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The Adoration of the Magi (c. 1508/1519) by Juan de Flandes

HE HOLIDAYS ARE A TIME WHEN MANY

reflect on the biblical account of the birth of Jesus. Ac-
cording to the Bible, it was the Star of Bethlehem that
led the Magi to the newborn Messiah. How would such
a celestial phenomenon be seen today? What would a
Hubble-enhanced view of such a star reveal? Oddly
enough, Juan de Flandes’s interpretation of the star
could be more insightful than the artist ever intended.

If what the Magi tracked across the desert was actually
a star that had supernovaed, as some biblical scholars
have suggested, then the halos that appear around the
star could represent a bubble in the interstellar gas cre-
ated by the solar wind emitted by the exploding star. To
learn more about current thinking on the creation of
these bubbles, turn to page 14.
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There is often more than one way of
looking at things, and those who come
up with new ways of looking at things
are often the most successful. Johannes
Diderik van der Waals’ contribution to
how the world looked at gases earned
him a Nobel Prize in physics.

To learn more about how he im-
proved on our “ideal” view of the
world, turn to page 36. Then take an-
other look at the cover illustration to
contemplate how the van der Waals
equation helps scientists accurately de-
scribe transistions in the natural world
around us.
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Anniversaries

FRONT MATTER

Satellites and science reform

HIS PAST MONTH WE CEL-

ebrated the 40th anniversary of

the launching of a number of

initiatives. The first, and very
obviously the initiator, was Sputnik.
On October 4, 1957, the former So-
viet Union put the first Earth-orbit-
ing device into space. I was a junior
in high school. If my memory serves
me correctly, I recall at least one
article that referred to it as “a
mouse.” It’s interesting how meta-
phors change over time. Now our
mouse is connected to our com-
puter.

But Sputnik signaled not only the
start of the space age, it also marked
the beginning of a new wave of edu-
cational reform. For some time, sci-
entists and mathematicians had
been pleading for reform in the way
science and mathematics were
taught. The complaints were that
the content was out-of-date and
tended to be presented in an ency-
clopedic style—blocks of informa-
tion to be memorized. The coherent
wholeness of the disciplines was
missing.

Sputnik energized this reform
movement in science and math-
ematics education that had begun
several years earlier. That next sum-
mer I attended a special advanced
studies program for boys. (Yes, I'm
embarrassed to say that back then it
was only for boys!| We were allowed
to choose one subject. T chose phys-
ics. For six weeks, twelve of us cov-
ered most of the material in a new
course called the Physical Science
Study Committee, or PSSC for
short. Early in my career, I returned
to PSSC as an enthusiastic new high
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school teacher. Armed with huge
teacher’s guides that highlighted the
goals of all the labs and homework
assignments, I began to appreciate
the beauty of the course that had not
been apparent when I first encoun-
tered the material as a student.

As the federal government and
private foundation monies contin-
ued to flow, numerous education
projects would be launched that
would change the face of education.
Within a couple years, T was back at
graduate school and working with
the Elementary Science Study (ESS)
group in Newton, Massachusetts.
It’s interesting to me now, in hind-
sight, that many of the same people
that started PSSC were behind the
ESS efforts. It was an exciting time.
A heady time. We were making
materials that would change the
way science was taught in the
world. There was a constant stream
of scholars, scientists, and educators
passing through our offices at ESS.
Countless workshops were given to
visitors that demonstrated “real in-
quiry” experiences. Summer insti-
tutes were planned to train alpha
teachers, who would then in turn
teach others.

But it didn’t “stick.” The reform’s
promises were not fulfilled. As I sat
in the lecture hall at the National
Academy of Sciences last month,
listening to many of the leaders of
the '60s efforts reflect on Sputnik
and the times, I wondered why the
reform efforts weren’t more success-
ful. We had funding. We had scien-
tists talking to each other and teach-
ers about education. We had
industry involved. We had the

nation’s attention. But still they
didn’t stick.

What about current efforts to ex-
cite the nation about establishing
standards and developing curricu-
lum that reflects those standards?
I'm actually more optimistic than
the above paragraphs would seem to
indicate. I think we’re smarter now.
I think we realize now that progress
in science and mathematics is differ-
ent than in education. As one valued
colleague from that time told me,
“In education, the problems don’t
stay solved.” In education, our solu-
tions need to have an iterative char-
acter to them—sort of a self-correct-
ing feedback loop. I believe we also
need to think about the scale of the
problem. There are over a million
teachers of science in this country.
Without a reform effort that reaches
the majority of those teachers, noth-
ing can change significantly.

This past month marked another
anniversary. I joined NSTA and be-
came publisher of Quantum just
two years ago. Anniversaries are
times to reflect as well as celebrate.
I would very much enjoy hearing
your opinion of Quantum. What
does it do well for you? Where do we
need to improve? How does the
magazine fit in with the current re-
form efforts? Send me vyour
thoughts/reflections via e-mail at
gwheeler@nsta.org.

Thanks.

—Gerry Wheeler

Gerald F. Wheeler is the Executive Di-
rector of the National Science Teachers
Association and the Publisher of Quan-
tum.
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anyone who would make a great
Quantum author? Write to us
and we’ll send you the editorial
guidelines for prospective Quan-
tum contributors. Scientists and
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vited to submit material, but it
must be written in colloquial
English and at a level appropriate
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student readership.
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Managing Editor
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fWhal'S happening?

Summer study ... competitions ... new
books ... ongoing activities ... clubs and as-
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whatever it is, if you think it's of interest to
Quantum readers, let us know about it!
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Board with short news items, firsthand re-
ports, and announcements of upcoming
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Write to us! We want to know what you
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of? And, yes—what don't you like about
Quanturm? We want to make it even bet-
ter, but we need your help.
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Arlington VA 22201-3000

Be a factor in the

QUANTUM

I\

G ﬂ[]llﬂlil]ll!j

QUANTUM

THE MAGAZINE OF MATH AND SCIENCE

A publication of the National Science Teachers Association (NSTA)
&) Quantum Bureau of the Russian Academy of Sciences
in conjunction with
the American Association of Physics Teachers (AAPT)
& the National Council of Teachers of Mathematics (NCTM)
The mission of the National Science Teachers Association is
to promote excellence and innovation in science teaching and learning for all.

Publisher
Gerald F. Wheeler, Executive Director, NSTA

Associate Publisher
Sergey S. Krotov, Director, Quantum Bureau,
Professor of Physics, Moscow State University

Founding Editors
Yuri A. Ossipyan, President, Quantum Bureau
Sheldon Lee Glashow, Nobel Laureate (physics), Harvard University
William P. Thurston, Fields Medalist (mathematics), University of California, Berkeley

Field Editors for Physics
Larry D. Kirkpatrick, Professor of Physics, Montana State University, MT
Albert L. Stasenko, Professor of Physics, Moscow Institute of Physics and Technology

Field Editors for Mathematics
Mark E. Saul, Computer Consultant/Coordinator, Bronxville School, NY
Igor F. Sharygin, Professor of Mathematics, Moscow State University

Managing Editor
Kenneth L. Roberts

Associate Managing Editor
Mike Donaldson

Editorial Assistant
Jennifer M. Wang

Art Director
Sergey Ivanov

Editorial Advisor
Timothy Weber

Assistant Manager, Magazines
(Springer-Verlag)
Madeline Kraner

International Consultant
Edward Lozansky

Advertising Managers
Paul Kuntzler (Washington office)
Brian Skepton (New York office)

Advisory Board
Bernard V. Khoury, Executive Officer, AAPT
Linda Rosen, Executive Director, NCTM
George Berzsenyi, Professor of Mathematics,
Rose-Hulman Institute of Technology, IN
Arthur Eisenkraft, Science Department Chair,
Fox Lane High School, NY
Karen Johnston, Professor of Physics,
North Carolina State University, NC
Margaret J. Kenney, Professor of Mathematics,
Boston College, MA
Alexander Soifer, Professor of Mathematics,
University of Colorado-Colorado Springs, CO
Barbara I. Stott, Mathematics Teacher,
Riverdale High School, LA
Ted Vittitoe, Retired Physics Teacher,
Parrish, FL
Peter Vunovich, Capital Area Science & Math
Center, Lansing, MI

Editorial Consultants
Yuly Danilov, Senior Researcher,
Kurchatov Institute
Irina Oleynik, Managing Editor,
Quantum Bureau

Quantum (ISSN 1048-8820) is published bimonthly by the
National Science Teachers Association in cooperation with
Springer-Verlag New York, Inc. Volume 8 (6 issues) will be
published in 1997-1998. Quantum contains authorized En-
glish-language translations from Kvant, a physics and
mathematics magazine published by Quantum Bureau
[Moscow, Russia), as well as original material in English.
Editorial offices: NSTA, 1840 Wilson Boulevard, Arlington
VA 22201-3000; telephone: (703) 243-7100; electronic mail:
quantum@nsta.org. Production offices: Springer-Verlag
New York, Inc., 175 Fifth Avenue, New York N'Y 10010-7858.

Periodicals postage paid at New York, NY, and additional
mailing offices. Postmaster: send address changes to: Quan-
tum, Springer-Verlag New York, Inc., Journal Fulfillment
Services Department, P. O. Box 2485, Secaucus NJ 07096-
2485. Copyright © 1997 NSTA. Printed in U.S.A.

Subscription Information:

North America: Student rate: $17.70; Per-
sonal rate (nonstudent): $25. This rate is
available to individual subscribers for per-
sonal use only from Springer-Verlag New
York, Inc., when paid by personal check or
charge. Subscriptions are entered with pre-
payment only. Institutional rate: $45. Single
Issue Price: $7.50. Rates include postage and

handling. (Canadian customers please add 7% GST to sub-
scription price. Springer-Verlag GST registration number
is 123394918.] Subscriptions begin with next published
issue (backstarts may be requested). Bulk rates for students
are available. Mail order and payment to: Springer-Verlag
New York, Inc., Journal Fulfillment Services Department,
P. O. Box 2485, Secaucus, NJ 07096-2485, USA. Tele-
phone: 1{800) SPRINGER; fax (201) 348-4505; e-mail:
custserv@springer-ny.com.

Outside North America: Personal rate: Please contact
Springer-Verlag Berlin at subscriptions@springer.de. In-
stitutional rate is US$57; airmail delivery is US$18 ad-
ditional (all rates calculated in DM at the exchange rate
current at the time of purchase). SAL (Surface Airmail
Listed) is mandatory for Japan, India, Australia, and New
Zealand. Customers should ask for the appropriate price
list. Orders may be placed through your bookseller or di-
rectly through Springer-Verlag, Postfach 31 13 40, D-10643

Berlin, Germany.
MEA

Advertising Representatives: (Washington) Paul Kuntzler
(703)243-7100; (New York| Brian Skepton (212) 460-1575; and
G. Probst, Springer-Verlag GmbH & Co. KG, D-14191 Ber-
lin, Germany, telephone 49 (0) 30-827 87-0, telex 185 411

Printed on acid-free paper.

Advertising:

QUANTUM/FRONT MATTER

3




Hants-on (or -off?) science

Why is thermal sensitivity a touchy subject?

by Alexey Byalko

OW WOULD YOU CHECK

the temperature of an object

that you were certain wasn't

extremely hot or cold? You’d
probably touch it with your fingers.
Within a fraction of a second, the
nerve endings in your fingers would
tell you if the object was either
warmer or cooler than your skin
(34-36°C).

However, our perception of tem-
perature is also affected by the type
of material we are touching. At
room temperature, wooden objects
seem warmer than those made of
glass or stone, and metal objects are
perceived as colder. What is it that
our fingers are perceiving? First, let's
consider the most simple case, when
the two materials making contact
are identical. When a mother
touches her sick child’s forehead,
her fingers can perceive an elevation
in temperature as small as 1°C.
When the two areas of skin come
into contact, the cooler area begins
to warm and the warmer area begins
to cool. Eventually, the temperature
at the point of contact will equal the
average of the two temperatures:

Ty=1/,(T, + T,).

At a depth of 0.3-0.5 mm the skin
is laced with several types of nerve
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receptors. They generate signals
(nerve impulses) that transmit infor-
mation on temperature, pressure,
and other conditions. Some recep-
tors are polymodal—for example,
the pain receptors, which respond to
very strong stimuli of a mechanical,
thermal, or chemical nature. In this
paper, we are only interested in the
sensations of hot and cold, so we
shall focus only on the thermal re-
ceptors, which “measure” not the
absolute value of a temperature, but
the difference between the body’s
temperature before contact and the
temperature it has adjusted to after
contact.

When perceiving an object’s tem-
perature, the first few instants after
contact are the most important. This
is when the skin’s temperature (and
that of the sensory nerve endings)
begins to change. At first touch, a
small but discernible period passes
before your nerve endings register a
difference in temperature. Let’s evalu-
ate this delay, or period of time re-
quired for a temperature change to
reach the thermoreceptors.

First, we'll review the basics of
thermal physics and the definitions
of specific heat and thermal conduc-
tivity. The specific heat ¢ of an ob-
ject gives the rise in internal energy

T QT T OABE B B2

of a unit mass of the body when its
temperature is elevated by one de-
gree. Therefore, heating a body of
mass m by AT degrees increases its
internal energy by

AQ = cm-AT.

The units for specific heat are J/ (kg K).

When two bodies at different
temperatures come into contact,
heat exchange commences. As a
rule, thermal energy is always trans-
ferred from the warmer body to the
cooler one. The physical value indi-
cating the intensity of the thermal
energy transfer is called the thermal
flow. The thermal flow ¢ is the ther-
mal energy per unit time that passes
through a unit cross-sectional area
oriented perpendicular to the direc-
tion of the energy transfer. The units
for thermal flow are J/(m?- s). The
greater the temperature difference
between the two bodies, that is, the
greater the temperature drop along a
unit length, the greater the thermal
flow. If the temperature at a distance
Axis higher by AT, then the thermal
flow, or amount of energy that
passes every second through the
unit area perpendicular to the flow,
is

1 Ax

Collage by Vera Khlebnikova
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Figure 1

The temperature distribution in the near-boundary layers of the bodies during
the thermal contact of a healthy and ill person in the periods 7, = 0.5 s and
T, = 2 s after touching; 1, and I, are the depths of penetration of the thermal

waves in the periods 7, and 1, (I, ~ [Ty , I, ~ /T ).

Here the minus sign indicates the
direction of energy flow (from higher
to lower temperatures). The propor-
tionality coefficient x is the thermal
conductivity. Its units are J/(m - s- K).
The rate of heat transfer is deter-
mined by the specific heat and the
thermal conductivity of the sub-
stances as well as by their densities.

Now let’s estimate the rate of the
temperature changes during the

thermal contact of identical bodies
with different temperatures. Figure
1 shows the distribution of tempera-
ture as a function of the distance
from the surfaces of two bodies at
time 7 after first contact. Over time
T, one can see that the temperature
can change markedly only in the
layers of thickness I on both sides of
the contact (evidently, I is depen-
dent on time). The value for the

thermal flow ¢ at a given time is
about

T,-T

=Kk—=—",

i ]

This means that during a time inter-
val A1, the amount of energy passing
through the cross-sectional area S of
the thermal contact is

(T, -T7)S - At
AQ=qS-Arz——(2 ]1) .
This is the energy spent to raise the
temperature of the layer of mass
m ~ pIS by an amount AT ~ T, - T,
or, AQ ~ ¢pISAT. So,

ES'——A]:E#A—T =cplS - AT.

In this formula, the area S and the
temperature drop AT cancel out; the
time increment can be approxi-
mated by the time 1, which has
passed since the beginning of the
contact. Thus:

(1)

The equal sign is not a mistake: this
is a precise formula, despite our ap-

77 Thermal : Temperature Parameier Contact
Specific heat ¢ . Density p o [
(kg - K) conductivity k¥ (kg/m®) conductivity ve | CcpK temperature

(J/m - s - K) (m#/s) \ CoPoXo 7, (°C)
Water 418 -10° 0.631 1.0-10° 1.5-107 1.0 28
Air 1.01- 108 0.026 1.2 21.-10° 0.0035 35.9
Wood 9102 0.13 5-102 3-107 0.15 34
Glass 8- 102 0.65 26-10° 3-107 0.72 29
Granite 8.2 102 1.4 2.7 -108 6.3 - 107 1.1 28
Marble 9.0-10? 3.0 2.7 - 108 1.2.10° 1.7 26
Aluminum 38 236 2.7 -10° 2310 3.0 24
[ron 4.4 .10? 74 7.9-10° 21-10° 10 21.5
Gold 1.3-10? 310 19.3 - 108 1.2-10* 17 20.9

Table 1

Thermal properties of various materials.
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The temperature distribution at the contact point when human skin touches
marble 0.5 s (black curve) and 2 s (blue curve) after the initial contact. Tem-
perature T, at the contact area is independent of time.

proximations (the small errors coun-
terbalanced each other|. The curves
in figure 1 are also precise.

The time necessary for the tem-
perature at a depth I to reach the
value of the contact temperature
depends only on the values x, ¢, and
p, which are determined entirely by
the properties of the contacting bod-
ies. The combination of the con-
stants under the radical sign in equa-
tion (1), x = x/cp, is called the
temperature conductivity for a given
material. For example, water has
the value y =1.5-107"m?/s. In the ex-
amples that follow, we will use the
material properties given in table 1
on the preceding page.

The structure of cutaneous tissue
is rather complicated: It is not uni-
form, and its thermal properties de-
pend on skin thickness. However,
since biological tissue is more than
90 percent water, we will assume
that tissue has the same thermal
properties as water. Now we can es-
timate how long it takes for the
thermal wave propagated at the
skin’s surface to reach the cutane-
ous receptors (I, = 4:.10~* m). The
time period necessary to stabilize
the temperature near the nerve ter-
minals is

S

X0

T =1s.

So, why is it that various materi-
als of the same temperature produce
such different thermal sensations
when we touch them? Look at figure
2. It shows the temperature distribu-
tions for a contact with marble at
two different moments in time.
Note that the temperature of the
contact is constant and doesn’t vary
with time. It is determined entirely
by the thermal properties of the
material we touch. Now we shall
try to explain this phenomenon and
find the contact temperatures for
different substances.

At any given moment, the depths
thermal waves have penetrated into
skin and the material of an object are

and
In =\/Xm T

As figure 2 shows, the tempera-
tures T, and T, at greater depths can
be considered constant. At the point
of contact, the thermal flow is iden-
tical for both adjoining surfaces. We
can find this value using the thermal
conductivity equation, denoting the
boundary temperature by T,

TO _Tb Tm _TO
g=xy =K )
VXoT VAmT

The following equation is the an-
swer to the question of why differ-
ent materials generate different
thermal sensations:

T, +vT
Ty="b""-m, )
0 1+v 2]
where
v = K1n\/XO — chmpm
Ko VXm KoCoPo

Note that we did not assume before-
hand that the contact temperature
was constant—its stability is due to
cancellation of time t from the
equation.

The values of T, for different ma-
terials are given in table 1. The table
also shows the values of the contact
temperatures (the temperatures of
sensation) for the materials kept at
room temperature (T, = 20°C). The
temperature of the human body is
assumed to be 36°C.

The values of T, given in the table
correspond to our feelings: We do
not sense the resting air at room
temperature, and wooden objects
seem only slightly colder than our
body. On the contrary, glass and
stone are perceived as cool, and met-
als are downright cold. Gold holds
the record value of v. When we
touch a bar of gold bullion, the con-
tact temperature will be much
closer to the gold's temperature than
to body temperature.

Have you ever touched a metal
object on a freezing cold day? Be
careful! Your finger may stick. This
phenomenon is caused by the freez-
ing of the thin film of water on the
surface of your fingertip, which
means that the contact temperature
is negative (T, < 0°C). Let’s calculate
how low the temperature has to be
for this finger freezing to take effect.
Formula (2) indicates that tempera-
tures can present problems when
T < T,/v. For example, your finger-
tip will stick to iron at -3.5°C, to alu-
minum at-12°C, and to gold at -2°C.

At this point, let’s consider a his-
torical problem. Before the Russian
revolution, when gold coins were
still in circulation, why didn’t the
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citizens’ fingers stick to the coins
during the severe winters? The an-
swer is simple: the gold coins didn’t
stick because these small objects
were warmed very quickly by the
warmth of the hands. For example,
a gold coin with thickness of
I=2 mm will warm up very quickly
when grasped with two fingers: the
warming period is /4y, = 1072s.
The same is true for the modern
coins made of less precious metals.

S

Figure 3

A seemingly impossible feat—a man
walks barefoot across red-hot stones.
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The law of thermal conduction
can also explain other seemingly
paradoxical phenomena. For ex-
ample, how is it possible for a black-
smith to grab a red hot poker or for a
firewalker to stroll across blazing
coals? In the other extreme, how is it
possible to pour liquid nitrogen into
a person’s hand without damaging
the skin? Callouses might offer some
protection, but not enough to handle
the extreme temperatures. The an-
swer lies in the thin layer of gas pro-
duced when skin encounters very hot
or very cold objects. (In the case of the
liquid nitrogen, this layer of gas is
evaporated nitrogen. With the black-
smith and firewalker, the gas is cre-
ated when the outer layers of skin are
heated.) This layer of gas is a very
poor thermal conductor, and al-
though it is less than 0.1 mm thick,
its pressure is great enough to support
the weight of the human body.

But how long can it protect the
skin from extreme temperatures? We
already know that the thickness of
the layer of gas is 1= 10* m. Let’s also
assume that the outer layer of skin
can endure temperatures between
0°C and 100°C without becoming
frostbitten or blistering.

Inside the gaseous layer the tem-
perature is distributed linearly from
the temperature of liquid nitrogen
(or ared-hot object) T| to the contact
temperature T,. Thus, the thermal
flow is

T, -T,
q=Kgp——.
gas ]

The temperature distribution in-
side the skin depends on time in the
same manner, as for any contact.
Let’s make both heat flows equal:

T, =Ty _

-1
\/f/XO T

gas Z

Ko

You can see that in this case, the
contact temperature T, is not con-
stant: it rises when encountering hot
objects and falls when encountering
cold ones.

The skin will not be damaged at
temperatures of 0°C < T < 100°C.
Therefore, these are the limiting
values of the contact temperature.
Now we can estimate how long it
will take for the skin to reach such
temperatures:

T :l ﬂ_u]

max
X Kgas

The values of thermal conductiv-
ity of various gases are very similar.
So, in our estimation we will use
thermal conductivity for air: x, =
0.026 J/(m - s - K|. The calculations
show that heating the skin through
the layer of gas to 100°C by means of
contact with an object with a tem-
perature of 600°C will take just un-
der 0.5 s. This is just enough time to
transfer a hot iron from the fire to
the anvil or take another step across
the hot coals.

In the case of the liquid nitrogen
(T, =-196°C, T, = 0°C), it takes 1.3 s
to cool the skin below 0°C, which is
more than enough time to amaze the
uninitiated. A drop of liquid nitrogen
can be handled safely for an even
longer period of time if it is constantly
moved from side to side of the palm.
Of course, our hands are far too pre-
cious to risk on such stunts. But it is
does give new meaning to the phrase
“hands-on” science.
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BRAINTEASERS

Just for the fun of it

B216

Dicey math. You can see three faces of each of two dice. The total
number of dots on these faces is 27. What is the total number of dots

you can see on each die?

B217

All-encompassing curves. Consider two fixed points A and B, AB = 5, on
the plane. Choose points C and D on the plane so that, in the resulting
quadrilateral ABCD, segment BC = 6, CD = 4, and DA = 1. Draw the
curves that contain all possible positions of C and D.

B218

Crunchy snow. On very cold winter days, newly fallen snow crunches
underfoot. Why is that?

B219

Heady calculation. Calculate the following quantity to the fifth decimal
place without using your calculator:

(%+1)3%(§5—1>.

B220

Cell loss. You are given a 7 x 7 square consisting of forty-nine 1 x 1 cells.
Remove one cell so that it’s possible to cut all the remaining cells into

1 x 4 strips.

ANSWERS, HINTS & SOLUTIONS ON PAGE 51
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LOGICAL LIE-DETECTOR

Forked roads and forked tongues

A mathematical map to the truth

by P. Blekher

F ALL THE DIFFERENT

types of brainteasers, logic

problems are especially popu-

lar. As arule, one needs no spe-
cial mathematical erudition to solve
logic problems. Even people who
have little to do with mathematics
can understand the nature of the
problems.

In this article we analyze four logic
problems!. In all of them we meet
with two sorts of people: truth tellers,
who tell only the truth, and liars, who
tell only lies. But as we shall see, the
most difficult and interesting of such
problems are those incorporating
cheats, people who can say anything
just to confuse the inquiret.

G/ . A road

forks. One fork leads to
own A, which is inhabited
by truth tellers only. The other
fork leads to town B, inhabited by
liars only. A mathematician meets
a resident of one of these towns at
the fork. The mathematician wants
to know which road leads to town A.
Can he find out by asking only one
question?

Iproblems 1 and 2 were
communicated to the author by the
Hungarian mathematician P. Mayor.
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As it happens, the mathematician
can find out by asking only one
question even if we impose an addi-
tional condition: The question must
be phrased such that its answer will
be either “yes” or “no.” This condi-
tion is implied everywhere in this
article.

The mathematician solves the
problem by pointing at one of the
roads and asking, “Does this road go
to your town?” An affirmative re-
sponse would mean the indicated
road goes to A, and a negative an-

swer would mean it goes to B. In 4

fact, if the respondent lives in A,
then his “yes” means the road goes
to A and his “no” means it goes to
B since he tells only the truth. On
the other hand, if the respondent
lives in B, then he is a liar and his
“yes” means the road does not go to
B (and therefore goes to A), and his
“no” means that it does go to B, his
hometown. Either way, the answer
““yes” means the road goes to A, and
the answer “no” means it goes to B.

Note that the mathematician
cannot determine from the answer
whether he is speaking with a resi-
dent of A or a resident of B. Still, he
does not have to. The author knows
some other solutions to problem 1,
but they all employ the idea that the

question (whether the given road
goes to A) should be phrased so that
aliar has to give a “double negative”
answer for it. Since double negation
is equivalent to a positive answer,
the liar’s answer would coincide
with the answer of a truth teller.
This very thing happens in the fore-
going solution.

The second problem we consider is
a complicated variant of the first. The
difficulty results from the presence of
a cheat among the respondents.

//@ﬁ Z. Suppose

mathematician meets
three people at the fork in

the road of problem 1. The
mathematician knows that one of
them is a resident of town A, one is
a resident of town B, and the third is
a cheat. However, the mathemati-
cian does not know who is who. Can
he find out which of the two roads
goes to A by asking only two ques-
tions?

We should specify that the math-
ematician can ask each question of
any of the three people and that only
the queried person will answer the
question. Besides this, each of the
three knows which person is which,
and each knows which of the roads
goes to A and which to B.

Art by Dmitry Krymov
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The solution to problem 1
prompts the following idea: What if
it is possible to discover from the
first question which one of the three
is not a cheat? If so, then problem 2
would be reduced to problem 1, and
we could find the road to A by ask

ing one of those who is not a cheat§

in the question from problem 1. It
turns out that such a first question
exists, although to the author’s
mind it is not an easy one to be
guessed.

For convenience let’s enumerate
the three people in an arbitrary way.
The first person should be asked the
following question: “Suppose that
each of you will go to A or to B ac-
cording to the following conditions:
A resident of A will go to A, a resi-
dent of B will go to B, and the cheat,
provided that you are not the cheat,
will go with you. If you are the
cheat, you will go wherever you
want. Will this person [the second
person is pointed to] go to A under
these conditions?”

If the answer to this question is
“yes,” the third man is not the
cheat; if the answer is “no,” the sec-
ond man is not the cheat. In fact, if
the question was posed to the cheat,
then the third and the second men
are not cheats. Furthermore, if the
question was posed to the truth
teller, then his “yes” means the sec-
ond man is the cheat and, therefore,
the third man is not. On the other
hand, the truth teller’s “no” means
the second man is a liar (since only
the liar will not go with him). And
if the question was posed to the liar,
then his “yes” means the second
man is the cheat and the third is the
truth teller because the cheat has to
go to B and the truth teller goes to A.
The liar’s “no” means, on the con-
trary, that the second man is the
truth teller and the third is the
cheat.

Analyzing all the opportunities,
we see that the third person, if the
answer is “yes,” and the second per-
son, if the answer is “no,” are not
cheats for sure. Thus we can pick
out a person who is not the cheat
and problem 2 is solved.

Note that once again the main
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idea was to compel the liar to make
a double negation so that his an-
swers accord with those of the truth
teller’s and distinguish between
cheats and noncheats.

ﬁ/w%&”‘/j . A chemis-
try conference is attended
by N scientists—some of

! which are chemists and the
rest of which are alchemists. It is
known that there are more chemists
than alchemists in attendance and
that chemists answer all questions
honestly and alchemists always lie.
A mathematician attending the con-
ference wants to know whether
each scientist is a chemist or an al-
chemist. To this end he can ask any
of the scientists what any other sci-
entist is. Propose a method that
would allow the mathematician to
find out who is who by asking (N - 1)
questions.

The solution for problem 3 is rela-
tively simple. We begin by asking
any one of the scientists (we shall
call him the first scientist for conve-
nience) about all the rest of the sci-
entists. These (N - 1) scientists will
be divided into two groups: a group
of those that the first scientist called
chemists and a group of those whom
he called alchemists. We then assign
the first scientist to the first group
and choose the larger of the two
groups. Then the scientists from the
larger group are chemists, and the
scientists from the other group are
alchemists (see if you can prove it!).
The problem is solved.

%Wf/4/ Now
Vet

we have come to the
central problem of the ar-
ticle. Its conditions are the
same as those for problem 3, but the
alchemists are now cheats rather
than liars. The task is to find out
who is who at the conference with
the help of no more than 3N/2 ques-
tions.

This problem is much more com-
plex than problem 3. Although a
liar’s answers are wrong, they are
always wrong, which allows one to
extract from them almost as much
information as from the answers of

a truth teller. Introducing cheats
into the problem adds complexity
because a cheat’s answers are com-
pletely arbitrary, and gleaning any
information from them is much
more difficult.

The solution that follows allows
one to discover who is a chemist and
who is an alchemist by asking even
fewer than 3N/2 questions. In fact,
the number of questions necessary
is 2k if N=2k +1is odd, and 3(k - 1)
if N =2k is even.

Let’s first consider the case when
N is odd. We shall construct the so-
lution by induction on k. If the con-
ference was attended by N = 1 sci-
entist (k = 0], then he would
evidently be a chemist because
there are more chemists than alche-
mists. No questions are needed in
this case: g =0=3 x 0.

Suppose that for all odd numbers
less than the given N = 2k + 1 we
have already constructed a method
that allows one to solve the problem
with the necessary number of ques-
tions. We shall then give a solution
for the number N = 2k + 1.

Let’s enumerate, for convenience,
all participants of the conference
and start asking the second scientist,
the third scientist, and so on,
whether the first scientist is a chem-
ist or alchemist. We continue this
poll until one of the next two events
happens:

Event A: A majority of scientists
we have asked say the first scientist
is an alchemist.

Event B. The number of scientists
who have said the first scientist is a
chemist is equal to k.

Suppose event A has just occurred.
At this moment, if t scientists said
that the first was a chemist and f said
he was an alchemist, thenf=t+1.In
fact, f > t, and if it had happened
that f>t + 2, then event A would have
happened at least one question ear-
lier. Also, the total number of ques-
tions asked during this pollis g, =f + t
= 2f - 1. (The situation in which the
second scientist already says that the
first one is an alchemist is a particu-
lar case of event Awherer=0andf=1.)



If event B happened and the num-
ber of scientists who had said the
first scientist was an alchemist was
f, then the total number of questions
would be g, = k + 1.

We can see that the poll will stop
before all the scientists attending
the conference are asked. Indeed,
let’s suppose the opposite: that nei-
ther A nor B had happened before
the last scientist was asked. Suppose
that by this moment, ¢ scientists had
said the first scientist was a chem-
ist and f had said he was an alche-
mist. Because event A had not hap-
pened, f < t. And because event B
hadn’t happened either, t < k - 1.
Therefore, the total number of scien-
tists polled is f + t <2(k — 1). If we add
the first and the last scientists to
them, we find that the total number
of scientists at the conference is not
greater than 2k, while in fact it is
2k + 1. This contradiction proves
that either event A or event B must
happen before the last scientist is
asked.

Now let’s assume event A hap-
pened. Then we can say that in the
group composed of the first scientist
and all the polled scientists, the
number of chemists does not exceed
the number of alchemists.

In fact, if the first scientist is a
chemist, then those f scientists who
said he is an alchemist are alche-
mists themselves. In this case—
since the total number of scientists
in the considered group is
1+t +f = 2f—the number of alche-
mists in the group is not less than
the number of chemists. And if the
first scientist is an alchemist, then
t scientists who have said he is a
chemist are alchemists, too. Thus,

the number of alchemists is not less
than 1 + ¢t = f, that is, not less than
one half.

Furthermore, according to the
conditions of the problem, the total
number of chemists is greater than
the total number of alchemists.
Thus, in the remaining group of
N -2f = 2(k - f) + 1 scientists, the
number of chemists must be greater
than the number of alchemists, too.
The number N — 2f is less than N,
and therefore, according to the in-
ductive hypothesis, there exists a
method to find out who is a chem-
ist and who is an alchemist by ask-
ing g, = 3(k — f ) questions. Let’s
choose an arbitrary chemist from
this group (there must be a chemist
in it) and ask him who the first sci-
entist is (it would take us ¢, = 1
more question).

If the first scientist is an alche-
mist, then those t scientists who
said he is a chemist are alchemists.
Therefore, we need only ask the
chemist we’ve chosen to identify
chemists and alchemists among the
f scientists, saying that the first one
is an alchemist (it will take another
q, = f questions). So we can find the
complete distribution of chemists
and alchemists at the conference
byq=q, +q,+q;+q,=2f-1+3(k-f)+
1 + f = 3k questions—just what
we've proposed.

And if the first scientist is a
chemist, then those f scientists who
said he is an alchemist are alche-
mists themselves. Consequently,
we need only ask the chemist we've
found to identify chemists and al-
chemists among the t scientists, say-
ing that the first one is a chemist.
We shall spend g, = t more questions

for it. The total number of questions
in this caseis g=q, + q, + q; + q, =
2f—1+3(k—f)+1+t=3k 1. This
is even less than the number of
questions we can use, according to
the problem statement. Therefore,
the case when event A happens is
considered completely.

Now we shall consider the case
when event B happens. We state that
the first scientist must be a chemist
in this case. If he were an alchemist,
the k scientists who stated he was a
chemist would be alchemists and
the total number of alchemists
would be not less than k + 1, which
is more than one half, and would
therefore contradict the statement
of the problem.

Thus the first scientist is a chem-
ist, and the f scientists saying he is
an alchemist are alchemists them-
selves. Now we ask the first scien-
tist to identify chemists and alche-
mists among the k scientists who
said that he is a chemist (it will take
q, = k questions). Next we ask the
first scientist to identify chemists
and alchemists among the scientists
that didn’t take part in the poll (it
will take g, = N— (1 +k+f)=2k+1-
1-k~f=k-fquestions|. So we shall
find out who is who at the confer-
encebyg=q, +q,+qy=k+f+k+
k — f = 3k questions. Thus we have
considered both cases—when event
A happens and when event B hap-
pens. The problem is solved com-
pletely for odd N.

If Nis even the solution is almost
a word-for-word repetition of the so-
lution given for odd N, and we leave
it as an exercise for those who want
to achieve a deeper understanding of
our reasoning. O
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Interstellar bunoles

A passing phase in the life cycle of stars

by S. Silich

STRONOMERS HAVE DIS-

covered that the space between

stars is filled with an extremely

rarefied interstellar gas com-
posed of hydrogen, a small amount
of helium, and other chemical ele-
ments. This gas becomes super-
heated when in the vicinity of a star,
causing the gas to emit light. These
regions of space are known as emis-
sion nebulas. In the winter sky, the
famous Orion Nebula can be seen
just below the three bright stars that
form Orion’s belt. It’s visible to the
naked eye if you live in the country,
but can also be seen with binoculars
by city dwellers.

Away from the influence of the
stars, interstellar gas cools down to
only a few degrees Kelvin and con-
denses into cold opaque clouds that
light cannot pass through. In sum-
mer, in that part of the Milky Way
that passes through the constella-
tion Cygnus (the Swan), you can see
a dark wedge splitting the Milky
Way in two. This wedge is actually
a dark interstellar cloud that is
blocking out the stars behind it.

Does our galaxy look like foam?

Although our Galaxy contains
only a small amount of interstellar
gas (about 5% of its total mass), the
gas plays an important role in the
creation of stars. When enough in-
terstellar gas collects in one place, a
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star is born. But where does this gas
collect? Just like water, interstellar
gas is drawn into potential wells by
gravitational forces. However, when
Earth’s gravity draws gas toward its

Figure 1

GALACTIC GASTRONOMY

center, the gas is blocked by the sur-
face and forms our atmosphere.

In contrast, the only thing that
stops interstellar gas from falling
toward the center of our Galaxy is

Very recent star formation (300,000 years ago) within the Great Nebula of

Orion. The plume of gas at the lower left is the result of the eje

from a recently formed star.

tion of material

Photos courtesy of NASA



the pressure of the gas, and the “cen-
trifugal force” created by the
Galaxy’s rotation. This has resulted
in the formation of a layer of inter-
stellar gas in the plane of the Galaxy.
This thin, rotating pancake—30 ki-
loparsecs in diameter and only 150
to 200 parsecs in thickness (1 parsec
= 3 - 10'® m)—is the place where
stars are born.

Once a star is born, it immedi-
ately affects the interstellar gas that
surrounds it. A solar wind of radia-
tion and particles emitted by the
new sun pushes the interstellar gas
away from the vicinity to form a
small (on the galactic scale) bubble.
The interstellar bubbles around our
Sun and similar ordinary stars are
rather small. However, the bubbles
“blown” by stars that are brighter,
more massive, and more active are
markedly larger. This heterogeneous
bubbling gives the interstellar gas a
toamlike appearance, with large
bubbles surrounding large stars and
small bubbles surrounding small
stars. This description, however, is
far too simple once you understand
the true nature of interstellar gas.

13 it more like a tunnel?

At the end of its life cycle, a mas-
sive star explodes as a supernova,
throwing off its outer layers at a ve-
locity of thousands of kilometers per
second. The energy of its explosion
is about 10*J. The shell thrown off
expands violently, bulldozing its
way through the interstellar gas in
front of it. After 12,000 years or so,
when the shell’s expansion has
slowed, a large cavity will have
tormed around the site of the explo-
sion (astronomers call such cavities
supernova remnants). One can eas-
ily imagine an analogous situation;
blow a large soap bubble with a
straw and compare it to the small
bubbles in a foam.

Each bubble is preserved while
the inner gas remains hot and can
withstand pressure of the surround-
ing gas. When the gas cools, the
bubbles collapse. Supernovas are
common in our Galaxy, occurring
once or twice each century. And,
because it takes many thousands of

years for the bubbles of hot gas to
cool and collapse, the lifespans of
bubbles overlap. In fact, when a new
bubble is formed in the vicinity of an
older bubble, the new bubble will
often pierce the shell of the old
bubble and inject hot gas into it.
This infusion of hot gas prolongs the
life of the old bubble. Eventually, a
chain of interconnected bubbles is
formed that resembles the winding
tunnel system of a mole. However,
this notion of an interstellar me-
dium rife with tunnels didn’t last
long.

Or Swiss chesse?

Radio-astronomy observations of
the last decade have showed that, in
addition to the fine-foamed struc-
ture and crossing tunnels, the inter-
stellar medium also has cavities
with diameters hundreds of parsecs,
or even kiloparsecs, in length. Our
Solar System is located just at the
edge of one such giant cavity with a
diameter of about 300 parsecs. Simi-
lar observations have been made in
neighboring galaxies whose gaseous
disks resemble pieces of Swiss
cheese with their holes protruding
outward.

What is the force that pushes in-
terstellar gas away from the galaxy’s
disk? To create a cavity 1 kiloparsec
in diameter, 107 J of energy is
needed, which is much more energy
than is available from a supernova
explosion. Astrophysicists have sug-
gested a number of energy-release
mechanisms that might provide the
energy needed to create giant inter-
stellar bubbles. The two most prom-
ising theories involve the impact of
a massive gaseous cloud on a disk-
shaped galaxy (similar to a meteor
impact on a planet) or a series of
supernovas taking place at the cen-
ter of a star-production site (similar
to a series of explosions at an ammo
dump). This latter mechanism
seems to provide a better explana-
tion of the observed phenomena.

Stars drive away the interstellar gas

The larger the mass, the higher
the temperature of a star, and the
more intense the burning of the

nuclear fuel in its interior. Conse-
quently, massive stars burn out
quickly and have a relatively short
life span. A star’s life expectancy ¢,
depends upon the initial mass M of
a star:

-16
M ]
years,

t =5 107
10Mg

where M, = 2 -10%° kg is the mass of
the Sun. At the end of their life span,
stars with a mass of M > 7M_ become
unstable and explode as supernovas,
losing most of their matter. Let’s
consider in detail how the matter
thrown out by the blast interacts
with the surrounding interstellar
gas.

After the explosion, a shock wave
moves with supersonic velocity
through the interstellar gas, causing
almost instantaneous changes in
temperature, pressure, density, and
velocity of the matter in a narrow
layer about as wide as the atomic
mean free path. During this process,
a large amount of the kinetic energy
generated by the moving gas is con-
verted into heat. After the wave
front passes, the interstellar gas is
much hotter. Then, gradually, the
gas cools as its energy escapes as ra-
diation and is expended during the
expansion. The velocity of the shock
wave decreases, and finally the ex-
pansion of the hot bubble around the
exploded star stops entirely.

As previously stated, the energy
released during a single supernova is
insufficient to push away enough
interstellar gas to create the “holes
in the Swiss cheese.” Therefore, it is
thought that the energy from a se-
ries of supernovas must combine to
create these bubbles. But why does
this happen? As a rule, stars are born
as part of large stellar groups in the
interior of cold clouds. Simulta-
neously, thousands of “species” of
stars (stars of the same mass) are
formed. And, because the life span of
a star depends on its mass, stars of
the same species within a stellar
group tend to supernova at the same
time. First the most massive stars
explode, then the smaller ones.
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At the onset of a stellar cluster's
life, the medium is heated by the
powerful radiation of the hot mas-
sive stars. Then, later in their life
span, the massive stars begin to dis-
charge matter in the form of stellar
winds, which push away the sur-
rounding interstellar gas. Small cavi-
ties surrounding individual stars in-
teract with each other and produce
a common shell. After this stage, the
more powerful process begins—the
blasts of the supernovas. The stars
explode one after another, beginning
with the most massive. First in this
succession are the stars with masses
of 30-50M,, which explode four to
five million years after the birth of
the stellar cluster. Next in turn are
the smaller stars in the cluster with
masses of 7-8M, which explode 40
to 60 million years after their birth.
As the hundreds of blasts go on one
after another, the entire process can

Figure 2
Billowing gas and dust clouds erupting from the supermassive star Eta Carinae.
This giant outburst occurred approximately 150 years ago, producing two polar
lobes and a large thin equatorial disk that are moving out at about 150 million
miles per hour.
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be considered continuous. The con-
stant rate of energy being produced
by the process is expressed as

Ly = 6.3 - 10% NE,, J/s,

where N is the number of massive
stars in a cluster, and E,, the energy
of one supernova’s blast expressed in
the units of 10**7]. After about 50
million years, the source of energy
switches off when the last super-
nova in the group has exploded.
However, the common shell still ex-
pands for some period of time due to
the accumulated heat and kinetic
energy, which eventually leads to
the formation of a giant interstellar
bubble. Now let’s take a look at the
evolution of an interstellar bubble.

The Simplest bubile is a sphere

Problems involving the propaga-
tion of a shock wave after a point
explosion are very difficult and can

be solved only by integrating a sys-
tem of nonlinear equations of gas
dynamics. This problem has no gen-
eral analytical solution. In the
late1940s, after the development of
the first nuclear weapons, scientists
became interested in analyzing
shock waves.

First, let’s consider the most
simple case—a powerful point ex-
plosion in a homogeneous medium.
This type of explosion is character-
ized by a spherical, symmetrical
shock wave and the shell that it
forms. This problem was solved by
L. I. Sedov and J. Taylor. The solu-
tions make two assumptions. First,
almost all the gas driven away by the
shock wave accumulates in a nar-
row layer immediately in front of
the shock wave. Second, the pres-
sure inside the cavity is constant
almost everywhere. The latter is
caused by the high temperature of
the gas heated by the shock wave, as
well as by the quick dispersion of
possible heterogeneities. These two
properties radically simplify the
problem of a powerful explosion in
a homogeneous medium. They un-
derlie the thin-layer approximation
that is widely applied in astrophys-
ics and in plasma physics. This
theory is also known as the snow
plow model because the gas is
thought to collect in front of the
wave just as snow collects in a thin
layer in front of a plow blade.

The thin-layer approximation is
based on two postulates. It is
thought that all the gas is collected
in the infinitely thin layer immedi-
ately ahead of the shock wave front,
and that the pressure inside the cav-
ity is homogeneous and depends
only upon time. The same approxi-
mation can be used to model an ex-
plosion in a heterogeneous medium,
resulting in the formation of a
nonspherical shell.

It should be pointed out that,
when this approximation is used,
information about the distribution
of hydrodynamic values inside a
bubble is lost, and only an average
value of the inside pressure is con-
sidered. Nevertheless, this method
makes it possible to describe such



important properties of interstellar
shells as their shapes, their veloci-
ties of expansion, and their distribu-
tions of surface densities.

It is interesting that the depen-
dence of the spherical shell radius R,
on time and initial conditions can be
obtained with the very simple
method of dimensional analysis.
Clearly, an explosion is character-
ized only by its energy E, and the
density p, of the medium in which
it spreads since its pressure and tem-
perature are rather small. So, the
dependence can be expressed as

R =ABfpE,

where A is a dimensionless con-
stant. The same equation is valid for
the dimensions of the corresponding
variables:
m =J%. (kg/m3)B . s¥

= m2o-3B. kg a+B . SY*ZU“.

From the indices of the exponents
we have the system of equations

200-3B =1,
o+B=0,
v-20 =0,

from which we get o= 1/5, B = -1/5,
and y = 2/5. Therefore,
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Taking the time derivative of R , we
find that the velocity of the shell ex-
pansion decreases with time:

1/5
Ey -3/5
V| —= | Fo, D)
(2] o

Such is the evolution of an interstel-
lar bubble formed by an instanta-
neous release of energy in a homo-
geneous medium—for example, as a
result of a supernova.

Stellar wind

At different stages of their evolu-
tion, and particularly at the final
stage, stars lose some of their mass. In
massive stars, the rate of outflow of
matter reaches 1,000 km/s, so the
total energy released as stellar wind
into space over thousands of years is

quite comparable to the energy re-
leased during a supernova explosion.
Because the energy release associ-
ated with stellar wind is so gradual,
it lacks the destructive force of a
supernova. Still, the cavities formed
by stellar winds in the interstellar
medium have much in common
with those formed by supernovas.
However, due to the persistent in-
flow of energy into the cavity, the
inner structure of a bubble “blown
up” by stellar wind differs from the
inner structure of a bubble created
by a supernova.

A cavity created by stellar wind
has four zones, as shown in figure 3.
The internal zone (a) is the region of
freely expanding stellar wind mov-
ing with a constant velocity; it is
limited by the internal shock wave
(SW). The radius of this zone is small
in comparison with the size of the
entire cavity. The next zone (b) is

Figure 3

Scheme of a cavity formed by the stel-
lar wind. (1) interstellar gas; (2) internal
shock wave (SW); (3) external shock
wave (SW); (4) contact discontinuity
(CD)

filled with hot and almost isobaric
gas, evaporating mainly from the
inner border of the cold and dense
shell (c), which is separated from

»

»

Figure 4

The collision of two gases near a dying star. Astronomers theorize that the
"cometary knots" in the upper right-hand corner were formed when gas spewed
from the surface of the doomed star later collided with cooler gas thrown off by

the star some 10,000 years earlier.
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zone (b) by the contact discontinu-
ity (CD). The cold dense shell (c)
consists of interstellar gas (d) com-
pressed by the external shock wave.

Similar to point expansion, the
motion of such a shell is described
by the laws of conservation of mass,
momentum, and energy. In the case
of stellar wind, however, the totdl
energy of the remnants is not con-
served. At the front of an internal
shock wave, the kinetic energy of
the stellar matter flowing away from
the surface of a star turns into heat.
This results in the heating of the gas
in zone (b), which acts as an elastic
bumper that pushes the external
dense shell. The change in the ther-
mal energy of this bumper is defined
by the power of the stellar wind L.
Using the dimensional technique,
we easily obtain the dependence of
the shell radius on time, the density
of the surrounding gas, and power of
the stellar wind:

1/5
L 3/5
R, ~|— | 7. 3
(2] o

As we see, the persistent influx of
energy into the cavity makes its ex-
pansion more uniform.

From sphere to the real Shape

Formulas (1) through (3) show
how the rate of the shell's expansion
depends on the density of the sur-
rounding gas: When the other condi-
tions are equal, the lower the gas
density and the faster the rate of ex-
pansion. In our previous example,
we assumed that all the gas outside
the bubbles was of a uniform den-
sity. But what would happen if the
density of the gas outside a bubble
varied from point to point? Giant
bubbles that encounter these condi-
tions are unable to keep their spheri-
cal shape. For a rough estimation of
how the shape of the bubble would
evolve, you could assume that each
section of the shell was independent
of the others and apply the previous
formulas to predict their rate of ex-
pansion. In areas where the external
gas is less dense, the shell will ex-
pand more quickly. This leads to
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elongation of the shell in areas
where the gas is less dense.

In a disk-shaped galaxy, the at-
traction to the nucleus is almost
entirely counterbalanced by the cen-
trifugal force, and only the accelera-
tion out of the galaxy’s plane is left
unbalanced. Both the pressure and
density of the interstellar gas de-
crease with distance from the
galaxy’s plane, which is similar to
what takes place in Earth’s atmo-
sphere at high altitudes. Conse-
quently, large shells expand more
quickly in directions away from the
galaxy’s plane.

Bubble expansion is also affected
by the uneven, or differential, rota-
tion of the various elements in a
galaxy. Just as the planets in a solar
system revolve around a sun at dif-
ferent speeds, different elements in
a galaxy revolve around its center at
different speeds. When an interstel-
lar bubble expands to a large enough
size, it causes the surrounding gas
along the galaxy’s plane to lag be-
hind in its rotation or to speed
ahead. Consequently, bubbles tend
to elongate in the direction of galac-
tic rotation where the gas has been
pushed away and become less dense.

To accurately describe the expan-
sion of large galactic shells, you need
to solve three-dimensional problems
of gas dynamics. Solving such prob-
lems led to the development of new
numerical methods and their appli-
cation to astrophysics. However, the
precise algorithms for modeling the
large galactic shells are extremely
difficult and require a huge amount
of calculation time and effort. For
example, the calculations to predict
the evolution of two-dimensional
shells in only one variant—made in
the 1980s by American astrophysi-
cists MacCray, MacLow, and
Norman—required 6 to 12 hours of
calculations with the most powerful
supercomputer of that time. The
complete solution of three-dimen-
sional problems runs into enormous
calculating troubles even when very
fast computers are used.

Therefore, for all practical pur-
poses, we can consider only the gen-
eral approaches to solving the mul-

Figure 5

Division of a spherical shell in
Langrangean elements at the beginning
of the calculations.

tidimensional problems based upon
thin-layer approximations described
previously. There are two methods
to solve the problems of gas dynam-
ics. In Buler’s approach, the changes
in all physical values at given points
in space are tracked. The flow of flu-
ids is described by the time-varying
fields of velocity, density, and tem-
perature. In Lagrange’s method, the
motions of individual elements of
the medium are tracked. It is
Lagrange’s approach that is used to
study motion of multidimensional
shells by means of thin-layer ap-
proximations. For calculations, the

b

Figure 6

(a) Shell formed by the explosion of
about 100 supernovas located in the
galactic plane at a distance of 8.5 par-
secs from the galaxy’s center. (b) The
same initial conditions as in (a), but the
exploding supernovas are located 50
parsecs above the galactic plane.



entire shell is divided into N
Lagrangean elements (fig. 5). The
motion of each individual element
is described by the laws of mass and
momentum conservation, just as for
the entire spherical symmetrical
shell in a homogeneous medium.
However, instead of one system of
equations describing the change of
radius of the spherical shell, we have
a large number of equations describ-
ing the motion of individual shell el-
ements.

To obtain a suitably accurate cal-
culation, we divide the shell into
1,600 Lagrangean elements. This
division produces a system of 11,200
ordinary differential equations be-
cause the motion of each surface el-
ement is described by seven equa-
tions: one for conservation of mass,
three for momentum components,

three for velocity components, plus
one equation they all share, conser-
vation of energy. This problem can
be solved with the help of a good
computer and special equations de-
veloped by applied mathematics.
Figure 6 shows the results of calcu-
lations of the evolution of shells in
our Galaxy. Shown are shells lo-
cated at the same distance from the
galactical center as our Sun. The
energy influx into the cavity is pro-
vided by a cluster containing about
100 massive stars. Figure 6a shows
a shell formed around a cluster lo-
cated in the galactical plane. In fig-
ure 6b, the star cluster is shifted by
just 50 parsecs above the galactic
plane. It is clear that the shell’s
shape depends strongly upon the lo-
cation of the cluster. As can be seen,
the shapes of the shells are distorted

due to differential rotation of the
disk-shaped galaxy.

As we can see, the giant inter-
stellar bubbles assume the shape
of an hourglass. During the later
stages of development, a neck is
formed on the shell near the
galactical plane, which is a narrow
layer containing most of the col-
lected interstellar matter. Within
this layer, just the right conditions
exist to give birth to large inter-
stellar clouds. And, it is from
within these clouds that new stel-
lar groups emerge. Thus, the giant
interstellar bubble born as a result
of stellar explosions becomes the
place where a new generation of
stars begins its life. The superloop of
cosmic evolution is complete. [@)

The article was edited for stu-
dents by V. Surdin.
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ALGEBRAIC TOOLKIT

Unidentical twing

Using conjugate numbers to tame irrationalities

by V. N. Vaguten

ANY DIFFICULT PROBLEMS IN GEOMETRY

can be solved by noticing various types of sym-

metry in the given figure. Considerations of sym-

metry can also prove useful in problems involv-
ing algebra.

In the several situations considered in this article, it
turns out to be helpful to substitute a number of the form
a + b+/d by its conjugate a—b~/d . This simple device—
changing the sign before a radical—helps solve various
problems in algebra and calculus, from straightforward
estimates to sophisticated olympiad problems. Most of
our examples serve as introductions to some profound
mathematical theories.

Pairs of conjugate numbers appear when we solve a
quadratic equation whose discriminant is not a perfect
square. For example, the equation x> - x — 1 = 0 has the
pair of conjugate roots

X, =

1-+/5 1++/5
;) Xo = .
2 2

We'll return to this later. We'll begin with examples
of another type, where we'll be “tossing” things ...

... From numenator to denominator (and the Peverse)

Suppose you are solving a problem from a textbook
and find the answer 1/(3 — +/7 ), but in the book they give
the answer (3 + /7 /2. Don’t hurry to look for a mistake
in your solution—these numbers are equal, because

(3++/7)(3-47)=32-7=2.

Here are several examples in which it proves benefi-
cial to shift the “irrationality” from numerator to de-
nominator or vice versa.

1. Calculate the sum
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1 1 1
12 W23 o9 s V100

The sum falls out immediately if we rewrite it as

(W2 =1 ]+ (48 —4/2] +... + /100 - 4/99) ==1 + 10 =9,

(The sum “telescopes”: after repeated cancellation of
the intermediate terms, only two terms at the extremi-
ties survive, -1 and /100 .)

2. Prove that for all natural m and n

1
Z— 3 (1)

where o0 = /3 + /2.
First note that the inequality

‘mz —2112‘ 1

-2
|H’l 11+ |_ > (2}

| &

’ - (m + nx/z)n B (m + nx/z)n

always holds because the number Im? — 212l is a non-
zero integer (the equality m? = 2n? is impossible). We
prove inequality (1) by contradiction. Suppose that there
exist two natural numbers m and n such that the in-
equality is not true. Then

-1 m — 1
—2<——w/2<
on n on

7

If we take the inequality on the right and multiply it by
n, we obtain m < n+/2 + 1/an. Adding n+/2 to both sides
and multiplying by n once again, we get

n(m + n\/ﬁ) < n(zm/’z + Lj =2n*\J2 + ﬁ;
on \/3 + x/z {3)
= ZHZ\/E + \/§ - w’/i.

Now we can show that 2n” + /3 — 2 <n?(/3 + 2]
= an?. Indeed, this inequality is equivalent to n2/2, + /3
<n?\3 + /2, or V3 - 42 = n4+/3 — 2}, which is cer-
tainly true, since /3 — /2 is positive, and n? is a natu-
ral number.

So we have n(m + n+/2 | < on?. Taking reciprocals, we
have 1/on? < 1/(m + ny/2 )n <|{m-n+2 )|/n (by inequal-
ity (2)), which means that inequality (1) is true after all
for any m and n.

Inequality (1) shows that the number +/2 is badly ap-
proached by fractions with small denominators. An ana-
logue of this inequality (just with some other o) holds for
each “quadratic irrationality” and not just for /2 . In-
equality (1) holds for all o > /3 + /2, but this is still not
the best possible constant. Questions concerning the ap-
proximation of quadratic irrationalities with rational
numbers make up an elaborate and important part of
number theory. In the following problems we shall once
again encounter approximations to /2 . -

3. Find the limit of the sequence a, = (x/;Z +1 —n)n.
(We assume that you are familiar with the concept of
limits, at least on the intuitive level.)

Let’s rewrite a_ as

(Wn*+1-n)n= = = !

Vn?+1+n 1+\/;1/n2 ‘

Now it is evident that a  increases and approaches 1/2.

4. Consider the two sequences a, = Vn+1 + /n and
b, =~4n+2. Prove that

(a) [a,] = [b,], where [x] denotes the greatest integer
not exceeding x;

(b)0<b,—a,<1/(16nyn).

We can easily check that a[n]* < b[n]?. Indeed, this
would mean that 2n + 1 + 2,/n(n+1) < 4n + 2. A short
computation will show that this inequality is equiva-
lent to the inequality 4n? + 4n < 4n% + 4n + 1, which is
certainly true. Thus a[n]* < b[n]?, and (since both are
positive) a[n] < b[n]. Next we show that a[n]? > 4n + 1.
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Again, the inequality 2n + 1 + 2yn[n+1) > 4n + 1 is
equivalent to /n{n+1) >n = \/n-n, which is certainly
true. Also, the number b[n]? = 4n + 2 gives a remainder
of 2 when divided by 4, and thus it cannot be the square
of an integer (the reader is invited to check this directly).
Therefore, the square of the integer [b,] is not greater
than 4n + 1.

We now have the following inequalities: [b, ] <
J4n+1) <a, <b,. This means that a, is “squeezed be-
tween” [b,] and b, an interval of length less than 1. This
means that [a_] = [b,], which proves (a].

Now we need only find the upper bound for the dif-
ference b, - a,. In the following algebraic argument,
notice how we shift conjugate numbers from numera-
tor to denominator twice:

by —a, =\4n+2 - (Vo +n+1)
[Van+2-(Va+ m)]wm +21 (@M—T‘lﬂ
ﬁﬁ?ﬁ+@3+vgiﬂ
2n+1-2n(n+1)  2n+1+2n(n+1)

- 4H+2+(\/}1_+\/H+1).21’1+1+2 n(n+1
1

(Van+2 +vn +n+1) (2n+1+24/n(n—1))

(luckily [(Zn +1)-2,/n(n+ 1)][(211 +1)+2,/n(n+ 1)} =1},

Now,

Van+2 +yn+\n+1l>Jdn+Jn+Vn=2Jn+\nFn

i

and

2n+1+2v/n(n+1) >2n+1+2n-n=4n+1>4n,

So, this last product of two fractions is not greater than

1 1
2V ++/n(4n) 16nVn’

which is what we wished to prove.

Note that this estimate is also not very precise. But
to prove it (and to investigate functions with multiple
radicals), one should use the methods of calculus.

Exchanging plus for minus

If an expression involving +/d is equal to p + qd,
and we substitute —/d for \/d everywhere in the expres-
sion, the resulting expression must equal the conjugate
number p — g+/d . We shall often use the following case
of this principle: If 2 and b are rational numbers, and Jd
is not, then

(a+bJdP=p+qgld—la-bJd)P=p-qd. (4)
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Figure 1

5. Prove that the equation

(x+yV5 1+ (z+t/5 =2+ 45,

in which x, y, z, and t are rational numbers, has no so-
lutions.

We can, of course, try to individually find the sum of
terms in the left that do not contain /5 and set it equal
to 2, then the coefficient of +/5 and set it equal to 1. But
it’s not clear what we should do with the cumbersome
system of equations obtained in this way. Instead, we
shall use principle (4) and switch the sign before V5

(x—y5 )1+ (z—t5)* =2 -+5.

The number on the left is positive, while the number
on the right is negative! This contradiction proves that
the rational numbers x, y, z, and ¢ cannot exist.

6. Prove that there exist infinitely many pairs (x, y)
of natural numbers for which

Ix2 - 2y2| = 1. (5)

It is easy to find several pairs of this sort with small
x and y. They are (1, 1), (3, 2), (7, 5), (17, 12}, ... (fig. 1).
But how can we continue this process? Can we find a
general form to write down these solutions?

The number 1 + /2 will help us answer these ques-
tions. The table below reflects the law that allows us to

n| (1+~42) | x |y, x2-2y? (1-+2)
1 { 4B 1] 1 1-2=-1 1-42

o| 3+2y2 |32 9-8=1 3-242
sl 7+5v2 | 7|5| 49-50=-1 7-542
4| 1741242 | 17| 12| 289-288 =1 17-1242
5| 414292 |41]29| 1681 -1682=-1| 41-29+2




keep finding new solutions (x, y). What should go in the
sixth line of the table?
We see that coefficients x, and y, of the number

X, +y, N2 = (142
give the necessary pair. In order to prove this, we look
in the column of conjugate numbers in this table (we
use principle (4) once again):

x,-y,N2 =(l-2
Multiplying the last two equations, we get

X =2y =1+ 21 -2 P =[[1+ 2 )1 -2 2= (-1},

and thus the expression we are interested in alternately
equals 1 and -1. Adding up the same two equations and
then subtracting the second from the first, we finally ob-
tain an explicit expression for x_and y :

(1+\/§)n +(1—v§)n B (1+ﬁ)n -(l—vi)n
)  ¥a = 22 '

Is it possible to solve this problems without resort-
ing to the irrational numbers 1 + /2 and 1 - /2 2 Now,
when we know the answer, it is not difficult to express
the pair (x, , |, ¥, . ,)(by means of the previous pair
(x, y,);wehavex ,+y . V2 =(x,+y ~2)1++2),
and thus

Xy =

Xn+1=Xn+2yn’ Vne1=Xp+ Yy (6)

One could probably guess this recurrence relation by
considering few first few solutions and then checking
that

Ian - 2ynzl = |X%1 +17 Zy%i + ll'
If we set the initial conditions x, = 1 and y, = 1, we can
conclude by induction that Ix>- 2y 2| = 1 for all n. Fur-
ther, expressing conversely (x, y,) via (x, , |, v, , ), and
using the “method of descent,” we can prove that the set
of solutions for equation (5) is exhausted by the series we
have found. In the same way we can
solve any of “Pelle’s equations,” that is,
a diophantine equation of the form
x* - dy? = ¢ (and every square equation in
integer numbers can be reduced to this
form), although this equation can have
several different series of solutions.
Recurrence relations similar to (6)
appear not only in number theory but
also in various problems of analysis and
probability theory. Here is a character-
istic example of this type of
combinatoric problem, given to the par-
ticipants of the 1979 International
Mathematical Olympiad in London:

7. A frog is sitting at vertex A of a  Figure 2

regular octagon. The frog can jump from any vertex of
the octagon except for E, the vertex opposite A, to any
one of two neighboring vertices. When the frog gets to
E, it stops there forever. Find the number e of differ-
ent ways the frog can get from A to E by jumping ex-
actly m times.

If we paint the vertices of the octagon alternately
black and white (fig. 2), it becomes clear that e,, | =0.
That is, the frog cannot jump from A to E in an odd
number of moves, because after each jump the color of
the vertex under the frog will change, but the colors of
A and E are the same.

Suppose we denote by ¢, the numbers of ways the
frog can get from A to either vertex labeled C in exactly
2n jumps (symmetry shows that it does not matter
which vertex C we choose). Similarly we denote by a_
the number of ways the frog can get from A back to
point A in 2n jumps. It is easy to check that a, = 2 and
¢, = 1 (see figures 2a-2d).

We can also derive a recurrence relation for a, _, in
terms of a, and c_. Suppose the frog has moved from A
back to A in 2(n + 1) moves. Where was the frog two
moves ago? Either at point A or at one of the vertices
marked C. If it was at A, then there are two ways to get
back to A (via the left-hand vertex marked B, or via the
right-hand vertex marked B). And the frog could have
made it to A in the first 2n moves in a_ different ways.
Hence

Ay, 1 =2a,+2c,. (7a)
A similar argument will show that
Cop,q =0, +2c,. (7D)

And the number the problem asks for, e_, is just equal to
28, -

But how can we find explicit formulas for a, and ¢ ?
Let’s rewrite relations (7a) and (7b) in the following
form:

a, . +c, V2 =la, +c N2)2+2) (8)

Then, according to our principle of exchanging plus for
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minus, we have

a11+1 —CH+IN’/§ = (HH*CH\/E)(Z— N'/E)' (9)

It is not difficult to see, from the above formulas, that
ay+cyN2 = (242
ay+ N2 = (2+ V2P,

and, in general, that
a, +c, 2 =(2+ 2R

(A more formal proof would involve a simple applica-

tion of the principle of mathematical induction.) Simi-
larly, we have

a,-c 2 =(2-~2
Therefore,

(2++2 )" -(2-42)"
Cn = T
2~/2

7

and, since e, =2c, ,, we have, at last,

(2 N \/E)n—l 3 (2 3 NE)n‘l
ey = e

V2

i €n1 =0

The problem is solved. And yet it isn’t clear how we
were supposed to come up with the idea of using formu-
las containing ++/2 in this problem (and in the previous
problem), when the problem statements mention only
integers!

It turns out that the appearance of conjugate numbers
in the solution of recurrence relations like (7a) and (7b)
is a result of the application of a standard method of
solution from linear algebra. This method allows us first
to find all geometric progressions (a, = a\?, ¢, = c,A" )
that satisfy the recurrence. The values of A for which
such progressions exist are called characteristic values
or eigenvalues and are determined by a certain char-
acteristic equation. For the system (7a, 7b) this equation
is a quadratic with integer coefficients whose roots are
just 2 + +/2 and 2 — /2 . It turns out that knowing these
roots allows us to express any solution of the recurrence
relation (as what is called a “linear combination” of the

IMore precisely, a field P is a set equipped with two
operations (we call them addition and multiplication]
satisfying the following axioms:

1. P is closed with respect to both operations.

2. Both operations are commutative.

3. Both operations are associative.

4. Each operation has an identity element (O for addition, 1
for multiplication).

5. Each element p of P has an inverse with respect to each
operation (—p for addition, 1/p for multiplication), except
that the additive identity has no multiplicative inverse.

6. Multiplication distributes over addition.
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corresponding geometric progressions). Then the “ini-
tial conditions” (here a, = 2, ¢, = 1) determine the solu-
tion uniquely.

It turns out also that many simple recursive se-
quences of integers have characteristic equations that
are quadratic, with integer coefficients. Thus their char-
acteristic values are conjugate quadratic irrationalities.
The reader is invited to research the solution that this
method gives for the famous Fibonacci sequence.

Note that the greater eigenvalue determines the rate
of growth of the sequence: When n is large in problem
7,wehavee =(2 + J2)2/A/2 . The other way to say it is

lime, / e, =2++/2. An analogue of this observation
for problem 6 (lim x, /y, =+/2) shows that both terms

of the sum x_ + y,_+/2 almost equal each other when n
is large.

An algebraic epilogue

We have investigated several examples connected
with bordering branches of algebra, calculus, and num-
ber theory. (In fact, each of the subjects we've consid-
ered could be the subject of a separate article in Quan-
tum!) In conclusion, let’s look at conjugate numbers
from the point of view of pure algebra.

Suppose we have a set P of numbers, or symbols, or
algebraic expressions that can be combined using the
four ordinary arithmetic operations. Such a set is called
a field. For example, the rational numbers form a field,
as do the real numbers. If d is an element of a field P and
the equation x> — d = 0 has no solution in P, then one
can extend P by “inventing” a new object~/d , which
yields d when multiplied by itself. We can then consider
all expressions of the form p + g-/d , where p and g are
elements of P. Thus we write (p + g/d )(p”+ ¢’\/d ) =
(pp”+ qq’d) + (pg’+ qp’)/d . It is easy to check that the
new set P;, consisting of all elements of the form p +
q~/d again forms a field. This new field contains a
“copy” within it of the old field P—namely, the ele-
ments p + 0+/d . For example, if we take P to be the field
of real numbers and consider the equation x> + 1 =0 (so
that d = -1), then P, is the field of complex numbers.

The new field P, (called the “quadratic extension of
P”) is equipped with an interesting mapping:

A=p+qyd > % =p-qvd.

It is called a conjugation, and its main properties are

1. All elements of the old field P map into themselves;

2. All equations containing arithmetic operations stay
under this mapping:

A+T=A+00; AL =AML (10]

This mapping is a particular case of Galois

automorphisms of the extension P, of field P, after the
French mathematician Evariste Galois.



We can also consider “double extensions” of a field.
For example, we can extend the field of rational num-

bers with the symbols +/2 and /3. We then obtain a
field with a greater number of Galois automorphisms.
In addtion to the indentity mapping (which is included
in this set), there are three others:

(\/E —>—\/§, \/g - \B),
(V2 = +2,4/83 >3 ),
(V2 = -2, 3 - -3).

The composition of any two of these four mappings is
another of these four. In fact, combining them by com-
position forms a group, which is essentially the same
group as the one formed by the symmetries of a rectangle.

It turns out that the roots of any polynomial can be
added to the basic field P. Automorphisms of the new
field that appear in this way constitute the subject of
one of the most interesting branches of algebra of the
19th and 20th centuries: Galois theory. This theory al-
lows us, in particular, to address the question of the
solvability of equations by radicals.

To reinforce the themes of this article, we offer the
following problems for your enjoyment.

Exercises.

1. Which is greater: /1996 + +/1997 or /1995 +
x/m ?

2. Prove that for all positive x

\/X2+1—X—lX
2

1
<—x3

8

3. Find the first hundred decimal digits in the deci-
mal notation of the number (/50 + 7100,

4. Eliminate the irrationality in the denominator of
the following fraction: 1/(1 + /2 + +/3). Q)
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HOW DO YOU
FIGURE?

(Challenges in physics and math

Math
M216

Switch places. Solve the equation

xoix  Lox_ g
X

M217

Bike sharing. Town A is 30 miles from
town B. Three friends want to travel
from A to B. They have two bicycles
with them: one is a racing bike, which
any of them can ride at a speed of 30
mph; the other is a mountain bike,
which they ride at a speed of 20 mph.
Each of them walks at the rate of 6 mph.
Any of the friends can leave a bicycle at
the side of the road, where it will lie
undisturbed until another friend comes
and uses it. The three friends want to
minimize the time they spend on
their journey (we'll say that the trip is
over when the last friend arrives at B).
Find the shortest possible time for
this joint trip.

M218

Meeting of circles. Let M be the point
where the diagonals of a parallelo-
gram ABCD meet. Consider three
circles passing through M: the first
and the second circles are tangent to
AB at points A and B, respectively,
and the third circle passes through C
and D. Denote the points, other than
M, where the third circle intersects
the first and the second ones by P and
Q, respectively. Prove that PQ is tan-
gent to the first and second circles.

M219

Developing a polyhedron. Let ABCD be
a regular triangular pyramid (which
means that ABC is an equilateral tri-
angle and the edges AD, BD, and CD are
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equal, and let the plane angles at ver-
tex D be equal to o. A plane parallel to
ABC meets AD, BD, and CD at points
A,, B,, and C,, respectively. Now we
cut the surface of polyhedron
ABCA,B,C, alongfive of itsedges A, B,,
B,C,, C,C, CA, and AB, and spread it
on the plane. Find all values of o where
the development must overlap itself.

M220

Graph rotation (for calculus fans).
The graph of y = x> + ax® + 19x + 97
is rotated 45° about some point. The
resulting graph is the graph of some
function y = f{x) (that is, each value of
x corresponds to a unique value of y).
Find all a for which this can be true.

Physics

Bead on a ring. A small bead moves
along a stationary thin wire ring. The
coefficient of friction between the bead
and ring is i = 0.1, and the force of grav-
ity is absent. How much will the veloc-
ity of the bead have been slowed after
the bead has completed three revolu-
tions around the ring? If you can’t pro-
vide a precise solution, try to come up
with an approximation. (M. Yermilov)

P217

Gas in a vessel. The temperature of
the walls of a vessel filled with a gas
is T, and the temperature of the gas
itself is T,. Will the pressure exerted
by the gas on the walls of the vessel
be greater when the walls are cooler
(T < T,) or warmer (T > T,) than the
gas? (G. Myakishev)

P218

Charged ball and a probe. A small
uncharged conducting object (a

probe) is brought near an isolated
charged conducting ball. Before in-
serting the probe into the ball’s elec-
tric field, the potential of the point
where the probe is to be inserted is
¢ = 10,000 V. After inserting the
probe, the ball’s potential changes
by a value of A¢p = 1 V. Find the force
acting on the ball at this moment.
The probe is much smaller than the
diameter of the ball. (A. Zilberman)

P219

Ring in a magnetic field. A thin wire
ring with a diameter d and a resis-
tance R is placed in a magnetic field
B that is parallel to the plane of the
ring. A voltage source with a poten-
tial difference of V, is to be connected
to two points on the ring. What two
points on the ring would you choose
to generate the maximum force act-
ing on the ring from the magnetic
field? (A. Zilberman)

P20

Light conductor. A point source of
light is located at a distance I= 1 m
from a screen that has an opening
with a diameter d = 1 cm opposite
the source. How will the amount of
light passing through the opening
change if a transparent glass cylinder
with an index of refraction n = 1.5 is
placed between the source and the
screen as shown in the figure? The
cylinder’s length I = 1 m, its diameter
d =1 cm, and the light source is lo-
cated on the cylinder’s axis. (A. Butov)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 48



IN THE LAB

Jingle bell?

If a bell rings in a vacuum, does it make a sound?

ERE’'S AN INTERESTING

experiment you can do in your

school lab. It dates back to the

17th century but has lost none
of its appeal. To set up for the ex-
periment, start by mounting a 250 to
300 mL rounded flask containing 20
to 25 mL of water onto a ring stand
above an clectric hot plate. Then
insert a 15 to 20 cm length of glass
tubing into a one-holed stopper. At-
tach a short piece of rubber hose to
the end of the glass tubing protrud-
ing from the top of the stopper. To
the lower end of the glass tubing,
attach a small bell that can fit
through the mouth of the flask.
Now you’re ready to conduct the
experiment.

rubber hose

clamp

glass tube

bell

liguid

Figure 1

by N. Paravyan

Heat the water in the flask until
it boils. Note: You may use an alco-
hol burner, but be careful—the glass
may crack if the wick touches the
flask. After the water has been boil-
ing for three minutes, seal the flask
with a hose clamp and quickly re-
move the hot plate. When the flask
cools to room temperature, remove
it from the holder and shake it care-
fully. You will hear the bell jingling,
but the sound will be rather weak.

The bell is muted because the
cooling and condensation of water
vapor rarefied the gas in the flask,
producing a slight vacuum. Now
release the clamp on the rubber
hose, wait a few seconds, and then
replace it. When you shake the flask
again, the bell will sound markedly
louder. Why? By removing the
clamp, you allowed air to pass into
the flask and increase the density of
the sound-conducting medium.

To continue the experiment, pour
the water out of the flask and replace
it with 20 to 25 mL of anhydrous
glycerin or ethylene glycol. Repeat
the procedure of heating the liquid
and then allowing it to cool. At
room temperature, the vapor density
of these substances is several times
less than the vapor density of water.
As a result, the vacuum will be
stronger than in the previous experi-
ment and the observed effects
should be more pronounced. In fact,
from over a meter away, you won’t
be able to hear the bell at all.  [@)

An early illustration
of the bell-in-a-vacuum
experiment, which
appeared in A. Kircher's
Musurgia Universalis sive
Ars Magna Consoni et

o

Dissoni (Rome, 1650). In
the setup pictured, a
lodestone (A) was used
to move the clapper of
the bell (C).
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BOUT 200 YEARS SEPARATE
the first and last quotations in
the box. As you can see, “po-
tential” has been a hard con-
cept to pin down. First it assumed
the role of tension, then the guise of

an electromotive force, and finally it

appeared as a mysterious function.
In the future, you may also encoun-
ter potential under a different alias,
such as contact potential difference,
ionization potential, or gravitational
potential. You will also learn of the
efforts of the glorious crew of scien-
tists—Fuler, Laplace, Poisson,
Green, Gauss—who have worked to
unravel the tangle of terminology
surrounding this concept. It should
come as no surprise that the concept
of potential has drawn admirers
from the fields of both math and
physics. And why not? The univer-

sal character of this notion is con-
nected with a great number of fruit-

ful applications, such as heat
conduction, fluid dynamics, and the
calculation of gravitational, electric,
and magnetic fields. : '
‘When solving the following el-
ementary problems, don't forget
that the modern theory of potential
is a keystone in the foundation for

an entire field of study—that of

_mathematical physics.

Questions and problems
1. The electric potential decreases

with the distance from a particular

charge. What is the charge's sign?

2. Is there always a potential differ-

ence between two conductors, one

charged positively and one nega-

tively?

3. A point charge ¢ is 1ocated a*’

distance r from the center of an iso-
lated uncharged conducting ball.
‘What is the ball’s potential?

4. Does the potential at the cen-

spherical capacitor vary with dis-
tance r from the center of concentric
spheres if the inner sphere of radius
R, carries a charge +¢, and the outer
sphere of radius R, carries a charge
—q? Graph this dependence.

7. Two conductors are positively
charged such that the potential of
the first conductor is 100 V and that
of the second is 50 V. Would positive
charges move from the first conduc-
tor to the second if they came into
contact? There are no other objects
near these conductors. ‘

8. A ball connected to an electro-
scope is moved along the surface of
the charged object shown in figure 1.

- Would the reading of the electrom-

Figure 1

_eter change during this process?
Why is a long wire used in this ex-
periment!?

9. A conducting uncharged ball is
placed in the homogeneous electric
field of a parallel plate capacitor such
that its center is midway between

the plates. The potentials of the

plates are +100 V and -100 V. What

torm would the surface of ZEro po-

tential take?

10. An elastic metal ball witha

charge g is fixed on an insulated elas-

tic support. A second (identical) ball

with the same charge is dropped on
it from a height of h. How high will

the second ball rebound after the

collision?

11. A small object with a charge
—q slides along a smooth inclined
plane forming a 45° angle with the

 ter of a charged sphere depend on the

_charge distribution on its surface?

5. Without touching the surface,

a small charged metal ball is placed
inside a charged conducting sphere
through a small hole in its exterior.

The charges of the ball and sphere

are opposite and equal in value. How
does the sphere’s potential change?

6. How does the potential of a
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Figure 2

horizon. Will its velocity near the
base of the plane be affected by a fixed

charge of +g as shown in figure 2.
12. The potential difference be-

tween points A and B in a circuit con-

taining capacitors is V. If a capacitor

KALEIDOS(

Do you Ila\n; |

It may depend on how !

vell

“Voltage is an effort performe
electrified body trying to get ric
give it to other bodlies. .

“The electromotive action
manifests itself in two kinds o

first electric tension . . . —Asn

“Taking into account how desirable it is
of such a universal character as eléctnc
one particular function instead of scatt

. for

“There is a number at each poin:
from one position to another, this
I placed at one point in space., it
direction in which this number va
this number by its usual name
—Richard Feynman.-

with capacitance C is connected to
these points, will its charge be equal
to CV2

13. An uncharged metal plate is
inserted into a charged parallel plate
capacitor parallel to its plates, which
are not connected to a battery. The
thickness of this plate is equal to
half the distance between the
capacitor’s plates. How does the po-
tential difference across the capaci-
tor change?

14. If you had to approach a
downed power line, why would you
want to take extremely small steps?

15, The potential difference be-

~ tween any two points of a uniform

wire ring is zero, but there is a non-



ol OPE

2 polental?

lvell you know potentiall |

ormed by each point of an
get rid of its electricity and
dies..."—Alessandro Volta

nas of phenomena. | will call the
—André-Marie Ampere

le it is to be able to calculate the force
ectricity, we can focus our attention on
'scaﬁering it by 's*tudy/ng each of these
—George Green

forces individually.”

point in space, and when you go

r, this number varies. If an object is

e. it will be affected by a force in the

er varies most quickly (I'll refer to
—potential) .”

zero current in the ring. How is this
possible?

16. Is it possﬂ)le while on
board an airplane flying in the
Earth’s magnetic field, to mea-
sure the voltage generated be-

tween the tips of its wings?

17. A tungsten ball in a vacuum
is irradiated with ultraviolet light.
‘How will the ball’s potential change
over time?

Microexperiment

At sea level, the intensity of the

potential difference across the
~distance between your
. nose and toes is

about 200 V.

Can you use this voltage to light an

_electric lamp? Does this voltage
present a danger to your person?

It is interesting that . . .

.. Volta—who discovered the con-

tact potential difference, coined the

_term potential, and was honored by

having the unit of potential difference
named after him—didn’t have the
slightest idea how or why his inven-

tion, the “voltaic” pile, worked. The

French scientist Dominique Arago
has described this invention as the

- most beautiful device ever invented,
~ surpassing even the telescope and the ,
. nected in parallel, and this natural

steam engine. ,
.. the passage of cur-
rent through an electro-

lyte solution results in

the generation of an emf

_ that is directed counter to the ap-
This phenomenon

plied emf.
(known as “galvanic polarization”)

- was discovered at the beginning of
_ the 19th century. Later this phe-
nomenon led to the invention of the
lead-acid battery. .
.. the problem of charge dlstnbu-
t10n in a conductor of a given shape
was first addressed in the 18th cen-

tury by the French physicist Charles

~ Augustine de Coulomb. Later, Pois- 4

son, attempting to solve just this type

of problem, hit upon the notion of us-
ing a function that depended on coor-

dinates and a constant value at the
conductor’s surface.

. George Green, the author of
An Attempt to Apply Mathematzca]
Analysis to the Theories of Electric-

1ty and Magnetism, was self-taught.
Before entering the University of
Cambridge at the age of 40, Green
worked as a mechanic and baker

while studying science in his free

time. It’s worth noting that, while he
introduced the concept of a potential
function, Green didn't relate it to the
notion of work, which was a concept
of the Universe to Tartarus.”

that was not yet in use in physics.
. electric current can flow not

only in a circuit where the voltage
across two arbitrary points is zero

but also from a point of lower elec-
tric potential to a point of higher po-

tenual ‘which is the case 1n31de an

electnc battery

. there are electric fields in
which one can measure voltage but
not potential. Fields generated by
electromagnetic induction, for ex-
ample, are “nonpotential” fields, as
are those created by transformers
and electric motors.

. a large electric eel can pro-
duce a potential difference up to
600 V and a current about 1 amp.
This shocking display
of power is the

product of a large number of small

circuits that contain cells connected
in series, each generating 0.15 V.
The circuits themselves are con-

electric “device” produces a strong
electric current that can paralyze or

even kill a vietim.

.. by shuffling your feet on a car-
pet and touching another object, you
can generate an electric discharge up
to 1 cm in length, which means that
your electric potential is in the range

kof 10,000 to 20,000 V.

. the potential d1ffer—
ence in a lightning strike
between a cloud and the
ground reaches 4 billion
V, with an average current
of 20,000 amps.

. the range of volt-
ages used by humans cov-
ers twelve orders of mag-
nitude. The maximum

attainable potential is

limited by the electric strength of

the insulators, which is character-
ized by millions of volts. The mini-
mal voltage used in certain techni-
cal applications is a mere
fraction of a microvolt.
—Complled by A. Leonovmh

Quantum articles about potentlal
Arthur Eisenkraft and Larry D.
Kirkpatrick. “Electricity in the Air.”
November/December, 1992, pp. 46-48.
Albert Stasenko. “From the Edge

March/April, 1996, pp 4-8.

A. Leonovich. “Of Combs and
Coulombs.” January/February,
1997 pp 28-29
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PHYSICS
CONTEST

Elephant ears

“Sir Isaac Newton was very much smaller than a
hiopopotamus, but we do not on that account value him
less." —Bertrand Russell (1872-1970)

by Arthur Eisenkraft and Larry D. Kirkpatrick

HY DO ELEPHANTS HAVE
such big ears? And why do
they have such thick legs? In
other words, why do el-
ephants have different shapes than
horses? These questions and more
can be answered using the laws of
scaling that we learn in physics.
Elephant bones are made from
the same basic material as human
bones. Therefore, the bones must be
thicker to support the extra mass of
the elephant. But how much
thicker? Let’s compare an elephant
to a horse. A typical horse has a
mass around 600 kg and a typical
elephant has a mass around 4200 kg,
or some 7 times larger. Because all
mammals have a density near that
of water, the elephant must have 7
times the volume of the horse. If we
assume that the two have the same
shape (they both have four legs!), the
linear dimensions of the elephant
must be the /7 = 1.9 times the cor-
responding dimensions of the horse.
Each elephant leg must support 7
times as much weight as a horse leg.
Because the compression strength of
a beam depends on its cross-sec-
tional area, an elephant leg bone
must have 7 times the cross-sec-
tional area of a horse leg bone. In
other words, the elephant leg bone
must have 2.6 times the diameter of
a horse leg bone. Notice that the el-
ephant and the horse cannot have
the same shape; the legs must be
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proportionately larger than the other
dimensions. The comparison would
be even more dramatic if we com-
pared the elephant to a mouse!

This explains why elephants have
such thick legs, but what about the
ears? Let’s assume for the moment
that an elephant eats 7 times as
much as a horse because it has 7
times as much mass. As this food is
used by the body, it generates heat.
Therefore, an elephant must dissi-
pate 7 times as much heat as a horse.
We know that the thermal loss is
proportional to the difference in the
temperature across the skin and to
the area of the skin. The surface area
of any solid depends on the square of
its linear dimensions, so the el-
ephant only has 1.9 = 3.6 times the
surface area. This means that the
elephant must have a much higher
body temperature or some other
way of getting rid of the thermal
energy. This is one of the roles of
the big ears. They increase the sur-
face area and, by moving in the air,
keep the air temperature near the
skin from climbing very much. The
elephant also eats less per unit mass
than a horse.

It is interesting to note that al-
though elephants communicate by
ultrasound, it is not necessary for
them to have big ears for this pur-
pose.

Not all scaling deals with lengths.
We can use any factor as a scaling

parameter. For instance, the Bohr
radius for the hydrogen atom is
given by
2
ag =—— =0.0529 nm,
mke®

where 7 is Planck’s constant di-
vided by 2x, m is the mass of the

electron, k is Coulomb’s constant,
and e is the electronic charge. What
would be the new radius if the elec-
tron were replaced by a muon with
a mass 207 times as large? (We as-
sume that the mass of the proton is
large compared to the mass of the
muon.] We do not need to solve for
the new radius from scratch; all we
need to know is that the radius
scales inversely with mass. There-
fore, the radius of the muonic hydro-
gen atom is

iy

m a

a, = ao[ ¢ } = ﬁ =0.256 pm.

This was one of a series of five
problems on scaling that made up
one of the three theory questions at
the International Physics Olympiad
held in Sudbury, Canada, last July.
(See Happenings for a report on the
Olympiad.) The theory problems
were developed under the direction
of Chris Waltham, who is a faculty
member at the University of British
Columbia. Three of the other scal-

Art by Tomas Bunk







ing problems make up this month’s
Contest Problem.

A. The mean temperature on the
Earth is T = 287 K. What would the
new mean temperature T° be if the
mean distance between the Earth
and the Sun were reduced by 1%?

B. On a given day, the air is dry

and has a density p = 1.2500 kg/m3.

The next day the humidity has in-
creased and the air contains 2%
water vapor by mass. The pressure
and temperature are the same as'the
day before. What is the new air den-
sity p’? Assume ideal gas behavior.
The mean molecular weight of dry
air is 28.8 g/mol, and the molecular
weight of water is 18 g/mol.

C. A type of helicopter can hover
if the mechanical power output of
its engine is P. If another helicopter
is produced that is an exact half-
scale replica (in all linear dimen-
sions) of the first, what mechanical
power P’ is required for it to hover?

Please send your solutions to
Quantum, 1840 Wilson Boulevard,
Arlington, VA 22201-3000 within a
month of receipt of this issue. The
best solutions will be noted in this
space.

Color creation

In the May/June issue, we asked
readers to solve two problems con-
cerned with thin film interference.
In the first problem the white light
fell on the thin film at an angle of
30°. Readers sending in solutions
to this problem chose to make
some simplifying assumptions to
ease the derivation. Specifically,
they assumed that the total dis-
tance through the soap film was
equal to twice its thickness, ignor-
ing the angle at which the light

Figure 1
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traveled. They also assumed that
the ray that reflects from the top
surface and the ray that enters the
film and reflects from the bottom
surface interfere with one another
even though they are displaced
from one another. We will com-
plete a more thorough analysis of
this standard problem.

As shown in figure 1, the beam of
light incident at point A refracts into
the film, reflects at point B, and then
reemerges at point C. A second ray
partially reflects at C, and these two
rays interfere. The path difference
between these two rays determines
whether there is constructive or de-
structive interference. The beam of
light arrives along the line AD in
phase. We see that the refracted and
reflected rays travel additional dis-
tances AB + BC and DC, respec-
tively. From the geometry of the
problem, we see that

2d

AB+BC= .
cosf

The wavelength in the soap film
is smaller than the wavelength in air
by a factor of 11, the index of refrac-
tion. The optical path length is
therefore

2d ;h_ 2dn

cosp 1 AgcosB’

where [ is the incident angle of the
ray at the lower surface. The path
length DC is given by

DC = AC sin o = 2d tan B sin o,

where o is the angle of incidence at
the top surface. The number of
wavelengths in this distance is

2dtanBsino
Ao '

Because this wave reflects from a
medium with a higher index of re-
fraction, it undergoes a phase shift of
180°. This makes the total number
of wavelengths equal to
2dsinBsin o N 1

Lo cosB 2

Constructive interference will
occur when the path difference is
equal to an integral number of wave-
lengths k:

2dn  2dsinfsino 1

- Lo cosPB Agcosp 2

Because Snell’s law applies to these
rays of light, we know that sin o =
n sin B. Therefore,

k= 2dn [l—sin2 B]—l
Ao cosf 2
_ Zdﬂ 2 o1
~ AgcosP [COS B] 2
_2dncosp 1
Ao 2

Using Snell’s law and the relation-
ship sin? o + cos? o = 1, we can write
the equation in terms of o

2]<+1=ﬁv/n2 —sin?a.

0
If k=0,

d= !

I

=01 pm.

n? —sin’«
For a light ray incident on the

film along the vertical direction,

Ao = 4d\n* —sin® 0 = 4dn.

Because d = 0.1 pm, A, = 0.53 um.
This is a greenish-yellow light.

Part B of the problem asked for
the minimum thickness of a film of
acetone (n = 1.25) placed on glass
(n = 1.50) such that light coming
from the vertical would have de-
structive interference at 600 nm and
constructive interference at 700 nm.

The path difference for the ray
reflected off the top surface of the
acetone and the ray reflected off the
bottom surface of the acetone is sim-
ply 2dn. Because both reflections
occur for materials with higher indi-
ces of refraction, a phase shift occurs
at both surfaces and therefore the
1/2 does not appear in our equation.

For constructive interference, the
optical path difference 2dn/A,,
should equal an integral number of
wavelengths:



_ 2dn

k ’
7“00

For destructive interference, the op-
tical path difference 2dn/A, should
equal a half integral number of
wavelengths:

k+

1 _2dn

2 hoa
Eliminating k and solving for the
thicknesses, we find

This is the minimum thickness.
There are other possible thick-
nesses. What are some of them? (@)

f Calling all modem
maniacs!

What did you like in this issue
of Quantum? If you find pen-
and-paper communication too
old-fashioned, you can send
your comments, questions,
and suggestions to the manag-
ing editor by electronic mail at
the following address:

quantum@nsta.org

We look forward to hearing
from you. J

G

e

Visit QUAN
on the Weki

We’ve opened up a site on the
World Wide Web, so stop by if
you can. As with most Web
sites, we're still growing. But al-
ready you'll find an index of
Quantum articles, a directory of
personnel and services, back-
ground information on Quan-
tum and its sister magazine
Kvant, and more. Recent visitors
will have found a preview of this
issue, plus a Brainteaser contest.

Point your Web browser to
http://www.nsta.org/quantum

\ )

Physics Phluency

Let NSTA help you speak the language of physics

Methods of Motion

An Introduction to Mechanics, Book One
Twenty-seven teacher-created activities
aim to simplify the daunting world of
Newtonian mechanics for students

and teachers.

(grades 6-10, 1992 revised ed., 168 pp.)
#PB039X $18.50

Evidence of Energy

An Introduction to Mechanics, Book Two
The informal hands-on activities in this
book use a variety of techniques to
combat common misconceptions

about mechanics.

(grades 6-10, 1990, 200 pp.)

#PB080X $17.95

Taking Charge

An Introduction to Electricity
Spark student interest in electricity
with 25 hands-on, teacher-tested
activities using readily available
materials.

(grades 5-10, 1992, 160 pp.)
#PB096X $18.95

Energy Sources and

Natural Fuels

Explore energy, photosynthesis, fossil
fuels, and more in this collaboration
between NSTA and the Russian
Academy of Science. (A teacher’s guide
and classroom sets also are available.)
(grades 9-10, 1993, 80 pp.)

#PB104X $12.95

To Order, Call:

(800) 722—-NSTA

MasterCard, VISA, Discover, and Purchase Orders
Please make all orders payable in U.S. currency
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GRADUS AD
PARNASSUM

Gircular reasoning

Eleven steps to a deeper understanding of inscribed angles

ELCOME TO QUANTUM'S
newest column, Gradus ad
Parnassum.! It will feature
problems and theorems that
are closely connected with the regu-
lar high school mathematics cur-
riculum, but which most regular
classes do not get to investigate.

The problems will be grouped by
theme. For example, this month’s
theme is the measure of angles in a
circle. If you haven’t yet studied these
theorems, they are accessible in al-
most any textbook on geometry.

This month, we have a guest co-
author contributing to the problems.
He is Benji Fisher, who got his Ph.D.
from Princeton University and has
since taught at Columbia Univer-
sity, the Bronx High School of Sci-
ence, and the Commonwealth
School in Boston. The authors
would also like to acknowledge the
help of the honors geometry class
from Bronxville High School.

In what follows, the symbol AB
refers to minor arc AB, unless the
major arc is indicated. We will use
the following results:

A. An inscribed angle is measured by

IThe phrase gradus ad Parnassum,
literally “steps to Parnassus,” refers to
a series of increasingly difficult
exercises that help one’s skills. (The
ancient Romans considered Mt.
Parnassus to be the home of the
Muses.) The Austrian composer
Johann Joseph Fux used the phrase as
the title of his treatise on
counterpoint, a primer used by Haydn,
Mozart, and other 18th-century
COMpOSETs.
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by Mark Saul and Benji Fisher

A
X
v B
Figure 1
A C
B
D
Figure 2

half its intercepted arc.

B. Inscribed angles intercepting the
same arc are equal. In the dia-
gram, if points A, B, X, Y are on
the circle, then ZXAY = ZXBY =
(1/,)XY .We say that arc AB, or
line segment AB, subtends ZAXY

at point X and ZAYB at point Y.
C. Conversely, if an angle intercepts
an arc equal to twice its measure,
then that angle is an inscibed
angle (that is, its vertex is on the
circle). In figure 1, if points A, X,

A

and Y are on the circle and ZXAY

= Z/XBY, then point B is also on

the circle.

D. An angle formed by two chords
is equal to half the sum of the
arcs it intercepts. In figure 2,
ZAPD = 1/,(AD + BC).

E. An angle formed by two tangents,
a tangent and a secant, or two se-
cants is equal to half the differ-
ence of the arcs it intercepts.

In figure 3a, ZAPB = 1/2(AXB —
AYB) In figure 3b, ZAPB = 1/,(AB
- AC) In figure 3c, ZAPB = 1/,(AB
- CD).

1. Show that if a quadrilateral is
inscribed in a circle, then its oppo-
site angles are supplementary. Is the
converse of this statement true?

DEermNITION. A quadrilateral that
can be inscribed in a circle is called
a cyclic quadrilateral.

2. Show that the bisectors of the
angles of any quadrilateral form a
cyclic quadrilateral.

3. Through the midpoint M of an
arc of circle AB we draw any two
lines, cutting the circle at points D
and E and cutting chord AB in F and
G. Show that quadrilateral DEFG is
cyclic.

a o}
Figure 3




4. We know that the three alti-
tudes of a triangle coincide in a
point, called the orthocenter. We
also know that any triangle can be
inscribed in a circle. Show that if we
reflect the orthocenter in any side of
the triangle, the reflection lands on
the circumcircle of the triangle.

5.1In triangle ABC, AP and BQ are
altitudes. Show that quadrilateral
ABPQ is cyclic.

DeriniTioN. The three altitudes of
a triangle are drawn, and a new tri-
angle is formed by connecting the
three feet of the altitudes. This new
triangle is called the pedal triangle
of the original triangle. (Did you
ever notice that the word pedal is an
adjective, meaning “pertaining to
feet”? Ask a Latin scholar.)

6. Show that the altitudes of the
original triangle are the angle bisec-
tors of the pedal triangle.

7. A fixed point is chosen inside

a circle, and all possible chords are
drawn through that point. Then the
midpoint of each chord is chosen.
What figure is formed by these mid-
points?

In technical terms, this question
says: Find the locus of the midpoints
of chords of a circle passing through
a fixed point. (The word locus is just
a fancy term for a set of points sat-
isfying a given condition.)

What if the chosen point is the
center of the circle?

Can you make up a problem like
this but starting with a point outside
the circle?

8.1f A, B, and C are three points
on a circle, we join the midpoints
of arcs AB and AC. This line inter-
sects AB at X and AC at Y. Show
that AX = AY.

9. Given a circle and a fixed chord
AB, let CD be a second (variable)
chord with a fixed length. (a) Find

the locus of points of intersection I
of lines AC and BD. (b) Find the lo-
cus of points of intersection K of
lines AD and BC.

10. (a) Points A and B are fixed
points on a given circle, and M is a
variable point major arc AB. Point P
is a point on segment AM such that
MP = MB. Find the locus of points
P. (b) We extend segment AM to a
point Q outside the circle such that
MQ = MB. Find the locus of points
Q. (c) Answer questions (a) and (b) if
point M is taken on minor arc AB.

11. Two circles intersect in points
A and B. A secant to both circles
passes through A, cutting the first
circle again at P and the second at Q.
A second secant to both circles
passes through B, cutting the first
circle again at R and the second at S.
Show that PR is parallel to QS. (@
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Van ter Waals and his equation

N NOVEMBER 23, 1837, IN
the town of Leiden in the
Netherlands, the first of car-
penter Yakobus van der Waals’
nine children was born. This boy,
Johannes Diderik van der Waals,
was destined to become one of the
shining stars of the European scien-
tific community and the founder of
modern molecular physics.

Because his father’s modest in-
come prevented him from pursuing
a formal education beyond elemen-
tary school, van der Waals had to
school himself. While working as a
school teacher, he managed to at-
tend lectures on mathematics, as-
tronomy, and physics at the old
University of Leiden. It was at this
university on June 14, 1873, that van
der Waals defended his doctoral the-
sis “On the continuity of liquid and
gaseous states” (the result of his first
independent study and his first sci-
entific publication). The defense
was a success, but the esteemed
members of the Scientific Council
showed no particular interest in van
der Waals’ work. Ten years later, the
entire Buropean scientific commu-
nity began to realize that this work
would ensure that his name would
have a place in the science pan-
theon. In 1910 van der Waals was
honored with the Nobel prize for
physics.

What earned van der Waals such
praise? In mathematical language,
the answer is simple. Before van der
Waals, the gaseous state was de-
scribed by the equation of an ideal
gas:
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PV =RT. (1)

After the publication of his thesis,
it was possible to describe the state
of a real gas:

(P+%](V—b) =RT, (2

where V is the volume of one mole
of gas, T the absolute temperature,
P the pressure, R the universal gas
constant, and a and b are experimen-
tally defined constants characteriz-
ing the intermolecular attraction
and the volume occupied by the
molecules.

Although the ideal gas equation is
extremely useful in physics, it can
only provide a very rough approxi-
mation of the properties of real
gases. It can only be used to accu-
rately describe gases with very low
densities, where the size and inter-
action of the molecules that make
up the gas are insignificant. The van
der Waals equation (or the real gas
equation of state) provides a far more
realistic model in which the mol-

Making an ideal gas real

ecules are considered as perfectly
rigid balls with small but significant
diameters, that are held together by
cohesive forces that quickly fade
with distance.

Van der Waals described the tran-
sition from equation (1) to equation
(2) as “applying the corrections.”
First, his modified equation takes
into account that, in addition to the
external pressure P, there is an inter-
nal pressure a/V? resulting from the
intermolecular cohesion that tries to
bind the molecules together into a
single tight cluster in opposition to
the chaotic thermal motion. Second,
the thermal motion does not take
place in the entire volume V occu-
pied by gas, but only in this volume
minus that occupied by the mol-
ecules themselves. Thanks to van
der Waals’ corrections, an equation
that could only describe nonexistent
theoretical objects was transformed
into an equation that could describe
the behavior of real fluids with den-
sities ranging from rarefied gas to
the liquid state. In addition, van der
Waals’ corrections also permitted
scientists to calculate the values of
molecular forces and approximate
the size of molecules.

Figure 1 shows isotherms calcu-
lated at different temperatures with
the help of the van der Waals equa-
tion. The larger values of V indicate
fluids in a gaseous state, and the
smaller ones indicate fluids in a lig-
uid state. Isotherms 1, 2, and 3 show
that, at temperatures T > T, each
value of P corresponds to only one
value of V. In other words, the tran-
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Figure1

sition from a gaseous to a liquid
state is continuous, so at such tem-
peratures categorizing matter as ei-
ther liquid or gas is pointless. Some-
thing quite different takes place at
T < T..In this temperature range the
isotherms have regions where each
value of P corresponds to three dif-
ferent values of V, as indicated by
the wavy segments in isotherms 4,
5, and 6.

Let’s consider in detail an iso-
therm for some temperature T < T,
(fig. 2). The wavy segment ec (shown
by the dash line) corresponds to an
unnatural phenomenon: a compres-
sion-induced drop in pressure. It is
just a mathematical whim of the
van der Waals equation (sometimes
such whims result in discoveries,
however), and in reality the strange
segment ec indicates that during the
gradual change of volume in this
region, the matter cannot be homo-
geneous all the time—some of the
time it will be separated into gas and
liquid components. Thus, the true
isotherm is the broken line abfg

p

Figure2

with a straight line bf in the region
of the wavy segment. This straight
line connects the branch ab corre-
sponding to the gaseous state and
the branch fg describing the liquid
one. Horizontal segment bf corre-
sponds to the conversion of gas into
liquid (and vice versa) at a given
temperature and constant pressure.

At what pressure is the linear seg-
ment located? The van der Waals
equation cannot answer this ques-
tion. The position of the horizontal
segment is determined by the rule
discovered independently by J. Max-
well (1831-1879] and R. Clausius
(1822-1888): The height of the seg-
ment bf should divide equally the
areas of the “half-waves” bcd and
def, which lie below and above it.

As the pressure increases, the lin-
ear segment becomes shorter until it
eventually becomes a single critical
point C when T'= T (fig. 1). Accord-
ing to van der Waals’ equation T, =
8a/(27bR), and the corresponding
critical pressure is P, = a/(27b?). For
example, in the case of water, T, =
647.3 K and P_ = 22.13 mPa. This
results in a value of b = RT /(8P,) =
30.4 - 107° m3/mol. For water mol-
ecules considered as perfectly rigid
balls, the equation yields a diameter
d=2.9-10"1"m, a value that has a
reasonable order of magnitude.

The van der Waals equation is
widely used by physicists and engi-
neers for good reason. The equation
is easy to work with, and it allows
them to describe the properties of
matter over a vast range of condi-
tions. Furthermore, it is based on a
simplified though realistic model of
matter that can be easily inter-
preted. But just how accurate is van
der Waals’ equation? At high tem-
peratures and low pressures, it is
very accurate, but when the density
of a gas approaches the liquid state,
the equation can only provide a
qualitative description at best.

The van der Waals equation cre-
ated a problem that the author him-
self was unable to provide a logical
solution to, although he was able to
solve the problem intuitively. It
seems that for many years after its
introduction, no one was able to pro-

vide a strict mathematical proof.
How could such a practical equation
exist without a sound theoretical
basis? Some physicists were in-
clined to believe that a metaphysi-
cal answer should be sought.

It wasn’t until 1966 that the van
der Waals equation was deduced.
However, a certain enigma has re-
sisted complete resolution down to
the present day. The recent equation
was strictly derived for a model in
which absolutely rigid balls (mol-
ecules| are linked by very weak at-
tractive forces with an infinite
range. Van der Waals himself in-
sisted that the forces of attraction
described by his equation do not
operate at long range but rather over
only a few molecular diameters.
This situation would elicit little in-
terest if it hadn’t turned out that this
scientist’s physical intuition has yet
to be surpassed by the most sophis-
ticated mathematical methods. In-
deed, a comparison of experimental
data with the results of computer
calculations has shown that the van
der Waals equation can also be valid
for short-range intermolecular at-
traction, and it does not necessarily
have to be weak.

What was the fate of van der
Waals after the defense of his fa-
mous dissertation? In 1875 he be-
came an academician, and two years
later, a professor of physics at the
University of Amsterdam. He
worked at this position until 1908,
when he was forced into mandatory
retirement at age 70. In addition to
the real gas equation, van der Waals
made a number of other important
scientific discoveries, some of
which weren’t appreciated until
modern times. He proceeded with
his scientific work until 1916 but
seemed to tire as the years passed,
both physically and creatively.
When he died in 1922, his work in
molecular physics was being over-
shadowed by new developments in
quantum theory and atomic and
nuclear physics. Today, however,
his work is once again the talk of the
physics community and will cer-
tainly lead the way to new impor-
tant developments in the field. [@]
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8 inS and outs of circles

What do inscribed and circumscribed
circles have in common?

NSCRIBED AND CIRCUM-

scribed circles have a lot in com-

mon. Their similarities are the

focus of this article, and the two
problems that follow will bring out
their common properties.

Problem 1. Let the sides of tri-
angle ABC be BC = a, CA=b,
and AB = c. Find the lengths of the
segments into which the sides are
divided by the points where they
touch the circle inscribed in triangle
ABC.

Problem 2. Let the angles A, B,
and C of triangle ABC be known.
Find the angles between the sides of
the triangle, and the radii of the cir-
cumscribed circle drawn to the cor-
responding vertices.

B
y y
x Z
A X Z C
Figure 1
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Figure 2

Let’s solve the first problem. If
two of the segments described in the
problem have a common point (a
vertex of the triangle), they are equal
(fig. 1). These segments will be re-
ferred to as x, y, and z. This allows
us to obtain the system

X+y=Cy+z=az+x=Db.

Adding all three equtions, we find
2x+2y+2z=a+b+c,s0Xx+y+z=
(1/2)(a + b + c). We set this last quan-
tity equal to s (for semiperimeter),
and subtract each original equation,
in turn, from the last we've ob-
tained. We find that

x=8-a,y=s-b,andz=s-c.

These formulas belong to a group
of “practical” formulas that can
come in handy if you have a difficult
problem to solve.

One can solve the second prob-
lem in a similar way (fig. 2). Angles

adjoining one side of the triangle are
equal. Denoting them by x, y, and z,
we come to the system

x+y=C,y+z=A,x+z=25,

from which we compute

x=1/(B+C-A)=n/2-A,
y=1,A+C-B)=n/2-B,
z=1/lA+B-C)=n/2-C.

Actually, unlike the previous
case, it is possible that for the val-
ues of some angles to be negative
(that is, if we consider oriented
angles). Thus, the angles adjacent
to the longest side of an obtuse tri-
angle will be negative. You can
easily derive the relationships ob-
tained in problem 2 from the main
property of central and inscribed
angles (£BOC = 2ZBAC). The
careful reader will have noticed
that the algebra we used to solve
both problems is exactly the same
(especially if we use d to represent
the half-sum of the angles of the
given triangle instead of n/2) and
consider the profound analogies
between the inscribed and circum-
scribed circles.

In both cases we used only the
main property of an isosceles tri-
angle, which holds not only in the
usual Euclidean geometry but also
in hyperbolic (Lobachevskian) ge-



ometry. That’s why the relation-
ships we’ve identified hold true for
spherical triangles, for which the
“duality” of their angles and sides
is fundamental. This duality leads
to the duality of their inscribed
and circumscribed circles.

Let’s proceed to inscribed and
circumscribed quadrilaterals. We
can examine their properties by
working through the following
two problems:

Problem 3. Let ABCD be a cir-
cumscribed quadrilateral. Then AB
+CD=AD + BC.

Problem 4. Let ABCD be an in-
scribed quadrilateral. Then ZA + ZC
= LB+ 7D, |24 + 20 = 2B + 2D =
180°.)

Moreover, these relationships
are not only necessary but also
sufficient for the given quadrilat-
eral to be circumscribed (or in-
scribed).

Now let’s point out two more
relationships, both of which give a
necessary and sufficient condition
for the existence of a circle in-
scribed within a given quadrangle,
if the latter is not a trapezoid.

Problem 3’. If the opposite sides
of quadrangle ABCD are extended,
let them intersect as in figure 3.
Now, if ABCD is a circumscribed
quadrilateral, then KA + AM = KC
+ CM, KD + BM = MD + KB. And
vice versa, if one of these two
equalities is satisfied, then the
quadrilateral ABCD will be cir-
cumscribed.

Figure 3

One can also point out the cor-
responding relationships for an in-
scribed quadrilateral. We leave
this for the reader to explore.

Proof. Let’s first prove that the
relationships of problem 3’ are
necessary. Using the fact that two
tangents drawn to a circle from
one point are equal, we find

KA+ AM=KQ-AQ+ AP+ PM
=KT+ML=KC-CT+CL+MC
= KC + MC.

The sufficiency of the conditions
of problems 3, 3’, and 4 are usually
proven by contradiction. However,
we’ll suggest another way that
would put greater stress upon the
close connection between inscribed
and circumscribed circles.

Let’s prove the sufficiency of the
first condition of problem 3’. Sup-
pose, in quadrilateral ABCD (fig. 4),
that KA + AM = KC + CM. Mark seg-
ments KE = KA on line KC and
MF + MA on MB. From the equality

KA + AM = KC + CM,

it follows that

CF = MF - MC =MA - MC
= KC - KA = EC.

Since KA, MA, and CE are equal
to KE, MF, and CF respectively, the
bisectors of the angles AKD, AMB,
and BCD coincide with the perpen-
dicular bisectors of AE, AF, and FE.
Thus these bisectors intersect at one

K

Figure 4

M A D K

Figure 5

point: the center of the circle cir-
cumscribing triangle AEF. This
point, being on three angle bisectors,
is equidistant from KB and KC, KC
and BC, and BC and AM. Therefore,
it is equidistant from the sides of
quadrilateral ABCD. In other words,
it is the center of the circle inscribed
in it.

To prove the sufficiency of the
conditions of problem 4, let’s sup-
pose that the sums of the opposite
angles of quadrangle ABCD equal
each other, and for definiteness,
D < C, A < B. Draw straight lines
through the points C and B such
that the angles between them and
sides DC and AB of the quadrangle
are equal to angles D and C respec-
tively (fig. 5). We obtain two isos-
celes triangles CMD (CM = MD)
and ABK (AK = BK). Triangle BEC

is also isosceles (LZCBE =
LABC-ZBAD =/ZBCD - ZCDA =
ZBCE). The perpendiculars

dropped to sides AB, BC, and CD
from K, E, and M respectively, co-
incide with bisectors of the inte-
rior angles of the triangle MEK,
and therefore meet in one point.
This point is equidistant from all
four vertices of the quadrilateral.
In other words, it is the center of
its circumscribed circle as well as
the center of the circle inscribed in
triangle MEK.

It looks as if inscribed and circum-
scribed circles courteously bow to
each other in these two proofs.

If ABCD is a trapezoid, there are
some special features:

Problem 5. There exists a circle
inscribed in trapezoid ABCD with
bases AD and BC if and only if one
of the following equalities holds:

(a) TB + BP = DP,
TC + AP = AD + CP,
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where P is the point where the ex-
tensions of the lateral sides of the
trapezoid meet, and T is the projec-
tion of D on the line BC.

B
(b) ——cot~cot5.

Try to prove these statements your-
self.

Let’s conclude the article with
two more problems.

Problem 6. Let ABCD be a cir-
cumscribed quadrilateral. Prove that
the circles inscribed in triangles
ABC and CDA are tangent to each
other.

Proof. Let the circles inscribed in
triangles ABC and CDA touch AC
at points K and M respectively (fig.
6). To prove that points K and M
coincide, we need the help of the
formula from problem 1:

MK =|AM - MK| = E(AB+AC—BC)

3 AC+AD-CD :lAB‘FCD
2 2

-BC-AD|=0.

Problem 7. Straight lines, parallel
to DC and AB respectively, are
drawn through the vertices A and C
of quadrilateral ABCD. The first of
them meets the straight line BC at
the point B,, and the second meets
the straight line AD at the point D).
Prove that

(a) if ABCD has an inscribed
circle, then AB,CD, has one also.

(b) if ABCD has a circumscribed
circle, then AB,CD, has one also.

Proof. We prove only (b), leaving
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(a), which is easier, for the reader.
We confine ourselves to the case
when ABCD is not a trapezoid. De-
note the points in which straight
lines AD and BC and AB and CD
meet at K and M respectively. We
have to consider two different cases
(fig. 7 and fig. 8).

Let P be the point where
straight lines AB, and CD, meet.
In this case (fig. 7), PA = CM, PC =
AM. Since ABCD is a circumscribed
quadrangle, KA + AM = KC + CM
(according to the first equality dem-
onstrated in problem 3’). Replacing
AM and CM with PC and PA, we
obtain KA + PC = KC + PA. Then, ac-
cording to the second equality stated
in problem 3’, quadrilateral AB,CD,
can be circumscribed. »

In the second case (fig. 8), by ap-
plying the second statement of
equality from problem 3’ to the
quadrilateral ABCD, we can con-
clude that the first condition of the
same problem is satisfied for the
quadrilateral AB,CD;.

Let’s finish up with a few more
problems.

Problems.

1. Point M is located on base AC
of isosceles triangle ABC. If
AM = a and MC = b, find the dis-
tance between the points where
the circles inscribed in triangles
ABM and CBM touch the side BM.

2. The sides of a circumscribed
pentagon have lengths a, b, ¢, d,
and e. Find the lengths of the seg-
ments into which side a is divided
by the point where it touches the
circle.

3. Consider a circumscribed

Figure 7

M

Figure 8

polygon with an even number of
sides. Number its sides consecu-
tively and add up the lengths of
the odd-numbered sides and the
even-numbered sides separately.
Prove that these sums must be
equal.

4. Straight lines intersecting
sides AB and CD of parallelogram
ABCD divide it into several trap-
ezoids such that a circle can be in-
scribed in each of these trapezoids.
Prove that the product of the seg-
ments into which side AB is di-
vided by the lines is equal to the
product of segments into which
CD is divided.

5. Points A,, B,, and C, are
found along the sides of triangle
ABC such that straight lines AA,,
BB,, and CC, intersect in one
point M inside the triangle. Con-
sider the three quadrilaterals
AB MC,, BC,MA,, and CA MB,.
Show that if two of these quadri-
laterals can be circumscribed, then
the third one can be circumscribed
as well.

6. Prove that if the lateral edges
of a quadrilateral pyramid are
equal, then the sum of the two di-
hedral angles at the opposite lat-
eral edges of the pyramid is equal
to the sum of the other two dihe-
dral angles.

7. Consider two rays, OA and
OB. Find the locus of ray OC such
that the quantity o + B — y (where
o, B, and y are the dihedral angles
at the edges OA, OB, and OC re-
spectively) of the corresponding
trihedral cone is constant. (@
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Number Cells

Can you get there from here?

HIS IS AN INVESTIGATION

undertaken by two 14-year-

olds, Tim and Hugh. In the fol-

lowing row of cells, you start
with 3 and 4:

alel [ 1]

Then you add 3 and 4 to get 7, then
4 and 7 to get 11, ...

[3]4]7]11]17]

But if you are given the first and last
numbers only ...

Ll 1 [ [e]

what are the missing numbers?
Here are some examples of num-
ber cells:

Tim and Hugh soon saw that the
real problem in filling in a number
cell is to find the second number—
after that, it’s easy.

Problem 1. Without reading fur-
ther, solve this number cell:

HENER

Solution. Trial and error, or a bit
of thought, yields

by Thomas Hagspihl

- (-3]))/2 = 4, which gives the num-

ber cell

The general case for a five-unit
cell looks like this:

L2l 1][3]a]7]

Tim and Hugh decided to gener-
alize. They started with the four-
unit cell (since the three-unit cell is
the trivial case). They let the first
and last numbers be x and z, and
they called the second number y—

BJ y‘x+y}x+2y'2x+3y1

that is,
So,z=2x+3y, or
v [<]
_Z=2%
The empty block must be x + y, and 3
zZ=X+2y:

Problem 3. Solve

Ll [ [ 1]

Solution. Takingx =4, z=-7, we
get

’x{y‘x+y‘x+2y‘

Solving for y, we get

y= z=0x _ —7—2(4) _—_15__5
Problem 2. Solve the following 3 3 3 '

number cells:

o s
Mo BEIIs

Solution. (a) Taking x = 4, z = 6,
we get y = (6 —4)/2 = 1, which gives
the number cell

(4] 1]s]e]

(b) Takingx=-3,z=5, we get y = (5

This gives the number cell

L4 1-5[-1]-6[7]

Will the numbers we find always
be integers if the starting numbers
are integers? A few examples will
soon lead you to the answer no. But
how do you know when you’ll get
integers? In the case of a five-unit
cell, it’s clear that z — 2x must be
divisible by 3 in order to get integers.

Tim and Hugh went on to find
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formulas for number cells of length
6and 7.
Problem 4. Show that

. z-3x
5
for a six-unit cell and

_z—SX

8

y

for a seven-unit cell.
If we stack the equations, very
interesting things start to appear:

Zi—.X

y= (3- unit cell),

Zz—X

¥ = (4 - unit cell),

y=2 _32X (5- unit cell),

y=2 _SSX (6- unit cell),

y=2 _85X (7 - unit cell).

Look at the denominators of the

fractions: 1,2, 3,5, 8, ... —a number
cell!

Also look at the coefficients of x
(ignoring the sign): 1, 1,2, 3, 5, ...—
again, a number cell!

Tim and Hugh noticed that this cell
is special: it’s the Fibonacci sequence.

Now Tim and Hugh tried to put
these results into a formula to find
the second number of any given
number cell no matter what the
starting numbers or the length are.
Let x be the number of cells and let
N, be the last number in the cell.
(N}, N,, ... will be the first, second,
... numbers.) Also let F_be the xth
Fibonacci number. The formula
therefore reads

N,-F,
NQ = ——X——FX_Z (Nl)

x-1

Problem 5. Prove Tim and Hugh's
formula.

Problem 6. Show that this for-
mula works for the following num-

ber cell:

el [ 1] [+

Solution. x =7, N, = 17, N, = -3,
F__, is the fifth number in the Fi-
bonacci sequence—that is, 5—and
F__, is the sixth number in this se-
quence—that is, 8. Therefore,

17-5(-3) 32
2:——:-—:4
8 8

The number cell follows:

3] 4] 1]5]6]11]17]

Problem 7. Solve this cell:

Solution. x=9,N;=5,N_=2,F__,
=F,=13,F,_, = Fg = 21. Therefore,

N I I

2 21 21

The number cell follows:

[s]-sl 21 1]of 1] +[e]

We hope you will enjoy playing
with number cells. Q
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Across
1 44,462 (in base 16)
5 Rod: comb. form

10 Resinous insect
secretion

13 Describe

14 977,834 (in base 16)

15 Toward shelter

17 Monogram part:
abbr.

18 Refine metal

19 Archaeologist _
Leakey

20 Hyperbolic function

21 Moray, e.g.

22 NaALSi,0,

24 Abscisic acid: abbr.

26 Immoral

27 ___ arsenide

31 ___ birefringence

35 Take in

36 Wrong

38 Anger

39 Lively

40 French school

41 48,858 (in base 16)

42 cycle (Krebs
cycle)

Brigs <

Crogs science

by David R. Martin

10 |11 |12

15 16

19

43 Separate

44 Fir and cedar

45 Fluorine, e.g.

47 Dissolver

49 X-1 (x-ray
pulsar)

50 Mauna ___

51 French mathemati-
cian

54 JTump about

56 Passerine bird

60 Decorative case

61 Reddish powder

63 60,906 (in base 16)

64 Forbidden (alt. sp.)

65 Abalone

66 107: pref.

67 With: pref.

68 Backs of necks

69 U.S. Treasury agents

Down
1 Landed
2 Radar-jamming

transmitter

360C
4E+pV
5 Astronomical grid
6 CyH;,O,N,Fe

7 English chemist
Frederick Augustus
_(1827-1902)

8 Dimercaprol: abbr.

9 Set of related
information

10 Wavelength letter

117ai

12 Qualified: abbr.

16 Sense organ

23 Chemist
Onsager

25 Binary digit

27 Enclosed yard

28 711,370 (in base 16)

29 Native

30 City in Ga.

31 Rasps

32 Double-bonded
alkene

33 Shakespeare’s forest

34 Saccharomyces

37 Sun. follower

40 Fundamental
particle

41 Wanting two H
atoms

43 Latin consonant
sound

44 Middle Eastern
group: abbr.

46 Element 76

48 __ ’ paradox (of
night sky)

51 Type of transistor:
abbr.

52 Greek letters

53 Red precious stone

54 Jolt

55 Type of molding
57 Swedish botanist

58 Descartes

_ Afzelius (1750~
1837)

59 A meson

62 Lake Garda wind

SOLUTION IN THE

NEXT ISSUE

SOLUTION TO THE

SEPTEMBER/OCTOBER PUZZLE
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HAPPENINGS

Scores and SNO in Sudbury

The 1997 International Physics Olympiad in Ontario

WO HUNDRED AND SIXTY-

six pre-college students from 56

nations gathered in Sudbury,

Ontario, July 13-21, for the 28th
International Physics Olympiad
(IPhO). Sudbury sits in the heart of
the Canadian Shield, a vast region of
lakes and forests and two-billion-
year-old rock outcrops. Long ago a
large meteorite slammed into the
Canadian Shield, creating the
Sudbury Valley, and producing some
of the richest deposits of nickel and
copper on Earth. Ontario’s geography
and livelihood were shaped by the
past. With the metals producer Inco
Ltd. as principal sponsor of IPhO 97,

By Dwight E. Neuenschwander

bounty from the past was invested
in the future.

Each member of the U.S. Physics
Team won a medal at the 1997
IPhO: one gold (Boris Zbarsky,
Rockville, Maryland), one silver
(Christopher Hirata, Deerfield, Illi-
nois), and three bronzes (Noah Bray-
Ali, Los Angeles, California; Travis
Hime, New Canaan, Connecticut;
Michael Levin, Chicago, Illinois). In
total points accumulated, the U.S.
team placed eighth in a very tightly
packed point spread at the upper
end. Our team members are gra-
cious young people who admirably
represented the United States and

Members of the 1997 US Physics Team join John Gibbons (front, center),
Assistant to the President for Science and Technology, on the steps of the Old
Executive Office Building in Washington, D.C.
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the American physics community.
We have many reasons to be proud
of the U.S. Physics Team. This fall,
Chris and Travis will begin study at
the California Institute of Technol-
ogy; Michael will attend Harvard
University; and Noah and Boris will
attend the Massashusetts Institute
of Technology.

The opening ceremonies were a
celebration of youth. The names of
the 56 participating nations were
read in English and French as Elgar’s
“Pomp and Circumstance” was per-
formed by the award-winning jazz
band of Lasalle Secondary School.
Special music was also provided by
19-year-old Jacinthe Trudeau, cham-
pion youth fiddler of Canada. She
held the audience spellbound with
her vigorous renditions of Irish bal-
lads, waltzes and reels, and the in-
credible “Orange Blossom Special”
that eerily imitates the sound of a
railway train! The competition was
officially opened by Canadian Space
Agency astronaut Julie Payette, who
is now in training for a NASA
shuttle mission. She captured the
TPhO spirit with her words: “We're
all in this together. Work together,
build partnerships. The future is in
our collective hands.”

The IPhO competition features
experimental and theoretical exams.
The object of experimental study
was a “bimorph”—two piezoelectric
strips fused together such that when



L

The 1997 US Physics Team medalists. From left to right: Noah Bray-Ali

(bronze), Travis Hime (bronze), Christopher Hirata (silver), Michael Levin

(bronze), and Boris Zbarsky (gold).

placed in an electric field, the strain
differential bends the assembly. A
tiny mirror glued to one end of the
bimorph, illuminated with a laser
pointer, provides an optical lever.
The displacement of the reflected
laser beam enables one to correlate
the bimorph’s deflection to the ap-
plied voltage. These results were
then used to measure the bimorph’s
capacitance.

Question 1 of the theoretical
exam featured a potpourri of scaling
problems. For example, if a certain
helicopter requires power P to
hover, find the power P’required for
hovering by a one-half scale copy
made of identical materials (P’ =
0.0884 P). Question 2 was a study of
the stability of certain nuclei against
specific channels of radioactive de-
cay, using a phenomenological ex-
pression for binding energy as a
function of neutron and proton com-
position. Question 3 examined a
theoretical model of aircraft lift in
terms of the momentum transferred
by the air passing a horizontally
moving wing whose control surface
is tipped at a small angle above the
horizontal.

Some of the excursions for the par-
ticipants included visiting the Inco
ore processing plants and the Big

Nickel Ming; spending time with the
interactive displays in Science North;
a cruise on beautiful Lake Ramsey; an
Ojibwa pow-wow; and model rocket
launches. Sudbury is home to the
Sudbury Neutrino Observatory
(SNO), located two kilometers below
Earth’s surface in Inco’s Creighton
Mine. Students and coaches were
treated to a detailed presentation
about SNO by Dr. Art McDonald, the
project director.!

The beauty of the Olympiad is us-
ing physics to bring people together.
In a warm sense of community,
Sudbury residents became personally
involved. Besides Inco’s sponsorship
and heavy coverage in the local me-
dia, some 200 local volunteers came
forward to help as guides and work-
ers. Local businesses, government,
and utilities went to unusual lengths
to welcome the IPhO participants and
assist the organizers. At a personal
level, the local Rotary Club hosted a
luncheon for the coaches and observ-
ers on Tuesday; and on Wednesday,
all the students had dinner in the
homes of local families, and spent the
evening with them.

ISee “The Omnipresent and
Omnipotent Neutrino” by Chris
Waltham in the July/August 1993
issue of Quantum.—Ed.

Physics is an international fel-
lowship, cutting through past or
present political differences that
come between nations. Thus at the
closing festivities we found Team
USA posing for group photos with
other teams that included Iran, Rus-
sia, and Vietnam. We found Ameri-
can and Cuban coaches exchanging
addresses, looking forward to the
day when we can visit one another
freely. Thanks to a coach from Ku-
wait, who had coaches from Sweden
to New Zealand attired in the Ara-
bian-style headdress, we learned
that Bernie Khoury cuts a dashing
figure in Middle Eastern headgear!
Friendships were forged through the
long days of meetings and examina-
tions, and the sleepless nights of
translating and grading.

Again this year, as every year,
there was a talent show after the
closing banquet, which reveals the
strength of that forging. Highlights
this year included two students
from the Netherlands performing
on flutes their own arrangement of
Holland’s national anthem, then
merging it into “O Canada;” and
the teams from the People’s Repub-
lic of China, Taiwan, and Singapore
performing together. With arms
around one another, they sang in
unison a Chinese ballad expressing
love for their homeland. The Finns
performed Russian folk songs in
Finnish; Polish-speaking students
from half a dozen countries regaled
us in song; we had the huka dance
from New Zealand; and a flutist

Top medal winners

Gold Silver Bronze

Australia 1
China
Germany
Great Britain
Iran

Poland
Romania
Russia
Singapore
Slovak Rep
South Korea
Taiwan

USA
Vietnam -
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from Macedonia playing J. S. Bach
while a juggler from Bulgaria per-
formed in time to the music. In all,
I counted 22 performances, not in-
cluding the karaoke or the slide
show. The finale came with the
Canadian students, leaders, and vol-
unteers singing “O Canada.” Rising
to their feet, everyone joined them
in a spontaneous expression of re-
spect and togetherness. We were,
indeed, all in this together. On that
final night, no one wanted to leave.

Finally, at eleven o'clock, when the
chartered buses could be kept wait-
ing no longer, in the soft glow of
their interior lights the songs in
many languages continued as we
motored through Sudbury back to
the university. Most students were
up all night in their dorms, trying to
make the moment last.

The next morning, students from
around the world clasped hands in
farewell. The future is, indeed, in
their clasped, collective hands. As the

teacher-astronaut Christa McAuliffe
observed, “To teach is to touch the
future.” Through the IPhO we help
shape the future by bringing together
from many nations the students who
will live it. Q

Dwight E. Neuenschwander is the aca-
demic director of the U.S. Physics Team
and the director of the Society of Phys-
ics Students at the American Institute
of Physics in College Park, Maryland;
and a professor in the Department of
Physics at Southern Nazarene Univer-
sity in Bethany, Oklahoma.

Firgt Step to Nobel Prize

Five students from the United
States earned honorable mentions
for their research papers submitted
to the international competition
“First Step to Nobel Prize in Phys-
ics.” Katrina A. Bogden was honored
for her paper “The Effects of Ioniz-
ing Radiation on Erythrocyte Sedi-
mentation Rate,” Andrew Hucke for
“The Physics of Archery,” Craig S.
Jones for “The Kirlian Effect and the
Identification of Bacteria,” Irina
Feygina for “An Investigation into
the Effects of Extremely Low Tem-
peratures on the Rate of Electron
Capture Beta Decay,” and Yuki
David for “Symmetric Theory of
Gravity.”

Submissions are now being ac-
cepted for the sixth annual compe-
tition. The general rules are as fol-
lows:

1. All secondary school students re-
gardless of country, type of
school, etc., are eligible for the
competition. The only conditions
are that the school cannot be con-
sidered a university college and
the age of the. participant must
not exceed 20 years on March 13,
1998.

2. There are no restrictions on the
subject matter of the papers, their
level, methods applied, etc. The
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papers must, however, have a re-
search character and deal with
physics topics or topics directly
related to physics.

3. Participants can submit more
than one paper, but each paper
should have only one author. The
total volume (text, figures, cap-
tions, tables, references, etc.) of
each paper should not exceed 25
normal typed pages (about 25,000
characters).

4. The papers will be refereed by the
organizing committee and the
best will be given awards. The
number of awards is not limited.
All awards will be considered
equivalent. The authors of the
prize-winning papers will be in-
vited to the Institute of Physics
for a one-month research stay
(scheduled for November 1998).
All expenses will be paid by the
Institute of Physics during the
stay, but participants must pay all
travel costs.

5.1In addition to the regular awards,
the organizing committee may
establish a number of honorable
mentions. Participants who win
honorable mentions receive di-
plomas, but are not invited to the
research stay.

6. Participants should send their
papers in duplicate and in En-
glish, by March 31,1998, to Maria
Ewa Gorzkowska, Secretary of

the “First Step,” Institute of Phys-
ics, Polish Academy of Sciences,
al. Lotnikow 32/46, (PL) 02-668
Warszawa, POLAND.

7. Important: Each paper should con-
tain the name, birth date, and
home address of the author and
the name and address of his/her
school.

Additional information on the
competition and on the proceedings
of past competitions can be obtained
from Dr. Waldemar Gorzkowski:
phone (022] 435212, fax (022) 430926,
e-mail gorzk@gammal.ifpan.edu.pl,
or from Dr. Yohanes Surya: phone
(062) 21-8211551, e-mail yohaness@
centrin.net.id

Current information on the com-
petition and related topics can also
be obtained by anonymous FTP at
ftp.ifpan.edu.pl in the subdirectory
pub/competitions.

(uamtum in Kangas

Yan Soibelman, a math re-
searcher and educator in the depart-
ment of mathematics at Kansas
State University, wrote to share his
views on Quantum and how he
uses it to inspire students in his
community:

I started to subscribe to Quantum a
long time ago when I lived in the (now
former) Soviet Union, where it is
known as Kvant. I am pleased to see



that Quantum preserves the spirit of
Kvant, and in some ways has surpassed
its parent journal.

I helped organize a mathematical
olympiad for fifth to eighth grade stu-
dents in Manhattan (Kansas, not New
York). It was sponsored by the Depart-
ment of Mathematics. The six other
deparmental volunteers and myself de-
cided to present participants with four
challenging problems that they could
work on for several hours, rather than
giving them a standard set of 70 prob-
lems to solve in 20 minutes. These prob-
lems were taken from previous Russian
olympiads. Here are a few examples.

1. Prove that the sum 1+ 1/, + 1/, + ...
+ 1/p (p is prime) cannot be an integer.

2. Is it possible to arrange seven seg-
ments on the same plane in such a way
that each of them intersects with ex-
actly three others?

3. A triangle is located inside of a
rectangle. Prove that the triangle’s pe-
rimeter is less than the perimeter of the
rectangle.

The event was advertised in the local

paper and drew 24 students, not bad for
a small city. The paper also ran a story
after the competition that mentioned
the winners of the Olympiad (three from
each grade). As prizes, winners received
subscriptions to Quantum and the book
Quantum Quandaries.

Sincerely,

Yan Soibelman

Dicey CyherTeaser

Brainteaser B216 in this issue,
which did double duty as the No-
vember/December CyberTeaser on
our Web site, gave our contestants a
chance to do some quick figuring in
their heads—assuming they knew
that the pips on opposite faces of a
die always add up to seven. If they
weren’t aware of this essential piece
of gaming information, they needed
to get their hands on a pair of dice
fast, because the answers came fly-
ing in this time.

The first ten correct answers were
submitted by the following pre-

sumed gamesters:

Theo Koupelis (Wausau, Wisconsin)
Tracy Hansen (Galesburg, Tllinois)
Pasquale Nardone (Brussels, Belgium]|
Bruno Konder (Rio de Janeiro, Brazil)
Rick Armstrong (St. Louis, Missouri)
Oleg Shpyrko (Somerville, Massachusetts)
Jaak Sarv (Tallinn, Estonia)

Keith Watkins (Succasunna, New Jersey|
Hana Bizek (Argonne, Illinois)

Joe Snider (Chicago, Illinois)

Congratulations to our winners,
who will receive a Quantum button
and a copy of the November/De-
cember issue. As always, everyone
who submitted a correct answer in
time was eligible for a roll of the
cyberdice to win a copy of our col-
lection of brainteasers, Quantum
Quandaries.

Our current CyberTeaser awaits
you at www.nsta.org/quantum. Just
take a deep breath and click on the

Contest button.

Visit the NSTA Sciam:e Slure Online!

[

National Science Teachers Association
1840 Wilson Boulevard, Arlington VA 222013000
http:thwanw.nsta.org

National

> ]

Open 24 hours a day,
/ days a week

Over 300 items
specially selected for
science teachers,
students, and parents

Books, posters,
software, CD-ROMs,
and more

Browse at your leisure,
order at your
convenience:

® online
¢ by phone
e by fax
® by malil
Our Web address:

www.nsta.org/scistore
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Math
M216

Clearly x > 0. We can estimate the
left-hand side by using the Arith-
metic-Geometric Mean (AM-GM)
Inequality. This theorem says that if
a and b are positive real numbers,
then a+b22/ab, with equality
holding only when a = b. We first let
a = x211% b = (1/x)2%, to find that

ot (e W)

X

But how large can this last expres-
sion be? Letting a = x, b = 1/x in the
AM-GM inequality, we find that

X+122\/X[l) =1,
X X
with equality holding only when
x=1/x=1.S0x+ 1/xis at most 2,
and
1 (1Y
1 Sl
XJ?]+(3J2X22J2( Xj22J55=4.
X
It is now easy to check that equality
holds only when x = 1.

M217

Note that each friend must cover
30 miles, and clearly each bicycle
must cover the same distance. The
total distance they must walk is 30
miles, too. So the total time the trip
takes is equal to the sum of the times
they walk and ride both bicycles—
thatis, 1 + 1.5 + 5= 7.5 hours. There-
fore, the trip must take at least 2.5
hours and will take this time if and
only if the friends arrive at B simul-
taneously. So it’s sufficient to show
that this is possible. Let the first
friend walk for x miles and ride the
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racing bike for the remaining (30 - x]
miles; let the second friend ride the
mountain bike for y miles and then
walk for (30 — y) miles; and let the
third friend ride the racing bike for x
miles, walk for (y — x) miles, and ride
the mountain bike for the remaining
(30 — y) miles. Since we already know
that each of them must spend 2.5
hours en route from A to B (it’s suffi-
cient that this be the case for the first
and second friends), we can write the
equations to determine x and y. This
gives us x = (45/4) miles, y = (150/7)
miles. Now we just have to check
that for these x and y every biker ar-
rives at the point where the bicycle
must be left before the appropriate
walker arrives, and we have shown
that the minimal time is 2.5 hours.

M218

Let P, and Q, denote the points
where the first and second circle in-
tersect line AD and BC, respec-
tively. Let’s prove that points M, C,
D, P,, and Q, lie on a common
circle. This would mean that points
P, and Q, coincide with P and Q, re-
spectively. In the case shown in fig-
ure 1, we have ZMP,A = ZMAB =
£ZMCD and ZMQ,B = ZMBA =
ZMDC. So ZMP A is supplemen-
tary to ZMCD. Similarly, ZMQ,C
supplements ZMDC. This means
that quadrilateral MP,DC can be in-
scribed in a circle, which must be
the circle through M, C, and D.
Similarly, we can show that this
cirle passes through Q,. That is, the
circle circumscribed about triangle
MCD passes through P and Q. We
consider the cases when P and Q lie
on the extensions of AD and BC, re-
spectively, in a similar way.

It’s enough to show that P, Q, is
tangent to the circles shown in fig-
ure 1. Since we now know that
quadrilateral P,Q,CD is inscribed
in a circle, we see that ZDP,Q,

Figure 1

supplements £DCQ. Thus ZAP,Q,
= ZDCQ, = AP AB. Therefore
ZAP,Q, =(!/,JAMP, and P,Q, must
be tangent to the circle through A
and M. Similarly, we can show that
P,Q, is also tangent to the circle
through B and M. Other cases are
considered in the same way.

M219

The surface of the resulting poly-
hedron consists of two equilateral
triangles and three equal isosceles
trapezoids whose base angles are
equal to 90° — /2. Consider the de-
velopment without the larger tri-
angle in figure 2. Since this results in
multiple “copies” of the same ver-
tex on the planar development, we
have used primes to distinguish

Figure 2




these on the diagram. The develop-
ment will overlap itself if and only
if the segments B,’C," and A,B,
meet. If they do overlap, we label
their point of intersection as M.
Then the inequality A,M < A B,
must hold in triangle A, MB,. Calcu-
lating the angles of this triangle, we
find ZA,B,C,’ = 360° - 2(90° + 01/2)
= 180° - o, £B’AM = 360° -
[60° + 2(90° + 0,/2)] = 120° - @, and
ZA MB," - 180° — (180° - a) -
(120° - &) = 200 — 120°, and rewriting
the inequality in the terms of angles,
we obtain 180° - o < 20— 120°. Thus
o> 100°. And clearly o < 120°—oth-
erwise point D would be on the
same plane as A, B, and C.

M220

The conditions of the problem
are equivalent to the following
statement: Any straight line paral-
lel either to the bisector of the first
and third quadrants or to the bisec-
tor of the two other quadrants, de-
pending on the direction of the ro-
tation, intersects the graph of the
(new) cubic function in no more
than one point.

In the first case its derivative is
either always greater than or equal
to-1, or always less than or equal to
1. In fact, suppose that the deriva-
tive is greater than 1 at the point x,
and is less than 1 at the point x,.
Then if we draw through the corre-
sponding points of the graph
straight lines parallel to the bisector
of the first and third quadrants,
we'll see that at least one of them
intersects the graph two (or more)
times. Thus the derivative is either
always less than or equal to 1
(which is impossible) or always
greater than or equal to 1; or (in the
second case) it is always less than or
equal to -1 (which is also impos-
sible), or always greater than or
equal to -1.

Finally we come to the problem:
find all a such that for all x either

3x*+2ax+ 1921, or
3x2+ 2ax + 19> -1.

It is sufficient to consider only
the second inequality. This leads to

_QA/E <af< 2\//T5‘ :

Physics

P216

The force of friction that slows
the bead is determined by the nor-
mal force. In our case, this force is
equal to the centripetal force (di-
rected at the center of the ring) that
the ring exerts on the bead:

N mv? ,
R
umv?
Fy =uN = E20

R

In a short period At the bead’s veloc-
ity decreases by

By,
AV = aAt = L At
m

_ uvat _ WAs
R R

It's clear that in a given short dis-
tance the bead’s velocity will de-
crease by a corresponding fraction.
For instance, if after traveling 1 cm
the bead’s velocity has dropped to
0.99 of its initial value, then after
traveling 5 cm its velocity will de-
crease to (0.99)° of its initial value.

We can use this property to calcu-
late the bead’s final velocity after
traveling any distance along the
ring. First, let’s determine the small
segment As, where the velocity
drops to, say, 1 —0.001, or 0.999, of
its initial velocity:

_ 0.001R
u

Asg

The entire path s = 2rRn contains
N = s/As, = 1,000n x nu such seg-
ments, so the bead’s velocity at the
end will be

N
1
v=vyll-——
( IOOOJ

1000N/1000
1
:VO 1——
[ 1000]

A simple transformation of the in-
dex reveals (to those who have not

yet guessed) the base of the well-
known natural logarithm, e =
2.71828.... Although we started
with a rather large number (1,000,
we can substitute any number in the
formula to confirm our reasoning.
Thus we can rewrite our equation as
follows:

\1000N/1000
1
v=vgll-——
( 1000)

1 n2mu
= vo[gj =0.152v,.

Therefore, after three revolutions
the bead’s velocity will decrease by
a factor of 1/0.152 = 6.58.

P217

The temperature of a gas is de-
fined by the mean kinetic energy of
its molecules:

1 mv? = 4 kT,
2 2

where k is Boltzmann’s constant.
This means that the higher the tem-
perature of a gas, the higher the av-
erage velocity and average momen-
tum of its molecules.

If the temperature of the vessel’s
walls is equal to that of the gas, then
after coming in contact with the
wall, a molecule of the gas will
change the sign of its momentum p,,
to —p,,, but not its value. Therefore,
the change in momentum is 2p,,. If
T > T,, the gas molecules will heat
up when they come into contact
with the wall and acquire additional
velocity (fig. 3a). In this case, the
change in momentum will be
greater than 2p,.

If the wall of the vessel is cooler
than the gas, the molecules will lose
energy and velocity after coming in
contact with the wall. (fig. 3b). In

T, <T T,>T
Py
—-
pI
b

Figure 3
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this case, the change in momentum
will be less than 2p,,. Newton's sec-
ond law says that a change in mo-
mentum is proportional to the mean
force acting on the molecules from
the walls. According to Newton'’s
third law, the mechanical force acting
on the molecules equals the force act-

ing on the walls. Thus at 7| < T, the

pressure of the gas on the walls is
greater than it is when T > T.

P218

The total charge of the probe is
zero, so the electric charges induced
on its surface can be combined
mathematically into pairs of equal
yet opposite charges—that is, into
dipoles. Consider such a dipole with
a distance between charges a, << L,
where L is the distance between the
probe and the ball. The charges of
this dipole are +g; and —q,. The di-
pole reduces the potential at the cen-
ter of the ball by

A(D:ﬂ_ kq, _ kq;a; )

L L+a I?
The center of the ball is a conve-
nient point for the calculation be-
cause the potential generated at this
point by the ball’s charges does not
depend on the charge distribution
along the ball’s surface.

A dipole is affected by the Cou-

lomb force of the ball:
_ kQg; kQgq;
F=—03"- 2
L (L+a;)
_2kQqa;  20A0;
=0 =

where Q is the electric charge of the
ball and ¢ = kQ/L is its potential at
a distance L from the ball’s center.
By summing the forces acting on the
dipoles, we get the total force affect-
ing the probe. The same force acts
on the ball—it is attracted to the
probe inserted into the ball’s electric
field. Summing small additions to
the ball’s potential results in the to-
tal change in this potential, which is
given in the statement of the prob-
lem—that is, A¢ = 1 V. Thus the
force we seek is
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It’s clear that the force described
is directed perpendicular to the
plane of the ring. One possible way
to find the points corresponding to
the maximal force is to take two ar-
bitrary points, position the circuit at
some angle to the magnetic field
vector, and obtain the formula for
the total magnetic force. Then it
would be possible to determine the
maximal conditions for this for-
mula. This is a rather long and te-
dious way to solve this type of prob-
lem. Instead, let’s try to guess the
answer!

Clearly we have two choices—ei-
ther to connect the source at dia-
metrically opposite points and to ori-
ent this diameter perpendicular to the
field, or to choose two neighboring
points (to obtain the maximum cur-
rent between them) and again turn
this segment perpendicular to the
magnetic field. In either case, we'll
then need to calculate the net mag-
netic force and compare the results.

With the first approach (connect-
ing at diametrically opposite points),
the currents through each half of the
ring is

Y W
R/2 R~

1

The force acting on an arbitrary seg-
ment is determined by the projec-
tion of its length on the diameter, so
the total force is

R =o1,Bd = 20Bd

With the second approach (connect-
ing the neighboring points), the force
is entirely determined by the action
of the field on the small segment of
the ring because the forces affecting
the other parts of the ring are prac-
tically counterbalanced. The current
in the tiny segment of the ring is

Yo

L= Ro/(2m)’

where o is the small angular size of

the segment as viewed from the cen-

ter of the ring. The force we seek is
d _nVyBd

B =1,Bo—= <H.
D) R 1

It turns out that the first approach
yields the maximal force acting on
the ring.

P220

After refraction at the air-glass
boundary, all beams that travel from
the source to the screen are confined
inside the cylinder, and after mul-
tiple reflections from its side (at the
glass—air boundary) they eventually
pass through the opening in the
screen.

Indeed, the limiting ray that hits
the cylinder’s end from the air at an
incident angle nt/2 will, after refrac-
tion, form the critical angle o with
the cylinder’s axis. This angle can be
found using the equation sin o = 1/n.
This beam hits the side of the cylin-
der at an angle ¢ = /2 - o (fig. 4).
Since

g 1 2
sino=—=—<
3

]

then o < /4, and ¢ > /4 > 0. There-
fore, this beam is totally internally
reflected when it strikes the side of
the cylinder. Subsequently this
beam will continue to be reflected
inside the cylinder until it finally
reaches the other end of this “light
conductor.”

Any beam that strikes the sur-
face of the cylinder at an angle less
than /2 will, after refraction,
form an angle o’ < o with the
cylinder’s axis. Therefore, it will
strike the side surface at an angle
¢’ > ¢ > o and will necessarily be
totally internally reflected.

Thus the transparent cylinder
will direct through the opening all

Figure 4



beams that were radiated into a
solid angle of 2x steradians. In the
absence of such a cylinder, only a
small portion of the light will be
directed through the opening. Its
intensity will be limited by the
solid angle md?/41*> steradians.
Therefore, the cylinder increases
the light through the opening by a
factor of

2
n:»%—”9=%=8~104.
nd*/4>  d

Brainteasers

B216

The largest sum of three sides of
adieis4 +5+6=15. Sowe are look-
ing for two numbers, each less than
15, that add up to 27. The only pos-
sibilities are 14 and 13, or 15 and 12.
But in fact the sum of three visible
faces of a die cannot be 13, so the
total number of dots on one die is
15, with 12 dots on the other die.

To see that the sum of three vis-
ible faces cannot be 13, we can argue
case by case. Since 4 x 3 = 12 < 13,
there must be a 5 or a 6 in a sum of
13.If the largest is 5, the only possi-
bilities are 5+ 5 + 3 or 5 + 4 + 4, but
there is only one of each number on
a die.

B217

We can think of the perimeter of
the quadrilateral as a string with its
endpoints attached to points A and
B, and with two beads on it. The first

A B
\AD2

Figure 5

bead, for the position of point C, is
6 units from the endpoint attached
to B. The second, for the position of
D, is 1 unit from the endpoint at-
tached to A. Beads C and D are 4
units apart. To construct a quadrilat-
eral as specified, we must hold the
string taut, and it must not intersect
itself or segment AB.

It is not difficult now to see that
C varies along an arc of a circle with
radius 6 centered at B, and that D
varies along an arc with center A
and radius 1. But what are the end-
points of these arcs? To find these,
we place the string at “extreme”
positions. One extreme position is
where C, D, and A are collinear (la-
beled C,, D,, and A in figure 5) so
that the quadrilateral is actually a
triangle. The other extreme position
is when C, D, and A are again col-
linear, but with A between C and D.
This position is marked C,, D, in
the figure. If D moved along the
circle further to the left, the string
segment from D to C would inter-
sect AB.

A detailed geometric expression
is a bit more complicated to express.

B218

When the ground is very cold
(-10°F or lower), the ice crystals that
make up the snow will not melt
under your weight. They’ll snap in-
stead, which produces the crunch-
ing noise.

B219

This quantity is equal to 1:

B220

A bit of experimentation will
make it clear that it is the center cell
that must be removed (see figure 6).

Figure 6

Kaleidoscope

1. Positive

2. No, not in every case. There
can be no potential difference if the
conductors are placed in the field
generated by other charged bodies
(see, for example, figure 7, where

Figure 7

balls A and B (connected by a con-
ducting wire) are charged by induc-
tion in an external homogenous
electric field.

3. The ball has the same poten-
tial throughout its volume. It’s
equal to the potential at the ball's
center created by the point
charge: V = g/4ne,r. (The potential
generated at the ball’s center by the
charges induced on its surface is
zero.)

4. No, it does not.

5. The sphere’s potential becomes
ZEro.

0

Figure 8

6. See figure 8.

7. Not necessarily. For example,
in the case shown in figure 9, the
entire charge of the conductor with
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100V

Figure 9

a potential of 50 V will flow to the
conductor charged initially with a
potential of 100 V.

8. No, it will not, because the
potential is the same over the entire
surface of the object. A long wire is
necessary to prevent the potential of
the charged body from affecting the
readings of the electroscope.

9. The surface consists of the
plane midway between the plates
and the ball’s surface (fig. 10).

+ 100V !
M)
0 ()

- 100V T

Figure 10

10. To a height of h.

11. No, it will not: the initial and
terminal points of the object’s trajec-
tory belong to the same equipoten-
tial surface.

12. Not necessarily, because the
connected capacitor can change the
potential difference between points
A and B (as seen in the circuit shown
in figure 11).

Figure 11

13. It will decrease by a factor of
two.

14. Electric current “flows away”
symmetrically from a fallen power
line (figure 12). The current is
greater the closer one is to the wire.
The closer one is to the wire, the
greater the potential difference be-
tween two points on the ground, and
thus, the greater the risk of electric
shock. The same is true for a tree
struck by lightning.
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Figure 12

15. This occurs in a ring threaded
by magnetic flux that varies uni-
formly with time, for instance.

16. It’s impossible without a wire
that is at rest relative to the Earth.

17. The violet light will kick the
electrons from the surface of the ball
via the photoelectric effect. There-
fore, the ball's potential will grow
constantly. When the potenial en-
ergy of the electrons in the ball’s
field equals the kinetic energy of the
electrons kicked from the ball’s sur-
face, a state of dynamic equilibrium
is established between the electrons
entering and leaving the ball. The
ball’s charge will not change there-
after.

Microexperiment

The lamp can’t be lit because con-
necting these points with a conduc-
tor will immediately equalize their
potential. There is no danger to you
because when you stand on the
ground, you and the ground form an
equipotential surface, so the poten-
tial difference between your head
and your heels is zero.

Gradus

1. Suppose quadrilateral ABCD is
inscribed in a circle. Then angle A is
measured by (!/,)BCD (fig. 13), and
angle C is measured by ('/,)BAD. But
BAD + BCD = 360° so LA + £C =
180°. Since the sum of the angles of
the quadrilateral is 360°, ZB + 4D =
180° as well.

Figure 13

The converse of this statement is
also true. Indeed, we can always draw
a circle through three of a quadri-
lateral’s four vertices—say, A, B, and
D. Let the degree-measure of angle A
be a. Then, in this circle, BD (the arc
that does not contain point A) mea-
sures 2a, and BCD is 360 — 2a. If ZA
+/C=180° then Z£C = 180 —a, which
is half of BCD. Therefore, point C
must be on the circle that goes
through A, B, and D.

2. In figure 14, AQ, BP, CS, and
DR are the bisectors of the angles of
quadrilateral ABCD. We must show
that quadrilateral PQRS is cyclic, or,

B R

Figure 14

equivalently, that angles QPS, QRS
are supplementary. Let p denote the
degree-measure of ZQPS , and let r
denote that of ZQRS. Then ZBPA =p
and ZCRD = r. From triangles
ABP, CRD (see figure 14|,
p+a+b+r+c+d=180+ 180 =360.
But the sum a + b + ¢ + d contains a
copy of half of each angle of the quad-
rilateral, so this sum equals 360/2 =
180. It follows that p + r = 180, and
quadrilateral PQRS is cyclic.

What does PQRS look like if
ABCD is a parallelogram? A rect-
angle? A rhombus? A square? A
kite?

3.In figure 15, ZE = (1/,)MD. But

M

A

Figure 15




ZAGD = 1/,(BM_+ AD)
1/,\MA + AD) = '/,MD. So £E
Z/AGM, which means that ZE is
supplementary to angle DGF.
Therefore, quadrilateral DEFG is
cyclic.

What happens if either of the
lines MD or ME cuts line AB outside
of segment AB?

4.1In figure 16, H’ is the reflection
of the orthocenter H of triangle ABC
in side AB. We must show that H’
lies on the circumcircle of the tri-
angle. This is true if ACBH’ is a cy-

Figure 16

clic quadrilateral, or equivalently if
angle AH’B is supplementary to
angle ACB. But ZAH'B = ZAHB (by
reflection), which in turn equals
ZPHQ), and angle PHQ is certainly
supplementary to ZPCQ, because
quadrilateral PCQH is cyclic (its
other two angles are right angles,
and thus supplementary).

5. In figure 17, AB subtends a
right angle at P and also at Q. This

C

Q

A B

Figure 17

means that P and Q are on the circle

with diameter AB.

6. By the result of problem 5,
quadrilateral ABPQ is cyclic. This
means that ZAPQ = ZABQ (they
both intercept arc AQ on the circle
through A, B, P, and Q). For the

same reason, (u cyclic quadrilat-
eral ACPR), LA ' ]

But angle CAB is complementary
both to ZACR (in trizngle A i

A R B
Figure 18

ZACR = ZABQ), so ZAPR = ZACR.
Therefore, ZACR = ZABQ = LAPQ,
and ZAPQ = ZAPR.

This shows that AP bisects angle
QPR. In a similar manner, we can
show that the other two altitudes of
triangle ABC are angle bisectors of
triangle PQR.

7. Let the center of the circle be
O, and let the fixed point be labeled
P. We can experiment by drawing
the diameter through P (fig. 19).

The “perpendicular” to this di-
ameter from O is just the point O
itself, which must be a point of the

Figure 19

locus. If we draw the chord through
P perpendicular to this diameter, we
find that point P lies on the locus as
well. Furthermore, it is not difficult
to see that diameter OP is a line of
symmetry for the locus. This leads
us to suspect that the locus is a
circle with diameter OP.

To confirm our suspicions, we
take any chord AB through P inside
O, together with its midpoint M (fig.
20). Line OM is then perpendicular
to AB. This means that the segment
OP subtends a right angle at the

midpoint of any of our chords, and
the locus of midpoints is a circle
with diameter OP.

If P is on the circle, the locus is a
circle that is tangent internally to
the given circle. If P is outside the
circle, the locus is that portion of the
circle with diameter OP that lies
inside the given circle.

A N
M
C
B
Figure 21

8. In figure 21, M and N are mid-
points of AB and AC, respectively.
We have ZAXN - ZMXB ='/,(MB
+ AN) = LAM + NC) = ZAYM.
Thus triangle AXY is isosceles, and
AX = AY.

9. Figure 22 shows situation (a),
with two possible positions (CD and
C’D’) of the chord CD. Since CD =
C’'D’, we know CD = C'D’. So /I =
',\AB -TD)='/,(AB -C'D) =4I

I
[ C
B
D
&
A B
Figure 22

Thus both I and I’ are on an arc of a

circle passing through A and B.
Figure 23 shows situation (b). In

this case, angle AKB is half the sum

C
D’

ok
A B

Figure 23
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of €D and 4B, so this angle again
does not depend on the position of
chord CD. The locus is an arc of
another circle.

What can you say about the cen-
ter and radii of these two circles?

10. (a) Let a be the measure of
ZAMB and note that a does not de-
pend on the position of point M on
the circle. Then triangle PMB is
isosceles, and ZAPB measures 180 -
(90 — a/2) = 90 + a/2 (fig. 24). Since
this also does not depend on the po-
sition of M, point P varies along an
arc of a circle through A and B.

(b) In the same way (from isosce-
les triangle BMQ) we find that
ZAQB = a/2, so Q varies along an-
other arc through A and B.

(c) An analogous proof will show
that these two new loci are again
arcs of circles. The four arcs form
two circles. Surprisingly, the arc of

A B
Figure 24

P when M is on major arc AB com-
pletes a circle with the arc of Q
when M is on the minor arc, and
vice versa.

One can guess at the locus by tak-
ing the special cases where M coin-
cides with A (so line MA is tangent
to the circle), where M coincides
with B (so that P and Q also coin-
cide), and where M is the midpoint
of either arc (so that P coincides
with A). In all cases, note that ZPBQ
is a right angle.

11. In figure 25, quadrilateral

Figure 25

PABR is inscribed in the larger
circle. Thus ZPRB is supplementary
to ZPAB. Clearly ZBAQ is supple-
mentary to ZPAB, so ZPRB =
ZQAB.

Similarly, quadrilateral ABSQ is
inscribed in the smaller circle, so
ZQSB is supplementary to ZQAB
and thus is supplementary to Z/PRB.

But this says that PR Il QS, since
a pair of consecutive angles (along
transversal RS) are supplementary.
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Art by Mark Brenneman

COWCULATIONS

Hinagignt

Know when to hold 'em and when to fold ‘em

by Dr. Mu

ELCOME BACK TO COWCULATIONS, THE
column devoted to problems best solved with a
computer algorithm.

The other day, I was out in the pasture relax-
ing when Bessie, a Holstein friend of mine, happened by
and struck up a conversation. She had been working on a
cowculation over the weekend, was very proud of her
solution, and just had to tell someone. So1listened. Seems
that she had been out in the barnyard recently where
Farmer Paul showed her some interesting farm facts. His
tigures revealed there were 100 animals (cows plus chick-
ens) on the farm, with a total of 324 legs. What he was

trying to cowculate was the number of cows and the num-
ber of chickens. But Farmer Paul had been away from al-
gebra for many years and didn’t like equations anyway,
so0 he said, “Bessie, can you cowculate this for me with-
out using any equations?”

Bessie, who is proud of her ability to find the unusual
solution, ruminated on the problem and soon announced
she had an insight. “Suppose,” she said, “all the cows
stand on their hind legs?” Then, clearly, there must be a
total of 200 legs on the ground. That leaves 324 less 200,
or 124, legs up in the air. But they all belong to the cows,
so there are 62 cows, leaving 38 chickens.
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I was very impressed with her insightful approach but
couldn’t resist commenting, “Bessie, that wasn’t in-
sight, that was hindsight!”

Hindsight is what T needed last month when I
went on an extended gambling spree. Each night af-
ter milking, I took off for the Half Moo Inn in
Cheddarville, Wisconsin, to relax in a friendly game
of poker. To cut any big losses, I promised T would
lose no more than $50 a night. I kept a record of my
winnings and losings for the month.

winnings = {29, -7, 14, 21, 30, -47, 1, 7,
-39, 23, -20, -36, -41, 27, -34, 7, 48, 35,
-46, -16, 32, 18, 5, -33, 27, 28, -22, 1,
-20, -42};

I started out with a win of $29 the first day, but fin-
ished out with a $42 loss on the last day. My total win-
nings for the month were:

Apply[Plus,
-50

winnings]

I guess just getting away from the farm for a few
hours was worth $50 in entertainment value. But look-
ing back with 20/20 hindsight, I wonder how much
money I would have been ahead if T had known when
to quit—when to hold ‘em and when to fold ‘em.

Turns out that if  had started playing on the 16th day
and stopped after the 26th, T would have walked away
with $105. That’s a $155 shift in my fortunes, which
would go a long way in cow comforts—even today.

This raises an interesting programming problem,
which is your “Challenge Outta Wisconsin.”

COW 7. Given a sequence {x,, X, ..., X, | of integers
of length n, write an efficient algorithm (of order n) to
find a subsequence {x;, x; , |, ..., X} of consecutive
terms with the largest sum. Return the beginnin}_% and

ending indices L, H, and the maximum sum Z X
=

If there is more than one such subsequence, return any
one.

A bar chart

Here is a graphical view of my winnings:
WINNINGS

II| | || : [q‘ 26I|
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Solution one—Hrute force

Why not just try all possibilities? For each lower in-
dex L from 1 to n and each higher index H from L to n,
sum the subsequence {x;, X; , |, ..., Xy} and see if it’s
the best so far. If it is, save it along with the indices L
and H. Here is this algorithm in Mathematica. A ver-
sion of this problem and solution appears in Program-
ming Pearls, by Jon Bentley (Addison-Wesley, 1986).

bruteForceOne[X_] := Modulel

{MaxSoFar = 0, L H = 0, Low = High = 0,
Subsub = 0,
n = Length[X], j},
For[L = 1, L <= n, L++,
For[H = L, H <= n, H++, SubSum =
sum[X[[3j1]1, {3, L, H}I;:

If [SubSum >= MaxSoFar,
H];
MaxSoFar =

1

Low = L; High =

Max [MaxSoFar, SubSum]

1;

{MaxSoFar, {Low, High}}

1

bruteForceOne [winnings] // Timing

{0.44 Second, {105, {16, 26}}}

Not bad for a first approach, but not very efficient. For
large values of n it slows down dramatically since the
number of computer operations (thus the time) is pro-
portional to n®. One n for each loop and one n for the
sum computation. To get an estimate for the time it
would take to find an answer for a sequence of length
1,000, consider the following cowculations:

Clear[timeInSeconds, timeInHours]

solution = Solve

.44 seconds .
== , timeInSeconds

1000° 303
{{timeInSeconds — 16296.3 seconds}}

[timeInSeconds

timeInSeconds = timeInSeconds /. First [solution]
16296.3 seconds

timeInSeconds

timeInHours =
seconds

3600
hour

4.52675 hours

T’d like to decrease this time a bit. Can weé do better?

Solution two—betier brute force

We can cut it down by one power of n by cowculating
the sum as we move along. Here is the algorithm given
by Bentley, which runs in time proportional to n*:

bruteForceTwo[X_] := Modulel
{MaxSoFar = 0, L = H = 0,
SubsSub = 0,
Length[X],
For[L = 1,

Low =
n = j}l

L <= n, L++,



SubSum = 0;

For[H = L, H <= n,
X[[H]];
If[SubSum >= MaxSoFar,

H];
MaxSoFar =
1

H++, SubSum = SubSum +

Low = L; High =

Max [MaxSoFar, SubSum]
1;

{MaxSoFar, {Low, High}}
1

bruteForceTwo[winnings] // Timing

{0.11 Seconds, {105, {16, 26}}}

That'’s a bit better. To get an estimate for the time it
would take to find an answer for a sequence of length
1,000 consider the following cowculation:

Clear[timeInSeconds]

Solve
timeInSeconds .11 seconds .
2y = 5 , timeInSeconds |;
1000 30
timeInSeconds .
~ond /. First[%]
seconds
60 ————
minutes

2.03704 minutes

Speed is everything

The following graph shows how timings grow with
n for all algorithms from the least efficient to the most
efficient. Your challenge is to find the most efficient. I
want the créme de la creme solution that will run in less
than one second for n equal to 1,000.

seconds Timings
14 bruteForceOne
12
10

bruteForceTwo

cremeDeLaCreme

n/10

2 4 6 8 i

Computer art

Mark Brenneman’s picture of me playing poker is an
early attempt to branch out into 3D. Mark started out
using the software Ray Dream Studio to build the walls
in 3D blocks. Next he added the props—bar, chairs,
tables, and so on. Then we used the software Poser to
pose the players and export them to Ray Dream Studio.
Next he created my beautiful body in Ray Dream Stu-
dio by joining over 40 separately drawn pieces. The
objects were linked by joints which allowed me to move
into just the right pose. PhotoShop and Detailer were
employed to create objects that are attached to the sur-
faces to give texture to the art. Finally, the scene was
assembled and 13 light sources identified. Ray Tracer
was used to calculate what each pixel should look like
considering all light sources and mirrors. It took Mark’s
133 MHz Pentium 10 hours to render the final high-
resolution drawing. Faster algorithms could really help
in this field.

And finally...

The cowculations sent in on COW 6 will appear in
the next issue. From now on solutions to CoOw_ _, will
appear in COW . This gives all cowhands another two
months to ruminate on possible solutions before they
email them to me at drmu@cs.uwp.edu. Past solutions
are available at http://usaco.uwp.edu/cowculations.

If competitive computer programming is your goal,
then stop by the USA Computing Olympiad web site at
http://usaco.uwp.edu. The 1997 USA team is leaving
November 29 for the International Computing Olym-
piad in Cape Town, South Africa. This is an all-expense-
paid trip for the créme de la creme high school computer
programmers. Check it out and get on the mailing list
for the 1998 season.
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makes a perfect gift!

Use the response card in this issue to order Quantum for
your child, grandchild, niece, nephew, mother, father, friend
... Orcall 1 800 SPRINGER (777-4643). Give them six col-

orful, challenging, entertaining issues of Quantum—
a year’s worth of reading pleasure!
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