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GALLERY O

utrrH THrs PATNTTNG BY IASPER CROPSEY (1823-
llll uoo1, the Hudson River school makes a return appear-
ance in Gallery Q. Readers will perhaps recall the painting
by Thomas Cole in the November/December 1995 issue,
which depicts clouds massing on one side of a mountain
peak near Craw{ord Notch in New Hampshire. (Sharp-eyed

readers will have noted that the loosely knit group o{
American painters was mistakenly re{erred to there as the
"Hudson Y alley" school. )

Some consider Cropsey the greatest colorist of the
Hudson River school, and this painting lends support to

Autumn-On the Hudson River (1860) by |asper Francis Cropsey

that view. But as',trth Ct,ic rt i: Cr'.p-cr-': r'enclering of a

rneteorological phenor-nenon th.rt br.rngs hul rnto our ga1-

1ery. We have all seen the ianhkc sFLar- oi sr-Lnlight through
broken cloucls at the close oi rliii . Dc5p,113 lli1n)-a hackneyed
clepiction by less tarlentccl painters, it remains a r-uajcstic
sight. We h:rve se cn rt st, rritcn, it sccrns rluite natural. BLrt

rf we tJrrlk about it . . . ii u'e knorv some elementary phys-
ics . . . we rnight be momentarily confused by the way the
light rays are behaving.

Question 17 in the Kaleidoscope (page 33) brings thls
confusion into sharper focus.

Gift of the Avalon Founddtt.n A 1996 lJoriid o/ Is.i::s. -\-altonul Gttllery of Art, I4/a.shington
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In a way, the cover for this issue could
be a cover for any issue of Quantum.
Aren't there always puzzling things in
it? Isn't it sometimes surprising what
turns up by the end of an article or prob-
lem? Aren't there often holes for you to
fili in? And, like a jigsaw puzzle, isn't
Quantum challenging and satisfying
and frustrating and fun?

As usual, though, our cover has a
more speci{ic motivation. It has to do
with one of our patented silly, yet not so
silly, questions: What if the speed of
light were everywhere the same? Begin-
ning on page 10, Dmitry Tarasov and
Lev Tarasov paint a picture of an imagi-
nary world where the speed o{ light in
any transparent medium is the same as
that in a vacuum. It's a bizarre placel
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llealth and IonU lile

"We had no such thing as printed newspapers in those days
to spread rumours and reports of things . . "

-Daniel 
Defoe, A Journal of the Plague Year

INCE OUR ARRIVAL IN THE
United Kingdom on April 18,

my wife, Alice, and I have been
making our way across this

great island, from Cornwall in
southwestern England to Inverness
in Scotland. Even though I have
been to the UK many times, I al-
ways encounter something new
here. I'd like to share a few impres-
sions with the young people who
read Quantum.

The first concerns science and
its implications for social policy.
England is in the grips of a crisis
caused by bovine spongiform en-
cephalopathy (BSE). No doubt you
have read or heard about it under its
more colorful name "mad cow dis-
ease." BSE is apparently a conse-
quence of using certain animal
products in the feed given to beef
cattle. Some of these products are
contaminated and induce the dis-
ease in the cattle. There is also a hu-
man disease (Creutzfeldt-|acob dis-
ease) that some scientists believe
may be induced by eating beef from
cows infected with BSE.

Now, I'm not an expert in this
area. I don't really understand the
science associated with this prob-
lem, and not iust because I was
trained as a physicist. The science is
complex, and there are uncertainties
and disagreements even among spe-
cialists as to whether England has a
problem or not. But, like most of the

British populace (and others on the
continent), I am an interested on-
looker. Who wants to go out feet fust
because of a bad hamburger?

Beef consumption here is down
30%. The European Union has im-
posed a ban on British beef. For those
who raise cattle in the UK, this is
truly a catastrophe. The decisions
made so far seem to be strongly
motivated by fear, not science. A
heaithy dose of caution is always
acceptable, especially in matters of
public health. But how can policy
makers keep "concerns" from
evolving irtto "fear" and possibly
turning into "panic"? What are the
best mechanisms for educating the
public on a complex scientific issue
that affects them personally? Are we
doomed to periodic "crises" in the
areas of nutrition and health? Will a

consensus ever be reached about
what constitutes a proper human
diet? Can our governments ever en-
sure that the food we eat is 100%
safe? If not, what level of assurance
can we/ or should we, demand? And
at what cost?

I don't have the answers to these
questions. But I'm still eating British
beef.

The next impression I'ii share
with you was, for me, actually more
unsettling. I visited the home of the
BrontEs in Haworth, England. You
may recall fane Eyre by Charlotte
Bront6, or Wuthering H eights by her

sister Emily. Well, there was an-
other sister, Anne Bront6, who
wrote Agnes Grey. There was also a
brother, Patrick Branwell, who was
an artist.

It seemed truly remarkable that
these creative and talented writers
should emerge from such depressing
and constrained surroundings. Dur-
ing this period Haworth lacked an
adequate sewage system/ and the
average life span was 25 years.

As I looked through the museum
and saw the relics and works of
these young women/ I was struck by
the terrible circumstances of their
lives, and their passing.

In 1B4B their brother, Branwell,
died of tuberculosis; three months
later Emily died of TB also; and six
months later, so too, Anne. Char-
lotte, the last remaining child, pro-
duced two more books, Shirley and
Villette, and married. But in 1854
she too died young, in her first preg-
nancy. Charlotte was 38 when she
died; her brother, 31; her sisters had
reached the ages ofSO and29.

It's hard for me to imagine what
it must have been like for Patrick
Brontd to lose three of his children
in less than ayear.

It's hard for us to appreciate the
benefits of long life and health that
science has given us over the past
150 years. This visit certainly raised
my consciousness in that regard.

-BillG. Aldridge
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Cutlinu lacels

Exploring the endless possibilities
of a geometric "diamond"

by Vladimir Dubrovsky

ll .,l1*+ihi-**'#''**li
following problem (by V. Shafaryan):
Through a point P on the circum-
circle of a rectangle, two lines paral-
1el to its sides are drawn. One of the
lines meets two sides of the rect-
angle at A and B, the other line
meets the extensions of the other
two sides at C arrd D . Prove that the
lines AC and BD ( 1) are perpendicu-
lar and (2) meet on the rectangle/s
diagonal (fig. 1).

For some forgotten reason it drew
my attention. And rather unexpect-
edly I discovered that this rather
ponderous problem has a remark-
able variety of solutions based on
different useful and instructive
ideas. It can also be generalized in
several ways leading to important
geometric theorems. Like a crude

crystal in the process of being cut,
this problem kept revealing new fac-
ets glittering with the reflected light
of other, rrrore attractive and signifi-
cant properties. Actually, this situ-
ation is typical for elementaty ge-
ometry, a collection of facts so
tightly intertwined that when you
pull at any of them, it will most
probably bring about a long train of
other facts from different parts of
this field of science (and art, I think).

One method that proves to be
very efficient in solving this prob-
lem is well known in. . . politicsl It
can be stated in three words: "divide
and conquer." In mathematics this
means that it's often useful to begin
a solution to a problem by "taking it
apart," singling out fragments that
are really important and ignoring
the rest. These important fragments
can then be put through certain
transformations that preserye prop-
erties that are essential for us, but
may either reduce the problem to a
simple special case or/ conversely,
lead to interesting extensions. In ge-
ometry this is often done by means of
transformations of the plane such as
translations, rotations, dilations, and
so on, which can change the original
problem almost beyond recognition.
We'll also see how a transformation-
in particular a powerful but seldom-
used transformation called the

"spiral similarity"-can be applied
to prove properties that don't seem
to have any relation to transforma-
tions at all.

But before we step onto the long
and winding road of our explora-
tions, try to solve the problem stated
above yourself. It's not very difficult,
and your solution may well turn out
to be different from those you'll find
below.

Let's start with the first of the
properties stated in the problem.

Pl'mls ol perpendiculal'ily

There are a 1ot of right angles in
our diagram. So it's only natural to
try to prove that the angle between
AC and BD is eclual to one of them.

l. Proof by shifting and symme-
try. Denote byKIMN the given rect-
angle (fig. 2). The lines AC and BD
are diagonals in the rcctanglesPALC
and PBI/D. The other diagonals of

Figure 1 Figure 2

OUAII]IUlI4/IIAIUBI



Figure 3

this rectangle are LP and PN. Now
ILMN = 90o, so IN is a diameter of
the circle. This means that
ILPN: 90o also. Thus it suffices to
show that if two rectangles have
parullel sides and a diagonal is cho-
sen in each of them, then the angle
between these diagonals is equal to
the angle betwee,n the two other
diagonals.

This becomes obvious if we shift
one of the given rectangles (fig. 3a)
parallel to itself (which doesn't
change the angles between diago-
nals) so that its center coincides
with the center of the other rect-
angle (fig. 3b). Now the two angles
in question are equal simply because
they are symmetric about one of the
midlines of the rectangles.

2. Proof by translation. The same
idea of comparing angles is used in
the following argument. Let Q be
the point where PA meets the given
circle for the second time (fig. 2).
Then, as before, IKNM = 90o , so KM
is a diameter of the circle, and
IKQM = 90". The perpendicularity
ol AC and BD follows from the fact
that AC ll rQ and BD ll QM.

Exercise 1. Prove that AC ll KQ,
BD II QM.

We can say that in this argument
the angle formed by lines AC and

Figure 4

BD is moved onto the angleKQMby
parallel translation.

3. Proof by rotation and dilation.
Notice that a 90o rotation about P
takes the lines PC, PL, PA into PB,
PN, PD, respectively (in figure 4 the
rotation is counterclockwise). This
allows us to construct a new proof,
based on this rotation followed by a
dilation with center P and ratio
PNIPL. This composite transforma-
tion moves point I onto point N.
Where is the image of pointA? Call
this image X. Since line PA moves
onto line PB, X must be on line PB.
Now ZPAL : 90', and neither the
roation nor the dilation changes any
angle measures. Hence IPXN =90",
and X = D. Similarly, the image of
point C is point B. So the line CA is
taken by this transformation to BD.
But the rotation tums CA by 901 and
the dilation doesn't change the di-
rections of lines. Therefore BD, the
image of CA, makes a right angle
with CA.

Rotation followed by dilation
relative to the same center results in
the transformation of the plane that
was called "spiral similarity" by
H. S. M. Coxeter and S. L. Greitzer
in their wonderful book Geometry
Revisited. (Neither this nor other
names for this type o{ trans{orma-
tion are universally accepted.) Un-
der this transformation all lines turn
through the same angle-this prop-
erty was used in the proof al:ove.
Another property of spiral similarity
will be used below in a proof of the
second statement of our problem.

Bl'ahmaUuptat lheorem
According to exercise 1, the line

MQ in figure 2 is parallel to BD.
This observation allows us to give a

Figure 5

more elegant wording to the fact
that AC L BD, which is known as

Brahmagupta's theorem: If the di-
agonals of a quadrilateral inscribed
in a circle are perpendicular, then
the line through their point of inter-
section that bisects any of the sides
is perpendicular to the opposite
side.

(In figure 5, which preserves our
notation, the quadrilateral in ques-
tion is PIQM and the line is EF-the
extension of AC in figure 2.)

You can try to find a direct proof
of this theorem (for instance, by es-
tablishing the equality of the four
angles marked in figure 5), or you
can adjust one of the proofs above. I
won't dwell on this theorem be-
cause it has a beautrlul generaliza-
tion.

Imagine that the triangles AQZ
and AMP in figure 5 are hinged at
their common Yertex A. Turn one
triangle with respect to the other
(fig. 6). Then we will show that the
statement of Brahmagupta's theo-
rem (for the sides PL and QMI re-
mains true. In other words , if a point
A is chosen inside a quadrilateral
LPMQ such that AQL and AMP are
similar right triangles (with right
angles at A and ZL: ZP), then the
line bisecting PL and passing througlt
A is perpendicular to QM.

O

Figure 6
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Figure 7

It will suffice to prove this theo-
rem for the more familiar special
case where AQ = AL and AM: AP
(we can always replace the points Q
and M with Q, and M, on AQ and
AM, respectively, such that lQr =

AL, AMr: AP,because AQTIAQ =

ALIAQ= APIAM= AMrlAM, and so

Q,M, is parallel to QM). In this spe-
cial case we complete the triangles
LAP and QAM to form parallelo-
grams LAPC andQAMR (fig. 7). We
now see that the 90" rotation about
the midpoint O of PM takes APCL
into MeQn. (AP goes to MA,
ZLAP : 180" - IQAM = ZRMA and
AL: AQ: MR, so I goes to R, and
so on). kr particular, the diagonalAC
is taken by this rotation into MQ.
But this just means that the line bi-
secting PL lthat is, AC) is perpen-
dicular to MQ.1

Pl'ools ol coltcurl'e[cy
We have given three proofs of the

first part of our original theorem and
linked it to the classic result of

K

Figure B

lBy replacing the 90" rotation here
with a suitable spiral similarity, we
could have dealt directly with the
general situatlon in figure 6.

Brahmagupta. Now we turn to
proofs of the concurrency of the
three lines described in the second
part of the problem.

I . Proof by using circumcircles.In
a geometric diagram, when a line
segment subtends several right
angles, it's usually a good idea to
draw a circle, with the line segment
as diameter, through ail the vertices
of the right angle. Our diagram is no
exception.

Let / be the intersection point of
CA andBD (fi,g. B). Let us draw seg-
ments Kl and KM as shown. We've
already shown that lC[B : 90".
Therefore point /lies on the circum-
circle of rectangle PBKC, and so
Z.PIK = 90o, too. Similarly, point/lies
on the circumcircle of the rectangle
PAMD and zttTltt = 90'. It follows
that the segments KI and IM rnal<e
one straight line, so the three lines
AC, BD, and KM are concurent.

2. Proof by spiral similarity of
intersecting circles. We used a 90"
spiral similarity in the third proof of
the perpendicularity statement
above. In a much less obvious wayl
a useful property of this kind of
transformation can be applied to
prove the concurrency directly,
without proving AC L BD in ad-
vance. Here is the property.

Suppose a spiral similarity S

about point A takes a circle ot,
drawn through A into a circle a,
Let B be the second intersection
point of a, and a, (other than A).
Then the line joining any point X,
on al to its image Xr: S(Xr) on a,
always passes through B (fig. 9).

To prove this property, we take
any point X, on circle ro, and its

xt

Figure 9

Figure 10

image Xron ro, (figure 9 shows two
possible choices ). In triangle AX rX r,
ZXIAX2 is eclual to the angle of ro-
tation, and the ratio AXrf AXris
equal to the constant of dilation. So

for any two choices of X,, the corre-
sponding triangles AXIX, are simi-
lar. Thereforc, lAXrXrdoes not de-
pend on the position of point X, on
the circle olr. This means that the
intersection point B, of the line
XrXrand the circle ot, is always the
same, because the arc AB, of ro, sub-
tends atX, an inscribed angle of con-
stant measure, and so this arc itself
has a constant angular measure.

As we see in figure 9, the last ar-
gument is good for the case where B,
lies on therayXrXr. But if B,lies on
the opposite ray I as in figure 10, we
should more accurately say that the
arc AB, = AXF. is complementary
to the arc that subtends the angle ad-

iacent to the angleAXrX, However,
the angular measure of this arc re-
mains the same in this case as wel1.2

Similarly, the second circle co,

meets all lines XrXrat a fixed point
Br. Points B, and B, both belong to
all the linesXrX, so B, = Br, and this
is the second common point B of rrl,
and ror.

Now let's get back to our problem
(fig. B). Iust as in the third proof of
perpendiculartty, we can transf orm
the rectangle PCKB into PAMD by
a 90" spiral similarity about P. It re-
mains to apply the property consid-
ered above to this similarity, the
circumcircles of the rectangles,

2To be absolutely accurate/ we
should have used oriented angles and
arcs, but I think the figures are
convincing enough for us to allow
ourselves a certain looseness of
expression.
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points C, K, B, and their respective
imagesA, M, D:by this property, the
lines CA, KM, andBD pass through
the common point I F P) of the
circumcircles, and we're done.

Before we go further, let's look at
a couple of other applications of the
property of spiral similarity we stud-
ied.

Exercise 2. A line drawn through
an intersection point P of two given
circles meets them for the second
time at points A and B. Find the lo-
cus of the midpoint of segment AB.

Exercise 3. Let Q be the second
intersection point of the circles in
the previous exercise. Draw through
point A a tangent to the circle on
which A lies and through B a tan-
gent to the other circle. Suppose
these tangents meet at C. Prove that
the points Q, A, C, B are concyclic.

The same property can also be
used to prove a classical theorem
that will allow us to look at our ini-
tial problem from a new vantage
point.

Simson lines
The theorem I'm talking about

was proved by William Wallace in
1797, b:ut was erroneously attrib-
uted to Robert Simson (such histori-
cal mistakes are not uncommon in
mathematics). It reads as follows:
The feet of the perpendiculars from
a point on the circumcircle of a tri-
angle to its sides (or thefu exten-
sions) lie on a straight line, This line
is cal1ed the Srmson line o{ the point
with respect to the triangle.

To prove this theorem, let ABC

Figure 11

be the triangle, P the point, A1, By,

C, its projections (fig. 11). Consider
also the circumcircle ro of LABC,
the circle B with diameterPB (which
passes through A, and C,), and the
circle y with diameter PC (which
passes through A, and B 1).

Let's perform the spiral similarity
S, about P that takes B into ro and
then the spiral similarity S, about P
that takes ro into y.

It's not hard to see that the result-
ing transformation S is the spiral
similarity about P that takes B into
y. Let/s see what happens to point C,
under these transformations. By the
property we proved above, S, takes
C, into the second point of intersec-
tion of the line BC, with rrr-that is,
into A. Similarly, S2(A) : 8,. So
S(Cr) : B' andtherefore C,B, passes
through the intersection point of B
and y that is not P-that is, through
A,. This completes our proof of
Simson's Theorem.

Now we apply the theorem to
prove the concurrency required by
our problem. Look again at figure B.

From the statement of the problem
point P lies on the common circum-
circle of triangles KIM and MNI(. Its
Simson line with respect to the first
triangle is AC, and with respect to
the second it's BD. Therefore, loth
these lines pass through the projec-
tion/of P onto the common sideKM
of the two triangles, completing the
proof of concurrency.

It's interesting that the statement
conceming perpendicularity can also
be derived using Simson lines, a1-

though perhaps less elegantly. The
half-tum about the center of the given
circle takes the triangle MNl( into
KLM, point P into the diametricaliy
opposite pointP, and lineBD into the
Simson line I of P'with respect to
KIM. So I is paral1el to BD. On the
other hand, it can be shown (I leave
this as an exercise) that the angle be-
tween the Simson lines of two fiffer-
ent points P and P'with respect to the
same triangle is half the angular mea-
sure of the arcPP'.In our case this arc
measures 180', so the angle between
I and AC (the Simson lines of P' and
Prelative toKLMI is 90'. Sincel llBD
andl LAC, we get BD LAC.

Pappus$theol'm
We saw that the first statement of

our initial problem has afar-reaching
generalization. The second state-
ment is a particular case of an even
more imposing and fundamental
fact. It turns out that we don't need
any right angles or circles for it to be
true. The only essential fragment of
the configuration is a triple of paral-
lel lines crossed by another triple of
parallel lines. They form a number
of parallelograms (how many?).
Choose any three of these parallelo-
grams such that any two of the three
have exactly one common vertex.
|oining these vertices, we'll get a tri-
angle whose sides are diagonals in
our parallelograms (the red triangle
in figure l2). Then the other three
extended diagonals always meet at
the same point.

I'11 prove this statement for the
parallelograms ALCP, BNDP, and
KLMN in figure 12, which corre-
sponds to the original problem. The
proo{ will be eclually valid, however,
for any other choice of parallelo-
grams after a suitable change of la-
bels.

Denote the intersection point of
BD andLM by Uand that of CA and
KN by V. By the similarity of tri-
anglesAIC andVBA and the equali-
ties of opposite sides of parallelo-
grams/ we have

,(B
B\' BV AB AB

From the srmilarity of triangles
AUB and MUD we get

MU 
=DM _PA

AB AB

KB

Figure 12

PACLLA

UA
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So KBIBV = MUIUA, or KBIMIJ :
BVIUA. Let / be the intersection
point of KM and BD, and let K (not
shown in the diagram) be the inter-
section point of BD and CV. We will
show that points / and K are identical
(which is why only / appears in the
diagram). Since triangles KBl, MLJI
are similar, we have BTITU = KBIMU
= BVIAV. So both points I and K il-
vide segment BU in the same ratio,
and so must be the same point.

Exercise 4. Two pairs of opposite
sides of a quadrilaterul are extended
to meet at two points. Prove that the
midpoint of the segment joining
these points and the midpoints of
the cluadrilateral's diagonals are col-
linear. (The line through these mid-
points is called the Gauss line of this
quadrilateral.)

How could we have come up
with the idea of slackening the con-
ditions for the concurrence state-
ment by ridding the problem of all
perpendicularities? Via transforma-
tions againl We can draw our dia-
gram (or any diagram) on one plane
and pass a series of parallel lines
through each point of it. Then we
consider the intersections of these
lines with any other plane. These
points form a new diagram, ca11ed a
parallel projection of the old one.
Parallel projections preserve parallel
lines, whereas such things as right
angles and circles are generaily de-
stroyed under this mapping. So if we
put the diagram to our problem
(fig. 1) through parallel projection,
we'l1 get no perpendiculars in the
output and no circumcircle on
which point P lies-there will sim-
ply be no rectangle to circumscribe.
However, the straight lines AC, BD,
and KM will remain concurrent
straight lines, and the resulting dia-
gram will look something like
figure 12. Not only that-it can be
shown that any two intersecting
triples of parallel lines can be ob-
tained as a parallel projection of the
six lines described in our problem.

Here we used parallel proiection
to set off the features of the configu-
ration that are responsible for the
concurrence we have to prove. We
can go even further and subject our

configuration to an even more dra-
matic distortion produced by central
proiection. To perform a central pro-
jection, we choose a point outside
the plane of our diagram and con-
nect each point in the diagram to the
given point. Then we pass a plane
through the resulting set of (concur-
rent) 1ines. The intersection points
of the lines and our new plane form
a new diagram, called a central pro-
jection of the old one. Like parallel
projection, central projection also
preserves collinearity of points, but
it generally maps parallel lines onto
concurrent lines, as illustrated in fig-
ure 13. So the diagram in figure t2
under a centralprojection turns into
the configuration in figure 14, while
the corresponding statement about
concurrent diagonals turns into the
following theorem:

Let a, b, c and a', b', c'be two
triples of concurrent lines. Then the
three lines joining the pairs of inter-
section points a ^ b' and a' a b,
b a c'and b'^ c, c a a'and c'a a
are concuftent.

It's interesting that this theorem
is equivalent to the theorem ob-
tained from it by interchanging the
words "Iine" and "point," "cortcur-
reflce" and "collin earity " :

Let A, B, C, and A', B', C'be two
triples of collinear points. Then the
three intersection points of the pafus
of lines AB'and A'8, BC'and B'C,
CA'and C'A are collinear.

This fact is one of the most funda-
mental theorems in projective geom-
etry. It's called Pappus's theorem.

Figure 13
The cenftal proiection from the center
O on the plane n sends point X into X
and line l through X into l'= X'M,
where M is the point in n such that
OM is parullel to 1. The projections of
lines n and m parullel to I also pass
through M.

Figure 14

Two statements about lines and
points obtained from each other by
interchanging these two notions are
called dual. In projective geometry
(which studies the properties pre-
served under central projections) any
statement dual to a true statement is
always true.

Exercise 5. Show that Pappus's
theorem and its dual theorem are
simpiy rewordings of each other
(use figure 14). Explain why the
theorem about concurrent diago-
nals of parallelograms (fig. l2) is
equivalent to the dual theorem of
Pappus's theorem.

I won't prove Pappus's theorem
separately. One way to do this is to go
back from figure 14 to figure l}by a
suitable central projection. It can be
chosen so as to "send points A andA'
to infinity"-that is, make the lines
meeting at these points paraI1el. We
can also send other elements of the
construction "to infinity" lline A'B'
or line1, for example) and thus reduce
the theorem to what is called its vari-
ous "affine versions." You'll certainly
enjoy creating and investigating these
versions, and I'll leave you with this
exciting pastime, although once the
words "Pappus's theorem" are pro-
nounced, I have an excuse to spin
my tale further, and further, and fur-
ther o

s Talk hail to us s
H df0p us a line at euantum,

1840 Wilson Boulevard,
Arlington YA2220l

of
g Zi[ ,, an electron or two at

quantum@nsta.org
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The play ol IiUht

What would happen if we changed the rules?

by Dmitry Tarasov and Lev Tarasov

ll[ :;]"':I )ill,',; n ",,,,'*Tl'n

Dm:lu::*t*l"lll:
"iI" are extraordinarily diverse. Quite
often they touch on physicai pro-
cesses and phenomena. And every
time, these questions force us to look
anew at some physical situation, and
we gain a deeper understanding of the
essence of this or that phenomenon,
or the role and range of applicability
of a certain law of physics.

What if the speed of light in a

transparent medium were the same
as the speed of light in a vacuum?
Maybe you think it's a silly ques-
tion, given our current understand-
ing of physics. But as we'll see be-
low, to answer it we need to delve
into many familiar and seemingly
obvious things. Then again, just two
hundred years ago this question
could be posed in all seriousness.

We should recall that the purely
mechanical approach to optical phe-
nomena prevailed in the 17th and
lBth centuries. Some scientists fa-
vored Newton's particle theory of
light, which treated light as a flux of
small, fast-moving "corpuscles."
Others were persuaded by Huy-
gens's wave theory and considered
light a propagation of elastic waves
in a particular medium-called the
"ether"-that filled the entire uni-
verse, including transparent objects.

However, to explain known optical
phenomena they needed to ascribe
strange and sometimes inexplicable
properties to the ether. For instance,
they were forced to assume that the
speed of these "elastic" light waves
in the ether depended on what kind
of objects are "filling" the ether.
This caused a bit of confusion: at
first glance it seemed that the speed
of propagation of the elastic pertur-
bations in the omnipresent ether
must be everywhere the same. And
so the cluestion could have arisen: Is
the speed of light indeed the same in
a vacuum and in different objects?

Let's suppose this were true, and
let's look at the "consecluences" of
this assumption. Of course we'II
make use of our curent understand-
ing of the true nature of optical phe-
nomena/ which corresponds to our
everyday experience. In particular,
we know that the speed of light in
any medium (v) is always less than
the speed of light in a vacuum (c).

So c > v-always. The ratio cfv is
the refractive indexn of a particular
medium.

Suppose the speed of light in all
transparent bodies were equal to its
speed in a vacuum: v = c. This would
mean that for every medium n = I.
In this new world there would be no
refraction at the boundary of differ-
ent media. For example, a light
beam passing from air into water

wouldn't change direction. A spoon
in a glass of water wouldn't look
"broken," and a coin on the bottom
of a swimming pool wouldn't seem
closer that it actually is. The phe-
nomenon of total internal reflection
will also disappear, as you can
clearly see in figure 1, which illus-
trates scenes from two optical
worlds-real and imaginary. In our

ab

\

,/
cd

o:
C
-o
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_-
Y
cd

o
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Figure 1

A light beam at the boundary of two
media in tha (a) real and (b) imagi-
nary worlds.
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a

o
imaginary world, the light beam
simply "pays no attention to" the
boundary between different media.
In the optical sense/ this boundary
just doesn't exist!

The "metamorphosis" will nec-
essarily result in many losses. A11

optical devices that use lenses, from
ordinary eyeglasses to high-tech
microscopes, will be useless, be-
cause the lenses can no longer focus
or unfocus the light beams. Fiber-
optic communication won't work
either, because light is "held" in the
transparent fibers only due to total
internal reflection at the fiber's wall.

There will certainly be changes in
some natural phenomena, primarily
optical ones, that take place in the
Earth's atmosphere. As you know,
the atmosphere is an optically hetero-
geneous medium: its refractive index
varies with altitude, and it also de-
pends on temperature, humidity, the
presence of impurities, and the mo-
tion of the different atmospheric lay-
ers. In particular, the refractive index
of the air gets smaller as the air's den-
sity increases. Thus light beams
travel in the Earth's atmosphere not
along straight lines, but along
smoothly curving trajectories. (This
phenomenon is referred to as atmo-
spheric light refraction.) It can be
shown that a light beam bends in

a

light beum

,l]

r

Figure 2
The orig.tn ctf a ntirttge. (a) Tlte air is
w'armet nettr Lhe grottnd, so its
tlensit-v (tmd thus its refroctive irtdex)
is Je.ss than thttt higlter u1t. This
c,ni-scs tlte bettnt to cLltve ttpward.
(Lt) If the ttir is wtu'nter in the ultper
lttyers, tlte refracLive index is sntttller
there, antl so the light bettnt benrls
ckrv,nwttrcl.

b

OO

we're also saying that it depends
neither on the medium, on the
wavelength of the light, nor on any
other factor. And so dispersion of
light will also disappear, anda prism
will not break light into different
colors ({ig. a). Alas, many devices
will become useless-almost all
spectrometers and spectrographs, for
instance. And we'll never see atain-
bow in the sky . . .

Thus the world has become so

much the poorer after adopting our
new optical criteria. There is no re-
fraction at the boundaries o{ media,
no refraction in the atmosphere, no
dispersion. And what about reflec-
tion? We're talking about the ordi-
nary reflection of light from the sur-
face of a transparent medium. Well,
it will disappear as well! (We could
have discerned that from looking at
figure 1b.) A striking picture
emerges: standing on the shore of a
lake, we can't see the reilections of
trees, bushes, or clouds in the water.
We can't see the bright path on the
water leading to the moon hanging
low in the sky. Not only that, we
can't see the water itsel{-all we see

is the bottom of the lake! You have
to admit, this would really change
the landscape. And we're far from
reaching the end of our story-some
other remarkable changes will also
take place.

Why is the sky blue? Because of
light scattering in the atmosphere.

Figure 4
(tt) A "rttinbctv," tltttt uppedrs after
Ji.qhr passe s throLtgh tt pri,srtt is thc
restth ctf clispcrsion. (b) In ottr itttLt;ii-
tlLlf\. rtltlic,l/ \r,rt/t1, 1/1,'t.' ir tto
disp et si cn't.

Figure 3
Both (a) the "flattened" Sun at sunset
and (b) the gap in the setting Sun are
the result of light refraction in the
Earth's atmosphere.

such a way that its trajectory always
curves in the direction of the larger
refuactive index. This property un-
derlies the formation of mirages
(fig. 2). The refraction of light in the
Earth's atmosphere causes optical il-
lusions at sunset/ such as the {lat-
tening of the solar disk, or the ap-
pearance of ahorizontal gap in the
Sun (fig. 3). The twinkling of stars is
also due to re{raction.l

In the new optical world that
we've created, the atmosphere is a
homogeneous optical medium. Re-
gardless of variations in the density
of the a:r. , dne refractive index is the
same everywhere in it-it's equal to
1. So light willno longer be refracted
in it, and other phenomena will be
gone as well-mirages, twinkling
stars, and the kinds of sunsets de-
scribed above.

We know that a beam of sunlight
passing through an ordinary triangu-
1ar prism is decomposed into all the
colors of the rainbow. This is be-
cause the refractive index depends
not only on the type of medium but
also on the wavelength of the light
(this property is known as "disper-
sion"). Violet light is characterrzed
by a larger refractive index, while
red light has a smaller index.

Now, when we say that the re-
fractive index is always the same,

lSee the article "What Littie Stars
Do" in the March/Apil 1994 issue of
Quantum.-Ed.
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The intensity of th6 scattered light
is inversely proportional to X4,
where l" is the wavelength of the
light. So in diffused light, the colors
near the viblet end of the spectrum
are more intense. As a result, the
spectrum of the diffused light seems
to be shifted toward the short waves:
we see blue instead of white. When
we look at the sky, we see light scat-
tered by the atmosphere, so the sky
is blue. When we look at the Sun at
sunset (or simply look in the direc-
tion of the Sun), we perceive not the
diffused light but the direct rays of
the Sun, which have passed through
a thick layer of atmosphere without
scattering. The spectrum of this
light is shifted toward the longer
waves. So the setting Sun is red, and
the sky nearby takes on red and or-
ange coloration.

Now let's think things through:
what will happen to these features
in our new optical world? WeI1, how
is light scattered in the real world?
By variations in air density, which

are in turn caused by chaotic mo-
Iecular motion. These variations are
random: the density varies chaoti-
cally from point to point and from
moment to moment. The scattering
of light results from random varia-
tions in the refractive index of air,
which is caused by changes in air
density. In other words, light is scat-
tered in optically heterogeneous
parts of the atmosphere that arise
because of the thermal motion of its
molecules. In the world of no refrac-
tion, variations in density won't pro-
duce any optical heterogeneities. So
light wlll not be scattered in the at-
mosphere-we would see only the
black, star-studded expanse of space
and the bright, white disk of the Sun
in it.

Come to think of it, would we
see anything at all in this strange
new world? If the speed of light in
the lens of our eye is eclual to that
in a vacuum, the lens would no
longer function as "designed." Our
eye would be more like a camera

obscura. What would it be able to
make out? We would be very "{ar-
sighted" indeed! But things fleat at
hand would be wrapped in murk.

Who would have thought such a
simple question-"What if the
speed of light were everywhere the
same as the speed of light in a
vaggs1n2//-would lead to the cre-
ation of such a brzal:e worldl O
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81 71
The last digit. Delete all even factors and multiples of five from the prod-
uct 1 .2.3. ....1995.1996. Whatis thelastdigit of theproduct of the
remaining numbers? (N. Antonovich)

8172
Counting liars. The population of the
island of Pianosa is 100. Some of the
inhabitants always lie; the others always
tell the truth. Each islander worships one
of three gods: the Sun god, the Moon god,
or the Earth god. One day a visiting anthropologist asked
each inhabitant the foliowing questions:

1. Do you worship the Sun god?

2. Do you worship the Moon god?

3. Do you worship the Earth god?

There were 60 "yes" answers to the first questiofi,40 "yes"
answers to the second cluestion, and 30 "yes" answers to
the third. How many liars live on the island? (F. Nazarov)

ANSWERS, HINTS
& SOLUTIOIVS O/V

PAGE 60

81 73
Bubbling tabiets. No doubt you've noticed how an effervescent tablet (for
instance, Alka-Seltzer" ) dropped into water first sinks to the bottom,
giving off lots of bubbles, but soon floats to the surface, continuing to
release bubbles of gas. Why does the tablet rise? (A. Savin)

8174
Clever aruangemenr. Arrange four
1's, three 2's, ar1 three 3's around
a circle such that no sum of three
consecutive numbers is divisible
by 3. (S. Berlov)

8175
Equilateral partition. It's easy to cut an equilateral
triangle into four equilateral triangles-just draw
the midlines. But is it possible to divide it into 8, or
10, or 11 equilateral triangles? And, in general, how
many equilateral triangles can it be cut into?
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So any cubic ecluation is reduced to an equation with-
out the square term-that is, to the form

*+px+q=O. (21

This equation is solved by the formula

which is then foliowed by the "derivation of
mula"-half a page of calculations.2

$omefiinu$ ttul'oltu ltere

(3)

the for-

For the time being, let's leave the derivation aside and
try to apply the formula to particular equations.

Example 1.

* +6x-2=0.
Here p = 6 and q : -2. Our formula yields

, =Q,/4 - {,D. Now, you may have had it drummed into
you at school that roots of equations must be expressed
in a very simple form, so this answer may strike you as
inelegant in the extreme. But you have to admit you
never would have guessed that this difference of two
cube roots is the solution to such a simple equation. So
this result goes on the "credit" side of our ledger.

Example 2.

x3+3x-4=0.
Formula (3)gives

x = {,r2 1 .,,5 + {,,"-z - .,'5
zYou can find the derivation in Quantum, too-see

"The Great Art" in the May/|une 1.995 issue.-Ed.
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Sul'[ri$E$ ol lhe cuhiclormtlla

An equation of much significance and little use

by Dmitry Fuchs and lrene Klumova

ANY QUANTUM READERS WILL HAVE
heard that, in addition to the formula for solving
quadratic ecluations, a formula exists for cubic
ecluations. AII you know about it, though, prob-

ably amounts to "you really don't need to know it" (be-

cause it's so complicated and unwieldy). At least, you
won't find the formula in your high school textbook.

But from time to time you may have encountered a
problem that led to a cubic equation. It's then that you
begin to wonder about the "utter uselessness" of such
a formula, no matter how complex it might be. The aura
of mystery surrounding it piques your curiosity-and
you start to look for it in mathematical encyclopedias
and reference books.

And this is roughly what you'd find.

tttlltaldoss illmk like?
A cubic equation is an equation of the form

# + ax2 + bx + c:0. (1)

To solve it, we first of all notice that a simple substitu-
tion eliminates the term withf. |ust setx : y - a13.1 Then

lThe sum o{ the roots o{ the original equation is -a, so if
we increase each root by al3, the sum will be zero. This
observation motivates the substitution shown.
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This answer is more cumbersome. It can be calculated
approximately, and the more exact the calculation, the
closer the result is to 1. The reason is very simple: the
answer is 113 But you can't see this just looking at the
formula, and this is perhaps its disadvantage. The clua-

dratic formula, however, always shows us if the solu-
tion it gives for an equation with integer coefficients is
rational or not.

Example 3.

(x+1)(x+2)(x-B)=0.

We see at once that this equation has three solutions:
-L, -2, and 3. But let's try to solve it using our formula.
We'lI get rid of the parentheses-

#-7x-5:0

-and apply formula (3):

What's this! A negative number under the square root
sign! If this were a quadratic ecluation, we would con-
clude that the equation has no solution ("no real solu-
tions," our more educated readers will say, but educa-
tion is of little help here!). However, we know that the
equationftas a (real!) solution-three, as a matter of fact.
So in this case4 our formula fails completely.

These and other examples suggest that the reason
formula (3) is unpopular is not that it's cumbersome
(actually, it's not at all cumbersome!). The real reason
is that this formula is unreliable: sometimes it works
well, sometimes it doesn't give any solutions, and
sometimes the form of the solution it gives is unsatis-
factory.

This conclusion is, in principle/ correct.
However, let's try to explore our formula in order to

see when it does and when it doesn't work well. We
begin with the simplest.

TnEoREnn. If the expression q214 + p3127 is nonnega-
tive, then the right side of formula (3) is a solution to
equation (2).

Proof . We start the proof by setting

The right side of equation (3) is simply the sum cx + p.

And the product ap equals -p/3:

3Proof: obviously 1 is a root of our equation, but it has
only one real root (as we'll see below).

alt's called the fureducible case and was mentioned in
the article "The Great Art" referred to above as the case
that caused Cardano so much trouble.-Ed.

Now substitute o + B into the left side of the equation
we are solving {equation (21):

(**F)' +p(u+0)+ q= s,r +F3 +3ctB(u+B)+p(u+0)+q

= cr3 + gt - p(o + p) + p(o. + 0)+ q

,ls-lz
tq' p^

\4 27

{.f* o = 0.
\4 27

- ri-o' - -l-\,zl 3

Ei:-g-
\+ )7 2

o
--+

2

(l
o

The proof is done.

]low many $olttliolt$?
This is a natural cluestion, because to solve an equa-

tion means to find all its solutions. So it's useful to
know how many solutions a cubic equation has.

As we know, we can confine ourselves to equations
like equation (2) in form. Let's see where the function
on its left side (y : # + px + q) increases and where (for
what values of x) it decreases. Readers familiar with cal-
culus can undertake this simple investigation on their
own. For the rest, we'll give a more elementary argu-
ment/ one that is, in essence, equivalent to taking the
derivative.

Compare the values of our function at two closely
situated points x and x, = x + 6, where 6 is a small posi-
tive number (fig. 1). Which is greater: f + px + q ot
xl + px, + q? Consider the difference of these values:

(x + 6)3 + p(x + 6) * S - (# + px + q) : 5(3# + p + 36x + 62).

The sign of the difference is the same as the sign of the
factor on the right in parentheses (since 6 > 0). As to this
factor, it's clear that

if \xz + p > 0, then for sufficiently small 6 it's positive;
if 3* + p < 0, then for sufficiently smal1 6 it's negative.

So, at a sufficiently small distance from point x/ our

,i q.
9i--+

2

- 1oo .]" i 1oo- n + i'.-\-i
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function Y = x3 + px + q increases if 3* + p > O, and
deueases if 3* + p < 0. But we know perfectly well that
lll 3* + p >O for all xif p > 0, and (2)if p < 0, then
3* + p > O forx, f pl3 orr. {-pR, and3# + p <o
for -f pfE . x . 

^[jf 
3. To summarize:

L.If p > 0, then the function y : * + px+ q increases for
all x.

2.If p <0, then the function y : # t px+ q increases for
x . -^l- p I Z, decreases for -rt- pp . x . 

^f 
p f Z, and

increases again for x > {-p/A.
Notice that our function is certainly positive for any

sufficiently large positivex, and negative for any negative
x sufficiently large in absolute value. Now we can plot the
function y = f + px + qschematically (fig. Za-Zcl.

These schematic graphs display only the intervals
where the function y =f +px + qincreases or decreases
and, in addition, the fact that it's negative for remote
negative values of x and positive for remote positive
values of x. But these graphs suffice for us to say how
many solutions our equation has. Our findings:

l.If p > 0 or If p < 0 and the values of the function at
points -{- rt and ,[- pp are of the same sign, then
the equation has a unique solution (fig.2a and2cl.

2. If p < 0 and the values of the function at - {- p I S and

C

,FnR have opposite signs, then the equation has
three solutions (fig. 2b).

We can come up with a more convenient formulation
of this result. Notice that the values at points -F Op
and 

^f 
pp considered above have the same sign if th"it

product is positive and opposite signs if their product is
negative. Let's calculate the product:

.4a
= O" +-Dr.' 27',

So in the casep < 0, the number of solutions is either
one or three, depending on whether qz + 4pB l27 is greater
than or less than zero. Since qz + 4p3 I 27 > 0 for any p > O,

we can reformulate as follows:

if q2 + 4p3127 > 0, then equation (2) has a single solution;
iI q2 + +pz lZl < 0, then equation (2) has three solutions.

(We ignored the cases when something vanishes. It's not
difficult to see that if q2 + 4pBl27 = 0, then the equation
has two roots except for the case p = q = O, when there
is only one root.)

All llllollpect8d c0nsequenm
Have you noticed anything surprising in what we've

obtained? The expression q2 + 4pBl27 differs from the
treacherous expression under the radical in formula (3)

only by an inconsequential factor (as far as the sign is
concerned):

.4
6T'a-p'' )7'

This means that, when the equation has three solutions,
the expression under the radical is negative and the for-
mula produces nothing. (We saw this in the third ex-
ample above, but now it's clear that it wasn't an acct-
dent.) Otherwise the equation has one solution-the
one given by the formula.

So the phenomenon we observed in the second sec-
tion has now received an explanation. It only remains
to see if we can squeeze anything reasonable out of our
formula in the case of three solutions and a negative
number under the radical.

llel[ Inom colnplslt ltttlnhers
This section is intended for the readers familiar with

complex numbers. Infact, "farnlliaity" with complex
numbers is nothing more than the habit of using certain
words in certain situations. Complex numbers appeared

lg

t, , I r l[, ,, ], _a] *,,.l
ll-,-+l 

.'l-\-:1.'lll \-{l *"\ .
lz ; llz ,, I

= l -lP, -; - 4l, .1,, -; -,1
Lr r ) _llr \ r l

= olt* '''l[4 27)

Figure 2
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in mathematics in much the same way as-somewhat
earlier-negative and fractional numbers did. Since we
can't extract the square root of every real number, it's
convenient fo expand our "number stock/'with a new
number r whose square is -1. (Similarly, negative num-
bers were introduced to make the operation of subtrac-
tion universal.) Along with the number i, we have to
introduce al1 numbers o{ the form a + bi with real a and
b. Our usual algebraic operations are then defined for
them by means of the most natural rules:

la + bi) + (c + di) : a + bi + c + di = la + cl + (b + dli,
(a + bil(c + di) = ac + adi + bci + bd? = lac - b dl + lad + bcli

(in the last equation we took into account the defining
relation i2 = _l). The numbers we have constructed are

called complex numbers. The numbers a and b are
called the rc al and im a gin ary p afi s of the complex num-
ber a + bl. Two complex numbers are equal if and only
i{ they have equal real and imaginaly parts. It's also time
to introduce de Moivre's formula (we'11 be needing it
below):

(cos cx +i sin cr)(cos p +i sin B) : cos (u + B) + i sin(u + B),

which is an immediate consequence of the formula for
complex multiplication and certain well-known trigo-
nometric formulas.

Now let's get back to formula (3). In the case
q2l4 + pzl27 .0, we can try to apply it to equation (2)

by extracting the cube roots of complex numbers.
Taking the cube root of a complex number a + bi

means solving the equation

lx+iyl3:a+bi

-that is, the equation

* - 3"JP + i(3*y - t4l = a + bi,

which is ecluivalent to the system of real-number equa-
tions

- 3xY) = 6,
)l_r/-17'-h
f.v

This system can again be reduced to a cubic, in dif-
ferent ways. Fclr instance, as follows:

,, ,3-d (^, xr-a) - 3bx
\-=- 

-\ 
Ll-i--- =Li-+\ =-;' 3r [ 3, ) Sx'-r?

lirorl thc first erltLetion)

r - 91,1 r' l
x - lx _. =r-(r' -r)(ur' +,r)- -27hrxr =0,

(8x' + a)

or, ptrtting x1 = Z,

lz - ttllSz + aP - 27Fz = 0. (4)

Of course, we can try formula (3) again. But it turns
out that applying it to equation i4) always leads to a

negative expressionunderthe radical. And this should come
as no surprise: there are always three (complex) cubic roots
of a complex number a + bi, and the cubes z = # of their
real parts are the three (real) roots of ecluation (4).

So we can't make use of formula (3) on this path. But
it can be used for an approximate computation of the
roots of ecluation (2). This is done by means of de
Moivre's formula, which implies that

coss + rsins = ["or9 *;rm9 )t.( 3 3)

So to take the cube root of a + bi, we first rewrite this
complex number as

Then we choose s such that cos o = ol{**U',
sin u = bl\ta'z;F (we can do this because the sum of

the squares of these numbers is 1). Then the cube root
o{ a + bi can be written as

r-r u( o(, g\
\l a' + tt' 

[.ot J 
+ 7 stn -r.

(Notice that cx is defined up to 2kn, which is an even
multiple of n. So u/3 is defined up to the addition of
Lknf 3, which gives three values for cos {al3) + i sin (u/3),

as it should.)
In this way we can compute the cube roots in

formula (3) approximately. Actually, we only need the
real part of one of them: if one of the two roots equals
c + di, then the other is c - di (prove this!) and their sum
is equal to 2c.

But this method of approximate solution (using, say,

a hand calculator) is even more cumbersome and inex-
act than the method of trial-and-error and successive
iterations that is usually applied.

This is why we don't memonze formula (3)-it's not the
most handy tool for solving cubic ecluations in practice.

Whatgood i$ it?
The significance of the cubic formula (or "Cardano's

formula"-formula (3))lies in the answer it gives to the
classical cluestion about the "solvability of third-degree
equations in radicals." Now, what does that meafl?.

The first irrational numbers we encounter are roots
(the very first one is usually "12 , the diagonai length of a

unit square). Extracting roots, together with arithmetic
operations, expands our supply of numbers by adding to
the rational numbers such numbers as 4,D * 

"E ,

\q@l /q+1, and so on. Is this expanded supply

enough to solve algebraic equations with integer

l*'
10,

llllAY/JUlllI
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A look at the forces that seek to slow us down

by Alexander Mitrofanov

Agailt$t IhE Gtlt't'Eltt

ow rs A MovING oBIECT
affected by the surrounding
medium? When you walk
down the street/ for instance,

you generally don't think much
about any resistance the air might
put up as you move through it. It's
unlikely that a student late for class
would offer the explanation: "I was
held up by aerodynamic resistance."
And yet, if you put your hand out
the window of a moving car, ot try
to walk in a strong wind, the ques-
tion of air resistance stops being just
a lame excuse. The air, which is usu-
ally so intangible and ethereal, be-
comes a completely different thing
when it's moving cluickly-it's more
like an elastic wall or an insurmount-
able obstacle. That's exactly what a
pilot feels when forced to eject in
flight. The resistance a medium ex-
erts on a moving object is very famil-
iar not only to aviators and astro-
nauts/ but also to many others in
more "mundane" professions.

One of the first scientific studies
of fluid resistance was performed by
Isaac Newton.l Because data were

lNewton wasn't the only one to
study the problem. He was joined by
Leonard Euler, |ean D'Alembert, |ean
le Rond, Daniel Bernoulli, Charles
Coulomb, and many others.

scarce at that time concerning the
interaction of moving objects with a
medium, Newton was forced to un-
dertake the necessary experiments
himself, tossing various objects and
making measurements. In 1710 and
1719he conducted tests in St. Paul's
Cathedral in London with spheres
moving in water. From these experi-
ments he obtained the coefficient
for his theoretical equation for the
resistance acting on an object mov-
ing in a fluid.

In our age of high-speed transport,
supersonic flight, and space
launches, many old problems and
experimental methods in aero- and
hydrodynamics still have life left in
them. So it might be instructive to
ca1l up some of these ideas from the
past and do some experiments that
will introduce you to certain phe-
nomena arising when an object
moves in a fluid.

What is the resistance of a me-
dium? An object moving in a fluid
(gas or liquid) affects the medium's
particles and changes their speed.
According to Newton's third law,
the object is acted on by an eclual
and opposite "resistive force." Let's
consider a component of the resis-
tive force that is directed along the
line of motion (say, thex-axis)-the

force pilots call " {rontal resistance. "
The Galilean principle o{ relativity
says that in the case of uniform
motion it doesn't matter how one
calculates this force-either as an
obiect moving in a stationary me-
dium or a medium flowing with the
same speed around a stationary ob-
ject. We'lIbegin with a simple ex-
ample.

Case 1. Let a disk, sphere, or cyl-
inder of radius R move with a speed
v along its axis in a medium com-
posed of many stationary particles
that do not interact with one an-
other (see figure l-m is the mass of
a particle, n is the concentration of
particles). What is this medium
similar to? We can imagine a rar-
efied cold gas where the molecular
motion can be neglected. Another
useful model would be snowflakes
in the.air, where.the 

lrobtlm 
islo

Figure 1

Mr.tventent of an object wltlt speed v
in a rarelied medittnt.
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describe the flight of a snowball col-
liding with the snowflakes. We
could come up with others.

An object collides with N = nvS
particles per unit time, where S : ruR2

is the cross-sectional area of the ob-
ject. If the collisions are nonelastic,
the force of resistance is given by

f..=E=rrjvN=ZSP". {ll'x at 2 , r-'

where p = mn is the density of the
medium.

Similarly we can calculate the
resistive force F, acting on an object
of any shape. To do this we need to
know the speed, density, and the
cross-sectional area of the column of
particles encountered by the object
moving in the rarefied medium.

Things are a little more compli-
cated when the collisions are elas-
tic-that is, when the particles
bounce away alter a collision with
an arbitrary surface. However, in
this case F, is also proportional to tP,
although in general the proportion-
ality factor in equation (1) depends
on the shape of the object.

Case 2. Up to now we've looked
at motion in a rarefied medium.
What happens if an object moves
uniformly in a licluid (say, water) or
in a dense gas (air)-that is, in a con-
tinuous medium? How does a con-
tinuous medium differ {rom a sys-
tem of noninteracting particles?
Both media consist of atoms and
molecules. However, whiie particles
move independently of one another
and collide very rarely in a rarefied
medium, motion in a continuous
medium looks completely differ-
ent-here the particles behave like
a team or an ensemble.

Indeed, the intermolecular dis-
tance (strictly speaking, the mean
free path) is much smaller than the
object's characteristrc size. Due to
mutual collisions and the interac-
tion of the particles, the medium's
perturbations near the object's
boundary resulting from its motion
are transferred to the adjacent ele-
ments of the medium. So the object
doesn't only interact with the par-
ticles of gas or fluid situated directiy

Figure 2
Motion in a continuoui medium as
seen in the obiect's reference frama.

in its path-it interacts with the
particles of the medium that it
pushes aside or drags along with it
(fig.2l.

How does F, depend on v and on
the medium's characteristics? It's
clear that if the speed of the medium
varies, the mass of fluid M encoun-
tering the obfect per unit time
changes in proportion to v-that is,
M - pvS, where S is the obiect's
cross-sectional area and p is the
medium's density. Each element of
this mass transfers momentum to
the object that is also proportional to
v. So the dependence of the resistive
force on the object's speed, which
Newton was the first to investigate,
looks like this (compare it with
equation (1)):

F'- Pfls'
or, in different notation,

, -. P" 
" /olrt l'1

2

where pv2l2 is known as the dy-
namic pressure. (Indeed, the unit of
measurement for this magnitude is
the same as that for pressure and is
none other than the kinetic energy
per unit volume of a moving me-
dium in which a stationary object is
placed.) The proportionality coeffi-
cient C, in equation (2) depends pri-
marily on the object's shape and also
on the nature of the flow and on the
speed (when it varies widely). In
aerodynamics this value is called
the coefficient of frontal resistance,
while in hydrodynamics it's referred
to as the coefficient of hydrody-
namic resistance or the drag coeffi-
cient.

Compare figures I and} and note
an important difference between
these two examples. A liquid flows
around the object and doesn't leave
a "shadow" of empty space behind
it, unlike what happens in a cold
rarefied medium. So a continuous
medium presses against an object
not only frontally (that is, against
the prow, if the object were a ship)
but elsewhere as well. The direction
of this force acting on the object
from the rear (from the stern) coin-'
cides with the direction of motion.
Thus the flow of a licluid or a dense
gas around an object results in a de-
crease in the total resistive force Fr.
Flowing around the object, the iiq-
uid retains some of its momentum,
not transferring it to the object. This
feature is very important. In the next
experiment we'll see how the coef-
ficient of hydrodynamic resistance
drops due to the flow around an ob-
ject.

Case 3. Let's find the hydrody-
namic resistance met by a ball
placed in a stream of fluid (that is,
thevalue of Cr[or asphereinaflow-
ing licluid). This experiment is very
simple and doesn't require any lancy
equipment. All you need is a pail or
a bathtub, a jar with a known vol-
ume/ a meter stick, a watch with a

second hand, and a light ball (a Ping-
Pong ball or a small rubber ball).

Turn on the faucet and fill the
pail or bathtub with water. Put the
ball on the surface of the water-as
you might expect/ it skips away
from the stream. However, if you
place the ball under the stream (or
push the ball close to it), it is caught
by the stream and held where the
stream hits the surface of the water.

What happens if youvary the flow?
When the stream's speed is small, the
ball floats on the surface (fig. 3a) and
it can stay near the stream indefi-
nitely. Sometimes the ball's center
moves away from the stream's axis-
when that happens, the ball spins
around a horizontal axis like a small
turbine.

When you increase the stream's
flow, the ball sinks deeper, stops
spinning, and positions itself at the
stream's axis, oscillating ever so
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Einr rro ?r rvuru u
Pllotogi'Ltpl1\ of a ba]l Ltnder streoti?s ryitTl clifferent volLlnletric flcnt, rates

water in the stream Q
(Q = xr2v, which is the
volume of water pass-
ing through a unit cross
section per unit time),
its length L, and the ini-
tial radius ro (near the
faucet), and by taking
into account that the
volumetric flow of wa-
ter is constant in any
part of the stream (the.

so-called continuity
equationl:

rlvo = rzY, l4l

where vo is the stream's

yield v : 1"3 * 2gL .FtnaLIy, we can

determiner from equation (4). Before
you do your experiment, think
about the physical meaning of equa-
tion (4) and why a stream gets thin-
ner as it travels downward, and what
ecluation describes the decrease in
its radius (see case 4).

Now make your measurements.
Here are my results. To sub-

merge a Ping-Pong baii halfway un-
der a stream of water whose
length L : 60 cm and initial radius
ro = 0.8 cm, the flow of water Q
must be approximately equal to
130 cm3/s. This gives C, = 0.5. If we
vary the stream/s length l, we must
simultaneously change the flow to
keep theball at the same depth. How-
ever, the experimental values of C,
were practically the same regardless
of the flow. The experimental, data
obtained for different volumetric
flows of water (corresponding to dif-
ferent lengths of the stream) are
given in figure 5 (on the next page),
where the broken line shows the
theoretical values for the stream's
diameter D : 2r where the stream
touches the ball. Do some experi-
ments on your own with streams of
different lengths to convince your-
self that regardless of r and v, the
values obtained for the coefficient
of hydrodynamic resistance are

slightly (fig. 3b ancl 3cJ. frnally,
when yoLl opcn thc {aucct cvcn
lrore, thc ball becomes submer5led
entirely 1fig. 3dl.

The sul:rmergence oi the light ho1-
low ball is rnainiy due to hydrody-
narnic rcsistance-that is, the force
ererted by thc flor.v. This force czrn

easily be rneasurccl by how deeply
the ball is submer.gecl.

Let's open the faucet in such a

r,vay the ball is sr"rbmergecl to a cer-
tain clepth (ec1ua1 to the ball's radius,
ior exan-rpleJ ancl maintalnccl in this
ecluilibrir-rn statc. Yon can control
this sr,rbrnergence b;. eye. In the eclui-
librir-rn state the br-royirnt force F,,

counterbalarlces the ball's weight m.q

ancl the resistive force F':

rn.q + Fr: F,,.

In this ecluation nr = p1,+/,3nR3, where
R is thc ball's raclius ancl p,, is its av-
erage clensity. The raclir"rs of a Ping-
Pong ball is R = 1.9 cm and its mass
is nr = 2.5 g-that is, pl, = 0.09 g/crn'r,
which is irpprorir-nately 1/11 that of
wirter (p.u : 1 g/cn-r'r). This is why the
ball floats with harclly:rny submer-
F,cncc. The hiL,r; rrnt forcc acting on
thc h:rlf -subrnergecl ball is
F,, : li:rR'rp,,,g/2. The vzrluc oiF, czrn

be taken from Ncrvton's ecluation
(2) by inscrting S : :rrl, lr,here r.is the
rirdius of t1-re stream:

Cr=

To calculate C, from this eclua-
tion, we need to know the values of
r andv, which are not easy to mea-
sure directly. However, these terms
can be found indirectly (fig. a) by
measuring the volumetric flow of

Figure 4
CalcttLtttin14 tlte c.oefficient oi hytlro-
d.vnarnic Lesistance t'or a ball ttnder tt
strelnl of water.

by noting the time it takes to {i11the

ir,l jar. Knowing Q and ro, we can findrrr vo: Qlxroz. The values for vo and L

which yields the coefficient of hy- speed near the faucet. We can deter-
drodynamic resistance C,: mine the volumetric flow of water

114l's4l, - z!r.l
3\zlv'\ p,,.,
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Figure 5
Experintental dLlta on the hydrodynatnic tesistttnce
coeificient C. t'or a ball in a litlttid streLtnT Lts Ll

function of steam lengtlt L. The brol<en llne corue-
sponds to the calculated dependence for a streant of
radius r that sttbnterges the ball halfwuy fctr vttrious
stream lengths L.

flow around an ob-
ject indeed de-
creases the hydrody-
namic resistance!

Now, some phys-
ics lovers will say
that the {actors lf 4
and 1 are of the same
order of magnitude.
True enough. But not
everyprobiem canbe
solved within an or-
derof magnitude.Ev-
erybody agrees that
there is a obvious
difference between
filling a fuel tank
with 400 tons of oi1

and filling it rrith
100 tons. The lion's
share of energy used
by submarines/ rac-
ing cars, and electric
locomotives goes to

overcoming the resistance of the me-
dia they pass through. So decreasing
C, even by a few percentage points
can be considered avictory.

Case 4. Equation (2) is success-
fully used in practice when, say/ one
needs to evaluate the force of wind
on a sail or a building, or the resis-
tive force acting on a moving object,
whether plane, bird, car, or subma-
rine. This ecluation
describes one of
the fundamental
laws in aerody-
namics. However,
one should keep
the following nu-
ances in mind.
Since the pressure
in a fluid depends
on its speed, the re-
sulting force of
hydro- or aerody-
namic resistance
depends on how
the fluid flows
around the ob-
ject-that is, on
the speed of the
fluid near the
object's surface;
whether the flow is
smooth (laminar)
or turbulent; where

on the object's surface the medium
separates from the object; and so on.
It is this variety in the way continu-
ous media flow near objects (see, for
example, figure 6) that makes it dif-
ficult at times to compute F, and
Cr. For some objects like spheres,
disks (athwart the flow), relatively
short cylinders, and so on, the value
of C" is about 0.1-1 for a broad range
of velocities. For a streamlined,
elongated droplike object with a"

smooth curved {ront, the coefficient
of dynamic resistance can be as low
as 0.04-0.06.

Much smaller values for the co-
efficient of hydrodynamic resis-
tance-down to about 0.01-can be
found in the natural world. The dol-
phin is a classic example. However,
to decrease resistance, {ish and
other acluatic animals have not only
streamlined shapes but a whole
"bag of tricks," including specially
adapted types of skin and grease or
mucus on their scales. In addition,
they use their muscles to regulate
the ilow and prevent the formation
of vortices that would drain all their
energy. With these natural means the
animals do scientists and engineers
one better-many of their "technical
solutions" have yet to be imple-
mented in the devices invented by

cx
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0.2

approximately the same-that is,
c,=0.5 10.1.

Now let's try to make sense of
our results from the physical view-
point. We established two important
facts. First, in calculating the resis-
tive force F, we used Newton's
equation 12) and found that this
ecluation correctly describes the ex-
periment, because C, was almost
constant. So we verified this equa-
tion within the range of speeds
v = I-I0 m/s. Second, in measuring
C, we found that, strangely enough,
the ball takes only about I 14 of the
stream's momentum from it-the
rest goes into the water where the
bal1is floating. Thus the coefficient
of hydrodynamic resistance proved
to be about l12 andnot2, as would
be the case if the "collision" of the
stream with the ball were absolutely
inelastic (see equation (1)).

This experimental fact is not at
ail obvious. At first glance it seems
that a narrow stream falling on the
almost flat top of the ball (r << R)
should transfer most of its momen-
tum to it. In reality our experiments
showed that the stream flows around
the ball almost without loss of speed
and drops down under the ball, pre-
serving a significant portion (three
quarters!) of its momentum. Thus the

l-
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Figure 6
Flo:,r, lines of tt liqttid pa-ssing around o cylinder lor
clifferent flovr speeds ktw, ntoderttte, ttnd contpartt-
tively larye.
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human beings. We still have a long
waytogo...

Case 5. At the dawn of aviation,
an unexpected phenomenon was
discovered in experiments aimed at
measuring frontal resistance in aero-
dynamic tunnels. At comparatively
high air speeds, a further increase in
speed resulted in a drastic decrease
(by a factor of two or more) in fron-
tal resistance for spheres and certain
other objects. The researchers were
able to determine the conditions
necessary for such a jump to occur/
measure it, and explain it. They
found that the jump was caused by
a shift of the point where fiow sepa-
ration occurs atlarge velocities and
by a corresponding decrease in the
width of the vortex area behind the
object. By improving the conditions
of flow around the rear of the object,
one could realize an immediate re-
duction of Cr.

This phenomenon has a curious
consequence. Calculations have
shown that if very large hailstones
existed on Earth and their diameters
increased as they feII to the critical
value D., = 13 cm, the hail's speed
would increase suddenly by afactor
of 2.5, from 160 km/h to 400 km/h!
(Other estimates of D",give a value
just under 10 cm.)There is evidence
that even nowadays hailstones are
sometimes as large as a hen's egg or
even an orange. But who knows,
maybe larger hailstones fell in times
past. Might they have approached
the critical value D".? After all, in
earlier ages the atmospheric "rr,a-
chine" on our planet worked harder
than it does now and produced
storms that were much more severe.
Can the answer to one of science's
biggest mysteries be hidden here?
Maybe the dinosaurs were killed off
by huge, speeding hailstones!
Smaller animals could have found
nooks to hide in and so avoid the
pathetic tate of their towering co-
habitants . . .

Case 6. Newton's equation for the
force of resistance is by no means
universal. For example, it correctly
estimates the force acting on a
spoon sinking tn a jar of honey. But
it doesn't describe the way a ball-

bearing drops in a tall bottle of veg-
etable oil, and doesn't come close to
explaining why a thick milky fog
(that bane of drivers, pilots, and sail-
ors) descends to Earth for such a long
time.

In each of these cases/ to find the
resistance we need to know not only
the shape and size of the object, its
relative speed, and the density of the
medium, but also anotherparameter
of the medium-its viscosity, which
is usually denoted by 11. This coeffi-
cient shows how large the internal
(or viscous) friction in a fluid is.

If viscous forces predominate as a
sphere moves in a medium, the
sphere is affected by a drag force that
must be calculated not by Newton's
ecluation (2)but by Stokes's equation:

F*:5xr1Rv.

But how are we to know whether
a particular medium is viscous or
not, and what equation we need to
use to find the resistance? Let's con-
sider a spherical water drop that falls
freely in the air (or a hailstone, thus
neglecting the difference between
the densities of ice and water). We
are interested in the drop's steady-
state speed, which
can be measured and
then inserted into t0
the equation for dy-
namic equilibrium,
resulting in the de-
pendence of the
frontal resistance on 1.0

the drop's size and
speed as well as on
the characteristics
of the medium, its
density, and the dy- 0.1

namic viscosity co-
efficient. The drop's
mass is considered
to be constant-that
is, we neglect both 0.01

condensation and
evaporation.

The graph in fig-
ure 7 shows how the
speed o{ the falling
raindrops depends
on their diameter.
The data are taken
from textbooks on

meteorology. The notations near the
curve show the type of precipitation
corresponding to observed drops of a
particular diameter.

This figure shows that the small-
est drops (0.01-0.1 mm in diameter)
fal1 with a speed vn - D2. This is pos-
sible only if the resistive force obeys
Stokes's law, which gives the equa-
tion for the rate of precipitation of
the fog's drops:

'[') = -^lo'Pg," 18 n"'

where 11 = 1.8 10-s kg/m . s at
f = 300 K. For air and other gases,

\ - "{T and hardly varies with the
density of the gas.

An increase in the drop's size and
speed results in a decrease in the
relative contribution of the viscous
friction forces (proportional to "4vR)
compared to the forces that are pro-
portional to R2 lpfll2l and described
by Newton's equation. (Sometimes
they are referred to as the inertial
rcsponse of the mediuminorder not
to confuse them with the forces of
internal friction.)

Large raindrops (D > I mm in

0.001
0.1 1.0 D (mm)

Figure 7
Logarithmic dependence of the speed of falling
raindrops on thefu diameter.
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diameter) are hardly affected by the
viscous friction of the air. Their
steady-state speed in the atmo-
sphere is proportional to JD:

.,(N)-En, ,-,
"6t t3t" ! 3C* Pri, rr/

where C*=0.5. This equation is ob'
tained from equation (2).

It should be noted that equation
(5) is only an approximation be-
cause, unlike drops of fog or hail, the
shape of large raindrops deviates
geady from the spherical. The
forces of surface tension are over-
powered by the dynamic pressure of
the frontal air flow, which deforms
the drop. The largest raindrops
(D < 5 mm), attaining a speed of
B m/s, are flattened so much they
break into smaller drops.

Drops of intermediate diameter-
0.1 mm < D < 1 mm-obeyneither
Stokes's nor Newton's ecluation. For
these drops the inertial response of
the medium and the forces of inter-
nal friction are comparable.

Case 8. There is yet another
mechanism of deceleration. This
third mechanism is also encoun-
tered in many situations and can
predominate under certain condi-
tions. Fill a pail or bathtub with
water and submerge a pencil verti-
cally to a certain depth. Move the
pencil parallel to the water's surface.
You won't see anything interesting
if the speed of the pencil is small.
However, when the pencil moves
quickly, it leaves behind a group of
diverging waves that carry off en-
ergy. Energy is needed to produce
such waves, and in this case it
comes from the hand that over-
comes the water's resistance.

By experience we know that a

moving object o{ten produces waves/
and these waves can be cluite differ-
ent. The pattern of waves generated
by a ship or motor boat in deep water
differs from shallow capillary waves
that can be seen in a pail, a glass, or a
saucer. The waves of a motor boat in
shallow water differ from those in
deep water. A supersonic plane pro-
duces a shock wave in a three-di-
mensional medium (air), as opposed

to the two-dimensional waves made
by a ship on the boundary surface
between water and air. Also, unlike
ordinary waves in water, shock
waves in a gas are accompanied by
a strong compression of the me-
dium, which also heats up.

The amount of resistance from
waves depends on how the waves
are produced-that is, on the pavam-
eters of the medium bearing the
waves/ on how fast and in what
manner they spread, and above all
on the leading edge and size of the
object. Usualiy the resistance from
waves increases drastically with the
speed v-provided, of course, that
this increase doesn't cause the ob-
ject to jump out of the water/ as out-
board-motor boats and hydrofoil
craft do.

The calculation of wave resis-
tance in any particular case is a dif-
ficult problem that can usually be
solved only on the basis of experi-
mental data. However, it's rather
easy to estimate how large the wave
resistance might be.

For example, consider the uni-
form straight-line motion of a motor
boat on a deep lake. Two slanting
waves originate at the bow and stern
of the boat, which are symmetrical
relative to the boat's course. These
waves interfere and produce a pat-
tern that is very familiar to fisher-
men and swimmers. The angle cr

formed by the waves' crests and the
direction of the boat's motion does
not depend on the boat's speed and
is approximately equal to 20o. Two
or three small crests can be seen on
either side of the boat. The ampli-
tudes of the other waves are far
smaller and can be neglected, as

their contribution to the final esti-
mate is very small. The boat's waves
run for hundreds of meters and die
away slowly.

A wave crest can be approxi-
mated by a triangle with altitude H
measured from the equilibrium
level of the lake. The length of the
triangle's base is luf Z, wherc )" is the
wavelength of the wave produced
by the boat. The length of the wave
front generated per unit time is
v cos o(. The work performed to

produce the crest is accumulated in
the form o{ the wave's potential en-
ergy. Bearing in mind that in peri-
odic processes the potential and ki-
netic energies are ec1ual, we obtain
an estimate of the power needed for
a moving boat to generate a group of
WAVES:

P =l HL uroro.on1z zn) 2 '"3
I --, " (6).

= IPSH'vlun 
CoS 0./

where 2n is the total number of
crests behind the boat. The factor
Hl3 rs the average height to which
the water is raised (with the distri-
bution of mass within a crest taken
into account).

Here's a typrcal example. At a

speed of 18 kmih a boat produces
waves with a height of 0.3 m and a

wavelength of about 0.6 m, n = 3.
Ecluation (6) yields the power
P = 3 . 103 W = 4 hp. Within a [actor
of 2, this value is equal to the mini-
mum power recluired of a motor to
accelerate a small boat to this speed.

So we see that a significant
amount of power is needed iust to
make wavesl

Problems and questions
1. While studying free fall, Gali-

leo would simultaneously throw a

cannon-bali with a mass of B0 kg
and a musket ball with mass of
about 200 g from a tall tower. Did
the air have a significant effect on
the objects as they fell? The tower
was about 60 m high.

2. A new model of locomotive
differs from the old one in its motor,
which now has 1.5 times the power
of its predecessor. How much faster
is the new model?

3. Why are the data points scat-
tered in {igure 4? Find the value of
the coefficient C, in the experiment
if a ball is submerged completely
under a stream of water, as in case

3 described above. What conclusions
can you draw from your experi-
ment? What can you say about the
precision of your data?

4. Show that a stream/s radius at
a distance I from a faucet is
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determined by the equation r(I) =

ro(1 + 2gLlvozl-rla, where vo is the
speed of the water at the {aucet, g is
the acceleration due to gravity, and
ro is the initial radius of the stream.
The stream doesn't spray drops, and
the effects of friction and surface
tension can be neglected.

5. How might we visualize the
flow of water under a sphere? Con-
duct an experiment with a stream of
water from a pipe. What is the na-
ture of the water flow under the
sphere?

6. When a spoon is inserted into
a stream of water, the stream reacts
differently depending on which side
of the spoon is turned toward the
water. Why?

7. What is the steady-state speed
vool a Ping-Pong ball falling through
the air? O

ANSWERS, HINTS & SOLUTIONS
ON PAGE 62

"SURPRISES OF THE CUBIC
FORMULA" CONTINUED

FROM PACE 20

coefficients? Our formula tells us
that it suffices for cubic ecluations-
at least, if we allow complex, and
not iust real, expressions under the
radicals.

It turns out that fourth-degree
equations can also be solved in
radicals.s But equations of degree

five and higher are unsolvable in
radicals, It's very likely that
you've aheady heard about this
last theorem.6 Its proof is in fact
much simpler than is generally
supposed. But that's a subject for
another article.

iThis r.r,as explained in "The Great
Art," as u.c1l as in "What You Add is
W1-rat Yor-r Takc" rn thc Novcn-rbcr/
Decernber 1994 issue ctl Quontunt.-
Ed.

6For instance, you rlrght have read
the Qrrrr-nlull article about Evariste
G:rkris in thc Novcmber/December
1991 issue, rvhere this theorern is
discussccl.-Ed.
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HOW DO YOU
FIGURE?

Ghallerues in phy$ics and lnalh

Illlath

M171
Reproducing ones. Does there exist
a cluadratic polynomial P(x) with
integer coefficients such that for any
positive integer n whose decimal
notation consists only of ones the
notation of t'(nl also consists only of
ones? (A. Perlin)

M172
Recuruent unit fractions. Is it pos-
sible to select a subsequence of (a) 5,

{b)n, (c) infinitely many terms from
the sequence l, I f 2, | 13, | 14,... such
that each term in it (except the first
two) is the difference of the preced-
ing two? (S. Tokarev)

M173
In search of similarity. Find all the
points X on the side BC of a triangle
ABC such that the triangle XPQ,
where P and Q are the (a) circum-
centers, (b) centroids, (c) orthocenters
of the triangles AXB and AXC, is
similar to ABC. (E. Turkevich)

Ml74
Estimating the derivative. A func-
tion / is differentiable on a segment

la, bl of length 4. Prove that there is
a point x inside the segment such
that f'lxl - lfkf' . I lf'lrl is the de-
rivative of fl. (F. Vainshtein)

M175
Slicing a pyramid. A cross section of
a regular tetrahedron is a quadrilat-
eral. Prove that its perimeter is no less
than twice the length of an edge of the
tetrahedron, but less than three times
this length. (V. Proizvolov, A. Savin)

Physics

Pl 71
Ball in a glass of water, A sma11
wooden sphere is attached by a
nonstretchable cord of length
/ = 30 cm to the bottom of a cylin-
drical vessel filled with water. The
distance from the bottom's center to
the point where the cord is attached
is r : 20 cm. The vessel is whirled
about the vertical axis passing
through the bottom's center. At
what angular velocity does the cord
make an angle u = 30' with the ver-
tical? (V. Mozhayev).

Pl 72
Sand on a membrane. Ahorizontal
membrane is strewn with fine sand.
The membrane oscillates with a fre-
quency v : 500 Hz rn the vertical
plane. What is the amplitude of the
membrane's oscillations if the grains
of sand are thrown to a height
.h = 3 mm relative to the membrane's
equilibrium position? (B. Bukhovtsev)

P173
Gas processing. One kilomole of ideal
monoatomic gas under standard con-
ditions is processed from condition 1

to condition 2 in two different ways:

1 -+ 3 -+ 2 and | --> 4 -+ 2 (fig. I ). Find
the ratio of the thermal energies that
must be transferred to the gas in
these processes.

P174
Capacitor with f aulty insulation. A
flat plate with parallel layers has a

thickness h and is made of a weakly
conducting material with specific
resistance p. This plate is placed in-
side a parallel plate capacitor, but
not touching either capacitor
p1ate. The capacitor is then
charged to a potentialVo. Find the
maximum current that flows
across the conducting plate after
the capacitor is short-circuited.
The area of each plate of the ca-
pacitor and of the conducting plate
is S; the distance d between the
capacitor's plates is much smaller
than the size of the plates and
h < d. (V. Deryabkin)

P175
Lens and inclined mirror.
source of light is placed

point
some

distance under
a convex lens
(fis. 2). Where
and how should
a flat mirror be
placed to pro-
duce a parallel
beam of light
coming out of
the lens in the
direction shown
by the arrow? Draw
(V. Aleshkevich)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 57
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EALLY, WHAT COULD BE
more "evident" than light? As
the displayed quotations show,
however, sometimes the great-

est minds in science "wandered
around in the dark " when it came to
light beams. The law of rectilinear
propagation of light, known experi-
mentally from ancient times/ was
like a litmus test for any theory of
light, demanding a "straight answer,"
so to speak. The ideas of our distant
ancestors/ however naive they may
seem now/ paved the way to further
developments in understanding the
nature of light and its effects.

The concept of a "light beam" is
a product of our everyday experience

Christiaan Huygens

and is very ancient indeed. It came
from observing the heavenly bodies
and shadows; from studying per-
spective, as artists and architects
did; and from measuring plots of
land. And even nowadays, aren't
there problems that can't be solved
without this understanding?

This installment of the Kaleido-
scope offers you a chance to catch a
glimpse of the law of rectilinear
propagation concealed behind the
play of light and shadow in many
phenomena.

l2

Questions and problems
L A round pencil and a cylindrical

fluorescent lamp are placed parallel to
each other. Where is the region of
complete shadow from the pencil?

2. Why aten't cylindrical fluores-
cent lamps used in film projectors?

3. How should a point source of
light, a flat screen, and an obiect be
positioned so that the shadow of the
object on the screen is similar to the
object's outline?

4. Under what circumstances will
an opaque object cast a shadow
without a penumbra (that is, a par-
tial shadow)?

5. When will a body cast only a
penumbra?

6. How can you tell if you're in
the penumbra of some object?

7. Why is it harder to see the un-
evenness of a road's surface during
the day than at night, when the road
is illuminated by your car's head-
lights?

B. In a forest with ta1l trees and
thick foliage/ you can see circles of
light on the ground on sunny days.
What are these spots, and why are
they round?

9. Is the shadow cast by a ball al-
ways circular?

10. Why are the shadows formed
by your legs on the ground clearly
outlined, while the shadow of
your head is blurry?

I 1. When a burning candle is

lamp, shadows not only of the 
i

candle but of the flame itself are
cast on a white screen. Can a

source o{ light (that is, a flame) l

cast its own shadowl
12. Sometimes lighting fix-

tures are pointed at the ceiling
rather than down. What's the
point of this?

13. The shadows cast by the l

KALEIDOS

Houu Bltliuhtemr

"The rays emitted by thebye
straight line."-Euclid I

"A visLtal image is formed bl
visible objects and entering
"[E]ach small fraction of tt\e
along a straight line emerglr
point ln this sense light bea
straight I r nes, "-Ch risttaan l-

"As for ltght, there ts no tnsta
along a curved path or benc
shadow,"-lgggc Newton

vertical posts oi a soccer goal arc
longer in the morning and evening
than at midday. Does thc lcngth of
the shadow cast by the cross bar varyi

14. Using a pin, make a small hole
in a piece oi thick paper. Close one
eye and hold the paper in front of the
other at a distance of about 10 cm.
S1owly raise a straight pin with its
head r-rp in such a way that it touches
your eyelzrsh. In the circular bright
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fl"r travel along a

I by rays emitted by
ng the eye,"-Alhazen
he wave must propagate
'ging from a luminous
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n Huygens

stance of it traveling

=nding 
inside a

l

background of the hole in the paper,
an image of the pin appears, with its
head down and moving downward.
Explain this phenomenon.

15. Can you cover up a star with
a match? (Naturally you'lll:e mak-
ing your observation with one eye
closed.)

16. When we're sitting near a bon-
fire, why does it seem that the objects
on the other side of it are swaying?

17. Light rays from the Sun are vir-
tually parallel when they arrive at the
Earth. Why do they look fan-shaped
when they pass through clouds? (See

the painting in Gallery Q.)
18. What can be said about the

length of both parts of the horizon-
tal line shown in the figure below?

#
Microexperiment
Place a screen at a small distance

(up to 50 cm) from a burning candle.
Put a pencil between them-first

vertically, then horizontally. What
do the shadows look like? Why?

It's interesting that . . .
. . . it was Euclid who proposed

the model of the rectilinear light
beam, which is the fundamental
principle of geometric optics. In his
Optics he studied such problems as

shadow formation, how to create
images with pinholes, and estimat-
ing the apparent size of objects and
their distance from an observer.

. . . in the Middle Ages optics, per-
spective, and meteorology were
parts of a single discipline. Confu-
sion reigned in optical matters, and
visual perception was not trusted.
Eyesight was considered the most
misleading of the senses.

. . . optics is, in its most literal
sense, the science of vision. It was the
camera obscura that laid to rest the
notion of light-bearing rays emanat-
ing from the human eye. It turned
optics into the science of light.

. . . the foundation of modern geo-
metrical optics was laid by )ohannes
Kepler in 1604. At that time he
wrote a manuscript entitled Supple-
ments to Vitellius in which he ex-
plained the functioning of the eye
and any other optical device by con-
sidering each point of a body as a
source of diverging rays. The impe-
tus behind the creation of this fun-
damental work came from the de-
mands of astronomy.

. . . Huygens presented his famous
principle to show that the wave
theory of light could explain the
known laws of optics, including the
rectilinear propagation of light. How-
ever, it was Augustine |ean Fresnel
who managed to do this, by making
Huygens's principle more exact.

. . . the first optical (semaphore-
based) telegraph connected Paris and

Lille at the end of the 17th century.
In the middle of the last century
there were a number of optical tele-
graph lines in Russia, and the long-
est was the St. Petersburg-Warsaw
line, which had 149 intermediate
stations. It took only a few minutes
for a signal to pass from one city to
the other-alas, only in the daytime
and when the visibility was good.

. . . the angle of vision of the hu-
man eye is much larger than one
might think. Actions that occur at
an angle of 90" on either side can be
detected directly by our subcon-
scious mind.

. . . only in the 20th century have
experiments by physicists and

Isaac Newton

physicians proved that the brain in-
verts the upside-down images sent
to it by the eyes. To establish this,
scientists wore special glasses that
inverted what they were seeing. Af-
ter a number of days the brain
turned everything right-side up.

-Compiled 
by

Alexander Leonovich

ANSWERS, HINTS & SOLUTIONS
ON PAGE 61
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PHYSICS
CONTEST

[Ulouinu mattgr

"God . . . created matter with motion and rest in its parts, and . . .

now conserves in the universe, by His ordinary operations,
as much of motion and of rest as He originally created."

-Rene 
Descarfes, Principia Philosophiae (1 644)

by Arthur Eisenkraft and Larry D. Kirkpatrick

OW FAST CAN YOU THROW
a baseball? How fast is a speed-
ing bullet? Restricted to simple
tools in the laboratory, both

measurements can be completed
with a clever approach and some el-
ementary physics.

Although the baseball's speed
would be difficult to measure di-
rectly, you can throw it into a box
and measure the movement of the
box across the table. Such an ar-
rangement requires a box that will
slow the ball down appreciably. The
ball is thrown into the box. The box
slides across the table and comes to
a stop. Measuring the distance the
box travels allows us to find the
work done by friction. This then aI-
lows us to find the combined veloc-
ity of the box and ball when they be-
gan sliding. Since momentum is
conserved in all collisions, we can
back up one more step and deter-
mine the initial speed of the bail
before it got embedded in the box.

Let's assume that a 0.5-kg ball is
hurled into a lO-kg box that is rest-
ing on the table. If the box slides 2 m
before coming to rest/ we know that
the work I4l done on the box is Fd,
where F is the force o{ friction and
d is the distance the box travels
along the table. We can determine F

independently by pulling the box at
a constant speed along the table
with a spring scale or by first deter-
mining the coefficient of friction p
and the normal force Frr. Let's as-
sume that the force of friction is
20 N. The momentum of the ball be-
fore the collision with the box is
equal to the combined momentum
of the ball and box after the impact:

ffivo: (m + M)V,

where m is the mass of the ball, M
is the mass of the box, vo is the ve-
locity of the ball, and V is the veloc-
ity of the ball and box. The kinetic
energy of the ball and box is lost due
to the work done by the frictional
force:

!@*M)vZ=f.d.2t/

In our selected example, the ball's
velocity is approximately 50 m/s, or
120 mph. (Does this agree with your
calculated value? )

For bullets, it's preferable to sus-
pend the box as a penduium. This
method was first used by Beniamin
Robins in 1742. Professor A. P.
French (MIT) shared with us a de-
scription by Robins in the Philo-
sophical Transactions of the Royal

Society for 1742-1743 (Vol. 42, pp.
437-56).In this journal, Robins de-
scribed how he deliberately designed
the pendulum to provide the first
reliable way of measuring the speed
of bullets.

With the bullet embedded in the
pendulum, the pendulum rises and
the initial kinetic energy of the pen-
dulum becomes gravitational poten-
tial energy. It is then only necessary
to measure the change in the verti-
cal height of the pendulum to deter-
mine the speed of the bullet.

In both the baseball and bullet ap-
proaches, a common error is to as-
sume that the initial kinetic energy of
the object is equal to the kinetic en-
ergy after the collision. Since the ob-
ject and the target stick together, we
should recognize that this is an in-
elastic collision, in which kinetic
energy is not conserved.

In some classroom demonstra-
tions, a bullet is shot into the pendu-
lum. In alternative demonstrations,
an arrow is shot into the pendulum.
The speed of the arrow in this latter
experiment can be determined by a

second, unrelated approach. The ki-
netic energy of the arrow is eclual to
the work performed by the bow-
string, which can be determined by
measuring the average force for
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every centimeter of pull. When two
unrelated approaches provide an
equivalent measure for the speed of
the arrow, our con{idence in the value
and utility of the technique rises.

For this month's Quantum con-
test problem, we'll look at a fun
Tarzan-and-|ane problem that we
used on the first screening test for
the US Physics Olympiad Team.
Then we'lI challenge you to find the
speed of a bullet using a ballistic
pendulum. Finally, we'll ask you to
design an apparatus to be used in
school physics laboratories.

A.Tarzan (mass = B0 kg)is stand-
ing on a smal1hill (height : 10 m)
when he spots |ane (mass : 40 kg) in
danger in the val1ey below. He grabs
a vine and swings toward |ane. Grab-
bing her at the bottom of the arc, he
hopes to make it to the S-meter-high
hill on the other side. Is Tarzan suc-
cessful?

B. A bullet of mass 5 g hits a tar-
get of mass 5 kg that is free to swing
as a pendulum. The cord holding the
target is 5 m long. The target cap-
tures the bullet in a very short time
and moves 30 cm horizontally. Cal-
culate the velocity of the bullet.

C. Youwish to design alaborutory
apparatus that propels a ballby com-
pressing a spring. The ball then trav-
els a short distance into a target that
is free to swing as a pendulum. What
are the relative masses of the ball and
target that produce the maximum
movement of the target for a given
initial compression of the spring?

D. A second variation of your
laboratory apparatus has the ball
stick (with a Velcro"-type fastener)
to the bottom of a uniform rod. How
is the final angle dependent on the
mass of the ball and mass of the rod?

E. After using your propulsion
device for the ballistic pendulum,
you decide to have some real fun by
inventing a targetgame. The propul-
sion device is mounted on a table
and propels a marble horizontally in
order to hit a target on the floor be-
low. In your first attempt you com-
press the spring 1.0 cm and the
marble falls 30 cm short of the tar-
get, which is 3.0 m horizontally
from the edge of the table. How

much should you compress the
spring in your sec,ond attempt to get
a perfect hit?

Please send your solutions to
Quantum, iB40 Wilson Boulevard,
Arlington YA 22201-3000 within a
month of receipt of this issue. The
best solutions will be noted in this
space and their authors will receive
special certificates frorr Quantum.

Gl'auilalional redshift
In the November/December

1995 issue of Quantum, we asked
our readers to combine the effects of
the gravitational redshift and the
Doppler redshift to determine the
mass and radius of a white dwail
star. Essentially correct solutions
were submitted by Christopher
Rybak, a senior at The Prairie
School in Racine, Wisconsin; Lori
Sonderegger, a senior at Amity Re-
gional High School in Woodbridge,
Connecticut; and Art Hovey, her
AP physics teacher last year.

A. We use the conservation of
energy to find the shift in the fre-
quency of a photon emitted at the
surface of the white dwarf:

CMm CMmnl -_= nl _
RI

where ,h is Planck's constant, G is
the gravitational constant, M is the
mass of the star, m is the effective
mass of the photon, and f and f' are
the photon's frequencies at radii R
(the surface) and r > R, respectively.
Since Al << f , the effective mass of
the photon does not change appre-
ciably and we have used a single
value for m lm : hf I c2l. Therefore,

GMhf(r 1\h\+ - t___ I"ut- 
'l 

t';-R''

OI

Lf cM(t 1\
---!-=-l 

--- 
I /!l

l_ rrl, RI [r,

In the limitz >> R, we get the desired
result:

GM

Rcz'

frequency decreases (that is, it is red-
shifted) as the photon leaves the
white dwarf.

B. In the text of the problem, we
showed thatf'lf = 1- B, or

Lf
. = -P. lzlI

Equating equations (1) and (2) and
setting r : R + d, we find that

, GM(r r ) GMd
u--r- .'lR R+d) c2a1n+d)'

Inverting both sides of this ecluation,
we obtain

I RcZ(R \
- = 

-l 
- + I l.p GM\d )

Therefore, if we plot i/B versus 1/d,
we should obtain a straight line with
a slope equal to R2c2lGM = crR and
a y-intercept equal to Rcz f GM : a.

Graphing the data gives a slope of
3.2. 1012 m and an rntercept of 0.29. ld.
These values yield R : 1.1 . 108 m
and M : 5. I . 1030 kg, which are in the
right ballpark for a white dwarf. O

^f_f

ltllltal$ hapruninU?
Summer study .,. competitions ,.. new
books .., ongoing activities ... clubs and as-
sociations ... free samples ... contests ...

whatever it is, if you think it's of interest to
Quantum readers, let us know about it!
Help us fill Happenings and the Bulletin
Board with short news items, firsthand re-
ports, and announcements of upcoming
events.

tllhal$ olt your lniltd?
Write to usl We want to know what you
think of Quantum. What do you like the
most? What would you like io see more
of? And, yes-what don'tyau like about
Quantunl? We want to make it even bet-
ter, but we need your help,

lfUltal3 our address?

Quantum
Nat ona Sc ence Teachers Assoc ation

1B4O W son Boulevard
Arl ngton VA 22201-3000

Be a lactul' in llte

OUANTUM
sqllatioll!
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MATH
INVESTIGATIONS

The conduclol' ol a sel

And some new problems arising from it

by George Berzsenyi

my readers to parallel and extend
their accomplishments.

Another of B61a's students, Charlie
Ross, was instrumental in resolving
the following problem of mine,
thereby enabling me to pose it in the
USA Mathematical Talent Search:
Rearrange the integers 1,2,3, ...,97
into a sequence tt, a2, a3t ...t a97 so

that the absolute value of the differ-
ence of a, *, and a, is either 7 or 9 for
each i = 1,2,3, ...,96. Charlie, who
was amember of one of this year's win-
ning teams in the Mathematical Con-
test in Modeling also managed to solve
the following more general problem,
which I hereby share with my readers:

Suppose that a, b, and k are positive
integers and that a and b are rela-
tively prime. Let N = k(a + b) + 1.

Then the integers from 1 to N can be
arranged in a list starting with 1 and
ending with N so that each pair of
neighbors in the list differ by either
a or b. As in the Conductor Problem,
it should be possible to extend the
above result from the set{a, bl to sets
of three or more elements. While the
two problem areas are not closely re-
lated,I cameup with the secondprob-
1em by thinking about the first, and
wondering what wouldhappen if one
allowed for subtraction in the Con-
ductor Problem. This is why I am pre-
senting them together at this time.

following as Problem 805 in his
"Problem of the Week" program on
the Internet: True or false: If n is a
positive integer, then n5 + 5 and
(n + 1)s + 5 are relatively prime. He re-
ceived several insightful responses to
this problem. In particul ar, Ilan Y ar-
di's investigations are the most far-
reaching. I will try to report on them in
a future issue. Alternately, my read-
ers may wish to contact Ilan directly
via e-mail (vardi@macalstr.edu) to
learn about his results.

I also heard again from Les Reid
of Southwest Missouri State Univer-
sity, who succeeded in determining
G(5, kl and conjecturing the corre-
sponding formulas for G(4, k) and
Gl7 , kl. Again, more specifics will
follow in a later column.

I am also hrppy to report that the
problem area introduced rn my March/
ApiI Quantum column was further
popularized by Donald T. Piele in his
"Mathematica Pearls" column in the
Fall 1995 issue of Mathematica in
Education and Research. I will report
on the findings of his readers as soon
as I leam about them.

Finally, it seems that the topic of
my very ftst Quantum column,
which appeared in the May 1990 is-
sue, is still generating interest in the
mathematical community. My
friend and former colleague Brian
Winkel (of West Point Military
Academy) recently sent me a copy of
Volume 28 Number 2 of Math-
ematical Spectrum, which featured
an article on "The Roseberry Con-
iecture" by Filip Sajdak. CI

XTEEN YEARS AGO I POSED
the following problem in the
short-lived Texas Mathematical
Olympiad (TMO), which served

as a forerunner for the American krvi-
tational Mathematics Examination
(AIME): WhaL is the largest positive in-
teger that cannot b e rcprcsented in the

form 7m + 3n, where m and n are posi-
tive integersi At that time I was aware
of the fact that/ more generally, fi a arrd
b arerelatlely prime positive integers,
then everyintegergreater than or equal
to la - i)(b - 1) can be expressed in the
formxa +yb,wherex andyare non:re-
gative integers. But I was not familiar
with the more general setting of the
problem, recently called to my atten-
tion by my friend B6la Bainok of
Gettysburg College. B6la suggested that
I consult Herbert S. Wilf's delightful
b ook G en erutingfisn ctio n al olo gy, pub -
iished by Academic Press. There, on
page BB, Wilf defines the conductor of
a set S = la1, a2, ..., aul of relatively
primepositive integers to be the small-
est integer N such that every integer
n > N can be expressed in the forrn

n : XrA, + X2AZ+ ... + XMAM,

where xt, x), ..., xM are nonnegative
integers. According to Wilf, while the
case M = 2 is completely solved, there
are no general "fonrlulas" i M > 3 ar.d
no good algorithms for calculating the
conductor lor M> 4.8€la and two of
the participants of his undergraduate
research program made some progress

onsets of the form 
{ a, a + d, a + Zdl and

{a, a + d, a + 3dl,where a and d arc
positive integers. i hereby challenge

teedhack
I was glad to learn that Stan Wagon

of Macalester College found the topic
of my May/fune 1995 Quantum col-
umn interesting enough to pose the
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FOLLOW-UP

0ueelt$ m a cylindel'

Further adventures on nonstandard chessboards

by Alexey Tolpygo

HE FAMOUS PROBLEM OF
arranging eight chess queens on
a chessboard so that none of
them attacks another (two of its

95 solutions are shown in figure 1)

generated heaps of extensions and
modifications. The most obvious
variation is to change the dimen-
sions of the board. Or we can replace
queens with other chess pieces.
Sometimes the board itself is re-
shaped: we can " glue" a pair of its
opposite sides together to make it
into a cylinder lfig.2a and 2b); and

J

4
a

!)

2

Figure 1

if the other pair of edges is also
glued, we get a torus (fig. 2c). Some
of these extensions have already ap-
peared in Quantum: the Queen
Problem on the torus was consid-
ered in "Torangles and Torboards"
(March/April 1994), and the other
chess royalty was the main charac-
ter in "Signals, Graphs, and Kings on
a Torus" and challenge Ml56 in the
November/December I 995 issue.

This article sheds new light on
the cylindrical Queen Problem and

Figure 2

gives a general method for tackling
it. Since the queen moves like both

the rook and
the bishop, 1et's
start with these
pieces.

Boolr, hhhop

. . . 1ll01l[?

For simplic-
ity, we'll draw
the cylindricai

board just like the ordinary one-
we'1lsimply mark the edges that are

C

glued together (fig. 2a). So on such a
board a rook attacks the same 14
squares as on the ordinary chess-
board (fig. 3)-at least, as long as
there are no other pieces. But if we
put the rook on, say, b3 and a pawn
on c3, the f3 square becomes inac-
cessible to the rook on the ordinary
board (it is blocked by the pawn),
while on the cylinder the rook can
get there via a3 and h3. However,
blocking won't be an issue for us, so
we can be sure that on the cylinder
and torus the rook is just as "pow-
erful" as on the plane.
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Things are cluite different with
the bishop. You know that it attacks
7 to 13 squares on an ordinaryboard,
depending pn its position. But on the
8 x B board glued into a cylinder, the
bishop always attacks 13 squares
(fi1. q.It would attack 14 squares,
like the rook, but on the cylinder the
two diagonals it attacks always ha.ve
two sqtares in common (one of
which is the square it stands on).

For boards of a different size this
may not be the case. For instance, on
the 7 x 7 board the two diagonals
have only one intersection and the
bishop attacks 12 squares, like the
rook (fig. 5). Note that the bishop, on

Figure 5

this board, is not restricted to a
single color. But the situation gets
much more interesting if the board
is a rectangle with unequal sides.

Take, for example, the 6 x B board
(fig. 5). Abishop on square al attacks
only five squares on its diagonal.
Glue together the vertical edges:
now two diagonals, of five squares
each, become accessible. But if, in-
stead of the vertical edges, we glue
together the horizontal rows I and5,
the two avaiiable diagonals will
have seven squares each (not count-
ing the bishop's location). In both
cases the diagonals intersect, so the
actual numbers of attacked squares
are 9 and 12, respectively. Check
that these numbers don't depend on
the bishop's position.

Problem 1. A rectangul.ar m x n
board is glued (a) along its vertical
edges, (b) horizontally. How many
squares on these cylindrical boards
will be attacked by a bishop? For
what numbers m and n do the two
attacked diagonals intersect? Not
intersect? Intersect for only one of
the two methods of gluing?

But it's even more interesting to
make a torus out of the board. As
seen in figure 7, on the n x (n + t)
board, the bishop attacks all squares
at once (in the figure n:4). Again,

Figure 7

the bishop can access squares of
both colors on this board. Not only
that, it doesn't have to move along
both diagonals-one of them suf-
ficesl

To be more exactt consider a new
kind of chess piece-we'll call it a
//1ps1[//-1hat moves along one di-
agonal rather than two/ as the bishop
does (fig. B). There are two kinds of

monk

bishop

Figure B

ps1fts-//1ight-handed " and " left-
handed," for want of better terms.
Since for our problem it makes no
difference, we'll assume that our
monks are right-handed. Figure 7 also

Figure 9

Figure 9 shows how a monk
would move on an actual torus. This
type of path is important in modern
geometry-it's cal1ed the winding of
the torus.

However, one piece attacking the
entire board is, perhaps, too much of
a good thing. So let's come back to
the square board, but not necessar-
ily measuring 8 x S-let's examine
the n x n board. It will suffice to
make a cylinder out of it-figure 10
shows that the squares attacked by
a monk (or a bishop) are the same for
the cylinder and the torus.

Figure 10

So, how many bishops can be ar-
ranged on this board without attack-
ing one another? (This "professional
courtesy" will be a continuing re-
cluirement that I won't repeat every
time.) Clearly, this number is not
greatil than n, because there are
only n diagonals of the same direc-
tion. And n bishops can always be
arranged: simply put them in any
horizontal row (fig. 11).

shows that a
monk con-
trols the en-
tirenx(n+ 1)

toroidal
board from
one scluare.
This is true
as well for a
bishop. Figure 11

OUA[ITll[il/TO[[OU.UP
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Problem 2. How many bishops
can l:e arranged on an ordinary 8 x 8
board (square, not cylindrical)?

Problem 3. An 8 x 12 board is
glued into a (a) torus, (b) cylinder of
height 8, (c) cylinder of height 12.
How many (right-handed) monks
can be arranged on this board in each
case? And what about bishops?

It's also easy to arrarLgenrooks on
the n x n board, whether it's a
square/ cylinder, or torus. They can
always be stood along a diagonal.
(It's interesting that the solution for
bishops is given by a rook move and
for rooks by a bishop move.)

Now let's retum to the queens. We
saw that it was difficult even to arange
monks on a rectangular nonsquare
board, to say nothing of bishops or
queens/ so we'I1 confine ourselves to
a square n x n board. On the other
hand, it follows from the consider-
ations above that a queen can be re-
placed with a "rrt)n," which moves
like both a rook and monk (fig. 12).

1
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llluns and ttacuuln [uhs$
Is it possible to affangen nuns on

the n x n board? Before we answer
this question, consider the following
rather old problem about a device
that was replaced long ago by the
transistor.

Plug problem. A vacuum tube has
a round plug with n pins and its re-
ceptacle has n holes, so there are n
ways for the tube to be plugged in.
The holes are numbered l, 2, ..., n.
Can we number the pins such that
no matter how the tube is plugged in
there is exactly one pin that fits into
the hole with the same number?

This problem was proposed at
Moscow Mathematical Olympiad for
the cases n :7 and n = 8. In the first

case the answer is yes, while in the
second case it's no. If n = 7 and the
holes are numbered in the natural
order 1, 2, ..., 7,we can simply num-
ber the pins in the reverse order 7, 6,
..., 1. Verify that this numbering
solves the problem. There are other
solutions as well-for instance, the
order of pin numbers can be | , 3, 5, 7 ,

2, 4, 6. It's clear what these
numberings must look like for n : B,

but neither of them gives the desired
result: for some turns of the tube
there will be several numbers that
coincide; for the other tums all corre-
sponding numbers wiII be different.

To prove that for n = 8 other
numberings are no good either, suppose
the required numbering exists, plug
in the tubg and denote by a, the num-
ber of the pin that goes in the ith hole.
The set of numbers la, a2, ..., ar\ co-
incides with {1, 2, ..., Bl (the braces in
this notation show that we ignore the
order of the elements), and ar: i for
exactly one i. Turn the tube by one
hole (in the direction of increasing
hole numbers). Then the pin a, will
match the hole i + l. (To be more ex-
act, this is true for i = l, 2, . . ., 7 i the
pin a, matches the hole numbered
I = 8 + I (mod B). Similarproblems
will arise below, so let's agree from
here on to consider all numbers
modulo 8.) After the tube is turned
there will be exactly one match
again-that is, a,= i + 1 (mod B) for
one and only one i. The same will be
true for other tums: for exactly one I
we'll have ai= i + 2i (or another i,
ai: i + 3; and so on.

Add up these eight equations.
After rearranging terms/ we get

al+ a2+ ... + a8

= (l+2+...+ B)+(1+2+...+ B)(modB)
= 0 (mod 8).

On the other hand, since {a1, ..., ael
: {1, .. .,8l,, at+ a2+ ... + a8= | +2 +
... + B: 36+0 (mod B). This contra-
diction completes the proof.

Exercise. Try to figure out why
the same argument doesn't lead to a
contradictionlorn:7.

What does this problem have to
do with our problem about nuns? It
turns out that the two problems are
very closeiy related.

Assertion. The "peacefuI" attange-
ment of n nuns on the cylindrical n x n
board is possible i{ and only iI the plug
problem is solvable for n pins.

This assertion isn't all that inter-
esting in and of itself (it simply as-
serts that the answers to two differ-
ent problems happen to coincide).
But it's possible to assert much
more. Namely, suppose the (right-
handed) nuns are placed on the
squares (1, ir),12, i2l, ...,ln, in). Then.
they do not attack one another if and
only if li1, ...,1r) is a solution to the
plug problem. Check this yourself.

Peacefulnttlts
From the discussion above it fol-

lows directly that eight nuns cannot
be arranged on the 8 x 8 cylindrical
board, let alone eight queens. On the
other hand, an affangement of nuns
is always possible on a board with
odd-numbered dimensions. It's easi-
est to set them along the"Ieft" diago-
nal, as shown in figure 13, where you
can also see the squares attacked di-
agonally by the first and third nuns.

1234567
Figure 13

This solution corresponds to the
reverse numbering of the pins in the
plug problem. The second ("odd-be-
fore-even") numbering of the pins
yields the arrangement of nuns by
the knight's move (fig. 14). There are
many other solutions.

Figure 14
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In "fantasy chess" dhere is a piece
called the "night knight." It moves
like the usual knight, but by any
number of ordinary moves at one
time in the shme diagonal direction.
Strictly speaking, the arrangement
of nuns in figure 14 is by the night
knight's move, rather than the ordi-
nary knight's.

One other thing: if the board is con-
sidered a torus/ the arrangement in fig-
ure 14 defines one of its windings.

So, our discussion has led us to
the following conclusion: on a cylin-
drical (or toroidal) n x n board, a
peaceful affangement of nuns is pos-
sible for odd n and impossible for
even 7?.

As for queens/ it's not possible to
afiaflgen queens on these boards for
even n. What about odd n ? Our first
solution (along the "left" diagonal)
clearly doesn't work. As for the sec-

ond solution (by the "night knight"
move), you can verify on your own
that it works if n is not divisible
by 3. (See, for instance, figure 14-
you can see that the nuns, even if en-
dowed with full royal power, won't
" quarcel."ll

For n : 3k the "night knight" ar-
rangement is no good. Not only that,
no "torus winding" solution will
work here either. (By that I mean ar-
rangements of the form (1, 1),
(1 +k, l+1l, ll+2k, I+211,
..., (1 * (n - l)k,1 + (n - 1)l), where
the coordinates are taken modulon.
That is, we place the queens one by
one, the first in the square (1, 1), the
second shiftedk squares to the right
and I squares up relative to the first,
and so on, whenever a queen leaves
the board, we shift it back n scluares
down, or left, or both-this corre-
sponds to pasting together the oppo-
site edges of the board.)

tilleen qtteer$? Ioo many!

Are solutions not based on wind-
ings possible {for n = 3kl? Clearly
there are no solutions for n : 3. Let's
prove that the case n = 15 is also un-
solvable. Our proof beiow will make
use of "labeled sets," or "multisets."

lSee also the solution to problem 3
in "Torangles and Torboards" (March/
Apil1994, p. 58.-Ed. anct

Before we begin the proof, let's clarify
what we mean by this term.

Labeled sets can be defined in sev-
eral ways. For us, the simplest defi-
nition, connected with multiplicity,
will suffice. A (finite) labeled set M
consists of n arbitrary different ele-
ments xrl ..., Xni but unlike ordinary
sets, each of the elements can enter
M a number of times rather than just
once. If k, is this number of repeti-
tions (that is, the multiplicity) of x,
we say that the total number of ele-
ments in Mis N: k, + kr+ ... * kn
rather than n. Ecluivalently, ala-
beled set can be described as con-
taining the elements y t, ...,Iryr orlce
each, but some of these elements
may be the same.

This notion is handy when we
deal with, say, the roots of algebraic
equations. For example, it's natural
to think of the equation # - 3x + 2
: (x - l)2(x+ 2): 0 as having three
roots (1, 1, and -21rather than two
(1 and -2). Under this definition we
can say that the set of roots of the
equation f(xlslxl = 0 is the union of
the sets of the roots of f(xl : 0 and
s(x) : 0, and no caveats about mul-
tiplicities are needed. In general, the
number of elements in the union of
any two labeled sets always ecluals
the sum of the elements in both sets.
With ordinary sets this is not neces-
sarily true, because we must take
their common elements into ac-
count.

Now, armed with this notion, we
can proceed to the proof. Suppose we
managed to affange fl queens on the
cylindrical (or toroidal) n x nboard-
one in each horizontal row and one in
each vertical file. Denote by i, the
number of the row in which the
queen stands in the first file, i, the
number of the row with the queen in
the second file, and so on. We see that

l\, i2' ...' i,)= {1' 2' ..,'nl. (1)

You can verify that the queens will
not attack one another diagonaliy if
and only if the following two condi-
tions hold:

{ir - t, ir-2, ..., in- nl
: 11, 2, ..., n) (mod n)

{i, + 1, i, + 2, ..., i, + nl
= 11,2,..., n) (mod n). (3)

Notice that'the first of these condi-
tions is equivalent to the "nonag-
gression pact" between right-handed
nuns in the same arrangement, and
condition (3) plays the same role for
left-handed nuns.

Now let's tt addtt the correspond-
ing sides of equations (1) through (3)

as labeled sets:

{rr, r, - l, i, + 1, i), i2-2, ir+2,
. .., ir, in- n, in + nl

= 3(1, 2, . .., n) (mod n).

Recall that we are investigating the
case n = 15. Now the decisive step
{ollows: we pass from an equation
modulo 15 to an equation modulo 3
(this is possible because two numbers
with the same remainders when di-
vided by 15 will certainly yield the
same remainders when divided by 3).
Since {1, 2, ..., l5l : 5ll, 2,3} (mod 3),
we can write

liu if l, i, + L, ..., irs,rr, - 15,ir, + 15)

= 1s{1, 2, 3} (mod 3). (41

On the other hand, it's clear that
{i1, il- 1,r, + l} =].1,2,3}(mod3). Simi-
larly,lip, ik-k, ik+k] : {1, 2,3} (mod3)
for all k except multiples of 3-that
is, fork = 1,2, 4, 5, 7, 8, 10, 11, 13, 14.
Subtracting the corresponding equa-
tions from ecluation (4), we get

l\, iB- 3, i, + 3, i6, ..., i,, + 15)
: 511,2,3) (mod 3). (5)

Butr = i - 3 : i+ 3 (mod 3), so the left
side of this equation can be written
as 3{i3, i5, ie, i12, i1r}. This means that
the multiplicity of any number on
the left side of equation (5) is divis-
ible by 3. But the multiplicity of any
number on the right side of equation
(5) is 5, which is not divisible by 3.
This contradiction proves that the
Queen Problem on the cylinder for
n = 15 is unsolvable.

Problem 4. Prove that it is impos-
sible to afiange 21 clueens on a

2l x 2l cylindrical chessboard.
Problem 5. For what numbers m

and n does a night knight (which
moves in one direction) control all
the squares of an m x n toroidal

42 rrtIY/JUirr r sso
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LOOKING BACK

A hnBWBt' and lttuo doclol'$

How Joule, von Mayer, and von Helmholtz
worked their way to the law of conservation of energy

by Gennady Myakishev

I T,S BOTH iNSTRUCTIVE AND
I interesting to learn how the dis-
I coverers of the law of conserva-

I tion of energy made this funda-
mental step in physics.

|ames Prescott foule (1818-1889)
was the owner of a brewery. His in-
terest in this problem was first
aroused when he saw the newly in-
vented electric motor. |oule was
quite a practical man, and no won-
der he was tempted by the idea of
creating an eternal and inexhaust-
ible source of energy-aperpetuum
mobile. |oule made a battery like
the one devised by Volta and used it
to feed a simple electric motor of his
own design. However, he failed to
produce something from nothing:
the zinc in the battery was con-
sumed, and it was rather expensive
to replenish it. Later |oule proved, to
his satisfaction, that it was always
cheaper to feed horses than to replen-
ish the zinc in batteries. So horses,
he felt, would never be replaced

cornpletely in
industry by
electric mo-

tOIS.
.a"a^2

This experience
impelledhim to in-
vestigate the rela-
tionships between
heat and all other
kinds of energy, /'\
and he decided to -find out whether
an exact quantitative relationship
exists between heat and mechanical
energy (G. Lipson, Great Experi-
ments in Physicsl. The amount of
energy transferred turned out to be
equivalent to the mechanical work
performed, and thus the value of the
mechanical equivalent of heat was
established: 4.187 |/cal. |ou1e him-
self obtained the value ol4.155llcal..
A hundred years of experience in
modernizing measurement tech-
niques has improved |oule's result
by less than lY".

|ulius Robert von Mayer (1814-
1878) was a physician by education.
Living in the tropics (the island of
|ava) as a ship's doctor, he treated
sailors during epidemics of pulmo-
nary disease according to the ac-
cepted practice of the time-by
bleeding the patient from a vein in

the arm. He noticed that the
blood from these veins was
much lighter than it was for
sailors on ships in the northern
climes. It could be even taken

tor arterial blood! There was an
evident relationship between the

h

temperature
difference be-

r-\ tween the hu-

\ man body and
,--\ its surround-

(---.- ings, on the
one hand, and
the degree of

oxidation of the blood, on the other.
Mayer came to the conclusion that
there is a relationship in a living
body between food consumption
and heat production.

Herman Ludwig Ferdinand von
Helmholtz ll9}l-1894) graduated
from a military medical institute.
He was the first who deduced the
mathematical formulation of the
law of conservation of energy on the
basis of Newtonian mechanics. Ana-
\yzingmost of the physical phenom-
ena known in his time, Helmholtz
demonstrated the uni-
versal nature of the
law of conserYa-
tion of energy.
It's worth not-
ing that all
processes oc-
curring in liv-
ing organisms
also obey this
principle.

Isn't it curious that the origina-
tors of the 1aw of conservation of
energy law were not physicists by

/6,i|}--.
\^- r

t p e $vlcnJ4
r(
oE

fu

o
(h
o
(o
o

a
ID-otraining?

0lJAlllrlJ]i{/t00tililG BAct(

o

43

tt
UT

c



AT THE
BLACKBOARD I

Apiuotal il[pruach

Figure 1

the proofs are based on the same
properties of rotation.

Problem 1. Two squares AMKB
and ACPT are drawn externally on
the sides AB and AC of a given tri-
angle ABC. Prove that the distance
between points M and 7 is equal to
twice the length of the median of
triangle ABC drawn to the side BC.

Solution. Let's denote by O the
point of intersection of the diagonals
of the squareACPT andconsider the
90o rotation of the scluare about its
center O, taking TintoA andA into
C (it's a clockwise rotation). Before
going on, we have to make one aux-
iliary construction: draw a line
through B parallel to AC and draw a
line through C paralle1 to AB lfig.2).
Let A'be the point of their intersec-

tion andD the midpoint of BC. Thus
we obtain a parallelogram ABA'C
whose center is the point D. Let's
show that the rotation performed
above takes the segment MT rnto
AA'-this will prove the statement
of the problem.

Since MA = AB and AB = A' C, fhen
MA = A' C.W eknow thatMA LAB and
AB ll A' C ; therefore, MA L A' C. This
means that the segment MA is ro-
tated into segment A'C, so point M
is rotated into pointA'. We have al-
ready noted that point 7 is rotated
into pointA. Thus the segmentMT
is rotated into segment AA' and
therefore MT = AA'by the proper-
ties of rotation. The segment AD is
the median of triangle ABC and

T

Figure 2

Applying rotation in problem solving

by Boris Pritsker

NE KIND OF TRANSFOR-
mation that preserues distance
is rotation. By the definition of
rotation, the entire plane is

turned about some point through a
given angle clockwise or counter-
clockwise. Thus the size and shape of
any figure are kept invariant, but its
points all move along arcs of concen-
tric circles. The center (which may or
may not "belong" to the figure being
rotated) is the only point that remains
fixed. Because rotation preserves dis-
tafiQet it takes any figure into a con-
gruent figure. The angles between
corresponding lines are equal to each
other and to the given angle of rota-
tion. These very important properties
of rotation can be widely used in
problem solving. They simplify the
solutions to many difficult problems,
and make the solutions elegant and
beautiful. In this article we'll look at
some methods and techniques for
problem solving that make use of ro-
tation and its properties.

For example, 1et's perform a
simple rotation of a given segment
AB about a given point O (the cen-
ter) through a given angle 0 (fig. 1).

AB is transformed into A'B'. The
angle between the lines containing
these segments equals 0, and by the
properties of rotation AB : A'B'.

All the constructions that follow
are based on these results, and all

44 litAY/JUur r seo



AD : LI2AA' (by the property of the
parallelogram), so MT = ZAD, and
the proof is complete.

Problem 2. The points M and N
are chosen rjn the sides BC and CD,
respectively, of a given square
ABCD such that BM : MC = 3 :1 and
CN:ND = 3 : l. Prove that AM L BN.

Proof. Let O be the center of the
given square. A 90" rotation of the
square about O takes point B into

point C, C into D (fig. 3). Since our
rotation takes segment BC into seg-

ment CD, and since BM: MC =

CN: ND, then point M must be taken
into a point that divides the segment
CD in the same ratio as the point M
divides B C- that is , M rotates into N.
According to the properties of rota-
tions, the angle between cor:respond-
ing rays must be 90o; therefore,
AM L BN, which was to be proved.

Ptoblem 3. Construct an ecluilat-
eral triangle such that its three ver-
tices are located on three given con-
centric circles.

Solution. Choose any point A on
the middle circle and rotate the
smallest circle about A through an
angle of 60" (fig. 4). The circle is trans-
formed into a circle with center O'
with the same radius. Let's denote the
points of its intersection with the big-
gest circle by B andB' . (If there is only
one point of intersection, the problem
has a unique solution; if these circles
do not intersect, the problem has no

Figure 4

solution.) The last step is to draw the
circle with center B and radius AB
and the circle with center B' arrd ra-
dius AB'. The points of intersection of
these circles with the smallest circle
give us the third vertices of the tri-
angles ABC and AB'C'-the desired
equilateral triangles with vertices lo-
cated on the three given concentric
circles. It would be good practice to

o
C
(d

o
O)
C)a

_o
t
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prove that these triangles satisfy the
conditions of the problem.

The rotation that has the most in-
teresting properties of all is the one
that transforms every line into a line
parallel to it. This isthehalf-turn, or
rotation through 180", which trans-
forms eachray into an oppositely di-
rected ray. Clearly a half-turn is
completely determined by its cen-
ter. Another name for the half-turn
is central symmefty. A point and its
image are called symmeuic with
respect to the center of rotation.

Problem 4. Given an angle and a
point M inside it, find a segment
with its midpoint at M and its end-
points on the sides of the ang1e.

Solution. Let O be the vertex of the
given angle. The half-turn about M
takes O into point O' such that
OM = O'M and all three points lie on
one line (fig. 5). Let us draw lines
through point O'parallel to the given
lines. Denote the points of intersec-
tion of these lines and given lines by
A andB. Then OAO'B is a parallelo-
gram by construction. Since M is the
midpoint of. OO'(by the property of
a half-turn), it must be the midpoint
of the second diagonal o{ parallelo-
gram OAO'B as well. Therefore, AB
is a solution. The reader can verify
that there are no more solutions.

Problem 5. The midpoint M of
the side AB of trapezoid ABCD
(BC ll AD) is connected to points C
and D. Prove that the area otthe tri-
angLe MCD is equal to one half the
area ol trapezoid ABCD.

Solution. To solve the problem,
we first find the point K that is sym-
metric to point C with respect to
point M (fig. 6). Now we'Il show that
point Knecessarily lies on the exten-
sion of the sideAD of the given trap-
ezoid. Since BM : MA lby the con-
ditions of the problem), MC : MK,

Figure 5

40

KAD
Figure 6

and Z.B MC : ZAMK lby construction),
triangles BMC and AMK are congru-
ent. Thereforc, ZMKA = lMCB.But
these angles are alternate interior
angles, so KA must be parallel to BC,
which means that K belongs to the
extension of AD. It's clear that tri-
angles AMK andBMC have equal ar-
eas. So the area of the trapezoid
ABCD is equai to the arca of the tri-
angle KCD. To complete the proof,
it's enough to show that the area of
KCD is equal to twice the area of
CMD. But this is easy-DM is a me-
dian in triangle KCD, arrd a median
always divides a triangle into two tri-
angles of equal area (the proof of this
standard fact is left to the reader).

Problem 6. Given three points O,
M, and N, construct a square such
that O is its center and points M and
N are located on opposite sides of
the square (or their extensions).

Solution. Construct point M' sym-
metric to point M andM symme.tric
to point N with the respect to point
O (fig. 7). ThenlinesMMandM'Nare
parallel by the properties of central
symmetry. Next draw the perpendicu-
Iar FF'through point O to lines MM
and M'N (point F lies on MN', point F'
lies on M'N), and the line l passing
through O parallel to MN'and M'N.

Locate points K and K'on line 1

such that OK = OK' = OF : OF'. To
complete the construction draw
lines through points K and K' paral-
le1 to FP. Denote the points of inter-
section of these lines with MM and
M'Nas B, A, D, andC, respectively.
ABCD is a rectangle, and AB = BC
= CD = DA (by construction). There-
fore, ABCD is the desired square.

Sometimes M and N are on the
sides of the square, and sometimes
on their extensions. The reader can
investigate the different cases. What
happens if M and N are reflections of
each other in point O?

In conclusion, I'd like to offer sev-
eral problems for you to solve on your
own so that you become more famil-
iar with these properties of rotation.

Problem 7. Point P is chosen out-
side square A B C D, and segments PA,
PB, PC, PD are drawn. Prove that the
perpendicluar lines drawn from point
A to BP,pointB to CP,point C to DP,
and point D to AP allhave a common
point.Is the statement true if pointP
is chosen inside the square?

Problem 8. PointMis an arbitrary
point on the side AB of square
ABCD. Construct the square in-
scribed in the given square such that
M is one of its vertices.

Problem 9. Construct an equilateral
triangle such that its three vertices are
located on three given parailel lines.

Problem 10. Construct a square
such that three o{ its vertices are 1o-

cated on three given parallel lines.
Problem 11. Given two circles

and a point P that does not lie on any
of them, draw a line through P such
that the two given circles cut off a
segment whose midpoint is P.

Problem 12 (math challenge M109
in the March/April 1994 issue of
Quantuml. From the vertex A of a
squareABCD two rays are drawn in-
side the square. From vertice s B and D ,
perpenficulars are dropped to the two
rays: BK and DM are dropped to one
of them, and BL and DN are dropped
to the other. Prove that the segments
KL and MN are congruent and per-
pendicular. (D. Nyamsuren). O
Boris Pritsker taught mathematics in
Kiev, Ukraine. He currently resides in
New York City.

llJlAY/JUtllt I gg0

Figure 7

C

N

F'

M'



trffi
trGGr fl

ta:::.:..::,,.::t,1 1

t;:::;;1,:;=

I i I :t:-::,t::::: ,

..::it=;a::L.::::
ijiL:-i+liir
:t::+iiitlir+]'rl
:naii.ni=
rii.l-:i';.*i.t
r,:Ir-fl;:

:#'ri:!fi
li=-ffi

ir:

for orderc only ttlIl 235-7566 or
e-mail at orders@nctm.org
8112" x '11., 112 pp.,ISBN 0-87353-419-0, #59382.

$15 i$13 for NCTM individual members).

ii Pa*age P$ra Auailahls! All three Sfandards books
r for $60 ($48 for NCTM individual members).

rsBN 0-87353 -42A-4, #61 382.

.1
i=.ii,;,#

I
iii:#

i
+y!1:.;:;;:,i

lii.:+:i
:iLi::iii.:

i++

'ia#
:i:;:tti!

r:liiti:i:

i.j.i
;i:i;;ffi
,:ii:i,:

i:"#ti '

i::triii:!l:t 
::ill:: 

l

,'i;1 i;:r g, r:,:,.1;;,,

,..',1
+i+r,:r,ii. r,.]'
', :a:,1 tt.ti: a. 

t.i : : at t. t; . :a:

7 q{
fb,.}

rY

ffi#

1
dl[

F
j

rre



,'(),

QUANTUM
SM I LES

The malhematician,

the phy$icisl,

A trove of science jokes on the lnternet

N INTREPID DUTCHMAN
by the name of |oachim Ver-
hagen has done us all a great
service. He has collected hun-

dreds of science jokes from dozens
of newsgroups on the Internet, and
from individual e-mail correspon-
dents, and has made them available
on the World Wide Web. We offer
here a small sample of his growing
anthology, culled from the section
in which the characteristic foibles
and small but satisfying victories of
various scientific professions are
featured.

Verhagen has detected an intrigu-
ing mathematical relationship
among the various disciplines. Not-
ing that he visits more biology
newsgroups than others in his joke
hunting, he writes: "All those biol-
ogy groups do not mean that I have
a lot of biology humor. As a matter
of fact, the more exact a science the
more humor I find. The relation is
close to: mathematics : physics :

chemistry : biology = 8 : 4 : 2 : l. It
seems that more exact sciences are
more humorous."

The entire collection can be {ound
at http ://www.fys.ruu.nl/-nienhuys/
scijokes. (Be forewarned that some
sensibilities may be offended by a few

alld lhe ElluillEsr

of the anecdotes, though the over-
whelming bulk of the material there
is quite innocuous.)

Red ruhher hall
A mathematician, a physicist, and

an engineer were all given a red rub-
ber ball and told to find the volume.
The mathematician carefully mea-
sured the diameter and evaluated a

triple integral. The physicist filled a
beaker with watert put the ball in the
water, and measured the total dis-
placement. The engineer looked up
the model and serial numbers in his
red-rubber-ba1l table. (Anonymous
addendum: "f[ it were my company:
the engineer tries to look up the
model and serial numbers, can't find
them, and tells his manager, 'It's just
not going to work."')

0esel'l lreakdouln
A computer science student, an

engineering student, and a meteorol-
ogy student are going through the
desert in a jeep. Suddenly the jeep
stops and they're left sitting there,
wondering what happened.

The engineering student pipes up,
"It must be the fan belt that's bro-
ken down. The engine has over-
heated, so we'll just have to wait

until it cools down, bodge the fan
belt,l and we'll be fine."

The meteorology student replies,
"Naw, it's not that. It's just the am-
bient heat in this place. It's not al-
lowing the engine to breathe cor-
rectly. We just have to wait till
night."

The computer science student
thinks about this for a minute, then
says, "Yeah/ you may be right, but
I've got an idea. What say we a11get
out, then get back in again?"

lUlunlry rg$Bal'Glt

Three persons with degrees in
mathematics, physics, and biology
are locked up in dark rooms for re-
search pu{poses.

A week later the researchers open
the first door. The biologist steps out
and reports: "We11, I sat around un-
til I started to get bored, then I
searched the room and found a can,
which I smashed on the floor. There
was food in it, which I ate when I got
hungry. That's it."

Then they free the physicist, who
says: "I walked along the walls to get
an image of the room's geometry/

lThis loke was posted from the
United Kingdom, where "bodge" is
apparently a term of art.-Ed.
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then I searched ii. Tliere was a metal
cylinder at five feet into the room
and two feet to the left of the door.
If felt like a can, andl threw it at the
left wal1 at the right angle and veioc-
ity for it to crack open."

Finally, the researchers open the
third door and hear a faintvoice out
of the darkness: "Let C be an open
car', , ."

Deliltiru lnotneil
What is "pi"?
Mathematician: "Pi is the num-

ber expressing the relationship be-
tween the circumference of a circle
and its diameter."

Physicist: "Pi is 3.1415927 plus or
minus 0.000000005."

Engineer: "Pi is about 3."

T]te doctol'knows
A mathem atician, a physicist,

and a physician were asked: "What
is 2 times 2?"

The physicist takes out a note-
book and starts scribbling. After
three days of the most complex cal-
culations, he finds, by using the
Earth's radius and the gravitational
constant, that "it lies somewhere
between pi and two times the square
root of 3."

The mathematician comes back
after a week with dark rings under
his eyes and declares: "Friends and
colleagues, there is a solution."

The physician says simply:
"Folr."

The others look at him sharply.
"Oh, weII," they say, "yotJ memu
rized it."

tin$eill in Hysium
Einstein dies and goes to heaven,

oniy to be informed that his room is
not yet ready. "I hope you will not
mind waiting in a dormitory," he is
told by the doorman (we'll call him
Pete). "We arcvery sorry, but it's the
best we can do, and you will have to
share the room with others."

Einstein says this is no problem at
all, there's no need to make such a big
fuss. So Pete leads him to the dorm.

They enter, and Albert is intro-
duced to everyone present.

"Here is your first roommate,"

says Pete. "He has an IQ of lB0!"
"Why, that's wonderful!" says

Albert. "We can discuss mathemat-
ics. "

"And here is your second room-
mate. His IQ is 150."

"That's wonderful!" says Albert.
"We can discuss physics."

"And here is your third room-
mate. His IQ is 100."

"Wonderful!" says Albert. "We
can discuss the latest plays at the
theater."

|ust then another roommate
reaches out to shake Albert's hand.

"I'm your last roommate," he
says. "I'm sorry, but my IQ is only
80.,,

Albert smiles back at him and
says, "So, where do you think inter-
est rates areheaded?"

Talte youn piclr

A mathematician and a physicist
are trying to measure the height of
a flagpole using a long tape measure.
The mathematician takes the tape
measure, walks up to the flagpole,
and begins to shinny up the pole. A
short way up, he slips and falls
down.

The physicist notices a ladder ly-
ing nearby in the bushes. He leans
the ladder against the pole, but it
reaches only halfway up. He climbs
the ladder and tries to shinny up
from there, but he also slips and
fa11s.

While they sit near the pole,
scratching their heads, an engineer
walks by, so the mathematician and
the physicist teII him their
problem. The engineer
notices a crank at the
base of the flagpole. He
turns the crank, and
the flagpole tilts over
until it lies on the

As the engineer walks off into the
distance, the mathematician looks
at the physicist and says: "Isn't that
just like an engineer? You ask him
for the height, and he gives you the
length."

But some people believe the story
goes like this:

A team of engineers were re-
quired to measure the height of a
flagpole. They had only a tape mea-
sure, and they were getting quite
frustrated trying to keep the tapd
against the pole. It kept falling
down, and so on.

A mathematician comes along,
learns of their problem, and pro-
ceeds to remove the pole from the
ground and measure it easily.

When he leaves, one engineer
says to the other: "fust like a math-
ematician! We need to know the
height, and he gives us the length."2

Ioo deuel, [y a hall
There is a glass half full of water.
Mathematician: "The glass is half

fulI."
Physicist: "The glass is half

empty."
Engineer: "The glass is too big."

Thal$ nottunny!
An engineer, a physicist, and a

mathematician find themselves in
an anecdote-indeed, an anecdote
quite similar to many that you have
no doubt aheady heard. After some
observations and rough calculations,
the engineer realizes the situation
and starts laughing. A few minutes
later the physicist understands too
and chuckles to himself happiiy, as
he now has enough experimental
evidence to publish apaper.

This leaves the mathematician
somewhat perplexed, as he had ob-
served right away that he was the
subject of an anecdote, and deduced
quite rapidly the presence of humor
from similar anecdotes, but consid-
ered this anecdote to be too trivial
a corollary to be significant, 1et
alone funny.

2Some of the jokes in Verhagen's
collection are actually "variations on a
theme," leaving it to readers to pick
their favorite version.-Ed.

ground. The engi- ,.-4,
neer stretches / ,t(\out the tape I A (

measure/ cranks I (, I o

the pole back \<A-
up, and tells the
mathematician
and the physi-
cist: "It's 15
meters."

o
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HiS STORY IS BUILT AROUND
a quotation from the widely
read international news maga-
zine The Economist A short

news story told of the increased in-
take of dietary fat by young prople in
lapan, and it stated that "the average
16-year-old |apanese girl has grown
4"/" heavter since 1975, although
she is only lYo taller."l

This makes it sound as if.lapa-
nese girls are experiencing a "trend
toward obesity." In order to under-
stand and evaluate this, we must
define what we mean by a trend to-
ward obesity. We will say that
there is no trend toward obesity if,
in a given period of time, all linear
dimensions of a person increase by
the same fractional amount. If a
person's height, width, and
breadth all increase by l"/", we
would say there was no trend to-
ward obesity. However, if in a
given time one's lateral dimen-
sions-width and breadth-in-
crease by a larger fractional
amount than one's increase in
height, then we'll say that there is a
trend toward obesity. The 1% and4%
data certainly seem to indicate a
trend toward obesity until we look
carefully at the elementary arith-
metic of scaling.

First, let's look at large changes in
size. Suppose I have similar obiects

lThe Economrst, September 16,
1995, p.74.

Calculus, "obesity," and the laws of scaling

by Albert A. Bartlett

whose different sizes are all indi-
cated by different values of a length
I. The surface areas of the objects
will then vary as L2 andthe volumes
will vary as 13. ff the objects are all
made of the same homogeneous
material, the masses and weights of
the objects will also vary as L3.

AT THE
BLACKBOARD II

Physics in lhe ltettu$

The simple example of a cube can
be used to illustrate this. A cube has
an edge length L, a surface area 6L2,
and a volume 13. For a sphere, the
radius R is the measure of size. The
area is 4nR2 and the area is a/rnR3.

This general dependence of area and
volume on linear dimensions is true
for all similar obiects, even though
we may not know the formula for

the area or volume of the objects.
Thus we can say that if, by magic, we
could create a human who was twice
my height, breadth, and width, then
the following would be true:

1. Since all linear dimensions have
been doubled, the length of a belt to
go around the waist of the large per-

son would be twice the length of
my belt. The same would be true
of the circumference of the neck,
the length of the arms, and so on.

2. -the area of the cloth re-
quired to make clothes for the
large person would be 22 = 4 times
the area required to make the
same style of clothes for me.

3. The volume, mass, and

] weight of the large person would
j be 23 = B times my volume/ mass/

and weight.
This has some interesting con-

sequences. What would be the
pressure in the knee joints of the
large person/ compared to the
pressure in my knee joints? The
area of the knee joints has in-
creased by afactor of 4, while the

load or weight they are to carry has
increased by a{actor of B. Since pres-
sure is force per unit area, we can see

that the pressure in the knee joints
has increased by a factor of 814 = 2.
When standing, the large person
would have twice the pressure in the
knee joints that I have in my knee
joints when I'm standing!

This opens up a whole realm of
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understanding. Nature has worked
out mechanisms for knee joints that
operate best in one range of pres-
sures. If nature built big people, it
would aruarrge for the big people to
have about the same pressure in the
knee joints as the small people have.
Since the large person's knee ioint
has to handle eight times the load,.
the area of the knee joint would be
approximately eight times as large
as in the smaller people. So the per-
son who was twice my height would
have a knee ioint diameter that is

"6 = Z.S times the diameter of my
knee joints. The larger person's leg
diameterwould have to be largerwith
respect to his other body dimensions
than would be the case with me.

Remember Gulliv er' s Tr avels by
|onathan Swift: the Liliputians were
only about 15 cm high, and the
Brobdingnagians were many times
as tali as Gulliver, yet Swi{t portrays
them all as having the same propor-
tions as Gulliver. It won't work. The
Liliputians would need legs of only
a vety small diameter relative to
their height, and the Brobding-
nagians would need legs with an
enormous diameter compared to
their body height. On a more general
sca1e, this te1ls us why the diameter
of the leg of an insect may be about
I% of the length of the insect's
body, while the diameter of the leg
of an elephant is about IO% of the
length of the elephant's body. In the
extreme case, it tel1s us why a whale
can't walk. There may not be room
enough under a whaleas body to put
four normal flesh-and-bone legs of
sufficient diameter to hold up the
Iarge weight of the whale's enormous
body. The only way whales can move
is to be in water and take advantage
of the Archimedean principle.

But what if the increase in height
is only 1%, which is far less than
doubling? We need to know what
happens to body area and volume
when all body dimensions are in-
creased by the same small fractional
amount. To examine this, we must
derive what I believe to be the most
important relation in differential
calculus.

Suppose I have two variablesx and

y that are related by the equation

y = Ax', (1)

where A and n are constants. If we
differentiate both sides of this equa-
tion, we have

dy: nAx"-tdx. l2l

If we divide equation (2)by equation
(1), we get

dv dx' - n-. (3)yx

Equation (3) is my candidate for
Most Useful Equation in Differen-
tial Calculus.

To illustrate this utility, 1et's take
the expression for the period T of a
simple pendulum:

tr
T = Zn l:. I4lls r-

We seek to answer the question: If
we increase the length I of the pen-
dulum by lo/o, how much does the
period change? In this case A is
Znl...! and n is 1/2. So equation (3)

becomes

dT TdL

variable. For example, if you heat an
obiect so that thermal expansion
causes its length to increase by 17",
then you know at once that its area
increases by approximately 27" and
its volume by 3%.

And now, let's return to people. If
the height and all other body dimen-
sions increase by 1%, then the larger
person would have the same propor-
tions as a smaller person/ and one
would say that there was no trend
toward obesity. If all linear dimen-
sions increase by 1%, then the belt
size would increase by l"h , the area
of cloth required to make clothes
would increase by 2"/", and the body
volume, mass, and weight would all
increase by 3%. Thus we can see
that 3o/" of the 4o/o increase in
weight comes from the larger size
and is not an indication of a trend
toward obesity. The remaining
14% - 3%) increase in weight is an
indication that the lateral dimen-
sions have increased slightly more
than 1%, which would indicate a
small trend toward obesity.

What about the pressure in the
knee joints? If all the linear dimen-
sions are increased by l"/., the larger
person will have a l"/" increase in
the pressure in the knee joints. The
1o% increase due to the obesity-
that is, the difference 14% - 3%l-
will also add l% to the pressure in
the knee ioints, so the data in the
story can be used to conclude that
the pressure in the knee joints is
probably about 2% higher.

So, you see how misinterpreta-
tions, spoken or implied, in news
stories can be rooted out by simple
analysis. Now it's up to you to keep
a vigilant eye on the media! O

Related Quantum articles
Anatoly Mineyev, "From Mouse

to Elephant," Marchf April 1996,
p. 18.

Bunyan,"
p.4.

"Trees Worthy of Paul
lanuaryfFebruary 1994,

A. Zherdev, "Horseflies and FIy-
ing Horses," Mayfltne 1994, p.32.

Albert A. Bartlett is an emeritus prof es-
sor of physics at tha University of Colo-
rado, Boulder CO 80309-0390.

(s)2L

We can read this to say that a lYo
increase in L (dLlL = 0.01)gives an
inctease in the period T of ll2%
@rlr:0.00s).

We can now inquire about the
consequences of increasinggby 1%.
Equation (3)becomes

This can be read to say that an in-
crease of 1% in the free-fall accelera-
tion g results in a deueasa in the pe-
riod of the pendulumby ll2%. The
decrease is indicated by the minus
sign. The utility of equation (3) is
enorrnous. If you have a simple power
relationship such as equation (1) be-
tween two variables that is either
exact or approximate, then you can/
by inspection, te1l the fractional
change in one variable when a given
fractional change is made in the other

(6)
dT __t ds

T 29
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"...The impact of solid bodies is the most fundamental
of all processes that have taken place on the terrestrial planets."

-Eagene 
Shoemaker

"Wby Study Impacts?" 1977

,[AKE AI{ I,TIPACT WITII

KEY FEATURET

. Custom CD-ROX.{ packed with images of impact
sites on Earth, the Moon, and many planets and

planetary bodies in our solar system.
. Specially-v,ritten account ofresearch on the

comet Shoernaker-Ler,v 9 impact u.ith Jupiter.
. Detailed background on cratering designed to

enhance tercher preparation.
t Curriculum Matrix and extensive resources list

for extensions

' Fully compatible with SS&C and NAS science

standards
. Collaboration berw'een NASA, the Planetarv

Societt, and NSTA

' Extensively revieu,ed by teachers to meet NSTAs
high standards for excellence in pubiishing.

Craters!
A Multi-Science Approach to
Cratering and Impacts

b1, Williant. K. Hnrtmann

-\,Iake an impact in your classroom u,ith this
interdisciplinary guide to cratering. Horv do
craters form? \d4rere can they be found? \,\4rat can
craters tell us about planetary science? How have
impacts affected Earth's history and the history of
Iife? Cratersl includes 20 readv-to-use, hands-on
activities that use cratering to teach key concepts
in Physics, Astronomy, Biology, and Earth
sciences. Special features include a custom CD-
ROM packed with supplemental images for
classroom activities, a specially-u.ritten summary
of research on Shoemaker-Lely 9's encounter u.ith

Jupiter, and a detailed background section for
teachers. \{hether used as a stand-alone
curriculum unit or mined for individual activities,
you'Il agree that this book is right on targetl

Grades 9-12, 1995, 204 pp,
Includes Mac/Windows CD-ROM

#PB120X

To oRDER CALL I-8OO.7a2-NITA
\TSA, MasterCard, Discover and purchase orders accepted

$2+.9s



HAPPEN INGS

[ul'acell attuards $1 00,000

Io youltu inuenlol's

i n Du racel I/NSTA Scholarshi p Competitron

HAT'S MISSINCIN HOMES
ancl businesses that the cre-
ativity oi high school stu-
dcnts can suppl,vi Try the

Portable Visual Field Analyzer,
Early Warning Safety Helmet, Mo-
tion-Activated Electronic Note
Poster, Talking Color ldentifier for
the Blind, RipeRanger, and the FM
Tr an smitter I R ec eiv er Aut o -Tr ain
Safety Device. These battery-pow-
ered health and safety, time- and
dollar-saving inventions were the
top winners in the 14th annual
Duracell/NSTA Scholarship Com-
petition. The 1996 competition
awarded over $100,000 in savings
bonds.

From I 00 finalist entries as-
sembled at Duracell headcluarters,
the judges tested and selected 41
devices for further awards, and the
six top inventions were recognized
at the National Science Teachers
Association convention in St. Louis
at the end of March. The first-p1ace
winner is Ian Hagemann of Great
Fal1s, Virginia, a senior at Thomas
|efferson High School for Science
and Technology. Second-p1ace win-
ners are Eugene Agresta of Closter,
New fersey, a junior at Northern
Valley Regional High School; Kyle
Beucke, of Stony Brook, New York,
a junior at Ward Melville High
School; Sean Breheny of Scranton,
Pennsylvania, a junior at the

Virginia student takes first place

Scranton Preparatory School; Daniel
Durand of Shoreham, New York, a
junior at Shoreham-Wading River
High School; and |eremy Kiser of
Akron, Ohio, who is a junior at
Springfield High School.

too[inU lon ilind spofls

The first-place winner, Ian
Hagemann, was awarded a $20,000
bond for developing a portable and
inexpensive optical testing system.
His invention, the Portable Visual
Field Analyzer, or PVFA, is an auto-
mated mechanism for testing eye-
sight-specifically for detecting
"blind spots" on the retina. The
energy-efficient PVFA uses a micro-
computer unit and runs on one
9-volt battery that is regulated to
5 V. "Drugstores and pharmacies,"
Hagemann says, " rr.ay consider add-
ing a PVFA to their aruay of sel{-di-
agnostic ecluipment." The PVFA
and its inventor were featured in a

front-page article in the Washington
Post.

Hagemann wants to study cogni-
tive science in college and plans to
become a physician. He speaks
French and Spanish, plays blues gui-
tar and is a licensed model aircraft
pilot. Hagemann's sponsor for the
competition is David Bell, a teacher
at the Thomas |efferson High School
for Science and Technology in Alex-
andria, Virginia.

tl'om [elmel$ to calllalotlru$
Eugene Agresta is a second-p1ace

winner of a $10,000 bond for the
Early Warning Safety Helmet, a bi-
cycle helmet that vibrates and alerts
riders by detecting vehicles ap-
proaching from behind. This safety
device is especially helpful for
young children and people who are
hearing impaired. Agresta says, "As
fat as I know, no commercially
available product exists like my
Early Warning Safety Helmet. It
might prevent some injuries or even
fatal accidents." After high school,
Agresta plans to attend a technical
school.

Kyle Beucke is a second-place
winner of a $10,000 bond for invent-
ing a talking Post-it"-type note that
can't blow away or get lost. The
Motion-Activated Electronic Note
Poster always delivers its message
because it is electronically activated
and verbally alerts anyone who
walks past it. "It's difficult to make
sure someone is aware that a mes-
sage has been left for them," says
Beucke. "My device records a brief
message and senses when someone
walks by, activating the message
playback." Beucke collects beetles
and is a member of his school's var-
sity Science Olympiad team.

Sean Hugh Breheny invented an
aid for visually impaired persons
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that recognizes and reads colors-
the Talking Color Identifier for the
Blind. Also a second-place $10,000
winner, thig handy device audibly
identifies the colors of objects from
allbrary of 15 basic colors. When
pressed against an object, a micro-
processor begins a short computer
program that uses a photocell to
measure reflected light and deter-
mine the color of the object. ,\1-
though his primary interest is elec-
tronics, Breheny represented the
United States playing the tin whistle
in an international music competi-
tion in Ireland last year. Breheny
wants to study electrical engineer-
ing or electronics, but has not yet
decided on a college.

Daniel |ames Durand invented a
small device with both household
and commercial applications that
tells if fruit is ripe without squeez-
ing or cutting into it. Durand says
the RipeRanger "provides a previ-
ously unavailable solution to the
woes of fruit shoppers everywhere
by giving consumers reassurance
that the fruit they buy will be ripe.
It's also the first hand-held device
that has field-use capabilities."
RipeRanger can give readings of the
levels of ripeness in various pieces
of fruit by comparing the sugar con-
tent with a ripeness standard. For
his efforts, Durand received a

$10,000 second-p1ace bond. Durand
volunteers at a local hospital on
weekends and writes a weekiy
sports column for his community
newspaper.

After learning about a serious
train accident at a railroad crossing,
|eremy |ames Kiser developed a
mechanism for school buses and
other vehicles that warns of ap-
proaching trains. The FM Transmit-
ter/Receiver Auto-Train Safety De-
vice sends out a signal alerting those
within a half-mile range. "I feel that
this shouid be a mandatory piece of
equipment found on school buses
around the nation," says Kiser. The
safety signal is designed to jam radio
signals. An alternate design has a
separate receiver that sends warning
signals when the radio is off. Kiser
received a second-place $10,000

bond. He would like to attend an art
school after high school.

The six first- and second-place
winners, their parents, and their
sponsoring teachers were guests of
Duracell at an awards ceremony in
St. Louis on March 28 moderated by
NASA Teacher in Space Designee
Barbara Morgan. The winners dem-
onstrated their inventions for an
audience of teachers and scientists
and exhibited them for thousands
attending the National Science
Teachers Association' s 44th annual
convention.

0l[el' winnet's
The following third-place win-

ners received $1,000 savings bonds
(their teacher-advisors are noted in
parentheses): Michael Goelzer, St.
Albans School, Washington, D.C.
(Robert Morse); |oe Wolin, Eagle
High School, Eagle, Idaho (Robert
Beckwith); Matthew Smith, Lane
Technical School, Chicago, Illinois
(Michael Robles ); MariaVornbrock,
Watkins MilI High School,
Gaithersburg, Maryland (|ean
Maloney); |ohn Verde, Arundel Se-
nior High School, Gambrills, Mary-
land (Don Higdon); Stefan Kazachki,
North Carolina School of Science
and Math, Durham, North Carolina
(Chuck Britton); Matthew Hicks,
Batavia High School, Batavia, New
York (Gary Heim); |udy Dong,
Midwood High School at Brooklyn
College, Brooklyn, New York
(Stanley Shapiro); Mary Gates,
Springfield High School, Akron,
Ohio (Nicholas Frankovits); Chris
Vondrachek, Newberg High School,
Newberg, Oregon (Terry Coss).

The following fourth-place win-
ners received $500 savings bonds
(their teacher-advisors are noted in
parentheses): Rahul Athavale, Boca
Raton High School, Boca Raton,
Florida (|oAnne Weise); Chama Cas-
cade, W. Hawaii Exploration Acad-
emy, Kailua-Kona, Hawaii (Bill
Woerner); Matthew Schultz,
Harrison High School, Farmington
Hills, Michigan (Dennis King); Brian
Siegrist, Northern Valley Regional
High School, Demarest, New |ersey
(lavier Rabelo); Alexis Astorga,

Northern Valley Regional High
School, Demarest, New |ersey
(|avier Rabelo); Gary Fischer,
Kittatinny Regional High School,
Newton, New |ersey (Ronald
Garbarini); Bruce NolI, Ocean City
High School, Ocean City, New |er-
sey (Michael Wilbraham); David
Nussbaum, Half Hollow Hills
School West, Dix Hills, New York
(Harold Shaver); Carlyn Scheinfeld,
|ericho High School, |ericho, New
York (Allen Sachs); David Chiang,
Manhasset High School, Manhasset,
New York (Peter Guastella); Arti
Anand, |ericho High School, |ericho,
New York (Allen Sachs); Thomas
Sapienza, Shoreham-Wading River
High School, Shoreham, New York
(|ohn Holzapfel); Shayna Lustig,
Shoreham-Wading River High
School, Shoreham, New York (fim
Baglivi); Matthew Hoimes, Ward
Melville High School, East Setauket,
New York (Melanie Krieger); Robert
Long )r., Lakota High School, West
Chester, Ohio (Linda Noble); Will-
iam Fyock, Warwick High School,
Lititz, Pennsylvania (Laurel Hess);

lef{rey Huber, Hempfield High
School, Landisville, Pennsylvania
(Glenn Shaffer); Nick Berg, B. Reed
Henderson High School, West
Chester, Pennsylvania (Charles
Wood); Brian Ground, |. L. Mann
High School, Greenville, South Caro-
Iina (Hugh Gilchrist); Mark McGrath,
Hilton Head High School, Hilton
Head Island, South Carolina (Richard
Winger); Michael McTaggart, South
Carolina Governor's School for Sci-
ence and Mathematics, Hartsville,
South Carolina (Kurt Wagner); Brian
Rosenthal, The Kinkaid School,
Houston, Texas (Herman Keith);
Matthew Rodgers, Academy of Sci-
ence and Technology, Conroe,
Texas (Scott Rippetoe); |ohn Claus,
Academy of Science and Technol-
ogy, Conroe, Texas (Scott Rippetoe);
William Gould, Lake Braddock Sec-
ondary School, Burke, Virginia (Don
Ehrenberger).

A recent survey of past winners
and their teachers indicates that the
competition influences career
choices and fields of study. It appeals
to a wide range of students with
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interests in industrial arts, voca-
tional/technical studies, and the sci-
ences. Teachers reported that the
competition,is useful for motivating
students to learn more science and
technology as they solve the prob-
lems associated with developing
their inventions.

Every student who entered the
1996 competition received a long-
distance calling card and a certifi-
cate of participation. Many finalists
wiil have their devices displayed at

conventions and exhibits through-
out the country. Administered by
the National Science Teachers Asso-
ciation, the Duracell/NSTA Schol-
arship Competition has awarded
over $600,000 in scholarships, sav-
ings bonds, and cash awards to
nearly 700 students over the last
fourteen years.

To enter the Duracell/NSTA
Scholarship Competition, ninth
through twelfth grade students de-
sig-n and build a device that is edu-

cational, useful, or entertaining and
is powered by one or more Duracell
batteries. |udging is based on the
creativity, practicality, and energy
efficiency of the device as wellas the
clarity of the written description.
Proposals for entries are due at
NSTA each |anuary.

Duracell U. S.A., headcluartered in
Bethel, Connecticut, is a division of
Duracell Inc., the world's leading
manufacturer of high-performance .

alkaline batteries. O

Cyhel'Teasen ll,ulhtellet's
|ust about everyone who entered

the CyberTeaser contest-a continu-
ing feature of Quantum's World Wide
Web site-submitted a correct an-
swer. This was very gratifying indeed.
Now if we could just get all our en-
trants to supply theirmailing address
when they submit their solution!

These folks were the first to sub-
mit a correct answer to the Cyber-
Teaser (brainteaser Bl72 in this is-
sue):

Oleg Shpyrko (Rochester, New York)
Xi-an Li (Middlebury, Vermont)
Sabrina Sowers {Baltimore, Maryland)
Matthew Wong (Edmonton, Alberta)
Maeline Krig (Minnesota)
Anna Domnich (Holbrook, New York)
Amy Forster (Cygnet, Australia)
Marc Oliver Rieger (Konstanz, Gerrnany)

|eff Canter (Nashville, Tennessee)
May T. Lim (Philippines)

With this edition of the
CyberTeaser, we added a new twist:
every person who submitted a cor-
rect answer was eligible to win a
copy of Quantum Quandaries, a
collection of the first 100 brain-
teasers from QuanLum magazine.
Check our Web page to find out who
won the book. And while you're
there, take a crack at the new
CyberTeaser. Our address is http://
www.nsta.org/quantum.

Bullelilt Boal'd

Fl'ee cut'l'iculum malenials olt lhs Wsh

Microsoft Corporation and the
National Science Teachers Associa-
tion (NSTA) have teamed up to pro-
vide a field-tested, comprehensive
curriculum for high schooi science
as part of the G1oba1 Schoolhouse
(GSH), a popular resource area on
the Internet. The new GSH Web
site, launched at the NSTA conven-
tion in St. Louis in March, gives sci-
ence educators in-depth descriptions
of the content components of the
new National Science Education
Standards and science teaching ma-
terials designed to achieve those
standards.

At the GSH Web site, teachers
have free access to learning re-
sources developed by NSTA, called
"Micro-lJnits," for more than 80
topics in biology, chemistry, Earth
and space science, and physics. The
materials are linked to the National
Science Education Standards re-
cently developed by the National
Research Councii of the National
Academy of Sciences. For teachers,
Micro-Units include materials for
helping students learn the content of
the unit, along with assessment
tools. Student materials provide ba-
sic activities, hands-on investiga-
tions, and readings for each unit.

The overall curriculum frame-

work and the Micro-Units are the
work of the Scope, Sequence and
Coordination of High School Sci-
ence (SS&C) project, an NSTA ini-
tiative funded by the National Sci-
ence Foundation. In addition to
supporting the new science educa-
tion standards, the curriculum's in-
tegrated and coordinated design re-
flects the best research on how
students learn. High school students
study all four natural sciences every
year across all grade levels, instead
of the traditional "layer cake" pat-
tern of a single science subject each
school year.

Before being posted to the Web,
materials are reviewed by experi-
enced science teachers, teaching sci-
entists/ and research scientists and
are field tested in schools. Curricu-
lum materials for the ninth-grade
level are available now; materials for
1Oth through 12th grades will fol-
low. Science teachers who down-
load and use the nearly 2,000 pages

of free materials can also provide
feedback to help improve the cur-
riculum.

The Scope, Secluence and Coordi-
nation home page is located at
http://www.gsh.org/NSTA_SSandC.
The site is hosted on the Global
Schoolhouse, developed jointly by the
Global SchoolNet Foundation and
Microsoft.
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Amoss

1 Arab robes

5 699,646 iin base 16)

10 Unified field theory:
abbr.

13 57,018 (in base 16)

14 Kennedy's Sec'y of
the Interior Stewart
Lee _

15 Shady mountain
side

17 A{resh
18 Change the color o{
19 Po tributary
20 Shed skin
21 Unrefined metal
22 Element in

diamonds
24 Row
26 Make lace

27 Learned person

31 diffraction
35 Blows a horn
36 Perch

38 Hydrogen and

oxygen
39 Heediess

40 One ft3/s
41 _ function

(piecewise const.

function)
42 Expert
43 10-1s: pref.

44 Large group
45 Daughter of Minos
47 _teactor
49 /FK's predecessor

50 Poise reciprocal
51 Like fupiter or

Saturn
54 Pie _ mode

56 Publisher Conde

1t874-t9421

xcr0s$$ctE]lGS

60 Anthropologist

- 
Hrdlicka

1t869-t943)
61 Capillary perme-

ability increaser
63 Theater award
64 LO-e: pre|.
65 fapanese novelist

_Dazai
66 Construction beam

(2 wds.)

57 _ Allen belts
68 Ballots
59 British writer

Walter _ _ Mare

1t873-t9s6)

0oum

1 Swedish botanist

_ A{zelius
( I 750-1 83 7)

2 Seismologist

- 
Gutenberg

{ I 889-1 960)
3 English chemist

Frederick Augustus

_(1827-1902)
4 

- 
waveform

by David R. Martin

48 lt's also like 51A
51 Astronomer

_ Oort
52 Kingly Norse name
53 

- 
cava (vein)

54 Med. school subj.

55 Calcium oxide

57 Cennan physicist
Ernst

t 1840-190s1

58 Continental crust
rocks

59 10rr pref.
(r2 Same: prci.

v)
a?
-c5

5 

- 
borealis

6 _wax(ozoceriteJ
7 

- 
oil (funiper tar

oil)
8 Insect
9 

- 
field

10 Volume units
71 52,187 (in base 16)

12 Pedestal part
i6 Container
23 43,758 {in base 16)

25 Hirt and Pacino

27 Band
28 Vehlcle
29 Old Testament

Prophet
30 Finnish port
31 Refrigerant
32 Saltpetre
33 970,458 (in base 16)

34 Person to be

shunned
37 Superiative: su{f.

40 

- 
radiation

41 Electric switch
43 64,985 (in base 16)

44 Coolidge's successor

46 Inventor Thomas

SOLUTION IN THE NEXT ISSUE
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+5 +6 47 48
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64 65 66
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M171
The answer is yes. Consider the

polynomial P(x) = xlgx + 2l.If

n = Ll.J,
k

then

9n+2 = 100.r.001.
k-1

Therefore,

P( n\ =1 1...I I.100...001 = 1 1...1 1.

-- -
k k-l 2k

M172
The answer is positive in cases (a)

and (b) and negative in case (c). To
construct an n-term sequence with
the desired properties, we can take
the firstn Fibonacci numbers I,2,3,
5, ..., f,(where f* * r = fp + fp_rl, re-
verse their order, and divide them all
by their least common multiple
(LCM) N. Any number [/N thus
obtained will be of the form lf m,
and for any ft = l, ..., n - 2,

fo -f**, -f**, .

NNN

For instance, for n : 5 we have
LCM(1, 2, 3, 5,81 = 120, so one of
many possible answers is the se-
quence I I 15, I 124, I I 40, I | 60, I I L20-

An infinite sequence of this sort is
impossible, because if we reduce the
first two terms of such a sequence to
their common denominator N and
compute all subsequent terms with-
out simplifying the emerging
fractions, we'll represent them all in

ANSWERS,
HINTS &

SOLUTIONS

the iorm b N, k = 1,2, ...,
rrhere -\ 2 b, , b. , ... {and
b, =h ,-b'.Sothere
can be no more than l/
terms. iN. Vasil.ver,)

M173
Let's start rvith part (b).

Here nvo positions of point
X are possible: the mid-
point M of BC and the base
H of the altitude dropped
fromA onBC (fig. 1). These
two points merge into one
rt AB = AC.Let I and Nbe the mid-
points of AC and AB, respectively.
Then XQ lies on the median XI of tri-
anf,e ABC, mdXQ:XL = 2:3. Simi-
Iarly, XP : XN = 2 : 3. lt follows that
triangles XPQ, XLN are similar,
with ratio of similarity 2:3. So we
can look for points X such that
AXNI is similar to LABC. Sincefor
any X the area of AXNI is Ll4 that
of LABC, the ratio of similarity of
these triangles must be 1/2. So, if
AXNI - AABC, we can assume that
the side oI AABC corresponding to
NL = L I zBC is BC. (Otherwise both tri-
angles are isosceles or equilateral and
our assumption holds anyway.) Now
we have two possibilities: ZXNL =
ZBCA = ZNLA, which means thatAX
is parallel to AC mdX = M (fig. lal,
or IXNL = IABC = IANL, which

Figure 2

means that point X is symmetric to
A with respect to Nl-that is, X : H
(fig. 1b). Bothpoints MandH clearly
satisfy the condition.

Now let's turn to part (a). Here
the two triangles in question are
similar for all points X on BC. We
can skip the case where AX I BC: it
is the situation considered above,
because in this case/ in the notation
of figure lb, X = H, P ={ Q = I. So

suppose that, say,IAXB > 90". Then
angle ABX is acute (fig. 2) l its vertex
B lies on the same side of AX as the
circumcenter P of LABX1 and, by
the Inscribed Angle Theorem,
IXPA = LZXBA.If angle ACX is
also acute, a similar argument
shows that IXQA = ZZXCA.It re-
mains to notice that PQ is the per-
pendicular bisector of AX and, in the

case we consider, P
and Q are on diJfer-
ent sides of ,4X. So

txPQ: tlrzxPA:
tcBA ail /XPQ =tlrzxqt = LBCA
and, by the AAA
condition for simi-
laity, AXPQ
AABC. This argu-
ment has to be
slightly modified iiFigure 1

0uAltlTUtll/AIiStIE[8, ilirTS & S0rUil0rJS 5l
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Figure 3

IACX > 90' (fig. 3)-here both angles
XQP andXCAequal 1 80" - | l rzXql.

Finally, part (c). In this case also
any point X can be taken. This fol-
lows from the perpendicularity o{
the sides PQ, QX, XP of AXPQ to
the sides BC, CA, AB oI AABC, re-
spectively (tig. al: rotating one tri-
angle by 90o, we make all its sides
parallel to the corresponding sides of
the other, and the similarity be-
comes clear. (V. Dubrovsky, E. Tur-
kevich)

B

Figure 4

M174
Suppose the statement

problem is wrong. Then

: rll + vzl
and the for-
mula for the
derivative of
a composite
function). So
O(x) is a non-
decreasing
function, and
@(b)-o(a)>0-
that is,

tanr'f(bl - tan-i f(al>b - a:4.
But tan-l y ranges in the interval
(-n12, nl2l, so the difference of its
values in any two points cannot ex-
ceed n < 4. This contradiction com-
pletes the solution. It is clear now
that the number 4 in the statement
can be replaced with n.

Ml75
First we'll establish the lower

bound for the perimeter. If we cut
the tetrahedron shown in figure 5
along its edges DA, AB, and BC and
unfold it so that it lies flat, we'llget
a parallelogram. The perimeter P of
the cross section turns into a polygo-
nalpathKrKrsuch that the segment
KrK, is parallel to two sides of the
parallelogram. It is clear from the
figure thatKrKr=2a,wherea is the
length of an edge, so we have P > 2a.
Notice that P = 2a iI and only if the
plane of the section is parallel to the
two edges (AD and BCI that it does
not cross.

To prove the second inecluality,
imagine that the plane cutting the
pyramid moves parallel to itself

of the (fig. 6) so that the cross section re-
mains a quadrilateral. The two ex-
treme positions are those where

the plane reaches the endpoints of
one of the pyramid's edges. For
each of these the quadriiateral de-
generates into a triangle (or even a
double segment). But the perimeter
of any triangular cross section is
smaller than 3a, because the dis-
tance between any two points of an
equilateral triangle (except apair of
its vertices) is smaller than its side
length.

It remains to show that any "in-
termediate" cross section will have
a perimeter no greater than one of
the two extremes (for the triangles).
II x = AK, where K is the vertex of
the section on the edge AB (fig.7),
then the perimeter is a linear func-
tion of x (that is, P : kx + bl.

For instance, in the case shown in
figure 7, KL isproportional to AK : x
(that is, KL: crx); the same is true for
AL (that is, AL = crxl; so CL = a - czx.
Then LM and C M are proportional to
Cl, so they also depend linearly onx,
and so on.

However, any linear function on
a segment takes its maximum at
one of the segment's endpoints. The
value 3a is never achieved, because
the "extremal" triangular cross sec-
tion in this case would have to

f'(xl-lfl"D2>r

for any point x on the given seg-
ment. Rewrite this inequality as

f'(x) ,t
r*(f ("))'

(D'(x)> o,

where O(x) = tan-11(x) -x (this fol-
lows from the fact that (tan-\ yl'

B

Figure 6
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coincide with the pyramid's face,
and any parallel cross section wouid
be a triangle in this case. But it's
possible to obtain a perimeter arbi-
trarily close to 3a by drawing a
plane close to a face. (N. Vasilyev,
V. Proizvolov)

Physics

P1 71
The cord rrith the sphere rnlI be

deflected torvard the aris oi revolu-
tion {see iigure 8J. In the inertial rei-
erence frame the sphere rs aiie cted
by three forces: the huor ant r.rlce F5,

the tension of the corcl T, and the
force of gravity F {F = p \ .r rrhere p.
is the sphere's densitr- ancl l,' is its
volume).1 The sr-rrn oi the projec-
tions of these iorces on the vertical
axis is zero:

P.uVg- P.I.'S - f cos u = 0,

where p.,, is the densitl' of water.
The sphere's rer-olr:tion along a

circle of raclius l. - 7 srn u induced by
the glass's rotation is described by
the f ollorr.rng erlllalrion :

p.\rc,tl1r - 1 sin sJ =
-- i

P,, Vto ,r - 1 sin ul - f sin c{.

A simultaneous solution of these
two equations gives us co:

= 10.(r s I

Figure B

lFor details about the buoyant force
in a moving liquid, see "Meandering
Down to the Sea" in the |uly/August
1992 issue of Quantum.

P1 72
Consider the membrane's oscilla-

tions to be harmonic-that is,

x: A sin (Df,

where x is the deviation from the
equilibrium position, A is the ampli-
tude, and a = 2tw is the angular he-
quency of the oscillations. At t = 0,
we have chosen the membrane to be
at its equilibrium position and mov-
ing in the upward direction.

A grain of sand moving with the
membrane is affected by two forces:
gravity mg and the normal force N
due to the membrane (fig. 9). Thus
the motion of a grain is described by

N-mg=24.
At the moment the grain loses con-
tact with the membrane, the sup-
porting force is zerol so the grain's
acceleration is a : -g. Then the grain
ascends to a height h as a body
thrown vertically from a height ft,
equal to the membrane's deflection
from the ecluilibrium position at
moment to, and with an initial ve-
locity vo equal to that of the mem-
brane at the same moment to (see
figure 9). According to the 1aw of
conservation of mechanical energy,

2- mv^mgho+?=mgh. (1)"2

Now let's consider the motion
of the membrane in more detail
and connect the values fio and vo

0

Figure 9

with the amplitude of the
membrane's oscillation. At any
moment the membrane's velocity
is v = otA sin (rrlt + xlZl : coA cos rot,
and its acceleratiofl a = -ro2x =

-A sin ot. At the moment of sepa-
tation to,

v : vo: toA cos ofo,
a: -g = _/o)A sin rrrfo,

,=ho=Asincoto.

From the equation for the accelera-
tion,

sin roto = gf azA,

SO

ho = slaz,r)^, ) )vo= |UDAcos ofo= r/r,t-l- -g- o-.
Inserting the values of ho and vo into
equation (1) yields

An- =77 .10-6 rt)
LL)

= 0.077 mm.

P173
According to the first law of ther-

modynamics, the thermal energy
transferred to the gas is expended on
changing its internal energy AU and
performing work I4l:

Q, = A% + W1, Qy= LUrr+ Wrr.

Here the subscript I refers to the pro-
cess 1 -+ 3 -+ 2, and the subscript II
refers to the process | -+ 4 -+ 2.
Since the gas is monatomic, the fol-
lowing ecluations are true for one
mole of the gas:

33U=-RT, AU=-RAT.
22

It follows that the change in the
gas's internal energy corresponding
to the transition from state 1 to state
2 depends only on the change in the
gas's temperature LT = Tz- 7, and
not on the way the gas moves from
one state to another. Thus

LtJ r =AL.Iu = AU = 9R(7, - T, ).2 ''

To find the temperatures 7, and

5g

r - Jsinu

OUAlllIUM/Al\lSllllERS, IIIl\lTS & SOTUIIOlllS
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T,let's write down the equations of
state for an ideal gas for states 1 and
2 (see figure 1 on page 31 ):

PoVo: RTt, 2Po 2Vo: RTz,

from which we get

i SPoVo 9It-lt=4, Lu=-Povo.
R 2-

Now we get the values for the
work I4l, and W, performed by the
gas. In the first case (the process 1 -->

3 -+ 2l the gas doesn't perform work
during the I -+ 3 phase, but during
the isobaric expansion (the 3 -+ 2
phase) the work performed is

wr: PLV :zPolzvo- Vo) = zPovo.

In the second case (the process I -+
4 -+ 2) the gas performs work only
during the phase | --> 4:

wn= Polzvo- Vol = PoVo.

Thus

Qr =Au +wr-Enn n,
2

Qrr = AU +W =Irnrn
2

The ratio we seek is

P174
Any conducting material be-

tween the plates will come to equi-
librium with surface charges match-
ing the surface charges on the
capacitor plates. Thus there is no E-
field inside the conductor (even a
non-ideal one). When the capacitor
is short circuited, the charges on the
capacitor plates neutralize each
other almost instantaneously, as
they would in a perfect conductor.
Therefore, the potential difference
across the conducting plate is Vo.
Because the resistance o{ the plate is
R = phlS, the current due to the in-
ternal migration of charges across
the plate is maximum at the initial
instant and given by

00

Figure 10

P175
Let F'F" be the focal plane of the

lens (fig. 10). Draw an auxiliary op-
tical axis AA'parallel to the arow.
If the light source is located in the
focal plane at point S' where it
crosses the axis AA', the lens col-
lects the rays into a parallei beam
directed along the axis AA'. This
parallel beam emerges from the lens
in the direction shown by the arrow.

In this case the light source for
the lens will be the image of the
source S in the flat mirror. To place
this image at the point S', the mir-
ror must be placed at the middle of
the segment SS' and perpendicular
to it. The light rays are shown in fig-
ure 10.

Bl'ainleasEr$

81 71
Divide the factors in the initial

product into groups of ten factors:
| . 2 . 3. ... . 10; tt . t2. 13 . ... .20, ...;
the last group will be incomplete.
After we "thin out" these products,
ail of them (except the last)will end
in the same digit as I . 3 . 7 . 9-that
is, they'Il all end in 9. Since 9 .9 = 8l
ends in one and the number of com-
plete products, I99, is odd, the last
digit of theirproduct is 9. The remain-
ingproduct is 1991 . 1993 and ends in
3. So the answer is 7 19 . 3 = 271.

8172
Every honest inhabitant of the is-

land answered "yes" to one ques-
tion; every liar answered "yes" to
two questions. So the total number Figufe

of positive
- A' answers 50 +

40 + 30: 130
equals the
sum of the
number of
honest per-
sons plus
twice the
number of li-
ars. If each

liar were counted once, we'd simply
get the entirepopulation, 100. So the
number of liars is 130 - 100 = 30.

8173
The bubbles envelop the tablet

with a layer ol Wactically constant
thickness. Since the pill dissolves
uniformly over its surface, its diam-
eter shrinks very slowly, while its
thickness diminishes cluite notice-
ably (we're speaking of arclative de-
crease/ of course). So the surface area
of the tablet and the volume of the
bubbles remain virtually constant/
while its mass decreases rapidly. At
a certain point the buoyant force ex-
ceeds the tablet's weight and lifts it
to the surface.

8174
The answer is shown in figure 11.

81 75
The answer is any number

greater than 3 except 5. Notice first
that no two vertices can belong to
the same triangie (we exclude the
"partition into one triangle"), so the
vertices belong to three different tri-
angles. After cutting them off, we
are left with a convex polygon,
which can be a triangle (four parts-
fig,. L}ali but it can never be the

Q, 
= 

13.

Qr 11

, vn V.,S

Rph
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Figure 12

union of two (equrlateral) triangle s,

because such a union is contex onh'
if it is a rhornbus, rrhich 1s lirfFos-
sible in our case. f rgr-rre s 1'1. an.l
12c sholr, partrtr.ons into srr and
eight parts. It ren;rins to sar- that
suhdividing a tr ianglc oi an ---pitcr
partition into four triangles a. ir-L fig-
ure 14a increases the nurlber oi
pieces by three. Thrs trick ap.,phecl to
the partitions in the iigur.-s r ields ,1

+ 3k, 6 + 3k, ancl S - .li trlangular
pieces for any k > 0 ,rhese numbers
give the remainders 1 0 l, respec-
tively, when dir-r,.1e.1 bv ,3). (V.
Dubrovsky)

l(aleido$copo
1. Scc frgnr.- 1 1.

2. Projection 1:rrlps must produce
conical hght beams. These can be
fclrme cl onll br point sor-rrces of
1ight, u,hich iluorescent lamps are
not.

3. They should be located on the
sarne linc, which must lle perpen-
dicular to the screen and object.

4. When the light corries from a

point source.
5. When the light source is larger

than the body and the screen is 1o-

cated firrther frorn the body thaur the
apex of the cone of compiete shadow
isee figure l3).

(r. Ii 1'or: can see part of the light
sourcr- irom u-here )'ou arc.

'. \\-hcn illr-urinatecl bt car he ad-

lights, the raised areas of the pave-
ment cast shadows that can be seen
from a distance.

8. These bright spots are images
of the Sun formed by many camera
obscuras (gaps in the foliage) on the
screen (ground). When the gap's size
is larger than the Sun's image on the
ground, the shape of the spots varies.

9. No (see, for example, figure 14).

10. The individual parts of an ex-
tended light source produce overlap-
ping shadows. The resulting shadow
will have a sharper edge when the
object is closer to the screen.

11. The heated opaque particles
in the flame block the passage of
light from the lamp, and at the same
time they emit light of weaker in-
tensity. As a result the part of the
screen behind the flame is illumi-
nated less and is perceived as
shadow.

12. This type of illumination pro-
duces no clear-cut shadows.

13. No, it doesn't.
14. The pin casts a shadow on

the retina that is orientated in the
same way as the pin itself. As usual,
the brain flips the image, so the
shadow is perceived as being upside
down.

15. No, because the light arrives
from a star as parallel rays, and the
shadow o{ the match doesn't cover
the pupil of the eye completely, be-
cause at night it is fully dilated
(fig. 1s).

16. The air over a bonfire is

Figure i5

heated to varying temperatures at
different places, so its density isn't
constant. Light beams passing
through a heterogeneous medium
do not propagate along straight lines,
and so they distort the images of
objects.

17. This is the result of perspec-
tive. A similar irnpression is pro-
duced when you look down a stretch
of railroad tracks.

18. By direct measurement you
can verify that both segments are
ec1ual, although your first impres-
sion probably says otherwise-it's
an optical illusion.

Microexperiment
In the first case the pencil's

shadow is more clear-cut than in the
second case, because the width of
the candle's flame is less than its
height. See also the answer to prob-
lem 10.

Cutlinu lacels
1. Points A and B, P and Q are

symmetric about the diameter of the
given circle perpendicular to AB.It
follows that AQ : BP : CK and
BQ = PA: DM.In addition, all these
segments are parallel, soAQKC and
BQMD are parallelograms.

2. Let M be the midpoint of AB,
and let Q be the second intersection
point of the circles. Since the tri-
anglesAQB are all similar to one an-
other, the same is true for triangles
AQM: they have a constant angle
AQM and a constant ratio QMIAM.
Therefore, point M is the image of A
under the spiral similarity about Q
with this constant angle and this
constant ratio. So the locus of M is
the image of the circle QPA-that
is, a certain circle passing through Q
and P.

3. The spiral similarity about Q
that takes A into B maps one circle

shadow

lamp

Figure 13

01

regiclt cti complete

pencil

Figure 14
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onto the other and so maps the
tangent AC to the first circle onto
BC. Therefore, the angle of rotation
lAQB is equal to one of the angles
formed by linesAC andBC at point
C. If we inspect all possible situa-
tions more carefully (or use oriented
angles instead), we'11 see that
ZAQB + IACB: :r if points Q and
C are on different sides of AB, and
ZAQB = ZACB if Q and C are on
the same side of AB.In either case,
the points A,B, Q, and C lie on the
same circle.

4. The theorem about the Gauss
line follows from our statement
about concurrent diagonals of paral-
lelograms. To see why, let the given
cluadrilateralbe NBIM (using the no-
tation from the article). We will re-
construct figure L2 (rn the article)
around this quadrilateral. We extend
NB andMl to meet atK, andNMand
B/ to meet at D. Then we find points
A and C so that BNMA and KNDC
are parallelograms (fig. 16). Consider
the dilation with factor 2 and center
N. It takes the midpoint of diagonal
BM tnto A, and the midpoint ol KD
into C. Now we have a figure like

Figure 16

figwe 12, and it was shown that lines
AC, BD, and KM are concurrent-in
other words, that points A, C, and I
are collinear. So the given midpoints
(their pre-images under the initial di-
lation) lie on the same line (a midline
in triangle N/C).

5. In the notation of figure 14 in
the article, both mutually dual state-
ments amount to the same fact: the
line joining the intersection of
a: AB' and b' = A'B and the inter-
section of a' = AC' and b : A'C
passes through the intersection
point of the lines BC' and B'C. We
can transform the dual theorem of
Pappus's theorem into the theorem
about concurrent diagonals (and vice
versa) by a central projection that
sends point s A and A' in figure 14 to
infinity, thus creating two triples of
parallel lines (lines a, b, c turn into,
say, KC, BP, ND in figure 12, and
lines a', b', c'irtto LM, CD, KNl.

Auainsl the Hrrgltl
(Answers to selected items)
1. In Gaiileo's experiment the

musket ball and cannonball feIl to
the ground practically simulta-
neously. However, if Galileo could
have measured short intervals of the
order of 10-2 s, he would have ob-
served that the musket ball was
slightly behind the cannonball. This
is because the relative contribution
of the air resistance to the total
forces affecting the falling musket
ball is greater than that affecting the
cannonball.

A Vorld Wth Tiees... ruhere it's a p leasure
to liue, cuery day

Trees
lUlakeaWbrW

lntrl
l$ 

rees make a world oF difference.
& B.*..., sand and dirr, and shaded

parks for baseball, picnics, and quiet

walks. Between steamy, sunbaked

streets, and
friendly, shady

neighborhoods.

Trees are cool.

Trees help con-

serve energy, give

AWorldWthoutTiees wildlife a home,

and increase property values. They also

clean the air we breathe, hold the topsoil

and keep rivers running clear.

But trees don't just happen. Your

town needs to plant trees, and provide

for their care...to be a Tiee Ciw USA.

TREE CITYUSA

Support Tree City USA where you

live. For your free booklet, write: Ti:ee

City USA, The National Arbor Day

Foundation, Nebraska Ciry, NE 68410.

rE\TheNational
(iZernorOavfounOatlon

AAPT

Burleigh Instruments

NCTM

NSTA Special Publications

Springer-Verlag

US Air Force

13

2l

47

29,30,52, Cover3

62 ll/lAY/JUlllI ISS6

lndex il Afierli$Bt'$

Cover 4



2.By afactor of {,/i5 = 1.15.
5. If you add a small amount of

dye to the stream of water without
disturbing it [you can use ink or po-
tassium permanganate), you can see

that the flow under the ball is turbu-
Ient and chaotic.

6. The coefficient C, depends
strongly on the orientation of the
spoon relative to the stream's di-

rection.
7 .If a Ping-Pong ball is dropped

from a high place, the steady-state
speed of about B m/s will occur in a

timet=2-3s.

CoI'l'ecliolt$

March/April1996
On page 59 ser.eral or-e rlrars faile d to print as ex-
pected in column 2. Beginning at line 16, the text
shouldread: "...21k - 1r- l endrn 1 andrsobtained
by adding 1 to the odd representirtron oi k + 1. The
number one has t\{o represantations: 1 and 1T."

The Publish"r', nrr" .or,rt", a mi.sprint due to a

copyediting error. In the second-last paragraph, line
7, the vector shouid read "fl" inot "VA").

The solutior, ,o L.,rrirr,.rr., ,rUU (p 58) contained
a misprint. The e.luation in the last line of the first
paragraph shor.rld read: "5(n + 1)= 3[(n + 1)+ 2]." As
stated, n is the number of days before Friday that
Ciliegia u'orked. But he also worked Friday, so in
the eqr-ration "n" should have been "n + 1" {as it is
rn the next paragraph). The revised equation pro-
duces n = ), as printed.

Several readers r"ro,",u ,"ir r. they found shorter
solutions {or brainteaser B1(r7:

t15621437 --> tla56l237 --> \234567.

We notice that both the brainteaser author (p. 58) and
the boy in the picture (p 9) take three books from the
middle, ieaving two books on each end. If one must
take thrce books from the middle, Ieaving a pair of
books at each end, and then insert the three tomes
either at one end or between the volumes at one end,
the author's solution is valid. However, this restnc-
tion is not articulated in the statement of the prob-
1em, and as it stands, the solution sent in by our cor-
respondents is both valid and shorter.

|anuary/Febnrary 1996
Due to an editing error, the solution to challenge P162
contains an incorrect value for one of the parameters.
On page 46 in the third column, 13 lines from the
bottom, for " p = 14.5 g/mole" read " p = 29 g/mole."
A tip of the foolscap to Nick Secor, a graduate stu-
dent in physics at the University of New Mexico,
for alerting us to this.

November/December 1995
In the Kaleidoscope the following sentence appears
(p.33):

The Polish mathematician Kazimierz Kuratowsky [sic]
and the Russian mathematician Lev Pontryagin indepen-
dently proved that a graph is planar i{ and only i{ it con-
tains neither of these two graphs (the complete S-node
graph and "houses-and-we11s") as a subgraph.

In addition to misspelling Kuratowski's name,
the sentence perpetuates a misattribution that ap-
parently dates from l962.Inthat year A. A. Zykov's
Russian translation of C. Berge's Thdorie des
graphes et ses applications (1958) was published.
Zykov added the followingfootnote to Berge/s treat-
ment of the Theorem on Planar Graphs: "This theo-
rem was introduced (but not published) by L. S.

Pontryagin in 1927 and in 1930, and independently
of him, proved again by Kuratowski. As a result we
call it the Pontryagin-Kuratowski Theorem."

A note by Kennedy, Quintas, and Syslo in
Histoda Mathematica ll2ll985l, pp. 355-58) traces
the history of the theorem. Briefly, in 1929
Kuratowski announced his discovery, and in 1930
he published it. In his published paper he planted
the seed for the later confusion. In a footnote,
Kuratowski wrote: "I have leamed from Mr. Alexan-
droff, that a theorem for graphs, analogous to my
theorem, had been found by Mr. Pontrjagin several
years ago, but has not been published so {ar."

We will never know i-f Pontryagin proved the Theo-
rem on Planar Graphs in 1927. There is evidence
(some of it from Pontryagin himself) that he was in
fact working through an early and incomplete version
of the Kuratowski Theorem, transmitted to him via
Alexandrov, and so his purported proof would have
stemmed as much from Kuratowski as from his own
inner resources. In the end, however, "there can be no
dispute that Kuratowski published the first written and
correct proof of the Theorem" (Kennedy et a1., p. 363). It
is also telling that "[b]efore Zykov'stranslation of fBerge's
book], Soviet mathematicians universally referred to
the Theorem as the Kuratowski Theorem" lp.36a).

Our thanks to Quantum advisory board member
Alexander Soifer for bringing this to our attention.
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TOY STORE

Why wonl Weehle Wohhly Uo Io hed?

ls the problem real, or just in his head?

by L. Borovinsky

1F YOU STUDY THE RUSSIAN
! language/ sooner or later you'll
I enco.,.rrter the grear Samuel
| tolarshak. He #r, , Iiterary
scholar who translated Shakespeare
into Russian, but he is best known
for his poetry for children. There is
probably not a Russian alive who
doesn't know of him, and many of
his poems are perfectly suitable for
elementary textbooks
for teaching

Russian to foreigners.
Here's a poem Marshak wrote

about a popular toy that seems to
have no nationality. The Russians
ca11it Vanka-Vstanka. In English this
might be rendered as "fohnny Iump-
Up." At any rate, it's about a doll you
can't knock over-it always pops
right back up. The translation below
was done by Dasha Bolotina, an

eighth-grader at the Shady
Hill School in Boston.

Dasha calls the toy Weeble Wobbly,
which is as good a name as any.

To sleep went the horses, to sleep
went the chicks,

You can't hear the chatter of birds
in their nests.

But one naughty boy by the name
of Weeble,

And nicknamed Wobbly, cannot
sleep or rest.

That Weeble, that Wobbly has
unhappy nannies,

Each night they try putting Weeble
to bed.

But Weeble's resisting, for he is not
tired,

He jumps up and wobbles, and
makes nannies mad.

The nannies try covering him with
a blanket,

But Weeble iust tosses the blanket
away.

Again as before he stands up and
wobbles,

And so he keeps standing all night
and all day.

Weeble was treated by a very wise
doctor,

The diagnosis he made sounded
perfectly right:

"Weeble," he said, "you can't sleep
like other people,

Because it's your head that is just
much too light."

So, the doctor from the children's
hospital found the reason for Weeble
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Wobbly's strange behar-ror. Nou,
we'll try to explain it rrith the help
oi ph1,sica1 1au's :r.nc1 also iir-rt1 :1 cLlre
for his insomnra. \\-e'11 trgr-rrc out
what rt rrould talic ior \\ eeble \\iob-
bl1, 1n he .1orr n or r.irher, to .srrr),

lying dorr-n-iin.l irt .i *rrod nrght's
ICSt.

Hou, is thrs :r:r-.rLraL.,1r r-rpright
doll constructcrl , Inirqrne nvo ad-
joining sphcrt. .'r iiir r:rchi R and r
lR .i-:c, t'l ,::rL.l,.1lr,,1s', Tlfe
bigger spherc r: thc L.odr-" and the
smaller is the h..r.1. " qSometimes
the hearl r. sh.r;e ,,1 like a cylinder
u,'ith a hori:,rlLt;i1 asrs, but for our
purposes thc sh;11..' oi the head is of
no importance .' The body cont:rins
a massir-.- obic-ct oi height I shaped
like a slice irom a sphere. The slice
is definetl p:rrt1,v by the lower sur{ace
of the tor''s body and partly by a

plane perpendicular to the axis pass-
ing through the centers of the
spheres and the point where they
touch.

If we try to lay Weeble Wobbly
down on a horizontal surface and
leave it to its own dcvices, it imrne-
diately stands up. Why? It's obvious
that thc verrical position corre-
sponds to the state of stable equilib-
rium. There is a 1au. of mechanics
that says: "In :r state oi stable eclui-
libriurn, the ccrrtel ol qra\-itv rxust
be in the lowest oi all possible posr-
tions." This means that the value of
the potential energy caused by the
force of gravity must be the smallest
possible.

Let's find what conditions mini-
mize the Weeble Wobbly's potential
energy when it assumes the vertical

position. To do this we disturb the
ecluilibrium of the doll, inclining its
axis to an angle s from the vertical.
Let h,be the height of the center of
gravity of the massive object in the
toy's body when the axis is vertical,
M the mass of this object, and m
mass of the toy's head. The mass of
the body's shell doesn't matter, be-
cause the height of its center of grav-
ity and thus its potential energy
don't change when Weeble Wobbly
tilts.

As you can see from the figure,
the height of the massive object's
center of gravity in the tilted posi-
tion is

hr=lCDl+lBLl
= h"cos cx, + R - R cos u,

and the height of the head's center
of gravity is

hz= lLOl + lKO,l
=R+(R+r)coso.

The total potential energy of the
massive object and the head is

E,,= Mgh, + mgh,':lM+m)gR
+ [m(R +rl-MlR -ft")lgcoscx.

From this it follows that the po-
tential energy of Weeble Wobbly is
minimal when its axis is vertical
(that is, when u : 0) if the expression
by which we multiply gcos u is
negative:

m(R+r)-M(R-h")<0,
OI

-.MR-h".R+z

True, h"is still unknown, but it can
be expressed by the known param-
eters R andh (we'11 accept this with-
out proof):

. 8R-3h
11^ = k-"c " li-R- 4h'

So, we have found the exact
mathematical condition showing
how "light-headed" Weeble must be
for him to resume the vertical posi-
tion whenever he is pushed over-or

eput to bed

Energg Sources
and Natural Fuels

by Bill Aldridge, Linda Crow,
and Russell Aiuto
This book is a vivid exploration of
energy, photosynthesis, and the
formation of fossil fuels. Energy
Sources and Natural Fuels
follows the historical unraveling
of our understanding of photo-
synthesis from the 1600s to the
early part of this centuq,'. Fifty-
one full-color illustrations woven
into innovative page layouts
bring the subject to life. The
illustrations are by artists who
work with the Russian Academy
of Science. The American
Petroleum Institute provided a

grant to bring scientists, engi-
neers, and NSTA educators to
create the publication. This
group worked together to
develop the student activities and
to find ways to translate indus-
trial test and measurement
methods into techniques
appropriate for school labs.
(grades 9-10)
#PB-104, 7993,67 pp. US$12.95

To Order, Call

r-800-722-NSTA

@';;:i:'



If you like meeting challenges, the Air Force wants you. We need officers and leaders for
tomorrow's Air Force. Make a difference in your future. Earn a bachelor's degree, and we'll
help you pay for it.

The Air Force Academy

The Air Force Academy offers a quality

education plus the physical conditioning

\ and leadership training you'll need to be

ta. an Air Force officer. After you graduate,
\ \.. you'll begin life as a leader in the

YES \ \ 2lst century Air Force.
Send me more \
about the U.S. \
Air Force Academy \
Nare, \a

Address:- \

-\

AirForce ROTC

If you attend another school, the Air

Force Reserve Officer Training Corps

offers scholarships at more than 700

colleges and universities. After ,//
graduation, you'll begin an exciting ,/// YES
career as an Air Force officer. /ls"narne more

-/ ztp

7/ Hign s"h*t
Phone ( )

\

City

Z'P
State_\

Phone ( )

High School

Graduation date
Mail Coupon to: Director of Admissions, HQ USRfnIRRS\

2304 Cadet Drive, Suite 200
USAF Academy CO 80840-5025

Circle No. 1 on Reader Service Card

/ Graduation date
/ l,lo;t t -n,,nnn tn. uiMail Coupon to: HQ AFROTC/RRO

551 E. Maxwell Blvd.
Maxwell AFB AL 361 12-61 06

Circle No. 2 on Reader Service Card


