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The Whirlwind: Ezekiel’s Vision of the Cherubim and the Eyed Wheels
(Ezekiel 1, 4-28), England (c. 1803-1805) by William Blake

HIS INTERPRETATION OF EZEKIEL’S VISION

takes the prophet’s description literally. However,
knowing the vagaries of perception, we might wonder if
Ezekiel’s description is more a manifestation of what he
thought he saw than an accurate depiction of the actual
images that focused on his retinas.

What we think we see and what we are looking at are
often very different things. For example, a fishing boat cap-
tain is sure he sees a school of fish but disappointedly re-

alizes it is the shadow of a small cloud.

The problems of perception multiply when we encoun-
ter something unexpected or new. Those seeking a physi-
cal rather than a metaphysical explanation of Ezekiel’s
vision might agree with D. H. Menzel, who thinks Ezekiel
saw an unfamiliar optical phenomenon and attempted to
classify what he saw in terms of familiar images.

For more on Ezekiel’s vision and a look at the atmo-
spheric phenomena known as halos, turn to page 21.
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To run or not to run. That is the ques-
tion we are faced with when caught in
an unexpected shower.

Are you a runner, fleeing the rain-
drops in a panicky sprint, aghast at the
prospect of getting wet? Or are you a
walker, content to saunter smugly to-
ward shelter, pleased at your ability to
outwit Mother Nature?

To find out who's right, turn to page
38 for an in-depth analysis and a defini-
tive answetr.
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FRONT MATTER

Enougn nerdiness

Thoughts on why the geek stereotype is so uncool

N THE SCREEN, THE VISAGE

of a lovely, purple-skinned

woman, Gal 2000, the Cassini

spacecraft computer, stares
down at Dave. Her soft, sexy voice
states matter-of-factly, “Analysis
shows a 99.987 percent probability
that the antenna will be struck and
destroyed.” With supreme focus and
intensity, the main character, Dave,
pounds his head, commanding him-
self to “Think! Think! Think!—One
last chance!” Our hero springs into
action ...

I tossed down the script and shook
my head. How could this be a science
education show? It didn't fit the usual
mold. The focus of the show was
clearly science entertainment, so
shouldn’t the hero be a lab-coated
nerd with thick glasses? Yet some
poor, misguided writer had chosen a
cool character that couldn’t possibly
be mistaken for a geek! I racked my
brain. Historically, the nerd would be
the default choice, and for a very
simple reason. Uh, what was that rea-
son? I knew that the nerd image had
been recognized as a barrier to achiev-
ing national science literacy, so why
do we use it to promote science? Per-
plexed, T asked a producer of a na-
tional science television show why
the geek angle is so strongly pursued.
He answered simply, “It works.”
Hmmm. Works? Works for whom?

Unsatisfied, T continued to dig.
Perhaps the nerd image benefits our
tech industry—you know, the 400-
billion-dollar technology industry
that had 200,000 tech jobs unfilled
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due to a shortage of qualified college
graduates. This shortage has defied
the laws of supply and demand by
persisting for 17 years. This short-
age, according to employment ex-
perts, is due in great part to the nerd
image promoted in every sector of
our society (USA Today, 2/16/98).
Well, I guess the nerd image doesn’t
work for industry.

How about in colleges? Maybe
the nerd image serves a purpose
here. According to surveys made
throughout colleges, students be-
lieve that “techies are nerds” and, of
course, that “no one wants to be a
nerd.” Contrary to the new rash of
Sprite commercials, image does
seem to be everything, and the im-
age of techies—whether they are
physicists, engineers, or computer
scientists—is not flattering.

Well, if at first you don’t succeed,
look elsewhere. Perhaps the nerd
image is good for young children. In
a recent CIO magazine survey, 10-
year-olds in Sherborn, Massachusetts,
were asked to draw pictures of tech
workers. They turned in pictures like
“Dr. Vaun Squawshnut,” “a bald guy
with glasses, and a tie that ends half-
way down his chest,” and “a buck-
toothed, big-nosed, high-water trou-
ser guy with black-rimmed glasses.”
For a moment I thought I had suc-
ceeded: They all drew nerds. But then
I read further. None of them wanted
to be the nerd he or she had drawn.

Could it be that promoting the
nerd image is something we should
avoid like a cup of Ebola tea? Our

nation’s experts think so. They be-
lieve the nerd image will have dire
consequences for the U.S. economy.
Deans and CEOs throughout the
country agree (USA Today, 2/17/98),
and yet within the scientific commu-
nity, we continue to promote the
geck message. Have we become our
own worst enemy?

Having attended a recent national
meeting for our best and brightest
upcoming scientists and engineers, I
would have to say yes. The keynote
speaker who addressed these young,
vibrant kids was none other than a
professional, real-life geek—or at least
he plays one on TV. As I observed the
crowd, I noticed that the audience
clearly did not relate to this personi-
fication of their worst nightmare.
Despite the speaker’s antics and
nerdy charm, the audience’s response
was polite but cold. Apparently the
geek image doesn’t even work for our
best and brightest—they are willing
to join the guild of scientists and en-
gineers despite the negative image.

Perplexed, I investigated the Na-
tional Science Education Standards
(NSES), in which I found a clear
statement that stereotypical images
of science and scientists should be
avoided. Evidently, the geek angle
doesn’t work for the policy makers
of the science education elite either.
So, it might be concluded that if “it
works,” the nerd image most likely
works for the science illiterate and
those who make a living by promot-
ing the stereotype.

Fortunately, in my travels, I



have discovered a growing number
of individuals throughout the
fields of science who have reached
the same conclusion. These folks
have taken the directives of the
NSES to heart and seek to reshape
our image. Even now coalitions of
Hollywood producers, TV net-
works, and serious science educa-
tors and scientists are attempting
to improve the image of science
and scientists. This group has pro-
claimed that geeks are out and sci-
ence-literate heroes are in. In the
vein of Star Trek, these groups are
considering action/adventure pro-
ductions with positive role models
and science shows with brilliant,
sexy hosts who can solve an inte-
gral while doing 160 in their open-
topped Viper. We need these
groups and they need our support.

I also became aware that Uncle
Sam is providing some incentive for
networks to air shows like these. The
Federal Communications Commis-
sion enacted a ruling last September
that mandates all networks to broad-
cast three hours of educational pro-
gramming each week during family
viewing hours. Within a historical
perspective this could hardly be
greeted as good news by the net-
works. Educational programming
just hasn’t supported itself with a
significant market share. However,
Hollywood has begun to utter the
word “edutainment” with increasing
regularity and seems to be willing to
create a new genre of television. We
should make it very clear that we
encourage such TV shows.

A handsome, classic hero, huh? I
picked up the script again. This
Dave character is pretty cool. I won-
der who they will get to play him.
Hey, how about John Travolta?
Yeah, right. That will be the day.

—Dennis R. Harp and Harry Kloor

Dennis R. Harp (Ph.D. physics) and
Harry Kloor (Ph.D.’s in physics and
chemistry) are producers of the ani-
mated, science fiction education special
2004, starring John Travolta and James
Earl Jones. Dennis is also the outreach
coordinator for the Physics Department
at Purdue, and Harry is a Hollywood
writer for such shows as Star Trek: Voy-
ager, and Earth: Final Conflict.
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PARLOR PREGBABILITY

I$ Bingo fair?

It's all in the cards

by Mark Krosky

N THE GAME OF BINGO,

each player has one or more 5 x 5

cards. Balls numbered 1 to 75 are

drawn randomly from a bin one
at a time without replacement, un-
til all the numbers in a row, column,
or main diagonal on some player’s
card are drawn. Then, the player
who holds that card calls “Bingo!”
and wins.

In the event of a tie, the player
who calls “Bingo!” first wins. Only
numbers 1-15 appear in the first
column, only 16-30 appear in the
second column, 31-45 in the third,
46-60 in the fourth, and 61-75 in the
fifth. When a ball is drawn, both the
number of the ball and the letter of
the column are read aloud, for easy
reference. The center square on each
card is given as a “free space.” Fig-
ure 1 shows a sample Bingo card.

B|IT|N|G|O

1 1731|4874

4 1231335768

11| 26 |free| 46 | 62

-z

8 |19 | 44|50 71 | &

3

14 |24 | 41|60 | 65 3

(@)

o)

Figure 1 &
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One might not think a math-
ematical treatment of Bingo is pos-
sible since it appears as if a player
doesn’t get to make any strategic
decisions. However, a player does
get to make one decision: choosing
a card. Of course, without any infor-
mation about the other players’
cards, one choice of a card is as good
as another. In a Bingo parlor, players
usually place their cards face up on
the table without attempting to hide
them, so it is reasonable to assume
that players can see each other’s
cards. These two rules make Bingo
interesting: Players can choose their
cards, and they can see the other
players’ cards.

Rather than analyzing 5 x 5
Bingo, we will study a Bingo game
where each card has only one win-
ning combination, consisting of two
numbers. This simplified Bingo is
much easier to analyze and has
many of the key properties of nor-
mal Bingo.

2 < 1 Bingo

In 2 x 1 Bingo each card has two
distinct numbers on it, and a card
wins when both numbers listed on
that card are drawn. To simplify
things further, we drop the restric-
tion that certain numbers only ap-
pear in certain columns. A sample
card is shown in figure 2.

Figure 2

Problem 1. If there are 10 balls,
how many possible 2 x 1 Bingo cards
are there whose entries are in the set
1,..,10)2

Problem 2. If there are n balls,
how many possible 2 x 1 Bingo cards
are there whose entries are in the set
{1, .., ny?

Since there is only one winning
combination per card, it is much
easier to analyze 2 x 1 Bingo games
than to analyze normal 5 x 5 Bingo
games. As another simplification,
we assume that all players are
equally likely to call “Bingo!” first
in the event of a tie. Thus, the tied

1] 2
113 213
1 4 2 4
1 5 2 5
1| n 2 | n

Figure 3

cards will share the prize equally.
For example, if two cards get a Bingo
at the same time, each card gets
credit for half a win.

Consider the collection of cards
in figure 3. This collection consists
of every card with eithera 1 or a 2
on it. There are n balls in total, and
n = 4. In the following discussion,
the symbol {g, b} denotes the card
with the numbers a and b on it. In
our analysis, the cards {1, 2} and {2, 1}
are considered to be the same card.

Problem 3. How many cards are
there in this collection that contain
the number 3?

Problem 4. How many cards are
there in this collection that contain
the number 1? How many cards con-
tain 22 Any other particular number?

Problem 5. Show that there are
2n - 3 cards in total.

Now we give each card to a differ-
ent person and play. Is this a fair
game? Since there are 2n — 3 cards,
if the game were fair, each player
would have a winning probability of
1/(2n - 3). Since the numbers 1 and
2 appear on a card more frequently
than any other number, the card
{1, 2} seems to be a good card to
study. Let’s compute the exact win-
ning chance of this card.

We look at the first two balls
drawn. There are three cases to con-
sider: the first two balls drawn are
both 1 and 2, just one of the first two
balls drawn is 1 or 2, and neither of
the first two balls drawn is 1 or 2.

o If the first two balls drawn are
the numbers 1 and 2 in some order,
then the card {1, 2} wins.

e If exactly one of the first two
balls drawn are 1 or 2, then the card

112
113
1] 4
1 n
3| 4

Figure 4

{1, 2} loses. For example, if the first
two balls drawn are 1 and 3, then the
card {1, 3} wins and {1, 2} loses.

e If neither a 1 nor a 2 are drawn
among the first two balls, then as
soon as eithera 1 ora2 is drawn, sev-
eral cards will win simultaneously,
none of which will be {1, 2}. For ex-
ample, if the balls are drawn in the
order 3, 5, 8, 6, 2, then the four cards
{2, 3}, 2, 5}, {2, 6}, and {2, 8} win and
each card gets credit for 1/4 of a win.

So, the card {1, 2} wins if and only if
the first two balls drawn are 1 and 2.

Problem 6. Show that the win-
ning probability of the card {1, 2} is
2/[n{n - 1)]. Compare this with a fair
winning probability of 1/(2n - 3).

Now it is natural to ask what the
winning probabilities of the other
cards are.

Problem 7. Which card has a
greater winning probability: {1, 3} or
{1, 4} What about any pair of cards,
neither of which is {1, 2)2

Problem 8. Compute the winning
probability of every card other than
{1, 2}. Compare this with a fair win-
ning probability of 1/(2n - 3).

Since the winning probability of
the card {1, 2} is much less than it
would be in a fair game, we call this
card the “big loser.” Note that as the
number of balls n increases, the
game becomes more and more un-
fair for the “big loser” card.

In the above example, the “big
loser” card was at an extreme disad-
vantage. Now we give an example
(tig. 4) where one card is at an ex-
treme advantage. This diagram
shows every card with a 1 on it,
along with the card {3, 4}.

Problem 9. Show that there are
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n -1 cards containing the number 1.

Problem 10. Show that there are
two cards containing the number 3.
Show that there are two cards con-
taining the number 4. Show that
every number other than 1, 3, or 4
appears on only one card.

Problem 11. Show that there are
n cards in total.

Ball number 1 is very important
because it appears on every card but
one. The two next most important
balls are 3 and 4.

Problem 12. Show that no card
other than {3, 4} can win until 1 is
drawn.

Problem 13. Show that no card
can win until 1 or both 3 and 4 are
drawn. Show that if at least two
balls have been drawn and either 1
or both 3 and 4 have been drawn,
some card wins.

Since 1, 3, and 4 are the only balls
that determine how long the game
lasts, we restrict our attention to
these three balls. This time, the or-
der counts, unlike the situation in
the first example.

Problem 14. Note that there are
six possible permutations in which
three balls can be drawn, and that
the probability that 3 and 4 are
drawn before 1 is 1/3.

So, if 3 and 4 are drawn before 1,
then the card {3, 4} wins. Once the
ball numbered 1 is drawn, then the
card {3, 4} cannot win, since the
cards {1, 3} and {1, 4} are held by
somebody else. The card {3, 4] wins
exactly when 3 and 4 are drawn be-
fore 1, which occurs with probabil-
ity 1/3. If the game were fair, this
card’s chance of winning would be
1/n.

Problem 15. Which card has a bet-
ter probability of winning, {1, 2} or
{1, 3}2 Which card has a better prob-
ability of winning, {1, 2} or {1, 5}2
What about other pairs of cards?

Problem 16. Compute the exact
winning probability of every card in
the example given in figure 4. Com-
pare this with a fair winning prob-
ability of 1/n. Remember that tied
cards share the prize equally. The
solution is difficult, because there
are many cases to check.

Since the card {3, 4} has a winning
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probability of 1/3, we call the card
{3, 4} the “big winner.” Note that the
value of 1/3 is independent of n. We
could construct 2 x 1 Bingo games
with arbitrarily many cards, where
one card has a winning probability of
1/3.

Problem 17. Add one card to the
example given in figure 3 so that
there is both a “big winner” and a
“big loser.”

Graphing 2 < 1 Bingo

It is often useful to restate a prob-
lem in a different form. We can
transform a collection of 2 x 1 Bingo
cards into a graph (a collection of
vertices and line segments connect-
ing the vertices). The balls corre-
spond to vertices, and the cards cor-
respond to line segments. For
example, the collection of cards {1, 2},
{1, 3}, {1, 4}, and {4, 5} has the graph
shown in figure 5.

The graph for the example given
in figure 3 is shown in figure 6, when
n=11.

The graph for the example given
in figure 4 is shown in figure 7, when
n=11.

An informal analysis of these
graphs helps us understand the cor-
responding 2 x 1 Bingo games. Note
that in figure 6, the graph is very
crowded near the “big loser” card. In
figure 7, there are relatively few
edges near the “big winner” card.
This suggests that the “big loser”
card has many potential wins stolen
by other cards and that the “big win-
ner” card has very few potential

Figure 5

“big loser”

Figure 6

2
3 e Y
<4— big winner
5
1 6
7
8
9
10
11
Figure 7

wins stolen by other cards. By look-
ing at the graph, we can see which
cards are likely to be at an advantage
or a disadvantage.

Unfortunately, it is not always
true that the best card is the card
where the graph is the least crowded
(that is, the card whose numbers are
duplicated the least often). Consider
the 2 x 1 Bingo game represented by
the graph in figure 8.

1 2 5v6
4 3 7

Figure 8

Problem 18. Which card has its
numbers duplicated the least often?

Problem 19. What is the winning
probability of each card? Hint: Three
balls are usually enough to deter-
mine a winnetr.

We conclude that picking your
card optimally is harder than just
finding the card whose numbers are
duplicated the least.

Analyzing the picture rather than
a list of numbers helps us under-
stand what is happening. This idea
lets us relate Bingo to graph theory,
an area that has already been exten-
sively studied.

Using symmetry

Yet another benefit of viewing
2 x 1 Bingo as a graph is that it helps
us recognize symmetry. We can use
symmetry to reduce the amount of
work when computing the winning
chance of a card. Consider the two
graphs in figure 9. Note that these
two graphs are congruent. A congru-
ence between two graphs is 2 way to




match the vertices so that the edges
also match. So, these two graphs
show that cards {1, 2} and {1, 3} must
have the same winning probability
in the Bingo game consisting of
cards {1, 2}, {1, 3}, {1, 4}, and {4, 5}.

Problem 20. Show that matching
the vertices (1, 2, 3, 4, 5) to (1, 3, 2,
4, 5) gives a graph congruence be-
tween the two graphs in figure 9.

We can use graph congruences to
show that two cards have the exact
same winning probability. Since a
graph congruence shows how to
match vertices, it also shows how to
match orders in which the balls can
be drawn. For example, the graph
congruence given above shows that
cards {1, 2} and {1, 3} have the same
winning probability. If the balls are
drawn in the order 152, then {1, 2}
wins, and in the matching order 153,
{1, 3} wins. Similarly if the balls are
drawn in the order 421, then
card {1, 2} wins in a two-way tie, and
in the matching order 431, card {1, 3}
wins in a two-way tie.

Every permutation of the balls
that leads to a win for card {1, 2} is
matched with a permutation that
leads to a win for card {1, 3}. Every
permutation of the balls that leads
to a two-way tie for card {1, 2} is
matched with a permutation that
leads to a two-way tie for card {1, 3}.
So, we conclude that these two cards
have the same winning chance.

Problem 21. Consider the graph
in figure 10. Show that the 2 x 1
Bingo game represented by this
graph is fair.

2 3
1 3 1 2
5 5
4 4
Figure 9
i
5 2
4 3
Figure 10

1 2 9 6
4 3 8 7
Figure 11
3
1|2
Figure 12

Problem 22. Consider the graph
in figure 11. Compute the exact win-
ning chance of each card in the cor-
responding 2 x 1 Bingo game. Hint:
use symmetry and the fact that at
most three balls will be drawn.

|-haped Bingo

A 2.x 1 Bingo card has only one win-
ning combination. In normal 5 x 5
Bingo, a card has more than one win-
ning combination. The simplification
to 2 x 1 Bingo ignores this property of
Bingo. We can increase the complex-
ity of our model by considering an L-
shaped Bingo card, which has two
winning combinations.

Figure 12 shows a sample card.
The two winning combinations are
the horizontal pair {1, 2} and the ver-
tical pair {1, 3}. The diagonal consist-
ing of 2 and 3 is not a winning com-
bination. This is important. Without
this combination, the corner number
1 plays a different role than the other
two numbers. If we included the di-
agonal winning combination, we
would add symmetry to L-shaped
Bingo.

Problem 23. On the above L-
shaped Bingo card, how many win-
ning combinations contain the
number 1? the number 22 the num-
ber 3?2

Problem 24. On a normal 5 x 5
Bingo card, how many winning
combinations contain the center
square? the other squares on a main
diagonal? the other numbers?

Problem 25. How many L-shaped
Bingo cards are possible if there are
five balls? If there are n balls?

Problem 26. Consider the pair of
cards in figure 13. Which card has an
advantage?

In normal 5 x 5 Bingo, people
sometimes play more than one card.
L-shaped Bingo can also be viewed
as a 2 x 1 Bingo game where each
player has chosen two cards that
share a number.

Problem 27. Show that the L-
shaped Bingo game given in figure
13 is equivalent to two players play-
ing 2 x 1 Bingo where player A takes
the cards {1, 2} and {1, 3} and player
B takes the cards {2, 3} and {2, 4}.

Problem 28. (Proposed by Leon
Harkleroad.) Consider the collection
of L-shaped Bingo cards in figure 14.
Show that if card A plays card B
head-to-head, with card C not used,
then card A has an advantage. Show
that if card B plays card C head-to-
head, with card A not used, then
card B has an advantage. Show that
if card C plays card A head-to-head,
with card B not used, then card C
has an advantage. Show that if all
three cards are played, then the
game is fair.

Problem 28 shows that the relation
“has the advantage” or “beats” for L-
shaped Bingo is not transitive: A beats
B and B beats C, but C beats A.

The important difference be-
tween L-shaped Bingo and 2 x 1
Bingo is the presence of more than
one winning combination per card.
So, L-shaped Bingo has a greater
complexity than 2 x 1 Bingo. L-
shaped Bingo models more features
of normal 5 x 5 Bingo. It models the
presence of more than one winning
combination per card and that play-
ers may take more than one card.

3 4
1 2 3| 2
card A card B
Figure 13
3 4 1
1 2 312 4 | 2
card A card B card C
Figure 14
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Normal 5 < 5 Bingo

Unfortunately, we cannot use the
ideas contained in this paper to go to
a Bingo parlor and win. Analyzing
5 x 5 Bingo is very hard. We can look
for patterns similar to those we
found in simplified Bingo, but we
can’t find nice results, as we could
for 2 x 1 Bingo. Some of the similari-
ties and differences are hinted at in
the next section.

Problem 29. Try to find as many
differences as possible between nor-
mal 5 x 5 Bingo as it is actually
played and the two simplifications of
Bingo discussed in this paper, 2 x 1
Bingo and L-shaped Bingo.

Exercises and open fquestions

Problem 30. Suppose seven
people are playing 2 x 1 Bingo (the
game is represented by the graph in
figure 15). Another player decides to
join this game, and there are two
cards available from which she can

1 2 5v6
4 3 7
Figure 15

choose, {1, 3} and {1, 5}. Which card
should she choose? A computer
would be useful to compute the ex-
act answer, although it is possible to
figure out which card is better with-
out a computer.

Problem 31. Consider the collec-
tion of cards {1, 2}, {1, 3}, {1, 4}, {2, 3},
{2, 4}, and {3, 4}—that is, all possible
cards when there are four balls.
Three people play Bingo with this
collection of cards, and each player
takes one card. Is it possible that the
resulting game is fair? What if there
are four players? Five players? Six
players?

Problem 32. What happens if
two people try to play L-shaped
Bingo with the three cards given in
figure 14? Each player will change
his card if it will improve his
chances of winning.

Problem 33. Recall the example
of an unfair 2 x 1 Bingo game given
in figure 3. The “big loser” card had

8 MAY/JUNE 1998

a winning probability of 2./[n(n - 1)],
and the other cards had a winning
probability of

n+l
2n(n-1)

Since there are 2n - 3 players, if
the game were fair, each card’s win-
ning probability would be 1/(211 - 3).
Is this the most unfair 2 x 1 Bingo
game possible involving 2n — 3 play-
ers? To answer this question, we
need a formal definition of fairness.
We can define fairness to be how
much money a player expects to
earn if he bets 1 dollar per game, as
is done in Scarne’s New Complete
Guide to Gambling, by John Scarne
(1986, Simon and Schuster). Do a
similar analysis for the 2 x 1 Bingo
game given in figure 4. Is this an-
other extremal example?

Problem 34. Find as many collec-
tions of cards as possible that lead to
a fair 2 x 1 Bingo game.

Problem 35. Find as many 2 x 1
Bingo games as possible where one
can easily do an exact computation of
the winning chance of each card. For
a definition of easy, see Introduction
to Algorithms, by Cormen, Leiserson,
and Rivest (1986, MIT Press).

Problem 36. This is a good exercise
for any variation of Bingo. Choose a
collection of Bingo cards at random.
What is the probability that the game
will be fair? By how much do the
cards’ winning probabilities differ?

Problem 37. How unfair can 2 x 1
Bingo be if we print duplicate cards?
How unfair can L-shaped Bingo be if
we print cards that aren’t duplicates
but share a winning combination?
How does this affect the analysis of
normal 5 x 5 Bingo?

Problem 38. Viewing 2 x 1 Bingo
as a graph was very successful. Does
this work for L-shaped Bingo? Does
this work for normal 5 x 5 Bingo?

Problem 39. In 4 x 1 Bingo, what
would be an example that has a “big
loser” card? How about a “big win-
ner” card? How unfair can a 4 x 1
Bingo game be?

Problem 40. Find a “big loser” ex-
ample for normal 5 x 5 Bingo. Find
a “big winner” example. Using figure

13 as a model, find an unfair 5 x 5
Bingo game consisting of only two
cards. Are these the most unfair ex-
amples possible?

Problem 41. Imagine that you
own a Bingo parlor. How would you
print the cards so that everyone had
an approximately equal chance of
winning? How would you print the
cards if you wanted to cheat? Con-
sider 2 x 1 Bingo, L-shaped Bingo,
and normal 5 x 5 Bingo.

Problem 42. In a Bingo parlor,
sometimes the goal is not covering
five squares in a row. Sometimes
people play to cover all four corners,
which can be viewed as just 4 x 1
Bingo. Sometimes people play to
cover all 24 numbers on a card,
which is 24 x 1 Bingo. Forming an X
or a T'is another possible goal. All of
these variations have something in
common. Find a general model of
Bingo that can handle all possible
variations.

Gaming insights

Insights on many games can prob-
ably be attained using techniques
similar to these. For example, Bridge
with 2-card suits rather than 13-card
suits may have a manageable com-
plexity. There would be only 2,520
possible deals, and issues that are
normally considered only at the
championship level are easier to see.
Blackjack with only Ace, 2, 3, and 4
may have a manageable enough com-
plexity that an exact solution might
be found. It may be possible to find an
exact optimal strategy for Monopoly
played on a board with only six
squares. These ideas illustrate the
value of studying a simple version of
a complicated problem. Ql
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BRAINTEASERS

Just for the fun of it

B231

Degrees of separation. What is the angle between the hands of a clock
at 7:382

B232

Victorious defeat! In a round robin soccer tournament, teams that won
earned three points, teams that tied earned one point, and teams that
lost earned zero points. Is it possible that the winner of this tournament
could have taken last place if the points were given according to the old
system (two points for a victory, one point for a draw, and zero points
for a loss)?

B233

Grid kit. Consider an 8 x 8 grid from which one arbitrary square is
missing. Show that you can dissect this grid into exactly three pieces
that could be assembled to form another 8 x 8 grid that is missing one
arbitrary square.

B234

Patch work. Mr. Wit’s suit has a hole in the shape of a triangle whose
sides were all different. Mr. Wit found some material and made a patch
of the necessary shape. Unfortunately, he made a mistake, and the patch
is turned inside out. Can he cut the patch into three parts from which to
make the correct patch?

B235

River riddle. The river near my house is shallow. I can wade across it
sinking only up to my waist. The riverbed is covered with silt, and
usually my feet sink in up to my ankles. Once after a storm the water
rose markedly, and when I tried to wade across, the water came up to my
neck. Surprisingly, my feet did not sink in the silt this time. Why?

Art by Pavel Chernusky

ANSWERS, HINTS & SOLUTIONS ON PAGE 54

QUANTUM/BRAINTEASERS 8




Turning the tides

Understanding the attraction of the Moon

by V. E. Belonuchkin

VERYBODY KNOWS THE
Moon causes the rise and fall of
the tides. But how does water
“feel” the Moon in the sky?

Usually we think of weight as
Earth’s force of gravity on a body.
However, it is important to remem-
ber that any body, including the
ocean, is attracted by gravity not
only to Earth but also to the Moon.

But the Moon’s mass is 81 times
smaller than Earth’s, and the ratio of
the distance to the Moon to the dis-
tance to Earth’s center (the Earth’s
radius) is about 60 to 1. Therefore,
using Newton’s law of universal
gravitation, F = Gmm,/r?, the
Moon’s gravitational force on us
(and the ocean) is almost 300,000
times less than Earth’s.

Perhaps this number gives us a
clue to estimating the height of the
tides. But what value should this
height be compared with? Two natu-
ral scales come to mind. The first is
the depth of the ocean, which aver-
ages about 4 km. Dividing this depth
by 300,000, we get a height of slightly
more than 1 cm, which is too small
for a tidal height. Another natural
scale is the Earth’s radius (about 6,000
km). Using this value we obtain a
height of 20 m, which is too large for
a tidal height.

10
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Perhaps dimensional analysis,
which has often helped us before,
doesn’t work in this case? Or is there
more at work besides gravitation?
Let’s take a look at the tide-generat-
ing forces to find out.

By the way, our estimated value of
20 m is far from meaningless—it is
what the tidal level would be if Earth
and the Moon stopped moving. How-
ever, in this case the shape of the tide
would look like figure 1, which isn’t
correct: There’s a tidal “hump” on
the side of Earth that faces the Moon
and an ebb tide (a depression) on the
opposite side. In reality, two high
tides and two low tides take place si-

Moon
Figure 1
B
C A
Moon
D
Figure 2

OCEANIC OSCILLATION

multaneously on Earth, and they look
somewhat like figure 2 (with high
tides at points A and C and low tides
at points B and D).

This two-tide phenomenon is ex-
plained by the fact that the areas on
Earth nearer the Moon have a some-
what larger “acceleration due to the
Moon’s gravity.” Similarly, the far-
thest areas of the ocean from the
Moon are accelerated by the Moon
to a lesser degree. The difference of
these accelerations from the average
value, the value at the Earth’s cen-
ter, results in the two tidal humps.
Let’s find this difference.

Assume the mass of the Moon to
be m, and the distance from its cen-
ter to Earth’s center to be R. Then
Earth has an acceleration toward the
Moon of a, = Gm/R?. Part of the
ocean is nearer the Moon by (ap-
proximately] r (Earth’s radius), and
the opposite part is farther away by
the same distance. The acceleration
of the nearest partis a, = Gm/(R-r)%.
Therefore, the tide-generating (dif-

ferential) acceleration is
Gmr(2R-1) 2Gmr
¢ =ad — ao = ) 3 = 3 -
R*(R-1) R

Assuming Earth’s mass to be M
and the acceleration due to gravity

Art by Vasily Vlasov
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at Earth's surface to be g, we rear-
range the formula to read

=i

In our model this is the maxi-
mum value of the tide-generating
acceleration. This acceleration re-
lates to point A in figure 2. The same
value is true for point C, but in this
case the tide-generating acceleration
is directed away from the Moon, so it
also produces a tidal hump. The
middle points B and D have an accel-
eration equal to the average value a,,.

Substituting the ratios of m to M
and r to R into the formula for a,, we
see that the maximum tidal accel-
eration (a,) is less than g not by
300,000 times but by 9 million
times! If we divide Earth’s radius by
a,, we get what we've been looking
for—the value of the tidal height,
which is a little less than 3/4 m. The
tidal height in the open ocean is just
about this value.

But we can’t give ourselves a pat
on the back yet—we still haven’t ex-
plained why point C in figure 2
would experience a high tide. Accu-
rate calculations show that the ab-
solute value of tidal acceleration is
actually the same all over Earth’s
surface and equals

3 (mYrY
28 M\R)
However, its direction varies as

shown in figure 3. In this way, tidal
acceleration produces both high

Moon

Figure 3

Moon

Figure 4
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tides and low tides. This result ex-
plains the shape of the ocean shown
in figure 2.

Alas, figure 2 is almost as wrong
as figure 1! It still doesn’t take into
account the motions of Earth and
the Moon. The true static represen-
tation of the tides is given in figure
4, which is rotated with respect to
figure 2 by almost 90°!

The ocean has inertia just like
any other body, so the tides should
lag behind the motion of the Moon.
Indeed, can the maximum height of
the tide take place at point A? No,
because Earth’s rotation in the direc-
tion of point B, on one hand, and the
run of the tides, on the other, also
contribute to the elevated water sur-
face in this region. The relation of
one periodic process (Earth’s rota-
tion) to another (the tides) is de-
scribed by an important characteris-
tic of harmonic oscillations: phase.!
So, what is the phase of the Earth’s
tides?

The most accurate picture of the
tides is described by the dynamic
model of tides. In this model the
ocean’s waters undergo forced oscil-
lation. The phase of such an oscilla-
tion is determined by a relationship
between the natural frequency of vi-
bration of oceanic waters and the
frequency of an external disturbance
force.

An impression of the effect of the
external force frequency on phase
shift can be obtained by observing a
swing. Let’s swing it and watch how
it sways back and forth when we
don’t interfere (when it performs its
natural oscillation). As a rule, the
natural period of the swingis 1 to 2
seconds. Now let’s shift the swing
very slowly from the equilibrium
(vertical) position. For example,
we’ll move it to one side in 5 sec-
onds, return it to the center in the
next 5 seconds, repeat this on the
other side, and so on, creating a
forced period of 20 seconds. Clearly,
the farther from the vertical the

1Read about waves and phases in
“Wave watching,” by L. Aslamazov
and L. Kikoyin, in the January/
February 1991 Quantum.

swing moves, the stronger the force
we must apply, and this force is di-
rected toward the side the swing is
on. If we move the swing very
slowly at each point along its path,
we almost hold the swing against
the force of gravity. This is precisely
what takes place in the static model
of the tides: Any deviation from the
natural oscillation goes on in phase
with (in the same direction as) the
external force.

Quite another motion will take
place if the swing is jolted so that
the external force alternates its di-
rection, say, five times per second.
The swing begins to move to the left
but is pushed to the right. Its direc-
tion cannot be changed immedi-
ately; it needs to first stop moving to
the left, and only then will it shift to
the right. However, again there is no
time to increase its movement to
the right because in the next instant
the swing is pushed back to the left.
The relationship between the phase
of the swing’s oscillation and the
external harmonic force is not clear,
but it seems that these two periodic
processes are opposite in phase. (Re-
call that phase is the angular posi-
tion of a vector that represents a
harmonic oscillation, so “opposite
in phase” means two vectors are
opposite, which is to say their angles
(phases) differ by 180°.)

Message in a jar

Now let’s consider another
model. Its relation to tidal forces
isn’t clear at first sight, but it re-
sembles the behavior of the ocean.
This model clearly shows the abrupt
change in phase when the frequency
of the external force gradually in-
creases and surpasses the resonant
(natural) frequency.

Pour some water into a clear jar
and mark its level on the side. Sus-
pend the jar (fig. 5) and slowly shift
it from the equilibrium position in
both directions, so that it swings
with a frequency less than the natu-
ral frequency of such a pendulum.
The water’s surface will remain
horizontal at all times. This causes
a “high tide” on the side nearer the
equilibrium position and a “low




Figure 5

tide” on the opposite side.

Free the jar and let it swing by it-
self. After a few swings, the water’s
surface will rest parallel to the bot-
tom. There will be no tides and no
tide-generating force because there
is no motion.

Now let’s force the jar to oscillate
more frequently than it “wants to.”
We can do this with the help of two
weak springs that connect the op-
posing sides of the jar to anchored
supports. The springs make the jar
oscillate with a higher frequency
than the natural frequency of the
pendulum. In this periodic process
water still “tries” to oscillate at the
natural frequency. After a while, the
natural component of the water’s os-
cillation will be dampened, and the
forced component, with the period
of the oscillating jar, can be ob-
served. This time the water’s surface
oscillates in a different manner:
There is a high tide on the far side of
the jar (with respect to the vertical
position) while a low tide takes
place on the nearer side. The forced
increase in the water’s frequency
caused a 180° change in the water’s
phase.

Where to next? First, we need to
know the natural frequency of the
ocean’s oscillation. Second, we
should learn how a tide’s phase and
the tide-generating force are related.
Our experiment with the swinging
jar shows that the harmonic oscilla-
tions will be either in phase or oppo-
site in phase with the external force.
Which of these happens for the tides
on Earth?

A natural phenomenon can help us
find the answer: the tsunami. A
quake occurs somewhere under the
ocean. As a result, a huge mass of
water swells, heaves, and generates a

tsunami. It is not
important that
the disturbance
in this example
isn’t generated
by the Moon.
What happens
next? The tsu-
nami  travels
across the ocean.

What is the
speed of this wave? Our tried and
tested tool is dimensional analysis,
and it will help us again here. It
looks like the wave’s speed should
be related to the value of the accel-
eration due to gravity g. Gravity
does return the raised water to its
resting position, after all. If we only
had some natural length to multiply
by g to get the square of the speed!
Our only choice is the depth of the
ocean. If we assume H =4 km for the
oceanic depth, the formula v = N/g‘H
yields the correct value of 200 m/s.
Therefore, if there were no conti-
nents on Earth, a tsunami would
circle the planet in 56 hours. If two
tsunamis on opposite sides of Earth
were moving in the same direction,
any place on Earth would be visited
by a tsunami every 28 hours.

Why are we considering two
waves? Because the Moon generates
two high tides on opposite sides of
Earth and drives them around the
planet in a similar way. Therefore,
the natural period of the tides is also
28 hours. We see the Moon reappear
in the sky every 24 hours 50 min-
utes. You might guess that this
value is determined by the daily ro-
tation of Earth and the revolution of
the Moon around it. The Moon re-
volves around us in the same direc-
tion as Earth’s rotation. While Earth
makes a full rotation in 24 hours,
the Moon “runs ahead” of its previ-
ous longitudinal location, so that
Earth needs an extra 50 minutes to
“overtake” it each day. Therefore
we know that the period of the tide-
generating force is 12 hours 25 min-
utes because the Moon appears over
each half of Earth for this duration.
This period is shorter than the 28
hours needed for a tsunami to circle
halfway around the Earth.

According to our jar model, the
tides and the tide-generating forces
should be opposite in phase because
the period of the force is less than the
natural period of the tides. Because
360° of harmonic tidal oscillation (a
complete tidal cycle) corresponds to
180° on Earth’s circumference, a
phase of 180° results in a shift of 90°
on Earth’s surface. At the location al-
most under the Moon (and on the
opposite side of Earth) there will be
low tides, and the high tides will be
at locations 90° relative to the posi-
tions of the low tides. Therefore,
high tides occur at the locations
where the tide-generating force
drives water not from but toward
Earth’s center! Surprising, isn’t it?

You might be wondering why
we said “almost under the Moon.”
Forced oscillation follows the rule
“in phase or opposite phase” only
in idealized systems, which have
no friction, and thus, no energy
dissipation. If friction is almost
absent, the forced oscillation will
be almost in phase or almost oppo-
site in phase.

There is another important char-
acteristic of harmonic oscillation:
amplitude. If the frequency of the
external force is much less than the
natural frequency of oscillation, the
amplitude is simply equal to the
maximum static deviation caused
by this force. At the other extreme,
if the frequency of the external force
is much larger than the natural fre-
quency, we can estimate the ampli-
tude in the following way.

The acceleration of a vibrating
body is proportional to the ampli-
tude and square of the frequency
(this follows from dimensional
analysis). If the amplitude of the
external force is constant, the ampli-
tude of the harmonic oscillation is
inversely proportional to the square
of the frequency. Consequently, at
high frequencies the amplitude
quickly decreases.

The most interesting phenomena
take place not with extreme frequen-
cies but with ones that often take
place in real life. When the frequency
of the external disturbing force ap-
proaches the natural frequency of an

QUANTUM/FEATURE 13




Lot
Figure

oscillating system, resonance occurs,
which means an increase in the am-
plitude to infinity in systems without
friction (energy dissipation). There-
fore, we should think carefully about
resonance phenomena when design-
ing oscillating systems.”

The importance of resonance in
extremely high tides can be illus-
trated by tidal power stations. An
oceanic tide of the standard 1 m
height flows through the 400 km gap
between Nantucket, Massachusetts,
and Yarmouth, Nova Scotia (fig. 6).
After gaining speed and a 4 m height
in the narrow Bay of Fundy, the tide
bursts into tiny Chignecto Bay and
Minas Basin (locations 1 and 2 in fig-
ure 6). In the latter the tidal ampli-
tude is the largest on Earth—as high
as 6 m. The difference in high and
low tide water levels is 12 m.
Wouldn'’t this be an ideal place to
build a tidal power plant?

One project proposed to separate
Shepody Bay (0.2% of the Gulf of
Maine’s area) from Chignecto Bay by
a dam. Another project planned to
partition off the Minas Basin, which
would mean cutting off more than
0.5% of the Gulf of Maine.

A power station takes energy
from the tides, so the tides would
decrease in the first case by 20-25

2See “The Horrors of Resonance,”
by A. Stasenko in the March/April
1998 Quantum.

3See the paper of D. A. Greenberg
in the November 1987 Scientific
American, vol. 257, no. 5.
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cm and in the
second case by
30-35 ¢cm.3 How
would this affect
the waters in the
Bay of Fundy or
in the entire Gulf
of Maine? Dis-
tributing the wa-
ter “deficiency”
along these spa-
cious bays, we get
the following esti-
mates: The Bay of
Fundy would lose
0.2 mm in the first
case and about 1
cm in the second
project. In the Gulf of Maine we
would need a microscope to detect
the change in water level. How-
ever, these estimates don’t take
into account all the changes that
would occur.

Most importantly, the resonant
frequency of the water oscillations
in the Gulf of Maine would change.
Instead of 13 hours 20 minutes, the
period would be only 13 hours 10

minutes. This value is dangerously
close to the period of the tide-gener-
ating force (12 hours 25 minutes), so
the entire system becomes “more
resonant.” In addition, in the second
project a big change in the oscilla-
tion would be made by a change in
the character of water flow at the
neck of the Minas Basin, which re-
sults from the change in friction.
Precise calculations show that
the dam in Shepody Bay would not
change the tidal height in the Bay of
Fundy, but would augment the tide
in the Gulf of Maine by 3-4 cm, or
more than 2% of the present ampli-
tude. In the second project the tide
all along the water surface from Bos-
ton to the Minas Basin would in-
crease by 15-20 cm, which is more
than 10%! This would necessitate
new moorings and disturb the mi-
gratory movements of fishes, among
other important consequences. This
shows that even projects that are
ecologically safer than thermal or
nuclear power stations should be
thoroughly planned to diminish
their harmful effects on nature. [@}
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HOW DO YOU
FIGURE?

Challenges in physics and math

Math
M231

Sum qualification. A set of
1998 different natural numbers is
given. None of these numbers can
be represented as a sum of two
other numbers from the set. What
is the least possible value of the
greatest number from such a set?
(V.Y. Protasov)

M232

Angling for answers. Point M is
taken inside a parallelogram ABCD.
We know ZMBC =20°, ZMCB = 50°,
£ZMDA =70°, and ZMAD = 40°. Find
the angles of the parallelogram. (M.
Volchkevich)

M233

Fractional neighbors. Let all the
regular irreducible fractions whose
denominators don’t exceed 99 be
written in order of ascending value.
Between which fractions does 5/8
stand? (D. I. Averianov)

M234

Sine language. Draw the set of
points M(x, y) on the plane whose
coordinates satisfy the equation

sin x cos?y + sin y cos? x = 0.

(S. B. Gashkov)

M235

Projecting area. Find the greatest
possible value of the area of an or-
thogonal projection of a cylinder
with radius r and altitude h on a
plane. (M. Volchkevich)

Physics

Around the corner. A circle of
maximum diameter is cut from a
uniform square with side d. Where
is the center of mass of an individual
corner piece located? The center of
mass of a semicircle of radius R is lo-
cated a = 4R/(3n) from its diameter.
(A. Zilberman)

P232

Gunfire racing. A projectile was
fired horizontally from a mountain at
an altitude h = 1 km with a velocity
v = 500 m/s. After the time t;=1s,
another shell was fired in pursuit of
the first. What must the minimal ini-
tial velocity of the second shell be and
at what angle should it be fired in or-
der to hit the first shell? (V. Nikiforov)

P233

Cryogenic wind tunnel. To cool
the air stream in a cylindrical tube
under normal conditions, identical
drops of liquid nitrogen are injected
in some sections of the tube, and
these drops evaporate downstream.
The speeds of the gas and the drops
are equal everywhere (their initial
values are v, = 10 m/s), and there is
no heat transfer through the tunnel’s
wall. Find the speed, density, and
temperature of the stream after all
the drops evaporate if their initial
mass flow equals that of the air. The
boiling point of nitrogen at atmo-
spheric pressure is 77 K, and its latent
heat of vaporizationis L = 2 - 10° J/kg.
Assume the properties of gaseous air

and nitrogen to be identical. (A.
Stasenko)

P234

Capacitor in an electric field. An
amount of work W was performed in
placing a charged parallel-plate ca-
pacitor into a uniform electric field
oriented as shown in figure 1. By per-
forming work W,, the capacitor was
then turned through an angle o. Us-
ing the known value of angle ¢, find
the ratio W,/W,. Consider the
capacitor’s own field to be uniform
and entirely enclosed inside the ca-
pacitor. (V. Mozhayev)

90/ o
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Figure 1
P235

See spot focus. A plano-convex
lens is made of glass with refractive
index n = 1.6. The radius of the spheri-
cal surface is R = 10 cm, and the
thickness of the lens isd = 0.2 cm. A
parallel beam of light is directed at the
planar surface of the lens parallel to
its principal axis. All but a small cen-
tral part of the lens is covered by a dia-
phragm, and the light is focused on a
screen. Then the diaphragm is taken
away. Find the diameter of the spot
on the screen. (A. Zilberman)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 50
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Tied into knot theory

Unraveling the basics of mathematical knots

by O. Viro

HEN MATHEMATICIANS

try to study an everyday phe-

nomenon, they usually re-

place it with a convenient
mathematical object. Ordinary
knots, made of rope, have shared
this fate. They’ve turned into math-
ematical knots.

One question that prompted math-
ematicians to study knots was which
knots could be undone without cut-
ting the rope and which could not.

The prototype of a mathematical
knot is a twisted piece of rope with
fixed ends. The ends of the rope
must remain stationary because if
we could manipulate them, it would
be possible to undo each knot by
moving one of the ends of the rope
through the loops.

Figure 2
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Another, more convenient way to
spare ourselves trouble with the
ends of the rope is to connect the
ends. This operation is shown in fig-
ure 1. As aresult, the rope turns into
a twisted ring.

The next step toward the math-
ematical knot is replacing the rope
with a line (the axis of the rope).

While every rope can be modeled
by a line along its axis, not every line
can be regarded as the axis of a rope
of constant thickness. The knots get
to small for the thickness of the
rope. For example, a curve with an
infinite sequence of infinitely di-
minishing knots (fig. 2) cannot be
“inflated” to make a rope with a fi-
nite thickness. Curves of this sort
(with infinitely many knots on
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Figure 3

CONTORTED CALCULATIONS

them) are also studied in mathemat-
ics. They are called wild knots.

We'll not discuss wild knots. To
exclude them from our consider-
ations, let’s adopt the following defi-
nition: A tame knot is any closed,
connected polygonal path in space
that has no self-intersections and is
comprised of a finite number of line
segments.

This definition corresponds well
to our intuitive concept of knots.
Every tame knot can be inflated to
make a rope ring, and every rope ring
has an axis made of a finite number
of segments.

The word connected in the defi-
nition of a tame knot means that the
polygonal path cannot be repre-
sented as a union of several closed
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Figure 6

Figure 7

polygonal paths. If we do not insist
on the connectedness of a knot, we
obtain the definition of a tame link.
Figure 3 shows some tame knots,
and figure 4 shows some tame links,
which are not knots. (Since all the
knots and links considered here will
be tame, we’ll omit this word from
now on.)

Drawing knots

To draw a knot, we start by
choosing a viewing point. This point
must satisfy the following two con-
ditions: First, the knot should lie on
one side of a plane passing through
this point. Second, from this point,
no three segments of the knot
should look as if they are passing
through one point.

We can meet the first condition if
we choose a point far enough from
the knot. Then we can always choose
a plane such that the knot lies on one
side of this plane. Then we can
project the knot onto this plane. To
meet the second condition, we must
find such a point that each line
through it meets no more than two
segments of the knot. We can satisty
this condition by an arbitrarily small
shift in the viewing point.

At any place where the images of
two nonintersecting segments mect,
we must show which of them passes
nearer to the viewer. For this pur-
pose, the image of the farther seg-
ment is interrupted, as shown in fig-
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ures 3 and 4. A picture made in ac-
cordance with all these rules is
called a diagram of the knot.

Equivalent knots

It is natural to consider as equiva-
Ient those knots that can be trans-
formed into one another through
twisting, stretching, shrinking, or
any other continuous deformation.
This intuitive concept of equiva-
lence becomes, when we consider
tame knots, the notion of isotopes:
Two knots (or, more generally, two
links) are called isotopic if we can
pass from one of them to the other
by a sequence of transformations
called elementary isotopes.

An elementary isotope of a knot
is either

(1) a substitution of one of its
sides for two new segments such
that these three segments form the
border of a triangle that intersects
the original knot only in the substi-
tuted side, or

(2) the inverse operation: substi-
tuting two adjacent sides of the knot
for a new segment such that the
three segments form the outline of
a triangle that intersects the knot
only in the substituted sides.

Figure 5 shows a pair of knots,
each transformed into the other by
an elementary isotope. The triangle
that appears in the definition of an
elementary isotope is called the tra-
jectory of the deformation.

A knot that is isotopic to the out-
line of a triangle is a trivial knot.
The knots in figure 5 are trivial
knots. A sequence of elementary
isotopes that transforms them into
the outline of a triangle is presented
in figure 6.

It’s clear that the outlines of any
two triangles are isotopic, and thus,
all trivial knots are isotopic. How-
ever, some trivial knots look very
complicated.

Exercise 1. Prove that the knots
in figure 7 are trivial.

Exercise 2. Prove that the knots
in figures 3a and 3b are isotopic.

Proving that knots are not isotopic

The definition of isotope immedi-
ately suggests the following prob-
lem: Are there knots that are not
isotopic? Until we have answered
this question, we may have the idea
that all knots are essentially the
same.

We know that very intricate knots
can prove to be trivial. On the other
hand, if we try to undo the knot in
figure 8a, called the trefoil knot, we

O
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soon realize that the task is impos-
sible. But how can we prove that the
knot in picture 8b is nontrivial?
Remember that a knot is consid-
ered nontrivial if it is impossible to
turn it into the outline of a triangle
using elementary isotopes. The in-
tricacy of the trivial knots in figure

Figure 11

7 shows how difficult it may be to
recognize such knots. The only way
to prove that a knot is nontrivial is
to find some property of knots that
is not changed by the elementary
isotopes, and that the considered
knot possesses, but that the outline
of a triangle does not.

A property of a knot that is un-
changed by elementary isotopes is
called an invariant. Invariants of
knots are the main focus of knot
theory. As an example of an invari-
ant, we can consider the triviality of
a knot. It is easy to define many
other invariants. For example, the
fewest possible sides and fewest pos-
sible crossings on the diagrams of
knots isotopic to a given knot are in-
variants of the knot. However, intro-
ducing these and many other analo-
gous invariants not only fails to help
answer our old questions but also
poses several new questions. As a
matter of fact, when we try to calcu-
late these invariants, we run across
the same difficulties we meet when
we try to prove the nontriviality of
a knot.

What may help prove nontriv-
iality is an invariant that is easy to
calculate and that is defined by a
diagram of the specific knot and not
by a whole class of isotopic knots.
We will now introduce such an in-
variant.

Goloring knot diagrams

Remember that the diagram of a
knot is simply the knot’s image on
a plane such that the images of any
three of its sides do not pass through
one point, and such that when the
images of nonintersecting sides
meet, the image of the farther one is
interrupted. Because of these inter-
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Figure 12

Figure 13

ruptions, the diagram of a knot con-
sists of several nonintersecting po-
lygonal paths, which we’ll call sec-
tions of the diagram. The number of
sections is equal to the number of
interruptions (crossings).

To prove that two knots are not
isotopic, it is convenient to color
their diagrams in accordance with
certain rules.! We say that the col-
oring of a diagram in three colors is
correct if each section of the knot is
one color, and for every crossing, ei-
ther all the sections that meet are
the same color or all three colors
appear near it. Several examples of
correct coloring are shown in figure
9, and figure 10 contains several ex-
amples of incorrect coloring.

Exercise 3. Prove that it is impos-
sible to color the diagrams of the

IThe idea of coloring the diagrams
of knots is due to the American
mathematician Ralph Fox. See his
article “Metacyclic invariance of knots
and links” in the Canadian Journal of
Mathematics, 1980, 2(22), 193-201.
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knots in figures 6 and 7 if all three
colors must be used.

Exercise 4. Show that there are
nine different correct colorings of
the trefoil knot (fig. 8b).

Theorem 1. (This is the main
theorem.) The number of correct
three-color colorings of a diagram is
an invariant of a knot.

Before we try to prove theorem 1,
let’s discuss some of its applications.
Here is its simplest corollary:

Corollary 1. If the diagram of a
knot can be colored correctly using
all three colors, then the knot is not
trivial.

This corollary immediately al-
lows us to obtain the result formu-
lated in exercise 3 (since the knots
that appear there are trivial). But
much more important is the fact
that the nontriviality of the trefoil
and many other knots follows di-
rectly from it.

Exercise 5. Prove (with the help of
theorem 1) that the trefoil is not iso-
topic to the knots in figures 3¢ and
3d, and that the knot in figure 9d is
not isotopic to either the trefoil or
these two knots.

The knots in figures 3¢ and 3d are
nontrivial. However, it impossible
to prove this by correctly coloring
them in three colors. In fact, theo-
rem 1 gives no universal way to
prove that knots are nonisotopic, al-
though it allows us to prove it in
many particular cases.

Exercise 6. Think of an infinite
sequence of knots, each with a dif-
ferent number of correct three-color
colorings. (According to theorem 1,
any two knots from this sequence
will be nonisotopic.)

Theorem 1 remains correct if we
replace the word knot with the word
link. Note: If the diagram of a link
allows no correct coloring with
more than one color in it, then the
link can’t be unlinked (that is, it is
not isotopic to a link made of knots
lying on different sides of a plane).

Exercise 7. Prove that the links in
figure 4 cannot be unlinked.

Proving theorem 1

Theorem 1 is implied by the fol-
lowing two theorems, whose
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Figure 14

proofs are cumbersome but not too
difficult.

Theorem 2. Any elementary iso-
tope of a link can be replaced with a
finite sequence of elementary iso-
topes so that each of them changes
the diagram of the link in one of the
ways shown in figure 11.

For example, the elementary iso-
tope in figure 12 can be replaced by
the sequence of elementary isotopes
in figure 13 (the numbers in fig. 13
explain the order of operations).

Theorem 3. There is a one-to-one
correspondence between the correct
three-color colorings of any two dia-
grams, obtained from one another by
the operations shown in figure 11,
such that the unchanged parts in the
corresponding colorings are colored
the same.

This statement is evident for all
the transformations shown in figure
11 except for 11h. In the latter case,
we derive the proof from the draw-
ings in figure 14. O]



ATMOSPHERIC ANOMALIES

\isionary Science

Halos, sun dogs, and other optical phenomena
by V. Novoseltzev

N HIS FAMOUS BOOK ATMO-

sphere, the great French natural-

ist and astronomer Camille

Flammarion (1842-1925) de-
scribed for the first time all the un-
usual natural phenomena in Earth’s
atmosphere and explained them to
the general public. Since then de-
scriptions of mirages, solar halos,
and other optical phenomena have
become familiar.

Since Flammarion’s time, industry
and technology have changed the face
of our planet, and new technologies
have caused variations of natural at-
mospheric phenomena. It is not a rare
occasion when a phenomenon be-
comes unrecognizable and turns into
an “unidentified object.”

The honor of the first observation
of a technological variant of an at-
mospheric phenomenon was also
Flammarion’s. Flying in a hot-air
balloon, he was the first to observe
the colorful halo around the shadow
cast on the clouds by his aircraft.

We will describe in detail only
one of the atmospheric optical phe-
nomena—the halo. Halos (from the
Greek halos—a circle, disk) are sym-
metrical figures—the circles, arcs,
and spots located near a bright
source of light (usually near the Sun
or Moon)—and are observable in
cold, clear weather.
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Figure 1. The appearance of a halo. An illustra-
tion from C. Flammarion’s Atmosphere.

Halos are caused by light refract-
ing through or reflecting off the
small ice crystals suspended in the
air. If the orientations of the crystals
are randomized by air currents and
evenly distributed, circles appear
near a source of light, as illustrated
by Flammarion in his book (fig. 1). If
the air is still, then the flat, hexago-
nal type of ice crystals fall with a
horizontal orientation, tilting from
side to side. In this case light re-
flects off the flat surfaces, which
results in a light pillar near the
light source (fig. 2). In addition,
the horizontal faces of the crystals
sometimes cast horizontal bars of
light, though they are rather weak.
Therefore, cruciform figures can
appear in the sky.

If there are few ice crystals in the
air, “ears” and sun dogs appear at the
sides of the Sun. If there are many
crystals in the sky, the intensity of
the refracted and reflected light will
be large enough to form crosses,
circles, and even spaced repetitions of
these figures. A rather complicated
pattern may be produced in this case,
with a number of sun dogs in the hori-
zontal plane (fig. 3).

As for the rainbow-colored circles
observed by Flammarion from his
hot-air balloon, they are formed by
the refraction and diffraction of light
in the suspended water droplets.
These kinds of halos are always
round because all the droplets have
a simple spherical form.

So, there are a number of different
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atmospheric phe-
nomena, and a care-
ful observer can
sometimes enjoy
splendid views—es-
pecially in very cold
weather. However,
what the observer
sees when observing
an atmospheric phe-
nomenon depends
not only on the
weather.

A matier of perception

How do we see?
More specifically,
how do we perceive
and recognize surrounding objects?
When an object appears in our field
of vision, its image is projected on
the retina, where nerve endings are
excited. A complicated pattern of
electrical impulses is then fed to the
brain and analyzed.

The human brain is constructed
such that it tries to associate a new
image with one of the classes of
objects it already
knows. It seeks and
finds a logical, non-
contradictory expla-
nation of every de-
tail. Moreover, the
interpretation of the
image must be con-
sistent with the
observer’s world
view.

The same phe-
nomenon observed
by someone in me-
dieval times and
someone today will
be interpreted on
the basis of quite
different notions
about the world. On
this problem, A. S.
Gurvich, a specialist
on optical phenom-
ena, writes: “Mi-
rages in the sky were
often identified as
air ships. But what
kind of ships? In the
Middle Ages they
were sailing ships

with anchors. After dirigibles were
invented, new details were noted by
eyewitnesses, who included port-
holes, searchlights, and landing gear
in their descriptions.”

There are various names for the
underlying fabric upon which the
brain strings together details to
produce a final picture. Sometimes
it’s simply an “idea” of the per-
ceived world—its model. Most
students have come across the
planetary model of the atom pro-
posed by Rutherford: electrons
spinning in varying orbits around
a nucleus. And the students prob-
ably say to themselves, “What’s so
new about this? It’s obvious.” But
when the data about the structure
and properties of atoms were un-
clear and incomplete, it was in-
deed the insight of a genius who
was able to “see” such a model.

There is a very apt term in the
theory of vision: object hypoth-
esis. It refers to the basic (a priori)
notions of human beings about
what we observe, which in every

Figure 2. Light pillars resulting from the
refraction of light from street lamps on the tiny
ice crystals suspended in air.

e

Figure 3. Halo and sun dogs.




situation provides us an opportu-
nity to quickly and surely deter-
mine what we see. When a com-
pleted object hypothesis for an
observable phenomenon exists in
the brain, all the details of the per-
ceived image easily take their
places and form an integral pic-
ture. On the contrary, when the
brain has no suitable template, it
has difficulty composing the pic-
ture.

Here is an instructive example.
Nowadays people are familiar with
the physical features of Saturn.
Looking at it through a telescope,
everyone sees a globe surrounded by
a ring. However, depending upon
the planet’s orbital location, this
ring will be positioned at different
angles to the observer, producing
different images.

In the seventeenth century as-
tronomers did not know that Saturn
has rings. Many times when they
scrutinized it through telescopes,
they didn’t observe the ring. Galilei
himself, who in 1610 discovered
what we now call the ring, described
the planet as a “triple star”: “The
middle star seems to be rather large,
and the two others, located one in
the East and another in the West,
probably touch it. It looks like two
servants helping old Saturn to tread
its path.” Thus, even with a scien-
tific mind, the absence of a suitable
template in the brain prevented the
synthesis of a true picture of the
planet.

Unknown or unrecognized?

The same problem arises during
the observation of many anomalous
atmospheric phenomena. Having no
suitable model for the observed phe-
nomenon, the brain subconsciously
searches for the most closely related
object hypotheses and then provides
the consciousness with an interpre-
tation based on the most appropriate
template.

Records of anomalous atmo-
spheric phenomena (“visions”) can
be found in the most ancient histori-
cal sources—on the pages of the
Bible, Egyptian papyri, Chinese
chronicles, and Russian chronicles.

the living creatures,

Figure 4. A reconstruction by D. H. Menzel of
the halo observed and described by Ezekiel.

Even in modern times some stories
of this kind appear in newspapers.
Analyzing these wonderful and col-
orful descriptions is an intriguing
process.

Unfortunately, it is often impos-
sible to examine or reconstruct the
details of historical or even recent
events that are needed to identify
the phenomenon. It’s not surprising
that many “wonders” are simple in
nature, but occur in the “wrong
place” or at the “wrong time.”

A vision of the prophet Ezekiel

One of the most ancient descrip-
tions of an unidentified atmospheric
phenomenon can be found in the
Bible. It is the famous wheels of
Ezekiel (Ezekiel’s first vision of God,
Ezekiel 1:4-1:27):

“AsTlooked, behold, a stormy wind
came out of the north, and a great
cloud, with brightness round about it,
and fire flashing forth continually, and
in the midst of the fire, as it were
gleaming bronze. And from the midst of
it came the likeness of four living crea-
tures. And this was their appearance:
they had the form of men, but each had
four faces, and each of them had four
wings. Their legs were straight, and the
soles of their feet were like the sole of
a calf’s foot; and they sparkled like bur-
nished bronze. Under their wings on
their four sides they had human hands.
And the four had their faces and their
wings thus: their wings touched one an-
other; they went every one straight for-
ward, without turning as they went....

“Now as I looked at the living crea-
tures, I saw a wheel upon the earth beside

one for each of the four
of them. As for the ap-
pearance of the wheels
and their construc-
tion: their appearance
was like the gleaming
of a chrysolite; and the
four had the same
likeness, their con-
struction being as it
were a wheel within a
wheel. When they
went, they went in
any of their four direc-
tions without turning
as they went. The four
wheels had rims and
they had spokes; and their rims were full
of eyes round about....

“And above the firmament over their
heads there was the likeness of a throne,
in appearance like sapphire; and seated
above the likeness of a throne was a like-
ness as it were of a human form. And
upward from what had the appearance of
his loins I saw as it were gleaming
bronze, like the appearance of fire en-
closed round about; and downward from
what had the appearance of his loins I
saw as it were the appearance of fire, and
there was brightness round about him.
Like the appearance of the bow that is
in the cloud on the day of rain, so was
the appearance of the brightness round
about.”

What was this miracle? The first
scientific interpretation of Ezekiel’s
wheels was given by the American
astrophysicist Donald Howard
Menzel, known not only for his sci-
entific research but mainly for his
book about “flying saucers.” He
considered the phenomenon de-
scribed by Ezekiel to be a solar halo
(a very rare phenomenon at southern
latitudes).

Ezekiel’s description inspired
William Blake, a famous English
poet and artist and the contempo-
rary of the French Encyclopedists,
to picture it in one of his woodcuts
(see inside front cover). In the cen-
tral human figure with four faces,
one can easily perceive the halo’s
cross, and the contours of the
wings mimic the structure of
rings. Figure 4 shows the recon-
struction of Ezekiel’s wheels made
by Menzel.
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Halos in Russian chronicles

Halos were also known to Rus-
sian bookworms. In the beginning of
the twentieth century, the famous
Russian astronomer D. O. Svjatsky
published a picture borrowed from
an ancient chronicle that showed
what kind of object hypotheses ex-
isted in an ancient Russian mind
(figure 5). The world of
crosses and crowns was
much more familiar than
the modern world of
physical laws.

In the Vologodskaya
chronicle of the year
1171 (this year lasted
from September 1, 1662
to August 31, 1663) one
can read: “On Novem-
ber 29 after sunset there
was a sign, awful and
terrible, occurring at
Belozersky Uezd in
Cyril’s district on Erge:
A starlike apparition,
bright and long, came
and ran away with the
swiftness of lightning.
And the heavens gaped
and the vision shone for
half an hour, an inde-
scribable bright light
like fire. There stood a
man in that fire, his
hands and feet spread,
fire around him; the air
was clean and very
cold.” Then “a great
stonefall occurred from
heaven to the ground with fury and
noise, and the stones were envel-
oped with heavenly fire and deeply
pierced the frozen ground.”

It turned out that this case was
very well known to astronomers—
D. O. Svjatsky classified it as frag-
ments of a large bolide. The cited
description had come from a de-
tailed account given by a priest
from near the town of Ustjug. This
and many other corroborative
sources show that the bolide flew
over Vologodskaya territory for
more than 200 kilometers from
west to east. Those who observed
the fiery trace of the approaching
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bolide head-on saw a stable fiery
point or disk. In the clear, frosty
evening this light source produced
a halo. Curiously, the description
of this halo as a huge human appa-
rition with spread hands has cer-
tain features in common with the
watercolor of William Blake (see
front inside cover) and the drawing
of a Russian chronicler.
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Flgure 5 Picture of a halo from one of the last
Russian chronicles.

Union Jack over Moscow

It seems that we have finished the
story of transforming halos into
ghosts and supreme beings. However,
there is another source of halos—hu-
man technology. Sometimes such
phenomena are listed among the uni-
dentified. For example, in the book of
S. Shulman, the appearance of “extra-
terrestrials over Russia” is recounted.

On May 15, 1981, at 1:15 A.m. a
bright, spherical object was over
Tula (a Russian town), moving in
the direction of Moscow. Having ap-
proached Vnukovo airport, it hov-
ered over it in the presence of hun-

dreds of witnesses. The object was
motionless for about one minute,
then “a dazzling white lightning”
broke away from its center and sur-
rounded it with something like a so-
lar crown, which quickly disinte-
grated into a cascade of sparks that
“looked like fireworks.”

When the sparks died out, “a
black square appeared at that place,
which was then crossed with
some luminescent bars. In-
side this square the bars
formed something like a
huge cross. Taken together,
all this looked like a British
flag.... Then the initial object
withdrew, but the black
square with the ‘flag’ kept its
place for some time. Several
minutes passed, and it be-
came dim and disintegrated.
Apparently it wasn’t mate-
rial—that is, it must have
been an optical phenomenon
because people saw stars
through it.”

Figure 6 shows sketches of
the fiery globe and “British
flag” over Vnukovo made by
one of the witnesses. What
was it? It seems that the first
part of the observations is not
disputable: People saw a mul-
tistage rocket launched hun-
dreds of kilometers away
from Vnukovo. The bright,
motionless object is the de-
scription of the rocket’s ex-
haust illuminated by the
Sun, which was below the
horizon. The rocket was moving di-
rectly away from the observers.
When the engines of the next stage
ignited, “a dazzling white lightning
broke away” from the circle’s center.

The separation of a rocket’s
stages is a complicated technical op-
eration accompanied by bursts of
charges that blow off the fixtures
connecting the stages. So, the “solar
crown disintegrating into a cascade
of sparks like fireworks” would be
better substituted for a more strict
comparison with the bursts and
sparks of melted metal produced
during electric welding.

However, the “black square”




crossed by luminescent bars is in-
deed a unique phenomenon. It
seems to be the first description of a
halo caused by a humanmade light
source. On the lower sketch in fig-
ure 6 we can see both the character-
istic cross and the circle. The halo
was observed during the several
minutes of the firing of the rocket’s
second-stage engines. Instead of so-
lar light, the bright point of light
from the rocket’s engine was re-
fracted in the suspended crystals.

The only question to be explained
is how the cloud of ice crystals could
be formed on a warm May night.
The combustion products of rocket
fuel contain aqueous vapors. In ad-
dition, crystals can be formed due to
the supercooling and crystallization
of metal oxides (say, Al,O,), which
are also present in the combustion
products.

In the absence of an object hy-
pothesis for the natural origin of the
observed phenomenon, it was not
possible for witnesses to recognize
it, though there were conjectures
about its artificial character.

Figure 6. Halos observed over Vaukovo

Airport, Moscow.

Something to see
hesides halos

We considered only
one example of the
transformation of a
classical atmospheric
phenomenon into an
unidentified miracle
(the “artificial” halo
over Vnukovo). How-
ever, there are many
other examples of
unrecognized and
unidentified phe-

nomena.
Some of these
miracles are quite evi-

dent—for example,
unusual clouds. We know that a
comet’s tail extends to infinity, but
only its head is usually seen, where
the gas density is higher and where
more solar light is scattered. In the
same way the rocket engine’s ex-
haust can be seen only when it is
“rather dense” near the light. If such
an exhaust occurs between the Sun
and an observer, it may look like a
dark cloud. However,
rockets have engines
with round nozzles,
so the cloud it pro-
duces will always
have a regular form.
Moreover, an ob-
server (located, say,
aboard a plane) mov-
ing along or across
the “invisible” part of
a rocket’s exhaust
will see wonderful
images depending
upon the position of
the Sun: a sudden ap-
pearance of a dark or
fiery sphere or the
transformation of this
sphere into an ellipti-
cal saucer followed
by its “traceless dis-
appearance.” All of
these phenomena are
illusions caused by
human technologies
that by and by be-
come recognizable.
Still there are some

Flgur € 7. The historically famous lateral
mirage observed in 1869 by captain Coldway
who visited the shores of Greenland aboard
the ship Germany.

absolutely enigmatic (unidentified)
phenomena that have no variations
caused by human technologies. One
of them is a mirage. Natural mirages
are usually vertical—that is, they are
located above and below the actual
object. Such mirages are very well
known and explained: They appear
due to temperature differences be-
tween adjacent air layers that are par-
allel to the Earth’s surface.

It is possible, however, that tem-
perature differences are not the only
causes of natural mirages. Indeed,
many careful observers have seen
complicated mirages in the Arctic
consisting not only of vertical im-
ages but also of lateral ones.

Figure 7 shows a single ship near
the coast of Greenland that produced
two series of reflections—the vertical
and the lateral. Tt is very difficult to
imagine the simultaneous existence
of two natural air layers having differ-
ent temperatures and crossing at 90°.
Therefore, this lateral mirage should
have some other explanation, some
other nonthermal source of the atmo-
spheric optical heterogeneity. Per-
haps it was caused by electromag-
netic anomalies. Is it a coincidence
that the lateral mirages were reported
to occur in polar regions where the
auroras (which are electromagnetic
phenomena) are seen? The author
couldn’t find a discussion of the pos-
sible mechanisms of this phenom-
enon or even mention of this problem
in the literature. Q
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Math relay races

On your mark, get set, solve

HE AMERICAN REGIONS
Mathematics League (ARML)
runs an annual contest among
teams of 15 students represent-
ing regions that range from an entire
state to a county and from a city to
a single school. Approximately 1400
students from 35 states (and often
guests from foreign countries) take
part in the daylong competition.

There are four parts to the con-
test: Team, Power, Individual, and
Relay. In the Team round the 15 stu-
dents on a team work together to
solve 10 problems in 20 minutes.
Only the answer is scored. In the
Power round the team has 60 min-
utes to write solutions or proofs to
questions that explore an interesting
topic. In the Individual round each
student receives four pairs of ques-
tions and is given 10 minutes per
pair.

The final round, the Relay Race,
being rather novel, requires a longer
explanation. In the Relay Race, each
team is divided up into five groups
of three. Each first person receives
the same problem, each second the
same, and each third the same. The
second person’s problem requires
the first person’s answer, and the
third person’s problem requires the
second person’s answer. Students
cannot talk with one another and
can pass back only unadorned an-
swers. Each group of three receives
four points for a correct answer in
three minutes and two points for a
correct answer in six minutes. When
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by Don Barry

a team gets all three problem cor-
rect, there are high five’s all around,
but a wrong answer from either the
first or second person will certainly
provoke all sorts of frenetic activity
and strange mathematics.

Here is a relay race from the 1996
ARML. Note that TNYWR stands
for “The Number You Will Re-
ceive” and that solutions to all the
relays can be found on page 55.

1. In trapezoid ABCD, AB |l CD
and angles B and D are acute. If sin/B
= cos£D, compute mZA - mZB in
degrees.

2.Let T=TNYWR and set K=T/15.
Square LMNP is inscribed in right
triangle ABC as shown in figure 1. If
PN = K, compute the product
(APJ(NC).

3.Let T=TNYWR and set K = T/6.
There are K positive integers in an
arithmetic progression with com-
mon difference 1. If the sum of the
terms is 75, compute the value of
the first term.

The art of writing relays

A good relay should involve a va-
riety of types of problems as well as
various forms of mathematical
thinking. The best ones provide the

B
L M
A P N C
Figure 1

second and third students the oppor-
tunity to do quite a bit of analysis
before they receive an answer. Writ-
ing a good relay is challenging, and
I've found that it makes a great ac-
tivity for a math club. Here is a fa-
vorite written by one of my stu-
dents, Creence Lin.

1. A girl divided her long hair into
three parts, wrapped a red ribbon
around the left part, a white ribbon
around the center part, and a blue
ribbon around the right part. She
formed a braid by bringing the left
part over the center part, thereby
forming braid #1 with ribbons in the
following order from left to right:
white, red, blue. Then she brought
the right part over the center part,
forming braid #2 with ribbons in the
following order: white, blue, red. If
the girl continued in this fashion,
what would be the number of the
first braid that returns to the origi-
nal order of red, white, blue?

2. Let n = TNYWR. Figure 2
shows a strip of paper of width n that
is formed into a circle. The strip is
cut along dotted lines, some of
which are shown, and the'resulting
six pieces are pasted onto a square as
shown in figure 3. Determine the

- >
o N —ceil

Figure 2

Figure 3




original circumference of the strip.

3. Let k = TNYWR and let m
= k — 100. An aged piece of tofu is
five times as old as a regular piece of
tofu was when the aged tofu was as
old as the regular tofu is now. The
sum of their ages is m. How old is
the regular tofu?

Super relay

For the 1996 ARML we thought it
would be fun to challenge the stu-
dents with a 15-question, full-team
relay at the end of the competition.
We didn’t want to count the ARML
Super Relay as part of the contest,
but we wanted to provide an inter-
esting activity while students were
waiting for the award ceremony to
start. The problems had to be easier
than a normal relay, but because no
scores were being kept, we felt free
to put in a few tricks. By all accounts
the students loved the challenge.
Here are the Super Relay problems.

1. If the area of a triangle with
base 2N and height N -2 is equal to
N, compute N.

2. Let T=TNYWR. Compute the
slope of the line passing through
(T, 1) and (1, T?).

3.Let T=TNYWR. If

y=Tx2+T?x+C

and the x-coordinate of the vertex
equals C, compute the value of C.
4.Let T=TNYWR. If

(2 + Ti)? =a + bi,

compute the value of a + b.

5.Let T= TNYWR. Pass back the
digit in the unit’s place of the prod-
uct 1997 . 2797-1,

6.Let T=TNYWR. If

~3T2+3T-1=K?,

compute the value of K.

7. Let T = TNYWR. If T is the
number of sides of a regular polygon,
compute in degrees the positive dif-
ference between the sum of the in-
terior angles and the sum of the ex-
terior angles.

8.Let T=TNYWR. Let K = T/60.
If K is the height of an equilateral
triangle, let the area of the triangle
be A. Compute A+/3 /9.

9.Let T=TNYWR. If

sin T°cos 286°
- cos T°sin (-106° = sin 6

for 0° < 0 < 180°, then if i = v/-1,
compute cos 0 + 7 sin 6.
10. Let T = TNYWR. Compute

ul
| e
11. Let T = TNYWR. Compute

the value of x satisfying the follow-
ing equation:

T+x
& 5 °

12. Let T = TNYWR. If tan 9T
= cot 8 for -90° < 6° < 90°, compute 6.

13.Let T= TNYWR. A line passes
through the point (-2, 9) with slope
T. Compute the x-intercept of the
line.

14. Let T = TNYWR. If the or-
dered pair (x, y) is the solution to the
system below, compute x — y:

x+y=T+7
Tx-4y=T-8.

15. Let T = TNYWR. A square
floor is covered with square tile. If
the number of tiles in the two diago-
nalsis 272 + 5, compute the number
of tiles on the floor. (@

Don Barry is the chair of the ARML prob-
lem-writing committee and teaches
mathematics at Phillips Academy in
Andover, Massachusetts.
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PHYSICS
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Depth of knowledge

"Adaptability is not imitation. It means power of
resistance and assimilation.”
—Mahatma Ganadhi

by Arthur Eisenkraft and Larry D. Kirkpatrick

TIS A COMMON SIGHT DUR-
ing the summer months to see a
car crowned with camping gear, ca-
noes, or beach chairs as the family
heads off on vacation. Such a sight
causes automobile engineers respon-
sible for aerodynamics to convulse.

Millions of dollars of research and
experimentation have been invested
in sleek car designs to minimize the
adverse affects of air resistance. And
here is the American household ne-
gating all efforts to maximize gas
mileage with a bramble bush of out-
door gear strapped to the roof.

A home study of air resistance re-
quires only a stopwatch and some
coffee filters. A single coffee filter is
dropped from a selected height, and
its descent time is recorded. The ex-
periment is repeated with two
nested filters, three nested filters,
and so on. In this way, we can find
the relationship between mass and
descent time. Since the filters fall
with constant velocity, having
reached a terminal velocity quite
quickly, this is a measure of the ef-
fect of mass on terminal velocity as
well. (Proving that terminal velocity
is reached quickly is an important
digression.)

A second experiment can be con-
ducted to determine the effect of
surface area on terminal velocity.
Two coffee filters can be taped side
by side, and their descent time can
be compared with the time for two
nested filters. This is followed by
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three taped filters and three nested
filters. Continuing in this manner,
the desired relationship is derived.
Theoretically, we can look at the
effect of air resistance on an air cart
moving horizontally with a piece of
cardboard providing a resistive force.
The cart would continue to move
forward at constant velocity with-
out this cardboard obstruction. For
slow speeds the force of air resis-
tance on the cardboard is propor-
tional to the velocity of the cart:

—kv=ma
—kv=md—v
dt
X gy

v m
WA
Vo m

k

——t
Vv=vge ™.

Therefore, the velocity decreases
exponentially from its initial value.
The proportionality constant k de-
termines the rate of velocity de-
crease. It seems from the equation
that the cart will never reach zero
velocity in a finite time. Of course,
when t is large enough, we can have
a velocity that is effectively zero.

This air resistance costs us money.
If there were no air resistance, the

only force slowing our car on the
highway would be the friction be-
tween the tires and the road. This
small force would hardly retard our
motion. We would glide along the rib-
bon of road at 60 miles per hour with
little need for additional fuel.

Most of the fuel our cars con-
sume is to counteract the air resis-
tance. Open the car window as the
car cruises at a fast clip and feel
the wind on your hand. Your car is
heading into quite a storm! Recog-
nizing that the air resistance is
proportional to the velocity of the
car (or the square of the velocity of
the car), it is easy to see that a
small decrease in the speed of the
car reduces the required fuel.
Lower speed limits not only save
lives but also save fuel.

An automobile design that lowers
the air resistance so that cars could
get an additional 1 mile per gallon
saves an extraordinary sum of
money. Let’s try a quick “Fermi”
calculation. There are approxi-
mately 60 million passenger cars in
the United States (one for every four
people]. If each car travels approxi-
mately 20,000 miles per year and
gets 20 miles per gallon of gas, then
the fuel consumption is 1000 gal-
lons per car or 60 billion gallons of
gas. At $1 per gallon, this is 60 bil-
lion dollars. If these cars could get 21
miles per gallon, we could save 5%
of the total, or 3 billion dollars per
year. How valuable is an automobile
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design that can save this much
money every year?

Air resistance also affects sports.
A baseball hit at 50 m/s (110 mph)
at an angle of'45° would be able to
travel 255 meters without air resis-
tance. This is equivalent to 840 feet.
Baseball would be quite a different
sport if it were not for air resistance.
Airresistance also affects tennis and
football, and it is a crucial factor in
table tennis and badminton. The
symmetry of a trajectory disappears
when air resistance is present. If an
object is thrown vertically up with
air resistance, will it take more time
going up or coming down?

For this month’s contest problem,
we ascend from a simple problem of
a stone falling with no air resistance
to the more realistic situation where
air resistance retards its motion.

1. A stone hits the bottom of a
deep well and you hear the sound
3 seconds after the release. How
deep is the well? Please assume
that there is no air resistance and
the speed of sound is a constant
value of 340 m/s.

2. In this part, assume that the
stone is affected by air resistance
and that this resistive force is pro-
portional to the velocity of the
stone.

(a) Derive an expression for the
velocity of the stone as it falls.

(b) Using 0.01 kg/s for the pro-
portionality constant and 0.05 kg
for the mass of the stone, deter-
mine the height of the well if the
sound of the stone hitting the wa-
ter arrives 3 seconds after the
stone is released.

Please send your solutions to
Quantum, 1840 Wilson Boulevard,
Arlington, VA 22201-3000 within a
month of receipt of this issue. The
best solutions will be noted in this
space.

Elephant ears

In the November/December 1997
issue we asked readers to solve three
scaling problems from the Interna-
tional Physics Olympiad that was
held in Canada last summer. A cor-
rect solution to the first question
was submitted by Tal Carmon from
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Technion City, Israel.

A. The first question asked what
would happen to the mean tempera-
ture T of Earth if the mean distance
R between Earth and the Sun de-
creased by 1%. To do this we match
the input radiation to the output ra-
diation because Earth is in thermal
equilibrium. If the power output of
the Sun is P, the radiation reaching
Earth per unit area is P/4nR2. If we
denote Earth’s radius by R and its
reflectance by z, the input power P,
to Earth is

P
Pin :(I—I)WTCR%.

Stefan’s Law gives the output power

P, =4nRkecT*,

where ¢ is the Earth’s emissivity and
o is Stefan’s constant. Although the
emissivity is a function of tempera-
ture, the change in temperature is
expected to be small, and we can
neglect this dependence. Therefore,

and a reduction of 1% in R gives a
0.5% rise in T. For a mean tempera-
ture of 287 K, we get a rise of 1.4 K.
B. The second question asked
about the change in the density of
dry air with an increase in humidity
when the temperature and pressure
remain the same. Let’s use the sub-
scripts d and m for dry and moist air
respectively. Then the number of
molecules N in the dry air is

where M is the mass of dry airin a
unit volume and the mean molecu-
lar mass of dry air is 28.8 g/mol. For
moist air, we must account for the
proportions of dry air and water va-
por. For 2% humidity, we have

N, «002Mm 1008
18 2

.
7

Ml
8.8

where the mean molecular mass of

water is 18 g/mol.

We know that identical vol-
umes of ideal gases with the same
temperature and pressure have the
same number of molecules. There-
fore,

My =1.012M_.

Because the densities of equal vol-
umes are proportional to the respec-
tive masses,

P _ M _ g 0gg,

pa My

and using p,; = 1.25 kg/m3, we get
our answer:

P, = 1.235 kg/m?.

C. The last question asked how
the power required for a helicopter
to hover depends on the size of the
helicopter. The mechanical power P
of the helicopter is equal to the
thrust T times the downward veloc-
ity component v of the air below the
blades. The thrust is given by the
change in momentum of the air per
unit time

dm
Ty
T
with
dm
= A
P pAv,

where p is the density of the air and
A is the cross-sectional area covered
by the blades. Thus,

T = pAv?.

When the helicopter is hovering, the
thrust must be equal to the
helicopter’s weight. Therefore,

2. T W
pA pA

If the size of the helicopter is char-
acterized by a linear dimension L,
then W o L3, A o< L2, and v o L05,
Thus,

P=Tv=Wvo L35,

For a half-scale helicopter, the re-
quired power is 0.53°P = 0.0884P. [@]
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LL OF THE QUOTES AT RIGHT

in one way or another approach

the notion of an ideal gas. Be-

tween the first statement,
made by a Dutch naturalist, and the
last statement, made by an Aus-
trian physicist, lies an arduous
pilgrimage of two and a half
centuries.

The pathway beaten by the
old atomists is far from being fin-
ished today. This road is marked by
a wonderfully large number of
names encompassing many coun-
tries and professions. This way was
paved by, in addition to the quoted
scientists, such brilliant minds as
Newton, Hooke, Huygens, Laplace,
Lavoisier, Boyle, Bernoulli, Joule,
Maxwell, Perrin, Einstein...

Why is the ideal gas model so at-
tractive? First of all, it provides the
possibility of constructing a theory
that has a broad range of conse-
quences despite being based on the
simplest of concepts. This model
demonstrated the immense power
of abstract thinking.

In physics the ideal gas approach
was successfully applied to describe
the electron “gas” in metals, radia-
tion of electromagnetic waves, and
even sound oscillation in crystals.
This variety of applications testifies
to the unusual universal character of
the ideal gas model, which is a rare
example of a fundamental theory
underlying our physical world view.

Well, suppose that we are sur-
rounded by ideal gases...

Questions and Problems

1. The force of gravity on the
Moon is weaker than on Earth.
However, dust hovers over Earth’s
surface much longer than over the
Moon’s. Why?

2. Do the partial pressures of ni-
trogen differ between places with
dry soil and places with humid soil
in warm, calm weather?

3. How many thermodynamic
parameters determine the state of a
specified ideal gas of a certain mass?

4. An ideal gas changes from state
1 to state 2 (fig. 1). How does its den-
sity vary in this process?

5. A vessel is divided into two
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| called this

vapor ‘gas’” because
it hardly differs from the “chaocs”

of the ancients.

KALEIDOS

—dJan Baptista van Helmont

So | proposed:
a law which says that the

The nature C

-molecules of various gases have
 an identical living force [that is, the
 kinetic energy] of translational
. - mourn
—Rudolf Clausius

compartments by a

flexible, porous partition.

One compartment is filled with hy-
drogen; the other with air at the same
pressure. At first the partition bends
toward the hydrogen compartment,
then it assumes its initial position.
Explain this phenomenon.

6. Two closed vessels of identical
volume are filled with carbon dioxide.
The height of the first vessel is half
that of the second vessel. Two ma-
nometers placed at the tops of these
vessels read the same value. What
will the manometers show when the
vessels are turned upside-down?

7. Atmospheric pressure is caused
by the weight of the air. How is the
pressure maintained in a spacecraft,
where the air has no weight?

8. Does air exert the same pressure
on the floor and the ceiling of a room?

9. Does the pressure a gas exerts
on a vessel’s wall depend on how the
wall was machined?

10. A mixture of nitrogen and
neon is placed in a vessel. Are the

p

0 T
Figure 1

mean kinetic molecular ener-
gies of these gases equal or not?

11. The walls of a vessel are kept
at different temperatures. Does the
pressure exerted by a gas on a wall
depend on the wall’s temperature?

12. An ideal gas occupies half of
a thermally isolated vessel, the other
half of which is empty. How will the
temperature of this gas change if the
partition is momentarily removed?

13. A thermally isolated, cylindri-
cal vessel filled with an ideal gas is
suspended on a thread. The thread is
torn and the vessel drops. Will the
temperature of the gas change dur-
ing the fall?

14. A moving vessel containing an
ideal gas is stopped abruptly. How
will the pressure of the gas change?

15. Does a strong wind increase
the temperature of the air it carries?

Microexperiment

Turn a heater on in a room. After
you get warm, think about what you
feel—an increase in the internal en-
ergy of the air or an increase in the
energy of individual molecules? Are
these concepts identical?

It is interesting that...

... the word gas, coined at the be-
ginning of the seventeenth century
by Helmont, was unused for a rather
long time, and it was reintroduced



OSCOPE

of an iteal gas

by Lavoisier at the end of eighteenth
] century. The word became wide-
) spread at the time of the brothers Jo-
I seph and Etienne Montgolfier, who
made the first hot-air balloon flight
in 1783.

. at first look, Dalton’s and
Avogadro’s laws are independent.
But the former results from the lat-
ter, and both laws are the direct con-
sequences of the kinetic theory of an

ideal gas.
... the estimates of Avogadro’s
number made on the basis of the ideal
gas approach were not as good as

; One’ i‘akes the
 simplestbody to
_Investigate—that is,

- a gas confined within solid,

absolutely elastic walls,

whose molecules are hard.

-absolutely elastic ,
SPhereS: 2, B
—Ludwig Boltzmann

those given by the real gas theories,
such as van der Waal’s model.

... the kinetic theory of an
ideal gas explains the experi-
mentally established fact of
the equality of the molar heat
capacities of gases of the same

type—say, monatomic or di-

atomic ones.

... many consequences of the

kinetic theory awaited corrobo-

rative experimental evidence for

along time. It was not until 1911
that the French physicist Louis
Dunoyer demonstrated that the
molecules of a gas persistently col-
lide with each other and that they
move rectilinearly between the col-
lisions.

... the widely known ideal gas
law was formulated by Emile
Clapeyron in a desire to “reani-
mate” the works of Sadi Carnot,
who was undeservedly forgotten for
several decades.

... the ideal gas theory makes it
possible to estimate pressures and
temperatures even within stars. Al-
though they are just approxima-
tions, such estimates are quite
close to those obtained from de-
tailed calculations. Thus, according
to these estimates, gas pressures
inside stars are billions of times
greater than normal atmospheric
pressure, and the temperatures of

these gases are millions of degrees.

... the ideal gas model begins to
“limp” even at room temperature
if the gas density increases by only

100 times its density under nor-

mal conditions.

... in his work on the kinetic
theory, Maxwell was the first
to use mathematical statistics

to describe a physical phe-

nomenon. Without statis-

tics it would have been im-

possible to obtain a

general description of

gas behavior as an im-
mense ensemble of particles.

... gas without colliding mol-
ecules is not a purely theoretical
trick—there is such a gas in reality!
Knudsen gas, which is so diffuse that
its molecules collide only with the
vessel’s walls. The particular fea-
tures of flow of such a gas through a
small orifice are employed in the
technique of gas separation.

... in recent years an ideal gas has
become a virtual reality in computer
simulations. Now we can see the
transition from the artificially regu-
lar motion of the gas composed of
identical little “balls” to stochastic
motion. It is also possible to visual-
ize the causes of “molecular chaos”
and finally to describe the stochas-
tic phenomena that had previously
eluded detailed calculation.

—A. Leonovich

Quantum articles about ideal gas:

A. Borovoy, “Learning about (not
by) Osmosis,” November/Decem-
ber 1991, 48-51.

A. Buzdin and V. Sorokin,
“Double, Double, Toil and
Trouble,” May/June 1992, 52-53.

A. Stasenko, “An Ideal Gas Gets
Real,” September/October 1993, 42-43.

I. Vorobyov, “Cooled by the
Light,” September/October 1993,
20-25.

A. Eisenkraft, L. D. Kirkpatrick,
“Cloud Formation,” January/Febru-
ary 1995, 36-38.

V. Lange, “Shall We Light a Fire
in the Fireplace?” January/February
1996, 40-41.
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GRADUS AD
PARNASSUM

Symmetry part I

Polynomial equations and their roots

N OUR LAST COLUMN, WE

explored the notion of algebraic

symmetry, and used it to solve a

variety of problems. In this col-
umn, we continue our exploration.
Do you already know how the roots
of a polynomial equation are related
to its coefficients? Then skip ahead
to problem 8. Otherwise, start read-
ing below.

We start with simple quadratic equa-
tions. Every baby knows how to solve
quadratic equations by factoring,

x2-5x+6=0
(x-3)x-2)=0
x=30rx=2.

So if (x — 2} is a factor of the origi-
nal polynomial, then 2 is a root of
the polynomial equation. In fact, we
can see that this will always work.
There is nothing special about the
number 2 or the factor x - 2:

(1) If (x — a) is a factor of the qua-
dratic polynomial P(x), then P(a) = 0.

Is the converse of statement (1) true?
Let us look at another baby example:

6x2-x-1=0
(2x-1)(3x+1)=0
(2x-1)=0o0r(3x+1]=0
x=1/20rx=-1/3.

Now we see that 1/2 is a root of
the equation we started with, but
(x—1/2)is not afactor. Orisit? If we
had a bit more fondness for frac-
tions, we could have solved the
original equation as:

6x*-x-1=0
2 x/6-1/6=0
(x-1/2)x+1/3)=0
x=1/20rx=-1/3.

34 MAY/JUNE 1998

by Mark Saul and Titu Andreescu

Why didn’t we do this? Because
factoring takes some guesswork, and
it’s easier for us to guess about inte-
gers than about rational numbers. But
this is our failing, and not that of the
equation we are solving. Considering
the second solution of our equation, we
can see thatitis true thatif x=1/2is a
root, then x — 1/2 is a factor.

Indeed, the whole story is made
simpler if we consider only qua-
dratic equations whose lead coeffi-
cient (the coefficient of x2) is 1. We
will do so for the remainder of this
column, and now the converse of
statement (1) is in fact true. We can
state the very interesting factor
theorem for quadratic polynomials:

If the lead coefficient of the
quadratic polynomial P(x) is 1,
then (x — a) is a factor of P(x) if and
only if P(a) = 0.

It is important to note that this
statement is true for clumsy irratio-
nal roots as well as for neat integers
or rational numbers.

Problem 1. Check that the roots
of x2-3x-5=0are

3+429
2

and

3-29
>

Then show that the polynomial
x? - 3x — 5 does indeed factor into

3+4/29 3-429
X~ 2 X ) .

(We promise that this is the last
time you will see such complicated
expressions in this column!)

Let us state problem 1 another
way. Let us set

3+4/29
o=

and

Then, noting that a quadratic poly-
nomial can have only two linear fac-
tors, the problem actually states that

(x—a)(x-pB)=x*-3x-5.

If we multiply out the left-hand
side, we get

x2 — (o + B)x + of.

Since this must equal x> —3x -5, it is
not difficult to see (if you don’t know
already) that o + = 3, and off = -5.
Again, nothing is special about
the silly numbers o and B. The fac-
tor theorem for quadratic polynomi-
als has the following consequence:
The numbers o and § are roots of
the polynomial equation x> - px + ¢
=0ifandonlyifa+B=pand of = q.
Problem 2. If o and [ are roots of
the equation x> - 3x -5 =0, find the
numerical value of o + 20p+ 2.
Problem 3. If o and f§ are roots of
the equation x> —3x -5 =0, find the
numerical value of o2 + 2.
Problem 4. If o and  are roots of
the equation x> — px + q = 0, find the
numerical value of o2 + 2.



Problem 5. If o and B are roots of
the equation x> — px + g = 0, find the
numerical value of 1/a + 1/B.

Problem 6. If o. and B are roots of
the equation x? - px + g = 0, find the
numerical value of o + 3.

Problem 7. If o and [ are roots of
the equation x> — px + ¢ = 0, find the
numerical value of

o+2B  20+B
a-B  PB-o

What has all this to do with sym-
metry? You can check that each of
the expressions we must compute in
the problems above are symmetric
in o and P. It turns out that each of
the problems above are examples of
a very general statement:

Any symmetric rational function
of o and B can be expressed in terms
of the functions o + B and af.

Equivalently: Any symmetric ra-
tional function of o and B can be ex-
pressed in terms of the coefficients of
a quadratic equation with lead coef-
ficient 1 and with roots o and p.

(A rational function is just a quo-
tient of polynomials.) This state-
ment contains the seeds of some
profound mathematical results. Let
us look at a cubic equation, say

x3+3x2-x-3=0.

If we knew its factors, we could
solve the equation by setting each
factor equal to zero. But the con-
verse is also true: if we knew the
roots, then we could factor the equa-
tion. In fact, it is not difficult to
check that 1, -1, and -3 are roots of
this equation, so we know that the
polynomial x® + 3x2 - x - 3 = O fac-
tors as (x + 1)(x - 1)(x - 3).

Problem 8. Check that the asser-
tions made above are correct.

In short, the Factor Theorem for
Quadratic Equations can be ex-
tended to polynomial equations of
higher degree:

Factor theorem: The polynomial
P(x), with lead coefficient 1, has a
factor (x — a) if and only if P(a) =

And we can once more translate this
statement to a statement about the
roots and the coefficients of a cubic
equation. Suppose we start with a cubic

polynomial P(x) whose lead coefficient
is1.Then P(x)factorsas(x — ol)(x —B)(x—7)
if and only if ¢, B, and y are roots of the
equation P(x)=0.If P(x)=x*~px? + gx -1,
then we can write

-px*+ gx -1 =[x - o)[x - B)(x — )

=x3— (o + P +7y)x?
+ (af + By + ay)x — ofpy.

It follows that

oa+B+y=p,
of + Py +ay=gq,
ofy=r.
Problems 9-13. If o, B, and 7y are
the roots of the equation

—-px*+gx-r=0,

express in terms of p, g, and r the
values of:
9. 02 + B2+
10. o3 + B2+ 2
11. 0% + B*+ v
1 1.1
12. (X,Z BQ 'Y
15, 2 P,
Yy B o
Problems 14-17. Solve the follow-
ing systems.

o+P=5
14. {aﬁ &

oa+B=8
15 {000
o+B+y=-9
16. of+oA+pAr=19
ofy=-11

o+B+y=5

3

17. o +p% +y2 =29
ofy=-24

Problem 18. Leta, b, ¢, d, and e be
integers such thatbotha+b+c+d+e
and a® + b? + ¢ + d* + e* are divisible
by an odd integer n. Prove that
a® + b + ¢® + d> + e — 5abcde is also
divisible by n.

Problem 19. Let r, and r, be
roots of the equation x> + 2x + 3 = 0.
Compute

1] +4r1+5 1 +41, +5

5 .
r’ +5r1+4 15 +51, +4
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LOOKING BACK

Light pressure

Are sunny days more burdensome?

HEN OBSERVING
comets, medieval sci-
entists tried to ex-
plain why the shape
of the comets’ tails varied
with the comet’s position
relative to the Sun. It was
Johannes Kepler who in
1604 posited that the shape
of a comet’s tail is deter-
mined by light pressure.

Many scientists tried to
measure this pressure there-
after, including Augustin-
Jean Fresnel, one of the cre-
ators of the wave theory of
light. However, none of the
experiments produced any
results. For about three cen-
turies the pressure of light
remained just a brilliant hy-
pothesis.

In 1865 James Clerk
Maxwell formulated the
electromagnetic theory of
light. According to this
theory, light waves are elec-
tromagnetic vibrations, and
thus light can be considered
an electromagnetic phe-
nomenon. Maxwell’s equa-
tions predicted the exist-
ence of light pressure.
Indeed, Maxwell calculated
this pressure himself. On a
sunny midday the solar rays
hit an absolutely reflective
surface with the very small
pressure of 4.7 - 107 N/m?.
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Flgure 1. This woodcut is a frontispiece from the
French issue (1648) of the book A Man on the Moon
by Godwin Francis. Perhaps the artist assumed that
in the lunar heavens such flying vehicles would be
propelled by the pressure of solar light!?

For a long time the validity
of Maxwell’s equations were a
matter of vigorous scientific
debate. Again there were at-
tempts to detect the pressure
of light, and again the scien-
tists could not do it. The main
problem was not the very
small value of the light pres-
sure; it was that the light itself
was interfering with the ex-
periments. The interfering ef-
fects caused by light were
many times larger than the ef-
fects of light pressure.

In 1899 the famous Russian
physicist Pyotr Nikolayevich
Lebedev performed the first
measurement of light pressure.
He skillfully overcame the
problems that were night-
mares for experimentalists.
The main part of Lebedev’s
setup was an arrangement of
flat leaves of very small mass
made of different materials
(mostly of metals), which were
fixed to a beam. This system of
leaves was suspended by a cord
in a vacuum chamber (fig. 1).

The surfaces of some leaves
were blackened, and those of
the others were polished. Vir-
tually all the incident light
was reflected from the pol-
ished surfaces and absorbed by
the dark surfaces. As a result,
the pressure of the light on the
polished surfaces was almost



two times that acting on the dark
surfaces. This difference of forces
created a torque, causing the beam
to turn, twisting the cord. The pres-
sure of the light was determined by
the torsion angle.

What factors disturbed the mea-
surements? The first problem was
that the incident light heated the
leaves and the surrounding air. The
resulting convection flows acted
like a wind on the leaves. Thus it
was not clear why the beam
moved—Dbecause of light pressure or
air convection.

Another problem prevented the
detection of the light pressure: the
radiometric effect caused by the in-
cident light. Because the light hit
only one side of the leaves, the op-
posite sides of the leaves were not
heated identically. Therefore, the
opposite sides of a leaf transferred
different amounts of energy (on av-
erage) to the surrounding gas mol-
ecules. After colliding with the
warmer side, molecules acquired
larger speeds (and momenta) than
molecules that collided with the
cooler side. By conservation of mo-
mentum, the molecules that col-
lided with the warmer side imparted
more momentum to the leaf upon
recoiling than the molecules that
collided with the cooler side.

It turned out that the radiometric
forces acted in the same direction as
the light pressure, but their values
were a number of orders of magnitude
larger than this pressure. The first
step in minimizing the effect of these
“destructive” forces was to perform
the experiment in a vacuum. The
fewer molecules in the chamber, the
smaller the disturbance.

Lebedev used thin metal plates
for the leaves by design. First, these
thin films were good thermal con-
ductors. Therefore, the temperature
difference between the opposite
sides of the leaves was smaller, and
the radiometric interference de-
creased as well. In addition, the tiny
masses of the leaves led to a small
value for the moment of inertia of
the entire system, which increased
the accuracy of the experiment in a
vacuum.

Figure 2. Lebedev’s experimental
setup to measure the pressure of light.
The beam R, with leaves of small
mass suspended by a thin cord in a
vacuum chamber G, is an extremely
sensitive torsion balance. The light of
an arc lamp is focused using a system
of lenses and mirrors onto one of the
leaves. The resulting torque on the
beam is observed using a telescope
and a mirror attached to the cord (not
shown). By shifting the double mirror
S,S,, it was possible to direct the light
either onto the front or back surface
of the leaf and thus change the
direction of the torque. Plate P, made
it possible to channel some part of the
light to the thermoelement T, which
measured the amount of incident
light energy. In the experiments,
different systems for fixing the leaves
were used.

Lebedev invented many clever de-
vices and contrivances and tried
many variations of experimental pro-
cedures and conditions until his ef-
forts were rewarded. He eventually
obtained a value within 20 percent of
Maxwell’s prediction. Lebedev thus
demonstrated that light carries not
only energy but also momentum.

For a long time the pressure of
light was only of theoretical impor-
tance. Practical application of this
phenomenon was not possible due
to the extremely small power of
light beams. However, the invention
of lasers made it possible to apply
Lebedev’s discovery.

For example, it is possible to use
lasers to suspend and shift small
particles in the air, counterbalancing
the gravitational attraction by the

supporting pressure of light. In addi-
tion, particles of different masses are
differently accelerated by the light
pressure. Therefore, it is possible to
construct special traps to sort par-
ticles of different masses.

The pressure of light can also be
used to separate two gases from
their mixture. Such a separation can
be performed in the case when the
frequency of the laser radiating the
mixture coincides with the fre-
quency corresponding to the transi-
tion of one of the gas’s atoms from
the ground state to an excited
state. When an atom of this gas
absorbs a photon, it acquires a
momentum in the direction of the
laser beam. After a transition from
the excited state back to the
ground state, the momentum vec-
tor of the emitted photon has an
arbitrary direction.

In the subsequent cycles of pho-
ton absorption and radiation, the
momenta caused by radiation are
mutually annihilated, but the mo-
menta resulting from photon ab-
sorption are summed. Thus, on av-
erage the resonant atoms are
imparted with a nonzero momen-
tum in the direction of the laser
beam. Therefore, in passing through
two successive chambers, the first of
which contains a mixture of gases,
the laser beam carries the atoms of
one gas into the second chamber and
thus separates the gases.

Light pressure can also be used to
accelerate small particles in a
vacuum (air resistance is too large
for such a task under normal pres-
sures). This can be used, say, to
simulate the harmful effects of mi-
crometeorites on the surfaces of a
spacecraft. We may also be able to
use the pressure of solar light for the
orientation and acceleration of
spacecrafts. (@)

Quantum articles about light pres-
sure:

A. Eisenkraft, L. D. Kirkpatrick,
“Laser Levitation,” November/De-
cember 1994, 38-39.

A. Eisenkraft, L. D. Kirkpatrick,
“The Nature of Light,” May/June
1997, 39.
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IN THE OPEN AIR

How t0 escape the rain

Raindrops keep falling on my parallelepiped

MAGINE THAT YOU ARE

walking down a street on a cloudy

day and have neither an umbrella

nor a raincoat nor anything else
to protect yourself from the rain.
Then, all of a sudden, you are pelted
by heavy rain accompanied by a
strong wind. What should you do?

An overwhelming majority of
people (including the author) will
answer as follows: You should
rush to the nearest shelter, and ¢
the faster you run there, the
drier you will be. This seems
like an indisputable truth.

Even so, some people will
say something like, “Of
course I would go to the
nearest shelter. But there is no
need to run, because if I run fast, I
will spend less time in the rain, and
thus fewer raindrops will hit me
from above. But my body will run
into more drops falling in front of
me. My top will stay drier, but my
front will get much wetter. So,
what’s the use of running? None, re-
ally.” This type of person walks
calmly in the rain, in spite of the
wondering glances of passersby.

What should we think about this
reasoning? That it is a mistake?
Probably. But what if it is not a mis-
take but a brilliant intuitive revela-
tion and they are right?

Here’s another consideration sup-
porting their idea. Suppose the wind
blows toward the shelter and is so
strong that the rain falls almost hori-
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zontally. Then the best solution is to
run from the rain at the same speed
as the wind: All the drops will fly on
courses parallel to yours, and none
of them will touch you. Running

with less speed is ineffective, but
running faster isn’t good, either—it
will make you wetter! Of course, it
is not easy to move with the speed
of a strong wind. Nevertheless, this
reasoning suggests that we should
further investigate the problem.

Setting the problem

Let’s set the conditions of our
problem:

An individual is standing in the
street. Suddenly the rain starts. The
individual rushes to the nearest
shelter, which is situated I yards
from him. How fast should he move
to stay as dry as possible?

The problem is stated, but it
doesn’t look as if we could solve it
in this form. In fact, the human body
has a very complicated shape, and
when we run, we move our legs and
wave our hands, so the shape of our
body continuously changes.
Thus it is too difficult (in fact,
impossible) to carry out the
precise calculations in this
case. We have nothing else to

do but solve a simpler approxi-
mation of our problem:

A right parallelepiped whose
faces have areas Sg, S1, and S;. (the
subscripts refer to “side,” “top,” and
“front”) moves with the velocity u
perpendicular to Sg. It’s raining. Ev-
ery drop of rain falls with the veloc-
ity v (fig. 1) (the vector v doesn’t
have to be pointed vertically down-
ward since we consider slanted rain



rain

Figure 1 y

Figure 2

as well). The number of drops in a
unit volume is k. How many (we
denote this number by N) drops will
fall on the parallelepiped while it
crosses the distance I, and for what
velocity u will the number N be as
small as possible?

The work beging

Let’s introduce the coordinate
system Oxyz in the following way:
the Oz-axis is pointed vertically
downward, the Ox-axis is pointed in
the direction of the vector u, and the
Oy-axis is pointed perpendicular to
the plane Oxz so that the projection
of the drops’ velocity v on it is posi-
tive (fig. 2).

Since the vector v is given, we can
suppose that its projections on the
coordinate axes are given, too. Let’s
denote them by v, v, and v_. What
can we say for sure about these pro-
jections? Clearly, v_ > 0 (that’s how
we chose the Oy-axis). Besides this,
v, > 0 (the rain must fall to the
ground). And as far as the value of v,
is concerned, it can be both positive
(when the rain follows you) and
negative (when the rain flies in your
face), or even vanish.

Let’s consider the situation in the
frame of reference connected to the
parallelepiped—that is, the parallel-
epiped is stationary. Then the veloc-
ity of the raindrops becomes equal to
w = v — u. Projections of the veloc-
ity w on the coordinate axes are
W=V~ W, =V, and w, = v, (here

u is the length of the vector u). We
have to determine how many drops
N will fall on the parallelepiped dur-
ing the time 1 = I/u and for what
value of u the number N is as small
as possible.

Clearly a drop will fall on the par-
allelepiped in the time 1 if and only
if it lies at a distance less than or
equal to T |w| from its faces—that is,
if it lies inside the body drawn in fig-
ure 3 with red lines. What is the
volume of this body? It is easy to see
that the body consists of three
prisms whose bases’ areas are S, S,
and S}, and whose heights are the
absolute values of the vector’s tw
projections on the axes Ox, Oy, and
Oz respectively. Therefore the vol-
ume of the body is

’E(’WX|SF + ‘WY‘SS + |WZ|ST)
= T(|VX —1Sg +v,Ss + v, 57 ),

and the number of drops N is equal
to

T k(|VX —ulSp +v, Sg + VZST).

Taking into consideration that t = I/5,
we find how N depends on u:

e [V, —ulSp +v,Ss +v,S¢

u

Now we'll find u > 0 that corre-
sponds to the least possible N.

The solution continues

Since the quantities k and I are
constant, we will, for convenience,
consider the variable

2.
Ty

Q

Figure 3

N |VX — u|SF +V,Sg+V, St
Voga ™ » ‘
Let’s consider two cases:
1. v_ <0 (the rain flies in your
face).
Here v_ — u < 0, and we can re-
write the formula for y as follows:

(u-v,)Sp +v,Ss +v,S1

\Ij:
u

=Sp +

u

Since v, < 0, the numerator of the
fraction on the right is positive, and
thus y(u) is decreasing in the inter-
val (0, +eo). The graph of the function
y = y(u) is shown in figure 4. We see
that although v decreases when u
increases, the inequality y > S al-
ways holds, and that y — S, when
W — . So it seems that the support-
ers of the “take your time” theory
are making a mistake: The faster
you run, the less wet you get.

Nonetheless, here we meet with
another fact, rather unexpected at
first sight: Since y > Sy forall u, N =
kly always exceeds kISp. This
means that however fast you run
(even if you fly like a bullet), you
will still get the minimum amount
of rain: kIS;. Thus, there is some
logic to the reasoning of people who
don’t like to hurry.

2. v_> 0 (the rain follows you).

Here we should consider two in-
tervals:

(a)0<u<v,.Thenlv -ul=v_-u,
and

Vi Sp 4V Ss+v, Sy

o
u

This function decreases in the semi-
interval (0, v, | and attains a mini-
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mum at u = Ve

vy Ss +V, St
Wiy, =5
(b)u>v,. Thenlv,—ul =u-v,
and
v, . Sp+v, Sc+Vv.,S
v= x2F y-S Z¥T +SF-

u

In this case we can’t immediately
say how vy changes when u in-
creases. It depends on the numerator
of the fraction on the right:

A=-vSp+ VySS +V,5¢

If A >0, then y(u) is a decreasing
function in the interval (v, +oo; if A
<0, then it increases in the same in-
terval; and if A = 0, then y = S, =
const.

Figure 5 shows three possible
graphs of the function y = y(u) for all
1 € (0, +o0). We see that in the inter-

'
'
'
'
'
'
'
'
h
'
1
i
1

0 VX u
Figure 5

A <0), and that they differ after the
break u =v,.

We conclude that, sometimes,
when the wind is favorable, the ar-
guments drawn by the supporters of
the counterintuitive “take your
time” theory suddenly prove to be
correct and rational.

Chech the wind

Taking into consideration the re-
sults of our calculations and looking
at the graphs in fig. 4 and 5, we can
give a well-grounded answer for the
question of whether to walk or run
in the rain.

should run to the shelter as quickly
as you can. If the rain follows you,
then you should first evaluate in
your mind the value

A=-vSp+V,Ss+V,Sr.

If it turns out that A > 0, then you’d
better hurry up again. If you see that
A =0, then it doesn’t matter how
quickly you walk: You will get as
wet as ever, independent of your
speed if it is greater than v_. But
when A <0, you should run with the
speed v_ to stay as dry as possible.
For mstance if v_ =0 (the case of
a favorable wind), then the inequal-
ity A <Ois equivalent to v S > v, S
For a tall and thin man, S; is much
greater than S, and thus this condi-
tion might be satisfied for a small
“walker’s” v_. If such a person goes
to the shelter so that it seems to him
or her that the rain falls vertically,
he or she can remain almost com-

val from 0 to v, the curves look
similar in all cases (A >0, A =0, and
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IN THE LAB

Amusing electrolysis

Current thinking in chemistry

ANY FEATURES OF ELEC-

trolysis—a process in which a

substance is subjected to elec-

tric current to cause a chemi-
cal change—are presently known.
Therefore we will explore not its
common aspects but rather some
distant corners of this electrochemi-
cal phenomenon.

For our experiments we need
sources of direct and alternating cur-
rents with electromotive forces of
up to 6 V. For a dc source we can use
aflashlight battery (it is better to use
two batteries connected in series),
and for an ac source we can use a
step-down transformer (110 V to
5-6 V). In addition, we need insu-
lated connecting wires, four 6 x3 cm
iron plates (which can be cut from a
clean tinplated can), an aluminum
plate of the same size, and a small
glass. We also need a small amount
of table salt (sodium chloride) and
baking soda {sodium bicarbonate).

Experiment 1. Fill the glass half-
full with 3% sodium bicarbonate so-
lution and insert two iron plates to
serve as electrodes. The electrodes
should be vertical, parallel to each
other, and far apart. Next, connect
the electrodes to the dc source. Elec-
trolysis should start immediately:

2H,0 —2H, + O,.

This equation shows that hydro-
gen is produced in larger quantities
than oxygen, so we can easily deter-
mine the polarity of the source,
which allows us to tell the anode
from the cathode. We can test our
determination with a burning splin-

by N. Paravyan

ter: At the cathode the splinter ig-
nites hydrogen so that it “pops,” and
at the anode the flame burns more
brightly because of the presence of
extra oxygen.

Experiment 2. Without turning
the current off, submerge a third
iron electrode into the electrolyte
between the cathode and the an-
ode (it should not touch either of
them). Paradoxically, gases will be
produced at the middle electrode
as well, and more curiously, on
both sides of it. Take the burning
splinter again and test to find
which side oxygen or hydrogen is
liberated on.

It turns out that oxygen is pro-
duced on the side of the middle elec-
trode that faces the cathode, and
hydrogen is produced on the side
that faces the anode. How can we
explain this? Recall that, similar to
the metal electrodes used in our
homemade electrolytic cell, the
electrolyte is also an electric con-
ductor, albeit with a large resistance.
Therefore, let’s examine the electric
current in the glass (fig. 1).

\)\_/

Figure 1

Current “enters” the middle elec-
trode from the electrolyte, so the
side facing the anode acquires a
negative charge and becomes a cath-
ode. As the current “leaves” the
middle electrode, the side facing the
cathode acquires a positive charge
and becomes an anode. Therefore,
hydrogen is liberated on the nega-
tively charged side of the middle
electrode, and oxygen is given off on
the opposite (positively charged)
side.

Is more gas (by volume) produced
by three electrodes than by two?
Let's do another experiment to find
out.

Experiment 3. Submerge a fourth
iron electrode in the electrolyte.
Again, it should not touch any of the
other electrodes. What's this? There
is no gas at all! If we connect an
ammeter in series with the battery,
we see that only a negligibly small
current flows in the circuit. Why is
this? An iron plate with a resistance
hundreds of times smaller than that
of the electrolyte cannot increase
the resistance of the circuit enough
to stop the current almost entirely!

By sinking the third plate into the
electrolyte, we made two electro-
lytic cells from one and connected
them in series (review fig. 1]. As a
result the decomposition voltage—
that is, the minimum voltage re-
quired for electrolysis to occur—in-
creased by approximately twofold.
Denoting the electromotive force of
the source by ¢ and the decomposi-
tion voltage by V, we have (¢ — V) for
the voltage drop across the two elec-
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trodes in the first experiment and
(€ — 2V) for the similar value in the
experiment with three electrodes.
Thus, the total volume of oxygen
and hydrogen produced in the two-
electrode experiment equals the to-
tal volume of these gases produced
in the three-electrode experiment.
When we submerged a fourth elec-
trode, we made three electrolytic
cells connected in series. In this case
the decomposition voltage increased
by about three times, so ¢ -3V < 0.
This means that the current virtually
stopped flowing, and no gas was pro-
duced in the third experiment.
Experiment 4. Repeat experiment
2, but instead of the iron plate, use
an aluminum plate for the middle
electrode. In addition, connect an
electric lamp in series with the bat-
tery. Turn the current on and notice
that the lamp shines more and more
dimly and dies out in 10 to 15 min-
utes. Take the aluminum plate out
of the electrolyte—the lamp will
shine again. Should we think that
the aluminum plate, an excellent
conductor, turned into an insulator?
Let’s continue the experiment.
Now replace the battery with the
step-down transformer. Again sub-
merge the aluminum plate in the
electrolyte. In this case the lamp
shines somewhat more dimly, but it
shines. And regardless of how long

you wait, it will never die out.

Again connect the battery instead
of the transformer to the circuit and
place the aluminum plate between
the two iron electrodes such that the
side that previously faced the cath-
ode now faces the anode. Switch the
power on and notice that the lamp
shines initially, but as in the first
case, it dies out in 10 to 15 minutes.
Now feed the electrolytic cell with
alternating current—the lamp will
not shine at all.

What happened? Let’s think.
When direct current passed through
the aluminum electrode (as in fig. 1),
the following reactions took place
on its surface:

(-)2H* + 2e- — H,;
(+J4OH" + 2¢~ - O, + 2H,0;
4Al + 30, - 2A1,0,.

In other words, the entire “positive”
side of the electrode turned into a
dielectric, the circuit was broken,
and the lamp went out. At the same
time, the “negative” side of the alu-
minum electrode preserved electric
conductivity and conducted electric
current, although only in one direc-
tion! When the electrolytic cell was
connected to the transformer (alter-
nating current), the current could
flow only in one direction. This
means that the plate, oxidized on

one side only, played the role of a
current rectifier, which turned the
alternating current into a pulsating
current. So the lamp shone continu-
ously when our electrolytic cell was
fed by the transformer.

After the aluminum electrode
was turned around and the device
was fed with direct current, this
electrode was oxidized on both
sides. Covered by aluminum oxide
films, it turned into an insulator.
The oxidized electrode could neither
rectify the current nor conduct it.
This was the reason the lamp did
not shine when the aluminum plate
that was oxidized on both sides was
submersed in the electrolyte.

What happens if sodium bicar-
bonate is substituted for sodium
chloride? It turns out that a similar
effect is observed with the iron
plates but not with the aluminum
plate because in the latter case some
other chemicals are produced during
electrolysis, and the “semiconduc-
tor” film of Al,O, is not formed. The
ability of aluminum to produce in-
sulating films on its surface during
electrolysis is widely used to insu-
late aluminum tools. (@]

Quantum articles about electrolysis:

N. Paravyan, “A Tell-tale Trail
and a Chemical Clock,” September/
October 1995, 42-43.
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Homogeneous equations

by L. Ryzhkov and Y. lonin

XAMPLES OF WHAT MATH-
ematicians call homogeneous
equations abound in high
school mathematics. When con-
sidering systems of linear equations,
we can call the following system
homogeneous in x and y:

ax+by=0
cx+dy=0.

Again, when solving trigonomet-
ric equations, we can call equations
like

sinx—cosx=0
and
sin?x — 5 sin x cos X + cos2x = 0

homogeneous in sin x and cos x.

What property unifies all these
examples, and how should we un-
derstand the term homogeneous
equation?

Definition. A polynomial func-
tion of two variables flu, v) is called
a “homogeneous polynomial of de-
gree n” if all of its monomials are of
degree n. For example,

flu, v) = 2u? - 7uv + 912

is a homogeneous polynomial of the
second degree, and

flu, v) = u® - 15u2v + 5v°

is a homogeneous polynomial of the
third degree.

Definition. The equation flu, v) =0
is called “homogeneous equation of
degree k” if flu, v) is a homogeneous

polynomial of degree k.

Note that the notion of homoge-
neity can be generalized to encom-
pass polynomials of more than two

variables. For example, we say that
the equation

x3+3x2y +3xyz + 23 =0
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is a homogeneous equation of the
third degree with respect to the vari-
ables x, v, and z.

Consider a homogeneous equa-
tion of degree n in two unknowns x
and y:

flx, y) = agx®+ a;x"~ ly

+a,x" 722+ o +ayr=0 (1)
We suppose that a, # 0.

The case when a,, = 0 reduces to
a case of lower degree. Indeed, if
we factor out the lowest possible
degree of y, a homogeneous poly-
nomial with a nonzero leading
term appears as the other factor.
For instance,

x*y? + 3xy5 - 7y =0
turns into
yv3x* + 3xy° - 7y4) = 0.

Now it is enough to consider the
equations

and

x*+3xy3 - 7y* = 0.

Note that the pairx =0, y=01is
a solution of equation (1), and the
pair x = x,, y = O is not if a;# 0 and
x, # 0. If we divide both sides of
equation (1) by y?, we obtain an
equation of degree n in one un-
known, t = x/y:

agt+ a it a2+ v a =0 (2)

We can use this property of homoge-
neous equations to solve certain
problems.

Let’s find the set of points on
the plane whose coordinates sat-
isfy equation (1). First of all, this
set includes the origin. Then, if a,
= 0, we get the solution y = 0,
which defines the x-axis. And the
roots t, t,, ..., t; of equation (2)
define the lines x = t,y, x = t,,y,...,
x = t,y, passing through the origin.
(In figure 1 we take, for example,
tp=1,t,=-1,t,=2).
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Figure 1

Problem 1. A car drives with con-
stant velocity from town A to town
B. At the same moment a bicycle
leaves B for A. Three minutes after
they have met, the car turns back
abruptly, pursues the bicycle and,
having caught up with it, turns again
and arrives at B. If the car had turned
back one minute after they had met
and if the biker had increased his
speed by 15/7 at the same moment,
the car would have spent the same
time getting to B. Find the quotient of
the car’s and the bicycle’s velocities.

Problem 2. Solve the equation

2 2
20 x-2 s x+2
x+1 x-1
x2 -4

x° -1

+48

=0.

Problem 3. Solve the equation
2x*+x+ 12 - 7(x-1)%=13(x> - 1).
Problem 4. Solve the equation

x2+2x+15=2x/2x +15. (3]

Problem 5. Solve the equation
Wx+1-%x-1=Yx>-1.
Problem 6. Solve the system

3X2—2xy—y2 =0,
x> +5y=6.

Problem 7. Solve the system

3x2 - éxw 3y? =50,
. 2 (4]
x“+y~ =25

Problem 8. Solve the system

2x2 ~3xy+y’= 3,
x* +2xy -2y* =6.

Let’s now consider some ex-
amples of trigonometric equations
that can be reduced to homogeneous
equations.

Problem 9. Solve the equation

2sin x + 3cos x = 0.
Problem 10. Solve the equation
sin?x — 3sin x cos x + 2cos? x = 0.

There are many ways to solve the
equation a sin x + b cos x = ¢. For
example, it can be deduced to a ho-
mogeneous equation with respect to
sin (x/2) and cos (x/2) by means of
the substitution

. . X b'¢
sinx =2sin—cos—,
2, 2

9 X .2 X
COSX =C0S8" ——s81n" —,
2 2,

92 X . 2 X
C=(| COS" —+sin™— |
2 2

Problem 11. Solve the equation
3sin x + 5cos x = -3 (6)

The possibility of increasing by 2
the degree of monomials of the type
u = sin x, v = cos x by multiplying
them by 1 =sin?x + cos? x enriches
the technique of using homogeneity
to solve trigonometric equations.

Problem 12. Solve the equation

4sin3 x = sin X + COSX.

Sometimes we can reduce an ex-
ponential equation to a homoge-
neous one by an appropriate substi-
tution.

Problem 13. Solve the equation

4% =2 . 145+ 3 - 49%,

Exercises
1. Solve the equation



63/x -3 +&/x -2 =5¢/(x - 2)(x - 3).

2. Solve the equation

1og2(X2> 210g4(xz/2)

5 -3

logﬁ(QXZ) 510g2(X2>—1

=V3
3. Solve the equation

x> —6x+9

(3-2+2)

(3 % 2\/—) 6X+9

4. Solve the equation

. i
sin2x — tan g cos2x =1

5. Solve the equation
2sin 4x — 3sin? 2x = 1.
6. Solve the equation

2 x —sin 2x = 0.

3cos? x - sin
7. Solve the system

xr+ y\/g =420,

y? + x\/xy = 280.

8. Solve the system

9. Solve the equation

5X+2 — 3X+4 _ 5X+3A

7. 3X+l _

10. An empty tank is being filled
with the help of two pumps: one
pumping pure water and the other a
solution of an acid of fixed concen-
tration. When the tank is full, the
concentration of the acid in it is 5%.
If the water pump had been turned
off when the tank was half full, then
the final concentration of the acid
would have been 10%. Determine
which pipe works faster and the ra-
tio of the pumps’ rates.

11. Solve the equation

(34—){)%}(+1—(X+1)8 34-—x
34 -x - '

Jx+1

12. The system

a1X2 + b xy + cly2 =d,

a,x* +by,xy +c,y* =d,

has two solutions:

X=2,y,=3,%,=-5y,=—7.

Can you say whether or not there
are some other solutions to the
system? If so, what are these extra
solutions?

13. Solve the equation

22X+2_6X_2'32X+2=0.

14. Solve the equation

(\/\/XQ —8x+7 ++/x° —8X—9)X
[

- 2X+1

—8X+7—\//X2—8X—9]

15. Solve the system

2X—y _ 3 . ZX + 2X+y+2 - 2

2X7y+1 _9%¥ _5. 2X+y =1

7

16. Solve the equation

ox*+2)= 5Vx? +1.
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Cyberwinners, old and new

Due to some crossed wires at
CyberTeaser headquarters, the win-
ners of the March/April contest
were not posted here in the previous
issue. Here are the first 10 contes-
tants who correctly determined the
extent of Boris’s ice cream gluttony
(brainteaser B228):

Liro Goldenberg (Holon, Israel)
Suhas Nayak (New South Wales,
Australia)

David Friend (Winchester, England)
Hana Bizek (Argonne, Illinois)
Aleksei Lukashkin (Brighton, East
Sussex, England)

Bob Cordwell (Ellicott City, Maryland)
Jaak Sarv (Tallinn, Estonia)

Bruno Konder (Rio de Janeiro, Brazil)
Alex Wissner-Gross (New Hyde
Park, New York)

Theo Koupelis (Wausau, Wisconsin)

The next CyberTeaser (brain-
teaser B231 in this issue] proved to
be trickier than it seemed, judging
from the near misses and not-so-
near misses we received. But we ap-
plaud everyone who put a human
face on our clock puzzle by sending
in an answer.

Here are the first 10 clock-
watchers who found the degree of
separation:

May T. Lim (Diliman, Philippines)
Clarissa Lee (Perak, Malaysia)
Bruno Konder (Rio de Janeiro, Brazil)
Jaak Sarv (Tallinn, Estonia)

Theo Koupelis (Wausau, Wisconsin)
Aleksei Lukashkin (Brighton, East
Sussex, England)
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Frank Lipinski (Batavia, Illinois)
Worawat Meevasana (Mercersburg,
Pennsylvania)

Alex Wissner-Gross (New Hyde
Park, New York]

Leo Borovskiy (Brooklyn, New York)

All our winners will receive a
Quantum button and a copy of this
issue. (The B228 winners received a
bonus copy of the last issue as well.)
And, as usual, everyone who sent in
a correct solution was eligible to win
a copy of our brainteaser collection
Quantum Quandaries.

The next CyberTeaser awaits. Go
to www.nsta.org/quantum and fol-
low the links (no big challenge—
consider it a little warm-up).

Infugium 23 Awards

A high school senior in a Texas
border town is studying household
and toxic waste. A Massachusetts
teen with a pacemaker aspires to be
amolecular biologist specializing in
the effects of cardiovascular surgery.
A 14-year-old Wisconsin student
says she will be the first person to
walk on Mars.

These three outstanding young
women are representative of the 23
winners chosen last year from a field
of 5,000 entries in the first annual
Infusium 23 Women in Science
Awards. This program recognizes
high school females who plan to pur-
sue science as a career. Applications
for the second annual Infusium 23
Awards are now being accepted.

“Science and technology will in-
creasingly provide the widest range

of desirable jobs in the twenty-first
century.” says Johnna Doyle, Man-
ager of Research and Development
at Infusium and chairperson of the
awards program. “Infusium 23 (a
haircare line steeped in sciences)
established this awards program to
encourage young women to look at
science beyond a specific science
project or an extracurricular pro-
gram that might earn them a merit
badge, and to embrace career choices
in science that have traditionally
been categorized as male.”
Infusium 23 will award 23 grants
of $1,000 each, earmarked for female
high school students to use to attend
college, take summer classes, par-
ticipate in extracurricular activities,
or pursue some other educational
opportunity. This award is open to
all female students in high schools
during the 1997-98 term. Applicants
must submit an essay that includes

e what career in science she wants
to pursue and why,

e extracurricular activities demon-
strating career commitment, and

¢ the person or persons who have in-
fluenced her career choice and why.

There is no application form for
this program. Completed statements
or essays must be submitted along
with the applicant’s name, home ad-
dress, phone number, age, and grade
as of April 15, 1998, along with the
name of her school, to Infusium 23
Women in Science Awards, 40 West
57th Street, 23rd Floor, New York,
NY 10019. Applications must be
postmarked by June 30, 1998.



Duracell/NSTA winners

Seven junior and senior high
school students developed six inven-
tions to claim top honors in the 16th
Annual Duracell/NSTA Scholarship
Competition. Over $100,000 in sav-
ings bonds is being awarded to more
than 100 high school inventors, and
this year’s competition is recogniz-
ing over 1,500 U.S. students for their
innovative ideas.

The seven first- and second-
place winners, accompanied by
their sponsoring teachers and par-
ents, were honored in Las Vegas at
the National Science Teachers
Association’s annual convention.

Kenneth Louie of Fort Salonga,
New York, is this year’s first-place
winner of a $20,000 savings bond
among 10th- to 12th-grade entries.
His optical microphone, called
LightTalks, works in areas prone to
electromagnetic interference. Among
7th to 9th graders, the first-place
$20,000 savings bond was awarded to
a pair of 9th graders, Brandy Curry of
Ottsville, Pennsylvania, and Jason
Lamontagne of Kintnersville, Penn-
sylvania, for Safety Seat Belt, a por-
table and versatile device that ensures
parents that their children’s seatbelts
are fastened.

Second place $10,000 savings
bonds were awarded to 9th grader
Whitney Blake from Manhasset,
New York, for The Child Safety
Door Alarm; 8th grader Benjamin
Kendall of State College, Pennsylva-
nia, for Super Solder; 12th grader
Richard Barton from Gaithersburg,
Maryland, for Lapotron; and 11th
grader Jason Rolfe from Ridgewood,
New Jersey, for The Programmable
Logic Emulator.

In its 16th year, the Duracell/
NSTA Scholarship Competition is
also awarding 10 third-place $1,000
savings bonds, 24 fourth-place $500
bonds, and 60 fifth-place $200
bonds. All 1,542 students who en-
tered the 1998 competition will re-
ceive a gift and a cert i;' ate of par-
ticipation. Many of the 100 finalist
entries will be dlS "afi; locally at
conventions and science ex! S
throughout the count

“These results sh :}_i amaz-
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ing creativity and scientific prow-
ess of our nation’s youth. The
Duracell Competition proves that
students are motivated when they
are challenged to meet practical
problems. This year’s top winners
also show that high school stu-
dents can actively participate in
significant R&D work,” says
Arthur Eisenkraft, competition
judging chair.

A battery of winners

The top inventions cover a wide
range of interests and expertise
and demonstrate that our nation’s
youth can conduct scientific re-
search, produce useful safety de-
vices, and develop handy inven-
tions for home, recreational, and
industrial uses.

LightTalks, according to its in-
ventor Louie, is a new concept.
“Two years ago I learned from a
physician that microphones could
not be used in MRI (magnetic reso-
nance imaging) rooms because
they have too much interference.
So this prompted me to find a way
to develop one,” the Kings Park
High School senior says. Louie
used a reflective mylar membrane,
optical fibers and a white-light to
produce the microphone that
works not only in MRI areas but
also in other locations with high
electromagnetic interference, such
as power stations or explosive en-
vironments. It is powered by four
D-size Duracell batteries. Louie
has applied to the U.S. Air Force
Academy where he hopes to be a
freshman in the fall. His sponsor-
ing teacher is Jane Schoch.

In describing Safety Seat Belt,
the first place team of Curry and
Lamontagne say, “Our device will
not only prevent children from
getting seriously injured, it will
also allow drivers to pay full atten-
tion to the road.” Powered by two
AA-size Duracell batteries, Safety
Seat Belt sounds an alarm when a
child is not seat-belted. The sys-
tem can be shut off, but its switch
is protected by a childproof cap.
Curry and Lamontagne came up
with the safety idea during their
Palisades High School advanced
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learning class, taught by their
sponsoring teacher, Pat Peterson.

Second-place winner Blake says
she was motivated to develop The
Child Safety Door Alarm to ensure
that her young cousins would not
fall into a family swimming pool.
“It also works on a gate or a door
and it can be left on at all times
because it doesn’t sound when a
taller person passes,” she says.
Blake attends Manhasset High
School in Manhasset, New York,
and is sponsored by science re-
search teacher, Peter Guastella.
Her invention runs on two 9 V
Duracell batteries.

Kendall got his winning idea as
he watched his father solder some
wires. “I thought it would be nice to
have a way to heat wires and apply
solder at the same time using only
one hand,” he says, “so that the
other hand is free.” His invention,
Super Solder, is a “Why-didn’t-I-
think-of-that!” idea that features a
small motor powered by two AA-
size Duracell batteries attached to
the side of the soldering gun.

The competition

To enter the Duracell/ NSTA
Scholarship Competition, 7th-
through 12th-grade students design
and build devices that are educa-
tional, useful, or entertaining, and
powered by one or more Duracell
batteries. Judging is based on cre-
ativity, practicality and energy effi-
ciency of the invention, and clarity
of the written description. Submis-
sions are due at NSTA each January.

Sponsored by Duracell Inc. and
administered by the National Sci-
ence Teachers Association, the
Duracell/NSTA Scholarship Com-
petition has awarded over $750,000
in scholarships, savings bonds, and
cash awards to over 850 students
since 1983. Student inventors retain
all rights to their devices.

For more information on the
competition, call (888) 255-4242 or
use our fax on demand service at
(888) 400-6782 and, when prompted,
ask for document 511. You can also
visit the Duracell homepage at
www.nsta.org/programs/97/
duracell shtml.

Massachusetts mathematics
PROMYS, the Program in Math-
ematics for Young Scientists, offers a
lively mathematical environment in
which ambitious high school stu-
dents explore the creative world of
mathematics. Through their efforts
to solve challenging number theory
problems, participants practice the
art of mathematical discovery—nu-
merical exploration, formulation and
critique of conjectures, and tech-
niques of proof and generalization.
More experienced participants
may also study hyperbolic geometry,
mathematics of algorithms, and
modular forms. Problem sets are ac-
companied by daily lectures given by
research mathematicians with exten-
sive experience in Professor Arnold
Ross’s longstanding Summer Math-
ematics Program at Ohio State Univer-
sity. In addition, a highly competent
staff of 15 college-aged counselors lives
in the dormitories and is always avail-
able to discuss mathematics with stu-
dents. Each participant belongs to a
problem-solving group that meets with
a professional mathematician three
times per week. Special lectures by out-
side speakers offer a broad view of math-
ematics and its role in the sciences.
PROMYS is a residential program
designed for 60 ambitious students
entering grades 10 through 12 held
in Boston University from June 28 to
August 8, 1998. Admission deci-
sions are based on an applicant’s so-
lutions to a set of challenging prob-
lems included with the application
packet; teacher recommendations;
high school transcripts; and essays
explaining their interest in the pro-
gram. The approximate cost of room
and board is $1400. Books may cost
an additional $100. Tuition is
$1500. Financial aid is available, and
PROMYS is dedicated to the prin-
ciple that no student will be unable
to attend because of financial need.
PROMYS is directed by Professor
Glenn Stevens. For applications,
write to PROMYS, Department of
Mathematics, Boston University, 111
Cummington Street, Boston, MA
02215; e-mail promys@math.bu.edu;
or call (617) 353-2563. Applications
will be accepted until June 15, 1998.
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Math
M231

Let’s prove that the answer is
2 - 1998 — 2 = 3994. First we can
point out a set that satisfies the con-
ditions of our problem in which
3994 is the greatest number:

1998 -1 =1997,1998, 1999, ... , 3994.

(There are 1998 terms in this pro-
gression, and the sum of any two of
these numbers is greater than 3994.)

Next we show that it is impos-
sible to find a set satisfying the con-
ditions of the problem in which the
greatest number is less than 3994. If
there were such a set, then all the
numbers that belonged to it would
vary from 1 to 3993. Let A <3993 be
the greatest of them. Then we can
distribute all the numbers from 1 to
A into the pairs

(1,A-1),(2, A=2), ...

(the sum of the numbers in each pair
is A). There would be no more than
A[2 <3994/2 = 1997 such pairs. And
there are 1997 different numbers that
are less than A in the considered set.
Thus there must be at least two num-
bers from one pair, and their sum will
be equal to A, which contradicts the
conditions of the problem.

M232

Consider parallelogram BB'C’C,
which is equal to parallelogram
ABCD (fig. 1). Take point M’ inside
this parallelogram, such that M’'B
= MA and M'C = MD. Then MM’ is
parallel to AB. In fact, triangles BM'C
and AMD are congruent because they
have three equal sides, and thus
ABM’M is a parallelogram. Besides
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this, ZM’'BC = ZMAD = 40° and
ZM'CB = ZMAD = 70°. Therefore

ZM’BM = ZM'BC + ZMBC
- 40° + 20° = 60°,

and

LM'CM = ZM'CB + ZMCB
=70° + 50° = 120°.

So ZM'BM + ZM’'CM = 180°, and
the quadrilateral M’'BMC is in-
scribed in a circle.

Now we see that the angles ZMBC
and ZMM’ C are equal since they sub-
tend the same arc in a circle. Finally,
if K is the point where MM’ meets
BC, then in the triangle KM'C we
know two angles: ZKM'C = 20° and
ZKCM =70°.So, ZM'KC =180°-70°
-20° = 90°. However, because MM’ is
parallel to AB, ZBAD = ZM'KC, and
all the angles of the parallelogram are
right.

M233

We will solve this problem by
setting up a geometric model. In our
model, each fraction p/q, whether or
not it is in lowest terms, corre-
sponds to the point (g, p) on the co-
ordinate plane. The reader can verify
the following:

(1) Equivalent fractions lie on the
same line through the origin. If the
value of the fraction is &, this line
has the equation y/x = k. Thus each

rational number corresponds to a
line through the origin.

(2) The fraction representing the
rational number k in lowest terms is
the integer point on the line y/x = k
that is closest to the origin.

(3) The fractions we are interested
in (where g and p are positive, g < 100,
and p/q is close to the fraction 5/8)
correspond to points in the square
{x, y) such that 0 < x < 100, 0 < y < 100}
(that is, we don’t have to worry about
negative values, and we don’t have to
worry about fractions greater than 1).

(4) The fractions that are closest
in value to 5/8 are those whose cor-
responding lines make the smallest
angles with the line y/x = 5/8 (be-
cause we want the differences in the
slopes to be as small as possible).

Now the point (5, 8) lies on the
line y/x =5/8, or 8y - 5x = 0. We can
solve our problem by considering all
the lines parallel to this one; that is,
all the lines whose equations are
8y — 5x = r, for some number r. If
such a line contains a point with
integer coordinates (p, ), then r is
certainly an integer. Furthermore,
the closer ris to 0, the closer the line
8y — 5x = ris to the line 8y - 5x = 0.

Now each point (p, g) is associ-
ated with two lines: the line 8y - 5x
=1, which is parallel to y/x = 8/5 (the
point’s “parallel”), and the line y/x
= p/q, which goes through the origin
(its “ray”). It is not hard to see that
the fractions we want must be as far
out as possible, along a parallel with
the smallest r (in absolute value) as
possible. Therefore, we should look
on the lines where r = +1.

Let us look at r = +1 first. We want
integer points on the line 8y - 5x =1,
and it is not difficult to see that the
smaller angles will be made by rays of
points that are further out on this



parallel. By inspection, the point (3, 2)
is on this line, so the points (3 + 8k,
2 + 5k) will be on this line as well (this
is a standard technique of number
theory), and we need the largest pos-
sible k. Since y < 99, we quickly find
that the point we want is (99, 62), and
the corresponding fraction is 62/99.

Similarly, if r = -1, the correspond-
ing fraction is 58/93. The reader can
check, using our geometric model,
that in fact these points are the ones
required by the problem.

M234

Let’s transform this formula

sin x cos? y + sin y cos? x

=sinx (1 -sin? y] + sin y (1 — sin® x)
sinx +siny

— (sin x sin? y + sin y sin? x|
(sin x + sin y)(1 —sin x sin y) = 0.

The first parenthesis gives the equa-
tions sin x = —sin y and x = -y + 2%k.
This set consists of lines (fig. 2). The

!

61
X 47
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second parenthesis means that sin x
=siny = 1. Thus x = t/2 + 2mm and
y =n/2 + 2nn. This is the grid shown
in fig. 2.

M235

First, we note that the area of the
shadow depends only on the angle
between the axis of the cylinder and
the plane. Second, we note that the
shadow consists of three parts: two
shadows of semicircles (top and bot-
tom of the cylinder) and the shadow
of the axial section of the cylinder
(fig. 3). Now, if o is the angle be-
tween the axis of the cylinder and
the plane, then the angle between
the plane of projection and the axial
section is equal to o and the angle
between the plane of projection and

)

plane in which the top (bottom)
circle lies is 90° — o.. So, the area! of
the shadow is

Figure 3

)
2[%) cos(90° — oc) + h2rcosa.

Ysino + 2hrcosa.

=nr

Now it is not difficult to show
that the maximal value of the ex-
pression asinx + b cos xis < a*> + b* .
We concluded that the greatest pos-
sible area of the shadow is

(nr2)2 + (2]1r)2 .

To find the maximum value of
a sin x + b cos x, note that there is
an angle ¢ such that

a
COSe="T—+
\Na +b
and
\al +b2

(since the sum of the squares of
these expressions is 1). Thus we can
write a sin x + b cos x as

/ 2 2 . .
Va* +b* (sinx cos¢ + cosxsin ¢)

=~a* +b* sin(x +9).

11f the angle between two planes is
o, and if the area of a figure on one of
the planes is K, it is well known that
the area of the orthogonal projection
of the figure onto the other plane is K
COS 0L

Figure 4

It follows that the maximum

value of this expression is Va* + b?,
and it is achieved, for example,
when x + ¢ = 90°.

Physics

The center of mass A of a square’s
half is located at the distance R/2
from its diameter (fig. 4). Let’s de-
note by x the vertical distance from
the corner’s center of mass to point
A. The ratio of the masses of the
parts of any uniform sheet equals
the ratio of their areas. Taking
torques about point A (for a quarter
of the square) yields

, TwR? nR? (R
R? - x=—|=—a|,
4 4 2

from which we get

5] 45
- ~0277R.

x= " 2(-n)

4-n

The distance from the center of

Figure 5

QUANTUM/ANSWERS, HINTS & SOLUTIONS 51




mass of the corner piece to the near-
est corner of the square is about
0.316R.

P28

Let’s assume that both shells
were fired by the same gun and con-
sider their motion in the (laboratory)
reference system 1 fixed to the gun
(fig. 5). Up to the instant the sec-
ond shot was fired, the first shell
traveled XO = vyt horizontally

and y, = gt,*/2 vertically. At this
instant its Velomty was
_ |2 2 _ 2
Vi =V +V, = +(gto)”,

and it was directed at an angle of
o = arctan (gt,/v,) to the horizon. As-
sume that the second shell was fired
with velocity v, and at the angle o
below the horizon. In this case both
shells will move separated by the

constant distance s, = X% + y% .

Now let’s fix the dynamic system
2 to this hypothetical flight of the
second shell and consider the flight
of the actual shell in it. The second
shell will overtake the first one in
this dynamic system if it approaches
with relative velocity v’ along the
straight line connecting the shells.
Let’s find its value and direction.

The approaching velocity cannot
be too small because the flight time
must be less than

Thus,

’ SO 8
ViZ—=58q,|]—.
Y

The vector of relative velocity v/
should form an angle o with the
horizon so that

tano .
Xy 2vg

Now we return to the laboratory
system 1. Here the projections of the
velocity v should be equal to

V, =V, +V'cos o,
v 7
Vv, =—gt-v’'cos of,
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where

v'2s, %

The minimal value of velocity

, g
V:SO E

corresponds to the shells meeting
near the Earth’s surface, and the cor-
responding angle is

s
o = arctan| =
VX

t=t,

=0.019 rad =1°5".

which is read downward from the
horizontal. In this case, the initial
speed of the second must be

S
P233

Since the matter does not leak
through the tunnel’s wall, the mass
tlow (the mass of gas and drops pass-
ing through the tunnel’s cross-sec-
tion, including the tunnel’s inlet and
outlet) is

=5351m/s.

t=to

(P + P')US = (Po & po')uOS = const.

We took into account that the gas
with density p and the drops with
density p’ move with the same
speed. By the conditions of the prob-

lem, py = p,.
According to Bernoulli’s equation
(or Newton’s second law of motion),

(p ; p’)usmz — _ADS,

Let’s evaluate the pressure
change AP along the tunnel. As the
drops evaporate, the gas density in-
creases, its temperature drops, and
its speed decreases. (These qualita-
tive descriptions will be confirmed
at the end of the solution.) There-
fore, the maximum speed change is
|Aul . = u, (it corresponds to com-
plete arrest of the flow). The ob-

tained equations result in
(po e pO/)HOAH = —AP,
from which we get

lap|_ = (po o po')ug =200 Pa.

Thus, the largest possible change
in pressure is three orders of magni-
tude less than atmospheric pressure.
Therefore, we can assume the pres-
sure to be constant along the stream.
In such a case, the temperature of the
evaporating drops can also be consid-
ered constant. Indeed, the tempera-
ture of boiling water at atmospheric
pressure is constant, and the same is
true for liquid nitrogen, whose boiling
point (77 K] is far less than that of
water. The ideal gas equation and
constancy of pressure yield the re-
verse proportionality of density and
temperature of the carrier gas:

P _To
po T

Each unit of mass transfers the
kinetic energy of the chaotic mo-
lecular motion and the potential en-
ergy of their interaction. Assuming
the carrier gas to be ideal, we can
write its specific energy (energy
per unit mass) as ¢,T. Remember
that in an ideal gas the energy of
mutual interaction of the molecules
is zero. The subscript “p” reflects
the constant pressure in the tunnel.
The same expression c, T’ describes
the energy of the gas evaporated
from a drop with a temperature T".
In the condensed state (in the liquid
drop) the energy equals c,T" - L,
where L is the latent heat of evapo-
ration, which includes the potential
energy of the interacting molecules.

The total energy of matter pass-
ing through any section of the tun-
nel per unit time (that is, the flow of
total energy) does not vary:

¢, TpuS + (cpT’ - L)p’uS = const.

In this equation we neglect the ki-
netic energy of macroscopic move-
ment of the mixture (p + p’)(u? /2)uS



because it is far less than the ther-
mal energy:

112

<< cpT
because
102 << 10%-300 =3 - 10°,
where
c,= 103 J/(kg - K).

We can express the density of
the dispersed drops via the drop’s
radius:

Now we can write all the dynami-
cal parameters of the gas as functions
of 7/7,:

u _ 1-gpl

—
U
1- eol[ij
I

T 1%& W

T 7 3 1
1+eo[—j
)

L T ’ ’
= 0. and g, = Po_
Iy I Po

P
Po

where

By the conditions of the problem,
g,=1,1=0.4. After complete evapo-
ration, r/r, = 0. Finally, we have

2 _1-1=06.
Uy

Therefore,
u=6m/s

and

P _To
po T

2
=——=3
1-1

90‘3/ i

+H 4+ € [ |

e e rprs g

Figure 7
Therefore,
p=3kg/m?
and
T=100K.

P234

Let’s denote by U, the energy of
the external uniform field in the
absence of the capacitor, and by

_ &bV
2

the energy of the charged capacitor
(E. is the electric field generated by
the charges on the capacitor’s plates,
V is the volume of the capacitor).
Before the capacitor was placed into
the external field, the total energy of
the system was

U=U,+ Uec.

Uc

After the capacitor was placed in
the position shown in fig. 6, the en-
ergy of the system became

2

Ly = 2 2 ’

where E, is external electric field.
The respective work W, equals the
change in the system’s energy:

W, = U, - U= g,EE.V.

The rotation of the capacitor
through angle o resulted in a change
in the system’s energy to the value

UO —SOE%V 4 £0|E0 +Eci2V

Uiz 2
U 2 2 2
2 2 2

+egEqEcV cosa.

The work W, performed during

_screen

L(0)

Figure 8

the rotation is given by

W, =U,-U, =¢,E,E-V(cos 0. - 1].
The work ratio we are looking for is

W, €oByEcV(coso—1)
W, N

=coso — 1.

This solution is approximate be-
cause we neglected the redistribution
of charges on the capacitor’s plates
during its rotation through angle o.

P235

Let’s direct a parallel beam of
light on the plane surface of the lens
along its principal axis. We'll con-
sider the refraction of an arbitrary
ray of this beam and determine the
distance from the center of the
spherical surface to the point where
the ray crosses the principal axis af-
ter refraction (fig. 7):

Rsina
X=———
tan(p — o)
. l+tanotan
= Rsmoc—B,
tanP —tanao
sinP = nsina,

L(o)=Rcoso +x

_ R
- R
[ g
coso — /-—2"—511'1 [0
n

This expression shows that L(a) is a
monotonic function of angle o: It de-
creases when the angle grows. The
diaphragm restricts the angle to very
small values—that is, to zero:

R __.
L(0)= F=—7 =267 cm.

1-—
n

The maximum angle o ___ corre-
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sponds to the case when the beam
hits the lens’s rim. Geometry tells
us that

cosa, . =1-d/R=0098,

and
Lio,,.) =25.8 cm.
Similarity of triangles (fig. 8) re-
sults in

L(0) = L(0t pyay )
L0y
_ 2Rsin oy, (L(0) = L(0t may))
Lo
=013 cm.

Kaleidoscope

1. Large dust particles quickly
settle down on the Earth, yet small
dust is suspended in the atmosphere
due to the chaotic motion of air
molecules. There is no atmosphere
on the Moon, so both large and
small dust particles settle down on
its surface almost simultaneously.

2. The partial pressure of water va-
por will be enhanced near the humid
soil. According to Dalton’s law, the
partial pressures of nitrogen (and oxy-
gen) should be somewhat less over the
humid soil than over the dry soil.

3.In accordance with the ideal gas
law, any pair of three parameters
(pressure, volume, and temperature)
completely determine the state of gas.

4. The density decreases.

5. The less massive (and thus
more mobile) hydrogen molecules
more readily penetrate the partition,
and thus increase the pressure in the
air compartment. However, as the
air crosses the partition, the pres-
sures in the compartment equalize.

6. The readings of both manom-
eters will be somewhat larger due to
the additional weight of the gaseous
column. The first manometer will
read a lower pressure than the second
one because the first column is
shorter.

7. Weightlessness does not stop
the chaotic motion of molecules in
the spacecraft’s “atmosphere.”

D :Db

s

max )
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8. No, it does not. The molecules,
which move upward and hit the ceil-
ing, are decelerated by the force of
gravity. Thus, the collisions with
the ceiling are not as “vigorous” as
those with the floor.

9. No, it does not. Pressure is de-
termined by the mean kinetic en-
ergy of the molecules, and this value
doesn’t depend on the wall’s surface,
provided the gas is in thermal equi-
librium with it.

10. They are not equal. It is the
mean kinetic energy of translational
motion of the molecules that is
equal in these gases. However, since
nitrogen is a diatomic gas, the total
kinetic energy of nitrogen includes
the energy of molecular rotation,
and consequently, it is larger than
the total kinetic energy of neon.

11. No. The decrease in the kinetic
energy of molecules near the cold
wall is compensated by an increase in
their concentration, and vice versa.

12. Since the gas does no work, its
internal energy does not vary, and
therefore, its temperature remains
the same.

13. At the instant the vessel is
dropped, the gas’s density is larger at
the bottom of the vessel than at the
top. In the state of free fall, the mol-
ecules are distributed uniformly
throughout the volume of the ves-
sel. However, their total kinetic en-
ergy does not vary, so the gas’s tem-
perature remains the same.

14. The total kinetic energy of the
gas motion as a whole transforms
into the internal energy of the gas
and the vessel, which means that
the temperature of the gas will in-
crease. Therefore, pressure also in-
creases.

15. No, it doesn’t. The air tempera-
ture is determined not by the veloc-
ity of the wind, but by the chaotic
motion of its molecules that occurs
independently of and in addition to
the motion of the gas as a whole.

Microexperiment

Our thermal perception is not in-
fluenced by the total internal energy
of the air (by the way, during the heat-
ing of the room the total internal en-
ergy does not vary—why?). However,

We are very sensitive to temperature,
which is determined by the mean ki-
netic energy of individual molecules.
This value does increase during the
heating of the room.

Brainteasers

B231

The short (hour) hand of a clock
turns at a rate of 360°/12 hours = 30°
per hour, or (1/2)° per minute. The
long (minute) hand turns at the rate
of 360°/60 minutes = 6° per minute.
Thus, the angle between the short
hand and the direction of 7 o’clock
is 38 - (1/2)° = 19°. The angle be-
tween the long hand and the same
direction is 38 - 6° — 210° = 18°,
Therefore, the answer is 1°.

B232

Yes, it is possible. For instance,
suppose there are 13 teams in the
tournament. Say one team won five
matches and lost seven, and all
other matches ended in draws. Then
the team would take first place (it
would earn 5 - 3 = 15 points, and the
other teams would at best have 11 -
1 + 3 = 14 points). If the points had
been given as before, the winner
would have had 2 - 5 = 10 points, and
the rest of the teams would have had
atleast 11 - 1 = 11 points.

B233

See figure 9. We divide the grid
into four 4 x 4 square sections and lo-
cate the one with the missing box.
The remaining three 4 x 4 sections
form one of our three pieces. Then we
divide the fourth section into 2 x 2
square sections and locate the one
with the missing box. The remaining

Figure 9



A C
Figure 10
A B
D C
Figure 11

three 2 x 2 sections form the second
of our three pieces, and the last piece
is a 2. x 2 square with one box deleted.

With these three pieces we can
form an 8 x 8 grid and place the
missing square in any of the 64 pos-
sible locations by “spinning” each
piece accordingly.

B234

See figure 10. Point [ is the center
of the inscribed circle. (This is just
one of the possible solutions.)

B235

The body’s weight decreased due
to an increase in buoyancy.

At the Blackboard |

1. See figure 11. Since ZB and £D
are acute and sin ZB = cos £D, then
m4B + mzD = 90. But mZA = 180
-m«D, so

m/A -m<B
= (180 - m«D) - (90 - m«£D) = 90.
2. We have T =90 and K = 6. Since
triangle APL is similar to triangle MINC,
AP _ MN
PL  NC'
giving
(AP|NC) = (PL\MN] = (PN} = K2 = 36.

Note that AP - NC is inva
3. We have T = 36 and

rian+

174

2

Therefore, K and (2a + K - 1) are fac-
tors of 150. Possible factor pairs for
(K, a) are (2, 37), (3, 24), (5, 13), (6, 10),
and (10, 3). We have K =6, so a = 10.

Creence Lin’s Relay

1. Figure 12 demonstrates that
the answer is 6.

2. The length of the diagonal of
the square is 6n, so the square’s area
is 18n?%. If C is the circumference,
then 18n% = Cn, so

C=18n=18 x6 =108.

3. Let a be the current age of the
aged tofu and r be the current age of
the regular tofu. Then the time re-
ferred to in the problem was a — r
years (or months or days) ago, so the
regular tofu’s age was r — (a - 1)
= 2r — a. Then a = 5(2r - a), which
leads to a = 5r/3. Then r + (5r/3) = 8,
which leads to r = 3.

1996 Super Relay

1. N = (1/2)2N)(N - 2), so N> - 3N
=0, and thus N = 3.

2. The slope m of the line equals

T? -1
=T

=—(T+1).

Since T =3, m = 4.
3. The x-coordinate of the vertex
equals
-1 _-T
oT 2
Therefore, C = —{-4)/2 = 2.
4.(2 + Til® = (4 - T%) + 4Ti. Thus
a+b=4+4T-T? which for T=2
equals 8.

Braid # Left Center | Right
0 R w B
1 W R B
2 w B R
3 B 4 R
4 B R W
5 R B W
6 R W B

5. Modulo 10, 1997 . 2997-1 - 92T-1
=92T+1-817.9-9. Thus the last digit
is 9 and the value of T is irrelevant.

6.(T-1P=K3 s0K=T—-1=9-1=8.

7. The sum of the exterior angles
is 360, the sum of the interior angles
is (T - 2)180, so

(T-2)180 - 360 = 180(T - 4).

For T = 8, the difference = 720.

8. K =720/60 =12. A = K%/~/3 so
A+J3/9 = K2/9 = 144/9 = 16.

9. sin T cos 286° - cos T sin (-106°)
= —sin T cos 106° + cos T sin 106°
=sin (106° - T). Since T = 16, 8 = 90.
We have cos 90 + 1 sin 90 = 1.

10. Hz_L__l
i) 2

Note: For real numbers other than 0,
the answer is 1; for pure imaginary
numbers the answer is —1. Unfortu-
nately for the clever ARML partici-
pant, both answers lead to nice re-
sults down the line.

11.

10(2X)—5(3X—T)= 70—2(T+X)
5x+5T=70-2T -2x
7x=70-7T -x=10-T.

Since T=-1,x=11.
12.

sin9T  cos®
cos9T sin®
sin6sin 9T = cosBcos 9T

cos(9+9T) =0
0+97T =90+180K
6=9(10-T).

Since T=11, 6 =-9.
13.Ify -9 = T{x + 2), then for y = 0,
x=-9/T-2.SinceT=-9,x=1-2=-1.
14. Multiplying the top equation
by T and subtracting the bottom
equation yields

(T+4)y=T2+6T+8=(T+4)(T+2)

Thusy=T+2.Sox+T+2=T+7,
givingx=5. Thenx-y =3 -T. Since
T=-1x-y=4.

15. Let n be the number of rows
in the square. If nn is even, the num-
ber of tiles in the diagonals is 2n, if
nisodd, the numberis2n-1. Since
272 + 51s odd, we have
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m-1=2T*+5-5n=T%+3.

Since T =4, n =19, and the number
of tiles is 361.

At the Blackhoard |\

Problem 1. Let x be the car’s veloc-
ity and let y be the biker’s velocity,
both in miles per minute. The time it
takes the car to go from A to where
it first meets the biker is the same in
both cases and so is the time from the
moment of this meeting till the car’s
arrival at B. Therefore the times that
pass from the moment of first meet-
ing till the moment when the car
crosses the first meeting place for the
last time are equal as well. We are
going to calculate these times.

I. After the first meeting the car
moves toward B for 3 minutes. So, it
will take the car 3 minutes to return
to the place where the meeting oc-
curred. The biker will by this mo-
ment be 6y miles from this place.
The car will be catching up with the
bicycle with a velocity of (x — y)
miles/minute, so it will catch up
with the bicycle 6y/(x — y) minutes
later. The return to the first meeting
place will also take 6y/(x — y) min-
utes, and the total time will equal

3+3+2(—6y—}=6+12—y min.
X-y X-y

II. Analogously, we obtain

ZEy Zléy
7 4 7
15 15

X——y X—-—VY

7 7
:{2+

Equating these expressions, we get

1+1+

7x —15y

12y _
X-y

60y

6+ ,
7x-15y

from which we obtain
7x* - 16xy — 15y% = 0.

This is a homogeneous equation of
the second degree in the two un-
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knowns x and y. Putting t = x/y (the
required quotient), and solving the
equation 7t* — 16t — 15 = 0, we find
t = 3 (the negative root is extraneous).

In this problem we had only one
equation in two independent vari-
ables. Such occurrences are very rare.
Usually some additional relations are
imposed upon variables in a problem.

Problem 2. Introducing the new
unknown quantities

_x-2

_x+2
x+1’

x-1

’

we obtain the equation
20u® - 5v? + 48uv = 0,

which is homogeneous and of the sec-
ond degree in 1 and v. Now we divide
this equation by v? (there are no solu-
tions when u = v = 0) and put t = u/v.
Solving the equation 20t + 48t - 5=0,
we find t; = -5/2 and t, = 1/10.

In the first case we get

|
o
>
+
o
w

x+1 x-1 2’
X2—3X+2__§

x2+3x+2 2

This equation has no real roots.
In the second case

v 10’
x*-3x+2 _ 1
x>+3x+2 10

3x2-11x+6=0,

u 1

7

X, =3,

x, =2/3.

Problem 3. Let u = x — 1 and let
v = x* + x + 1. The equation turns
into 2v% — 7u? = 13uv. We see that
there are no solutions if u = v = 0.
Thus, we divide both parts of the
equation by v2. Let’s introduce a

new variable t = u/v. We get

7t2+13t-2 = 0.

The roots of this equation are

t,=1/7,t, = -2.
Taking t = t,, we obtain

x-1 1

N .
x+x+1 7

x2-6x+8=0,
X, =2,
x, = 4.
Ift=t,
x~1
2x2+3x+1=0,
X3=—1,
x, =-1/2.

Answer: x; =2, x, =4, x; = -1,
x,=-1/2.

Problem 4. Introducing the addi-
tional variable u = v2x +15, we ob-
tain the homogeneous equation
x% + u? = 2xu. We can either solve it
as we did in problem 3, or notice that
it can be written in the form
(x —u)? =0, from which we get x = u.
From the equality x = /2x +15, we
obtain x> - 2x-15=0, x; =-3, x, = 5.
The value x = -3 does not satisfy
equation (3), but x = 5 does.

Problem 5. Iff we were toletu=x+1
and v =x -1, we would get an equa-
tion that we might call “homoge-
neous of degree 1/3.” To avoid these
fractional powers, we let

(a)u=8x+1,v=C8x-1,ifx>1.

blu=8-x-1,v=8-x+1,ifx<-1.

In the first case we arrive at the
equation 2u® - uv — v = 0. Dividing
it by v2, we find

—
x+1

6l—— =1
Vx-1

(the second root of the equation
2t2 — t — 1 = 0 must be rejected);

X—+1=1,X+1=X—1,
x-1

and thus the original equation has



no roots in the interval x > 1.

In the second case (when x < —1)
we obtain —2u? —uv + v = 0, from
which we get

x+1

6| —— =

Since -65/63 < -1, this is a root of
the original equation.

Problem 6. The first equation of
the system is homogeneous of de-
gree 2. If we divide both its parts by
y? (since x = y = 0 is not a solution
of the system) and put t = x/y, we ar-
rive at the quadratic equation

3t2-2t-1-=0,

from which we gett, = 1, ¢, = -1/3.
Thus we have either y = x or y = -3x.
First substituting y = x and then
y = -3x in the second equation, we
find four solutions:

=Yy= 1/

Xy =Y, =6,
1574249
—45++/249

X3,4 :_2—.

Problem 7. The essential point of
this system is that all its non-con-
stant terms are of the second degree.
To get rid of the constant term, we
multiply the second equation by 2
and subtract it from the first. Con-
sider the system consisting of the
resulting equation and the second
equation of the original system:

25
2

-—xy+y° =0,
X v?

) (5)
b'e +y =25,

System (5) is equivalent to sys-
tem (4).

The first equation of system (5)
gives t; = 3/4 and t, = 4/3, where
t= X/y Substituting x = (3/4)y and

x =(4/3)y in the second equation, we
find four solutions:

X5 =43, )4 =#4 X3 =24, y, = +3.

The first equation of system (5) de-
fines the lines x = (3/4)y and x = (4/3)y,

and the second equation of system (5)
is an equation for a circle of radius 5
and center at the origin of coordi-
nates. The solutions of this system
are the coordinates of the points
where they meet.

Problem 8. Multiplying the first
equation of the system by 2 and sub-
tracting the second equation from it,
we obtain the system

3x> —8xy +4y? =0,
x*+ 2xy—2y2 =0,

where the first equation is homoge-
neous. Its solutions are x = 2y and
x = (2/3)y. Substituting them in
the second equation, we find two
solutions: x, , = £2, V14 =2l

Problem 9. This equation is ho-
mogeneous of the first degree with
respect to sin x and cos x. We don’t
lose any roots if we divide both its
parts by cos x. We have

Qtan x +3 =0,

tan x = -3/2,
and

x = —arctan(3/2) + nk

(for any integer k).
The equation

asin?x+bsinxcosx+ccos2x=0
can be transformed into
atan? x+btanx+c=0.

Problem 10. We do not lose any
roots if we divide the equation by
cos? x. We get the equation

tan?x+3tanx+2=0,

from which we get tan x, = 1, x, = /4
+1k; tan x, = 2, x, = arctan 2 + nm (for
any integer k, m).

Problem 11. Using the hint in the
text, we have

22—3511’1£COS§—4C082§=O,
2 2 2 2

sin
tan? E—3tan£—4 =0,

2 2
=2arctan4 + 2nk,

X
tan=1 =4, x,
2

X T
tan=2=-1x, =——+21m
2 2

(for any integer k, m).

We can also solve this equation
by relating it to the formula for
sin (A + B). We can do this by mul-
tiplying and dividing by /34 :

3sinx +5cosx

_r( SlHX+\/§74COSX]

=434 sin(x + arcsin i),
34

sin| x + arcsin ij = ——3—
34 N34’
m .3
x=(-1 o arcsin
) areein o2

.5
—arcsin— + m
34

(for any integer m).

Problem 12. If we multiply the
righthand side of this equation by
1 =sin? x + cos? x and then divide
both parts by cos?® x, we’ll obtain
the equation

3tan®x-tan?x—tanx -1 =0.

We can guess (and check) that tan
x = 1l is aroot of this equation. So, if
we factor the polynomial in tan x,
one of the factors will be tan x - 1.
These considerations allow us to
write:

(tanx-1)(3 tan’x + 2 tanx + 1) = 0,
which leads to
x = /4 + 7k (for any integer k).

Problem 13. Putting 2¥ = u and 7%
=v, we get a homogeneous equation
of degree 2:

u?-2uv-3v2=0.

Solving, we find
(a) u/v = -1, (2/7)% = -1 (there are
no roots in this case);

(b)u/v=3,(2/7=3,x= log, ;3.

Problem 1. There are 10 numbers
that can go in the first position.
Since the numbers on a card must be
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distinct, there are nine remaining
possibilities for the second position,
for a total of 10 - 9 = 90. However,
the cards {1, 2} and {2, 1} are consid-
ered to be the same card, since the
first card wins exactly when the sec-
ond card wins. So we must divide by
2 to get an answer of 45.

Problem 2. By the same argument
as above, the answer is [n(n - 1)]/2.

Problem 3. The cards {1, 3} and
{2, 3} are the only cards that contain
the number 3, so the answeris 2. Re-
member that (3,1} is the same card
as {1, 3}.

Problem 4. Since there are n balls
and we don’t allow duplicate num-
bers on a card, n - 1 numbers can go
with 1 to complete a card. So the
answer is n — 1. Similarly, there are
n -1 cards that contain 2.

For 3 <i<n, only 2 cards contain
i:{1, i} and {2, i}.

Problem 5. There are n — 1 cards
containing the number 1. Similarly,
n - 1 cards contain the number 2.
Every card contains eitheral ora?2,
so we’ve counted every card. The
card {1, 2} was counted twice, so the
totalis (n-1]+(n-1)-1=2n-3.

Problem 6. There are n possible
balls that can be drawn first and n—1
balls that can be drawn second.
Since order doesn’t count, the first
two balls can be drawn in [n(n - 1)]/2
possible ways. Since only one com-
bination leads to a win for the card
{1, 2}, this card’s winning probabil-
ity is 2/[n(n - 1)]. To compare this
with 1/(2n - 3), we subtract

13

2n-3 n(n-1)

(112 - n) —(4n-6)
n(n-1)(2n-3)
(n-2)n-3)

n(n-1)2n-3)’

which is positive if n > 4. This shows
that the card {1, 2} is doing worse
than it would if the game were fair.
Note that when n is large, this dif-
terence is approximately 1/(2n - 3),
which means that the winning
chance of the card {1, 2} is negligible
compared to what would be fair.
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Problem 7. By a symmetry argu-
ment, every card other than {1, 2} has
the same winning probability. This
is the main idea of the section “Us-
ing Symmetry.”

Problem 8. The sum of the win-
ning probabilities for each card must
total 1 because there is always a
winner and because for a tie the
prize is shared. We know that there
are 2n -3 cards, and the card {1, 2} has
a winning probability of 2/n(n - 1).
There are 2n - 4 cards remaining.
Since each of these cards has the
same winning probability, let x be
this probability. Then,

2

(2n—4)x+n(n_1)

=1

Solving for x yields

e n+1l
_211(11—1)'

Subtracting 1/(2n - 3) from this, we
see that these cards are doing
slightly better than what would be
fair.

Problem 9. There are n balls, so
n -1 numbers can go with 1 to com-
plete a card.

Problem 10. The ball 3 appears on
the cards {1, 3} and {3, 4}. A similar
argument works for ball 4. Every
other numberi= 1, 3, 4 appears only
on the card {1, i}.

Problem 11. Adding the card {3, 4
to the collection of n — 1 cards con-
taining a 1 gives a total of n cards.

Problem 12. Every card other
than {3, 4} contains a 1.

Problem 13. Every card either
contains a 1 or is the card {3, 4}.
Once a 1 and some other number i
is drawn, then the card {1, 1} wins.
Once both 3 and 4 are drawn, then
the card (3, 4} wins.

Problem 14. There are six permu-
tations since 3 - 2 - 1 = 6. Because
each of these three balls is equally
likely to be drawn last among these
three balls, the probability that 1 is
drawn last is 1/3.

Problem 15. The card {1, 2} has a
better winning probability than
{1, 3}, because {1, 3} has a number in
common with the “big winner”

card. By a symmetry argument, {1, 2}
and {1, 5} have the same winning
probability, as does any pair of cards
not including {1, 3}, {1, 4}, or {3, 4}.
Similarly, {1, 3} and {1, 4} have the
same winning probability.

Problem 16. The winning prob-
ability of the “big winner” card {3, 4}
is 1/3. The winning probability of
the cards {1, 3} and {1, 4} is

l1_n-3
n 2n(n-1)

The winning probability of the cards
{1,1}fori=2,56,7, ..., nis

l_ n—-4
n 3n(n-1)

To compute this, write out the ways
that each card can win alone, win in
a 2-way tie, win in a 3-way tie, ...,
win in a j-way tie. Then add, re-
membering that tied cards share the
prize. Also, recognize the appear-
ance of triangular numbers in the
case of {1, 3} and {1, 4}, and the ap-
pearance of pyramidal numbers in the
caseofl,i}fori=2,5,6,7,... ,n. Note
that every card other than the “big
winner” is doing worse than what
would be fair.

Problem 17. Figure 13 gives the
solution. In this example, there are
n balls and 2n - 2 players. The win-
ning probability of the “big loser”
card {1, 2} is 2/[n(n - 1)], and the win-
ning probability of the “big winner”
card {3, 4} is 1/6. Computing the
winning probabilities of the other
cards is difficult.

1] 2
113 213
1|4 2| 4
1 5 215
1 | n 2 | n
3|4

Figure 13



winner
Figure 14
3 4
1|2 3|2 |
card A card B
Figure 15

The next section of the article
considers graphs of these games.
The graph for this Bingo game is
shown in figure 14.

Problem 18. Every number ap-
pears on exactly two cards.

Problem 19. The four cards {1, 2},
{2, 3}, {3, 4}, and {1, 4} each have a
winning probability of 16/105. The
three cards {5, 6}, {6, 7}, and {5, 7}
each have a winning probability of
16/105.

Problem 20. Just check that the
edges match. For example, {1, 3} in
the graph on the left is matched
with {1, 2} on the right.

Problem 21. To show that {1, 2}
and {2, 3} have the same winning
probability, consider the congruence
of the graph with itself that sends
(1,2,3,4,5/t0(2,3,4,5,1). A simi-
lar argument shows that any other
pair of edges has the same winning
probability.

Problem 22. By a symmetry argu-
ment, the six cards with entries in
(1,2, 3, 4) each have the exact same
winning probability of 17/252. Simi-
larly, the 10 cards with entries in
(5,6, 7,8, 9) have the same winning
probability of 5/84. To do the com-
putation, note that each card has a
1/36 chance of winning when the
first two balls are drawn. Then,
some card with entriesin (1, 2, 3, 4)
wins when three balls are drawn
with probability

By symmetry, the contribution due
to each card is

126

1 5 5 1 5 12
S22 and 42 =2
6 21 36 126 252

A similar argument works for the 10
cards with entriesin (5, 6, 7, 8, 9).

Problem 23. The corner number 1
is involved in two winning combi-
nations, and the two edge numbers
2 and 3 are involved in only one win-
ning combination. This is not as
symmetric as 2 x 1 Bingo, where
each number on a card is involved in
only one winning combination.

Problem 24. The center square is
involved in four winning combina-
tions, but it is a free space. The 8
numbers on the main diagonals are
involved in three winning combina-
tions, one horizontal, one vertical,
and one diagonal. The remaining 16
numbers are involved in two win-
ning combinations, one horizontal
and one vertical.

Problem 25. The are five possibili-
ties for the corner number, which is
involved in two winning combina-
tions. There are 4 - 3 = 12 remaining
ordered pairs possible for the two edge
numbers, but their order doesn’t mat-
ter, so there are only six possibilities.
The answer is (5 - 4 - 3)/2 = 30.
Similarly, for nn balls, the answer is
[n(n - 1)(n - 2)]/2.

Problem 26. Enumerating all 24
orders in which the four balls can be
drawn, we see that card A wins 12
times out of 24, card B wins 10 times
out of 24, and there is a tie 2 times
out of 24. Therefore, card A has the
advantage. An alternative justifica-
tion uses the asymmetry of the L-
shaped Bingo card because card A’s
corner number, 1, doesn’t appear on
card B at all, whereas card B’s corner
number, 3, appears on card A.

Problem 27. Note that the set of
winning combinations for each
player is the same in either model.

Problem 28. The pair of cards A
and B is the pair in figure 15. The
other two pairs are equivalent to the
pair in figure 15, using an appropri-
ate renumbering of the balls. When
all three cards are played together, a
symmetry argument shows that
they all have the same winning
chance.

Problem 29. We list a few of the
differences. A normal 5 x 5 Bingo
card has 12 winning combinations,
some having 4 numbers and some
having 5 numbers, due to the free
space. There are restrictions on
which numbers appear in which col-
umns. There are only 75 balls, rather
than an arbitrary number n. A Bingo

112]3]|5 112154 ‘ ’ 1 I 5131 4 512134 11213 } - ’
11213 ‘ 6 ‘ ‘ 1 | 2 6 | 4 1 6|3 |4 6 | 2 3 4 | 1 ‘ 21315
1 2| 3 ‘ 7 | | 1 2 7| 4 1 7131 4 712 \ 3 ‘ 4 1 213]|6
112318 112181 4 118|314 812|314
.‘” 1123 | n
11213 ]| n 1|12 | n| 4 11 n| 3| 4 nl|2|3|4 5| 6| 7| 8 |«— “bigwinner”
12| 3| 4 |« “bigloser”
Figure 16 Figure 17
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1 | 16| 31 |45+i| 61 i | 16]31 |46 |61 1 | 16|31 |46 |60+i 1 | 16 |30+i| 46 | 61
2 |15+i| 32 | 47 | 62 2 | 17 | 32 |45+i| 62 2 |17 |30+i| 47 | 62 i |17 132147 |62
3 | 18 |free| 48 |60+i| | 3 |15+i|free| 48 | 63 i | 18 |free| 48 | 63 3 | 18 |free|45+i| 63
4 119 (30+1]| 49 | 64 4 119 | 34 | 49 |60+i 4 119 | 34 |45+i| 64 4 |15+i| 34 | 49 | 64
i |20]35]50]|65 5 |20 |30+1| 50 | 65 5 [15+1| 35 | 50 | 65 5 20 | 35| 50 |60+i
' 1 116]31]|46 |61
Figure 18
2 |17 (32|47 ] 62
parlor does not return all of the en- »  For this reason, when we're consid-
. : e 3 | 18 |free| 48 | 63 X : , :
try fees as prizes, which signifi- % ering the fairness of a Bingo game,
cantly cuts into any potential advan- 4119|3449 |64 ~ we should make sure that none of
tage. People may not want to wait & the cards being considered contain a
for us to examine every possible card 5 203550 |65 < " duplicate winning combination. In

and compute the optimal card. Ties
are not shared. The person who calls
“Bingo!” first wins.

Problem 30. The card {1, 5} is bet-
ter than {1, 3}. In some sense, {1, 3}
is more crowded than {1, 5}.

Problem 31. With three or five
players, the game is unfair. With
four or six players, the game is fair.
To see this, draw the graphs. Re-
member that a player who can im-
prove his or her winning probability
by changing cards will switch. Is
there a player that is always at an
advantage?

Problem 32. The player at a disad-
vantage will switch cards, which
causes the other player to want to
switch, so there is an infinite cycle.
To study what happens as players
switch cards, we must have a more
precise definition of the problem.
We assume that players are asked in
turn if they want to switch. A player
follows a greedy strategy, switching
to the card that is best based on what
the other players currently have. If
two cards are equally good, the
player chooses according to some

fixed rule. Now it is possible to
study this problem for various col-
lections of Bingo cards. Note that
the problem is even harder if we al-
low players to form coalitions or to
enter and leave the game.

Problem 33. We think that these
two examples are the most biased
2 x 1 Bingo games possible, but we
have no proof. What are the most
biased examples for other variants of
Bingo?

Problem 34. Try using symmetry.
Are there any asymmetric, fair 2 x 1
Bingo games (that is, fair 2 x 1 Bingo
games that are proven to be fair by
some means other than symmetry|?
What does the previous question
mean?

Problem 35. Try to work specific
examples, and then generalize them.

Problem 36. It might be useful to
experiment with the help of a com-
puter.

Problem 37. Duplicate cards or
duplicate winning combinations al-
low for an arbitrarily unfair game.

L-shaped Bingo and in normal 5 x 5
Bingo, cards may not be exact dupli-
cates, but share one or more win-
ning combinations. In 5 x 5 Bingo,
we also have to worry about a win-
ning combination on one card being
a proper subset of a winning combi-
nation on another card because of
the free space.

Problem 38. To get a graph for an
L-shaped Bingo game, we would
have to use two edges to represent
cach card. Working with different
colors for each card might be useful.
In normal 5 x 5 Bingo, there are
more obstacles since a winning
combination must connect 4 or 5
numbers.

Problem 39. Figure 16 contains
every 4 x 1 Bingo card containing at
least three of (1, 2, 3, 4). Figure 17
contains every 4 x 1 Bingo card con-
taining 1, 2, and 3, along with the
card {5, 6, 7, 8}.

These examples might be the most
unfair. What would be an example
with both a “bigloser” card and a “big
winner” card? What are the corre-
sponding examples for 5 x 1 Bingo?

1 | 16| 31 [45+i| 61 6 [20|35|50]| 65 1116|3146 61 2116|3146 61
2 |15+i| 32 | 46 | 62 7 121]136]|51 |66 2 | 17132 |47 |62 6 |17 (35|47 | 66
3 | 17 |free| 47 |60+i| | 8 | 22 |free| 52 | 67 |«———"big winner” 3 | 18 |free| 48 | 63 3 | 18 |free| 48 | 63
4 | 18 [30+i| 48 | 63 9 123137 |53 |68 4 119 33|49 |64 4 121 33|49 |64
i 11913349 |64 10|24 | 38 | 54| 69 5 1201|34|50]|65 5120|3451 |65
card A card B
Figure 19 Figure 20
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Problem 40. In figure 18, 1 varies
from 6 to 15. In figure 19, i varies
from 5 to 15.

Figure 20 uses the fact that the
corner number is involved in three
winning combinations, whereas the
edge numbers are involved in two
winning combinations. This is
analogous to the example given in
figure 15 for L-shaped Bingo. The
main idea is that we embed an
L-shaped Bingo card in the upper-left
corner.

It is probably possible to con-
struct examples that are more unfair
than these.

Problem 41. One method for
creating an approximately fair
Bingo game would be to make sure
that the numbers on the cards are
uniformly distributed, but that
would not be enough to create a
perfectly fair Bingo game. To set
up an unfair Bingo game, you
could create a “big winner” card
and give it to someone who you
wanted to win.

Problem 42. Define a winning
combination to be a set of numbers
and define a card to be a set of win-
ning combinations. No winning
combination on one card may be
equal to or a proper subset of a win-
ning combination on another card,
for the reasons given in the solution
to problem 37.

Gradus

Problem 2. We have
o2+ 20B +Br=(o+Br=32=09.

Problem 3. Method I: We have
o + B% = (o + B> - 20B
= (-3 = 2{-5) = 19.
Method II: Since o and B are roots
of the given equation, we know that

o?-300-5=0,
B2 -3B-5=0.

Adding, we find that

o2 + B2 —3(o+ B) - 10 =0,

or
o+ B2-3(3]-10=0
(since o+ B =3)or
o2 +B2=9+10=19.
Problem 4. Using either method I
or method II from problem 3, we

find that o + B2 = p? - 24.
Problem 5. We have

1,1 _o+p_p

o B o q

Problem 6. Method I: Expand (o + B)°,
and use the techniques of problem 3,
method L.

Method II: We already know the
value of o + B2 in terms of p and ¢:
It is p* — 2q. We can use this, and
method II of problem 3, to “boot-
strap” our computation. For any
value of x such that x2—px + g =0,
we know that x3 — px? + gx = 0 as
well. Since o and B satisfy the origi-
nal equation, we have

o - po? + qo = 0,
B*-pp*+4qB=0.
Adding, we find that
(o + B%) - plo® + B2)+ glow + B) = O,
or

(0 + B) = plo* + B?) — got + B)
= plp* - 2q) - pq = p* - 3pq.

Problem 7: Adding the two frac-
tions, we find that their value is
simply -1 (and is independent ei-
ther of o and B or of any equation
they satisfy).

Problem 9. Following problem 3,
method I, we find that

U—B":":=C’-;_B:'A;;
+ 2B + By + yau),

PP -od s B e elg.
It follows that

o + B2+ =p2-2q.
Compare this with the correspond-
ing expression for the sum of the
squares of the roots of a quadratic
equation.

Problem 10. We follow problem
3, method II:

o —pa2+qo-r=0,

B - pp2 + g~ -0,

Y-p¥+qr-r=0.
Adding, we have

o’ + B2+ v’ = pla? + B> + )

—qglo+B+7) +3r
= plp*-2q) - pq + 3r
=p®-3pq + 3r.

Problem 11. We can “boot-
strap” this to find the sums of
higher powers of o, B, and v. (In
fact, we have been beaten to this
idea by Sir Isaac Newton, who is
credited with a general formula for
the sums of powers of roots of a
polynomial equation.)

Suppose ¢, 3, and y are roots of

X —px*+qx-r=0.
Then x* — px® + gx? —rx =0 as well, so

ot - pod + qo? —ro = 0,
B*—pp°+qp*-1B =0,
Y -py+qP -ry=0.

Adding, we obtain
of + B* + ¥t — pla® + B% + )
+ qlod + B+ ) ot B 1) = 0
or
ot + B* + v* —p(p* - 3pq + 31]
+qlp*~2q) -1p = 0.
This gives our required expression:
ot + B* + v = p*—4p2q + 4pr + 2g%.
Problem 12. The given expression
equals
QZ,‘/l " B:.,',: 4 YJBZ

aZBlYl

The denominator is clearly r2.
The numerator looks like it is re-
lated to g?. Indeed, we have

g - (0B + B + 027
+ 200 + B+ ).
Using this information, we

quickly find that our required ex-
pression equals

q2—2pr

1’2

Problem 13. The given expression
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equals
2B + B2y +ay?
oy '

Using the computations from prob-
lem 12, we find that this is

q2 —2pr
—r .

Problem 14. This system of equa-
tions is not difficult to solve, for ex-
ample by substitution. But we can
make the solution easier still by re-
lating it to the previous discussion.
We can think of forming a quadratic
equation with roots o and B. It will
be x* - 5x + 6 = 0. But this equation
solves easily by factoring, and its
roots are 2 and 3. Hence o = 2 and
B =23, or o=3and P = 2. Note that
the solution turns on the fact that
the equations are symmetric in o
and .

Problem 15. We can proceed as in
example 14. The equation satisfied
by o and B is x> - 8x - 7 = 0, and this
time it doesn’t factor over the inte-
gers, so we use the quadratic for-
mula to find that a = 4 + 23,
B =4 —+/23 (or vice versa).

Problem 16. Let the numbers o, B,
vy be solutions to the equation

x> +9x%+19x + 11 =0.

By inspection, x =1 is a solution, so
(x + 1) is a factor. Division reveals
that the other factor is x> + 8x + 11.
Setting this factor equal to 0, we find
that the other roots are -4 + +/5 . But
which value is o? Again, the sym-
metry of the original equations tells
us that o could be any of the num-
bers -1, -4 + /5, -4 — /5, if pand y
are the other two. There are six so-
lutions in all.

Problem 17. We would like to
write down a cubic equation whose
roots are o, B, and . But we need the
value of q = aff + By + ary. We can use
the method of problem 9. If the
equation is

x2-px>+qx-r=0,
thenp =5, r=-28, and
o2+ P2+ =p*-2g=29.
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It follows that g = -2.
Now we know that the equation
we seek is

x3-5x2-2x +24=0.

As in problem 16, we can find one
root by inspection, then the others
by division. We find that the values
of o, B, and y are -2, 3, 4 (in any or-
der).

Problem 18. Let

Px)=x>+px*+ g +rx*> + sx + t

be the polynomial with lead coeffi-
cient 1 whose roots are g, b, ¢, d, and
e. Then

p=—a+b+c+d+e)
and

2g=la+b+c+d+e)
— (@2 +b2+c?+d?+e?,

so p and ¢ are both divisible by n.
Writing algebraically that g, b, ¢, d,
and e satisfy P(x) = 0 and adding the
resulting equations (as in problem 3,

method II) yields

(a® + b5 + 5 + d° + &%)
+pla*+ b+ c*+ d* + &)
+qla®+ b3+ 3+ d® + &d)
+Ha*+ br + ¢ + & + 22
+slfa+b+c+d+e)+5t=0.

Since p, q, a* + b2 + ¢ + d* + &2,
and a + b + ¢ + d + e are all divisible
by n, it follows that (a® + b® + ¢® + d°
+ e°) + 5t is also divisible by n. But
t = —abcde, hence the conclusion.

Where did we use the fact that n
is odd?

Problem 19: Since r,* + 2r, +3=0
and 1,2 + 2r, + 3 = 0, the required
expression reduces to

o +2 2n+2 12nn +8(n +n)+4
3n+l 3n+1 955, +3(n+5)+1

Since r, + 1, = -2 and r;r, = 3, the
required value is
36-16+4 _12
27-6+1  11°
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COWCULATIONS

Gome.

oSSy

Rounding up the herd

by Dr. Mu

ELCOME BACK TO COWCULATIONS, THE
column devoted to problems best solved with a
computer algorithm. At farmer Paul’s dairy,
milking is done twice a day: 5 o’clock in the
morning and 5 o’clock in the evening, 365 (or 366) days
ayear. After 20 years, farmer Paul knows the routine so
well he can do it in his sleep, and occasionally has.
Everyone on the farm pitches in to do his or her part.
Paula gets up early to make coffee and breakfast and get
the kids’ school lunches packed. The kids, Mike and
Jean, do their chores, feeding the cows and washing the

Art by Mark Brenneman

udders. Farmer Paul does the milking, with the help of
milking machines. It is left to Bud, the family dog, to
round up the cows and bring them in for milking.

Bud has been with the family ever since he walked
down the road and onto the farm looking for something
to eat. Some town folks had gotten tired of feeding their
Christmas present along about March and had taken
Bud on a one-way ride into the country. Ever since, Bud
has been earning his keep bringing home the cows. As
farmer Paul frequently says, “I'm not running a retire-
ment home here. Everyone must earn his keep.”
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When Bud first started going after cows, he was very
disorganized. He’d run back and forth in an almost ran-
dom pattern, moving around the herd from cow to cow.
What was a typical path like?

Let’s put our 40 cows out in the pasture at random
with Mathematica.

cow := {Randoml[],

Table[cow,

Random([]}
{40}1;

Next, we’ll make points out of the cows and show a
graph. (We'll single me out for special treatment and
color me green.)

cows =

First|[cows];
{{Pointsize[.02],

drmu
herd

Point/@ cows},

{PointSize[.03], RGBColor[O0, 1, 0],
Point [drmul}};
Show[Graphics[herd]]
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Now I'll show you how disorganized Bud was in the
beginning, keeping track of his path length with a spe-
cial pathlength function.

{First[cows]}]1]:

pathlengthx ] := (Apply[Plus, Map[./# . # &,
x - RotateRight[x]1]1)

Print ["Random path length = ",
pathlength[cows]];

Show[Graphics[{route,

route = Line[Join[cows,

herd}]]

22.8515

Random path length =

After amonth or so, Bud devised another plan. He de-
cided to move among the cows from west to east and
then back to the beginning. This cut his path length
considerably.

cows =
route =

Sort [cows];

Line[Join[cows, {First[cows]}ll]:
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Print["West to East path length = ",
pathlength[cows]];

Show[Graphics[{route, herd}]]

West to East path length = 16.9239

Still not satisfied, Bud went to work on a way to list
the cows based on which ones he saw as he turned in a
full circle chasing his tail. He decided to do his 360-de-
gree scan from the position of Dr. Mu. The result is a
simple closed path that cuts down the path length even
further.

angle[a_, b_] := Applyl[ArcTan, (b - a)l

cows = Complement[cows, {drmu}];

cows = Sort[cows, (angle[drmu, #1l] <=
angle[drmu, #2])&]:;

cows = Join[cows, {drmu}];

route = Linel[Join[cows, {Firstl[cows]}]1l]:

Print["Simple closed path length = ",

pathlength[cows]];

Show[Graphics[{route, herd}]]

Simple closed path length = 9.97219

Early last year, Bud became even wiser. He discov-
ered, quite by accident, a remarkable fact about cows.
On a whim he made a quick trip around the outside of
the herd. Much to his surprise, once the cows on the pe-
rimeter got up and started moving toward the barn, the
others followed in line. Thus he realized it’s not neces-
sary to visit all the cows to bring ‘em home, just to beat
a path around them. This suggests a computing prob-
lem, which, you guessed it, is your next “Challenge
Outta Wisconsin.”

Cow 10

Write a program that finds the shortest path around
any herd and cowculates its length.




The shortest path around the herd has length = 3.4436.

Bring ‘em home, that’s your task.
Surround the herd, make it fast.
With the distance, be a miser.
Do it best, like old “Bud wiser.”
—Dr. Mu

Path length

Mathematica is an extremely mathematical pro-
gramming language. In mathematics, sets are objects
upon which operations are performed. In Math-
ematica, lists are sets of objects upon which opera-
tions are defined. Algorithms, or procedures, in
mathematics are easily and naturally transformed
into Mathematica expressions or functions. As an
example of this natural transformation from math-
ematics to Mathematica, let’s construct, from
scratch, the pathlength function.

A path in the plane is an ordered set of ordered pairs
of real numbers.

path = {{xll Yl}l {le Yz}: {X3, Y3}; {Xél Y4}};

Our goal is to write a function that will take any path
object and return its path length, which is the length of
the lines between neighboring points, where the first
and last points are considered neighbors. We are inter-
ested in the closed path length.

We can match up consecutive points very
rotating the path:

easily by

RotateRight [pathl]

({x,, v,}, {x, vi}. {x,, vy}, {x;,

and subtracting from the original path.

path - RotateRight[path]

Wl8y T Ry Y T Yyl 178 7 A e T Y

=%, + X, =V, + ¥V}, =X, + X -y, + V,}]

Now we’d need to square the x and ¥ s
of all the pairs, add them together, and take the

points. This is done by mapping a function that does
this precisely onto the pairs. But first, notice what
the dot product followed by the square root \/A. A
does to a point A in the plane.

Jixy, v} (%, ¥4}
VXL VT

This is exactly what we want to apply to each pair
above, which is done with a mapping as follows:

temp = [Map.#.# &, path - RotateRight[path]]

T I S I e E

+/«—Xl+xn2+byi+yﬂ2+«ﬂ—x3+xn2+0y3+y”2

Finally, we add up the distances by applying the Plus
operation:

Apply[[Plus, temp]ll]

\/(—xl +%,) +(=v, +v,) +\/(:<2 +3) + (v, +vs)

+ \/(~x1 +3x, ) + (v +y,) + \/(—x3 +x,) +(~vs +yv,)

This sequence of mathematical transformations is now
captured in a new function that we name pathlength and
define exactly as described above, but now in one line.

pathlength[x ] := (Apply[Plus, Mapl[.#.# &,
X - RotateRight[x]1])

What you have just seen is an example of creating a
custom function in Mathematica. Notice that we never
once dealt with elements of any list one at a time. Also,
there are no Do, For, or While loops. Operating on whole
lists is a signature of functional programming. By start-
ing with the original path list, we transformed, via fun-
damental Mathematica functions, a path list onto a
pathlength. Functional transformations are the essence
of Mathematica programming. For those interested in
learning more about programming in Mathematica, 1
recommend An Introduction to Programming with
Mathematica, by Gaylord, Kamin, and Wellin, pub-
lished by TELOS (http://www.telospub.com).

And finally ...

Send your solution to me at drmu@cs.uwp.edu.
Past solutions are available at http://usaco.uwp.edu/
cowculations. If competitive computer programming
is your path around the herd, stop by the USA Com-
puting Olympiad web site at http://usaco.uwp.edu.
The 1998 USA National Championship has just con-
cluded, and the top 15 students have won an all-ex-
pense-paid trip to the University of Wisconsin-
Parkside this summer. There they will compete for
one of four positions on the team that will represent
the United States at the 10th International Olympiad
in Informatics to be held in Setubal, Portugal, Sep-
tember 5-12, 1998.
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