In a society where technology plays an ever-increasing role, students’ ability to understand the underlying science and make smart social and environmental decisions based on that knowledge is crucial. Welcome to Nanoscience helps biology, chemistry, and Earth science teachers introduce the revolutionary fields of nanoscience and nanotechnology to high school students through the unique framework of the environment, specifically groundwater pollution.

This volume comprises two parts. The first provides background material for the teacher—answering questions such as what is nanoscience and technology? What are the important historical and societal aspects of nanotechnology? How is nanoscience related to environmental science?—and describes how education in nanoscience and nanotechnology addresses the National Science Education Standards, and outlines the curriculum.

Part II contains the five lessons:
- Introduction to Nanotechnology
- Introduction to Water Pollution
- Microbe-Mineral Interactions: Using the Winogradsky Column to Demonstrate Bacterial Reduction of Iron(III)
- Investigation of Bacterial Transport in Groundwater
- Nanoforces in Nature: Using Atomic Force Microscopy to Explore Microbe-Mineral Interactions

Each classroom-tested, inquiry-based investigation follows the BSCS 5E Instructional Model and includes step-by-step procedures, materials lists, and data charts. Teachers may use the entire curriculum or pick and choose among its several parts, depending on their preferred emphasis, the course level, and available time. The flexible curriculum offers numerous entry and exit points. Also included is a link to a downloadable computer simulation program, which was specially designed to allow students to explore the atomic force microscope—even if their school doesn’t have one.
Welcome to Nanoscience
INTERDISCIPLINARY ENVIRONMENTAL EXPLORATIONS
GRADES 9–12

Andrew S. Madden
Michael F. Hochella Jr.
George E. Glasson
Julie R. Grady
Tracy L. Bank
André M. Green
Mary A. Norris
Andrew N. Hurst
Susan C. Eriksson
CONTENTS

<table>
<thead>
<tr>
<th>The Nano2Earth Curriculum</th>
<th>vii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Group on Nano2Earth and the Nanobiogeochemistry Secondary Science and Math Curriculum Project</td>
<td>ix</td>
</tr>
<tr>
<td>Tips for Using This Book</td>
<td>xi</td>
</tr>
</tbody>
</table>

PART I: NANOSCIENCE HISTORY, CONTEXT, AND CURRICULUM OVERVIEW

Chapter 1

| What Are Nanoscience and Nanotechnology? A Nano Primer | 3 |

Chapter 2

<table>
<thead>
<tr>
<th>Historical and Societal Aspects of Nanoscale Science and Technology</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Origins of Nanoscience</td>
<td>7</td>
</tr>
<tr>
<td>How Much Interest Has Nanoscale Science and Technology Attracted?</td>
<td>8</td>
</tr>
<tr>
<td>How Has Nanotechnology Already Affected Our Everyday Lives?</td>
<td>9</td>
</tr>
<tr>
<td>What Could Nanotechnology Mean to Society in the Long Run?</td>
<td>10</td>
</tr>
</tbody>
</table>

Chapter 3

<table>
<thead>
<tr>
<th>The Link Between Nanoscale Science, Technology, and a Vital Environmental Issue: Groundwater Pollution</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>The “Critical Zone” of the Earth</td>
<td>14</td>
</tr>
<tr>
<td>Water/Mineral/Bacteria Nanoscience</td>
<td>14</td>
</tr>
<tr>
<td>Metal Transport Nanoscience</td>
<td>16</td>
</tr>
<tr>
<td>Chapter 4</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>Nano2Earth Curriculum and the National Science Education Standards</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 5</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nano2Earth Curriculum Overview</td>
<td>23</td>
</tr>
<tr>
<td>Curriculum framework</td>
<td>23</td>
</tr>
<tr>
<td>Using the curriculum</td>
<td>24</td>
</tr>
</tbody>
</table>

PART II: The Nano2Earth Curriculum

Lesson 1 – Introduction to Nanotechnology	31
Lesson 2 – Introduction to Water Pollution	43
Lesson 3 – Microbe-Mineral Interactions: Using the Winogradsky Column to Demonstrate Bacterial Reduction of Iron (III)	55
Lesson 4 – Investigation of Bacterial Transport in Groundwater	81
Lesson 5 – Nanoforces in Nature: Using Atomic Force Microscopy to Explore Microbe-Mineral Interactions	105

Appendix 1: National Science Education Standards for Content in Grades 9–12 Addressed in the Nano2Earth Curriculum	151
Appendix 2: Correlations Between AP Environmental Science Themes and Nano2Earth Lessons	155
Glossary of Scientific and Technical Terms	157
Index	163
Nano2Earth (pronounced “nano-to-Earth”) is a secondary school science curriculum that brings nanoscale science and technology to life in the context of Earth and environmental sciences. Nanoscale science and technology, working together with environmental science issues, transcends traditional scientific knowledge and processes presented in high school chemistry, biology, geoscience, and environmental science classes today. Nevertheless, every aspect of the curriculum addresses one or more of the National Science Education Standards (NSES). Nano2Earth originated as an outreach project in the Department of Geosciences at Virginia Tech. Welcome to Nanoscience was a collaborative project four years in development. It was conceived, written, and classroom-tested by five high school science teachers from southwest Virginia, four professors from Virginia Tech, and several graduate students (see Working Group on Nano2Earth and the Nanobiogeochemistry Secondary Science and Math Curriculum Project, p. ix). This material is based on work originally supported by the National Science Foundation (NSF) Nanoscale Science and Engineering Program under contract EAR-0103053, and subsequently by NSF and the Environmental Protection Agency (EPA) under NSF Cooperative Agreement EF-0830093, Center for the Environmental Implications of NanoTechnology (CEINT). Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF or the EPA. This work has not been subjected to EPA review and no official endorsement should be inferred.
Working Group on Nano2Earth and the Nanobiogeochemistry Secondary Science and Math Curriculum Project

Dr. Andrew Madden
School of Geology and Geophysics, University of Oklahoma

Dr. Michael Hochella Jr.
Department of Geosciences, Virginia Tech

Dr. George Glasson
Department of Teaching and Learning, Virginia Tech

Dr. Susan Eriksson
UNAVCO, Boulder, Colorado

Dr. Madeline Schreiber
Black and Veatch Corporation

Dr. Chris Tadanier
Department of Geosciences, Virginia Tech

Karen Cecil
Radford High School

Dr. Julie Grady
Department of Educational Leadership, Curriculum & Special Education, Arkansas State University

Andrew Hurst
Patrick Henry High School

Mary Norris
Salem High School

Angela Nottingham
Narrows High School

John McLaughlin
Lord Botetourt High School

Dr. André Green
Department of Leadership and Teacher Education, University of South Alabama

Dr. Saumyaditya Bose
ARCADIS U.S., Inc.

Dr. Tracy Bank
Department of Geology, University of Buffalo

Dr. Trevor Kendall
Calera Corporation

Dr. Steven Lower
Ohio State University

Dr. Deric Learman
Harvard University

Dr. Nicholas Wigginton
Science Magazine

Dr. Ann Knefel
Marymount University

Dr. Brenda Brand
Department of Teaching and Learning, Virginia Tech

Support Staff
(Department of Geosciences, Virginia Tech)

Mark Fortney
Ellen Mathena
Richard Godbee

1 Formerly Department of Geosciences, Virginia Tech
2 Formerly Department of Sociology, Virginia Tech
The secondary school curriculum presented in this book is designed to introduce the new, revolutionary fields of nanoscience and nanotechnology to high school students. This curriculum is the first in the country (as far as we know) to introduce these two subjects using an environmental science approach, which makes the curriculum appropriate for biology, chemistry, and Earth science courses.

This book is divided into two parts. Part I is made up of chapters 1–5. Chapters 1–3 provide background material for the teacher, answering questions such as the following: What is nanoscience and technology? What are the important historical and societal aspects of nanotechnology? How is nanoscience related to environmental science? Chapter 4 describes how education in nanoscience and nanotechnology addresses the National Science Education Standards. Chapter 5 describes the curriculum.

Part II is the Nano2Earth curriculum itself, consisting of five lessons. Teachers may use the entire curriculum or pick and choose among its several parts depending on their preferred emphasis, the course level, and available time. The curriculum is meant to be flexible, with numerous entry and exit points. Teachers
can use aspects of the curriculum for as little as one day, explore the entire package for a few weeks, or choose an in-between length of time. For example, Lesson 5, “Nanoforces in Nature” includes two scenarios. The choice of scenario would depend on whether Lesson 3 or Lesson 4 was done beforehand.

While most required materials are readily available or inexpensive, two lessons include technology or supplies that the teacher should consider before starting:

1. Activities in both Lesson 3 and Lesson 4 require probeware or a dissolved oxygen (D.O.) probe (Lesson 3) or a light-sensing probe (Lesson 4).
2. Activities in Lesson 4 require fluorescent microbeads that must be purchased—no substitutes have been identified (see the lesson description on pp. 81–84 for details).

Appendixes include excerpts from the NSES, a correlation chart relating AP Environmental Science Themes with Nano2Earth lesson content, and a glossary of key terms.

We encourage comments and suggestions. Please send them to Ms. Ellen Mathena (mathena@vt.edu). These will help us produce the next edition of Nano2Earth. In addition, questions concerning the use of this curriculum should also be sent to Ellen for distribution to the appropriate team member.

Lesson 5 in this book uses a computer simulation program. This program can be downloaded at www.nsta.org/download/nanosim.exe.

Full color versions of the figures in this book can be downloaded at www.nsta.org/download/WelcometoNanoscienceimages.pdf.
Lesson 1

Introduction to Nanotechnology

Purpose
Students identify and compare the scale of different objects, and define nanoscale and nanoscience. The teacher introduces the history and applications of nanoscience.

Background Information and Lesson Overview
Imagining differences in scale can be very easy (a softball is bigger than a baseball) or very difficult (how can we imagine the size of a galaxy?). It is perhaps most challenging to build conceptual frameworks for objects that are too small to see. In fact, the world of inner space is more vast and daunting to the imagination than the entire world visible to us on Earth and the nearby solar system. Nanoscience is the field of science that measures and explains the changes of the properties of substances as a function of size; these changes occur in the range of approximately 1–100 nm. Nanotechnology simply takes advantage of this phenomenon by applying property modifications of this nature to some

FIGURE 1: These flasks contain suspensions of nanosize CdSe particles known as “quantum dots.” The color arises after UV illumination. The only difference between the flasks are the size of the particles, ranging from 2 nm (left) to approximately 5 nm (right).
beneficial endeavor. Chapters 1–3 provide a descriptive background for teachers of nanoscience, nanotechnology, and the roles of both in Earth and environmental science.

In this lesson, the engagement brainstorming activity will help bring out any preconceived notions students may have regarding the scale of objects. Then, the scaling activity provides an opportunity to compare and plot the scale of objects ranging from atoms to galaxies. The explain activity introduces Richard Feynman’s 1959 visionary speech, demonstrating that what was then science fiction is now being realized. The current events webquest provides opportunities for students to investigate if we have come as far as Richard Feynmann had imagined. Finally, for assessment, current events information is shared through an in-class presentation.

For Further Information

- National Nanotechnology Initiative: www.nano.gov
- Nanotechnology Center for Learning and Teaching: http://community.nsee.us
- Nanotechnology: Big Things From a Tiny World: www.nano.gov/Nanotechnology_BigThingsfromaTinyWorld-print.pdf

National Science Education Standards (NSES)

<table>
<thead>
<tr>
<th>Nano2Earth Lesson</th>
<th>NSES Addressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Nanotechnology</td>
<td>Unifying Concept</td>
</tr>
<tr>
<td>Engage: Brainstorming</td>
<td>• Measurement</td>
</tr>
<tr>
<td>Explore: Scaling Activity</td>
<td>Science as Inquiry</td>
</tr>
<tr>
<td>Explain: Why Is the Nanoscale important?</td>
<td>• Using Technology and Mathematics to Improve Communications</td>
</tr>
<tr>
<td>Elaborate: Current Events Webquest</td>
<td>Science and Technology</td>
</tr>
<tr>
<td>Evaluate: Current Events Presentations</td>
<td>• Understanding about Science and Technology</td>
</tr>
<tr>
<td></td>
<td>Science in Personal and Social Perspectives</td>
</tr>
<tr>
<td></td>
<td>Science and Technology in Local, National, and Global Challenges</td>
</tr>
<tr>
<td></td>
<td>History and Nature of Science</td>
</tr>
<tr>
<td></td>
<td>• Historical Perspectives</td>
</tr>
</tbody>
</table>

Engage: Brainstorming

The class will brainstorm to identify and compare the scale of different objects. On a piece of paper or chalkboard, make a list of the largest and smallest objects students mention. Rank the objects according to estimated size. Ask students to add objects to the list that can be seen only with scientific instruments, such as telescopes and microscopes. Discuss how they would compare the size of these objects.

Explore: Scaling Activity

1. Key points to review: units and scientific notation
 - 1 meter (m) = the International System (SI) standard unit of length. All length scales are referenced to this length.
 - Scientific notation is related to “orders of magnitude,” or numbers multiplied by powers of 10.
 - Multiplying 1 m by 10 equals a decameter, or 1×10^1 m. Multiplying 1 m by 1,000 equals 1 km, or 1×10^3 m ($1 \times 10 \times 10 \times 10 = 1,000$ m).
 - Multiply 1 m by 0.001 = 0.001 mm or 1×10^{-3} m

2. Introduce the term **nanometer (nm)** or 1×10^{-9} or a billionth of a meter. The nanoscale is considered 1–100 nm.

3. Instruct students to complete “The Scale of the Earth Sciences” student activity sheet (p. 38) by placing the letter corresponding to each object on the scale above the appropriate arrow. The upper set of arrows (Scale A) is for the students’ estimations, while the lower set of arrows (Scale B) is for the students to write down the answers given by the teacher.
4. When students are finished, provide the correct answers from the list below and have them complete the scale of the actual size of the objects by writing the correct letter underneath the lower set of arrows. Note that both L and C are associated with the same arrow.

- Diameter of an atom: 1×10^{-10} to 5×10^{-10} m
- A nanometer: 1×10^{-9} m
- Diameter of a DNA molecule: 1×10^{-9} m
- Diameter of a typical virus: 1.5×10^{-8} to 5×10^{-7} m
- Diameter of typical bacteria: 0.2×10^{-6} to 2×10^{-6} m
- The width of a human hair: 6×10^{-5} m
- The length of your thumbnail: 2×10^{-2} m
- A meter: 1 m
- Your height: 1.7 m
- Height of the Empire State Building: 4.48×10^{2} m
- Height of Mount Everest: 8.848×10^{3} m
- Diameter of the Earth: 1.27×10^{7} m
- Diameter of the Sun: 1.39×10^{9} m
- A light year: 9.5×10^{15} m
- Distance across the Milky Way Galaxy: 10^{20} m

5. Instruct the students to answer the summary questions (p. 39) and then review the correct answers.

- Which part of the scale is considered the nanoscale?

 1–100 nm

- What is the smallest part of the scale that your eye can see?

 About 10^{-5} m

- What is the smallest part of the scale that a classroom microscope can see?

 About 10^{-6} m

- On the scale, is your height closer to Mount Everest or to a nanometer?

 Mount Everest
• What distance separates 10^0 and 10^2? What distance separates 10^2 and 10^9? (Your answers should not be the same.)

$99\ m / 9900\ m$

• Nanoparticles with diameters of 10 nm are common in the soil, air, and water around you. How many of these nanoparticles could you line up in a row along the width of a human hair? How many would fit lined up along the length of your thumbnail?

Along a hair: 6,000; along a thumbnail: 2,000,000

• Assume that the size of one atom is $10^{-10}\ m$. How many atoms fit in one nanometer? How about a cube with all dimensions 1 nm (1 nm3 volume)? How many atoms would you expect in a cubic nanoparticle with all sides 10 nm?

If one atom was $10^{-10}\ nm$, then 10 atoms would fit in one nm, 1,000 atoms would fit in 1 nm3, and 1,000,000 atoms would fit in 10 nm3.

An additional opportunity for inquiry involves having the students develop their own similar questions.

Explain: Why Is the Nanoscale Important?

Have the students read “There’s Plenty of Room at the Bottom” (p. 40). It contains excerpts from the lecture of the same name given by the physicist Richard Feynman at CalTech in 1959. It was first published in the February 1960 issue of Caltech’s *Engineering and Science*, and at the time of this writing, the entire speech could be found online at www.its.caltech.edu/%7Efeynman.

1. Tell the students that at the end of the lecture, Dr. Feynman announced a $1,000 prize for the first people to make an electric motor only 1/64th inch cube and another $1,000 prize for the first person to write a passage from a book at a 1/25,000 smaller scale than the original text. Do the students think these feats have been accomplished, and if so, when?

FIGURE 2: The first page of *A Tale of Two Cities* by Charles Dickens minimized to 1/25,000th scale.
The two Feynman Prizes mentioned in the lecture were awarded in 1960 (making a 1/64th inch operating electric motor) and in 1985 (minimizing a page of a book at 1/25,000th scale so it could be clearly interpreted by an electron microscope). The prize-winning transmission electron micrograph, taken by Drs. Pease and Newman from Stanford University in 1985, is shown in Figure 2, p. 35. (The text is the opening of A Tale of Two Cities by Charles Dickens.)

2. Ask the students if they think it is currently possible to image and manipulate atoms.

The answer is yes! Using a tool called the scanning tunneling microscope (STM), which the students will learn more about in Lesson 5, it is possible to both image and manipulate individual atoms of certain types (see Figure 3).

3. If it is possible to view and move individual atoms, why can’t we build anything we want? If sources of the necessary atoms were available, could they just be organized in the arrangement of any material? These very questions are at the heart of current debate in nanotechnology. One of the original proponents of these ideas, Eric Drexler, considers these questions to be the future of nanotechnology. Known by Dr. Drexler as “molecular manufacturing” or “molecular nanotechnology,” the possibility of creating nearly anything from constituent atoms may revolutionize human society. However, many scientists, including Dr. Richard Smalley, suggest that such synthesis is not possible. Dr. Smalley was awarded a Nobel Prize in Chemistry for his work in the discovery of carbon nanostructures. He (and others) suggests that bringing atoms in proximity to one another is not enough to cause the necessary bonding arrangements to occur in the resulting molecules. Present students with the idea of building materials “from scratch.” What thoughts do they have for and against the possibility of building anything we want to?
Elaborate: Current Events Webquest

Assign students to find a current event on nanoscience. This can be done as a homework assignment or in the computer lab over the internet. Instruct students to seek recent articles in the newspaper, magazines, or on the web dealing with new technologies, applications, or products that are developed using nanotechnology. Links to nanoscale science and technology websites include:

- National Nanotechnology Initiative: www.nano.gov
- http://dir.yahoo.com/Science/Nanotechnology

Evaluate: Current Events Presentations

Students can summarize and present current events so you can assess their understanding of nanoscale sizes and potential applications of nanotechnology. Students should be able to describe the new technology, application, or products; identify the size or scale of the objects or products; and discuss the potential use of the new technologies, applications, or products to society.
Below is a list of objects from all areas of the scale. Below that are two scales showing a wide range of measurements, from extremely small to extremely large. Estimate the size of each object, and place the corresponding letter on Scale A. Afterward, your teacher will provide the answers for you to write on Scale B. The scales are in meters.

A. A meter I. Height of Mount Everest
B. The length of your thumbnail J. Height of the Empire State Building
C. Diameter of a DNA molecule K. The width of a human hair
D. Diameter of the Earth L. A nanometer
E. Diameter of a typical virus M. Diameter of a typical bacteria
F. Diameter of the Sun N. Distance across the Milky Way Galaxy
G. A light year O. Your height
H. Diameter of an atom

Scale A: Estimated size (meters)

Scale B: Actual size (meters)
Summary Questions:

1. Which part of the scale is considered the nanoscale?

2. What is the smallest part of the scale that your eye can see?

3. What is the smallest part of the scale that a classroom microscope can see?

4. On the scale, is your height closer to Mount Everest or to a nanometer?

5. What distance separates 10^9 and 10^7? What distance separates 10^7 and 10^4? (Your answers should not be the same.)

6. Nanoparticles with diameters of 10 nm are common in the soil, air, and water around you. How many of these nanoparticles could you line up in a row along the width of a human hair? How many would fit lined up along the length of your thumbnail?

7. Assume that the size of one atom is 10^{-10} m. How many atoms fit in one nanometer? How about in a cube with all dimensions 1 nm (1 nm3 volume)? How many atoms would you expect in a cubic nanoparticle with all sides 10 nm?
I would like to describe a field, in which little has been done, but in which an enormous amount can be done in principle … a point that is most important is that it would have an enormous number of technical applications.

What I want to talk about is the problem of manipulating and controlling things on a small scale. As soon as I mention this, people tell me about miniaturization, and how far it has progressed today. They tell me about electric motors that are the size of the nail on your small finger. And there is a device on the market, they tell me, by which you can write the Lord’s Prayer on the head of a pin. But that’s nothing; that’s the most primitive, halting step in the direction I intend to discuss. It is a staggeringly small world that is below. In the year 2000, when they look back at this age, they will wonder why it was not until the year 1960 that anybody began seriously to move in this direction.

Why cannot we write the entire 24 volumes of the Encyclopedia Britannica on the head of a pin?

Let’s see what would be involved. The head of a pin is a sixteenth of an inch across. If you magnify it by 25,000 diameters, the area of the head of the pin is then equal to the area of all the pages of the Encyclopedia Britannica. Therefore, all it is necessary to do is to reduce in size all the writing in the Encyclopedia by 25,000 times. Is that possible? The resolving power of the eye is about 1/120 of an inch—that is roughly the diameter of one of the little dots on the fine halftone reproductions in the Encyclopedia. This, when you demagnify it by 25,000 times, is still 80 angstroms in diameter—32 atoms across, in an ordinary metal. In other words, one of those dots still would contain in its area 1,000 atoms. So, each dot can easily be adjusted in size as required by the photoengraving, and there is no question that there is enough room on the head of a pin to put all of the Encyclopedia Britannica….

That’s the Encyclopedia Britannica on the head of a pin, but let’s consider all the books in the world. The Library of Congress has approximately 9 million volumes; the British Museum Library has 5 million volumes; there are also 5 million volumes in the National Library in France. Undoubtedly there are duplications, so let us say that there are some 24 million volumes of interest in the world.
What would happen if I print all this down at the scale we have been discussing? How much space would it take? It would take, of course, the area of about a million pinheads because, instead of there being just the 24 volumes of the Encyclopedia, there are 24 million volumes. The million pinheads can be put in a square of a thousand pins on a side, or an area of about 3 square yards. All of the information which all of mankind has ever recorded in books can be carried around in a pamphlet in your hand—and not written in code, but a simple reproduction of the original pictures, engravings, and everything else on a small scale without loss of resolution.

What would our librarian at Caltech say, as she runs all over from one building to another, if I tell her that, ten years from now, all of the information that she is struggling to keep track of—120,000 volumes, stacked from the floor to the ceiling, drawers full of cards, storage rooms full of the older books—can be kept on just one library card! When the University of Brazil, for example, finds that their library is burned, we can send them a copy of every book in our library by striking off a copy from the master plate in a few hours and mailing it in an envelope no bigger or heavier than any other ordinary air mail letter.

Index

Page numbers printed in **boldface** type refer to tables or figures.

A
Adhesion force, 113, 114, 115, 126, 127, 129, 132, 157
Adsorption, 82, 92, 96, 103, 138, 157
Aerobic respiration, 24, 55–56, 60, 61, 68, 70, 77, 79, 116, **117**, 140, 142, 144, 157
AFM. See Atomic force microscope
Aluminum oxide, 4, 5, **116**, **117**, 138–140, 142, 159
Anaerobic respiration, 23, 24, 55–58, 60, 61, 65, 70, 77, 116–118, **117**, 140, 142, 144, 155, 157, 159, 161
Angstroms, 40, 106, 157
AP Environmental Science Themes, correlation with Nano2Earth lessons, xii, 155–156
Arsenic in water supply, 24, 57–58, 66, 77
“Arsenic Poisoning in Bangladesh” scenario, 24, 116–118, **117**, 138–143, 138–139, **141**, **144**
Atomic force microscope (AFM), **17**, **18**, **20**, **21**, 23, 57, 81, 105–150, 157–158. See also Lesson 5
background information on, 105, 105–108, **107**, **108**
“Building a Model AFM” activity sheet, 115, 130–131, **131**
cost of, 109
further information on, 109
introduction to, 111–112
parts of, 122, 122–123
“Using the AFM to Study Interactions Between Bacteria and Minerals: A Student’s Guide,” 112, 122–125, **122–125**

B
Bacteria
colors in Grand Priasmatic Spring due to, 55
fermentation of, 56
microbe-mineral interactions, 14–16, 23, 24, 55–79, 105 (See also Lesson 3)
AFM studies of, 105–150 (See also Lesson 5)
transport in groundwater, 23, 24, 81–104, 105 (See also Lesson 4)
“Bacterial Transport in Groundwater” scenario, 118–121, **119**, 145–150
Bangladesh water supply, arsenic in, 24, 58, 116–118, **117**, 138–133, **138–139**, **141**, **144**
Bardeen, John, **10**
Binning, Gerd, 106, 108
Biological activity in critical zone, 14
Botulism, 91
Brattain, Walter, **10**
“Building a Model AFM” activity sheet, 115, 130–131, **131**
Index

C
Cadmium selenide quantum dots, 31
Cantilever, 21, 107, 108, 123–125, 123–126, 158
Catalytic converters, 9, 10, 159
Center for the Environmental Implications of Nanotechnology (CEINT), vii
Cholera, 91
Clostridium botulinum, 91
Computers, 10–11, 10–11
disk drives for, 9
Conducting scientific inquiry standards, 18–19, 152
Critical zone of Earth, 14, 158
Cryptosporidium, 91, 158
Current events presentations, 37
Current events webquest, 37

D
Department of Defense, 8
Department of Energy, 8
Dissolved oxygen concentration, 60–67, 69
Dissolved oxygen probe, xii, 62–63
Drexler, Eric, 36
Dysentery, 91

E
E. coli, 90, 118, 120–121, 158
Earth and space science standards, 20, 153
Electrostatic forces, 20, 82, 92, 98, 99, 107, 112, 114, 133
ENIAC computer, 10
Entamoeba histolytica, 91
Environmental Protection Agency (EPA), vii, 48, 52–53
Eutrophication, 47, 60, 61, 68, 79, 158

F
Fermentation, 56
Fertilizers, 47, 53, 56, 61–65, 67, 68, 71, 73, 75, 78, 79
Feynman, Richard, 7–8, 8, 9, 32, 35
“There’s Plenty of Room at the Bottom,” 7, 35, 40–41
5E Instructional Model, 23, 25–28
Fluid transport in critical zone, 14
Force constant, 125, 159
Force curves, 108, 112–113, 158
for “Arsenic Poisoning in Bangladesh” scenario, 142–144
for “Bacterial Transport in Groundwater” scenario, 146–150
Force curves computer simulations, 114–115
Foresight Institute, 160
Index

G
Geochemical cycles, 20
Giardia, 91, 158
Glossary, xii, 157–162
Goethite, 56
Gold, melting temperature of, 3
Grand Prismatic Spring of Yellowstone National Park, 55
“Groundwater Pollution Scenario” activity sheet, 85, 88–90, 89, 90

H
Hematite, 56, 81
Hepatitis A, 91
Heterogeneous catalysts, 9, 159
History and nature of science standards, 22, 154
Hooke’s law, 125, 158, 159
Hydrophobic force, 20, 159

I
“Influence of Groundwater Chemistry on Bacterial Transport” activity sheet, 98–104
background information for, 98, 98–100, 99
materials and resources for, 100
procedure for, 100–103
purpose of, 98
questions for, 103–104
Inquiry-based science
content standards for, 18–19, 152
5E Instructional Model for, 23, 25–28
Ionic strength, 88, 89, 98, 99, 119, 120, 121, 146–150, 157, 159
Iron respiration, 23, 55–79, 105, 159. See also Lesson 3

J
Jump to contact, 113, 114, 119, 120, 132, 147, 159

K
Know-wonder-learn (KWL) charts, 23
water pollution, 47–48, 51
written response student activity, 48, 54

L
Laser, 20, 107, 108, 124–125, 127, 131, 158, 159
Laser pointer, 111, 130–131
Lesson 1: Introduction to Nanotechnology, 23, 24, 31–41
background information and overview of, 31–32
brainstorming for, 33
correlation with NSES content standards, 26, 33
current events presentations for, 37
current events webquest for, 37

Copyright © 2011 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
Index

Lesson 2: Introduction to Water Pollution, 23, 24, 43–54
background information and overview of, 43–44
correlation with NSES content standards, 26, 45
further information on, 44
K-W-L chart for, 47–48, 51
K-W-L written response student activity for, 48, 54
materials for, 45
purpose of, 43
safety notes for, 46
teacher demonstration for, 46
water testing activity for, 46–47, 49–50
webquest for, 48, 52–53
Lesson 3: Microbe-Mineral Interactions, 23, 24, 55–79, 105
“Analysis and Conclusions” activity sheet for, 78–79
background information for, 55–58
correlation with NSES content standards, 26, 59
further information on, 58
“Groundwater Scenario” and inquiry on, 66, 77
materials and preparation for, 62
prelab questions on, 60–61, 70
purpose of, 55
Winogradsky column lab on, 61, 71–74, 72
data tables for each day of experiment, 75–76
discussion and sharing of results, 66
elements of what students may write when observing bottles, 63, 64, 65
teacher notes for each day of experiment, 62–65
“Using the Winogradsky Column to Demonstrate the Microbial
Reduction of Iron(III)” activity sheet, 62, 70–76
Lesson 4: Investigation of Bacterial Transport in Groundwater, 23, 24, 81–104, 105
background information and overview of, 81–82
correlation with NSES content standards, 27, 83
engage activity questions for, 85
further information on, 82
“Groundwater Pollution Scenario” activity sheet, 85, 88–90, 89, 90
“Influence of Groundwater Chemistry on Bacterial Transport” activity
sheet, 98–104
background information for, 98, 98–100, 99
materials and resources for, 100
procedure for, 100–103
purpose of, 98
questions for, 103–104
materials for, 83–84
“Particle Transport in Sand Column” activity sheet for, 92–97
background information for, 92, 93
materials and resources for, 93
procedure for, 94, 94–96
purpose of, 92
questions for, 86–87, 97
purpose of, 81
safety notes for, 84
“Waterborne Diseases” activity sheet for, 85, 91

Lesson 5: Nanoforces in Nature: Atomic Force Microscopy to Explore Microbe-
Mineral Interactions, 23, 24, 82, 105–150
background information on, 106–109, 107, 108
“Building a Model AFM” activity sheet for, 115, 130–131, 131

correlation with NSES content standards, 28, 110
force curve computer simulations, 114–115
“An Introduction to Force Curves: Using Computer Simulation” activity
sheet, 127–129, 128

further information on, 109
introduction to AFM, 111–112
materials and resources for, 111
purpose of, 105–106
real-world scenarios for, 116–121
139, 140, 141, 144
“Bacterial Transport in Groundwater” scenario, 118–121, 119, 145–150
safety notes for, 111, 130
“Using the AFM to Study Interactions Between Bacteria and Minerals: A
Student’s Guide” for, 112, 122–125, 122–125
“What Happens When We Bring Bacteria and Minerals Together” activity
sheet for, 112–113, 126

Life science standards, 20, 153
Light-sensing probe, xii, 82, 83, 93, 94, 94, 100–101
Lycurgus Cup, 7

M
Metal transport nanoscience, 16
Metric measurements, 33
Microbe-mineral interactions, 14–16, 23, 24, 55–79, 105. See also Lesson 3
AFM studies of, 105–150 (See also Lesson 5)
Microbeads, xii, 81–84, 92, 93, 95–97, 99–104, 160
Molecular nanotechnology, 36, 108, 160, 161

N
Nano-, defined, 3, 160
Nano-Sim program, xii, 112, 127, 128
Nanobiogeochemistry, 160
Nanobiogeochemistry Secondary Science and Math Curriculum Project, vii, ix
Nano2Earth curriculum, vii, 13, 23
correlation with AP Environmental Science Themes, xii, 155–156
development of, vii
5E Instructional Model for use of, 23, 25–28
framework of, 23
Lesson 1, 23, 24, 31–41
Lesson 2, 23, 24, 43–54
Lesson 3, 23, 24, 55–79
Lesson 4, 23, 24, 81–104
Lesson 5, 23, 24, 105–150
materials for, xii
NSES content standards addressed in, 17–22, 24, 151–154
conducting scientific inquiry, 18–19, 152
Earth and space science, 20, 153
history and nature of science, 22, 154
lesson correlation with, 26–28, 33, 45, 59, 83, 110
life science, 20, 153
physical science, 19–20, 153
science and technology, 21, 153
science in personal and social perspectives, 21–22, 154
unifying concepts, 17–18, 151
time required for each lesson, 24
use of, xi–xii, 24
Working Group on, vii, ix
Nanofilm, 4, 9, 160
electrical properties of aluminum oxide as, 4, 5–6, 5
Nanoforces, 160
in nature, 105–150 (See also Lesson 5)
Nanometers, 3, 7, 8, 15, 32–35, 38, 39, 107, 122, 123, 157, 160, 161
Nanonewtons, 15, 20, 106, 122, 160
Nanoparticles, 4, 9, 10, 16, 35, 39, 87, 97
cadmium selenide quantum dots, 31
gold, 3, 4
hematite, 81
Nanorange, 160
Nanoscience
current events webquest on, 37
definition of, 3–4, 7, 31, 160
glossary of, xii, 157–162
interdisciplinary nature of, 24
interest in, 8
metal transport, 16
origins of, 7–8
research funding in, 8
water/mineral/bacteria, 14–16
Nanotechnology, 4, 31–32, 161
effects on everyday life, 9
future applications of, 10–11
interest in, 8
introduction to, 23, 24, 31–41 (See also Lesson 1)
molecular, 36, 108, 160, 161
Nanotechnology: Big Things From a Tiny World, 32
Nanotechnology: Shaping the World Atom by Atom, 10
Nanotechnology Center for Learning and Teaching, 32
National Nanotechnology Initiative (NNI), 8, 32, 161
National Science and Technology Council, 10
National Science Education Standards (NSES), vii, xii, 24
content standards addressed in Nano2Earth curriculum, 17–22, 151–154
conducting scientific inquiry, 18–19, 152
Earth and space science, 20, 153
history and nature of science, 22, 154
in Lesson 1, 26, 33
in Lesson 2, 26, 45
in Lesson 3, 26, 59
in Lesson 4, 27, 83
in Lesson 5, 28, 110
life science, 20, 153
physical science, 19–20, 153
science and technology, 21, 153
science in personal and social perspectives, 21–22, 154
unifying concepts, 17–18, 151
National Science Foundation (NSF), vii, 8
NNI (National Nanotechnology Initiative), 8, 32, 37, 161
NSES. See National Science Education Standards
NSF (National Science Foundation), vii, 8
Nutrients in water supply, 55, 61, 62, 67, 68, 79, 91, 154, 156

P
“Particle Transport in Sand Column” activity sheet, 92–97
 background information for, 92, 93
 materials and resources for, 93
 procedure for, 94, 94–96
 purpose of, 92
 questions for, 86–87, 97
Physical science standards, 19–20, 153
Polioviruses, 91
Probeware, xii, 23, 55, 61, 161
Pyrite, 107, 107

Q
Quantum dots, 31
Quantum mechanical tunneling, 106

R
Radionuclides, 53, 161
Reduction of iron, 23, 55–79, 105, 161. See also Lesson 3
Research funding, 8
Rohrer, Heinrich, 106, 108

S
Safety notes, 46, 84, 111, 130
Salmonella, 91, 161
Scale of Earth science, 15
Scaling, 7–8, 23, 161
 students’ preconceived notions of, 32
Scanner, 108, 123, 161
Scanning probe microscopy (SPM), 106, 162
Scanning tunneling microscopy (STM), 36, 106–107, 107, 162
Schrödinger, Erwin, 8
Science and technology standards, 21, 153
Science as inquiry standards, 18–19, 152
Science in personal and social perspectives standards, 21–22
Scientific notation, 33
Shewanella oneidensis, 81
Shockley, William, 10
Smalley, Richard, 36
Solid state transistor, 11, 11
SPM (scanning probe microscopy), 106, 162
STM (scanning tunneling microscopy), 36, 106–107, 107, 162
Sulfate reduction, 56–57, 57
Surface water ecosystem, 61
Sustainable Development Networking Programme, 58

T
TEM (transmission electron microscope), 162
“The Scale of the Earth Sciences” activity sheet, 33–34, 38–39
“There’s Plenty of Room at the Bottom,” 7, 35, 40–41
Transmission electron micrographs, 35, 44, 36, 81, 162
Transmission electron microscope (TEM), 162
Typhoid, 91

U
Unifying concepts standards, 17–18, 151
“Using the AFM to Study Interactions Between Bacteria and Minerals: A
Student’s Guide,” 112, 122–125, 122–125
“Using the Winogradsky Column to Demonstrate the Microbial Reduction of
Iron(III)” activity sheet, 62, 70–76

V
van der Waals forces, 20, 82, 99, 107, 159
Vibrio cholerae, 91

W
Water/mineral/bacteria nanoscience, 14–16
“Water Pollution Know-Wonder-Learn” activity sheet, 47–48, 51
“Water Pollution Webquest” activity sheet, 48, 52
“Water Testing” activity sheet, 46–47, 49–50
“Waterborne Diseases” activity sheet, 85, 91
Weathering in critical zone, 14
Webquests, 23
current events on nanoscience, 37
water pollution, 48, 52
“What Happens When We Bring Bacteria and Minerals Together” activity
sheet, 112–113
Winogradsky column, 23, 24, 56–57, 57, 162
 black layer on top of sediment in, 56–57, 57
 data tables for each day of experiment, 75–76
 discussion and sharing of results of, 66
 examples of what students may write when observing bottles, 63, 64, 65
 lab activity on, 61, 71–74, 72
 odors in, 56
 teacher notes for each day of experiment, 62–65
 “Using the Winogradsky Column to Demonstrate the Microbial Reduction of
 Iron(III)” activity sheet, 62, 70–76
World Health Organization, 58, 138