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Girl with a Hoop (1885) by Auguste Renoir

HE REASON FOR THE APPEARANCE OF “GIRL

with a Hoop” in Gallery Q is quite straightforward: the
hoop. It is a beguilingly simple thing. You can roll it—
that’s obvious enough. You can “jump rope” with it, which
is not so obvious. You can spin it, so that it seems like a
semitransparent globe. But the little girl will have a few
years to wait before she understands, for instance, that the
hoop’s center of mass is nowhere to be found along the ring
of the hoop itself—it’s right in the middle, where there’s
no hoop at all!

When she has come to the point of studying physics, she
will understand the equation for a hoop’s “moment of in-
ertia” given on page 6. She will also understand why the
hoop rolls back to her when she tosses it forward with
backspin. (How many times did she test this out, throw-
ing it further and further, trying to see how far she could
send the hoop and still have it obediently return?) Though
Renoir’s painting offers no evident clue, we must never-
theless conclude that this little girl will someday be able
to read all of the article that begins on page 4.
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When we dig a particularly deep hole in
North America, we sometimes joke
about digging “all the way to China.”
Well, if you allow yourself to be drawn
into our cover, you may find yourself
emerging on the other side of the cut-
ting board—on page 10! It won’t be an
“infinite descent”—a very handy tech-
nique in mathematics that may trace
its lineage back to the ancient Greeks.
But then, you wouldn’t want it to be—
would you?
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“(Gan you hear me?”

Some thoughts on the history of human communication

VERY TIME I SEND A HUGE

file in a matter of seconds over

a T1 line from my office in Ne-

vada to NSTA headquarters in
suburban Washington, D.C., I can’t
help marveling at the power at my
fingertips. Not only has a mind-
boggling amount of information—
high-resolution pictures, countless
words (I don’t send audio or video
clips, but others do)—been com-
pressed into a few megabytes of digi-
tal “space.”! This information is be-
ing transported over thousands of
miles of geographic space.

It occurred to me that there are
two basic aspects to communica-
tion. One is the software—the lan-
guage, or system of symbols, we use
to organize our thoughts. The other
is the hardware—our vocal chords, a
clay tablet, a telephone line, or a
combination of several devices. I
came across a marvelous book
called The Timetables of Technol-
ogy (Bunch and Hellemans, eds.,
Touchstone Books, 1993 and have
spent many hours extracting from it
my own timeline that includes both
aspects of communications—the
“linguistic” and the “technical.”
Lhope you will find it as fascinating
as I do and will excuse the greater
length of this Publisher’s “Page.”
Why not insert your own year of

IThe question of how much
“space” a computer file takes up is a
curious one: x number of floppy disks,
or y millimeters on a tape drive, or z
infinitesimal electron “parking
spaces” in a RAM chip “garage.”
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birth (as I did!) to get a perspective
on what preceded you and what has
occurred in your lifetime?

Over the history of Homo sapi-
ens, from about 90,000 8.c. to the
present, there has been a very slow
evolution of human communica-
tions, from rudimentary marks on
bones and stone to our modern elec-
tronic communication systems. A
broad view of this history reveals
only a few quantum leaps in the
technology of communications. For
example, it took some 60,000 years
for humans to develop the ability to
scratch simple counting numbers on
bones. It took another 10,000 years
or so to extend this ability to include
pictures of animals and other ob-
jects. Some 7,000 years later, rudi-
mentary writing began to occur in
the form of hieroglyphics. It then
took almost 2,000 more years, until
about 1,000 B.c., for an alphabet to
be created. This was one of those
quantum leaps in communications.

90,000 B.c.: Fossil evidence of archaic
form of Homo sapiens is present in Af-
rica. 35,000 B.c.: Homo sapiens is the
only member of the genus left. The Ne-
anderthals have disappeared, and tech-
nology advances swiftly. 30,000 s.c.: Pa-
leolithic peoples in central Europe and
France used tallies on bone, ivory and
stone to record numbers. For example,
a wolf bone shows 55 cuts arranged in
groups of five. Musical instruments
from bird or bear bones were made.
25,000 B.c.: Ceramic figurines emerge in
Moravia. 20,000 B.c.: Animal engravings
are made in north-western Spain, and in
France, carved pendants with allegorical

scenes are made. 15,000 B.c.: Figurines
are made wearing clothing. A bone map
of a region in Ukraine is created. 10,000
B.C.: Polychrome red and black bison
created on ceiling of Altamira Cave in
Spain. In France, geometric designs are
painted on pebbles. Fired clay tokens are
made to express, as a form of written
word, the idea of a number. 5,000 B.c.:
Cave painting near the White Sea shows
people walking with planks attached to
their feet, an early form of skis. 3,300
B.C.: In Sumeria pictographs are used in
horizontal strips on baked clay tablets.
Egyptians begin to write using hiero-
glyphic signs on papyrus. 2,900 B.c.:
Egyptian scribes devise hieratic script, a
simplification of hieroglphics. 1,800 B.c.:
An early form of cuneiform writing style
emerges in Babylonia. 1,500 B.c.: The
first alphabets are created, one of these
by stripping cuneiform characters to 30
signs, each standing for a sound. 1,000
B.C.: The Phoenician alphabet of 22 signs
for consonants is developed and will
later be adapted by both the Greeks and
the Israelites.

With an alphabet, records of the
written word accumulated, so that,
700 years later, at about 300 B.c.,
some 750,000 “books” (papyrus
scrolls) had been placed in the great
library of Alexandria. This library
was partially destroyed in 50 B.C.,
and the Christians destroyed a ma-
jor portion of the library 440 years
later, with the final destruction car-
ried out by the Muslims in A.D. 650.

The Chinese invented paper in
150 8.c., and even though it was not
at first used for writing, it became,
over the centuries, used for money
and for pages of books. By a.n. 600



the Chinese had printed whole
pages using a block, the precursor to
the printing press.

300 B.c.: Some, 750,000 “books” on pa-
pyrus scrolls, all known books, are
placed in the library at Alexandria. 250
B.C.: Parchment is invented, followed
somewhat later by vellum, both sides of
which can be written on. 150 B.c.: The
Chinese invent paper, but not for writ-
ing on. 100 B.c.: The Codex, leaves of
parchment sewn together—the first
“book”—appears in Rome. 50 B.c.: The
great library at Alexandria is partially
destroyed and many books are either
destroyed or lost. Lucretius describes
how the illusion of motion can be cre-
ated by sequential display of frames. 0:
A dictionary of local expressions is made
in China. 110: The oldest piece of paper
used for writing is in existence. 390:
Destruction of more of the library at
Alexandria by Christians. 600: The Chi-
nese print whole pages with wood
blocks. 650: Final destruction of library
at Alexandria by Muslims.

It took almost 700 more years be-
fore block printing was common in
Europe, followed rapidly by the in-
vention of the printing press with
movable type by Gutenberg and
Koster. A brief period of some 300
years produced dramatic improve-
ments in the technology of written
communications. Text and type ap-
peared on the same page. Color sepa-
rations were made to give color to
printed materials. But the first book
was not printed in the English lan-
guage until 1474,

870: First printed book, the Diamond
Sutra. 900: Printed money is used in
China. 1000: Alhazen describes the cam-
era obscura, precursor to the camera.
1050: Chinese books are printed with
movable type. 1,086: The Doomsday
Book is written in England. 1107: The
Chinese invent multicolor printing.
1215: The Magna Carta is signed. 1290:
Block printing is used in Europe to print
pages. 1379: Cryptography is invented.
1390: Metal type used for printing in
Korea. 1396: Gutenberg and Koster in-
vent printing with movable type. 1420:
Schoeffer invents “color separation”
printing, using blue and red ink. 1460:
Pfister combines woodcuts with movable
type to give images and text on one page.

CONTINUED ON PAGE 37
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A Venusian mystery

“‘Star light, star bright,

First star | see this morning . . .”
—fFractured nursery rhyme

by Vladimir Surdin

HEN THE TITLE OF A SCI-
entific article intended for a
general audience contains
the word “mystery,” one is
tempted to turn to the end and look
at the answer. In this case, don’t
bother—this particular astronomi-
cal paradox is still waiting to be ex-
plained. The purpose of this article
is merely to acquaint you with it—
maybe you’ll be the person who
manages to unravel this problem.

The riddle of her rotation

Venus is known to be very simi-
lar to our planet in mass and size.
However, it's located somewhat
nearer to the Sun and makes one
revolution around it in 224.7 days
(throughout this article “days” will
mean “Earth days”). As for the rota-
tion of Venus about its axis, as-
tronomers knew nothing about it
for a long time because the details
of planet’s surface can’t be seen
through the thick Venusian atmo-
sphere. It was radar that made it
possible to break through the
planet’s cloudy layer and learn that
it rotated about its polar axis very
slowly and in the direction opposite
to its orbital revolution, making a
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complete turn in 243 days. In this
respect Venus is strikingly different
from its kindred planets (Earth and
Mars), where the daily rotation pro-
ceeds in the direction of orbital revo-
lution and the period is far shorter
(approximately one day).

Venus offered yet another sur-
prise. As astronomers observed the
motion of the clouds in its atmo-
sphere, they saw that the upper lay-
ers of the atmosphere moved by
themselves, separate from the
planet, revolving in the same direc-
tion but far more quickly—in just
four days. Keep in mind that the at-
mosphere of Venus is significantly
more massive and dense than the
Earth’s. Naturally some scientists
were tempted to explain the para-
doxical rotation of Venus by the in-
teraction of the planet with its mas-
sive atmosphere.

For example, a manuscript was
once sent to a journal with the title:
“The Atmosphere of Venus is a Gi-
ant Heat Engine.” The paper as-
serted that by absorbing the Sun’s
heat, the atmosphere of Venus could
affect the planet’s rotation. To prove
it, the following estimate was made.
The power of the solar radiation

GREAT MOMENTA IN SCIENCE

striking the Venusian atmosphere is
about 10} W. Thus the planet ac-
quired 103* J of energy over the
course of its evolution (billions of
years). If Venus rotated like the
Earth (that is, with a period of 24
hours), its rotational kinetic energy
would be about 10* J. Evidently the
atmosphere of Venus has received
enough solar energy to stop the
planet’s rotation and start it rotating
in the opposite direction many
times. The authors of the manu-
script were quite convinced that this
estimate proved their hypothesis.
Do you agree with them?

The “three pillars of mechanics”

How does one verify a new idea?
First off, a physicist thinks about the
conservation laws. In the problem of
the Venusian rotation, the law of
conservation of energy surely isn't
violated. What other quantities
must be conserved? There are two—
linear momentum and angular mo-
mentum. All of classical mechanics
rests on these three “pillars.” As we
examine the rotation of Venus, we
are particularly interested in the an-
gular momentum.

The capacity of an object to main-

Chernusky
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tain a rotation or transfer it to other
objects is characterized by its angu-
lar momentum. There are many fea-
tures common to both angular mo-
mentum and linear momentum.

Students are generally familiar
with linear momentum, known in
the old days as the “quantity of
motion.” This is a vector pointing in
the direction of the object’s motion
and equal to the product of its mass
and velocity:

p = mv. (1)

The total linear momentum is con-
served when objects interact. One of
many examples is that of jumping
from a boat: you jump in one direc-
tion, the boat moves in the opposite
direction. The law can be clearly
observed in a skating rink: if you and
your friend are standing on the ice in
your skates and you push off from
one another, you'll move off in op-
posite directions, and the lighter
partner will travel with the greater
speed.

However, it’s not so easy to ob-
serve the implementation of this
physical law on the ground. The rea-
son is friction. An automobile starts
to move, but the Earth stays put.
Strictly speaking, the Earth also ac-
quires a momentum in the opposite
direction, but due to its huge mass
the corresponding speed is negli-
gible. So when the car’s wheels grip
the road, we forget about the conser-
vation law: the recoil momentum
always goes “into the ground,” and
the planet’s motion doesn’t change
appreciably—in fact, it remains a
convenient reference system. If we
know the engine’s power and the
mass of the automobile, it’s easy to
calculate the time required to accel-
erate to a certain speed. To do so, we
use only the law of conservation of
energy and forget about the conser-
vation of momentum.

In this respect, outer space is
more like ice: one must not neglect
momentum in space! Here’s one
example: if the nuclear engine of a
spaceship of mass m develops power
W, what will the acceleration of the
spaceship be? Surprisingly, this
problem can’t be solved unless we
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know the mass of the substance
ejected from the engine and its
speed. The point is that the engine’s
power is expended not only on push-
ing the rocket in the forward direc-
tion, but also on accelerating the
ejected substance (plasma, perhaps)
in the opposite direction. In this pro-
cess both the rocket and ejected sub-
stance have momenta that are equal
(in magnitude)! In outer space, con-
servation of momentum is a serious
thing.

Of equal importance is the law of
conservation of angular momentum
L, which is also a vector quantity.
To illustrate how it works, consider
an object that has an axis of symme-
try and rotates about it. In this case
the direction of the vector L coin-
cides with that of the angular veloc-
ity vector @—that is, the vector L is
directed along the rotation axis such
that, if we look toward it, we see the
object rotating clockwise (the so-
called right-hand rule). Recall that
the magnitude of the angular veloc-
ity (measured in radians per unit
time) is linked to the period of rota-
tion T by the relation

2n
o=".

T

For a rotating object the angular
velocity plays the same role as its
linear counterpart does for an object
moving in a straight line. In the defi-
nition of linear momentum, given
by equation (1), its value is linked to
the (linear) velocity by the magni-
tude of the object’s inertia—that is,
its mass. The angular momentum
and angular velocity are related in a
similar way, but in this case the
magnitude of the (angular) inertia is
the “moment of inertia” I:

L=Iw. (2)

For a physical point with mass m,
the moment of inertia is calculated
according to the relation

I=mR?

where R is the distance from the
point to the axis of rotation. By the
way, the angular momentum in this
case can be written in another way:

L=mR? % = mR? =mRv, (3)

where v is the linear speed of the cir-
cular motion. The moment of inertia
of a rigid system of bodies is the sum
of its constituent parts:

n
I= Zm1R12/
i=1

which corresponds to an integral
over the entire volume of the con-
tinuous bodies:

I= ijdm.

Shown below are the moments of
inertia of some objects that have
simple shapes:

thin ring mR?
solid l 2
cylinder 2 mR
‘ .
disk —mR
2
sphere ZmR?
‘ 1
thin rod 1 —ml
12

Now let’s look at how the law of
conservation of angular momentum
works in a few examples.

Case 1. You sit down on a stool
that can rotate about its vertical axis
and take a massive wheel that can
rotate about the vertical axis (fig. 1).
Clearly the angular momentum of
the system “person—stool-wheel” is
zero. Now try to spin the wheel. In
doing so you (together with the
stool) begin to rotate in the opposite
direction: the angular momentum of
the wheel is compensated by the op-
posite angular momentum of the



Figure 1

“person-stool” system. The total
angular momentum remains zero.

Case 2. A figure skater rotates on
the ice with her arms spread wide.
Then she presses them quickly to
her chest—and begins to rotate
much faster (fig. 2). When the skater
drew her arms closer to her axis of
rotation, she decreased the moment
of inertia of her body, which was
compensated by an increase in the
angular velocity (@ = L/I).

Figure 2

However, common experience
tells us that, for bodies on the
ground, the law of conservation of
angular momentum is just as unim-
portant as the law of linear momen-
tum. For example, let’s modify the
experiment with the rotating stool:
now you spin the wheel about a
horizontal axis—that is, perpendicu-
lar to the stool’s axis (fig. 3). In this

Figure 3

case the stool doesn’t rotate! Where
is the recoil angular momentum? It
went “into the ground”! Naturally
our huge planet didn’t notice it.
Here’s another example: the
movement of a swing (fig. 4). Here
we use the law of conservation of
energy, noting the transition from
potential energy to kinetic and back
again, but in doing so we pay no at-
tention to the law of conservation of
angular momentum. Why? We can
see at once that angular momentum
is not conserved during the mo-
tion—the swing rotates alternately

Figure 4

in both directions. Where is the “res-
ervoir” that supplies (and takes
away) the angular momentum to
(and from) the swing? The Earth
again, of course!

When solving common “earthly”
problems, engineers rarely think
about conservation of angular mo-
mentum. As a rule, all motors are
firmly affixed to a massive platform
and do not experience recoil rotation
when the flywheel begins to move.
In some particular cases—say, when
one is designing a helicopter—the
problem of angular momentum is
very important. The helicopter’s
main rotor continuously imparts an
angular momentum to the sur-
rounding air, so a recoil momentum
is imparted to the helicopter. To sta-
bilize the aircraft, engineers use ei-
ther two counterrotating rotors or a
tail rotor that rotates in the vertical
plane, located as far back from the
rotation axis of the main rotor as
possible. However, there are few
other examples in terrestrial engi-
neering.

On the other hand, when dealing
with problems in outer space, one
cannot avoid the laws of conserva-
tion of angular momentum and lin-
ear momentum. If you want to turn

a spaceship, you need to fire the
steering rockets (in this case the
burnt fuel carries off the recoil mo-
mentum)| or engage the gyrodynes,
which are massive flywheels rotat-
ing in the direction opposite to that
in which the spaceship is to be
turned.

To change the momentum of an
object, one must apply a force F; but
to change the angular momentum,
one must apply a torque (the mo-
ment of the force):

T=trxF, (4)

where r is the position vector from
the point of rotation to the point
where the force is applied.! Here we
use the vector product, which takes
into account the different possible
directions of the vectors r and F.

For those who aren’t familiar
with vector products, we note that
the resulting vector for the torque 1
is directed perpendicular to both
vectors r and F and is oriented ac-
cording to the right-hand rule. This
force is equal to

t=rFsin q,

where o is the angle between r and
F (fig. 5). The value d = r sin o is

T

Figure 5

INote that the general definition of
the angular momentum of a point
mass looks a lot like the definition of
the torque in equation (4):

L=rxp,

where r is the position vector of the
point. In the particular case of a point
moving in a circle, we obtain formula
(3). The angular momentum of a
system of points is equal to the sum of
the individual momenta, which
results in formula (2) for a rigid object
rotating about its symmetry axis.
Generally, L and o are not parallel, but
the objects considered here (a planet’s
atmosphere) have a high degree of
symmetry. For objects with spherical
symmetry, L and o are always

parallel. —Ed.
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referred to as the moment arm.
When a torque acts on an object

for a time interval At, the object’s an-

gular momentum changes by AL:

AL = AtAt.

In addition, we mustn’t forget that
the rotating body accumulates ki-
netic energy E. Since v = oR, the
value of this energy is

E:lmﬂ.
2

It’s clear that in this formula for the
rotational kinetic energy the mo-
ment of inertia plays the role of the
mass.

Looking for an answen

What about the enigma we
started with? What could change the
rotation of Venus so radically (as-
suming it was born a quite “normal”
planet, rotating like Earth or Mars)?
Undoubtedly a planet’s atmosphere
can transform the Sun’s energy into
mechanical work. Solar energy in-
duces vertical and horizontal air
flows that move clouds and sand
dunes, push sailboats across the
water, and rotate the vanes of wind-
mills. But considering a planet as a
system composed of a solid body and
an atmosphere, we need to keep in
mind the conservation of the total
angular momentum: the planet and
its atmosphere can exchange angu-
lar momentum, but they cannot
change the total amount of it.

However large the Venusian at-
mosphere is, its mass is only
1/20,000 that of the entire planet,
and the corresponding moment of
inertia is 1/10,000 that of the planet.
So if Venus rotated initially with a
period of 24 hours and then practi-
cally stopped and transferred all its
angular momentum to its atmo-
sphere, the atmosphere would have
to revolve around the planet with a
period of 24 hours/10,000 = 8.6 sec-
onds. Such a huge velocity is more
than enough to overcome the grav-
ity of Venus and fly off into outer
space!

Therefore, we must look for ex-
ternal objects with which Venus

could exchange angular momen-
tum. It could be, for example, a sat-
ellite of Venus similar to our Moon.
(By the way, the tides generated by
the Moon slow the Earth’s rotation,
and in the future it will be very slow,
with a period of tens of days. But
that’s the subject of another article.)
A satellite could have done the trick
for Venus, and then the planet lost
it to the depths of space.

There is still another agent that
can affect the rotation of Venus: sun-
light! As noted earlier, the power of
the solar radiation striking Venus
is W= 107 W. Thus the force of the
light pushing against the disk of the
planet is F= W/c =3 - 108 N. If the
reflective properties are uniform
over the entire disk, then (due to
symmetry) there will be no torque.
However, if there is a persistent
asymmetry in the Venusian atmo-
sphere between the morning and
evening hemispheres, the incoming
flow of photons could transfer some
angular momentum to the planet.

In the simplest case, if one hemi-
sphere were black and the other
white (absorbing and reflecting
light, respectively), the light pres-
sure could spin the planet so as to
attain a period of a few days. Or,
conversely, it could stop the
planet’s rotation, if it had the same
period (a few days). The actual
asymmetry of the Venusian atmo-
sphere isn’t so drastic, of course, but
it exists nevertheless: there is a cer-
tain small difference between the
morning and evening hemispheres
in the altitude of some atmospheric
layers and their reflective power.
This is seemingly caused by heating
of the atmosphere by day and cool-
ing by night.

With the help of the simple for-
mulas described in this article you
can work out different possible sce-
narios for how the rotation of Venus
evolved. Don't forget about the par-
ticles in the solar wind that bombard
the planet—perhaps they, too, can
modify its rotation. However, in
each of your scenarios the total an-
gular momentum of all the interact-
ing participants must be strictly
conserved! (@]
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Infinite descent

A method for getting to the bottom of a wide range of problems

by Lev Kurlyandchik and Grigory Rozenblume

HICH IRRATIONAL NUM-

ber is the “oldest”? Undoubt-

edly, +/2 . We don’t know ex-

actly who was the first to
prove its irrationality, but we're sure
the argument went something like
this.

The first proof

Suppose +/2 is a rational number.
Geometrically, this means that the
diagonal length c of a square is com-
mensurable with its side length a—
that is, there exist integers m and n
and a segment of length a such that
¢ =dm, a = dn. Mark m - 1 equally
spaced points on the diagonal AC and
n-1 points on the side DC of a square
ABCD (fig. 1). Mark off the segment
AK=AD on the diagonal and the seg-
ment DE = KC on the side. Their end-
points K and E will fit on peints
we’ve marked before. Let’s prove
that the triangles ACD and KEC are
similar to each other. Since they
have a common angle C, it suffices

B C
El
K 1K,
E
A D
Figure 1

to prove that KC/EC = CD/AC.

We note that KC=c—aand EC =
a-(c-a)=2a-c. Remembering that
c/a =2, we have

KC*  c*+a*-2ac _ 8a*-2ac
EC* P +4a>—4ac 6a*-4ac
_1_cD?
T2 ACY

Thus triangle KEC, like triangle
DAC, is an isosceles right triangle,
and we can repeat the above con-
struction on its sides CE and CK,
marking point K, on CE such that
EK, = KC and point E; on CK such
that KE, = CK,. These points will
again be points of division; the tri-
angle K, CE, will again be an isosce-
les right triangle; and our construc-
tion can be reproduced anew to yield
another similar triangle K, CE,. This
process can be continued indefi-
nitely. The triangles K,CE, thus ob-
tained are getting smaller and
smaller, while the points K, E, al-
ways hit our initial division points.
But the number of these points is
finite! And the number of triangles
K,CE, is infinite. This contradiction
proves the irrationality of /2.

Centuries passed. An algebraic—
and perhaps simpler—proof was in-
vented.

MATHEMATICAL TOOLBOX

The second proof

To prove that +/2 is irrational
means to prove that the equation
x? = 2y* has no positive integer so-
lutions. Suppose such solutions ex-
ist and x = m, vy = nn is one of them.

It follows from the equation that
m is an even number, so we can
write m = 2m, for some integer m,.
Substituting this into the equation
gives n* = 2m2—thatis, x=n,y =m,
is also a solution. Notice that this
second solution is “smaller” than
the first: n < m, m, <n. Now we can
apply the same reasoning to obtain
a third solution x=m,, y = n, (where
2n, = n), which is even “smaller”
than the second: m, < n, n, < m,.
Proceeding in the same way we’ll
obtaining ever decreasing solutions
of the equation. But once again
there’s a contradiction up ahead! All
the numbers m, n, m,, n,, ... are
positive integers and they strictly
decrease—m >n>m, >n, > ..., and
an infinite decreasing sequence of
positive integers is impossible.
Therefore, our initial conjecture was
erroneous and +/2 is irrational.

Essentially, both these proofs fol-
lowed the same scheme. Assuming
that the problem has a solution, we
constructed a certain infinite process;
whereas, by its nature, the process
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must stop at a certain point. This
method of proof is called the method
of infinite descent.!

The method of descent is often
used in a simpler form. Assuming
that we have already reached the
natural termination point of the pro-
cess, we make sure that we “can’t
stop” at this point.

The third proot

Let x = m, y = n be the solution to
the equation x2 = 2y* with the least
possible x. The number m must be
even, so we can write m = 2m,, and
x =1,y =m, is also a solution. But
m > n, in contradiction to the choice
of the solution (m, n) as the “small-
est.”

This version of the proof shows
that the method of descent is related
to the method of mathematical in-
duction. They are both based on the
fact that any nonempty set of posi-
tive integers has a smallest ele-
ment.2 The method of descent is
especially useful in proving theo-
rems that assert that some situation
is not possible.

Now let’s consider a number of
examples illustrating the diversity
of applications of infinite descent.

Diophiantine equations

One of the areas in which the
method is most frequently used is in
the solution of equations in integers,
often called Diophantine equations.

Problem 1. Prove that the equa-
tion

8x* + 4yt + 224 = t*

has no solution in positive integers.
Solution. Suppose solutions exist.
Let x=m,y=n,z=p,t=rbe the

1 Apparently this method was
invented by the Greeks. There is good
reason to believe it was the method
Fermat tried to apply to his Great
Theorem.

2Two other methods, related even
more closely to infinite descent, were
described and discussed in previous
issues of Quantum: the principle of
taking the extreme (see “Going to
Extremes” in the November/
December 1990 issue) and the method
of monovariants (see “Light at the End
of the Tunnel” in the March/April
1994 issue).—Ed.
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solution with the smallest possible
x. It follows from the equation that
ris an even number, so we letr = 2r,.
Substituting this into the equation
and dividing by two, we get

4m* + 2n* + p* = 81/,

Now we see that p is even, so let
p=2p,. Then

2m* + n* + 8p;t = 4rt.
We proceed in the same way: n =
2n,,

m* +8n} +4pt =2}
then m = 2m,,

4,
17

8m;t+4n}+ 2pi =1

and we have arrived at a solution,
x=m;,y=n,z=p,t=r,witha
smaller x: m, < m! This contradicts
the choice of the initial solution as
the “smallest.”

The next problem is a little more
difficult.

Problem 2. Prove that the equa-
tion

2

x2 + V2 + 22 + 112 = Qxyzu

has no positive integer solutions.

Solution. Let x, y, z, u be a solu-
tion to our equation. Since the left
side, x2 + y? + z2 + u?, is an even
number, there must be evenly many
odd numbers—that is, four, two, or
zero—among the numbers x, y, z, 1.
If all of them are odd, the left side of
the equation is divisible by four,
whereas the right side is not. Sup-
pose that the set {x, y, z, u} contains
only two odd numbers. The identity
2k +1P+(2n+1P=4K>+n® +k+n)+2
shows that the sum of any two odd
squares leaves a remainder of 2
when divided by 4. On the left side
of our equation, we are adding two
odd squares and two even squares
(which are multiples of 4), so the
remainder upon division by 4 is still
2. This means that the left side of
our equation is not a multiple of 4,
while the right side is, and therefore
there cannot be exactly two odd
numbers amongx, y, z, and u. So all
the numbers are even: x = 2x,
y = 2y,, z = 2z,, u = 2u,. Substitute
this into the equation and divide by
four:

9 9 2 2 _
XP+yS+zi+ul= 8x,v,z,u,.

We see again that all the numbers
can’t be odd (otherwise, the left side
could not be divisible by 8). Exactly
two of the numbers can’t be odd ei-
ther, because in this case the left side
wouldn’t even be divisible by 4. So all
of them again are even: x, = 2x,,
v, =2y, 2, = 2z,, u; = 2u,. Another
substitution and simplification
yields

2 Y 2 _
X+ Yy +2Zy + Uy =32X,7,2,U,.

Repeating the above argument
again, we find that the numbers x,,
¥y, Zy, U, are all even, and so on. The
kth step of the process yields the
equation

2 2 2 2 _02k+1
XS+ Y +2z0 U= 2 X,V ZiUp

where all the variables are even in-
tegers. These integers were obtained
from those in the initial solution by
k successive divisions by two.
Therefore, the numbers x/2%, y/2X,
z/2K, u/2F are integers for all k 2 0.
And this is, of course, impossible.

The next equation has infinitely
many solutions, but can be investi-
gated by the same method.

Problem 3. Find all positive inte-
ger solutions to the equation

x2-2y%=1.

Solution. One solution of the
given equation is not difficult to
guess: x; = 3, y, = 2. From the iden-
tity

(3x + 4y)? - 2(2x + 3y)* = x2 - 2y?,

it follows that for any solution x, y
the pair 3x + 4y, 2x + 3y is also a
solution. This gives an infinite se-
ries of solutions:

x,=3-3+4-2=17,
Vy,=2-3+3-2=12
x;=99,y,=70;

and so on. Let’s prove that there are
no other numbers satisfying the
given equation.

Consider a solution x, y. Then
3x -4y, 3y —2x is a solution too (this
follows from the identity above, if
we reverse the sign of y in it). Notice
that 9x2 — 16y2 > 9x% — 18y> = 9, so
in particular 9x* — 16y > 0, which



means that 3x > 4y. Similarly, for
y > 2 we have 4x* - 8y2 = 4 < y2, so
4x? < 9y? and 2x < 3y. This means
that our formulas transform the so-
lution x, y'with vy > 2 into another
positive integer solution x!, y1). Not
only that, the obvious inequalities
V<1 +2y2=x2<4y% ory < x <2y,
imply x'!) < x, y!!) < y (this is left for
the reader to check). Now we can
form a third solution x1?/, yi2 from
xI1, 11 as long as y!!) > 2, and so on.
This process can’t go on forever—
that is, at a certain step we’ll arrive
at a solution x™?!, y2 with ynl < 2.
Since y!#! # 1 (because otherwise
(x21)2 = 1 + 2(yl))2 = 3), we must
have y!#) = 2. Then xI7) = 3, which
means that the pair x, y belongs to
the series of solutions we started
with.

Combinatorial problems

Problem 4. The mass of each of
2n + 1 weights is an integer number
of grams. Any 21 of the weights can
be divided into two groups equal in
number (n weights in each) and in
mass. Prove that all the weights are
of equal mass.

Solution. Since the mass of any
2n weights is even, all the masses
are either even or odd (depending on
whether the total mass of all 2n + 1
weights is even or odd). Subtract the
mass of the lightest weight (or
weights, if there are several) from
each of the masses. Some of the
weights now have mass 0, and we
can easily check that the new sys-
tem of weights satisfies the same
condition. Since some of the new
masses are zero, they are all even.
Halving all of them, we again obtain
a system of weights satisfying our
condition. Zero weights are still
present in the new system, so all the
new masses remain even and we
can halve them again. The process
can continue in this way forever,
which is possible only if all the
masses are zero. But this means that
the initial masses were equal to one
another.

Now let’s consider a problem
from combinatorial geometry.

Problem 5. Is it possible to cut a
cube into several different cubes?

Figure 2

(Cubes are considered different if
their edge lengths are different.)

Solution. We start by noticing
that if a square S is cut into different
squares, then the smallest of them—
say, s—cannot border on a side of S.
This is because in this case the
square bordering on the side of s
opposite its “outer” side (being lim-
ited by the “neighbors” of s) would
have to be smaller still (see figure 2).

Now we can prove that the an-
swer to the question is no. Suppose
that we’ve managed to cut a cube Q
into different cubes Qf. Consider
any face of cube Q—say, its bottom
base S. The cubes Qz’ that stand on
the base define a partition of S into
different squares. Let S, be the
smallest of them and Q, the corre-
sponding cube. Since S, doesn’t bor-
der on the boundary of §, it is sur-
rounded by larger squares. Their
corresponding cubes form a “well”
with cube Q, at its bottom. There-
fore, the cubes bordering on the up-
per base S) of Q, define a partition
of S/ into different squares. The
smallest of them, §,, lies strictly in-
side S/, so the corresponding cube
Q, is smaller than Q, and lies at the
bottom of the next “well.” The pro-
cess can be continued to yield an
infinite tower of decreasing cubes,
which is impossible.

At first sight, it may seem that a
similar argument must work as well
for square partitions of a square. But
in fact it doesn’t. Think why!

We conclude with a problem that
has already appeared in Quantum in
other situations and with other
proofs.

Problem 6. Prove that forn#4 a
regular n-gon can’t be drawn on a
square grid such that its vertices
coincide with nodes of the grid.

Solution. Consider first the case
of a regular (equilateral) triangle

Figure 3

(n=3). If its side length is g, then its
area is a>+/3 . The Pythagorean theo-
rem then guarantees that a2 is an
integer (fig. 3), so a®+/3 is an irratio-
nal number. On the other hand, it’s
clear that the area of any triangle
with vertices at the grid’s nodes is
rational (see figure 3).3 This contra-
diction shows that the required
polygon cannot exist for n = 3.

The case of n = 6 follows from the
case of the triangle, because alter-
nate vertices of a regular hexagon
form a regular triangle.

Suppose P,P,...P, is a regular n-
gon with n # 3, 4, 6 whose vertices
P, are nodes of the grid. Draw the

vectors equal to P, P; , P3P, , ..., PP,
¢ ,
PP, from the points P,, P,, ..., P,

respectively (fig. 4). Their endpoints
will fit the grid’s nodes again and
form a regular n-gon inside the ini-
tial one (why?). We can do the same
with the new n-gon and proceed in
this way indefinitely. But the square
of the side length of any n-gon in
this sequence is an integer, and our
process decreases it at every step!

Figure 4

3This is true for any polygon on the
grid —Ed.
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Exercises

1. Prove that unequal sides of an
isosceles triangle with a 36° vertex
are incommensurable.

2. Prove that the number 7 can’t
be represented as the sum of the
squares of three rational numbers.

3. Solve the following equations
in integers: (a) x3 — 3y3 - 923 =
(b) 5x% + 1133 + 1328 = 0.

4. Prove that the following equa-
tions have no solutions in nonzero
integers: (a) x> + y* + z2 = 2xyz;
(b) x4yt =24 (Hlnt for part (b): x2,
y?, z* is a Pythagorean triple. Use the
familiar formulas for these triples.?)

5. Positive integers a,, a,, ..., a,
(n > 2), no two of which are the
same, are written around a circle.
Then each of the numbers is re-
placed by the arithmetic mean of its
clockwise neighbor and itself. This
operation is repeated a number of
times. Prove that after sufficiently
many iterations some numbers in
the set will be fractions (that is,
nonintegral rational numbers).

6. A point is given inside a convex
polyhedron. Prove that its orthogo-
nal projection on one of the faces lies
inside this face. Is this true for
nonconvex polyhedrons? (0

ANSWERS, HINTS & SOLUTIONS
ON PAGE 52

“These can be found, for instance,
in “Arithmetic on Graph Paper” in the
March/April 1995 issue of
Quantum.—Ed.
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BRAINTEASERS

Justiorthe funof i

B176

Rearranging coins. Ten coins are arranged in an equilateral triangle
pointing down. Move only three coins to make the triangle point up.
(A. Khalamaizer)

B177

Drag and read. There was a pile of books on a table. I cautiously pulled a
book from the middle of the pile. The books on top of the book I was
taking moved along with it, but the books under it stayed in place. Why?
(A. Savin)

B178

Rolling coins. Two identical coins touch the side of a
rectangle at the same point—one from the inside, the
other from the outside. The coins are rolled in the
plane along the perimeter of the rectangle until they
come back to their initial positions. The height of
the rectangle is twice the circumference of the coins
and its width is twice its height. How many revolu-
tions will each coin make?

B179

Chess family. Two participants in a family chess tournament were twins.
The players were the mother, her brother, her daughter, and her son. It is
known that the winner was the same age as the “loser” (the player who
ended up in last place) and was the opposite gender as the loser’s twin.
Who won the tournament? (A. Savin)

B180

Reversing coins. Seven coins are placed heads up around a circle.
You're allowed to turn over any five coins in a row. Is it possible to
turn all the coins tails up by applying this operation repeatedly?

Asnulay) |aAed Ag Uy

ANSWERS, HINTS & SOLUTIONS ON PAGE 49
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SURPRISES OF SCALE

The powen of the Sun and you

Or. Why the gnat is cold blooded

by V. Lange and T. Lange

HE FLOW OF ENERGY FROM

the Sun is enormous. Geo-

physical measurements have

shown that even at a distance
of 150,000,000 km from the Sun, ev-
ery square meter of the upper atmo-
sphere oriented perpendicular to the
Sun receives 1.4 kJ of solar radiation
every second. This value is known as
the solar constant I = 1.4 kJ/(m? - s)
= 1.4 kW/m? and makes it possible to
calculate the total power of the solar
radiation P,. To calculate the total
power of the Sun’s rays, we need only
multiply the solar constant by the
area of the sphere circumscribed
around the Sun with a radius
R = 150,000,000 km:

P, =1 -47R*=4-10% W,

Surely the power level of a human
being is much more modest. The av-
erage power P, generated by a person
can be evaluated rather precisely ac-
cording to the energy content of the
food consumed in a day. It’s known
that a human being who is not in-
volved in hard physical labor should
consume about 12 MJ of food per
day. Almost all this energy is spent
on maintaining one’s body tempera-
ture and is ultimately dissipated in
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the surroundings. Only a very small
part of this 12 MJ of energy is
converted into mechanical work.
Dividing 12 MJ by the length of a
day (86,400 s) yields

P, =140 W.

Therefore, as a generator of en-
ergy, the Sun is approximately
3 - 10 times more powerful than a
human being. All the more unex-
pected, then, is the result when we
compare their specific power—that
is, power per unit mass. The Sun'’s
mass M is about 2 - 1030 kg, and that
of a human being m may be taken as
80 kg. From this we obtain

P/M =210 W/kg,
P,/m=1.75W/kg.

So the specific power of a human
being is almost 10,000 times that of
the Sun!

At first glance this result seems
way off the mark. Nevertheless it is
true.

How can this “paradox” be ex-
plained? How can the Sun—a giant
thermonuclear reactor—lose the spe-
cific power “competition” to a mere
human being, who acquires energy
from chemical reactions that are far

“weaker” than the nuclear variety?

It’s not hard to find the answer to
this question if we assume that the
production of thermal energy is
more or less uniformly distributed
in both the human body and the
Sun. As a result, the rate of energy
production is directly proportional
to the body’s volume—in other
words, to the third power of the lin-
ear size. However, the rate of heat
emission is proportional to the sur-
face area—that is, to the square of
the linear size. So the larger a body,
the weaker the emission rate
needed to maintain a certain tem-
perature.

The volume of the Sun is about
1027 m3; its surface area is of the or-
der of 10!® m2. The corresponding
human parameters are 10! m? and
1 m2. Thus the ratio of solar to hu-
man volume is about 1028, and their
surface ratio is of the order of 10'8.
In other words, a unit volume of the
Sun corresponds to one ten-billionth
the surface area of a unit volume of
a human being. So it’s not surprising
that, although the Sun’s “metabo-
lism” proceeds at a rate of just

At right: “And, as always, the human
will win.”

Art by Leonid Tishkov






0.2 mW/kg, the Sun’s surface tem-
perature reaches 6,000 degrees.

We'll illustrate the connection
between size, energy production,
and body temperature with some
examples from the life of animals.

The body temperatures of mam-
mals hardly vary at all. In particular,
the body temperatures of the giant
elephant and the tiny mouse are ap-
proximately the same.! However,
the rate of energy production in the
elephant’s body is 1/30 the rate in
the mouse’s. If this rate were the
same as in the mouse, the energy
produced would not have enough
time to leave the elephant’s body in
order to maintain its normal body
temperature. The poor beast would
be “baked” in its own hide.

Smaller mammals must produce
more energy per unit mass in order
to compensate for heat losses and
keep their body temperature at the
level necessary for normal activity.
Thus smaller living creatures must
eat more food (again, per unit mass).
Tom Thumb, the tiny boy in the
fairy tale, would be a terribly vora-
cious little tot—since he is propor-
tional to a normal human being, he
would need 20 times more food per
kilogram of his mass.

The smallest mammal on Earth,
the Etruscan mouse, with a mass of
1.5 g, consumes twice its own mass
every day. If this creature is left
without food for as little as a few
hours, it will die. Or take the hum-
mingbird (with a mass of just 2 g).
Practically all of its waking hours
are directed at finding and eating
food. The only way these birds can
endure long nights without food is
to drastically reduce their body tem-
perature.

It can easily be shown that very
small creatures—say, gnats—cannot
be warm blooded. For simplicity,
we'll consider the gnat to be a cylin-
der of diameter d = 0.5 mm and
length I = 4 mm. Thus its surface
area S and volume V are

IFor a discussion of other
physiological constants in mammals,
see “From Mouse to Elephant” by
Anatoly Mineyev in the March/April
1996 issue of Quantum.—Ed.
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2
S=2%+nd1510'5 m?,

2
V= %] =107 m?

Let’s estimate the power “gener-
ated” by a gnat.

A body with a temperature T
transmits to the surroundings with
a temperature T,, (T, < T) the follow-
ing thermal power:

P=aS-AT.

If the heat is transmitted by radia-
tion, and temperature difference
AT =T -T,is small compared to the
temperature T; the coefficient o is
proportional to T2. Depending on
the body’s reflectivity, o is about
2-5 W/(m? - °C) at room tempera-
ture. Supposing that the gnat’s tem-
perature is 30°C (T = 303 K) and
o =4 W/(m? - °C) we find, that when
the ambient temperature is 17°C
(T, = 290 K), the gnat radiates the fol-
lowing thermal power:

P=103W.

Taking the density of a gnat’s body
to be equal to that of water, we ob-
tain the gnat’s mass: m = 10 kg. So
the specific power of a gnat must be
102 W/10°¢ kg = 102 W/kg, or 600
times that of a human being (and 6
million times that of the Sun).

If a human being eats about 1 kg
of food per day—that is, about one
eightieth of his or her mass—the
mass of a gnat’s daily intake exceeds
its own mass by a factor of 600/80 =
7.5. (Actually, our estimates are a
little low, because we didn’t take
into account the heat lost by convec-
tion.) The ambient temperature is
often much lower than 17°C; and at
7°C (gnats continue to be rather ac-
tive under such conditions) the en-
ergy losses are almost double, so a
gnat would have to consume 15
times its own mass in food! Clearly,
it cannot keep its body temperature
constant (that is, it cannot be warm
blooded).

Looking at the relationships be-
tween a body’s size and the inten-
sity of heat exchange with the sur-
roundings, we can answer another

interesting question: why can a thin
wire be melted in the flame of a
match, while it’s hard to make a
thick wire red-hot even in the flame
of a gas stove?

The flow of energy that the wire
receives from the flame is directly
proportional to its surface area
S = 2nRI (where R is the radius of the
wire and [ is the length of the por-
tion of the wire being heated). At the
same time the rate of heat flow
along the wire’s axis to its cold (un-
heated) ends is directly proportional
to the cross-sectional area of the
wire S = nR%. When the radii of the
two wires differ by a factor of 10, all
other conditions being equal, the
thick wire will receive 10 times
more heat per unit time than the
thin wire, but it will lose 100 times
more heat. It’s clear that at thermal
equilibrium, when the incoming and
outgoing heat flows are the same, the
temperature of the thick wire will be
substantially less. Q)

Put m
eve ere.
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HOW DO YOU
FIGURE?

Ghallenges in physics and math

Math
M176

Polyhedron restored. Andrew cut a
cardboard convex polyhedron along
all its edges and mailed the set of its
faces to Laura. Laura glued them to-
gether into a convex polyhedron. Is
it possible that the two polyhedrons
are not congruent? (N. Vasilyev)

M177

Sequences of squares. (a) Does there
exist an infinite sequence of integer
squares in which every term starting
from the third is the sum of the two
preceding terms? (b) Does there ex-
ist an infinite sequence of integer
squares in which the sum of any two
neighboring terms is an integer
square? (O. Kryzhanovsky)

M178

Alternating vector sum. An even
number of unit vectors are drawn
from the same point O on the plane
and alternately colored red and blue.
Let r be the sum of the red vectors,
b the sum of the blue vectors. Show
that lr — bl < 2. (E. Shustin)

M179

Unusual constructions. You have a
ruler with two marks on it. With it,
you can draw lines as with an ordi-
nary ruler and also mark off segments
equal in length to the distance be-
tween the two given marks. You are
not allowed any other constructions.
With this instrument, construct (a)a
right angle; (b) a line perpendicular to
a given line. (V. Gutenmacher)

M180

Equation for periodicity. A function
f satisfies the equation f(x +1) +
flx = 1) = /2 f{x) for all real x. Prove
that this function is periodic.
(E. Turkevich)

Physics

On the Martian soil. During oppo-
sition Mars is located at a distance
1=5.56-10%m from the Earth, and
its angular diameter is a = 25”.1.
Find the acceleration due to gravity
on the Martian surface if the maxi-
mum angular distance between the
center of Mars and its moon Phobos
B = 34”.5, while the period of revo-
lution of Phobos around the planet
is T=2.76-10%s.

P177

Drop in a cloud. Through observa-
tions of how a raindrop falls in a
cloud, growing in diameter due to the
absorption of tiny drops encountered
along way, it was established that
drops move with a uniform accelera-
tion. Find this acceleration, assuming
the initial size of a drop to be small.
Neglect air resistance. (A. Stasenko)

P178

Uranium and hydrogen. An
evacuated vessel with a volume
V =1L contains 1 g of uranium hy-
dride UH,. When heated to a tem-
perature of 400°C, the hydride de-
composes completely to yield
uranium (atomic mass A = 238)
and hydrogen. Find the pressure of

the hydrogen in the vessel at this
temperature.

P179

Two charged bars. Two long, wide
plates are uniformly charged. The
charge densities are +o (the upper plate)
and —o (the lower plate). Find the value
and direction of the electric field
strength at a point M located at a
height h above the edge of the upper
plate and on the axis lying in the plane
of symmetry (see the figure below).
The distance d between the plates is
small compared to h. (A. Semyonov)

M
4
h
+0 g
-o

P180

Light beam in an aquarium. A thin-
walled aquarium in the shape of a
cube with a volume V = 8 L is filled
halfway with water. A salt is poured
into it, so that the refractive index of
the salt solution at the bottom is
n, = 1.35. The refractive index de-
creases with height h according to a
quadratic law n = n, - ah?, where
a =1 m=2. A parallel beam of light
falls on a side wall of the tank, per-
pendicular to the surface. At what
distance from the aquarium must a
screen be placed to obtain the brightest
possible strip of light? (A. Olkhovetz)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 47
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pinning gold from Straw

Or, How two secrets can add up to one certainty

by S. Artyomov, Y. Gimatov, and V. Fyodorov

E’'D LIKE TO TELL YOU
about a problem that re-
quires highly sophisticated
logic to solve.

A mathematician R said to math-
ematicians P and S, “T've thought of
two natural numbers. Each of them
is greater than one, while their sum
is less than a hundred. Now I'm go-
ing to tell P, in secret from S, the
product of these numbers. And I'm
going to tell S, in secret from P, their
sum.” And so he did. R then asked
his colleagues to guess the numbers.
P and S had the following conversa-
tion (P’s statements are denoted by
the letter © and S’s by the letter o):

“It looks like I can’t say what the
numbers are.” ()
“1 knew in advance that you
wouldn’t.” (c,)
“Well, thenIdo know them!” (r,)
“Then I know them, too.” (o,

Now you try to guess the num-
bers!

1. 18 it really possible?

At first glance the problem seems
insoluble: how can one guess the
numbers when no information
about them was given?

Let’s try an example. Suppose R
thought of the numbers 7 and 42.
Then the numbers he told P and S
were 294 and 49. So what then? P was

unable to guess the numbers. No
wonder—he only knew their product.
Well, not exactly. He also knew that
they are natural, they are greater than
one, and their sum is less than a hun-
dred. But what good is that?

Denote the unknown numbers by
k, and I and assume, for definite-
ness, that k, < I,. Denote the prod-
uct k, - I, by p, and the sum k; + I,
by s,

Now we can say that P was told
that p, = 294. Then the possible val-
ues of k, are 2, 3, 6, 7, and 14; then
I, will be either 147, 98, 49, 42, or 21,
respectively. The first two values of
k, don’t suit us, because they make
too large a sum: s, > 100. We are still
left with three possibilities, so P in-
deed cannot guess the numbers.

Let’s go on. Mathematician S says
that she knew in advance that P
would be unable to guess the num-
bers. How could S know? She must
have checked all possible represen-
tations of her number s as the sum
of two admissible numbers:

49=2+47=3+46=...=24 +125.

R could have thought of any of these
number pairs. He told P one of the
products n - (49 —n), and S says that
P can’t guess the numbers from any
of them.

But what if for a certain n both
numbers n and 49 —n are prime? For

MATHEMATICAL LOGIC

instance, if R thought of 2 and 47,
then he would have given the num-
ber 94 to P, and P would easily guess
the secret numbers.

So if R thought of 7 and 42, then
S, having been given the sum s, = 49,
would have no right to make state-
ment (6, ). This means that R did not
have 7 and 42 in mind.

So, it turns out we can say some-
thing about the unknown numbers.

Now that we've dispelled our ini-
tial doubts, let’s figure out where to
go next. One method of solution is
already clear: we can simply step
onto the brute-force, trial-and-error
road and check all the pairs k, I,
that satisfy the conditions

2<k,<1,<97,
4<ky+1,<90

(1)
(2)

to see which of them “survive” the
dialogue (m,)-{c,).

Since the number of possibilities
is finite in all cases, we could actu-
ally proceed in this artless way and
find the answer sooner or later. But
that would be boring, wouldn’t it?
So let’s try to restrict the search.

First of all, we'll search through
the values of s, rather than kand I,
since there are more than 2,000 pos-
sible pairs (k,, I,), but fewer than a
hundred possibilities for s,. How-
ever, even in this case the brute-
force search is long and tedious.

21
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2. The Goldtiach—Euler conjecture

What information can be derived
from (n;) and (o,)? What do these
statements mean? The first state-
ment, (r,), obviously tells us that

D, 1s not uniquely factored
into the product of two num-
bers satisfying inequalities (1)
and (2). (m])

Statement (c,) means that

for any decomposition of the
number s, into the sum of two
terms satisfying inequality (1),
their product obeys property
() (o)

The first condition rules out some
products; the second rules out cer-
tain sums.

In particular, it follows from (o)
that s, cannot be represented as the
sum of two primes. (Otherwise the
product of these primes would have
a unique factorization into two fac-
tors satisfying inequalities (1) and (2)
and so would not comply with (r;).)

But any even number satisfying in-
equality (2) is representable as the
sum of two primes (this is shown by
direct verification for the numbers 4, 6,
8, ..., 98). Therefore, s, is an odd num-
ber. In addition, s, - 2 is a composite
number; otherwise s, = 2 + (s, — 2|
would be a decomposition of s, into
the sum of two primes. After discard-
ing the numbers that don’t satisfy
these two conditions, we are left with
only 24 possibilities for s,,.

The fact (used in the preceding
paragraph) that all even numbers
from 4 to 98 are representable as the
sum of two primes is related to an
intriguing mathematical problem.
In 1742 a member of the St. Peters-
burg Academy of Sciences, Chris-
tian Goldbach (a German in the ser-
vice of the Russian state), wrote a
letter to Leonhard Euler in which he
conjectured that any odd number
greater than five is representable as
the sum of three primes. In his reply,
Euler proposed the hypothesis that
any even number greater than two is
the sum of two primes. (It’s not hard
to derive Goldbach’s conjecture
from Euler’s—try it yourself!)
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For almost two hundred years
both conjectures seemed beyond
proof, although they were checked
by direct search for numbers up to
9,000,000.

In 1930 the outstanding Russian
mathematician L. G. Shnirelman
proved the existence of a number k
such that any integer n > 1 can be
decomposed into the sum of no
more than k primes. The number k
in Shnirelman’s proof was rather
large; it was later proved that the
theorem is true for k = 20.

In 1934 another famous Russian
mathematician, I. M. Vinogradov,
showed that for a certain n; any
number n, n > n,,, is representable as
the sum of three primes. It would
seem that in our computer era we
could rely on the machine to verify
all the remaining numbers (from 7
to n,). However, Vinogradm{;s con-
stant n, is so large (n, > 2%") that
verification is still beyond the capac-
ity of modern computers.!

As for Euler’s conjecture, so far
there has been no significant
progress toward a proof.

3. "Primaries”

We can further reduce the num-
ber of candidates for So: we can de-
rive from (o) that

54 < 55. (3)

To see why, suppose that, on the
contrary, s, > 55. Then s, does not
satisfy (o/): we can decompose it
into the sum of two terms satisfying
inequality (1) whose product fails to
meet condition (r;). This decompo-
sition is s, = 53 + (s, - 53). Indeed, the
product 53 - (s, — 53) has only one
factorization into two factors whose
sum doesn’t exceed 100, because
one of the factors must necessarily
be of the form 53d, since 53 is a
prime, and would be greater than
100 wheneverd > 1. Sod = 1, and the
factorization is unique. But this con-
tradicts property (o) for s,!

With inequality (3) proved, the
number of possibilities for s, shrinks
to eleven:

IThis estimate may be out of date
now (this article originally appeared in
Kvant in 1977).—Ed.

11, 17,23, 27, 29,35, 37,
41,47, 51, 53. (4)

Let’s try to establish which of
these numbers comply with condi-
tion (o,) without a direct search. Let
s be any of the numbers (4). Since s
is odd, if two numbers add up to s,
then one is odd and the other is
even, and we can write s = 24 + m.
If s does not satisfy (o), then for a
certain a the product 2am is fac-
tored uniquely.

This a cannot be equal to one, be-
cause the product 2m has at least two
factorizations. Indeed, suppose a = 1.
Then the number m is composite, so
we can write m = uv, whereu > 2 and
v > 2, and both factorizations

2m=2u-v=2- uv
are good for us:
2+uv=2+m=5<100
and

Qu+v=2+uv-(u-1)v-2)
<2 +uv<100.

It follows that a > 2.

Now, eithera =m ora#m, and we
can investigate each case separately.
Ifa#m, thenp=2a-mandp=2m-a
are two different factorizations.
Since 2a + m = s < 100 and the factor-
ization of p is unique, we must have
2m + a 2 100. At the same time,
from s = 2a + m <53, it follows that
m<53-2a,andso2m +a<106-3a.
Thus, 100<2m +a <106 - 3a, imply-
inga<2.Soin this case we havea =2,
2m +a =100, andm =49, which leads
to the only “suspect” value s = 53 and
its decomposition 53 = 4 + 49.

In the case a = m the number
s = 3a is divisible by 3. Only two of
the numbers (4) are multiples of
three: 27 and 51. The “suspect” de-
compositions are 27 = 18 + 9 and
51=34+17.

The number 51 does not satisfy
(6/}—indeed, the product 17 - 34 has
only one factorization into two fac-
tors whose sum is less than 100, so
we can exclude it from the list of
“candidates for s,.”

The numbers 27 and 53 remain
in the list: they satisfy (o), because
for 27 we have 9 - 18 = 2 - 81 and



2 + 81 < 100, and for 53 we have
4.49=7-28 and 7 + 28 < 100.

So now we have ten “candidates”
left: 11,17, 23,27, 29, 35, 37, 41, 47,
and 53; and all of them satisfy (o).

4. “Then | know them, too”

Finally, let’s use statements (m,)
and (o,).

We could interpret them the
same way we did with the first two
above. But there’s a shortcut.

From (o, ) and inequality (3), we'll
derive that

8o < 33. (5)
Suppose this is not true. Then
Sy 2 33, and our mathematician §,
decomposing s, into the sum of two
terms in every way possible, would
have found these two variants:
So = (Sg—31) + 31 = (s, - 29) + 29.
Then her train of thought would have
been as follows: if P had been given
the product (s, —31) - 31, then, using
estimate (3) and the fact that 31 is a
prime, P would have understood
that (s, - 31)- 31 has only one factor-
ization such that the sum of its two
factors satisfies inequality (3). Then P
would have guessed the unknown
numbers. But the same argument also
applies to the product (s, - 29) - 29.

Therefore, in the case s, 2 33,
mathematician S would still be un-
able to identify k;, and I, exactly
even after P’s statement (m,), con-
trary to what happened in the story.

So inequality (5) is indeed true,
which leaves only five numbers: 11,
17,23, 27, 29.

Further, if p, = 27 - p, where p is an
odd prime and n > 1, then P can un-
ambiguously identify the secret num-
bers, because there is only one odd
sum of the form 27-t + 2lp—namely
2" +p. Soif s, has two representations
of the form 27 + p, then S is unable to
find the answer and make statement
(0,). This observation weeds out three
more numbers: 11 =4 +7 =8 + 3,23,
and 27, leaving only two candidates
on the list: 17 and 29.

0. Then we know them, too!

For the number s, = 29 the last
argument fails, because this number
has only one representation of the

form 27 + p with p odd and prime
(29 = 18 + 13). However, slightly
modified, it works for the decompo-
sition 29 = 4 + 25. In the case
Py = 4- 25 we have only one possible
odd sum, 25 = 20 + 5, other than 29
(4-25=5-20), but then 25 -2 is a
prime, whereas s, — 2 must be com-
posite. So in this case S is again un-
able to guess the numbers, which
reduces the list of candidates to one
number, 17—that is, either s, = 17
or the problem has no solution.

So what product p, could have
been given to P if the sum s, = 177
Let’s search through all decomposi-
tions of 17 into the sum of two terms:

17=2+15=3+14=...=8+9.

For any of the corresponding prod-
ucts except 4 - 13, mathematician P
would be unable to guess the an-
swer and make his statement (m,).
For instance, in the case of the de-
composition 17 = 2 + 15, we have
Py =2-15=30=5"6, but both 17
and 11 = 5 + 6 satisfy property (/).

So the only possible value for p, is
4 .13 =52. With this value mathema-
tician P was able to guess the num-
bers, because among all factorizations
of 52 into two factors only one,
52 =413, yields an odd sum of factors.

Thus, we haves, =17, p, =52, and
the numbers that mathematician R
had in mind are 4 and 13.

Problems

1. Is it possible to represent any
odd number greater than 3 as the
sum 22 + p, where p is a prime? If
not, give the smallest possible
counterexample.

2. Suppose the story told at the
beginning of the article is modified
as follows. Up to statement (o, ) it’s
the same, but then these statements
were made:

“And I knew in advance that you
would know that in advance.” (m,)
“T don’t know what the numbers
are.” (o,)
“Then I know them.” ()

Find the numbers in question.
(B. Kukushkin) (o)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 53

A defense
against cancer
can be cooked up
in your kitchen.

There is evidence
that diet and cancer
are related. Some
foods may promote
cancer,while others may
protect you from it.

Foods related to low-}
ering the risk of cancer
of the larynx and esoph-
agus all have high
amounts of carotene, a
form of Vitamin A
which is in canta-
loupes, peaches, broc-
coli, spinach, all dark
green leafy vegeta-
bles, sweet potatoes,
carrots, pumpkin,
winter squash, and
tomatoes, citrus fruits and
brussels sprouts.

Foods that may help reduce the
risk of gastrointestinal and respira-
tory tract cancer are cabbage,
broccoli, brussels sprouts, kohl-
rabi, cauliflower.

Fruits, vegetables and whole-
grain cereals such as oat-
= meal, bran and wheat
. may help lower the

i risk of colorectal
cancer.

Foods high in fats,
salt- or nitrite-cured
foods such asham,
and fish and types of
sausages smoked by traditional
methods should be eaten in
moderation.

Be moderate in consumption
of alcohol also.

A good rule of thumb is cut
down on fat and don’t be fat.
Weight reduction
may lower cancer
risk. Our 12-year
study of nearly a x
million Americans
uncovered high 7
cancer risks partic-
ularly among people
40% or more overweight.

Now, more than ever, we
know you can cook up your
own defense against cancer. SO
eat healthy and be healthy.

No one faces
cancer alone.

AMERICAN CANCER SOCIETY®
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AT THE
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\While the water evaporates . . .

Lets think about how, and why, and how fast . . .

by Mikhail Anfimov and Alexey Chernoutsan

AVE YOU EVER NOTICED
how water evaporates from a
container? Pour some water
into a small pan or glass and
observe how the water level drops
during the course of a day. Since this
is a rather slow process, we have
plenty of time to think and calcu-
late. In particular, let’s try to evalu-
ate the rate of evaporation and then
compare it with our observations.!

What is the mechanism of evapo-
ration? We recall that in order to
convert some amount of water into
vapor at a constant temperature, we
need to transfer to the water a cer-
tain amount of thermal energy,
which is called the latent heat of va-
porization. For example, at room
temperature T = 290 K, the latent
heat of vaporization is 2.46 kJ per
gram of evaporated water. Since
there are /4N, molecules in 1 g of
water (N, = 6.02 - 10%® mole! is
Avogadro’s number), we needs to ex-
pend energy E, = 7.35 - 10°2° ] to re-
move one molecule from the liquid
phase. In atomic calculations the en-
ergy is usually expressed in electron
volts (eV]. One electron volt is equal
t0 1.6 - 10719, s0 E; =0.46 eV.

So what is this energy expended
on? The answer is pretty obvious: to
overcome the attractive force ex-
erted by the liquid on the molecule
that would escape. Each molecule

ISee also physics challenge P168 in
the March/April issue.—Ed.

interacts with the surrounding mol-
ecules. The molecular interaction
takes the form of repulsion at small
distances (r < 7, ~ 108 cm) and at-
traction at larger distances (r > r).
Inside a liquid every molecule is
surrounded on all sides by other
similar molecules, so the resulting
(average) force is zero. However, this
is not true for a molecule that tries
to leave the water’s surface and es-
cape into the air. This molecule is
attracted by a number of surface
molecules, and there is no counter-
balancing force. Thus, to overcome
the attractive forces and eventually
leave the water, the molecule must
have a rather high kinetic energy.
Just for comparison: the average ki-
netic energy of the translational
motion of a water molecule is %/, kT,
where k = 1.38 - 10722 J/K is Boltz-
mann’s constant—that is, 0.038 eV
at T = 290 K, which is one order of
magnitude less than the energy E,
needed to pull a molecule out of the
liquid phase. Therefore, only a few
water molecules are able to escape
the surface of the water. These are
molecules that happened to be near
the surface and had acquired energy
an order of magnitude greater than
the average due to random colli-
sions.

Now we look at the latent heat of
vaporization from another point of
view. Clearly the consumed heat is
not directly transferred to the

molecules that escape from the
water’s surface. These molecules get
the extra energy stochastically from
the neighboring molecules. How-
ever, since only the most “ener-
getic” molecules have a chance to
escape, in the liquid phase less en-
ergy is left for each remaining mol-
ecule on average. If the liquid does
not compensate the energy loss by
taking a certain amount of heat from
the surroundings, its temperature
drops. In order to keep the tempera-
ture constant, the liquid must ac-
quire an amount of heat equal to the
heat of vaporization.

Here many students fall into the
same trap: “Since the escaping mol-
ecules have anomalously high ener-
gies, the vapor must be warmer than
the liquid.” This isn’t true, of
course. Only at the very beginning
of its “free” flight does a molecule
have any extra energy. In overcom-
ing the attractive forces, the mol-
ecule loses much of its energy, so
the average energy of the “new-
comer” molecules is equal to that of
the vapor at the same temperature.

“This is all very fine,” you may
be thinking, “but we still haven’t
taken the first steps toward evaluat-
ing the rate of evaporation of water.
Not only that, it’s clear now that we
need a much clearer, quantitative
understanding of the ‘structure’ of
the liquid and the way its molecules
move if we're to come up with any
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sort of rational estimate.” Neverthe-
less, we can do all the necessary cal-
culations. Here’s how.

It turns out that all we need to do
is mentally place our glass of water
in a closed container. In a little
while the container gets filled with
saturated water vapor, and the pro-
cess of evaporation stops. Strictly
speaking (and this is the point!),
evaporation continues just as before,
but the number of escaping mol-
ecules is equal to the number of
molecules that enter the liquid. This
situation is referred to as “dynamic
equilibrium” between the liquid and
gas. Now we can estimate the rate of
evaporation indirectly, focusing not
on the liquid but on its saturated va-
por. This trick turns on the fact that
vapor is a much simpler thing than
liquid. In any case, we can obtain a
rather good estimate if we consider
the saturated vapor an ideal gas.

For simplicity we’ll make some
additional assumptions. In particular,
let’s consider all the molecules to
have the same velocity v and to move
only in six permissible directions—
that is, parallel to the coordinate axes
(one axis is vertical). Every second 1/6
of the molecules in a cylinder of
height v (see the figure below) strike
an area S of the liquid’s surface:

AN 1
—=—nvs,
At 6

where n is the concentration of mol-
ecules (a strict calculation yields the
factor 1/4 instead of 1/6). To esti-
mate the velocity v we use the for-
mula for the root mean square speed

= J3kT/m (where m is the mass
of one molecule). The concentra-
tion of saturated vapor n can be
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expressed in terms of its pressure P,
by means of the ideal gas equation
P, = nkT. Then for the mass of wa-
ter “falling out of” the saturated
vapor and onto the surface of area S
we get

1/2
am 1o g lpd M)
At 6 2 3RT

where M is the molar mass of water
and R is the gas constant. Substitut-
ing the numerical data into this
equation (P, at 17°C is 0.02 - 10° Pa),
we find that 0.16 g of water leaves
the saturated vapor and lands on a
1-cm? surface of water per second. If
this were the rate of evaporation, the
water level would drop 1 cm every
6 seconds!

Clearly, this result is far from re-
ality. We have suffered an instruc-
tive defeat, and now we must find
out why.

The first thing we need to look at
is the experiment itself. Evaporation
as it actually occurs is slowed nota-
bly because the air in the room is not
dry but humid to some extent. Hu-
midity at a level of about 60-80%
would of itself cause the evaporation
to slow by a factor of only 3—4. How-
ever, if there were no air flow (for
instance, that produced by a fan)
over the surface of the liquid, the
humidity right at the surface would
be close to 100%, which would slow
the evaporation drastically. Our es-
timate of the rate of evaporation, on
the other hand, relies on the ideal
case, where a return of molecules to
the surface is totally absent.

It turns out, however, that our es-
timate doesn’t even correspond to the
ideal case. We're off by a factor of 30,
but now the reason lies in the calcu-
lation itself. The point is, only 3-4%
of the molecules striking the surface
of the liquid are caught and then ab-
sorbed into its depths. Most of the
molecules bounce off the surface.

Now it’s time to sum up. If an ab-
solutely dry flow of air picked up all
the molecules that escaped from the
water, the water level in the glass
would drop 1 cm not in 6 seconds but
in 3 minutes. It’s still faster than you
would have expected, isn’t it? O]

Bil A!drzdge,' Linda Crow,

and Russell Amuto

This book is a vivid exploration Of
energy, photosynthesis, and the

fcrmatwn of fossﬂ fuels Energy




MATH
INVESTIGATIONS

Finding the family resemhlance

An attempt to cateqgorize integer representation problems

UST AS I WAS CONTEM-
plating potential topics for this
column, I received an e-mail
message from my friend Dr.
Harold Reiter, asking for some prob-
lems that might fit the framework
for an article he plans to publish in
Mathematics and Informatics
Quarterly, an excellent interna-
tional publication available from the
present author. Harold is chairing
the committee in charge of the
American High School Mathemat-
ics Examination (AHSME). Prior to
publishing his paper, he plans to
present it at A Participating Confer-
ence in Mathematical Problem Solv-
ing, to be held from the 13th
through the 17th of August, 1996, at
the Centre for Education in Math-
ematics and Computing of the
University of Waterloo. The tim-
ing of this conference should allow
for my readers to share their
thoughts with Harold, who can be
reached by phone (704 547-4561),
by fax (704 510-6415), or via the
Internet (hreiter@email.unce.edu).
In the proposed article Harold
wishes to categorize problems that
arise from considering a fixed set G
of generators and a process P for pro-
ducing integers from the members
of G. Each choice of G and P gives
rise to a set R of results, and many
competition problems concern vari-
ous aspects of R, like the smallest
positive integer contained (or not

by George Berzsenyi

contained) in R, the largest member
of R, the nth member of R for some
positive integer n, or the number of
elements of R. In yet some other
problems one may be interested in
how many different ways the ele-
ments of R can be generated. One
may also categorize the problems by
the methodology most applicable
for their solutions, by the cardinali-
ties of G and R, as well as by the
level of difficulty of the resulting
problems. In what follows, we will
state some problems that fit into
Harold’s proposed scheme, asking
readers to communicate similar
problems (with references and solu-
tions) to Harold.

How many numbers can be ex-
pressed as the sum of four distinct
members of the set {17, 21, 25, 29,
33,37, 4112

Find the 100th positive integer
that can be expressed as the sum of
distinct powers of 3.

Use each of the nine digits 1,2, 3,
..., 9 exactly twice to form distinct
prime numbers whose sum is as
small as possible.

If pairs of distinct elements of S
are added, the following ten num-
bers are obtained: 1967, 1972, 1973,
1974,1975,1980, 1983, 1984, 1989,
1991. What are the elements of S?

Problem posing is an activity
complementary to problem solving,
and I strongly recommend it to my
readers.

Feeduack

Readers who are still interested
in the P -sets described in my col-
umn in the March/April 1991 issue
of Quantum might enjoy reading
two recent articles on the topic.
One of these was written by my
young protégé Vamsi K. Mootha
(“On the set of numbers {14, 22, 30,
42, 90},” Acta Arithmetica, 71.3
(1995), pp. 259-63), while the other
was authored by Andrej Dujella
(“Generalized Fibonacei numbers
and the problem of Diophantus,”
Fibonacci Quarterly, 34.2 (1996),
pp. 164-75).

In an earlier column I also
promised to provide further refer-
ences on the triangle construction
problems discussed in my July/
August and September/October
columns in Quantum. First of all,
the article by Roy Meyers ap-
peared posthumously (“Update on
William Wernick’s ‘Triangle con-
structions with three located
points,”” Mathematics Magazine,
69.1(1996), pp. 46-49). Secondly, the
book he called to my attention prior
to his death was Die Konstruktion
von Dreicken. It was written by
Kurt Herterich and published by
Ernst Klett Verlag of Germany. Roy
also wrote to me about two related
articles published in Germany.
Iwill report on them as soon as I ob-
tain copies. (@

21

QUANTUM/MATH INVESTIGATIONS




KALEIDOS

Whats the “be

“Its got to be the go/ngl n

thats good. —Harr

by Boris Korc
OST OF THE
problems below can be solved by
using standard methods. But they
also have short and, it seems to us,
more beautiful solutions involving some witty and
useful tricks. All these “tricky” solutions, except
for the last two problems, are quite elementary. We
hope you enjoy discovering them.

1. A man walks along a bridge AB and, after covering
3/8 of its length, hears the horn of a car approaching the bridge at a
speed of 60 km per hour. If he runs back, he’ll meet the car at point
A; if he runs forward, the car will overtake him at B. How fast does
this man run?

2. A swimmer and a ball simultaneously started from the same
point A on a river. The swimmer moved upstream and the ball
floated downstream with the current. Ten minutes later the
swimmer turned back to overtake the ball 1 km away
from A. The swimmer exerted the same force
throughout this distance. Find the speed of the
current.

3. A flask contains a salt solution. A
portion of the liquid—1/n of it, to be ex-
act—is poured into a test tube. It is
evaporated until the percentage
of salt in the tube doubles.
The solution is then
poured from

the tube back
into the flask and
mixed with the liquid
there. As a result, the percent-
age of salt in the solution increased
by p. What is it now?
4. A certain amount of work can be per-
formed by 27 identical machines in 35 hours.
They started simultaneously, but eleven hours
later a number of similar machines were added to do
the same work, so it was finished 6 hours earlier than
planned. How many machines were added?
5. Two pieces of the same mass were cut from two copper
alloy ingots of equal mass, but with different concentrations of cop-
per. Each of these pieces was alloyed with the remainder of the other ingot.
It turned out that the concentrations of copper in the new ingots became equal.
In what ratio were the initial ingots divided?
6. An arbitrary point E is taken on the side BC of a square ABCD. The bisector of

T SR

Art by Sergey lvanov
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YSCOPE

pst” answen?

| not the getting there,
/}arry Chapin

Cordemsky

The perimeters of the triangles ACD
and BCD are P, and P,, respectively.

Find the perimeter P of ABC.

10. Prove the inequality

ﬁ6+%6+~~%6+%8-+J6+J6+.~46+V%'<5

11 100tS m roots

11. Simplify the expression

where g, b, and ¢ are three different numbers.

12. Solve the following equation for x: x3 + 1 = 28/2x - 1.

13. Let o, B, y be the values of the angles of an arbitrary tri-
angle ABC. Prove the following inequalities:

(a) cos o+ cos B+ cos y< 3/2;
(b) cos 200 + cos 2B + cos 2y > -3/2.

14, Simplify the following expression:

sindoccos 3o + cosd o + sin 3o, (@)

ANSWERS, HINTS
& SOLUTIONS
ON PAGE 50

the angle DAE
meets the side
CD at point F.
Find the sum DF + BE if

AE=a.

7. (a) Prove that it’s possible to con-
struct a triangle A,B,C, whose sides
are equal in length to the medians of a given
triangle ABC. (b] Prove that the triangle A,B,C, con-
structed from the medians of the triangle A,B,C, de-
scribed in part (a) is similar to triangle ABC. (c) Find the
ratio of the areas of triangles A,B,C, and ABC.

8. Let K be the midpoint of the median AM in triangle ABC, and
let the line BK meet AC at L. Find the area of the quadrilateral LKMC if the area
of ABCis 1.

9. The altitude CD is dropped on the hypotenuse AB of a right triangle ABC.

e —

QUANTUM/KALEIDOSCOPE




CONTEST

Boing, boing, boing . ..

“Nature is an endless combination and repetition
of a very few laws. She hums the old well-known air through

innumerable variations.’

J

Ralph Waldo Emerson

by Arthur Eisenkraft and Larry D. Kirkpatrick

HILE WATCHING THE

Olympic Games in Atlanta

this summer, you may be re-

minded once again of the
versatility of physics. The equations
for projectile motion can be used to
analyze many different track and
field events at the Olympic
Games—shotput, discus, hammer
throw, javelin, high jump, long
jump, triple jump, and pole vault.
Now, the athletes are not required
to understand all of this physics, but
we know that the information is
important. Coaches study the phys-
ics principles behind the events, and
sports physicists analyze the events
to improve the athlete’s perfor-
mance.

When we begin our study of pro-
jectile motion, we simplify the
mathematics by assuming that there
is no air resistance, which is defi-
nitely not true for the javelin and the
discus. Under this assumption, we
are fortunate that the motions in the
vertical and horizontal directions
can be analyzed separately. The
horizontal motion is one with a con-
stant velocity because there is no
horizontal force acting—that is,

X= XO + VOXt'

The vertical motion is one with a
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constant acceleration due to the
force of gravity:

Y =Yg+ Vot = 812

We then proceed to analyze mo-
tion on a flat plane, where we are
given a launch speed v, and a launch
angle 6. If we choose the origin of
our coordinate system at the launch
site so that x, =y, = 0, our equations
reduce to

X =V,co0s 0t
; 1
0=v,sin6-"/ gt.

We can then solve these simulta-
neous equations for the range x and
the time of flight t:

2vysin®
=
8

2v§ cosOsin®
X =
8

These equations can be used as a
first analysis of the long jump. Be-
cause the maximum range occurs
for 8 = 45°, the jumper should leave
the ground at 45° (provided v, is the
same independent of angle).

The analysis of the shotput is
more difficult because the shot is
launched at a different height than
it lands. Our second equation is then

quadratic.! We often analyze the
simpler case in which the projectile
is launched horizontally.

One of the problems on the pre-
liminary exam used to select this
year’s US Physics Team was an in-
teresting example of this last type of
projectile motion problem. A ball is
dropped vertically, falls a distance h,
and strikes a ramp inclined at 45° to
the horizontal. The ball undergoes a
perfectly elastic collision. This
means that the velocity component
parallel to the surface of the ramp
remains the same, while the perpen-
dicular component reverses direc-
tions. How far down the ramp does
the ball land after the first bounce?

For the free-fall portion of the
motion, our second equation be-
comes

-y =-Y,8t%,

and therefore the time t, to reach
the ramp is

2h
to= —"
r

We can use the conservation of en-
ergy or the kinematic equation v = —gt

ISee “How the Ball Bounces” in
Quantum (March/April and
November/December 1991).

Art by Tomas Bunk
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to obtain the speed v, at impact:
VO = A 2 h

The choice of 45° for the ramp
angle makes the problem easy, be-
cause the ball leaves the first bounce
in the horizontal direction. This
choice (and setting the new origin at
the location of the first bounce) also
leads to simple coordinates for the
location of the second bounce,
(Ll/\,@, —Ll/«/E J, where L, is the dis-
tance measured down the ramp.

Therefore, our equations for the pro-
jectile motion become

L,

= = vyt

/*2 0t1
_Ll 2
— = —gt{.
N

Solving for L,, we obtain our answer:

L, =4+2h.

In trying to find a suitably chal-
lenging problem for our readers, we

Recognize America’s
Living Landmarks

America’s living landmarks are an invaluable part
of our nation’s natural heritage.

That's why the American Forestry Association
began The National Register of Big Trees in 1940. And it’s
why we continue to encourage citizens across the country
to find recognize the largest tree of each species. Help us
locate and protect these champions for future generations.

For information on how to measure and
nominate a Big Tree, write The National Register
of Big Trees, American Forestry Association,

Dept. BT, P.0. Box 2000, Washington, DC 20013.

America’s Living Landmarks.
Their preservation is every American’s concern.

THE NATIONAL
REGISTER OF

ik
/1%
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played around with changing the
angle of the ramp, but things get
messy and nothing very interesting
emerged. However, when we looked
at the second bounce, something
very interesting emerged that
prompted us to look at the third
bounce, and the fourth . . .

A. Complete the analysis of the
tirst bounce by showing that the
time ¢, in the air equals 2t,, the
speed of impact is /5v,, and the
angle 6, that the ball makes with the
vertical is given by tan 6 = 1/2.

B. For the second and third
bounces, find the distance the ball
travels down the ramp (in terms of
L,), the time in the air (in terms of ¢,),
the speed at impact (in terms of v,),
and the tangent of the angle with the
vertical at impact.

C. Generalize your answers to the
nth bounce and give physical rea-
sons for the existence of the ob-
served patterns.

Please send your solutions to
Quantum, 1840 Wilson Boulevard,
Arlington VA 22201-3000 within a
month of receipt of this issue. The
best solutions will be noted in this
space and their authors will receive
special certificates from Quantum.

Focusing fields

The contest problem in the Janu-
ary/February issue asked you to de-
termine the boundaries of the mag-
netic field that would focus charged
particles diverging from point P to a
point R a distance 2a away.

The best solutions came from the
wide range of readers that Quantum
reaches. The best solution by a high
school student came from Christo-
pher Rybak, a senior at The Prairie
School in Racine, Wisconsin. The
best solution by a college student
was written by Joseph Hermann, an
undergraduate at the University of
Missouri. Arthur Hovey, a physics
teacher at Amity Regional High
School in Woodbridge, Connecticut,
and Daniel Dempsey of Canisius
College in Buffalo, New York, also
contributed excellent solutions.
Prof. Dempsey sent along an excit-
ing research paper he had published
in The Review of Scientific Instru-



ments (Vol. 26, No. 12, 1141-45,
Dec. 1955). In this paper, Prof.
Dempsey provides solutions to the
contest problem where the mag-
netic field boundaries are limited to
straight lines and circles.

We know that the particles will
travel in straight lines when they are
not in the magnetic field and will
travel in circular paths when they are
in the magnetic field. These circular
paths are defined by the relation

2

qvB=

Since all particles in this problem
have the same velocity, mass, and
charge, they will all travel along cir-
cular paths of a specific radius:

mv
r=—".
gB

Upon leaving the magnetic field, the
particles will travel along the tan-
gent at the point where they leave
the magnetic field. The solution to
the problem consists of finding a
boundary line where all circles of
radius r have tangent lines that meet
at point R. The centers of the circles
of radius r lie on the y-axis.

Figure 1 shows the geometry of
the solution. The equation of the
circle is

x2+(y-bP=r%
The similarity of the triangles yields

yv-b a-x

X y

Combining these equations by elimi-

YA
v \ B field
/ 4 (boundary
|
\
\
v b
R N,
D x

Figure 1

P R

Figure 2

Figure 3

P R

Figure 4

nating (y — b), we find that the locus
of points is defined by the relation

x(a-x)

1‘2—X2

This function can most easily be
viewed by using a graphing calcula-
tor or a spreadsheet and graphics
program. It is symmetrical with re-
spect to the y-axis.

The solution depends on the rela-
tionship between the radius of the
circle and a. If r < a, the boundaries
of the field extend to infinity, and all
ions entering the field can be fo-
cused. See figure 2 for the case
a =>,r.If r = a, the boundaries have
finite positions, and once again all
ions entering the field can be fo-
cused (fig. 3). If r > g, the boundaries
begin to ”flatten” and therefore re-
strict the angles at which ions can
leave point P and arrive at R. See fig-
ure 4 for the case a = ;1. Q)

THEN:
“The water was every-
where. Then our house fell

apart. it was a miracle my
son survived. So many died
in the storm.”

NOW:

“We still remember the
help CARE brought. Food,
clothing, medicine. Even
tools to help us rebuild.
And my son — he is
heatthy and growing.”

Right now millions of people
in 42 countries are changing
their lives with help from
CARE. Millions more are
waiting for their chance.

|CARE]

MAKE A DIFFERENCE
1-800-521-CARE
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FOLLOW-UP

Dragon the Omnipresent

Or at least, the Persistent!

N THIS ARTICLE WE'LL PROVE
what is perhaps the most remark-
able property of the dragon
curves. This property was men-
tioned in the article “Dragon
Curves” by Vasilyev and Guten-
macher in the September/October
1995 issue of Quantum, which was
devoted to these beautiful creatures.
Although I'll repeat all necessary
definitions, the reader would do well
to read that article, as well as “Nest-
ing Puzzles—Part 2” in the March/
April issue, for a better and deeper
understanding of the subject.
One of the definitions of dragon
curves describes them as follows.
Draw a line segment OD) (fig. 1).
Rotate it by 90° about its endpoint
D,. Then rotate the two-segment
polygon OD D, by 90° about its
endpoint D, (the image of O under
the first rotation); rotate the four-
segment polygon OD,D, D, thus ob-
tained about Dg; and so on. After n
rotations we get a 27-segment po-
lygonal line O...D, , | with right

D By

)

LD,
\

Dy

ﬁ\)

Figure 1
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by Vladimir Dubrovsky

angles at all its inner vertices. This
polygon is called a dragon design (of
the nth rank).

Figure 1 shows the particular case
of a dragon design generated by ro-
tations in the same direction (clock-
wise). It’s called the main dragon
design. Since a dragon design of a
higher rank continues the corre-
sponding designs of lower ranks, we
can imagine them extended indefi-
nitely and consider infinite dragon
designs. Sometimes it’s convenient
to round off the corners of a design
(the blue curve in the figure). This
smoothing procedure yields what’s
called a dragon curve.

Now imagine we draw four per-
pendicular segments from the point
O (fig. 2) and use each of them as the
beginning of the corresponding infi-
nite main dragon design. All their

—
[

Bl

Figure 2

segments and vertices fit on the
edges and nodes of an infinite grid of
unit squares. The theorem we are
going to prove holds that the four
main dragon designs just described
trace all the edges of the grid, each
edge once.

This theorem was discovered by
Chandler Davis and Donald Knuth
(the exact reference can be found in
“Dragon Curves”), and the reason-
ing below follows in the footsteps of
their original proof with certain
modifications.

First, let’s prove that no dragon
design, whether it is a “main” de-
sign or not, traces the same edge of
the grid twice (although it can make
a loop and return to the same node).

This can be done using simple
geometric considerations.

It’s not hard to show, by compar-
ing the numbers of steps in all four
possible directions, that the length
of any loop on a dragon design is a
multiple of four and, consequently,
that the first and the last segments
in such a loop are always perpen-
dicular to each other (see the solu-
tion to exercise 7 in “Dragon
Curves”). It follows that a dragon
design cannot trace the same seg-
ment AB in two opposite directions,
because a loop of the form AB...BA
begins and ends with coincident
rather than perpendicular segments.




AN

Figure 3

Another consequence of this
property is that if a dragon design
hits the same point A twice, then
the directions in which it leaves it
both times are either the same or
opposite (because in the path
AB...CAD the segment CA must be
perpendicular to both “exit direc-
tions” AB and AD). Now we can
prove that the same segment cannot
be traced twice in the same direc-
tion.

Suppose that, on the contrary,
this is possible and choose the
dragon design of the smallest rank
that traces some segment (say, AB)
twice —that is, it has a piece of the
form KABL...MABN. Notice that
the path joining, in order, all even
vertices of any dragon design is also
a dragon design (whose rank is one
less—see figure 3), because it can be
drawn by the same “quarter turn”
rule starting with the segment OD,
instead of OD,. Since the number of
edges in the loop ABL...MA is even,
either both segments AL and AN or
both segments KB and MB belong to
the “shortcut” (red) design. Consider
the first case. By our construction,
we have two possibilities: AL = AN
(fig. 4a) or AL L AN (fig. 4b). The first
possibility contradicts our choice of
the initial design (the shortcut

a b L
A B A B
L=-N

N
Figure 4

design turns out to have coincident
edges and a smaller rank). The sec-
ond assumes that the shortcut de-
sign leaves point A along two per-
pendicular directions AL and AN,
which contradicts the remark above.
The argument for the case where the
shortcut design contains the edges
KB and MB is practically the same
(both possibilities KB = MB and
KB L MB lead to a contradiction).

Now we can prove that two main
dragon designs issuing from O at
right angles cannot have a common
segment. Indeed, the rank n pieces
of these designs can be viewed as
two branches of one rank n + 1
dragon design (not necessarily
“main”). But we know that it cannot
trace the same segment twice.

It remains to consider two main
dragon designs that start in opposite
directions (say, up and down). If we
replace them with the correspond-
ing dragon curves, which pass
around the grid nodes by definition,
the fact that the designs have a com-
mon segment transforms into the
fact that the curves intersect, thus
forming a loop. Then the two dragon
curves corresponding to the other
two designs also form a loop (rotated
by 90° relative to the first one).
Clearly the two loops have at least
one common point other than the
origin. And this means that two
dragon designs issued at right angles
have a common segment, which
was proved to be impossible.

So the four dragon designs do not
overlap (and thus we've solved exer-
cises 8 and 9 from “Dragon Curves”).

Dragon curves and
complex numbers

The idea of the following
proof of the “grid-filling” prop-
erty is quite plain. Roughly
speaking, we’ll simply calcu-
late the coordinates of a dragon
design’s nodes and use this for-
mula to show that any point of
the grid either belongs to at
least two (of our four) dragon
designs or occurs twice on the
same design. Since a dragon
design enters any of its nodes

ila+ bi) ==b+ai

along a grid edge and leaves it along
another (perpendicular) edge, and no
edge is traced twice by the four de-
signs, then each of the four edges
issuing from any node, and there-
fore, any edge at all, belongs to one
of the designs.

In fact, rather than coordinates
proper, we'll use complex numbers
to represent points of the grid. This
is more convenient, because in
terms of complex numbers, the 90°
rotation (the main tool in construct-
ing dragon designs) is just a multi-
plication by the imaginary unit i
(fig. 5). In particular, the formula for
the “eastbound” design (whose first
segment joins the origin to the
point (1, 0), or the complex number
1 + 0i) becomes the formula for the
“north-,” “west-,” or “southbound”
designs after multiplying by i, -1, or
-1, respectively.

So, denote by d(n), n=0, 1,2, ...,
the nth node of the eastbound design
(and the corresponding complex
number). To begin with, consider its
“turning points” d(0) = 0, d(1) = 1,
d(2) =1 +1, and so on (figure 6 on the
next page shows that d(2) =D, ).
The point d(2%+1) is obtained by a
90° clockwise rotation of the origin
about d(2%). It follows that

d(2%+1) = d(2%) + 1(d(25) - 0)
= (1 +1)d(2K)
= (1 +1)2d(2k-1)
=...=(1 +1i)kd(2)
= (1 +d)k+1,

Now let’s take a number n that is
not a power of two. Suppose okl
n<2% The pointd(n)isn, = ok _p
edges away from d(2% ), so, by the
construction, it’s obtained under the

A

ai

bi a+bi
90°

Y

b 0 a

Figure 5

Multiplication by the imaginary unit i,
which turns a point (complex number)
a + bi by 90° about zero.
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d(23)= D,

Dy=2i

d(n)

d(2%) = Dg = (1 +1)d(23)

Figure 6

90° clockwise rotation about d( g J
from the point d(n,), n, edges away
from the origin. Algebraically, this
can be written as

d(n)=d[2")-(d[2")- d(n))
= d(2") - id(m)
= (1+1)" —id(m).

If n, is not a power of two, we can
repeat our reasoning for n,, find the

. k
number k, such that gkl <oy « 2%,
. k .
define n, = 2™ —n,, and write

d(n) = (1+)" ~1{(1+1)" - id(n,))
=(1+1)° —i(1+1)° - d(n,)
Proceeding in the same way until we

get some n, = 9 Kem , we'll finally ar-
rive at the formula

d(n)=(1+1)" - i(1+4)"
~(1+1)% +i(1+4)"

ot (=) 14 1)

(1)

wherek, >k, > ...k _>0. This gives
the representation of a complex
number as the sum of powers of a
fixed number, multiplied by certain
coefficients. It resembles the repre-
sentation of an integer using nota-
tion with a given base—but here the
“base” is the complex number 1 +1.
Also, here the nonzero coefficients
cycle with a period four: each of
them (except the first) is the previ-
ous one times —1i. Such representa-
tions of complex integers are called
revolving representations (the term
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d2)=Dy=1+1i

d(2%-n)

0 dl)-D,-1

was coined by Davis and Knuth).

It’s clear from the construction
that the highest-order “digit” in the
revolving representation of a node on
the eastbound dragon design is al-
ways 1; for the north-, west-, and
southbound designs the correspond-
ing digits are i, —1, and —i, respectively.

Let’s look again at the numbers
k,, k,, ..., k_ of nonzero “digits” in
the revolving representation of d(n).
By definition we have

n=2% —n =24 - (2% —n,)
=ok _gk 49k

— et (<)) 2R,

(2)

This representation may ring a bell
for Quantum readers: it cropped up in
our investigation of the Chinese
Rings puzzle (see “Nesting Puzzles—
Part 2” in the March/April 1996 is-
sue) and was called there the folded
binary representation of n (again, af-
ter Davis and Knuth). Now the in-
teresting connection mentioned
there between this and similar
puzzles, on the one hand, and dragon
curves, on the other, becomes clear.
However, let me refer you to that
article for additional details of this
connection and folded representa-
tions. The really important fact for
us now is that any positive integer
has exactly two folded binary repre-
sentations—one with an even num-
ber of nonzero digits, the other with
an odd number (see problem 3 in
“Nesting Puzzles”).

More exactly, one of these repre-
sentations will have m nonzero dig-
its with numbers k, >k, > ... >k __,
>k ,wherek >k _+1.Theother
representation will have m + 1 non-

zero digits with numbers k, >k, > ...
>k, >k, +1>k,_.Thefirstm-1
terms in any two such representa-
tions are the same. The last term in

the first representation is (—l)m_1 9 km
and the second ends in (~1}m -1 Xn*!
—(~1}m- 19ke _ (~1)m- 1(21<m+1 _ 0k )

which is numerically the same. For
instance, 19=32-16+4-1=25-2*
+22-20-925_94,.92._91 4 90 We
can see that our representation of d(n)
is of the first type (with k__, >
k_ +1). However, its “sister represen-
tation” yields the same point in the
plane, because (1 + i+ 1 —4(1 + 1)k =
(1+151+i-1)=(1+1)k

So we can calculate the location
of the nth node of a given dragon
design. Conversely, any complex
integer that has a revolving repre-
sentation is a node of one of our four
designs: its highest-order digit
shows which of the four design it
belongs to, and the numbers &, ...,
k_ yield, by formula (2}, its distance
from the origin along the dragon
path.

Revolving representations

The next step is to show that any
complex integer has a revolving rep-
resentation. Actually, we’ll prove a
slightly stronger fact: any complex
integer z = a + bi has four revolving
representations with the lowest-
order digits equal to 1, 1, -1, and —i.
For instance,

1=—i(1 +iP—(1+1)+1
=—i1+iPf-1=(1+1)-i (3)

These four representations will be
called 1-, i-, (-1)-, and (-i)-represen-
tations, respectively.

We'll use induction over |z|? =
a® + b2 For |z* = 1, the statement is
true by equations (3) (the representa-
tions for 7, -1, and —i are obtained by
multiplying those for 1 by these num-
bers themselves). Suppose it’s true for
all u such that [ul> < N and take any z
with [z = N.If z = a + bi is divisible
by 1 +i—that s, if z = (1 + iJu, where
u is a complex integer—then [ul? < N
(the reader can check that in fact
[ul? = |z12/2). So the number u has re-
volving representations of all four
kinds. Multiplied by 1 + i, they yield



the representations for z.

Exercise. Prove that a complex
integer a + bi is divisible by 1 + 1 if
and only if the numbers a and b are
of the same parity.

It follows from this exercise that if
the number z is not divisible by 1 +1,
then each of the four numbers z + 1,
z+1iis. To obtain, say, the 1-represen-
tation of z, we take the number z -1
and divide it by 1 + 1. This gives us
z—1=(1 + ijJu. For the numbers z in
question, |ul < |z|, so u has an i-repre-
sentation. Substituting this represen-
tation into z = (1 + iju + 1, we come
up with the required representation
for z. In this case, by choosing the i-
representation for u, we secure the
correct alternation of nonzero digits
in the representation of z. Try to fig-
ure out how the proof should be
modified to get the other three repre-
sentations of z.

Filling the gri

The last part of the proof is very
short.

Take any complex integer z (z # 0)
and its 1- and (-1)-representations.
Each of them shows that point z is
hit by the corresponding dragon de-
sign at a certain moment.

If the highest-order digits in the
two representations are different,
then the two designs are different.

If the digits are the same (for in-
stance, both of them are ones), then
z is visited twice by the same (east-
bound) dragon design, but at two
different moments. Indeed, the
number m of nonzero digits in one
of these revolving representations
must have the same parity as in the
other (because the lowest-order digit
(<i)m -1 in the one case is 1, and in
the other it’s -1). Therefore, the two
corresponding folded binary repre-
sentations of the moments n such
that d(n) = z yield different values of
n. (Recall that one of the two pos-
sible folded representations of a
given integer always has an odd
number of nonzero digits, and the
other has an even number.)

As was explained above, this
means that each edge of the grid be-
longs to one of the four dragon de-
signs. Q)
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1474: First book printed in English. 1482:
Euclid’s Elements produced by Ratdolt,
the first printed book with geometric fig-
ures. 1485 First book censorship decrees
issued—books perceived as “dangerous.”
Ratdolt prints De Sphera, first book to
use more than two differently colored
inks on the same page. 1500: Some 20
million copies of about 35,000 books
have been published and printed, 77 per-
cent in Latin, and 45 percent religious.

It’s no wonder that the period
from about A.p. 100 until the 1400s
is regarded as the “dark ages.” A
substantial expansion of the circle of
human beings capable of reading the
written word did not take place un-
til the great quantum change that
resulted from the invention of the
printing press. The printing press,
the use of paper for printing, and all
of the innovative means of produc-
ing and distributing books in hun-
dreds of languages required only the
next 200 years.

1559: Publishing of the Index libvrorum
prohibitorum by Papal authorities—
books forbidden to be read by Catholics.
1610: The Mercurius gallo-belgicus
newspaper starts publication in London.
The Nieuwe Tijdingen newspaper is
published in Belgium. 1638: First print-
ing press installed on American conti-
nent at Cambridge, Massachusetts.
1642: Pascal invents adding machine.
1671: Newton demonstrates that white
light is made up of the colors of the rain-
bow. 1679: Mechanical computer is in-
vented by Leibniz that can add, subtract,
multiply and divide numbers. 1802: A
method of creating images on silver ni-
trate using a camera obscura is reported
by Wedgwood. 1805: Punched cards are
used to control the operation of a loom.
1807: A machine is invented that makes
paper by a continuous process, instead
of one sheet at a time. 1811: The first
mechanical press is invented in London.
It prints 3,000 sheets per hour.

The next quantum leap in com-
munication technology came about
in several areas: our knowledge of
science, especially optics and
electromagnetics; the observation
that the sense of motion of images
could be produced by rapidly chang-

ing still images; mechanical devices
to count, control machines; and do
arithmetic; and the recording and
replication of images of scenes and
people—the development of photog-
raphy.

1822: The first permanent photograph is
made. Babbage develops the precursor to
a computer, a difference machine for
calculating values of logarithms and
trigonometric functions. 1824: Braille
creates method of using raised dots so
that the blind can read. 1829: Burt in-
vents a primitive typewriter. 1832:
Babbage conceives, but does not suc-
cessfully build, the first computer. 1838;
Daguerre invents process for producing
silver images on copper plates, an early
and popular form of photography. 1839:
Talbot creates first photographic nega-
tives, reports his invention of photogra-
phy. 1847: Hoe invents both the rotary
and web presses, which can print 18,000
sheets on both sides per hour. 1856: A
phono-autograph is invented in France
that produces a trace produced by sound
on a rotating drum, precursor to the pho-
nograph.

In electromagnetics, it was the
discovery of the empirical laws of
electricity and magnetism, leading
to the theory of electromagnetism,
as expressed in Maxwell’s equa-
tions, that produced the entire in-
dustry of radio. This was initiated by
Hertz, who demonstrated that elec-
tromagnetic waves could be pro-
duced and that they moved at a
speed determined by the constants
in the force equations for magnetism
and electric charge. This demonstra-
tion also showed that light itself was
just another kind of electromagnetic
radiation. Marconi quickly followed
with the invention of a primitive
form of radio, and when Lee
DeForest invented the vacuum tube
with a control grid, amplification
was possible—the birth of radio. Not
far behind was a peculiar merger of
“moving pictures” and optical phys-
ics, leading to the invention of tele-
vision. Photography and radio thus
merged into television.

1858: Light is observed that is emitted by
electrons hitting a screen in an evacuated
tube. 1861: The first color reproduction
is demonstrated, using red, green, and
violet filters. 1867: Sholes develops the
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typewriter with the “qwerty” keyboard.
1869: Hauron shows how to create “pix-
els” of different color that are perceived
in ways that produce color images. 1874:
Baudot creates a binary code that uses
five bits to represent characters. 1875:
Carey proposes a form of “television.”
1876: Bell patents the telephone. 1877:
Edison invents phonograph. 1880: 54,000
telephones are in use in the US. 1881:
Marey develops precursor to the movie
camera. 1888: Hertz demonstrates that a
varying electric current produces electro-
magnetic waves that can be detected at a
distance. Edison and Dickson invent a
motion picture machine with sound syn-
chronization. Eastman introduces the
box camera and rolls of film. Smith de-
scribes a device that records sound by
magnetism. 1890: Hollerith develops a
census system using punched cards.
1893: Magnetic sound recorder is in-
vented by Poulsen. 1894: Marconi builds
and demonstrates his first radio transmit-
ter and receiver. 1895: Lumiere makes
first motion picture, 35-mm film at 16
frames/second.

Almost concurrent with these
great changes in communications,
mechanical controls for weaving
machines and other equipment,
along with mechanical devices that
would add, subtract, multiply and
divide, led to the first mechanical or
vacuum-tube computers. These
were powerful and useful devices,
but massive in scale and accessible
only to a very tiny group of people,
mostly scientists.

1896: Hollerith, who used punched cards
for the census, founds Tabulating Ma-
chine Company, later to be renamed In-
ternational Business Machines (IBM).
1904: Fessenden transmits speech by
modulating an electromagnetic wave.
1906: Fessenden transmits music and
speech via EM waves to ships at sea.
1908: Lippman wins Nobel Prize for in-
vention of color photography. 1910:
Seven million telephones are used in the
US. 1911: Swinton describes elements of
amodern television system, using CRT's
in both the transmitter and receiver.
1912: DeForest invents vacuum tube that
amplifies signals. 1915: Benedicks discov-
ers that a germanium crystal can convert
AC to DC, a precursor to the computer
chip. 1919; RCA is founded.

It was another great advance in
physics that led to the next sea
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change in communications. The in-
vention of the transistor, followed
by integrated circuits, allowing elec-
tronics to be reduced dramatically in
physical size and consumption of
electric power. These chips have so
evolved that our entire communica-
tions and computer industries uti-
lize them almost to the exclusion of
the older technologies of vacuum
tubes, resistors, capacitors, and in-
ductors.

The next chunk of chronology
has quite a few items. Is it merely
our proximity to these events that
makes them seem so important?

1920: First commercial radio station,
KDKA is established. 1920: DeForest de-
velops improved motion picture ma-
chine. 1924: Zenith produces portable
radio. 1925: Baird produces first televi-
sion image of a human face. Zworykin
files patent for first color television sys-
tem. 1926: Talking motion pictures are
introduced. 1927: Electromechanical
analog computer invented by Bush at
MIT. Neill invents tape with metallic
layer for sound recording. 1928: Televi-
sion broadcasts begin. 1929: Bell Labs
develops color television system. 1931:
CBS starts television broadcasting. Ste-
reo sound is patented. Quantum’s Pub-
lisher, Bill Aldridge, is born. 1934: Tur-
ing conceives the Universal Turing
Machine, the basis of modern comput-
ers. 1935: Kodachrome introduced by
Kodak. 1936: Olympic Games are tele-
vised from Berlin. 1937: Carlson invents
xerography. 1938: Zuse completes the
first working computer to use a binary
code. 1939: Stibitz and Williams build
the Bell model 1 computer and intro-
duce the terminal. 1941: Zuse makes
computer with error-detecting code and
punched tape for data entry—the first
computer controlled by a program. 1942:
Shockley begins work leading to devel-
opment of transistor. 1944: The spin-
ning disk drive is invented by Eckert.
1945: Grace Hopper coins the term
“computer bug.” 1946: Mauchly and
Eckert Demonstrate ENIAC. 1947:
Gabor develops concept of holography.
Land invents instant camera. 1948:
Practical magnetic drum for computer
storage is introduced. 1948: Shockley,
Brattain, and Bardeen announce discov-
ery of transistor. The first cable TV sys-
tems appear in the US. 1951: A military
supercomputer called Atlas has mag-
netic drums that store one megabyte.

Grace Hopper develops first compiler to
translate codes into binary machine
code. 1953: Commercial color TV begins
in the US. Townes develops the maser,
precursor to the laser. 1954: FORTRAN
programming language created. 1955:
First transistor computer built. Optical
fibers introduced. 1957: Gordon Gould
conceives the laser and gets patent only
after 1986. 1958: Integrated circuit on
one silicon chip developed. Stereo
records are introduced. Schawlow shows
how a laser works. 1959: Feynman de-
scribes process of etching that forms ba-
sis of modern chip design and construc-
tion. Hopper and Phillips invent COBOL
language. 1960: Packet switching to ex-
change data for computers invented.
1961: Time-sharing of computers devel-
oped. 1963: Video Disk invented. 1964:
ASCII standard developed. ARPA con-
ceived, precursor to the Internet. IBM
develops first CAD software. 1966: First
fiber optics used for transmission of data.
1967: Computer networking devised.
1968: Computer mouse invented. 1969:
RS-232 devised to exchange data between
computers. Bubble memory invented.
1970: Floppy disk introduced. RCA in-
troduces MOS chips. 1971: First micro-
processor patented. 1972: Speech recog-
nition systems introduced. Intel
develops first 8-bit microprocessor,
8008, replaced later by the 8080 chip.
Landsat I is launched. 1973: LSI chips
introduced. 1974: Electronic scanners
developed. 1975: Ethernet developed for
local area networks. Laser printer pro-
duced. 1977: Apple II introduced.
Microsoft is founded. 1979: Motorola in-
troduces the 68000 chip, used by the
Macintosh computer. 1981: Microsoft’s
MS-DOS adopted by IBM for its personal
computer. 1982: PostScript system in-
vented. 1983: Apple introduces mouse as-
sociated with cursor on screen with Lisa
computer. IBM XT introduced. 1984: CD-
ROM introduced. 1985: Microsoft devel-
ops Windows. 1986-96: Explosion in cre-
ation of more complex microprocessors,
memory chips, use of video and audio
with computers and communications.
Expansion of software, including creation
of Windows 95. Internet becomes major
means of communications.

Homo sapiens is now about to
enter the most dramatic shift in
communications technology, since
the invention of the printing press.
There has been a rapid convergence

CONTINUED ON PAGE 40



IN THE LAB

Osmosis the Magnificent

A powerful force—but is it an engine for perpetual motion?

MAGINE A SOLUTION SEPA-

rated from a pure solvent by a

semipermeable partition that lets

the small molecules of solvent
pass through, but stops the larger
molecules of solute. Due to the
natural tendency for concentrations
to become equal throughout the vol-
ume, unilateral molecular diffusion
of the solvent will take place. This
spontaneous movement of the sol-
vent to the solution (separated from
it by the semipermeable membrane)
is called osmosis. Usually it’s said
that the solvent pen-
etrates the solution
under the force of os-
motic pressure. In
other words, osmotic
pressure serves as a
quantitative charac-
teristic of the phe-
nomenon of osmosis.

Osmotic pressure
can be measured—it’s
equal to the extra pres-
sure needed from the
solution side to stop
osmosis. It has been
established both ex-
perimentally and
theoretically (the mo-
lecular theory of solu-
tions) that the osmotic
pressure is propor-
tional to the concen-
tration of a solution
and its (absolute)

by Norayr Paravyan

temperature. It would be interesting
to verify this relationship—but
how? To carry out our experiments,
we need a special device—an os-
mometer, which you probably don’t
have in your school physics lab.
There’s a way around this—we’ll
make our own osmometer. Take an
ordinary carrot, 10-12 cm long and
3-4 cm in diameter. Carefully wash
and scrape it and then cut off the tip
and the top. Using a special drill for
cutting rubber stoppers (ask for it in
the chemistry lab), drill out the

center of the carrot. The thickness
of the walls of the “vessel” pro-
duced should be 3 to 8 mm. If you
can’t lay your hands on a rubber
drill, you can get by with a narrow
penknife. Also, you can use some-
thing else in place of the carrot: a
beet, turnip, rutabaga, potato—
whatever you have at hand. Now
find a rubber stopper to match your
vegetable vessel—one that has a
hole in it and matching tubing. Our
osmometer (see the figure on the
next page) is now ready, and we can
proceed with our ex-
periments.

Fill the vessel (up to
the brim) with a satu-
rated solution of any
water-soluble sub-
stance—table salt (so-
dium chloride), Glau-
ber’s salt (sodium
sulfate decahydrate),
sugar—and then close
the vessel tightly with
the plug with the tub-
ing. Be careful that
there are no air
bubbles under the
plug—otherwise this
air will offer serious
“resistance” to the os-
mosis. Put the filled
vessel into a glass
filled with ordinary
tap water. Rather than
hold the vessel in your
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carrot

saturated
solution

water

hand, attach it to a laboratory stand
with a clamp connected to the plug.
Make sure the water level in the
glass is higher than that in the veg-
etable vessel. Also, place an empty
can or cup at the other end of the
tubing.

After a few minutes fluid driven
by osmotic pressure will pour out of
the tube into the empty can. In
about 30-40 minutes the water
level in the outer glass will have
dropped significantly. How long
will this process continue? At first
glance, there are no limitations—we
can always add more water to the
outer glass. But that’s only at first
glance. In fact, however long this
experiment proceeds, it will neces-
sarily stop. This is because the wa-
ter penetrates the semipermeable
partition (the walls of the vegetable
vessel) into our osmometer, result-
ing in a continual decrease in the
concentration of salt in the solu-
tion. In addition, the concentration
is decreased because some of the
solution is leaving the osmometer
via the tubing. So we have pure
water coming into the system, and
salt solution coming out. When the
concentrations of the solutes inside
and outside of the vegetable vessel
become equal, the fluid stops drip-
ping out of our device, and the ex-
periment comes to an end.

I should point out that an experi-
ment with this particular setup may
last quite a long time (two or three
hours)—if, of course, you have the
patience to add water to the outer
glass of the osmometer. However,
the process will necessarily stop.
Alas, a perpetuum mobile cannot be
constructed on the basis of osmotic
pressure (or on any other basis, as
you well know!). Ol
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of technologies related to the
printed word, images (fixed and dy-
namic), and computers. This shift is
rapidly making the printed word
virtually obsolete. Within the next
50 years, the use of paper for news-
papers, textbooks, novels, and refer-
ence works will cease almost en-
tirely. In their place will be ROM
chips containing the information
one wants, which are simply placed
in a small, inexpensive computing
and display device—you will buy a
novel, say, as ROM chip and use
your book-size device to “read” it
on the display screen. Material will
also be downloaded from a variety
of sources on some new super-
Internet system connected by fiber
optics to every home. Such a system
will combine what is now found on
the Internet with what we now get
on television. The merger of televi-
sion and computer will then also be
complete.

The remainder of my chronology
doesn’t come from The Timetables
of Technology. It constitutes my
predictions for the next 30 years.

1997 Cable TV lines used to transmit
and receive computer data via the
Internet. 1999: Fiber optics widely used
to connect homes so that graphics and
data are easily and rapidly exchanged.

2005: Widespread use of a merged sys-
tem of TV, computer, and Internet, with
homes connected by fiber optics. 2006:
Widespread use of electronic books that
use ROM chips to deliver the content of
textbooks, novels, and reference mate-
rials. Printed books decline rapidly in
use. 2008: Dynamic illustration rou-
tinely used in books. 2010: Symbolic
communication now a merger of dy-
namic graphics and other images, with
minimal use of words as symbols to rep-
resent these images. 2020: Communica-
tions uses other sensors associated with
touch, taste, and smell to communicate,
leading to a further reduction in the use
of word symbols. 2025: Few printed
books in use anywhere. Everything is
electronic and optical.

I'wonder where these fundamental
changes will leave us, and what will
be lost. We already see the use of
graphics and moving pictures in tele-
vision and on the Internet replacing
the strings of words that used to elicit
those images in the mind of the
reader. Great books of the past were
great because of the writer’s ability to
invoke vicarious experiences in the
reader by means of words. The
printed word opened the world and
the universe to billions of people over
the past 300 years. A picture may be
“worth a thousand words,” but the
ability to use 1,000 words to paint a
picture may in the long term have
been a far more valuable skill. But
who's to say?

—Bill G. Aldridge
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Freshman wins Schater Prize

Ioana Dumitriu, a freshman at
New York’s Courant Institute of
Mathematical Sciences, is the win-
ner of the seventh annual Alice T.
Schafer Mathematics Prize. The
Schafer Prize is awarded to an un-
dergraduate woman in recognition
of excellence in mathematics and is
sponsored by the Association for
Women in Mathematics (AWM).
Dumitriu will receive a cash prize
of $1,000.

The Schafer Prize was established
in 1990 by the executive committee
of AWM and is named for AWM
former president and one of its
founding members Alice T. Schafer,
who has contributed a great deal to
women in mathematics throughout
her career. The criteria for selection
includes, but is not limited to, the
quality of the nominees’ perfor-
mance in mathematics courses and
special programs, an exhibition of
real interest in mathematics, the
ability to do independent work, and,
if applicable, performance in math-
ematical competitions.

Two runners-up were also se-
lected: Karen Ball, a senior at
Grinnell College, and Wungkum
Fong, a senior at the University of
California at Berkeley. Each will re-
ceive $§150. AWM also awarded an
honorable mention to Tara S. Holm
from Dartmouth College. The prize
presentation will take place on the
evening of July 22, 1996, at the
AWM Banquet (held in conjunction
with the AWM Workshop) in Kan-
sas City, Missouri. The AWM
Workshop and Schafer Prize Session
are held in conjunction with the
SIAM Annual Meeting.
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“There were many outstanding
nominees this year, each with her
own style and her own strengths,”
stated Ruth Charney of Ohio State
University, chair of the 1996 Schafer
Prize Committee. “It was very diffi-
cult to choose a winner. We are
pleased to be able to recognize these
four exceptional young women.”

The Schafer Prize is funded by an
endowment with continuing contri-
butions from AWM members and
others. Additional contributions
will help ensure the long-term
viability of the prize. Checks made
payable to “ATS Prize Fund” may be
sent to AWM, 4114 Computer and
Space Sciences Building, University
of Maryland, College Park MD
20742-2461.

The Association for Women in
Mathematics, founded in 1971, was
established to encourage women to
study and have active careers in the
mathematical sciences. Equal op-
portunity and the equal treatment
of women in the mathematical sci-
ences are promoted. AWM has more
than 4,500 members, both women
and men, from the United States
and around the world, representing
all parts of the mathematical com-
munity.

Web research service

Information Access Company, a
provider of electronic reference in-
formation to libraries and schools,
announces the debut of Cognito!® a
new student and family research
tool on the World Wide Web.
Cognito! is a subscription-based ser-
vice that gathers and indexes more
than 995,000 articles and docu-
ments from diverse sources—maga-
zines, encyclopedias, reference

books, pamphlets, and Internet sites.
Editors at Information Access con-
tinually add new articles and cross
references to Web sites.

Contents include years of articles
from more than 700 general-interest
and specialized magazines; two
dozen reference books, including
almanacs, biographical dictionaries,
and specialized encyclopedias; hun-
dreds of advisory pamphlets from
professional organizations; the full
text of Collier’s™ Encyclopedia,
with 25,000 entries; the full text of
The Columbia Encyclopedia™ with
over 50,000 entries.

Cognito! is available for a US$9.95
monthly subscription fee, which in-
cludes unlimited searching, brows-
ing, and downloading for personal
use. For more information, visit the
Cognito! site on the World Wide Web:
http://www.cognito.com.

Goin-rolling CyberTeaser

Things got a little sticky at the
corners as contestants mentally ma-
neuvered two coins around a rect-
angle in the July/August CyberTeaser
at Quantum’s Web site (brainteaser
B178 in this issue]. Most everyone
recognized the problem at the inner
corners; it was the outer corners that
tripped some people up. The follow-
ing e-mailers were the first to submit
an answer that satisfied our judge:

John Condon (Houston, Texas)

Leonid Borovskiy (Brooklyn, New York)

11th Grade Math Club: Ilknur Kocak,
Murat Tanoren, Symay Parmaksiz,
Ozsel Beleli (Izmir, Turkey)

Nikolai Yakovenko (College Park,
Maryland)

Keith Grizzell (Gainesville, Florida)

Nikolai Kukharkin (Princeton, New
Jersey)



Jim Grady (Branchburg, New Jersey)
Lorenzo Maccone (Ivrea, Italy)
Mahesh Madhav (Morton Grove, Illinois)

Peter Onyisi (Arlington, Virginia)

The joint entry by the 11th Grade
Math Club presented us with a di-
lemma: how many Quantum but-
tons to award? In this case, four. But
in the future, such combined entries
will be eligible for a single button.
And only the “corporate name” will
be published among the winners. So
if it’s fame you're after, submit your
entry as an individual!

Our congratulations to the win-
ners, who will receive a copy of this
issue of Quantum and the coveted
Quantum button. Everyone who sub-
mitted a correct answer (up to the
time the answer is posted on the Web)
is eligible for a drawing to win a copy
of Quantum Quandaries, the new
collection of the first 100 Quantum
brainteasers. Our thanks to everyone
who submitted an answer—right,
wrong, close, or ever so close. The
new CyberTeaser is waiting for you at

http://www.nsta.org/quantum.
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What' happening?

Summer study ... competitions ... new
books ... ongoing activities ... clubs and as-
sociations ... free samples ... contests ...
whatever it is, if you think it's of interest to
Quantum readers, let us know about it!
Help us fill Happenings and the Bulletin
Board with short news items, firsthand re-

ports, and announcements of upcoming
events.

What' on your mind?

Write to us! We want to know what you
think of Quantum. What do you like the
most? What would you like to see more of?
And, yes—what dontyou like about Quan-
turm? We want to make it even better, but
we need your help.

Whats our address?

Quantum
National Science Teachers Association
1840 Wilson Boulevard
Arlington VA 22201-3000
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Identify surface water

quality problems on
your own.,

Recognize surface water
quality problems quickly
without chemical testing,

With the Water Quality Indicators Guide: Surface
Waters, you can find solutions to water quality
problems caused by sediment, animal wastes,
nutrients, pesticides, and salts.

« It’s simple to use.
+ Learn management practices.
+ Ideal for educators, too.

Order your copy today!

Send a check for $8 to:
Superintendent of Documents
U.S. Government Printing Office
Washington, DC 20402.

VISA®and MasterCard ®accepted.

To fax your credit card number - (202) 275-2529.

Specify Water Quality Indicators Guide: Surface Waters and stock
number 001-000-04560-1. Please include your name, address, and
telephone number.
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Math
M176

Yes, this can happen. An example
of the set of faces that can be glued
into two differently shaped polyhe-
drons is given in figure 1. Each poly-
hedron consists of two congruent
irregular quadrilateral pyramids
glued together along their bases. The
bases are rectangles, and in one case
the pyramids are symmetric about
their common base (fig. 2a), while in
the other they are symmetric about
the center of the base (fig. 2b).

Try to think of an example with
a smaller or even the smallest pos-
sible number of faces. Is it necessary
that the volumes of the two polyhe-
drons be the same?

Notice that if all edges of a poly-
hedron are of different length or if
they are simply marked by different
labels on the adjacent faces, so as to
tix the order in which the faces are
glued together, then Laura will get
the same polyhedron as Andrew. This
fact is far from obvious. The general

=V
Sg é 44 3>
2 D 5

two

four

two

Figure 1

ANSWERS,
HINTS &
SOLUTIONS

case is known as Cauchy’s theorem
on convex polyhedrons. (N. Vasilyev)

M177

(a) The answer is no. Suppose
such a sequence exists. Without loss
of generality, we can assume that
any two consecutive terms in it are
relatively prime. (If their greatest
common divisor d is greater then 1,
then the next term—their sum—and
the previous term—their differ-
ence—both will be divisible by d,
and we can extend this argument to
the entire sequence. So all the terms
can be reduced by d. It should also
be mentioned that d here is neces-
sarily a perfect square.)

Now, if a*> + b? = ¢%, where q, b,
and c are relatively prime numbers,
then ¢ is odd, and one of the numbers
a and b is even. (If a and b are both
odd, then the sum of their squares
takes the form (2n + 12 + (2m + 1)* and
s0 is even but not divisible by 4, and
thus cannot be a square.) On the one
hand, all the numbers in the sequence
starting with the third must be odd,;
on the other hand, some of them are
necessarily even. This contradiction
proves that our answer is no.

(b) Here the answer is yes.

It suffices to find a number a rep-
resentable in two different ways as
the product of numbers of different
parity. That is, we need a = bc = mn
and that 0 < b*—c?<2a<m?>-n’=
k(b* - ¢). Then we verify that the
squares of the sequence

x=b-df
v =2a, kx, ky, k*x, K%y, ...

satisfy the condition of the
problem. For instance, x% + y? =

a
Y
,_ﬁ'ih I‘"
Sug) 7

)
' u,,w,ll

)
Andrew

Laura

Figure 2

(b2 - c2)® + (2bc)? = (b2 + 22, or
(kx)? + y? = K2(b% - c2)? + 4b%c? =
(m? - n?)> + 4m?n® = (m? + n?)%.

The smallest number with the
two required factorizations is six:

6=3-2=06-1.Theadditional conditions
alsohold: 32-22-5<12<36-1=7-
(3% — 22). This number yields the se-
quence 5, 12, 35, 84, 245, ..., whose
squares satisfy the given condition.

M178

Let’s represent the differencer—b
as the sum of “black” vectors (fig. 3)
each of which is the difference be-
tween a red vector and the next blue
vector in the clockwise direction.
Black vectors subtend disjoint arcs
of the unit circle centered at O.

Suppose thatd =r -b is a nonzero
vector (otherwise there’s nothing to
prove). Draw the diameter of the
circle parallel to d. The projection of
d on this diameter is vector d itself.
Since the projection of the sum of
vectors equals the sum of the projec-
tions of these vectors, d equals the
sum of the projections of the black
vectors.

Consider all black vectors whose
projections on the diameter have the
same direction as d. Clearly, the sum
of the lengths of their projections is
no smaller than [d| (since d is the sum
of these vectors as well as others that
point in the opposite direction). On
the other hand, their projections
(more exactly, the projections of the
corresponding chords) are disjoint
segments of the diameter, so their to-
tal length is no greater than 2.
Thus, Idl = [r-bl < 2.

For the set of two opposite unit
vectors, |[r —bl = 2, so our estimate is
exact.

Figure 3
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Suppose for definiteness that the
given segment is of unit length.

(a) For the first construction, draw
a line (fig. 4), mark off three points
A, B, Conitsuchthat AB=BC=1,
draw another line through B, and
mark off segment BD = 1 on it. Then
ZADC = 90° because it is an angle
inscribed in the circle ACD and sub-
tended by its diameter AC.

D

= ¢
@)

A
Figure 4

(b) Similarly, we can construct
two right angles, AEC and AFC, sub-
tended by the same diameter AC,
where points A and C are taken on
the given line (fig. 5). Let G and H be
the intersection points of AE and
CF, AF and CE, respectively. Then
AF and CE are altitudes in the tri-
angle AGC (and also in triangle
AHC!), so GH is the third altitude in
either triangle, because the altitudes
meet at one point.

Figure 5

The theory of constructions with
a straightedge and standard length is
discussed in the famous book Foun-
dations of Geometry by David Hil-
bert in connection with the analysis
of geometric axioms. These tools suf-
fice to perform many constructions.
In particular, you can draw parallels,
construct an angle congruent to a
given angle with a given side, and so
on. But some constructions that are
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possible with compass and straight-
edge are not possible with straight-
edge and unit length.

M180

Using the given equation, we ob-
tain for any x the relations

flx +2) + fix) = N2 flx + 1)
- V2 V2 fix) - flx - 1)
- 2ffx] - V2 flx - 1]

—that is,
fix +2) = flx) - 2 fix - 1).
It follows that

fix+4)=flx+2) - V2 flx + 1)
= fix) = V2 [flx + 1) + flx - 1)]
=_f(X)l

and so
fix + 8] = fix + 4) = fix).

This means thatf is a periodic func-
tion with period 8. One example of
such a function is f{x) = sin (rx/4).

Physics

According to Newton’s second
law and the universal gravitation
law, the acceleration due to gravity
at the Martian surface is

M
Em = G—ZI
Ru

where G is the gravitational con-
stant, M is the mass of Mars, and R,
is its radius. The radius of Mars can
be found directly from the condi-
tions of the problem (fig. 6):

o o
Ry =Itan—=1=
M an2 )

(since o is small, tan (o/2) = o1/2).
To find the mass of Mars, con-
sider the motion of its moon
Phobos. To simplify, assume the
satellite’s orbit to be circular with
radius R = ] tan B = IB (see figure 6).
The period of revolution of Phobos
is T. The centripetal acceleration
a = @R = (2%/T)*R of the moon is
provided by the force of gravity
F = G(mM/R?) (m is the mass of
Phobos). So a = F/m, or (2n/T)*R =
G(M/R?), from which we get

GM = [ZT—”T}? - (ZT_RJZ(]B)S'

Finally,

M (2n) (18)°
g _|am
MR (T ] (Io/2)*
9 2
J;’; (gj B.

Inserting the numerical data into
this formula and taking into account
that 17 = 3.14/(180 - 60 - 60) rad =
4.9 - 106 rad, we get

Sy = 3.64 m/s2.

P177

In a small time interval At the mo-
mentum of a drop of varying mass is

Almv) = mg - At. (1)

According to the conditions of the
problem, the increase in the drop’s
mass in a time At is

Am = opv, S - At, (2)

where p is the density of water, v, is
the average speed of the drop during
the time At, S = 4nr2 is the drop’s sur-
face area, and o is a dimensionless
proportionality factor. As for the left-
hand side, since m = 4/, nrp,

Am = 4nr?p - Ar
=Sp - Ar.

«, Ifin time At the

drop falls the

Figure 6

distance Ay,
then At = Ay/v,.
Inserting the

expressions for
Am and At into



equation (2] yields
Ar = o - Ay ~ Ay.

Because the initial radius is small,
the increase in the drop’s radius is
proportional to the distance trav-
eled—thatis, r ~ y.

Since the drop falls with a uniform
acceleration a, then y = at?/2 ~ t2,
Therefore, r ~ t> and m ~ 12 ~ %, Tak-
ing these relationships into account,
from equation (1) we get

Altéat) = tog - At.

(Because there is a mass on both
sides of equation (1), the proportion-
ality constant cancels.) Differentiat-
ing the left-hand side results in

Alat’) = 7atb - At = t0g - At,

which reduces to

af.
7

P178

The decay of uranium hydride
proceeds according to the equation

2UH, — 2U + 3H,

—that is, 482 g (2 moles) of uranium
hydride yield 476 g (2 moles) of ura-
nium and 6 g (3 moles) of hydrogen.
Correspondingly, 1 g of uranium
hydride yields m = 6/482 g of hydro-
gen. Assuming hydrogen to be an
ideal gas, we calculate its pressure at
the given conditions (T = 673 K,
V = 10" m?3) using the ideal gas law:

p=RT .35 10 N/m2
uw v

P179

Draw the cross section of the sys-
tem along its plane of symmetry
passing through the given point M
(fig. 7—the charged plates go to in-

-0

Figure 7

finity in both directions
from the plane of the page).
Draw two lines MA,A, and
MB, B, close to one another.
Note that the very narrow
strip of width A B, is
equivalent to a thread with
the linear charge density
A, =c-A,B, located at a dis-
tance r; = A|M from point M. The
electric field AE, generated by this
thread at point M is directed along
A M and equals

2negy  2meq - A M

AEIZ

where g, is the permittivity of free
space.

The corresponding strip on the
lower plate generates a similar field:

7\.2 _ _G.AZBZ

AE, = = :
> Anegr, 2mey - AyM

The similarity of triangles MA, B, and
MA, B, yields AE, =-AE,—that is, the
fields produced by the strips A, B, and
A,B, balance out exactly. In the long
run there will be only one uncompen-
sated source of electric field—the
strip P, Q (fig. 7). As the total width of
the plates is large (P;N > h), the
strength of the electric field formed
by the strip P,Q is directed almost
horizontally (to the right). As the tri-
angles MQN and P,QP, are similar,
P,Q/QN = d/h « l—that is, the
width of the strip P,Q is small com-
pared to the distance from the strip to
point M. So this strip can again be re-
placed by a thread with linear charge
density A = 6 - P,Q located at a dis-
tance r= QM = QN from point M.

Thus the desired electric field
strength is directed almost horizon-
tally to the right and is approxi-
mately equal to

A _ 6-PQ od

- Dnegr  2me, QN 2megh

P180

To obtain the brightest strip of
light, the screen must be located
where the times required for rays

Figure 8

traveling along different paths to
reach the screen are equal. Assum-
ing that the paths of the rays inside
the aquarium are parallel, we can
write the following equation for the
lowest ray and for the ray traveling
at height h (fig. 8):

b L b

_ +x/L2+h2

¢/ng ¢ c/(no—ahz) ¢

7

where b = &V is the width of the
aquarium, L is the distance to the
screen, and c is the speed of light in
avacuum. After some simple trans-
formations (and noting that h «< L),
we get

1 1
L=—+= =2.5m.
2ab 243V

Note that this result does not con-
tain the parameter h. This means
that the conditions for maximum
brightness coincide for all the paths
of the light rays passing through the
water. So this aquarium has the
properties of a converging lens.

Brainteasers

B176

See figure 9.

Bi177

The frictional force is propoz-
tional to the normal force. Consider
the book just below the book that is

Figure 9
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pulled out. The friction between
this book and the one beneath it is
greater than for the one sliding along
it by a value proportional to the
weight of oné book. This is why the
book underneath stays put. The
books below this one are kept in
place even more firmly.

B178

As a coin rolls a distance equal to
its circumference, it makes one full
revolution. The perimeter of the
rectangle is 12 circumferences. So
the outside coin will make 12 revo-
lutions as it rolls along the
rectangle’s sides. In addition, at ev-
ery vertex of the rectangle it makes
an additional quarter turn (fig. 10).
So the total number of revolutions
for the outside coin is 13.

%D <~
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Figure 10
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The inside coin travels a distance
12¢ - 8r, where c is its circumference
andr = ¢/2nis its radius. So it makes
12 - 4/n = 10.7 revolutions.

B179

Only the mother and brother or
the son and daughter could be twins,
so the twins are of opposite genders.
Therefore, the winner and the loser
are of the same gender. They can’t
be the mother and daughter, because
they must be the same age. So they
are the son and the brother. The son
couldn’t be the winner, because in
that case the brother’s twin—that is,
the mother—would be the same age
as her son. This leaves only one pos-
sibility free of contradictions: the
tournament was won by the brother.

B180

We'll give a solution that may not
be the shortest, but it shows that we
can turn over any preassigned set of
coins. Number the coins 1, 2,3, ..., 7
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in order. Reverse the coins 12345,
then 45671, and then 67123. Every
coin except coin 1 will have been
turned over twice, while coin 1 will
have been turned over three times.
This amounts to reversing only coin
1. Similarly, we can reverse any
other single coin and thus any set of
the coins. (V. Dubrovsky)

Kaleidoscope

1. The second time the man will
run the distance 5/8 — 3/8 = 1/4 of
the bridge length greater than the
first time; the corresponding differ-
ence for the car is exactly one bridge
length. It follows that the man’s
speed is 1/4 of the car’s—that is,
15 km per hour.

2. The speed of the swimmer with
respect to the ball is the same regard-
less of the direction of swimming.
Thus the trip back takes 10 minutes,
and the entire trip takes 20 minutes.
The ball floated 1 km during these
20 minutes. Therefore, its speed with
respect to the shore—that is, the
speed of the current—is 1 km per
20 min, or 3 km per hour.

3. Denote by ¢ the percentage of
salt in the solution after the entire
operation. The initial percentage
was g - p, and it increased by a fac-
tor of g/(q - p). Since the mass of the
salt remains the same, this factor is
equal to the ratio of the masses of
the solution before and after evapo-
ration. A similar consideration
shows that the mass of the solution
in the test tube decreased by half, so
the decrease in the total mass is
1/(2n) of its initial value—that is, the
total mass changed by a factor of
1-1/(2n) = (2n - 1)/(2n). This yields
the equation

g _ 2n
g-p 2n-1'
or
11
_p 17
q 2n

from which we immediately get
q = 2np.

4. Let n be the unknown number
of additional machines. They
worked for 35-6-11 = 18 hours and
did the same work as the first 2.7
machines would have done during
the 6 hours that were saved. Thus,
we have 18n =27 -6, andson =9.

5.Leta and b be the masses of cop-
per in the two pieces of the first ingot.
Then the corresponding masses for
the second ingot are ka and kb, where
k is the ratio of concentrations of cop-
per in the two ingots. After alloying
the ingots a second time, the mass of
copper is a + kb in the first ingot and
b + kain the second ingot. So we have
a+kb=>b+ka,or(l-k)a-b)=0.By
the condition of the problem, k # 1;
therefore, a = b—that is, the ingots
were cut in half.

6. The answer is DF + BE = a. To
prove this equality, rotate the square
about A by 90° so that the side AD
matches AB (fig. 11). Let G be the
image of F under the rotation; then
DF = GB and DF + BE = GB + BE =
GE. So it suffices to prove that GE =
AE. Since AABG is congruent to
NAADF, we have ZAGE = ZAFD =
ZFAB (the last equation follows
from the fact that AB || CD). Further,
/FAB = Z/FAE + LEAB = ZFAD +
LEAB = LGAB + ZEAB = LGAE.
Therefore, ZAGE = ZGAE, the tri-
angle AGE is isosceles, and we're
done.

7. (a) The proof is clear from fig-
ure 12, in which L is the midpoint of
BC, M is the intersection point of
the medians, and LM = MN. It is a

D F C
| E
A B
&
Figure 11



Figure 12

well-known property of medians
that point M divides each of them in
the ratio 2:1, starting from the
triangle’s vertices. Thus we have
MN = 2ML = AM. Also, CN = BM
(these segments are symmetric
about point L). So each side length of
triangle CMN is 2/3 of the corre-
sponding median of triangle ABC,
and dilation by a factor of 3/2 takes
triangle CMN into the one we have
to construct.

(b) In figure 12, the median CL of
triangle CMN is exactly one half of
the side CB of the initial triangle
ABC. So, in view of the dilation
above, the length of the correspond-
ing median of triangle A B,C, is
3/,BC. Clearly, similar relations will
hold for the other two medians,
which means that triangle A,B,C, is
similar to ABC with the ratio of
similarity equal to 3/4.

(c) The last remark immediately
yields the answer: the ratio in ques-
tion is (3/4)* = 9/16. (Alternately, this
result can be obtained from the fact
that the ratio of the areas of triangles
A,B,C, and ABC is 3/4, which is not
hard to see in figure 12.)

8. First, let’s find the ratio CL: LA.
Draw MN || BL (fig. 13). Then
CN = NL (since CM = MB) and
NL = LA (since MK = KA). Therefore,

Figure 13

CL = 2LA. Now we compare the ar-
eas of several triangles. Base MB of
triangle AMB is half as long as base
AB of triangle ABC, and they have
the same altitude from A, so
area(ABM) =/,arealABC) = 1/2.. Simi-
larly, area(MKB) =/,arealABM) = 1/4.
And since the base LC of triangle BLC
is 2/3 as long as base AC of triangle
ABC, and they have the same altitudes
from B, area(BLC) = %/;area|ABC) = 2/3.
Finally, area(CMKL) = area(BLC) -
area|BMK) = 2/3 — 1/4 = 5/12.

9. Triangles ABC, ACD, and BCD
are all similar to one another, and in
the notation of figure 14 we have

A b -5 &
P ¢ P ¢
so
Y (BY (b)Y (aY
L e =2 - = + =
p P ¢ c
2,32
_a +2b L
G
It follows that P = \[P? + P} .
C
b a
A D B

Figure 14

10. Notice that 3/6 <2 and /6 <3.
Replacing the innermost roots in
both terms of the sum in question
by 2 and 3, respectively, we will
only increase the sum, but
now it becomes exactly
equal to 5.

11. The function in ques-
tion, viewed as a function,
of the variable x, is a poly-
nomial of degree no greater
than 2. If we denote it by
P(x), it is not hard to see
that P(a) = P(b) = Plc) = 1;
that is, the polynomial
P(x) — 1 has at least three
roots (the problem stipu-
lates that a, b, and c are all

different). But this is possible only if
P(x)-1=0forall x, or P(x)=1.

12. Letting flx) = ¥/2x -1, we can
rewrite the given equation as
x=3232x-1-1, orx = f{f(x)). We’ll
show that for any increasing func-
tion f{x) the equations

fiflx)) = x (1)
and
flx) = x (2

are equivalent. First we note that
any solution of f{x) = x is certainly a
solution of f{f{x]) = x. Conversely, let
x, be a solution of equation (1). If
flxy) > %o, then flfix,)) > fix,| [since f
increases), so f{f(x,)) > x,,, contrary to
our assumption. Similarly, fix,) < x,
implies f{f(x,)) < x,. So x, must be a
solution of equation (2).

So the given equation reduces to
the equation x = f{x) = ¥2x-1, or
x3 - 2x + 1 = 0, which can be solved by
factoring: x3 - 2x + 1 = (x* - x) - (x - 1) =
(x—1)[x* +x—-1)=0.Tt has three roots: 1
and (-1 £/5)/2.

13. A short solution to this prob-
lem involves the scalar product of
vectors.

(a) Denote by a, b, ¢ the unit vec-

tors directed with the vectors BC,
—_— —
CA, AB, respectively. The angle
betweena andbism -v(fig. 15). The
other angles between these vectors
can be expressed in similar form.

We have

O<fa+b+cP=a2+b2+¢?

+2(ab . bec . ca)
=3 +2[cos ([t -7) + cos (m - af
+ cos (- B)]

=3 —2(cos o+ cos B + cos ),

Figure 15
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and the desired estimate follows
immediately.

(b) The proof of this inequality is
almost the same as for the previous
one except that the vectors a, b, ¢

—_— = =
must be replaced by OA, OB, OC
(fig. 15), where O is the circumcenter

— —

of the given triangle (|OA| = |OB] =
|OC | is the circumradius, and the
angles between these vectors are 20,
2B, 2y if the triangle is acute. If, say,
the angle o is obtuse, then the angle
between OB and OC is 21— 20, but
its cosine still equals cos 2a).

14. (a) Denote the given expres-
sion by fla). Then

f'lo) = (3 sin® @ - cos o - cos 3ot
-3 sin® o sin 30!)
+ (3 cos 3a. - cos? o
-3 cos? o - sina - sin 30
= 3(sin? o + cos? o)
-(cos o - cos 30— sin o sin 30
= 3 cos 4o.

Therefore, flo) = %/, sin 40. + const.
Since f{0) = 0, the constant is zero, so
flo) =3, sin 4o

Infinite descent

(Supplied by the editor)

1. A proof can be made by analogy
to the first proof (in the article) of the
irrationality of +/2. Suppose there
existed a segment d such that AC and
BC are both integral multiples of d.
We will construct a smaller triangle,
similar to the original, and show that
its sides are also integral multiples of
d. But this leads to an infinite descent,
in which we will eventually get a tri-
angle whose sides are smaller than d
itself, which is a contradiction.

To construct the smaller triangle,
we bisect angle B and let it intersect
AC at C, (see figure 16). Then we
draw line C,C, parallel to BC. Now
CC, = C,B = AB (this depends on the
fact that the vertex angle is 36°), so
if we divide the perimeter of ABC
into segments of length d, then
point C will be one of these division
points. Also, AC, = C,C, = C,B, so
C, is also one of these division
points. Thus the sides of triangle
AC,C, can be measured off in seg-
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Figure 16

ments of length d, and the infinite
descent can begin.

2. The existence of the represen-
tation in question is equivalent to
the solvability of the equation
x2 + y2 + z2 = 7t2. An analysis of the
remainders modulo 8 shows that all
the numbersx, y, z, t are even. So we
can divide both sides of the equation
by two and repeat the argument,
carrying out an infinite descent.

3. Both equations have a single so-
lution, (0, 0, 0). In part (a) use divisibil-
ity by 3 to show that any solution
(x, ¥, z) can be represented as
(3x,, 3y,, 3z,), where (x|, y,, z,) is an-
other, “smaller” solution. Then “de-
scend to infinity.” In part (b) exam-
ine the remainders of x, y, z (mod 13).
When divided by 13, integer cubes
give only the remainders 0, 1, 5, 8,
(=-5), and 12 (=-1). It follows that any
three numbers x, y, z satisfying the
equation are all divisible by 13, which
allows for infinite descent.

4. (a) This equation can be solved
as (or even simply reduced to) prob-
lem 2 in the article. (b) This problem
is, in fact, a particular case of Fer-
mat’s Great Theorem—the only
case that has an elementary proof,
which was found by Fermat himself.
This proof uses infinite descent, and
we outline it below.

Consider the more general equation

x4+ yt =l (1)

Suppose it has a solution in nonzero
integers. Then it has a solution x, y,
u in positive, pairwise relatively
prime integers. The numbers x?, y?,
u form a Pythagorean triple—that is,

2P+ (2P = w2

One of the numbers x and y is even
(consider remainders modulo 4). Let
it be x. Then there exist relatively
prime positive integers m and n of
different parity such that

x% = 2mn,

% _ g2
y*=m’-n? (2)
u=m?+n%

From the second of these equation,
it follows that n, y, m is also a
Pythagorean triple. These three
numbers are pairwise relatively
prime and, since y is odd, n is even.
So we can represent them as

n=2ab,
y+a?-b?
m=a®+b?

with relatively prime a and b. The
first of equations (2) gives x> = 4mab,
where m is relatively prime to ab
(since ab = n/2). Therefore, all three
numbers m, a, and b are perfect
squares:

a=x7,

2
b=Y1/
1 = i,

But this means that X, ¥y, u isa

solution to equation (1) with rela-

tively prime x, and y:
xt+yt=at+bP=m=ul

It remains to notice that this solu-

tion is “smaller” than the initial one

in the sense that 1, < u, because

2

2
ulSu1

=m<m?+n?=u

5. Prove that the maximum value
of the written numbers or the num-
ber of these maxima decreases at
each step of the process, while all
the numbers remain positive. This
will mean that the sum of the
maxima strictly decreases and must
be a fraction after some number of
iterations.

6. Drop the perpendicular from
the given point P to the plane F, of
an arbitrary face of the polyhedron.
If it falls outside the face, it will in-
tersect another (and only one other)
face. Its plane F, is closer than F, to
P. Drop the perpendicular from P to
the plane F,, take the face it inter-
sects, and continue the process. If
these perpendiculars never fall



Figure 17

inside a face, we’ll get an infinite se-
quence of faces, all of which are dif-
ferent because the distances from P
to their planes F,, F,, ... strictly de-
crease. But there are only finitely
many faces.

For nonconvex polyhedrons the
statement is not true. A counter-
example (Kepler’s stella octangula)
is given in figure 17; the point can be
taken at the center of the cube.

Toy Store

Lights in the night. The answer is
shown in figure 18. The windows on
each floor of the building must be
read as the Morse code of a letter! A
single lit window 1is a dot; two lit
windows in a row denote a dash.

JUannnnn

Figure 18
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The letters, read from the top down,
form the name Thomas Alva
Edison.

Number pentominoes. See figure
19.

Counting pointers. See figure 20.

Battleships. See figure 21

From X to O. See figure 22.

Compound Latin square. See fig-
ure 23. The hidden “surprise” is
Bucharest (the capital of Romania).

Sninning gold

1. We can prove without an ex-
haustive search that there are odd
numbers greater than 3 not represent-
able in the required form, but our
proof is not elementary. On the other
hand, an exhaustive search shows
that the smallest nonrepresentable
number is 149.

2. Since statements (m,), (c,) in
both dialogues are the same, the rea-
soning in the first three sections of
the article remains valid. So s, be-
longs to the set

C={11,17,23,27,29,35,37,41,47,53),

and all these numbers satisfy (/).
Statement (m,) means that
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Figure 21
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for any factorization of p, into
the product of two integers sat-
isfying inequalities (1), (2),
their sum satisfies [c]).  (n))

It was proved in the article that any
number with property (o) belongs
to C. Therefore, we can replace (r,)
with this:

for any factorization of p, into
the product of integers satisfy-
ing inequalities (1) and (2)
their sum belongsto C.  (m,’)

Search through all representations of
the numbers in C as the sums of two
terms: s = k + I {for 2 <k <]) and
check whether the products kI sat-
isfy (n,”). The search can be reduced
approximately by half if we prove in
advance, using (n,”), that p, is not di-
visible by 4.

This search shows that only four
numbers in C yield a decomposition
§ = k + I such that kI satisfies (r,):

23-=6+17,

35=13 +22,
37=3+34=114+26=14+23,
53=2+51=7+46.

Since S couldn’t guess the num-
bers k, and I, even after statement
(m,), 5o # 23 and s, # 35. So in view
of (c,), s, = 37 or s, = 53. After P
had understood this, he managed
to determine k, and I,. There-
fore, p,=11-26 = 286, because oth-
erwise P would have had either
Py=102-3-34-2-51 orp, =322 -
14 .23 =7 - 46, and wouldn’t be able
to choose between 37 =3 + 34 =
14 +23 and 53 =2 + 51 = 7 + 46.

Finally, we get s, = 37, p, = 286,
ky=11,1, = 26.

A|S|B|C|U|H|R|T|E
U|R|H|E|T|B|S|A|C
E|C|T|A|R|S|B|H|U
T|A|S|B|E|U|C|R|H
B|U|C|H|A|R|E|S|T
H|E|R|S|C|T|U|B|A
S|B|U|T|H|C|A|E|R
C|H|E|R|S|A|T|U|B
R|T|A|U|B|E|H|C|S

Figure 23
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Readers write . . .

Several readers wrote to object to our solution to
physics challenge P161 in the January/February
1996 issue. One correspondent, John J. Spokas, pro-
fessor of physics at Illinois Benedictine College in
Lisle, Illinois, sent us a detailed critique of a solu-
tion he found “unreasonable and arbitrary.” Prof.
Spokas writes:

The same notation as found in the published solution
will be followed in the discussion below. From the obvi-
ous symmetry, it is only necessary to consider placing the
added mass in the proximity of leg I. The problem with
the published solution has to do with the placement at
A of force f,, and the placement at B of the equivalent
force f,,. In selecting points A and B, an unjustified as-
sumption is made regarding the comparative values of f,
and £, and of f, and f,. What argues against the equiva-
lent forces f,, and f,, being at A’ and B’ is illustrated in
figure 1 below. Point P (x, y) locates the position of the
added mass m/2. In fact, the most reasonable location of
B’ is coincident with f,.

The underlying difficulty with the problem and the so-
lution published is that the problem is indeterminate.
Even with the added mass at the center of the table, it is
not possible to determine how the load distributes among
the four legs. There is one too many legs! Restricting the
added mass to the region bounded by the x- and y-axes

YA
II I
Al
T Plxy)
I AL
0 x
Figure 1

and the line x + y = 1, leg I1I is not required for mechani-
cal stability.

An alternate solution is offered here. Restricting the
added mass to the region outlined above and recognizing
that leg II is not required, it is eliminated—that is, f, is
set equal to zero. Incidentally, this corresponds to B’ co-
inciding with f,. One readily finds that the locus of points
for the added mass that makes f; = mg/4 is the line
x + y = 1/2. Thus the full region of the table where the
added mass may be placed without overstressing a leg is
outlined in figure 2 by the broken line.

It is a bit strange that by using only three legs it is pos-
sible to position the added mass closer to a leg than the
published solution, which uses all four legs, allows! Evi-
dently the extra leg results in a greater stress in the leg
nearest the added mass. This comes about from the arbi-
trary and unreasonable manner in which the indetermi-
nacy was handled. Load is being transferred from legs II
and IV to leg IIT, which is farther from leg I, and this re-
quires greater support from leg L.

The difficulties described here would be avoided if the
problem pertained to a triangular table in the form of an
equilateral triangle with legs at the corners.

We find Quantum to be a great magazine, engaging
and stimulating. It is an excellent resource for physics
problems for students to work up and present at our semi-
nar conducted by the Physics Club on campus.
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TOY STORE

The World Puzie Championshi

A report on the 1995 convocation in Romania,
problems from Brno (1993) and Brasov (1995)

ITHOUT MUCH RISK I
daresay that the Brainteasers
department is one of the
most popular in Quantum.
So our readers might be interested to
know that there is an annual inter-
national competition that includes
solving problems of the brainteaser
variety. The history of this compe-
tition is not very long. Apparently it
dates back to 1984, when puzzle
makers from a number of East Euro-
pean countries came to Poland for
the first International Crossword
Marathon, which grew out of a simi-
lar national Polish contest. It was a
24-hour, nonstop team competition
to create the longest crossword
puzzle (the results were measured in
meters). The marathon became an
annual event, but as new countries
joined, it was understood that this
kind of contest is not perfectly fair
to all: the Finnish and Dutch teams
quite reasonably complained that
their native languages are not as
suitable for composing long cross-
words as, say, English. The mara-
thon could no longer exist on a large
international scale—it was held for
the last time in 1990 in Croatia.
Thanks to Will Shortz, the
American team captain, who then
was the editor of Games magazine
(and now is the puzzle editor of the
New York Times), the idea of an in-
ternational puzzle competition was

by Vladimir Dubrovsky

revived in the new format of the
World Puzzle Championship (WPC).
With the backing of the publisher of
Games and of Times Books, Shortz
organized the first WPC in New
York in 1992. It became the pattern
for subsequent championships in
Brno (Czech Republic) in 1993, Co-
logne (Germany) in 1994, and Brasov
(Romania) in 1995. The American
team has won the WPC twice—in
1992 and 1995; the Czechs took the
other two contests. In fact, last year
the Americans were double win-
ners—an individual victory was
gained by Wei-Hwa Huang, a stu-
dent at MIT.

So far the structure of the Cham-
pionships has not been firmly estab-
lished. The schedule of the compe-
tition, the checking of solutions and
scoring, and the selection (and cre-
ation) of the contest puzzles are
farmed out to the organizers, which
certainly leaves the mark of their
taste on the entire event, and not
always to the satisfaction of all. For
instance, the organizers of the last
WPC decided to shift the stress in
the selection of puzzles to cross-
words, because they consider cross-
words the most popular puzzle genre
(this is undoubtedly true in western
Europe and North America, though
I'm not so sure about the rest of the
world). So quite a few puzzles re-
quired the knowledge of the English

(or native) spelling of some personal
and geographic names, which was
certainly disadvantageous even for
participants who use the Roman al-
phabet but transliterate names pho-
netically, to say nothing of the Japa-
nese and Russians. These and other
problems were discussed at the In-
ternational Puzzle Congress that
was proceeding while the contes-
tants struggled with the puzzles.
The general opinion was that such
violations of the basic principle of
linguistic and cultural neutrality
should be avoided in the future. (The
next WPC is scheduled for this year
in the Netherlands, and the 6th
WPC will be hosted by Croatia in
1997.)

So what does one do at the World
Puzzle Championships? With re-
gard to the format, this competition
resembles mathematical olympi-
ads. All participants solve the same
set of problems. In Brasov, for ex-
ample, there were four 2-3-hour ses-
sions with 16 puzzles to be solved at
each. The difference is that the
WPC includes special team rounds,
where all members of each team
can work together on the same
puzzle, or they can distribute the
given set of puzzles among them-
selves according to their tastes and
abilities—only the best individual
score for each puzzle counts in the
total team score. As to the puzzles

QUANTUM/TOY STORE 55




themselves, it would be hard even
to name the kinds of challenges of-
fered at the four championships
held since 1992, although a vast
class of puzzles—mechanical or
manipulative puzzles—remains
unused at the WPC (with very few
exceptions). Maybe this is because
it’s more difficult to supply such
puzzles in sufficient quantity. On
the other hand, all sorts of printed
puzzles have appeared at the com-
petitions. To list but a few, there
were general-knowledge quizzes,
where you had to guess a country
from its flag, say, or its national
anthem; various picture puzzles, in
which you had to spot the differ-
ences between two almost identical
pictures, put a scrambled comic
strip back together, or find a hidden
image; mazes, tilings; and cross-
word-type puzzles. But first and
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foremost, one encountered an in-
credible variety of mathematical
and logical brainteasers.

And now let me introduce to you
some of the challenges from the
World Puzzle Championships. The
first two were offered at the second
WPC in Brno (both were created by
Zdenek Chromy).

Lights in the night. In figure 1 you
see a 16-story building with some
windows lit and some dark. The pat-
tern of dark and light windows
obeys a certain law. Figure out the
law and “turn off the lights” in the
windows of the top floor according
to this law.

Number pentominoes. Cut the
grid with numbers shown in figure
2 into pieces made up of five con-
nected squares such that no two of
them are of the same shape and the
sums of numbers in all the pieces are
equal to one another.

It’s interesting that originally the
score for the first problem was lower
than for the second (15 and 20

points, respectively), but it turned
out that the first one was the most
difficult in the competition—only
two participants managed to solve
it. This puzzle seems to be of a logi-
cal nature, but it isn’t! (Consider
this a hint.) Personally I would be
unable to solve it in principle. (This
is another hint.) Such puzzles—they
can be called surprise puzzles—are
real puzzle gems and naturally, are
not encountered very often at the
WPC. On the contrary, the second
challenge is, in principle, trivial: af-
ter all, the total number of possible
dissections of the given grid is finite,
and if you have enough time you can
simply try all possibilities (it might
be better to write a computer pro-
gram that would do this for you).
The problem is that you don’t have
enough time, not at the WPC, at
least. However, in this kind of
puzzle you can usually find a thread
that can be pulled to unravel the
entire knot without searching
through lots of possibilities.

Such combinatorial puzzles are
very popular in Japan. Many of them

71110|5|1|4|7]1]9 . .
were invented there (they appear in
21216/ 150810 puzzle magazines published by the
410)2]2]1]5]4|6]4 Sekai Bunka publishing house in
0/2|3|6[(0]|6|8]|0]|1 Tokyo), and they are now becoming
3l8l1ls5l213l53]3 more popular throughout the world.
. About a quarter of the puzzles at the
Figure 2 fourth WPC were cooked
I up from Japanese recipes.
LICA T3 This was supposed to (but

plal3]a]1]a] SN
3136|123 AT <05 ™ didn’t) compensate for the
514324 [®[5]2]2]5]5|@| language problems experi-
slal2lol3 [»[3]3]5]3]s]@ enced by the Japanese
[®[2][2]571[3[®] team. Anyway, these
21213102 el L] puzzles are elegant and at-
41315/3]6 example tractive indeed, and I want
to acquaint Quantum read-
_ ers with some of them. (All
Figure 3 the puzzles below are bor-
rowed from the fourth
2 HOERED WPC.)

1 11212 I%i!l%l! 3 = Counting pointers (fig. 3).
I e a W Draw arrows in the 20
2 @yl CcmPty squares on the
3 Tl @l 2| sides of the big square
3 1 U2@ 2@ | with numbers such that
1 example each of them is parallel to
2 ) a side or diagonal of the
big square and each num-
Figure 4 ber in the grid equals the
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number of arrows pointing at it (as
in the examplel.

Battleships (fig. 4). Insert the stan-
dard set of “ships” for the game of
battleships (shown in the figure) in
the 7 x 7 square grid so that (1) any
two squares occupied by the ships
never have a common side (though
they can have a common vertex]); (2)
each number given in the grid equals
the number of occupied squares ad-
jacent to the square.

From X to O (fig. 5). Draw a path
from each X to one of the O’s so that
the path consists of two perpendicu-
lar segments parallel to the grid lines
and every grid square belongs to
only one path.

Compound Latin square (fig. 6).
Write one of the nine letters A, B, C,
E,H,R,S, T, Uin each empty square
of the given grid such that each row,
column, and 3 x 3 block marked
with bold lines contains each letter
once. The resulting array will con-
tain a nine-letter “surprise,” which
you also have to identify. (@]
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impact in
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room with
this interdis-
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guide to

cratering. How do craters
form? What can craters tell
us about planetary science?
How have impacts affected
Earth’s history and the
history of life?

Produced in cooperation
with NASA and The Plan-
etary Society, Craters!
includes 20 ready-to-use,
hands-on activities that use
cratering to teach key
concepts in physics, as-
tronomy, biology, and Earth
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include a summary of re-
search on Shoemaker-Levy
9’s encounter with Jupiter,
and a detailed background
section for teachers. The
book comes with a Mac/
Windows CD-ROM packed
with supplemental images
for use with classroom
activities. But you don’t need
a computer to make excellent
use of the activities bevause
all of the
pages—
including
beautiful
images of the
Moon and other cratered
surfaces—are photocopy-
ready.

Grades 9-12, 1995, 240 pp.
#PB120X $24.95

To order, call 1-800-722-NSTA
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