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GALLERY O

II T THE TIME PANINI PAINTED THIS PICTURE, TFIE
ll giant 8 m wide oculus in the middle of the Pantheon's
immense dome had been peering up at the sky for 17
centuries. The dome, which is 43 m in diameter, re-
mained the largest such structure until modern times.

With the bright disk of light shining on the wal1, this
grand architectural marvel looks rather like a pinhole

O! or iolo. -:

Interior oi tlte Ptuttheon, Ronte 1c. 17.3J1 b1- Gror-amr Paolo Paninr

camerq or carneraobscura. Like the Pantheon, the cam-
era obscura has been around for a long time. In {act, it
is thought to have been used by the ancient Greeks. The
camera obscura, as many people know, is quite useful
in safely observing solar eclipses/ but it also turns out
to be handy for observing su.nspots/ as we will see in
"Light in a Dark Room" on page 40.
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Cover art br'liln Vttschenko

If it takes yolr so lor-rg to solve a geom-
etry problem that the problem starts
attractillg ihes, then it's probably time
to seek help. Fortunately, help is just a

few pages au a1'.

One useiul rnethod for avordlng geo-
metrical ilie. in rhc ointrnent is to ex-
tend the sides oi the grr-en irgure to cre-
ate a new figure. Ior a iull explanation
of this method and more on dealing
with pesky polyhedrons, tLLrn to "Com-
pleting a Tetrahedron" on page .17.
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8266
Chess champs. Teresa, Robbie, and Alex played a chess tournament

as follows. Two of them played a game, then the other played the
winner, and so on. (If the game ended in a draw, the player who played
white pieces is considered to have lost.) At the end of the tournament,
Teresa had played 15 games, Robbie had played 9 games, and Alex had
played 14 games. Who played in game number 13?

8270
Electrified sphere. Wires are connected to diametrically opposite

points on a homogeneous metal ba1l. In what cross-section of the ball
will the electric current produce the most heat?

8268
Frcquent flyer. Two cyclists, Kaitlin and |osh, simultaneously started

toward each other from two towns 40 km apart. |osh rode at 23 kmfh, and
Kaitlin rode at 17 km/h. Before departure, a fIy landed on |osh's nose. At the
moment of departure, it started to fly toward Kaitlin at 40 km/h. When it
reached Kaitlin, it immediately fiew in the opposite direction at 30 km/h
(the wind blew toward Kaitlin). As soon as the fly reached |osh, it turned
back again, and so on. Find the total distance flown by the fly until the
cyclists met (the speed of the fly was constant in each direction).

8267
Nesting triang)es. The two legs of one isosceles triangle are equal to

the two legs of another. Is it ever possible to place one of these triangles
completely inside the other?

8269
Get it in gear. Five gears arranged as shown cannot rotate. Is it possible

to arrange 101 gears in such away that each of them meshes with two
adjacent gears and thatif one wheel rotates/ then all the others rotate?
(The axes of adjacent wheels do not have to be paral1el.) (D. Anisov)

ANSWERS, HINTS & SOLUTIOIVS O/V PAGE 52
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Al'ilhmelic ohslaules

Can you get there from here?

by N. Vaguten

I N MANY MATHEMATICAL
I theories, applied problems, and

lpuzzles, the following questions
I often arise: Is it possible to move
from one position to another using
certain "approved" operations? How
can a desired sequence of moves be
found if it exists, or how can it be
proved that the desired transition
does not exist? We will consider sev-
eral problems of this type. These
problems have another common fea-
ture: they involve integers, and the
obstacles that inhibit certain transi-
tions are usually of an arithmetic
nature.

The examples that begin the dis-
cussion of each problem can be eas-
ily understood even by younger stu-
dents. Exercises marked with an
asterisk and proofs of the general
results invite the reader to ponder. A
number of difficult "olympiad-type"
problems are given at the end of the
article, and the last problem lies
close to the theory of arithmetic
groups, which is progressing rapidly
at the present time.

Pro[hm ol a chess kniUhl
Problem 1. The natural numbers

m andn are given. A chess piece 1o-

cated on an infinite checkerboard
can make L-shaped moves consist-

ing of m squares in one direction and
lr squares in the perpendicular dilec-
tion. We call this piece an il l- -

knight. Which squares can this
knight visit?

The common chess knrsht 1 li-
knight) can reach an)' squar. srart-
ing from an arbitrarl'square O In-
deed, it can reach ar:r' square
adjacent to O in three m.-r-e s, and it
is clear that any other s;r*are can be
reached by makrng a sequence of
such elemeritar)- sr<f :.

However, the {1,.1 -knrght, whose
moves are illustrate J rn irgure 1,

cannot reach the square adjacent
{horizontally or vertically) to the

Figure 1. The {1, 3}-knight can
reach any diagonally adjacent
square; these elementary steps
can be used to visit all squares
of the same color.

starting square. This fact can be eas-
ily explained: the {1, 3}-knight al-
ways remains on squares of its start-
ing co1or. On the other hand, it's
easy to show that the {1, 3}-knight
can reach any square of its starting
color. Indeed, it requires three moves
to get to the diagonally adjacent
square (fig. I ), and any other square of
the same color can be reached by
making such elementary steps.

Try to solve problem I for the fol-
lowing numbers m and n: (al (2, 5),
(b) (3, 7), (c) (10, 2s), (d) (re, 79ll.

It tums out that the{m, n}-knight
can reach any square if and only ifrn
and n are of opposite parity and their
greatest common divisor is l.

The complete answer to problem
I is given at the end of section 3 (ex-
ercise 10). Now we consider a sim-
pler problem, the result of which is
usefu1 for the knight problem and for
other, more serious, mathematical
problems.

Be[resgltmion olfie GCD

We consider a one-dimensional
analogue of our problem.

Problem 2. The natural numbers
a and b are given. A move consists
in adding or subtracting one of the
numbers a or b to (or from) a certain
integer. Given some number c, is it

o
C(!

oo
0)a

_o
E
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possible to obtain this number c
from 0 using such moves?

In this problem, Z (the set of all
integers) is phe set of "positions."

First, consider a particular ex-
ample. Suppose that a buyer and a
cashier have an infinite number of
bank notes of 10 and 25 dollars each
(anything can happen in mathemati-
cal problemsl). It is clear that the
buyer canpay c dollars if and only if
c is a multiple of 5.

Here is another example. Assume
that moves t19 and +79 are allowed
on the set Z. Using such moves, we
can obtain any integer: a combina-
tion of such moves makes it possible
to change one's position by 3 and
then by | (fig.}al.

Here is a more complicated ex-
ample: a : Bl9 and b = 367. In this
case, the same method allows us to
find the shortest displacement that

t919t9193
^ 

/.----{ .----:\.----\Al#
---r=-____---l

79

J.'.'OJOI
A A AA-{ --:I.^l++-+-l---+---F-ls=-----------/

t9

a

79=419+.1

19=6'3+i

3=31+{l

lrsl ru E_l s

!.1*!.1)
(_

f fil rr fol s fi-.]'-!_l-!_]*b_]

lrsl s lsl ra f5-l s
ll....*l l'l l.-Zl !21 [1 -)

Figure 2.The numbers '19 and 79 are relatively prime (they are
called coprimes); therefore, several divisions with remainder give
the remainder 1 = GCD(19, 79).

results from a succession of moves. common divisor of 819 and 357 .

This shortest displacement equals Exercise 1. (a) Prove that if a buyer
2l (frg.3a). Thus, we can make any and a cashier have an infinite num-
displacement that is a multiple of ber of bank notes of 3 and 5 dollars
21. On the other hand, both a andb each, the buyer canpay any amount
are divisible by 2l , so no other tran- of dollars.
sitions are possible (b) Is it possible to move from 0 to

Notice that 2l is the greatest 1000 if a:123 andb:456; andif

OUAIIIIUIt4/IEATURI
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Islsl rr lrcLil sI .....*

Eirl Elrl )
( triit 13 fdl s\-l l.....*l l..-[.r] Eorl )
f tioil rr DI s\>l 

-lEr.l Erl )

Figure 3. To find GCD(819, 357) = 21 using Euclid's algorithm,
four steps are needed.

105 105 t05 42/--\ /----\ /----\ /-\#---=-____----l
3s7

42 42 2t
---------\ ----------X z--\
#l
--=--_____--l

105

a

a = 589 andb = 1984?
(c) What transitions are possible if

a: 18 and b = 81?

Now we formulate the answer to
problem 2 in the general case, Let
the greatest common divisor of a

andb (GCD) be d. Then, the transi-
tion from 0 to a number c is possible
if and only if c is divisible by d. Try
to prove this fact.

This proposition will be obtained
in another form in the next section.

Exetcise 2. Prove that the answer
to problem 2 does not change i{ we
allow a only to be added and b only
to be subtracted.

3. Is it possible to weigh the fol-
lowing amounts on a scale using
weights of 36 and 60 grams: (a) 150
g, (b) t32 g?

trclid$ algorifim
In the following problem, the set

of positions consists of all pairs of
integers.

Problem 3. Three machines print
pairs of integers on cards. Every
machine reads a card(x, y) and prints
a new card: the first one prints the
card (x - y, yl, the second one prints
the card l* * y, yl, and the third (y,

x). Let the initial card be (1, 2). Is it
possible to obtain the pairs (19,791 or
(8I9,3571using the machines in any
order desired? Which cards can be
obtained if the initial cardis la, bl?

Denote the operations of the ma-
chines by L, R, and S, respectively.
Once again, we begin with numeri-
ca1 examples. The pair ll9, 791 can

be obtained irom the pair (1, 2). To
find the desired sequence of ma-
chine operations, it would be rnore
convenient to descend from(19,79)
to (1, 2) rather than to ascend in the
opposite drrccri{)n 1fig. 4).

Then, -"r.rite dou.n the sequence of
operations in rer,erse order {exchang-
ing I wlth Rr to obtain the desired
ascent from 1 1, l\ to \19, 79).

In figure -1, the descent from (19,

79) to ll, 2l is continued to the pair
(i, 0). The abrldged notation of this

'(

)'

Figure 4. Every "flight of stairs" of this siaircase represents one
step of Euclid's algorithm.

lld
E]

i,l
[2]

t={
[2]
tidtl

819=2'357+105

357=3'105+.12

105=2'42+71

42:2'21 + 0

b

L2aoI s El-l+l l+l I

Prl E_l

process is shown in figure 2c, where
Ift means that the operation I is per-
formed k times. As a matter of {act,
the same descent was performed in
the example to problem 2lfrg.2a).

An abridged notation of the de-
scent from pair (819, 357) is shown in
figure 3c (we invite the reader to write
the full notation). h this example, the
pair (1, 2) (and (1, 0)) cannot be ob-
tained. This fact can be easily ex-
plained: there is an obstacle that pre-.

vents us from reaching this pair: all
numbers obtained in the process are
divisible by 21. No matter in what or-
der we apply the operations L, R, and
S, we cannot overcome this obstacle,
since every operation used preserves
the GCD:

GCD(x - y, xl: GCD(x + y, xl
: GCD(x, y).

Therefore, we cannot reach the pair
ll, 2) starting from 1819, 3571 and
vice versa.

Exercise 4. Is it possible to per-
form the following transitions using
the operations I, R, and S: (a) from
(1, 10) to 15, 251, (b) from {18, 81) to
(36, 63), (c) from (589, 19841to (31,

tessl?

-uE.H.H.

-LE LA-LH-LH 
nH'

.E*H.H.

E/

fal
!l
E

s

t
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Figure 5. Operations L, B, and S can be used to change the sign
of one of the numbers on the card.

Now we can answer the general
question o{ problem 3: apafu (p, q)
can be obtained from (a, bl if and
only if GCD(a, b) = GCD(p, q). This
condition is necessary because the
operations used preserve the GCD.
It is also sufficient: lf GCD(a, bl
: GCD(p, ql : d, each of these pairs
can be reduced to the pa:-r ld,0) by a
sequence of operations I, R, and S.

Therefore, descending trorn la, bl to
(d, O) and then ascending from (d, 0)
to (p, q), we obtain the desired se-
quence of operations.

Let us prove that any pair (a, bl
can be turned into (d, 0). Notice that
if one of the elements of the pair is
negative, it c.an be easily made posi-
tive (fig.5). Now, anypair (a,b)with
natural numbers a an.d b can be
turned into ld,0) using the same
method that we used in the above
examples: at each step (except for
the operation S) the greater element
of the pair is reduced until we reach
the pair (d, d) -+ (0, dl -+ ld, Ol.

In solving probiem 3, we have
aheady found a convenient
method for constructing the great-
est common divisor of two num-
bers. First, from the pair (a, bl,
where a > b > 0, we move to the
parr (b, r), where r is the remainder
in the division of aby b. Then, we
repeat the same operation until we
reach apair (d,0). The last nonzero
remainder d is the desired GCD(a,
bl (fis.2b and 3b). This method is
called Euclid's algoilthm.

Exetcises
5. Prove that it is impossible to

obtain the pair 11234,5678) from
(1357, 24581 and 17890, 1979) kom
(123,4s71.

6. Find examples to demonstrate
that I and S, as well as R and S, arenot
commutative: LS + Sl and RS + SR

{however, it is clear that IR = RI).
7. Using Euclid's algorithm, find

GCD(589, l9&4l and GCD(1234567 89,
98765432t).

The set of all points on the
plane with integer coordinates is
called the integer lattice; it is de-
noted by 22.

The following exercise and figure
6 illustrate the geometric sense of
problem 3.

8. Let a segment OA, where O
is the origin of coordinates and A
is a point of the integer lattice 22,
be divided by other points of the
lattice into d parts. Prove that
point A can be moved to points (d,
0) and (-d, O) by operations I, R,
and S, but cannot be moved to any
other point of axis Ox.

Exercises 9 and l0 generalize
problems I and2.

9-. Let nnatutal numbers ar, az,

. . ., anbe given. Prove that an integer
c can be obtained from 0 by moves
*ar, !a2, . . ., lanif and only if c is di-
visible by GCD(a, a2, . . ., anl.

10-. (a) Let n vectots y11 y2r . .t

v, with integer coordinates be
given in the plane. Prove that the
set of a1l points D of the plane to
which point C) can be taken by
moves *vr, !v2, ., lYnis the set
of nodes of an oblique lattice (an
oblique lattice is the set of the ver-
tices of parallelograms formed by
two equidistant families of paral-
le1 lines).

(b) Assume that with any vector
v,, the set v1r \2, .,v, contains a
vector v, perpendicular to v, and
eclual to it in length. Then, the set of
all accessible points D is the set o{
nodes of a square lattice.

Now, it is not difficult to find
the complete answer to problem 1.

Let m = d-, and n : dn1, where
d = GCD(m, n). Then, if m, + n, is
odd, all points (d*, dy),where x and y
are arry integers, are accessible (the
lattice with step dl;lf mr+ n, is even,
all points (dx, dyl with x e Z, y e Z,
and x + y even are accessible (these
points make up a lattice with step
d",12 rotated 45" with respect to Z).

Summinu u[
In the final part of the article, we

present two more rather difficult

Figure 6. "Left skew" L(x, b) -+ (x-b, b), "right skew" R(x, b) (x + b,
b), and "symmetry" S(x, b) + (b, x) are linear transformations that
perform one{o-one mappings of the integer lattice 22 onto itself.

a+b
b

{3)
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problems. However, we first review
the preceding sections and try to for-
mulate general rules that help us
decide if a trpnsition from one posi-
tion to another is possible. We also
present a number of mathematical
terms for the notions we met in the
problems.

1. To prove that a transition is
impossible, we found a certain "ob-
stacle," that is, a charactertstic fea-
ture (called an invafiant) of the po-
sition that remains the same under
all admissible moves and is fifferent
for the initial and final positions.
Thus, the proof of the impossibility
of a transition was reduced to find-
ing an appropriate invariant. For the
{1, 3}-knight problem, we used the
color of the square as such an invari-
ant; for problem 2, it was the re-
mainder in the division of the given
number by the GCD(a, b); for prob-
lem 3, it was the GCD of the initial
pair of numbers.

2. To find the desired sequence of
moves on the lattice, it is often use-
ful to find an elementary key move
(or combination of moves) or reduce
the problem to a simplest standard
position and then formulate a gen-
eral algorithm for {inding the neces-
sary moves. For example, in the {1,
3)-knight problem, it was sufficient
to learn how to make diagonal
moves/ and in problem 2 it was suf-
ficient to construct the "descent" to
the standard position (d, 0).

3. In the problems that we have
considered, all transitions were in-
vertible: if position B could be
reached from A, then A could be
reached {rom B.In such problems,
the entire set of positions can be par-
titioned into ecluiv alence clas ses :

every position of a class can be
reached from any other position of
the same c1ass, but transitions be-
tween positions of different classes
are impossible.

We now consider a problem that
does not possess the property of
reversibility. However, principles 1

and 2 do the job bril1iantly.

GEtlinU nid olluros
Problem 4. Three machines print

pairs of natural numbers on cards as

T

Figure 7 Using the operations /q
(increment by q), H (division by
two), and f (transitive
transformation), we can obtain
card (1 , 50) from (5, 19).

foilows. Having read a card {a, b), the
{irst machine prints card ltt - I
b + l], the second one prints car;
lal2, bl\ (it works only if both r: an j
b are even), and the third macl-rr::.
reads two cards (a, b) and 11, ,' ;-:::
prints card la, c). Assume tha: -..;e

begin with card (5, 191. Us-:r: :re
machines described abor-e rn :-:'.' ie-
sirable order, is it possli.,l. : r:.iiil
card

(a) (1, 50) or
(b) (1,100)?

(cJ Assume that we begin with
card(a, b)(a < b\. For which n can the
card (1, n) be obtained?

Denote the operations that are
performed by the machines by 1,

H, and 7, respectively. Figure 7

shows how the "simplest" card (1,

8) can be obtained from '5, 1,9))

then, the desired card (1, 501 can be
obtained (as earlier, we write 1L

when operation 1 is applied k
times). Thus, the ansu.,er to prob-
lem 4a is affirrnatrve.

However, the card \1, 1001 cannot
be obtained irom ,5, 191. We can find
an obstacle br- considering figure 7:

the difietencJ o- iilc numbers on ev-
erv cttrd.,-< ;-r-.,.rir]e by /. Regardless
oi the or.ler" rn rrhich the machines
dl r .r-t j rh:. f roperty remains true
1..-caus- rt is preserved by all the op-
Criir,rrS LY, and 7. (This is obvious
l,:. Flr Il , ti a andb are even and

-- -,. rs dir.isible by 7, then bl2* alz
:. :is.-. dir isible by 7. For t if both dif-
:-r.ences b - a and c - b arc divisible
..-'- -, rhen C-a=lc-b)+ (b-al rsalso
;.rr rsible by 7.J However, the drffer-
tnce 100 - | = 99 is not divisible by
-. Thus, the answer to problem .ltr is
negative.

Exercise 11. Is it possible to use
machi.nes I, H, and 7to obtain:

ii) cards 15,29), (1, 101), and i1,
19781 {rorn the card (3, 33)?

1ii) cards (3, 331, (1, 100), and (1,

t-;-li5
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1979) from the card 15,29)?
Now answer the general item (c)

of problem 4: let the card (a, bl be
such that b - a = 2-d, whered is odd
and greater ihan 0. Then only cards

lp, q) inwhich the difference p - clis
divisible by d can be obtained from
the card (a, b). Thus, we can elimi-
nate all twos in the {actorization of
b - a into pime numbers, but an odd
divisor is an insurmountable ob-
stacle.

Indeed, as we have already men-
tioned for d = 7, if the difference of
the numbers in the card is divis-
ible by an odd number d, opera-
tions 1, H, and 7 yield cards that
possess the same property. On the
other hand, if b - a = 2^d, where
d is odd, we can obtain the card (1,

d + 1) from the card (a, b). One step
of the sequence needed for such a
transition is shown in figure 8. As
soon as the card (I, d + 1) is ob-
tained, we can easily obtain any
card of the form ll, kd + 1) (as in
problem 4a) from the card (1, 8)
and then, any card of the lorrn ll,
kd + 1l with the difference that is
a multiple of d.

Exercise 12.la) Assume that the
machine that performs operation
T has broken down. Which cards
can be obtained from (5, 19) and (5,

261?
(b)Assume that the machine that

performs operation H has broken
down. Which cards can be obtained
from (a, bl?

Exercise 13-. Which cards can be
obtained by the operations I, H, and
Tfrom n given cards lar, b1), . . .,lan,
b,l7

Problem 4 looks rather artificial.
Thus, it is interesting to note that it
appeared as a lemma in a serious
mathematical book (Ulam, S. Un-
solv ed Mathem atical Problemsl.

Pail's ol tteclor'$
The following problem is an ex-

tension of problem 3. The same
three operations I, R, and S are used.
However, in problem 3 they were
applied to pairs of integers, and now
we consider pairs of vectors la, bl
and(c, d) with integer coordinates as

"positions" and apply these opera-

Thus, they make up a table of four
numbers; in mathematics, such
tables are called maftices.

Problem 5. The following opera-
tions may be performed on the ma-

nix(;r):

r,(o'\-("-h c-d\
\bd) t b d l

n(o')-1,'*' c+d\
\bd) \.b dl

''(;:)'(2)

tions to both vectors of the pair si-
multaneously. It is convenient to
write the coordinates of both vectors
as two columns:

(a c\
\u a)

Is it possible to obtain from the

matrix (l l) ,fr. following marrices:

{,)(l ;),'ir,i (1 l), r.r (; i), rar (j l),
(") (J l) ?

Which matrices can be obtained

from the maui" (; ;)l
Two matrices are called ecluiva-

lent if one of them can be trans-
formed into the other by op'era-
tions Z, R, and S (these operations
are invertible, so all matrices are
partitioned into equivalence
classes ).

We run into several difficulties
when solvingproblem 5, andwewill
overcome them one by one.

(r)rhe marrices (l ;) ,"0 (j j) ,l:
not equivalent: the second u".tor 0)
cannot be transformed into (j), si"le
GCD(S, 7)+ GCD(3, 9).In gbneral, a

condition necessary for the equlv4-
lence of two matricer (; ;) ,"0 (; :)
immediately follows from the solu-
tion to problem 3:

However, as we will see, this con-
dition is not sufficient for two ma-

is preserved under a1l transformations
L, R, and S. Let us check itfor L:

la-b)d-blc-d)=ad-bc
(the reader is invited to check this

property{or R and S). Since A(; i) : B

ana a(j !) : t, ,n.." matrices are not
equivalent. Notice that

/pp)=0.
\(l cl)

The quantity ad - bc occrrs very
often in various problems concern-
ing matrices-it is calied the deter-

minantof the .,,atrix(; i).
(4) rhe marrices (j ;) ,"0 (13)

are equivalent: the sequence of
transformations that reduces the
.. /r\first v.ector (r) to the standard
for- (J) and a number of addi-
tional iricks give the desired result
(fig. 9). The invariant D is clearly
seen in figure 9-it is the area of
the parallelogram constructed on

the vectors (;) ,"0 (;) '

It remains for us to find out

whether or not the matric.. (;1)
,rd (J ]) ,r" "quiualent. 

It turns out
that they are not equivalent, al-

lThe term reduced appears cluite
natural if we consider the matrix

(;;)* aPait oI fractions lalb, cld).

trices to be equivalent. If this con-
dition holds, we may divide each
column of the matrix by its GCD
and consider such reduced matri-
ces (recall that the GCD of each
column is preserved under our op-
erations. ) 

1

(2)Matrices (j ;) ,"0 (j l) ,'" "o,equivalent becairsd any opelation (I,

R, and S) on the matrix (l ]) ,"r"ftt
in a matrix with equal columns:
lp p\

\, ,)' /. -\"' 
i51m,,,i""' (j ;) and (j !) ,,",1,o

not equivalent. Here we have an-
other obstacle: the quantity

t= t(t "rr)=vo-04

lcco1o,u1= ccD(n,o),

lcco1r,a1=GCD(r,s). 
(-t
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(;)

+ 10-31 5 , ll!1 lsRsrs,
1r sl l0-3/

/r sl
lo;l

r n21
lo;/

Figure 9. Reduction to the canonical form. Under all
transformations L, R, and S, the area of the parallelogram and the
location of the nodes of the integer lattice inside the parallelogram
remain the same.

following vector equalities:

oM, = Jr fo" * I'(' - ') loo, IAI L A 
)

where {x} denotes the fractionalpart
of x.

15. Let GCD(a, b) = GCD(c, d): I
and A: lad - bcl + 0. Then, a unique
r exists such that 0 < r < A, GCD(2, A)
: 1, both numbers ru - c and rb - d
are divisible by A, and this number
r is preserved under transformations

L, R, ands of the r"r"* (l i)
The assertion of thrs exerclse can

be conveniently used to calculate r
if A is relatively sma1l.

16. Which of the following matri-
ces are equivalent?

17.We have not considered ma-
trices that have a zeto column.
When are such matrices equiva-
lent?

18. Prove that any two matrices
with I = L areequivalent.

19.. How many classes of
nonequivalent matrices with A = 3,
L = 4, L: 5, A : 10, and A : 12 exist?
How many classes of reduced matri-
ces are among them? For each class,
show the location of integer nodes in
the corresponding parallelogram (as

in fig. 10).

20. Prove that for any matrix, a

unique equivalent matrix of the

ror,, (f j), *r,"r. kl=o, m< 0,1< o,
l.m,'andm+0exists.

Another possible approach to prob-
Iems 3 and 5 is to find out which
transformations of the integer lattice
can be obtained by the contposition of
operations L, R, and S (we solved a
similar problem when we found out
which translations could be obtained
by the composition of the transla-
tions *a and+b in problem 2). It tums
out that these transformations have
the form (r, y) - (ax + by, cx + dyl,
where a, b, c, and d are integers and
lad - bcl = 1. However, this is a topic
for another article dedicated to linear

i121 L
lt
i1 s/

(i l),(i -;) (: ;),(i 3),(i I),
I 6 tf\ / r llr /19 1\ i3960\.
[r- toJ Ito ;s / [-o +.,J [,0 --.,/'

though it is not easy to find the cor-
responding obstacle in this case. Its
geometric sense is clear from figures
9 and 10.

Now we are able to answer the
general cluestion of problem 5. Using
operations L, R, and S, any reduced
matrix can be transformed to a ca-
nonical form:

(31),whereo(r<A, (1)

GCD(a A) : I
or

Two matrices are equivalent if
and only if conditions (") are satis-

fied and the coruesponding rcduced
matrices have identical canonical
form. (The ecluivalence criterion is
formulated in exercise 20 in a

slightly different form.)
Indeed, any reduced matrix can

be transformed to the canonical
form in the same way as we trans-

/, .\
formed the matrix (i i,l ffis. 9). The

l0 JU[Y/AUrtlsr rs$s

fact that r is an invariant follows
from exercises 14 and 15.

Exetcises
14", Let the canonical form of

matrix (;;) o" (t). Then, parallelo-
gram OABC constructed on vectors
OA: (a, bl and OC = (c, d) contains
A - 1 points with integer coordi-
nates. A1l of these points My, M2,
. . ., Mo_t,can be obtained using the

12)(AB)u^=,

la, b)ruffi
la, b)

/ /rL/#
0 lc, d) 0 lc, d)

-l I sl _lr zl
l27l l03l

Figure 10. The location of the
nodes of the integer lattice
inside the oaralleloorams
corresponding to th-e matrices
(j j) ano (i 3) i'different

algebra. CI
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M266
Tower of powers. Solve the eclua-

tion x"' = 2. (M. Volchkevich)

M267
Triangulu tribulation In a tri-

angle ABC, angle BAC is 50'. A
point P is selected inside the tri-
angle in such a way that angles
APB, BPC, and CPA are 120'. Seg-
ment AP : a. Find the area of tri-
angle BPC.

M268
Working the system. Solve the

following system of ecluations (M.
Voichkevich):

M269
Integers, naturally. If x and y are

natural numbers, and the sum

,2 -l ,2 -r
y+l x+l

is an integer, prove that each of the frac-
tlons (1 - t)lfu + 1) and lsP - tllk + t)
are themselves integers.

M270
Angular features. Points D and

F are chosen on the bisector of
angle A of a triangle ABC in such
a way that IDBC : ZFBA. Prove
that (a) ZDCB : LFCA; (b) the

HOW DO YOU
FIGURE?

ChallBltUB$

circle that passes through D andF
and is tangent to BC is also tan-
gent to the circle circumscribed
around triangle ABC.

Physics

P266
Particular ftaiectory. Two in-

teracting particles with masses m,
and m, compose a closed system.
Figure 1 shows the trajectory of
the first particle and the positions
of both particles at the moment

U
Figure 1

when the velocity of the first par-
ticle was v and the velocity of the
second particle was -3v. Plot the
trajectory of the second particle
for the case mrf mr:3.

P267
Terrestrial and solar densities.

The angle cx at which the Sun is
seen from Earth (the Sun's angular
diameter) is about l0) rad. The ra-
dius of Earth R, = 6400 km. Accel-
eration due to gravity on Earth's
surface is g = 19 m/s2. Using these
data, find the ratio of mean densi-
ties of Earth and the Sun. Two
valuable hints: I year = 3' 107 s,

and the volume of a sphere is V
: l4l3lnR3, where R is the sphere's
radius.

ln2
o

P268
Hot plate. A large, thin conduct-

ing plate with area S and thickness
d is placed in a homogeneous elec-
trical field E, which is perpendicular
to the plate. How much heat is dis-
sipated in the plate when the field is
switched off? (P. Zubkov).

P269
Critical capacitance. A capacitor

and a coil with inductance 1 H are
coupled in series and connected to a
power supply with an alternating
voltage of 220 V and 50 Hz. A volt-
meter with a very high internal resis-
tance is connected in parallel to the
capacitor. At what capacitance will
the voltmeter read 220 Y? What ca-
pacitance must never be used in such
an experiment? (A. Zllberrnan)

P270
Optical illustration. Draw the

image of a square formed by a con-
verging lens (fig. 2). The midpoint of
the square's side that lies on the
principal axis coincides with the fo-
cal point of the lens. (B. Bukhovtsev)

Flgure 2
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Uacuuln

Making something out of nothing

by A Semenov

I T IS EVERYWHERE, BUT NO.
I Uoav feels it. It is invisible, impal-
I prrra, ano rnconsplcuous, ar-
I ihorgt it stores enough energy to
produce a new universe. It is noth-
ing, it is emptiness, but this empti-
ness can become the source of every-
thing. It is the vacuum.

Many contemporary physicists
consider the vacuum to be a major
subject of twenty-first century sci-
ence. However, until the end of the
last century the vacuum was only a
subiect for the debates of philoso-
phers. For example, in the seven-
teenth century Ren6 Descartes
(1596-1650) used a long chain of
logical conclusions to decide that
the vacuum cannot exist: if "noth-
ing" separates two particles, then
they are separated by nothing (and
therefore cannot be considered two
individual objects). In the early days
of science, logical arguments were
often confused with linguistic ones.

However, the vacuum did exist,
and cluantum theory fil1ed it with
sense and content. In 1911 Max
Planck ILBSB-L?47) showed that a
body retains energy even at absolute
zero. What is the origin of this en-
ergy?

Physicists began to search for this
mysterious vacuum energy/ and in

1925 Robert Millikan (1868-1953)
detected it for the first time. It was
revealed in the emission spectra of
boron monoxide. The frecluency of
radiation resulting {rom electrons
jumping from one orbit to another
was at odds with the theoretical es-

timates, as if an electron "collided"
with something in its orbital flight.

|ust two years later, Werner
Heisenberg ll90l-197 5) advanced
the famous uncertainty principle
and showed that apair of virtual par-
ticles can appear and annihilate each
other even in an absolute vacuum/
although their lifetime is very short.
The point is that energy fluctuations
are possible in any system/ but the
larger the energy violation, the
shorter period it exi.sts. Mathemati-
cally, the product of the uncertainty
of the energy and the uncertainty of
its duration (that is, the value of the
energy burst multiplied by its life-
time) can be no less than Planck's
constant: LE . Lt = -h. So, these vir-
tual pairs of particles impede the
orbital motion of electrons.

Vacuum fluctuations are also
manifest in the stochastic noise of
electronic devices. They impose
limitations on the gain of radio am-
plifiers. The van der Waals' forces
acting between molecules also origi-

nate {rom the vacuurn fluctr-rirtions
of the molecular energr-, Thc .-ncrgy
"hiddcn" in thc vacuull tirrcsn't per-
mit liquid helium to chan,qe to the
solid state at an)- 1o\\ :crperature.
This sarne energ\ t-rrr-LS 0n" the
discharge in a mtrc-rrr r apor 1arnp.
When a mcrclrl-r- ;t, ::-r is excited by
the electric clrscl:ai'ge in such a
lamp, vactrL.r:-. :--.-r-Lations return
the atom fr..l: ::r. excited to the
ground sta:. Thus, when you
switch the -:::r: Jn. refirefiiller that
you are srsn-ni the r-ery process that
once prc,iu:cd ihe Universel

Bol'n hom nofting
for rhe last iew decades the trr-

umpl:ant theory in astronomy has
l.e e n the Big Bang model. It supposes
rhat our Universe was created 20
L.,Llhon years ago by an explosion o{
a h1'perdense and superheated point.
Horvever, an accurate study of con-
clusrons and predictions of this
rnodel revealed a number of difficul-
ties it could not explain. Allan Guth I
of the Massachusetts Institute of I
Technology ancl former Moscow 5
theoretician Andrei Llnde 1now a €
physics professor at Staniorcl Uni- g
versity) proposed a rnodified explo- I
sion thcory callcd the inflationary 6
universe. 5
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The new model says that in the
first instants after the birth of the
{Jniverse, the. vacuum was unstable
and had ayery large internal energy.
One can compare it with aball at
the top of a hill. Such a state is un-
stable, so the "vacuum ball" rolled
down and released a huge amount of
energy. Lr a tiny fraction of a second"
the Universe inflated itself by so
many times that this number is ex-
pressed as one with one hundred ze-
ros after it!

This inflation made our l]niverse
very homogeneous and flat. The in-
flationary universe model removed
many obstacles that were met on
the road of the Big Bang hlpothesis.
For example, scientists have not de-
tected magnetic monopolesT, por-
ticles that have only one magnetic
pole. This is strange, because a huge
number of them shouid have been
produced by the Big Bang. So where
are the monopoles now? The an-
swer: inflation scattered all the
monopoles over such unimaginable
distances that only a few of them re-
mained in our tiny observable part of
the Universe. Thus, all variety of
quasars/ pulsars, planets, rockets,
and even human beings were born
from this mighty "nothing" due to
the relationship between mass and
energy found by Einstein.

However, most cosmologists
would be glad if the vacuum moder-
ated its activity a{ter it had finished
its splen&d endeavor of creating the
Universe. No, life is not an easy
road, so now and then the vacuum
demonstrates its existence and stirs
scientific minds. The problem is
that the great internal energy of the
vacuum complicates the equations
of the general theory of relativity by
adding some terms. Such theories
are far from being completed, and
who knows the true nature of
things?

ls fie uacuum lull ol' emply?
In recent decades the physics

community has been perturbed now

lRead about monopoles in |. Wylie,
"Magnetic Monopoly, " May/|une
1995, pp. 4-9.

and then by news from astronomers
who reported that our lJniverse is
younger than its own stars. The new
estimates of the lJniverse's age are
based on measurements of the
Hubble constant. In addition to false
rumors/ the indeterminacy of these
measurements motivated physicists
to rethink their models of the devel-
opment of the Universe.

One possible explanation of this
contradiction is that the vacuum did
not scluander all its energy but in-
stead secretly continues its subver-
sive activity of expanding the Uni-
verse. This process increases the rate
of recession of galaxies and misleads
astronomers: the larger the rate of
recession, the closer we are to the
moment of the Big Bang.

However, the vacuum can do
some other tricks. There is another
problem in modern cosmology: the
dark matter. Inflation predicts a cer-
tain density of matter in the Uni-
verse. By contrast/ observations have
yielded only lO-20% of this value.
There are a yartety of hypotheses
that say where the dark matter
should be located, but none of them
have helped detect it.

George Efstathion of Oxford be-
lieves the dark matter is hidden as
vacuum energy. This view is sh4red
by Chris Coshaneck at Cambridge,
who believes that the existence of
gravitational lenses supports this
hypothesis.

A gravitational lens is a very mas-
sive galaxy around which iight com-
ing from distant stars passes before
reaching observers on Earth. Due to
the curvature of the light rays, one
can see muitiple images of the same
distant object. At present, a number
of putative gravitational lenses have
been found. Coshaneck considers
that their number provides a key to
estimating the energy hidden in the
vacuum, which couldbe responsible
for as much as half of the dark mat-
ter in the Universe.

It should be stressed here that we
are discussing hypotheses rather
than established facts. These are the
working models of theoreticians,
and they illustrate how these magr-
cians of science work to find correct

answers. However, the vacuum is
not merely a favorite toy of astrono-
mers; it is also involved in pure
earthly matters.

lnel'tia
One of the most intriguing every-

day manifestations of the hypotheti-
cal properties of thc vacuurr is iner-
tia, the property of maintaining
motion. Everybody is familiar with
inertia: reca1l your experience of
crashing into a snow drift while ice
skating. The nature of inertia was
enigmatic to such giants of science
as Albert Einstein and Richard
Feynrnan. Einstein assumed that the
acceleration of one body somehow
indirectly affected other bodies. He
could not, however, explain the pro-
CCSS.

A few years ago Bernard Hewish
from Palo Alto and Shel Pythov
from Texas tried to revive this idea
of Einstein. They supposed that a

body has inertia due ro its interac-
tion with vacuum fluctuations.
They even modiiied Newton's law
by replacing mass with a paralneter
that characterizes the interaction of
a body with a vacuum.

In simpler terms, their hlpothesis
says that vacuum fluctuations gen-
erare a field similar to a magnetic
field. The more atoms in a body, the
stronger it interacts with this
"vacuum" field, and the more diffi-
cult it is to accelerate the body.

However, this is just an idea,
which at present is not substanti-
ated by precise calculations. A11 esti-
mates differ from the experimentai
data by a stunningly large factor:
this number is one followed by a

good hundred zeros. Steven
Weinberg, a Nobel Prize r,r,inner,
joked that this number is th: :lr,st
inexact prediction in p.[1 .r...

Still, theauthorr :: - -.',.uum
hypothesis har-e rr : - .-::cart. In
fact, the,v h-:-. . . iiscussed
ways ol -\.. ..-. .'.: --,:b\ lrom a

vaclrultl . :: : ,t-,: ---. science {ic-
tiort -' ,- -. -: - r:in1llds us that

: -- -. . - -r-:: radios, or televi-
: - : : - r- :-ring of the atOmic
- t--
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A lyl'imldiUmssion
A vacuum is a very enigmatic

thing. Many outstanding minds
have gues'sed at its nature-from
Aristotle to Feynman. "Nature does
not permit emptiness"-this dictum
designates the vacuum as an ab-
stract/ unreal conception, which
predicts the failure of any scientific
attempt to study it. Nevertheless,
modern theoreticians cannot ignore
the vacuum. Such notions as the
"vacuum state" or "vacuum energy
leveI" are used in virtually every
physical model of the microcosm. It
seems as if up until now scientists
have disregarded the unbelievable
g1oba1 character of the vacuum prob-
lem. To spend time considering the
vacuum was considered something
of a scientific sacrilege.

The problem of the vacuum was
circumstan tially tr eated by s cience
fiction authors. Even for them it was
too fantastic to al1ow their charac-
ters to take energy from "nothing,"
so they took it from other unex-
pected sources: time, future, or hy-
perspace. Perhaps the vacuum will
turn out to be the unexpected source
of inexhaustible energy after all.

Consider a social phenomenon
that has nothing to do with classical
scienc.e: the growing activity of
"specialists" in extrasensory percep-
tion and in other mystical events
such as intercontinental non-elec-
tromagnetic information transmis-
sion, inner communication with
space, and diagnostics of astral bod-
ies. To tel1 the truth, it is a wonder
that these supernatural people do
not use the concepts of vacuum and
vacuum fluctuations. Sometimes
even the craziest-sounding hypoth-
eses should be considered. What i{
all these astral fields and space
fluxes are somehow related to the
vacuum? Nothing is clear in both
fields, so perhaps they should be
studied. Of course, any study must
be scientific and free from illiterate
mystical gibberish, but these prob-
lems should not be simply brushed
aside.

A common view of the vacuum
sounds like King Lear's remark:

"Nothing will come of nothing."
The true interpretation of the
vacuum as "nothing" can only
mean one thing-we really know
nothing about it. Recently, electro-
magnetic fields and X-rays were
similar invisible and imperceptible
notions.

All the life of our world is based
on the interaction of particles and
the fields that connect them. Ac-
cording to the common view, the
vacuum is the negation of existence.
Maybe it is just another form of ex-
istence?

lll[ail can [e squeezed oul d a ttacttilln?
The idea of obtaining something

useful {rom the vacuum is rather
o1d. In 1948 the Dutch scientist
Hendrick Casimir proposed bringing
two plates close to each other and
measuring the tiny attraction that
should arise between them. This
attraction is caused by the external
vacuum fluctuations that push the
plates toward each other. However,
the predicted value of this vacuum
pressure is very small: |ust one hun-
dred millionth of an atmosphere for
a separation of 1 pm. However, not
the value but the fundamental prin-
ciple is the major point here. If we
take two plates of lm2,polish them,
position them 1 pm apart/ and re-
lease them, the attractive forces will
develop a power of about 1 pW. This
is not very much, but who can tel1
for sure?

I am not a novice in scienti{ic
work, so I meet such extrav agarrt
projects with a skeptical smile.
Flowever, my scientific time has
gone, and my skepticism belongs to

the twentieth century. Now the
next century swiftly approaches. To
revive the common belief in science,
to make science flourish, it is neces-
sary to discover something that can-
not be found with a skeptical smile.
Hopefully, the person who will
make this step will not be embedded
in modern pseudoscientific gibber-
ish but will make a real break-
through, taking the best from the
receding century.

Well, the formation of the Uni-
verse/ the nature of inertia, and in-
exhaustible sources of energy-
these are the promising prospects
glimpsed in the study of the
vacuum. Much is sti1l unclear, and
estimations have not replaced
speculations. Yet one thing is clear:
it is time to start. The Century of
the Vacuum is coming! O

Quantum on the Universe and cos-
mology:

Y. Zeldovich, "A Universe of
Questions, " I anuary f F ebraary 1992,
p.6-11.

A. D. Chernin, "GrandIllusions,"
lanuary lFebruary 1992, p. 24-29.

Y. Solovyov, "The Universe Dis-
covered," May/|une 1992, p.12-18.

W. A. Hiscock, "The Inevitability
of Black Holes," March/April1993,
p.26*29.

G. Myakishev, "The'Most Iner-
tial' Referen ce Frarrre," March/April
1995, p. 48.

S. Silich, "Interstellar Bubbles,"
November/December 1997, p. 14-
19.

I. D. Novikov, "The Thermody-
namic lJniverse," March/April
1998, p. l0-I4.
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We must approach global construction with the utmost care

by A. Stasenko

I NITIATED BY A LOVE FOR

I humanity, someone suggested
I increasins the surface area of
I rrrth by, ir.ro, oi i00 by exca-
vating its interior.

What a noble project this would
be, offering solutions to all territo-
rial disputes and providing space
for many new summer houses and
gardensl An additional benefit is
that trips within Earth's empty
sheli would require almost no en-
ergy expenditures and people
could jump far and high because of
the decreased force of gravity on
the surface!

But every new project, and a
globa1 one in particular, requires
cluantitative estimates of expendi-
tures and consecluences. So, 1et's
begin.

First, we evaluate the size of
New Earth (with radius R and
shell thickness 6). According to
the plan, the area of its surface
S = 4nr2 would be 100 times greater
than that of Old Earth So: 4nRs2,
from which we obtain R2 : 100R02
and R = 10R0. This means that the
inner radius of the New Earth will
beR-6.

From conservation of mass, we
have

1"4 =1"(o'-(R-5)')
L,

= 1nl'Rt - R3 + 3R26 - 3R62 + 53)3\ t

= 4nR26.

The first two items in the parenthe-
ses cancel out, and the last two are
neglected, because they contain the
square and the cube of a small value,
the thickness of the shell. We as-
sume it to be small, but we won't
forget to check this point later.

We have assumed that Earth's
density is homogeneous and doesn't
vary during the construction of New
Eafth, so we immediately canceled
it from both sides of the equality.
Therefore,

a rather small value. According to
our project, the entire mass of Earth
must be confined within a very thin
shell (with a thickness of about
20 km). That is, all elements o{ that
mass will be virtually at the same
distance R from the center.

Let's start by calculating the
gravitational work required to move

the material of Old Earth to a dis-
tance R. Since the problem pos-
sesses spherical symmetry/ we begin
our consideration with an elemen-
tary layer of radius r and thickness
dr inside O1d Earth (figure 1a). Be-
cause we are concerned with this
layer, we are assuming that the
outer layers have already been
moved to the recluired distance. As
we know, these outer layers don't
generate a gravitational {ield inside
New Earth (readers unfamiliar with
fields and potentials may want to
read the articles referenced at the
end of the article).

The selected layer, when located
a distance t' from the center, wili be
attracted only by the remaining
mass m(r). According to Newton's
law of gravitation, this force is

-m(r)dm(r) 
'

-u1'
t'

To move the layer a little dis-
tance dr', the additional work

^m(r\dm(r) , ,
v--------------41 .r''

is required. The total work per-
formed by moving the layer for a

6- 1rRo'l' 1

R 3\R/ 3000'

Y
a
l
C
c)
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O
a)

cd
0_
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distance from r to R is given by the
integral

R

aw = J,cm(r)dm@+

Gm(r)dm(r(+ *)

Here we should note an impor-
tant property of the gravitational
field. Figure 1a shows the trajec-
tory of a part of an elementary
layer as a curve with arrows on it.
It's possible to draw it as curved as

you like-the work required to
transfer such a fragment will not
vary, provided we do not change
the initial and final distances from
the center of gravity (in our case
from the center of the remaining
mass m(r)).

The reasoning is valid only for
an elementary (dashed line) layer.
When we take mass away layer by
layer from the very beginning, we
need to integrate the expression
for the work with respect to r from
0 to Ro:

Ro

w = !aw = c.i mp)d-k(+ - +)
0

Assuming Old Earth to be a homo-
geneous ball, and its density po to
remain constant during the trans-
formation of the planet (we have
aheady used this assumption in
calculating the thickness), we
have

4*(r) = i npo.'

and

dm= 4nporzdr,

where M = (alSlnpoRo3 is the total
mass of Earth.

Now all that's le{t are the calcu-
lations. First, we simplify the for-
mula by combining the mass and
the radius of Earth in an expression
equal to the acceleration due to grav-
ity gn:

GM_: o-
RnZ 

- oo'

Then we have

,1 _ s Ro)
W = MgoRo .ll1)\ 6 R )'

However, you may not know the
mass of our planet offhand and may
not have a reference book nearby.

This is not an obstacle-we can find
the answer without it. Most of us
remember that go is 9.8 m/s2 and Ro

is 6400 km, and if we also remem-
ber that G is 5.6. 10-11 m3/(s2 . kg),
it is easy to determine the mass of
Earth from the formula for go:
M : 6. 1024 kg. (Once upon a time,
Henry Cavendish (1731-1810)
"weighed" Earth ior the first time in
history by this very method-that
is, by determining the constant G in
his famous experiment with a tor-
sion balance).

Now everything is ready for the
estimation of the minimum work
needed to create New Earth:

W = Z. 1032 1.

If we take into consideration that the

w =cfnps o"o.i[,- -+)- c

_GMz 3(, s&)- & 5['-ARl
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rute of energy consumption of hu-
manity is currently about 1020 llyear,
it's easy to estimate how many years
it will take to realize our "benefi-
cial" projeit.

Imagine that New Earth has been
created. How will the new configu-
ration affect your life? First of all, the
acceleration due to gravity on its
surface will be

times the present value. Physical ob-
jects wi1l be lighter by the same fac-
tor, and a stone thrown with the
same velocity at the same angle to
the horizon will fly farther by the
same factor. A pendulum wiil oscil-
late one-tenth as fast trfto79 : tO),
and inside New Earth it won't oscil-
Iate at all. The escape velocity wiil
be changed by afactor ol

!8t(
ligoRo

As already mentioned, it willbe
possible to travel inside New Earth
without energy expenditure, because
there wi1l be no gravity (g = 0). There-
fore, no work is needed to move be-
tween any two points there. Or, as a
physics teacher might say, the vol-
ume inside the spherical shell is an
equipotentiai: q = gsrt, when r < R -
6. Look carefully at figures lb and lc
and compare the plots of functions
g(r) and Q(r), drawn for Old Earth and
New Earth, respectively.

By the way, what work must be
performed to travel from the in-
side to the outside of New Earth?
Set the spherical surface with ra-
dius r inside the shell (see figure
1a, where a magnified part of the
shell is shown on the right). As we
aheady know, the acceleration due
to gravity on that surface is pro-
duced only by the part of the mass
located inside the surface. This ac-
celeration is equal to

4p(r\ = -rcC"\ / l
.f

ar'

Now we can calculate the mass of
the atmosphere to be

M^ =4nRly.p(&)=S. 1018 kg.

On New Earth the atmosphere
will spread evenly inside the spheri-
cal shell (because the difference in
potential between any two points
inside the shell is zero), and above
the surface its density will decrease
exponentially with altitude in the
usual manner, although with a new
characteristic altitude, which is
SolS = 100 times larger than the old
one. Therefore, the characteristic al-
titude of the new atmosphere wil1be
103 km, a value still negligible com-
pared with the radius of New Earth
R:10R0=6'10akm.

The ratio of densities inside and
outside will be

p- - 
p(R-S) =,w-- dR) -' '

where I//, is the specific work
needed to move a mass of I kg from
the inside to the outside. Let's evalu-
ate the power of the exponential
function:

w* 
=r.z.Lo-'.KT

This turned out to be negligibly
small, so we can assume that the
densities inside and outside New
Earth are virtually identical.

Now let's formulate the condi-
tions for conservation of mass of the
atmosphere:

m^ = *np- (R - 5)' + 4nRzp*. 100y-
o

= 
! no- nt( t* a 

IooY' 
) = 1 no-RJ3 \ R ).3

(since the second item in theparenthe-
ses is much less than 1, we can assume
that almost a11the atmosphere is in-
side), from which we obtain

p* =p- =
M^

= 5.10-6 kg/-',4.
nR'

lJ

It seems to be dangerous to breathe

1g

(,'-(o-a)')oo

s (Rn)t 1

s.=t,n, =too

_ iao_ I _1-14 -.,"'16-:

In figure 1c this function is shown
between the points r: R - 6 and
r:R.

To find the work I4l, needed to
remove a body of mass 1 kg from
the interior chamber, we must cal-
culate the integral of s(r) between
the limits R - 6 and R, which the
reader is invited to try indepen-
dently. Here we evaluate Wrby
approximating g(r) with a linear
function that vari.es from 0 (inte-
rior of the shell) to g = go(Ro/R)2
(exterior space):

IA/. - o" I brtte3rl
- .g-.O =:O

2

.5 
= 

t03 1/kg.

This work per unit mass is also re-
ferred to as the potential difference
between the inner and outer sur-
faces. It is denoted by AQ in figure 1 c.

Would we be able to breathe on
the new planet? We assume the
mass of the atmosphere to be the
same on Old Earth and New Earth.
Let's evaluate it for O1d Earth. ff the
temperature didn't vary with alti-
tude, meaning T: const/ its density
varies according to Boltzmann's for-
mula:

p=p(\)e-w,

where m is the mass of an air mol-
ecule and k is Boltzmann's con-
stant. Note that the numerator of
the exponent contains the differ-
ence of potentials at the altitude y
and at the surface of Earth (where

v :0).
Taking mgoy.lkT: 1, we deter-

mine the characteristic altitude
where the atmospheric density is
only I f e of that at the surface, which
is to say that it is almost one-third
as small. This altitude is

KT
Y. =- =8 km.

mgo

= so [n. )2zIaj

i"V -1a-s)3)oo,
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inside or outside this new planet.
In addition, the spherical shell of

New Earth will be unstable: any dis-
turbance AB {figure la on the left) of
its shape will increase with time, be-
cause there will be no restoring
force. Thus/ we must be careful to
maintain the integrity of the New
World.

New Earth sti1l has many sur-
prises to reveal. For example, with
what angular velocity will New
Earth rotate? There is a law of con-
servation of angular momentum in
mechanics. Similar to conservation
of linear momentum ffiovo = mv, it
can be written easily by substituting
angular velocities for the linear ve-
locities. In doing so/ we must also
replace the masses by the moments
of inertia.

Flowever, the moments of inertia
for a homogeneous ball and a spheri-
cal shell are known: (215)MRo2 and
(2I3lMR2, respectively. For our esti-
mates we can drop the numerical

coefficients in these formulas. A{ter
canceling the masses, we get

Rs2ot = 42o,'

from which the new day is found to
be longer than the old day by

So, the seven-day "week" on New
Earth will last more than a year.
That's cluite a long wait for the week-
endl That's too bad, indeed. Now we
see why we must approach global re-
construction with the utmost care,
analyzing ali possible consequences
and using them for a comprehensive
study of physical laws. O

Quantum on rotating bodies and
rigid dynamics:

S. Krivoshlykov, "Head over
Fleels," May/|une 1995, p. 62-65.

A. Eisenkraft and L. D.
Kirkpatrick, "Pins and Spin," |uly/
August 1995, p.34-35.

L.Borovinsky, "Why Won't
Weeble Wobbly Go to Bed?" Mayf
lune 1996, p. 64-65.

V.Surdin, "A Venusian Mystery, "
|uly/August 1995, p. 4-8.

M.Emelyanov, A.Zharkov, V.
Zagainov, and V.Matochkin, "In
Foucault's Footsteps," November/
December 1995, p. 26-27.

L. D. Kirkpatrick and A.
Eisenkraft, "Around and Around She
Goes," March/April 1998, p. 30-33.

A. Stasenko, "Rivers, Typhoons,
and Molecules," |uly/August 1998,
p. 38-40.

Quantum on potential:
A. Stasenko, "From the edge of

the Universe to Tartarus," Marchf
April, 1996, p. 4-8.

A. Leonovich, "Do You Have
Potential ? " November/December,
1998, p.28-29.
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Techniques of Problem
Solving
Steven G. Kranlz, Washington University. St. Louis, MO

It may be an enjoyable task for htgh school undergraduate nathe-
matics students. their teachers, and people tnlerested in the field to

read the book and ta learn from it by worktng on the challengtng

ideas which are provided througno"'!)fi"rrtotr,t 
tiit Mathematik

Krantz has collected a tharoughly engaging arsenal ol problens

, and problem-solvrng techntques, Mast scientisls wtll want ta have a

copy for personal reference and lor the mental sttnulattan that it
provides. lt ts well wrtlten tn a slyle lhat encaurages the reader to

became actively involved ... a mytiad af fascinating rclated problems are
provided. Alter a delightful introductory chapler. lhe chapters are prrmailly
organized around spectftc techniques and their applicability tn areas such

as geomelry. logic, recreattonal nath. and counling. The book rs wrilten in

a lhear fashion thal nakes tt advtsable io tackle problens tn sequential
order ... would be an excellenl taal fat leachtng novtces to read same

mathenatics. _CHO\CE

Sleven Krantz is ateacher, scholaL and arttst. How else could he have

writlen a baak that nat only tntraduces students to many of the great prob-

lens af nathenatics. but alsa infams then about the process af solvtng

these problens? Although nany books tnclude collecttons ol intriguing

problems, Techniques of Prob em So v ng uses c/ear develapment and
lucid explanations ta guide students thtaugh the ptacess af problem

solving. The text gives conpelltng exanples that capture studenls'inlerest
and encourages then ta work problens at the end af the chapter ...
Although the book would be excellent for a senior-level capstane caurse tn

nathematics, it would also appeal to advanced lower-divtston or strong

hiqh school students as well. [T]his superb book connects lhe woilds of
greal malhematical problems with effective classroon ins'tructian.

-The Mathematics Teacher

The purpose of this book s to teach the basic pr nc ples ol problem

solving. inc ud ng both mathematrcal and nonmathemat ca prob ems. This

book w I help students to .. .

. tr.rnsl;rte r.erbal discussions into analvtic;rl data.

. learn problem-soh'ing methods for attacking collcctions
of analYtic;rl (luestions or data.

. btrild a personal arsenal of internalized problem-soLr.ing
techniques and solutions.

. become ";rrmed proble'm solvers", readv to do battle nith
.r r.ariety of puzzles in clifferent arcirs ol liIc.

Tak ng a d rect and praclical approach to the subject mattef. Krantz s book

stands apart from others like lt n that t incorporates exerc ses throJghout

the text. After many solved prob ems are g ven. a Cha eroe Prob em s

presented. Addit onal problems are nc uded for readers io tack e al the

end ol each chapt."r.

1997 465 pages: Soflcover; LSBN 0-621E'0619 X Lst S29 A At\,lS menrbers $23
Order code TPSQ97

Solutions Manual for Techniques of
Problem Solving
Luis Ferndndez and Haedeh Gooransarab, Washington University.

St. Louis. M0 with ass stance from Steven G. Krantz

Th s book s so d as a companion vo lme to the book, Techniques al Prablen
So/ving The So/utions Manual addresses mosl end of chapter exercises in the

book proper.

1997 l88pages Softcover: SBN0-B2lB-0628-9 Lst$l2tAlAl'4Smembers$l0rOrder
code St/lTPS09;
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Dul'amll/lllSTfl Inuention C[allenge
By designing and building work-

ing devices powered by Duraceil
batteries, students participating in
the Duracell/NSTA Invention
Challenge can match wits with
students from across the United
States, develop the confidence to
complete a complicated project,
and use individual or team skills
and interests to participate in sci-
ence in a new way.

The Challenge also gives students
the chance to win large monetary
prizes in the form of U.S. savings
bonds and an all-expenses paid trip
to the NSTA national convention
for an awards ceremony. The
Duracell/NSTA Challenge has
stimulated over 12,000 inventive
ideas and recognized more than
1,000 student inventors and their
sponsoring teachers since 1983.
Some of the winning devices have
been refined and commercially mar-
keted.

The Challenge is open to students
in grades 6-12 who are under 21
years of age and who are U.S. citi-
zens and reside in the United States
or U.S. Territories. Students may
enter individually or in teams of
two. Teachers are an integral part of
the competition process. Sponsoring
teachers sign entry forms attesting
that each student or pair of students
built each device.

To"enter:
1. Obtain the Official Entry Form

from Duracell/NSTA Invention
Challenge, i 840 Wilson B1vd., Arling-

HAPPEN INGS

Bulletin Boal'd

ton, VA 22201-3000; or call toll-free
1 -888-255-4242, or e-mail your mail-
ing address to duracell@nsta.org. The
entry form wi1l be available beginning
in August. FiIl out the entry form
completely, and obtain all necessary
signatures.

2. Design and build a device that
runs on Duracell batteries.

3. Write a two-page description of
the device and its uses.

4.Draw a schematic (wiring dia-
gram) of the device.

5. Photograph the device (use
clear photos only).

6. Mail Official Entry Form, type-
written description, schematic, and
photos (do not send the actual device
at this time). Entry form must be
RECEIVED by lanuary 12,2000.

7. The 100 top finalists (or pairs)
wiil be notified where to send their
actual devices for final judging.

8. The first- and second-place
winners must attend awards events
to receive their savings bonds.

For more information on the
Duracell/NSTA Invention ChaI-
lenge, point your web browser to
http : I I www.nsta. org/programs/
duracell/.

Fl'equenl lly
This month's Cyberteaser win-

ners didn't need to carry a big swat-
ter to solve this problem (8268 in
this issue). They followed a fly back
and forth between two bicycle-riders
to find out the total distance it flew
before the riders bridged the gap be-
tween them. Here are the 10 fastest
problem-solvers:

Bruno Konder (Rio de |aneiro, Brazil)
Christopher Franck (Redondo

Beach, California)
Theo Koupelis (Wausau, Wisconsin)
ferold Lewandowski (Troy, New

York)
Rafael Shusterovich (Rishon-1e-

Zion,Israell
Vincze Zsombor (Szeged, Hungary)
Sergio Moya (Culiacan, Mexico)
Anastasia Nikitina (Pasadena, Cali-

fornia)
Melamed David (Kiryat Tiv'on,

Israel)
T. Scott Frick (Dallas, Pennsylvania)

Congratulations! Each winner will
receive a copy of the |uly/August is-
sue and a Quantumbutton. Everyone
who submitted a correct answer in
the time allotted was entered in a

drawing for a copy of Quantum
Quandaries, a collection of the first
100 Quantum brainteasers. Tryyour
luck at winning a prize of your own
by visiting www.nsta.org/quantum
and clicking the Contest button for
the current Cyberteaser. O
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We actually like it! We want
to know what you think about
Quantum. So,

= ilf,'*Ei us a line at euanrrur, 1E:t0
Wilson B1vd., Arlington VA
22201

o1
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r. F U. Jn clcctron rrl I\vo at
quantum@nsta. org
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2-adic numhgr$

Employing Hensel's rational insights

by B. Becker, S. Vostokov, and Y. lonin

I F YOU WERE ASKED TO DEFINE A "DISTANCE
I b"t*""n two rational numbers, " you would probably

I answer that this is the absolute value of their differ-
I ence. This answer is quite reasonable: it satisfies all
axioms of distance. However, it turns out that another
distance between rational numbers can be defined that
also satisfies all the axioms of distance. This was done
by the German mathematician Kurt Hensel (1861-
l94ll. He invented an entire class of such distances;
here we discuss one of them.

Hensel's studies proved important for aigebra and
mathematics in general. We will use Hensel's distance
to solve two problems that at first glance do not seem
related to any distances.

Z-adh dhlance
Let a and bhe rational numbers. If a + b, we repre-

sent the difference a - b as a - b : 2klm I n), where m and
n are odd integers and k is an integer (positive, negative,
or zerol. The 2-adic distance between numbers a and
b la * bl is defined as the number pla, b) : I I 2k. I{ a : b,
we set p(a, bl = 0.

A distance function or metric is usually defined to
be a function of two numbers that satisfies the follow-
ing axioms:

Al. p(a, bl > 0 if a + b, and p(a, bl = O If a : b.
A2. pla, bl: p(b, a).
A3. p(a, c) s pla, bl + plb, cl.
It is evident that properties A1 and ,A.2 are true for the

Z-adic distance. Property A3 is also clearly true in the
case when a = b = c.

Let us prove property A3 for the case of distinct ra-
tional numbers a, b, and c. Let a - b = 2k'(mrf nrl,
b - c :2^'lmrf nr), and a - c :2R31mrf nrl, where all the

22 Jtl[Y/AUGU$r rsss

mrandn, are odd integers. Since a - c=(a-bl + (b - c),

k, cannot be less than the smaller of the numbers k, and
k,. Then, l/2k' does not exceed the greater of the num-
b6rs 1/2I, and 11Zk, , so lf 2k' < llzu' + lf 2k, .

Thus, we see that all the axioms are valid, and p can
be called a distance.

What quantity does this distance measure? It turns
out that it measures (roughly speaking) the degree of di-
visibility of a rational number by 2. The "better" that
2 divides a number (for example, the higher the power
of 2 that divides it, if it is an integer), the closer it is to
zero. For example, 8 is closer to zeto than lf2, 16 is
closer to zero than B, 480 is closer to zero than 16, and
384 is closer to zero than 480.

Infact, we have proved that2-adic distance possesses

a property A3', which is stronger than A3:
A3'. The distance pla, cl does not exceed the greater

of the distances pla, b) and p(b, c).

Exetcise 1. Prove that if p(a, b) + p(b, cl, then p(a, c)

ecluals the larger of the numbers pla, bl and plb, cl, and
lf p(a, bl : plb, cl * 0, then pla, c) . p(a, b).

Property A3'has interesting consequences. We call the
set of all rational numbers x such that p(a, x) < r (where a
is a rational number and r is a positive real ntmber) the
2-adic circle of radius r centered at point a.

Exercise 2. Prove that i{ two Z-adic circles have a

nonempty intersection, one of them includes the other.
Exeriise 3. Prove that the Z-adic circle of radius r in- p

cludes in{initely many pairwise nonintersecting 2-adic 9
circles of radius r. d

By analogywith the usual absolute value (sometimes S
called the modulus), we define a2-adic modulus a of a !
rational number 11a11 as the Z-adic distance from this B
number to zero'. ti' a": Zk(mln), where m andn are odd 5



numbers, then llall = p(0, a) : ll l2lk The following prop-
erties of the Z-adic modulus can be easily established:

lwt. llall > 0 if a+ 0 and ll0ll : 0.
M2. If lloll, llbll, then lla + bll=llall;lf llall : llbll *0, then

lla + bll < llrill. (Thus , in any case lla * bll < llall + llbll.)
rw3. llabll = llrll . llbll.
Exercise 4. Derive the following properties of the

}-adic modulus from properties M1-M3:
(a) ll-all : llall; (b) if llall + llbll, then llo - bll = lla + bll.
Exercise 5. Prove that if llt - "ll 

< 1 and lll - yll . 1,

then lll - xyll . 1.

Decomprsiliolt ol a $qmrs
Figure I depicts a square that is decomposed into

congruent triangles. The squares in figure 2 are decom-
posed into triangles of equal area. In each of these ex-
amples, the number of triangles is even.

Problem. Prove that the square cannot be decom-
posed into an odd number of triangles of equal area.

Choose a system of coordinates in the plane such that
the vertices O, A, B, and C of the given square have the

NWN
Figure 1 Figure 2

coordinates O(0, 0), A11,0), B(I,l), and C(0, 1). Assume
that the square ls decomposed into n triangles of equal
area. Then, this area is 1/n. If n is odd, then lll/nll : 1; if
it is even, lltlnll>2.

Consider apaftratlar case. Let the vertices of all the
triangles of the decomposition be points with rational
coordinates. In this case/ we can color every vertex (x,
yl green, red, or blue according to the following rule:
if llxll < 1 and llyll < 1, the point is green; if llxll > llyll and

llrll > 1, the point is red; and if ll"ll . llyll and llyll > 1, the
point is blue (fig. 3). We will assume that all rational
points of the plane are colored, not just the vertices.

,

)
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Figure 3

Exercise 6. (a) Prove that if P is a green point, then a
translation by the vector PO preserves the color of the
points.

(b) Prove that no line can include points of all three
colors.

Suppose that the vertices of a triangle belonging to
the decomposition are of three different colors (we prove
in the Appendix that such a triangle does exist). Let K
be the green vertex of this triangle.

By virtue of exercise 6a, a translation by the vector
KO yields another triangle with vertices of al1 three
colors. Denote by Lrlx1,I1) the red vertex of this triangle
and by Lr(x, y2) its blue vertex (the green vertex coin-
cides with point O). Since the triangle OL{zis obtained
by a translation of a decomposition triangle, its area is
lln. On the other hand, its area is Ll2lxrv2- xryrl. lWe
invite the reader to prove this.)

Thus, we obtain the ecluation lln = ll2lxrV2- xzyi.
Now it is not difficult to establish the inequality
llt/"ll > 2. lndeed, since I, is a red point and I, is blue,
we have ll",ll > llyrll and llxrll . llrr;;. Multiplying these two
ineclualities, we obtain ll",ll llyzll , llx2ll llylll, and there-
fore, by property m3, llx,t2ll , llrzy,ll. By virtue of prop-
erty M3 and exercise 4b,llxrV2- xzytll: llxryzll. In addi-
tion, llx,ll> 1 and llyzll> t, so that llt/"ll = zllxrllllyrll>2.
Hence n is even.

To solve the problem in the general case, it is suf-
ficient to prove that the Z-adic modulus can be ex-
tended to the set of all real numbers. That is, a func-
tion x -+ llxll exists that is defined on the set of all real
numbers, satisfies properties M1-M3, and coincides
with the Z-adic modulus on the set of all rational
numbers. Such a function actually exists, but the
proof of this fact requires tools that are f.ar beyond the
scope of this article.

2-adh expansion
It is well known that any natural number can be

represented as a sutrr of powers oi 2. For example,
1000 = 2s + 2s + 26 + 27 + 28 + 2e. We can obtain this
expansion by using the 2-adic distance in the {ollow-
ing way. First, find a power of 2 that is at the same
2-adic distance from 0 as the number 1000. Having
found this nurnbet 123), subtract it from the given
nurnber 1000, and for the new number,992, find a
power of 2 that is at the same 2-adic distance from
0. Then, find a power of 2 that is at the same 2-adic
distance from 0 as number 960 = 992 - 25, and so on.

Using negative powers of 2, we can construct sirni-
1ar expansions for rational nurnbers of the {orm mfZk,
where m and k are natural numbers. For cxample,

1477 I+22 +26 +27 +28 +210

Zrb= T
_J *,.1 r._.1 I ) -l0,.ll

Other rational numbers cannot be rcpresentecl as a
sum oi powers of 2. Holvever/ an.y rirtional number can
be approrimated by such surls as accurately as desired.
Indeed, 1et a b.e a rational number and llall = 1/2k' . De-
,. -1. _.
fine .1. = ,1 - )' . Then, a, is closer to zero than a (exer-
cise 1i Tl-rere fore, erther r,, : 0 o, llttrll: 1121',, where k,
> ft . Settrng.rl- : rr, - -)'i:, we again obtain eithcr a, = 0
or li.r = 1 I rrhcre k, r 1*,, and so on. Thus, cithcra
ccrrain .. i: -* o and theh n iia sum o[ powers of 2: iThat
rs,,r = l" - ll, +... * 27t-, oraild-arenotzeroandthen
a rs approximated by the sums 2k1' * 2k: + . . . + 2k, with
an\-accuracy desired.) in this case, it is convenient to con-
srder,r as equal to the infinite sum d : 2t', + 2k. * . . . *
1.:. _ .

Definition. Let x, x), ., x, be a sequence of ratio-
nal numbers. We will say that a equals the infinite sum
y. + y^ + + x + . if the 2-adrc distance between a'-l "1 ' --n

and the Sums S,, = X1 + X2 + . . . + 1, tends to zero aS n
tends to infinity. That is,

l11o(o' 
s')= o'

Exercise T.Prove that if llqll . 1, then the infinite sum
a + aq+ aq2 + . . . + aq'+. . . existsandequals allt - q)

We have proved that any rational number can be rep-
resentedeitherasafinitesum 2k, + 21, +... + 2k,,

- )u + . ., where k, are integers and k, . k) . . . .ln
both cases, this repiesentation, rlhich is called the
2-adic expansion of number at can be written as

"- J/',"- ): - -c- 
'r1' " -ck- (A,l- cA_:t-

where rt is an integer, each of the numbers
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is either 0 or 1, and eo: 1. The numbers ri., €k*1, . . . are
called 2-adic digits of the number plq.It is not difficult
to prove that any rational number has one and only one
2-adic expansion.

Exercise'8. Prove that

-1 = 1 +2 +22 +23 +...+2n +...
and

116 =21 + I +2 +22 +24+: . . + 22' + .. .

By virtue of exercise B, the 2-adic digits of number -1
{orm the sequence L, l,1,. . ., and theZ-adic digits of
number ll5 form the sequence l, 7t 0, 1,0, 1,0, l, . . .

Both these sequences are periodic. We can prove that the
sequence of 2-adic digits of any rational number is pe-
riodic. (In the same sense in which a decimal fraction
that represents a rational number is periodic beginning
from a certain digit.)

To prove this, consider the sequence of integers ar,
az, ., an, . defined by equations

P _o-1k -al 1k+lek- 2 |qq
P 

-(uozo + eu*,2k*1) - o, 
zo*' ,...,cl''q

*-(ruzo*€7.*;2k-1 +...+ ep-,-,2k+n-I) - lro*",q\/q

where Ek, tk*I, . . .t tk+n_rt . . . are the Z-adic digits of plq
(the reader can check that a, a2, . . . are indeed integers).

Now we can notice that the Z-adic expansion of p I q
can be obtained from the Z-adic expansion of anlebv
multiplying each term of this latter expansion by 2k*'
and adding to the beginning of the sum obtained the
following:

t pZk +ak*r2ft*t +...+ Ek+n-rzk+n-r .

Therefore, the periodicity of the sequence will be
proved if we prove that a certain number occurs twice
in the sequence ay, a2, ., an,. . . In fact, this sequence
is bounded, and since its members are integers, there
will inevitably be equal numbers among them. The
boundedness of this sequence can be proved by the fo1-
lowing chain of inequalities:

h l=l P -(ru *.u-l *...* er.*,-r'lol
l""l-lrt-, -[r" - Z"-r-"'- z )"tl

tDItII"rr
< r--+-l + | 

- 
r 
- 

*...* I I nl < )!! *lol.
Irk-,l I-ln )n-l ) l-'t 1/< r-1r'
t- / L

Exercise 9. Using the result of exercise 7, prove that
if e7., tp*1, . . ., tk*z,. . . is a periodic sequence of digits 0
and t, then thie infinite sum eo2ft + ro*r2ft*] +

+ Eo*r}k*2 + . . . is the 2-adic expansion of i certain ra-
tional number.

2-adh numhens

In addition to periodic expansions, which determine
rational numbers, we can consider nonperiodic expan-
sions and say that they define a new class of numbers.
These new numbers together with the rational numbers
form a set Q2l and the elements of this set are called
2-adic numberc.

The elements of Q, can be added and multiplied.
This is done in the following way. Let cx, = tx}k
+ ro*r2k*I + . . . Write o, as an infinite fraction: o ='et
. . . s0e1€2 . . . The sum (product) of two numbers writ-"
ten in this manner can be calculated in the same way
as the sum (product) of two infinite fractions, but
with the proviso that we carry digits from left to right
(two examples are given in figure 4). We cannot con-
sider this issue in more detail here, and we invite the

1 10. t 1001I...
" 0.01r01...

-1lo11o-

0.11011...
0.00110...

1^001-

Figure 4

reader to prove that the sum and product of two ele-
ments of Q, is also an element of Q, and that these
operations obey the commutative, associative, and
distributive 1aws.

The 2-adic modulus and distance can be naturaily
extendedfor Qr: if a e Q, and u = tuZk +sl_,2k I + .

(where eo*.0), then lloll = llLu; if u, B e Q, then p(u, F)
= llcx - 9ll.

Exercise 10. Given the expahsion of a numb er a e Qr,
construct the expansion of -o.

Exercise 11. Prove that the ordinary sum of two ra-
tional numbers and the sum of these numbers in Q, cor-
respond to the same number. Prove the same for the
product.

Exercise 12. Learn to perform division i, Qz.
We know that the sum of an infinite sequence {xr}

can be defined under certain conditions. A necessary
(however, not sufficient) condition is that I*"- = O.

The situation is simpler tor 2-adic numbers. The"con-
dition I*16"11 :0 is necess ary andsufficient:il IglE ll
= 0, then the.limit

Ii* i,,
"'*?t '-

exists.
Exercise 13. Prove the sufficiency of the condition

lglE ll= o.
Exeicise 14. Prove that the sum J.1! + 2.21 + . . .

+ n. n! + . . . exists and find its va1ue.

-1011.010f...
101.1010...

1 1 10J000-
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Exercise 15. Prove that if , E Qz and llxll < LlZ, the
sumx/l + *12 + . . . + x'fn+ . . . exists.

Z-adic lo$al'lfim A
/\
".....-_---- --\

A
A

In conclusion, consider the
number

following problem: The

2nzz223
-+-+-+...*_I23n

is represented as an irreducible fraction pnlqn.
(i) Prove thatpnis even.
(ii) Prove that if n > 3, then p, is divisible by 8.
(iii) Prove that for any natural k, a number n canbe

found such that pn, pn,, pn+zt . . . are all divisible by 2k.
Consider the function

xrLx'L\x)=i.;1 .1 - 1...

defined on the set of 2-adic numbers x that are not greater
than ll2 in modulus (see exercise 15). To prove item (iii)
of the problem, it is sufficient to show that L(21: 0. De-
fine another function by the forrnula log x = -t( 1 - x). The
equality Llzl :0 means that 1og (-1) : 0, The function log
(it is called the 2-adic logailthml possesses the basic prop-
erty of the logarithmic function: log(xy) : log x + log y.
This property immediately implies that log (-1) = 0. In-
deed,log l:log(1 1):1og 1 +1og 1 =21og 1,from
which it follows that 1og I : 0. On the other hand,
log I :los ((-1) (-1)) :1og (-1) + Iog (-1):21og (-i).
Therefore, log (-i) : 0. The Z-adic logarithm plays the
same role in the set of 2-adic numbers as the common
logarithm does in the set of real numbers. The 2-adic
logarithm is defined for xwith modulus 1: llxll : 1, since
it is exactly the case whrin lll - xll < ll2; inparticular,
1og (-l) is defined.

Besides the logarithm, other remarkable functions of
a 2-adic variable exist. One of them is the exponential
function that is defined as follows:

a-

eXpX=1+x+ +. ***

Exercise 16. Prove that the exponential function is
defined on the set of 2-adic numbers x that satisfy the
condition llxll< 1/a.

The basic properties of the 2-adic exponent are simi-
lar to those of the usual exponent: exp (x + y)
: exp x . exp y, exp (log x) = x, and log (exp x) : x. These
identities hold for the values of the variables for which
the corresponding functions are defined.

Just as the 2-adic distance has been defined, we can
define a p-adic distance taking an arbitrary prime num-
ber p.It turns out that all distances defined for rational
numbers are equivalent to the usual distance or to one
of the p-adic distances. However, this is a topic for an-
other article.

Figure 5

Anrundix
It remains for us to prove that a triangle with verti-

ces of the three different colors does exist. We formu-
late and prove a more general proposition: Let a square
OABC be decomposed into severul triangles. Assume
that eachvertex of these triangles is colored green, red,
or blue in such a way that no line contains points of all
three colorc. Let O be the green point, A andB be red,
and C be blue, Then there is a triangle with vetices of
three different colorc among the triangles of the decom-
position.

Proof. It is convenient to differentiate between the
sides of triangles and segments that are parts of the tri-
angles' sides formed by vertices of other triangles fall-
ing on these sides. If a side of a triangle contains no
vertices of other triangles, it is considered as a segment
itself.

We distinguish six types of segments and six types of
sides, depending on the colors of their endpoints: GG
(both endpoints are green), GR (one endpoint is green
and the other is red), and so on (GB, RR, RB, and BBl.
We prove that the sides of a triangle that has two verti-
ces of the same color contain an even number of GR
segments. Indeed, since no lines contain points of all
three colors , a GR segment can lie only on sides of types
GG, GR, and RR; sides of type GG and RR contain an
even number of such segments and sides of type GR an
odd number. Therefore, the sides of each of the triangles
depicted in figure 5 contain an even number of segments
of type GR (triangles with two or three blue vertices do
not contain such segments).

Now assume that none of the triangles of the decom-
position has vertices of all three colors-that is, each of
the triangles has two vertices of the same cohrr. Every
segment that lies on a side of the square OABC belongs
to a side of exactly one decomposition triangle, and
every segment inside the square belongs to sides of two
decomposition triangles. Since any decomposition tri-
angle has two different-colored vertices, the sides of the
square contain an even number of segments of type GR.
On the other hand, sides OC and BC contain no seg-
ments of this type, side OA contains an odd number of
such segments, and side AB contains an even number,
which gives an odd number in total. Thus, we have ar-
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The poinled meelinU ol a

= ZBTCTH = ZBTAH = ZCAA..Tri-
angles CAA, and CBBrhave a com-
mon angle and apair of eclual angles.
Therefore, the remaining angles of
these triangles are equal. Hence,
ZAALC = ZBBTC, andAAris the the
altitude of the triangle considered.

Proof 2. Other auxiliary cfucles.
nose/ we have proved a

very interesting theorem: If
H is the orthocenter of triangle ABC,
then:

A is the orthocenter ol tnarrgle HBC,
B is the orthocenter of tiangle HAC,
C is the orthocenter of trrangle HAB.

Proof 1. Auxiliary circle method.
Consider an acute triangle ABC (fig.
2l.Let BBrand CCrbe the altitudes

A

Figure 2

of this trianglc and let H be their
point of intersection. Draw the line
AH and let A, be the point of its in-
tersection with BC. Notice thar
points B, C, Bt, and C, lie on a circlc
(with diameter BC). Thereiorc,
lBtCtC : lBpC (thcsc angles sub-
tend thc same arc of the ar-rxiliary
circle). Notice that points A, Bt, H,
and C1, also lie on a circle lwith di-
amctcr AH). Thereiore, ZBTCtC

pendicular to BC
and is the third alti-
tude (both in tri-
angle ABC and in
HBCl.In particu-

1ar, the altitudes of
HBC concur at A.

Right under our

Figure 3

Consider a circle circumscribed
aronnd an acute triangle ABC.The
sum of the arcs of this circle that are
subtended by the triangle's sides is
360'. Therefore, the arcs that are
symmetric to these arcs with re-
spect to the triangle's sides lr1eet at
a point, which is labelecl H in figr,rre
3 ithe proof of this jntt'r'c.rrnS tact is
left to the readerl. \\re can see that
ZABH = lACIl, srnce these angles
are acutc and sr:btcn.letl by the same
chord of et1ua1 crrcies. Let each of
these angles i-,e o Srmilarly, we have
tr,r,o othe r pairs oi ec1ua1 angles:
ZBCT{ = ,, BAH = B, and IACH
: z-\tsll : 'i. Srnce two copies each
oi cr B and Texactly cover the three
angles of triangle ABC, we have
r;.-0-y=90'.

Before we continue, we look a bit
at the context of what we are cloing.
The concurrence of the three alti-
tudes of a triangle is perhaps the
most difiicult of several concurrence
theorems in elementary geometry.

I

HERE IS MORE
than one way to
skin a cat, and
the same can be

said for proving a geo-
metric theorem. This
is particularly true for
thewell-known theorem
stating that the altitudes of
any triangle are concurrent-
they all pass through the same point,
which is cailed the orthocenter of
the triangle. (To be more precise, we
mean here that the lines containing
these altitudes meet at a point.) We
present here several ways of proving
this important theorem.

But first some preliminaries. Let
us note that it is sufficjent to prove
this theorem for acute triangles. In-
deed, suppose we have done so, and
let HBC be an obtuse triangle, with
an obtuse angle at vertex H.Draw
perpendiculars from points B and C
to the opposite sides of the triangle
and label the point of intersection of
these lines point A (fig. 1). Triangle
ABC is acutet and so, by our as-
sumption, its altitudes intersect in a
point. So if we draw perpendiculars
for C to AB, and from B to AC, therr
point of intersection will 1ie on the
perpendicular from A to BC. But
their point of intersection is just Hl
So the line through A and H is per-

A

Figure 1
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CSCOPE
lav

i
I

I

il a ll'ianUle's allitudes

Let us review these.
Theorem: The three perpendicu-

lar bisectors of the sides of a triangle
concur at the center of a circle
through the triangle's three vertices.

This is easy to prove. We take a
triangle ABC and draw the perpen-
dicular bisectors of sides AB and
AC. Thefu point of intersection
(since they cannot be parallell) is
equidistant fuorr, A and B, and also
from B and C. Thus it is equidistant
from A and C, and so lies on the per-
pendicular bisector of BC.

Theorem: The three bisectors of
the angles of a triangle concur at the
center of a circle tangent to the
triangle's three sides.

This is also easy to prove. We
take a triangle ABC arrd draw the
bisectors of angles A ar-.d B. Their
point of intersection (since they can-
not be parallel!) is equidistant from
lines AC and AB, and also from lines
BC and AB. Hence it is ecluidistant
from lines AC and BC andso lies on
the bisector of angle C.

We can sometimes use these
theorems, which are so easy to
prove/ to prove the concurrence of
the three altitudes.

angle the sides of the initial tri-
angle are midlines (lines

Therefore, the perpen-
dicular biscctors of the

connecting midpoints of
two of the triangle's sides).

sides of the triangle
AoBoCo are altitudes in
the initial triangle.
Therefore, the altitudes
meet at the same point as

the perpendicular bisec-
tors of triangle AoBoCo,
which is the center of the
circle circumscribed about
AoBoCo.

Proof 3. Usingthe ctucumsuibed
cfucle. Through the vertices ol ABC,
draw the lines parallel to the oppo-
site sides of the triangle (fig. 4) to
obtain a triangle AoBoCo.In this tri-

nAnA6o#C,,

Proof 4. Using the insuibed
cfucle. Let A' , B' , and C' be the points
at which the altitudes of t/rangle ABC
meet the circle circumscribed around
it (fig. 5). we have /.ABB', : Z.ACC',

Figure 5

(they're both complementary to
lCABl, so AB' : AC'. Now we can
see that AA', BB', and CC' are angle
bisectors of triangle A'B'C'. There-
fore, they meet at the center of the
circle inscribed in triangle A'B'C'.

Let us look back for a minute at
the proofs of the concurrence of the
perpendicular bisectors and the
angle bisectors. What made these
proofs so easy? We were able to de-

scribe each of the lines we were dis-
cussing as a locus, satisfying some
condition of equality, and involving
two of the vertices of the triangle.
Then the transitive property of
equality lIf x: y andy: z, thenx: z)
did the work for us. If we can de-
scribe the triangle's altitude as loci,
we can get another simple proof of
their concurrence.

But first let us practice on the
medians o{ a triangle. There are
many proofs that these concur (see

"The Medians," by V. Dubrovsky in
the November/December 1994 is-
sue, page 32).

Theorem: MedianAM of triangle
ABC is the locus of poinrP such that
the areas of triangles CPA and CPB
are equal.

Proof: For any point P on AM, tri-
angles APM, BPM are equal in area,
since they have the same altitude
frollrr P, and equal bases AM : BM.
The same thing is true of triangles
ACM, BCM. So the differences in
these two areas are equal: using ab-

CONTINUED ON PAGE 46
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E ARE ALL FAMILIAR WITH
images formed by mirrors
and lens. Infact, we often pay
to see images produced in

special ways such as those in fun
houses or at the Haunted Mansion
in Disneyland.

But what is an "image charge?"
Does it have anything to do with op-
tical images? Let's investigate this by
considering the following problem.

We are given a conducting plate
that is so large that we can imagine
that it reaches to infinity in the
plane of the plate. Alternatively, we
can work close enough to the plate
andfar enough from the edges that
the plate might as well stretch to
infinity.

Let's now place a charge 4 a dis-
tance d in front of the middle of the
plate. If the plate is grounded, is the
charge q attracted to or repelled by
the plate? And what is the strength
of the force acting on the charge?

Experimentally, we can demon-
strate that there is an attractive force
between the charge and the metal
plate. Run a comb through your hair
and use it to pick up small pieces of
aluminum foil.

We can also see this qualitatively.
If we bring a positive charge near a

metal plate, the positive charge will
attract the electrons in the plate,
causing them to concentrate in the
area nearest the charge. Because
these electrons have moved closer to
the charge, their attractive force is
larger than the repulsive force of the
positive ions left behind.

Quantitatively, this looks like a

PHYSICS
CONTEST

lmaue ilarUE

by Larry D. Kirkpatrick and Arthur Eisenkraft

"We operate with
nothing but things

which do not exrst, with
lines, planes, bodies,
atoms, divisible time,
divisible space-how
should explanation

even be possible when
we first make

everything into an
image, into our own

image!"

-Friedrich 
Nietzsche

(1 844-1 e00)

complicated problem, but it can be
solved rather easily using one of the
"tricks of the trade." This techniclue
relies on a uniqueness theorem for
the electrostatic potential. Remem-
ber that the electrostatic potential at
a point in space is the amount of
work recluired to bring a unit posi-
tive charge to the point from apLace
where the potential is zero. Suppose
that we are given the value of the
electrostatic potential at every loca-
tion on the entire boundary (surface)
of a volume of space. If by hook or
crook, we can find a formula that
gives the correct values at all points
on the boundary, this formula also
gives the values of the electrostatic
potential throughout the volume.
Furthermore, the formula is unique.
No matter what other technique we

may use, we will get the same po-
tential. This means that we can
search around for a simple way of
finding the electrostatic potential.

One way is to use the method of
images. We imagine that we can re-
place the metal plate with an image
charge Q. This charge is located be-
hind the original metal surface along
the normal from the original charge
to the surface as shown in figure 1.

(Remember that the image of an
object in front of a plane mirror is
located along a similar line. In fact,
we might guess by analogy that the
image charge is located a distance d
behind the original surface.) For the
moment/ let's leave the distance D
of the image charge behind the plate
as unknown.

If we choose the potential to be
zero at infinity, the potenti al at a

distance r from a point charge q is
given by

ko
V = ----L

T

where k is Coulomb's constant
: ll4rsn. One of the reasons for in-
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troducing the idea of potential is
that potential is a scalar. The poten-
tial due to a collection of point
charges is just the sum of the poten-
tials due to eich charge. In contrast,
we must add the electric field due to
each charge as vectors to get the to-
tal electric field.

Returning to our problem, let's
choose the origin of our coordinate
system to be on the surface along
the normal to the charge. At any 1o-

cation along the original surface, the
potential due to both charges is

' kc1 kQ
' I ^ ^'tldz +i 

^lD) 
+rz

where z is the distance along the
plane measured from the normal.
Because the plane is grounded, V = 0
and

\tE.f
We need to find the values of two

variables, Q and D,but we only have
one equation. However, we also
have the condition that this equa-
tion must be satisfied for all values
of r. In this particular case, we can
guess the solution, Q = -ct and D : d,
but it is instructive to obtain the
solution in a more formal manner.

Let's scluare the equation and
multiply through by both denomi-
nators to obtain

(o' + r')o' =(d2 + r')e' .

We now coliect terms containing 12

on one side of the equation and all
other terms on the other side:

D'q'-d'Q'=r'(O'-o').

For this equation to be valid for all
values of r, the coefficient of z2 must
be zero. Therefore, Q : t4. We
choose the minus sign because this
is the only way the potential can be
zeto at the surface. The left-hand
side of the equation must also be
zero, giving us D : d.

This tells us that the charge q can
be imagined to induce a charge -q a
distance d behind the metal surface.

According to the uniqueness theo-
rem/ we can now use this image
charge to calculate results at all
points in {ront of the metal.

Armed with this result we can
answer our original questions. Be-
cause q and Q have opposite signs,
the charge q is attracted to the
metal plate. The strength of this
attractive force is given by
Coulomb's law:

E-1, ctQ ,,Q'r - ^ 
-l---------:-; - -n -----li- r

(d + D)' 4d'

where k is Coulomb's constant.
The electrostatic potential is ob-

tained by substituting our condi-
tions back into the formula for the
potential:

We can also use the image charge
to calculate the electric field at all
points in the volume and on its
boundary. In particular, 1et's do this
along the metal surface. Symmetry
tells us that

E,(0, r) = 0.

We also know this because the elec-
tric field must be normal to all me-
tallic surfaces. The two charges con-
tribute equal amounts to the normal
component:

_a 7,

E,(o,r) = 4!!-rore
a- +r-

_ -Zkqd
I fl 21312'
\d-+r-)

One reason for calculating this elec-
tric field is that it allows us to find
the actual charge distribution in-
duced on the metal surface by the
charge q. 'fhe induced surface
charge density is

-qd

Figure 2

It is interesting to note that if you
integrate this charge density over
the entire surface, you obtain atotal
charge oI -c1, the same value we ob-
tained for the image charge.

This brings us to this month's
contest problems:

A. Two iarge metal plates form a

right-angle corner. A charge q is
placed within the corner, ec1ua1 dis-
tances d {rom both plates , and f.ar
from the edges of the plates {see fig-
ure 21. What is the force acting on
the charge?

B. The second of this month's
contest problems is based on a prob-
lem given on the semifinal exam
used to select members of the US
Physics Team that will compete in
Italy in |uly. A charge q is placed a
distance d from the center of a
grounded metal ball with radius
c < d.The electrostatic potential is
chosen to be zero at infinity. What
is the force acting on charge q?

$pol'lin'liln
In the )anuarylFebruary issue, we

posed a series of problems that re-
quired an understanding of trajecto-
ries in sports events. Before begin-
ning with the solutions/ we must
apologize for two errors that ap-
peared in the afiicLe.In the first
equation showing the depehdence of
the y-coordinate on the x-coordinate
and the angle, the first term should
have had an x2 rather than an x in
the numerator. The second error
was the reversal of the axis labels on
the graph.

The first problem asks for the lo-
cations where a soccer ball cannot
land if a wall of defenders 1.8 m high
is set up 15 m from the free kick.

"-{
-O

, .,) ),lx-dl +r'
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The strategy for the solution is to
find the two angles for which the
ball can be kicked at a eertatn veloc-
ity that will take it to the point
(1.8 m, t5 m). Knowing these two
angles, we then find the correspond-
ing x values for the ball landing on
the ground (y: 0):

-ou2 ^ ou2y=-9^-tan'0+xtan$-+.' 2v6 2v6

Substituting the values for x, y, and
vo = 35 m/s and solving the quadratic
equation yields values for 0 of 85.5'
and 10.4'. We use the range equation
to find the points where these two
trajectories hit the ground.

t..2 ..2
x - = t-Q- 

cos e sin o = 'o sin 20.
88

The corresponding distances are
15.11 m and 44.04 m. The shadow
region lies behind the waI1 and ex-
tends for 0.11 m.

Part b asks what happens to this
shadow region as the wall moves
relative to the kicker. Calculating
the shadow region on a spreadsheet,
we determine that the shadow re-
gion increases as the distance from
the kicker increases. This makes
sense because the angle required to
just clear the wall will decrease and
therefore the ball will not be able to
fall as sharply behind the wail.

Problem 2 shifted to trajectories
in basketbail. It required readers to
find the relationship between the
initial velocity vo and the initial
angle 0o given a fixed shot position
where the rim is h meters above the
ball and I meters awayhorrzontally.

Beginning with our trajectory
equation

-Rx2 xsin 0
r.--

' zricos2 o coso '

we solve for vo:

1

the ball is to enter the basket dur-
ing its descent. The angle of entry
can be defined as the angle be-
tween the horizontal and the angle
of the tangent to the ball's trajec-
tory. We will assume that we can
ignore the size of the ball-a ter-
rible assumption, but one that
makes the analysis simpler.

The initial constraints should
depend only on h and L, where

h=lvosin06)t -i,rtr,
L = (vo cos 06)t,

tang= 
Y, 

- YosinOo -gt
vx vg COSOa

(vs sin0r)t - gt2

(vo cos oo )t

2(vo sin ou )t - gt2 - (v. sin 0n )t- (vo cosoo)t

2h: 
L 

_ tanoo.

Because the ball must be falling in
order to make a basket, 0 and tan 0
must both be negative. This requires
that the right side of the equation
also be negative. Therefore, the con-
straint on the initial angle is

2h
tan 0o > 

-.

Part c asks for the angle where a

minimum speed is required to sink
the shot. To solve this, we can calcu-
late the speed required for many dif-
ferent angles using the equation from
Part a and a spreadsheet, assuming

25

20

15

10

5

0 0 50 100

Figure 3

values of h = 1 m and I : 5 m. The
graph in figure 3 of vvs. 0 indicates a

minimum at approximately 50'. A1-
ternatively, we can take the deriva-
tive of the equation from Part arelat-
ing v to 0 and set this derivative eclual
to zero to obtain

Using the sample values of h = I m
and L :5 m, we arrive at an optimal
shooting angle of 50.7".

P eter Brancazio, Physics Professor
Emeritus of Brooklym College, took
this analysis further and then com-
pared theory and practice on the bas-
ketball court. We highly recommend
Brancazio's 1981 article "Physics of
Basketball" in the Amefican lournal
of Physics (49),356-365. O

dv_ - Il
cLe

htanO=-+
L

)
Y0 -

ol

2cos2o trrrg-4
L

Part b of this probiem asks for the
constraints on the initial angle if

rl
11 rl
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AT THE
BLACKBOARD I

A cardioid lol' a mushrooln picker

NE CLEAR SEPTEMBER
morning my friends and I went
to the forest to pick mush-
rooms. We went along a path in

the forest to a well-marked pole,
then decided to go west separately
and meet 4 hours later at the pole.
We didn't have compasses, but the
landmarks were reliable: the path
went strictly {rom north to south,
the Sun was in the east, and two big
lakes were on the edges of the forest
({ig. 1).

So as to avoid distraction from
picking mushrooms and to arrive on
time at the meeting place, I decided
to walk for half the time (2 hours) so
that the Sun was shining on my
back and then return in the opposite
direction. I collected a full basket of
mushrooms, then found that I had
to make certain corrections to my
route. As a result, I returned to the
path about 1 km south of the meet-
ing place and was 15 minutes late.

Then I decided to make sense of

Figure 1

34
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by S. Bogdanov

my trajectory and find out where I
would find myself at the end of the
walk if I had strictly adhered to my
plan. After making certain reason-
able assumptions, I formulated the
problem as follows.

A point B (the Sun) moves in the
plane XY with a constant angular
speed rrl along a large circle c.entered
at the origin (fi1.2l. Point A (a per-
son) moves from the origin with a
constant speed v in the direction
" away from point 8." In other
words, at afly moment in time, the
velocity is oriented along the line
"Sun-person." At a certain time t,
the direction of the velocity is re-
versed, and point A begins to move
in the direction "toward 8." What
are the coordinates of point A at
tir:"re 2t?

The solution proved to be quite
simple and understandable, espe-
cialLy for those who have at least
once walked "in circles" in the for-
est. Indeed, point A moves at a con-

stant speed, but the velocity vector
changes such that it is always di-
rected "ftom point 8," which de-
scribes a circle. Therefore, point A
also moves along a circle with the
same anguiar speed as point B.
While point B moves to position B',
the person moves along the circular
arc AA' to position A'. It is clear that
the return motion from the tuming
point A'to the final point A" car:.be
described similarly. The point
moves along the circular arc A'A" of
the same radius, and its certter, O',
lies on the line that is perpendicular
to A'B'and passes through the point
of tangency A'.

Using the weli-known relation
between linear and angular velocity,
we obtain the following formula {or
the radius of the circle AA' : R : v lw.
In addition, it follows from the ini-
tiai conditions that the center of this
circle is at the point with coordi-
nates lvf w,0). Simple geometrical
considerations (for example, of trap-
ezoid AOO'A"I make it possible to
determine the location of point A",
which is the distance r from the ini-
tial point A at theangle 0 : ZA" AO:

0 = fi - 0)t, r = AA" =2, 
L+"ote.

0)

The quantities z and 0 are called
the polar coordinates of a point.
Let's analyze this result for acharac- |
teristic interval of possible values of f
t:0 < t ( 5 . We use the fact that ro 2
:2n124 h r. For small t, 0 is a little >
less than n. That is, there is a consid- b
erable azrmuthaldeviation from the 5
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Figure 3

initial direction nf 2, while the dis-
tance r is rather small. ff t is about
5 h, the azimuth deviation is practi-
cally zero, but r becomes rather
large.

For example, 1et us make a nu-
merical estimate for t = 2 h and
v =Zkrnlh.In this case, 0 =5n16, and
the radius R and distance r are about
8 km and 2.4km, respectively.

Figure 2 also makes it possible
graphically to demonstrate the loca-
tion of the final point A". Suppose
that the circles O and O'touch each
other at the initial moment at point
A. Then, circle O' starts rolling

without slipping along circle O. By
the time t, when the circles touch
each other at the turning point A',
the initial point of tangency A
moves to the position A". Thus, the
set of all possible final points of the
route at a constant speed v and vari-
ous t coincides with the trajectory of
a point of circle O' that rolls along
circle O. The corresponding circle
is called a cardioid-its plot is
shown in figure 3, and its equation
was obtained above. This curve
can be constructed using impro-
vised tools, and the corresponding
drawing may be useful in the for-
est if no map is available or as a
complement to the map.

Point C in figure 3 is the final po-
sition att = 6 h, and the correspond-
ing trajectory is shown in fig. 4a. In
this case, the azimuth deviation is
zero, but r = 15 km for the character-
istic values of the parameters. Thus,
the whole-day stroll (2t = 12 h) with
the strategy "from the Sun, to the
Sun" is clearly unfortunate and even
dangerous. However, an alternative
three-segment trajectory (fig. 4b) can
be suggested for such a stro11. This

Figure 4

strategy keeps the main advantage/
which is orientation with respect to
the Sun only.

In conclusion, I would like to
note that a more complex case,
when the outbound and return mo-
tions have different speeds, can be
analyzed in a similar way.In par-
ticular, it is not difficult to show
that a1l final points will lie on the
1:rne A'A". The increased speed at
the way back only increases the dis-
tance from the initial point A.

We therefore can confidently con-
clude from our analysis that when
you go into the forest, you should
bring a compass! o
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AT THE
BLACKBOARD II

tleclric Gun'enls 0n coulumh hills

ODAY WE CONSIDER ELEC-
trical circuits carrying direct
current that are composed of
wires and batteries. First, how-

ever/ we recall how a good old ca-
pacitor works.

When a voltmeter is connected to
the plates of charged capacitor, a cir-
cuit is thereby closed. This means
that the total work needed to trans-
Ier an electric charge along this cir-
cuit in the electric field is zero. We
assume the voltmeter to be ideal (for
example, of the electrostatic type),
and thus it has infinite internal re-
sistance and a capacitance of zero.
Moving clockwise from positive
piate 1 to negative plate2 (fig. 1), we
record the decrease in potential as

Vo: QolC, where Qo is the charge
and C is the capacitance of the ca-
pacitor. The potential doesn't vary
along the connecting wires, and it
wiil increase by Vo in the voltmeter.

Figure 1

*Qo

o..- ,)

+eo

Figure 2

vo

by E. Romishevsky

This is the value that is recorded by
an ideal voltmeter, according to the
attractiye force acting, for example,
between its plates 3 and 4.

Connect plates I andZ of the un-
charged capacitor to a battery with
an electromotive force (emf)%0, The
capacitor will be charged to a volt-
age Vo ='8b = QolC. Consider the
closed circuit l-2-3-4-I. We move
along it in the clockwise direction
(fi1.2l. When we step from positive
plate 1 with potential q, to negative
plate 2 with potential q, the poten-
tial decreases. Therefore, the voltage
difference 0z - 0r = -Vo= -Qo/C is
negative. When we step from the
negative electrode (cathode) of the
battery with potential q, to the posi-
tive anode with potential qo, the
same voltage difference in the
battery's field is positive: Qa - 03 : V6,

so at plate 1 we arrive at the same
potential:

potential levels

14
17 Qo,U 

C

0z-0, +0+-0a =-Vo+ Vo:0.

A question arises: what is a bat-
tery and what role does it play in
physics? As we said, there is an elec-
tric field inside abattery, which gen-
erates (or is described by) a voltage
difference Vo=%t. This means that
negative and positive charges are
separated in the battery. When we
connect the battery to an uncharged
capacrtor, an electric charge Qo
passes in the battery in the direction
opposite to the field. The energy of
this charge increases (and so does
the voltage, which is the potential
energy of a unit charge). Thus, a bat-
tery increases the potential energy of
the charges moving in an electric
circuit. The only way to do this is to
move charges against the electric
field inside the battery. What forces
perform such heroic work?

Recall that the electric field is
similar to the gravitational field. As-
sume that we (the charges) come to
an elevator at the ground floor (the
negative electrode of the batteryl.
The elevator is affected by the gravi-
tational force (and the transferred
charges are affected by the coulomb
force). If the elevator ii ascending
uniformly, it is affected by the elas-
tic tensile forces of the steel cables,
which are equal to the force of grav-
ity (to the coulomb force). What is
analogous to the elastic tension o{
the steel cables, which perform
work against gravity? These are the
forces of a chemical nature that arise
in batteries between the metal elec-
trodes and the electrolyte. These

,0,
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+
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forces are called exuaneous to stress
their non-electrostatic nature. We
can describe them with the param-
eter of exftaneous sttength E"r,
which is equal to the force affecting
a unit positive charge. For the
charges traveling through the bat-
tery, the extraneous forces are equal
and opposite in direction to the elec- .

tric forces, so we have the following
equation for the potential fifference:

E,lb: Vb: -E",,1b : -'-91,,

where 1, is the distance over which
both of these forces act inside the
voltaic cell. Thus, .8o is the work per-
formed in the battery by chemical
forces to transfer a unit positive
charge from the cathode to the anode
against the force of an electric field
with a potential difference equal to
the emf of the battery ftu: Vo.

Let's consider the distribution of
fields and potentials inside some
particular voltage source/ for ex-
ample a voltaic cell (fig. 3).Zinc and
copper plates are immersed into a
nonconducting jar filled with a wa-
ter solution of sulfuric acid, which
acts as the electrolyte. The chemical
reaction of zinc with the electrolyte
produces positive zinc ions, which
diffuse into the electrolyte, so the
surface layer of the metal elec,trode
acquires a positive charge and the
adjacent layer of electrolyte be-
comes negatively charged. The dis=
tance between these layers 7o is very
smal1 (on the order of the size of an
atom), and the corresponding poten-
tial difference AQ is about I V, so the
strength of the electric field between
the layers is comparable to that of

Figure 3

38

f,b

Figure 4

electric fields in atoms, and the sur-
face density of these charges is also
very high. The same values are char-
acteristic of the strength of the extra-
neous forces in these layers, because
Er: -E"*r. Thus, the transfer of a unit
positive charge from the negative
plate into the eiectrolyte raises the
potential to a higher level: AQ, : E"r1ur.

In the bulk of the electrolyte solution
the potential doesn't vary (the elec-
tric current doesn't fiow yet). The
second plate (anode) is made of cop-
per, and its interaction with the
electrolyte results in the accumula-
tion of positive charges on its sur-
face, while the adjacent layer of elec-
trolyte becomes negative. Here the
potential step AQ, : E"zltz has the
same order of magnitude as AQ, and
their sum is what we call the emf o{
the cell: lAQ, + AQrl : %0.

Let's connect the terminals of the
battery with a thin, long, homoge-
neous cylindrical conductor, with
resistance R: pLlS, where p is the
resistivity, I is the length, and S is
its cross-sectional area lfig. 4). If the
battery has no internal resistance,
this conductor will carry the direct
current I =ZblR. Again questions
arise: what role does the electric
field play in this process, and what
is its value inside and outside the
conductor? When the switch S is
closed, an electromagnetic impulse
spreads along the circuit, which re-
distributes the free charges at the
cylinder's surface in such away that
they generate an homogeneous elec-
tric field Eo inside the conductor and
some nonhomogeneous field out-
side of it, whose lines of force
emerge from the cylinder's surface
and enter it at some angle (fig. 4).
The distribution of surface charge

density o along the axis of a thin,
1ong, homogeneous conductor turns
out to be linear everywhere but at its
ends.

Note that upon switching on a
voltage source/ the free electrons
begin to move virtually simulta-
neously in all the parts of a conduc-
tor, similar to the way water starts
to flow simultaneously through a
pipe when we open the faucet.
While electric current flows in a
conductor, the numbers of positive
and negative charges are strictly
equal in any part of it.

It is known that electric current
in a conductor is accompanied by
the production of heat, which is dis-
sipated in the conductor. What is the
mechanism of conversion of the
chemical energy in abattery into the
thermal energy dissipated in the
conductor?

In the absence of an electric
source/ the motion of free electrons
in a conductor is stochastic. When
the electric source is switched on,
the electrons inside the conductor
are aflected by the electric fleld,
which results in their ordered, di-
rected f1ow. Simultaneously, oppos-
ing forces due to the crystal lattice
o{ the conductor decelerate the elec-
trons. These forces are similar to the
frictional forces that act on a ball
moving in a viscous medium. A11 of
these forces produce a uniform flow
of free electrons along the lines of
force of the electric field with a yery
slow velocity in comparison with
that of the chaotic thermal motion.

We can say that the production of
heat by moving electrons in the con-
ducting medium is analogous to the
dissipation of heat caused by friction
when a body slides uniformly down
an inc.line under the influence of
gravity. The electric current is in the
direction of decreasing electric po-
tential. We can show (although it is
beyond the scope of this article) that
the potential difference between the
conductor's ends equals the product
of the electric current in the conduc-
tor and its resistance: V : IR.

Let's consider a circuit consisting
of two batteries connected in series
that have emfs'8, and'8rand inter-
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nal resistances z, and r, The batter-
ies are connected with two extemal
resistors R, and R, as shown in fig. 5.
If in this circuit '81>'82, the current
is counterclockwise. Let's plot the
changes in electric potential when
moving along the closed circuit.

Point t has the highest potential
and point B has the lowest. The con-
ductor 1-2 has no resistance (no fric-
tion in the mechanical analogy), so
the potential doesn't change in it.
We assume that the conductor 2-3
with resistance R, is similar to our
cylindrical conductor. In this part of
the circuit, we "toll" downhill, and
the potential decreases linearly be-
tween points 2 and 3. "The force of
friction" is counterbalanced by the
"rolling down" force (the coulomb
forcel, so the voltmeter will read
Vt: IRr. When passing from point 3
to point 4, the potential doesn't

Er* h,

change. Point 4 corresponds to the
positive plate of the second battery
with emf €r. When passing from a
positive plate into the electrolyte,
we are in effect descending in an el-
evator/ so the potential decreases,
and the electric field performs work
against the battery's extraneous
forces. The same thing happens
when we pass from the electrolyte
to a negative plate. The transfer of
electric charges inside the battery is
accompanied by the overcoming of
its intemal resistance r, so the poten-
tial will further dropby lrr. The volt-
meter connected to the terminals of
this battery will read Vou :'8, + Irr.
The potential will not vary between
points 5 and 5, but it will drop across
resistor Rrby IRr. Now we get on
the negative plate (point 8) of the
stronger battery with emf.$r. First a
powerful rise and then a fall across

resistance 2,, then again a mighty
rise when climbing from the electro-
lyte-and we are back on the posi-
tive plate 1.

After moving around the closed
circuit, we returned to the initial
potential. Therefore, the sum of po-
tential "Iif"ts" equals the sum of
"falls." Therefore, the work along a
closed circuit is zero:

-IRr - E 2 - Ir, * IRz - 14 +'8, = O,

or

l(ar +R, + 4 + rr) ='8t -Zz.

This equation is known as Ohm's
law for a closed circuit or Kirchhoff's
second law. Now we see that it is a
direct consequence of the properties
of electric fields. CI

Quantum on &rect current:
I. Slobodetsky, "Direct current

events," March/Aprll 1992, p. 52-
55.

A. Varlamov, "How does electric
current flow in a rnetal?." Septem-
ber/October 1992, p. 49-50.

S. Murzin, M. Trunin, and D.
Shovkun, "Beyond the reach of
Ohm's law," November/December
1994, p.24-29.
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LOOKING BACK

liUhl in a darfirooln

I N LATIN CAMERA OBSCURA

I means "dark room." The tollow-

I ing trick is known from ancient
I times: in a dark room on a bright
sunny day, make a sma11 hole in a

window b1ind. On the opposite wall
you will see the inverted image of
the street and passersby.

The pinhole camerawas probably
known to the ancient Greeks. It was
also used by Arabian scientists, and
at the end of the fifteenth century
Leonardo daVinci (1452-l5l9l gave
the first detailed description of this
wonderful device. However, the
classical camera obscura was not
widely used, because when the hole
was rather large, the image was
blurred, and when it was too narrow/
the camera produced a clear but very
dim image. In addition, the camera
worked only in complete darkness
and required the observer's eyes to
adjust.

However, in the middle of the six-
teenth century the pinhole camera
was equipped with a mirror and an
objective made of lenses. As a result,
the image became large and bright,
and the catr,era enjoyed wide popu-
lartty, in particular among amateur
artists, who used it to sketch land-
scapes. There were large, human-
sized cameras and smal1 portable
ones. Now we consider this simple
optical device as a prototype of mod-
ern photographic cameras.

Unfortunately, the name of the
carr'eta obscura was not changed af-
ter it was outfitted with a lens objec-
tive. Thus, some historical records
are controversial. For example, it is

by V, Surdin and M. Kartashev

written that pinhole cameras were
used in the first experiments on pho-
tography in the 1820s and 1830s. In
this case, it is obvious lenses were
used. However/ other reports cannot
be interpreted so unequivocally. For
example, in i611, independent of
Galileo, the Dutch astronomer
|ohannes Fabricius (1587-c. 1515)
discovered sunspots with the help of
a telescope and a camera obscura.
No question arises concerning the
use of a telescope in such research,
but how Fabricius could discern
sunspots with a pinhole is an open
question.

However, as eatly as 1509,
|ohannes Kepler (1571-1630) .re-
ported a small, dark spot that he
observed on May lB, 1507 in the
image of the solar disk obtained
with a camera obscura. He errone-
ously assumed the spot to be Mer-
cury. Such a mistake is justifiable:
the diameter of the dark part of a
typical sunspot is about 15,000 km,
lust a little bit larger than the diam-
eter of Earth or Venus. Mercury is
half the size of Earth, but when it
passes between Earth and the Sun, it
is two times closer to us than the
Sun's surface. At this moment the
angular size of Mercury is similar to
that of a sunspot (about 0.3'). Is it
possible to discern an object with so

small an angular size using just a

pinhole?
Of course, a simple cartera

obscura can be used to observe the
phases of a solar eclipse. One of the
authors once observed a solar eclipse
in the morning using a smal1 hole

made by the tip of a pencil in the
cover of a notebook. The cluality of
the image was excellent. However,
a sunspot covers a tather small frac-
tion of the solar surface. Fabricius
most likely used a lens in addition
to a pinhole, otherwise why weren't
sunspots discovered long before tele-
scopes were constructed?

The camera obscura with a lens is
almost a telescope-it is a product of
Renaissance high technology. It dif-
fers greatly from a simple classical
camera obscura, which could be
made by anyone in any century.
Let's see what can be observed with
such a simple camera obscura.

Praclice
It is a very simple matter to make

a carr'era obscura. Take any box
with a length of 15-30 cm (a milk
cartotat for example). Using a prn,
pierce a small hole in the bottom of
the box. Close the upper opening of
the box with oiled paper. A potato-
chip box with a white frosted lid is
ideal: you need only to eat the chips
and pierce the bottom with a light
stroke of a pin.

Note that observation requires
bright light outside thd box and
pitch darkness on the screen's side.
It is better to conduct experiments
in a dark room with the screen care-
fully isolated from the surrounding
light on a bright sunny day. To this
end, you can use a tube made of
thick paper with a length of
30-40 cm, attaching it firmly to the
screen and pressing your face against
its opposite end. If the shape of your
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camera obscura is round, you may
use a coat, throwing it over your
head and passing the camera
through a sleeve. To compare vari-
ous "objectiv'es," make several holes
of different diameters and experi-
ment with one hole while the oth-
ers are covered by electrical tape.

After testing the camera obscura,.
one can see that a simple hole
makes a serviceable objective: all
objects produce similar sharp im-
ages independent of distance, the
greater definition being produced by
the smallest hole. However, in the
latter case the images cannot be ob-
served easily, because they are too
dim. Still, modern photographic
films are very sensitive, so they will
certainly work even with the small-
est ho1e.

So, why not build a photographic
camera with a small hole instead of
an expensive objective? By the way,
some devices work on this principle.
For example/ astronomers make X-
ray telescopes as a lead camera
obscura, because there are no lenses
that can focus hard X-rays. How-
ever, it turns out that the operation
of a pinhole in the optical range is
quite limited, as pointed out in the
following discussion.

T]teory
Every luminous point of a distant

object sends a practically parallel
beam of light to thepinhole. Having
passed the hole of diameter D, the
beam projects a circle of the same
diameter onto the screen. Let F de-
note the distance between the hole
and the screen. If the angular dis-
tance between two neighboring
points in the object is less than D lF
(measured in radians), the respective
circles on the screen will overlap
partially.

It is not a simple question to de-
termine how much overlap the
neighboring points of the objects can
have and still be distinguished (re-
solved). The result depends on the
contrast of the details in the original
object, on the brightness of its im-
age, and so on. It is possible to dis-
tinguish the details of an image with
little contrast if they do not overlap

Figure 1

at all. Since sunspots produce im-
ages with high contrast/ we can as-
sume that they are resolved when
their centers are separated by a dis-
tance equal to the radius of the
circles. Now it is easy to find the
minimum angular size of the distin-
guishable details of the object, or, as

opticians say, the limiting angle of
resolution determined by a certain
finite size of the beam:

Until now we have considered
light as rays. This approach is char-
acteristic of geometrical optics.
However, light is an electromag-
netic wave, and as a wave it is sub-
ject to diffraction and interference.
If a plane wave (a beam of parallel
rays) hits the opening of an optical
device, the wave front will become
slightly curved, so the beam will
diverge. This phenomenon is called
"diffraction." It is diffraction that
limits the application of the laws of
geometrical optics. After passing
through a small hole of the camera
obscura, the light beams diverge,
and the pattern on the screen be-
comes blurred. To determine the
degree of blurring, we must recall
the property of interference/ which
is the addition of waves from differ-
ent sources at the same point on the
SCICCN.

In our case, the independent
sources of light are the infinite num-
ber of luminous points in the input
aperture, and every point emits light
in all directions due to diffraction
(this is Huygens'principle). The in-
cident waves superimpose on the
screen according to their phases. At
some points on the screen they add,

and at other points they cancel. As
a result, after passing through the
hole, a parallel beam of rays pro-
duces a pattern on a screen of a
bright spot surrounded by concen-
tdc dark and light rings of decreas-
ing brightness (fig. 1). We can say
that the camera obscura transforms
any point of a luminous obiect into
a bright spot surounded by a " ze-
bra" pattetn of rings.

Usually it is assumed that the
images of two neighboring points
can be resolved on the screen if the
centers of their bright spots are
separated by a distance no Iess
than the radius of the first dark ring
(Rayleigh's criterion). The angular
size arof this radius as viewed from
the opening can be evaluated know-
ing that the difference of the light
paths from the nearest and farthest
points of the obyective to any point
on the dark ring is approximately
one wavelength 1". Thus, we get
ur= )',1D. Precise calculations yield
the following value for the limiting
angle of resolution due to diffrac-
tion:

u. =1.22L. tzl.D

Since both effects (the geometric
size of the beam and its diffraction)
occur at the same time/ we can
suppose that the iimiting angle of
resolution of a camera obscura is
0(: ctl + or. Depending on the size of
the hole, this angle varies as shown
in figure 2. So, the best resolution of
a carreta with a given length F is
achieved at some optimal diameter
Dor,, corresponding to the mini-
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mum resolution angle u-rr. It is not
difficult to find the optimum diam-
eter. Those who know elementary
calculus and derivatives will guess
that cr reaches its minimum at the
value o{ D where duldD: 0. Read-
ers can also see from figure 2 that
the minimum is achieved at the
point where 0r : or. Both conven-
tions are equivalent. They yield

D = "l"t 47tP"opt - ',t 
o-

and

Ehomin=ri _ . l3l
\ F '-r

Now, what can the optimum clas-
sical camera obscura do? Assume
that for visual observation we use
light with wavelength 1. = 550 nm.
Equation (3) might be rewritten in the
form ready for estimation:

Dop, = 1.2 rnm

and

. lt.nI lAlumin -* '1/ 
F , l+l

where F is measured in meters. A
camera of a reasonable ("human")
size lF = 2-5 m) has a limiting angle
of resolution larger (worse) than that
of a healthy human eye (about 1').

This means that using such a de-
vice, we will not be able to discem
the smaller details in comparison
with what we can observe with an
unaided eye (of course, protected by
a dense filter). The role of such a fil-
ter can be played by clouds, smoke
of a large fire, or the thick layer of au

that protects our eyes when we
watch the Sun at sunrise or sunset.

The Chronicles of some people
report sunspots that were observed
through the clouds and looked "just
like nails." In principle, this is pos-
sible. Although a mean sunspot has
an angular size of about 0.3', some-
times very large spots or groups of
spots appear on the Sun. For ex-
ample, a group of sunspots 200,000
km in size was observed in March

1947. Similar sunspots appeared in
1957 and 1968. Due to their large
angular srze l4'), they could be eas-
i1y seen by an eye, protected by a
dense filter.

Caution!It is no mistake that we
again mention the {Llter. Never look
at the Sun without propu protec-
tion! The filter must be a very dark
filter, not just sunglasses. One may
use welder's glass or aluminum-
coated cellophane used to wrap
flowers.

Although even ancient people
could observe the sunspots with
unaided eyes, such episodic and an-
ecdotal observation did not become
scientifically established. There
were no reliable and systematic ob-
servations of the Sun in ancient
times, or perhaps the writings are
lost forever. It is of principal inter-
est: could sunspots be observed sys-
tematically with a classical carr,era
obscura-say, by the ancient Greek
astronomers? Formula (4) says that
one needs a catrreta obscura 20-30 m
in length to obtain a device better
than the human eye. With a 100-
meter pinhole camerat one can ob-
serve sunspots systematically. Did
the Greeks overlook the opportu-
nity?

Recall that the size of the ilnage
increases with distance from the
ho1e. So, its brightness should de-
crease. The angular diameter of the
Sun is about 0.5o (to be more precise,
it is 32'), so the diameter of its im-
age on the screen of a simple pinhole
camera will be FlI07. Thus, i{ the
length of the carrreta is 100 m, the
image of the Sun wil1be about I m
across. The image is formed by the
light that passes through a hole
1.2 cm in diameter, which means
that illumination will be attenuated
by afactor of 10,000. Wouldn't this
be too dim?

The illumination of Earth's sur-
face produced by the Sun is 105 lux,
so the illumination of the Sun's im-
age in a pinhole carrlera will be
about 10Iux. This value seems to be
small, but it is dozens of times larger
than the illumination of Earth's sur-
face produced by a full moon. One
can discern the letters in a book il-

luminated by the fuli moon, so it
would be much easier to observe the
sunspots with our camera obscura,
because they will be seen as a coin
I cm in diameter on a l-meter solar
disk. It is not an easy matter to over-
look such details! We must con-
clude, therefore, that theoretically,
the ancient Greeks could have used
a classical camera obscura to study
the surface of the Sun!

Hrul'imenl
To check our theoretical consid-

erations on the quality of images
made by a pinhole carrretat we car-
ried out the following experiment:
in a "Zenit" photographic camera,
the objective was replaced by a piece
of metal foil with a hole made by a
pin. A specially prepared test pattern
was photographed with the help of
this camera obscura (figure 3). The

Figure 3

distance between the table and the
hole was 30 cm, and that between
the hole and the film 4.6 cm. We
tested three holes with diameters
170, 420, and 840 pm. The pattern
was illuminated by a table lamp,
film sensitivity was B0 ASA, and the
exposure time varied from several
seconds to a few minutes depending
on the diameter of the hole. After
printing photos from the negatives,
we determined the limiting angle of
resolution from the visibility of the
lines in the test pattern. the experi-
mental angle turned out to be even
smaller than the theoretical value,
which was probably caused by the
very high contrast of the original
image and also by its linear appear-
ance: straight lines are more easily
perceived than points against a
noisy background. By and large, our
simple theory agrees with the ex-
periment.
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Having checked the theory on a
simple test pattern, we decided to
try detecting sunspots with a pin-
hole camera. The experiment was
performed onMay 19, 1998 at the P.

K. Sternberg Astronomical Institute
(an affiliate of Moscow State Univer-
sity) with the generous help of I. F.

Nikulin, a senior researcher in the.
Department of Solar Investigations.
Unfortunately, we couldn't con-
struct a car:rera with a length of 100
or even 50 m. The instrument case
of our improvised carrrera was the
17-meter long tube of a vertical so-
lar telescope. The reflector-type ob-
jective was located at its base, so the
tube was just a light-proof volume
without any optical elements. We
covered the opening of the tube with
a thick lid, which had a small, round
hole 5 mm in diameter. On a sheet
of white paper placed at the lower
end of the tube, we saw a bright im-
age of the Sun with a diameter of 16
cm. There were two weil-defined
groups of sunspots in the imagel
This was a triumph: the solar
obscura-telescope worked!

We also looked at the solar sur-
face with modern optical devices,
which showed that there were sun-
spots on the Sun that day. They
were grouped in two clusters with
angular sizes 15" and 17", sepa-
rated by a distance of 1'. In addi-

a

Figure 4

tion, there were several small sun-
spots 3-5" in diameter. We did not
observe the small sunspots with
our camera obscura, although two
large spots (quite normal for the
Sun) were clearly resolved and ob-
served individually. We continued
our observations for several days,
noting the rotation of the Sun by
the motion of the sunspots. The
photographs in figure 4 show the
Sun's surface on |une 2, l99B.They
were made with (a) a modern solar
telescope and (b) our improvised
obscura-telescope.

Galileo and Fabricius discovered
sunspots only after the invention of
the optical telescope, although, as

we have shown, the discovery could

have been made as early as when the
Egyptian pyramids were built.
Maybe this thought will stimulate
our readers to look for unrealized
possibilities of our epoch. By the
way, when Fabricius made his fa-
mous discovery, he was just a little
bit older than 20. O

Quantum on the art of photography:
V. M. Bolotovsky, "What's That

You See?" March/April1993, p. 5-8.
M. L. Biermann, "Clarity, Real-

ify, and the Art of Photography,"
September/October 1995, p. 26-31.

A. Leonovich, "How Enlightened
Are You?" May/|une 1996,p.32-33.

A. Dozorov, "In Focus," Septem-
lier/October 1998, p. 4849.
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GRADUS AD
PARNASSUM

Squarg or nol $quill'e?

by Mark Saul and Titu Andreescu

INDING SQUARE ROOTS OF
numbers, especially of natural
numbers, is a common and use-
ful mathematical task. But

sometimes it is important also to
recognize which numbers cannot be
perfect squares. The problems below
are of this form.

Problem 1: Prove that the number l/
=l2&ffi789t1lrr2t3r4rst517tgtntr)pn3
is not a perfect square.

Solution: The basic fact we
need here is that the last digit of a
perfect square depends only on the
last digit of its square root/ and not
on any other digits. So we can ask
ourselves what the last digit of the
square root of N could be. It can-
not be 0, since then N would itself
have to end in 0. Similarly, it can-
not end in 1. In fact, if we exam-
ine each digit, we will find that its
square never ends in 3:

12 ends in I
22 ends in 4
32 ends in 9
42 ends in 6
52 ends in 5

62 ends in 6
72 ends in 9
82 ends in 4
92 ends in 1

02 ends in 0.

Therefore, we can see that N
=123456789t1ttt2t3r4t5t5l7l9tg,fr)rne3
cannot be a perfect square. In fact, we
have shown that a perfect square/
written in decimal notatiorl can only
end in the digits O, I, 4,5,6, and9.

Problem 2: Show that the number M

= t234567 89t0 1 I 1213 141 5 1 t7 tBWIDt22
cannot be a perfect square.

Problem 3: Show that no four-
digit number can be formed from the
digits 2, 3,7, B, which is a perfect
square.

Problem 4: Show that neither of
the numbers 5n + 2 or 5n + 3 can be
a perfect square/ for any natural
number n.

Solution:The number 5n + 2 ends
in2 or 7, andthe number 5n + 3 ends
in 3 or 8. The solution to problem I
shows that they cannot be perfect
scluares.

This solution to the problem re-
lies on the technique we akeady
have, using the final digits of the
numbers' decimal representations.
Let us look a bit deeper. What is it
about the decimal notation system
that allows for this?

Any number N, in decimal nota-
tion, can be written as N: l0A + b,
where A is some natural number,
and b is the last digit of N. Then M
= (10A * blz = l0OA2 + 20Ab + b2, and
the first two terms, being multiples
of 10, cannot affect the last digit. In
fact, this expansion is what is be-
hind the usual multiplication algo-
rithm and explains why the square
of a number ends in the same digit
as the number itself.

We can reformulate the solution
to problem 4 by generalizing this
remark. If a number N has remain-
der r when divided by 5, then it
can be written as 5A + b, where A
is some natural number. Then
tl2 = lse * b)2 = 25A2 + lOAb + b2,

and the first two terms/ being mul-
tiples of 5, do not affect the remain-
der when M ts dtvtded by 5. It fol-
lows that N'? has the same
remainder as b2, when divided by 5.

That is, if we want to find the re-
mainder when Nis divided by 5, we
can do one of two things: (a) Square
N, then divide M lry 5 and take the
remainder; (b) Divide N itself by 5,
take the remainder, then square this
remainder (if the square of this re-
mainder is greater than 5, we may
have to divide by 5 once more).

Indeed, this observation holds if
we are dividing by any number at all,
and not just by 5. (Readers familiar
with the idea of congruences in
number theory will find this state-
ment familiar.) In the present case,
if the number 5n + 2 is a perfect
square/ and its square root is the
natural number N, then we can
follow course (b) above, and take
the remainder when N is divided
by 5. It can only be one of the
numlrer 0, l, 2, 3, or 4, and if we
check the squares of these remain-
ders, we find that none of them
has remainder 2. But .5n + 2 does
have remainder 2, and so cannot
be the square of N.

This argument is quite general,
and can be applied in many circum-
stances.

Problem 5: Show that the num-
bers 4n + 2 and 4n + 3 cannot be per-
fect squares , for any integer n.

Problem 6: Show that the num-
bers 9n + 3 and 9n + 5 cannot be per-
fect squares.
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Problem 7: The number -A,I con-
tains 1999 digits 1, one digit 2, and
a number of digits 0. Show that it
cannot be a perfect square.

Problem 8: Show that the num-
bers 9n + 2,9n + 5, and 9n + 8 can-
not be perfect scluares.

Problem 9: Show that the number

444...4
LY-

1001 4',s

cannot be a perfect square.
Problem 10: Show that the num-

ber n! + 2000 cannot be a perfect
square for any natural number n.

Problem 11: Show that n(n + 1)

cannot be a perfect square tor any
positive integer n.

Solution:Note that n2 < n(n + ll
< ln + ll2. This means that nln + ll
lies in between two consecutive per-
fect scluares, and cannot itself be a
perfect square.

Problem 12: Show that nln + 2l
cannot be a perfect square for any
positive integer n.

Solution: There is a solution
analogous to that of problem 1 1, but
we can also see that n(n + 2l : n2 + 2n
: ln + ll2 - 1. Being one less than a
perfect square/ the number itself
cannot be a perfect square (unless it
is 0, in which case n cannot be a
positive integer).

Problem 13: Show that the num-
ber2499. 2500 . 2501 is not a perfect
square.

Problem 14: Show that the number
nln + l)(n + 2)(n + 3) cannot be a per-
fect square, for any positive integer.

Problem 15: Show that the num-
ber (m + nl2 + 3m + n+ 1 cannot be a
perfect square for any distinct natu-
ral numbers m ar;.d n.

Problem 16: Show that the number
N= 1! +2! + 3!+ . . . +n! cannotbe a
perfect square for any integer n > 3.

Problem 17: Show thatn! cannot
be a perfect square for any integer
n > 1. (You may want to use
"Bertrand's postulate," actually a

theorem, which says that for n > I
there is always a prime number be-
tween n and2n.)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 53

CONTINUED FROM PAGE 29

solute value for area/ we can write
IACMI - IAPMI : IBCMI - IBPMI, Ot
simply ICAPI : lCBPl.

Conversely, if we have a point Q
inside triangle ABC, such that sim-
ply ICAQI = lCBQl, we can show
that it must lie on the median from
C to AB.Indeed, extend CQ to meet
AB atX. The equality of the two ar-
eas implies the equality of the per-
pendiculars from A and B to line
CQ, which in turn implies the
equality of the areas of triangles
ACX, BCX. Since these two tri-
angles also have the same altitude
from C to AB, this means that their
bases are equal, so that X is the mid-
point of AB.

Now the stage is set for a simple
proof of the following.

Theorem: The three medians of a
triangle are concurent.

Proof: Let medians AM, BN of trr-
angle ABC intersect at point P.
Then, by our locus theorem,lCAPl
: IBAPI and IBAPI : lCBPl. Hence
ICAPI : lCBPl, and P is on the me-
dian from C as wel1.

Note that we have also shown
that ICPBI is 1/3 the area of lABCl,
so that the perpendicular from A to
BC is three times the length of the
perpendicular from P to BC. A
simple argument from similar tri-
angles (left to the reader) will show
that AP:PM: 2:1, so we have:

Theorem: The centroid (intersec-
tion of the medians) of a triangle di-
vides each median in the ratio 2:1.

So the method of loci turns out to
be pretty powerful. We can apply it
to prove the concurrency of the al-
titudes in two different ways.

Proof 5. A method of 7ocus. No-
tice that for all points of arry ray
emanating from the vertex of an
angle, the ratio of the distance to the
angle sides is a constant. If the ray
lies inside the ang1e, the ray is
uniquely determined by this ratio.

Choose point H on altitude
AAr. From similar triangles we
have HCTIHA = ApIAB : cos B,
and HBTIHA : ApIAC: cos C/ so
HCrlHBt: cos Af cos C. This im-
plies that for all points of the alti-

Cffg AtD
Figure 6

t:ude AA, the ratio of the dis-
tances to the sides AB and AC is
cos B/cos C (fig 6.). Similarly, for
all points of the altitude BBr, the
ratio of the distances to the sides
BA and BC is cos A/cos C.Let H
be the point of intersection o{ AA,
and BBr. The ratio of the distances
from this point to sides AC and BC
is cos Af cos B. Therefore, point H
lies on the altitude to side AB.

Proof 6. Anothu locus method.
Let P be an arbitrary point on the
line /A, lfrg. T,where AA, is the al-

A

C_B ArD
Figure 7

titude of the triangle ABC). Then,

BP -cP) =(ep'-pn?\li

-(cp' - PA?\= BA? - cA? .\ '/
Thus, BP2 - CP2 is a constant for all
points P of this line. A1sp, we can
veri{y that if BP2 - CPz : BAz - CAz,
then P lies on the altitude of the tri-
angle. Let H be the point of intersec-
tion of the altitudes to the sides BC
and CA of the triangle. We have
BTP - CTP = RAz - CA2 afi CTP _ AIP
: CB2 -A82. ComJ:ining these equa-
tiong we obtain BIP * ALP : CBz - CAz,
which means that H lies on the alti-

o
-I. F. Sharygin

oI
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AT THE
BLACKBOARD III

CompletinU a telrahedl'ott

by l. F. Sharygin

way of solving problems about a tet-
rahedron (triangular pyramid). Many
such problems can be solved by
"completing" the given tetrahedron
to obtain another polyhedron (usually
a parallelepiped).

The first method we will
discuss is shown in figure
1. We choose three verti-
ces of the tetrahedron, all
lying on the same face,
and draw planes
through

each vertex, parallel to the opposite
face. In figure 1, AAID is the given
tetrahedron, A.BD the chosen face,
and we have drawn planes CDDTC,
BCCtBr, and ArBrCrDr.

Problem 1. A triangular pyramid
AAID is giveninwhich edges,4-A,
AB, and AD are perpendicular to

each other and have lengths of a,
b, and c, respectively.

(a) Prove that vertex A of the
pyramid, the point of intersection

of the medians of face A, BD, andthe
center of the sphere circumscribed
about the given pyramid lie on a

line.
(b) Find the radius of the sphere

circumscribed about the given pyra-
mid.

Let us complete the given pyra-
mid to construct a (rectangularllpar-
allelepiped as shown in figure 1.

Then, the sphere that is circum-
scribed about the given pyramid co-
incides with the sphere circum-
scribed about this parallelepiped.
The radius of the sphere is half of the

Figure 1

N ELEGANT TRICK THAT
can sometimes be used to solve
geometric problems is to
change the figure under consid-

eration into another iigure that is in
some way Inole con\-enierrt.

For example, if we are solving a
problem concerning median AM in
triangle ABC, it can be useful to ex-
tend the median its own length
through M, to a point D. Then
ABCD willbe a parallelogram, and
various results about that figure may
give us the information we need
about the original triangle.

In this note, we will dis-
cuss some analogous

of<
C
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parallelepiped's diagonal:

iV .b' * 
"')''' '

This is the answer to part (b).

To prove the assertion of part (a),

consider rectangle AATCTC {the
reader is invited to make a separate.
drawing of it). Center O of the
sphere lies on the diagonal AC, and
medianArO, of triangleA,BD inter-
sects AC, at a point M. If we prove
thatlArMlllMOrl :2, this will mean
that M is the point of intersection of
the medians of triangle A.BD,
which is the desired result. Indeed,
it follows from the similarity of tri-
angles ArCtM and AOrM that

E4- la,c,l -,lr.l = 
1oo1= ''

Another frecluently used method
for completing a tetrahedron to cre-
ate aparallelepiped is as follows. For
every edge of the tetrahedron/ con-
struct the plane that contains it and
is parallel to the opposite edge.
These planes make up a parallelepi-
ped (fig. 2) in which the edges of the
initial tetrahedron are the diagonals
of the faces. {In sketching the dia-
gram in such situations, it is often
convenient to begin the drawing
with the paralleiepiped rather than
with the tetrahedron.)

Problem 2. Find the radius of the
sphere that is tangent to all the
edges of aregular tetrahedron with
edges of length a.

As we can see from figure 2, the
parailelepiped constructed as de-
scribed above is a cube with edges of
length al^[r. The sphere inscribed

Figure 2

48

AxK

Figure 3

in this cube is the desired sphere,
and its radius is al2^12 .

The first of the methods for com-
pleting a tetrahedron is more practi-
cal when plane angles at a vertex of
the tetrahedron are given (especially
if they all are right angles). The sec-
ond method is often used when
skew edges of the tetrahedron ap-
pear in the problem.

ecluidistant from Laces DCB and
ACD). A sketch of a proof follows.
Consider pyramid B'LCD, where
lB'Ll = lIBl, which is congruent to
pyramid BLCD: points A, D, B', and
C lie in the same plane. Similarly,
we can prove that I is equidistant
from planes DCB and ACB as well
as from planes DCB and ADB. We
will see later that the result does not
depend on the choice of tace DCB.

Therefore, the distance sought is
equal to the half of the parallele-
piped's diagonal. Denote by x, y, arrd
z the lengths of the edges of the
parallelepiped (fig. 3). The Pythag-
orean theorem gives a system of
three equations:

Combining these ecluations, we find
that

[r))lx'lv'=a',
I

I ) ) 1)

l,rl
t'

Problem 3. The lengths of two
skew edges of a tetrahedron are a,
two other skew edges are of length
b, and two remaining edges are of
length c. Find the distance between
the center o{ the sphere inscribed in
the given tetrahedron and the center
of the sphere that is tangent to aface
of the tetrahedron and extensions of
its other faces.

In figure 3, ABCD is the given
tetrahedron, and the corresponding
parallelepiped is bounded by the
planes passing through each edge of
the tetrahedron parallel to its oppo-
site edge. The diagonals of every face
of the parallelepiped are equal to the
opposite edges of the tetrahedron,
which are equal to each other by
assumption. It follows that all the
faces of the parailelepiped are rect-
angles and the parallelepiped itself is
rectangular.

The center of the sphere inscribed
in tetrahedron ABCD coincides
with the point of intersection of the
parallelepiped's diagonals (the reader
may enjoy proving this). Likewise,
we may show that the center of the
sphere that is tangent to face DCB of
the tetrahedron and the extension of
its other faces coincides with vertex
I of the parallelepiped (this point is

Problem 4. The area ofthe section
of a tetrahedron by the plane paral-
lel to and equidistant from its two
skew edges is S. The distance be-
tween these two skew edges is h.
Find the volume o{ the tetrahedron.

Let ABCD A tB lC rD tbe the paral-
lelepiped bounded by the planes
passing through each edge of the tet-
rahedron parallel to the opposite
edges (fig. 4). Then, the volume of
the tetrahedron ATBCTD is eclual to
the volume of the parallelepiped

A

Figure 4

)))
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minus the volumcs of {our trianp;r:lar
pyramids IAIBD is one of them),
andthevolumeof eachof thernis 1/6
of the volume of the parallelepiped
(the proof of this fact is left to the
readerl. Therefore, V,.,, : Uo",/3.

Let thc sl<ew cdges givcn in the
problem be A,C, ar,d BD, and let
KL44Nbc the section oi the parallel-
epiped b1,the plane passing through
the rnidpoints oi A.{ , BB,, CC , and
DD,. Then, the midpornts oi the
sides of parallelogram KI.1I-\ are the
vertices of the section given in the
problem. Thus, the area of KIIIN rs
25 and is equal to the area oi the base
ABCD of the parallelepiped. Now,
we can easily find the volumes of
the parallelepiped and tetrahedron:

v.. =!, =z-sn.'r.r'- l "l'.,rJJ

Using this problcm, it is easy to
proYe Srmpsorr's f ormula for the
volume of pol,vhedrons of a special
kincl: let a po);'hedron be such that
all its vertices lte in two parallel
pltrnes that ttre tt dtstance h from
each othet, Let S, be the area of the
f ace lying tn the ftrst plane, 5., be the
ttr(a tt{ f /r.' r'.rcc lying in tlte-second
plane, and S,.. be the nrea of the sec-
tion of tlte poll,hedron by the plane
parallel to the given planes and
equidistant from them. Then, the
area of the given polyhedron can be
calculated by the formula

h
v =;(\ + s, + 4s,n).

6'.

To prove this fact, check this for-
mula for tetrahedrons. Then, parti-
tion the glven poll.hedron into tet-
rahedrons rvith the vertices rn the
given planes. The sum oi the areas
of the faces oi these tetrahedrons
that he in the iirst plane is S,, in the
second plane Sr, and the sum of the
areas o{ the midsections of the tet-
rahedrons is S-.

We conclude with a problem in
which a tetrahedron is completed to
create a triangular prism rather than
a parallelepiped.

Problem 5. Let the areas of two
{aces of a tctrahedron be S, and 52,

EnrrraEr vuvv

the dihedral angle between them be
s., the areas oi trr,o other faces be Q,
and Q- and the angle between them
be p. Prole rhat

Si * 5l - l-i -(- cos cr

=Qi -Q_ -:.-, 2. un:3.

First we prove the iollorr-ilq ana-
logue to the law oi cosines: Ii the
area of a lateral face of a prism is 5,
the areas of two other faces are 5,
and S, and the dihedral angle be-
tween them is cr, then

sf+sr'z-2SrSrcosu=52.

Indeed, let plane ABC (fig. 5) lre
perpendicular to the lateral faces o{
the prism and ZBAC = cr. Write
down the law of cosines for triangle
ABC:

IBCIL= ABP+IAC))
- 2 ABI . ACI cos cx.

Now multiply this equation by 12,

where 7 is the length of the lateral edge

of the prism, and the result iollows.
We noru return to problem 5. Let

ABCD be the given tetrahedron,
S--r,.., : 51, S -,,p6 = Sr, S..466 = Q1,
S ,rc : Q.,,, the dihedral angle at
edge AD be u, and at edge BC be B.

A

Figure 6

Consider a triangular prism with
llase ABC, and a lateral edge AD {fig.
6). Denote by S the area o{ parallelo-
gram BB, C,C. Then we have, by the
formula proved above,

4Sf + 4Sr2 - 8S152 cos cr = 52.

We can represent S in terms of the
lengths of edges BC, AD, and the
angle 0 between them: S : lADl .

BCI 'sine.
If we consider another prism with

base ACD and lateral edge BC, we
obtain

4Qi + 4a1z -SQrQz cosB = 52.

This implies the assertion of the
problem.

Exercises
1. Prove that the sum of the

Sulusre S oi the lengths of the tetra-
hcJ: rn s e.1ges equals the quadruple
sum ,--i :he squares of the distances
be tric.n tr. r-nrdl.oints of its skew
edges.

2. Le t a :-:t:nilrcn -{BCD be
given. Pror e tra: r:s ;die s -f D and
BC arc perpcncrcr-r-ar -i and tnlr ii
the follou,ing equau.n r,:,1is:

,ABI:- DC:= ie l- l:-

3. The lengths oI t\r',, nlp ':ri,
edges of a tetrahedron are ri, r\\-o
other opposite edges are b, and nro
remaining edges are c. Find

(a) the volurne of this tetrahedron,
(b) the radius of the sphere crr-

cumscribed about it.
4. The lengths of two opposite

edges o{ a tetrahedron are a and a,
and the angle between them is u; the
lengths of two other opposite edges
and the angle between them are b,
br, and B, respectively; and the
lengths of the two remaining edges
and the angle between them are c,
c,, and y, la, 9, y < fi|2).

{a) Prove that one of the numl:ers
aatcos u, bb, cos B, and cc, cos y
equals the sum of two others.

(b) Find the angles u, B, and y
given a, a1, b, b1, c, and cr. O

ANSWERS, H//VTS & SOLUTIONS
ON PAGE 53
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Let x8 : y. The equation becomes
yrls :2, or yY :28. We can see that
Y > | . Let flxl : YY. We will show that
f increases monotonically for y > l.
That is, if a < b < l, then ao > bb . This
is easy: we have ao > ab > bb. Hence
the equation yY :1 can have only
one solution, and it is easy to guess
that this unique solution is y : 4.
Answer: x :Zrla.

M267
TrianglesAPB arrdCPA (fig. 1)are

similar, since they both have a t20
angle at P and ZABP: 50'- ZBAP
: ZPAc.Therefore, BP I AP = AP I CP,

Figure 1

from which we obtain BP . CP : APz
: a2.Thercfore, the area of triangle
BPC is

l"-
CPsin60"= o''o

4

Answer:
E, 1ou 

-.4
M26B

Change the variables as follows:

u*l v-l
u+l' ' v +l'

ANSWERS,
HINTS &

SOLUTIONS

Simple transformations yield
following system:

utP :3, u2 :2v
Answer:

\Ei -r'- sJi +t'

Indeed, 1et X be the foot of the
perpendicular from D to AB. Let Y
be the foot of the perpendicular
from F to BC. The equality of the
two given angles implies that
ZFBY: IDBX. Thus triangles FBY
and DBX are similar, and CXIFY
: DBIFB, or xf n: DBIFB. Drawing
perpendiculars from D to BC and
F to AB, we find two more similar
triangles, which give us the equa-
tion yf m = DBIFB.It follows that
xly = nlm. The reader can prove
that this last equation implies the
statement of the problem.

Proof of item (b). Consider one of
the two circles that pass through
points D and F and are tangent to
side BC (as shown in figure 2).De-
note this point of tangency by P . Let
M be the point of intersection of the
bisector of angle A with the circle
circumscribed around triangle
ABC. Let K be the second point of
intersection of line MP with the
circle constructed (passing through
points D and F). We prove that K
lies on the circle circumscribed
around triangle ABC. Notice that
triangles DMB andFMB are similar,
since they have a common angle M

A

the

o
;l ' l
l2

' ltt
iil +1
\t a

!ro
2

M269
Let u = (r' - llllv * 1) and v

= be - lll@ + 1). Both u and v are
certainiy rational numbers. The
problem states that u + v is an inte-
ger, and the product uy is also an
integer (the denominators cancel
out). So we can form a quadratic
equation, with integer coefficients,
whose two roots are u and v. Sup-
pose this ecluation is z2 + mz + n = O

(so that -rr1: u + y and n: uv).Let
us examine the discriminant
m2 - 4n.It is certainly rational. We
can show it has the same parity as m
itself. Indeed, m2 has the same par-
ity as m, and4n is even, so adding it
to m2 doesn't change the parity of
the expression.

M270
Proof of item (a). Denote the dis-

tances from point D to AB, AC, and
BCby x, x, and y, respectively, and
the distances from point F to the
same lines by -, m, and n. The
equality of angles in the assump-
tions of the problem is equivalent to
the equation xly = nlm.We will
show that the equality of angles in
the assumption of the problem im-
plies the equation xf y: nf m, which
in turn implies the equality of the
angles in the problem statement. Figure 2
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and

ZBFM: IFAB + ZFBA
= ZMBC + ZDBC: IDBM.

Therefore, MFIMB = MBf MD, {rorr-
which we get MBz = MF . MD.We
know that if two secants are drawn
to a circle from an outside point, the
product of the secant and its exter-
na1 segment is constant. Thus we
obtain MF .MD : MP .MK.There-
tore, MP . MR : MBz, frornwhich we
get MPIMB : MBIMK. Therefore,
triangles MPB and MKB are similar
(they have a common angle M and
the sides adjacent to this angle are
proportional). Theref ore, IMKB
: ZMBP. However, IMBP = IMBC
: ZMCB. Thus, IMKB = ZMCB,
which means that points B, C, M,
and K lie on the same circle. Thus,
we have proved that K lies on both
circles whose tangency must be
proved. The tangent to the circum-
scribed circle at point M is para1le1
to BC-that is, it is parallel to the
tangent to the other circle (passing
through points D and F) at point P.

Let KYbe the tangent to the large
circle (with points K and P on the
same side of line MK). Then ZKMY
: l!Y, 

"ofrR. 
is equal in measure

to PK.Hence tPKY : (rlllMK
: lllzlflR., which means that 1(Y is
tangent to the small circle as well.
So the two circles have a common
tangent at K, and so are themselves
tangent at K.

Physics

P266
From the problern starelTrent/ we

can see that the firolrentulrr of the
systeln is zero:

mtv+ m,1 3v) :0,

because m, : 3ttt. The absence of
total momentum in a closed system
means that rts center of rnass
doesn't move.

In the case of two particles, the
center o{ mass is located on the line
connecting the particles. Moreover,
it divides the iine segment in the

inverse ratio of the mass ratio. Thus,
the second particle's trajectory is
drawn as shown in figure 3. We draw
ahne AB connecting particies 1 and
2 at the given moment of time,
when v-, - -3vm1. Then we subdi-
vide this line segment into four
equal parts and mark the point one-
fourth of the way from the first par-
ticle. This determines the position
of the motionless center of mass.
Then we connect an arbitrary point
of the first particle's trajectory (say,
point Ar) with the center of mass by
the line segment ArO and extend it
so that OB r : 3AtO . Point B, will
be the corresponding point on the
trajectory of the second particle.
By repeating this procedure for all
points of the first particle's traiec-
tory, we get the fiaiectory of the
second particle.

P267
The force of gravitational attrac-

tion

, nffiSffiL
I - Lr ------;-

L,

of the Sun imparts the centripetal
acceleration

. 4n2-ac=$-L;L

to Earth, where ro is angular veloc-
ity; T = | year, the period of revolu-
tion of Earth around the Sun; m, and
mE are the masses of the Sun and
Earth, respectively; and L is the ra-
dius of Earth's orbit. According to
Newton's second law

However,

R? 4nz -msg= _i -m 
-rr Lrz"t

OI

-, = 
gRff2

-r= a;rr' (1)

Because

4mr=inRipr
5

and

L
ms = *rRjps,

.-)

equation 1 yields

p. - sR3?2
ps 4n2L3Rr'

Now we must only express R,
in terms of I and u. We can see
that R, : LulL (frg. 4), so finally we
have

.\-')Pe 80"1 -

-=-=4.4.Ps 32nzR,

P268
When the conducting plate is

placed in the electrical field, the free
charges in the plate are rearranged

nfrFG " =.1,
Ri

^triclih 4i -
r- - '11 Figure 4
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-'- 2ort - --L- = 5 uF.

8/f !L

Figure 5

by the field. As a result, opposite
charges accumulate at opposite
faces of the plate. Inside the plate,
the electric field is zero. This means
that the free charges located on the
plate's surface generate an electric
field, whose intensity is -E inside
the plate andzero outside of it.

Immediately after the external
electric field is eliminated, only the
field generated by surface charges
remains inside the p1ate. The energy
of this field is

22
fJ =' g^54.

),"

Under the effect of this field,
the charges are spread out over the
entire volume of the p1ate. During
this process, the energy stored in
the field is dissipated in the form
of heat:

-)L,'
Q = 1eo.Sd.

P269
The same current flows in the

coil and capacrtor, so the voltages
across them have opposite phases.
Thus, the difference of these volt-
ages is equal to the power supply
voltage. This is possible either when
V. = 0 (infinitely large capacitance)
or when Vc: 440 V. In the latter
case the capacitative impedance of
the capacitor is twice the inductive
impedance of the coil:

from which we get

The dangerous value of capaci-
tance corresponds to the case when
the inductive and capacitative im-
pedances are equal, which is when
Cforbid = 10 pF, because at this value,
resonance occurs. At resonance, the
resistance of the RC-circuit tends to
zero, which means infinite current
in the circuit.

P270
To locate the image of the square,

it is most convenient to use the rays
that pass through the focal point of
the lens. Theray ABGF (fig. 5) is the
most informative, because it travels
along the upper side of the square, so
the images o{ all the points of this
side must lie either on ray GF or its
extension. Let's trace ruy AM, which
travels through the left focal point F
of the lens, andray BN, which seems
to emerge from this focal point. A{-
ter passing through the lens, both
rays travel paralle1 to the lens's prin-
cipal optical axis.

The real image A' of point A is
formed by the crossing oI rays GF
and MA'. Similarly, the virtual im-
age B'of point B is at the intersec-
tion of the continuations of ruys GF
and NH. To find the positions of the
images C' and D'of points C andD,
it is suificient to drop the corre-
sponding perpendiculars to the prin-
cipal axis. The images of sides AC
and BD, which are perpendicular to
the principal optical axis, must also
be perpendicular to this axis.

To trace ruys AM and BN, we
must enlarge the lens on both sides.
This is permissible, because any part
of the lens produces the same image
as the entire lens (they differ only in
illumination).

Therefore, the image of the
square consists of two parts: a real
image lapart of the angle to the right
of A'C') and a virtual image (a part of
the angle to the left of B'D'). The real
image is produced by the half of the
square that lies outside the focal
plane, while the virtual image corre-
sponds to the half of the scluare 1o-

Figure 6

cated nearer to the lens than the fo-
cal p1ane.

Brainlea$or$

8266
The total number of games was

(15 + 9 + ru)12: 19. Each player
missed no more than one game in
succession. Robbie played 9 games.
Therefore, he played only in even-
numbered games. (Otherwise, the
number of games he played would
be greater.) Therefore, Teresa and
Alex played in the 13th game.

8267
Yes, it is possible (see figure 5).

8268
The fly was airborne for I hour

(the time that passed until the bik-
ers met). The fly flew with the wind
for 23 km more than it flew into the
wind (this is the distance traveled by
|osh). If we 1et r, and t, be the times
during which the fly flew with the
wind and into the wind, respec-
tively, we can set up a system of
equations: t, + t, = l, 40t, - 30t, : 23.
We find tr: 53170 and t, = 17170.
Therefore, the distance traveled by
the fly is

40.Y+eo.!=s7! krn.70707

8269
Yes, it is possible. Mesh the gear

wheels successively with each other
such that they form a Mobius strip
(see figure 7-the planes of two ad-
jacent wheels are arranged at a sma1l
angle to each other, and the total
angle between the planes of the first
and last wheeis is 180'). For a suffi-
ciently large number of wheels, in
particular, for 101 wheels, they can

I 
= 20.,1.

rrrC
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Figure 7

be arranged as descrrbed. An odd
number of wheels thus arranged can
rotate. Horvever, if the number of
wheels is even, they cannot rotate.

8270
Subdivide the ball into thin 1a.v-

ers perpendicular to the diameter
that connects the wires. Since
each layer rs plgr..6 by the sarne
current, and rhe resistance of a
layer is rnr crselr- proportional to
its area, mt'rrc her:.t is drssipated in
the 1a1-ers rrrth rhe smallest area-
the polar lirr-ers. T]-rus, most heat
is dissipated at rhe regions where
the wires contacr the bai1.

El'adus
2. The number 11 enils rn the digit

2. The a(gument in the sr-r1r,.r-.rir oi
problem 1 shows that it cann,,r i.- :1

perfect square.
3. Any such four-digit nunhcr

must end in 2, 3, 7, 8. But no lrr r,-r
slluare ends in these digrts Thrs
solution is correct whether )-oL1 1n-
terpret the problem to mean that
each digit is used exactll- oncc, Lrr

whether you \vanr to include mul-
tiple appearances of the same Jrgit
in your nurnber.)

5. We iook at rerlainders upor-r
division by 4. These can be onl.v 0,
1,2, or 3, and their squares have re-
mainders 0, 1, or 4. A perfect square
cannot have a rernainder of 2 or 3
when divided by 4.

6. The number 9n + 3:3(3n + 1)is
a rnultiple of 3 but not of 9. Such a
number cannot bc a pcrfect scluare. A
similar argument holds ior 9n + 6
:3(3n + 2J. For a more general methocf
scc the solution to problem 8.

7. The sum of the digits of such a

number is 2001, which is a multiple
oi 3 but not of 9, so the number it-
self cannot be a perfect scluare (be-

cause the number is also a multiple
of 3 but not of 91.

8. If u,e square al1 possrble re-
rnainclers u,hen clividing by 9, we get
the possible remainders oi perfect
squares when drvided by 9: 0, l, 4, 7 .

The grven numbers have remainders
2, 5, and 8, respectively, and so they
cannot be perfect squares.

9. If we divide by 3, the given
numL-rer has the same remainder as
4 + 4 + 4 + . . .+ 4 = (1001)(4), which
has remainder 2. But we can cluickly
check, using the methods we de-
vised earlier, that a perfect square
cannot have this remainder when
divided by 3.

10. Ior n = l, Z, 3, 4,5, we can
check directly that nl + 2000 is not
a perfect square. For n > 6, nl is a

multiple of 9, and since 2000 has
remainder 2 when dividcd by 9,
nl + 2000 also has remainder 2. By
the result of problem T, it cannot be
a perfect square.

13. We know that 2500 = 50 . 50
is a per{ect sqlrare. If the given prod-
uct is a perfect scluare/ then so is
2499 .2501. But this is impossible,
by the result of problcm i0.

14. We have

n(n+1)(r+2)(n+3)
: lr' n 3fl)(n2 + 3n + 2)
: \d * 3n)2 + 2\n2 + 3n)
= l(rr' * 3rr) + lp - i,

ir hrch is one lcss than a perfect
s-luarc, ar-rd so cannot itself be a per-
i -- _ -__ _ _ -1l!t:tlLLJrC.

I i Th. ionrr ol the gi ven expres-
sion snggcsts rve look at (l?? + n + kf ,

ior small integer valucs of .k. Indeed,
rre trntl t1-rat if ni > n, thc given num-
ber rs strictl), benveen {ru + n + 1)2

and 1ru + n + 2ll. Ii rl < li, oLrr num-
ber rs strictly ben'vccn 1m + n)r and
\tn - n - I l:. Irr either case, ir cannor
be a perfect scluare.

16. For n:4, N = 33, and ends in
3 (so cannot be a perfect square, from
the result of problem 1). For n > 5 the
situation does not improve, because
k! ends in 0 for k > 4, so l/ still ends
in 3, and still cannot be a perfect
square.

l7 .Let p be the largest prime that
divides nl. If we want n! to be a
square/ it must contain at least one
more multiple of p, namely 2p.But
according to Bertrand's postulate,
betweenp and2p there must be ari-
other prime. This contradicts our
assumption that p is the largest
prime that divides nl.

Tetl'aIedt'on
l. Complete the given tetrahedron

to create a parallelepiped using the
second method, then apply the for-
mula that relates the sum of squared
side lengths of a parallelo$am to the
sum of its squared diagonals.

2. Complete the given tetrahe-
dron to create a paralleiepiped using
the second method. To satisfy the
condition of the problem, it is nec-
essary and sufficient that the corre-
sponding {ace of the parallelepiped
constructed be a rhombus.

3.(a)

-h- r. .

; tr\d +b2 - cz)"w
Hint: see problems 3 and 4.

4. Complete the given tetrahe-
dron to make up a parallelepiped
using the second method. Using the
law of cosines/ represent the qua-
druple square of the lerrgth of each
edge of the parallelepiped in terms of
the lengths of the diagonals of the
corresponding face and the angle
between them (one face for each
edge). Then, apply the theorem on
the sum of squares of the diagonals'
lengths of a parallelogram and the
sum of the squares of its sides. Com-
bine these equations to obtain the
desired result.

tbt f,)
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COWCULATIONS

Gonlented Gouu$

by Dr. Mu

ELCOME BACK TO COWCULATIONS, THE
column devoted to problems best solved with a
computer algorithm. What does it take to pro-
duce grade AAA milk? You certainly need

healthy cows, wholesome food, well ventilated and
sanitary barns, clean udders, sanitary utensils, prompt
cooling and protection against dust, flies, and other con-
tamination. That will get you up to grade AA. But to get
the triple A rating, you need a bit more. You need well
adjusted, and most importantly, contented cows.

Can you buy contentedness in a feed bag? No, it only
makes for fatter cows. If it were that
easy/ anyone could produce grade
AAA milk. No, to have truly con-
tented cows you must massage their
brains. Here at Farmer Paul's Regis-
tered Holstein Dairy, we exercise the
mind by feeding our herd a healthy
diet of numbers to crunch on. Here's
atpicd, tasty byte. Consider the dig-
its 1234567 . . . n, where n ( 9. Find a
way to insert pluses or minuses be-
tween digits so the sum of the expres-
sionis zero.For example, withn:9,
| -2-34+ 5 + 5 +7 + B+ 9 : 0. Find-
rng all such solutions can keep a herd
contented all afternoon. This sug-
gested the next problem, which is your
next Challenge Outta Wisconsin.

c0tfll r7
Write a program that takes as input an integer n < 9

and finds all ways to insert pluses or minuses between
the digits 12345. . . ,l so the resulting expression sums
to zero. I -Z - 34 + 5 + 6 + 7 + 8 + 9 = 0 is one solution
for n:9. Find all of them.

Place the digits in a progression.
[nsert srgfls fo make an expression.
Find all those that sum to zero,
And you will be a barnyard hero.
Bettu yet, your grade willfise,
And your milk will be homogenized

54

c0llll 15
In Cow 15 you were asked to write a program that

generates the terms of the sequence l, 2, 3, 6, 4, 8, 5, 10,

7, L4,9, 18,. . . Test your program by finding the
100,000th term. Speed and elegance count.

Solution
The most elegant solution was submitted by Russ

Cox, a former gold medalist for the United States at the
1995 International Olympiad in Informatics in the

Netherlands. Russ writes, "Basically,
the secluence consists of pairs of
numbers ln,2n) sorted by n, such that
each number appears in the sequence
(as either n or 2n) exactly once. We
consider the secluence as two inter-
laced sequences: one increasing 'pri-
mary sequence' (the n's) and one in-
creasing'secondary sequence' (the
2n'sl.To print the sequence we must
simply devise a test for primary-ness
and then print all pairs (n, 2n) where
n is a primary number.

First we note that if a number is
^-l.-:-* not in the secondary se-

-;;- quence, it must be in the pri-
lnary sequence. Next, we note

that there are no odd numbers in
the secondary sequence/ so they
must ail be in the primary se-

quence. Since all the odd numbers
are in the primary sequence/ it must be

true that all numbers of the form 2-odd,
where odd is an odd number, must be in the sec-

ondary seclllence. This means that ai1 numbers of the
torm -l'oJJ llc in the prirrrarr- \(qucnctr. 1[i anr nLiln-
ber of the form -1-odd u,ere in the secondary secluence/
then ,1 -odd12 = 2-odd u-ould be a primary number,
which it is not). Thus 8'odd must bc zr secondary
number. So lt turns out that numbers of the form
2" odd, where n is even are prirnary numbcrs, and
numbers oi the form 2" odd, where a is odd, arc sec-
ondary numbers.

c
Eoc
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This leads to a very nice recursive definition in
Mathematicn o{whatit means to be a primary number.

primaryQ [n ] : = If [OddQ [n] , True, !

primaryQ ln/211

The function primaryQ works as follows: If the num-
ber n is odd, then it is prirnary. If it is not odd, divide it
by 2 and take the negative oi the test applied to nf 2. So
if n has only one {actor of 2, it wili not be primary; if it
has two, it will be primary; and so on. For example, 4,
12, 16, and 20 are a1l primary numbers, because they
contain an even number of factors of 2.

MaplprimaryQ, {4, 12, !6, 20}l
.'-rrra -rttoL ! f qu

Now we can use primarr-Q to select those numbers
frorn 1 to n that are prir-narr- and put them together with
the corresponding secondan- number (2*prirnary num-
ber) and flatten them all into one 1ist. This is done in
Mathemattca as follorvs:

n = 100;
Flatt,en ITranspose [ {primarySeqfuence =
Select [Range [n] , primaryQl , 2

PrimarySequence) I l

{1,2, 3, 6, 4, B, 5, '_a - -_=, 9, 18,
1_1_, 22, 1_2, 24, L3, 26, _a i_ _a, 32,
1-1 ,34, L9,38, 2A, 40, 2_, =_ a:, 46,
25, 50, 21, 54,28, 56, 2i, -: :_, 52,

48, 96, 49, 98, 57, 702, a_ _ _ :i
L46,55, 110, 51 , L14,59, __a :._ ___,
61 , 122, 63, 126, 64, L2B, €,a, _:, .-.
1_34, 68, 136, 69, 138, 11,, !+,, -: _=a.
15, 150, 16, t52, 11 , L54, t-9, _a-- :_
160 , 81, L62, 83, 166, 84, 163, : _ _ _

B'7,174,89, L7B, 91,782, 92, _-_= ::
186, 95, 190, 9'7 , r94, 99 , 19: , _. . _ :

The 100th number in this special sequence is -rr-l
2.[ [100] l
150

The only problem rrrtl-r the -lI,;il.,:i:,;:r.., srrlr.^rion
above is that we don'r knorr e\acth' rr-ltart rr: nar-c
reached the 100,000th term and no rlore. This can tr.
taken care of with a simple While loop that ctrunrs horr-
many primary nulnbers have been found and stops ar
50,000. Thus, the 100,000th term in the specral se-
quence is twice this primary number.

n = 50000;
primary = 1; count = 1;
While[count < n, primary++;

If [primaryQ [primary] , count,++l l
{primary, 2*primary}
r1/aoa 1/ oooal
\ t=Jt) | t=)JreJ

Here is another solution that I wrote in a proce-
dural style. It is a bit harder to figure out how it
works. Try it!
n = 50000;
primary[l] - 1; secondaryllJ = 2i
i = 1i nurnber = 1i index = 1i
Dolnumber++i i++;

If [number == secondary[index], nurnber++;
ind.ex++l;

primaryli] = nr:rnberi secondarylil = )
number, {n}l;

The answer to the 100,000th number in the sequence
is the 50,000th secondary number.

secondarylnl
1 /t oooo

A solution simiiar to Russ's was submitted bv Mario
Velucchi, fuorrr Piza, Italy.

Altd liltally. . .
Send your solutions to drmu@cs.uwp.edu. Past so-

lutions are avallable in Mathematica notebooks at
http : //usaco.uwp. edu/cowculations.

The USA Computing Olympiad has just selected
the 15 finalists who will meet |une 15-23, at the Uni-
versity of Wisconsin-Parkside in Kenosha, Wiscon-
sin/ to compete for one of four positions on the USA
Computing Olympiad team. This team will represenr
the United States at the 11th Intemational Olympiad
in Informatics to be held in Antalya, Turkey, Octo-
ber 9-16, 1999. The finalists were selected by their
rankings in the USACO National Competition and
the three Internet Competitions held throughout the
year.

The finalists are: David Cheng, funior, Brandywine
HS, Wilmington, Del.; |ohn Danaher, Junior, Thomas
|efferson HS for Science and Technology, Alexandria,
Va.; Gary Huang, Sophomore, Templeton West HS,
Appleton, Wisc.; Bill Kinnersley, |unior, Lawrence
HS, Lawrence/ Kans.i Percy Liang, |unior, Mountain
Pointe HS, Phoenix, Ariz.; Benjamin Mathews, Se-
nior, St. Marks HS, Tex.; |on McAlister, Senior,
Langham Creek HS, Houston, Tex.; Ilia Mirkin,
Sophomore, Thomas )efferson HS for Science and
Technology, Alexandria, Ya.; Oaz Nir, Sophomore,
Monta Vista HS, Saratoga, CaI.; .Vladimir
Novakovski, Freshman, Thomas |efferson HS for Sci-
ence and Technology, Alexandria,Ya.; fohn O'Rorke,
|unior, Centennial HS, Boise, Ida.; William
Potscavage, |unior, Langham Creek HS, Houston,
Tex.; Kaushik Roy, Senior, Montgomery Blair HS,
Silver Spring, Md.; Daniel Wright, Senior, St. David's
College (South Africa), now living in Lafayette,
Colo.; Daniel Zaharopol, |unior, Vestal Senior HS,
Vestal, N.Y.

If you are seeking contentedness/ try crunching our
brand of programming bytes at http://www.usaco.org. Cl
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INDEX

Uolume g (1 g$8-gg)

A Rotating Capacitor (electromag-
netic fields and motion), A.
Stasenko, Mayllun99, p34 (At the
Blackboard)
Another Perpetual Motion Proiect?
(a feasibility foray), A. Stasenko, |an/
Feb99, p39 (At the Blackboard)
The Anthropic Principle (humans
and the universe), A. Kuzin, |an/
Feb99, p4 (Feature)

Arithmetic Obstacles (analyzing the
possibility of moving from one posi-
tion to another), N. Vaguten, )u1/
Aug99, p4 (Feature)

As Easy as (a, b, c)? (Pythagorean
triples), S. M. Voronin and A. G.
Kulagin, lanlFeb99, p34 (Feature)

Auxiliary Polynomials (solving
equations with polynomials), L. D.
Kurlyandchik and S. V. Fomin, Sep/
Oct98, p42l\t the Blackboard)

Bohr's Quantum Leap (history of
atomic theory), A. Korzhuyev,lanf
Feb99, p42 (Looking Back)

Can You Trace the Rays? (ray dia-
grams), A. Leonovich, Mayflun99,
p28 (Kaleidoscope)

A Cardioid for a Mushroom Picker
(the curvy path of a lost forager), S.

Bogdanov, lullArg99, p34 (At the
Blackboard)
The Century of the Cycloid (histori-
ca1 patterns), S. G. Gindikin, Mar/
Apr99, p36 (Looking Back)

Coalescing Droplets (surface tension
and drops), A. Varlamov, May/
lun99, p26 (At the Blackboard)
Cold Boiling (just add water), S.

Krotov and A. Chernoutsan, lanf

Feb99, p33 (In the Lab)

Completing a Tetrahedron (a geo-
metrical trick of the trade), I. F.
Sharygin, lallAug99, p45 (At the
Blackboard)
Completing the Square (quadratic
equations)/ Mark Saul and Titu
Andreescu, Nov/Dec98, p35 (Gradus
ad Parnassum)

Contact (number bit patterns), Dr.
Mu, Nov/D ec98, p52 (Cowculations)
Contented Cows (finding a1l ways
to sum digits in a number to zerol,
Dr. Mu, ful/Aug99, p25 (Cowcu-
lations)
Convection and Displacement Cur-
rents (nature of electricity), V.
Dukov, Marf Apr99, p4 (Feature)

Core Dynamics (transformers ex-
plained), A. Dozorov , Marf Apr99,
p14 (Feature)

The Danger of Italian Restaurants
(poem), David Arns, Sep/O ct98, p50
(Musings)
Diffraction in Laser Light (seeing
diffraction patterns), D. Panenko,
Marf Apr99, p33 (In the Lab)

Divide and Conquer! (shortcut divis-
ibility rules), Ruma Falk and Eyal
Oshry, Marf Lpr99, p18 (Feature)

Divisibility Rules (problems in di-
visibility), Mark Saul and Titu
Andreescu, Marf Apr99, p43 (Gradus
ad Parnassum)
Do You Really Know Vapors? (water
behavior), A. Leonovich, Sep/Oct98,
p32 (Kaleidoscope)
Dutch Treat (generating a se-
quence), Dr. Mu, Marf Apr99, p55
(Cowculations)

Electric Currents on Coulomb Hills
(the ups and downs of a circuit), E.
Romishevsky, )u1/Aug99, p37 (At
the Blackboard)
Elevator Physics (free-falling balls),
Arthur Eisenkraft and Larry
Kirkpatrick, Mar f Apr99, p30 (Phys-
ics Contest)
Errors in Geometric Proof s

(searching {or mistakesJ, S. L.
Tabachnikov, Nov/Dec9 8, p37 (At
the Blackboard)
Euclidean Complications (alternate
geometries), I. Sabitov, Sep/Oct98,
p20 (Feature)

The Eyes Have It (workings of the
human eye), Arthur Eisenkraft and
Larry Kirkpatrick, Mayllun99, p3O
(Physics Contest)

Faraday's Legacy (communicating a

love of science), Laurence I. Gou1d,
Nov/Dec98, p2 (Front Matter)
Fire and Ice (report on the 1998 In-
ternational Physics Olympiad), Sep/
Oct9B, p56 (Happenings)
Flexible Polyhedral Surfaces (bend-
ing the rules), V. A. Alexandrov,
Sep/Oct9B, p4 (Feature)

Ely Zappet (kill 'em and count'em),
Dr. Mu, Nov/Dec9B, p52.(Cowcula-
tions)
Functional Equations and Groups
(and how to solve them), Y. S.

Brodsky and A. K. Slipenko, Nov/
Dec98, p14 (Feature)

Generating Functions (problem-
solving methods), S. M. Voronin
and A. G. Kulagin, Mayflun99, p8
(Feature)
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Gliding Home (propelling a glider
long distances), Albert Stasenko,
Marf Apr99, p21 (At the Blackboard)
High-Speed Conservation (physics
at near-light speeds), A. Korzhuyev,
Sep/Oct9B, p38 (At the Blackboard)
HuIa Hoop (circular animation), Dr.
Mu, |an/Feb99, p54 (Cowculations)
Hurling at the Abyss ioscillating
too-short bridges), A. Stasenko,
Nov/Dec98 ,p43l&t the Blackboard)

I Can See Clearly Now (poem),
David Arns, Nov/Dec98, p8

Image Charge (electrostatic investi-
gation), Larry D. Kirkpatrick and
Arthur Eisenkraft, |u1/Aug99, p30
(Physics Contest)
In Focus (optics and your eyes), A.
Dozorov, Sep/Oct98, p48 (At the
Blackboard)
Interacting Bodies (all about colli-
sions), A. Leonovich, I anfFeb99, p28
(Kaleidoscope)

Karate Chop (physics of tame-
shiwaril, A. Biryukov, Mayflun99,
p14 (Feature)

Lattices and Brillouin Zones (po-
lygonal patterns), A. B. Goncharov,
Nov/Dec98, p4 (Feature)

Light in a Dark Room (history of the
earr,era obscura), V. Surdin and M.
Kartashev, lull Aug99, p40 (Looking
Back)
The LorentzfBitzGerald Diet
(poem), David Arns, |an/Feb99, p4l

Magnetic Fieldwork (measuring
magnetic fields), D. Tselykh, S.p/
Oct9B, p46 (In the Lab)
Magnetic Personality (Hans Chris-
tian @rsted), V. Kartsev, May flun99,
p42 (Looking Back)
Message from Afar (poem), David
Arns, May/lun99, p48 (Musings)

Nascent non-Euclidean Geometry
(revisiting a geometry classic), N. I.
Lobachevsky, Mayllungg, pZO lFea-
ture)
The New Earth (physics of a hollow
Earth), A. Stasenko,l:uJlAug99, pl6
(Feature)

Numerical Data in Geometry Prob-

lems {new ;urglcs to problem solv-
ing), S. V. Ovchinr-rikov and I. F.
Sharygin, May/fun99, p37 (At thc
Blackboard)

One's Best Approach (summing Llp

reciprocals), O. T. Izhboldin and L.
l). Kurlyanclchik, MarlAprgg, p24
(At the BlackboarclJ

Painting the Digital World (surface
areas of prxels ancl voxels), Michael
H. Brill, Mar/Apr99, p10 {Feature)
The Pointed Meeting of a Triangle's
Altitudes (various ways of proving a

well-known theorcm), I. f . Sh:rrygin,
|u1/Aug99, p28 (Kaleidoscope)
Prime Time (prirne number iniini-
tudc), G. A. Galperln, |an/Feb99, p10

IFcature)
The Problem oI Eight Points iinter-
secting lines), N. B. Vasiliev, ]an,
Feb99, p25 (At the Blackboardl

The Quantum Nature of Light 1r,is-
rblc proof of cluanta), D. Sviridov ancl
R. Sr-ir"idova, Nov/Dcc98, p28 (Look-
ing Backl

Relatir it'r oi Motion iframes of ref-
crcnce', -\. I. Chernoutsan, Mar/
Apr99 pl1 ,At the Blackboard)
Remarkable Geometric Formulas
ialgebrarc relations), I. F. Sharygin,
Mrrr -\pr99 plS iKaleidoscope)
Rigidin ol Convex Polyhedrons
lsit1ic1 si,lutri.r-rs', N. P. Dolbilin, Sep/
Oct9r p\ Fcatr-rrel

Satellite -\erodt-namic Paradox (or-
bitarL ure qnlarrrre s1, A. Mitrofanov,
Ian f e-1.q9 ;. 1S ,Feature)
Scilinks: The \I-orld's a Click Away
lteehr rcrrbLrirhs', GeLald F. Wheclcr,
Sep 3.,r4 1.1 ,Front Matter)
Sea \1-ares ,rlcscribing wave mo-
rior-r' L. ,\. Osrror-sk,v, Nov/Dec98,
Fr0,FcittuLc'
Skr 1.ogn1 Dar"id Arns, Mar/Apr99,
p5+

Sound Pou,er irntense acor-rstic waves),
O. V. Rr-rdenko;rnclV. O. Cherkezyan,
SepiOct98, p26 (f eatr-rre)

Sportin' Life (physics of free throws
and freld goalsl, Arthur Eisenkraft
and Larry Kirkpatrick , lanfFeb99,

p30 (Physics Contest)
Square or not Square? (recognizilg
which numbers can't be perfect
squares), Mark Saul and Titu
Andreescu, lullAug99, p49 (Gradus
ad Parnassum)
The Steiner-Lehmus Theorem (ad-

dressing angle bisectors), I. F.
Sharygin, Nov/Dec9B, p26 lAt the
Blackboard)

2-adic Numbers (introduction tri
Hensel distances), B. Becker, S.

Vostokov, and Y. Ionin, lullAug99,
p21 (Feature)

Think Twice, Code Once (cutting a

tree trunk into boards), Dr. Mu,
May llun99, p55 (Cowculations)

Up, Up, and Away (hot air rising),
Arthur Eisenkraft and Larry
Kirkpatrick, Sep/Oct9B, p34 (Phys-
ics Contest)

Vacuum (making something out of
nothing), A. Semenov,lulf Atg99,
p12 (Feature)

Warp Speed (traveling faster than
light), Arthur Eisenkraft andLaty
Kirkpatrick, Nov/Dec9 B, p32 (Phys-
ics Contest)
Wave on a Car Tire (limitations to
speed), L. Grodko, Nov/Dec98, p10
(Feature)

Weightlessness in a Magic Box (some
assembly required), A. Dozorov,
Maylltn99, pa1 (In the Lab)

When Things Fall Apart (exercises
in stability), Boris Korsunsky, May/
lun99, p4 (Feature)

Why Don't Planes Fly with Cats and
Dogs? (flight dynamics), S. K.
Betyaev, Sep/Oct9B, p14 (Feature)

Why Is a Burnt Match Bent? (play-
ing with fire), V. MilYnan, Nov/
Dec9B, p40 (In the Lab)
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"Pathways is a roadmap, a

model. ltcould getus closerto a

strengthened science literate
citizenry than any other
gu idel i nes currently avai I able"

Dr. John R. Pancella
Science Education Consultant

"l am delighted to report that
this book may be a means of
rescuing many practitioners
from the overwhelming nature
of the task of reform before
them."

Dr. Dennis W. Cheek
Rhode lsland Department of
Education, Director

Bring the Science Standards to life
with the NSTA Pathways Series

Cuidelines for Moving the Vision into Practice
Each practical guidebook demonstrates how you can carry the vision
of the Standards-for teaching, professional development, assessment,

content, program, and system-into the real world of the classroom and
school. Pathways is also a tool for you to use in collaborating with
administrators, school boards, and other stakeholders in science
education. Filled with specific suggestions and clear examples that guide
teachers on implementing each of the standards, Pathways is a valuable
resource {or everyone involved in science education.
(Elementary School, Middle School, and High School Editions available)

EACH PATHWAYS BOOK ADDRESSES:

Science Teaching Standards

Professional Development Standards

Assessment Standards

Content Standards

Program Standards

System Standards

Each Edition of NSTA Pathways
$34.9s

A Elementary School #PB124x
(grades K-6, 1997, 152 pp.)

A Middle School #PB125X
(grades 5-9, 1 998, 1 56 pp.)

A High School #PB126X
(grades 9-1 2, 1996, 196 pp.)

Resources for the Road
CD-ROM (MAC/W|N)
#PB146X $19.95

Set of 3 Pathways &
CD.ROM
(inclucles K 6,5-9, and
9-l I books, and
Resources CD-ROM)
#PB1 31 X $112.s0

To order, call 1-800-722-NSTA

Resources for the Road CD-ROM
Resources for the Road CD-ROM contains
supplemental bibliographic materials for all
three volumes (K-l2) of NSTA Pathways.
This CD has been designed with a list of
contents arranged by science standard to
agree with the table of contents appearing in
the three Pathways books. (general, 1998)
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