted genetically, including the differences between disorders triggered by recessive genes, X-linked genes, and genetic mutation
- To explain in vitro fertilization and pre-implantation genetic diagnosis, including basic risks involved with the procedures
- To consider and discuss ethical issues involved in these procedures

Common Student Misconceptions

- There is always a clear right or wrong answer in science.
- At least one parent must directly display a trait or characteristic for a child to inherit it.
- Fertility treatments are generally simple and successful procedures.

Classroom Management

In my course, students read the case and the questions that accompany it individually; we then discuss the material as a class during the next meeting. Students later complete individual follow-up papers. This case could also be assigned for small-group discussion. I have avoided this option because I find that students often have strong opinions on reproductive issues. Conflicts between students are not uncommon and I prefer to have them take place when I am mediating the whole-class discussion.

Students complete the case as homework and use their text and other sources to help them with any background information on genetics they might need. We spend the next hour (at least) of class time discussing the case. I usually begin the discussion by asking students what the Shannons want and what their possible options are. This can lead to a discussion of recessive-linked disorders and a calculation of the risk of having another child with Fanconi's anemia. Students can generate a list of options available to the couple, including the procedures outlined in the case. I focus on these procedures and discuss the ethical problems related to each. I round out the discussion by turning to the research team in the case. Students present their views on what the research team's dilemma is and the risks they run. We list their options and conclude by taking a vote on what the research team should do.

Various other assignments can be completed for this case. I have had students choose a genetic marker in their own family and draw a family tree tracing it through as many generations as they can. My students also complete an informed opinion paper after the discussion in which they address any or all of the following questions:

If a problem were suspected during a pregnancy, would you want to know? Would you consider using IVF or PGD yourself? Why or why not? What do you think is the most important ethical issue associated with PGD? Describe both sides of the issue.

Web Version

The case and its complete teaching notes, references, and answer key are found on the National Center for Case Study Teaching in Science website at *http://science-cases.lib.buffalo.edu/cs/collection/detail.asp?case_id=347&id=347*.

Index

Page numbers printed in **boldface** type refer to figures or tables.

A

A Need for Needles: Does Acupuncture Really Work?, 130, 141-146 case and questions for, 141-144 summary and overview of, 363 teaching notes for, 144-146 classroom management, 146 introduction and background, 144-145 objectives, 145 student misconceptions, 146 web version of, 146 A Rush to Judgment?, 269, 289–293 case and questions for, 289-291 dilemma, 291 players, 289-290 situation, 290 summary and overview of, 366 teaching notes for, 291-293 classroom management, 292–293 introduction and background, 291 objectives, 292 student misconceptions, 292 web version of, 293 AAAS (American Association for the Advancement of Science), 26, 28, 20 ACS (American Cancer Society), 225, 227 Active learning techniques, 27–28 Acupuncture, 130, 141–146 Ah-choo! Climate Change and Allergies, 234-235, 247-252 case and questions for, 247-250 procedure, 247-250 scenario, 247

summary and overview of, 365 teaching notes for, 250-252 assessment, 251-252 classroom management, 251 introduction and background, 250 objectives, 250-251 student misconceptions, 251 web version of, 252 Alaskan lakes, polychlorinated biphenyls in, 82-83, 109-112 Allchin, Douglas, xii Allergies Ah-choo! Climate Change and Allergies, 234–235, 247–252 Poison Ivy: A Rash Decision, 83, 121-128 Alpha-lactalbumin, 274–276, 279 Alvarez, Walter and Luis, 5-7 Alzheimer's disease, 82, 95–98 Amanda's Absence: Should Vioxx Be Kept Off the Market?, 185, 219-224 case and questions for, 219-222 drug withdrawals, 219-220 prepared testimony, 221-222 press release, 220-221 review panel, 222 summary and overview of, 364 teaching notes for, 222-224 classroom management, 223–224 introduction and background, 222 objectives, 222–223 student misconceptions, 223 web version of, 224 American Association for the Advancement of Science (AAAS), 26, 28, 29 American Cancer Society (ACS), 225, 227 American Medical Association, 167

American Petroleum Institute, 253 American Psychological Association, 291, 292 Amyotrophic lateral sclerosis-Parkinson dementia complex in Guam, 12, 13, 15 An Inconvenient Truth, 251 Analysis cases, 365, 366, 367 And Now What, Ms. Ranger? The Search for the Intelligent Designer, 184, 197-206 case and questions for, 197–202 summary and overview of, 364 teaching notes for, 203-206 classroom management, 204–206 introduction and background, 203 objectives, 203 student misconceptions, 203 web version of, 206 Anderson, L. W., viii, ix Anesthesiology, 47 Angell, Marcia, 17 Animal studies Case of the Ivory-Billed Woodpecker, 131, 173-181 Memory Loss in Mice, 82, 95–98 Mom Always Liked You Best, 23, 82, 99-107 Announcement of scientific discoveries, 233-235 Antiscience, 169-171 Apoptosis, 272, 276 Aristotle, 26 Armstrong, Neil, 189 Arthur, Brian, 183 Asaro, Frank, 5 Asperger's syndrome, 243 Assignments, evaluation of, 372 Asteroid hypothesis of dinosaur extinction, 5-7 Asthma, 250, 254 Autism and MMR vaccine, 234, 237-245

В

Bacterial Theory of Ulcers: A Nobel-Prize-Winning Discovery, xi-xii, 36-37, 69-79 case and questions for, 69–77 conclusion, 76-77 data analysis, 73, 73-74 Dr. Marshall, 70 Dr. Warren, 69-70 isolating bacteria, 72 pilot study, 71-76 presentation of findings, 74-75 publication of results, 75-76 Warren-Marshall partnership, 71 summary and overview of, 361 teaching notes for, 78-79 classroom management, 79 introduction and background, 78 objectives, 78 student misconceptions, 78 web version of, 79 Bad Blood: The Tuskegee Syphilis Experiment, 336 Bad Blood: The Tuskegee Syphilis Project, 269-270, 329-339 case and questions for, 329-336 disease, 329-330 experiment, 331-336, 334, 335 health program, 330-331 summary and overview of, 366 teaching notes for, 336-339 classroom management, 337-339 introduction and background, 336-337 objectives, 337 student misconceptions, 337 web version of, 339 Baker, J. N., 332 Ballentine, N. H., 124 Bass, K. E., 162, 165 BCX-34 trial in cutaneous T-cell lymphoma, 295-302

Behe, Michael, 200 Belmont Report, 317–318 Beneficence, 317 Benson, Herbert, 168 Beta-amyloid and memory loss, 95–98 Bird parenting and chick plumage, 82, 99-107 Bissell, A. N., 375 Bizzozero, Giulio, 71 Bloom's taxonomy, viii, ix, 375 Bossilier, Brigitte, 304, 305 Breast Implants, 12, 13, 17 Breast milk, protective effect against cancer, 268, 271-279 Bringing Back Baby Jason: To Clone or Not to Clone, 269, 303-307 case and questions for, 303-305 summary and overview of, 366 teaching notes for, 305-307 classroom management, 306-307 introduction and background, 305-306 objectives, 306 student misconceptions, 306 web version of, 307 Buck, Germaine, 262, 264 Burt, Cyril, 267 Bush, George W., 187-188, 193, 257-258 Buxtin, Peter, 336 Byrd, Randolph, 169

C

Caldwell, Roy, 1 Cameron, Stewart, 284 *Campylobacter jejuni,* 72 Cancer cervical, HPV vaccine and, 225, 227, 228 data manipulation in clinical trial, 269, 295–302

medicinal use of marijuana in, 213–214 protective effect of breast milk against, 268, 271-279 Taxol for, 268-269, 281-288 Cancer Cure or Conservation, 268–269, 281-288 case and questions for, 281-283 summary and overview of, 365 teaching notes for, 284-287 assignments, 287 classroom management, 285-287 introduction and background, 284-285 objectives, 285 student misconceptions, 285 web version of, 288 Carbon dioxide, atmospheric, 247, 250, 251, 254 Carry, Jim, 238 Case of the Ivory-Billed Woodpecker, 131, 173-181 case and questions for, 173-177 background, 173-174 e-mail exchange, 174-177, 175 main evidence, 174 summary and overview of, 363 teaching notes for, 177-180 classroom management, 178-180 introduction and background, 177, 178 objectives, 178 student misconceptions, 178 web version of, 181 Case of the Tainted Taco Shells, 184–185, 207-212 case and questions for, 207-211 project design: interest groups, 209-211 summary and overview of, 364 teaching notes for, 211-212 classroom management, 212

introduction and background, 211 objectives, 211-212 student misconceptions, 212 web version of, 212 Case studies. See also specific cases alignment with National Science Education Standards, xi, 369-370 definition of, 28 on ethics and the scientific process, xii, 267-339 on experimental design, ix, 81-128 historical, xi-xii, 35-79 history as teaching method, 28 interrupted case method, 23-24 on science and media, xii, 233-266 on science and society, xii, 183-230 summaries and overviews of, xi, 361-366 to teach concepts about the nature of science, 11-19 to teach critical thinking, vii, x-xiii, 21-24, 28-32 teaching methods using, 28–29 constructivist learning model and, 31-32 in groups, 28, 29 problem-based learning, 28, 30-31 reasons for effectiveness of, 29 teaching notes for, xi type or method of, 361-368 on unusual claims, xii, 129-181 web versions of, xi CDC (Centers for Disease Control and Prevention), 225-226 Cell biology, 272, 276, 278 Centers for Disease Control and Prevention (CDC), 225–226 Cerbin, W. J., 376 Cernan, Eugene, 189 Cervical cancer, 225, 227, 228

Chadwick, Edwin, 46–47 Childbed Fever: A 19th Century Mystery, xi, 35, 39-43 case and questions for, 39-40 summary and overview of, 361 teaching notes for, 41-43 classroom management, 42-43 introduction and background, 41 objectives, 41 student misconceptions, 41-42 web version of, 43 Cholera, xi, 35-36, 45-55 Claim identification, rubric for assessment of, 377 Class discussion, evaluation of, 371-372 Classical music, concentration, and creativity, 130, 159-165 Claviceps purpurea, 61 Climate change Ah-choo! Climate Change and Allergies, 234–235, 247–252 **Rising Temperatures: The Politics of** Information, 235, 253–259 Cloning, 268, 269, 303-307 Code of Federal Regulations Protection of Human Subjects, 318, 319 Cold fusion, 234, 267 Collins, Francis, 233 Columbus, Christopher, 190 Committee for the Scientific Investigation of Claims of the Paranormal. 2 Connaughton, James, 254 Conservation biology and drug development, 268-269, 281-288 Constructivist learning model, 31-32 "Context of discovery," 11, 19 "Context of justification," 11, 19 Coot parenting and chick plumage, 82, 99-107 Cosmos, 234

Council on Environmental Quality, 254 Cragg, Gordon, 282 Crawford, Lester M., 220 Creativity, 22 Credit for discoveries, 233 Crick, Francis, 200, 233 Critical thinking, vii, 25–32 active learning and, 27-28 assessment of, 375-376 case study approach to teaching of, vii, x-xiii, 21-24, 28-32 definition of, vii, 25 discipline-specific, viii, 22, 26 informal logic and, vii learning domains and, viii, **ix** modeling of, 23 scientific method and, viii-xi as teaching objective, vii, 25-27 Critical Thinking: What Every Person Needs to Survive in a Rapidly Changing World, 27 Crook, M. D., 162, 165 Cumming, Hugh S., 330 Curiosity, 22 Cutaneous T-cell lymphoma, trial of BCX-34 in, 295-302

D

Darwin's Black Box, 200 Darwin's theory, 198–200 Data manipulation in clinical trial, 269, 295–302 Dawkins, Richard, 2 DEA (Drug Enforcement Administration), 213 Deer, Brian, 242 Democracy and Education, 26 Demon-Haunted World, The: Science as a Candle in the Dark, 129 Dewey, John, 26 Dickey, J., 16–17 Dilemma cases, 363-366, 367 Dinosaur extinction, asteroid hypothesis of, 5-7 Dioxin contamination, 18 Directed cases, 363, 367 Discussion cases, 362-366, 367 DNA structure, 233 Double Helix, The, 233 Dow Corning, 17 Dragon in My Garage, 12-14, 14 Drug Enforcement Administration (DEA), 213 Drug testing in humans, 275 Drug withdrawal from market, 185, 219-224 Dualist thinking, 24, 54

E

Eadie, John, 100–103 Eating PCBs from Lake Ontario, 235, 261-266 case and questions for, 261-263 summary and overview of, 365 teaching notes for, 264-266 classroom management, 265-266 introduction and background, 264 objectives, 264 student misconceptions, 264 web version of, 266 Education policy, 29 "Embryo design," 269, 309-314 Embryonic stem cells, 311 **Environmental Protection Agency** (EPA), 18, 253–255, 257 Epidemic disease, 46 Epidemiology, 36, 46–47, 50–55 Ergot poisoning, 61, 64, 66-67 Erhlich, Paul, 330 Ethical principles, 317

Ethics and the scientific process cases, xii, 267-270 Bad Blood: The Tuskegee Syphilis Project, 269-270, 329-339 Bringing Back Baby Jason: To Clone or Not to Clone, 269, 303-307 Cancer Cure or Conservation, 268-269, 281-288 How a Cancer Trial Ended in Betrayal, 269, 295-302 Mother's Milk Cures Cancer, 268, 271-279 A Rush to Judgment?, 269, 289-293 Selecting the Perfect Baby: The Ethics of "Embryo Design," 269, 309-314 Studying Racial Bias: Too Hot to Handle?, 269, 315-327 summary and overview of, 365-366 Evaluating student casework, 371-377 assessing critical thinking, 375-376 assignments, 372 class discussion, 371-372 exams, 372 peer evaluation, 372-375, 374 rubric for assessing claims and evidence, 377 Evolution vs. intelligent design, 184, 197-206 Exams, 372 Experimental design cases, ix, 81-83 The Great Parking Debate, 83, 113–120 Lady Tasting Coffee, 82, 85-93 Memory Loss in Mice, 82, 95–98 Mom Always Liked You Best, 23, 82, 99-107 PCBs in the Last Frontier, 82–83, 109-112 Poison Ivy: A Rash Decision, 83, 121-128 summary and overview of, 362

Extrasensory Perception?, 130, 133–140 case and questions for, 133–136 summary and overview of, 363 teaching notes for, 136–140 classroom management, 137–140 introduction and background, 136 objectives, 136–137 student misconceptions, 137 web version of, 140

F

Family Photos, **12**, **13**, 16–17 Fanconi's anemia, 269, 309–314 Farr, William, 36, 50 FDA (U.S. Food and Drug Administration), 97, 152, 185, 218, 219–224, 279, 302 Fialka, John, 254 Fish in Lake Ontario fish, reproductive effects of PCBs in, 235, 261–266 Fish Kill Mystery, **12**, **13**, 15–16 Fisher, Ronald, xii, 82, 86–93 Fossil records, 16–17 *Frontier in American History, The*, 190

G

Galileo, 189 Gardasil and mandatory HPV vaccination, 185, 225–230 Generation Rescue, 242 Genetics Bringing Back Baby Jason: To Clone or Not to Clone, 269, 303–307 Case of the Tainted Taco Shells, 184– 185, 207–212 Selecting the Perfect Baby: The Ethics of "Embryo Design," 269, 309– 314 Germ theory of disease, 35 Gjustland, Trygve, 334 Global warming Ah-choo! Climate Change and Allergies, 234–235, 247–252 **Rising Temperatures: The Politics of** Information, 235, 253–259 Gore, Al, 251 Gottlieb, Jack, 61 Great Parking Debate, 83, 113–120 case and questions for, 113-116 ratings of own and others' behavior, 116, 116 research question, 113-114 study method, 114 study results, 114-116 summary and overview of, 362 teaching notes for, 117-120 classroom management, 117–120 introduction and background, 117 objectives, 117 student misconceptions, 117 web version of, 120 Greenhouse gases, 247, 250, 251, 254 Group projects, 28, 29, 30 peer evaluation and, 372-375, 374

Η

Hake, Richard, 27 Hamilton, Linda, 100–103 HAMLET factor, 274–275 Hardcastle, William, 45 Harris, William, 167–168 Hartzell, Hal, Jr., 282–283 Hawking, Stephen, 234 Hay fever, 250 Healing and intercessory prayer, 18, 130–131, 167–172 Helicobacter pylori and gastric ulcers, 36, 72–78, **73** Helium-3, 192 Heller, Jean, 336 Hillary, Edmund, 190 Historical cases, xi-xii, 35-37 Bacterial Theory of Ulcers: A Nobel-Prize-Winning Discovery, xi-xii, 36-37, 69-79 Childbed Fever: A 19th Century Mystery, xi, 35, 39-43 Mystery of the Blue Death: John Snow and Cholera, xi, 35-36, 45-55 Salem's Secrets: On the Track of the Salem Witch Trials, xii, 36, 57-68 summary and overview of, 361 Hoffman, Erich, 330 House, Karen Elliott, 258 How a Cancer Trial Ended in Betraval, 269, 295-302 case and questions for, 295–298 background, 295 clinical trial, 297-298 main characters, 296–297 objectives, 295-296 summary and overview of, 269, 295-302 teaching notes for, 298-302 classroom management, 299-302 introduction and background, 298 objectives, 299 student misconceptions, 299 web version of, 298, 302 HPV (human papillomavirus) vaccine, 185, 225-230 Human behavior, 83, 113-120 Human Genome Project, 233, 305 Human papillomavirus (HPV) vaccine, 185, 225-230 Human pheromones, 130, 147-157 Humoral model of disease, 45 Hypothetico-deductive method. See Scientific method

I

Immune response to poison ivy, 121–128 In vitro fertilization (IVF), 269, 270, 310, 313, 314 Informal logic, vii Informed consent, 317 Institutional Review Board (IRB), 269, 316, 318-324, 319, 326 Instructional techniques, requiring active learning, 27-28 Intelligent design, 1-2, 184, 197-206 Intercessory prayer for healing, 18, 130-131, 167-172 International Space Station, 187 Interrupted case method, 23-24, 361-365, 367 Intimate debate cases, 215–218, 364, 368 IRB (Institutional Review Board), 269, 316, 318-324, 319, 326 Iridium spike and dinosaur extinction, 5-7 IVF (in vitro fertilization), 269, 270, 310, 313, 314 Ivory-billed woodpecker sighting, 131, 173-181

J

Jewelweed for poison ivy, 123–127, **125**, **126** Johnson, D. W. and R. T., 28 Jones, James H., 336 Jones, John E., III, 204 Junk science, 169–171 *Junk Science: What You Know That May Not Be So*, 17 *Jupiter Icy Moons Orbiter*, 192 Justice, 317

K

Kennedy, John F., 188

Koch, Robert, 77 Krummel, E. M., 111, 112 Kweder, Sandra, 224 Ky, K. N., 162, 164

L

Lady Tasting Coffee, 82, 85–93 case and questions for, 85-91 coffee shop wager, 85-87 tasting coffee, 89-91 tasting tea, 87-88 summary and overview of, 362 teaching notes for, 91-93 classroom management, 92-93 introduction and background, 91 objectives, 91 student misconceptions, 91-92 web version of, 93 Lake Ontario fish, reproductive effects of PCBs in, 235, 261-266 Lange, Bob, 295, 296 Lauer, T., 28 Learning, 26 active, 27-28 constructivist model of, 31–32 in cooperative groups, 28, 29 critical thinking and domains of, viii, ix evaluation of, 371-377 problem-based, 28, 30-31, 367, 372-373 situated, 31-32 as a social process, 31–32 Lecture method, x, 24 Legalization of marijuana for medicinal use, 185, 213-218 Lemons, P. P., 375 Lindberg, David, 1 Litaker, Wayne, 15 Long, D., 124

Love Potion #10: Human Pheromones at Work, 130, 147–157 case and questions for, 147–152, **149**, **150** summary and overview of, 363 teaching notes for, 152–157 classroom management, 153–157 introduction and background, 152–153 objectives, 153 student misconceptions, 153 web version of, 157 Lucas, James, 336 Lyon, Bruce, 100–103 Lysenko, T. D., 129

M

Mandatory HPV vaccination of girls, 185, 225-230 Marijuana, medicinal use of, 185, 213-218 Marks, J. G., Jr., 124 Mars exploration, 184, 187-195 Marshall, Barry, xi, 37, 70–79 Mass hysteria, 59-60, 60, 66 McCarthy, Jenny, 238, 242 Measles-mumps-rubella (MMR) vaccine and autism, 234, 237-245 Media. See Science and media; Science and media cases Medicinal Use of Marijuana, 185, 213-218 case and questions for, 213–215 "Terminal Cancer," 213–214 "The Story of the Lotus Eaters," 215 summary and overview of, 364 teaching notes for, 215-218 classroom management, 216-218 introduction and background, 215-216 objectives, 216 student misconceptions, 216

web version of, 218 Memory Loss in Mice, 82, 95-98 case and questions for, 95–96 summary and overview of, 362 teaching notes for, 96–98 classroom management, 97–98 introduction and background, 96 objectives, 96-97 student misconceptions, 97 web version of, 98 Mendola, Pauline, 262–264 Menstrual cycle and PCBs in Lake Ontario, 235, 261-266 Mental Rotations Test (MRT), 289, 290 Metacognition, 29 Miasma model of disease, 47-48 Michaelsen, Larry, 373 Michel, Helen, 5 Mierson, Sheella, 30 Miller, Jon, x Misconceptions of students, xi, 2-3. See also specific cases MMR (measles-mumps-rubella) vaccine and autism, 234, 237-245 Mom Always Liked You Best, 23, 82, 99-107 case and questions for, 99-102 biologists' method to attack problem, 100 conclusions of study, 102, 102 data analysis, 101, 101-102 statement of problem, 99, 99-100 what is measured, 100 summary and overview of, 362 teaching notes for, 103-106 classroom management, 104-106 introduction and background, 103 objectives, 103 student misconceptions, 103-104 web version of, 107 Moon to Mars: To Boldly Go...or Not,

184, 187-195 case and questions for, 187-193 prelude to space, 187-188 public hearing, 188–193 summary and overview of, 364 teaching notes for, 193–195 classroom management, 194–195 introduction and background, 193 objectives, 193-194 student misconceptions, 194 web version of, 195 Moore, B., vii Moore, Joseph Earle, 332 Mother's Milk Cures Cancer?, 268, 271-279 case and questions for, 271-276 discovery, 271–272 from lab to pharmacy, 275–276 research, 273-274 responses of scientific community, 272-273 summary and overview of, 365 teaching notes for, 276-279 classroom management, 277-279 introduction and background, 276 objectives, 276-277 student misconceptions, 277 web version of, 279 "Mozart Effect," 130, 159-165 case and questions for, 159-162 enhanced performance, 159-160, 161 outlines of experiment, 161 replication, 162 research report analyses, 162 summary and overview of, 363 teaching notes for, 162-165 classroom management, 164-165 introduction and background, 162-163 objectives, 163 student misconceptions, 163

web version of, 165 MRT (Mental Rotations Test), 289, 290 Mycotoxins, 61, 64, 66–67 Mystery Disease, 12, 13, 15 Mystery of the Blue Death: John Snow and Cholera, xi, 35-36, 45-55 case and questions for, 45-52 Broad Street pump, 51–52 mystery of blue death, 48-49, 49 sanitation and Victorian London, 46-47 Snow and origins of anesthesiology, 47 Snow's early life, 45–46 solving the mystery of blue death, 50-51 summary and overview of, 361 teaching notes for, 52-55 classroom management, 53–55 introduction and background, 52-53 objectives, 53 student misconceptions, 53 web version of, 55

Ν

NAACP (National Association for the Advancement of Colored People), 321 NASA (National Aeronautics and Space Administration), 187–195 Nash, Jack and Lisa, 312 National Academy of Sciences, 205 National Aeronautics and Space Administration (NASA), 187–195 National Association for the Advancement of Colored People (NAACP), 321 National Cancer Institute (NCI), 273, 282, 284 National Center for Case Study Teaching in Science website, xi, 375. See also web versions of specific cases National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research, 317 National Institutes of Health (NIH), 233, 271, 273, 284, 302, 318 National Research Council (NRC), 26 National Science Education Standards. xi, 26, 369-370 National Science Foundation (NSF), 27 Native Yew Conservation Society, 282 Nature of science (NOS), 11–19 case studies for teaching of, 14-18 Breast Implants, 17 The Dragon in My Garage, 14, 14 Family Photos, 16–17 The Fish Kill Mystery, 15–16 Mystery Disease, 15 Prayer Study, 18 Times Beach, 18 case study alignment with concepts of, 12 case study questions for NOS scientific knowledge, 13 definition of, 11 Nature of Technology, The, 183 NCI (National Cancer Institute), 273, 282, 284 Nelson, C. E., 54 Neve, Rachael, 95 Newton, Isaac, 233 NIH (National Institutes of Health), 233, 271, 273, 284, 302, 318 Nobel, Alfred, 268 Nonsteroidal anti-inflammatory drugs (NSAIDs), 220 Norton, Gail, 180 NOS. See Nature of science NRC (National Research Council), 26

NSAIDs (nonsteroidal antiinflammatory drugs), 220 NSF (National Science Foundation), 27 Null hypothesis, 90 Nuremberg Code, 334, 337

0

Occam's razor, 130 Of Pandas and People, 197, 199 Office of Protection from Research Risks (OPRR), 318 On the Mode of Communication of Cholera, 48 Oppenheimer, Robert, 268, 270 OPRR (Office of Protection from Research Risks), 318 Orion Crew Exploration Vehicle, 187 Orphan drugs, 279

Р

Paclitaxel (Taxol), 268-269, 281-288 Parker, R., vii Pascal, Blaise, 372 Pasteur, Louis, 37 Paul, Richard, 27 PBL (problem-based learning), 28, 30-31, 367, 372-373 PCBs in the Last Frontier, 82-83, 109-112 case and questions for, 109–111 global transport, 110 PCBs, 109, 109-110 riddle solved, 110-111 significant difference, 110 summary and overview of, 362 teaching notes for, 111–112 classroom management, 112 introduction and background, 111 objectives, 111 student misconceptions, 112 web version of. 112

PCD (pre-implantation genetic diagnosis), 309-314 Pedagogical content knowledge, 21 Peer evaluation, 372-375, 374 Peer review, 2, 234, 251–252 Peptic ulcers, bacterial theory of, xi-xii, 36-37, 69-79 Perry, Rick, 185, 225-229 Perry, William, 24, 54 Peugeot, Renee, 296, 302 Pfiesteria piscicida toxin, 15–16 Pharmaceuticals Amanda's Absence: Should Vioxx Be Kept Off the Market?, 185, 219-224 Cancer Cure or Conservation, 268-269, 281-288 How a Cancer Trial Ended in Betrayal, 269, 295-302 Medicinal Use of Marijuana, 185, 213-218 Mother's Milk Cures Cancer?, 268, 271-279 Pheromones, 130, 147-157 Photographic evidence, 16–17 PHS (U.S. Public Health Service) Division of Venereal Diseases, 330-336 Placebo effect, 131 Plato, 26 Plotkin, Mark, 282, 287 Poison Ivy: A Rash Decision, 83, 121-128 case and questions for, 121-127 effectiveness of jewelweed treatment, 126, 126-127 encounters with poison ivy, 121–122 finding a treatment, 123-124 mystery of blisters unfolds, 122–123 scientific experiment, 124-126, 125 summary and overview of, 362 teaching notes for, 127-128

classroom management, 127–128, 128 introduction and background, 127 objectives, 127 student misconceptions, 127 web version of, 128 Pollen allergies and climate change, 234-235, 247-252 Polychlorinated biphenyls (PCBs) in Alaskan lakes, 82-83, 109-112 in Lake Ontario, reproductive effects of, 235, 261-266 Prayer-Gauge Debate, The, 169 Prayer Study: Science or Not?, 130–131, 167-172 case and questions for, 167-169 nature of science concepts aligned with, 12, 13, 18 summary and overview of, 363 teaching notes for, 169-172 classroom management, 172 introduction and background, 169-171 objectives, 171 student misconceptions, 171 web version of, 172 Pre-implantation genetic diagnosis (PCD), 309-314 Precautionary principle, 18 Pregnancy and PCBs in Lake Ontario, 235, 261-266 Prejudice and racism Bad Blood: The Tuskegee Syphilis Project, 269–270, 329–339 Studying Racial Bias: Too Hot to Handle?, 269, 315-327 Problem-based learning (PBL), 28, 30-31, 367, 372-373 Problem solving, 22, 24 Progressive disclosure method, 257–258 Pseudoscience, xii, 169-171, 184, 242, 363. See also Unusual claims Public health Ah-choo! Climate Change and Allergies, 234–235, 247–252 Bad Blood: The Tuskegee Syphilis Project, 269–270, 329–339 Mystery of the Blue Death: John Snow and Cholera, xi, 35–36, 45–55 Sex and Vaccination, 185, 225–230 Tragic Choices: Autism, Measles, and the MMR Vaccine, 234, 237–245 Public hearing cases, 364, 368 Publication of scientific discoveries, 233

Q

Quinault Indian Nation, 281-284

R

Racial prejudice Bad Blood: The Tuskegee Syphilis Project, 269-270, 329-339 Studying Racial Bias: Too Hot to Handle?, 269, 315-327 Radetsky, Peter, 276 Ransohoff, D. F., 76 Rauscher, F. H., 162, 164 Reagan, Ronald, 2 Records of Salem Witchcraft, 61 Religious beliefs, 2 And Now What, Ms. Ranger? The Search for the Intelligent Designer, 184, 197-206 Prayer Study: Science or Not?, 12, 13, 18, 130-131, 167-172 Reproductive effects of PCBs in Lake Ontario, 235, 261-266 Research ethics, 269, 289–293 Respect for persons, 317 Revkin, Andrew, 253, 257 Rhine, J. B., 135, 136, 138

Ridley, Matt, 183, 233 **Rising Temperatures: The Politics of** Information, 235, 253–259 case and questions for, 253-255 summary and overview of, 365 teaching notes for, 255-258 classroom management, 256, 256-258 introduction and background, 255-256 objectives, 256 student misconceptions, 256 web version of, 259 Roberts, Eugene, 95 Rofecoxib (Vioxx) withdrawal from market, 185, 219–224 Role-play cases, 364-366, 368 Rubric for assessing claims and evidence, 377

S

Sagan, Carl, xii, 14, 129, 169, 234 Salem Witchcraft Papers, 58 Salem's Secrets: On the Track of the Salem Witch Trials, xii, 36, 57–68 case and questions for, 57–64 classroom extensions, 63-64 data interpretation, 61-63, 62 ergot poisoning, 61 mass hysteria events, 59-60, 60 Salem's secrets, 57–59 societal frame, 63 summary and overview of, 361 teaching notes for, 64-68 classroom management, 66–68 introduction and background, 64 objectives, 65 student misconceptions, 65 web version of, 68 Salk, Jonas, 270

Schatz, Irwin J., 335 Schaudinn, Fritz, 330 Schmitt, Harrison, 189 Schulman, Lee, 21 Science, 1–9 Berkeley model of how it works, 4, 4-7 case study of asteroids and dinosaurs, 5-7 vs. how it really works, 7–9, 8 limitations of, 2 misconceptions about, 2-3 nature of, 11-19 as a way of knowing, viii, 81 Science, technology, engineering, and math (STEM) education, x, 27 Science and media cases, xii, 233–235 Ah-choo! Climate Change and Allergies, 234–235, 247–252 Eating PCBs from Lake Ontario, 235, 261-266 **Rising Temperatures: The Politics of** Information, 235, 253–259 summary and overview of, 365 Tragic Choices: Autism, Measles, and the MMR Vaccine, 234, 237-245 Science and society cases, xii, 183–185 Amanda's Absence: Should Vioxx Be Kept Off the Market?, 185, 219-224 The Case of the Tainted Taco Shells, 184-185, 207-212 Medicinal Use of Marijuana, 185, 213-218 Moon to Mars: To Boldly Go...or Not, 184, 187-195 And Now What, Ms. Ranger? The Search for the Intelligent Designer, 184, 197-206 Sex and Vaccination, 185, 225–230 summary and overview of, 364

Science for All Americans, 26 Science journals, 233–234 Science on Trial, 17 Scientific enterprise, 11 Scientific knowledge, 11 Scientific literacy, x, 27, 151 Scientific method, viii-ix, x-xi, 1-9. See also Experimental design cases concept map, 170 unusual claims and, xii, 129-131 Scientific process, 177, 178 Scotchmoor, Judy, 1 Scott, David, 189 Search for Extraterrestrial Intelligence (SETI), 191 Seelye, Katharine, 253 Selecting the Perfect Baby: The Ethics of "Embryo Design," 269, 309-314 case and questions for, 309-312 summary and overview of, 366 teaching notes for, 312-314 classroom management, 313–314 introduction and background, 312-313 objectives, 313 student misconceptions, 313 web version of, 314 Semmelweis, Ignaz, xi, 35, 39-43 SETI (Search for Extraterrestrial Intelligence), 191 Sex and Vaccination, 185, 225–230 case and questions for, 225-229 arguments against mandatory HPV vaccination, 227-229 governor's case, 226-227 Texas tempest, 225-226 summary and overview of, 364 teaching notes for, 229-230 classroom management, 230 introduction and background, 229 objectives, 229

student misconceptions, 229–230 web version of, 230 Sexually transmitted diseases (STDs), 225-230 Shaman's Apprentice, The, 287 Shaping the Future: New Expectations for Undergraduate Education in Science, Mathematics, Engineering, and Technology, 27 Shaughnessy, J. B., 161, 164 Shaw, G. L., 162, 164 Silicone breast implants, 12, 13, 17 Situated cognition, 31–32 Skepticism, ix, xii, 22–24, 129 Skin cancer, trial of BCX-34 in, 269, 295-302 Skirrow, Martin, 37, 75 Smithsonian Institution, 282 Snow, John, xi, 35-36, 45-55 Snyder, Harry W., Jr., 296, 302 Social psychology, 83, 113–120 Societal issues. See Science and society cases Socrates, 26 Solomon, David, 273 Space exploration, 184, 187–195 Spanos, Nicholas, 61 Staphylococcus aureus, 72 Statistical experiment, 82, 85–93 STDs (sexually transmitted diseases), 225-230 Steele, K. M., 162, 165 Stem cell research, 311 STEM (science, technology, engineering, and math) education, x, 27 Stossel, John, 18 Studying Racial Bias: Too Hot to Handle?, 269, 315-327 case and questions for, 315-322 ethics and conduct of research with human subjects, 316-318, 319

how IRB evaluated proposal, 318– 321 research proposal, 315–316 response of supporters of proposed research, 321-322 summary and overview of, 366 teaching notes for, 323-327 classroom management, 324–327, 325 introduction and background, 323 objectives, 323 student misconceptions, 323-324 web version of, 327 Sulzberger, Arthur O., 258 Svanborg, Catherine, 271–279 Syphilis project in Tuskegee, 269–270, 316, 329-339 Szent-Györgyi, Albert, 77

T

Taxol (paclitaxel), 268–269, 281–288 Teaching notes for cases, xi. See also specific cases Terrestrial Planet Finder, 192 Terry, D. R., 375-376 Thanukos, Anna, 1 Think-pair-share method, 257 Thomas Aquinas, 199 Times Beach, 12, 13, 18 Tobias, Sheila, x Tragic Choices: Autism, Measles, and the MMR Vaccine, 234, 237-245 case and questions for, 237-242 the choice, 237-239 the conference, 240–241 the connection, 239, 239-240, 240 the consequences, **241**, 241–242 summary and overview of, 365 teaching notes for, 242-245 classroom management, 243–245

introduction and background, 242 objectives, 242–243 student misconceptions, 243 web version of, 245 Truzzi, Marcello, 2, 130 Turner, Frederick Jackson, 190 Tuskegee syphilis project, 269–270, 316, 329–339 Type I and Type II errors, 90, 293 Tyser, R. W., 376

U

Understanding Science: How Science Really Works website, 1 Unusual claims cases, xii, 129-131 The Case of the Ivory-Billed Woodpecker, 131, 173-181 Extrasensory Perception?, 130, 133-140 Love Potion #10: Human Pheromones at Work, 130, 147–157 The "Mozart Effect," 130, 159-165 A Need for Needles: Does Acupuncture Really Work?, 130, 141-146 Prayer Study: Science or Not?, 18, 130-131, 167-172 summary and overview of, 363 Urushiol, 122-124, 125, 126 U.S. Department of Health, Education, and Welfare, 317 U.S. Food and Drug Administration (FDA), 97, 152, 185, 218, 219–224, 279, 302 U.S. Forest Service, 281-284 U.S. Public Health Service (PHS) Division of Venereal Diseases. 330-336

V

Vaccines Sex and Vaccination, 185, 225–230 Tragic Choices: Autism, Measles, and the MMR Vaccine, 234, 237–245 Validity of evidence, rubric for assessment of, 377 Vena, J. E., 264 Venter, Craig, 233 Vioxx withdrawal from market, 185, 219–224 Vision for Space Exploration, 187–188 Vonderlehr, Raymond, 332–333 Vygotsky, L. S., 31

W

Wakefield, Andrew, 240, 240-242, 241, 244-245 Warren, J. Robin, xi, 36-37, 69-79 Wassermann blood test, 330 Water contamination and cholera, 36, 46-55 Watson, James, 233 Watson-Glaser Critical Thinking Appraisal, 376 Web versions of cases, xi. See also specific cases Whitehead, Henry, 36, 51 Whitman, Christine Todd, 253-254 WHO (World Health Organization), 247 Willingham, Daniel, viii Witch trials in Salem, xii, 36, 57-68 World Health Organization (WHO), 247

Z

Zechmeister, E. B. and J. S., 161, 164

Stories put "flesh and blood" on scientific methods and provide an inside look at scientists in action. Case studies deepen scientific understanding, sharpen critical-thinking skills, and help students see how science relates to their lives. In Science Stories, Clyde Freeman Herreid, Nancy Schiller, and Ky Herreid have organized case studies into categories such as historical cases, science and the media, and ethics and the scientific process. Each case study comprises a story, classroom discussion questions, teaching notes and background information, objectives, and common misconceptions about the topic, as well as helpful references. College-level educators and high school teachers will find that this compilation of case studies will allow students to make connections between the classroom and everyday life. Science Stories is sure to make science engaging and enlightening for both students and teachers.

Science Stories is sure to enlightening for bot

Copyright © 2012 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.