| .._,%2/////% ,

LK
i r/ 0




GALLERY [@)

O1il on panel, 91 x 71 inches, Collection of The Salvador Dali Museum, St. Petersburg, Florida © 1997 Salvador Dali Museum, Inc.

Skull with Its Lyric Appendage Leaning on a Night Table Which Should Have
the Exact Temperature of a Cardinal Bird's Nest (1934) by Salvador Dali

OES YOUR HEART RESONATE WITH DREAD
when you recall the piano lessons your parents forced
you to take as a kid? They may have seemed deadly dull
at the time, but other resonant experiences can pose a

real (as opposed to surreal) threat to your health. To find
out why an imperfect runway might one d
chord of terror in your heart, turn to page £
more about "The Horrors of Resonance
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The expansion of the Universe has been
a hot topic of discussion since the turn
of the century. Many theories have been
developed to explain how gravity and
other factors influence universal con-
traction and expansion.

However, much like the artwork on
this month’s cover, upon closer exami-
nation these theories reveal incongru-
ities that prevent us from getting a clear
look at what is going on in the Universe.

To learn more about the historical
efforts scientists have made to come to
terms with our dynamic Universe, see
page 10. Find out what all the heated
debate is about.
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Academic Search, Vocational
Search, MasterFILE, and General
Science Source. Available in
microform, electronic, or paper
format from University Micro-
films International.

FEATURES

VOLUME 8, NUMBER 4

§} Unconventional wisdom

Ramanujan the phenomenon
by S. G. Gindikin

10

The thermodynamic Universe

by I. D. Novikov

18

Alternative arithmetic

Numeral roamings
by A. Egorov and A. Kotova

22 Tabletop physics

Does 4 falling pencil levitate?

by Leaf Turner and Jane L. Pratt

DEPARTMENTS

Cosmological considerations

2 Front Mattep
15 Brainteasers
21 How Do You Figure?
26 Looking Back

Revolutionary teaching

Haleidoscope
30

On the edge

Physics Gontest

Around and
around she goes

At the Blackboard |

Points of interest

34

38
43
43
47

49
03
ol
i1

In the Lah

Homemade pendulums

Gradus ad Parnassum

Symmetry in algebra

At the Blackboard II

The horrors of resonance

n the Open Aip

Why is the sky blue!

Answers, Hints & Solutions
Index of Advertisers
Grisscross Science
Cowculations

Milk routes

QUANTUM/CONTENTS 1




Art by Michael Jones

FRONT MATTER

Science with charm

Communicating the simplicity of physics

LEMENTARY PAR-
ticles with spin are |
not spinning. Those |
with color have no
color. Strange particles are
neither more strange nor
less strange than other el-
ementary particles. Par-
ticles with charm are not
charming, yet physicists
with charm are charming.

If I pick up a box from
the floor, move it across
the room, and then place it
on the floor again, T will
not have done any work
even though I may be paid
for my work. Energy is al-
ways constant, so how can
we be running out of en-
ergy? A 50 kilogram per-
SOnN e€Xerts more pressure
on the floor than a 1,000
kilogram elephant, al-
though the elephant exerts
a greater force on the floor.

Science, of course, has
its own language, as is true with
most specialized areas of knowl-
edge. Yet, science sometimes usurps
the layperson’s language and at-
taches a very special meaning. In
cases of words like charm, strange-
ness, and color, the physicist at-
taches specific meanings of no rel-
evance to the language of the
general populace. That wouldn’t
be much of a problem except that
it reinforces the popular belief that
physics is incomprehensible to all
but a select few. It almost seems as
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though physics is mocking the
language of the nonphysicist. Does
the language difference exacerbate
the alienation between those who
understand two languages and yet
speak the same language? Or does
the use of common words give
physics a more friendly face?

One recent Nobel Prize winner in
physics gushed enthusiastically in
response to a reporter’s question
that he began to study physics be-
cause of its simplicity. Yet most stu-
dents who take a physics course

don’t recognize simplic-

« ity among its attributes.
One person sees simplic-
ity in the same evidence
that daunts another per-
son with its overwhelm-
ing complexity.

While physicists focus
their attention on con-
cepts and ideas, many
students in our class-
rooms see physics as a
collection of formulas
with an array of confusing
variables. Regardless of
what the teacher encour-
ages, many of our stu-
dents grope for the single
formula that connects the
given data with the un-
known quantity. While
practicing physicists fo-
cus on principles and un-
derstanding, it is the “tyr-
anny of technique” that
dismays many students
of physics.

Wouldn’t it be wonderful if stu-
dents taking their first physics course
received a hint of why a Nobel laure-
ate finds simplicity a primary at-
tribute of our discipline? Is there
some way to demonstrate simplicity
by means other than a tortuous trail
through complexity? Why must sim-
plicity be evident only to the most
passionate practitioners?

—Bernard V. Khoury
Bernard V. Khoury is the Executive Of-
ficer of the A 1 As ]
Physics Teachers
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Do you have an unusual topic
that students would find fun and
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ter, but we need your help.

What's our address?

Quantum
National Science Teachers Assoc.
1840 Wilson Boulevard
Arlington VA 22201-3000

Be a factor in the

QUANTUM

Y

G Bluation

S

QUANTUM

THE MAGAZINE OF MATH AND SCIENCE

A publication of the National Science Teachers Association (NSTA)
& Quantum Bureau of the Russian Academy of Sciences
in conjunction with
the American Association of Physics Teachers (AAPT)
& the National Council of Teachers of Mathematics (NCTM)
The mission of the National Science Teachers Association is
to promote excellence and innovation in science teaching and learning for all.

Publisher
Gerald F. Wheeler, Executive Director, NSTA

Associate Publisher
Sergey S. Krotov, Director, Quantum Bureau,
Professor of Physics, Moscow State University

Founding Editors
Yuri A. Ossipyan, President, Quantum Bureau
Sheldon Lee Glashow, Nobel Laureate (physics), Harvard University
William P. Thurston, Fields Medalist (mathematics), University of California, Berkeley

Field Editors for Physics
Larry D. Kirkpatrick, Professor of Physics, Montana State University, MT
Albert L. Stasenko, Professor of Physics, Moscow Institute of Physics and Technology

Field Editors for Mathematics
Mark E. Saul, Computer Consultant/Coordinator, Bronxville School, NY
Igor F. Sharygin, Professor of Mathematics, Moscow State University

Managing Editor
Kenneth L. Roberts

Associate Managing Editor
Mike Donaldson

Editorial Assistants
Jennifer M. Wang
Cara Young

Art Director
Sergey Ivanov

Editorial Advisor
Timothy Weber

International Consultant
Edward Lozansky

Assistant Manager, Magazines
(Springer-Verlag)
Madeline Kraner
Advertising Managers

Paul Kuntzler (Washington office)
Brian Skepton (New York office)

Advisory Board
Bernard V. Khoury, Executive Officer, AAPT
John A. Thorpe, Executive Director, NCTM
George Berzsenyi, Professor of Mathematics,
Rose-Hulman Institute of Technology, IN
Arthur Eisenkraft, Science Department Chair,
Fox Lane High School, NY
Karen Johnston, Professor of Physics,
North Carolina State University, NC
Margaret J. Kenney, Professor of Mathematics,
Boston College, MA
Alexander Soifer, Professor of Mathematics,
University of Colorado-Colorado Springs, CO
Barbara L. Stott, Mathematics Teacher,
Riverdale High School, LA
Ted Vittitoe, Retired Physics Teacher,
Parrish, FL
Peter Vunovich, Capital Area Science & Math
Center, Lansing, MI

Editorial Consultants
Yuly Danilov, Senior Researcher,
Kurchatov Institute
Irina Oleynik, Managing Editor,
Quantum Bureau

Quantum (ISSN 1048-8820) is published bimonthly by the
National Science Teachers Association in cooperation with
Springer-Verlag New York, Inc. Volume 8 (6 issues) will be
published in 1997-1998. Quantum contains authorized En-
glish-language translations from Kvant, a physics and
mathematics magazine published by Quantum Bureau
(Moscow, Russia), as well as original material in English.
Editorial offices: NSTA, 1840 Wilson Boulevard, Arlington
VA 22201-3000; telephone: {703) 243-7100; electronic mail:
quantum@nsta.org. Production offices: Springer-Verlag
New York, Inc., 175 Fifth Avenue, New York NY 10010-7858.

Periodicals postage paid at New York, NY, and additional
mailing offices. Postmaster: send address changes to: Quan-
tum, Springer-Verlag New York, Inc., Journal Fulfillment
Services Department, P. O. Box 2485, Secaucus NJ 07096-
2485. Copyright © 1998 NSTA. Printed in U.S.A.

Subscription Information:

North America: Student rate: $17.70; Per-
sonal rate (nonstudent): $25. This rate is
available to individual subscribers for per-
sonal use only from Springer-Verlag New
York, Inc., when paid by personal check or
charge. Subscriptions are entered with pre-
payment only. Institutional rate: $45. Single
Issue Price: $7.50. Rates include postage and

handling. (Canadian customers please add 7% GST to
subscription price. Springer-Verlag GST registration
number is 123394918.) Subscriptions begin with next
published issue (backstarts may be requested). Bulk rates
for students are available. Mail order and payment to:
Springer-Verlag New York, Inc., Journal Fulfillment Ser-
vices Department, PO Box 2485, Secaucus;NJ 07094-2485,
USA. Telephone: 1(800) SPRINGER,; fax: (201) 348-4505;
e-mail: custserv@springer-ny.com.

Outside North America: Personal rate: Please contact
Springer-Verlag Berlin at subscriptions@springer.de. In-
stitutional rate is US$57; airmail delivery is US$18 ad-
ditional (all rates calculated in DM at the exchange rate
current at the time of purchase). SAL (Surface Airmail
Listed) is mandatory for Japan, India, Australia, and New
Zealand. Customers should ask for the appropriate price
list. Orders may be placed through your bookseller or di-
rectly through Springer-Verlag, Postfach 31 13 40, D
Berlin, Germany.

Advertising:

Advertising Representatives: (Washington| Paul K
(703)243-7100; (New York| Brian Skepton (212 46
G. Probst, Springer-Verlag GmbH & Co. KG, D
lin, Germany, telephone 49 (0] 30-827 87-0, tel

Printed on acid-free paper.

QUANTUM/FRONT MATTER 3




amanujan the phenomenon

India’s inspired mathematician

by S. G. Gindikin

N EARLY 1913 PROFESSOR

Godfrey H. Hardy at Cambridge

University received a letter from

Madras, India. Although only 36
years old then, Hardy had written a
series of marvelous mathematical
papers and was recognized as one of
the world’s leading experts in calcu-
lus and number theory. His corre-
spondent, Srinivasa Ramanujan,
worked as a clerk in the accounting
department of the Madras post of-
fice, earning a mere 20 pounds per
year. He wrote that he hadn’t gradu-
ated from any university and that he
studied mathematics after school
alone, not by following the tradi-
tional system, but by pursuing his
own ways.

A letter of this sort probably
wouldn’t itself have made much of
an impression on Hardy. But accom-
panying the letter was a list of for-
mulas that Ramanujan proposed for
publication if Hardy found them in-
teresting (Ramanujan couldn’t pub-
lish them himself because of his
poverty). When Hardy examined the
formulas, he grew excited. He un-
derstood that he had come across an
outstanding talent. He wrote Rama-
nujan a letter expressing his interest,
and a lively correspondence sprang
up between them (it seems amazing
how fast the mail traveled between
England and India in that time).
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Ramanujan's passport photo from

1919, when he returned to India.

bl

Through this correspondence,
Hardy accumulated about 120 for-
mulas.

Ramanujan’s formulas were pri-
marily concerned with relations
between infinite radicals (see inset
2); infinite series, products, and
continued fractions (sece insets 1,
3, 4); and identities with integrals.
Hardy immediately recognized
that the formulas went far beyond
the limits of elementary math-
ematics. Further, he posed a se-
quence of questions: Are they al-
ready known? If they are, then did
the author of the letter obtain
them independently? and If they

UNCONVENTIONAL WISDOM

are not known, then are they cor-
rect? Hardy soon realized that he
was in a peculiar situation. As a
leading expert in calculus, he was
dealing with a collection of formu-
las completely unfamiliar to him.

Hardy was impressed by the rela-
tions involving infinite series (inset
1). Studying them, he came to the
conclusion that “Ramanujan must
possess much more general theo-
rems and was keeping a great deal up
his sleeve.”!

But most of all Hardy was
stunned by the relations involving
infinite continued fractions (an ex-
ample of this type of relation, which
Ramanujan found later, is given in
inset 3). Said Hardy, “[these rela-
tions] defeated me completely; T had
never seen anything in the least like
them before. A single look at them
is enough to show that they could
only be written down by a math-
ematician of the highest class.”

The miracle from Kumbakonam

So, how did Ramanujan develop
into the mathematician who sur-
prised Hardy to such an extent!?
Srinivasa Aiyangar Ramanujan was
born on December 22, 1887, in the

lQuotes in this article are
from Robert Kanigel’s book lar
Who Knew Infinity (1991, Charles
Scribner’s Sons!.




village of Erode in southern India.
He spent most of his childhood in
the small town Kumbakonam (260
km from Madras), where his father
worked as an accountant in a small
textile store. Ramanujan belonged
to the Brahmin caste, but a long
time had passed since his family’s
wealth had been dissipated. His par-
ents, and especially his mother,
were very religious, and Ramanujan
was brought up in full accordance
with the traditions of his caste.
Growing up in a town where every
stone was connected to the ancient
religion and among people who al-
ways remembered that they be-
longed to the highest caste played a
great role in Ramanujan’s develop-
ment as mathematician.

Ramanujan went to school
when he was five years old and
graduated from elementary school
at age 10. At that time he started
to show outstanding talents and
received a scholarship that cov-
ered one-half of the tuition fees.
When Ramanujan was 14, one stu-
dent from Madras gave him the
two volumes of Loney’s Guide in
Trigonometry. Ramanujan soon
mastered trigonometry so that he
could advise the student in solving
problems. The first tales and leg-
ends about Ramanujan are about
this period of his life. For instance,
it is said that he discovered Euler’s
formula by himself and was very
disappointed to find it in the sec-
ond volume of Loney’s book.

Ramanujan thought that
mathematics, as well as the
other sciences, contained
some inherent “higher
truth” that one should
look for, and asked his
teachers about it. The
teachers, however, only
gave him unconvincing
references to the Pythag-
orean theorem and per-
centage as a ratio.

The two-volume Synop-
sis of Elementary Results in
Pure and Applied Math-
ematics, written by the English
mathematician George Shoobridge
Carr in 1880-1886, fell into Rama-
nujan’s hands in 1903, when he was
16. The influence it had on Ramanu-
jan’s mathematical development
was enormous. It accumulated 6165
theorems and formulas, which were
presented with minimal explana-
tions and almost no proofs. The
book was mainly devoted to algebra,
trigonometry, calculus, and analyti-
cal geometry.

According to people who knew
Ramanujan during that time,Carr’s
book prompted the young mathema-
tician to derive all the formulas him-
self. The scope of his major interests
was gradually shifting. He worked
with magic squares and attempted
to square the circle (according to one
legend, he found © with a precision
that allowed one to calculate the
length of the equator with an error
of only 1 to 2 meters). Finally, he

given by

1

Inset 1. One infinite sum calculated by Ramanujan.

This magnificent formula was in the list supplied with Ramanujan’s first letter to Hardy. Hardy spent
a lot of time wondering how on Earth the sum of the alternating series ay+a, + a, + ..., where a_ was
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Ramanujan's childhood home in Kumba-
konam, South India.

turned to infinite series. This was
the beginning of his life in real
mathematics.

Carr’s book well fit the purpose of
forming Ramanujan’s views on
mathematics. But its influence had
yet another consequence. Because
the book contained no rigorous
proofs, Ramanujan developed rather
strange methods to establish math-
ematical truths. Besides this, living
in India, he was deprived of any suit-
able manuals that could teach him
to make his reasoning strict. About
Ramanujan’s style of demonstrating
the correctness of a formula, Hardy
said, “His ideas as to what consti-
tuted a mathematical proof were of
the most shadowy description. All
his results, new or old, right or
wrong, had been arrived at by a pro-
cess of mingled argument, intuition,
and induction, of which he was en-
tirely unable to give any coherent
account.”

could be equal to 2/p. The reader can use a calculator to check that this formula is valid as an approxi-
mate equality. There is no elementary way to prove the exact identity.
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Town High School in Kumbakonam.

Ramanujan’s life in mathematics
was almost completely determined
during these years. He would never
change the direction of his search or
his way of thinking. We can only
regret that Ramanujan developed in
such a harsh environment. Had the
circumstances been different, he
would have undoubtedly become a
better trained mathematician. But
can we be sure that he would be-
come such a unique thinker? Could
Ramanujan have understood or dis-
covered as much as he did if he had
been taught the rules of mathemati-
cal behavior early on, carried his re-
sults to publications with rigorous
proofs, and based his reasoning on
the whole complex of human
knowledge rather than a relatively
small number of facts?

From numbers to formulas

An important feature of the for-
mation of Ramanujan’s approach to

mathematics is that he
coupled the initial stock
of mathematical facts
(which he learned from
Carr’s book), with a great
supply of observations of
concrete numbers. He had
collected these numerical
facts since childhood. A
schoolmate recalled that
Ramanujan had remem-
bered an enormous num-
ber of digits in the decimal
notations of © and e. He
possessed a wonderful
ability to derive arithmetical regu-
larities from observations about a
huge stock of numerical data, an art
mastered by Euler and Gauss but
mainly forgotten by the beginning of
the twentieth century.

Many facts in Ramanujan’s store
of numbers were discovered under
casual circumstances. Hardy recol-
lected later how he had visited Ra-
manujan in a hospital and remarked
that he had come by a taxi with the
“dull” number 1729. Ramanujan
grew excited and exclaimed: “No,
Hardy. It is a very interesting num-
ber. It is the smallest number ex-
pressible as the sum of two cubes in
two different ways.” (1729 = 13 + 123
=93 +10%).

Ramanujan rapidly enlarged the
stock of facts he had taken from
Carr’s book. In doing so, he rediscov-
ered at a surprising rate results that
belonged to Euler, Gauss, and Jacobi.
Similarly, before him young Gauss

_ dent equalities

Inset 2. Infinitely iterating radicals.

in Braunschweig, deprived of math-
ematical literature, reconstructed in
a short time the facts that took his
great predecessors decades to estab-
lish.

Gradually, Ramanujan put aside
his collection of numerical observa-
tions as he became fascinated by the
world of formulas. Formulas were
not just auxiliary means of proofs or
calculations for him; the internal
beauty of a formula was of an infi-
nite value for Ramanujan.

Chioice of carger

In 1904 Ramanujan entered Ma-
dras University. There he made
progress not only in mathematics
but also in English. However, math-
ematics was beginning to possess
his mind, and this was soon re-
flected in his grades. He couldn’t
even finish the first year at the uni-
versity, went traveling with a friend,
later attempted to return to the uni-
versity, and then tried to take an ex-
ternal degree in 1907. Yet it was all
in vain.

In 1909 Ramanujan married. His
wife was only nine years old then,
and she survived until 1987, ten-
derly saving recollections about her
great spouse. Ramanujan had to look
for a means of living, but he couldn’t
find any suitable job. In 1910 he
showed his mathematical results to
Ramaswary Iyer, founder of the In-
dian Mathematical Society, and
then to Seshu Iyer, an instructor at
Kumbakonam College, and Rama-

an@n&/ﬁﬁ =3

Ramanujan found this nice formula when he was yet a schoolboy by writing down the sequence of evi-

aln+2) = fT+(a 5; n+3) = n,/1+(n+ e T 4) -

“and substituting 1 = 1 in it. The quyestikon of whether it was legal to pass to the limit here did not trouble
Ramanujan. The reader can try to prove in the same way the following similar formula:

~ \/6 +;2\/7 +’3; [8rafor . = i
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chandra Rao, an important function-
ary who had studied mathematics in
a university. Later they became Ra-
manujan’s biographers.

At first, Rao used his own money
to support Ramanujan, then helped
him get the position in the post of-
fice. In 1911 a small report concern-
ing Ramanujan’s results, written by
Seshu Iar, was published, and some
time later Ramanujan’s own article
appeared. Some influential English
officials then started playing a part
in Ramanujan’s future. In May 1913
he obtained a two-year scholarship
of 75 rupees (5 pounds) per month,
which was enough to conduct a
simple life. Ramanujan abandoned
the career of a clerk and became a
“professional mathematician.”

Thus, Ramanujan had found
some recognition, if not understand-
ing of his work, from the people
around him. We recall that in early
1913 he wrote Hardy. What did he
expect? Did he hope to find some-
one able to understand and appreci-
ate his results and help him direct
his further investigations? We’d
rather think that his purpose was
more prosaic: Ramanujan looked
not for recognition or fame but sim-
ply for a way to make a living.

We should admit that as far as
mathematics was concerned, his
choice of addressee was very fortu-
nate: There was hardly another
mathematician in the world who
could comprehend Ramanujan’s re-

sults as quickly and as thoroughly.
Soon Hardy realized that he had to
do more than just appreciate the re-
sults of an unknown amateur—he
had to save an immense talent. At
the same time Hardy was growing
convinced that Ramanujan had re-
vealed only a small fraction of the
secrets he had discovered. Hardy
thought that Ramanujan had ob-
tained some very general results and
had shown only particular instances
of these results. But what really wor-
ried Hardy was that he couldn’t re-
construct Ramanujan’s methods. He
was eager to know the techniques his
correspondent employed. However,
Ramanujan firmly refused to de-
scribe his method. He wrote in his
letter dated February 27, 1913:

“You will not be able to follow
my methods of proof if I indicate the
lines on which I proceed in a single
letter. You may ask how you can ac-
cept results based upon wrong pre-
mises. What I tell you is this: Verify
the results I give and if they agree
with your results, got by treading on
the groove in which the present day
mathematicians move, you should
at least grant that there may be some
truths in my fundamental basis.”

Hardy supposed that Ramanujan
was afraid his methods would be
used by other men, so he tried to dis-
miss Ramanujan’s apprehensions,
but the answer he received on April
17 was: “I am a little pained to see
what you have written.... I am not

in the least apprehensive of my
method being utilised by others. On
the contrary my method has been in
my possession for the last eight
years and I have not found anyone to
appreciate the method. AsIwrote in
my last letter I have found a sympa-
thetic friend in you and I am willing
to place unreservedly in your posses-
sion what little I have.”

Hardy was convinced that Rama-
nujan had to meet active mathema-
ticians. This couldn’t happen if he
remained in India, and thus he had
to move to England immediately.
Hardy managed to arrange for a
scholarship in Cambridge for Rama-
nujan. But it was still necessary to

G. H. Hardy.
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Hardy lived at New Court, Trinity College, during his
association with Ramanujan.

convince Ramanujan, who was quite
satisfied with his current situation,
that he had to go. Besides this, his
mother, whose consent was neces-
sary, strongly objected to the journey.
His friends tried to raise public inter-
est. The Cambridge mathematician
Neville, who visited Madras in 1914,
worked energetically toward this pur-
pose, even asking the dean of the lo-
cal university to support his efforts,
but all without any success.

But what scientists couldn’t do
was easily achieved by the goddess
Namagiri. Ramanujan’s mother saw
her son in a dream, surrounded by
Europeans in a large auditorium, and
the goddess came and told her that
she mustn’t object to the trip. So, on
March 17, 1914, Ramanujan left for
England. He would get a two-year
scholarship of 250 pounds per year.
From this sum he would send 50
pounds to his mother. Soon after his
arrival, the scholarship was in-
creased by 60 pounds.

In Gambrige

When he arrived
in Cambridge, Ra-
manujan was 27
years old. At the
time of his life most
important for the
development of a
mathematician, he
had lived in India,
out of any contact
with serious scien-
tists and without
access to math-
ematical literature.
People in different countries and in
different periods consider them-
selves grown up at different ages. For
India at the beginning of our cen-
tury, life expectancy being very low,
27 years was the age of a mature
man. Ramanujan’s widow recalled
that Ramanujan had been fond of
casting horoscopes and his own pre-
dicted that he would die before he
was 35.

Hardy had to make an important
decision: Was it necessary to inter-
rupt Ramanujan’s studies to let him
learn modern mathematics? Hardy
found, as it seems now, the only pos-
sible solution. He decided not to
change the style and direction of Ra-
manujan’s investigations but rather
to make some corrections to it by
taking into consideration modern
achievements in mathematics, try-
ing to explain something new, and
proposing suitable literature.

Ramanujan worked intensely and
fruitfully. He and Hardy had many

common interests. Ramanujan’s
marvelous intuition, coupled with
Hardy’s refined technique, produced
wonderful results. Recognition
came to Ramanujan in 1918 when
he became a professor in Cambridge
University and the first Indian to be
chosen as a member of the Royal So-
ciety of London.

One can’t say that Ramanujan led
an easy life. He faithfully observed
all the restrictions of his religion,
just as he had promised to his par-
ents. In particular, he was a vegetar-
ian and had to do his own cooking.
He refused to violate these strictures
even when he fell ill with tubercu-
losis in 1917. The irregularity of his
diet may have made the disease
progress faster (Ramanujan had held
this opinion himself, according to
his widow). Ramanujan spent his
last two years in England in hospi-
tals and sanitariums, compelled to
decrease the intensity of his studies.

Hardy was doing a great deal for
Ramanujan. He looked after his
studies, tried to fill the gaps in his
mathematical education, and took
care of his social status and everyday
life. Ramanujan was full of gratitude
and love to Hardy.

During his illness, Ramanujan
began considering the idea of return-
ing to his native land. In early 1919
his physical conditions improved
enough to allow him to make the
long voyage. He had received an ap-
pointment at the University of Ma-
dras; his fame was reaching to India.
Ramanujan wrote a letter of thanks
to the dean in which he apologized

Inset 4. Ramanujan-Roger’s identity.
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Ramanujan found this identity in 1911, but he couldn’t prove it then. Hardy couldn’t do it either. In
1917, examining mathematical journals (which he seldom did), Ramanujan ran across an 1894 article
of the English mathematician Rogers. The article, which until then had remained unnoticed, contained
a complete proof of the formula. Later it turned out that this identity is closely connected with the
number p{n) of the ways one can represent the number 1 in the form of a sum (see inset 5). And about
ten years ago it appeared in the field of statistical physics.



Inset 5. Hardy-Ramanujan's theorem.
This theorem gives an estimate of the number p(n) of the ways one can represent number n in the
form of a sum of natural terms. (For example, p(5)= 7,since 5=-4+1=83+2-=3+1+1=2+2+1=2
+1+1+1=1+1+14+1+1)Namely, '

n——
24

ple)e 4, V)

is a function of n. For instance, when n = 200 this “approximate” formula of Hardy and Ramanujan
gives p(200] = 3,972,999,029,388. This is the exact answer! The most mysterious part of this formula
for p(n) is the small “correction” (-1/24), suggested by Ramanujan. Nobody, neither Hardy nor even
Ramanujan, could explain how it appeared. Another interference of the goddess Namagiri? Yet it was
this mysterious correction that made the formula work. Still, Hardy and Ramanujan didn’t stop with
the approximate formula. They later found an exact equality for the number p(n).

for working less intensely recently
because of his illness. Still he was
not to enter upon his duties in the
university. He had less than one
year left to live in his native land.
After three months in Madras, Ra-
manujan moved to Kumbakonam.
In January 1920 he sent his last let-
ter to Hardy, saying that he was
working on a new class of theta
functions. Neither his doctors nor
his relatives could persuade the
morbidly ill scientist to stop his
studies. Ramanujan died on April
26, 1920. He was not even 33 years
old.

Ramanujan's legacy

The news of Ramanujan’s death
struck his friends both in India and
in England. They felt it was their
duty to understand the astonishing
phenomenon of Ramanujan. Hardy
wrote:

“It is possible that the great days
of formulae are finished and that Ra-
manujan ought to have been born
100 years ago; but still he was by far
the greatest formalist of his time.”

Friends and colleagues tried to ap-
preciate Ramanujan’s place in mod-
ern mathematics. They had no

doubt concerning his wonderful tal-
ents and the amazing beauty of his
tormulas. But everyone agreed that
Ramanujan’s choice of subjects
mabkes it difficult for him to take his
rightful place in the history of math-
ematics.

More than 75 years have elapsed
since Ramanujan’s death, and we
now see what Hardy and his con-
temporaries could not have fore-
seen. Ramanujan’s genius proved
consonant not only with the past
but also with the future of math-
ematics. Ramanujan’s arithmeti-
cal identities often turned out to
take central places in the new
stage of algebraic number theory,
and we can only wonder how he
could envision the identities when
he didn’t know any of the facts one
must know to understand them.
Later, interest in concrete explicit
formulas revived in both pure and
applied mathematics.

Modern mathematical and
theoretical physics at times resort
to very abstract branches of math-
ematics, where important roles are
played by refined formulas. Two
relatively fresh examples con-
nected with Ramanujan follow.

Rodney J. Baxter, who became fa-
mous for his constructions of ex-
actly integrable models of statistical
mechanics, suddenly discovered
that he was constantly dealing with
Rogers-Ramanujan and Ramanu-
jan’s identities while studying the
model of a “rigid hexagon” (inset 4).

Nobel prize winner Steven
Weinberg recalled that while study-
ing in the early 1970s the now-popu-
lar string theory, he faced the prob-
lem of estimating the number of
decompositions p(n) for large n. It
turned out that all the formulas he
needed were found by Hardy and Ra-
manujan in 1918 (inset 5).

The innate beauty of Ramanu-
jan’s formulas has endowed them
with the wonderful property of turn-
ing up now and then under the most
unusual circumstances.

For further reading

Ramanujan: Letters and Com-
mentary. Bruce C. Berndt and Robert
A. Rankin. Providence, R.I1.: Ameri-
can Mathematical Society, 1995.

The Man Who Knew Infinity: A
Life of the Genius Ramanujan. Rob-
ert Kanigel. New York: Charles
Scribner’s Sons, 1991. (@

QUANTUM/FEATURE ]




COSMOLOGICAL CONSIDERATIONS

The thermodynamic Universe

Does time have a beginning and an end?

by I. D. Novikov

E LIVE IN THE EXPANDING

Universe. This fact was theo-

retically predicted by the Soviet

mathematician  Alexander
Friedmann and confirmed experimen-
tally at the end of the 1920s by the
American astronomer Edwin Hubble.
The fact that the matter in the sur-
rounding Universe is in constant
motion is of fundamental importance
to our understanding of physical pro-
cesses in the Universe.

In this article we discuss some
general features of the thermal pro-
cesses in the macroscopic world and
their implications for the evolution
of the Universe. The first attempts
to apply the laws of thermodynam-
ics discovered in the nineteenth cen-
tury to the entire Universe led to
strange inferences and downright
paradoxes. Before considering these
cosmological problems, let’s briefly
recall the essence of Friedmann’s
theoretical prediction.

Friedmann’s cornerstone idea
was a stroke of genius, remarkable
for its simplicity. It says that on a
very large scale (we now know that
this means distances greater than
hundreds of millions of light years)
matter is distributed homoge-
neously in the form of galaxies and
galactic clusters. Gravitational
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forces attract these huge masses and
determine their motions. Whether
this attraction ultimately results in
expansion or contraction of the sys-
tem of interacting masses depends
on the initial conditions. For ex-
ample, it depends on whether or not
some undetermined forces imparted
initial divergent velocities to the sub-
stance that later formed the matter of
the Universe (that is, upon whether or
not the Big Bang occurred). It also
could be possible that at some initial
moment the matter was extremely
spread out, but the gravitational
forces caused it to contract with con-
stantly increasing velocity.

Alexander Friedmann used the
relativistic theory of gravitation
elaborated by Einstein, who general-
ized Newton’s law of universal
gravitation for the case of super-
strong fields. However, the impor-
tant results of Friedmann’s work can
be explained in the framework of
Newton’s law.

What we need is the basic law of
motion for matter in the Universe.
This law can be deduced in the fol-
lowing way. Consider in the Uni-
verse a large spherical volume of ra-
dius R equal to many hundreds of
light years. On such a large scale the
distribution of matter can be consid-

ered homogeneous. Denote the
mass in this volume by M. Astrono-
mers have found that galaxies move
away from each other, so the chosen
volume expands and its boundary
moves radially outward. How does
the speed of this expansion vary
with time?

According to Newton’s law of
universal gravitation, a galaxy of
mass m << M located at the bound-
ary of our sphere is attracted by the
gravitational force due to the entire
mass within the sphere:

F:Gjﬁm.

This force slows down the expan-
sion. We do not consider the gravi-
tational forces due to the matter
extending to vast distances in every
direction outside the sphere because
all these forces cancel (we shall not
prove it here).

Now we can easily write down the
law for the motion of a galaxy at the
sphere’s boundary—that is, the law of
motion of the boundary itself. To do
this, we need the total energy E of the
galaxy. It is composed of kinetic en-
ergy E, = mv?/2 and gravitational po-
tential energy E, = -GMm/R (note its
negative value):



Art by Istvan Orosz

2
mv GMm
E:Ek"rEp: 2 —T.

(1)

Due to conservation of energy, the
total energy F = const.

Equation (1) shows that when E > 0,
the sphere’s radius can increase in-
finitely: Although v decreases dur-
ing this process, it does not reach
zero. At R — «, E is entirely deter-
mined by the kinetic energy. On the
other hand, when E < 0, the gravita-
tional forces arrest the expansion of
the sphere, and v becomes zero at a
maximum radius

R _ GMm

max
z

(2)

Then the sphere begins to shrink.

Because we have chosen our
sphere arbitrarily, and since matter
is distributed homogeneously in the
Universe, the evolution of the
sphere’s boundary describes the mo-
tion of any large mass in the Uni-
verse. Dividing equation (1) by m,
we obtain

.

— ———=const’,
2 R

(3)
where const’ = E/m. This equation
describes the evolution of the dis-
tance R between any remote galax-
ies or protomatter particles from the
time when no galaxies were yet in
the sky. Therefore, equation (3) is
the basic law of motion for matter in
the Universe.

According to Einstein’s theory,
gravitation modifies the geometry
of space, making it “curved.” If
const’ < 0 (that is, E < 0), the geom-
etry is spherical, where parallel
“straight lines” cross each other and
space itself is closed, and thus has a
finite volume. The curvature of
space is described by the Universe’s
radius of curvature 1. The entire vol-
ume V of the closed Universe is on
the order of I°. The radius I varies
with time according to equation (3),
as does any other distance in the
Universe. Extrapolating the changes
of R or ] into the past, we conclude
that the expansion formally began

from a sizeless point of matter that
had infinitely large density p, or in
other words, from the singular state.
We say “formally” to stress that, be-
cause some unknown physical laws
probably play a major role at such a
huge density (p ~ 10°* g/em3 accord-
ing to some estimates), such a con-
clusion is only a mathematical ide-
alization. In particular, such
conditions should produce the
vacuum states of matter that gener-
ated the enormous repulsive forces
necessary for the Big Bang.

What was before the Big Bang?
Nobody knows for sure, but some
possibilities are considered by sci-
entists.

All that we have said makes it
possible to “look” into the past and
describe the evolution of the Uni-
verse in the following way. Before
the singular state, the Universe con-
tracted and the density of matter in-
creased enormously, which led to
the formation of the superdense sin-
gular state. We can only guess about
the natural laws describing this state
of matter. It is possible that formi-
dable repulsive gravitational forces
arise in this state, which put an end
to the contraction of the Uni-
verse and cause its sub-
sequent expan-
sion—the
type

expan-
sion that we
now observe.
Is such a scenario

possible? In principle, yes.
Until recently, some sci-
entists considered it
quite favorably. Perhaps
it is our common sense
that favors the Big Bang
model. Indeed, in this model time
flows from negative infinity to posi-
tive infinity. Though the singular
state is somewhat “unclear,” the in-
finite river of time has neither

source nor sink, a view that seems
obvious or intuitive to most.

However, this simple model has
an important defect. Indeed, it sup-
poses that in the extremely distant
past the Universe did contract from
an infinitely spread out state. This
state of near-zero density seems too
“simple” and “primitive” for our
splendid Universe.

Scientists tried to clear this
“hurdle” in the following way. As-
sume that the constant value const’
in equation (3) is negative. This
means that expansion of the Uni-
verse will be followed by contrac-
tion. If we assume that in its turn
this contraction would be followed
by a new expansion period after
passing the singular state (we don’t
know whether this is true or not),
then the entire cycle would repeat
infinitely. Thus, we

come to the oscilla-

tory model of the

Universe.
At first glance, the
oscillatory model
looks very at-
tractive.
In-

it has no
source of the
river of time, and the
Universe exists forever. In
addition, it is not based on the
existence in the extremely distant
past of the strange state of incredibly
low density. In contrast to this dull
picture, we have a lively eternal and
stable Universe, with an infinite
number of cycles. However, even
this nice, harmonic model has in-
herent difficulties rooted in physics
developed in the middle of the nine-
teenth century.
In 1850 the German physicist
Rudolf Clausius and in 1851 the
English physicist William Thomson
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(Lord Kelvin) independently discov-
ered the second law of thermody-
namics. In the form given by Lord
Kelvin, it proclaimed that for a sys-
tem in a stable state, no process is
possible whose sole result is the ab-
sorption of heat from a reservoir and
the conversion of this heat into
work. Thus, mechanical work can-
not be performed exclusively by ex-
tracting thermal energy from a heat
reservoir. In other words, one cannot
convert the entire amount of ther-
mal energy into mechanical energy.
This means that in the end all forms
of energy in an isolated system will
be transformed into thermal energy,
and this thermal energy will be uni-
formly distributed within the sys-
tem, a state of thermal equilibrium.

In practice we know this law
well. In any mechanical system
there is friction, which transforms
mechanical energy into thermal en-
ergy. It is true that in engines, the re-
verse process takes place, which
converts thermal energy into me-
chanical work. However, this is pos-
sible only if the two heat reservoirs
have different temperatures, other-
wise the heat engine will not work.
Energy is needed to maintain this
temperature difference, and part of
this energy is again transformed into
thermal energy. Therefore, we have
the continual process of converting
all types of energy into thermal en-
ergy, which leads to the irreversible
accumulation of thermal energy and
the elimination of all kinds of en-
ergy except thermal energy.
Clausius later formulated the sec-
ond principle of thermodynamics
mathematically.

Heat death

Thomson and Clausius under-
stood the importance of the new law
they discovered for the theory of the
evolution of the Universe. Indeed,
the entire Universe should be con-
sidered as an isolated system that
does not exchange energy with any
other hypothesized reservoirs.
Therefore, all types of energy in the
Universe ultimately should be
transformed into thermal energy,
which will be equally distributed.
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Although this process doesn’t vio-
late conservation of energy and the
energy doesn’t disappear, the energy
becomes less valuable and cannot be
turned into mechanical work. This
means that macroscopic motion
will cease to exist in the Universe.
This unpleasant scenario is known
as the “heat death” of the Universe.

However, the Universe we live in
is far from being in the state of heat
death! We can even think in meta-
physical terms and suppose either
that somebody or something is in-
terfering with the evolution of the
Universe and defends it from heat
death or that the Universe is rather
young and just has not had enough
time to reach its thermal demise.

Now we'll see how this gloomy
prognosis was refuted by science.
The thermodynamic ideas of
Clausius and Thomson were further
developed by the Austrian physicist
Ludwig Boltzmann. He revealed the
physical meaning of the second law
of thermodynamics. Thermal en-
ergy is the chaotic (stochastic) mo-
tion of atoms and molecules that
make up matter. Therefore, the con-
version of mechanical energy of
some parts of a system into thermal
energy means the transformation of
organized (macroscopic) motion into
chaotic motion—that is, an increase
of chaos in the system. The same is
true for the other forms of motion
and energy. Due to the statistical
laws, this increase of chaos is inevi-
table, provided the system is unaf-
fected by any external organizing
forces.

Boltzmann showed that chaos
can be measured. The parameter
that describes its value is entropy,
which was introduced earlier by
Clausius. The larger the chaos, the
higher the entropy. The conversion
of macroscopic motion into thermal
energy is inevitably accompanied by
an increase in entropy. When all
forms of energy have changed into
thermal energy and the thermal en-
ergy is uniformly spread throughout
the system, the amount of chaos
will not change any more, and the
state of maximum entropy is
achieved.

This statistical interpretation
means that the second law of ther-
modynamics does not strictly hold
all the time, and in principle, viola-
tion of this law is possible. Indeed,
the law of increasing entropy says
that the particles in an isolated sys-
tem evolve into more and more
probable states of the chaotic mo-
tion. However, some random devia-
tions, or fluctuations, are possible in
a statistical system.

For example, due to random col-
lisions in a small volume, the at-
oms of a gas can stochastically
acquire momentum in some direc-
tion. This means that the atoms
will acquire translational motion
in this direction, and thus macro-
scopic motion arises from thermal
energy! Of course, such events are
extremely rare. And such a special
case of macroscopic fluctuation
would be much rarer if we took a
larger volume of gas.

As a rule, the entropy of an iso-
lated system always increases, and
the system evolves into the most
probable state (one with maximal
entropy), where it remains for an in-
finitely long time. However, some
deviations from equilibrium may
occur very rarely in one place or an-
other in the system—though, as a
rule, they will be rather small.

Theoretical resurrection

Boltzmann sought escape from
the gloomy forecast of the heat
death of the Universe as follows. The
infinite Universe, he thought, exists
in the most probable state of thermo-
dynamic equilibrium with maxi-
mum entropy. However, rare fluctua-
tions from this state are possible in
any part of the Universe. It is true that
a marked fluctuation in a large vol-
ume is an extremely rare event. Nev-
ertheless, if we have infinite time for
observation, we can wait until a large
fluctuation occurs. According to
Boltzmann, we live within just such
a giant fluctuation.

Until the discoveries of Fried-
mann and Hubble, the Boltzmann
fluctuation hypothesis was the
single attempt to refute the heat
death prognosis on the basis of nine-



teenth-century classical physics.
These discoveries radically modified
our views of the direction and final
state of the evolution of the Uni-
verse. First of all, it was understood
that gravitation plays the dominant
role in development of the Universe.
This major factor was entirely ig-
nored in the theory of heat death,
which was a mistake.

In the common reasoning on the
conversion of all types of energy into
thermal energy and the resulting dy-
ing out of all the processes in any iso-
lated system, it was supposed that the
total amount of energy in the system
doesn’t change. Why not? a reader
may ask—the system is isolated, af-
ter all. Where does the extra energy
come from to maintain the macro-
scopic motion in the system?

Of course, conservation of energy
is an unshakable law. However,
when applying it to the Universe,
we must take into account the gravi-
tational potential energy. This en-
ergy is of a particular kind—it is
negative (see equation (1)). How is
this fact reflected in the processes of
the Universe?

Let’s consider the following ex-
ample: a spherical region of space
tilled with gaseous particles that in-
teract with each other via gravita-
tional forces. We'll assume that ini-
tially the gas is cold and scattered in
space, the gravitational forces be-
tween the particles are extremely
small, and the gravitational poten-
tial energy is virtually zero. How-
ever, weak gravity is not the same as
zero gravity, and in due course grav-
ity collects the scattered gas into a
ball, which continually contracts
under the influences of the forces of
gravity.

Thus, the gas particles acquire
more and more speed, and conse-
quently, their kinetic energy in-
creases. This positive energy compo-
nent grows at the expense of the
negative gravitational potential en-
ergy. Due to conservation of energy,
its gravitational component de-
creases. This means that the abso-
lute value of the gravitational poten-
tial energy grows (since E, < 0).
Thus, the gravity-induced compres-

1
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Figure 1. According to the work of
American physicist R. Tolman, this
curve shows how the radius of the
Universe varies with time.

sion of the system results in an in-
crease of its positive (kinetic) energy.
This fact was not taken into account
in the earlier theories, which ne-
glected gravitation. If positive en-
ergy can grow in an isolated system,
the increase of entropy doesn’t nec-
essarily lead to fading of the macro-
scopic processes.

Therefore, the heat death theory
in the form given in the nine-
teenth century, when the dynamic
nature of the Universe was not
known, was a mistake. Now we’ll
see how gravitation “works” in
the oscillatory model of the Uni-
verse and how it disproves the
heat death theory.

Paradoxically, amplitude increases

According to the second law of
thermodynamics, which is assumed
to be valid throughout the Universe,
thermal energy and entropy accumu-
late in every cycle of the oscillatory
Universe. For example, thermal en-
ergy accumulates on a large scale
through the radiance of stars, which
convert nuclear energy into radiant
energy. We assume that entropy
doesn’t radically decrease in the sin-
gular state.

Thus, entropy grows from cycle
to cycle. At first glance, it should
lead to a decrease of the oscillation
amplitude and finally to a standstill
of the Universe. It seems that the
life of the Universe should be simi-
lar to the damping of a pendulum,
whose energy is gradually converted
into thermal energy by friction in its
suspension. In reality, this model
predicts quite another phenom-
enon—an increase of the Universe’s
oscillation amplitude! Let’s explain
this.

Look at equation (3). In every
cycle at the moment of maximum

expansion of the Universe, when ex-
pansion turns into contraction, the
velocity v of the matter composing
the sphere becomes zero. Inserting
v = 0 into equation (3], we get the
condition for this moment:

GMm
R

= —const’.

max

(Remember, in our model const’ < 0).
Now we insert the formula
M =(4/3)rR3_ p.into this expres-
sion, where p. is the density of the
matter at the moment of maxi-
mum expansion. This vyields
p.R?_ =const”. Finally, we recall
that the Universe’s radius of cur-
vature [ varies with time in the
same way as the sphere’s radius R
(figure 1). Thus, for the radius of
curvature I, at the moment of
maximum expansion of the Uni-
verse we have

”7”r

p.I%,.. = const”. (4)

As we noted earlier, the volume
V of the closed Universe is on the
order of 1. To an order of magnitude,
at the moment of maximum expan-
sion this volume is equal to I*__,
and the total mass of matter in the
Universe is then given by
p.I3 =M. (5)
Dividing equation (5) by equation (4)
we get:

M

"’

const

] —

max

This formula tells us that I___is
proportional to the total mass of
matter in the Universe. However,
according to Einstein’s principle of
the equivalence of mass and energy,
this mass is composed of the sum of
the masses of the particles, the ki-
netic energy of their motions, and
the energy of the photons. As the
thermal energy constantly grows,
the total mass of the Universe
grows. This mass is proportional to
I .o so the amplitude of the
Universe’s oscillation will increase
with time. Instead of fading, the
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oscillation’s amplitude increases!
This conclusion was reached in
1934 by the American physicist Ri-
chard Tolman.

Where is the energy necessary for
the build-up of oscillations taken
from? It is taken from the negative
potential energy of the gravitational
field (the total amount of energy
doesn’t vary according to conserva-
tion of energy).

Can our Universe be described by
this model? Probably not. Indeed, al-
though there is no similarity in this
oscillatory model to the old concept

of heat death, it predicts the constant
growth of thermal energy and entropy
in the Universe, which is at odds with
current knowledge. Therefore, the
number of oscillations should be lim-
ited. If so, the most attractive feature
of the oscillatory Universe—the infi-
nite time of its existence in the past—
disappears.

Having shattered the myth of
heat death, scientists encountered
the no less enigmatic problem of the
beginning of universal expansion.
This problem is now the focus of
attention of astronomers and cos-

mologists. Such is the path of sci-
ence, in which one solution of
nature’s mystery inevitably leads to
a more perplexing problem. @

What to read in Quantum on cos-
mology and astrophysics:

Y. Zeldovich, “A Universe of Ques-
tions,” January/February, 1992, 6-11.

Y. Solovyov, “The Universe Dis-
covered,” May/June 1992, 12-18.

W. A. Hiscock, “The Inevitability of
Black Holes,” March/April 1993, 26-29.

A. Sakharov, “Does Elementary
Length Exist?,” May/June 1997, 14-20.
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Sin Isaac Newton

by David Arns

Under a spreading apple tree,
The village genius stands:

His mind conceives of wondrous things,
He writes them with his hands;

His fame goes forth to all the world—
He’s known in many lands.

A tiny babe on Christmas Day
in 1642
Was born to Mrs. Newton
while outside, the cold winds blew.
And on the farm, through childhood,
precocious Isaac grew.

And after chores, he built devices
to see just how they worked,

To see what laws of nature
underneath the workings lurked.

(When people called them “toys,” that’s what
got Isaac really irked.)

His mother saw he was no farmer,
sent him off to school;

He quickly showed at Cambridge
that he was nobody’s fool:

He began to bring to light the laws
that all of nature rule.

In one chapter in his story
(though apocryphal, it’s said),

An apple, falling from a tree
impacted on his head,

Which drew his thoughts to gravity,
and we all know where that led.
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He wondered if, by any chance,
the self-same gravitation

That pulls an apple to the ground,
affected all creation:

The Moon, the planets, and the Sun...
Thus went his cogitation.

He determined that the gravity
of Earth indeed controls

The orbit of the Moon, as 'round
the Earth it ever rolls.

Now, describing it mathematically
was one of Newton’s goals.

He discovered that the math you need
to show the laws of nature,

Surpassed the knowledge of that day;
the cosmos’ legislature

Required new math, so Newton wrote
his “fluxions” nomenclature.

He talked of falling bodies

and his famous Laws of Motion,
And of colors seen in bubbles

and the tides upon the ocean.
And his crowning jewel, Principia,

created great commotion.

Yes, Newton’s brilliant mind, it was
a trunk with many twigs—
His mind branched out in every way
(right through his powdered wigs).
His greatest contribution, though,
was cookies made from figs.

David Arns is a graphics software
documentation engineer for Hewlett-
Packard in Fort Collins, Colorado,
and also operates a small business
designing and creating web sites. In
his spare time he dabbles in poetry on
scientific themes.
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Just for the fun of it

B226

Doughnuts to dollars. Twenty-five doughnuts cost as many dollars as
doughnuts can be bought for one dollar. What's the price of one doughnut?

B227

Carousel count. Thirty children ride a carousel swing. Every girl rides be-
hind a boy, half of the boys ride behind a boy, and all the other boys ride
behind girls. How many boys and girls are there?

B228

Truancy treats. Boris came to school 35 minutes after the first class had
started. So, he decided to go to the nearest shop and buy an ice cream cone.
Unfortunately, when he came back, the second class had already begun.
He immediately ran for another ice cream cone and spent as much time at
the shop as before. When he returned the second time, he saw that there
were 50 minutes left before the start of the fourth class. Does he have
enough time to buy and eat a third ice cream cone if every class (including
the break after it) takes 55 minutes?

B229

Quirky quadrilateral. Is there a quadrilateral that can be divided by one
straight cut into two congruent parts, but neither its diagonals nor the seg-
ments connecting the midpoints of the opposite sides divide it into equal
parts?

B230

Fluffy feathers. Why do birds fluff their feathers when the weather is very
cold?

ANSWERS, HINTS & SOLUTIONS ON PAGE 52
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Numeral roamings

Exploring nontraditional mathematical operations

by A. Egorov and A. Kotova

OST READERS WILL PROB-
ably be surprised (or even
troubled) by the following
equalities:

I

1,
3,
0

(SR S ]
o U1 b2
I

These statements are perfectly cor-
rect, if we are using the multiplica-
tion sign and the symbol for equal-
ity to mean something different
from what we were taught in school.

Arittimetic of numerals

Let’s begin with an example.
Consider the set of numeralsO, 1, ...,
9. Let’s say that the sum (or the
product) of two numerals is the last

o
O

o 8
1 34 5 6 7 8 9 ¢
2 4 56 7 8 9 0 |
3 56 7 8949813
4 6 7 89 0 10 3
5 78 901 2 34
6 2 9 01 321 3 4 5
7 0 0190 345 ¢
8 01 23 45 67
9 13 2 4 25 8 7 &
Figure
16 MARCH/APRIL 1998

digit of their sum (or product). Then

24+45=7,7+6=3,5+5=0;
7.7-9,2.5=0,8-8=4.

Such arithmetical operations are
by no means worse than the usual
addition and multiplication of inte-
gers to which we are accustomed.
Indeed, for any set of three numer-
als a, b, and ¢, the following identi-

ties hold:

l.a+b=>b+aq;

2.la+b)+c=a+(b+c)

3.a+0= a;

4. For every numeral g, there exists
a numeral (—a) such that a + {-a) = 0
(for example, -4 =6, -5 =5,-1 =9);

5. ab = ba;

6.a-1=aq;

000006000000
1 01 23 45867839
2 00456809468
3026090 58 14 7
4.0 4k 2604898
505050580505
6067 8440609 38 4
70 74185 29 ¢ 3
80 4 5 40686 43
5 9 8 76 5 43

ALTERNATIVE ARITHMETIC

7.alb +¢)=ab + ac.

The truth of these identities fol-
lows directly from the analogous
properties of the operations with
ordinary numbers. One can subtract
numerals as well as add them, if we
make the definition:

a-b=a+(-b)

For instance,
2-7=2+(-7)=2+3=5,
4-6=4+(-6)=4+4=8,

and so on.

We can form an addition table
and a multiplication table of our nu-
meral arithmetic (fig. 1). A number
at the intersection of a row and a col-
umn is the sum (or the product] of
the numbers at the head of the row
and the column. Readers will un-
doubtedly note the striking differ-
ence between the “new” ‘arithmetic
and the traditional one. The product
of two nonzero numerals can equal
zero!

When this happens, we say that
the arithmetic contains “zero divi-
sors”—numbers a # 0 and b 20 such
that ab = 0.

Exercises
1. Find the last digit in the num-

1993 1 1993
; \C J")\).

ber: (a) 719%3; (b) 2

Art by Yury Vashchenko
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2. Prove that the product of the
two last digits of the square of an
integer is even.

3. Solve the equation x> —1 =0in
numeral arithmetic.

Arithmetic of remainders modulo m

The units digit of an integer is
just its remainder upon division by
10. So our numeral arithmetic is re-
ally the arithmetic of remainders
when numbers are divided by 10.
This leads to a natural generaliza-
tion of our numeral arithmetic.

Let m >1 be an arbitrary natural
number. Any integer, when divided
by m, leaves some remainder. There
are m different remainders:

01,2 ..,m-1.

Note that the remainder from di-
vision by m coincides with the last
numeral in the m-based notation of
the number divided.

We now introduce the addition
and multiplication of remainders
upon division by m. We'll call the
sum of two remainders a and b the
remainder of the division by m of the
usual sum of the numbers a and b,
with a similar definition for products.

It’s not hard to see that all seven
previously mentioned properties of
addition and multiplication of nu-
merals hold for the operations with
remainders. Of course, in the arith-
metic of remainders, we can sub-
tract, too. Subtract is defined, as be-
fore, by therule a - b = a + (-b).

The arithmetic of remainders of
division by m (modulo m) is tradi-
tionally denoted by Z_.

Figure 2 shows multiplication
tables for Z. and Z (we do not show
the corresponding addition tables
since their properties are similar for
all moduli). We see that Z, does not
contain zero divisors yet Z, does.
What's going on? The following ex-
ercises will help illustrate this phe-
nomenon.

Exercises

4. Draw multiplication tables for
the arithmetics of remainders
modulo 7, 8,9, 11, 12, and 13.

5. Solve the equations x? = 1 and
x2 = -1, when x belongs to one of the
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00060000

1017 3 45

90 7 480 2 4

302 083 032

042042

50 543 9 1
Figure 2

modular systems listed in exercise 4.
Use this result to find all integers x
for which x> — 1 or x2 + 1 is divisible
by the corresponding modulus.

6. Consider the arithmetic of re-
mainders modulo 100. Find all zero
divisors in it. How many are there?
Prove that if a is not a zero divisor,
then a0 = 1. (One corollary of this
fact is that for any integer a coprime
with 100, a0 - 1 is divisible by 100.)

7. Prove that the sum

1+ 21997 4 . + 19961997
is divisible by 1997.

Prime moduli

Let p be an arbitrary prime num-
ber. Consider the remainders upon
division by p:

0,1,2, ...,p-1.

Theorem 1. The set of nonzero
remainders modulo p (where p is
prime) contains no zero divisors.

Proof. Suppose there exist two re-
mainders a and b modulo p such that
a#0,b#0,andab=0inZ..

This means that the number ab is
divisible by p. Since p is prime, this
means that one of the numbers a or
b is divisible by p, which is impos-
sible, since0<a<pand0<b <p.

In the following discussion we
denote the set of all nonzero remain-
dersin Z_by Z

It follows directly from theorem
1thatifab=acanda#0,thenb=c
(the reader is invited to check this).
But this means that all elements of

ip of the form
a 2a, .., (p-1a

are different, and thus exactly one of
them is equal to 1. This means that
Z, contains some remainder b such
that ab = 1.

We denote this unique element
by a’!, or 1/a, and call this element
of Z " the multiplicative inverse of
a. It’s clear that if a~! = b™! for two
remainders a and b, then a = b.

Thus, if p is prime, we can define
division in Z : for b # 0, a/b is de-
fined as a - bl

Exercises

8. Prove that

(a) (a1 = a;

(b} (~a™) = —a™;

(c) (ab)! = alb7};

(d) every equation ax = b in
which a # 0 has a unique root.

9. Prove that for any prime p, the
number

(p-11+1/2+1/3+...+1/(p-1))

is divisible by p.

10. Prove that a remainder from
Z_ isinvertible (has an inverse el-
ement) if and only if it is not a zero
divisor (that is, if it is coprime
with m).

Wilson's theorem

The arithmetic of remainders
modulo a prime number allows one
to prove the following criterion of
primality of an integer p.

Wilson’s theorem. An integer
number p is prime if and only if the
number A = (p — 1)! + 1 is divisible
by p.

Proof. Let p be a prime number.
Let’s show that in this case A is di-
visible by p. When p = 2 this state-
ment is evident. If p > 2, let’s note
that for every nonzero remainder
modulo p, its inverse is defined, and
that remainders a and a™! are differ-
entifa# 1 and a # p - 1. Indeed, if
a=al, then

O=1-1l=a-a'l-1=a*>-1
=(a-1)a+1).
But this can only hold true if a = 1

and a = p - 1, since otherwise nei-
ther a + 1 nor a - 1 is divisible by p.



Thus we can combine all remain-
ders in the product1-2-... - (p-1),
except 1 and p — 1 into pairs consist-
ing of the remainder and its inverse.
And therefore,

1-2-..(p-1)=1-[2-271-[3-37]

e =1/2) - (lp-1)/21] - [p-1)
-1-[p-1)=p-1=-1

So,inZ, the equality (p-1)! = -
holds which means that the 1nteger
number (p-1)! + 1 is divisible by p.

Now let p be a composite number.
That is, suppose p = kd for integers k
and d. Then one of the factors in
(p—1)isd, and (p-1)! can be written
in the form nd, for some integer n.
However, then (p— 1)1 + 1 = nd + 1
cannot be a multiple of d, and thus is
not divisible by p.

Unfortunately, this criterion for
primality is a nice mathematical
fact but hardly a convenient one: It
is very difficult to check this crite-
rion when p is not small. For ex-
ample, in order to check that the
number 1997 is prime, we would
have to calculate the huge number
1996! + 1 and divide it by 1997.

Exercises

11. Prove that the equation x>+ 1=0
hasrootsinZ_if p =4k + 1.

12. Prove that the numbers

(a) 91! 1901! — 1

(b)92!-1990! + 1
are divisible by 1993.

Periodicity of powers

Let a # 0 be an element of Zp,
where p is prime number. What can
we say about a?, a3, a*, ...2

Since there are only p— 1 different
elements in Z _°, we conclude that
one can find two equal elements
among the first p terms of the se-
quence a, a2, ...,a™, ... . Let them be
a¥ and a’. Then a*-1=1.

Thus, one of the powers of a is
equal to 1.

Let a # 1 and let d be the least
natural number such that a9 = 1.
Clearly, d # 1; all the powers a, a?,

., a? are different; and a*+4 = g for
all integers k. That is, the sequence
of powers of the remainder a is pe-
riodic (with period d).

Definition. We call the number d

defined in the preceding paragraph
the order of a modulo p, which is
denoted by dp(a).

Let’s point out some important
properties of the order of an element.

1.1t d [a) = d and a® = 1, then m
is divisible by d;
2.1tda)=mandm =Kl d (ak)—
3.d (a)=d (a*l)
4ﬁ%dnmﬂd@1ﬂhn
d (ab) divides the least common mul-
tlple of the numbers m and n;
5.1dfa)=m,d (b) n, and the
numbers m and n are coprime, then

d ab) =m

Exercises

13. Prove properties 2 and 3.

14. Prove property 4 and check
that d (ab) is not necessarily equal
to the least common multiple of m
and n.

Let’s prove property 1. Suppose
that ™ = 1 and m were not divisible
by d (thatis, m = gd + r, where O < r
< d). Then

1=qgm= aqd+1‘ _ aqdal _

(ad)qal =al.

By definition, d is the least power
such that a9 = 1. But we've found a
number r less than d and satisfying
the same condition. Thus, we have
a contradiction.

Here is an explicit proof of prop-
erty 5. Letd (ab) d. We can see that
d does not exceed mn since

(ab)mn - (am)n(bn)m =1-1=1.

On the other hand, since (ab)? =1,
we see that a9 = (bd) L'~ (b1)d, and
thus (see property 3) a4 = (b~1jd = 1,
Therefore, nd is divisible by m (prop-
erty 1). But m and n are coprime, so
m divides d. Similarly, we show that
n divides d as well; that is, d is divis-
ible by mn. But d is not greater than
mn, so it is equal to mn.

We also call the order of g in Z
the exponent to which the number
a belongs modulo p.

Exercises

15. Find the order of the remain-
der2inZ, 7,7,

16. Prove that

(a)if A = a* + b* + ¢* + d* is divis-

ible by 5, then it is divisible by 625,
too.

(b) if a® + b3 + ¢3 is divisible by 7,
then abc is divisible by 7 as well.

(c)if a® + b%is divisible by 7, then
both a and b are divisible by 7.

17. Prove that for all natural n,
52n+1 4 3n+2. 9gn-1js divisible by 19.

Euler's function

Let m be a natural number, not
necessarily prime. Consider the
set of all remainders modulo m
coprime to m. (We use the symbol
Z, for this set). Denote the num-
ber of elements in Z by o(m).

The function ¢(m), Wthh associ-
ates every natural number m with
the number of natural numbers less
than m and coprime with it, is called
Euler’s function. In particular, for
every prime p

olpl=p-1;
o(p?) = plp - 1);

olp") =p*~Hp-1).
Theorem 2. For all coprime integers
m and n,

o{mn) = ¢(m) - ¢[n).

Because of this property, we say that
Euler’s function is multiplicative).

Proof. We can count the amount
of natural numbers that are less than
mn and coprime with it in the fol-
lowing way. Consider the table con-
sisting of the numbers from 1
through mn, shown in figure 3. Ev-
ery row of this table contains exactly
¢(n) numbers coprime with n, and
every column contains exactly ¢(m)
numbers coprime with m. More-
over, the position of the numbers
coprime with n in a row does not
depend on the choice of row. (We
invite the reader to find why this
happens.)

Since m and n are coprime, any
number that appears in the table is
coprime with mn if and only if it is
coprime both with m and with n.
Thus, it stands in a column consist-
ing of the numbers coprime with n.
But each column contains exactly
o(m) numbers coprime with m.
Thus, there are ¢(m)o(n) numbers of
this sort. On the other hand, by defi-
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m-1ln+l (molp:l [(m-llo+1 .

Figure 3

nition, ¢(mn) is equal to this quan-
tity.

So, ¢(mn) = ¢6(m) - o(n).

Now we can obtain the formula
for ¢(m). Let’s represent m in the
form of a product of distinct primes:

k Kk K,
m=p;'py*...ps.

Then
o(m)=o(p"py*... 02"
=o(p)-...-ofp¥).

But p,, p,, ..., P, are prime numbers,
and thus

o(m) = pi (- Yp32 N (py = 1) ... 08 (s - 1)

:plkl[l—pijpﬁlll—pi]...p?‘[l—pl J
1 2 s

For example,

(20) = 20(1 - 1/2)(1 - 1/5) = 8.

. sy

»n  Exercises
9, 18. Prove that ¢(n) is
n
. even when n # 2.
19. Find d,,,(11).

Another wonderful
property of Euler’s
function is described
by the following theorem:

Euler’s theorem. If the number a
is coprime with a natural number m,
then a%™! - 1 is divisible by m.

Proof. Let’s write down all the
elements of Z,,in a row:

mn

1= ay, dy, -y Ayipy)-

Since a is coprime with m, the re-
mainder @ when a is divided by m is
not a zero divisor (thatis, a € Z,,).
So, if we show that 2%™' =1inZ ,, we
are done.

To this end, we multiply each
element of Z,, by @ to obtain a
new row:

a,001,0d5, 8 By

All remainders in this row are dif-
ferent, and thus we’ve again ob-
tained a complete set of elements of
Z,,, although they are in some other
order. Let’s multiply these elements
together:

a,-dy-...-d

=a%m . q,.a,- .. qa,

But the product a, - a,- ...- Ay 1
coprime with m, and therefore this
equality means that g% = |.

One simple corollary of Euler’s
theorem is Fermat’s “little” theo-
rem: If p is a prime number and a
is not divisible by p, then a? ! -
1 is divisible by p. (We obtain
this statement from Euler’s
theorem immediately, since ¢(p)
=p-1)]

Note: It follows from Fermat’s
“little” theorem and property 1 of
the degrees that p — 1 is divisible
by d,(a) for any nonzero remain-
der a.

Exercises

20. Prove that

(a)2131 — 1 is divisible by 263;

(b) 23" + 1 is divisible by 32+ ! and
is not divisible by 37 +2.

21. Prove that if a prime num-
ber p divides x* + 1 (where x is an
integer greater than 1), then
p=4k+1.

22.. Prove that there are infinitely
many prime numbers of the form
p=4k+ 1.

23. A rational fraction p/q
(where g is coprime with 10 and
q > 10) is written in the form of an
infinite periodic decimal fraction
with period m. Prove that m di-

vides ¢(q). Ol

//

\\

N
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HOW DO YOU
FIGURE?

Ghallenges in physics and math

Math
M226

Regal route. A king stands in
the lower left corner of a 6 x 6
chessboard. In a move it can go
either one square up, one square to
the right, or one square up and one
square to the right. How many dif-
ferent ways are there for the king
to come to the upper right corner
of the board?

Mz227

Murder by numbers. Each of in-
finitely many gangsters has a con-
tract out on exactly one of the oth-
ers. Prove that there is some infinite
subset of these gangsters, none of
whose members has a contract out
on another.

M228

Planar figure. Find the area of the
figure on the plane determined by
the inequality

(3 - arcsin x) (x® + arcsin y) > 0,

where x and y are standard coordi-
nates on the plane.

M229

Systematic mathematics. Solve
the following system of equations:

X+y+z+t=6
Al—x? +4d—y>

+49-22 +16-12 =8,

M230

Segment ratio. In triangle ABC,
£ZB#90° and AB:BC = k. Let M be
the midpoint of AC. Lines sym-

metric to BM with respect to AB
and BC meet line AC at point D
and E respectively. Find the ratio

BD:BE.
Physics

P226

Crawly critters. A cockroach and
two beetles crawl on a large horizon-
tal table. Each beetle can crawl at a
speed of up to v =1 cm/s. At the ini-
tial moment the insects are at the
vertices of an equilateral triangle.
What must the cockroach’s maxi-
mum velocity be in order to preserve
the equilateral shape of the triangle

for any movements of the beetles?
(A. Korshkov)

P227

Ball in a chute. There is no slip-
ping when a ball rolls with velocity
v along the rib of a right angle chute
ACB (fig. 1). The distance AB is

d

Figure 1

equal to the ball’s radius. What
points of the ball have the maxi-
mum velocity? (S. Krotov)

P228

Evaporating drop. In the nine-
teenth century, the Russian scien-

tist B. I. Sreznevsky studied the
evaporation of liquid drops in air.
Assume such evaporation pro-
ceeds at constant temperature dif-
ference due to heat transfer from
the surroundings. Find the depen-
dence of the drop’s radius on time
assuming the thermal flow per
unit area of a spherical drop is di-
rectly proportional to the tempera-
ture difference and inversely pro-
portional to the drop’s radius.
What time is needed to completely
evaporate a drop whose radius de-
creases by half in 10 minutes? (A.
Stasenko)

P229

Lamp in an electric circuit. A
lamp in an electric circuit (fig. 2)
glows with the same brightness

S Ry
Vg
Ry Ry
| — |
—
Figure 2

whether or not switch § is open or
closed. The parameters of the cir-
cuitare R} = R, =90Q, R, =180 Q,
and V = 54 V. Find the voltage drop
across the lamp. (V. Chivilev)

P230

Atom emits a quantum. An ex-
cited hydrogen atom radiates light.
Find the change in the wavelength
of the light due to the recoil of the
nucleus caused by an emitted quan-
tum of light. (V. Mozhayev)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 49
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TABLETQP PHYSICS

Does a falling pencil levitate?

When the normal becomes abnormal

by Leaf Turner and Jane L. Pratt

LTHOUGH A PENCIL IS

about the simplest mechanical

system that one can imagine, it

can exhibit rich, intricate phys-
ics. How many times have you put
the point of your pencil down on
your desk and let the pencil fall
from a vertical position? No doubt
the fall was over too quickly for
you to notice whether the point
ever left the surface of the desk.
Can such “dynamical levitation”
occur?

Before addressing this question,
we recount an apocryphal story of
another piece of physics engendered
by a falling pencil. Fred Hoyle had
the frequent experience of dropping
something (in his case, a pencil) and
then not being able to find it. He
whimsically suggested that it was
imagining the time reversal of this
experience that led him to his hy-
pothesis of the continuous creation
of matter! However, our falling pen-
cil will not have such momentous
consequences.

Static riction

We'll think of the pencil as an in-
finitely thin rod whose total mass m
is uniformly distributed along its
length L. Its center of gravity CG is
then at its midpoint. When the pen-

eloJeD ésop Kq Uy
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cil is placed vertically on a horizon-
tal surface, it starts to fall, initially
without sliding and eventually with
sliding. But does it slide in the same
direction as the horizontal compo-
nent of velocity of its CG, or does it
slide in the opposite direction? Does
the point of the pencil ever rise off
the table (levitate)? The only free
parameters at our disposal are the
coefficients of static and kinetic fric-
tion, u, and p,, respectively. Indeed,
were there no friction, there would
be no horizontal force on the pencil,
and the pencil’s CG would fall
straight down.

As the pencil starts to fall,
static friction keeps the pencil
from sliding. If 6 is the angle the
pencil makes with the horizontal
and if w and o are the angular ve-
locity and angular acceleration of
the pencil, then we can relate the
vertical and horizontal compo-
nents of the acceleration of the
CG prior to the onset of sliding to
o, ®, and 6. The CG receives two
contributions to its acceleration:
the angular (-Lo/2) and the cen-
tripetal (Lo?/2) as shown in
figure 1. If we let || and L represent
the directions parallel and perpen-
dicular to the table, an examina-
tion of figure 1 shows that

2
a“z—L&cose—L—asine, Ha)
2 2
2
aL=—&sme+L—°‘cose. (1b)
2 2

(Note that o is a negative quantity.)
Since no energy is dissipated prior
to the onset of sliding, we can use
conservation of energy to find how
®” depends on 6. Since the pencil is
rotating about its point, its kinetic
energy is In?/2, where I = mL?/3. Re-
calling that its CG is a distance L/2
from the pencil point, we can see
that the pencil’s potential energy is
(mgL/2) sin @. If the pencil falls from
an essentially stationary vertical
position, its total mechanical energy
must be mgL/2. We thus find that

mgL

lmLZmZ-irmgLsir16= 5

6

mg

Figure 1

or, equivalently,

®’ =%(1—sme). (2)

We can obtain the angular accel-
eration o readily by taking torques
about the (fixed) contact point. The
only force not passing through the
contact point is that of gravity.
Thus, we find that

mI?

t=-Io=- a:mgL
3

2

cos0,

which specifies o as a function of 6:

oc:—%zcicose. (3)

Equations 1a, 1b, 2, and 3 now deter-
mine a, and a, as functions of 6.

We now evaluate the normal
force F () exerted by the table on
the pencil when the pencil is in-
clined to the horizontal by 6.
Newton’s second law tells us that
the sum of the vertical components
of all forces is ma ; namely,

F -mg=ma,.

Inserting our expressions for ®” and o
(equations 2 and 3) into equation 1D,
we can find the value of F| at any 6:

F,(6)="5(1-3sin6)".

We note that F| is zero when 6
equals sin™! (1/3), or about 19.5°.
Newton’s second law also allows
us to infer the actual horizontal fric-
tional force, which is parallel to the
surface of the table. Since the hori-

zontal acceleration g, is specified by
equation la and since the only hori-
zontal force inducing this accelera-
tion is the friction exerted by the
table on the pencil at their point of
contact, F,(6), we find that

F, =ma,
so that
3mgcosO( 3 .
E(G):—"z—(asme—lj, (4)

which we now obtain by inserting
our expressions for ®? and o into
equation la. Slipping starts at the
critical angle 8, when the magnitude
of the horizontal force has become
equal to the maximum force that
static friction can exert: u F . The
condition for this critical angle at
the onset of sliding is thus given by

g = u(e,),

where 1(0) merely represents the ra-
tio of the magnitude of the parallel
force F, to the normal force F at an
angle 6—that is,

_|R(8)] [3cos6(3sin6-2)
R (6) B (1— 3sine)2 .

u(e)
This expression is plotted in figure
2 as a function of 6 in degrees.

Let’s explore and analyze figure 2.
As we consider pencils having pro-
gressively increasing values of
starting from zero, the corresponding
values of 6_ decrease from 90° to the
angle 6, at which the force ratio p
attains a relative maximum. Using
the expression for i above, we can use
elementary calculus to find the right-
hand extremity 6, of the domain as-
sociated with the red region of figure
2. We evaluate du(6)/d6, sét the result
equal to zero, and solve for 0. The
solution yields 8 = sin"!(9/11) = 54.9°.
At this value of 6,

-
e = u{sml(iﬂ A8 Gas

11 128

Each of the values of u associated
with the red region has already been
attained on the domain 54.9° <6 < 90°.
If a pencil possessed a u_equal to one
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of these values, it would have al-
ready started sliding at an angle
greater than 54.9°. When p_ is
slightly greater than p(6;), the red
region is bypassed. Thus, a pencil
cannot start sliding in the red region.
Setting the numerator of u(6) equal
to zero, we observe that u(6) equals
Owhen 6 =sin™! (2/3)=41.8°. We can
use a programmable calculator to
find the left-hand extremity 6, of the
red region. We merely solve for the
6 value 6, that satisfies p(0,)
= 15+/10 /128 on the interval, say,
between 35° and 40° to find that 6,
=38.8°. Since the denominator of p(6)
approaches zero as 6 approaches
sin”! (1/3) = 19.5°, the left-hand por-
tion of the curve has the line
0 = sin”! (1/3) as its asymptote. Thus
sliding will always start before a pen-
cil ever reaches 19.5° from the hori-
zontal!

Kinetic friction

But in which direction will the
pencil point slide? If u_ is less than
about 0.371, the sliding will start at
an angle greater than about 54.9°.
Using equation (4), we observe that
F, will be positive. Conversely, if u
is greater than about 0.371, the slid-
ing will start at some angle between
about 38.8° and 19.5°. On this do-
main F, is negative. But this can
happen only if, in the first case, the
pencil point is sliding in the direc-
tion opposite the motion of the CG,
and, in the second case, in the direc-
tion of horizontal motion of the CG!
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The direction of slide depends on
the coefficient of static friction! A
small coefficient leads to a back-
ward slide, and a large coefficient
leads to a forward slide. This is plau-
sible because, for the larger coeffi-
cient, the pencil will have had a
chance to build up some significant
horizontal momentum before slid-
ing. But observe that the pencil
never leaves the horizontal table
under the influence of static friction.

Can it leave the table after the
onset of sliding? Obtaining the an-
swer to this question requires sig-
nificantly more subtlety, both math-
ematically and physically because
total mechanical energy is no longer
conserved and all points of the pen-
cil are free to accelerate!

When all points of an object are
free to accelerate, to find a, the an-
gular acceleration, it is expedient to
take torques using the CG as origin.
From figure 1, we see that

T

cm

= Ff éCOSG_F\‘kéﬂne: I om0 (5)

The superscript k denotes the ki-
netic friction case. We observe that
the frictional force is given by
FX =+, FX, where the sign is cho-
sen to be in accordance with the pre-
ceding discussion. Using the fact that
I =mI?/12 and the torque equation,
the angular acceleration can be calcu-
lated in terms of 6 and F *:

k

L

a=-6 T (cos®Fpy sind). (6)

If we insert this expression for o, into
equation 1b, we can find F * from
Newton's second law: F ¥ —mg=ma .
(Do you see that equation 1b, but not
1a, remains valid in the sliding con-
text?) When the pencil is sliding,

o .
g- sin 6
2

k _
F =m

1+ 3cos” B(1 Ty tan®) |

If we next insert this result for F
right back into our expression for ¢,
equation 6, we obtain

2

o —

__6cosB =
L] 3cos*0+(1F tan&))fl (7)

sin 6

This equation possesses the needed
information about levitation of the
bottom of the pencil! When we de-
cipher its message, we'll obtain the
information for all cases without
doing any numerical computations
whatsoever!

First we look at the message
borne by the numerator within the
square brackets, g — (Lw?/2) sin 6.
Suppose that at a certain instant of
time while the pencil is sliding, the
table vanished. At that instant, the
CG would accelerate straight down-
ward due to gravity. When the table
vanished, there no longer would be
any torque about the CG (because
the table exerted both a normal and
a frictional force on the pencil’s
point), and the angular acceleration
of the pencil would vanish. The
point of the pencil would thus rotate
uniformly with angular velocity o
about the CG. As a result, it would
have only a centripetal acceleration
Lw?/2 toward the CG. Note from fig-
ure 1 that the pencil is instanta-
neously tilted from the horizontal
by the angle 0. The net acceleration
of the pencil point with respect to
the table equals the sum of the ac-
celeration of the pencil point with
respect to the CG and the accelera-
tion of the CG with respect to the
table. Thus, the pencil point would



have an acceleration downward
equal to g - (Lw?/2) sin 8, which is
that numerator! Let us refer to this
numerator as a “virtual” accelera-
tion and denote it as a,. Since 8 and
o are continuous functions of time,
we see that a_ is positive at the on-
set of sliding. (We merely insert o?
obtained from equation 2, valid un-
til the onset of sliding, into the nu-
merator to verify that a, equals

3(. . 1V 5
g —=|smnb-——| +—
2 2 8

and is thus positive when sliding
starts.) Once the pencil starts slid-
ing, it will levitate only if a_ changes
sign. Let’s find out what equation 7
is trying to tell us about that sign.
The rotational manifestation of
the work-energy theorem is that the
effect of a torque turning an object
through an angle changes the rota-
tional kinetic energy according to

5]
Kcm - KO = '"J‘Tcmde/
99

in which K, is the initial rotational
kinetic energy, the energy when
0 = 0,. The minus sign highlights
that while falling, the pencil’s tilt 8
decreases while the pencil’s kinetic
energy increases. Thus the rate of
change of K with angle 6 is a nega-
tive quantity that is specified by the
torque according to dK_ /d6 = -1_ .
We recall that the rotational kinetic
energy K__ of the pencil about its
CGisequal to (I, /2)w? Then, using
equation 5, we obtain

I, do”
9 d—e: em®-

We can cancel out the moments of
inertia and use equation 7 to find

l dw? _ 6cosH
2de L
2
g—~w—sin9
X 2 . (8)

3cos” 0+ (1F p, tan 6)_1

This equation tells us how the angu-
lar velocity varies with 8. We want
to focus on the sign of a,, the nu-
merator in the square brackets. Let’s
suppose it reverses. Then there is an
angle 6, at which a_ passes through
zero. At that angle the vanishing of
a, requires that

2 _ 2g
Lsin@,

At 6, in addition, because a, is zero,
we observe that equation 8 tells us
that dw?/d8, also equals zero. Fi-
nally, we note that at 6,

3
d g—L(D sin®,
da, 2

- de,

de,
2

cosB, =—gcoth,

a quantity that is clearly negative
tor values of 6, between 0° and
90°. Do you see the difficulty? As
we have shown above, at the onset
of sliding, the function a starts
out positive. Therefore, if it were
to pass through zero as the pencil
falls through ever decreasing val-
ues of 8, it must do so with posi-
tive slope—that is, da /d6, must
be positive.

The assumption that a  can
pass through zero, or that the pen-
cil can levitate, has led us to a con-
tradiction. To avoid the contradic-
tion, we conclude that the pencil
cannot levitate while sliding, and
thus never levitates from a hori-
zontal table.

Before concluding, let’s note
how the dynamics of a falling pen-
cil distinguishes it from, say, a
block sliding down an incline. In
the latter case, as we increase the
tilt of the incline, a critical angle
is reached at which a block that
had been held stationary by static
friction suddenly starts to slide. At
this point, the normal force on the
block has no discontinuous change.
This starkly contrasts with the be-
havior of the normal force acting on
our falling pencil. Because of the
difference between the static and

kinetic friction dynamics of the
rotating pencil, the two normal
forces, F| and F ¥, have a discon-
tinuous jump at the changeover of
the dynamics.

Uplitting, if nonlevitating

We have wallowed with plea-
sure in the dynamics of the sim-
plest of physical systems, a falling
pencil. We have uncovered some
beautiful and rich physics merely
with some trigonometry and a
smidgen of calculus or a calcula-
tor. We have noted that switching
over from the dynamics of static
friction to the dynamics of kinetic
friction, which is familiar to every
student of introductory physics,
leads to a discontinuity in the nor-
mal force acting on the falling pen-
cil. And finally, we have shown
that the pencil will never levitate
from a horizontal table under the
influence of static friction nor can
it levitate once it has started to
slide.

The same techniques and re-
sults can be shown to apply
equally well to a tilted table. The
critical difference is that when the
table has a tilt, the initial value of
the virtual acceleration at the on-
set of sliding can be negative, in
which case the pencil will levitate
instead of slide.

Such abnormal normal forces
can occur only when the tilt of the
table exceeds sin™! (4/5) or about
53.13°. This is the first time we
have ever seen a 3-4-5 right tri-
angle, a favorite of the ancients,
arise from the intrinsic nature of a
physics problem. Q)
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LOOKING BACK

Revolutionary teaching

For the fatherland, sciences, and fame

N THE VERY CENTER OF THE

Latin Quarter in Paris, not far

from the Pantheon, the Sorbonne,

and the Lycée de Louis le Grand,
you will find the small and quiet
Rue Descartes. For more than a cen-
tury and a half this has been the lo-
cation of the famous Ecole Poly-
technique.

The school was founded in 1794,
during the early and most chaotic
years of the French Revolution. This
upheaval affected every level of
French society. Perhaps for the first
time in history, politicians and pub-
lic figures began to appreci-
ate how much science influ-
ences politics, industry, and
trade. The wars associated
with the revolution and the
fierce rivalry between France
and England forced the gov-
ernment to get involved in the
training of highly skilled spe-
cialists who could answer the
many challenges faced by
the young republic. Conse-
quently, a considerable
number of prominent scien-
tists found themselves in
the ruling institutions of the
revolutionary state. For ex-
ample, Gaspard Monge, the
outstanding geometer, held
the position of navy minister,
and Lazare Carnot, the gifted
mathematician and specialist
in mechanics, was one of the
founders of the republic’s
armed forces and its military
industry.
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by Yuri Solovyov

These scientists’ greatest contri-
bution to the new republic, how-
ever, was in the field of higher edu-
cation. Prior to the revolution,
France’s system of higher education
was in shambles, primarily because
it relied on 22 outdated universities
hampered by medieval traditions
and scholastics. The fields of math-
ematics, physics, and chemistry, in
particular, were in a miserable state.
The only exceptions in this archaic
system were a few elite military
engineering schools—the School for
Bridges and Roads (Ponts et Chaus-

The front of the Bourbon Palace

seés), the Mézieres School for Mili-
tary Engineers (where Monge taught
and from which Carnot graduated),
and the Artillery Students’ School.

During the first years of the Revo-
lution, many higher educational insti-
tutions and specialized high schools
were closed. In 1793 the supreme
body of revolutionary power—the
convention—began to reorganize the
educational system in the country.
The decree of 29 Frimaire (according
to the new revolutionary calendar;
we would give the date as 19 Decem-
ber, 1793) made primary education
free and compulsory for all.

Around the same time, at
the recommendation of
Monge and other prominent
scientists, a Commission on
Public Works was formed. It
was this commission that pro-
posed the creation of a new
school of higher education
that would train specialists in
mathematics and the sci-
ences. Contrary to the ideals
of education as the compre-
hensive development of the
whole personality that had
developed in the eighteenth
century, the new school was
supposed to aim toward the
fastest possible achievement
of results in mathematics, sci-
ence, and technology. Mate-
rial rewards and honor were
promised its students to en-
courage them to achieve at
the highest levels and as
quickly as possible.

o



The committee supported Monge
completely and commissioned him,
as well as other scientists, to elabo-
rate on the proposal. On 21 Ventose
of the Year II of the Republic (March
11, 1794), the Committee adopted a
decision to establish a new school for
training engineers, the School of
Public Works. At the end of the aca-
demic year, the name of the school
was changed to Ecole Polytechnique
to clearly describe its goals. The pur-
pose of the school was given as “to
train diverse engineers, to restore the
teaching of the exact sciences,
which has been interrupted by the
crises of the Revolution, and to pro-
vide higher scientific education to
young people, so that they can either
be of use by the government in the
work of the Republic, or bring en-
lightenment to their native cities
and spread there useful knowledge.”

The Committee provided for en-
trance examinations in 22 French
cities to select 400 male persons
between the ages of 16 and 20 who
“have proven their devotion to Re-
publican principles and displayed a
good knowledge of arithmetic and
the elements of algebra and geom-
etry.” The difficult situation of the
country made it impossible to sat-
isfy the rigid restrictions on the can-
didates’ age, so the youngest of them
turned out to be only 12, and others
were well past 20. The first director
of the school was the former head of
the School of Bridges and Roads,
Lamblardi. He was soon replaced by
Monge, who remained at this post
for four years.

The school was originally housed
in the Bourbon Palace. Classes
started on December 21, 1794. The
course of study lasted three years,
and included calculus, geometry,
descriptive geometry, technical
drawing, mechanics, physics, chem-
istry, architecture and military engi-
neering. The professors were such
prominent French scientists as
Lagrange, Monge, Laplace, Le
Peletier, Berthollet, and Neveux.
Even the first entering class in-
cluded such outstanding scientists
as Biot (the astronomer and physi-
cist), Poinsot (known for his work in

geometry and theoretical mechan-
ics), Malus (who discovered the po-
larization of light) and the archae-
ologist De Chezy (who deciphered
the Assyrian cuneiform texts).

Monge devoted all his time and
resources to the school. He created
a course of descriptive geometry, the
basis of many technical disciplines.
“No one was as good a teacher as
Monge,” recalled his student
Brisson, a well-known engineer. “His
gestures, poses, the modulation of
his voice—everything served to de-
velop his thoughts. He always fol-
lowed his listener’s eyes, and could
judge each one’s degree of under-
standing. We got to know Monge,
that finest of men, as one who is
devoted to youth and to science. He
was always among us: After lectures
in geometry, calculus and physics,
private conversations arose that re-
inforced our abilities still more. He
was a friend to each of his charges,
encouraged us in our work, and en-
joyed our success.”

After this first academic year
came to an end, the course of study
was shortened to two years to reflect
a change in purpose at the school.
Rather than turning out fully trained
engineers, it was now intended to
graduate students ready for two more
years of more specialized study in the
Schools of Bridges and Roads, of
Mines, of Military Engineers, and so
on. Students were assigned to a
school based on the quality of their
work. A graduate with high standing
could attend any school. The lower
your standing, however, the fewer
your choices.

These schools also accepted other
students for a four-year course of
study. But they did not share the
standing of graduates of the Ecole
Polytechnique, who were considered
to be in state service and received a
salary. A new system of entrance
exams was established. Candidates
were tested in arithmetic, geometry,
and algebra, including the solution
of polynomial equations of degrees
two, three, and four and the theory
of infinite series. The following are
examples of the types of problems
found on these examinations:

1. Prove that a triangle with two
equal angle bisectors is isosceles.

2. Divide each side of a triangle
into the parts proportional to the
squares of their adjacent sides and
join the points of division to the op-
posite vertices. Prove that the lines
thus obtained meet in a point, and
this point is the center of mass of
the triangle formed by the point’s
projections on the sides of the given
triangle.

3. Given angle AOB and point P,
find a point M on side AO of the
angle such that the circles C and C’
drawn through M and P, and tangent
to OB, will intersect each other at a
given angle.

4. Construct a triangle, given one
of its angles, its perimeter, and its
area.

5.Leta, b, ¢, and d be the succes-
sive side lengths of a given quadrilat-
eral. Prove that the circumradii of
the two quadrilaterals, one of which
is formed by the bisectors of the
given quadrilateral, and the other
one by the bisectors of the exterior
angles, are in the ratio

a+c-b-d
a+c+b+d’

Instruction at the Ecole Poly-
technique was provided by profes-
sors (who gave lectures), tutors
(who explained the lectures and
supervised practice sessions), and
examiners (who checked students’
knowledge with very difficult com-
prehensive examinations that ev-
ery student had to pass). Instruc-
tion followed a well worked out
plan. During the schools’ first de-
cade, the mathematical disciplines
received the greatest emphasis,
taking up about 20 hours each
week. These included calculus,
synthetic and analytic geometry,
mechanics, descriptive geometry,
and technical drawing. Experimen-
tal physics and chemistry took up
a large part of the second year of
study.

It was required by law to publish
all lectures given at the Ecole Poly-

CONTINUED ON PAGE 44
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N GEOMETRY, WE USUALLY
do constructions with compass
and straightedge, but we can also
do constructions using a straight-
edge alone. Constructions
, made sans compass are called
Steiner constructions, after
-~ the outstanding German ge-

ometer of the nineteenth

1017 century. Let’s study one spe-

Art by Virginia Smith

cific type of Steiner construction:
those that begin with two parallel
lines on the plane. Many are based
on the following properties of a trap-
ezoid.

1. Consider trapezoid ABCD with
bases AD and BC. Let P be the point
of intersection of its diagonals and Q
be the point where the extensions of
its lateral sides meet. Then the line
PQ passes through the midpoints of
the bases AD and BC.

Proof. Let N and M denote the
midpoints of AD and BC, respec-
tively (fig. 1). First we prove that
points Q, M, and N are collinear.
Triangles BCQ and ADQ are simi-
lar, so the angles made by corre-

Q

Figure 1

sponding medians QM and QN with
corresponding sides CQ and DQ are
equal. Thatis, ZBQM = ZAQN, and
since A, B, and Q are collinear, so
are Q, M, and N. In the same way,
we can show that points P, M, and
N are collinear, using similar tri-
angles BCP and DAP. Thus the four
points P, Q, N, and M all lie on the
same line. Thus, the four points P,
Q, N, and M all lie on the same line.

Now we can easily solve the two
following problems:

2. Use a straightedge to divide a
given segment into two equal parts
if a line parallel to the segment is
given. The solution is easy to see if
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we think of AD (in fig. 1) as the
given line segment.

3. Consider two parallel lines and
a point Q on the plane. Use a
straightedge to draw a line through
Q parallel to the two given lines.

We embed the two lines in a copy
of figure 1. That is, we draw two
lines through point Q, intersecting
one of the given parallels at points A
and D, and the other at B and C.
Now we have trapezoid ABCD.
Drawing diagonals AC and BD, we
find point P, and drawing line QP,
we find midpoints M and N. We
draw lines AM and CN, and label
their intersection point R. Then QR
is parallel to AD and BC. Indeed,
from pairs of similar triangles we
find RC:RM = MC:AN = BM:AN
= AB:BQ. Since the lines AD, BC,
QR cut off proportional segments on
transversals QA, RN, these three
lines are parallel. The case where
point Q is between the two lines is
handled analogously and is left for
the reader to explore.

Statement 1 also helps solve the
following problem:

4. Consider line I with three
points A, N, and D marked on it
such that AN = ND. Let Q be a point
that does not belong to I. Using a
straightedge alone, draw a line
through Q parallel to I. The solution
is left to the reader (for example, we
can once more reconstruct figure 1).

By applying problem 1 several

KALEIDOSC

times, we can divide a given seg-
ment into the ratio 1:2% for any
positive integer k. If we are given
a segment and a line parallel to it,
however, we can do more: We can
divide the segment into the ratio
1:n for any positive integer n. The
construction is based on the fol-
lowing problem, which contains
problem 1 as a special case.

5. Let the lateral sides AB and CD
of trapezoid ABCD meet at the point
Q and let K be an arbitrary point of
segment BC. Let P be the point where
KD and AC meet and let QP intersect
AD at L. Then, if KC = ABC, we have

LD=_"_ap.
A+l

Proof. Let QL meet BC at F (see
fig. 2). Suppose LD = xAD. Then,
since triangles APD and CPK are
similar, we have KF = xKC. Thus,

FC = (1 - xJKC = (1 - x)ABC.

A

Figure 2
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. construction

But triangles QBC and QAD are
also similar. Therefore,
(1—X)7u=£=£D—=X,
BC AD

That is, (1 - x)A = x, and

A
X=—,
A+l

So the statement is proved. Now
suppose the given segment is AD.
We also have a line parallel to AD,
which we can use to play the role of
BC in figure 1. We then know how
to divide BC in the ratio 1:2. Letting
A = 1/2 in the last equation, we find
that it allows us to cut AD in the

M

Figure 3

ratio 1:3. Then we can do the same
to BC, which allows us to cut AD in
the ratio 1:3. Then we can do the
same to BC, which allows us to cut
AD in the ratio 1:3. Then we can do
the same to BC, which allows us to

cut AD in the ratio 1:4, and so on.

Now let’s consider several other
constructions using a straightedge.

6. A semicircle with endpoints A
and B is drawn on the plane. Draw
a line through a given point M per-
pendicular to the line AB.

To complete this construction,
we first consider the situation

[ )
®

e N

A B
Figure 4

shown in figure 3. Segments AF and
BN are altitudes in triangle AMB be-
cause the inscribed angles ANB and
AFB oppose the diameter AB. There-
fore, H is the point where altitudes
of triangle AMB meet, and thus MH
is perpendicular to AB. So, in the
case shown in figure 3, the problem
is solved. But what do we do if point
M lies on the arc AB (fig. 4) or in
some other “inconvenient” place?

In this case we take two arbitrary
“convenient” points on the plane
and draw perpendiculars through
them to the line AB. Then we draw
a line through M parallel to these
perpendiculars as explained in prob-
lem 3.

7. Two intersecting circles on the

Figure 5

plane are given. Use a straightedge
to find their centers.

Here we need another simple
fact: If we draw lines through the
points where two circles intersect,
then the chords that these lines cut
from the circles are parallel. (In fig-
ure 5 these chords are BC and AD.)

This is not difficult to prove if we
remember that opposite angles of a
quadrilateral inscribed in a circle are
supplementary. Indeed, ZCBQ =
ZQPD since they are both supple-
mentary to ZCPQ. Then ZQPD is
supplementary to ZQAD, so ZCBQ
supplements ZQAD. This means
that BC and AD are parallel.

Now that we have a pair of paral-
lel lines, we can use problems 2 and
3 to find the center of the circle
through C, D, and P. What we need
is a pair of parallel chords in this
circle. We can get this using problem
3, which will tell us how to draw a
chord (of this circle) through P par-
allel to CB. Then, by problem 2, we
can bisect each of these chords. The
reader can prove that this line must
pass through the center of the circle.
If we now start over, with two more
lines through P and Q, we will get
two more parallel chords, one in
each of the two original circles. We
again use these to get parallel chords
in the circle through C, B, and P.
The line joining their bisectors is
again a centerline, and two center-
lines intersect at the center. Of
course we can do the same with the
other circle.

The last construction is compli-
cated to carry out physically. We
sometimes say that geometric con-
structions are carried out” with the
aid of language”; that is, we are
merely proving that such a construc-
tion is possible, rather than actually
carrying it out.

—Dby Igor Sharygin
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PHYSICS
CONTEST

Around and around she goes

‘Revolutions are celebrated when they are no longer dangerous.”

—Pierre Boulez (b. 1925)

by Larry D. Kirkpatrick and Arthur Eisenkraft

ERRY-GO-ROUNDS ARE

the most egalitarian ride in

that everybody can have a

good time. As our personal
thrill tolerances increase, we can
try such rides as the Loop-the-
Loop, the Tilt-A-Whirl, and the
Rotor, where the floor is pulled
out from under us when the cylin-
der is spinning fast enough to
“pin” us to the wall. The most de-
ceptive ride is the Tea Cups at
Disneyland. The Tea Cups sub-
jects us to three simultaneous cir-
cular motions. It looks tame
enough, but the ride can be a quite
dizzying experience depending on
how your friends spin the cups and
platform.

Circular motions can also be en-
tertaining in the physics class,
though we wouldn’t suggest there
will ever be two-hour lines of
people waiting to learn about cen-
tripetal forces and angular mo-
mentum.

Figure 1
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Let’s consider some classical ex-
amples of circular motion before we
move on to some interesting varia-
tions. We choose problems that are
most easily solved using the conser-
vation laws of linear momentum,
angular momentum, and kinetic
energy.

Consider a circular disk of ra-
dius R,, mass M,, and moment of
inertia I, rotating at a constant
angular speed o, about its axis of
symmetry. Its angular momentum
L, = I,o,, its rotational kinetic
energy KE, =(A)[;0?, and if it’s a
uniform disk, its moment of iner-
tia I, =(Y2)M R ?, all about the cen-
ter of mass of the disk.

Now let’s assume that we drop a
similar disk so that it lands exactly
on top of the first disk, face-to-face,
as shown in figure 1. Then conserva-
tion of angular momentum tells us
that

Li=L+L,=1o, + Lo, =, + o,

where the subscript f refers to the
final conditions. As a simple ex-
ample, let o, = 0 and I, = I,. Then
o =[)o,, as we might expect.

Although angular momentum is
conserved, kinetic energy is not con-
served. Let’s remain with the case
®, = 0. Then

1
KE, = Ell(of

and

Note that KE, is always less than KE,
and that the collision is inelastic. If
I, = I,, half of the original kinetic
energy is lost.

As a second example, let’s con-
sider a small ball with mass m and
speed v colliding with the rim of the
circular disk as shown in figure 2.

Figure 2

We assume that the disk is initially
not rotating, the disk is free to rotate
about a fixed axis through its center,
and that the ball sticks to the rim.
With what angular speed does the
wheel rotate?

We use conservation of angular
momentum. You might think that
there is no initial angular momen-
tum, but even a ball moving in a
straight line has angular momentum
about all points not on the line of its
motion:

L, = mvR,.

L
c
>

m
%]

=
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We also know that the final angular
momentum is

Ly = Loy,

where I, is the combined moment of
inertia of the disk and the ball. If we
assume a uniform disk, we have

I;=I,+mR} = (%Ml +m]R12.
Because I > [,

(D<V
g
R’

and the ball slows down. For the
case of equal masses,

.
"TBR

Convince yourself that one-third of
the original kinetic energy of the
ball is lost in this collision.

The first of our contest problems
is based on part of a problem on the
preliminary exam that was given
nationwide in January to select the
U.S. Physics Team that will com-
pete in Iceland this summer.

A. A disk of radius R spins with
angular speed o, about its axis,
which is held vertically in friction-

A

Figure 3

less bearings. The disk’s moment of
inertia about the spin axisis I . Ata
certain instant, a small chip of mass
m breaks off the rim of the disk and
flies away moving tangent to the
disk as shown in figure 3. What is
the angular speed of the disk after
the chip breaks off?

B. A ball of mass m and speed v
strikes the end of a thin rod of mass
M and length a as shown in figure 4.
Assume that the rod lies on a fric-
tionless table and that the ball stops
after the collision. What are the ve-
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Figure 4

locity of the center of mass of the
rod and its rotational speed about its
center of mass? For what range of
mass m is such a collision possible?
(The moment of inertia for the thin
rod is Ma?/3 about one end and
Ma?/12 about its center of mass.)

Please send your solutions to
Quantum, 1840 Wilson Boulevard,
Arlington, VA 22201-3000 within a
month of receipt of this issue. The
best solutions will be noted in this
space.

Cool vibrations

Our contest problem in the Sep-
tember/October 1997 issue explored
some classic problems in oscillations.
The first two parts dealt with the
change in spring constant (and there-
fore the oscillation frequency) when
springs are added in series or in par-
allel. Most readers find the problem of
two springs in parallel to be straight-
forward. Two identical springs in par-
allel will each have to support half the
weight of the suspended mass. Each
spring will stretch half as much in
order to apply half the force. The
equivalent spring constant of the pair

of two identical springs would there-
fore be 2k since the pair stretches
only half as much:

F=kx=2k>.
2

A general rule for springs in parallel is
k' =k, +k,

In contrast, springs in series must
each support the entire weight of the
suspended mass. The total stretch of
the two identical springs would be
twice the stretch of one spring alone.
The combined spring constant is k/2:

k

F=kx==—2x.
2

A general rule for springs in series is

1 1 1

Kk ke

In part A of the contest problem, a
spring is cut in half. With only half
the spring, the new spring constant
must be 2k. Two identical half
springs of 2k and 2k in series would
have the combined (original) spring
constant of k. With k being doubled
as a result of cutting the spring in
half, the frequency is now

where v, is the original frequency.
In part B, springs k, and k; are in
parallel. The combined spring con-
stant of k, and k; is k, + k;, follow-
ing our first rule. Adding k, in series

\
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amplitude

0 0.5 1 15
Figure 6

makes the equivalent resistance of
the combination

11 1

K & ktks
or

" ky(ky + ky)
ki+ky+k;

The corresponding period T is

Im
T=2n|—=2n
V k \

\

m(k; + k, + k;)
ky(k, +k3)

C. Using a spreadsheet and corre-
sponding graphing program, we can
generate a graph of the solution for
the damped oscillator (fig. 5). The
mean lifetime can be found by sub-
stituting A/e for the displacement in
the equation.

Finding the number of oscilla-
tions requires us to first calculate
the frequency and the elapsed time
when the maximum displacement
is A/4.

.
2 2.5 3 35
L
—A=Ae 21
4

t:un4(%?jzsoss

The o, using the values given, is
2.236 rad/s, which corresponds to a
frequency of 0.356 Hz. Then

(0.356 oscillation/s)(30.8 s)
= 11 oscillations.

The corresponding velocity can

bt | @'sin(@’t +0)
=—A 2m .
7 ¢ + (Zij cos(w’t + 0)

m

D. Using a spreadsheet and cor-
responding graphing program, we
can generate a graph of the solu-
tion for the forced oscillator for
different values of the damping
coefficient b (fig. 6). One notices
that if b = 0 and the driving fre-
quency is equal to the natural fre-
quency, we have a resonance ef-
fect gone wild, and the amplitude
grows without bound. As the
damping coefficient b gets larger,
we notice that the resonance ef-
fects seem to diminish in size.

The corresponding velocity can
be found by differentiating the dis-
placement equation:

dx

Fm ” 7y
v=—=20 cos(®”t—¢).

be found by differentiating the dis- Q
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A 32 £ 3@ @ =
Reload Home Sesich Guide Pint Seculy
* Bookmatks & Location: [hitp: #Zwww.nsta org/quantum? -l

sites

g

* News: Short items about Owaniien

* Stuff Guest Book | Search enpines | Some favonte O

v

Feb

QUANTUM/PHYSICS CONTEST 33




AT THE
BLACKBOARD |

Points of interest

Unique locations within a triangle

by I. F. Sharygin

N GEOMETRY, WE

learn about several re-

markable points asso-

ciated with a triangle,
such as the centroid, the
circumcenter, the in-
center, and the ortho-
center. In this article, we
explore some nontrivial
properties of these points.
Many of these properties
are, in fact, fully equiva-
lent to the definitions of
these points. That is, the
“remarkable point” is the
only one that possesses
the property we describe.

The centroid

One of the most inter-
esting points of a triangle
is the centroid: the point
of intersection of its me-
dians. Let us assume, for
a moment, that the
reader is not familiar
with a proof that the
medians of a triangle all
pass through the same
point.

In fact, let us forget
about the centroid alto-
gether. We will show
that there exists a point
M inside any triangle %l
ABC, such that triangles ‘
ABM, BCM, and CAM all have equal areas (figure 1). We  area), if we want |IABMI to be (1/3)|ABCI, then the alti-
will prove that this point exists by actually construct- tude (to side AB) of ABM must be 1/3 the correspond-
ing it. Where can point M lie? The triangles ABM and ing altitude of ABC. Thus M must lie on a line parallel
ABC will share side AB, so (using absolute value for to AB, at a distance equal to 1/3 the altitude to AB in

A

&
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A

Figure 1 Figure 2
ABC. But M must also have this relationship to side BC;
that is, it must lie on a line parallel to BC and at a dis-
tance equal to 1/3 the altitude to BC in ABC. The only
possible candidate for M is the intersection of these lines
(which are clearly not parallel to each other). In fact, this
point M works, since if [ABMI| = IBCMI = (1/3)|ABCI,
then |[CAMI is also (1/3)IABCI, and our construction
shows that this is the only possible such point M.

Now let’s return to the question of medians. We can
show that each median of ABC passes through M, and
that this point divides each median in the ratio 2:1
(starting at the vertex of the triangle). Indeed, let us
extend BM to intersect AC at K.

Since |IAMBI = IBMCI, these triangles have equal al-
titudes to their common side BM. The reader can prove
(for example by drawing these altitudes and consider-
ing congruent triangles) that this implies that K is the
midpoint of AC, so BK, which passes through M, is a
median. Again, IAMCI = (1/3)IABCI, so (as we have al-
ready seen) the distance from M to AC is 1/3 the dis-
tance from B to AC. Dropping perpendiculars to AC
from M and B, and considering the similar triangles they
form, we find that this implies that MK = (1/3)BK, so M
divides median BK in the ratio 2:1, starting from vertex
B. Of course, the same results hold for the other two
medians of ABC.

Thus we have found the following alternative de-
scription of the centroid:

Alternative 1: Point M is the centroid of triangle ABC
if and only if triangles ABM, BCM, and CAM have equal
areas.

The circumcenter

Another remarkable point in a triangle is the center
of its circumscribed circle or circumcenter.

Problem 1:In triangle ABC, ZA = 30° and £B = 80°.
Point K is chosen inside ABC such that triangle BCK
is equilateral. Find £ZKAC.

Solution: We could apply the law of sines to the
situation, but it’s better to note that K is the circum-
center of triangle ABC. Indeed, at the circumcenter,
side BC subtends an angle equal to twice ZBAC, or
60° (see figure 2). The circumcenter also lies on the
perpendicular bisector of side BC. It is not difficult
to see that point K is the only one that satisfies both

/

Figure 3

these conditions and so is in fact the circumcenter.
Then ZCKA = 2ZCBA = 160°, and ZKAC = 10°.

Problem 2: In convex quadrilateral ABCD, ZBAC
=25° /ZBCA =20° £BDC =50°, and ZBDA = 40°. Find
the acute angle formed by the diagonals of the quadri-
lateral.

Solution: We reason indirectly and show that D is the
center of the circle circumscribed about ABC. Since
triangle ABC is obtuse, its circumcenter lies on the
opposite side of AC from point B, and from it, sides BA
and BC subtend angles of 40° and 50° respectively. The
reader is invited to check that there can be only one
such point, so it must be point D. It is not difficult now
to solve the problem.

However, direct reasoning is usually preferable in
geometry. Since we've now guessed the true role of
point D, we can try to reason directly. We begin by
drawing the circle circumscribing ABC, and extending
AD until it meets the circle (fig. 3). In triangle DKA,
ZDKA = ZBCA = 20°, and the exterior angle at vertex
D is 40°. Thus, ZDAK = 20°, and DK = DA. Similarly,
DK = DC, and therefore D is the circumcenter of ABC.
Now we can easily find the angle between the diagonals:
it is 85°.

The incenter

Another remarkable point in a triangle is the center
of the inscribed circle, or incenter. Let I be the incenter
of triangle ABC. We begin by stating two properties of
this point that will prove handy when we look for al-
ternative descriptions of the incenter I.

Property I,: If I is the incenter of triangle ABC, then
ZAIC = 90° + (1/2)£B.

Property I,: If I is the incenter of triangle ABC, the
line BI passes through the circumcircle of triangle AIC.

The following alternative descriptions of the incenter
are based on properties 1 and 2:

Alternative I,. Let M be a point inside triangle ABC
such that ZBMC = 90° + (1/2)£A, and line AM passes
through the circumcenter of triangle AMC. Then M is
the incenter of ABC.

Alternative I,: Let M be a point inside triangle ABC
such that line AM passes through the circumcenter of
BMN and line MB passes through the circumcenter of
AMC. The M is the incenter of ABC. (The reader can
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check the converses; that is, if M is the incenter, then
M enjoys the two properties described above.)

We'll limit ourselves here to the proof of Alterna-
tive I,. Suppose the circumcircle of ABC meets lines
AM and BM for the second time by K and P respec-
tively (fig. 4).

We can show that ZMCB = 90° - ZKMB. Indeed, the
circumcenter O of triangle MCB (not shown in the dia-
gram| lies on AM, and if ZMCB = x, then Z/MOB = 2x,
and (since triangle OMB is isosceles)

ZKMB = (1/2)(180° - 2x) = 90 - x.

This is the result we need.

Similarly, ZMCA = 90° — /PMA. Angles KMB and
PMA are equal, so ZMCA and #MCB are also equal, and
MC bisects £C. Therefore,

ZKMB=90° - ZMCB=90° - %AACB
=90° - %AMKB = %(AKMB + ZKBM)

That is, /KMB = ZKBM, and thus KM = KB. So the
circle with center K and radius KB passes through
point M. It is not hard to see that it must pass
through C as well. Indeed, ZMCB = 90° - ZKMB, and
ZMKB = 180° - 2/KMB. So ZMCB = (1/2)2MKB,
which means that C is on the required circle.

But then K is the circumcenter of triangle MKB, so
AK bisects angle CAB. Similarly, MB must bisect angle
CBA, and M, their intersection, is the incenter of tri-
angle ABC.

Exercises 1-3: Prove properties I, and I,, and alterna-
tive I,.

The following property of the incenter of a triangle
is based on geometric vectors. It comes in handy in solv-
ing many problems. The most remarkable aspect of this
property is that it generalizes to three-dimensional
space (and even spaces of higher dimensions).

Alternative I,:If a, b, and c are the lengths of the
sides of the triangle ABC, and I is its incenter, then
alA+bIB+cIC=0.

Proof. Let I be the center of the inscribed circle, and
let Al meet BC at point A,. Then
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al?l+b]7§+c]?]zaI7l+b(fE+AT]§)+c(E+AT(f)
=(af’4+bE’+cE’)+(bA—lB’+cZﬁ)=kI_’A.

(In the last transformation we’ve used the well-known
property of the bisector:
AB ¢

AC b’

Readers unfamiliar with this fact can find a proof in a
standard geometry textbook.)

Thus, the vector sum in the product is a vector col-
linear with the line Al Similarly, we can show that this
sum is collinear with BI and CI. Thus it must have
length 0.

Exercise 4: Show that the equation of alternative I,
is equivalent to the statement that I is the incenter of
triangle ABC.

The orthocenter

One more remarkable point of a triangle is the point
where the altitudes meet, or the orthocenter. There are
many different ways to show that the altitudes of a tri-
angle meet at one point. We will give a proof related to
the one we gave for the concurrence of the medians, and
leave it for the reader to make conscious the relation-
ship.

We will show that the altitude to BC is the set of
points such that the ratio of their distances to AB and
AC is equal to cos B/cos A.

Let’s first consider an acute triangle ABC. First we look
at the distances from A, to AB and AC (see figure 5, in
which line segments measuring these distances are la-
beled AX and AY respectively). From right triangle AA X,
we find A X = AA, sin ZBAA,. But from right triangle
ABA,, we see that sin ZBAA, = cos £B, so we can write
A X =AA, cos £B. Similarly, A|Y = AA, cos £C, so the
ratio A, X:A,Y = (cos ZB):(cos £C).

Now we pick any point P at all on altitude AA,, and
note that the ratio of its distances to AB and AC is also
equal to (cos £B):(cos ZC). In fact, altitude AA, is the
locus of points such that the ratio of their distances to
AB and AC is equal to cos ZB/cos £C. (The proofs of



these assertions and of their converses are based on simi-
lar triangles and are left to the reader). Of course, corre-
sponding statements hold for the other two altitudes.

Now let'H be the intersection of altitudes AA, and
BB,. Then the ratio of the distances from H to AB and
AC is cos B/cos C, and the ratio of its distances to AB
and BC is cos A/cos C. Therefore the ratio of the dis-
tance from H to AB and BC is

cos B
cosC _ cosB
COSA  cosA’
cosC

But this means that H lies on altitude CC,, and the three
altitudes are concurrent.

The situation for a right triangle is simple: The or-
thocenter is just the vertex of the right angle. For an
obtuse angle, the reader can construct a proof that is a
variation on the one above. Or, we can note that if H is
the intersection point of two altitudes AH and BH of
obtuse triangle ABC, then AC and BC lie along the al-
titudes of acute triangle ABH (see figure 6). This means
that C is the orthocenter of acute triangle ABH, so the
perpendicular from H to AB passes through C. But then
the third altitude of ABC lies along this line, and the
three altitudes are concurrent at H.

Exercise 5: Prove, in general, that if H is the ortho-
center of triangle ABC, then in fact any of the four
points A, B, C, and H is the orthocenter of the triangle
determined by the other three.

The following property is often useful in solving prob-
lems related to the orthocenter of a triangle:

Property O,: The radius of the circle through two
vertices of a triangle and its orthocenter is equal to the
triangle’s circumradius.

Figure 7

This property is a consequence of a slightly stronger
statement that can be made:

Property O,”: The circle through two vertices of a
triangle and its orthocenter is symmetric to the circum-
circle of the triangle with respect to the corresponding
side of the triangle.

Exercise 6: Prove property O, by proving property
O,.

1We conclude our article with one more theorem.

Problem 3: Three equal circles pass through a com-
mon point. Show that this point is the orthocenter of
the triangle formed by the other intersections (in pairs)
of the three circles.

Solution: Let the three circles meet at point H and let
the other points of intersection by A4, B, and C (figure
7). Since the circle through B, C, and H is symmetrical
to the circumcircle of ABH (with respect to BH), it must
contain the orthocenter of triangle ABH. Similarly, the
circle through A, C, and H contains the orthocenter of
triangle ABH. Thus, the orthocenter of ABH must be
point C. By exercise 5 above, this means that H is the
orthocenter of ABC, and we are done. (@
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IN THE LAB

Getting into the swing of things

EW DEVICES IN PHYSICS
are as simple and reliable as pen-
dulums. Nevertheless, experi-
ments with them can illustrate
many interesting features of oscilla-
tory processes, which are extremely
important not only in mechanics
but also in electrical engineering.
Try to perform the experiments
that follow and explain the observed
phenomena. Although the experi-
ments themselves are simple, it isn’t
easy to explain all the details of a
pendulum’s motion. To do so you
should know the basic laws of har-
monic oscillation and have some
practice with trigonometric func-
tions. Advanced students should un-
derstand this paper, and younger
students can do the experiments and
explain some of their observations.

Y-suspension pentulum

Make a pendulum with two
points of support as shown in figure
1. The length of the pendulum’s
string I should be much larger than
the length of the suspension string
in the upper, forked part of the pen-
dulum.

Push the pendulum at some angle

Figure 1 Figure 2
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by G. L. Kotkin

to the figure’s plane. You will see that
at first the pendulum swings in the
direction of the initial impulse. How-
ever, after a while its motion gradu-
ally transforms into revolutions
about the vertical axis. Then the pen-
dulum again oscillates in a plane, but
this time it is not in the plane of the
initial oscillations. What will occur
next? Again revolutions—but in the
opposite direction! Gradually the
motion becomes oscillations in the
plane of the initial impulse. This suc-
cession of events repeats itself many
times. Can you guess the reason for
the strange behavior of a Y-suspen-
sion pendulum?

Goupled pendulums

(a) Suspend two identical pendu-
lums, each made of a nut fixed to a
string, from a not-too-taut string AB
(fig. 2). Pull one of the pendulums,
let it go, and observe the motion of
the system. Change the mass of the
bobs, the length of the pendulums,
and the tension of the upper string
and observe the effects on the
system’s motion.

(b) Suspend two identical pendu-
lums from a rigid frame. Tie them

Figure 3

together with a horizontal thread at
some height (fig. 3). Pull one of the
pendulums, let it go, and observe the
motion of both pendulums.

Construct a double pendulum as
shown in fig. 4. Both strings have the
same length, but the upper bob is
much heavier than the lower bob.
Push the lower bob and observe the
resulting motion.

Now that we have played with
these pendulums, let’s try to explain
their oscillating motion.

X

Figure 4 Figure 5

1. The rather complicated motion
of a Y-suspension pendulum is com-
posed of two simple oscillations:
one parallel to the plane zy and an-
other perpendicular to it (fig. 5).
These oscillations operate indepen-
dently of each other (provided the
pendulum doesn’t deviate from the
vertical line too much). The respec-
tive periods are

8
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and These formulas are correct for
. any angle (not just for acute angles).
T —om L This follows from the definitions of
g \/ g the sine and cosine functions.

First we study how to describe
the motion of the bob in our coordi-
nate system.! Let point A perform
circular motion with radius a and
angular velocity o either in the
counterclockwise (fig. 6a) or clock-
wise direction (fig. 6b). The projec-
tion B of point A onto the x-axis
performs a harmonic oscillation
with amplitude a and angular veloc-
ity o equal to 2m/T.

The projection C of the same
point A onto the y-axis performs a
similar harmonic oscillation but
reaches the point of maximum dis-
placement from the equilibrium
position O a quarter of a period later
(that is, at the moment radius OA
makes 1/4 turn around point O).
You can easily observe this by
watching the movements of point C
and B during the rotation of radius
OA. At the instant when the projec-
tion of point A onto the x-axis as-
sumes maximum displacement
from point O, its projection onto the
y-axis passes point O and vice versa.

This verbal description of the
complicated motion can be made
much shorter in the language of
mathematics. Indeed, from fig. 6a
we have

x=0B=acos$=acoswt,
y=0C=asind =asinmt

=acos| Wt —— |=dcosw|t——|
2 4

IL. Aslamazov and I Kikoyin,
“Wave watching,” Quantum, January/
February 1991, pp. 12-16.

40 MARCH/APRIL 1998

When the motion of point A pro-
ceeds clockwise (fig. 6b), we can see
that the oscillations of point C lead
the oscillations of point B by a quar-
ter period. On the other hand, we
can say that the oscillations of point
C lag behind those of point B by
three quarters of a period. In this
case the angle ot is negative, so

x =-acos(-0t) = acos wt,

y = asin(-ot) = -asin ot

o433
=qacos| Wt +— |=acos| ot — —
2 2 (2)

)
=4cosm t——|.
4

Formulas (1) and (2) show that the
coordinates x and y vary periodically
with time. In other words, points B
and C perform oscillatory motion.

Now let point A perform harmonic
oscillations along the line EOD (fig.
7) with frequency o and amplitude
b = OD = OE. In this case projections
B and C simultaneously reach the
most positive or negative displace-
ments along the x- and y-axes and si-
multaneously pass point O. Thus we
would say both points oscillate “in
phase.” Assume for simplicity’s sake
that ZDOx = 2r/4. In this case the
amplitudes of oscillation of points B
and C are identical and equal to

bcosg=bsin£:i.

4 2

Since OB = b cos ot, we get

b
X=}/=?COSOJL
N

3

y
D D
B
CrANE
Figure 8

When point A oscillates along the
line E’D’ (fig. 8), then at the moment
of point B’s maximum positive dis-
placement along the x-axis, point C
reaches its maximum negative dis-
placement along the y-axis. In this
case points B and C oscillate com-
pletely out-of-phase. In other words,
the oscillations of point C lag behind
those of point B by half a period (or,
equivalently, leads them by the
same value).

Then

b
X =—=Cosut,
V2

b b
——cos ot = — cos(wt — 1)

) )
b ( Tj

=—coso|t——|
2 2

Let’s recall the Y-suspension pen-
dulum. If its bob is displaced by the
distance a in the direction OD (fig.
7) and then set free, its coordinates
will change according to the follow-
ing formulas:

y:
(4)

{X =acoswt,

Yy =acosm,t, (5]
where
w1=g£: §I
(DZZZ—TE:\/§,
7, VL
b
ik

Remember, the lengths I and L
are almost equal, so the frequencies
o, and o, are the same to a first ap-
proximation. Therefore, at the very
beginning, the oscillations along the
x- and y-axes are almost in phase.



Since m, > m,, the y-oscillation
increasingly lags behind the x-oscil-
lation over time. We reasoned above
that in the ‘circular counterclock-
wise motion of a point, its projec-
tions onto the x- and y-axes oscillate
with a quarter-period phase differ-
ence. Thus, when the phase differ-
ence of the x- and y-oscillations of
the bob reach a quarter of the period,
the bob will just move along a circle
in the counterclockwise direction.
When the phase lag is half of the
period, the pendulum oscillates
along the line E’D’. The phase lag
steadily increases, so there will be a
moment when the y-oscillation lags
behind the x-oscillation by three-
quarters of the period, which corre-
sponds to the clockwise circular
motion of the bob.

Finally, the phase difference will
equal the period itself—in this case
the bob will oscillate along the line
ED. This is what we have observed
in the experiment with the Y-sus-
pension pendulum.

Our story can be retold in the lan-
guage of formulas. Equations (5) can
be rewritten in the form of

X =acosmt,
(6)

y =acos(ot - 9),

where ¢ = (o, — o,)t. The phase dif-
ference ¢ will not change markedly
during a few periods, but since it
steadily increases, it will be notice-
able after many periods. Inserting
the phase values ¢ = 0, ©/2, &, and
31/2 into (6] results in formulas (3),
(1), (4), and (2), respectively.
When ¢ = 27, the bob again oscillates
along the line ED.

The theory we have described can
be experimentally checked. Indeed,
we can calculate what time is nec-
essary for the bob to pass through
the entire cycle. If this time is T,
then ¢, = (0, - ®,]T, = 2%, from
which we get 2n/T, = ©, — ®,, or

111
TO_TI TZ' (7)

Now we should measure the pe-
riods T, and T, of the pendulum’s
oscillations, first forcing it to swing

_

N

Figure 9

in the plane yz and then in the plane
xz. The period T}, is measured inde-
pendently (it doesn’t depend on the
way we initiated the oscillations).
Check formula (7) by measuring T,
T,, and T,. To determine the value
of T (or T,), measure the time period
necessary for, say, 10 oscillations. In
performing these routine measure-
ments, note the factors that cause
the experimental results to deviate
from the theoretical results. It seems
that the primary reason is the de-
crease in amplitude caused by air re-
sistance. Thus, the bobs in our pen-
dulums should not be too light.

In reality, the movement of a Y-
suspension pendulum proceeds not
along a circle or a line but along a
rather complicated trajectory (fig. 9),
which more or less uniformly “fills”
an entire square.

If the initial displacement of the
pendulum forms an angle with the
plane of symmetry that differs from
n/4, the characteristic “instanta-
neous” trajectories of the bob are the
diagonals of a rectangle and the el-
lipses inscribed in it. The fact that

the motion of a Y-suspension pendu-
lum is composed of independent os-
cillations is referred to by saying
that its oscillations obey the prin-
ciple of superposition.?

2. Now let’s explain the oscilla-
tions of the coupled pendulums (figs.
2 and 3). If one of them is initially
displaced and then let go, the other
pendulum will begin to oscillate
with gradually increasing ampli-
tude. This is a result of the displace-
ment of the string AB caused by the
oscillations of the first pendulum.
When the string AB is displaced, the
elastic force affects the second pen-
dulum and imparts acceleration to
it. Thus, energy is transferred from
the first pendulum to the second. As
a result, the oscillations will de-
crease in one pendulum and increase
in the other. Finally, the first pendu-
lum will stop. At this instant the
amplitude of oscillation of the sec-
ond pendulum reaches a maximum.
Then the first pendulum will swing
with increasing amplitude, and the
second one will stop, and so on....

The complicated oscillatory mo-
tion of the system composed of two
pendulums can be described as a re-
sult of the summation (superposi-
tion| of two oscillations with fre-
quencies o, and o,. The first of these
is the frequency for symmetric oscil-
lation, which occurs when both pen-

Wave interference was considered
in contest problem by Arthur
Eisenkraft and Larry D. Kirkpatrick,
“Rising Star,” Quantum, September/
October 1994, pp. 44-47.

Figure 10

0 X1 X

Figure 11
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Figure 12

dulums are displaced to the same
side and simultaneously let go (fig.
10). The second frequency describes
the asymmetric oscillation, which
occurs when the pendulums are dis-
placed in opposite directions and let
go simultaneously (fig. 11).

While watching the coupled pen-
dulums, note that the angular fre-
quency o, is larger than ;. These
two kinds of oscillation are known
as the normal modes of coupled pen-
dulums. Let’s write down the sys-
tems of equations describing the
normal modes. The first is

’
X; =dacosmit,

’

X2 = _aCOS(Dlt,

and the second is
”
X; =dacosmt,

”

Xy =dacosmyt,

Let’s add the respective displace-

’ ’” &
ments x; and x; aswellas x, and

”

Xy -

’ ”
{X1=X1 +X), =d4cosm;t+acosmyt,

’ ” :
Xy =Xy +Xy =-4COsml+acosm,t

With the help of the cosine addition
formula, we get

- ® o, + .
X, = 2acos(¥tj cos[ 12 tj,
2 2

tjsin( ©, + 0y t]
9
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X, = 2asin(

Figure 13

The formula for x; can be re-
arranged as

x; = AcosQt,

where

A= Zacos(co1 ;mz tj

and

_ 0+ 0y
T

Q

Since , is almost equal to m,, the
expression

Cos(w tj
2

varies very slowly. Initially it is
close to 1 (when o, = ,, this expres-
sion always equals 1). Therefore, the

factor
Zacos{wtj
2

in the formula for x; can be consid-
ered to be a slowly varying ampli-
tude (the red dashed line in fig. 12a).
Similar reasoning is valid for x,. Fig-
ures 12a,b show the graphs of the os-
cillations described by these formu-
las. Such motions are known as
beating (or modulated) oscillations.
The period of beating equals half the
period of the sinusoid (the dashed
curve) and is determined by the for-
mula

or

1 I 1

T, T, T,

where T, and T, are the periods of
the normal modes. The frequency of
beating is equal to the difference of
the frequencies of the normal
modes. The closer T, and T, are to
each other, the larger the period.

3. Beating also occurs in the mo-
tion of a double pendulum. The light
pendulum either swings with large
amplitude or almost stops. The
movement of the large pendulum
can go almost unnoticed. Such beat-
ings are explained by additions of
the two normal modes shown in fig-
ure 13. Explain this motion on your
own.

Problems

1. Derive a formula for the period
of the oscillation of the mathemati-
cal pendulum, considering its mo-
tion as a rotation about the vertical
axis.

2. Experimentally find the
length of the Y-suspension pendu-
lum necessary to make the bob
draw a figure eight.

3. Adjust the lengths of two inde-
pendent pendulums in such a way
that one could measure the periods
of 10 s, 20 s, and so on without
counting every swing. Such pendu-
lums can be used to measure a
person’s heart rate after physical
exercise. (Galileo Galilei himself
measured the period of oscillation of
a chandelier in a church by using his
pulse as a clock.)



GRADUS AD
PARNASSUM

ymmetry In algebra

Getting started with group theory

YMMETRY IS A FUNDAMEN-

tal mathematical concept. The

study of symmetry, which is

called group theory, has been a
productive area of mathematical re-
search for two centuries, and its trea-
sury of uses and results shows no
sign of being depleted.

In geometry, the symmetry in
certain figures strikes the eye im-
mediately, and the difficulty lies in
harnessing it to achieve certain re-
sults. This is rarely the case in alge-
bra. Algebraic symmetry appeals to
the mind, not the eye, and reveals
itself only slowly as one works
through a series of problems.

Example: Solve the following sys-
tem of equations:

x+5y=9
S5x+y=15.

Following the usual textbook so-
lution, one would multiply one of
the equations by 5, then subtract.
This will of course get us the an-
swer, and the method generalizes to
any pair of simultaneous linear
equations, and to simultaneous
equations with more variables.

Or, we could solve one equation
for x and substitute into the other
equation. This method also general-
izes for any pairs of simultaneous lin-

by Mark Saul and Titu Andreescu

solve this system, a way that gener-
alizes in another direction: We have
x +5y=9and 5x + y = 15. Adding,
we find that 6x + 6y =24, sox + y = 4.
Then subtract this from the first
equation to get 4y = 5, or y = 5/4. Fi-
nally, we subtract this from the second
equation to get 4x=11,s0x=11/4.

Why does this method work? Be-
cause the left-hand side of the two
equations are symmetric in x and y:
the two variables play the same roles.
(Of course, if the variables are given
values, and the arithmetic operations
are carried out, the results will be dif-
ferent. This is why the right-hand
sides of the two equations are not the
same.) In higher mathematics, this
concept of algebraic symmetry is
made even more precise.

The following problems can be
thought of as a generalization of the
preceding one. In general, if we per-
ceive algebraic symmetry in a sys-
tem of equations, we should act on
them to preserve this symmetry.

1. Solve simultaneously:

x+2y+z=14
2x+y+z=12
xX+y+2z=18.

2. Solve simultaneously:

3. Solve simultaneously:

xy=6
yz=-2
zx =10.

4. Solve simultaneously:

(x+1)(y+1)=24
(v+1)(z+1)=30
(z+1)(x+1)=20.

5. Solve simultaneously:

xy-x-y=11
yz-y-z=14
zx—-x—-z=19.

6. Solve simultaneously:

X(X+y+z):4
y(x+y+2)=6
Z(X+y+z)=54.

7. Solve the system:
x+[y]+{z}=11

xl+y+[z]=22
[x]+{y}+2z=33.

; _ o x+y=7
ear equations (although it gets diffi- Y i
cult when we involve more variables). ytz=- Here, the notation [x] means “the
But here’s a more subtle way to z+x=9, greatest integer not exceeding x,”

QUANTUM/GRADUS AD PARNASSUM 13




and {x} means “the fractional part of
x,” that is, {x} = x - [x].

8.1If a is a given positive real num-
ber, solve simultaneously:

x*-xy=a
y* —xy =a(a-1).
9. Solve the following system of n

equations in n variables (where n is
some integer greater than 2).

X +Xy+X3+...+x, =1
X +X3+Xs+...+x,=2
X +Xy+X4+...+x,=3
X1+X2 +X3+...+X1171 =11.

10. A triangle has sides of lengths
13, 14, and 15. Its inscribed circle
divides each side into two segments,
making six segments in all. Find the
length of each segment.

11. The three altitudes of acute
triangle ABC (with sides g, b, and ¢)
determine six segments along the
triangle’s sides (see figure 1). If we let
X =cos A, y=cos B, and z = cos C,

@
bz
az a
b
cx d
A px ay B
c

Figure 1

then the trigonometry of the right
triangle lets us represent the six seg-
ments as shown in figure 1. Clearly,
we have

ay+bx=c
cx+az=b
bz+cy =a.

Solve this system of simultaneous
equations for x, v, and z in terms of
a, b, and c.

ANSWERS, HINTS & SOLUTIONS
ON PAGE 52
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CONTINUED FROM PAGE 27

technique. Copies were printed and
distributed to each student, and of-
ten passed far beyond the school
walls. The influence of these lec-
tures was great: The majority of
French mathematics textbooks in
the first half of the nineteenth cen-
tury were based on them. The
school’s leadership did all it could to
kindle the intellectual curiosity and
scientific creativity in its charges.

On the 18 Brumaire of the year
VII (9 November 1799), a 30-year-old
commander of the troops of the
Paris military district, General Na-
poleon Bonaparte, carried out a coup
d’état and became the First Consul
of the Republic. Napoleon was a tal-
ented military leader, but also a
member of the Institute de France!
in the division of mechanics. He was
interested in mathematics, had stud-
ied astronomy, and was the author
of an article on ballistics. It was im-
portant for him to obtain the sup-
port of the scientists and students of
the Ecole Polytechnique. Soon after
he came to power, he conferred the
title of Senator on three of the
school’s professors—Berthollet,
Monge, and Laplace. A new school
charter was adopted, which per-
sisted until 1853.

In May 1804, by decision of the
Senate, Napoleon was proclaimed
“Emperor of the French by God’s
mercy and the establishment of
the Republic,” and France became
an empire. Napoleon reorganized
the Ecole Polytechnique, subordi-
nating it to the military. In fact,
even before 1804, the students’
status hadn’t differed much from
that of cadets in military schools.
Established during the most diffi-
cult years of the revolution, the
school was created by military or-
der, and now, on July 16, 1804, its
military status was made official.
The students were formed into a
battalion of five companies under
the command of a general. They

IThe Institute de France, founded
in 1795, incorporated five national
academies, including the Academy of
Science.

were considered to be in military
service, and their dormitories were
considered barracks. They were paid
the salary of an artillery sergeant.
The school was moved from the
Bourbon Palace to the reconstructed
buildings of two older schools: the
College of Navarre and the College
de Boncoeur.

Napoleon plunged France into a
more or less permanent state of
war, which preoccupied students
and teachers and led to a frequent
reduction in examination require-
ments, advanced courses, and so
on. Being well aware of the
school’s military value, Napoleon
exempted the students from oner-
ous military duties. Thus, the
school was able to continue its
growth and development.

On presenting the draft of the law
establishing the school to the Con-
vention in 1794, Fourcroy, a member
of the Committee on Public Safety,
declared, “Without hesitation I pre-
dict that the new school will bring
glory to France.” These words turned
out to be prophetic. The Ecole
Polytechnique became one of the
most important factors in scientific
progress in the nineteenth century.
Its prestige was so great that its
alumni, regardless of whatever other
position they had achieved, would of-
ten sign themselves “former student
of the Ecole Polytechnique.” The
school created a scientific elite based
on personal ability and talent rather
than social class.

A complete list of all the out-
standing figures of science, military
science, and technology among its
alumni is impossible to give. Among
them we find the French mathema-
ticians Cauchy, Hermite, Jordan,
and Poincare; physicists Arago and
Fresnel; the entire Becquerel dy-
nasty; the astronomer Le Verrier; the
chemist Guy-Lussac; the philoso-
phers Comte and Sorel; and field
marshals Joffre and Foch. To this
day, this unique educational estab-
lishment continues to train France’s
elite science and engineering stu-
dents. For over 200 years, the school
has lived up to its motto, “For the
fatherland, sciences, and fame.” (@}



Art by Sergey Ivanov

AT THE
BLACKBOARD |

The horrors of resonance

Are you in for a rough landing?

NGINEERING STUDENTS

are often introduced to the sub-

ject of resonance with the sur-

prising fact that soldiers march-
ing in step across a bridge can cause
the bridge to collapse. Thus, officers
generally order their troops to break
step when crossing bridges.

A related problem can afflict airlin-
ers rolling on a runway. However
hard the builders may work, they will
not produce an absolutely even run-
way. Therefore, an airplane may
“jump” on it when landing too
quickly. Let’s consider this situation.

Let a plane of mass m move
with a constant velocity v and
touch the runway with its wheels
(fig. 1). Each wheel is supplied
with a spring that has a spring con-
stant k. The springs have length H
when relaxed. If the height of the
airplane’s center of mass is y at

by A. Stasenko

Figure 1

any given moment and the size of
the runway’s unevenness is h, the
deformation of a spring will be
Ay =y — H - h. Therefore, the
spring develops the elastic force

F=-kAy =-kly— H-h).

The minus sign indicates that the di-
rection of the elastic force acting on
the plane is opposite to the spring’s
deformation Ay. When the spring is
stretched, the force is directed down-
ward, but when it is compressed, the
force is directed upward. Therefore,

this elastic force tries to restore the
equilibrium position (and thus is
called the restoring force).

Now we write Newton’s second
law describing the vertical motion of
the airplane as ma, = -mg + 2F. The
2 appears on the right because an
airplane has two sets of wheels. In-
serting the expression for the elastic
force into this equation results in

ma, =-mg-2k(y - H-h).

We can immediately see a spe-
cial case of equilibrium when the
plane rests motionless on the run-
way (assume, for simplicity’s sake,
that h = 0 at this point). Then the
plane’s acceleration is a,=0, and
the last equation yields

mg

-H=-—"=,
Yo ok
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for the static deformation of the
spring. This value is negative be-
cause the spring is compressed un-
der the plane’s load.

Next we measure the vertical dis-
placement of the plane’s center of
mass relative to the equilibrium
position: Y = y - y,. We further sim-

plify the equation by dividing both -

sides by the mass m:

- 2Ky oy,
m

a,

Now we proceed with the trans-
formation of this equation. First, we
recall that acceleration is the second
derivative of the displacement with
respect to time: a = Y. Next we as-
sume that the runway unevenness is
a harmonic function with wave-
length A along the x-axis and ampli-
tude hy:

h=h, sin(Zn 5).
A

The constant horizontal velocity
corresponds to the equation x = vt,
and we denote the combination of
positive values as

1S

Now we can rewrite the equation in
the form

Y” +0}Y = odh, sin(Zn%t}

If the right side of this equation
were zero, most readers would rec-
ognize it as the equation for har-
monic oscillation with natural fre-
quency

2k

m

(DO:

However, we have a nonzero right
side: The harmonic function with
amplitude wy*h, and period T = A/v
(or frequency Q = 2%/T = 2wv/A).
These parameters are defined by the
external conditions—the wave-
length A and maximum “depth” of
the unevenness h,. Therefore, the
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resulting oscillations are called
forced oscillations.

Let’s find out how this oscillatory
system (an airplane with two
springs) responds to the runway’s
unevenness. We look for a solution
in the form of harmonic oscillations
occurring with the frequency of the
externally applied force Q:

Y =Y, sin Q.

After taking the derivative of
this equation two times (to obtain
Y” = -Q2Y, sin Qt), inserting it into
the motion equation, and cancel-
ing out sin Qt, we get an equation
for the amplitude Y

Y,y (-Q* + 0F) = w3hy.

Figure 2a qualitatively shows the
dependence of the oscillation ampli-
tude Y, upon the frequency of the
external excitation Q. When Q tends
to zero—when the plane’s velocity is
small or the runway is flat (A — co}—
Y, tends to h,. So when the plane’s
velocity is small or the wavelength of
the unevenness is very large, the
plane moves steadily along the run-
way without much vertical motion.
However, if the runway’s wavelength
and the plane’s velocity are such that
the frequency of the forced oscillation
approximately equals the natural fre-
quency Q = 2rv/A, something terrible
will occur: The amplitude of oscilla-
tion will become infinitely large
(Y, = o°), which means very large ver-
tical motions that could cause the pi-

lot to lose control of the airplane. This
is a case of resonance.

At large frequencies (Q > o), the
value of Y, becomes negative (the
dashed line in fig. 2a), but we can
“hide” the minus sign in the argu-
ment of the sine function

—|Yy|sin Qt =|Yp|sin(Qt + ).

In other words, the phase of oscilla-
tion ¢ changes by n when the exter-
nal force oscillates in the vicinity of
the natural frequency of the plane’s
oscillations—that is, when Q = o,
(fig. 2b).

Of course, scientists and engi-
neers do their best to avoid the am-
plitude resonance catastrophe (ex-
cluding the possibility of Y,| — eo).
One way to do so is to employ fric-
tional vibration damping. For ex-
ample, an oil shock absorber, a cyl-
inder containing oil and a piston,
could be connected in series with
the spring. This helps when the
natural sink of energy, friction, is
too small to damp the oscillations.
In this case we insert into the mo-
tion equation a dissipative force (re-
sulting in dissipation of mechanical
energy by transformation into heat),
and now |Y,| will not tend to infin-
ity (see the dotted curve in fig. 2).

Also, there are two real-world rea-
sons why airliners avoid the reso-
nance amplitude catastrophe. First,
the bumpy surface of the runway
will probably not be a strictly peri-
odic function (with constant wave-
length A). Second, planes don’t land
or take off with a constant velocity;
they accelerate quickly before take-
off and brake rapidly after landing.

However, for land vehicles (say, a
raiload car), both A (the rail’s length)
and v (a train’s velocity) are rather
stable, so sometimes you can observe
the resonance. The raiload car begins
to “jump” and oscillate in different
ways: strictly vertical or rotating
about the horizontal axes—either the
transverse one (pitching motion) or
the longitudinal one (rocking mo-
tion). A railroad car has many wheels
and springs, so its motion is described
by far more complicated equations
than the one we considered here. (@)




IN THE OPEN AIR

hy is the Sky blue?

Is it just for the atmosphere?

by Alexander Buzdin and Sergei Krotov

AVE YOU EVER WONDERED
why the sky is blue? For many
years inquisitive people have
asked this question and many
others, such as How many colors ex-
ist in the world? and Why are they
different? Thanks to the work of
scientists, we now know
enough to answer these
questions about colors

oscillations of tightly connected
electric and magnetic fields spread-
ing in space—in other words, elec-
tromagnetic waves. Another com-
mon example of an electromagnetic
wave is a radio wave. The nature of
light and radio waves is the same,
and the only distinction between
them is the
frequency of

that different colors have different
speeds in a transparent medium.
This phenomenon, called disper-
sion, makes it possible to separate
white light into its component col-
ors by passing it through a prism.
Any color of the rainbow can be
obtained from white light. But why
do the objects have the colors they
do? If we were to take a yellow ball

and light. electromag- into a dark room, we would not see
In the seventeenth netic oscilla- any color; the ball does not radiate
century Sir Isaac tion: Radio coloredlight. To see the ball’s color,

Newton made a
great contribu-
tion to the
development
of the study of
colors. He ob-
served that
solar (white)
light separated into
many colors when it passed through
a glass prism. The resulting spec-
trum exactly corresponded to the
colors of a rainbow. Thus Newton
produced a laboratory-made rain-
bow with the colors red, vel:
, green, blue, indigo, and w(niu
(An easy way of remembering the
order of the colors is to use the name
Roy G. Biv as a mnemonic.) The
experiments of Newton helped us

Much more time we
scientists discovers

wave frequen-
cies are thousands of
times lower than those of
visible light.! What's
more, each color of
light has its own fre-
quency of oscillation.
Using a musical anal-
ogy, red corresponds to
deep (bass) tones and violet light to
high tones.

The speed of light, ¢, equals
3.0- 108 m/s. It’s many thousands of
times larger than the velocity of
sound waves, so a person listening to
the radio in Seattle actually hears a
musician playing in Moscow earlier
than a Muscovite concertgoer. This
refers to its speed in a vacuum.
When light passes through a trans-

in th ary/February 1995 issue of

we must illuminate the ball. When
the ball is illuminated, the incident
light is partially absorbed and par-
tially reflected, and we see only the
reflected part. Due to their indi-
vidual molecular structures, differ-
ent bodies absorb or reflect light
from various spectral ranges differ-
ently.

Let’s take a tomato, for instance.
At different stages of ripening it will
predominantly reflect either green
or red light rays. This happens be-
cause of the molecular rearrange-
ments in the tomato as it ripens. (It’s
no coincidence that chemistry con-
siders color an important character-
istic of a substance.)

Colors on command

by light scattering in the atmo-
sphere. Why, then, isn’t the night

w
Sé realize ¢ light is a mixture parent medium, its speed is slower. “The sky above is azure-blue,”
= of its com olors. In particu-  Of particular importance is the fact wrote the Georgian poet Nico
8 lar, Newton demonstrated that a Baratashvily. But is this line correct
= . C .1 3 . "

mixture of the rays of a separated . : i ! -
§ s 5 T i See also A. Leonovich ”Surfmg the from a physllcal point Of.Vlew Usu
= white beam is zlso white e agnetic spectrum,” pp. 32-33 ally the sky’s blue color is explained
<
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sky blue when the Moon is full? And
why do different parts of the sky
have different tints of blue—some
bright and others dull? And what
happens to the sky at sunset?

An attentive person will see that
at sunset the western part of the sky
becomes slightly tinted with yellow
and orange; then, when the Sun is fi-
ery red, the sky changes from yel-
low-orange to bright red; and finally
the sky is painted in magenta up to
the angular altitude of about 25°.
Since the reason for this dramatic
performance is sunlight scattering in
the atmosphere, let’s look at light
scattering in more detail.

The explanation of the celestial
colors was given by the English
physicist J. W. Rayleigh. In simpli-
fied form it looks like this: The color
of the sky is determined by the fact
that different frequencies of light
scatter differently. The electromag-
netic wave “rocks” the electrons in
the air molecules. Rays at the violet
end of the spectrum have the stron-
gest influence upon the electrons.
Thus, the electrons of the air mol-
ecules “capture” the oscillation en-
ergy of the blue part of the spectrum
from the incident solar wave. This
generates extra motion for the elec-
trons—the so-called forced oscilla-
tions. But oscillating eclectrons
themselves radiate electromagnetic
waves. However, this secondary ra-
diation propagates in all direc-
tions, not just in the direc-
tion of the incident solar
light. This process
is known as
the scatter-
ing of
light.

An-
other phe-
nomenon important to
the explanation of light
scattering in the sky is the
heterogeneous distribution of air
molecules in the atmosphere, as
seen in the persistent fluctuations of
air density. Indeed, were air mol-
ecules distributed homogeneously
in the sky, the scattering would be
quite different, and the sky would be
jet black.
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So air molecules scatter most of
the blue part of the light spectrum,
and these regions of the sky are per-
ceived as blue or light blue. (Here a
question may arise—why blue and
not violet? The reason is twofold:
first, the human eye is not very sen-
sitive to violet light, and second, so-
lar light has “fewer” violet rays than
blue ones.)

The longer the atmospheric path
of solar light, the fewer blue rays in
it. This explains why the setting Sun
is reddish orange. In the evening the
Sun’s rays travel much farther
through the atmosphere than at
midday, when they come from di-
rectly above.

Particle persuasion

It’s clear that smoke, dust, and
other tiny particles suspended in the
air notably affect the light scattering
in the atmosphere. After powerful
volcano eruptions, sunrises and sun-
sets display wonderful colors—the
Sun and Moon can even be blue!
Here’s a description of the effects
produced by the catastrophic erup-
tion of Krakatau in 1883, given by
the Russian scientist V. A. Obru-
chev: “The fine ashes screened the
Sun in Japan and other places at dis-
tances of more than 3,000 km.
These ashes floated in the atmo-
sphere for a long time and caused the
bluish tint of solar and lunar discs

seen from Africa and the Pacific

Ocean islands, as well as

the splendid red dawns

observed everywhere

on the Earth at the end

of 1883 and in early
1884.”

In this case the
blue color of the Sun
and Moon resulted
from light scattering
on the atmospheric

aerosol composed of par-
ticles ranging from 0.4 to 0.9 um and
thus comparable in size to the wave-
length of visible light. Because of
their relatively large size, they scat-
ter light at the red end of the spec-
trum more strongly than at the vio-
let end. The Sun and Moon observed
through such an acrosol are seen as

bluish discs be-
cause after the
scattering of the
red constituent
of white light,
only the blue
rays reach

the human

eye.

Some-
times
a beau-
tiful, mysteri-
ous, bluish haze
hovers over a green, open space
not too spoiled by industrial activ-
ity. The Blue Mountains in Aus-
tralia and the Blue Ridge Moun-
tains in the eastern United States
both are named for and famous for
their bluish haze. Their color re-
sults from light scattering on tiny
particles much smaller than the
wavelength of visible light. These
particles can be organic macro-
molecules emitted by the verdant
surroundings or tiny fragments
torn off the pointed parts of plants
by atmospheric electric fields. The
extra scattering at the blue end of
the spectrum arises only where
such particles accumulate in the
atmosphere.

So the colors that paint the celes-
tial sphere are caused by the combi-
nation of Rayleigh scattering and
light scattering on small, suspended
particles. It’s comforting to know
that the “azure-blue” sky does have
a sound physical basis behind it.
Here are some related topics to con-
sider:

1. Why does a Christmas tree
decorated with different-colored
lights look red from a distance in the
evening?

2. The next time you're sitting
near a bonfire, ask your friends why
the smoke looks blue against the
trees (near the ground) but once high
above them turns yellow against the
sky?

3. Let a few drops of milk fall into
a glass of water and watch a lamp
through it—it looks reddish orange.
However, the light emitted from the
side of the glass is light blue. Explain
the difference in colors. Q)



Math
M226

For every square of the board we
can point out its “predecessor”
squares—the squares from which
the king can move directly to the
square. Clearly, the number of dif-
ferent paths that lead to a square is
the sum of the number of different
paths that lead to each of its prede-
cessors. Now we can write “1” in
the lower left square of the board
and then fill in the rest of the
squares (fig. 1).

1

[

61 |231|681|1683
411129|321| 681
25|63 (129(231
13]25]41|61
11

e e e e e
— o o [ o
(3]
— |~
O

Figure 1
M227

Suppose first that there are infi-
nitely many gangsters, all of whom
have a contract out on some gang-
ster Al. Then the gangsters who are
out for Al solve our problem.

Now suppose that there is no
such Al—that is, each gangster is be-
ing sought only by a finite number
of others. We construct the required
subset by induction.

We choose one gangster, Bill, and
kill all his enemies. Bill will be the
first member of our :ub\et Ot the
surviving gangster
other. Since we have
many gangsters B_l |
finite), and there are infinitely many
left, ' we can choose one, sav
Charlene, who is not Bill's target

ANSWERS,
HINTS &
SOLUTIONS

Charlene also cannot be Bill’s en-
emy because these are already dead.
Now we kill all Charlene’s enemies.
Then we choose a third gangster
Dean, who is not sought by either
Charlene or Bill, and kill his en-
emies, and so on.

It is not hard to see that this pro-
cess can be continued indefinitely.
Indeed, suppose n gangsters are al-
ready chosen. Then we've killed off
only finitely many gangsters (we
have supposed that no gangster has
infinitely many enemies), so there
are infinitely many others left, and
one can choose an (n + 1)st gangster
who is not the target of any of the
preceding n. The set {Bill, Charlene,
Dean ... | meets the requirements of
the problem.

M228

The function on the left side of
this inequality is defined in the
square -1 £ x<1,-1< y<1. Let
M = (x,, ,) be a point of this square
at which the expression on the left
side is strictly positive. That is,

(vy® - aresin x) (x,* + arcsin y,) > 0.

Then, for the point M’ = (y,, —x,)
we'll have
(~x, — arcsin y,) (v, — arcsin x)

=y, —arcsin x,) (x,* + arcsin y,) < 0.
In other words, if point M belongs to
the figure determined by the inequal-
ity, then its image M’ under a clock-
wise rotation by 90° about the origin
does not belong to the figure. Con-
versely, a counterclockwise rotation
by 90° about the origin maps points
that do not belong to the figure into
points that do belong to the figure.

Thus, the area of the figure equals the
area of its complement in the afore-

mentioned square (in fact, these two

QUANTUM/ANSWERS

sets are congruent), and this area is
equal to

L)
2

(Here we’ve assumed that the “area”
of the region where

(y® — arcsin x)(x® + arcsin y) = 0

is equal to zero, which is certainly
true.)

M2z229

Consider five vectors:

alx, 1-%%), b(y? \s‘m)/
c(z, \Q—i), d(t, \ﬁ)/ e(6, 8).

The system is equivalent to the fol-
lowing vector equality:a+b +c+d
=e.Butlal=1,[bl=2,lcl =3, Idl =4,
and Idl = 10. That is, la + b + ¢ + dI
=lal + Ibl + lel + Idl. This can happen
if and only if all the vectors a, b, ¢,
d, and e are collinear. Now we can
easily find the answer. For example,
let’s find x. Let a = Ae, so that x = A6,
and V1- x> =A8. Then A = 0.1, and
x=0.6. Similarly, y=1.2,z=1.8, and
t=2.4.

M230

First we'll show, in this case, that
D lies on ray MA (and not on ray
ME, which could happen if ZABC is
obtuse). Suppose we draw a semi-
circle with diameter AC. Then, if

B
D A MK C 'E
Figure 2
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ZABC is acute, point B will lie out-
side the semicircle. This means that
BM > AM, so in triangle ABC, we
have ZBAM > ZABM, so D lies on
ray MA. Similarly, E lies on ray MC.

We use the fact that the bisector
of an angle in a triangle divides the
side to which it is drawn in the ra-
tio of the triangle’s other two sides.
Applying this theorem to triangles
DBM and BEM, we obtain DB/BM
- DAJAM, BE/BM = CE/CM. Divid-
ing the first of these equalities by

the second, we get
DB_DA "
BE CE’

Let the bisector of Z/DBE intersect
DE at the point K. Then

DB DK
BE KE' 2]
Now if a/b = c¢/d, then

_a+c
b+c

S

as well (the reader can prove this, for
instance, by examining cross prod-
ucts). This implies that

DB _DK-DA _ AK
BE KE-CE KC'

Since BK bisects Z/DBE, we can write

£ZDBK = 2/ZABM + ZMBK
= LEBK = 2/ZCBM - £ZMBK,

s02/ABM =2,/CBM-2/MBK. Divid-
ingby 2 and simplifying, we find ZABM
= ZCBK. Let ZABM = o.and ZMBC =
B. (Thus, ZCBK = o, ZABK = ).

Now we let the area of triangle
XYZ be Syy,. We can write

1
—AB- BKsin
KC  Scpx %CB-BKsinoc
1CB BMsi
AR | 5 CB- sinf

2
CB %AB -BMsinao,

=t of Scam _ k"
Sasm
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Thus, DB/BE = k®. The case when
Z/ABC is obtuse is left to the reader.

Physics

Let us consider a small time in-
terval At, during which the first
beetle travels a distance s, = v,At,
and the second one s, =v,At.

What must the displacement of
the cockroach be to preserve the
equilateral shape of the triangle that
connects all the insects? Assume
the first beetle to be motionless
while the second beetle is making a
step §, (fig. 3). To preserve the
equilateral shape of the connected
triangle B, B,’C’, the cockroach must

shift its position by CC’ such that
]E’] =[5,| = v»At.

Now let the second beetle rest while
the first one changes its position by
§,. In this case the cockroach must
make a step C’C”, which is charac-
terized by

‘C,C” = |§l‘ = VlAt.

The cockroach should make both
steps CC”" and C’C” if the beetles are
displaced by s, and s,:

GC + T =007,
The vector diagram CC’C” (fig. 4)
yields

cc|<|cc]+|ee = (v, +v)at.

The respective velocity of the cock-
roach is thus

Figure 3 Figure 4

\CC/I
Ve :A—tSVl +Vv, <2v.

The equality holds when the cock-

. 7
roach’s displacements CC’ and CC
have the same directions.

P227

By the statement of the problem,
the ball rolls without slipping, so at
any moment the velocities of points
A and B (fig. 5), which contact the
chute, are equal to zero. We assume
the ball to be absolutely rigid, which
means that distance between any
two points of the ball doesn’t vary.
Therefore, all the points of segment
AB are motionless at any moment in
time. Thus, the motion of the ball is
a rotation about the axis AB, which
travels with linear velocity v.

The instantaneous velocity of any
point of the ball is wp, where o is the
angular velocity of rotation and p is
the distance from the point to the
axis AB. The velocity of the ball’s
center (point O in fig. 5)is v, and the
distance of point O to AB is

3
po =|0C|= RT.
Therefore,
v v
Po RV3

So, the points with the maximum
velocity are located farthest from
the axis AB. From a geometrical
viewpoint it is clear that there is
only one point located farthest from
AB: point d in fig. 5. The respective
distance from the axis AB is

d

Figure 5




pd=po+R:R[l+—§],

so the velocity of point d is

Vi = Vmax = OP4
/3 /3
= ZKR 1+ﬁ =V2+N
R\““-\% . 2 ’\,/g

P228

By the conditions of the problem,
the amount of heat transferred dur-
ing a small period At to the surface
area 4nr? of the spherical drop is

AQ:M
r

4n12At,
where r is the drop’s radius, o is a
constant coefficient depending upon
the thermal conductivity of the sur-
rounding medium, and T _and T ; are
the temperatures of air and the drop
(T, >T,). This heat is spent to evapo-
rate some mass of liquid matter Am.
Denoting the latent heat of evapora-
tion by L, one can write conserva-
tion of energy as

LAm = -AQ = -a(T, - T; JAnrAt.

The minus sign is included on the
right-hand side to indicate that the
mass of the drop decreases with
time. Since m = (4/3)nr?p,, where p,
is the drop’s density,

Am = 4nr’pAr.

Plugging this formula into the en-
ergy equation, we get

oT, -T,)
IAr =———— Af,
Lpg

Figure 6

Figure 7

or

(Iz), = _B/
where B = 20(T, - T,)/Lp, is a posi-
tive constant.

Therefore, the square of the
drop’s radius decreases linearly with
time:

e
where 1, is the drop’s radius at the
initial moment t = 0. Thus, the ra-
dius decreases (fig. 6) by the formula

[42
Iz\jl‘o —Bt.

By the conditions of the problem,
the radius decreases by half during
time T = 10 min = 600 s. That is, it
becomes 1,/2, so

2

Iy 2

2 =7 —Br,

C-r-p

;38
4 1

FPZ229

First, a note of caution: The elec-
tric resistance of an incandescent
lamp is not a constant. Indeed, it
varies with the voltage drop across
it: The higher the voltage, the higher
the temperature of the lamp’s fila-
ment and thus its resistance. By the
conditions of the problem, the
brightness of the filament is the
same for both positions of the

Figure 8

switch, so the voltage drop V,across
the lamp and its resistance R are also
the same in these cases.

The equivalent circuit diagrams
for closed and open positions of the
switch are shown in figures 7 and 8.
The resistances of subcircuits BC
and AC for the closed switch are

RR;

=R+—R3,RAC =Ry +Rpe- (1)

BC

Inserting the values of R, and R, (in
ohms) into (1) yields

90R

_ 270(R + 60)
BC T R+90’

R+90 2

AC =
The voltage drop across the lamp for
the closed switch is

Vv

AC

VZ=

RBC'

Taking into account (2) and the
given value V = 54V, we have

18R
V, = .
" R+60 (3)

A similar calculation for the open
switch yields

__36R A
' R+150 4)
Finally, from (3) and (4) we obtain
the sought value of voltage drop
across the lamp: V,=6 V.

P230

To solve this problem we shall
use conservation of energy and mo-
mentum for an isolated system. Ini-
tially, before radiating a photon, the
system was a motionless hydrogen
atom in the excited state, which
means the orbital electron occupied
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not the lowest energy level E, but
some level with higher energy E_.
An atom can be excited by some
external event, such as a collision
with other atoms or a free electron
or the absorption of a photon (a
quantum of light). In the idealized
case, when there is no recoil, the fre-
quency v, of the emitted light is de-
scribed by the equation E, - E, = hv,,.
In a motionless atom the total en-
ergy is equal to the rest energy of the
nucleus (proton) m c¢? and the en-
ergy of the selectron E , and the to-
tal momentum of the atom is zero.

After radiating a photon with en-
ergy hv, the isolated system includes
both the photon and hydrogen atom,
which acquired a certain velocity v
due to recoil. In this case the total
energy of the system is

2

mpv

2
m,c” +E; + + hv,

and the total momentum of the sys-
tem is

According to conservation of en-
ergy and momentum, we get

Since E, - E, = hv,, we obtain

hAv = hv - hv,
~ mpvz_ (h\/)2
2 Zmpczl
or
Ave— h\/zz:_ h -
2m,c 2m,\

For relatively small frequency devia-
tions (Av << v} we can write

c c
Av=A|l = |= - AL
¥ (kj 22
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Figure 9
Finally,
M= —67.10" m,
2m,c

Brainteasers

B226

Let t be the number of doughnuts
one can buy for $1. Then 25 = t2, so
t = 5. Thus, one doughnut is 20¢.

B22r7

Consider three groups of children:
girls, boys that ride behind girls, and
boys that ride behind boys. Since ev-
ery girl rides behind a boy, we con-
clude that there is a boy after each
girl (otherwise, there would be a girl
after another girl). Thus, there are as
many boys riding behind girls as the
total number of girls. But we know
that the number of boys riding be-
hind girls is equal to the number of
boys riding behind boys. So, all these
groups consist of equal numbers of
children. Therefore, there are 10
girls and 20 boys.

B228

Two trips to the shop took Boris
3 x55-35-50 =80 minutes. Thus,
it takes him 40 minutes to buy and
eat an ice cream cone and come back
to school, so he has quite enough
time to go to the shop again.

B229

See figure 9.

B230

Air is a poor heat conductor. By
fluffing their feathers, the birds en-
large the air layer between their bod-
ies and the atmosphere.

Gradus ad
Parnassum

1. Add the three given equations
to get

4x + 4y + 4z = 44,
or
X+y+z=11.

If we subtract this in turn from each
of the given equations, we find very
quickly that y =3, x=1,and z = 7.
The reader who has tried substitu-
tion will appreciate how much
easier this solution is.

2. Adding the three equations, we
find

2x + 2y + 2z = 14,
or
X+y+z=7.

Subtracting each of the given equa-
tions in turn from this one, we find
z=0,x=9,and y = -2.

3. Taking a hint from problem 2,
we multiply the three equations to-
gether, to find x2y2z2 = 6 - 15 - 10, so
xyz =£30. Then we divide this equa-
tion by each of the given equations
to find (x, v, z) = £(2, 3, 5).

4. Let’s be quick about this. Let
p=x+1,g=y+1,andr=z+1.Then
we have pg =24, gr = 30, and rp = 20,
and we have the same kind of equa-
tions as in problem 3. We find that
(p, g, 1) =4, 6,5)or (-4, -6, -5). The
corresponding values for (x, y, z) are
(3,5, 4)and (-5, -7, -6).

5. We can make this problem re-
semble problem 4 by the trick of
adding 1 to each side of each equa-
tion. For example, the first equation
becomes

xy-x-y+1=12,
or
(x-1)y—-1)=12.

Wethenletp=x-1,g=y-1,r=2z-1,
and proceed as before. We find that
(x, v, z) = (5, 4, 6) or (-3, -2, —4)

6. Adding all three equations, and
factoring the left side, we find that



(x+y+2zP2=64 s0x+y+z=18.
Then we divide each of the given
equations by this relation, to find

1 327 1 3 27
(XrY/Z): il R0 8 Eelel sl
24" 4 274" 4
7. Add the given equations to get
2x +2y + 2z = 6.6,
or
X+y+z=33.

Subtracting the first equation from
this new relation, we get {y} +[z] = 2.2.
But this means that[z] =2 and {y} = .2.
Subtracting the new relation in turn
from the other two given, we find that
[x] +{z}=1.1,s0[x]=1and |z} =.1, and
Ix} +[¥] =0, so {x} = 0 and [y] = 0. Fi-
nally, we can paste the values of x, v,
and z togethertofindx=1, y=.2, and
z=2.1.

8. Adding the equations, we find

x> -2xy +y* = (x-y) = @,

so x — y = ta. We write the given
equations as

x(x-y)=a, -ylx-y]=ala-1),

and divide each in turn by x — y. We
find that (x, y)=(1, 1 —a)or (-1, a-1).
9. Rather than adding the equa-
tions, we take advantage of their
symmetric relation to the sum

X +X2+X3+... +X11'

1
Denoting this sum by S (forgetting
for a moment that we know that it
is equally numerically to 1), we can
write the system as

S_X2=2
S—X3:3
S—‘ n71=n_1
S-x,=n.

Figure 10

Then we recall that in fact S=1, and
see immediately that

x,=-1,%=-2,x,=-3,.,x, = [-n+1)

Then, from a well-known formula,

X2 +X3+"’+XH:

n(n—l).
2

—[1+2+‘..+(n—1)]:—

Finally,

xp=1l-(xy +x3+...+x,)
n(n-1)
-

=1+

10. Since tangents to a circle from
a point outside are equal, the seg-
ments of the sides are equal in pairs.
Let their lengths be x, vy, z (see fig.
10). Then we have

x+y=13
v+z=14
z+x=15.

We can solve these using the
method of problem 2. We find that
x=7,y=6,and z = 8.

11. We cannot use the method of
problem 2 (or problem 3), because
the coefficients of x, y, and z do not
follow the same patterns as in those
problems. But suppose we divide the
equations by ab, ac, and bc, respec-
tively. We obtain

F,E_ 4
b a ab
x z b

R B i
a ¢ ac
z,y_a
c b bc

and now we can let A = x/a, B=y/b,
C = z/c, and apply the method of
problem (2). We find that

2,72, 2
A:c+b+a _a
2abc bc

_cz-i-bz—a2

2abc
with corresponding expressions for

B and C. Then we can easily find
that:

B4~
2bc
_a’+c’-b°

2ac

_at+b*-c?

z
2ab

But if you remembered the law of
cosines, you already knew this!
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X GlOSS SGIence by David R. Martin
[~ ]
(=] 1 2 3 4 5 6 7 8 9 10 |11 |12 |13
[ep=——==1
|—-
S |7 E
17 18
20 21
26 |27 |28
33
36 37
39 40
42, 43
47 148 |49
Across
1 Ireland 55
5 Noble gas
10 Feudal estate boss 59
14 Contract
15 __ oil (caraway oil) 62
16 French historian
___Halevy
17 Horses’ walk 46 Cap 8 Inand ___ 47 Book leaf 52 Mild oath
18 Australian states- 47 3.258 light-years 9 Mg,N, and Mn,N 48 44,202 (in base 16) 53 Compacted snow
man Herbert 50 Synthetic rubber 10 ___jar (capacitor) 49 Actress___ Perlman 54 61,162 (in base 16)
19 365 days 55 Pain 11 Oil: comb. form 50 Usage: comb. form 57 Container

20 Containing H,O 56 Gram-negative 12 Indonesian islands 51 Jewish month SOLUTION IN THE
22 Element 88 aerobic bacteria 13 Skin: suff. NEXT ISSUE
24 Hebrew judge 58 Reverse curve 21 Winglike T n——
25 Fir or hemlock 59 Celt 23 French liqueur
26 Taxi driver 60 Belgium province 25 Light refracter RARLARRER AL S PLEILE
29 Abscissa’s partner 61 ___ Letterman 26 Warm sea fish A|L|O|W I |S|A|A|K T|I |E|R
33 Smell in Brit. 62 60,079 (in base 16) 27 712,444 (in base 16) DA |M|E 1 |L|G|E ofr|p|E
34 Diptera 63 Organic compounds 28 Bragg Dl |E|B ElM|E|R]|Y RIYIAIN
35 Fast particle’s 64 60,906 (in base 16) 29 Disulphuric(vi] acid slclele s Alr |E Tlrlalclz
energy I] 30 S\lfveater' type R Ml HIE s |s
36 Group of rays own 31 Virologist Howard &1 T I e (g T T1E s |1 |4 (s
37 Newsmen 1 Alphabet run .
3 BI|E|L A E |E Al|E A|E |B|I
38 Arrive 2 Now__medown.. 32 Occurrence
39 “mo ___, ands, or 3 Geophysicist Harry 34 Psychoanalysis BIRIAID BIR Lt LIVIAIN
buts...” _ (1859-1944) founder ClA|T| A e |AlS | B (L 8§ (B |T|&
40 Intestine section 4 Max. or min. 37 Geologic epoch AT |OIM|I |C S |A M LJE]I
41 Eurasian finch 5 It's used in 38 Center’s path S [K]I [N R[HE
42 Element 89 explosives 40 Concerning A[D|E|N|O M|A|B O[R([B|I |T
44 Chemist James ___ 6 Talk wildly 41 Cleansing agent H|U|G|O G|A|T|E|S G|E |N|E
(1893-1978) 7 Common differen- 43 Inand of AlrRIAlT Alclalr]|s olslolE
45 Walked upon tial operator 44 Singing groups Blals |E Ble INlc|T NlalN]D
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Art by Mark Brenneman

COWCULATIONS

Milk routes

Count the whey

py Dr. Mu

ELCOME BACK TO COWCULATIONS, THE
column devoted to problems best solved with a
computer algorithm. The winter snow has fi-
nally hit the Midwest. The muck is knee deep
in the barnyard and covered with a foot of clean white
powder, which sure brightens up the place on a clear
sunny day. Town folk come out just to gaze upon our
countrified setting. There’s the barn and silo blanketed
in fresh snow, with smoke gently rising from the farm
house chimney. And there’s farmer Paul, hitching up

grade "A" milk!

the old milk wagon, getting ready to make the daily
milk run. The wagon works better than the truck in
these conditions, when you’re bound to run into slick
spots and deep snow. I'm doing the pulling ‘cuz I need
the exercise badly. On these wintry days, we get lazy all
bedded down in the barn on our comfy farm mats. With-
out a daily walk, I get cranky.

All of our customers live between our farm, in the
southwestern part of Cream County, Wisconsin, and the
town of Paris, in the northeastern section. Not only are
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they between the farm and town, they are on the route
to town. To be precise, once we leave the farm, the route
we follow passes by every customer while always mov-
ing in a direction that leads closer to town. We never
have to go out of our way as we travel the milk route
into town. In this weather, I'm not happy with any other
milk route.

We're accustomed to our regular route, which runs
on automatic. Once farmer Paul makes a delivery and
returns to the wagon, I'm off to the next stop, down two
blocks, up a couple more, then stopping right at the next
milk stop. But today’s weather conditions have put a
crimp in my routine by blocking some roads. I need to
do some cowculations to see if I can still find a route to
town. Of course, it must go by every customer while
always moving closer to town.

The roads in the county are laid out in an M x M
rectangular array. Our farm is on {1, 1} and the town
is on {M, M}. The k customers are located on the
roads {{x1,y1}, {x2, v2}, ..., {xk, yk}} and can be ar-
ranged so they are all reached on a route that moves
ever closer from farm to town. Snowdrifts are located
on roads {{sx1, syl}, {sx2,sy2}, ..., {sxj,syj}} all within
the M x M array of roads.

Gream County map

I'll draw a map of the Cream County road system to
show you where the customers and snowdrifts are lo-
cated using Mathematica. The customers and snow-
drifts are located on the following roads given by [x, y}

coordinates.

customers = {{2, 3}, {5, 6}, {9, 9}};
SnOWdrifts = {{31 5}1 (41 7}1 {11 9}1 {71
4}, (7, 7}, {6, 1}};

There are 100 roads in the county laid out in a 10 x
10 array. I place a O in the array positions to represent
the farm house and the town. All customers’ roads are
given a value of 1, and snowdrifts are assigned the value
of 3. All remaining roads, which are clear, are identified
with 2. This is carried out in the following sequence of
Mathematica expressions.

n = 10;

road[l, 1] = 0;
road[n, n] = 0;
road[x_, v 1 =1 /;

MemberQ[customers, {x, ¥y}l
(* This expression should be read;
assign road[x, y] to 1 provided {x,

an element of the customer list¥*)

v} is

road[x_, v. 1 := 3 /; MemberQ[snowdrifts,
{x, vy}l

road[x_, v.1 = 2;

CreamCounty = Arrayl[road, {n, n}];

I can view Cream County with ListDensityPlot.
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CCMap = ListDensityPlot [CreamCounty,
Frame -> False]

Road key: black = farm and town, white = snowdrifts,
dark gray = customers, light gray = all the rest.

Wilk route

A milk route is a list of roads from the farm {1,1} to
the town (10,10}. Consider the following milk route:

milkRoute = {{1, 1}, (3, 1}, {3, 4}, {6, 4},
{6, 9}, {10, 9}, {10, 10}};

Subtract .5 from all road positions,

milkRoute - .5

{{0.5, 0.5}, {2.5, 0.5}, {2.5, 3.5}, {5.5,
3.5}, {5.5, 8.5}, {9.5, 8.5}, {9.5, 9.5}}

and draw a line down the center of the roads on the milk
route, with just a little thickness added.

Show[CCMap,
Line[milkRoute -

Graphics[{Thickness[.02],
.51}11

This suggests a problem, which, you guessed it, is your
Challenge Outta Wisconsin.

cow s

Write a program that cowculates how many routes
are available from the farm to the town that always
moves closer to town, delivers the milk to each cus-
tomer, and never goes through a snowdrift. Two
routes are different if they differ on at least one road.
Of course, your program should be able to handle any
county road system and any set of customers and
snowdrifts.



Snowdrifts block the usual way,

But families need their milk today.

To make it through,

I'm asking you,

To lick this COW, and count the whey.
—Dr. Mu

Solution to COW 7

COW 7 was posed two issues back. Given a sequence
{xy, x,, ..., x,} of integers of length n, write an efficient
algorithm (of order n) to find a subsequence [x,, x; . |,
..., X} of consecutive terms with the largest sum. Re-
turn the beginning and ending indices L, H, and the

) o
maximum sum :E: LXE.

A cremeDeLaCreme solution was sent in by Richard
Rice (rrice@aw.sgi.com). His solution is based on a sur-
prisingly simple algorithm of order n. Start summing
consecutive terms from first positive term (say at j}, and,
as long as the subsum remains positive, continue add-
ing consecutive terms. Keep a MaxSoFar of the largest
subsum. Once the subsum goes negative (say at term k),
reset the starting left position to the first positive term
after k. Continue in the same manner, comparing
subsums with the MaxSoFar. It is easy to prove that it
is not necessary to consider any starting term between
j + 1 and k. (A little chore for you.) Here is Rice’s solu-
tion in Mathematica:

cremeDeLaCreme[x ] := Modulel
{SubSum = 0, MaxSoFar = 0, n = Length[x],
L =0, low = 0, high = 0, H, term},
Do[term = =[[H]];
If[SubSum <= 0, SubSum =
SubSum += term];
If[SubSum > MaxSoFar,
MaxSoFar = SubSum;
H], {H, 1, n}];
{MaxSoFar, {low, high}}]

term; L = H,

low = L; high =

Let’s test it out with a list of winnings consisting of
random numbers between -50 and 50 from length 100
to 100,000 in jumps of powers of 10.

Table[winnings = Table[Random[Integer,
50), 50}1, {104i}]1;
{1041, Timing[cremeDeLaCreme [winnings]]1},
{i, 2, 6}]1 // MatrixForm

{(-

10000
100000

Not bad. It took about 1/10 of a second to solve the prob-
lem for n = 1,000. Recall that the cubic algorithm was
estimated to take 4.5 hours to get this solution in

Also notice that as n increases by a factor of 10, the
time increases by a factor of 10, showing that the algo-
rithm is linear. For n = 1,000,000, the linear model takes
about a minute and a half, while the cubic (worst case)
algorithm would require over 50 years on a Cray
supercomputer. Good algorithms, like good feed, can
make a big difference.

The problem was also solved by Shawn Kuo
(skuo@WPILEDU), a high school junior at the Massachu-
setts Academy of Math and Science at Worcester.

And finally...

Send in your solution to me at drmu@cs.uwp.edu.
Past solutions are available at http://usaco.uwp.edu/
cowculations.

If competitive computer programming is your pas-
sion, stop by the USA Computing Olympiad web site
at http://usaco.uwp.edu. The 1997 USA team recently
returned from the Ninth International Computing
Olympiad in Cape Town, South Africa, with a bronze,
a silver, and a gold medal. This is an all-expenses-paid
trip tor the top four high school computer programmers.
Check it out and maybe you’ll want to sign up for the
1998 USA National Championship. (@)
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makes a perfect gift

Use the response card in this issue to order Quantum
for your child, grandchild, niece, nephew, mother, fa-
ther, friend . . . Or call 1 800 SPRINGER (777-4643).
Give them six colorful, challenging, entertaining is-
sues of Quantum—a year’s worth of reading pleasure 'j

METROLOGIC® EDUCATIONAL LASERS

Laser Pinter ImW
Only $49.95
Optics Kit $20.00

Helium-Neon Lasers
ranging from .05 to 5.0mW
NOW AVAILABLE IN
GREEN (.05mW only)

Various Kits Also Available

* speed of light * build a laser kit
*laser optics lab  * physical optics lab
* power meters

1-800-667-8400
In New Jersey 609-228-8100
90 COLES ROAD
BLACKWOOD, NJ 08012
EDUCATIONAL DISCOUNTS AVAILABLE
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A Community Resource

To Understand and Prevent AIDS

The Science ot HIV
Curriculum Package

Developed by the National Science Teachers
Association with funding from Abbott Laborato-
ries. Written by Michael DiSpezio. Video by

Summer Productions.

NSTA’s new science-based resource guide is
different from most “AIDS books”—its activities
and readings focus on biological concepts relating
to HIV. Activities cover the following subjects:

¢ selected topics in cell biology

* basic virology

¢ HIV structure, replication, and genetics

* immune system function and HIV infection
* drug therapeutics

* prevention strategies

* a global perspective on the AIDS pandemic

This curriculum package can be used as a commu-
nity educational resource or to expand upon a high
school biology or health curriculum. Reproducible
student pages make lesson plans flexible; educator
pages provide background and presentation strate-
gies. Material appropriate for anyone at the high
school level and above.

The text is coordinated with an original video
made for this project. Animations of complex
concepts are interwoven with scientist interviews
and compelling stories of adolescents who are
living with HIV. The video has won numerous
awards, including:

* Best Achievement for Children’s Programming
1997 International Monitor Awards

¢ Silver for Children’s Programming
1997 Houston International Film Festival

* Gold Circle Award
American Society of Association Executives

Grades 9-College, 1997, 184 pp, 30-minute video

#PB136X

$45.00

To Order Call 800-722-NSTA
Visit Our Web Site www.nsta.org




