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GALLERY [@®

Interior of the Pantheon, Rome (c. 1734) by Giovanni Paolo Panini

T THE TIME PANINI PAINTED THIS PICTURE, THE
giant 8 m wide oculus in the middle of the Pantheon’s
immense dome had been peering up at the sky for 17
centuries. The dome, which is 43 m in diameter, re-
mained the largest such structure until modern times.
With the bright disk of light shining on the wall, this
grand architectural marvel looks rather like a pinhole

camera, or camera obscura. Like the Pantheon, the cam-
era obscura has been around for a long time. In fact, it
is thought to have been used by the ancient Greeks. The
camera obscura, as many people know, is quite useful
in safely observing solar eclipses, but it also turns out
to be handy for observing sunspots, as we will see in
“Light in a Dark Room” on page 40.
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If it takes you so long to solve a geom-
etry problem that the problem starts
attracting flies, then it’s probably time
to seek help. Fortunately, help is just a
few pages away.

One useful method for avoiding geo-
metrical flies in the ointment is to ex-
tend the sides of the given figure to cre-
ate a new figure. For a full explanation
of this method and more on dealing
with pesky polyhedrons, turn to “Com-
pleting a Tetrahedron” on page 47.
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BRAINTEASERS

Just for the fun of it

Chess champs. Teresa, Robbie, and Alex played a chess tournament
as follows. Two of them played a game, then the other played the
winner, and so on. (If the game ended in a draw, the player who played
white pieces is considered to have lost.] At the end of the tournament,
Teresa had played 15 games, Robbie had played 9 games, and Alex had
played 14 games. Who played in game number 13?2

B267

Nesting triangles. The two legs of one isosceles triangle are equal to
the two legs of another. Is it ever possible to place one of these triangles
completely inside the other?

B268

Frequent flyer. Two cyclists, Kaitlin and Josh, simultaneously started
toward each other from two towns 40 km apart. Josh rode at 23 km/h, and
Kaitlin rode at 17 km/h. Before departure, a fly landed on Josh’s nose. At the
moment of departure, it started to fly toward Kaitlin at 40 km/h. When it
reached Kaitlin, it immediately flew in the opposite direction at 30 km/h
(the wind blew toward Kaitlin). As soon as the fly reached Josh, it turned
back again, and so on. Find the total distance flown by the fly until the
cyclists met (the speed of the fly was constant in each direction).

B269

Get it in gear. Five gears arranged as shown cannot rotate. Is it possible
to arrange 101 gears in such a way that each of them meshes with two
adjacent gears and that if one wheel rotates, then all the others rotate?
(The axes of adjacent wheels do not have to be parallel.) (D. Anisov)

B270

Electrified sphere. Wires are connected to diametrically opposite
points on a homogeneous metal ball. In what cross-section of the ball
will the electric current produce the most heat?

ANSWERS, HINTS & SOLUTIONS ON PAGE 52
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Arithmetic obstacles

Can you get there from here?

by N. Vaguten

N MANY MATHEMATICAL

theories, applied problems, and

puzzles, the following questions

often arise: Is it possible to move
from one position to another using
certain “approved” operations? How
can a desired sequence of moves be
found if it exists, or how can it be
proved that the desired transition
does not exist? We will consider sev-
eral problems of this type. These
problems have another common fea-
ture: they involve integers, and the
obstacles that inhibit certain transi-
tions are usually of an arithmetic
nature.

The examples that begin the dis-
cussion of each problem can be eas-
ily understood even by younger stu-
dents. Exercises marked with an
asterisk and proofs of the general
results invite the reader to ponder. A
number of difficult “olympiad-type”
problems are given at the end of the
article, and the last problem lies
close to the theory of arithmetic
groups, which is progressing rapidly
at the present time.

Problem of a chess knight

Problem 1. The natural numbers
m and n are given. A chess piece lo-
cated on an infinite checkerboard
can make L-shaped moves consist-
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ing of m squares in one direction and
n squares in the perpendicular direc-
tion. We call this piece an {m, n}-
knight. Which squares can this
knight visit?

The common chess knight ({1, 2}-
knight) can reach any square start-
ing from an arbitrary square O. In-
deed, it can reach any square
adjacent to O in three moves, and it
is clear that any other square can be
reached by making a sequence of
such elementary steps.

However, the {1, 3}-knight, whose
moves are illustrated in figure 1,
cannot reach the square adjacent
(horizontally or vertically) to the

Figure 1. The {1, 3}-knight can
reach any diagonally adjacent
square: these elementary steps
can be used to visit all squares
of the same color.

THE RIGHT MOVES

starting square. This fact can be eas-
ily explained: the {1, 3}-knight al-
ways remains on squares of its start-
ing color. On the other hand, it’s
easy to show that the {1, 3}-knight
can reach any square of its starting
color. Indeed, it requires three moves
to get to the diagonally adjacent
square (fig. 1), and any other square of
the same color can be reached by
making such elementary steps.

Try to solve problem 1 for the fol-
lowing numbers m and n: (a) (2, 5),
(b) (3, 7), (c) (10, 25), (d) (19, 79).

It turns out that the {m, n}-knight
can reach any square if and only if m
and n are of opposite parity and their
greatest common divisor is 1.

The complete answer to problem
1 is given at the end of section 3 (ex-
ercise 10). Now we consider a sim-
pler problem, the result of which is
useful for the knight problem and for
other, more serious, mathematical
problems.

Representation of the GCD

We consider a one-dimensional
analogue of our problem.

Problem 2. The natural numbers
a and b are given. A move consists
in adding or subtracting one of the
numbers a or b to (or from) a certain
integer. Given some number ¢, is it

Art by Sergey Ivanov



possible to obtain this number ¢
from 0 using such moves?

In this problem, Z (the set of all
integers) is the set of “positions.”

First, consider a particular ex-
ample. Suppose that a buyer and a
cashier have an infinite number of
bank notes of 10 and 25 dollars each
(anything can happen in mathemati-
cal problems!). It is clear that the
buyer can pay ¢ dollars if and only if
¢ is a multiple of 5.

Here is another example. Assume
that moves £19 and +79 are allowed
on the set Z. Using such moves, we
can obtain any integer: a combina-
tion of such moves makes it possible
to change one’s position by 3 and
then by 1 (fig. 2a).

Here is a more complicated ex-
ample: a = 819 and b = 367. In this
case, the same method allows us to
find the shortest displacement that

19 19 19 19 3

9] s [79] %3] s
e 79 =419 + 3 — — 3
T 79 l19) o) )
79 e
3388831 &19L618
R A A A A 19=6-3+1 —
= EINNED
19 1 s
31 %0 1
3=3-1+0 Q»» — —
1 1 0
a b C

Figure 2. The numbers 19 and 79 are relatively prime (they are
called coprimes); therefore, several divisions with remainder give

the remainder 1 = GCD(19, 79).

results from a succession of moves.
This shortest displacement equals
21 (fig. 3a). Thus, we can make any
displacement that is a multiple of
21. On the other hand, both a and b
are divisible by 21, so no other tran-
sitions are possible.

Notice that 21 is the greatest

common divisor of 819 and 367.

Exercise 1. (a) Prove that if a buyer
and a cashier have an infinite num-
ber of bank notes of 3 and 5 dollars
each, the buyer can pay any amount
of dollars.

(b)Is it possible to move from 0 to
1000 if a = 123 and b = 456; and if

QUANTUM/FEATURE b




Lot Al Ao ) 819] L* [105]$
1 : - 819 = 2-357 + 105 —
~ = 357|357 )
819
3
105 105 105 42 357] *[42]S
Fi T Tate T 357 = 3-105 + 42 (87| L
"~ 105 105/ )
357 5
105] L* [21
49 4 U 105 = 2-42 + 21 & —
:/\:/_\:/\: 49, )
\/
105 49| L%
42222140 Q»]
a b C

Figure 3. To find GCD(819, 357) =

four steps are needed.

a =589 and b = 19842

(c) What transitions are possible if
a=18 and b = 812

Now we formulate the answer to
problem 2 in the general case. Let
the greatest common divisor of a
and b (GCD) be d. Then, the transi-
tion from 0 to a number c is possible
if and only if ¢ is divisible by d. Try
to prove this fact.

This proposition will be obtained
in another form in the next section.

Exercise 2. Prove that the answer
to problem 2 does not change if we
allow a only to be added and b only
to be subtracted.

3. Is it possible to weigh the fol-
lowing amounts on a scale using
weights of 36 and 60 grams: (a) 150
g (b) 132 g?

Euclids algorithm

In the following problem, the set
of positions consists of all pairs of
integers.

Problem 3. Three machines print
pairs of integers on cards. Every
machine reads a card (x, y) and prints
a new card: the first one prints the
card (x -y, y), the second one prints
the card (x + y, y), and the third (y,
x). Let the initial card be (1, 2). Is it
possible to obtain the pairs (19, 79) or
(819, 357] using the machines in any
order desired? Which cards can be
obtained if the initial card is (a, b)?

Denote the operations of the ma-
chines by L, R, and S, respectively.
Once again, we begin with numeri-
cal examples. The pair (19, 79) can

8 JULY/AUGUST 1998

21 using Euclid’s algorithm,

be obtained from the pair (1, 2). To
find the desired sequence of ma-
chine operations, it would be more
convenient to descend from (19, 79)
to (1, 2] rather than to ascend in the
opposite direction (fig. 4).

Then, write down the sequence of
operations in reverse order (exchang-
ing L with R) to obtain the desired
ascent from (1, 2) to (19, 79).

In figure 4, the descent from (19,
79) to (1, 2) is continued to the pair
(1, 0). The abridged notation of this

(%%}

-0
S

L [1]
L1

process is shown in figure 2¢, where
L¥means that the operation L is per-
formed k times. As a matter of fact,
the same descent was performed in
the example to problem 2 (fig. 2a).

An abridged notation of the de-
scent from pair (819, 357) is shown in
figure 3¢ (we invite the reader to write
the full notation). In this example, the
pair (1, 2] (and (1, 0)) cannot be ob-
tained. This fact can be easily ex-
plained: there is an obstacle that pre-
vents us from reaching this pair: all
numbers obtained in the process are
divisible by 21. No matter in what or-
der we apply the operations L, R, and
S, we cannot overcome this obstacle,
since every operation used preserves
the GCD:

GCD(x -y, x] = GCD(x + y, x)

= GCD(x, y).

Therefore, we cannot reach the pair
(1, 2) starting from (819, 357) and
vice versa.

Exercise 4. Is it possible to per-
form the following transitions using
the operations L, R, and S: (a) from
(1, 10) to (5, 25), (b) from (18, 81) to
(36, 63], (c) from (589, 1984) to (31,
1953)2

Figure 4. Every “flight of stairs” of this staircase represents one

step of Euclid’s algorithm.



a I |la-b| g b R a
b b a-b

a-b

s |la-b| | -b S a
a a -b

Figure 5. Operations L, R, and S can be used to change the sign

of one of the numbers on the card.

Now we can answer the general
question of problem 3: a pair (p, ¢)
can be obtained from (a, b) if and
only if GCD(q, b) = GCD(p, g). This
condition is necessary because the
operations used preserve the GCD.
It is also sufficient: if GCD(a, b)
= GCDIp, g) = d, each of these pairs
can be reduced to the pair (d, 0) by a
sequence of operations L, R, and .
Therefore, descending from (a, b) to
(d, 0) and then ascending from (d, 0)
to (p, g), we obtain the desired se-
quence of operations.

Let us prove that any pair (a, b)
can be turned into (d, 0). Notice that
if one of the elements of the pair is
negative, it can be easily made posi-
tive (fig. 5). Now, any pair (a, b) with
natural numbers a and b can be
turned into (d, 0) using the same
method that we used in the above
examples: at each step (except for
the operation S) the greater element
of the pair is reduced until we reach
the pair (d, d) — (0, d) — (d, 0).

In solving problem 3, we have
already found a convenient
method for constructing the great-
est common divisor of two num-
bers. First, from the pair (a, b),
where a > b > 0, we move to the
pair (b, r), where r is the remainder
in the division of a by b. Then, we
repeat the same operation until we
reach a pair (d, 0). The last nonzero
remainder d is the desired GCD(q,
b) (fig. 2b and 3b). This method is
called Euclid’s algorithm.

Exercises

5. Prove that it is impossible to
obtain the pair (1234, 5678) from
(1357, 2468) and (7890, 1979) from
(123, 457).

6. Find examples to demonstrate
that I.and S, as well as R and S, are not
commutative: LS # SL and RS # SR
(however, it is clear that LR = RL).

7. Using Euclid’s algorithm, find
GCD(589, 1984) and GCD[123456789,
987654321).

The set of all points on the
plane with integer coordinates is
called the integer lattice; it is de-
noted by Z2.

The following exercise and figure
6 illustrate the geometric sense of
problem 3.

8. Let a segment OA, where O
is the origin of coordinates and A
is a point of the integer lattice Z2,
be divided by other points of the
lattice into d parts. Prove that
point A can be moved to points (d,
0) and (-d, 0) by operations L, R,
and S, but cannot be moved to any
other point of axis Ox.

Exercises 9 and 10 generalize
problems 1 and 2.

9°. Let n natural numbers a,, a,,
..., a, be given. Prove that an integer
¢ can be obtained from 0 by moves
ta,, *a,, . . ., ta, if and only if c is di-
visible by GCD(a,, a,, ..., a_).

7 Tn

10°. (a) Let n vectors v, v,, . . .,

T

\

v, with integer coordinates be
given in the plane. Prove that the
set of all points D of the plane to
which point O can be taken by
moves v, *v,, . . ., xv_is the set
of nodes of an oblique lattice (an
oblique lattice is the set of the ver-
tices of parallelograms formed by
two equidistant families of paral-
lel lines).

(b) Assume that with any vector
v, the set v,, v,, . . ., v, contains a
vector v, perpendicular to v, and
equal to it in length. Then, the set of
all accessible points D is the set of
nodes of a square lattice.

Now, it is not difficult to find
the complete answer to problem 1.
Let m = dm, and n = dn,, where
d = GCD(m, n). Then, if m, + n, is
odd, all points (dx, dy), where x and y
are any integers, are accessible (the
lattice with step dJ; if m, + n, is even,
all points (dx, dy) withxe Z, y e Z,
and x + y even are accessible (these
points make up a lattice with step
d/2 rotated 45° with respect to Z2).

Summing up

In the final part of the article, we
present two more rather difficult

y

Figure 6. “Left skew” L(x, b) — (x—b, b), “right skew” R(x, b) (x + b,
b), and “symmetry” S(x, b) — (b, x) are linear transformations that
perform one-to-one mappings of the integer lattice Z2 onto itself.
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problems. However, we first review
the preceding sections and try to for-
mulate general rules that help us
decide if a transition from one posi-
tion to another is possible. We also
present a number of mathematical
terms for the notions we met in the
problems.

1. To prove that a transition is
impossible, we found a certain “ob-
stacle,” that is, a characteristic fea-
ture (called an invariant) of the po-
sition that remains the same under
all admissible moves and is different
for the initial and final positions.
Thus, the proof of the impossibility
of a transition was reduced to find-
ing an appropriate invariant. For the
{1, 3}-knight problem, we used the
color of the square as such an invari-
ant; for problem 2, it was the re-
mainder in the division of the given
number by the GCD(a, b); for prob-
lem 3, it was the GCD of the initial
pair of numbers.

2. To find the desired sequence of
moves on the lattice, it is often use-
ful to find an elementary key move
(or combination of moves) or reduce
the problem to a simplest standard
position and then formulate a gen-
eral algorithm for finding the neces-
sary moves. For example, in the {1,
3}-knight problem, it was sufficient
to learn how to make diagonal
moves, and in problem 2 it was suf-
ficient to construct the “descent” to
the standard position (d, 0).

3. In the problems that we have
considered, all transitions were in-
vertible: if position B could be
reached from A, then A could be
reached from B. In such problems,
the entire set of positions can be par-
titioned into equivalence classes:
every position of a class can be
reached from any other position of
the same class, but transitions be-
tween positions of different classes
are impossible.

We now consider a problem that
does not possess the property of
reversibility. However, principles 1
and 2 do the job brilliantly.

Getting rid of fwos

Problem 4. Three machines print
pairs of natural numbers on cards as

8 JULY/AUGUST 1999

I T21H
10 _’18)
(2] T H
9_>16_>16)
1]
8

I'[g] I'[15 I'[43
15 22 50

I (1
50

~

g\l
Gl

—>
15 22

Figure 7. Using the operations /9
(increment by q), H (division by
two), and T (transitive
transformation), we can obtain
card (1, 50) from (5, 19).

follows. Having read a card (a, b), the
first machine prints card (a + 1,
b + 1), the second one prints card
(a/2, b/2) (it works only if both g and
b are even), and the third machine
reads two cards (a, b) and (b, ¢) and
prints card (a, ¢). Assume that we
begin with card (5, 19). Using the
machines described above in any de-
sirable order, is it possible to obtain
card

(c) Assume that we begin with
card (g, b) (a < b). For which n can the
card (1, n) be obtained?

Denote the operations that are
performed by the machines by I,
H, and T, respectively. Figure 7
shows how the “simplest” card (1,
8) can be obtained from (5, 19);
then, the desired card (1, 50) can be
obtained (as earlier, we write IX
when operation [ is applied k
times). Thus, the answer to prob-
lem 4a is affirmative.

However, the card (1, 100) cannot
be obtained from (5, 19). We can find
an obstacle by considering figure 7:
the difference of the numbers on ev-
ery card is divisible by 7. Regardless
of the order in which the machines
are used, this property remains true
because it is preserved by all the op-
erations I, H, and T. (This is obvious
for I. For H, if a and b are even and
b - a is divisible by 7, then b/2 - a/2
is also divisible by 7. For T, if both dif-
ferences b — a and ¢ — b are divisible
by7,thenc-a=(c-b)+(b-a)isalso
divisible by 7.] However, the differ-
ence 100 — 1 = 99 is not divisible by
7. Thus, the answer to problem 4b is
negative.

Exercise 11. Is it possible to use
machines I, H, and T to obtain:

(i) cards (5, 29), (1, 101), and (1,

(a) {1, 50) or 1978] from the card (3, 33)2
(b) (1,100)? (ii) cards (3, 33], (1, 100), and (1,
ba ever odd
a 1 1 T ‘
| & b =3 1
> - @ @ O
® ajf2 o (a+ 1)/2 4_%[
b/2 b-(a-1)/2
al I° T al I
b | ™\ r il b H
~ N S
B —— H
| a2 (a+1)/2
b-a/2 (b+1)/2

Figure 8. The greater number, b, on the card (a, b) can be
decreased (here d=b-a,a>1ora=1and bisodd).




1979) from the card (5, 292

Now answer the general item (c)
of problem 4: let the card (a, b) be
such that b—a = 2d, where d is odd
and greater than 0. Then only cards
(p, q) in which the difference p - g is
divisible by d can be obtained from
the card (a, b). Thus, we can elimi-
nate all twos in the factorization of
b - a into prime numbers, but an odd
divisor is an insurmountable ob-
stacle.

Indeed, as we have already men-
tioned for d = 7, if the difference of
the numbers in the card is divis-
ible by an odd number d, opera-
tions I, H, and T yield cards that
possess the same property. On the
other hand, if b — a = 2d, where
d is odd, we can obtain the card (1,
d + 1) from the card (a, b). One step
of the sequence needed for such a
transition is shown in figure 8. As
soon as the card (1, d + 1) is ob-
tained, we can easily obtain any
card of the form (1, kd + 1) (as in
problem 4a) from the card (1, 8)
and then, any card of the form (I,
kd + 1) with the difference that is
a multiple of d.

Exercise 12. (a) Assume that the
machine that performs operation
T has broken down. Which cards
can be obtained from (5, 19) and (5,
262

(b) Assume that the machine that
performs operation H has broken
down. Which cards can be obtained
from (a, b)?

Exercise 13°. Which cards can be
obtained by the operations I, H, and
Tfrom n given cards (a,, by}, .. ., (a
b,)?

Problem 4 looks rather artificial.
Thus, it is interesting to note that it
appeared as a lemma in a serious
mathematical book (Ulam, S. Un-
solved Mathematical Problems).

Pairs of vectors

The following problem is an ex-
tension of problem 3. The same
three operations L, R, and S are used.
However, in problem 3 they were
applied to pairs of integers, and now
we consider pairs of vectors (a, b)
and (¢, d) with integer coordinates as
“positions” and apply these opera-

n

tions to both vectors of the pair si-
multaneously. It is convenient to
write the coordinates of both vectors
as two columns:

(£4)

Thus, they make up a table of four
numbers; in mathematics, such
tables are called matrices.

Problem 5. The following opera-
tions may be performed on the ma-

trix(gfz):
ac a-b c-d
L:
(b dj_> b d )
& ac . a+b c+d
\bd b d )
ac bd
S'(bd —>(a c)'

Is it possible to obtain from the

. {15 . .
matrix (2 ;) the following matrices:

L3), (), e (09, @ (23,

11
le) 1 3)g
hich matrices can be obtained

acjr

from the matrix 5

Two matrices are called equiva-
lent if one of them can be trans-
formed into the other by opera-
tions L, R, and S (these operations
are invertible, so all matrices are
partitioned into equivalence
classes).

We run into several difficulties
when solving problem 5, and we will
overcome them one by one.

(1) The matrices (i ;) and (; S) are

not equivalent: the second vector (;)

cannot be transformed into {,, since
GCD(5, 7)# GCD|(3, 9). In general, a
condition necessary for the equiva-

lence of two matrices |, 2) and Z; ;
g
immediately follows from the solu-

tion to problem 3:
GCD(a,b)=GCD(p,q),
GCD(c,d)=GCD(r,;s). !

However, as we will see, this con-
dition is not sufficient for two ma-

trices to be equivalent. If this con-
dition holds, we may divide each
column of the matrix by its GCD
and consider such reduced matri-
ces (recall that the GCD of each
column is preserved under our op-
erations.)!

(2) Matrices (i ;) and (i ;) are not
equivalent because any operation (L,
R, and S) on the matrix gi i) results
in a matrix with equa

columns:
(o:)
aa 15 10
(3) Matrices (2 ;) and (o 1lare also
not equivalent. Here we have an-
other obstacle: the quantity

A= A(g g):|ad~bc|

is preserved under all transformations
L, R, and S. Let us check it for L:

(a-b)d-blc-d)=ad-bc
(the reader is invited to check this
property for R and S). Since A(; ;) =3

10 .
and A(O 1) = 1, these matrices are not
equivalent. Notice that

A(p p] =0.
qa4q
The quantity ad — bc occurs very

often in various problems concern-
ing matrices—it is called the deter-

minant of the matrix (Z ;)

. 15 12

(4) The matrices (2 ;) and (o 3)
are equivalent: the sequence of
transformations that reduces the

) 1
first vector (2) to the standard

form (é) and a number of addi-
tional tricks give the desired result
(fig. 9). The invariant D is clearly
seen in figure 9—it is the area of
the parallelogram constructed on

the vectors (;) and (;) "
It remains for us to find out

: 11
whether or not the matrices (0 3)

12 .
and (0 3) are equivalent. It turns out
that they are not equivalent, al-

IThe term reduced appears quite
natural if we consider the matrix

(; ‘;)as a pair of fractions (a/b, c¢/d).
a
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Figure 9. Reduction to the canonical form. Under all
transformations L, R, and S, the area of the parallelogram and the
location of the nodes of the integer lattice inside the parallelogram

remain the same.

though it is not easy to find the cor-
responding obstacle in this case. Its
geometric sense is clear from figures
9 and 10.

Now we are able to answer the
general question of problem 5. Using
operations L, R, and S, any reduced
matrix can be transformed to a ca-
nonical form:

((1) Z),WhereOSr<A, (1)
GCDIr, A) =1
or
((1) (1)) ifA-0. 2)

Two matrices are equivalent if
and only if conditions (*) are satis-
fied and the corresponding reduced
matrices have identical canonical
form. (The equivalence criterion is
formulated in exercise 20 in a
slightly different form.)

Indeed, any reduced matrix can
be transformed to the canonical
form in the same way as we trans-

formed the matrix (; ?) (fig. 9). The
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fact that r is an invariant follows
from exercises 14 and 15.

Exercises
14°. Let the canonical form of

matrix (Z 2) be (1). Then, parallelo-
gram OABC constructed on vectors
OA = (g, b) and OC = (¢, d) contains
A — 1 points with integer coordi-
nates. All of these points M,, M,,

..., M, ;, can be obtained using the

(a,/b)/ ) (a;) o
/[ [/ / /]

[/ / [ [/ [/

0 e.d 0 e, d
-33] -163]

Figure 10. The location of the
nodes of the integer lattice
inside the parallelograms
corresponding to the matrices

(21) and (2} s different

following vector equalities:
. s 1 —
oM, = {i}oc + {M}OA,
A A

where {x} denotes the fractional part
of x.

15.Let GCD|a, b) = GCDc, d) = 1
and A= lad — bcl #0. Then, a unique
rexists such that0<r< A, GCD(zr, A)
= 1, both numbers ra — ¢ and b — d
are divisible by A, and this number
ris preserved under transformations

L, R, and S of the matrix (Z ;)

The assertion of this exercise can
be conveniently used to calculate r
if A is relatively small.

16. Which of the following matri-
ces are equivalent?

51Y(1-5)(12)(13)(47
72)\2 7)\39)\48)\58)
6 14) (5 13) (19 1) (39 60),
17 39 )\19 50 ) (79 4 )\ 50 77 )}

17. We have not considered ma-
trices that have a zero column.
When are such matrices equiva-
lent?

18. Prove that any two matrices
with A = 1 are equivalent.

19°. How many classes of
nonequivalent matrices with A = 3,
A=4,A=5A=10,and A = 12 exist?
How many classes of reduced matri-
ces are among them? For each class,
show the location of integer nodes in
the corresponding parallelogram (as
in fig. 10).

20. Prove that for any matrix, a
unique equivalent matrix of the

form (]S Iic), where k<0, m<0,1<0,
I <m, and m # 0 exists.

Another possible approach to prob-
lems 3 and 5 is to find out which
transformations of the integer lattice
can be obtained by the composition of
operations L, R, and S (we solved a
similar problem when we found out
which translations could be obtained
by the composition of the transla-
tions +a and +b in problem 2. It turns
out that these transformations have
the form (x, y) — (ax + by, cx + dy],
where a, b, ¢, and d are integers and
lad - bcl = 1. However, this is a topic
for another article dedicated to linear

algebra. (@



Math
M266

Tower of powers. Solve the equa-
tion x* =2. (M. Volchkevich)

M267

Triangular tribulation. In a tri-
angle ABC, angle BAC is 60°. A
point P is selected inside the tri-
angle in such a way that angles
APB, BPC, and CPA are 120°. Seg-
ment AP = a. Find the area of tri-
angle BPC.

M268

Working the system. Solve the
following system of equations (M.
Volchkevich]:

x+y 1-2y
1+Xy_ﬁ'
x-y 1-3x
l-xy 3-x

M269

Integers, naturally. If x and y are
natural numbers, and the sum

x2-1 y*-1

y+1

x+1

is an integer, prove that each of the frac-
tions (x> - 1)/(y + 1) and (y* - 1)/(x + 1)
are themselves integers.

M270

Angular features. Points D and
F are chosen on the bisector of
angle A of a triangle ABC in such
a way that ZDBC = ZFBA. Prove
that (a) ZDCB = ZFCA; (b) the

HOW DO YOU
FIGURE?

Ghallenges

circle that passes through D and F
and is tangent to BC is also tan-
gent to the circle circumscribed
around triangle ABC.

Physics

P266

Particular trajectory. Two in-
teracting particles with masses m,
and m, compose a closed system.
Figure 1 shows the trajectory of
the first particle and the positions
of both particles at the moment

mly
o]

beo|

Figure 1

when the velocity of the first par-
ticle was v and the velocity of the
second particle was -3v. Plot the
trajectory of the second particle
for the case m,/m, = 3.

P267

Terrestrial and solar densities.
The angle o at which the Sun is
seen from Earth (the Sun’s angular
diameter) is about 102 rad. The ra-
dius of Earth Ry = 6400 km. Accel-
eration due to gravity on Earth’s
surface is ¢ = 10 m/s?. Using these
data, find the ratio of mean densi-
ties of Earth and the Sun. Two
valuable hints: 1 year =3 - 107 s,
and the volume of a sphere is V
= (4/3)nR3, where R is the sphere’s
radius.

P268

Hot plate. A large, thin conduct-
ing plate with area S and thickness
d is placed in a homogeneous elec-
trical field E, which is perpendicular
to the plate. How much heat is dis-
sipated in the plate when the field is
switched off? (P. Zubkov).

P269

Critical capacitance. A capacitor
and a coil with inductance 1 H are
coupled in series and connected to a
power supply with an alternating
voltage of 220 V and 50 Hz. A volt-
meter with a very high internal resis-
tance is connected in parallel to the
capacitor. At what capacitance will
the voltmeter read 220 V? What ca-
pacitance must never be used in such
an experiment? (A. Zilberman)

P270

Optical illustration. Draw the
image of a square formed by a con-
verging lens (fig. 2). The midpoint of
the square’s side that lies on the
principal axis coincides with the fo-
cal point of the lens. (B. Bukhovtsev)

Figure 2

ANSWERS, HINTS & SOLUTIONS
ON PAGE 50
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Vacuum

Making something out of nothing

by A. Semenov

T IS EVERYWHERE, BUT NO-

body feels it. It is invisible, impal-

pable, and inconspicuous, al-

though it stores enough energy to
produce a new universe. It is noth-
ing, it is emptiness, but this empti-
ness can become the source of every-
thing. It is the vacuum.

Many contemporary physicists
consider the vacuum to be a major
subject of twenty-first century sci-
ence. However, until the end of the
last century the vacuum was only a
subject for the debates of philoso-
phers. For example, in the seven-
teenth century René Descartes
(1596-1650) used a long chain of
logical conclusions to decide that
the vacuum cannot exist: if “noth-
ing” separates two particles, then
they are separated by nothing (and
therefore cannot be considered two
individual objects). In the early days
of science, logical arguments were
often confused with linguistic ones.

However, the vacuum did exist,
and quantum theory filled it with
sense and content. In 1911 Max
Planck (1858-1947) showed that a
body retains energy even at absolute
zero. What is the origin of this en-
ergy?

Physicists began to search for this
mysterious vacuum energy, and in
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1925 Robert Millikan (1868-1953)
detected it for the first time. It was
revealed in the emission spectra of
boron monoxide. The frequency of
radiation resulting from electrons
jumping from one orbit to another
was at odds with the theoretical es-
timates, as if an electron “collided”
with something in its orbital flight.
Just two years later, Werner
Heisenberg (1901-1976) advanced
the famous uncertainty principle
and showed that a pair of virtual par-
ticles can appear and annihilate each
other even in an absolute vacuum,
although their lifetime is very short.
The point is that energy fluctuations
are possible in any system, but the
larger the energy violation, the
shorter period it exists. Mathemati-
cally, the product of the uncertainty
of the energy and the uncertainty of
its duration (that is, the value of the
energy burst multiplied by its life-
time) can be no less than Planck’s
constant: AE - At = h. So, these vir-
tual pairs of particles impede the
orbital motion of electrons.
Vacuum fluctuations are also
manifest in the stochastic noise of
electronic devices. They impose
limitations on the gain of radio am-
plifiers. The van der Waals’ forces
acting between molecules also origi-

VITAL VOID

nate from the vacuum fluctuations
of the molecular energy. The energy
“hidden” in the vacuum doesn’t per-
mit liquid helium to change to the
solid state at any low temperature.
This same energy “turns on” the
discharge in a mercury vapor lamp.
When a mercury atom is excited by
the electric discharge in such a
lamp, vacuum fluctuations return
the atom from the excited to the
ground state. Thus, when you
switch the lamp on, remember that
you are starting the very process that
once produced the Universe!

Born from nothing

For the last few decades the tri-
umphant theory in astronomy has
been the Big Bang model. It supposes
that our Universe was created 20
billion years ago by an explosion of
a hyperdense and superheated point.
However, an accurate study of con-
clusions and predictions of this
model revealed a number of difficul-
ties it could not explain. Allan Guth
of the Massachusetts Institute of
Technology and former Moscow
theoretician Andrei Linde (now a
physics professor at Stanford Uni-
versity) proposed a modified explo-
sion theory called the inflationary
universe.

Art by Vera Khlebnikova
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The new model says that in the
first instants after the birth of the
Universe, the vacuum was unstable
and had a very large internal energy.
One can compare it with a ball at
the top of a hill. Such a state is un-
stable, so the “vacuum ball” rolled
down and released a huge amount of
energy. In a tiny fraction of a second,
the Universe inflated itself by so
many times that this number is ex-
pressed as one with one hundred ze-
ros after it!

This inflation made our Universe
very homogeneous and flat. The in-
flationary universe model removed
many obstacles that were met on
the road of the Big Bang hypothesis.
For example, scientists have not de-
tected magnetic monopoles!, par-
ticles that have only one magnetic
pole. This is strange, because a huge
number of them should have been
produced by the Big Bang. So where
are the monopoles now? The an-
swer: inflation scattered all the
monopoles over such unimaginable
distances that only a few of them re-
mained in our tiny observable part of
the Universe. Thus, all variety of
quasars, pulsars, planets, rockets,
and even human beings were born
from this mighty “nothing” due to
the relationship between mass and
energy found by Einstein.

However, most cosmologists
would be glad if the vacuum moder-
ated its activity after it had finished
its splendid endeavor of creating the
Universe. No, life is not an easy
road, so now and then the vacuum
demonstrates its existence and stirs
scientific minds. The problem is
that the great internal energy of the
vacuum complicates the equations
of the general theory of relativity by
adding some terms. Such theories
are far from being completed, and
who knows the true nature of
things?

IS the vacuum full or empty?

In recent decades the physics
community has been perturbed now

IRead about monopoles in J. Wylie,
“Magnetic Monopoly,” May/June
1995, pp. 4-9.
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and then by news from astronomers
who reported that our Universe is
younger than its own stars. The new
estimates of the Universe’s age are
based on measurements of the
Hubble constant. In addition to false
rumors, the indeterminacy of these
measurements motivated physicists
to rethink their models of the devel-
opment of the Universe.

One possible explanation of this
contradiction is that the vacuum did
not squander all its energy but in-
stead secretly continues its subver-
sive activity of expanding the Uni-
verse. This process increases the rate
of recession of galaxies and misleads
astronomers: the larger the rate of
recession, the closer we are to the
moment of the Big Bang.

However, the vacuum can do
some other tricks. There is another
problem in modern cosmology: the
dark matter. Inflation predicts a cer-
tain density of matter in the Uni-
verse. By contrast, observations have
yielded only 10-20% of this value.
There are a variety of hypotheses
that say where the dark matter
should be located, but none of them
have helped detect it.

George Efstathion of Oxford be-
lieves the dark matter is hidden as
vacuum energy. This view is shared
by Chris Coshaneck at Cambridge,
who believes that the existence of
gravitational lenses supports this
hypothesis.

A gravitational lens is a very mas-
sive galaxy around which light com-
ing from distant stars passes before
reaching observers on Earth. Due to
the curvature of the light rays, one
can see multiple images of the same
distant object. At present, a number
of putative gravitational lenses have
been found. Coshaneck considers
that their number provides a key to
estimating the energy hidden in the
vacuum, which could be responsible
for as much as half of the dark mat-
ter in the Universe.

It should be stressed here that we
are discussing hypotheses rather
than established facts. These are the
working models of theoreticians,
and they illustrate how these magi-
cians of science work to find correcs

answers. However, the vacuum is
not merely a favorite toy of astrono-
mers; it is also involved in pure
earthly matters.

Inertia

One of the most intriguing every-
day manifestations of the hypotheti-
cal properties of the vacuum is iner-
tia, the property of maintaining
motion. Everybody is familiar with
inertia: recall your experience of
crashing into a snow drift while ice
skating. The nature of inertia was
enigmatic to such giants of science
as Albert Einstein and Richard
Feynman. Einstein assumed that the
acceleration of one body somehow
indirectly affected other bodies. He
could not, however, explain the pro-
cess.

A few years ago Bernard Hewish
from Palo Alto and Shel Pythov
from Texas tried to revive this idea
of Einstein. They supposed that a
body has inertia due to its interac-
tion with vacuum fluctuations.
They even modified Newton’s law
by replacing mass with a parameter
that characterizes the interaction of
a body with a vacuum.

In simpler terms, their hypothesis
says that vacuum fluctuations gen-
erate a field similar to a magnetic
field. The more atoms in a body, the
stronger it interacts with this
“vacuum” field, and the more diffi-
cult it is to accelerate the body.

However, this is just an idea,
which at present is not substanti-
ated by precise calculations. All esti-
mates differ from the experimental
data by a stunningly large factor:
this number is one followed by a
good hundred zeros. Steven
Weinberg, a Nobel Prize winner,
joked that this number is the most
inexact prediction in physics.

Still, the authors of the vacuum

hypothesis have not lost heart. In
fact, they have even discussed
ways of extracting energy from a
vacuum. It seems like science fic-
tion, but Hewish reminds us that
only 100 vears 2go nobody knew
abour jet planes, radios, or televi-
S w0 szv nothing of the atomic




A Iyrical digression

A vacuum is a very enigmatic
thing. Many outstanding minds
have guessed at its nature—from
Aristotle to Feynman. “Nature does
not permit emptiness”’—this dictum
designates the vacuum as an ab-
stract, unreal conception, which
predicts the failure of any scientific
attempt to study it. Nevertheless,
modern theoreticians cannot ignore
the vacuum. Such notions as the
“vacuum state” or “vacuum energy
level” are used in virtually every
physical model of the microcosm. It
seems as if up until now scientists
have disregarded the unbelievable
global character of the vacuum prob-
lem. To spend time considering the
vacuum was considered something
of a scientific sacrilege.

The problem of the vacuum was
circumstantially treated by science
fiction authors. Even for them it was
too fantastic to allow their charac-
ters to take energy from “nothing,”
so they took it from other unex-
pected sources: time, future, or hy-
perspace. Perhaps the vacuum will
turn out to be the unexpected source
of inexhaustible energy after all.

Consider a social phenomenon
that has nothing to do with classical
science: the growing activity of
“specialists” in extrasensory percep-
tion and in other mystical events
such as intercontinental non-elec-
tromagnetic information transmis-
sion, inner communication with
space, and diagnostics of astral bod-
ies. To tell the truth, it is a wonder
that these supernatural people do
not use the concepts of vacuum and
vacuum fluctuations. Sometimes
even the craziest-sounding hypoth-
eses should be considered. What if
all these astral fields and space
fluxes are somehow related to the
vacuum? Nothing is clear in both
fields, so perhaps they should be
studied. Of course, any study must
be scientific and free from illiterate
mystical gibberish, but these prob-
lems should not be simply brushed
aside.

A common view of the vacuum
sounds like King Lear’s remark:

“Nothing will come of nothing.”
The true interpretation of the
vacuum as “nothing” can only
mean one thing—we really know
nothing about it. Recently, electro-
magnetic fields and X-rays were
similar invisible and imperceptible
notions.

All the life of our world is based
on the interaction of particles and
the fields that connect them. Ac-
cording to the common view, the
vacuum is the negation of existence.
Maybe it is just another form of ex-
istence?

What can be squeezed out of a vacuum?

The idea of obtaining something
useful from the vacuum is rather
old. In 1948 the Dutch scientist
Hendrick Casimir proposed bringing
two plates close to each other and
measuring the tiny attraction that
should arise between them. This
attraction is caused by the external
vacuum fluctuations that push the
plates toward each other. However,
the predicted value of this vacuum
pressure is very small: Just one hun-
dred millionth of an atmosphere for
a separation of 1 um. However, not
the value but the fundamental prin-
ciple is the major point here. If we
take two plates of 1m?, polish them,
position them 1 um apart, and re-
lease them, the attractive forces will
develop a power of about 1 uW. This
is not very much, but who can tell
for sure?

I am not a novice in scientific
work, so I meet such extravagant
projects with a skeptical smile.
However, my scientific time has
gone, and my skepticism belongs to

the twentieth century. Now the
next century swiftly approaches. To
revive the common belief in science,
to make science flourish, it is neces-
sary to discover something that can-
not be found with a skeptical smile.
Hopefully, the person who will
make this step will not be embedded
in modern pseudoscientific gibber-
ish but will make a real break-
through, taking the best from the
receding century.

Well, the formation of the Uni-
verse, the nature of inertia, and in-
exhaustible sources of energy—
these are the promising prospects
glimpsed in the study of the
vacuum. Much is still unclear, and
estimations have not replaced
speculations. Yet one thing is clear:
it is time to start. The Century of
the Vacuum is coming! [0

Quantum on the Universe and cos-
mology:

Y. Zeldovich, “A Universe of
Questions,” January/February 1992,
p. 6-11.

A.D. Chernin, “Grand Illusions,”
January/February 1992, p. 24-29.

Y. Solovyov, “The Universe Dis-
covered,” May/June 1992, p. 12-18.

W. A. Hiscock, “The Inevitability
of Black Holes,” March/April 1993,
p. 26-29.

G. Myakishev, “The ‘Most Iner-
tial’ Reference Frame,” March/April
1995, p. 48.

S. Silich, “Interstellar Bubbles,”
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I. D. Novikov, “The Thermody-
namic Universe,” March/April
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The new Eanth

PHYSICS FANTASY

We must approach global construction with the utmost care

by A. Stasenko

NITIATED BY A LOVE FOR

humanity, someone suggested

increasing the surface area of

Earth by a factor of 100 by exca-
vating its interior.

What a noble project this would
be, offering solutions to all territo-
rial disputes and providing space
for many new summer houses and
gardens! An additional benefit is
that trips within Earth’s empty
shell would require almost no en-
ergy expenditures and people
could jump far and high because of
the decreased force of gravity on
the surface!

But every new project, and a
global one in particular, requires
quantitative estimates of expendi-
tures and consequences. So, let’s
begin.

First, we evaluate the size of
New Earth (with radius R and
shell thickness 8). According to
the plan, the areca of its surface
S = 4mr? would be 100 times greater
than that of Old Earth S = 4nR?,
from which we obtain R? = 100R ?
and R = 10R,,. This means that the
inner radius of the New Earth will
be R - 8.

From conservation of mass, we
have
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4 3 4 3 3

SaRd =2 (R ~(R-3 )

g = B R3]

- %n(R‘?’ ~ R® + 3R*6— 3R5> +53)
= 4R,

The first two items in the parenthe-
ses cancel out, and the last two are
neglected, because they contain the
square and the cube of a small value,
the thickness of the shell. We as-
sume it to be small, but we won’t
forget to check this point later.

We have assumed that Earth’s
density is homogeneous and doesn’t
vary during the construction of New
Earth, so we immediately canceled
it from both sides of the equality.
Therefore,

5 1 ( R )3 1
R 3\ R 3000’
a rather small value. According to
our project, the entire mass of Earth
must be confined within a very thin
shell (with a thickness of about
20 km). That is, all elements of that
mass will be virtually at the same
distance R from the center.

Let’s start by calculating the
gravitational work required to move

n

the material of Old Earth to a dis-
tance R. Since the problem pos-
sesses spherical symmetry, we begin
our consideration with an elemen-
tary layer of radius r and thickness
dr inside Old Earth (figure 1a). Be-
cause we are concerned with this
layer, we are assuming that the
outer layers have already been
moved to the required distance. As
we know, these outer layers don’t
generate a gravitational field inside
New Earth (readers unfamiliar with
fields and potentials may want to
read the articles referenced at the
end of the article).

The selected layer, when located
a distance r’ from the center, will be
attracted only by the remaining
mass m(r). According to Newton’s
law of gravitation, this force is

)

To move the layer a little dis-
tance dr’, the additional work

m(r)dm(r)

I/Z

G dr’.

is required. The total work per-
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distance from r to R is given by the
integral

dr’

1’/2

dw = J.Gm(r)dm(r)

- Gm(r)dm(r)(l - %]

r

Here we should note an impor-
tant property of the gravitational
field. Figure la shows the trajec-
tory of a part of an elementary
layer as a curve with arrows on it.
It's possible to draw it as curved as
you like—the work required to
transfer such a fragment will not
vary, provided we do not change
the initial and final distances from
the center of gravity (in our case
from the center of the remaining
mass m(r)).

The reasoning is valid only for
an elementary (dashed line) layer.
When we take mass away layer by
layer from the very beginning, we
need to integrate the expression
for the work with respect to r from
0to Ry

W= [dw= GTm(r)dm(r)(l _ %)

r

Assuming Old Earth to be a homo-
geneous ball, and its density p, to
remain constant during the trans-
formation of the planet (we have
already used this assumption in
calculating the thickness), we

have
4 3
m(r)=—mnpyr
(z) 3 Po
and
dm = 4npyr’dr,
SO

R :
4 4 fa

W=G—=mnp, -4 rt——|dr
3 Po Po'([( R]

5Ky
6R)

_GM* 3

_(1
R, 5
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where M = (4/3)mpyR,? is the total
mass of Earth.

Now all that’s left are the calcu-
lations. First, we simplify the for-
mula by combining the mass and
the radius of Earth in an expression
equal to the acceleration due to grav-

ity g

GM_g
R 7
Then we have
3 5 R,
W = MgyR, - 2[1-222 |,
8040 5( 3 R)

However, you may not know the
mass of our planet offhand and may
not have a reference book nearby.

This is not an obstacle—we can find
the answer without it. Most of us
remember that g, is 9.8 m/s? and R,
is 6400 km, and if we also remem-
ber that G is 6.6 - 101! m3/(s? - kg,
it is easy to determine the mass of
Earth from the formula for g
M = 6 - 10** kg. (Once upon a time,
Henry Cavendish (1731-1810)
“weighed” Earth for the first time in
history by this very method—that
is, by determining the constant G in
his famous experiment with a tor-
sion balance).

Now everything is ready for the
estimation of the minimum work
needed to create New Earth:

W=2. 10%7.

If we take into consideration that the

th
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rate of energy consumption of hu-
manity is currently about 10*°J/year,
it’s easy to estimate how many years
it will take to realize our “benefi-
cial” project.
Imagine that New Earth has been
created. How will the new configu-
. ration affect your life? First of all, the
acceleration due to gravity on its
surface will be

2
g (R _ L
g R/ 100

times the present value. Physical ob-
jects will be lighter by the same fac-
tor, and a stone thrown with the
same velocity at the same angle to
the horizon will fly farther by the
same factor. A pendulum will oscil-
late one-tenth as fast /g, /g = 10),
and inside New Earth it won’t oscil-
late at all. The escape velocity will
be changed by a factor of

JgR _[Ry_ 1 _1
JeoR, VR 410 3

As already mentioned, it will be
possible to travel inside New Earth
without energy expenditure, because
there will be no gravity (g = 0). There-
fore, no work is needed to move be-
tween any two points there. Or, as a
physics teacher might say, the vol-
ume inside the spherical shell is an
equipotential: ¢ = const whenr < R -
d. Look carefully at figures 1b and 1c
and compare the plots of functions
g(r) and o(r), drawn for Old Earth and
New Earth, respectively.

By the way, what work must be
performed to travel from the in-
side to the outside of New Earth?
Set the spherical surface with ra-
dius r inside the shell (see figure
la, where a magnified part of the
shell is shown on the right). As we
already know, the acceleration due
to gravity on that surface is pro-
duced only by the part of the mass
located inside the surface. This ac-
celeration is equal to

%n(r3 -(R- S)S)po/

SO

(1" = (R-38)" oy |

1,2

4
8(r) 3 G
In figure 1c this function is shown
between the points r = R — § and
r=R.

To find the work W, needed to
remove a body of mass 1 kg from
the interior chamber, we must cal-
culate the integral of g(r) between
the limits R — & and R, which the
reader is invited to try indepen-
dently. Here we evaluate W, by
approximating g(r) with a linear
function that varies from 0 (inte-
rior of the shell) to g = g,(R,/R)?
(exterior space):

m:gmean'sz 8

Mo |oq

2
8o Ro 3
=222 .§=10"T/ke.
Z(RJ J/kg

This work per unit mass is also re-
ferred to as the potential difference
between the inner and outer sur-
faces. It is denoted by A¢ in figure 1c.

Would we be able to breathe on
the new planet? We assume the
mass of the atmosphere to be the
same on Old Earth and New Earth.
Let’s evaluate it for Old Earth. If the
temperature didn’t vary with alti-
tude, meaning T = const, its density
varies according to Boltzmann’s for-
mula:

_ m&y
kT
7

p=pFy)e

where m is the mass of an air mol-
ecule and k is Boltzmann’s con-
stant. Note that the numerator of
the exponent contains the differ-
ence of potentials at the altitude y
and at the surface of Earth (where
y =0).

Taking mg,y./kT = 1, we deter-
mine the characteristic altitude
where the atmospheric density is
only 1/e of that at the surface, which
is to say that it is almost one-third
as small. This altitude is

Ve = KT =8 km.
mg

Now we can calculate the mass of
the atmosphere to be

M, =4nRjy-p(Ry)=5-10" kg.

On New Earth the atmosphere
will spread evenly inside the spheri-
cal shell (because the difference in
potential between any two points
inside the shell is zero), and above
the surface its density will decrease
exponentially with altitude in the
usual manner, although with a new
characteristic altitude, which is
g,/& = 100 times larger than the old
one. Therefore, the characteristic al-
titude of the new atmosphere will be
103 km, a value still negligible com-
pared with the radius of New Earth
R =10R,=6-10* km.

The ratio of densities inside and
outside will be

o _plR-8)_ Uz

p p(R) '
where W, is the specific work
needed to move a mass of 1 kg from
the inside to the outside. Let’s evalu-

ate the power of the exponential
function:

Wim
kT

=12-1072.

This turned out to be negligibly
small, so we can assume that the
densities inside and outside New
Earth are virtually identical.

Now let’s formulate the condi-
tions for conservation of mass of the
atmosphere:

M, = %np_(R ~5)* +4nR%" -100y.
= irtp‘R‘)’ 1+ 3% = i7tp_R3

3 R 3
(since the second item in the parenthe-
sesis much less than 1, we can assume

that almost all the atmosphere is in-
side), from which we obtain

It seems to be dangerous to breathe
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inside or outside this new planet.

In addition, the spherical shell of
New Earth will be unstable: any dis-
turbance AB (figure 1a on the left) of
its shape will increase with time, be-
cause there will be no restoring
force. Thus, we must be careful to
maintain the integrity of the New
World.

New Earth still has many sur-

prises to reveal. For example, with
what angular velocity will New
Earth rotate? There is a law of con-
servation of angular momentum in
mechanics. Similar to conservation
of linear momentum mgv, = mv, it
can be written easily by substituting
angular velocities for the linear ve-
locities. In doing so, we must also
replace the masses by the moments
of inertia.

However, the moments of inertia
for a homogeneous ball and a spheri-
cal shell are known: (2/5)MR,* and
(2/3)MR?, respectively. For our esti-
mates we can drop the numerical

coefficients in these formulas. After
canceling the masses, we get

R%coo = R0,

from which the new day is found to
be longer than the old day by

— =100 times.
T, o Ry

So, the seven-day “week’” on New
Earth will last more than a year.
That’s quite a long wait for the week-
end! That’s too bad, indeed. Now we
see why we must approach global re-
construction with the utmost care,
analyzing all possible consequences
and using them for a comprehensive
study of physical laws. Ol

Quantum on rotating bodies and
rigid dynamics:

S. Krivoshlykov, “Head over
Heels,” May/June 1995, p. 62-65.

A. Eisenkraft and L. D.
Kirkpatrick, “Pins and Spin,” July/
August 1995, p. 34-36.

L.Borovinsky, “Why Won't
Weeble Wobbly Go to Bed?” May/
June 1996, p. 64-65.

V.Surdin, “A Venusian Mystery,”
July/August 1996, p. 4-8.

M.Emelyanov, A.Zharkov, V.
Zagainov, and V.Matochkin, “In
Foucault’s Footsteps,” November/
December 1996, p. 26-27.

L. D. Kirkpatrick and A.
Eisenkraft, “ Around and Around She
Goes,” March/April 1998, p. 30-33.

A. Stasenko, “Rivers, Typhoons,
and Molecules,” July/August 1998,
p. 38-40.

Quantum on potential:

A. Stasenko, “From the edge of
the Universe to Tartarus,” March/
April, 1996, p. 4-8.

A. Leonovich, “Do You Have
Potential?” November/December,
1998, p. 28-29.

Solving

Techniques of Problem

Steven G. Krantz, Washington University, St. Louis, MO

It may be an enjoyable task for high school undergraduate mathe-
matics students, their teachers, and people interested in the field to
read the book and to learn from it by working on the challenging
ideas which are provided throughout the text.

Krantz has collected a thoroughly engaging arsenal of problems
and problem-solving techniques. Most scientists will want to have a
copy for personal reference and for the mental stimulation that it

Recommended Text

The purpose of this book is to teach the basic principles of problem
solving, including both mathematical and nonmathematical problems. This
book will help students to ...

e translate verbal discussions into analytical data.

® learn problem-solving methods for attacking collections
of analytical questions or data.
build a personal arsenal of internalized problem-solving
techniques and solutions.
* become “armed problem solvers”, ready to do battle with

a variety of puzzles in different areas of life.

—Zentralblatt fiir Mathematik ~ °

mathematics, it would also appeal to advanced lower-division or strong
high school students as well. [T]his superb book connects the worlds of
great mathematical problems with effective classroom instruction.

AMERICAN MATHEMATICAL SOCIETY

—The Mathematics Teacher

provides. It is well written in a style that encourages the reader to
become actively involved ... a myriad of fascinating related problems are
provided. After a delightful introductory chapter, the chapters are primarily
organized around specific techniques and their applicability in areas such
as geometry, logic, recreational math, and counting. The book is written in
a linear fashion that makes it advisable to tackle problems in sequential
order ... would be an excellent tool for teaching novices to read some
mathematics. —CHOICE

Steven Krantz is a teacher, scholar, and artist. How else could he have
written a book that not only introduces students to many of the great prob-
lems of mathematics, but also informs them about the process of solving
these problems? Although many books include collections of intriguing
problems, Techniques of Problem Solving uses clear development and
lucid explanations to guide students through the process of problem
solving. The text gives compelling examples that capture students’ interest
and encourages them to work problems at the end of the chapter ...
Although the book would be excellent for a senior-level capstone course in

Taking a direct and practical approach to the subject matter, Krantz's book
stands apart from others like it in that it incorporates exercises throughout
the text. After many solved problems are given, a “Challenge Problem” is
presented. Additional problems are included for readers to tackle at the
end of each chapter.

1997; 465 pages; Softcover; ISBN 0-8218-0619-X; List $29; All AMS members $23;
Order code TPSQ97

Solutions Manual for Techniques of
Problem Solving

Luis Fernandez and Haedeh Gooransarab, Washington University,
St. Louis, MO, with assistance from Steven G. Krantz

This book is sold as a companion volume to the book, Techniques of Problem
Solving. The Solutions Manual addresses most end-of-chapter exercises in the
book proper.

1997; 188 pages; Softcover; ISBN 0-8218-0628-9; List $12; All AMS members $10; Order
code SMTPSQg7
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Bufletin Board

Duracell/NSTA Invention Chiallenge

By designing and building work-
ing devices powered by Duracell
batteries, students participating in
the Duracell/NSTA Invention
Challenge can match wits with
students from across the United
States, develop the confidence to
complete a complicated project,
and use individual or team skills
and interests to participate in sci-
ence in a new way.

The Challenge also gives students
the chance to win large monetary
prizes in the form of U.S. savings
bonds and an all-expenses paid trip
to the NSTA national convention
for an awards ceremony. The
Duracell/NSTA Challenge has
stimulated over 12,000 inventive
ideas and recognized more than
1,000 student inventors and their
sponsoring teachers since 1983.
Some of the winning devices have
been refined and commercially mar-
keted.

The Challenge is open to students
in grades 6-12 who are under 21
years of age and who are U.S. citi-
zens and reside in the United States
or U.S. Territories. Students may
enter individually or in teams of
two. Teachers are an integral part of
the competition process. Sponsoring
teachers sign entry forms attesting
that each student or pair of students
built each device.

To-enter:

1. Obtain the Official Entry Form
from Duracell/NSTA Invention
Challenge, 1840 Wilson Blvd., Arling-

"HAPPENINGS

ton, VA 22201-3000; or call toll-free
1-888-255-4242, or e-mail your mail-
ing address to duracell@nsta.org. The
entry form will be available beginning
in August. Fill out the entry form
completely, and obtain all necessary
signatures.

2. Design and build a device that
runs on Duracell batteries.

3. Write a two-page description of
the device and its uses.

4. Draw a schematic (wiring dia-
gram) of the device.

5. Photograph the device (use
clear photos only).

6. Mail Official Entry Form, type-
written description, schematic, and
photos (do not send the actual device
at this time). Entry form must be
RECEIVED by January 12, 2000.

7. The 100 top finalists (or pairs)
will be notified where to send their
actual devices for final judging.

8. The first- and second-place
winners must attend awards events
to receive their savings bonds.

For more information on the
Duracell/NSTA Invention Chal-
lenge, point your web browser to
http://www.nsta.org/programs/
duracell/.

Frequent fly

This month’s Cyberteaser win-
ners didn’t need to carry a big swat-
ter to solve this problem (B268 in
this issue). They followed a fly back
and forth between two bicycle-riders
to find out the total distance it flew
before the riders bridged the gap be-
tween them. Here are the 10 fastest
problem-solvers:

Bruno Konder (Rio de Janeiro, Brazil)

Christopher Franck (Redondo
Beach, California)

Theo Koupelis (Wausau, Wisconsin)

Jerold Lewandowski (Troy, New
York)

Rafael Shusterovich (Rishon-le-
Zion, Israel)

Vincze Zsombor (Szeged, Hungary)

Sergio Moya (Culiacan, Mexico)

Anastasia Nikitina (Pasadena, Cali-
fornia)

Melamed David (Kiryat Tiv’on,
Israel)

T. Scott Frick (Dallas, Pennsylvania)

Congratulations! Each winner will
receive a copy of the July/August is-
sue and a Quantum button. Everyone
who submitted a correct answer in
the time allotted was entered in a
drawing for a copy of Quantum
Quandaries, a collection of the first
100 Quantum brainteasers. Try your
luck at winning a prize of your own
by visiting www.nsta.org/quantum
and clicking the Contest button for
the current Cyberteaser. Q

N
Ké\) Talk iack to-us %‘\

We actually like it! We want
to know what you think about
Quantum. So,

= E?gﬁ us a line at Quantum, 1840
Wilson Blvd., Arlington VA
22201

or

o

ﬁ%} us an electron or two at

& quantum@nsta.org
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2-adic numhers

DISTANCE LEARNING

Employing Hensel's rational insights

by B. Becker, S. Vostokov, and Y. lonin

F YOU WERE ASKED TO DEFINE A “DISTANCE

between two rational numbers,” you would probably

answer that this is the absolute value of their differ-

ence. This answer is quite reasonable: it satisfies all
axioms of distance. However, it turns out that another
distance between rational numbers can be defined that
also satisfies all the axioms of distance. This was done
by the German mathematician Kurt Hensel (1861-
1941). He invented an entire class of such distances;
here we discuss one of them.

Hensel’s studies proved important for algebra and
mathematics in general. We will use Hensel’s distance
to solve two problems that at first glance do not seem
related to any distances.

2-adic distance

Let a and b be rational numbers. If a # b, we repre-
sent the difference a — b as a - b = 2%(m/n), where m and
n are odd integers and k is an integer (positive, negative,
or zero). The 2-adic distance between numbers a and
b (a # b) is defined as the number p(a, b) = 1/2%. If a = b,
we set p(a, b) = 0.

A distance function or metric is usually defined to
be a function of two numbers that satisfies the follow-
ing axioms:

Al.pla, b)>0ifa#b, and pla, b)=0if a = b.

A2. P(a/ b} = P(b/ a)'

A3. pla, ¢)<pla, b) + p(b, c).

It is evident that properties Al and A2 are true for the
2-adic distance. Property A3 is also clearly true in the
case whena=b =c.

Let us prove property A3 for the case of distinct ra-
tional numbers a, b, and ¢. Let a — b = 25 (m,/n,),
b-c=2k (m,/n,),and a-c = 9k (m,/n,), where all the
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m, and n, are odd integers. Since a —c = (a - b) + (b - ¢),
k, cannot be less than the smaller of the numbers &k, and
k,. Then, 1/2% does not exceed the greater of the num-
bers 1/2% and 1/2%, so0 1/2% <1/2% + 1/2%.

Thus, we see that all the axioms are valid, and p can
be called a distance.

What quantity does this distance measure? It turns
out that it measures (roughly speaking) the degree of di-
visibility of a rational number by 2. The “better” that
2 divides a number (for example, the higher the power
of 2 that divides it, if it is an integer), the closer it is to
zero. For example, 8 is closer to zero than 1/2, 16 is
closer to zero than 8, 480 is closer to zero than 16, and
384 is closer to zero than 480.

In fact, we have proved that 2-adic distance possesses
a property A3’, which is stronger than A3:

A3’. The distance p(q, ¢) does not exceed the greater
of the distances p(a, b) and p(b, c).

Exercise 1. Prove that if p(a, b) # p(b, ¢), then plq, c)
equals the larger of the numbers p(a, b) and p(b, c), and
if pla, b) = p|b, ¢) 20, then pla, ¢) < pla, b).

Property A3’ has interesting consequences. We call the
set of all rational numbers x such that p(a, x) < r (where a
is a rational number and r is a positive real niumber) the
2-adic circle of radius r centered at point a.

Exercise 2. Prove that if two 2-adic circles have a
nonempty intersection, one of them includes the other.

Exercise 3. Prove that the 2-adic circle of radius r in-
cludes infinitely many pairwise nonintersecting 2-adic
circles of radius r.

By analogy with the usual absolute value (sometimes
called the modulus), we define a 2-adic modulus a4 of a
rational number ||a|| as the 2-adic distance from this
number to zero: if a = 25(m/n), where m and n are odd

rt by Sergey Ivanov
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numbers, then ||a|| = p(0, a) = (1/2}*. The following prop-
erties of the 2-adic modulus can be easily established:
ML1. |||| > 0 if a # 0 and |0 = 0.
M2.1f ||a|| > |b||, then ||a + b]| = ||al|; if ||a] = |[]| # 0, then
la + b|| <|l4||. (Thus, in any case |ja + b|| < ||a|| + ||D||-)
M3. [lab] = |la] - .
Exercise 4. Derive the following properties of the
2-adic modulus from properties M1-Ma3:
(a) l-all = jal; (b) if fjal| # |5, then fla - bl = la + .
Exercise 5. Prove that if ||l - x|| < 1 and ||1 - || < I,
then ||1 - xy| < 1.

Decomposition of a Square

Figure 1 depicts a square that is decomposed into
congruent triangles. The squares in figure 2 are decom-
posed into triangles of equal area. In each of these ex-
amples, the number of triangles is even.

Problem. Prove that the square cannot be decom-
posed into an odd number of triangles of equal area.

Choose a system of coordinates in the plane such that
the vertices O, A, B, and C of the given square have the

Figure 1 Figure 2

coordinates O(0, 0), A(1, 0), B(1, 1), and C|(0, 1). Assume
that the square is decomposed into n triangles of equal
area. Then, this areais 1/n. If nis odd, then ||1/n| = 1; if
it is even, ||1/n|| = 2.

Consider a particular case. Let the vertices of all the
triangles of the decomposition be points with rational
coordinates. In this case, we can color every vertex (x,
y) green, red, or blue according to the following rule:
if |Ix]| < 1 and ||y]| < 1, the point is green; if ||x|| = ||y]| and
|Ix]| = 1, the point is red; and if ||x]|| < [|y]| and ||y|| = 1, the
point is blue (fig. 3). We will assume that all rational
points of the plane are colored, not just the vertices.
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Exercise 6. (a) Prove that if P is a green point, then a
translation by the vector PO preserves the color of the
points.

(b) Prove that no line can include points of all three
colors.

Suppose that the vertices of a triangle belonging to
the decomposition are of three different colors (we prove
in the Appendix that such a triangle does exist). Let K
be the green vertex of this triangle.

By virtue of exercise 6a, a translation by the vector
KO yields another triangle with vertices of all three
colors. Denote by L, (x,, y,) the red vertex of this triangle
and by L,(x,, y,) 1ts blue vertex (the green vertex coin-
cides with point O). Since the triangle OL, L, is obtained
by a translation of a decomposition triangle, its area is
1/n. On the other hand, its area is 1/2|x,y, - x,y,|. (We
invite the reader to prove this.)

Thus, we obtain the equation 1/n = 1/2|x,y, - x,y,].
Now it is not difficult to establish the inequality
|[1/n|| = 2. Indeed, since L, is a red point and L, is blue,
we have ||x,|| = ||y, || and ”X2|| <||v,||- Multiplying these two
inequalities, we obtain ||x || |[7,]| > [|%,]| |l7,]l, and there-
fore, by property M3, ||x,v,|| > ||Ix,¥,||. By virtue of prop-
erty M3 and exercise 4b, ||x,y, - x,v,|| = [|x,7,||. In addi-
tion, ||x,|| = 1 and ||y,|| = 1, so that ||1/n|| = 2||x || [[v,]| = 2.
Hence n is even.

To solve the problem in the general case, it is suf-
ficient to prove that the 2-adic modulus can be ex-
tended to the set of all real numbers. That is, a func-
tion x — ||x]| exists that is defined on the set of all real
numbers, satisfies properties M1-M3, and coincides
with the 2-adic modulus on the set of all rational
numbers. Such a function actually exists, but the
proof of this fact requires tools that are far beyond the
scope of this article.
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2-adic expansion

It is well known that any natural number can be
represented as a sum of powers of 2. For example,
1000 = 23 + 25+ 26 + 27 + 28 + 2° We can obtain this
expansion by using the 2-adic distance in the follow-
ing way. First, find a power of 2 that is at the same
2-adic distance from 0 as the number 1000. Having
found this number (23], subtract it from the given
number 1000, and for the new number, 992, find a
power of 2 that is at the same 2-adic distance from
0. Then, find a power of 2 that is at the same 2-adic
distance from 0 as number 960 = 992 — 25, and so on.

Using negative powers of 2, we can construct simi-
lar expansions for rational numbers of the form m/2%,
where m and k are natural numbers. For example,

1477 1422426427 +28 4210
256 28
=278 40270122427 400 492,

Other rational numbers cannot be represented as a
sum of powers of 2. However, any rational number can
be approximated by such sums as accurately as desired.
Indeed, let a be a rational number and ||g|| = 1/2% . De-
finea, =a- 2% Then, a, is closer to zero than a (exer-
cise 1). Therefore, either a1 =0or|a| - 1/2%, where k,
>k, Settlng a,=a; - 2", we again obtain elther a, =0
, where k; > k), and so on. Thus, either a
celtam a_is /_elo and then ais asum of powers of 2: (That
is,a=2% + 2% 4+ 4+ 25 orall a are not zero and then
a is approximated by the sums 25 + 25 + .+ 2% with
any accuracy desired.) In this case, it is convenient to con-
sidel a as equal to the infinite sum a = 2% + 2% + .+
0 ks

Dehmtlon Let x,, x,, . . ., X, be a sequence of ratio-
nal numbers. We will say that a equals the infinite sum
X, + X, +...+Xx, +...if the 2-adic distance between a
and the sums S, = x, +x, + ... + x, tends to zero as n
tends to 1nf1n1ty That is,

limp(a, S,)=0.
n—ee
Exercise 7. Prove that if ||g|| < 1, then the infinite sum
a+aq+aqg®+...+aq"+...exists and equals a/(1 - g).
We have proved that any rational number can be rep-
resented either as a finite sum 25 + 20 + 4+ 2k
(k, <k, <...<k,oras an infinite sum gl fok o
+ 25 4 Where k; are integers and k, <k, <...In
both cases, " this representatlon which is called the
2-adic expansion of number g, can be written as

2 g DR o ey BFPE

where k is an integer, each of the numbers

€417 €x12) Expnyee-



is either O or 1, and g, = 1. The numbers g, g, ,, . .. are
called 2-adic digits of the number p/q. It is not difficult
to prove that any rational number has one and only one
2-adic expansion.

Exercise 8. Prove that

“1=1+2+22+234+ ... +204

and

1/6 =27141+24+2242% 4. . +2224

By virtue of exercise 8, the 2-adic digits of number -1
form the sequence 1, 1, 1, . . ., and the 2-adic digits of
number 1/6 form the sequence 1,1,0,1,0, 1,0, 1,
Both these sequences are periodic. We can prove that the
sequence of 2-adic digits of any rational number is pe-
riodic. (In the same sense in which a decimal fraction
that represents a rational number is periodic beginning
from a certain digit.)

To prove this, consider the sequence of integers a,,

a, ... a, ...defined by equations
E_Skzk = ﬂ2]<+1,
q q
Lo (a2t 4oy 2= 2002
q q
P (Eka n 8k+12k+1 I 8k+n_12k+n—1) _ Ez_j_zkﬂl’
q q

where g, &,,,, ..., &, .- . are the 2-adic digits of p/q
(the reader can check that a;, a,, .. . are indeed integers).

Now we can notice that the 2-adic expansion of p/q
can be obtained from the 2-adic expansion of a_/q by
multiplying each term of this latter expansion by 2%+
and adding to the beginning of the sum obtained the
following:

8k2k +£]<+12k+1 +...+ €k+n_12k+nﬁl.

Therefore, the periodicity of the sequence will be
proved if we prove that a certain number occurs twice
in the sequence a,, a,, .. ., a,, . . . In fact, this sequence
is bounded, and since its members are integers, there
will inevitably be equal numbers among them. The
boundedness of this sequence can be proved by the fol-
lowing chain of inequalities:

|a,| = Zzin _(z—i + Zﬁj +..+ 81‘*2”_1 )Q‘
p | (L, 1 L

Exercise 9. Using the result of exercise 7, prove that
ife, €., ... €., -..1s a periodic sequence of digits O
and 1, then the infinite sum Eka + g 28w L
+ €, 221“2 . is the 2-adic expansion of a certain ra-
tional number.

2-adic numbers

In addition to periodic expansions, which determine
rational numbers, we can consider nonperiodic expan-
sions and say that they define a new class of numbers.
These new numbers together with the rational numbers
form a set Q,, and the elements of this set are called
2-adic numbers.

The elements of Q, can be added and multiplied.
Thls is done in the following way. Let o = g,2%

2]”1 . Write o as an infinite fraction: o = €
eoe €5 The sum (product) of two numbers writ-
ten in this manner can be calculated in the same way
as the sum (product) of two infinite fractions, but
with the proviso that we carry digits from left to right
(two examples are given in figure 4). We cannot con-
sider this issue in more detail here, and we invite the

1011.0101".. 110.11001"..
101.1010... 0.01101...
1110.0000... 1.10110...
0.11011...
0.00110...
1.001.
Figure 4

reader to prove that the sum and product of two ele-
ments of Q, is also an element of Q, and that these
operations obey the commutative, associative, and
distributive laws.

The 2-adic modulus and distance can be naturally
extended for Q,: if e Q, and o = g, 2% + ¢, 251 +
(where g, # 0), then ||of| = 1/2%; if o, B € Q, then p(oc [3)
- Jlo:- BlL

Exercise 10. Given the expansion of anumber o.e Q,,
construct the expansion of —a.

Exercise 11. Prove that the ordinary sum of two ra-
tional numbers and the sum of these numbers in Q, cor-
respond to the same number. Prove the same for the
product.

Exercise 12. Learn to perform division in Q,.

We know that the sum of an infinite sequence {x_}
can be defined under certain conditions. A necessary
(however, not sufficient) condition is that Ilg{lx 0.
The 81t1uat1on is simpler for 2-adic numbers. Tlhe con-
dition 1M ix || = 0 is necessary and sufficient: if 1101 ||x
=0, then tﬂ l“ln’llt ’ w=lped

n
llm 2 X
n—oo
k=l

exists.

Exercise 13. Prove the sufficiency of the condition
n—m” “ =

Exerc1se 14 Prove that the sum 1-1! + 2 -
+n-n!+...exists and find its value.

20+
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Exercise 15. Prove that if x e Q, and ||x|| < 1/2, the
sum x/1 + x*/2 + ...+ x%n + ... exists.

2-atlic logarithm

In conclusion, consider the following problem: The
number

is represented as an irreducible fraction p_/q,.
(i) Prove that p_ is even.
(ii) Prove that if n > 3, then p, is divisible by 8.
(iii) Prove that for any natural k, a number n can be
found such thatp_, p_ |, p,.,, - . . are all divisible by 2%.
Consider the function

L(x)

Il
|
+
|
e

defined on the set of 2-adic numbers x that are not greater
than 1/2 in modulus (see exercise 15). To prove item |iii)
of the problem, it is sufficient to show that L(2) = 0. De-
fine another function by the formula log x = -L(1 —x]. The
equality L(2) = 0 means that log (~1) = 0. The function log
(it is called the 2-adic logarithm) possesses the basic prop-
erty of the logarithmic function: log(xy) = log x + log .
This property immediately implies that log (-1) = 0. In-
deed, log 1 =log (1 -1)=1log1 +1logl =2log1, from
which it follows that log 1 = 0. On the other hand,
log 1 =log ((-1) - (-1)) = log (-1) + log (-1) = 2 log (-1).
Therefore, log (~1) = 0. The 2-adic logarithm plays the
same role in the set of 2-adic numbers as the common
logarithm does in the set of real numbers. The 2-adic
logarithm is defined for x with modulus 1: ||x|| = 1, since
it is exactly the case when ||1 - x|| < 1/2; in particular,
log (-1) is defined.

Besides the logarithm, other remarkable functions of
a 2-adic variable exist. One of them is the exponential
function that is defined as follows:

x? x"
expx=l+x+—+--+—+---
2 n!

Exercise 16. Prove that the exponential function is
defined on the set of 2-adic numbers x that satisfy the
condition ||x|| < 1/4.

The basic properties of the 2-adic exponent are simi-
lar to those of the usual exponent: exp (x + )
= exp x - exp ¥, exp (log x) = x, and log (exp x) = x. These
identities hold for the values of the variables for which
the corresponding functions are defined.

Just as the 2-adic distance has been defined, we can
define a p-adic distance taking an arbitrary prime num-
ber p. It turns out that all distances defined for rational
numbers are equivalent to the usual distance or to one
of the p-adic distances. However, this is a topic for an-
other article.
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Figure 5
Appentix

It remains for us to prove that a triangle with verti-
ces of the three different colors does exist. We formu-
late and prove a more general proposition: Let a square
OABC be decomposed into several triangles. Assume
that each vertex of these triangles is colored green, red,
or blue in such a way that no line contains points of all
three colors. Let O be the green point, A and B be red,
and C be blue. Then there is a triangle with vertices of
three different colors among the triangles of the decom-
position.

Proof. It is convenient to differentiate between the
sides of triangles and segments that are parts of the tri-
angles’ sides formed by vertices of other triangles fall-
ing on these sides. If a side of a triangle contains no
vertices of other triangles, it is considered as a segment
itself.

We distinguish six types of segments and six types of
sides, depending on the colors of their endpoints: GG
(both endpoints are green), GR (one endpoint is green
and the other is red), and so on (GB, RR, RB, and BB).
We prove that the sides of a triangle that has two verti-
ces of the same color contain an even number of GR
segments. Indeed, since no lines contain points of all
three colors, a GR segment can lie only on sides of types
GG, GR, and RR; sides of type GG and RR contain an
even number of such segments and sides of type GR an
odd number. Therefore, the sides of each of the triangles
depicted in figure 5 contain an even number of segments
of type GR (triangles with two or three blue vertices do
not contain such segments).

Now assume that none of the triangles of the decom-
position has vertices of all three colors—that is, each of
the triangles has two vertices of the same color. Every
segment that lies on a side of the square OABC belongs
to a side of exactly one decomposition triangle, and
every segment inside the square belongs to sides of two
decomposition triangles. Since any decomposition tri-
angle has two different-colored vertices, the sides of the
square contain an even number of segments of type GR.
On the other hand, sides OC and BC contain no seg-
ments of this type, side OA contains an odd number of
such segments, and side AB contains an even number,
which gives an odd number in total. Thus, we have ar-
rived at a contradiction. O



Across
1 __ bolt (barbed
anchor bolt)
4 ___ cycle (Krebs
cycle)
7 Trig. function

10 44,523 (in base 16)

12 Sodium hypochlo-
rite

14 1/760 atmosphere

15 107 pref.

16 Astronomer
Cannon (1863-
1941)

17 39D arsenide

18 Strong nuclear
particles?

20 Type of engine

22 Type of parity

23 18A members

24 Swedish chemist
___ Bergstrom

26 Zirconium carbide

2.7 Baseball scoreboard
item

30 Ionizing rad. units

31 The ___ of Physics

32 Soap ingredient

34 Sphere

35 Fermions

37 Rocky peak

38 Element 96

40 Mine output

41 South African
writer Alex La

42 German novelist
Thomas ___

43 Genetic material

44 ___ mater

45 Letterman and
Roth

47 Unit of mass: abbr.

48 An asteroid

50 Two dimensional
quasiparticles?

53 Boyfriend

54 Balanced constella-
tion?

Brigs <

Cross science

56
58
59
60
61
62
63

by David R. Martin

7 8 9

29

33

57

Lowest tide
Peaceful

Follow

Alone: comb. form
Calcium oxide
Liquid hydrocarbon
Nitrilotriacetic
acid

Down

1

12
13

14

Astronomer
Qort

Swedish botanist
_ Afzelius (1750-
1837)

Unit of heredity
Sunbathes

Pro and ___
HavingapH <7
Retina cell

Type of exam
Strontium sulfide
Particles with
integer spin

A logic circuit
Smooth: comb.
form

Group of similar
cells

19
21

23
24
25
26
28

29

30

31

32

33

36

39

41

43
44

Songlike poem
Compounds
containing
-CH=C(OH]-
Nuclear particles
Blood __

Full shadow
Comic-strip word
1958 Physiology
Nobelist Edward L.
Leaf pore
Electrical conduc-
tivity unit

Wave guide mode:
abbr.

Identity element of
a set

Paleozoic or
Precambrian, e. g.
Type of eclipse
Lake Garda wind
Element 49
Hypothetical
massless particles
Actor Robert ___
British aviator ___
Johnson (1903-
1941)

46 Unit of electrical
potential

47 ___ sphincter
(certain muscle)

48 52,906 (in base 16)

49 Luminous ring

50 Seed covering

51 Element 10

52 Sodium chloride

53 Crystal structure:
abbr.

55 Yellow mist in
China

57 __ mater (brain
membrane)
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HERE IS MORE

than one way to

skin a cat, and

the same can be
said for proving a geo-
metric theorem. This
is particularly true for
the well-known theorem
stating that the altitudes of
any triangle are concurrent—
they all pass through the same point,
which is called the orthocenter of
the triangle. (To be more precise, we
mean here that the lines containing
these altitudes meet at a point.) We
present here several ways of proving
this important theorem.

But first some preliminaries. Let
us note that it is sufficient to prove
this theorem for acute triangles. In-
deed, suppose we have done so, and
let HBC be an obtuse triangle, with
an obtuse angle at vertex H. Draw
perpendiculars from points B and C
to the opposite sides of the triangle
and label the point of intersection of
these lines point A (fig. 1). Triangle
ABC is acute, and so, by our as-
sumption, its altitudes intersect in a
point. So if we draw perpendiculars
for C to AB, and from B to AC, their
point of intersection will lie on the
perpendicular from A to BC. But
their point of intersection is just H!
So the line through A and H is per-

A

B C

Figure 1
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pendicular to BC
and is the third alti-
tude (both in tri-
angle ABC and in
HBC). In particu-
lar, the altitudes of
HBC concur at A.
Right under our
nose, we have proved a
very interesting theorem: If
H is the orthocenter of triangle ABC,
then:

A is the orthocenter of triangle HBC,
B is the orthocenter of triangle HAC,
C is the orthocenter of triangle HAB.

Proof 1. Auxiliary circle method.
Consider an acute triangle ABC (fig.
2). Let BB, and CC, be the altitudes

Figure 2

of this triangle and let H be their
point of intersection. Draw the line
AH and let A, be the point of its in-
tersection with BC. Notice that
points B, C, B, and C, lie on a circle
(with diameter BC). Therefore,
£B,C,C = £B,BC (these angles sub-
tend the same arc of the auxiliary
circle). Notice that points A, B,, H,
and C,, also lie on a circle (with di-
ameter AH). Therefore, £B,C,C

KALEIDOS(

The pointed meeting of ¢

= /B,C\H = /B ,AH = LCAA,. Tri- \
angles CAA, and CBB, have a com-
mon angle and a pair of equal angles.
Therefore, the remaining angles of
these triangles are equal. Hence,
ZAA|C=£BB,C,and AA, is the the
altitude of the triangle considered.

Proof 2. Other auxiliary circles.

Figure 3

Consider a circle circumscribed
around an acute triangle ABC. The
sum of the arcs of this circle that are
subtended by the triangle’s sides is
360°. Therefore, the arcs that are
symmetric to these arcs with re-
spect to the triangle’s sides meet at
a point, which is labeled H in figure
3 (the proof of this interesting fact is
left to the reader). We can see that
ZABH = ZACH, since these angles
are acute and subtended by the same
chord of equal circles. Let each of
these angles be ¢. Similarly, we have
two other pairs of equal angles:
/BCH = Z/BAH = B, and ZACH
= LABH = v. Since two copies each
of o, B, and yexactly cover the three
angles of triangle ABC, we have
o+ P +7y=90°

Before we continue, we look a bit
at the context of what we are doing.
The concurrence of the three alti-
tudes of a triangle is perhaps the
most difficult of several concurrence
theorems in elementary geometry.




OSCOPE

i & triangle’s altitudes

| Let us review these.

2 Theorem: The three perpendicu-
lar bisectors of the sides of a triangle
concur at the center of a circle
through the triangle’s three vertices.

This is easy to prove. We take a
triangle ABC and draw the perpen-
dicular bisectors of sides AB and
AC. Their point of intersection
(since they cannot be parallel!) is
equidistant from A and B, and also
from B and C. Thus it is equidistant
from A and C, and so lies on the per-
pendicular bisector of BC.

Theorem: The three bisectors of
the angles of a triangle concur at the
center of a circle tangent to the
triangle’s three sides.

This is also easy to prove. We
take a triangle ABC and draw the
bisectors of angles A and B. Their
point of intersection (since they can-
not be parallel!) is equidistant from
lines AC and AB, and also from lines
BC and AB. Hence it is equidistant
from lines AC and BC and so lies on
the bisector of angle C.

We can sometimes use these
theorems, which are so easy to
prove, to prove the concurrence of
the three altitudes.

Proof 3. Using the circumscribed
circle. Through the vertices of ABC,
draw the lines parallel to the oppo-
site sides of the triangle (fig. 4) to
obtain a triangle A B,C,,. In this tri-

By 4 Co

Figure 4

¢

angle the sides of the initial tri-
angle are midlines (lines
connecting midpoints of
two of the triangle’s sides).
Therefore, the perpen-
dicular bisectors of the |
sides of the triangle
AB,C, are altitudes in
the initial triangle.
Therefore, the altitudes
meet at the same point as
the perpendicular bisec-
tors of triangle A B,C,,
which is the center of the
circle circumscribed about
A,B,C,.

Proof 4. Using the inscribed
circle. Let A’, B’, and C’ be the points
at which the altitudes of triangle ABC
meet the circle circumscribed around
it (fig. 5). We have ZABB’ = LZACC’

A

Figure 5

(they’re both complementary to
ZCAB), so AB’ = AC’. Now we can
see that AA’, BB’, and CC’ are angle
bisectors of triangle A’B’C’. There-
fore, they meet at the center of the
circle inscribed in triangle A’B’'C’.
Let us look back for a minute at
the proofs of the concurrence of the
perpendicular bisectors and the
angle bisectors. What made these
proofs so easy? We were able to de-

scribe each of the lines we were dis-
cussing as a locus, satisfying some
condition of equality, and involving
two of the vertices of the triangle.
Then the transitive property of
equality (if x=yandy =z, then x = z)
did the work for us. If we can de-
scribe the triangle’s altitude as loci,
we can get another simple proof of
their concurrence.

But first let us practice on the
medians of a triangle. There are
many proofs that these concur (see
"The Medians," by V. Dubrovsky in
the November/December 1994 is-
sue, page 32).

Theorem: Median AM of triangle
ABC is the locus of point P such that
the areas of triangles CPA and CPB
are equal.

Proof: For any point P on AM, tri-
angles APM, BPM are equal in area,
since they have the same altitude
from P, and equal bases AM = BM.
The same thing is true of triangles
ACM, BCM. So the differences in
these two areas are equal: using ab-

CONTINUED ON PAGE 46
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PHYSICS
CONTEST

Image charge

by Larry D. Kirkpatrick and Arthur Eisenkraft

E ARE ALL FAMILIAR WITH

images formed by mirrors

and lens. In fact, we often pay

to see images produced in
special ways such as those in fun
houses or at the Haunted Mansion
in Disneyland.

But what is an “image charge?”
Does it have anything to do with op-
tical images? Let’s investigate this by
considering the following problem.

We are given a conducting plate
that is so large that we can imagine
that it reaches to infinity in the
plane of the plate. Alternatively, we
can work close enough to the plate
and far enough from the edges that
the plate might as well stretch to
infinity.

Let’s now place a charge g a dis-
tance d in front of the middle of the
plate. If the plate is grounded, is the
charge q attracted to or repelled by
the plate? And what is the strength
of the force acting on the charge?

Experimentally, we can demon-
strate that there is an attractive force
between the charge and the metal
plate. Run a comb through your hair
and use it to pick up small pieces of
aluminum foil.

We can also see this qualitatively.
If we bring a positive charge near a
metal plate, the positive charge will
attract the electrons in the plate,
causing them to concentrate in the
area nearest the charge. Because
these electrons have moved closer to
the charge, their attractive force is
larger than the repulsive force of the
positive ions left behind.

Quantitatively, this looks like a

30
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“We operate with
nothing but things
which do not exist, with
lines, planes, bodies,
atoms, divisible time,
divisible space—how
should explanation
even be possible when
we first make
everything into an
image, into our own
image!”
—Friedrich Nietzsche

(1844-1900)

complicated problem, but it can be
solved rather easily using one of the
“tricks of the trade.” This technique
relies on a uniqueness theorem for
the electrostatic potential. Remem-
ber that the electrostatic potential at
a point in space is the amount of
work required to bring a unit posi-
tive charge to the point from a place
where the potential is zero. Suppose
that we are given the value of the
electrostatic potential at every loca-
tion on the entire boundary (surface)
of a volume of space. If by hook or
crook, we can find a formula that
gives the correct values at all points
on the boundary, this formula also
gives the values of the electrostatic
potential throughout the volume.
Furthermore, the formula is unique.
No matter what other technique we

may use, we will get the same po-
tential. This means that we can
search around for a simple way of
finding the electrostatic potential.

One way is to use the method of
images. We imagine that we can re-
place the metal plate with an image
charge Q. This charge is located be-
hind the original metal surface along
the normal from the original charge
to the surface as shown in figure 1.
(Remember that the image of an
object in front of a plane mirror is
located along a similar line. In fact,
we might guess by analogy that the
image charge is located a distance d
behind the original surface.) For the
moment, let’s leave the distance D
of the image charge behind the plate
as unknown.

If we choose the potential to be
zero at infinity, the potential at a
distance r from a point charge q is
given by

where k is Coulomb’s constant
= 1/4ne,. One of the reasons for in-

Figure 1

Art by Tomas Bunk
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troducing the idea of potential is
that potential is a scalar. The poten-
tial due to a collection of point
charges is just the sum of the poten-
tials due to each charge. In contrast,
we must add the electric field due to
each charge as vectors to get the to-
tal electric field.

Returning to our problem, let’s
choose the origin of our coordinate
system to be on the surface along
the normal to the charge. At any lo-
cation along the original surface, the
potential due to both charges is

kg kQ

V= +— :
Nd2+12 AD*+1?

where r is the distance along the
plane measured from the normal.
Because the plane is grounded, V=0
and

q 9

\/ - ’/ ’
Nd® 2> ADE+i?

We need to find the values of two
variables, Q and D, but we only have
one equation. However, we also
have the condition that this equa-
tion must be satisfied for all values
of r. In this particular case, we can
guess the solution, Q=-gand D =4,
but it is instructive to obtain the
solution in a more formal manner.

Let’s square the equation and
multiply through by both denomi-
nators to obtain

(D +22)? = [ + )2

We now collect terms containing r>
on one side of the equation and all
other terms on the other side:

quz _ szz _ 1‘2(Q2 _ qz).

For this equation to be valid for all
values of r, the coefficient of r2 must
be zero. Therefore, Q = £g. We
choose the minus sign because this
is the only way the potential can be
zero at the surface. The left-hand
side of the equation must also be
zero, givingus D = d.

This tells us that the charge g can
be imagined to induce a charge —-¢q a
distance d behind the metal surface.
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According to the uniqueness theo-
rem, we can now use this image
charge to calculate results at all
points in front of the metal.
Armed with this result we can
answer our original questions. Be-
cause g and Q have opposite signs,
the charge ¢ is attracted to the
metal plate. The strength of this

attractive force is given by
Coulomb’s law:
Pox—99 _ ;@

(d+D)  4d*

where k is Coulomb’s constant.

The electrostatic potential is ob-
tained by substituting our condi-
tions back into the formula for the
potential:

V/(X +d)’ +1?

We can also use the image charge
to calculate the electric field at all
points in the volume and on its
boundary. In particular, let’s do this
along the metal surface. Symmetry
tells us that

E[0,1)=0.

We also know this because the elec-
tric field must be normal to all me-
tallic surfaces. The two charges con-
tribute equal amounts to the normal
component:

One reason for calculating this elec-
tric field is that it allows us to find
the actual charge distribution in-
duced on the metal surface by the
charge ¢g. The induced surface
charge density is

_qd

o(r)=¢¢E,(0,r) = ——
2n(d2 + r‘)

Figure 2

It is interesting to note that if you
integrate this charge density over
the entire surface, you obtain a total
charge of —g, the same value we ob-
tained for the image charge.

This brings us to this month’s
contest problems:

A. Two large metal plates form a
right-angle corner. A charge ¢ is
placed within the corner, equal dis-
tances d from both plates, and far
from the edges of the plates (see fig-
ure 2). What is the force acting on
the charge?

B. The second of this month’s
contest problems is based on a prob-
lem given on the semifinal exam
used to select members of the US
Physics Team that will compete in
Italy in July. A charge g is placed a
distance d from the center of a
grounded metal ball with radius
¢ < d. The electrostatic potential is
chosen to be zero at infinity. What
is the force acting on charge g?

Sportin’ lite

In the January/February issue, we
posed a series of problems that re-
quired an understanding of trajecto-
ries in sports events. Before begin-
ning with the solutions, we must
apologize for two errors that ap-
peared in the article. In the first
equation showing the dependence of
the y-coordinate on the x-coordinate
and the angle, the first term should
have had an x? rather than an x in
the numerator. The second error
was the reversal of the axis labels on
the graph.

The first problem asks for the lo-
cations where a soccer ball cannot
land if a wall of defenders 1.8 m high
is set up 15 m from the free kick.



The strategy for the solution is to
find the two angles for which the
ball can be kicked at a certain veloc-
ity that will take it to the point
(1.8 m, 15 m). Knowing these two
angles, we then find the correspond-
ing x values for the ball landing on
the ground (y = 0):

2 2
y = g2 tan? 0+ xtanf — < .
vy vy

Substituting the values for x, y, and
v, =35 m/s and solving the quadratic
equation yields values for 6 of 86.5°
and 10.4°. We use the range equation
to find the points where these two
trajectories hit the ground.
5 2
X= 2ﬂcosesine = Y0 gin2e.
g g

The corresponding distances are
15.11 m and 44.04 m. The shadow
region lies behind the wall and ex-
tends for 0.11 m.

Part b asks what happens to this
shadow region as the wall moves
relative to the kicker. Calculating
the shadow region on a spreadsheet,
we determine that the shadow re-
gion increases as the distance from
the kicker increases. This makes
sense because the angle required to
just clear the wall will decrease and
therefore the ball will not be able to
fall as sharply behind the wall.

Problem 2 shifted to trajectories
in basketball. It required readers to
find the relationship between the
initial velocity v, and the initial
angle 6, given a fixed shot position
where the rim is h meters above the
ball and L meters away horizontally.

Beginning with our trajectory
equation

2

-8 xsin®
2vdcos’®  cosb
we solve for v,;:
2 gL 1
VO = B P
2.cos” 0 catl— %

Part b of this problem asks for the
constraints on the initial angle if

the ball is to enter the basket dur-
ing its descent. The angle of entry
can be defined as the angle be-
tween the horizontal and the angle
of the tangent to the ball’s trajec-
tory. We will assume that we can
ignore the size of the ball—a ter-
rible assumption, but one that
makes the analysis simpler.

The initial constraints should
depend only on h and L, where

h=(v, sineo)t—%gtz,

L=(vycos8ylt,

\4 vy sinB, — gt
tan® = - SO0 SF

;j? v €cos6
_(vgsin®g)t - gt”
(vocosBy)t
(v sin®g )t — gt* — (v sinBy )t
(v cosBy)t

2h
=——tan®,.
L

Because the ball must be falling in
order to make a basket, 6 and tan 0
must both be negative. This requires
that the right side of the equation
also be negative. Therefore, the con-
straint on the initial angle is

tan 6, >2—.
L

Part ¢ asks for the angle where a
minimum speed is required to sink
the shot. To solve this, we can calcu-
late the speed required for many dif-
ferent angles using the equation from
Part a and a spreadsheet, assuming

0 (degree)

0 50 100

Figure 3

values of h = 1 m and L = 5 m. The
graph in figure 3 of v vs. 8 indicates a
minimum at approximately 50°. Al-
ternatively, we can take the deriva-
tive of the equation from Part a relat-
ing v to 0 and set this derivative equal
to zero to obtain

_ gL 1
= > ,
2.cos” 0 tan@ — =
dv
==,
ae
2

tanf=—= }Ll—z+1

Using the sample valuesof h=1m
and L = 5 m, we arrive at an optimal
shooting angle of 50.7°.

Peter Brancazio, Physics Professor
Emeritus of Brooklyn College, took
this analysis further and then com-
pared theory and practice on the bas-
ketball court. We highly recommend
Brancazio’s 1981 article “Physics of
Basketball” in the American Journal
of Physics (49), 356-365. Q
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A cardioid for a mushroom picker

NE CLEAR SEPTEMBER

morning my friends and I went

to the forest to pick mush-

rooms. We went along a path in
the forest to a well-marked pole,
then decided to go west separately
and meet 4 hours later at the pole.
We didn’t have compasses, but the
landmarks were reliable: the path
went strictly from north to south,
the Sun was in the east, and two big
lakes were on the edges of the forest
(fig. 1).

So as to avoid distraction from
picking mushrooms and to arrive on
time at the meeting place, I decided
to walk for half the time (2 hours) so
that the Sun was shining on my
back and then return in the opposite
direction. I collected a full basket of
mushrooms, then found that I had
to make certain corrections to my
route. As a result, I returned to the
path about 1 km south of the meet-
ing place and was 15 minutes late.

Then I decided to make sense of

North
Lake l

South T
Lake

Figure 1
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my trajectory and find out where I
would find myself at the end of the
walk if T had strictly adhered to my
plan. After making certain reason-
able assumptions, I formulated the
problem as follows.

A point B (the Sun) moves in the
plane XY with a constant angular
speed w along a large circle centered
at the origin (fig. 2). Point A (a per-
son) moves from the origin with a
constant speed v in the direction
“away from point B.” In other
words, at any moment in time, the
velocity is oriented along the line
“Sun-person.” At a certain time t,
the direction of the velocity is re-
versed, and point A begins to move
in the direction “toward B.” What
are the coordinates of point A at
time 2t?

The solution proved to be quite
simple and understandable, espe-
cially for those who have at least
once walked “in circles” in the for-
est. Indeed, point A moves at a con-

y
-
B,/ A
j 5
B<
B
Figure 2

stant speed, but the velocity vector
changes such that it is always di-
rected “from point B,” which de-
scribes a circle. Therefore, point A
also moves along a circle with the
same angular speed as point B.
While point B moves to position B’,
the person moves along the circular
arc AA’ to position A’. It is clear that
the return motion from the turning
point A’ to the final point A” can be
described similarly. The point
moves along the circular arc A’A” of
the same radius, and its center, (¥,
lies on the line that is perpendicular
to A’B” and passes through the point
of tangency A’

Using the well-known relation
between linear and angular velocity,
we obtain the following formula for
the radius of the circle AA”: R = v/w.
In addition, it follows from the ini-
tial conditions that the center of this
circle is at the point with coordi-
nates (v/w, 0). Simple geometrical
considerations (for example, of trap-
ezoid AOO’A”) make it possible to
determine the location of point A”,
which is the distance r from the ini-
tial point A at the angle 6 = ZA”AO:

T+ cos6
V—.
®

0=n—-t, r=AA"=2

The quantities r and 6 are called
the polar coordinates of a point.
Let’s analyze this result for a charac-
teristic interval of possible values of
t: 0 <t <6 . We use the fact that ®
=271/24 hl. For small t, 0 is a little
less than r. That is, there is a consid-
erable azimuthal deviation from the

Art by V. Ivanyuk
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Figure 3

initial direction /2, while the dis-
tance r is rather small. If ¢ is about
6 h, the azimuth deviation is practi-
cally zero, but r becomes rather
large.

For example, let us make a nu-
merical estimate for t = 2 h and
v =2 km/h. In this case, 6 = 51/6, and
the radius R and distance r are about
8 km and 2.4 km, respectively.

Figure 2 also makes it possible
graphically to demonstrate the loca-
tion of the final point A”. Suppose
that the circles O and O’ touch each
other at the initial moment at point
A. Then, circle O’ starts rolling

without slipping along circle O. By
the time ¢, when the circles touch
each other at the turning point A’,
the initial point of tangency A
moves to the position A”. Thus, the
set of all possible final points of the
route at a constant speed v and vari-
ous t coincides with the trajectory of

- a point of circle O’ that rolls along

circle O. The corresponding circle
is called a cardioid—its plot is
shown in figure 3, and its equation
was obtained above. This curve
can be constructed using impro-
vised tools, and the corresponding
drawing may be useful in the for-
est if no map is available or as a
complement to the map.

Point C in figure 3 is the final po-
sition at ¢ = 6 h, and the correspond-
ing trajectory is shown in fig. 4a. In
this case, the azimuth deviation is
zero, but r = 16 km for the character-
istic values of the parameters. Thus,
the whole-day stroll (2t = 12 h) with
the strategy “from the Sun, to the
Sun” is clearly unfortunate and even
dangerous. However, an alternative
three-segment trajectory (fig. 4b) can
be suggested for such a stroll. This

VA~ y
4 A A
A
X A X
a b
Figure 4

strategy keeps the main advantage,
which is orientation with respect to
the Sun only.

In conclusion, I would like to
note that a more complex case,
when the outbound and return mo-
tions have different speeds, can be
analyzed in a similar way. In par-
ticular, it is not difficult to show
that all final points will lie on the
line A’A”. The increased speed at
the way back only increases the dis-
tance from the initial point A.

We therefore can confidently con-
clude from our analysis that when
you go into the forest, you should
bring a compass! (@)
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Electric currents on coulomb hills

ODAY WE CONSIDER ELEC-

trical circuits carrying direct

current that are composed of

wires and batteries. First, how-
ever, we recall how a good old ca-
pacitor works.

When a voltmeter is connected to
the plates of charged capacitor, a cir-
cuit is thereby closed. This means
that the total work needed to trans-
fer an electric charge along this cir-
cuit in the electric field is zero. We
assume the voltmeter to be ideal (for
example, of the electrostatic type),
and thus it has infinite internal re-
sistance and a capacitance of zero.
Moving clockwise from positive
plate 1 to negative plate 2 (fig. 1), we
record the decrease in potential as
V, = Qu/C, where Q, is the charge
and C is the capacitance of the ca-
pacitor. The potential doesn’t vary
along the connecting wires, and it
will increase by V, in the voltmeter.

+QO

Figure 2

by E. Romishevsky

This is the value that is recorded by
an ideal voltmeter, according to the
attractive force acting, for example,
between its plates 3 and 4.

Connect plates 1 and 2 of the un-
charged capacitor to a battery with
an electromotive force (emf) €,. The
capacitor will be charged to a volt-
age V, = ¢, = Q,/C. Consider the
closed circuit 1-2-3-4-1. We move
along it in the clockwise direction
(fig. 2). When we step from positive
plate 1 with potential ¢, to negative
plate 2 with potential ¢,, the poten-
tial decreases. Therefore, the voltage
difference ¢, - ¢, = -V, = -Q,/C is
negative. When we step from the
negative electrode (cathode) of the
battery with potential ¢, to the posi-
tive anode with potential ¢,, the
same voltage difference in the
battery’s field is positive: ¢, — ¢, = V,,
so at plate 1 we arrive at the same
potential:

potential levels

potential levels

Gy =0 + 0, =05 ==Vy+ V=0,

A question arises: what is a bat-
tery and what role does it play in
physics? As we said, there is an elec-
tric field inside a battery, which gen-
erates (or is described by) a voltage
difference V, = ¢,. This means that
negative and positive charges are
separated in the battery. When we
connect the battery to an uncharged
capacitor, an electric charge Q,
passes in the battery in the direction
opposite to the field. The energy of
this charge increases (and so does
the voltage, which is the potential
energy of a unit charge). Thus, a bat-
tery increases the potential energy of
the charges moving in an electric
circuit. The only way to do this is to
move charges against the electric
field inside the battery. What forces
perform such heroic work?

Recall that the electric field is
similar to the gravitational field. As-
sume that we (the charges| come to
an elevator at the ground floor (the
negative electrode of the battery).
The elevator is affected by the gravi-
tational force (and the transferred
charges are affected by the coulomb
force). If the elevator is ascending
uniformly, it is affected by the elas-
tic tensile forces of the steel cables,
which are equal to the force of grav-
ity (to the coulomb force]. What is
analogous to the elastic tension of
the steel cables, which perform
work against gravity? These are the
forces of a chemical nature that arise
in batteries between the metal elec-
trodes and the electrolyte. These
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forces are called extraneous to stress
their non-electrostatic nature. We
can describe them with the param-
eter of extraneous strength E__,
which is equal to the force affecting
a unit positive charge. For the
charges traveling through the bat-
tery, the extraneous forces are equal

and opposite in direction to the elec- -

tric forces, so we have the following
equation for the potential difference:

El =V, =-E_l =-¢,

ext

where ], is the distance over which
both of these forces act inside the
voltaic cell. Thus, €, is the work per-
formed in the battery by chemical
forces to transfer a unit positive
charge from the cathode to the anode
against the force of an electric field
with a potential difference equal to
the emf of the battery €, = V,,.

Let’s consider the distribution of
fields and potentials inside some
particular voltage source, for ex-
ample a voltaic cell (fig. 3). Zinc and
copper plates are immersed into a
nonconducting jar filled with a wa-
ter solution of sulfuric acid, which
acts as the electrolyte. The chemical
reaction of zinc with the electrolyte
produces positive zinc ions, which
diffuse into the electrolyte, so the
surface layer of the metal electrode
acquires a positive charge and the
adjacent layer of electrolyte be-
comes negatively charged. The dis-
tance between these layers ], is very
small (on the order of the size of an
atom), and the corresponding poten-
tial difference A¢ is about 1V, so the
strength of the electric field between
the layers is comparable to that of
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electric fields in atoms, and the sur-
face density of these charges is also
very high. The same values are char-
acteristic of the strength of the extra-
neous forces in these layers, because
E_=-E_. Thus, the transfer of a unit
positive charge from the negative
plate into the electrolyte raises the
potential to a higher level: A¢, = E_ 1, .
In the bulk of the electrolyte solution
the potential doesn’t vary (the elec-
tric current doesn’t flow yet). The
second plate (anode) is made of cop-
per, and its interaction with the
electrolyte results in the accumula-
tion of positive charges on its sur-
face, while the adjacent layer of elec-
trolyte becomes negative. Here the
potential step Ad, = E_,I,, has the
same order of magnitude as A¢,, and
their sum is what we call the emf of
the cell: |AD, + Ad,| = €.

Let’s connect the terminals of the
battery with a thin, long, homoge-
neous cylindrical conductor, with
resistance R = pL/S, where p is the
resistivity, L is the length, and S is
its cross-sectional area (fig. 4). If the
battery has no internal resistance,
this conductor will carry the direct
current I = €,/R. Again questions
arise: what role does the electric
field play in this process, and what
is its value inside and outside the
conductor? When the switch S is
closed, an electromagnetic impulse
spreads along the circuit, which re-
distributes the free charges at the
cylinder’s surface in such a way that
they generate an homogeneous elec-
tric field E inside the conductor and
some nonhomogeneous field out-
side of it, whose lines of force
emerge from the cylinder’s surface
and enter it at some angle (fig. 4).
The distribution of surface charge

density o along the axis of a thin,
long, homogeneous conductor turns
out to be linear everywhere but at its
ends.

Note that upon switching on a
voltage source, the free electrons
begin to move virtually simulta-
neously in all the parts of a conduc-
tor, similar to the way water starts
to flow simultaneously through a
pipe when we open the faucet.
While electric current flows in a
conductor, the numbers of positive
and negative charges are strictly
equal in any part of it.

It is known that electric current
in a conductor is accompanied by
the production of heat, which is dis-
sipated in the conductor. What is the
mechanism of conversion of the
chemical energy in a battery into the
thermal energy dissipated in the
conductor?

In the absence of an electric
source, the motion of free electrons
in a conductor is stochastic. When
the electric source is switched on,
the electrons inside the conductor
are affected by the electric field,
which results in their ordered, di-
rected flow. Simultaneously, oppos-
ing forces due to the crystal lattice
of the conductor decelerate the elec-
trons. These forces are similar to the
frictional forces that act on a ball
moving in a viscous medium. All of
these forces produce a uniform flow
of free electrons along the lines of
force of the electric field with a very
slow velocity in comparison with
that of the chaotic thermal motion.

We can say that the production of
heat by moving electrons in the con-
ducting medium is analogous to the
dissipation of heat caused by friction
when a body slides uniformly down
an incline under the influence of
gravity. The electric current is in the
direction of decreasing electric po-
tential. We can show (although it is
beyond the scope of this article) that
the potential difference between the
conductor’s ends equals the product
of the electric current in the conduc-
tor and its resistance: V = IR.

Let’s consider a circuit consisting
of two batteries connected in series
that have emfs €, and €, and inter-



€1y

Figure 5

nal resistances z, and r,. The batter-
ies are connected with two external
resistors R, and R, as shown in fig. 5.
If in this circuit €, > €, the current
is counterclockwise. Let’s plot the
changes in electric potential when
moving along the closed circuit.
Point 1 has the highest potential
and point 8 has the lowest. The con-
ductor 1-2 has no resistance (no fric-
tion in the mechanical analogy), so
the potential doesn’t change in it.
We assume that the conductor 2-3
with resistance R, is similar to our
cylindrical conductor. In this part of
the circuit, we “roll” downhill, and
the potential decreases linearly be-
tween points 2 and 3. “The force of
friction” is counterbalanced by the
“rolling down” force (the coulomb
force), so the voltmeter will read
V, = IR,. When passing from point 3
to point 4, the potential doesn’t

€, -1,

change. Point 4 corresponds to the
positive plate of the second battery
with emf €,. When passing from a
positive plate into the electrolyte,
we are in effect descending in an el-
evator, so the potential decreases,
and the electric field performs work
against the battery’s extraneous
torces. The same thing happens
when we pass from the electrolyte
to a negative plate. The transfer of
electric charges inside the battery is
accompanied by the overcoming of
its internal resistance r,, so the poten-
tial will further drop by Ir,. The volt-
meter connected to the terminals of
this battery will read V,, = €, + Ir,.
The potential will not vary between
points 5 and 6, but it will drop across
resistor R, by IR,. Now we get on
the negative plate (point 8) of the
stronger battery with emf €,. First a
powerful rise and then a fall across

resistance r,, then again a mighty
rise when climbing from the electro-
lyte—and we are back on the posi-
tive plate 1.

After moving around the closed
circuit, we returned to the initial
potential. Therefore, the sum of po-
tential “lifts” equals the sum of
“falls.” Therefore, the work along a
closed circuit is zero:

_IRI_%Z—IIZ_[RZ _Irl+%l =O,

or

I<R1+R2 +I1+f2)=((g1—%2.

This equation is known as Ohm’s
law for a closed circuit or Kirchhoff’s
second law. Now we see that it is a
direct consequence of the properties
of electric fields. O

Quantum on direct current:

I. Slobodetsky, “Direct current
events,” March/April 1992, p. 52—
JI.

A. Varlamov, “How does electric
current flow in a metal?” Septem-
ber/October 1992, p. 49-50.

S. Murzin, M. Trunin, and D.
Shovkun, “Beyond the reach of
Ohm’s law,” November/December
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LOOKING BACK

Light in & tark room

N LATIN CAMERA OBSCURA

means “dark room.” The follow-

ing trick is known from ancient

times: in a dark room on a bright
sunny day, make a small hole in a
window blind. On the opposite wall
you will see the inverted image of
the street and passersby.

The pinhole camera was probably
known to the ancient Greeks. It was
also used by Arabian scientists, and
at the end of the fifteenth century
Leonardo da Vinci (1452-1519) gave
the first detailed description of this
wonderful device. However, the
classical camera obscura was not
widely used, because when the hole
was rather large, the image was
blurred, and when it was too narrow,
the camera produced a clear but very
dim image. In addition, the camera
worked only in complete darkness
and required the observer’s eyes to
adjust.

However, in the middle of the six-
teenth century the pinhole camera
was equipped with a mirror and an
objective made of lenses. As a result,
the image became large and bright,
and the camera enjoyed wide popu-
larity, in particular among amateur
artists, who used it to sketch land-
scapes. There were large, human-
sized cameras and small portable
ones. Now we consider this simple
optical device as a prototype of mod-
ern photographic cameras.

Unfortunately, the name of the
camera obscura was not changed af-
ter it was outfitted with a lens objec-
tive. Thus, some historical records
are controversial. For example, it is
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written that pinhole cameras were
used in the first experiments on pho-
tography in the 1820s and 1830s. In
this case, it is obvious lenses were
used. However, other reports cannot
be interpreted so unequivocally. For
example, in 1611, independent of
Galileo, the Dutch astronomer
Johannes Fabricius (1587-c. 1615)
discovered sunspots with the help of
a telescope and a camera obscura.
No question arises concerning the
use of a telescope in such research,
but how Fabricius could discern
sunspots with a pinhole is an open
question.

However, as early as 1609,
Johannes Kepler (1571-1630] re-
ported a small, dark spot that he
observed on May 18, 1607 in the
image of the solar disk obtained
with a camera obscura. He errone-
ously assumed the spot to be Mer-
cury. Such a mistake is justifiable:
the diameter of the dark part of a
typical sunspot is about 15,000 km,
just a little bit larger than the diam-
eter of Earth or Venus. Mercury is
half the size of Earth, but when it
passes between Earth and the Sun, it
is two times closer to us than the
Sun’s surface. At this moment the
angular size of Mercury is similar to
that of a sunspot (about 0.3"). Is it
possible to discern an object with so
small an angular size using just a
pinhole?

Of course, a simple camera
obscura can be used to observe the
phases of a solar eclipse. One of the
authors once observed a solar eclipse
in the morning using a small hole

made by the tip of a pencil in the
cover of a notebook. The quality of
the image was excellent. However,
a sunspot covers a rather small frac-
tion of the solar surface. Fabricius
most likely used a lens in addition
to a pinhole, otherwise why weren't
sunspots discovered long before tele-
scopes were constructed?

The camera obscura with a lens is
almost a telescope—it is a product of
Renaissance high technology. It dif-
fers greatly from a simple classical
camera obscura, which could be
made by anyone in any century.
Let’s see what can be observed with
such a simple camera obscura.

Practice

It is a very simple matter to make
a camera obscura. Take any box
with a length of 15-30 cm (a milk
carton, for example|. Using a pin,
pierce a small hole in the bottom of
the box. Close the upper opening of
the box with oiled paper. A potato-
chip box with a white frosted lid is
ideal: you need only to eat the chips
and pierce the bottom with a light
stroke of a pin.

Note that observation requires
bright light outside the box and
pitch darkness on the screen’s side.
It is better to conduct experiments
in a dark room with the screen care-
fully isolated from the surrounding
light on a bright sunny day. To this
end, you can use a tube made of
thick paper with a length of
30-40 cm, attaching it firmly to the
screen and pressing your face against
its opposite end. If the shape of your

Art by Leonid Tishkov
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camera obscura is round, you may
use a coat, throwing it over your
head and passing the camera
through a sleeve. To compare vari-
ous “objectives,” make several holes
of different diameters and experi-
ment with one hole while the oth-
ers are covered by electrical tape.

After testing the camera obscura,

one can see that a simple hole
makes a serviceable objective: all
objects produce similar sharp im-
ages independent of distance, the
greater definition being produced by
the smallest hole. However, in the
latter case the images cannot be ob-
served easily, because they are too
dim. Still, modern photographic
films are very sensitive, so they will
certainly work even with the small-
est hole.

So, why not build a photographic
camera with a small hole instead of
an expensive objective? By the way,
some devices work on this principle.
For example, astronomers make X-
ray telescopes as a lead camera
obscura, because there are no lenses
that can focus hard X-rays. How-
ever, it turns out that the operation
of a pinhole in the optical range is
quite limited, as pointed out in the
following discussion.

Theory

Every luminous point of a distant
object sends a practically parallel
beam of light to the pinhole. Having
passed the hole of diameter D, the
beam projects a circle of the same
diameter onto the screen. Let F de-
note the distance between the hole
and the screen. If the angular dis-
tance between two neighboring
points in the object is less than D/F
(measured in radians), the respective
circles on the screen will overlap
partially.

It is not a simple question to de-
termine how much overlap the
neighboring points of the objects can
have and still be distinguished (re-
solved). The result depends on the
contrast of the details in the original
object, on the brightness of its im-
age, and so on. It is possible to dis-
tinguish the details of an image with
little contrast if they do not overlap
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at all. Since sunspots produce im-
ages with high contrast, we can as-
sume that they are resolved when
their centers are separated by a dis-
tance equal to the radius of the
circles. Now it is easy to find the
minimum angular size of the distin-
guishable details of the object, or, as
opticians say, the limiting angle of
resolution determined by a certain
finite size of the beam:

D
0 oF (1)

Until now we have considered
light as rays. This approach is char-
acteristic of geometrical optics.
However, light is an electromag-
netic wave, and as a wave it is sub-
ject to diffraction and interference.
If a plane wave (a beam of parallel
rays) hits the opening of an optical
device, the wave front will become
slightly curved, so the beam will
diverge. This phenomenon is called
“diffraction.” It is diffraction that
limits the application of the laws of
geometrical optics. After passing
through a small hole of the camera
obscura, the light beams diverge,
and the pattern on the screen be-
comes blurred. To determine the
degree of blurring, we must recall
the property of interference, which
is the addition of waves from differ-
ent sources at the same point on the
screen.

In our case, the independent
sources of light are the infinite num-
ber of luminous points in the input
aperture, and every point emits light
in all directions due to diffraction
(this is Huygens’ principle). The in-
cident waves superimpose on the
screen according to their phases. At
some points on the screen they add,

and at other points they cancel. As
a result, after passing through the
hole, a parallel beam of rays pro-
duces a pattern on a screen of a
bright spot surrounded by concen-
tric dark and light rings of decreas-
ing brightness (fig. 1). We can say
that the camera obscura transforms
any point of a luminous object into
a bright spot surrounded by a “ze-
bra” pattern of rings.

Usually it is assumed that the
images of two neighboring points
can be resolved on the screen if the
centers of their bright spots are
separated by a distance no less
than the radius of the first dark ring
(Rayleigh’s criterion). The angular
size a,, of this radius as viewed from
the opening can be evaluated know-
ing that the difference of the light
paths from the nearest and farthest
points of the objective to any point
on the dark ring is approximately
one wavelength A. Thus, we get
a, = A/D. Precise calculations yield
the following value for the limiting
angle of resolution due to diffrac-
tion:

A
0y =122 (2)

Since both effects (the geometric
size of the beam and its diffraction)
occur at the same time, we can
suppose that the limiting angle of
resolution of a camera obscura is
o = o, + 0,. Depending on the size of
the hole, this angle varies as shown
in figure 2. So, the best resolution of
a camera with a given length F is
achieved at some optimal diameter

D e corresponding to the mini-
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mum resolution angle o, . It is not
difficult to find the optimum diam-
eter. Those who know elementary
calculus and derivatives will guess
that o reaches its minimum at the
value of D where do/dD = 0. Read-
ers can also see from figure 2 that
the minimum is achieved at the
point where o, = a,. Both conven-
tions are equivalent. They yield

Dipe = V2.40F
and
_24) 3)
(xmin_\, F . ( /

Now, what can the optimum clas-
sical camera obscura do? Assume
that for visual observation we use
light with wavelength A = 550 nm.
Equation (3) might be rewritten in the
form ready for estimation:

| F

Dy =12 -
- mm \Tm

and

1m
VE’ 14
where F is measured in meters. A
camera of a reasonable (“human”)
size (F = 2-5 m) has a limiting angle
of resolution larger (worse) than that
of a healthy human eye (about 1’).

This means that using such a de-
vice, we will not be able to discern
the smaller details in comparison
with what we can observe with an
unaided eye (of course, protected by
a dense filter). The role of such a fil-
ter can be played by clouds, smoke
of a large fire, or the thick layer of air
that protects our eyes when we
watch the Sun at sunrise or sunset.

The Chronicles of some people
report sunspots that were observed
through the clouds and looked “just
like nails.” In principle, this is pos-
sible. Although a mean sunspot has
an angular size of about 0.3’, some-
times very large spots or groups of
spots appear on the Sun. For ex-
ample, a group of sunspots 200,000
km in size was observed in March

1947. Similar sunspots appeared in
1957 and 1968. Due to their large
angular size (4’), they could be eas-
ily seen by an eye, protected by a
dense filter.

Caution! It is no mistake that we
again mention the filter. Never Iook
at the Sun without proper protec-
tion! The filter must be a very dark
filter, not just sunglasses. One may
use welder’s glass or aluminum-
coated cellophane used to wrap
flowers.

Although even ancient people
could observe the sunspots with
unaided eyes, such episodic and an-
ecdotal observation did not become
scientifically established. There
were no reliable and systematic ob-
servations of the Sun in ancient
times, or perhaps the writings are
lost forever. It is of principal inter-
est: could sunspots be observed sys-
tematically with a classical camera
obscura—say, by the ancient Greek
astronomers? Formula (4) says that
one needs a camera obscura 20-30 m
in length to obtain a device better
than the human eye. With a 100-
meter pinhole camera, one can ob-
serve sunspots systematically. Did
the Greeks overlook the opportu-
nity?

Recall that the size of the image
increases with distance from the
hole. So, its brightness should de-
crease. The angular diameter of the
Sun is about 0.5° (to be more precise,
it is 32’), so the diameter of its im-
age on the screen of a simple pinhole
camera will be F/107. Thus, if the
length of the camera is 100 m, the
image of the Sun will be about 1 m
across. The image is formed by the
light that passes through a hole
1.2 ¢cm in diameter, which means
that illumination will be attenuated
by a factor of 10,000. Wouldn’t this
be too dim?

The illumination of Earth’s sur-
face produced by the Sun is 10° lux,
so the illumination of the Sun’s im-
age in a pinhole camera will be
about 10 lux. This value seems to be
small, but it is dozens of times larger
than the illumination of Earth’s sur-
face produced by a full moon. One
can discern the letters in a book il-

luminated by the full moon, so it
would be much easier to observe the
sunspots with our camera obscura,
because they will be seen as a coin
1 cm in diameter on a 1-meter solar
disk. It is not an easy matter to over-
look such details! We must con-
clude, therefore, that theoretically,
the ancient Greeks could have used
a classical camera obscura to study
the surface of the Sun!

Experiment

To check our theoretical consid-
erations on the quality of images
made by a pinhole camera, we car-
ried out the following experiment:
in a “Zenit” photographic camera,
the objective was replaced by a piece
of metal foil with a hole made by a
pin. A specially prepared test pattern
was photographed with the help of
this camera obscura (figure 3). The

Figure 3

distance between the table and the
hole was 30 c¢m, and that between
the hole and the film 4.6 cm. We
tested three holes with diameters
170, 420, and 840 um. The pattern
was illuminated by a table lamp,
film sensitivity was 80 ASA, and the
exposure time varied from several
seconds to a few minutes depending
on the diameter of the hole. After
printing photos from the negatives,
we determined the limiting angle of
resolution from the visibility of the
lines in the test pattern. The experi-
mental angle turned out to be even
smaller than the theoretical value,
which was probably caused by the
very high contrast of the original
image and also by its linear appear-
ance: straight lines are more easily
perceived than points against a
noisy background. By and large, our
simple theory agrees with the ex-
periment.
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Having checked the theory on a
simple test pattern, we decided to
try detecting sunspots with a pin-
hole camera. The experiment was
performed on May 19, 1998 at the P.
K. Sternberg Astronomical Institute
(an affiliate of Moscow State Univer-
sity) with the generous help of I. F.
Nikulin, a senior researcher in the
Department of Solar Investigations.
Unfortunately, we couldn’t con-
struct a camera with a length of 100
or even 50 m. The instrument case
of our improvised camera was the
17-meter long tube of a vertical so-
lar telescope. The reflector-type ob-
jective was located at its base, so the
tube was just a light-proof volume
without any optical elements. We
covered the opening of the tube with
a thick lid, which had a small, round
hole 5 mm in diameter. On a sheet
of white paper placed at the lower
end of the tube, we saw a bright im-
age of the Sun with a diameter of 16
cm. There were two well-defined
groups of sunspots in the image!
This was a triumph: the solar
obscura-telescope worked!

We also looked at the solar sur-
face with modern optical devices,
which showed that there were sun-
spots on the Sun that day. They
were grouped in two clusters with
angular sizes 15” and 17", sepa-
rated by a distance of 1’. In addi-

a

Figure 4

tion, there were several small sun-
spots 3-5” in diameter. We did not
observe the small sunspots with
our camera obscura, although two
large spots (quite normal for the
Sun) were clearly resolved and ob-
served individually. We continued
our observations for several days,
noting the rotation of the Sun by
the motion of the sunspots. The
photographs in figure 4 show the
Sun’s surface on June 2, 1998. They
were made with (a) a modern solar
telescope and (b) our improvised
obscura-telescope.

Galileo and Fabricius discovered
sunspots only after the invention of
the optical telescope, although, as
we have shown, the discovery could

have been made as early as when the
Egyptian pyramids were built.
Maybe this thought will stimulate
our readers to look for unrealized
possibilities of our epoch. By the
way, when Fabricius made his fa-
mous discovery, he was just a little
bit older than 20. Q)

Quantum on the art of photography:
V. M. Bolotovsky, “What’s That
You See?” March/April 1993, p. 5-8.
M. L. Biermann, “Clarity, Real-
ity, and the Art of Photography,”
September/October 1995, p. 26-31.
A. Leonovich, “How Enlightened
Are You?” May/June 1996, p. 32-33.
A. Dozorov, “In Focus,” Septem-
ber/October 1998, p. 48-49.
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GRADUS AD
PARNASSUM

Square or not square?

INDING SQUARE ROOTS OF

numbers, especially of natural

numbers, is a common and use-

ful mathematical task. But
sometimes it is important also to
recognize which numbers cannot be
perfect squares. The problems below
are of this form.

Problem 1: Prove that the number N
=1234567891011121314151617181920212223
is not a perfect square.

Solution: The basic fact we
need here is that the last digit of a
perfect square depends only on the
last digit of its square root, and not
on any other digits. So we can ask
ourselves what the last digit of the
square root of N could be. It can-
not be 0, since then N would itself
have to end in 0. Similarly, it can-
not end in 1. In fact, if we exam-
ine each digit, we will find that its
square never ends in 3:

12 ends in 1
22 ends in 4
32endsin 9
42 endsin 6
52 ends in 5
62 ends in 6
72 ends in 9
82 ends in 4
92 ends in 1
02 ends in 0.

Therefore, we can see that N
=1234567891011121314151617181920212223
cannot be a perfect square. In fact, we
have shown that a perfect square,
written in decimal notation, can only
end in the digits 0, 1, 4, 5, 6, and 9.

Problem 2: Show that the number M

by Mark Saul and Titu Andreescu

=1234567891011121314151171819202122,
cannot be a perfect square.

Problem 3: Show that no four-
digit number can be formed from the
digits 2, 3, 7, 8, which is a perfect
square.

Problem 4: Show that neither of
the numbers 5n + 2 or 51 + 3 can be
a perfect square, for any natural
number n.

Solution: The number 51 + 2 ends
in 2 or 7, and the number 51 + 3 ends
in 3 or 8. The solution to problem 1
shows that they cannot be perfect
squares.

This solution to the problem re-
lies on the technique we already
have, using the final digits of the
numbers’ decimal representations.
Let us look a bit deeper. What is it
about the decimal notation system
that allows for this?

Any number N, in decimal nota-
tion, can be written as N= 104 + b,
where A is some natural number,
and b is the last digit of N. Then N2
~(10A + b = 100A2 + 2045 + P2, and
the first two terms, being multiples
of 10, cannot affect the last digit. In
fact, this expansion is what is be-
hind the usual multiplication algo-
rithm and explains why the square
of a number ends in the same digit
as the number itself.

We can reformulate the solution
to problem 4 by generalizing this
remark. If a number N has remain-
der r when divided by 5, then it
can be written as 5A + b, where A
is some natural number. Then
N2 = (5A + b2 = 25A + 10AD + b,

and the first two terms, being mul-
tiples of 5, do not affect the remain-
der when N? is divided by 5. It fol-
lows that N? has the same
remainder as b, when divided by 5.

That is, if we want to find the re-
mainder when N is divided by 5, we
can do one of two things: (a) Square
N, then divide N? by 5 and take the
remainder; (b) Divide N itself by 5,
take the remainder, then square this
remainder (if the square of this re-
mainder is greater than 5, we may
have to divide by 5 once more).

Indeed, this observation holds if
we are dividing by any number at all,
and not just by 5. (Readers familiar
with the idea of congruences in
number theory will find this state-
ment familiar.) In the present case,
if the number 5n + 2 is a perfect
square, and its square root is the
natural number N, then we can
follow course (b) above, and take
the remainder when N is divided
by 5. It can only be one of the
number 0, 1, 2, 3, or 4, and if we
check the squares of these remain-
ders, we find that none of them
has remainder 2. But 5n + 2 does
have remainder 2, and so cannot
be the square of N.

This argument is quite general,
and can be applied in many circum-
stances.

Problem 5: Show that the num-
bers 4n + 2 and 4n + 3 cannot be per-
fect squares, for any integer n.

Problem 6: Show that the num-
bers 9n + 3 and 9n + 6 cannot be per-
fect squares.
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Problem 7: The number N con-
tains 1999 digits 1, one digit 2, and
a number of digits 0. Show that it
cannot be a perfect square.

Problem 8: Show that the num-
bers 9n + 2, 9n + 5, and 9n + 8 can-
not be perfect squares.

Problem 9; Show that the number

444 ...4
—
1001 4’s

cannot be a perfect square.

Problem 10: Show that the num-
ber n! + 2000 cannot be a perfect
square for any natural number n.

Problem 11: Show that n(n + 1)
cannot be a perfect square for any
positive integer n.

Solution: Note that n? < n(n + 1)
< (n + 1)2. This means that n(n + 1)
lies in between two consecutive per-
fect squares, and cannot itself be a
perfect square.

Problem 12: Show that n(n + 2)
cannot be a perfect square for any
positive integer n.

Solution: There is a solution
analogous to that of problem 11, but
we can also see that n(n +2) = n* + 2n
=(n + 1) - 1. Being one less than a
perfect square, the number itself
cannot be a perfect square (unless it
is 0, in which case n cannot be a
positive integer).

Problem 13: Show that the num-
ber 2499 - 2500 - 2501 is not a perfect
square.

Problem 14: Show that the number
n(n + 1)(n + 2){n + 3) cannot be a per-
fect square, for any positive integer.

Problem 15: Show that the num-
ber (m + n)* +3m +n + 1 cannot be a
perfect square for any distinct natu-
ral numbers m and n.

Problem 16: Show that the number
N=1!+2!+3!+...+n! cannotbe a
perfect square for any integer n > 3.

Problem 17: Show that n! cannot
be a perfect square for any integer
n > 1. (You may want to use
“Bertrand’s postulate,” actually a
theorem, which says that for n > 1
there is always a prime number be-
tween n and 2n.) (@]

ANSWERS, HINTS & SOLUTIONS
ON PAGE 53
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CONTINUED FROM PAGE 29

solute value for area, we can write
|[ACMI| - |APMI| = |IBCMI — |IBPMI, or
simply |ICAPI| = |CBP!I.

Conversely, if we have a point Q
inside triangle ABC, such that sim-
ply ICAQI = ICBQI, we can show
that it must lie on the median from
C to AB. Indeed, extend CQ to meet
AB at X. The equality of the two ar-
eas implies the equality of the per-
pendiculars from A and B to line
CQ, which in turn implies the
equality of the areas of triangles
ACX, BCX. Since these two tri-
angles also have the same altitude
from C to AB, this means that their
bases are equal, so that X is the mid-
point of AB.

Now the stage is set for a simple
proof of the following.

Theorem: The three medians of a
triangle are concurrent.

Proof: Let medians AM, BN of tri-
angle ABC intersect at point P.
Then, by our locus theorem, |CAP!
= |BAP| and |BAPI| = ICBPI. Hence
ICAPI| = |CBPI, and P is on the me-
dian from C as well.

Note that we have also shown
that ICPBI is 1/3 the area of |IABC],
so that the perpendicular from A to
BC is three times the length of the
perpendicular from P to BC. A
simple argument from similar tri-
angles (left to the reader) will show
that AP:PM = 2:1, so we have:

Theorem: The centroid (intersec-
tion of the medians) of a triangle di-
vides each median in the ratio 2:1.

So the method of loci turns out to
be pretty powerful. We can apply it
to prove the concurrency of the al-
titudes in two different ways.

Proof 5. A method of locus. No-
tice that for all points of any ray
emanating from the vertex of an
angle, the ratio of the distance to the
angle sides is a constant. If the ray
lies inside the angle, the ray is
uniquely determined by this ratio.

Choose point H on altitude
AA,. From similar triangles we
have HC,/HA = A|B/AB = cos B,
and HB,/HA = A|C/AC = cos C, so
HC,/HB, = cos A/ cos C. This im-
plies that for all points of the alti-

C o B
Figure 6

tude AA,, the ratio of the dis-
tances to the sides AB and AC is
cos B/cos C (fig 6.). Similarly, for
all points of the altitude BB, the
ratio of the distances to the sides
BA and BC is cos A/cos C. Let H
be the point of intersection of AA,
and BB,. The ratio of the distances
from this point to sides AC and BC
is cos A/cos B. Therefore, point H
lies on the altitude to side AB.
Proof 6. Another locus method.
Let P be an arbitrary point on the
line AA, (fig. 7, where AA, is the al-

A

0 A B
Figure 7

titude of the triangle ABC). Then,
BP* - CP” =(BP* - PA})

- (cP* - PA})= BA} - CA;.

Thus, BP*> — CP? is a constant for all
points P of this line. Also, we can
verify that if BP2 — CP? = BA> - CA?,
then P lies on the altitude of the tri-
angle. Let H be the point of intersec-
tion of the altitudes to the sides BC
and CA of the triangle. We have
BH?- CH?=BA?-CA?and CH?- AH>
= CB? — AB*. Combining these equa-
tions, we obtain BH2 - AH? = CB2>-CA?,
which means that H lies on the alti-
tude to side AB. (@]

—I. F. Sharygin
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AT THE
BLACKBOARD I

Gompleting a tetrahedron

N ELEGANT TRICK THAT

can sometimes be used to solve

geometric problems is to

change the figure under consid-
eration into another figure that is in
some way more convenient.

For example, if we are solving a
problem concerning median AM in
triangle ABC, it can be useful to ex-
tend the median its own length
through M, to a point D. Then
ABCD will be a parallelogram, and
various results about that figure may
give us the information we need
about the original triangle.

In this note, we will dis-

by |. F. Sharygin

way of solving problems about a tet-
rahedron (triangular pyramid). Many
such problems can be solved by
“completing” the given tetrahedron
to obtain another polyhedron (usually
a parallelepiped).

The first method we will
discuss is shown in figure
1. We choose three verti-
ces of the tetrahedron, all
lying on the same face,
and draw planes
through

cuss some analogous

each vertex, parallel to the opposite
face. In figure 1, AA BD is the given
tetrahedron, A,BD the chosen face,
and we have drawn planes CDD,C|,
BCC,B,, and A,B,C\D,.

Problem 1. A triangular pyramid
AA,BD is given in which edges AA,,

AB, and AD are perpendicular to

each other and have lengths of g,

b, and ¢, respectively.

(a) Prove that vertex A of the
pyramid, the point of intersection
of the medians of face A BD, and the
center of the sphere circumscribed
about the given pyramid lie on a
line.

(b) Find the radius of the sphere
circumscribed about the given pyra-
mid.

Let us complete the given pyra-
mid to construct a (rectangular!) par-
allelepiped as shown in figure 1.
Then, the sphere that is circum-
scribed about the given pyramid co-
incides with the sphere circum-
scribed about this parallelepiped.
The radius of the sphere is half of the

A, B,
D, v C,
' My~ O
AT N ]
B
¢y Ol
D c
Figure 1
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parallelepiped’s diagonal:

%(a2 +b% 4+ 62)1/2.

This is the answer to part (b).

To prove the assertion of part (a],
consider rectangle AA,C,C (the
reader is invited to make a separate
drawing of it). Center O of the
sphere lies on the diagonal AC|, and
median A, O, of triangle A, BD inter-
sects AC, at a point M. If we prove
that [A MI/IMO, | = 2, this will mean
that M is the point of intersection of
the medians of triangle A BD,
which is the desired result. Indeed,
it follows from the similarity of tri-
angles A,C,M and AO,M that

|&M=WQL.
MOy |AQ|

Another frequently used method
for completing a tetrahedron to cre-
ate a parallelepiped is as follows. For
every edge of the tetrahedron, con-
struct the plane that contains it and
is parallel to the opposite edge.
These planes make up a parallelepi-
ped (fig. 2) in which the edges of the
initial tetrahedron are the diagonals
of the faces. (In sketching the dia-
gram in such situations, it is often
convenient to begin the drawing
with the parallelepiped rather than
with the tetrahedron.)

Problem 2. Find the radius of the
sphere that is tangent to all the
edges of a regular tetrahedron with
edges of length a.

As we can see from figure 2, the
parallelepiped constructed as de-
scribed above is a cube with edges of
length a/ V2. The sphere inscribed

Figure 2
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in this cube is the desired sphere,
and its radius is a/2+2 .

The first of the methods for com-
pleting a tetrahedron is more practi-
cal when plane angles at a vertex of
the tetrahedron are given (especially
if they all are right angles). The sec-
ond method is often used when
skew edges of the tetrahedron ap-
pear in the problem.

Problem 3. The lengths of two
skew edges of a tetrahedron are g,
two other skew edges are of length
b, and two remaining edges are of
length c. Find the distance between
the center of the sphere inscribed in
the given tetrahedron and the center
of the sphere that is tangent to a face
of the tetrahedron and extensions of
its other faces.

In figure 3, ABCD is the given
tetrahedron, and the corresponding
parallelepiped is bounded by the
planes passing through each edge of
the tetrahedron parallel to its oppo-
site edge. The diagonals of every face
of the parallelepiped are equal to the
opposite edges of the tetrahedron,
which are equal to each other by
assumption. It follows that all the
faces of the parallelepiped are rect-
angles and the parallelepiped itself is
rectangular.

The center of the sphere inscribed
in tetrahedron ABCD coincides
with the point of intersection of the
parallelepiped’s diagonals (the reader
may enjoy proving this). Likewise,
we may show that the center of the
sphere that is tangent to face DCB of
the tetrahedron and the extension of
its other faces coincides with vertex
L of the parallelepiped (this point is

equidistant from faces DCB and
ACD). A sketch of a proof follows.
Consider pyramid B’LCD, where
IB’LI = |ILBI, which is congruent to
pyramid BLCD: points A, D, B/, and
C lie in the same plane. Similarly,
we can prove that L is equidistant
from planes DCB and ACB as well
as from planes DCB and ADB. We
will see later that the result does not
depend on the choice of face DCB.
Therefore, the distance sought is
equal to the half of the parallele-
piped’s diagonal. Denote by x, y, and
z the lengths of the edges of the
parallelepiped (fig. 3). The Pythag-
orean theorem gives a system of
three equations:
2 +y2=a,
x*+22=b?,

2, 2 _ .0
y +z"=c".

Combining these equations, we find
that

'AL] I [0 2. 2
—— =Xty +2z
) VE Y
_1 @b’
2\ )

Problem 4. The area of the section
of a tetrahedron by the plane paral-
lel to and equidistant from its two
skew edges is S. The distance be-
tween these two skew edges is h.
Find the volume of the tetrahedron.

Let ABCDA,B,C,D, be the paral-
lelepiped bounded by the planes
passing through each edge of the tet-
rahedron parallel to the opposite
edges (fig. 4). Then, the volume of
the tetrahedron A, BC,D is equal to
the volume of the parallelepiped

Figure 4
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minus the volumes of four triangular
pyramids (A;ABD is one of them),
and the volume of each of them is 1/6
of the volume of the parallelepiped
(the proof of this fact is left to the
reader). Therefore, V= Vpar/S.

Let the skew edges given in the
problem be A C, and BD, and let
KLMN be the section of the parallel-
epiped by the plane passing through
the midpoints of AA,, BB,, CC,, and
DD,. Then, the midpoints of the
sides of parallelogram KLMN are the
vertices of the section given in the
problem. Thus, the area of KLMN is
28 and is equal to the area of the base
ABCD of the parallelepiped. Now,
we can easily find the volumes of
the parallelepiped and tetrahedron:

1 2
Vtetr = g Vpar = g Sh.

Using this problem, it is easy to
prove Simpson’s formula for the
volume of polyhedrons of a special
kind: Let a polyhedron be such that
all its vertices lie in two parallel
planes that are a distance h from
each other. Let S| be the area of the
face lying in the first plane, S, be the
area of the face lying in the second
plane, and S_ be the area of the sec-
tion of the polyhedron by the plane
parallel to the given planes and
equidistant from them. Then, the
area of the given polyhedron can be
calculated by the formula

To prove this fact, check this for-
mula for tetrahedrons. Then, parti-
tion the given polyhedron into tet-
rahedrons with the vertices in the
given planes. The sum of the areas
of the faces of these tetrahedrons
that lie in the first plane is S, in the
second plane S,, and the sum of the
areas of the midsections of the tet-
rahedrons is S_.

We conclude with a problem in
which a tetrahedron is completed to
create a triangular prism rather than
a parallelepiped.

Problem 5. Let the areas of two
faces of a tetrahedron be S, and S,

Figure 5

the dihedral angle between them be
o, the areas of two other faces be Q,
and Q,, and the angle between them
be B. Prove that

S? 4+ 82 -28,S, cosa
=Q} + Q7 -2Q,Q, cosp.

First we prove the following ana-
logue to the law of cosines: If the
area of a lateral face of a prism is S,
the areas of two other faces are S,
and S,, and the dihedral angle be-
tween them is o, then

S; + 83 — 28, S,cos0. = S2.

Indeed, let plane ABC (fig. 5) be
perpendicular to the lateral faces of
the prism and ZBAC = o. Write
down the law of cosines for triangle
ABC:

IBCI2 = |ABI? + |ACI2
- 2lABIl - |ACI cos a.

Now multiply this equation by 12,
where Iis the length of the lateral edge
of the prism, and the result follows.
We now return to problem 5. Let
ABCD be the given tetrahedron,
Spa8p = Sy Snapc = Sv Saapc = Qu
S, psc = Q,, the dihedral angle at
edge AD be o, and at edge BC be B.

A B

Figure 6

Consider a triangular prism with
base ABC, and a lateral edge AD (fig.
6). Denote by S the area of parallelo-
gram BB,C,C. Then we have, by the
formula proved above,

482 + 453 85,8, coso = S2.

We can represent S in terms of the
lengths of edges BC, AD, and the
angle 6 between them: S = [ADI -
IBCI - sin 8.

If we consider another prism with
base ACD and lateral edge BC, we
obtain

4Q7 +4Q7 -8Q,Q, cosp=S2.

This implies the assertion of the
problem.

Exercises

1. Prove that the sum of the
squares of the lengths of the tetra-
hedron’s edges equals the quadruple
sum of the squares of the distances
between the midpoints of its skew
edges.

2. Let a tetrahedron ABCD be
given. Prove that its edges AD and
BC are perpendicular if and only if
the following equation holds:

|ABI? + IDCI? = |ACI* + IDBI2.

3. The lengths of two opposite
edges of a tetrahedron are a, two
other opposite edges are b, and two
remaining edges are c. Find

(a) the volume of this tetrahedron,

(b) the radius of the sphere cir-
cumscribed about it.

4. The lengths of two opposite
edges of a tetrahedron are a and a,
and the angle between them is o; the
lengths of two other opposite edges
and the angle between them are b,
b,, and B, respectively; and the
lengths of the two remaining edges
and the angle between them are c,
¢y, and ¥, (o, B, y< /2).

(a) Prove that one of the numbers
aa, cos o, bb, cos B, and cc, cos y
equals the sum of two others.

(b) Find the angles o, B, and v
given a, a,, b, b}, ¢, and c;. (@]
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M266

Let x® = y. The equation becomes
I8 =2, or y7 = 28, We can see that
y> 1. Let flx) = y¥. We will show that
f increases monotonically for y > 1.
Thatis, if a < b < 1, then a® > bP. This
is easy: we have a9 > a? > b?. Hence
the equation y¥ = 1 can have only
one solution, and it is easy to guess
that this unique solution is y = 4.
Answer: x = 21/4,

M267

Triangles APB and CPA (fig. 1) are
similar, since they both have a 120°
angle at P and ZABP = 60° — ZBAP
= ZPAC. Therefore, BP/AP = AP/CP,

A

C

B
Figure 1

from which we obtain BP - CP = AP?
= a?. Therefore, the area of triangle
BPCis

1 23
o

EBP~CPsin6O°= a

Answer:

-0
a T
M268

Change the variables as follows:

u-1
u+l

X =
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Simple transformations yield the
following system:

uv? = 3, u? = 2v.

Answer:

Jo

" ] R
_R12-1 2

X = , V= ;
§@+1 iﬁ”
2

M269

Let u = (x2 - 1)/(y + 1) and v
= (y* - 1)/(x + 1). Both u and v are
certainly rational numbers. The
problem states that u + v is an inte-
ger, and the product uv is also an
integer (the denominators cancel
out). So we can form a quadratic
equation, with integer coefficients,
whose two roots are u and v. Sup-
pose this equationis z2 + mz +n =0
(so that -m = u + v and n = uv). Let
us examine the discriminant
m? - 4n. It is certainly rational. We
can show it has the same parity as m
itself. Indeed, m? has the same par-
ity as m, and 4n is even, so adding it
to m?> doesn’t change the parity of
the expression.

M270

Proof of item (a). Denote the dis-
tances from point D to AB, AC, and
BC by x, x, and y, respectively, and
the distances from point F to the
same lines by m, m, and n. The
equality of angles in the assump-
tions of the problem is equivalent to
the equation x/y = n/m. We will
show that the equality of angles in
the assumption of the problem im-
plies the equation x/y = n/m, which
in turn implies the equality of the
angles in the problem statement.

Indeed, let X be the foot of the
perpendicular from D to AB. Let Y
be the foot of the perpendicular
from F to BC. The equality of the
two given angles implies that
ZFBY = /DBX. Thus triangles FBY
and DBX are similar, and CX/FY
= DB/FB, or x/n = DB/FB. Drawing
perpendiculars from D to BC and
F to AB, we find two more similar
triangles, which give us the equa-
tion y/m = DB/FB. It follows that
x/y = n/m. The reader can prove
that this last equation implies the
statement of the problem.

Proof of item (b). Consider one of
the two circles that pass through
points D and F and are tangent to
side BC (as shown in figure 2). De-
note this point of tangency by P. Let
M be the point of intersection of the
bisector of angle A with the circle
circumscribed around triangle
ABC. Let K be the second point of
intersection of line MP with the
circle constructed (passing through
points D and F). We prove that K
lies on the circle circumscribed
around triangle ABC. Notice that
triangles DMB and FMB are similar,
since they have a common angle M

A

Figure 2




and

ZBFM = LFAB + ZFBA
= /MBC + £ZDBC = £ZDBM.

Therefore, MF/MB = MB/MD, from
which we get MB% = MF - MD. We
know that if two secants are drawn
to a circle from an outside point, the
product of the secant and its exter-
nal segment is constant. Thus we
obtain MF - MD = MP - MK. There-
fore, MP - MK = MB?, from which we
get MP/MB = MB/MK. Therefore,
triangles MPB and MKB are similar
(they have a common angle M and
the sides adjacent to this angle are
proportional). Therefore, £MKB
= /MBP. However, Z/MBP = ZMBC
- /MCB. Thus, ZMKB = ZMCB,
which means that points B, C, M,
and K lie on the same circle. Thus,
we have proved that K lies on both
circles whose tangency must be
proved. The tangent to the circum-
scribed circle at point M is parallel
to BC—that is, it is parallel to the
tangent to the other circle (passing
through points D and F| at point P.

Let KY be the tangent to the large
circle (with points K and P on the
same side of line MK). Then £KMY
= £KPY, so MK is equal in measure
to PK. Hence £ZPKY = (1/2)MK
= (1/2)]/9_12', which means that KY is
tangent to the small circle as well.
So the two circles have a common
tangent at K, and so are themselves
tangent at K.

Physics

P266

From the problem statement, we
can see that the momentum of the
system is zero:

m,v + m,(-3v] =0,

because m, = 3m,. The absence of
total momentum in a closed system
means that its center of mass
doesn’t move.

In the case of two particles, the
center of mass is located on the line
connecting the particles. Moreover,
it divides the line segment in the

Figure 3 B
inverse ratio of the mass ratio. Thus,
the second particle’s trajectory is
drawn as shown in figure 3. We draw
a line AB connecting particles 1 and
2 at the given moment of time,
when v, =-3v,, . Then we subdi-
vide this line segment into four
equal parts and mark the point one-
fourth of the way from the first par-
ticle. This determines the position
of the motionless center of mass.
Then we connect an arbitrary point
of the first particle’s trajectory (say,
point A,) with the center of mass by
the line segment A, O and extend it
so that OB, = 3A,0. Point B, will
be the corresponding point on the
trajectory of the second particle.
By repeating this procedure for all
points of the first particle’s trajec-
tory, we get the trajectory of the
second particle.

P26/

The force of gravitational attrac-
tion
mgm
F= G—} £
of the Sun imparts the centripetal
acceleration
a.=o
to Earth, where o is angular veloc-
ity; T = 1 year, the period of revolu-
tion of Earth around the Sun; mg and
my are the masses of the Sun and
Earth, respectively; and L is the ra-
dius of Earth’s orbit. According to
Newton’s second law,

mein

However,
mg _
R—% =8
SO
3 Ré _ 4n? I
s&= L_Z = Mg —772_ /
or
mg gR]?T2
mg - 4r213 (1)
Because
4
Mg gnRSPE
and
4
mg = gTCRgpg/
equation 1 yields
pr _ gRIT?
ps  4mlI’R;

Now we must only express R
in terms of L and o. We can see
that R¢ = La/2 (fig. 4], so finally we
have

pp _ go°T?

= =44,
Ps  32m’R;

P268

When the conducting plate is
placed in the electrical field, the free
charges in the plate are rearranged

Figure 4
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Figure 5

by the field. As a result, opposite
charges accumulate at opposite
faces of the plate. Inside the plate,
the electric field is zero. This means
that the free charges located on the
plate’s surface generate an electric
field, whose intensity is —E inside
the plate and zero outside of it.

Immediately after the external
electric field is eliminated, only the
field generated by surface charges
remains inside the plate. The energy
of this field is

2
U = %Eosd

Under the effect of this field,
the charges are spread out over the
entire volume of the plate. During
this process, the energy stored in
the field is dissipated in the form
of heat:

2
Q = %Sosd

P269

The same current flows in the
coil and capacitor, so the voltages
across them have opposite phases.
Thus, the difference of these volt-
ages is equal to the power supply
voltage. This is possible either when
V. = 0 (infinitely large capacitance)
or when V. = 440 V. In the latter
case the capacitative impedance of
the capacitor is twice the inductive
impedance of the coil:

= =2mL,
oC

from which we get
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1 1

C=———=————=5F.
202L  8n*f’L

The dangerous value of capaci-
tance corresponds to the case when
the inductive and capacitative im-
pedances are equal, which is when
Ciomia = 10 UF, because at this value,
resonance occurs. At resonance, the
resistance of the RC-circuit tends to
zero, which means infinite current
in the circuit.

P270

To locate the image of the square,
it is most convenient to use the rays
that pass through the focal point of
the lens. The ray ABGF (fig. 5 is the
most informative, because it travels
along the upper side of the square, so
the images of all the points of this
side must lie either on ray GF or its
extension. Let’s trace ray AM, which
travels through the left focal point F
of the lens, and ray BN, which seems
to emerge from this focal point. Af-
ter passing through the lens, both
rays travel parallel to the lens’s prin-
cipal optical axis.

The real image A’ of point A is
formed by the crossing of rays GF
and MA’. Similarly, the virtual im-
age B’ of point B is at the intersec-
tion of the continuations of rays GF
and NH. To find the positions of the
images C" and D’ of points C and D,
it is sufficient to drop the corre-
sponding perpendiculars to the prin-
cipal axis. The images of sides AC
and BD, which are perpendicular to
the principal optical axis, must also
be perpendicular to this axis.

To trace rays AM and BN, we
must enlarge the lens on both sides.
This is permissible, because any part
of the lens produces the same image
as the entire lens (they differ only in
illumination).

Therefore, the image of the
square consists of two parts: a real
image (a part of the angle to the right
of A’C’) and a virtual image (a part of
the angle to the left of B’D’). The real
image is produced by the half of the
square that lies outside the focal
plane, while the virtual image corre-
sponds to the half of the square lo-

Pt

Figure 6

cated nearer to the lens than the fo-
cal plane.

Brainteasers

B266

The total number of games was
(15 +9 + 14)/2 = 19. Each player
missed no more than one game in
succession. Robbie played 9 games.
Therefore, he played only in even-
numbered games. (Otherwise, the
number of games he played would
be greater.] Therefore, Teresa and
Alex played in the 13th game.

B267

Yes, it is possible (see figure 6).

B268

The fly was airborne for 1 hour
(the time that passed until the bik-
ers met). The fly flew with the wind
for 23 km more than it flew into the
wind (this is the distance traveled by
Josh|. If we let t, and ¢, be the times
during which the fly flew with the
wind and into the wind, respec-
tively, we can set up a system of
equations: t; +t, = 1, 40t, - 30t, = 23.
We find t, - 53/70 and t, = 17/70.
Therefore, the distance traveled by
the fly is

.53 +30- 17 = 37i km.
70 70 7

B269

Yes, it is possible. Mesh the gear
wheels successively with each other
such that they form a Mdobius strip
(see figure 7—the planes of two ad-
jacent wheels are arranged at a small
angle to each other, and the total
angle between the planes of the first
and last wheels is 180°). For a suffi-
ciently large number of wheels, in
particular, for 101 wheels, they can

40




Figure 7

be arranged as described. An odd
number of wheels thus arranged can
rotate. However, if the number of
wheels is even, they cannot rotate.

B270

Subdivide the ball into thin lay-
ers perpendicular to the diameter
that connects the wires. Since
each layer is pierced by the same
current, and the resistance of a
layer is inversely proportional to
its area, more heat is dissipated in
the layers with the smallest area—
the polar layers. Thus, most heat
is dissipated at the regions where
the wires contact the ball.

Gradus

2. The number M ends in the digit
2. The argument in the solution of
problem 1 shows that it cannot be a
perfect square.

3. Any such four-digit number
must end in 2, 3, 7, 8. But no perfect
square ends in these digits. (This
solution is correct whether you in-
terpret the problem to mean that
each digit is used exactly once, or
whether you want to include mul-
tiple appearances of the same digit
in your number.)

5. We look at remainders upon
division by 4. These can be only 0,
1, 2, or 3, and their squares have re-
mainders 0, 1, or 4. A perfect square
cannot have a remainder of 2 or 3
when divided by 4.

6. The number 911 + 3 = 3(3n + 1) is
a multiple of 3 but not of 9. Such a
number cannot be a perfect square. A
similar argument holds for 9n + 6
=3(3n +2). For a more general method,
see the solution to problem 8.

7. The sum of the digits of such a
number is 2001, which is a multiple
of 3 but not of 9, so the number it-
self cannot be a perfect square (be-
cause the number is also a multiple
of 3 but not of 9).

8. If we square all possible re-
mainders when dividing by 9, we get
the possible remainders of perfect
squares when divided by 9:0, 1, 4, 7.
The given numbers have remainders
2,5, and 8, respectively, and so they
cannot be perfect squares.

9. If we divide by 3, the given
number has the same remainder as
4+4+4+...+4=(1001)(4), which
has remainder 2. But we can quickly
check, using the methods we de-
vised earlier, that a perfect square
cannot have this remainder when
divided by 3.

10. Forn=1, 2, 3, 4, 5, we can
check directly that n! + 2000 is not
a perfect square. For n > 6, n! is a
multiple of 9, and since 2000 has
remainder 2 when divided by 9,
n! + 2000 also has remainder 2. By
the result of problem 7, it cannot be
a perfect square.

13. We know that 2500 = 50 - 50
is a perfect square. If the given prod-
uct is a perfect square, then so is
2499 - 2501, But this is impossible,
by the result of problem 10.

14. We have

nn+ 1)n+2)n + 3)
= (n? + 3n)(n? + 3n + 2)
= (n% + 3n)? + 2(n? + 3n)
=[[n*+3n)+1]*-1,

which is one less than a perfect
square, and so cannot itself be a per-
fect square.

15. The form of the given expres-
sion suggests we look at (m + n + k)%,
for small integer values of k. Indeed,
we find that if m > 11, the given num-
ber is strictly between (m + n + 1)?
and (m + n + 2)2. If m < n, our num-
ber is strictly between (m + n)?* and
(m +n + 1)2. In either case, it cannot
be a perfect square.

16. Forn =4, N =33, and ends in
3 (so cannot be a perfect square, from
the result of problem 1). For n > 5 the
situation does not improve, because
k! ends in O for k > 4, so N still ends
in 3, and still cannot be a perfect
square.

17. Let p be the largest prime that
divides n!. If we want n! to be a
square, it must contain at least one
more multiple of p, namely 2p. But
according to Bertrand’s postulate,
between p and 2p there must be an-
other prime. This contradicts our
assumption that p is the largest
prime that divides n!.

Tetrahedron

1. Complete the given tetrahedron
to create a parallelepiped using the
second method, then apply the for-
mula that relates the sum of squared
side lengths of a parallelogram to the
sum of its squared diagonals.

2. Complete the given tetrahe-
dron to create a parallelepiped using
the second method. To satisfy the
condition of the problem, it is nec-
essary and sufficient that the corre-
sponding face of the parallelepiped
constructed be a rhombus.

3. (a)

Hint: see problems 3 and 4.

4. Complete the given tetrahe-
dron to make up a parallelepiped
using the second method. Using the
law of cosines, represent the qua-
druple square of the length of each
edge of the parallelepiped in terms of
the lengths of the diagonals of the
corresponding face and the angle
between them (one face for each
edge). Then, apply the theorem on
the sum of squares of the diagonals’
lengths of a parallelogram and the
sum of the squares of its sides. Com-
bine these equations to obtain the
desired result.

QUANTUM/ANSWERS, HINTS & SOLUTIONS 83




COWCULATIONS

Gontented cows

by Dr. Mu

ELCOME BACK TO COWCULATIONS, THE
column devoted to problems best solved with a
computer algorithm. What does it take to pro-
duce grade AAA milk? You certainly need
healthy cows, wholesome food, well ventilated and
sanitary barns, clean udders, sanitary utensils, prompt
cooling and protection against dust, flies, and other con-
tamination. That will get you up to grade AA. But to get
the triple A rating, you need a bit more. You need well
adjusted, and most importantly, contented cows.

Can you buy contentedness in a feed bag? No, it only
makes for fatter cows. If it were that
easy, anyone could produce grade
AAA milk. No, to have truly con-
tented cows you must massage their
brains. Here at Farmer Paul’s Regis-
tered Holstein Dairy, we exercise the
mind by feeding our herd a healthy
diet of numbers to crunch on. Here’s
a typical tasty byte. Consider the dig-
its 1234567 ... nn, where n<9. Find a
way to insert pluses or minuses be-
tween digits so the sum of the expres-
sion is zero. For example, with n =9,
1-2-34+5+6+7+8+9=0.Find-
ing all such solutions can keep a herd
contented all afternoon. This sug-
gested the next problem, which is your
next Challenge Outta Wisconsin.

cow 17

Write a program that takes as input an integer n <9
and finds all ways to insert pluses or minuses between
the digits 12345 . . . n so the resulting expression sums
tozero. 1 -2-34+5+6+7+8+9=0Iis one solution
for n = 9. Find all of them.

o=

[

S Place the digits in a progression.

= Insert signs to make an expression.

C% Find all those that sum to zero,

x And you will be a barnyard hero.

~ Better yet, your grade will rise,

2 And your milk will be homogenized.

z ~Dr. Mu
04 JULY/AUGUST 1989

COW 15

In Cow 15 you were asked to write a program that
generates the terms of the sequence 1,2, 3, 6, 4, 8, 5, 10,
7,14, 9,18, . . . Test your program by finding the
100,000th term. Speed and elegance count.

Solution

The most elegant solution was submitted by Russ
Cox, a former gold medalist for the United States at the
1995 International Olympiad in Informatics in the
Netherlands. Russ writes, “Basically,
the sequence consists of pairs of
numbers (11, 2n1) sorted by 11, such that
each number appears in the sequence
(as either n or 2n) exactly once. We
consider the sequence as two inter-
laced sequences: one increasing ‘pri-
mary sequence’ (the n’s) and one in-
creasing ‘secondary sequence’ (the
2n’s). To print the sequence we must
simply devise a test for primary-ness
and then print all pairs (n, 2n) where
n is a primary number.

First we note that if a number is
not in the secondary se-
quence, it must be in the pri-
mary sequence. Next, we note
that there are no odd numbers in
the secondary sequence, so they
must all be in the primary se-
quence. Since all the odd numbers
are in the primary sequence, it must be
true that all numbers of the form 2*odd,
where odd is an odd number, must be in the sec-
ondary sequence. This means that all numbers of the
form 4*0dd are in the primary sequence. (If any num-
ber of the form 4*odd were in the secondary sequence,
then 4*0dd/2 = 2*0odd would be a primary number,
which it is not). Thus 8*odd must be a secondary
number. So it turns out that numbers of the form
27 odd, where n is even are primary numbers, and
numbers of the form 272 odd, where n is odd, are sec-
ondary numbers.



This leads to a very nice recursive definition in
Mathematica of what it means to be a primary number.

primaryQ[n ] := If[0ddQ[n],
primaryQ[n/2]1]

True, !

The function primaryQ works as follows: If the num-
ber 1 is odd, then it is primary. If it is not odd, divide it
by 2 and take the negative of the test applied to n/2. So
if n has only one factor of 2, it will not be primary; if it
has two, it will be primary; and so on. For example, 4,
12, 16, and 20 are all primary numbers, because they
contain an even number of factors of 2.

Map [primaryQ, {4, 12, 16, 20}]

{True, True, True, True}

Now we can use primaryQ to select those numbers
from 1 to n that are primary and put them together with
the corresponding secondary number (2*primary num-
ber) and flatten them all into one list. This is done in
Mathematica as follows:

n = 100;
Flatten[Transpose[{primarySequence =
Select[Range[n], primaryQl, 2

primarySequence}]]

{1, 2, 3, 6, 4, 8, 5, 10, 7, 14, 9, 18,
11, 22, 12, 24, 13, 26, 15, 30, 16, 32,
17, 34, 19, 38, 20, 40, 21, 42, 23, 46,
25, 50, 27, 54, 28, 56, 29, 58, 31, 62,
33, 66, 35, 70, 36, 72, 37, 74, 39, 78,
41, 82, 43, 86, 44, 88, 45, 90, 47, 94,
48, 96, 48, 98, 51, 102, 52, 104, 53,
106, 55, 110, 57, 114, 59, 118, 60, 120,
61, 122, 63, 126, 64, 128, 65, 130, 67,
134, &8, 136, 69, 138, 71, 142, 73, 146,
75, 150, 76, 152, 77, 154, 79, 158, 80
160, 81, 162, 83, 166, 84, 168, 85, 170
87, 174, 89, 178, 91, 182, 92, 184, 93
186, 95, 190, 97, 194, 99, 198, 100, 200

The 100th number in this special sequence is 150.
%[[100]]
1.50

The only problem with the Mathematica solution
above is that we don’t know exactly when we have
reached the 100,000th term and no more. This can be
taken care of with a simple While loop that counts how
many primary numbers have been found and stops at
50,000. Thus, the 100,000th term in the special se-
quence is twice this primary number.

n = 50000;
primary = 1; count = 1;
While[count < n, primary++;

If [primaryQ[primary], count++]]
{primary, 2*primary}

{74999, 145998}

Here is another solution that I wrote in a proce-
dural style. It is a bit harder to figure out how it
works. Try it!

n = 50000;

primary[l] = 1; secondaryl[l] = 2;

i =1; number = 1; index = 1;

Do [number++; i++;
If [number == secondary[index], number++;

index++];

primary[i] = number; secondary[i] = 2
number, {n}];

The answer to the 100,000th number in the sequence
is the 50,000th secondary number.

secondary[n]
149998

A solution similar to Russ’s was submitted by Mario
Velucchi, from Piza, Italy.

And finally . . .

Send your solutions to drmu@cs.uwp.edu. Past so-
lutions are available in Mathematica notebooks at
http://usaco.uwp.edu/cowculations.

The USA Computing Olympiad has just selected
the 15 finalists who will meet June 15-23, at the Uni-
versity of Wisconsin-Parkside in Kenosha, Wiscon-
sin, to compete for one of four positions on the USA
Computing Olympiad team. This team will represent
the United States at the 11th International Olympiad
in Informatics to be held in Antalya, Turkey, Octo-
ber 9-16, 1999. The finalists were selected by their
rankings in the USACO National Competition and
the three Internet Competitions held throughout the
year.

The finalists are: David Cheng, Junior, Brandywine
HS, Wilmington, Del.; John Danaher, Junior, Thomas
Jefferson HS for Science and Technology, Alexandria,
Va.; Gary Huang, Sophomore, Templeton West HS,
Appleton, Wisc.; Bill Kinnersley, Junior, Lawrence
HS, Lawrence, Kans.; Percy Liang, Junior, Mountain
Pointe HS, Phoenix, Ariz.; Benjamin Mathews, Se-
nior, St. Marks HS, Tex.; Jon McAlister, Senior,
Langham Creek HS, Houston, Tex.; Ilia Mirkin,
Sophomore, Thomas Jefferson HS for Science and
Technology, Alexandria, Va.; Oaz Nir, Sophomore,
Monta Vista HS, Saratoga, Cal.; Vladimir
Novakovski, Freshman, Thomas Jefferson HS for Sci-
ence and Technology, Alexandria, Va.; John O’Rorke,
Junior, Centennial HS, Boise, Ida.; William
Potscavage, Junior, Langham Creek HS, Houston,
Tex.; Kaushik Roy, Senior, Montgomery Blair HS,
Silver Spring, Md.; Daniel Wright, Senior, St. David’s
College (South Africa), now living in Lafayette,
Colo.; Daniel Zaharopol, Junior, Vestal Senior HS,
Vestal, N.Y.

If you are seeking contentedness, try crunching our
brand of programming bytes at http://www.usaco.org. (@]
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Oct98, p42 (At the Blackboard)

Bohr’s Quantum Leap (history of
atomic theory), A. Korzhuyev, Jan/
Feb99, p42 (Looking Back)

Can You Trace the Rays? (ray dia-
grams), A. Leonovich, May/Jun99,
p28 (Kaleidoscope)

A Cardioid for a Mushroom Picker
(the curvy path of a lost forager), S.
Bogdanov, Jul/Aug99, p34 (At the
Blackboard)

The Century of the Cycloid (histori-
cal patterns), S. G. Gindikin, Mar/
Apr99, p36 (Looking Back])
Coalescing Droplets (surface tension
and drops), A. Varlamov, May/
Jun99, p26 (At the Blackboard)
Cold Boiling (just add water], S.
Krotov and A. Chernoutsan, Jan/
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Feb99, p33 (In the Lab)
Completing a Tetrahedron (a geo-
metrical trick of the trade), I. F.
Sharygin, Jul/Aug99, p46 (At the
Blackboard)

Completing the Square (quadratic
equations), Mark Saul and Titu
Andreescu, Nov/Dec98, p35 (Gradus
ad Parnassum)

Contact (number bit patterns), Dr.
Mu, Nov/Dec98, p52 (Cowculations)
Contented Cows (finding all ways
to sum digits in a number to zero),
Dr. Mu, Jul/Aug99, p26 (Cowcu-
lations)

Convection and Displacement Cur-
rents (nature of electricity), V.
Dukov, Mar/Apr99, p4 (Feature)
Core Dynamics (transformers ex-
plained), A. Dozorov, Mar/Apr99,
pl4 (Feature)

The Danger of Italian Restaurants
(poem), David Arns, Sep/Oct98, p60
(Musings)

Diffraction in Laser Light (seeing
diffraction patterns), D. Panenko,
Mar/Apr99, p33 (In the Lab)

Divide and Conquer! (shortcut divis-
ibility rules), Ruma Falk and Eyal
Oshry, Mar/Apr99, p18 (Feature)
Divisibility Rules (problems in di-
visibility), Mark Saul and Titu
Andreescu, Mar/Apr99, p43 (Gradus
ad Parnassum)

Do You Really Know Vapors? (water
behavior), A. Leonovich, Sep/Oct98,
p32 (Kaleidoscope)

Dutch Treat (generating a se-
quence), Dr. Mu, Mar/Apr99, p55
(Cowculations)

Electric Currents on Coulomb Hills
(the ups and downs of a circuit), E.
Romishevsky, Jul/Aug99, p37 (At
the Blackboard)

Elevator Physics (free-falling balls),
Arthur Eisenkraft and Larry
Kirkpatrick, Mar/Apr99, p30 (Phys-
ics Contest)

Errors in Geometric Proofs
(searching for mistakes), S. L.
Tabachnikov, Nov/Dec98, p37 (At
the Blackboard)

Euclidean Complications (alternate
geometries), I. Sabitov, Sep/Oct98,
p20 (Feature)

The Eyes Have It (workings of the
human eye), Arthur Eisenkraft and
Larry Kirkpatrick, May/Jun99, p30
(Physics Contest)

Faraday’s Legacy (communicating a
love of science), Laurence I. Gould,
Nov/Dec98, p2 (Front Matter)

Fire and Ice (report on the 1998 In-
ternational Physics Olympiad), Sep/
Oct98, p56 (Happenings)

Flexible Polyhedral Surfaces (bend-
ing the rules), V. A. Alexandrov,
Sep/Oct98, p4 (Feature)

Fly Zapper (kill ‘em and count ‘em),
Dr. Mu, Nov/Dec98, p62 (Cowcula-
tions)

Functional Equations and Groups
(and how to solve them]), Y. S.
Brodsky and A. K. Slipenko, Nov/
Dec98, pl4 (Feature)

Generating Functions (problem-
solving methods), S. M. Voronin
and A. G. Kulagin, May/Jun99, p8
(Feature)



Gliding Home (propelling a glider
long distances], Albert Stasenko,
Mar/Apr99, p21 (At the Blackboard)
High-Speed Conservation (physics
at near-light speeds), A. Korzhuyey,
Sep/Oct98, p38 (At the Blackboard)
Hula Hoop (circular animation), Dr.
Mu, Jan/Feb99, p54 (Cowculations)
Hurling at the Abyss (oscillating
too-short bridges), A. Stasenko,
Nov/Dec98, p43 (At the Blackboard)

I Can See Clearly Now (poem),
David Arns, Nov/Dec98, p8

Image Charge (electrostatic investi-
gation), Larry D. Kirkpatrick and
Arthur Eisenkraft, Jul/Aug99, p30
(Physics Contest)

In Focus (optics and your eyes), A.
Dozorov, Sep/Oct98, p48 (At the
Blackboard]

Interacting Bodies (all about colli-
sions), A. Leonovich, Jan/Feb99, p28
(Kaleidoscope])

Karate Chop (physics of tame-
shiwari), A. Biryukov, May/Jun99,
pl4 (Feature)

Lattices and Brillouin Zones (po-
lygonal patterns), A. B. Goncharov,
Nov/Dec98, p4 (Feature)

Light in a Dark Room (history of the
camera obscura), V. Surdin and M.
Kartashev, Jul/Aug99, p40 (Looking
Back)

The Lorentz/FitzGerald Diet
(poem), David Arns, Jan/Feb99, p41

Magnetic Fieldwork (measuring
magnetic fields), D. Tselykh, Sep/
Oct98, p46 (In the Lab)

Magnetic Personality (Hans Chris-
tian Qrsted), V. Kartsev, May/Jun99,
p42 (Looking Back)

Message from Afar (poem], David
Arns, May/Jun99, p48 (Musings)

Nascent non-Euclidean Geometry
(revisiting a geometry classic), N. L.
Lobachevsky, May/Tun99, p20 (Fea-
ture)

The New Earth (physics of a hollow
Earth), A. Stasenko, Jul/Aug99, pl6
(Feature)

Numerical Data in Geometry Prob-

lems (new angles to problem solv-
ing), S. V. Ovchinnikov and I. F.
Sharygin, May/Jun99, p37 (At the
Blackboard]

One’s Best Approach (summing up
reciprocals), O. T. Izhboldin and L.
D. Kurlyandchik, Mar/Apr99, p24
(At the Blackboard)

Painting the Digital World (surface
areas of pixels and voxels), Michael
H. Brill, Mar/Apr99, p10 (Feature)
The Pointed Meeting of a Triangle’s
Altitudes (various ways of proving a
well-known theorem), I. F. Sharygin,
Jul/Aug99, p28 (Kaleidoscope)
Prime Time (prime number infini-
tude), G. A. Galperin, Jan/Feb99, p10
(Feature)

The Problem of Eight Points (inter-
secting lines), N. B. Vasiliev, Jan/
Feb99, p25 (At the Blackboard)

The Quantum Nature of Light (vis-
ible proof of quanta), D. Sviridov and
R. Sviridova, Nov/Dec98, p28 (Look-
ing Back]

Relativity of Motion (frames of ref-
erence), A. I. Chernoutsan, Mar/
Apr99, p44 (At the Blackboard)
Remarkable Geometric Formulas
(algebraic relations), I. F. Sharygin,
Mar/Apr99, p28 (Kaleidoscope)
Rigidity of Convex Polyhedrons
(solid solutions), N. P. Dolbilin, Sep/
Oct98, p8 (Feature)

Satellite Aerodynamic Paradox (or-
bital irregularities), A. Mitrofanov,
Jan/Feb99, p18 (Feature)

SciLinks: The World’s a Click Away
(techy textbooks), Gerald F. Wheeler,
Sep/Oct98, p2 (Front Matter)

Sea Waves (describing wave mo-
tion), L. A. Ostrovsky, Nov/Dec98,
p20 (Feature)

Sky (poem), David Arns, Mar/Apr99,
p54

Sound Power (intense acoustic waves),
O.V.Rudenko and V. O. Cherkezyan,
Sep/Oct98, p26 (Feature)

Sportin’ Life (physics of free throws
and field goals), Arthur Eisenkraft
and Larry Kirkpatrick, Jan/Feb99,

p30 (Physics Contest]

Square or not Square? (recognizing
which numbers can’t be perfect
squares), Mark Saul and Titu
Andreescu, Jul/Aug99, p49 (Gradus
ad Parnassum)|

The Steiner-Lehmus Theorem (ad-
dressing angle bisectors), I. F.
Sharygin, Nov/Dec98, p26 (At the
Blackboard)

2-adic Numbers (introduction to
Hensel distances), B. Becker, S.
Vostokov, and Y. Tonin, Jul/Aug99,
p21 (Feature)

Think Twice, Code Once (cutting a
tree trunk into boards), Dr. Mu,
May/Jun99, p55 (Cowculations)

Up, Up, and Away (hot air rising),
Arthur Fisenkraft and Larry
Kirkpatrick, Sep/Oct98, p34 (Phys-
ics Contest)

Vacuum (making something out of
nothing), A. Semenov, Jul/Aug99,
pl2 (Feature)

Warp Speed (traveling faster than
light), Arthur Eisenkraft and Larry
Kirkpatrick, Nov/Dec98, p32 (Phys-
ics Contest)

Wave on a Car Tire (limitations to
speed), L. Grodko, Nov/Dec98, pl10
(Feature)

Weightlessness in a Magic Box ([some
assembly required), A. Dozorov,
May/Tun99, p41 (In the Lab)

When Things Fall Apart (exercises
in stability), Boris Korsunsky, May/
Jun99, p4 (Feature)

Why Don’t Planes Fly with Cats and
Dogs? (flight dynamics), S. K.
Betyaev, Sep/Oct98, pl4 (Feature)
Why Is a Burnt Match Bent? (play-
ing with fire), V. Milman, Nov/
Dec98, p40 (In the Lab)
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“Pathways is a roadmap, a
model. It could get us closer to a
strengthened science literate
citizenry than any other
guidelines currently available”

Dr. John R. Pancella
Science Education Consultant

“I am delighted to report that
this book may be a means of
rescuing many practitioners
from the overwhelming nature
of the task of reform before
them.”

Dr. Dennis W. Cheek
Rhode Island Department of
Education, Director

Bring the Science Standards to life
with the NSTA Pathways Series

Guidelines for Moving the Vision into Practice
Each practical guidebook demonstrates how you can carry the vision
of the Standards—for teaching, professional development, assessment,
content, program, and system—into the real world of the classroom and
school. Pathways is also a tool for you to use in collaborating with
administrators, school boards, and other stakeholders in science
education. Filled with specific suggestions and clear examples that guide
teachers on implementing each of the standards, Pathways is a valuable
resource for everyone involved in science education.
(Elementary School, Middle School, and High School Editions available)

EACH PATHWAYS BOOK ADDRESSES:

Science Teaching Standards
Professional Development Standards
Assessment Standards
Content Standards
Program Standards

System Standards

Each Edition of NSTA Pathways Resources for the Road
$34.95 CD-ROM (MAC/WIN)

A Elementary School #PB124X #PB146X $19.95

(grades K-6, 1997, 152 pp.)

Set of 3 Pathways &

CD-ROM

(includes K-6, 5-9, and

9-12 books, and

Resources CD-ROM)

#PB131X $112.50

A Middle School #PB125X
(grades 5-9, 1998, 156 pp.)

A High School #PB126X
(grades 9-12, 1996, 196 pp.)

To order, call 1-800-722—-NSTA

Resources for the Road CD-ROM

Resources for the Road CD-ROM contains
supplemental bibliographic materials for all
three volumes (K-12) of NSTA Pathways.
This CD has been designed with a list of
contents arranged by science standard to
agree with the table of contents appearing in
the three Pathways books. (general, 1998)
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