If you and your students can’t get enough of a good thing, Volume 2 of *Uncovering Student Ideas in Physical Science* is just what you need. It offers 39 new formative assessment probes, this time with a focus on electric charge, electric current, and magnets and electromagnetism. It can help you do everything from demystify electromagnetic fields to explain the real reason balloons stick to the wall after you rub them on your hair.

Like the other eight wildly popular books in the series, *Uncovering Student Ideas in Physical Science, Volume 2*:

- Provides a collection of engaging questions, or formative assessment probes. Each probe in this volume is designed to uncover what students know—or think they know—about electric or magnetic phenomena or identify misunderstandings they may develop during instruction.
- Offers field-tested teacher materials that provide “best answers”, along with distracters designed to reveal misconceptions that students commonly hold.
- Is easy to use by time-starved teachers like you. These teacher-friendly, ready-to-reproduce materials fit easily into all stages of an instructional cycle. In addition to explaining the science content, the teacher materials note links to national standards and suggest grade-appropriate ways to present material to help your students develop deeper conceptual understanding.

By helping you detect and then make sound instructional decisions to address students’ misconceptions, this new volume has the potential to transform your teaching.
Uncovering Student Ideas in Physical Science

39 NEW Electricity and Magnetism Formative Assessment Probes
45 new force and motion assessment probes / by Page Keeley and Rand Harrington.

45 new force and motion assessment probes / by Page Keeley and Rand Harrington.

Includes bibliographical references and index.

1. Force and energy--Study and teaching. 2. Motion--Study and teaching. 3. Educational evaluation. I. Harrington, Rand. II. Title. III. Title: Forty-five new force and motion assessment probes.

QC73.6.K44 2010

530.071--dc22

2010010354

eISBN 978-1-936137-70-1

Contents

Preface ..ix
Acknowledgments ..xv
About the Authors ...xvii

Introduction ..1

Section 1. Electric Charge

|----------------|-------------------|------------------------|-------------------------------|----------------------------|-------------------------------|---------------------------------|---------------------------|----------------------------------|---------------------------------|-------------------------------|
Section 2. Electric Current

9 One Wire or Two? ..53
10 How Can You Light the Bulb? ...59
11 Where Do I Put the Switch? ...63
12 How Do You Think About the Flow of Electric Current Through a Circuit? ..67
13 How Bright Will the Bulbs Be? ...71
14 Which Burns Brighter? ...75
15 How Would You Rank the Brightness of the Bulbs? ...79
16 How Does the Current in Each Battery Compare? ...83
17 Does it Matter if the Wire Has Knots? ..87
18 Does Electricity Leak From an Outlet? ..91
19 Why Two Prongs? ...95
20 Does the Weight Change? ...99
21 How Fast Do the Charges Move? ..103
Preface

This book is the second book in the Uncovering Student Ideas in Physical Science series and the ninth book in the full Uncovering Student Ideas series. Like its predecessors, this book provides a collection of questions, called formative assessment probes, designed to uncover preconceptions about ideas students bring to their learning as well as identify misunderstandings students may develop during instruction that sometimes go unnoticed by the teacher. Each probe is carefully researched and developed to surface K–12 students’ (and teachers’) ideas about electric or magnetic phenomena or concepts. A “best answer” is provided along with distractors designed to reveal research-identified commonly held ideas. In areas where there is a lack of or no research, the authors have used their experience with students and teachers to develop likely responses. The second part of each probe asks students to justify their answer choice, which provides a way for teachers to gain insight into students’ thinking.

These probes are designed to be used for formative assessment rather than for summative purposes (e.g., grading). Ideally they are used to provide non-judgmental and valuable feedback to the student as well as the teacher that will inform the selection and design of instructional experiences and lessons that target students’ ideas about electricity and magnetism. In addition, the probes are intellectually engaging questions that stimulate student thinking and involve students in productive discussions as they grapple with their own ideas and consider the ideas of others.

Other Uncovering Student Ideas Books That Include Electricity and Magnetism–Related Probes

This volume specifically targets ideas related to electricity and magnetism. In addition, there are other books in the Uncovering Student Ideas in Science series that include related probes as well as background information on formative assessment that can build your assessment literacy. These books include:

- **Uncovering Student Ideas in Science, Volume 1** (Keeley, Eberle, and Farrin 2005): This first book in the series contains 25 formative assessment probes in life, physical, and Earth and space science. The introductory chapter of this book provides an overview of what formative assessment is and how it is used. This chapter is free for downloading from the NSTA Press website. Teachers are strongly encouraged to read this chapter if they are new to using formative assessment probes. The “Is It Matter?” probe in this book is useful for determining whether students distinguish between matter and energy.

- **Uncovering Student Ideas in Science, Volume 2** (Keeley, Eberle, and Tügel 2007): This second book in the series contains 25 formative assessment probes in life, physical, and Earth and space science. While there are no probes related to electricity and magnetism in this volume, the introductory chapter of this book will help you understand the link between formative assessment and instruction and can be downloaded for free from the NSTA Press website.
Preface

• *Uncovering Student Ideas in Science, Volume 3* (Keeley, Eberle, and Dorsey 2008): This third book in the series contains 22 formative assessment probes in life, physical, and Earth and space science. The introductory section addresses how formative assessment probes can be used for individual or group learning. It provides valuable information for teacher leaders, preservice instructors, and professional developers and can be downloaded for free off the NSTA Press website. It also contains three nature of science probes. Since many of the electricity and magnetism probes involve investigation, the “Doing Science” probe reveals misunderstandings students may have about “the scientific method” and experimentation. “What Is a Hypothesis” is designed to reveal misunderstandings related to the use of hypotheses in investigations. “Is It a Theory?” not only reveals students’ ideas about what a theory is, but also reveals how students distinguish between theories and laws. Since there are many laws related to electricity and magnetism (Ohm’s Law, Coulomb’s Law, Planck’s Law, and so on), this probe may be used to integrate nature of science into electricity and magnetism instruction. This book also includes the probe, “Batteries, Bulbs, and Wires” which can be used with grades 3–12.

• *Uncovering Student Ideas in Primary Science, Volume 1* (Keeley 2013): This eighth book in the *Uncovering Student Ideas* series contains 25 formative assessment probes in life, physical, earth and space science specifically geared toward primary grades students (grades K–2). The probes use a visual format and are designed to be used with “science talk.” The introductory chapter can be downloaded for free off the NSTA website and includes way to use “Talk Moves” with the probes. These talk moves can be used with any grade level. One of the probes in this book, “Big and Small Magnets,” reveals whether students use a “more A–more B” intuitive rule to decide if big magnets are always stronger than smaller magnets.

In addition, the third book in this series, *Uncovering Student Ideas in Physical Science, Volume 3: Matter and Energy* (tentatively due to be published in 2015) will include probes related to electrical energy, work, and power.

Website

There is also a website where you can get more information about the series and access additional resources. Visit www.uncoveringstudentideas.org.
Preface

Format of This Book
This book contains 39 probes for grades 3–12 (and for teacher learning) organized in three sections: Section 1, Electric Charge (8 probes); Section 2, Electric Current (13 probes); and Section 3, Magnets and Electromagnetism (18 probes). The format is similar to Uncovering Student Ideas in Physical Science, Volume 1: 45 New Force and Motion Assessment Probes.

Each section begins with a concept matrix that identifies the main concepts related to the probe and the suggested grade level. Grade levels can be moved up or down depending on your curriculum and knowledge of your students. The suggested grade levels are based primarily on state and national standards.

Related ideas from the 2009 updated version of the Benchmarks for Science Literacy (which also includes ideas from the Atlas of Science Literacy) are included. “Related” means the probe is either connected to the learning goal as a precursor, is a contributing idea, or it may be aligned. Since many states have not yet adopted the Next Generation Science Standards (NGSS), it is important to include these Benchmarks learning goals, as they formed the basis for most states’ standards. They also bring precision and clarity to understanding learning goals in any curriculum.

Links to related the Next Generation Science Standards (NGSS) are also included in three ways: (1) related disciplinary core ideas (DCIs) that describe the content for a given grade span based on the Framework for K–12 Science Education (NRC 2012); (2) Crosscutting concepts that relate to electricity and magnetism; and (3) the related performance expectation from the NGSS (NGSS Lead States 2013). The performance expectation is included to show what assessment might look like but is not intended to limit curriculum and instruction. In some cases the probe will align to the performance expectation. In other cases it will contribute to achieving the performance expectation.

The last part of each section includes related NSTA resources: books, journal articles, and collections from NSTA’s Learning Center. In searching for resources, we found that electricity and magnetism, especially electric charge, is an area where NSTA lacks a variety of instructional resources. Hopefully this collection will grow as teachers, researchers, and curriculum developers recognize the importance of these fundamental concepts and contribute to the research base, develop new resources, and publish new articles related to electricity and magnetism.

Each probe includes teacher background notes. It is essential to examine the background information for each probe prior to using it. The teacher notes include:

1. Purpose
This section describes the purpose of the probe—ideas the probe is designed to uncover. It begins by describing the overall concept elicited by the probe, followed by the specific idea the probe targets. Before choosing a probe you must be clear about what the probe is intended to reveal. Taking time to read the purpose will help you decide if the probe fits the learning target you have in mind.

2. Related Concepts
Each probe is designed to target one or more concepts related to electricity or magnetism. A concept is a one-, two- or three-word mental construct used to organize the related ideas addressed by the probe and the related national standards. These concepts are also included on the matrix charts that precede the probes on pages 10, 48, and 108.

3. Explanation
A brief scientific explanation accompanies each probe and provides clarification of the scientific content that underlies the probe. The explanations are designed to help the teacher
Preface

identify what the “best” or most scientifically acceptable answers are as well as clarify any misunderstandings about the content. The explanations are not intended to provide detailed background knowledge about the content or designed to be shared with the student (although the explanations may be appropriate for high school students). The explanation is for the teacher. In writing these explanations, the authors are careful not to make them so technical that only a science specialist would understand them, as many elementary and middle grades teachers have limited coursework or professional development in science. At the same time the authors try not to oversimplify the science. The intent is to provide the information a science novice would need to understand the content of the probe. If you have a need or desire to learn more about the content, refer to the NSTA resources listed for each section or use your own instructional materials and resources to build or enhance your content knowledge. Sometimes the answer is not black and white—there may be exceptions depending on how the student considers the context. Therefore we always say the best answer is ___ rather than the correct answer is ___. Always read the explanation before using the probe!

4. Administering the Probe

Guidance is provided for administering the probe to students, including suggested grade levels, ways to demonstrate the probe scenario, modifications for different learners, or use of different formative assessment classroom techniques (FACTs) to gather the assessment data. For more information on these strategies as well as other techniques you can use with the probes, refer to Science Formative Assessment: 75 Practical Strategies for Linking Assessment, Instruction, and Learning (Keeley 2008). FACTs that can be used with the probes include:

- **Card Sorts:** Answer choices are printed on cards that students sort into two groups: examples and non-examples. As students sort the cards, they discuss their reasons for why they think it is or is not an example according to the probe prompt. The teacher can circulate during the card sort and listen to students as they engage in argumentation and construct their own explanations about the phenomena or concepts.

- **Lines of Agreement:** This strategy is used when there are two answer choices. Students stand in two lines facing each other. Each line represents an answer choice. Students engage in argumentation. After a student shares their argument to support their answer to the probe, the other line can make a rebuttal or offer an alternative argument. At any time, if a student changes their thinking based on a compelling argument from the other side, they may cross over to the other line.

- **P-E-O:** This technique can be used to launch into an investigation after responding to the probe. First, students predict (P) what they think the outcome will be by committing to an answer choice (a claim). Second, they explain (E) their thinking to support their claim. Third, they test their ideas by making observations (O). When their observations do not match their claim, they need to revise their original prediction and construct a new explanation based on the evidence from their investigation.

5. Related Research

Each probe is informed by related research (if available). A lot of research studies have been published about K–12 understanding of electric circuits and a moderate amount of research on children’s ideas about magnetism exists. However, there is much less available research
on K–12 students’ ideas about electric charge and electromagnetism. Although many of the research summaries describe studies that have been conducted in past decades, and studied children not only in the United States but in other countries as well, most of the results of these studies are considered timeless and universal. Whether students develop their ideas in the United States or other countries, research indicates that many of these commonly held ideas are pervasive regardless of geographic boundaries and societal and cultural influences. Even though your students may have had different experiences and contexts for learning, the findings from the research can help you better understand the intent of the probe and the kinds of thinking your students are likely to reveal when they respond to the probe. As you use the probes, you are encouraged to seek new and additional published research, or engage in your own action research to learn more about students’ thinking and share your results with other teachers to extend and build upon the research summaries in the teacher notes. To learn more about conducting action research using the probes, read the Science and Children article “Formative Assessment Probes: Teachers as Classroom Researchers” (Keeley 2011).

6. Suggestions for Instruction and Assessment

Uncovering and examining the ideas children bring to their learning is considered diagnostic assessment. Diagnostic assessment becomes formative assessment when the teacher uses the assessment data to make decisions about instruction that will move students toward the intended learning target. Therefore, in order for the probe to be considered formative assessment, the teacher needs to think about how to design, choose, or modify a lesson or activity to best address the ideas students bring to their learning as well as ideas that surface or develop during the learning process that are partially developed or not scientifically correct. If you use a probe and then continue to teach as you always have without addressing students’ ideas, then you are not using the probe formatively. As you carefully listen to and analyze your students’ responses, the most important next step is to decide on the instructional path that would work best in your particular context, based on your students’ thinking, the materials you have available, and the different types of learners you have in your classroom.

The suggestions provided in this section have been gathered from the wisdom of teachers, the knowledge base on effective science teaching, and research on specific strategies used to address commonly held ideas. These are not lesson plans but rather brief suggestions that may help you plan or modify your curriculum or instruction in order to help students grapple with difficult or misunderstood ideas. It may be as simple as realizing that you need to be aware of the drawbacks of the analogy you have been using or there may be a specific strategy or activity that you could use with your students. Learning is a very complex process and most likely no single suggestion will help all students learn. But that is what formative assessment encourages—thinking carefully about the variety of instructional strategies and experiences needed to help students learn scientific ideas. As you become more familiar with the ideas your students have and the multifaceted factors that may have contributed to their conceptual development, you will identify additional strategies that you can use to teach for conceptual change. In addition, this section also points out other probes in the Uncovering Student Ideas in Science series that can be modified or used as is to further uncover and address the concepts targeted by the probe.
7. Safety
Safe science should be practiced in the science classroom at all times. This section provides suggestions, where necessary, by NSTA’s science safety consultant for safely conducting activities related to each of the probes.

8. References
References are provided for the standards, research summaries, and several of the instructional suggestions provided in the teacher notes. You might use this section to access and read the full research paper cited in the Related Research section of the teacher notes.

References
American Association for the Advancement of Science (AAAS). 2009. Benchmarks for science literacy online. www.project2061.org/publications/bil/online
Acknowledgments

We would like to thank the teachers and science coordinators we have worked with for their willingness to field-test probes, provide feedback on the format and structure of these probes, share student data, and contribute ideas for assessment probe development. In particular, we want to acknowledge the many dedicated researchers in the field of physics education whose work forms the basis for many of the probes included in this book. We would also like to thank our reviewers for providing timely and useful feedback to improve the manuscript. We would especially like to thank Linda Olliver for translating our ideas into illustrations. And of course our deepest appreciation goes to all the dedicated staff at NSTA Press who continue to support formative assessment resources and professional development, encourage the continuation of this series, and publish the best books in K–12 science education.

Dedication

This book is dedicated to our sons:
Nathaniel and Christopher Keeley and
Joey and Max Harrington who fill our lives with joy, pride, and meaning.

Copyright © 2014 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
Page Keeley recently retired from the Maine Mathematics and Science Alliance (MMSA) where she was the senior science program director for 16 years, directing projects and developing resources in the areas of leadership, professional development, linking standards and research on learning, formative assessment, and mentoring and coaching. She has been the principal investigator and project director of three National Science Foundation grants: the Northern New England Co-Mentoring Network, PRISMS: Phenomena and Representations for Instruction of Science in Middle School; and Curriculum Topic Study: A Systematic Approach to Utilizing National Standards and Cognitive Research. She has also directed state Math-Science Partnership projects including TIES K–12: Teachers Integrating Engineering into Science K–12 and a National Semi-Condenser Foundation grant, Linking Science, Inquiry, and Language Literacy (L-SILL). She also founded and directed the Maine Governor’s Academy for Science and Mathematics Education Leadership, a replication of the National Academy for Science and Mathematics Education Leadership of which she is a Cohort 1 Fellow.

Page is the author of 16 national bestselling books, including four books in the Curriculum Topic Study Series, nine volumes in the Uncovering Student Ideas in Science series, and three books in the Science Formative Assessment: 75 Practical Strategies for Linking Assessment, Instruction, and Learning series. Currently she provides consulting services to school districts and organizations throughout the United States on building teachers’ and school districts’ capacity to use diagnostic and formative assessment. She is a frequent invited speaker on formative assessment and teaching for conceptual change.

Page taught middle and high school science for 15 years before leaving the classroom in 1996. At that time she was an active teacher leader at the state and national level. She served two terms as president of the Maine Science Teachers Association and was a District II NSTA Director. She received the Presidential Award for Excellence in Secondary Science Teaching in 1992, the Milken National Distinguished Educator Award in 1993, the AT&T Maine Governor’s Fellow in 1994, the National Staff Development Council’s (now Learning Forward) Susan Loucks-Horsley Award for Leadership in Science and Mathematics Professional Development in 2009, and the National Science Education Leadership Association’s Outstanding Leadership in Science Education Award in 2013. She has served as an adjunct instructor at the University of Maine, was a science literacy leader for the AAAS/Project 2061 Professional Development Program, and serves on several national advisory boards. She is a science education delegation leader for the People to People Citizen Ambassador Professional Programs, leading the South Africa trip in 2009, China in 2010, and India in 2011.

Prior to teaching, she was a research assistant in immunology at the Jackson Laboratory of Mammalian Genetics in Bar Harbor, Maine. She received her BS in life sciences.
About the Authors

from the University of New Hampshire and her MEd in secondary science education from the University of Maine. In 2008 Page was elected the 63rd president of the National Science Teachers Association (NSTA).

Dr. Rand Harrington is the head of school for The Kent Denver School in Denver (as of July 1, 2014). He began his teaching career in 1980 as a middle school science teacher in California after receiving a degree in environmental science at Western Washington University. In 1985, after teaching and traveling throughout the world, he returned to school and received a second bachelor’s degree in physics and then completed both his master’s degree and PhD in physics at the University of Washington.

As a science teacher, Rand had long been interested in understanding how people learn, and he soon joined the Physics Education Research Group at the University of Washington under the leadership of Lillian McDermott. While working with this group, he taught and helped develop curriculum materials for Physics by Inquiry, a curriculum for preservice teachers, as well as Tutorials in Introductory Physics, which is used in many introductory physics courses. Rand was able to pursue his own interests in electricity and magnetism and eventually wrote his PhD dissertation on identifying and addressing the difficulties students have with understanding electric phenomena.

After graduation from the University of Washington, Rand accepted an assistant professor appointment at the University of Maine, where he founded the Physics Education Group (originally called LRPE) and collaborated with the Maine Mathematics and Science Alliance (MMSA) in their NSF-funded Statewide Systemic Initiative. In 1998 he was awarded a Higher Education SEED Foundation grant from MMSA and the Maine Department of Education to work with preservice teachers and to reform the introductory physics courses for nonscience majors at the University of Maine. In addition he received a National Science Foundation grant to examine best practices in science teaching. He has served on the ETS Physics SAT II test construction committee and on the American Association of Physics Teachers committee on research in physics education.

In 1999, he left Maine to help start a “Physics First” high school science program at the Harker School in San Jose, California. During that time, he adapted materials for a high school curriculum based on modeling, Tutorials in Introductory Physics, and Physics by Inquiry. He also became interested in computer-based tutorials and the effectiveness of online homework such as WebAssign and Mastering Physics. In 2005, Rand assumed a position as the K–12 science coordinator at The Blake School in Minneapolis and later served at their assistant head of school. He has served as a consultant for several independent schools, is a reviewer for the American Journal of Physics, teaches a summer course for undergraduate science and engineering majors at the University of Minnesota, received the Juliet Nelson Award for Excellence in Teaching, and has taught physics to Tibetan monks as part of the Science for Monks program in Dharamsala, India. His most recent interests are finding effective methods to “extend the thinking” of students at all grade levels and to use the computer as a tool for effective learning.
Introduction

It is winter in Minnesota, but still warm enough to play outside. Lindsay is a third grade student, and today she is wearing her warm, woolen pants, knowing that she will get a chance to use the outdoor playground. She runs to her favorite slide, a long blue slide made of plastic. She climbs the ladder and then slides to the bottom with great joy. When she reaches the bottom of the slide, she notices that her hair is standing up and she has a peculiar tingly feeling on her skin. Her best friend races to help her up and as their hands touch, there an audible “zap” and a small spark erupts between their outstretched hands. Ouch!

Where did the spark come from and what is it made of? Is this spark related to the electricity that is used to light our houses? And where do magnets fit into this picture? We are surrounded daily by the phenomenon produced by electric charge—these charges are what makes things work including all the electronic devices we own, from cell phones to copy machines to computers. Yet most of us have only a vague notion of what electric charge is and even less of an understanding of where these charges come from, where they go, and how they move around.

The concept of electric charge is a prerequisite for understanding why matter “sticks together” (all of chemistry); and subsequently, many of the interactions that are studied in a typical biology course (such as photosynthesis and cellular respiration). However, few science courses address electric concepts sufficiently. At most, elementary school and middle school students are introduced to electric phenomena through a single unit on electric circuits, but get no exposure to the topic of electric charge itself (sometimes called electrostatics). Yet, in spite of the central importance of electric charge to the understanding of our world, the appearance of electric concepts in national and state standards remains sparse.

Historical Background

Around 600 BC ancient Greeks discovered that small pieces of amber (a hardened natural resin) would attract light objects like feathers after being rubbed with cloth. (It is interesting to note that the Greek name for amber is “elektron”). There is also evidence that many years before the Greeks discovered electricity, the Chinese discovered magnetic interactions. They observed that certain types of rocks called “lodestones,” displayed an attraction toward each other. (A lodestone is a naturally occurring mineral called magnetite.) The fact that these two different effects are related is subtle and difficult to understand as evidenced by the fact that it took another 2,000 years for scientists to learn the details of how magnetism is related to electricity. To develop an understanding of these effects, it was not necessary to understand what was happening at the atomic scale. In fact, it is interesting to note from both a historical and a pedagogical point of view that the discovery of the electron (one of the fundamental particles with the property of electric charge) came at the end of the 19th century, after the invention of the battery, electric circuits, the lightbulb, and electromagnets. Even the famous electric and magnetic experiments of Michael Faraday and subsequent mathematical formulations by James Clerk Maxwell occurred prior to the discovery of the electron.

A careful examination of the historical development of ideas often provides a useful
Introduction

road map for understanding student ideas. This is certainly true of the topics of electricity and magnetism whose long history of discovery includes decades of unsuccessful attempts to connect electrostatics to magnetism. Historically, engineers and inventors rushed headlong into developing technologies that made use of the electric and magnetic phenomena, even as the science behind these effects remained a mystery. An excellent example that helps to illustrate this point is the story of the installation of the first transoceanic telegraph cable. This cable was installed before people knew what it was that was flowing through the wires and their misconceptions of electricity resulted in a catastrophic failure (Bodanis 2005).

Common Instructional Difficulties Related to Teaching About Electricity and Magnetism

Misconceptions and lack of knowledge regarding electric effects are common and research shows that few students have even a rudimentary understanding of electricity. One example of this lack of understanding is illustrated in the video series Minds of Our Own, where Harvard graduates struggle and often fail to connect a single lightbulb, a wire, and battery such that the bulb will light up (Harvard Smithsonian Center for Astrophysics 1997). Additional difficulties, just as profound, can be elicited by asking people to account for why a balloon (when rubbed on your hair) can “stick” to a wall. In traditional physics courses, instruction tends to focus on the mathematical models used to represent electrical interactions. However, research indicates that students continue to struggle with even the most basic concepts even as they become more proficient with calculations.

Research on Student Ideas Related to Electric and Magnetic Phenomena

As compared to the topics of force and motion, there is considerably less research on student ideas related to electric and magnetic phenomena. Much of the research has been devoted to an examination of college level students (Harrington 1999; Kanim 1999; Rainson and Viennot 1992, 1999). Most of the research on younger students’ ideas has been on the topic of simple circuits containing batteries and lightbulbs. The results from this work show that students predictably use a simple cause-and-effect model to explain the lighting of a lightbulb—that the battery is the source of the “electricity” and the “electricity” is then used to produce light. In interviews, students rarely differentiate between the words charge, electricity, energy, voltage, or current. (McDermott and Shaffer 1992; Millar and Beh 1993; Millar and King 1993). Students also tend to reason “locally” rather than “globally.” This means that it is very difficult for students to recognize that a change in the circuit at one location can result in changes everywhere else in the circuit (including the battery). Students also tend to believe that the battery is a source of electric charge, that when the battery “runs out,” it is running out of charge, and that the battery is unaffected by what is connected to the battery.

Identifying student difficulties with electric charge is even more difficult because one can only observe the effects of charge interactions, not of charge itself. This requires a certain level of inferential and abstract reasoning, which is made even more difficult by the inconsistency of common everyday language used to describe these interactions. For example, it is common to talk about charge as a verb: someone gets “charged up,” which can appear as if charge is an “excited state” rather than as a property of matter. This incorrect view is then reinforced when students discover
that they can create a charged object by rubbing (for example rubbing a plastic ruler with a piece of wool). This gives the impression that charge can be “created” and that this “excited state” is somehow related to heat and friction. The language used to describe the two different types of charge is also problematic, as some students confuse the words negative with “not charged” and positive with “yes, it is charged.” Again, this is inadvertently reinforced by the observations that charged objects attract neutral objects (this is because the two different types of charge in the neutral object separate and not because a neutral object is “opposite of the charge of a charged object”). As a result, it is not uncommon to hear students use the words “neutral charge.”

Representations of Charge
Because we cannot see electric charge, we must pay particular attention to how this property of matter is represented in drawings or pictures. In some curriculum materials, the two types of charge are given colors such as red or blue. It is more common to see the symbols “+” or “-“ written on top of or near objects that are either positively or negatively charged.

In one study, students in fifth grade observed the interaction between a balloon rubbed with fur and the wall (Harrington 1996). They were then asked to draw pictures to show why the balloon is attracted to the wall. Specifically they were asked to draw what they could imagine as happening if they could see the interaction. Overall, the student drawings fit one of four different categories: lines, arrows, dots, or zigzags. Most students referred to the interaction as due to “static” and the most common representation that students choose to illustrate why the balloon sticks to the wall was straight lines. When asked about how many types of charges there are, not one of the students understood that there are only two types of charge and most thought there were many different types of charge, an answer consistent with the idea that charge is an interaction rather than a property of matter (See Probe 4, “What Happens When You Bring a Balloon Near a Wall?” p. 27).

These difficulties illustrate how tricky it is to understand what students are thinking based on the words they use. In some cases, students use the word “static” to indicate a physical quantity analogous to a scientist’s notion of charge. In other cases, the word static seemed to be more indicative of the interaction itself rather than as the causal agent responsible for the interaction. For example, most of the student drawings could be interpreted as a representation of ideas related to an electric field (an effect) rather than to electric charge itself (the cause). Difficulty with differentiating between cause and effect in the context of learning science has been widely documented with students from a wide range of ages.

There is little research available on student ideas related to magnetic effects. Maloney and others have documented the confusion that students have distinguishing between magnetic poles and electric charge (Maloney 1985). In addition, several graduate students in physics education have examined student understanding of magnetism and have discovered similar difficulties that extend to college level students (Johnson 1997; Krauss 1998). Krauss found that these difficulties were quite difficult to overcome, even after professors in a college-level physics course addressed these difficulties specifically in their lectures and demonstrations.

Conceptual Framework for Understanding Charge
We have identified seven key concepts that scientists generally agree are basic to an understanding of electric charge. These concepts provide our starting points for developing the probes contained in this book. Most of these
Introduction

care concepts are accessible to students from a wide range of age groups including our youngest students. The seven key concepts are:

- Charge is a property matter.
- There exist two different types of charge called “positive” and “negative.”
- Charges that are the same type will repel each other and charges that are the opposite type will attract each other.
- The interaction between charges decreases as the distance between the charges is increased.
- Neutral materials are composed of equal amounts of both types of charge. (Note: This concept is directly related to the idea that all matter is composed primarily of charged particles.)
- Electric charge cannot be created or destroyed. (Note: There are exceptions to this relevant only for physicists who operate high-energy particle accelerators.)
- Charged particles move easily through some materials (conductors) but not as easily through other materials (insulators).

Understanding Electricity

Mass and electric charge are two fundamental properties of matter. Most particles that exist have both of these properties. Mass is important in that it is the property that is responsible for gravitational force (the observed force that we call weight) and it is the property that resists changes in motion as described by Newton’s second law, \(F_{\text{net}} = ma \) (where \(F \) is the net force, \(m \) is the mass and \(a \) is the acceleration of the object). The property of matter called electric charge is responsible for much larger forces (as compared to gravitational force) and is the property of matter that holds atoms and molecules together and gives matter, which is mostly composed of space, its feeling of “solidness.” All electronic devices work by managing the motion of particles that have this charge property. Batteries move these particles around, capacitors store the separation of this property into its two different “flavors,” and the movement of these charged particles produces light.

Conceptual Framework for Understanding Electric Circuits

Understanding the movement of electric charge through wires that are connected to batteries requires students to make a few simple assumptions, such as the belief that there is a flow and the belief that the brightness of a light bulb is an indicator of the amount of flow. In many cases, the difficulties that students experience with electric circuits can be traced back to a lack of understanding of what it is that is flowing and the lack of understanding of charge conservation (that electric charge cannot be created or destroyed). The language of “flow” can also be deceptive even though it is common for teachers to use a water analogy when trying to help teach students how circuits work. The difficulty with the words flow and current is that the common definitions of these words are associated solely with the speed of whatever is flowing. This implies that higher speeds can be described as a faster current. However, in the context of electric circuits, electric current refers only to the number of electric charges that pass a given point in a given amount of time. This means that a lot of charge moving slowly can be the same “current” as a small amount of charge that is moving fast. One of the principles of electric circuits is “current conservation,” which means that the amount of current going into a device (like a lightbulb or a battery) must be the same as the amount of current that is coming out of the device. In fact, it is neither current nor electric charge that is “used up” in a circuit—a misconception that is continually reinforced in the media and in books when they refer to electric
power plants as producing charge (they don’t) and batteries as storing charge (they don’t).
It is unfortunate that when we “energize” a battery it is called “charging the battery” and that these devices are called “battery chargers.” A battery stores chemical energy that is used to separate charge and does not produce or store charge (the net charge of a battery remains zero—it contains equal numbers of both types of charge). In our homes, electric current is rapidly switching directions (called AC or alternating current). Students are surprised to learn that this means the electric charges that were in the lightbulb when it was first purchased remains in the lightbulb throughout its lifetime (the charge does not “come from” the power plant!).

For the purpose of writing the probes contained in this book, we have identified the following foundational concepts related to understanding electric circuits:

- There is a flow around a circuit. This flow is called the electric current and is measured in amperes. For the flow to exist there must be a complete conductive path connecting one side of the battery to the other.
- Conductors are materials that contain charges that are free to move if pushed. (These charges are already present in the wires and bulbs and do not come from the battery.)
- The battery is the agent that causes the charges that are already in the wires to move through the circuit. This “push” on the charges is measured in units of volts. (The current flows through the battery, not from the battery.) Voltage is a measure of the energy required to move charged particles (like electrons) when these particles are near other charged particles.
- The amount of current that flows through a circuit depends on the total resistance in that circuit. If the resistance is decreased, the flow increases. If the resistance is increased, the flow decreases.
- A lightbulb represents resistance to the flow in a circuit.
- Connecting bulbs in series (one after the other) increases the resistance to the flow and causes the total flow through the circuit to decrease.
- Connecting bulbs in parallel (side by side) reduces the resistance in the circuit and causes the total flow through the circuit to increase.

Understanding Magnetism
The study of magnetism is complicated if examined at the microscopic level; however, the phenomenon itself is quite accessible to everyone. In fact, it is easier to conduct experiments with magnets than it is to conduct experiments with electric charge. This is because the two different types of electric charge that exist are strongly attracted to each other and can move around fairly easily (without being seen). This means that a positively charged object will soon become neutral because negative charges will rush to be near the positive charges, essentially canceling out any observed effects. However, permanent magnets are strong, inexpensive, and common. Their magnetic effects do not easily subside with time, and students enjoy feeling the almost magical force of attraction and repulsion “at a distance” between two magnetic poles. Because electric charges will also attract and repel each other, it is easy for students to confuse these two distinct effects, making the teaching of basic magnetic and electric concepts all the more difficult.

The Connection Between Electric and Magnetic Effects
Magnetic effects are related to but are different than electric effects, and as such are often confused by students (as well as textbook writers!). The primary source of the confusion
Introduction

arises from the general difficulty that people have distinguishing between a quantity and a change in that quantity. This is because electric effects are produced by the presence of electric charge and magnetic effects are produced by the movement of electric charge.

For example, a balloon that is rubbed with fur (or your hair) can cause the two different types of charges that already exist on the balloon and in your hair to separate, leaving more of one type of charge on the balloon. It is the presence of this charge that people called “static electricity.” However in a magnet, it is the movement of charges in circles that causes the magnetic effects (in a permanent magnet, this motion occurs on the atomic scale). This is why we can make a “magnet” by wrapping wire in a circle and connecting the wire to a battery. The battery pushes the electric charges through the wire, making the charges move in a circle. This means that a magnet is not “charged” in the same way that a balloon is charged.

It is easy to observe that a balloon that is charged by rubbing will attract a piece of paper but a magnet will not interact with the paper. This observation provides evidence that the poles of a magnet are not charged. Regardless of this simple observation, it is common to see bar magnets incorrectly labeled with the two symbols for electric charge (positive and negative) rather than the correct labels of North and South. The North and South labels originated from the observation that magnets, when allowed to hang freely, would inevitably point (approximately) toward the “north geographic” pole of the Earth. This end of the magnet was labeled as “North Seeking.” Eventually this label turned into “North magnetic pole” and is usually labeled with the letter N. (It is a source of confusion to students who study the Earth’s magnetic poles to learn that the North geographic pole of the Earth is actually a South magnetic pole. This is because a “north seeking” magnetic pole would be magnetically attracted to a south magnetic pole, but would be repelled by a north magnetic pole.)

Conceptual Framework for Magnetism

In constructing the probes related to magnetic effects, we have identified the following essential ideas around magnetism:

- The movement of electric charge produces magnetic effects.
- Magnetic poles come in pairs called north and south (you cannot separate a north pole from a south pole because they are two sides of the same phenomena).
- The same type of magnetic pole (for example, two north poles) will repel each other and opposite magnetic poles (for example a north pole and a south pole) will attract each other.
- The interaction between magnetic poles decreases as the distance between the poles increase.
- Magnets are not electrically charged (they do not have more of one type of charge than another).
- Magnets interact with magnetic materials. Some of these materials are permanent magnets with poles. Other types of magnetic materials (like iron) attract both the north pole of a magnet and the south pole of a magnet (but do not repel a magnet).
- Magnets do not interact with non-magnetic materials such as aluminum, paper or plastic.
- The size of a magnet is not necessarily related to the strength of a magnet.
- You can make a magnet with poles by making electric charges move in a circle (for example, a wire wrapped in circles around a nail connected to a battery). The magnet can be made stronger by increasing the movement of electric charge (called electric current) through the wire.
Introduction

Stepping Stones: Emerging Concepts and Language
There are many challenges to teaching science, but one of the most difficult choices we face as teachers is to know when to accept an emerging concept, called a “stepping stone” versus a core scientific idea (those that most physicists would agree are important and correct from a scientific point of view). Stepping stone concepts are actually central to effective learning. Yet they are not always what come to physicists’ mind when they are asked about important ideas in physics. In a recent symposium at the National Academy of Sciences where a reorganization of K–12 science education around core ideas was looked at to inform the development of the Next Generation Science Standards, it was proposed that candidates for core ideas include both stepping stone ideas (emerging ideas) and core scientific ideas (Weiser and Smith 2009).

When looked through the eyes of more advanced students, some of these emerging ideas could be judged as being incorrect or downright wrong. An example of a stepping stone concept is the use of the word electricity by young students in place of the word current or voltage. With older students, these concepts are often confused, so it is tempting to differentiate these ideas at a young age. However, learning research has shown that it is sometimes best to wait to differentiate stepping stone concepts from scientific concepts until upper elementary grades or middle school. With the support of well-crafted curriculum and effective teaching, students can experience progressively more sophisticated ways of thinking about a concept and thus are in a better position cognitively to understand the scientific idea. Learning progressions, which are empirically tested, will provide the much needed research that will inform teachers as to when to use a stepping stone in lieu of a core scientific idea (Weiser and Smith 2009).

In constructing the probes for the first volume in this series, Uncovering Student Ideas in Physical Science: 45 New Force and Motion Assessment Probes (Keeley and Harrington 2010), we have tried to follow this guide: weight, distance, and time are generally used as stepping stone concepts for probes designed for younger student while mass, position, displacement, and time interval, the scientifically preferred terminology, are used with probes for older students. However, teachers should be encouraged to use those terms that best match their own learning goals and student readiness regardless of the wording that was chosen for any individual probe. We encourage the same approach with the electricity and magnetism concepts in this volume.

Implementing the Electricity and Magnetism Probes
The probes contained in this book can be used as a window into student thinking before, during, or after instruction as a reflection on their prior thinking. However, if used before instruction, teachers must plan their curricula carefully so students have an opportunity to develop the relevant ideas. If a probe is administered before instruction and there is not immediate follow-up, students may feel frustrated at not knowing the “correct answer” and teachers may feel compelled to provide students with direct answers without the necessary background or experiences. Conversely, if the probes are used during or after instruction, then the teacher must also plan accordingly so there is time to revisit selected instructional activities as necessary and build in time for reflection. The advantage of using the probes after instruction, yet still formatively as opposed to a summative assessment, is that students are better prepared to participate in a classroom discussion. To be effective, students must feel comfortable sharing their ideas, and the teacher must carefully manage these discussions so that all ideas are valued.
Introduction

Classroom discussions are also a wonderful opportunity to reinforce the necessary components of a scientific explanation by requiring students to state their claim, the evidence in support of that claim, and the reasoning that connects the claim to the evidence (McNeill and Krajcik 2012). If conducted during or after instruction, then students will have better access to direct evidence to support their claims.

Regardless of the who, why, and when decisions to use these probes during an instructional cycle, it is important to remember the probes are not formative unless the information is used to inform your teaching, provide feedback to the learner, and promote learning throughout the process. By starting with where the student is in his or her thinking, your challenge is to use that information to build a conceptual bridge from where the student is to where he or she needs to be on a trajectory of learning and understanding.

References
How Bright Will the Bulbs Be?

Two students made a circuit with a battery, wires, and two identical lightbulbs. Before they connected their circuit, they made a prediction about the brightness of the two bulbs. This is what they said:

Herman: I think both bulbs will have the same brightness.

Molly: I think one lightbulb will be brighter than the other.

With which student do you agree the most? ______________ Explain why you agree with one student and not the other.

How Bright Will the Bulbs Be?

Teacher Notes

Purpose
The purpose of this assessment probe is to elicit students’ ideas about series circuits. The probe is designed to determine what students think will happen to the brightness of lightbulbs as more lightbulbs are added to a circuit.

Related Concepts
current, series circuit, resistance, circuit

Explanation
The best answer is Herman’s: “I think both bulbs will have the same brightness.” The circuit shown is a series circuit. A series circuit is a circuit in which resistors (i.e., the lightbulbs) are arranged in a chain, so the current has only one path to take. All the current that goes through the first bulb must also go through the second bulb, so the bulbs are the same brightness. (Note: It is important that the two bulbs must be identical for the same current to create the same brightness. Bulbs with different ratings could have a different brightness with the same current.) In a series circuit, every lightbulb (or other device) must function for the circuit to be complete. A burned out bulb in a series circuit breaks the circuit and acts like an open switch, which turns the circuit off. The concept of “current” in electric circuits refers to the number of electric charges that pass through the wire in a given amount of time. A lot of charges moving slowly or a few charges moving fast could be the same “current.” This is different from the flow of water where “current” usually refers to the speed of the water.

Although the two bulbs will have the same brightness when compared to each other, they will be dimmer than the brightness of a single bulb circuit. This is because adding a second bulb in series will increase the resistance in the circuit, which decreases the current through the circuit.

Administering the Probe
This probe is best used with upper elementary, middle, and high school students. Make sure
Electric Current

students understand they are comparing the brightness of the two bulbs to each other, not to a bulb in a single bulb circuit. This probe can be used with the P-E-O strategy described on page xii (Keeley 2008).

Related Research

- Students who choose Molly tend to have a “consumption model” of current. They see some of the current being used up by the first bulb so there is less going to the second bulb (Driver et al. 1994).
- Several misconceptions related to the concept of current have been noted by researchers such as confusing current with electrical energy; current being used up as it flows through a resistor such as a lightbulb; a lack of recognition that all the parts of a circuit influence each other; and a belief that current flows “downstream” like a river, through the different parts of a circuit (Shipstone 1984; Borges and Gilbert 1999).
- Some students think current is actually something physical that flows through a circuit. This notion leads to the misconception that current gets weaker or used up as it moves from one part to another (Borges and Gilbert 1999).
- Student often confuse electric current and voltage. Student difficulties with voltage can often be traced back to their difficulty understanding the concept of energy. (Millar and King 1993).

Suggestions for Instruction and Assessment

- If using this probe with elementary students, the emphasis should be observational. At middle and high school, students can be asked to construct an explanation to describe what happens to the bulbs.
- Some researchers have suggested using the heart and blood circulation analogy to help move students away from the “consumption model.” The blood circulates through the heart but does not get used up in the process (Osborne and Freyberg 1985).
- Although the probe does not ask for how the brightness of the single bulb changes when you add an additional bulb, students can also predict and observe that the bulbs are dimmer in a two-bulb series circuit than a single bulb in a circuit. The correct inference is that the resistance to the flow must have increased by adding a second bulb in series.
- The probe can be extended by asking students what would happen if a third bulb is added to the circuit.
- One of the most effective models for a series circuit is a string tied into a large circle. Have three students stand in a circle and hold onto the string lightly. One student is the “battery.” This student pulls the string around the circle. The other students let the string slide through their hands. The “flow” of the string is the same everywhere around the circle. If the “battery” always pulls the string around with the same “pull,” the string slows down as more students are added to the circle. Students also feel the heat from the string sliding through their hands, which is like the resistance that each bulb adds to a series circuit.
- There are several inquiry-oriented curriculum guides that introduce the concept of electric current. One set of materials is the Electric Circuit Module of Physics by Inquiry (Pearson). This curriculum was designed specifically for the professional development of elementary school teachers. For a summary of these instructional strategies, see Shaffer and McDermott (1992).
- This probe can be followed by using “Which Burns Brighter,” in which students compare the brightness of bulbs in a series circuit versus a parallel circuit.
Electric Current

NSTA Safety Notes for Follow-up Instructional Activities

1. Use caution in handling wires. The bare wire ends are sharp and can cut or puncture skin.
2. Use only batteries which are in good condition. Leaking batteries can burn skin.
3. Use caution in handling glass bulbs. They are fragile and if broken can cut skin.
4. Use caution in handling batteries, bulbs and wires that remain connected in circuits. They can become hot and burn skin.

References

Index

A
Electric Charge probes and, 11–12
Electric Current probes and, 49
Magnets and Electromagnetism probes and, 109
A Private Universe: Minds of Our Own video series, 2, 40, 44–45
Action-at-a-distance
Can Magnets Push or Pull Without Touching? probe, 111–113
Do the Objects Need to Touch? probe, 15–17
Alternating current (AC), 5
Why Two Prongs? probe, 95–97
Ameres, 5
Andersson, B., 173
APS Physics Forum on Education, 165
Arnold, M., 55, 61
Arons, A., 61
Atlas of Science Literacy, xi, 69
Attraction
Can Magnets Push or Pull Without Touching? probe, 111–113
What Happens If You Use the Other End of the Magnet? probe, 127–129
Which One Attracts? probe, 135–137
B
Barrow, L., 124, 152, 156, 161
Battery, 5
Does the Weight Change? probe, 99–101
How Can You Light the Bulb? probe, 59–62
How Does the Current in Each Battery Compare? probe, 83–85
How Fast Do the Charges Move? probe, 103–105
One Wire or Two? probe, 53–56
Benchmarks for Science Literacy, xi
Electric Charge probes and, 11
Electric Current probes and, 49
Magnets and Electromagnetism probes and, 109
Borges, A., 55, 61, 121, 129, 132, 140, 145, 148, 153, 157, 161
Bradamante, F., 117, 121, 161
Bryan, L., 129, 161, 165
C
Can It Be Electrically Charged? probe, 23–25
administration of, 25
explanation of, 24
purpose of, 24
related concepts for, 24
related research for, 25
safety notes for, 25
suggestions for instruction and assessment using, 25
teacher notes for, 24–25
Can Magnets Push or Pull Without Touching? probe, 111–113
administration of, 112
explanation of, 112
purpose of, 112
related concepts for, 112
related research for, 112–113
suggestions for instruction and assessment using, 113
teacher notes for, 112–113
Can You Pick It up With a Magnet? probe, 115–117
administration of, 116–117
explanation of, 116
purpose of, 116
related concepts for, 116
related research for, 117
safety notes for, 117
suggestions for instruction and assessment using, 117
teacher notes for, 116–117
Card sort strategy, xii
for Can It Be Electrically Charged? probe, 25
for How Can You Light the Bulb? probe, 60
for How Can You Represent a Magnetic Field? probe, 161
for Where Can You Find Electric Charge? probe, 40
Circuits, xii, 1, 4–5
Does Electricity Leak From an Outlet? probe, 91–93
Does It Matter If the Wire Has Knots? probe, 87–89
How Bright Will the Bulbs Be? probe, 71–74
How Can You Light the Bulb? probe, 59–62
How Do You Think About the Flow of Electric Current Through a Circuit? probe, 67–70
How Does the Current in Each Battery Compare? probe, 83–85
How Would You Rank the Brightness of These Bulbs? probe, 79–82
One Wire or Two? probe, 53–56
Where Do I Put the Switch? probe, 63–65
Which Burns Brighter? probe, 75–78
Classroom discussions, ix, 7–8
Concept matrix, xi
for Electric Charge probes, 10
for Electric Current probes, 48
for Magnets and Electromagnetism probes, 108
Conductors, 5
Can It Be Electrically Charged? probe, 23–25
Conductors or Insulators? probe, 31–33
Conductors or Insulators probe, 31–33
administration of, 32
explanation of, 32
purpose of, 32
related concepts for, 32
Index

related research for, 32–33
safety note for, 33
suggestions for instruction and assessment
using, 33
teacher notes for, 32–33
Conservation of charge
Does the Weight Change? probe, 99–101
Where Does the Charge Come From? probe, 43–45
Coulomb’s law, x, 11, 13
Crosscutting concepts, xi
for Electric Charge probes, 12
for Electric Current probes, 49
for Magnets and Electromagnetism probes, 109

D
Diagnostic assessment, xiii
Disciplinary core ideas (DCIs), xi
for Electric Charge probes, 11–12
for Electric Current probes, 49
for Magnets and Electromagnetism probes, 109
Do the Objects Need to Touch? probe, 15–17
administration of, 16–17
explanation of, 16
purpose of, 16
related concepts for, 16
related research for, 17
safety notes for, 17
suggestions for instruction and assessment
using, 17
teacher notes for, 16–17
Does a Magnet Pick up Any Kind of Metal? probe, 119–121
administration of, 120–121
explanation of, 120
purpose of, 120
related concepts for, 120
related research for, 121
safety notes for, 121
suggestions for instruction and assessment
using, 121
teacher notes for, 120–121
Does a Magnet Work Without Air? probe, 131–133
administration of, 132
explanation of, 132
purpose of, 132
related concepts for, 132
related research for, 132–133
safety notes for, 133
suggestions for instruction and assessment
using, 133
teacher notes for, 132–133
Does Electricity Leak From an Outlet? probe, 91–93
administration of, 92–93
explanation of, 92
purpose of, 92
related concepts for, 92
related research for, 93
safety notes for, 93
suggestions for instruction and assessment
using, 93
teacher notes for, 92–93

Does It Matter If the Wire Has Knots? probe, 87–89
administration of, 88–89
explanation of, 88–89
purpose of, 88
related concepts for, 88
related research for, 89
safety notes for, 89
suggestions for instruction and assessment
using, 89
teacher notes for, 88–89
Does the Example Provide Evidence? probe, 35–37
administration of, 36–37
explanation of, 36
purpose of, 36
related concepts for, 36
related research for, 37
suggestions for instruction and assessment
using, 37
teacher notes for, 36–37
Does the Type of Wire Make a Difference in an
Electromagnet? probe, 171–173
administration of, 172
explanation of, 172
purpose of, 172
related concepts for, 172
related research for, 172–173
safety notes for, 173
suggestions for instruction and assessment
using, 173
teacher notes for, 172–173
Does the Weight Change? probe, 99–101
administration of, 100
explanation of, 100
purpose of, 100
related concepts for, 100
related research for, 101
safety note for, 101
suggestions for instruction and assessment
using, 101
teacher notes for, 100–101
Duit, R., 93

E
E & M TIPERs: Electricity and Magnetism Tasks, 81
Electric Charge probes, 9–45
Can It Be Electrically Charged?, 23–25
concept matrix for, 10
Conductors or Insulators, 31–33
crosscutting concepts for, 12
disciplinary core ideas for, 11–12
Do the Objects Need to Touch?, 15–17
Does the Example Provide Evidence?, 35–37
Does the Weight Change?, 99–101
Electric Current probes, 47–105
concept matrix for, 48
Conductors or Insulators?, 31–33
crosscutting concepts for, 49
disciplinary core ideas for, 49
Does Electricity Leak From an Outlet?, 91–93
Does It Matter If the Wire Has Knots?, 87–89
Does the Weight Change?, 99–101
How Bright Will the Bulbs Be?, 71–74
How Do You Think About the Flow of Electric
Current Through a Circuit?, 67–70
How Does the Current in Each Battery
Compare?, 83–85
How Fast Do the Charges Move?, 103–105
How Would You Rank the Brightness of These
Bulbs?, 79–82
NSTA resources for, 50–51
One Wire or Two?, 53–56
performance expectations for, 50
related ideas from Benchmarks for Science
Literacy, 49
Where Do I Put the Switch?, 63–65
Which Burns Brighter?, 75–78
Why Two Prongs?, 95–97
Electric fields, What Happens When You Bring a
Balloon Near a Wall? probe, 27–30
Electric force, 11
Do the Objects Need to Touch? probe, 15–17
How Will the Balloons Move? probe, 19–21
Electricity and magnetism, 1–8
difficulties related to teaching about, 2
emerging concepts and language related to, 7
historical development of ideas about, 1–2
implementing formative assessment probes
related to, 7–8
misconceptions related to, 2, 4, 69–70, 73, 77, 89, 165
research on student ideas related to, 2–6
conceptual framework for magnetism, 6
conceptual framework for understanding
charge, 3–4
conceptual framework for understanding
electric circuits, 4–5
connection between electric and magnetic
effects, 5–6
representations of charge, 3
understanding electricity, 4
understanding magnetism, 5
Electromagnet
Does the Type of Wire Make a Difference in an
Electromagnet? probe, 171–173
How Can You Make a Stronger Electromagnet?
probe, 175–177
How Can You Make an Electromagnet? probe,
167–169
Electrons, 5
What Happens When You Bring a Balloon Near
a Wall? probe, 27–29
Where Can You Find Electric Charge? probe,
39–41
Electrostatics, 1, 2
Does the Example Provide Evidence? probe,
35–37
What Happens When You Bring a Balloon Near
a Wall? probe, 27–29
Where Does the Charge Come From? probe,
43–45
Erickson, G., 153

F
Faraday, M., 1, 105
Faraday Pail, 125
Finley, F., 113, 117
Formative assessment classroom techniques (FACTs),
xii
Formative assessment probes, ix, xi–xiv
administration of, xii
“best answer” for, ix, xii
concept matrices for, xi
explanation of, xi–xii
format of, xi–xiv
grade levels for, xi
implementing electricity and magnetism probes,
7–8
links to NGSS, xi
purpose of, xi
references for, xiv
related concepts for, xi
related research for, xi–xiii
resources for, xi
safety notes for, xiv
suggestions for instruction and assessment
using, xiii, 8
summative assessment and, ix, x, 7
teacher notes for, xi

Framework for K–12 Science Education: Practices,
Crosscutting Concepts, and Core Ideas, Magnets
and Electromagnetism probes and, 109
Index

G
Gilbert, J., 55, 61, 121, 129, 132, 140, 145, 148, 153, 157, 161
Goldberg, F., 165
Gravity and magnets
 Does a Magnet Work Without Air? probe, 131–133
 How Would a Magnet Work on the Moon? probe, 139–141
 What Makes It Stick? probe, 151–153
Grounding, Conductors or Insulators? probe, 31–33
Guth, J., 161

H
Harrington, R., xviii
How Bright Will the Bulbs Be? probe, 71–74
 administration of, 72–73
 explanation of, 72
 purpose of, 72
 related concepts for, 72
 related research for, 73
 safety notes for, 74
 suggestions for instruction and assessment using, 73
 teacher notes for, 72–74
How Can You Light the Bulb? probe, 59–62
 administration of, 61
 explanation of, 60–61
 purpose of, 60
 related concepts for, 60
 related research for, 61
 safety notes for, 62
 suggestions for instruction and assessment using, 61–62
 teacher notes for, 60–62
How Can You Magnetize a Nail? probe, 163–165
 administration of, 165
 explanation of, 164–165
 purpose of, 164
 related concepts for, 164
 related research for, 165
 safety notes for, 165
 suggestions for instruction and assessment using, 165
 teacher notes for, 164–165
How Can You Make a Stronger Electromagnet? probe, 175–177
 administration of, 176
 explanation of, 176
 purpose of, 176
 related concepts for, 176
 related research for, 176
 safety notes for, 177
 suggestions for instruction and assessment using, 177
 teacher notes for, 176–177
 administration of, 168
 explanation of, 168
 purpose of, 168
 related concepts for, 168
 related research for, 168–169
 safety notes for, 169
 suggestions for instruction and assessment using, 169
 teacher notes for, 168–169
How Can You Represent a Magnetic Field? probe, 159–162
 administration of, 161
 explanation of, 160–161
 purpose of, 160
 related concepts for, 160
 related research for, 161
 safety notes for, 162
 suggestions for instruction and assessment using, 161–162
 teacher notes for, 160–162
How Do You Think About the Flow of Electric Current Through a Circuit? probe, 67–70
 administration of, 68–69
 explanation of, 68
 purpose of, 68
 related concepts for, 68
 related research for, 69
 safety notes for, 70
 suggestions for instruction and assessment using, 69–70
 teacher notes for, 68–70
How Does the Current in Each Battery Compare? probe, 83–85
 administration of, 84
 explanation of, 84
 purpose of, 84
 related concepts for, 84
 related research for, 84–85
 safety notes for, 85
 suggestions for instruction and assessment using, 85
 teacher notes for, 84–85
How Fast Do the Charges Move? probe, 103–105
 administration of, 104
 explanation of, 104
 purpose of, 104
 related concepts for, 104
 related research for, 104
 safety notes for, 105
 suggestions for instruction and assessment using, 104–105
 teacher notes for, 104–105
How Will the Balloons Move? probe, 19–21
 administration of, 20–21
 explanation of, 20
 purpose of, 20
related concepts for, 20
related research for, 21
safety note for, 21
suggestions for instruction and assessment using, 21
teacher notes for, 20–21
How Would a Magnet Work on the Moon? probe, 139–141
administration of, 140
explanation of, 140
purpose of, 140
related concepts for, 140
related research for, 140
suggestions for instruction and assessment using, 140–141
teacher notes for, 140–141
How Would You Rank the Brightness of These Bulbs? probe, 79–82
administration of, 81
explanation of, 80–81
purpose of, 80
related concepts for, 80
related research for, 81
safety notes for, 82
suggestions for instruction and assessment using, 81–82
teacher notes for, 80–82
I
Instructional strategies, xiii
Insulators, 4
Can It Be Electrically Charged? probe, 23–25
Conductors or Insulators? probe, 31–33
International Space Station, 141
J
Jacquette, D., 153
Johnson, A., 29
K
Keeley, P., xvii–xviii
Krupa, M., 153
L
Learning goals, xi
Learning process, xiii
Learning progressions, 7
Licht, P., 97
Lines of agreement strategy, xii
for Does a Magnet Pick up Any Kind of Metal? probe, 121
Lodestone, 1
M
Magnetic field
Does the Type of Wire Make a Difference in an Electromagnet? probe, 171–173
How Can You Make a Stronger Electromagnet? probe, 175–177
How Can You Represent a Magnetic Field? probe, 159–162
What Happens When You Bring a Compass Near a Current-Carrying Wire? probe, 179–181
Magnetic poles, 3, 5–6
Does a Magnet Pick up Any Kind of Metal? probe, 120
How You Magnetize a Nail? probe, 165
What Happens If You Use the Other End of the Magnet? probe, 129
What Happens When a Magnet Breaks? probe, 156
What Happens When a Magnet Is Brought Near a Charged Ball? probe, 148, 149
What Happens When You Bring a Compass Near a Current-Carrying Wire? probe, 179, 180
What Happens When You Hold a Magnet Near a Refrigerator? probe, 144, 145
Magnets and Electromagnetism probes, 107–181
Can Magnets Push or Pull Without Touching?, 111–113
Can You Pick It up With a Magnet?, 115–117
concept matrix for, 108
crosscutting concepts for, 109
disciplinary core ideas for, 109
Does a Magnet Pick up Any Kind of Metal?, 119–121
Does a Magnet Work Without Air?, 131–133
Does the Type of Wire Make a Difference in an Electromagnet?, 171–173
How Can You Magnetize a Nail?, 163–165
How Can You Make a Stronger Electromagnet?, 175–177
How Can You Make an Electromagnet?, 167–169
How Can You Represent a Magnetic Field?, 159–162
How Would a Magnet Work on the Moon?, 139–141
NSTA resources for, 110
performance expectations for, 109–110
related ideas from Benchmarks for Science Literacy, 109
What Happens If You Use the Other End of the Magnet?, 127–129
What Happens When a Magnet Breaks?, 155–157
What Happens When a Magnet Is Brought Near a Charged Ball?, 147–149
What Happens When You Bring a Compass Near a Current-Carrying Wire?, 179–181
Index

What Happens When You Hold a Magnet Near a Refrigerator?, 143–145
What Happens When You Wrap a Magnet With Aluminum Foil?, 123–125
What Makes It Stick?, 151–153
Which One Attracts?, 135–137

Maxwell, James Clerk, 1
McDermott, L., 69, 73
Millar, R., 55, 61
Misconceptions, 2, 4, 69–70, 73, 77, 89, 165
Models, 2

How Do You Think About the Flow of Electric Current Through a Circuit? probe, 67–70
Movement of charge, 6
How Fast Do the Charges Move? probe, 103–105

N
National Academy of Sciences, 7
Newton's laws, 4, 11, 13, 136
Next Generation Science Standards (NGSS), xi, 7
Electric Charge probes and, 11–13
Electric Current probes and, 49–50
Magnets and Electromagnetism probes and, 109–110
NSTA resources, ix–x, xi

for Electric Charge probes, 13
for Electric Current probes, 50–51
for Magnets and Electromagnetism probes, 110

O
Ohm's law, x, 81, 85
One Wire or Two? probe, 53–56
administration of, 55
explanation of, 54–55
purpose of, 54
related concepts for, 54
related research for, 55
safety notes for, 56
suggestions for instruction and assessment using, 55–56
teacher notes for, 54–56

P
Parallel circuit, 5
How Does the Current in Each Battery Compare? probe, 83–85
How Would You Rank the Brightness of These Bulbs? probe, 79–82
Which Burns Brighter? probe, 75–78
Pegg, J., 161
Performance expectations, xi

for Electric Charge probes, 12–13
for Electric Current probes, 50
for Magnets and Electromagnetism probes, 109–110

PhET at the University of Colorado, 45, 77
Physics by Inquiry, xviii, 69, 73
Physics Classroom website, 37, 77
Piaget, J., 44
Planck's law, x

Predict-explain-observe (P-E-O) strategy, xii

for Can It Be Electrically Charged? probe, 25
for Can You Pick It Up With a Magnet? probe, 117
for Does It Matter If the Wire Has Knots? probe, 89
for How Bright Will the Bulbs Be? probe, 73
for How Can You Light the Bulb? probe, 61
for How Can You Make a Stronger Electromagnet? probe, 176
for How Can You Make an Electromagnet? probe, 168
for How Will the Balloons Move? probe, 21
for One Wire or Two? probe, 55
for What Happens If You Use the Other End of the Magnet? probe, 128
for What Happens When You Bring a Compass Near a Current-Carrying Wire? probe, 180
for What Happens When You Wrap a Magnet With Aluminum Foil? probe, 124
for Where Do I Put the Switch? probe, 64
for Which Burns Brighter? probe, 76

Protons

What Happens When You Bring a Balloon Near a Wall? probe, 27–29
Where Can You Find Electric Charge? probe, 39–41

Q
Qualitative probes, 81, 85

R
Resistance, 5
How Bright Will the Bulbs Be? probe, 71–74
How Does the Current in Each Battery Compare? probe, 83–85
How Would You Rank the Brightness of These Bulbs? probe, 79–82
Which Burns Brighter? probe, 75–78

S
Safety notes, xiv. See also specific probes
Science and Children, xiii
Science Formative Assessment: 75 Practical Strategies for Linking Assessment, Instruction, and Learning, xii, xvii
Sederberg, D., 129, 161, 165
Selman, R., 153
Series circuit, 5
How Bright Will the Bulbs Be? probe, 71–74
How Does the Current in Each Battery Compare? probe, 83–85
How Would You Rank the Brightness of These Bulbs? probe, 79–82
Which Burns Brighter? probe, 75–78

Shaffer, P., 69, 73
Shipstone, D., 55, 61, 64
Stone, C., 153

Summative assessment, ix, x, 7

T
Teacher notes, xi. See also specific probes
Teaching informed by probes, xiii, 8
Tiberghien, A., 65

Transfer of energy
How Can You Light the Bulb? probe, 59–62
One Wire or Two? probe, 53–56
Where Do I Put the Switch? probe, 63–65

U
Uncovering Student Ideas in Science series, ix–x, xiii, xvii, 7

V
Viennot, L., 117, 121, 161
Voltage, 5
Does the Weight Change? probe, 99–101
How Does the Current in Each Battery Compare? probe, 83–85

W
What Happens If You Use the Other End of the Magnet? probe, 127–129
administration of, 128
explanation of, 128
purpose of, 128
related concepts for, 128
related research for, 128–129
safety notes for, 129
suggestions for instruction and assessment using, 129
teacher notes for, 129–129

What Happens When a Magnet Breaks? probe, 155–157
administration of, 156
explanation of, 156
purpose of, 156
related concepts for, 156
related research for, 156–157
safety notes for, 157
suggestions for instruction and assessment using, 157
teacher notes for, 156–157

What Happens When a Magnet Is Brought Near a Charged Ball? probe, 147–149
administration of, 148
explanation of, 148
purpose of, 148
related concepts for, 148
related research for, 148
safety notes for, 149
suggestions for instruction and assessment using, 148–149
teacher notes for, 148–149

What Happens When You Bring a Balloon Near a Wall? probe, 27–30
administration of, 29
explanation of, 28–29
purpose of, 28
related concepts for, 28
related research for, 29
safety note for, 30
suggestions for instruction and assessment using, 29
teacher notes for, 28–29

What Happens When You Bring a Compass Near a Current-Carrying Wire? probe, 179–181
administration of, 180
explanation of, 180
purpose of, 180
related concepts for, 180
related research for, 180
safety notes for, 181
suggestions for instruction and assessment using, 180–181
teacher notes for, 180–181

What Happens When You Hold a Magnet Near a Refrigerator? probe, 143–145
administration of, 144–145
explanation of, 144
purpose of, 144
related concepts for, 144
related research for, 145
safety notes for, 145
suggestions for instruction and assessment using, 145
teacher notes for, 144–145

What Happens When You Wrap a Magnet With Aluminum Foil? probe, 123–125
administration of, 124
explanation of, 124
purpose of, 124
related concepts for, 124
related research for, 124–125
safety notes for, 125
suggestions for instruction and assessment using, 125
teacher notes for, 124–125

What Makes It Stick? probe, 151–153
administration of, 152
explanation of, 152
purpose of, 152
related concepts for, 152
related research for, 152–153
safety notes for, 153
suggestions for instruction and assessment using, 153
Index

teacher notes for, 152–153
Where Can You Find Electric Charge? probe, 39–41
administration of, 40
explanation of, 40
purpose of, 40
related concepts for, 40
related research for, 40–41
suggestions for instruction and assessment using, 41
teacher notes for, 40–41
Where Do I Put the Switch? probe, 63–65
administration of, 64
explanation of, 64
purpose of, 64
related concepts for, 64
related research for, 64–65
safety notes for, 65
suggestions for instruction and assessment using, 65
teacher notes for, 64–65
Where Does the Charge Come From? probe, 43–45
administration of, 44
explanation of, 44
purpose of, 44
related concepts for, 44
related research for, 44–45
suggestions for instruction and assessment using, 45
teacher notes for, 44–45
Which Burns Brighter? probe, 75–78
administration of, 76
explanation of, 76
purpose of, 76
related concepts for, 76
related research for, 76–77
safety notes for, 78
suggestions for instruction and assessment using, 77–78
teacher notes for, 76–78
Which One Attracts? probe, 135–137
administration of, 136
explanation of, 136
purpose of, 136
related concepts for, 136
related research for, 136–137
safety notes for, 137
suggestions for instruction and assessment for, 137
teacher notes for, 136–137
Why Two Prongs? probe, 95–97
administration of, 96–97
explanation of, 96
purpose of, 96
related concepts for, 96
related research for, 97
safety note for, 97
suggestions for instruction and assessment using, 97
teacher notes for, 96–97
Uncovering Student Ideas in Physical Science, Vol. 2

39 NEW Electricity and Magnetism Formative Assessment Probes

“I have used this entire series for assessing student understanding, for small- and large-group class discussions, and to fill those five- or 10-minute ‘unexpected’ moments that arise during the day. The prompts are so popular that students beg to do them. … This series is so helpful that I would not consider teaching without it.”

—A teacher review of the Uncovering Student Ideas in Science series from the NSTA Science Store

If you and your students can’t get enough of a good thing, Volume 2 of Uncovering Student Ideas in Physical Science is just what you need. It offers 39 new formative assessment probes, this time with a focus on electric charge, electric current, and magnets and electromagnetism. It can help you do everything from demystify electromagnetic fields to explain the real reason balloons stick to the wall after you rub them on your hair.

Like the other eight wildly popular books in the series, Uncovering Student Ideas in Physical Science, Volume 2:

• Provides a collection of engaging questions, or formative assessment probes. Each probe in this volume is designed to uncover what students know—or think they know—about electric or magnetic phenomena or identify misunderstandings they may develop during instruction.

• Offers field-tested teacher materials that provide “best answers”, along with distracters designed to reveal misconceptions that students commonly hold.

• Is easy to use by time-starved teachers like you. These teacher-friendly, ready-to-reproduce materials fit easily into all stages of an instructional cycle. In addition to explaining the science content, the teacher materials note links to national standards and suggest grade-appropriate ways to present material to help your students develop deeper conceptual understanding.

By helping you detect and then make sound instructional decisions to address students’ misconceptions, this new volume has the potential to transform your teaching.