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Spinner (1985) by Nancy Graves

HIS FANTASTIC CREATURE, COBBLED TOGETHER

from castings of food and tools, is a kind of homage to
the seemingly infinite creativity of the natural world. It’s
also a celebration of the physical. The sardines at the left
are so precisely cast, one can see the fine detail of their
scales. The salt on the pretzels is meticulously preserved
in bronze. The sculpture as a whole is adorned in a riot of
colors. We take a primitive, one might say “animal” plea-
sure in feeling these things with our eyes—objects that we

normally ingest or handle without a second’s thought.

The sculpture is called “Spinner” because its head and
neck rotate. It recalls the mobiles of Alexander Calder,
which are also kinetic balancing acts. It may also cause the
scientifically minded viewer to think of problems the
sculptor works through intuitively—questions of center of
mass and friction. This issue of Quantium contains several
articles devoted to these topics—see “A Gripping Story,”
“So What’s the Point?” and “Up the Down Incline.”
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But what toes it mean?

Putting the math into words is good practice

EARNING MATHEMATICS

is, for many of us, an awesome

experience. We can use sym-

bols to represent various kinds
of numbers, and then we can define
operations to perform on these num-
bers using logic. We can also repre-
sent geometrical objects mathemati-
cally. What is most impressive is the
fact that we can use postulates or
primitives, which are very simple,
and from just a few arrive at a vast
array of generalizations—for in-
stance, the Peano Axioms.

Mathematics is interesting in its
own right, and one should not depend
on the relevance of that math to prac-
tical problems to be motivated to
learn it. I remember asking my math
professor at the University of Kansas,
Dr. Wealthy Babcock, what possible
use non-Euclidean geometry could
ever have. She replied, “None, I
hope!” Such a reply is essential to
progress in mathematics. Young
bright minds must not be constrained
by the correspondence of mathemat-
ics to reality. We need explorations
into areas that appear not to have ap-
plication. What is surprising is that in
almost every case, applications are
ultimately found, even in the non-
Euclidean geometries.

Now, some of us are not really math-
ematicians. We use math as a language
to understand nature. The postulates of
math can be arbitrary, and the conse-
quent derivations can lead anywhere. In
physics, however, our postulates must
derive from observations of nature. We
call such observations and their math-
ematical summaries empirical science.
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Boyle’s law is an example of empirical
science. It is a mathematical statement
of what nature does, but it’s not an ex-
planation. Scientists use mathematics
to create and test those explanations.
For example, Boyle’s law states that the
product PV is a constant for a gas. An-
other empirical law, Charles’s law,
states that V/T'is a constant. The act of
combining these two empirical laws in
one law—PV/T = constant—is often
done by a wave of the hand, but in fact,
it can’t be done without solving a differ-
ential equation.

When the empirical law PV = KT
is combined with theory, we get
something new. In this case, if we
create a kinetic theory that states that
the gas is represented by point par-
ticles moving and elastically colliding
with the walls of the container, but
never with each other, we get the
equation PV = constant - E,, where B}
is the average kinetic energy of the
particles. But from mathematics we
know thatifa=banda=c, thenb=c.
In this case, the temperature must be
proportional to the average kinetic
energy of the particles. This is the
fundamental idea of kinetic theory
and gives meaning to temperature.

My point is that the symbols used
and manipulated in physics have
something behind them—some
meaning. They represent something.
Deep understanding requires that the
person manipulating these equations
have the deeply felt intuitive sense of
what these symbols and quantities
represent. As an example, one of
Maxwell’s equations is V- B = 0. This
is a representation of a sum of partial

derivatives of a magnetic field B with
respect to direction. But what does it
mean? A careful examination of the
derivatives and their meaning as rates
of change shows that this expression
means that a magnetic field has no
sources or sinks. The field must con-
sist of closed lines. So far, no one has
found a monopole for magnetism.
(See “Magnetic Monopoly” by John
Wrylie in the May/June 1995 issue of
Quantum.) In the case of the electric
field, the equation V - E = p means
that electric fields originate and ter-
minate on electric charges. Great sci-
entists—people like Feynman and
Fermi—have a remarkable intuitive
sense of the meaning of the math-
ematical expressions they use.

The problem is, too many people
learn such equations without having
the slightest idea what they represent.
When you use such mathematics, you
should ask yourself: “What does this
symbol mean?” And then state it in
words. For example, VA—a vector
called the gradient—gives the value of
the maximum rate at which A is chang-
ing and its direction. When a scalar
product of this vector and a unit vector
in a particular direction is found, the
result is the rate at which A is changing
in that particular chosen direction.

These common words and
thoughts give meaning to a very com-
plex mathematical expression. Pure
mathematicians may be permitted to
revel in their purity, but as scientists
we should make it a practice to ar-
ticulate similar “translations” of the
mathematics we use.

—Bill G. Aldridge
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THE DAWN OF PHYSICS

From the elge of the universe to Tartarus

‘Hesiod, the teacher of nearly everyone,
considered knowledgeable about well-nigh everything . . .”
—Heraclitus of Ephesus

by Albert Stasenko

HIS HIGH PRAISE FROM AN

ancient philosopher for an even

more ancient poet! suggests an

idea: can we also learn some-
thing from that person who knows
“well-nigh everything”? Let’s see.
Here is what my reference book says
about this teacher’s cosmogony:
“Hesiod measured the length of the
universe by how long it takes an an-
vil to fall from the heavens to the
Earth (nine days) and then from the
Earth’s surface to the bottom of
Tartarus (also nine days). Below that
is Chaos, where all downward mo-
tion ceases.”

A question arises: what numeri-
cal estimates of the universe’s size
would the ancient poet obtain if he
applied modern physics to his time
scheme? Like Hesiod, we'll divide
the investigation into two stages:
first, the fall from the sky to the
ground, which has a duration
t, = 9 days; and second, from the
ground to Tartarus (t, = 9 days as
well). Naturally, we'll consider the
day to be equal to 24 hours, because
we can hardly expect the anvil to
move only during the day and to rest
at night. Also, we must keep in

'Hesiod (c. 700 B.c.) is the first
Western poet whose name has come
down to us from antiquity.

4 MARCH/APRIL 1986

mind the main actors: the forces
acting on the anvil. While the domi-
nant force in space is that of gravity,
we should take into account air re-
sistance as the anvil drops through
the Earth’s atmosphere. Since no-
body knows where Tartarus is, let’s
suppose that it lies at the center of
the Earth (after all, one can’t descend
any further than that!). Clearly there
must be a way to get to Tartarus—
for instance, through a shaft dug
strictly along a radius.
And now, let’s begin.

Stage 1: From the sky to the ground

The force of gravity acting on a
body of mass m, located outside the
Earth at a distance r from its center
is known to be

2
Mem, ——m,g Rg
- adc® 9 v

r? r?

F=-G

where R is the Earth’s radius and
8e = GMg/R 2 is the acceleration due
to gravity at the planet’s surface.
The work performed by moving a
body over a small distance dr > 0 is

GMgm,

2
r

dw = dr.

So, to lift a body from the Earth’s

surface (r = Rg) to the boundary of
“Hesiod’s universe” (r = Ry), we
must perform work equal to

Ry ot
W= j 7§madr
z

=Ry

= GMym,| — -1 |
R@ RH

If the lifted body is now set free, it
will fall from a distancer = R, to the
Earth’s surface, and all the potential
energy we gave the body will be
transformed into kinetic energy:

)]
%—O:GM@ma L_L ]
2 Ry Ry

where v is the body’s velocity near
the Earth’s surface and the zero on
the left side means that the initial
velocity of the body is zero.

Similarly, at any distance r < Ry
the law of conservation of energy
can be written as follows:

2
v () _ GM@[LL)
2 r Ry

(1 1
—g. RZ 2|
S® @(r RH]

Art by Dmitry Krymov






Here we have canceled m ,out of the
equation. We can generate another
useful form of this equation,

V()

2

+0(r) =0+ 0(Ry),

in terms of the “gravitational poten-
tial”

1
¢(r) = —g@Ré 7

and taking into account the null
value of the anvil’s initial velocity
vy = 0. This form of the equation
clearly reflects the conservation of
energy, written as a sum of potential
and kinetic energies per unit mass.

The functions for the gravita-
tional potential ¢(r) and the accelera-
tion due to gravity g{r) can be shown
both for r < Ry and r > Ry (fig. 1).
Similar graphs have been drawn
many a time.2

Thus, the anvil falling freely from
the “altitude” of Hesiod's radius Ry;
will have a free-fall velocity

at an arbitrary point outside the
Earth. Here v, = ,/286Re = -20¢
is the escape velocity.?

To find the desired distance Ry
we should integrate the equation
displayed above:

1 % dr
|
v 1 1

esc r=R, P (1)
/Ry Ry /Rg

However, it’s boring to integrate—
we can come up with a passable
estimate some other way. For ex-
ample, as it “falls” to the Earth,
the Moon is known to make a

2See “Late Light from Mercury” in
the November/December 1993 issue
of Quantum.

*We must keep in mind that v, is
the minimum velocity that must be
given to a body at the Earth’s surface
in order for it to escape the planet’s
gravitational field (¢g = —g4 R is the
potential of this field at the Earth’s

surface).

] MARCH/APRIL 1996

tional to the square ot
its period of revolu-
tion around the Sun.
It looks as if we're re-
volving in the same
circle of ideas. Insert-
ing the numerical
data v, = 11.2

10° m/fs, t, =9 - 24 -
3,600 s=7.8-10°s,

and Ry = 6.4 - 10°m
into equation (3), we
get

b Ry _ 123

Rg - Cz/3 :

¢ o(0) = _%g@R@

Figure 1

complete revolution around the
planet in approximately 28 days.
(This is where Newton saw an anal-
ogy with a falling apple.) Thus, the
Moon travels from point P to point
Q (fig. 2) in 28/4 = 7 days. Perhaps
it isn’t by chance that this value is
very close to Hesiod’s estimate of
“nine days”? If there is something
to this conjecture, the size of
Hesiod’s universe should be about
the radius of the Moon’s orbit—that
is, about 380,000 km = 60R,,.

The integral (1) can be written in
dimensionless form by expressing
all the linear sizes in units of the
radius R;; we seek:

R

3/2
[R_H] Ry /I/RH d[ijz Vsl
R r=R. Ry

@

(2)

Denoting the integral by a certain
dimensionless constant C we get

S =l )

Since v,, /CRg is also constant, this
equation, rewritten in the form
R ~ t2, looks very similar to
Kepler’s third law, which states that
the cube of the semimajor axis of a

planet’s elliptical orbit is propor-

¥

If we suppose that

our dimensionless

integral C (equation

(2)) is equal to about 1

(which is common
practice in dimensional analysis),
we can say the radius we seek is two
orders larger than that of the Earth
(R = 10?R ), and this value is simi-
lar to that obtained previously in the
“lunar” approach.

Those who still want to calculate
the size of Hesiod’s universe more
exactly must overcome the difficul-
ties of calculating the integral in
equation (2). Let’s begin by substi-
tuting variables: r/R; = sin? 6, so

1—RL =+/1-sin’0 =cos6,
H

s—r =2sin0cos0d0,

H

and the integral will be

R boundary of
H _ “Hesiod’s universe”

Figure 2



- Rf ____Vr/RHd[Lj
= J1-1/Ry \ Ry

arcsinl

= J’zsm2 0de
O=arcsin F

Jl cosQG)dG

O=arcsin

/2

arcsin 59—
Ry

Our estimate above showed
that Hesiod’s radius is larger than
that of the Earth by two orders of
magnitude—that is, Rg/Ryy «< 1.
We can therefore set the lower
limit of the integral equal to
zero: arcsin (Rg/Ry) = 0. Then
C =7/2 (as we expected, this value
is about 1). Thus,

which works out to
Ry=6-108m

So Hesiod’s Universe includes the
entire lunar orbit and more—it
stretches one and a half times far-
ther.

Of course, this is a far cry from
modern estimates of the Universe’s
size, but still it’s not too bad if we
remember that Hesiod lived 27 cen-
turies ago and was not a physicist
but a country poet. Scholars who
lived well after his time considered
the Earth to be flat and to rest on the
backs of three whales . . .

However, the anvil did not stop
yet—it continues to fly on.

Stage 2: From the Earth’s surface to
Tartarus

Everything is much more com-
plicated here. How, in Hesiod’s
view, did the anvil fall further?
Did he know about air resistance?
Let’s try to enlist Hesiod himself
in searching for the answer. We

consider two cases.

1. There is no air in the shaft
leading to Tartarus, and according
to our assumption Tartarus can be
no further from the surface than the
Earth’s center.

So let’s say that the anvil passes
the Earth’s surface at time ¢t = 0
and enters a vertical shaft dug
down to the very center of the
planet. To write the equation of a
body’s motion under the influence
of gravity only, we recall that in-
side a homogeneous planet this
force is proportional to the dis-
tance from the center—that
is, F = -m,g.1/Rg;

m d* r _
ar T %R,
or
d*r g
——;+ﬁr=0. (4)
dt® Rg

This is the equation for simple
harmonic motion with frequency

©®=,/8s/Rs , which has the solu-

tion

r(t) = A cos @t + B sin ot.

Taking into account the initial con-
ditions of the problem, at t = 0 we
have

r:R@,

dr
v(Re) = =
t=0

==V,

and so

1(t) = Ry cos ot — M ginet.
o

The anvil will arrive at the Earth’s
center (r = 0) in the time t = ¢, (the
second time interval of the anvil’s
fall). From here it follows that

Vg .
0= Ry cosot, ——sinwt,,
®

tana)tz = R_®0) = _L/
g «2
b = L srotan——= /2@ aretan——.
® V2 \ge V2

Since

8o = Ré =G= Ré
= iTCGR@ <p>/
3

where (p) is the average density of
the Earth, we get a formula for
evaluating t,:

9 = L i arctan—l—
\/@ VanG J2

Note that the duration of the fall
from the surface to the center de-
pends only on the average density of
the planet {p). On this point Hesiod
went astray. One must either agree
that, in accordance with the value of
t, =9 days = 7.8 - 10° 5, the planet’s
density is
1)V
arctan—

(o)== ¥2

4nG ty

=2-10" kg/m?®

—that is, three orders of magnitude
less than air (patent nonsense)—or
admit that the anvil reaches the cen-
ter far more quickly:

0.616s

1 3
t. =
' Js5.10° \/4'3.14~6.67~10‘”

= 500 s.

As a result of this computation,
Hesiod would have to reject the as-
sumption that there is no braking
force. So now we consider the sec-
ond assumption.

2. Air exists after all.

In this case, the motion equa-
tion (4) must be written with a
right-hand term instead of zero—
that is, the air resistance (divided
by the anvil’s mass), which is pro-
portional to the density of the air;
the square of the anvil’s velocity;
the square of its cross-sectional
area S ; and the buoyancy force,
which increases, one would think,
due to the inevitable increase in
the air’s density p with depth.
Thus we get

QUANTUM/FEATURE )




2
r)S o
v, 8, POVS, p<§>

dt Ry m, p. Ry
(5)

where p? is the density of the anvil:
m, =p%V, (V, isits volume). A certain
dimensionless drag coefficient C_ is
introduced into equation (5) that de-
pends on many parameters, but is
nevertheless equal to about 1. How-
ever, even if this coefficient is as-
sumed to be constant, an important
question remains: how does the air’s
density p depend on the shaft’s depth
h = R —r (or, in other words, on the
distance r from the Earth’s center|?
It’s known that the dependence of
the air’s density on the altitude
h =R -rabove the Earth’s surface is
described by Boltzmann’s barometric
height formula p(h) = pge msh/kT,
where T is the temperature of the at-
mosphere (assumed to be constant),
m is the molecular mass, k is Boltz-
mann’s constant, and pg ~ 1 kg/m? is
the value of p at the Earth’s surface
(that is, at sea level—see figure 3).
What is the exponent in the exponen-
tial function? It’s the ratio of two
forms of energy: the gravitational po-
tential energy mgh (which is zero at
sea level) and the average molecular
kinetic energy kT. Suppose we make
a shaft whose walls are at a constant
temperature (T ~ 300 K) and assume
that the acceleration due to gravity is
equal to g, (strictly speaking it de-
creases with depth—see figure 1—but
we don’t plan to go too deep at this
point). Under these conditions equa-
tion (5) is valid and yields a depth
h, < 0 where the air is compressed so
much (to the density p.) that its

air density
p([) ~ g*‘f - RelB

Figure 3
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molecules touch one another.
Whether this air could be considered
aliquid is a question belonging to the
thermodynamics of the phases of
matter. Just to be on the safe side (and
for good reason!) we’ll put the phrase
“liquid air” in quotation marks. Let’s
assume that p, is of the order of the
density of water (~10% km/m?). Then
equation (5) leads to

mge p.  Mge P
__831-300 -iOO In107° m
2910710
=-60-10° m.

Clearly, at this depth—about 1% of
the Earth’s radius—the acceleration
due to gravity does not vary appre-
ciably.

So what will happen to the anvil?
Having acquired almost escape ve-
locity during its free fall from the
boundary of Hesiod’s universe, it
will crash into the Earth’s atmo-
sphere and begin to decelerate while
being heated due to friction with
the air. If in the process it doesn’t
melt, burn, and disintegrate (after
all, it’s the handiwork of the im-
mortal blacksmith Hephaestus!), it
will fall deep into the shaft and
meet denser and denser air, and
then beginning at the depth h, (or
r, = Ry — h.) it will move in almost
“liquid” air. It’s clear that the anvil
will pass through air with a charac-
teristic thickness of 10 km in about
a second. For some dozens (or hun-
dreds) of seconds it will fall through
ever thicker air in the shaft until
almost all the anvil’s kinetic energy
is expended in working against the
air resistance. This spectacular dis-
regard for the time it takes for the
anvil to “get used to” its new fall-
ing conditions (this period is often
referred to in technical slang as the
“relaxation time”) merely reflects
our hope that the relaxation time is
small compared tot, and t,, and also
our reluctance to spend the time,
energy, and paper needed to prove it
(it isn’t too difficult, by the way).

The further motion of the anvil in
the “liquid air” of density p, will be

characterized by the balance of all
the forces involved: gravity, buoy-
ancy, and air resistance. So equation
(5) leads to

p.*Vz(r)SLCm :g_@r{l_ Px}

ma R(—B P &

from which we get

0
V(Z’)=\/? Vesc p——l Oma
RoV2 \p. p’S,C_
dr

dt’

Therefore,

Yy 0 m tdr
j$ Py ——dt=—|—.
0 RS'JE P P SLCm R ﬁ
This last equation yields the value
we seek for the time ¢, required for

the anvil to drop to the center of the
Earth:

&G N5)
7= ) 7
Vesc p_ -1 .
p SJ_Cm

We can estimate the order of mag-
nitude of ¢, by inserting the numeri-
cal data p%p, -1~10, V,/S ~1m,
and C_ ~ 1. This gives us t, ~ 10° s,
which is close to Hesiod’s “nine
days.” Those who like to play with
computers may obtain a more precise
solution to equation (5). One might
also ponder how the ancient poets
can stimulate us to investigate cer-
tain physical phenomena. Are poetry
and physics really that far apart? [@]
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BRAINTEASERS

Just for the fun of it

B166

Pinocchio’s prehistory. Master Ciliegia received an order to make a
certain number of stools. “If I make three stools a day, starting from
today,” the carpenter thought aloud, “I’ll just finish on Sunday. If I
make five stools a day, I'll be done on Friday.”—"And what day is
it today?” asked a curious talking block of wood. Indeed, what day
is it? (A. Shevkin)

B167

Ordering by triples. The seven vol-
umes of an encyclopedia stand on a
shelfin the order 1, 5, 6, 2, 4, 3, 7. Put
them in increasing order using a series
of the following operations: any three
consecutive volumes are moved to the
left or right end of the shelf or inserted
between any two of the other volumes
in the same order. (A. Savin)

B168

Lost cargo. When Pitzius was a

- little boy, he loaded a toy boat
with some metal pieces from his
construction set and set it afloat in
his bath tub. Suddenly the ship
began to list, and the metal pieces
sank to the bottom of the tub. Did
the water level change?

)é : B169

W g Botanical logic. The pattern of veins on the first eight leaves in the
figure above is determined by a certain law. Find the law and draw the
veins on the ninth leaf. (Z. Chromy [Czech Republic]—2nd World Puzzle

Championship)

B170

Intersecting squares. The intersection of two squares (not necessarily of
equal size) is an octagon—see the figure at right. It is divided into four
quadrilaterals by two diagonals (joining opposite vertices). Prove that these
diagonals are perpendicular to each other. (V. Proizvolov)

ANSWERS, HINTS & SOLUTIONS ON PAGE 58

QUANTUM/BRAINTERSERS g
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STRAIGHTEDGE AND COMPASS

pnstruction program

Regular polygons, Euler’s function, and Fermat numbers

by Alexander Kirillov

DITOR’S NOTE: WE PUBLISH
this article in connection with
the bicentenary last year of the
first great achievement of Carl
Friedrich Gauss: his straightedge-
and-compass construction of the
regular 17-gon. Young Gauss was so
impressed by the discovery he chose
mathematics as his profession. This
construction thus became a crucial
point in the history of mathematics
as well as in his life. We even know
the exact date—March 31, 1795
(Gauss started his diary on this day).
Later he developed his method into
an important and beautiful theory
) and proved the constructibility of
regular n-gons for all numbers n of
a certain form, described in terms of
Fermat primes. This article ap-
proaches the problem from the other
direction: it explains why regular
polygons are constructible only for
these values of n.

Prologue

Geometric constructions are one
of the most popular kinds of prob-
lem in school mathematics. And by
no means is this a matter of chance.
The history of geometric construc-
tions covers several millennia, and
even as early as in ancient Greece
this mathematical art reached an

nouen| Aebleg Ag 1y
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extraordinarily high level. Suffice it
to mention the famous problem of
Apollonius: construct a circle
touching three given circles.

I think many of our readers must
have heard about the three famous
problems of antiquity, which turned
out to be unsolvable: squaring the
circle, trisecting the angle, and dou-
bling the cube. But perhaps the most
beautiful is the problem of con-
structing regular polygons. In fact,
this isn’t one problem, it’s an entire
series of problems: for each integer
n 28, a regular n-gon must be con-
structed using only a straightedge
and a compass.

For some values of n this is a very
simple problem (for example, for
n=3,4,6,8,12); for some other val-
ues it’s somewhat more difficult
(n=5,10, 15—I'll explain later how
aregular decagon and pentagon can
be constructed); then there are val-
ues of n for which the problem is ex-
tremely hard (n = 17 or 257). And fi-
nally, values of n exist such that the
problem can’t be solved at all (for
instance, n=7,9, 11).

Let’s write out a number of inte-
gers starting with n = 3 and highlight
in red the values for which the regu-
lar n-gon can be constructed with
straightedge and compass:

34,567 809, 10,11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26,27, 28,29, 30, 31, 32, 33, 34,
35,36, 37,38, 39, 40, 41, 42, 43, 44,
45,46, 47, 48, ...

Is there any law as to how the red
and black numbers are distributed?
Yes, there is. But it’s fairly difficult
to find. This law is arithmetic in
nature—to describe it we’ll have to
leave geometry for the time being
and take up some aspects of number
theory, the highest branch of arith-
metic.

Eulers function

Leonhard Euler, the renowned
18th-century mathematician, was
one of the first to notice that the
number of positive integers less
than a given n and relatively prime
with n is a useful and important
arithmetic characteristic of n. Euler

n|1(2(3|4|5(6|7|8|9]10|11|12(13|14|15|16|17|18|19(20|21
o) [ 1|1 (2(2(4|2|6|4|6|4|10/4|12/6|8|8|16|6/|18|8 |12
n |22(23124125|26(27|28|29|30(31|32|33|34|35|36|37(38|39|40|41|42
ofn) [10(22| 8 |20(12|24|12|28| 8 |30|16|20|16|24|12|36| 18| 24| 16| 40| 12

introduced the notation ¢(n) for this
number, and since then the func-
tion n — o(n) has been referred to as
Euler’s function. For example, there
are four numbers less than and rela-
tively prime with n=10:1, 3, 7, and
9. S0 0(10) = 4.

The function ¢ has many interest-
ing properties. Euler himself discov-
ered one of them: for any two rela-
tively prime numbers m and n,

o(mn) = ¢(m)o(n). (1)
It can also be seen that, for any

primep, ¢(p) =p- 1, ¢(p?) = p*-p, and
in general,

o[p¥) = p*-1{p-1). (2)

These properties are sufficient to
compute Euler’s function. This is
quite easy for small values of n—for
instance,

0(10) = 0(2)¢(5) = 1 - 4 = 4,
(100) = o(4)(25) = 2 - 20 = 40.

The first 42 values of ¢(n) are shown
in the table above. Compare these
data with the sequence of red and
black numbers above. The connec-
tion between the “color” of a num-
ber n and the value of ¢(n) is now
almost obvious, isn’t it? We see that
if a regular n-gon can be constructed
with straightedge and compass,
then ¢(n) is a power of two. This
observation turns out to be a neces-
sary and sufficient condition for the
constructibility of a regular n-gon.
I won’t give a rigorous proof of
this fact here. But I'll present quite
simple and convincing consider-
ations in its favor. Similar reasoning
can be applied to many other prob-
lems in geometric construction—for
example, to trisecting the angle.

What does it mean o “construct”?

Before we begin to study the prob-
lem of what is constructible, we
ought to explain what “construct-
ible” means. That is, it would be

good to give an exact formulation of
the rules for straightedge-and-com-
pass constructions. For instance, the
straightedge can be used only for
drawing lines through a pair of
points—it has only one straight, un-
marked edge. Similarly, a compass is
used only for drawing circles with a
given radius and center. However,
these matters have repeatedly been
discussed in the literature, so I'll con-
fine myself to this brief reminder, re-
lying on the reader’s intuition.

What’s more important to me
here is that the net result of solving
a construction problem is (at least,
in principle) a sequence of elemen-
tary operations resembling a com-
puter program.

For example, the midpoint of a
segment AB is constructed by the
following “program” (fig. 1):

1. With the compass, draw a circle
o, with center A and radius AB.

2. With the compass, draw a circle
o, with center B and radius BA.

3. Mark the intersection points M,
and M, of circles o, and w,.

4. Use the straightedge to draw the
straight line M, M,.

5. Mark the intersection point X of
MM, and AB.

Here’s another example: a con-
struction of the bisector of a given
angle AOB (fig. 2 on the next page).
The corresponding command sys-
tem can take the following form:

1. Use the compass to draw a circle

M
o 1 o,y

Figure 1
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Figure 2

o, with center O and an arbitrary
radius R.

2, 3. Mark the intersection points
A,, B, of this circle with the lines
OA and OB, respectively.

4, 5. Use the compass to construct
circles m,, , with centers A, B,
and radius R.

6. Mark as C the other intersection
point of , and o, (that is, the one
that isn’t O).

7. Use the straightedge to draw the
line OC.

However, in this case, steps 2 and 3
of the program aren’t formulated
precisely. The problem is that the
circle ®, meets the lines OA and OB
at two points each, and it’s unclear
which of these points is to be labeled
A, and which is to be B,. You may
protest that it should go about the
half-lines OA and OB, which meet
the circle at a single point each. But
the notion of a “half-line” falls out-
side the scope of our “construction
machine’s” understanding. It can
only handle the notion of “line.”
Let’s see what happens if the term
“intersection point” is understood
as “any intersection point.” Our
program will then produce figure 3:
in place of points A and B, we mark
two new points for each old one: A/,
A/”, and B/, B/". And so what was
originally a single point C turns into
four different points C’, C”, C””, and
CW. This, however, leads to two
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rather than four different answers:
the lines OC’ and OC”” coincide, as
do OC” and OCW.

So how many different answers
can be produced by the same pro-
gram solving a given construction
problem? Any program of this kind
consists of elementary operations.
There are only five of them: drawing
a line through a given pair of points;
drawing a circle with a given center
and radius; marking the intersection
points of two lines; marking the in-
tersection points of a line and a
circle; and marking the intersection
points of two circles. The first three
operations take a single value; the
last two contain a two-valued uncer-
tainty.!

If a program consists only of one-
valued operations, we get only one
answer. If there is one two-valued
operation, it leads to two realiza-
tions of the program (as in the ex-
ample above). And in general, if a
program contains k two-valued op-
erations, it can be realized in 2%
ways.

We have seen that some ambigu-
ities can eventually “cancel out”
without affecting the final answer.
But it turns out that these cancella-
tions always take place in such a
way that the eventual indefiniteness
is always 2X-fold (I < k). This coordi-
nation is algebraic rather than geo-
metric in nature (the corresponding
branch of algebra is called Galois

LOf course, two circles, or a circle
and a line, can be disjoint or touching
each other (at a single point). It’s
possible to include these cases also in
the general scheme, but I'd better
ignore them here.

theory) and could be strictly proved,
but that isn’t the aim of this article.

Let’s return to the construction of
the angle bisector. Along with the
bisector of angle AOB, our program
yields the bisector of the “external”
(that is, adjacent) angle (fig. 3). It
should not be regarded as an extra-
neous solution. From the viewpoint
of our straightedge and compass,
which “understand” angles only as
pairs of lines, the external angle is as
good as the original angle AOB. If
we try to define the notion of bisec-
tor in terms “understandable” to the
straightedge and compass, we’ll see
that the external bisector will satisfy
this definition as well as that of the
“mormal,” internal kind.

This phenomenon is general in
nature. All the 2! solutions produced
by a program with ambiguities are
“genuine” rather than extraneous
solutions, as long as the problem is
given the proper wording.

For example, the problem “in-
scribe a circle in a triangle” is
solved by a program with 16-fold
uncertainty (we construct the bisec-
tors of two angles), which leads to
four different answers (one in-
scribed and three escribed circles).
All of them become equally legal if
the problem is formulated as “con-
struct a circle touching three given
lines.” The difference between in-
scribed and escribed circles is based
on the notion of “between” (or “in-
terior”) and is beyond our
“computer’s” comprehension.

The examples discussed above
also show that if a construction
problem has several solutions, the
construction program yields them
all. This statement is true in the
general case as well.

An instructive example: the geo-
metric construction of one of the
roots of a quadratic equation auto-
matically gives the second root.

Thus we arrive at the following
principle: any solvable problem in
straightedge-and-compass construc-
tions has 2! solutions for some inte-
ger I

A rigorous proof of this assertion
is given by Galois theory and can’t
be presented in this article. But the

"



assertion itself looks very simple
and could perfectly well have been
discovered by the mathematicians
of antiquity. The question arises
why this discovery was made only
in the last century, although many
corroborative examples have been
known for thousands of years. (For
instance, the problem of Apollonius
mentioned above has, in general,
eight solutions.)

One possible explanation is that
the modern, “computer” setting of
the problem never occurred to the
geometers of the past.? Another rea-
son is that they considered sepa-
rately each single problem instead of
an entire series of similar problems
[such as the construction of the
regular n-gons for all n).

Perhaps this question will draw
the attention of historians of math-
ematics and they will give us a more
complete explanation why this op-
portunity was missed.

Regular polygons

Let’s get back to our main prob-
lem. We want to know when a regu-
lar n-gon can be constructed with
straightedge and compass. Our pre-
vious reasoning suggests investigat-
ing the possible number of solutions
to this problem. To get a sensible
answer, we must refine its formula-
tion. Let’s fix the size and position
of the desired n-gon (otherwise,
there will certainly be infinitely
many solutions, provided there’s at
least one). To this end, let’s fix the
circumcircle o of our n-gon and the
location of one of its vertices A, on
this circle. Then we have to find the
positions of the other n - 1 vertices
A, A, ..., A . Obviously it will
suffice to find the position of A;:
marking off successive arcs equal to
A A, we'll plot the points A,, A;,
Ay, ... 0n the eircle.

The easiest case is when n = 6.
The side length a regular hexagon
inscribed in a circle equals the ra-
dius of the circle. So the required

2By the way, constructions have in
fact been given a computer setting by
such recent software as “Geometer’s
Sketchpad” and “Cabri Geometry.”—
Ed.

. \
A T e
Figure 4

“program” boils down basically to
two steps (fig. 4—hereinafter O is
the center of circle w):

1. Use the compass to draw a circle
o, with center Ajand radius OA,,.

2. Mark an intersection point A, of
the circles w and o,.

We see that this program yields
two points (A and A|” in figure 4),
but the corresponding hexagons
AAAAAAl and A ATATATAVAL
differ only in the order of numera-
tion of their vertices.

The same thing occurs for n = 3
andn=4.Thecasesn=5andn =10
are more interesting. Let’s examine
n = 10.

Suppose we start with any deca-
gon AjA AAAAAAAA,, in-
scribed in a circle. Draw the bisec-
tor A,B of the angle OA A, in
triangle OA A, (see figure 5, where
the label A, is supplied with a prime
for future use). It’s easy to see (for ex-
ample, by direct calculation of
angles) that OA,B and BA A are
isosceles triangles (so that OB = BA,
= A /A, and that the triangles
OA,A, and A A B are similar to
each other. Think of the line OA as
a number axis with its origin at O
and point 1 at A,,. Let point B corre-
spond to the number x. Then from
the similarity of the triangles men-
tioned above, we get

X
1-x

1
X/
or

x*+x-1=0.

Aj= A

Figure 5

Solving this equation, we get a num-
ber whose length, it turns out, we
can construct. Then we can find
point B, and the required point A4,
can be constructed as an intersec-
tion point of the given circle w and
the circle with center A, and radius
x. There are two such points—that
is, two solutions, A/ and A/ (fig. 5).

But our equation has two roots:
x, =(-1+ J5)/2 andx, =—{1 + J5)/2.
The second root is negative and for
this reason should be ignored, or so
it seems. However, rather than rush
to discard this root, let’s try to un-
derstand its geometric sense.

Let us redraw figure 5, assuming
that point B lies to the left rather
than to the right of O, at a distance
of Ix,|. We'll get figure 6, which has
two new possible positions A" and
Al for the point A;.

All in all, we found four different
possibilities for A,, which result in
two different decagons—a convex
one and a star-shaped one. The verti-
ces of each can be numbered in two

e v AL’
A9 =A 1 6

Figure 6
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Figure 7

different ways (see figures 5 and 6).

Notice that from the “point of
view” of the straightedge and com-
pass the star-shaped decagon is as
legitimate as the convex one.

You may argue that nonadjacent
sides of the convex decagon are dis-
joint, whereas in the star-shaped
decagon they intersect. But this ob-
jection falls away if a “side” of a
polygon is understood as the entire
line joining two vertices, not as the
segment between them (we don’t
deal with “betweenness”!). Then
the correct drawing of a “convex”
decagon will differ from the star-
shaped decagon’s depiction only in
size (fig. 7).

A similar picture emerges in the
case of pentagons. Here we also ob-
tain four solutions yielding two dif-
ferent pentagons (fig. 8) with two
different numerations on each.

Now, without actually construct-
ing an arbitrary regular n-gon we can

Aj= A}

A
Aj=AY ¢

Aj=Ay > —Al-AY

Figure 8
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try to establish the number of solu-
tions to this problem for a given n.
(Recall that the circumcircle @ and
vertex A, on it are considered fixed.)
Denote by x the length of the arc
AyA,. Point A, is a solution to our
problem (from the compass’s “view-
point”) if, consecutively marking off
arcs of length x, starting from A and
doing it n times, we arrive back at
point A, whereas by doing this fewer
than n times we can’t come back to
A, (The last condition is essential—
otherwise, in the case of, say, n = 6,
we would have to count as a “regular
inscribed hexagon” such objects as a
triangle traced twice, a diameter
traced three times, or even one point
A, repeated six times.)

In arithmetic terms, assuming
that the circumference is of unit
length, the condition for x can be
formulated as follows: nx is an inte-
ger and the numbers x, 2x, 3x, ...,
(n — 1)x are not integers.

For instance, if n = 10, then x can
be taken to be equal to 1/10. But this
isn’t the only choice. Although the
values 2/10 = 1/5, 4/10 = 2/5, 5/10,
6/10, and 8/10 don’t satisfy our con-
dition for x, we can take x = 3/10,
7/10, or 9/10. These values corre-
spond to the four solutions found
above geometrically. Notice that the
value x = 11/10 (as well as 13/10,
17/10, ...) doesn’t yield any new geo-
metric solutions—the location of
the point corresponding to x = k/n
on the circle depends on the remain-
der of k when divided by n rather
than the number k itself.

It’s clear that the number mx

m_ IV
Ag"= Ay

o v
A ‘= Ay AO

1244 IV 144 IV
Al = Al Ay = Al

(0 < m < n)is an integer (that is, hits
the initial point on the circle) only
for m = n if and only if x is an irre-
ducible fraction k/n (k < n). This
means that each number less than
and relatively prime with n gives a
solution to the problem of the regu-
lar n-gon. So the number of solu-
tions to this problem is the Euler
function ¢(n)!

In particular, ¢(3) = ¢(4) = 9(6) = 2,
0(5) = 0(10) = 4 in accordance with
the results obtained above geometri-
cally. Now we recall that any solv-
able straightedge-and-compass con-
struction problem must have 2!
solutions. This leads to a convenient
condition for the constructibility of
a regular n-gon:

A regular n-gon is constructible
with straightedge and compass if
and only if ¢(n) = 2! for a certain in-
teger 1.

(For instance, it’s impossible to
construct a regular heptagon, be-
cause ¢(7) = 2’is not a power of two.)

I've tried to explain why this con-
dition is necessary. The fact that it’s
also sufficient is a separate result,?
and I'm not going to deal with it here.

Fermat numbens

However, the problem with
which we started is not completely
exhausted yet. The question “What
are the numbers n satisfying
o(n) = 212" remains open.

Of course, any specific number
can fairly quickly be attributed to
either the “red” or “black” kind (re-
call our list on page 11): all we have
to do is compute ¢(n). But this
doesn’t give any general description
of the entire collection of “red”
numbers. In searching for such a de-
scription we encounter a difficult,
thus far unsolved problem in num-
ber theory. I'll briefly explain the
gist of it.

Factor the number n:

m m
n:pllpzz

e pfk’

where p,, p,, ..., p, are different
primes, and compute ¢(nn). From prop-
erties 1 and 2 of Euler’s function,

3The one proved by Gauss.—Ed.




we obtain
o(n)=o(p ml) o(p3)---o(pp)
—P1 12121

pit 1(pl -1)(py =1+ (px D).

The last expression is a power of two
if each odd prime factor p, enters the
factorization with the exponent
m, =1 and is of the form p, = 2/ + 1.
On the other hand, a number of the
form 2! + 1 can be a prime only if ]
is a power of two. (If ] is divisible by
an odd number m > 1, then 2/ + 1 is
divisible by 2/ + 1, because a™ + 1
=(a+1)am-1-am-24gm-3-  +1)
for any a—in particular, fora = glim )
Thus, each odd factor p, = 22 +1.

Numbers of the form 2% +1 are
called Fermat numbers. The first
five of them (fork =0, 1, 2, 3, 4) are
3,5,17,257, and 65,537. They are
indeed primes. Euler discovered that
the sixth Fermat number, 2% +1, is
divisible by 641.

Since Euler’s time, Fermat num-
bers have been a matter of interest
to many mathematicians all over
the world. One of the sessions at the
St. Petersburg Academy of Sciences
in 1878 was dedicated to a report
made by I. F. Zolotaryov about a
work submitted to the Academy by
the priest Ioann Pervushin. This
work established the divisibility of
22" +£1 by 167,722,161 = 5 - 2% + 1.

Nowadays, numbers are investi-
gated by computer. Many Fermat
numbers have been examined re-
cently, but no primes were discov-
ered among them, so it remains un-
known whether there are any
Fermat primes other than the first
five. So at this point I can only for-
mulate the answer to our problem in
the following, not yet final form:

A regular n-gon can be constructed
with straightedge and compass if and
onlyifn=25-p,-p, ... - p, where
p, are pairwise distinct Fermat
primes.

Perhaps one of you reading this
article will make your own contri-
bution to a complete solution of
this very interesting and difficult
problem.
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"HOW DO YOU
FIGURE?

Gliallenges in physics and math

Math
M166

Tangential intersections. Two
circles intersect at points A and B.
The tangents to them drawn
through A meet them again at M
and N. The lines BM and BN meet
the circles for the second time at
points P and Q, respectively (fig. 1).

P
Q B

Figure 1

Prove that MP = NQ. (I. Nagel)

M167

Erase by raising. Does there exist a
polynomial with at least one negative
coefficient such that, when raised to
any power n, n > 1, it will have only
positive coefficients? (O. Kryzha-
novsky)

M168

Arithmetic of a triangle. The side
lengths x, y, z of a triangle are inte-
gers, and one of its altitudes is equal
to the sum of the other two. Prove
that x> + y> + z2 is the square of an
integer. (D. Fomin)
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M169

Battleships. In the classic game of
battleships each player starts with a
10 x 10 square grid (“ocean”) on
which a fleet of ten ships must be
hidden: one battleship measuring
1 x 4, two cruisers measuring 1 x 3,
three destroyers measuring 1 x 2,
and four submarines measuring
1 x 1. No two ships can have points
in common (even corners), but they
can border on the sides of the ocean.
Prove that (a) if the vessels are drawn
in the order given above (starting
with the battleship), it will always
be possible to fit them all into the
grid, even if at any step we take care
only of the next ship rather than of
the subsequent ones; (b) if the ships
are arranged in the opposite order
(starting with the submarines), then
it may happen that there’s no room
for the next ship (give an example).
(K. Ignatyev]

M170

Ph.D.’s in sepulation. In a paper on
sepulkas Prof. Tarantoga gave n defi-
nitions of sepulation. His graduate
students proved step by step that all
these definitions were equivalent to
one another. Each of them defended
a doctoral dissertation proving that
sepulation in the sense of the ith
definition implies sepulation in the
sense of the jth definition. What is
the greatest number of graduate stu-
dents that the professor could have
if the dissertations were defended

one by one and their main results
could never have been derived di-
rectly from those defended earlier?
(K. Mishachyov]

Physics

Snake in a tube. A snake crawled
halfway into a stationary narrow
tube lying on a horizontal plane.
The other half of the snake’s body is
coiled arbitrarily on this plane. Tak-
ing the snake to be a thin homoge-
neous cord of length I, determine
which region of the plane could
contain the snake’s center of mass.
(V. Gorbunova)

P167

Bar on rollers. A homogeneous bar of
mass M and length I begins to move
downward along an inclined plane
that makes an angle o with the hori-
zontal. The initial portion of the in-
clined plane of length I is occupied by
closely packed rollers made of tubes
of mass m and radius r « I (fig. 2),
which rotate on ball bearings without
friction. The rest of the inclined plane

Figure 2



is frictionless. Find the dependence of
the bar’s acceleration on the position
of the moving bar. (A. Stasenko)

P168

Vapor absorption. After the air has
been pumped out of a 1-liter vessel
to a very low pressure, 1 gram of
water is still present. In order to re-
move it, an absorbent substance is
used to take up the free water mol-
ecules. The total surface of the ab-
sorbent S = 100 m?2, and the area
from which the water evaporates
s =0.001 m?. The temperature of the
vessel T = +5°C, and the saturated
vapor pressure for water at this tem-
perature P = 870 Pa. How much time
is needed for all the vapor to be ab-
sorbed? Assume that the absorbent
takes up all the molecules that come
into contact with it. How much
time would it take for all the water
to evaporate if there were no absor-
bent? (D. Makarov)

P169

Capacitor and spring. One plate of
a parallel plate capacitor of area S is
suspended from a spring, while the
other is firmly fixed. Initially the
distance between the plates is I,
The capacitor is briefly connected to
a battery, which charges it to a volt-
age V. What must the spring con-
stant be in order to prevent the
plates from touching? Disregard any
displacement of the upper plate dur-
ing the charging. (1975 All-Union
Physics Olympiad)

P170

Light in Iow orbit. The atmospheric
refractive index of a planet X of ra-
dius R decreases with the altitude h
above its surface according to the re-
lation n = n, — ah. Find the altitude
h, of the optical channel where light
rays will circle the planet at a con-
stant height. (N. Sedov)
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From mouse to elephant

Cell size and other zoological constants

by Anatoly Mineyev

HE FAUNA ON OUR PLANET
Earth is incredibly diverse.
Nevertheless, among the differ-
ent parameters characterizing
living things there are those that
vary little compared to the broad
range of masses assigned to different
animals. Let’s refer to them as “zoo-
logical constants.” A short list of
these constants (from the mouse to
the elephant) is shown in table 1.
First we should explain what we
mean by the word “constant” in the
context of the zoological world.
There are, of course, much longer
cells in the bodies of animals— for
instance, nerve fibers. However, in
the midst of all the other cells they
are negligibly few and far between.
Similarly, the temperature of dis-
eased animals may increase sharply,
or the proportion of muscular mass
may differ in animals who engage in
different physical activities. So the
data in table 1 relate to the average
and most numerous representatives
of each species of animal. In other
words, the distribution of the prob-
ability of a certain value for a zoologi-
cal parameter is generally a curve
with a clear maximum, which is the
characteristic value of the zoological
variable. Thus, we use the term “zoo-
logical constant” in a somewhat
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different sense than say, “physical
constant” (like the speed of light, the
mass of an electron, and so on, which
are quite precise values).

This article will mainly consider
the nature of cell size in animals.
Other questions will be touched
only slightly, among them the most
enigmatic constant—the heart re-
source (one billion strokes in a
mammal’s life).

“One needn’t think about pocket
money,” said Ostap Bender in IIf and
Petrov's  The Twelve Chairs.
“There’s always some lying about,

Table 1

Cell diameter d ~10-20 ym

Ratio of longevity to

heart cycle /e, ~ 10

Ratio of respiratory L =4

cycle to heart cycle /b =

Body temperature T,,=37-38C

Ratio of organ mass to

body mass (m3,}:
heart m /m,, = 06%
lungs m/m = 1%
blood m,/m = 5%
skeleton m/m, = 6%
muscles m [m, =40%

MAMMALIAN KINSHIP

and we’ll just pick some up along
the way as need be.” We'll take this
advice and also try to “pick up” data
about cells when needed, working
our way to our goal step by step.

And now, let’s try to answer two
simple questions:

Why is the average diameter of a
mammalian cell d, 10-20 um and
not, say, 1 or 100 um?

Why is d_ approximately the
same for all mammals, while their
masses differ tremendously? For ex-
ample, the mass of a shrew is 3 g,
while the mass of an elephant is
3 tons—that is, the range of mam-
malian mass is as much as six orders
of magnitude.

We'll try several approaches in
our attempt to estimate the charac-
teristic cell size. Let’s start with one
that doesn’t use any information
about the structure and functions of
the cell.

Taking @ stab at it

A cell must be much larger than
an atom (~1071© m) and much
smaller than “human size” (~1 m).
The first postulate allows us to ig-
nore quantum effects; the second
allows us to use cells like bricks to

At right: “T love you, people.”

Art by Leonid Tishkov
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build the complex structure of a liv-
ing organism with diverse func-
tions.

The geometric mean of the
“atomic” and “human” sizes satis-
fies the demands of the postulates
and results in the correct order of
magnitude—

(109m x 1 m)/2=10°m

—but it doesn’t clarify the problem.
Moreover, if we insert the character-
istic sizes of the shrew and the el-
ephant into this formulation, we get
2 um and 20 um, which amounts to
afundamental difference in cell size.
So we can’t get by without some
information about cell structure,
however primitive.

Let’s go at it from the opposite di-
rection and take a “culinary” ap-
proach.

Baking a cell from scratch

Let’s construct a mammalian cell
from the simplest component parts
and estimate its size. (Just like in
cooking: for one serving you need
one egg, a tablespoon of sugar, a cup
of milk . . .)

Now, what kind of object are we
dealing with? The cell is the el-
ementary unit of life. Basic informa-
tion about the cell itself as well as
the organism as a whole is written
in the DNA molecule and stored in
the cell’s nucleus. This information
is processed by means of RNA mol-
ecules, which leads to the synthesis
of proteins and other necessary sub-
stances. The energy for this synthe-
sis is accumulated in the mitochon-
dria. Water is the physical medium
where all cellular processes occur.
Membranes keep both the cells and
their inner organelles separate from

Table 2

Diameter of double helix 2.10°m

Distance between pairs of

hase 34.109m

Number of nucleotide pairs

in a mammalian cell W tog) 2

Meass of nucleotide pair in 500

atomic units (1.67 - 107 kg
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one another.

DNA will be our starting point.
Some of its parameters are given in
table 2. According to the table, the
length of DNA molecules in differ-
ent mammals is within the range

(1to5)-10°x3.4-101°=03t02 m,
and its mass is about

1.67 - 1027 x 500 x (1 to 5] - 10°
=(0.8to4) - 101> kg.

What volume can such a mol-
ecule occupy? If we wound the DNA
into a very tight ball with a gap be-
tween individual layers of the order
of the distance between bases (that
is, 4 - 1071° m), we would get a vol-
ume of

V~2-10°%(1to5)-10°x3.4 - 10710
=(03to1.4)- 10718 m?3

and a characteristic size of
d~ V¥ =0.7-1.1 pm.

The density of this ball of DNA is
~3 - 103 kg/m3.

Upon reflection, these figures
seem questionable:

e Since the density of this nucleus
far exceeds that of water, it might
“sink to the bottom” of the host
cell if it’s not held somehow near
the cell’s center;

e DNA isn't a flat structure—it’s a
helix, and so it can’t be wound as
tightly as we supposed above;

e It would be impossible to quickly
unwind such a ball.

These considerations suggest that
the DNA must be wound more
loosely.

It’s reasonable to suppose that the
average density of a ball of DNA in
the volume enclosed by the mem-
brane of the nucleus must approach
that of water—that is, the nucleus
floats more or less freely in the cell.
In this case, the volume of the
nucleus of a mammalian cell is
~(0.8 to 4)- 1071 m3 and the diameter
of the corresponding sphere is
~1.2-2 um. The membrane that con-
fines the nucleus is rather thin
(~107® m) and contributes a negligible
amount to the volume of the nucleus.

Now let’s mix in the rest of our

ingredients. We need several times
more RNA than DNA. And the
mass of other substances (proteins
and other parts of the cell synthe-
sized by means of DNA and RNA)
should exceed by far the mass of the
RNA. For our estimate we’ll assume
that the ratio of the masses of the
proteins and the DNA is about 10:1.
All this content held by the mem-
branes must float in water. We'll
suppose that there is four times
more water by volume than the
other (“dry”) ingredients of the cell.
All told, the minimum volume of
mammalian cells must be

(V) in ~ (0.3 to 1.6) - 10716 m3,

and the corresponding diameter of
the sphere is

min

6V,

d.) . ~
( C)mm [ o

That is to say, mammalian cells
with diameters less than 4 um can-
not exist. This result is a decided im-
provement over our earlier “stab” at
an estimate.

In addition, our culinary approach
provides partial answers to our main
questions posed at the outset:

/3
] =4-7um.

¢ The range of minimum cell diam-
eters isn’t large—it’s about a fac-
tor of two for all mammals (in con-
trast to DNA, whose length varies
by a factor of five);

e The diameter of the mammalian
cell isn’t 1 pm—it’s much larger.

So our culinary approach has re-
sulted in a recipe for baking a mam-
malian cell. To obtain 100 parts of a
living cell, you need (by weight)

84 parts water

7 parts protein

4 parts each lipids

4 parts carbohydrates

a pinch of RNA (0.7 part)
a pinch of DNA (0.3 part).

The volume of such a cell is
4 - 107" m?, its diameter is 20 um,
and its mass is 3.5 - 1071% kg.

Now let’s turn our attention to
one of the most important functions
of a cell: the exchange of substances
with the outside world. For a cell to



stay alive, it needs to obtain oxygen
and fuel and it needs to get rid of
carbon dioxide, the products it has
synthesized, and garbage.

We should note that not only is
the characteristic size of mamma-
lian cells the same, the diameters of
erythrocytes and capillary vessels
are roughly the same as well. Mam-
malian erythrocytes, which take
part in cellular gas exchange, vary in
size from 5 um to 10 um. The diam-
eter of capillaries is 3-30 um. The
closeness of these values has a
profound basis: at a distance of about
10 um, a drastic change occurs in the
character of substance transport in
an organism. So, we’ll name our last
approach to estimating the size of
cells, erythrocytes, and capillaries,
rather enigmatically, the “convec-
tion and diffusion approach.”

Watching the cell at work

First let’s clarify what we mean
by “convection” and “diffusion.”
How does one ensure the ready sup-
ply of substances to a great number
of cells? One way is to organize the
directed motion of substances along
with the flow of blood—that is, by
convection. This is what happens
when blood flows through the blood
vessels of animals. Convection is
quite effective when the blood flows
in large vessels. However, when it
moves away from the heart and ap-
proaches the “consumers” (cells),
the network of blood vessels
branches more and more, and the
diameter of the vessels becomes
smaller and smaller. As this hap-
pens, the blood must necessarily
flow more slowly. This is because
the pressure of a viscous fluid de-
creases as it flows in a vessel. The
drop in pressure is proportional to
the fluid’s speed and the length of
the vessel and inversely proportional
to its cross-sectional area.!

To prevent the pressure losses
from becoming too large (in which
case the blood wouldn’t flow at all

You can read about this in more
detail in “Trees Worthy of Paul
Bunyan” by the same author in the
January/February 1994 issue of
Quantum.—Ed.

v, (m/s)
A Aorta
Arteries

1 -

10—1 - X . \

) Capillaries Stperior
107 - vena cava
1073 L Veins

>
10° 107 d(m)
Figure 1

Dependence of the rate of convective
blood flow on the diameter of blood
vessels in humans.

through such a channel), the blood
flow must decrease with the diam-
eter of the vessels. The same is true
for the vessel’s length. Indeed, these
tendencies are realized in the vascu-
lar system of animals. As an ex-
ample, figure 1 shows the depen-
dence of average convective speed
on the vessel’s diameter in humans.
The relation is approximately linear:

v, ~ (20 to 100)d.

Thus, blood flow indeed de-
creases with vascular diameter. In a
certain sense, convection loses its
effectiveness in smaller vessels.

Now, what about diffusion? Diffu-
sion is the transfer of substances due
to the chaotic wandering of mol-
ecules. During random motion, a
molecule now moves away from its
starting point, now moves toward it.
As this happens, the mean distance
from the molecule to its starting
point is proportional not to t (as with
linear uniform motion) but to +/t:

d=+2Dt,
where D is the diffusion coefficient.?
Using t from this equation, we get
the average speed of diffusion for a
distance d:

d D

t d’
Thus diffusive transfer slows at
large distances, but it’s very effec-
tive at short range. Comparing the

2The details of diffusion are
described in “Airplanes in Ozone” by
Albert Stasenko in the May/June 1995
issue of Quantum.—Ed.

A
vy Ve
0 d, "
Figure 2

Rates of convection (v ) and diffusion
(vy) versus characteristic distance d.

formulas for the speeds of convec-
tion and diffusion (v, and v, respec-
tively) yields a certain characteris-
tic distance d,, (fig. 2)—

D 1/2
dy ~| ————
20 to 100

—at which both speeds are equal.

The diffusion coefficient for sub-
stances in water is of the order
D ~ 107 m?/s, so d, ~ 3-7 um. And
this is indeed the scale of capillaries,
cells, and erythrocytes. In other
words, convective transport in living
organisms dominates down to a dis-
tance d,, after which the major role
is played by diffusion.

Our new estimate is consistent
with our culinary estimate. This is
indirect evidence that the cell has
limited “choices” when it comes to
its size. The difference between
3-7 um (our estimate) and 10—20
um (its actual size) can be explained
by simplifications we’ve used in our
approach. It’s the price we some-
times pay for clarity.

I'll conclude with some com-
ments about table 1. The underlying
nature of some of the items in it
isn’t entirely clear at present.

1. The heart resource is about one
billion strokes in a lifetime. This fig-
ure corresponds to the world of
mammals. However, it seems to be
too small for human beings—a bil-
lion strokes at the rate of one per
second (the human heart rate) would
translate to a life span of only 30
years. It is currently two to three
times that. At the end of the last
century, our life expectancy was
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pretty much “according to spec”
(that is, table 1). In the intervening
years we have made much progress
in eliminating certain diseases, re-
ducing infant mortality, and im-
proving our work conditions and life
styles. Among mammals, only hu-
man beings have managed to im-
prove their statistical standing.

The heart rate decreases as the
body mass increases. For example,
the mouse has a heart rate of 600
beats per minute and lives for three
years. The corresponding figures for
an elephant are 30 beats per minute
and 60 years.

2. The heart resource seems to be
extremely large. Indeed, among
moving mechanisms in inanimate
nature only clocks might compete
with it, but unlike the heart, they
need periodic cleaning and repair.

3. The last three lines in table 1
reflect certain optimal relationships
worked out during the long course of
evolution.

In the case of temperature, its in-
crease results in a rapid increase in
the activity of enzymes catalyzing
the metabolic processes. On the
other hand, proteins begin to disinte-
grate at temperatures of 40-45°C.
Thus, the temperature range 37-38°C
is the best one for enzymatic pro-
cesses in land mammals.

The relation between the respira-
tory and heart cycles (¢ /t, = 4 for all
mammals) must follow from the
fact that the erythrocytes in the
blood carry oxygen from the lungs
and bring carbon dioxide back to
them. Thus the respiration and heart
rates must be closely linked. How-
ever, this relationship isn’t direct.

Scientists still don’t know why
the relative masses of the heart,
lungs, muscles, and certain other
organs is constant. For some of them
(muscles and bones) it could be ex-
plained in principle by the need to
move to find food. At the same time
the relative mass of some other im-
portant organs (kidneys, liver, and
brain, in particular) increases as the
body size decreases.

Many interesting questions re-
main open for the next generation of
researchers.
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CLASSICS OF NUMBER THEORY

How many tivisors does a numher have?

“The newly harrowed vast expanses

So evenly are spread about,

AS though the valley had been spring-cleaned

Or else the mountains flattened out,”
—Boris Pasternak’

by Boris Kotlyar

AVEYOU EVER WONDERED

why the number one is usually

not considered a prime? There’s

something unclear about it: this
number is divisible only by itself and
by one, so it satisfies the definition of
a prime, doesn’t it?

There were reasons why it came
to be accepted that one isn’t a
prime—the same sort of reasons that
make us consider any straight line
parallel to itself.? If coincident lines
aren’t assumed to be parallel, we
have to consider the case of the co-
incidence of lines separately in our
phrasing of many geometric facts.
But if we agree that a line is parallel
to itself, we can state these results
without exclusions.

The number one had been listed
among the primes for a long time,
but it was deprived of this title for
quite practical reasons. It’s very con-
venient to have a unique factoriza-
tion of any positive integer into

Translated by Lydia Pasternak
Slater.

2Perhaps this is a statement you
aren’t likely to read in a school
textbook, but in more “serious”
geometry texts. As a rule, parallelism
is understood in this wider sense.—Ed.
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primes. But if one is counted a

prime, this statement becomes false.
For example, let’s factor some

number—say, 84—into primes:

84=2.2.3.7=22.3.7.

Can it be factored differently? Of
course. We can rearrange the factors,
but these factorizations are natu-
rally considered the same. The fact
that we can’t obtain anything essen-
tially different follows from the so-
called Fundamental Theorem of
Arithmetic, according to which any
natural number (positive integer)
can be factored into primes, and
this factorization is unique (up to
the order of the factors). That is, a
natural number N is uniquely repre-
sentable in the form

N=p"py’...pg"

where p,, ..., p, are primes and o,
..., o, are natural numbers. This is
called the canonical factorization of
the number N.

Let’s get back to our example.
The number 2 en-

and 7 in the first power. And in what
power does the prime factor 5 enter
this factorization? In “no power”’—
that is, in the power zero.

So we can assume that all prime
numbers enter any factorization, but
some of them in the zeroth power.
Of course, such “ghost factors”
aren’t written out (as a rule).

Now we see why it’s not conve-
nient to consider 1 a prime: this
number can be included in any fac-
torization in any power:

84-15.22.3.7
= 1100.92.3.7

and so on, which violates the
uniqueness.

There are a number of other argu-
ments—simple as well as rather so-
phisticated—in favor of excluding
one from the primes. For instance,
let’s write out the few first natural
numbers in a row and the number of
divisors for each one (counting only
different divisors of each number).
The number of divisors of a number
nisdenotedt(N). ForN=1,2,..., 12,

ters the factoriza- Nli1l2]3

415167 8|9]10]11]12

tion of 84 in the

second power, 3 [dM] 1|22

312421434216




the numbers 1(N) are given in the
table below.

We see that the number 1 has only
one divisor, while all the other num-
bers have more (primes have exactly
two divisors). So it’s reasonable to
isolate the number 1 in a special
class of natural numbers—neither
prime nor composite.

Divisors of positive integers

Can the function 1t(N) be ex-
pressed analytically? Yes, it can, and
the expression is simple enough.
Let’s derive this formula. Write out
the canonical factorization of a
number N > 1:

N:pixlpgzmp]i‘k

(py, Py, --., Dy are different primes, o,
a,, ..., 0, are their respective expo-
nents).

Tueorem. If N =piipy®.. pp* is
the canonical factorization of a
number N, then

is big, it’s hard even to understand
whether it’s prime or composite, to
say nothing of finding its canonical
factorization.

This isn’t the only disadvantage
of our formula. The behavior of the
function 1(N) is chaotic. On the one
hand, 1(p) = 2 for any prime p, and
since there are infinitely many
primes, we'll encounter twos in the
second row of our table arbitrarily
far. On the other hand, the number
of divisors can become arbitrarily
large—it suffices only to take a num-
ber n with large enough exponents
o, Oy, ..., o, (even with only one suf-
ficiently large exponent). The graph of
1(N) is plotted in figure 1 (it actually
consists of isolated points, but we
joined them to make its haphazard
nature easier to grasp). Now you see
these “mountains and valleys”!

So the exact formula is of little
use—our function is too much
irregular. Can we find a more

TR

7(N) =
(o, + D)oy + 1)...(04 + 1).

Proof. Any natural
number that divides N has
the form pllpgl...pgk,
where 0<B, <a,,0<B, <
oy, ..., 0 < B, < oy. For in-
stance, if B, = 0 for all i, the
corresponding divisoris 1,
and if B, = o for all 7, the
divisor is N itself. So how
many such products can
be formed? The exponent
B, takes exactly o, + 1
values: 0, 1, 2, ..., a;; B,
takes o, + 1 values; and so
on. So there are o, + 1

divisors of the form pfl,

o, + 1 divisors of the form pSZ, and
consequently (o, + 1)(o, + 1) divisors
of the form p?lpgz. Proceeding in
the same way, we arrive at the re-
quired result.

Using this formula, we can find
the number of divisors of any natu-
ral number, but only after factoring
it into primes in order to find the

exponents o, o,, ..., 0. But this
may not be very easy—if a number

graphic, even if approximate, formula
that would directly show what’s to be
expected from 1(N)?

Let’s see how 1(N) behaves “on
average.” Consider the arithmetic
mean T(N) of the numbers of divi-
sors of the first N natural numbers:

T —ir +T(2)+--+7T ;
T(N)—N((l) (2) (V)

This function happens to have a
nice formula. It’s not absolutely pre-

T(N)

cise, but it expresses the “average
number of divisors” in terms of a
well-known function:

T(N) =In N.

Why logarithms?

At first glance the appearance
here of a logarithm is a bit odd. But
in fact it should come as no surprise.
For example, for N = 27 we have

T(N) = 7(27) = log, N + 1
= log, N +log, 2
= log, (2N).

This particular example
may not seem too con-
vincing. After all, num-
bers of this form (pow-
ers of primes) are rather
rare, and besides, the
base of the logarithm
here is 2 rather than e.
Nevertheless, we'll
manage to prove our for-
mula later. First I want
to refine it. What does
approximate equality
mean here? There exists
a constant number
(w=0.154) such that

T(N) =In N +u +ay,

where a is an infinitesimal se-
quence—that is, its limit is 0 as N
approaches infinity. When N is
large, the “correction term” a,, be-
comes arbitrarily small and negli-
gible compared to the constant L,
and even more so compared to the
infinitely increasing In N. This is
what the approximate equation
T(N) = In N means.
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Average number of divisors

The divisors of a number can be
visualized by means of coordinates.
Take, for instance, the number 12.
Write out all its divisors:

1,2,3,4,6,12.

Consider the function f(x) = 12/x.
You certainly know that its graph is
a hyperbola. We’ll need only one of
its two branches—the one in the
first quadrant. To sketch the graph,
we can compute the values of the
function for a number of the values
ofx:forx=1,2,3,...wegety=12,
6, 4, .... It's convenient to compute
y when x is a divisor of 12. Plot the
points with integer coordinates (x, y)
thus obtained and draw a curve
through them (fig. 2).

Now let’s count the points with
integer coordinates in the vicinity of
the origin and on the branch of the
hyperbola we’ve constructed. (All
these points are shown in figure 3.)
There are exactly 6 of them—as
many as the divisors of 12, because
any natural divisor x is coupled with
the natural y such that xy = 12.

Figure 4 illustrates both a branch of
the hyperbola y = 12/x and a branch
of y = 6/x, which carries as many in-
teger points as there are divisors of 6.
But any integer point (x,, y,) in the
first quadrant below the hyperbola
y = 12/x (except the points on the
axes) lies on exactly one hyperbola
y = n/x, where n = x,;y, < 12. For in-
stance, point(1, 11) belongs to the hy-
perbola y = 11/x and (2, 2) is on the
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graph of y = 4/x. It follows that the
total number of divisors of all natural
numbers not exceeding 12 is equal to
the number S(12) of integer points in
the first quadrant below and on the
hyperbola y = 12/x (excluding the
points on the axes). This number can
be written as

S(12) = (1) + 7(2) + ... + 1(12).
Similarly, for any positive integer N,
S(N)=1(1) + 1(2) + ... + T[N)

—the argument above remains valid
without any change. Therefore,

Thus, the arithmetic problem of
finding the average number of divi-
sors of a number is replaced by the
geometric problem of counting inte-
ger points in the first quadrant
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under (and on) the hyperbola
y = N/x (fig. 5).

It’s difficult to solve this problem
exactly, but an approximate solu-
tion is simple enough—and it will
involve a little bit of calculus.

Consider the curvilinear trap-
ezoid T bounded by the vertical lines
x =1 and x = N on the left and right,
by the x-axis y = 0 on the bottom,
and by our graph y = N/x on the top
(fig. 6). The points we want to count
are all the integer points in T except
the N points (1, 0),(2,0), ..., (N, 0) on
the x-axis. So there are S(N) + N in-
teger points in T altogether. Each of
these points is the left bottom ver-
tex of a certain unit square with in-
teger vertices—all these squares are
shaded in figure 7 (for the case
N =6).

You see that entire shaded area
approximates the trapezoid T with
a bit left over. We denote the area of
T by A and will get an upper and
lower bound for the difference
A - §(N).

YA

Figure 6
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To get an upper bound, we
note that any point (x, y) is cov-
ered by a square of the integer
grid shown in figure 3. If there are
several such squares, we choose
the one that doesn’t have the
point on its top or right side. Let
(n, m) be the left bottom vertex of
this square. Then nm < xy < N,
and our rule for choosing the
square ensures that (n, m)is also in
T, so (x, y) is covered by a shaded
square. Noting that the total area
of the shaded squares is equal to
their number, we get A <S(N) + N,
or

A-S(N)<N.

(As is clear from the figure, T can
always be covered by a slightly
smaller set of squares—we can
harmlessly remove, say, the two
rightmost shaded squares, and
perhaps some others. This allows
us to improve the estimate, but
such an improvement isn’t really
significant, as we’ll soon see.)
To estimate the difference

YA

A J

0 2 4 6 8
Figure 8

A - S§(N) from below, consider the
S(N) integer grid squares whose
right top vertices lie in the trap-
ezoid T but not on the x-axis (the
shaded squares in figure 8). Obvi-
ously, all these squares (except the
column of N squares adjoining the
y-axis) lie in T. (We can prove this
using the fact that the function
y = N/x decreases for x > 0.) It fol-
lows that A = S(N) - N, or

A - §(N)=-N.

Combine the two estimates:
_N<A-SN)<N,
or
IS(N) - Al < N.

For readers familiar with calcu-
lus, computing the area A is an easy
exercise:

N
A:J.EdX=NlnXﬁ\] = NInN.
1 X

107

Figure 9

Those who haven’t studied inte-
gration yet will have to take this
formula as given.

At any rate, we have arrived at
the relation

IS(N)-NIn NI <N,
or, after dividing it by N,

IZ(N) -In NI < 1.

The function In N grows indefi-
nitely with N. Therefore, the
same is true for T(N). But the dif-
ference between them remains
bounded—it never exceeds 1. So
the relative error of the approxi-
mation T(N) = In N becomes ar-
bitrarily small with the growth
of N.

Calculate the values of the
functionst(N), T(N), and In N for
small values of N and sketch
their graphs in the same coordi-
nate system (fig. 9). We see that
the functions T(N) and In N al-
low us to “spring-clean the valley
and flatten out the mountains,”
to paraphrase Pasternak.

Dirichlet and the Divisor Problem

Earlier I mentioned a refinement
of our approximate equality. It was
obtained by the outstanding Ger-
man mathematician Peter Gustav
Lejeune Dirichlet (1805-1859), who
invented the geometric approach we
used. Dirichlet proved that

IN) =In N+ (2C-1) +ay,

where C is the so-called Euler con-
stant, defined as the limit
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C= lim(l+é+-~+l—lnnj,

n—eo n

(The proof that this limit exists is
not too difficult.) The constant C is
approximately equal to 0.577; the
term 2C - 1 =0.154 in the expression
for T(N) was denoted by p above.

Dirichlet showed that the se-
quence a,, decreases rather rapidly
to zero—there exists a constant a
such that

. N-12
layl <a - N2,

In his proof, Dirichlet cleverly used
the symmetry of the hyperbola with
respect to the bisector of the first
quadrant.

The prominent Russian math-
ematician Georgy Fedoseyevich
Voronoy (1868-1908) proved that ay,
decreases even faster: for any num-
ber € > 0, however small it is,

layl <k - N-23+¢

for a certain constant k. Is it possible
to replace the function on the right

with a function that decreases still
faster? What is the ultimate expo-
nent? These questions constitute a fa-
mous, still unresolved problem: the
Divisor Problem. As of today, theo-
rems are known with an exponent of
N that is smaller than in Voronoy’s
estimate, but the final result has not
yet been achieved. However, the
function on the right can’t be reduced
too much—the English mathemati-
cian Godfrey Harold Hardy (1877-
1947) proved that the inequality is al-
ready violated for the exponent -3/4.
There is a conjecture, neither proved
nor refuted, that even the slightest in-
crease of Hardy’s prohibitive expo-
nent yields a function that majorizes
the sequence—that is,

o a3/4+e
layl<k-a

for any € > 0 and some constant k.
The Divisor Problem is one of the
most interesting problems in num-
ber theory. Let’s wonder again at the
marvelous interweaving of math-
ematical notions that arose in our
investigation: the number of divi-
sors of a natural number—which is

natural too, of course—proved to be
connected with the hyperbola, inte-
ger points on the plane, areas, inte-
gration, and the natural logarithm.

Exercises

1. Prove that the number of divi-
sors of N is odd if and only if Nis a
perfect square.

2. A function f defined on integers
is called multiplicative if flab) =
fla)f{b) whenever a and b are rela-
tively prime. Prove that 1(N) is mul-
tiplicative.

3. Denote by 1_(N) (form > 1) the
number of solutions to the equation
X X,...X, = Ninnatural numbers Xy,
X,, ..., X,; in particular, 7,(N) =1,
T,(N) =1(N). Try to prove the follow-
ing statements, first, form = 3, then
for an arbitrary m:

(a)t_(N)is a multiplicative func-

. m
tion;

[b) %)

(o+1)(a+2)(0c+m-1)
12 (m=1) i
(c) the number of solutions to the
inequality x,x,...x, < N in positive

integers x,, x,, ..., X, equals
2 TH] (N> * @
ms<N

f

QUANTUM

in every library and college bookstore!

N

\

That’s our goal. So if you don’t find Quantum where you
expect to, ask for it! Quantum is a resource that belongs
in every library and bookstore.

“A first-class ‘new’ magazine . . . one can appreciate the
meaning of quality and imaginative challenge . . . it is
for anyone with an interest in science, particularly math
and physics. Highly recommended.”—Library Journal

... full of stimulating articles . . . excellent mathematical
reading for students at school and university.”—Nature

"Quantum’s entry into the world of teens (and older folk,
too) should be embraced and welcomed. Its relatively low

subscription price makes it a bargain for the wealth of
knowledge and recreational materials its readers
receive.”—Journal of Negro Education

“Translations are in excellent and easily understandable
English; English-language articles are similarly well
written. This wonderful magazine should be in every
secondary school library and in college and public
libraries as well.”—Magazines for Libraries

“It should be in every high school library [and] in most
public libraries . . . we owe it to our students to make
Quantum widely available.”—Richard Askey, Professor
of Mathematics at the University of Wisconsin, Madison

Share the QUANTUM experience!

To order, call 1 800 SPRINGER (1 800 777-4643)

Y

28

MARCH/APRIL 1996



Hello, Quantum:

I look forward to every issue of your magazine.
You always make me think, and as a result I learn.
I am a physicist, head of the Teacher Institute at the
Exploratorium in San Francisco, and I enjoy playing
music by twirling corrugated tubes. So I must com-
ment on your answer to question 7 in “Fluids on the
Move” in the January/February issue.

Frank Crawford did an investigation of twirling
corrugated tubes and reported the results in the
American Journal of Physics (1974, Vol. 42, p. 278).
His analysis agrees with my simple experiments.
The motion of air through the tube is caused by both
the difference in pressure between the ends of the
tube and also by forces on the air in the noninertial
frame of the rotating tube.

An easy experiment will allow you to separate
these two effects and find their relative importance.
In brief, the pressure difference does not produce
enough air motion through the tube to make the

&

A reader writes . ..

tube sing. Instead, the rotation of the tube forces air
through the tube and makes it sing.

Simply blow over one end of the tube, using your
mouth or any blower you wish (we sometimes stick
one end out the window of the car). When the air
flows across the end of the tube (perpendicular to the
end of the tube), the tube does not sing. The pressure
decrease as the air speeds up over the end of the tube
is not enough to move air through the tube to make
it sing. Then blow directly into the tube. It will sing,
even if you blow with just your mouth. (Hold your
mouth an inch or so from the tube when you blow.)

To get a feel for how the rotation of the tube
drives the air through the tube, picture the tube full
of marbles, then picture the tube being twirled—the
marbles will flow through and out of the tube.

Frank Crawford, in his fine article, does the cal-
culation and shows how inertial forces in the rotat-
ing frame cause the air motion.

—Paul Doherty, Ph.D.
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MATHEMATICAL
SURPRISES

The golten ratio in baseball

Fibonacci strikes yet again!

by Dave Trautman

HE FAMOUS FIBONACCI SE-
quence 1, 1, 2, 3, 5, 8, 13, 21,

sequence and the golden ratio
/ while reading The
34,55, 89, ... is generated by [ Politics of Glory:
setting f, = 1, f, = 1, and for o | How Baseball’s Hall
n>0,f, . ,=f, .+, This se- . , of Fame Really
quence arises in a wide variety Works by Bill James.
of branches of theoretical As far as I know, this is the
mathematics and in many ar- first appearance of the Fibonacci se-
eas of the natural sciences, as quence or the golden ratio in a base-
discussed by Elliott Ostler ball setting.
and Neal Grandgenett in Before we see how these appear-
their article “Fibonacci \ ﬁ ances arise, let me give
Strikes Again!” (Quantum, e }“ - the traditional descrip-
July/August 1992). Ostler tion and exact value of
and Grandgenett also show the golden ratio. The
that the ratios of successive golden ratio is the value of x such
elements of the Fibonacci that if you divide a line of length x
sequence tend to the number into two pieces of lengths 1 and
known as the “golden ratio,” x — 1, the line of length x is to the
which is approximately line of length 1 as this line is to the

1.618: line of length x - 1:
l=1.ooo, %=2.000, §=1.500, - I
1 1 2 —x—1 1
é51.667, §=1.6oo, E:1.625, x_ 1
3 5 8 1 x-1
21 34
551.615, 2—51.619,.... Thusx*-x=1,orx*-~x-1=0. The
1

quadratic formula then yields the

exact value of the golden ratio:

From then on all ratios round to PR

1.618. GRS _5+1
Recently I came across a new S ol x= 9

appearance of the Fibonacci

noueA| Aebiag Ag 1y
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(we reject, for now, the negative root
of the equation).

Problem 1. Assuming that the
limit of f, _,/f, as n goes to infinity
exists, show that this limit must be
the golden ratio.

Now to the world of baseball. In
his book James discusses the problem
of comparing the career won-lost
records of pitchers. Of particular con-
cern is the problem of comparing the
record of a pitcher who had a fairly
short but spectacular career and the
record of a pitcher who had a longer
but less spectacular career. For ex-
ample, how does one compare Sandy
Koufax’s career record of 165 wins
and 87 losses to the career record of
224 wins and 184 losses of Jim
Bunning? On the one hand Bunning
had 59 more wins than Koufax—a sig-
nificant advantage. On the other
hand, Bunning lost 97 more games
than Koufax, and this seems to be a
rather high price to pay for 59 more
wins. Since the three most important
statistics for pitchers are wins, win-
ning percentage (wins divided by
wins plus losses), and games over .500
(wins minus losses), James devised a
formula that uses all three statistics.

If a pitcher has W wins and L
losses, then credit him with
W . W/(W + L) + W — L Fibonacci
Win Points. Thus Koufax has
165 - 165/252 + 165 — 87 = 186 Fi-
bonacci Win Points, while Bunning
has 224 -224/408 + 224 — 184 = 163
Fibonacci Win Points. (For conve-
nience we will always round the
calculation to the nearest integer.)
So James concludes that Koufax was
a better pitcher than Bunning. The
conclusion itself is unimportant, as
virtually every baseball analyst
would concur with James. What's
important is that there is now a nu-
merical method for comparing
records.

But why does James call this
number Fibonacci Win Points? He
noticed that some pitchers, such as
Koufax, have more Fibonacci Win
Points than wins, while other pitch-
ers, such as Bunning, have fewer Fi-
bonacci Win Points than wins. The
division between the two sets of
pitchers occurs when wins equals

Fibonacci Win Points. This means

w- +W-L=W,
W+L
or
w2
-L=0,
W+ L

which we can further reduce to
W2_LW-12=0.

Using the quadratic formula to solve
for W (and again we reject the nega-
tive root) gives

oLtV +arlt 5+l

2 2

So we see the golden ratio appear.
James defines the golden ratio via
the ratios of successive elements
of the Fibonacci sequence, and
thus he uses the term Fibonacci
Win Points.

Baseball statistics never give wins
as a multiple of losses. Instead they
list the winning percentage for each
pitcher, so we calculate the winning

percentage that corresponds to
W=(5)+1)/2 Lt

J5+1
W T o W5+l
W+L J5+1 . +5+3
3 +1
_(3-5)¥5+1) 51
- 4 N

A quick calculation reveals that,
computed to three decimal places,
(v/5 —1)/2 = 0.618. This value is sim-
ply x — 1, where x is the golden ra-
tio. It is also 1/x:

A5-1) V5-1
5-1 2

12 _
x JJ5+1

James calls 1/x Fibonacci’s Number;
a few mathematicians call 1/x the
golden ratio.

It's quite possible for a pitcher to
have a negative number of Fi-
bonacci Win Points. For example,
Milt Gaston had 97 wins and 164
losses for —31 Fibonacci Win Points.
(This is probably the lowest score

ever achieved by a Major League
pitcher.) James guessed the zero
point (the winning percentage cor-
responding to zero Fibonacci Win
Points) would have something to do
with Fibonacci’s Number 1/x. In-
spired by the relationship 1 - 1/x =
(1/x)?, he guessed that the zero point
was this common value, which is
0.382, computed to three decimal
places. But he soon discovered that
the zero point is 0.414, computed to
three decimal places.

Problem 2. Find the exact value of
the zero point.

Problem 3. Suppose a pitcher has
W wins and L losses for a winning
percentage of P = W/(W + L). Show
that his Fibonacci Win Points are
given by (P2 + 2P — 1)(W + L).

Although this isn’t a practical
way to calculate Fibonacci Win
Points, it can be used for many theo-
retical calculations. For example,
having Fibonacci Win Points equal
to wins requires that

(P2+P-1)W+L)=W,
or
P24+2P-1=P,

From this we see that P2+ P -1 =0,
and thus

_+5-1
2 Q

P

ANSWERS, HINTS & SOLUTIONS
ON PAGE 60

Dave Trautman is a member of the De-
partment of Mathematics and Com-
puter Science at The Citadel in Charles-
ton, South Carolina.

7
: Looking for answers? h

The solutions to problems in
Martin Gardner’s article “The
Magic of 3x 3,” which appeared
in the January/February issue,
can be found on page 60. There
you will also find an update from
the author, summarizing recent
developments related to 3 x 3

magic squares.
Y
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ENGTH IS ONE OF THE
first notions in geometry that
mankind had to deal with. The
first measurements of
length were the most
natural, which is why
they have sur-
vived to the
present

o

time. Even
today you can
read in a newspaper
aphrase like “The camp-
ers were a two days’ hike
from the nearest settlement” or
“There was a crack in the pavement
as wide as my hand.”

But for all their convenience—we
always had them “on us”—the pri-
mordial measures of length such as
span (the distance between the tips
of the thumb and little finger
stretched out), cubit or ell (the dis-
tance from the fingertips to the el-
bow), and fathom (the length of two
outstretched arms) were inexact: dif-
ferent persons have different units.
So nation-states had to introduce
standards of length—model units of
measurement. Naturally, these
units were different in different
countries. For instance, three “Rus-
sian cubits” were equal to two “Per-
sian cubits”; the latter unit received
the name of arshin in Russia (arsh
means “elbow” in the Turkic lan-
guages).

Even in the same country, rela-

tions between different units of
length were sometimes quite intri-
cate. For instance, Peter the Great
issued an edict in the 17th century
that was meant to put the Russian
system of measurement in order. It
introduced rather complicated rela-
tionships between the units used at
that time:
1 mile = 7 versts = 3,500 sazhens (Rus-
sian fathoms) = 10,500 arshins = 168,000
vershoks (originally, a vershok was the
width of the palm at the base of the fin-
gers) = 294,000 inches = 2,940,000 lines
= 29,400,000 points.!

It’s worth noting that in the last
two relations the idea of the metric

ITo compare these measures to
those you know, start with inches,
which are the same magnitude
everywhere.
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system can be glimpsed. But cus-
tomary measures are so hard to root
out that a revolution is needed to
replace them—sometime literally.
The French Revolution introduced
the meter, kilometer, centimeter,
and so on, to the French populace,
and the October Revolution in Rus-
sia introduced these units there. The
United States and Great Britain, on
the other hand, still cling to their
medieval systems of measurement,
despite the efforts of some to con-
vert them to the metric system.

Measuring length played a vitally
important part in the history of
mathematics. Indeed, what do we
actually mean by the length of a seg-
ment? It is the number that shows
how many times the chosen unit of
length fits in the segment. If it
doesn’t fit an integer number of
times, we must introduce a frac-
tional length.

Already in ancient Greece people
noticed that the diagonal of a square
is incommensurable with its side—
that is, can’t be
expressed as a
rational mul-
tiple of the V2
side. This ob-
servation re-
sulted in the
discovery of ir- 1
rational num-
bers. Thus the notion of length was a
bridge between geometry and algebra.

These two areas of mathematics
were bound even more closely in the
cornerstone philosophical treatise
Discourse on the Method of Rightly
Conducting the Reason and Seeking
for Truth in the Sciences by the
great French philosopher and math-
ematician René Descartes, whose
400th birthday is nigh upon us
(March 31). In this work—or rather,
in one of the three appendices to it—
Descartes introduced coordinates,
later called Cartesian coordinates,
and thus laid the basis for analytic
geometry. This made it possible to
translate any geometric statement
into algebraic language. For in-
stance, the famous Pythagorean
theorem—"the area of the square
constructed on the hypotenuse of a

KALEIDOS

The long and

What do you really k%nc

by Anatbly E

right triangle equals the sum of the
areas of the squares on its legs”—
can be interpreted as the formula for
the distance from a point in the co-
ordinate plane to the origin: the
square of this distance equals the
sum of the squares of the point’s co-
ordinates. This theorem has many
extensions in geometry, algebra, and
number theory (Pythagorean triples,
or the Great Fermat Theorem).
The attempt to measure the
length of curves led to a variety of
discoveries. The circumference of a
circle was measured in ancient
times (by polygonal approximation),
although the question of the nature
of the number n tortured mathema-
ticians for hundreds of years and was
answered only in the last century.
The approach to defining the length
of a curve was the same as for the
circle. However, one has to be care-
ful here, because sloppiness with
limits may lead to absurdity. Draw
a diagonal in a square and approxi-
mate it with “staircase” paths as
shown in the figure at right. All
these paths are the same length—
twice the side length of the square.
But on the other hand, geometri-
cally, they approach the diagonal,

S
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il short of It

now about “length”?

|

5Iy Savin

whose length is
V2 times the
side length. It
looks like we've
proved an ab-
surd relation
2 =2 ! Haven't
we? Problems
of length mea-
surement
stimulated the
development of
the theory of
limits.

It’s curious
that, whereas
the length of a
circular arc is
proportional to
the correspond-
ing central angle
¢, an arc of an el-
lipse (a “squeezed” or “flattened”
circle) can’t be expressed in terms of
the corresponding angle even using
the entire range of functions studied
in high school (the “elementary func-
tions”). Special elliptic functions had
to be introduced to handle this prob-
lem. They proved useful for many
other problems as well.

Another interesting class of
curves is the spiral.>? The so-called
hyperbolic spiral, given by the equa-
tion p = a/o (see the figure), winds
about its “center” infinitely many
times as the angle ¢ varies on the in-
terval (¢, o), ¢, > 0. This spiral is in-
finitely long. The logarithmic spiral,

2See also the Kaleidoscope of the
March/April 1995 issue of Quantum,
devoted to these curves.

given by
p=e also
makes an b Ry

infinite .
number of
windings
for ¢ > 0,
but its total
length is fi- /7\7
nite! 0

Speaking
of length, I
can’t help
mentioning
the simplest
and most
important
tool for mea-
suring it: the
ruler. It has markings in inches or
centimeters. Two similar rulers can
be used to add numbers. Put one
ruler along the other with the zero
mark on the first ruler against the
8-cm mark on the second. Find the
6-cm mark on the first ruler and
read the number against it on the
second ruler. It is 14, so 8 + 6 = 14.
The same idea was adjusted for mul-
tiplying numbers: we merely re-
place the uniform scale by the loga-
rithmic scale. For convenience, one
of two such rulers was made with a
groove in which the other ruler
could slide back and forth. Both
pieces had many scales that allowed
one to perform various operations,
and a special glass runner with a
cross hair helped match divisions
on different scales. This calcu-
lating tool is called a slide rule.
Not so long ago, before elec-
tronic calculators chased it
from the field, it was an in-
dispensable tool for every
engineer.

When we speak of the
length of the path from one
place to another rather than
the distance between them,
kilometers may not be the
best unit of measurement. It's
more important for a passenger
or a hiker to know the time it
takes rather than the distance trav-
eled, so we measure distances by the
number of hours it takes to get there
by plane, train, or automobile. Thus

we introduce a completely different
“metric” for points on Earth. In this
metric, the distance, say, from Mos-
cow to Uglich?® may turn out to be
greater than from Moscow to
Marseilles. And a driver may have
her own metric. What do they have
in common? First, the distance from
point A to point B is the same as
from B to A; second, any distance is
nonnegative; and third, the sum of
the distances from A to B and from
B to C is never smaller than the dis-
tance AC (the Triangle Inequality).
They share one more property: if
two points are zero distance apart,
then they are the same point.

This brings us to one of the fun-
damental notions in modern math-
ematics—the notion of metric
space. This notion includes not only
ordinary space or the globe, but such
uncommon “spaces” as, say, the set
of all continuous functions on a seg-
ment, where the length seems to
have completely lost any genetic
connection with elbows, feet, fin-
gers, and the like. This in itself is a
kind of measure of how far we have
come in our mathematical journey
through the ages. Q)

3A small town on Volga, several
hundred kilometers away from
Moscow, which played an important
part in Russian history many
centuries ago.—FEd.
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PHYSICS
CONTEST

Sea sounds

‘Come here Uncle John's band by the riverside,
Got some things to talk about, here beside the rising tide.”
—GQGarcia—Hunter

by Arthur Eisenkraft and Larry D. Kirkpatrick

EFRACTION IS RESPONSIBLE

for distorting and correcting our

vision. The shimmering of light

as it passes over a hot barbecue
requires a knowledge of refraction to
be understood. Refraction of light at
the surfaces of lenses benefits those
of us who wear glasses or contact
lenses.

Refraction was known as far back
as the time of Ptolemy in the 2nd
century A.D. It wasn’t until 1621,
however, that the correct relation-
ship between the incident and re-
fracted angles was discovered. Snell
determined that

n, sin 9, = n, sin 6,,

where 6, and 8, are the angles of the
light measured relative to the nor-
mal to the surface in materials with
indices of refraction n, and n,, re-
spectively. When Foucault mea-
sured the speed of light in water and
other transparent materials in the
1850s, it was shown that the index
of refraction is inversely propor-
tional to the speed of light in the ma-
terial—that is, n o 1/v.

Modern manufacturing tech-
niques have allowed the develop-
ment of a new type of lens that can
be made out of a flat piece of glass.
The graded index lens has an index
of refraction that varies from the
center to the edge. This variation
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causes the light to change direction
as it would in a regular lens.

This technique also finds applica-
tions in fiber optics. The graded in-
dex fiber has a core with an index of
refraction that decreases with dis-
tance from the center. This helps
keep the rays traveling along the
axis of the fiber.

Of course, Nature has exhibited
the effects of a variable index of re-
fraction for a very long time. The
index of refraction of air varies with
its density. Therefore, the index of
refraction of the Earth’s atmosphere
decreases with altitude, and light
rays bend toward the vertical as
they approach the ground. As a con-
sequence, the Moon appears about
one diameter higher than it actually
is when it is near the horizon. Tem-
perature also affects the density of
air, and this dependence creates the
mirages we see on road surfaces as
we drive down highways on hot
days.

Identical effects occur with other
types of wave—for instance, sound
waves. This formed the basis for a
theoretical problem given at the
XXVI International Physics Olym-
piad held in Canberra, Australia, in
July 1995,

The speed of propagation of
sound in the ocean varies with
depth, temperature, and salinity.

Let’s assume that the speed has a
minimum v, midway between the
surface and the ocean floor. For con-
venience, we choose the originz =0
at the level of the minimum, z = z,
at the surface, and z = —z; at the floor.
Let’s also assume that the speed of
sound increases linearly above and
below z = 0 according to

v =v,+blzl,

where b is a positive constant.

Let x be a horizontal direction,
and let’s place a source of sound S at
the position x = 0, z = 0. A ray of
sound is emitted from S at an angle
8, < m/2 measured relative to the
positive z-axis—that is, vertically
upward (fig. 1).

-z

Figure 1

Art by Tomas Bunk
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A. Show that the trajectory of the
ray (constrained to the xz-plane) is a
circle with radius
Re——0

bsin®,

This can be derived by using cal-
culus or demonstrated by means of
a spreadsheet. In using the spread-
sheet, assume that the ocean is di-
vided up into a large number of
horizontal sheets, each with a
speed of sound equal to that in the
mid-depth of the sheet. You can
then apply Snell’s law at the inter-
faces between sheets to obtain the
trajectory of the ray. (It's sufficient
to show that the path follows a cir-
cular arc at the beginning of the
trajectory. The spreadsheet will
have difficulties when the ray is
horizontal. See physics challenge
P170 on page 17.)

B. Derive an expression for the
smallest angle of 8, (z, b, v,| that can
be transmitted without the sound
ray hitting the surface.

C. Assume that you have a micro-
phone at a positionx = X, z = 0. Find
the series of values for 8,(X, b, v,)
required for the sound ray emerging
from S to reach the microphone.
Assume that z, and z; are suffi-
ciently large to remove the possibil-
ity of reflection from the ocean sur-
face or floor.

D. Calculate the smallest four
values of 8, for these rays given that
X =10,000 m, v, = 1,500 m/s, and
b =0.02000 s!.

E. Let’s now compare the times
required for sound to travel along two
different paths. The first path is the
direct horizontal, or axial, path. The
second path is the one corresponding
to the smallest angle for 6. The time
required for the second path can be
obtained by integrating ds/v along the
path—that is, by adding up the times
that it takes to move small distances
along the path. (The integral |dx/sin x
= In tan(x/2) should prove useful.)
This result can also be obtained nu-
merically with a spreadsheet or a
computer program. Which path takes
the shorter time?

Please send your solutions to
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Quantum, 1840 Wilson Boulevard,
Arlington VA 22201-3000 within a
month of receipt of this issue. The
best solutions will be noted in this
space and their authors will receive
special certificates from Quantum.

Sylit image

The split-lens problem that ap-
peared in the September/October
1995 issue provided readers with a
broken lens and asked for a descrip-
tion of the resulting light pattern.
Because the problem noted the ap-
pearance of interference fringes, the
first step in finding the solution is to
determine how the multiple sources
arise.

The bisection of the lens pro-
duces two point images of the point
source of light, each displaced from
the principal axis, which act as
sources to produce the interference
pattern. In figure 2, these sources are
labeled S, and S,. Our path to a so-
lution is now revealed to us. We can
use the lens equation to find the
positions of the two new sources. A
comparison of similar triangles can
provide us with the distance be-
tween these sources. This will then
allow us to find the spacing between
the interference fringes following
the analysis of a typical Young’s
double-slit experiment. A second set
of similar triangles will provide us
with the size of the overlap region
from which we can find the number
of fringes. Let’s now journey down
this solution trail.

We first use the lens equation to

find the location of the images:

1 1 1
_:_+_’
fod, d,
g -

dy-f

A comparison of similar triangles
yields the distance between S, and S,

S

5 d,

d, =5[d0+di]=a[ 4 ]
dy do~f

The distance to the screen I can be
found in terms of the given dimen-
sions of the problem:

d, _dy+d,

’

dof
dy - f
_ L(dy —f) - dof
e

I=L-d =L-

The distance x between interference
fringes produced by two point
sources of wavelength A separated
by a distance d, on a screen I meters
away is derived in most physics
textbooks:

A A
X=—=—
d, &,

s

[L(d, - f)~d, f

CONTINUED ON PAGE 42

Figure 2
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STICKING
POINTS

Surprises of conversion

Flipping theorems on their heads

F YOU EXCHANGE THE HY-

pothesis and conclusion of a theo-

rem, you come up with another

statement that is the converse of
the given one. For instance, the
statement “if the square of one side
of a triangle equals the sum of the
squares of its two other sides, then
the angle opposite the first side is a
right angle” is the converse of the
Pythagorean theorem. In this case,
the converse theorem can be derived
from the direct theorem. Indeed, if
we have a triangle satisfying the
Pythagorean relationship (but which
may or may not have a right angle),
aright triangle whose legs are equal
to the shorter sides of the given tri-
angle must be congruent to the origi-
nal triangle. Thus we must have
started with a right triangle initially.

But often the converse requires an
independent proof, and sometimes
the converse of a perfectly true theo-
rem is in fact false. Anyway, it
should be made very clear that two
such theorems are different state-
ments, each requiring a separate
proof. Elementary geometry pro-
vides a host of examples that illus-
trate this simple truth. Below you'll
find a number of geometric facts
that you may find almost obvious.
Youw’'ll surely have no problem prov-
ing them, but your assignment will
be different: formulate and prove
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by I. Kushnir

their converse statements. You'll
see that all the converse statements
are much harder to prove than their
direct versions.

Direct theorems

1. The segment joining the mid-
points of the bases of a trapezoid di-
vides it into two figures of equal area.

2. In a parallelogram, the sum of
the distances between the mid-
points of the opposite sides is equal
to the semiperimeter.

3. If H is the orthocenter (inter-
section point of the altitudes) of an
acute triangle ABC, then /HBA =
£LHCA and ZHAB = «4HCB.

4. 1f O is the circumcenter of tri-
angle ABC, then ZOAB - ZOBA =
Z0OBC - £Z0OCB = £Z0CA - ZOAC.

5.1f a triangle is isosceles, then its
incenter belongs to its Euler line.
(The Euler line of a triangle passes
through its circumcenter and the
intersection points of its altitudes
and medians. It can be shown that
these three points are always col-
linear.)

6. The bisectors of the base angles
of an isosceles triangle are the same
length.

Hints for the converse theorems

1. Here the converse theorem
states that if the line joining the
midpoints M and N of the sides AB

D N C
Figure 1

and CD in a quadrilateral ABCD bi-
sects its area, then these two sides
are parallel.! To prove this, show
that triangles AND and BNC (fig. 1)
have equal areas. Since DN = NC,
this will mean that AB |l CD.
2.LetK, L, M, N be the midpoints
of the sides AB, BC, CD, DA of a
quadrilateral ABCD (fig. 2). Given
KM +LN=(AB+BC+CD+DA)J2,
we are to prove that ABCD is a par-
allelogram. Label E the midpoint of
AC. Since KE and EM are midlines

B
K
A
L
N
D fr .
Figure 2

1So it’s not strictly the converse of
the original statement: we have to
include the case of a parallelogram
along with a trapezoid.




Figure 3

in triangles ABC and CDA, using
the Triangle Inequality we get

AD
KM<KE+EM = ShRed)
2
Similarly,
D
IN<LE+EN=287CD
2

Adding these inequalities and com-
paring the result with the given equa-
tion, we find that KM = KE + EM,
which is possible only if E lies on the
segment KM. But in this case, from
BC I KE and AD || EM, we derive
BC Il AD. The other two sides are
parallel for the same reasons.

3. We must prove that if the
equalities of angles from the direct
theorem are valid for a certain point
H in an acute triangle, then this
point is its orthocenter. Circum-
scribe the triangle and denote by C,
and N, respectively, the points
where the line CH meets AB and the
circumcircle (fig. 3). From the first of
the given equalities and the In-
scribed Angle Theorem we get
/HBA = ZHCA = ZNBA,; similarly,
ZHAB = ZNAB. It follows that H
and N are symmetric about AB and,
therefore, CC, is an altitude and
LAHB=/ZANB=180°-£ZACB. But
there is no more than one point on
the altitude CC, at which AB sub-
tends a prescribed angle. The angle
180° — ZACB, in particular, is sub-
tended only at the orthocenter,
which completes the proof.

4. Label the angles in the state-
mento., B, v;(1=1,2) as shown in fig-
ure 4. From o, -0, =B, - B, =7, — 7,
we must derive OA = OB = OC.

Figure 4

Suppose OA # OB—for definiteness,
OA <OB. Thena, >a,, sof, >B, and
OB < OC. Similarly, OC < OA. But
then OA < OB < OC < OA, which is
a contradiction. So OA = OB, and, for
the same reason, OB = OC. In the
direct theorem, the differences are all
in fact zero. Notice that for the con-
verse theorem, it is enough to assume
that all the differences o, — a1, B, —B,,
Y, - Y, have the same sign.

5. Let O, H, I be the circum-
center, orthocenter, and incenter of
triangle ABC, respectively (fig. 5).
At least two of the triangle’s bisec-
tors—say, of angles A and B—do not
coincide with the Euler line. If we
extend these to meet the circum-
circle at D and E, we find that D and
E are the midpoints of the arcs BC
and CA, so OD and OE are perpen-
dicular to the sides BC and CA.
Therefore, OD Il HA and OE |l HB,
and it follows that the triangles
OID and OIE are similar to HIA and
HIB, respectively. The ratio of simi-
larity for both pairs of similar tri-
angles is the same: HI/IO. Since
OD = OE (they are radii of the same
circle), we know that HA = HB.
Then £HAB = ZHBA. An examina-
tion of triangles ABT, ABU now
shows that ZCAB = ZCBA, so the

Figure 5

Figure 6

original triangle is isosceles.

6.Let BC=a, AC=b, AB = c.
Then the converse theorem can be
worded as follows: “If two bisectors
of a triangle, I and ], (fig. 6), are the
same length, the triangle is isosceles
(a = b).” Unlike similar statements
about medians and altitudes, this is
areally difficult theorem. It has been
a matter of great interest for many
geometers, who have offered many
different proofs for it. The proof sug-
gested below is by contradiction, as
are many of the others.

Suppose a > b. Then o > B. The
lengths of our bisectors can be com-
puted as

2bc o
= cos—, I =

a !

b+c 2

2
ac cosE.

a+c 2

I

To obtain, say, the first of these for-
mulas, express the areas of the entire
triangle and the parts into which it
is cut byl in termsofb, ¢, 1, and oy
equate the entire area to the sum of
its parts:

1 1 1
—besino=—bl, sing+—c]a sing;
2 2 2 2

—and cancel out (b sin o)/2 using
the fact that sin o = 2 sin 0/2 cos o,/2.
Since 0 <B <o <m, cos B/2 > cos /2.
In addition, b/(b + ¢) < a/|a + ¢), be-
cause

a b c(a-D)

- = > 0.
a+c b+c (a+c)(b+c)

This means that I, < I,, which is a
contradiction.

If you liked this “conversion
game,” play it yourself with your
favorite theorems in geometry.
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A gripping story

Six cases of static friction, and how to slide past them

OW DO WE USUALLY SOLVE

problems in dynamics? First we

draw the forces and write down

the equation for Newton’s sec-
ond law, projecting all the forces and
accelerations onto the chosen axes.
To solve these equations we also
need to use the formulas for the laws
that determine the forces acting on
the object. For example, we substi-
tute mg for the gravitational force
(m is the object’s mass, g is the ac-
celeration due to gravity), kx for the
elastic force (k is the elastic con-
stant, x is the elastic displacement),
and uN for the force of sliding fric-
tion (u is the frictional coefficient, N
is the normal force). When we draw
the diagram, we apply the rules for
determining the direction of each
force: the force of gravity is always
directed downward, the force of slid-
ing friction is directed counter to the
velocity of the object relative to the
surface, and so on.

However, not all forces have their
own laws. We can determine the
normal force or the tension of a
thread only because of the restric-
tions imposed by them on the mo-
tion of objects along a surface. For
example, the normal force has just
the right value so that the motion of
the object is along the surface.

The force of static friction has
the same qualities. The recipe for
finding this force looks like this:
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by Alexey Chernoutsan

the force of static friction has a
magnitude and direction that
maintains an object at rest relative
to the surface on which it can
move. Sometimes this force gives
us headaches. We encounter our
first difficulties when trying to
depict this force in a diagram. We
know only one thing about its direc-
tion: it’s tangential to the surface.
But in what direction? It’'s not al-
ways obvious. Also, in solving the
problems we need to be sure that the
resulting frictional force is within
the range 0 < F,, < uN—otherwise the
object begins to slide. And finally,
the force of static friction some-
times appears in a strange garb (for
example, as the tractive force of a
train or car), so that it’s difficult
even to recognize it. Let’s look at
some examples.

1. A block at rest

Let’s imagine that several forces
act on the block under consideration,
but it remains stationary. This means
that the force of static friction has a
magnitude and direction such that
the sum total of all the forces is zero.
So, what are these values?

In the simplest case (fig. 1) the
answer is obvious: F = -F.

If the block lies on an inclined
plane at an angle o, the force of
friction is directed upward along
the plane and 1is equal to

Figure 1

F;, = mg sin o (where m is mass of
the block). The block won’t slip
if F,, < uN = pmg cos o—that is,
tan o < .

Now let’s apply a small horizon-
tal force to the block, directed along
the plane (fig. 2), and then increase
its value F. As this happens, the
force of friction F;, changes in both
magnitude and direction. When the
static friction force

E = \/(mgsinoc)2 +F

reaches the value uN = umg cos o,
the block begins to slide in the direc-
tion opposite to the direction of F,,
at this particular moment.

Figure 2



2. A tilock on a moving train

Let’s imagine that a train moves
horizontally with an acceleration
a (fig. 3). In order for a block of
mass m placed on its surface to
move with the train, the force of
static friction must impart the
same acceleration a to it. So F; is
directed forward and is equal to
F;. = ma. There will be no sliding
if F, <uN =umg; on the other hand,
when the acceleration of the train
is greater than g, = ug, the block
will slip backward relative to the
train. Figure 3 also shows the force
of friction F, that the block exerts
on the train: according to
Newton'’s third law, F;/ = -F, .

3. A block on a revolving platform

The acceleration of a block rest-
ing on a revolving platform must be
directed toward the center of the
platform. Since the force of friction
is the only horizontal force that can
impart this acceleration, it is di-
rected toward the center and is equal
to mw?r (fig. 4a), where o is the an-
gular velocity of the platform. If the
angular velocity is increased very
slowly, then at the moment when
the force of friction reaches the
value UN = umyg, the block will be-
gin to slip along the platform. If the
angular acceleration is very high,
then not only must the centripetal
acceleration be taken into account

(it’s also called the radial accelera-
tion), but also the acceleration that
is directed along the velocity vector
and results in a change in the speed
(this tangential acceleration was ne-
glected in the case above, where the
angular acceleration was small). This
means that the force of static friction
that provides both these accelera-
tions—or rather both components of
acceleration (the resultant is a single
vector, of coursel—will be directed
not exactly at the center, but at some
angle to the radius (fig. 4b).

4. A wheel on an inclined plane

Let’s imagine that a wheel is roll-
ing down an inclined plane, but
without any slippage between the

Figure 3 Figure 4
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Figure 5

rim and the surface. This means that
the points of the rim that are in con-
tact with the surface are stationary
at any given moment. As this oc-
curs, the force of static friction
equals the force that provides the
rotational acceleration of the wheel
(fig. 5). If this frictional force were
absent, there would be sliding in-
stead of rolling—the wheel would
slip down the inclined plane with-
out rotating.

b. The acceleration of a car

It should be noted that the trac-
tive force of the engine that acceler-
ates a car is nothing more than the
force of static friction acting on the
drive wheels. The engine transmits
forces to the drive shaft via the
transmission that try to turn the
wheels clockwise (fig. 6). According
to Newton’s third law, a forward-
directed force of static friction
arises, which sets the car in motion.

And what about the passive
(nondrive) wheels—are they affected
by the force of static friction? Cer-
tainly, but to a far lesser extent, be-
cause this force must merely be
enough to rotate the wheels, and
that’s all.

In addition to these forces, there
is a resistive force that acts in the
horizontal direction and consists of
two parts: the force of rolling fric-
tion (resulting from deformation of
the tires, and also from the rough-
ness of the road) and air resistance.

Figure 6
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B. A car furning

Let’s imagine a car in the middle
of a turn, moving at a constant
speed. Since the car’s acceleration is
directed toward the inside of the
curve, it’s perpendicular to the ve-
locity vector. The force of static fric-
tion acting on the wheels, which roll
without slipping, points in the same
direction. Unfortunately, students
often consider this force the force of
sliding friction (the car is moving
after all!) and orient it counter to the
direction of the velocity vector. But
then the question arises: where is
the force that causes the centripetal
acceleration?

It’s interesting that besides the
force of static friction, the car is af-
fected by the resistive force directed
counter to the velocity. Does this in-
fluence the force of static friction? In
principle, yes. As the car moves at a
constant speed, the resistive force
must be compensated by an equal
force in the forward direction—that
is, an additional force of static friction
oriented in the same direction as the

Figure 7

velocity. This means that the force
of static friction is directed at some
angle to the radius (fig. 7): one of its
components gives the car a centrip-
ctal acceleration, while the other
compensates for the resistive force.
On a bad road the resistive force
may be considerable and can’t be ig-
nored. Indeed, skidding (and loss of
control of the car!) will occur at the
moment when the total force of
static friction reaches the value
UN = umg. It’s true that in theoreti-
cal problems we often ignore the re-
sistive force. But can we do that in
real life? Decidedly not!

“SEA SOUNDS”
CONTINUED FROM PAGE 36

Interference fringes will appear only
in the area where the light beams
from S, and S, overlap. We can de-
termine the size of this region by
comparing similar triangles:
8(L+d,)
dy

The number of fringes is found sim-
ply by dividing the length of the
overlap region by the spacing of the
fringes:

D & (L+d,)
X A L(do—f)—dof
With the data provided, we can cal-

culate the number of fringes for the
specific situation described:

f=10cm, d, =20 cm,
6=0.1cm, A =500nm,
and L = 50 cm

yield
N = 46 fringes.

A different calculation must be
made for D if the screen is nearer than
point A in the figure. If the screen is
placed nearer than point B, there will
be no overlapping region and there-
fore no interference fringes. (@
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MATH
INVESTIGATIONS

The orhit of triangles

Dedicated to the memory of Leroy F. Meyers (1927-1995)

AST MAY MY FORMER COL-
league Brad Brock, who was at
that time at the Center for Com-
munications Research at Prince-
ton, called my attention to an inter-
esting posting by Kevin Brown on the
Internet. Subsequently I contacted
Kevin, an industrial mathematician
at Boeing (in Seattle). He told me
about a related posting of his and gave
me permission to tell my readers
about his ideas. Hence the topic for
the present column. In what follows,
I will briefly sketch Kevin’s prelimi-
nary research on the topic, as it was
developed by an “old” friend, Zachary
Franco, who is presently on the fac-
ulty of nearby Butler University. In
1978-81 (while a student at Stuy-
vesant High School in New York| Zac
used to send me wonderful solutions
to the problems featured in the
“Competition Corner” of the now
defunct Mathematics Student.
To obtain the “orbit of triangles,”
start with an arbitrary AABC with

by George Berzsenyi

sides a, b, csuch thata+ b + c = 1.
Position the triangle in the first
quadrant of the coordinate plane so
that side a is the segment from (0, 0)
to (a, 0), and let A’ be the point oc-
cupied by the vertex A. Rotate the
triangle so that C is at the origin and
b is along the x-axis; let B’ be the
point occupied by B, and let C’ be de-
fined similarly—that is, rotate the
triangle so that A is at the origin, c
is along the x-axis, and C’ is the
point occupied by C. Now “normal-
ize” AA’B’C’ to obtain a triangle simi-
lar to it whose perimeter is 1; repeat
the above process with this new tri-
angle, and then with the triangle ob-
tained from it, and so on.

In his development, Zac re-
stricted attention to the triangular
region D of the ab-plane shown in
figure 1, in which all points (a, b)
represent a triangle with sides a, b
and 1 —a - b. In accordance with the
findings of Kevin Brown, it seems
that all of the points of D, with the

0.5
0.4
A, 0.3 |
1/2 2 C
5 02F
Ps L
P, 0.1 :—

> :1\||r1||||||||1||||x||1

1/2 a 0.1 0.2 0.3 0.4
Figure 1 Figure 2

0.5

exception of (1/3, 1/3), tend to one of
the “attractors” marked P, P,, P, in
figure 1, whose coordinates are (o, B),
(B, ¥), (v, ), respectively, where o =
sin 18°=(+/5 —1)/4,B = 1/2 —sin 18°
- (3-+/5)/4, and y=1/2.

My first challenge to my readers is
to prove that all points on the bound-
ary of D tend to one of the attractors.
My second challenge is torecreate the
“butterfly” in figure 2, which repre-
sents the first iteration of the points
of D, obtained by Zac via the software
program Mathematica, using 1,250
equispaced points in the region. My
third challenge is to explore further
iterations of the points of D, possibly
starting with more densely packed
points. Finally, you may wish to ex-
plore the “lines of points” approach-
ing the attractors in figure 2 and in-
vestigate the behavior of the points
near (1/3, 1/3). In a future column I
will report on your findings.

Feedback

As I reported at the time, my col-
umns on triangle constructions in the
July/August and September/October
1994 issues of Quantum were par-
tially based on the findings of my
friend Roy Meyers, who was an excel-
lent geometer. My dedication is based
on the belief that he would have en-
joyed the present column as well. My
last e-mail message from him was
dated just a few days prior to his
death; in it he shared with me some
new findings about the construction
of triangles. I will report on them in
my next column. (o]
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IN THE LAB

Up the down incline

A double-cone roller that seems to defy gravity

ERE IS A VERY OLD EXPERI-

ment that looks like a trick.

Take two identical cones made

of wood, plastic, or metal—the
material doesn’t matter at all. The
cones may be either solid or hollow,
but they shouldn’t be too light. Con-
nect their bases firmly (use glue if
necessary) and make sure the axes of
the cones are in alignment. To do
the experiment, you also need a
thick book, as well as two identical
and rather long rods (a pair of chop-
sticks, perhaps).

Put the book on the table and lean
the rods on one edge of the book
such that they form a V, with the
point of the V resting on the table.
Basically you’ve created an inclined

Figure 1
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by Alexander Mitrofanov

plane in the shape of an equilateral
triangle (fig. 1).

Now take your double-cone roller
and put it on the rods so that its axis
is horizontal. As you do, you'll see
that the roller will move, all by itself
and without any push, along the in-
clined plane—but not down, as you
might expect! No, it moves upward,
contrary to our everyday experience
and common sense.

What’s the secret of this trick?
There’s no magic here, of course. It
turns out that under certain condi-
tions the roller’s center of gravity
will drop and not rise as it moves up
to the book. It’s the force of gravity
that causes this motion, and it looks
pretty strange at first.

What condi-
tions must be
met in such an
experiment?
Let’s look at the
problem in more
detail. We de-
note the angle of
the plane with
the horizontal as
o, the angle be-
tween the rods
as 2B, and the
angle at the apex
of each cone as
2v(fig. 2). Let the
roller move up-
ward along the
guide rods from

Figure 2

position I to II, and let I, and I, be
the corresponding distances be-
tween the points of tangency of the
roller and the rods.

Figure 2 shows that relative to the
points of tangency, the roller’s cen-
ter of gravity drops by a value of

L-1
H:gtany.
2

Naturally these points of tangency
rise during the motion (fig. 3) by a
value of

]] _]2

h =|MN[sin(x: cotPsina.

Now we have everything we need

Figure 3



to formulate the condition for the
roller to move up the inclined plane.
Clearly this happens when H > h, or

L-1 1 —

I .
Ltany > L cotBsino

—that is,
sin o < tan  tan v.

Only in this case will the center of
gravity drop as the roller moves up
along the rods.

In the opposite case—that is, if

sin o > tan B tan y

—the roller will “really” roll down-
ward. When

sin o = tan  tan v,

the roller will rest on the rods in a
state of neutral equilibrium—that is,
it will be at rest (just like a cylinder
on a horizontal plane). The photo
(fig. 1) illustrates just that case.

To conclude, I'll leave you with
some experimental problems con-
nected with this demonstration.

Problems

1. Check experimentally the for-
mula sin o = tan P tan y, which de-
scribes the condition of neutral
equilibrium for the double-cone
roller on an inclined plane. With
what accuracy one can check this
condition?

2. Make the calculations and
prove experimentally that the con-
dition for neutral equilibrium will
still hold if you move the support
point of the rods toward the book
while keeping the points of tan-
gency of the rods and the book’s
edge the same.

3. From the theoretical viewpoint
one can choose the angles yand f in
such a way that the condition for the
roller to rise is fulfilled even at
0. = 90° (sin o = 1)—that is, when the
inclined plane is vertical. What ex-
perimental results will you get with
such a setup?

4. Let the inclined plane be
formed by rods that meet at the top
rather than the bottom. What shape
would an object need to have in or-
der to roll up these guide rods? (@
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IN YOUR HEAD

Number Show

A handful of number tricks

by lvan Depman and Naum Vilenkin

OU CAN AMAZE YOUR
friends with numerical conjur-
ing tricks. Here’s one of them.
Ask someone to write
down a three-digit number. Let an-
other friend continue this number
by adding the same three digits to
the right; have a third divide the
six-digit number obtained by
seven; ask a fourth to divide the
quotient by eleven; finally, have
friend number five divide the re-
sult by thir-
teen and pass
it to the first,
who will see
the number
that started the
whole shebang.
The secret
lies in the
equality 1,001
=7 11 - 13.
Writing two
copies of a
three-digit
number
side by side
is equiva-
lent to multiplying
it by 1,001 (for in-
stance, 289,289 =
289-1,001), and con-
secutive divisions by
7,11, and 13 amount to one division
by 1001, which restores the initial
number.
You can perform a similar trick
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with two-digit numbers. The num-
ber must be repeated three times
(rather than two, as above) and the
result is successively divided by 3, 7,
13, and 37. Here the underlying
equality is 10,101 =3 - 7 - 13 - 37.
Four-digit numbers are repeated
twice and divided by 73 and 137.
The “secret” relation is 10,001 =
73 - 137,

Ask somebody to think of a two-
digit number, cube it, and tell you
the result. Then you immediately
name the number the person
thought of.

To perform
this trick you’ll
only have to
learn by heart
the cubes of the
one-digit numbers
0,1,2345,678,
9. Here they are: 03 = 0,
13=1,23=8,3%=27, 4% = 64,
53 = 125, 6% = 216, 73 = 343,
83 = 512, 93 = 729. Notice that
the cubes 0of 0, 1, 4, 5, 6, and 9 end
in the digit being cubed (43 = 64,
93 = 729), and that the numbers
2 and 8, 3 and 7 make pairs in which
each number is the last digit of the
other’s cube.

Suppose you cube the number 67.
You'll get the answer 300,763. No-
tice that 300 is between 216 and
343—that is, between 63 and 73.
Therefore, the first digit (the tens’
place) is 6. The last digit of the cube,

3, appears at the end of 73. So the
second digit of the secret number is
7. Thus we guess the number
thought of: 67. With a little practice,
you'll be able to do the “guesswork”
in no time flat.

Guessing a two-digit number from
its fifth power is an even more im-
pressive performance. Just think

about it: your “vic-
m tim” will have to do
7%

four multiplica-

tions
and may
get a ten-
digit num-
ber in the
end! The
trick is
based on
the fact that the fifth powers
of the numbers0, 1,2, ...,9all
end in the digit that has been raised
to the power. (For instance, 1° = 1,
25=32,3%=243,4°=1,024, and 5° =
3,125). In addition, the conjurer has to
memorize the following table show-
ing the beginnings of the fifth powers
of the multiples of ten:

105 = 100 thousand
205 = 3 million




30° = 24 million

40° = 100 million
505 = 300 million
605 = 777 million

70° = 1 billion 500 million
80° = 3 billion

905 = 6 billion

100° = 10 billion

Having been told that the fifth
power of a certain two-digit number
is, say, 8 billion something, you
grasp at once that this result is be-
tween 6 billion and

10 billion, so the
tens’ place

unknown number is 9. And when
your partner tells you that the last
digit of the power, 7, you immedi-
ately give the answer: 97 (indeed,
973 = 8,587,340,257).

A five-digit number is
written on the black-
board. Two students
come to the black-
board. The first of
them writes
an arbitrary
five-digit

number,

the second
writes another number in reply.

Then they exchange five-digit

numbers twice more. After that,
the second student immediately
writes out the sum of all seven num-
bers on the blackboard.

The secret of this trick is that
every time the first student writes
a number, the second writes a
number such that the digits in
each decimal place of the two

numbers add up

to nine. (If the

first number writ-

ten down was
40,817, the reply will
be 59,182). The sum
of two such numbers
is always 99,999. After
three number ex-
changes, the sum of the
six numbers written by

the students will be 3 - 99,999 =
300,000 - 3. So to write out the sum
of the seven numbers, you must
write the digit 3 in front of the very

l [ first number on the
DN
blackboard and subtract 3 from the
six-digit number thus obtained.

To make the trick less obvious,
you can decrease the first digit of
one of your reply numbers by several
units and accordingly decrease the
corresponding digit in the total. For

instance, the numbers on the black-
board can be

5772

76,281
14,391
65,608
24,380
75,619
95,073

4,926

for a total of 356,278. Here the first
digit of the third summand is de-
creased by 2 and the same is done
with the corresponding (second)
digit in the sum.

i st : |
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Have you met our sister magazine?
We're alike, but we're not identical.
There are things in Kvantthat aren'tin
Quantum, and vice versa.

You can order our Russian-lan-
guage sibling Kvant through Victor
Kamkin Bookstore, 4956 Boiling
Brook Parkway, Rockville MD 20852
(phone 301 881-5973). The cost of a
one-year subscription (six issues) in
the US is $60.
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AT THE
BLACKBOARD I

S0 what's the point?

Or rather, where is the point?

HEN A RIGID BODY IS IN
equilibrium, the net force on
that body must be zero, and
the net torque, calculated
about any point, must also be zero.

In many cases, to provide a
simple model that fits nicely into a
framework of rectangular compo-
nents, a single force is replaced by a
pair of convenient component
forces. For example, a force from a
hinge may be taken as a pair of com-
ponent forces: a horizontal force and
a vertical force acting at the same
point. A force from a rough surface
may be taken as a pair of forces: a
component force perpendicular to
the surface (the normal force) and
another component force along the
surface (the frictional force).

For readers of Quantum, it is ap-
propriate to consider some special
cases where dealing with the vectors
directly (rather than their compo-
nents) will simplify the arith-
metic—replacing algebraic solutions
with geometric ones—and provide a
better understanding of the physics
involved.

In the particular cases of concern,
there are exactly three forces acting
on the rigid body, and these forces
are not parallel. If the forces were
parallel, the determination of the
magnitudes of the forces would be
done by simple application of the
“law of levers.”

As a review of the standard solu-
tion of a standard torque problem,
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by Gary Haardeng-Pedersen

Figure 1

consider—once again—the case of a
uniform ladder (of mass M and
length L) with its foot on a rough
horizontal floor and its top against a
smooth vertical wall (fig. 1) What is
the minimum coefficient of static
friction required to keep the ladder
stationary when it’s at an angle of 0
with the vertical?

One of the forces acting on the lad-
der is its weight W = Mg, acting ver-
tically downward from the midpoint
of the ladder (since the ladder is uni-
form). A second force on the ladder is
the normal force R from the wall.
Since the wall is smooth, this force
must be directed perpendicular to the
vertical wall—that is, R is horizontal.
The force from the rough floor is usu-
ally resolved into two components:
the component perpendicular to the

floor (the normal force N) and the
component parallel to the floor (the
frictional force f). In terms of the to-
tal force from the floor F, which is at
an angle of ¢ with the vertical, the
component forces are

N ="Fcos 0
and
f=Fsin 0.

Balancing vertical forces gives
N = Mg, and balancing horizontal
forces gives f = R. Taking torques
about the foot of the ladder leads to
the third condition needed:

L
RLcos8=Mg—,
2
or

1
R=—Mgtan®.
2

The minimum required coefficient
of static friction is then

R 1
f —— =—tan6.

L=—=

N Mg 2

The alternative approach is to re-
frain from resolving the force from
the floor into its components and to
calculate the net torque (which is
zero about any point) about a differ-
ent position. Let’s choose to calcu-
late the net torque about the posi-
tion P indicated in figure 2. This
point is chosen to lie vertically
above the midpoint of the ladder and



Figure 2

at the same vertical level as the con-
tact point between the ladder and
the wall.

The condition necessary for rota-
tional equilibrium is that the sum of
the torques about any point must
equal zero. Denoting these torques
as 1y, (the torque due to the weight
vector), 1, (the torque due to the
force at the top of the ladder), and 1
(the torque due to the force at the
bottom of the ladder), then

Ty + g+ Tp=0.

Since the point P about which we
have chosen to calculate the net
torque is vertically above the mid-
point of the ladder and the weight
acts vertically through the midpoint
of the ladder, P lies on the line of
action of W. Consequently, 1, = 0.
The same argument applied to 1,
shows that, because of the choice
made in the location of P, this
torque is also zero. The apparently
complicated condition for rotational
equilibrium then reduces to 1, = 0.

The interpretation of this condi-
tion is that the line of action of F
must pass through the point P. And
this means that

%Lsine tan®
tanp==——= .
LcosH 2

Since the direction of F is now
known, a scale drawing could be
used to determine the magnitudes of
each of the forces.

Using a sketch (fig. 3) instead of a

Figure 3

scale drawing and the fact that the
vector sum of the three forces is zero
allows us to draw a vector triangle.
Vector W is a vertical vector of
known magnitude—the weight of
the ladder. From the end of this vec-
tor, the second vector R can be
drawn horizontally; the vector starts
at the end of W, but unfortunately
the length of the vector is unknown.
This means that we don’t know
where to start the vector F. But we
do know the direction of F and know
that it ends at the point where W
started, since the sum of the three
vectors is zero!

An added bit of information is
that the angle ¢ between the force
vector and the normal to the surface
can be expressed as

tanc{):iSp.
N

Consider a slightly modified lad-
der problem (fig. 4) A uniform ladder
of mass M and length L has its foot
on a rough horizontal floor and leans
against a smooth sloping wall. The

Figure 4

ladder, on the verge of slipping, is at
an angle of o = 36.9° with the hori-
zontal and the wall is at an angle of
20, = 73.8° with the horizontal. What
is the coefficient of static friction
between the ladder and the floor?

Label the foot of the ladder A, the
top of the ladder B, and its midpoint
M. The weight vector W acts verti-
cally down from M, and the normal
force R from the smooth slope acts
at B, perpendicular to the incline.
Once again, choose a point P about
which to calculate the torques, so
that it lies on the intersection of the
lines of action of W and R. The ar-
gument that the net torque about P
must be zero together with the facts
that 1, and 1, are zero again leads
to the conclusion that the line of ac-
tion of the force acting on the foot
of the ladder F passes through P.
Once again a scale drawing would
determine the angle ¢ between F
and the vertical to be approximately
29°, and a vector triangle can be
drawn to determine the magnitudes
of Rand F.

Alternatively, geometrical argu-
ments show that the triangle PMB
(see figure 4) is isosceles, where the
angle B = ©/2 — oo and PM = PB.

Denote by U the point on the
horizontal surface directly below the
midpoint of the ladder. Then

tan¢g=——,
PU
where
L
AU =—cosa
9,
and
L/4 L
PU=PM+ MU = / +—sinao.
cosfp 2
Then
2.coso
U=tanp=——8" 0-——
cscou+ 2sino
_ZCosocsinoc
1+Zsin20c.

For the value of o specified,
W =24/43 = 0.558 and ¢ = 29.2°.
Another example of the use of the
intersection point of the lines of ac-
tion of the three forces is illustrated
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Figure 5

in figure 5. A uniform board is at
rest with its left end on a rough hori-
zontal floor. It is maintained at an
angle of 30° with the horizontal by
arope attached to its right end. This
rope pulls upward and to the right at
an angle of 30° with the vertical. If
the board is just about to slip, deter-
mine the coefficient of static fric-
tion between the board and the
floor.

The line of action of the force T
acting on the upper end of the board
isin the direction of the rope, and the
line of action of the weight W is ver-
tical, passing through the midpoint of
the board. The two lines of action
intersect at a point P below the hori-
zontal floor. The line of action of the
force F exerted on the board by the
floor must pass through P. Labeling
the midpoint of the board M, its lower
end A, and its upper end B, we find
that triangle PMB is isosceles (the
angle BMP = 120° and the angle
MBP = 30°), so that MB = MP. The tri-
angle AMP is then equilateral, and
the line of action of F is therefore at
an angle of 60° with the vertical. Thus
U =tan 60° = /3.

Finally, consider another varia-
tion on the ladder problem. The
situation is identical to that posed in
the first problem (illustrated in fig-
ure 1) except that the wall is rough,
with the same coefficient of static
friction as the floor. What is the
value of this coefficient of static fric-
tion if the ladder is just about to slip?

If the coefficient of static friction is
u and the ladder is just about to slip, the
force acting on the foot of the ladder
is at an angle of ¢ with the vertical,
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Figure 6

and the force acting on the top of the
ladder is at an angle of ¢ above the
horizontal, where ¢ = tan™! p. The
lines of action of these two forces are
then perpendicular to each other as
shown in figure 6. Choosing P again
as the intersection point of the three
lines of action, we find that P must be
vertically above the midpoint of the
ladder and must also lie on a circle
that has the ladder as its diameter.
Consequently, ¢ = 146, or i = tan 6/2.

For a person who prefers to attack
problems from a geometrical or engi-
neering drafting perspective rather
than an algebraic approach, the
sketch of the rigid body with the lo-
cation of the point where the three
lines of action must intersect can be
a powerful technique. Of course, it
doesn’t work when there are more
than three forces acting on the ob-
ject—for example, a ladder with
someone standing on a rung. Well,
actually, by calculating the position
of the center of gravity of the person
and the ladder and then using a single
weight vector through the center of
gravity, you can reduce the problem
to a three-force problem, and then
this approach will work. (0

Gary Haardeng-Pedersen is an associate
professor of physics at Sir Wilfred Gren-
fell College (a campus of Memorial
University of Newfoundland), located
in Corner Brook, Newfoundland,
Canada.




Let’s go mathcamping

The fourth annual Canada/USA
Mathcamps will be held in 1996 at
the University of Washington, Se-
attle (July 29-August 23).

Canada/USA Mathcamps are the
national summer mathematics
camps for high school students.
They are four-week programs to de-
velop the mathematical ability and
psychological well-being of math-
ematically talented students. Selec-
tion of students is by a two-tiered
qualifying math quiz and by a
teacher’s recommendation. Trainers
in the camp are nationally and inter-
nationally known expert mathemat-
ics communicators who are also re-
search mathematicians.

Two programs will run simulta-
neously but separately in Seattle: an
entry-level camp called Mathcamp I
and an advanced program called
Mathcamp II.

The camp exists for three reasons.
(1) Students in a regular math class in
school possess widely varying abili-
ties in mathematics. While the
teacher’s instruction benefits the
class taken as a whole, the talented
few who could go deeper and further
are not adequately challenged by the
content and pace. (2) It is a widely
held view that prospective mathema-
ticians should begin at an early age.
Mathematical vocation is most often
awakened at about fifteen years of
age. (3) The gifted have social and
emotional needs that cannot be ad-
equately met in a regular school set-
ting. The greatest social need of the
gifted is for true peers—those who are
similar in ability and interests.

The mathematics training camp
goes beyond problem solving. It is a

HAPPENINGS
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threefold mathematical re-educa-
tion complementing the high school
syllabus: (a) acquiring a confident
familiarity with those essential con-
cepts that are not in today’s high
school curriculum; (b) proper writ-
ing in the language of mathematics;
and (c] doing mathematical proofs
employing the techniques that
mathematicians use.

There are other benefits from at-
tending this camp. Soon after the end
of the camp, an opinion letter evalu-
ating the student is filed by
Mathcamps in its archives. The letter
describes the student’s raw intelli-
gence, creativity, work habits, and
social behavior and is sent, at the
student’s request, to universities and
other entities that require informa-
tion about the student from sources
outside the school setting. Math-
camps has an accuracy control
mechanism ensuring that the letters

are factual portrayals of the students.
The camp fee, which includes tu-
ition, meals, and dormitory accom-
modation, is US$1,683. The airfare
from anywhere in Canada or the US
is $195. There is also a Mathcamp I
at Columbia University in New York
City (June 24-July 19). It is nonresi-
dential and charges a fee of US$795,
which is the tuition part of the fee
charged by the residential camp.
These camps are run by the Math-
ematics Foundation of America
(MFOA), a nonprofit organization
founded in 1995 to run the Canada/
USA Mathcamps. Mathcamps began
in Vancouver, British Columbia, in
1993. Five camps have been held
since then. The mission of MFOA is
to bring together mathematically
gifted high school students from
Canada and the US at no cost to the
students. It is expected that this goal
will be realized in less than five years.
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More information on Mathcamps
is available on the World Wide Web:
http://www.mathcamp.org. The or-
ganizers can be contacted by e-mail
at info@mathcamp.org, or by phone
at 519 672-7990.

East meets West: RedShift 2

If you're a stargazer who also hap-
pens to like scanning the shelves at
your favorite software store for in-
teresting new titles, you’ve un-
doubtedly seen RedShift 2. It’s a CD-
ROM planetarium for your desktop
computer—an enhanced version of
the award-winning RedShift pro-
gram introduced in 1993. But did
you know that many of the develop-
ers who created RedShift 2 are vet-
erans of the Russian space program?

Take Evgeny Kireev. The 26-year-
old programmer was educated at the
Moscow Aviation Institute in the
department of Cosmonautics. He
began his career at Russian Mission
Control Center in the interplanetary
spacecraft orbit determination sec-
tion, where he specialized in space-
craft design and celestial mechanics.

In 1992 Kireev joined Maris Mul-
timedia, the publishers of RedShift
2, which has offices in Moscow. He
designed a celestial mechanics ar-
chitecture that can simulate plan-
etary positions with an accuracy of
about two arc-seconds over a 200-
year period. “You can visualize this
magnitude of error,” Kireev ex-
plains, “by imagining that you are
looking at a planet from a point on
the Earth, then walk about 500 feet
and look again. The difference in
position is about two arc-seconds.”

In order to achieve this level of
accuracy, the most authoritative as-
tronomical data were obtained from
space science centers throughout the
world, including NASA and Russian
Space Mission Control. For example,
in order to calculate the historic po-
sitions of the planets back to
3000 B.c., the planetary position data
tile called DE-102 was obtained from
NASA'’s Jet Propulsion Laboratory.

When these data were run
through the Russian Space Mission
Control model, the RedShift devel-
opment team discovered a number
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of discrepancies. This led to an ac-
tive dialogue between Russian Space
Mission Control and the Jet Propul-
sion Laboratory, which resulted in a
revision of the DE-102 data. So here
we have a curious case of virtual re-
ality affecting the real world: the
development of RedShift 2 advanced
the accuracy of data used by space
scientists, and also fostered closer
cooperation between once distant
Russian and American colleagues.

Another Russian on the RedShift
team is Dr. Yuri Kolyuka, a dean of
the Soviet space program who con-
tinues to work as a scientist at Rus-
sian Space Mission Control Center.
Kolyuka is in fact the Space Prod-
ucts team leader at Maris Multime-
dia, and he speaks with pride of the
powerful engine in RedShift 2 for
calculating both regular and irregu-
lar orbits. “Any deviation, such as
the nonregular distribution of mat-
ter mass inside planets, the gravita-
tional attraction from distant celes-
tial bodies, atmospheric drag, and
other forces acting on the space ob-
ject can now be taken into account,
in order to derive accurate positions
of comets, asteroids, or any space-
craft—either orbiting the Earth or
voyaging between planets. This
gives users an incredibly realistic
experience of traveling through the
solar system and observing the uni-
verse from any moving object.”

A test run by Quantum staff con-
firmed the power of RedShift 2,
which also contains the Penguin
Dictionary of Astronomy and nu-
merous images and animations.
While nonspecialists may feel in-
timidated by the computational
abilities of the program—the control
panel is breathtaking in its multi-
tude of buttons and switches—the
rank amateur will find easy inress
into this huge topic. For example,
within minutes you should be able
to view the sky at the moment of
your birth (in another city, perhaps)
and compare it with the view to-
night (at your current location).

While aimed primarily at the
“backyard astronomer,” RedShift 2
may find its way into the CD-ROM
drives of professionals. “Because of

the increased scientific sophistica-
tion of the program,” Kolyuka says,
“RedShift 2 will become useful also
for professional researchers’ work, as
a means for visualization of experi-
mental data or re-creation of fine
astronomical events.”

RedShift 2 is distributed by
Maxis, Inc., and carries an estimated
street price of $54.95. For more in-
formation, see the Maris home page
at http://www.maris.com/maris.

“If today is Tuesday .. ."

”. .. this must not be the answer
to the Quantum CyberTeaser.”
More people than ever sent in an-
swers to the March/April problem
posted at the Quantum home page
(brainteaser B166 in this issue), so it
may be time for us to consider in-
creasing the number of winners.
First we need to count how many
buttons we have left . . .

These were the first ten visitors
to submit correct answers electroni-
cally:

Matthew Padilla (Lombard, Illinois)
Ed Sullivan (Herndon, Virginia)

Oleg Shpyrko (Rochester, New York)
Helio Waldman (Campinas, Brazil
Matthew Wong (Edmonton, Alberta)
Richard Forsyth (Moorpark, California)
Julia Salzman (Pittsburgh, Pennsylvania)
Anne Marcks (Hingham, Massachusetts)
Elisa Keefe (Lawrenceville, Georgia)
Bruno Remillard (Cap-Rouge, Quebec)

Thanks to all who responded, and
a special thanks to those who drop
a few lines into our Guest Book.
Some of your comments make us
blush: “The arrival of each issue of
Quantum is like having dessert at a
fine restaurant” (from Houston,
Texas). Some make us smile:
“Delta(Quantum)]delta(Scientific
American) > Everything I Ever wish
to know!” (from Stockholm, Swe-
den). And some pose a challenge: “Fx-
pand your magazine! I really enjoy it”
(from Virginia Beach, Virginia). We
read every message (though we can’t
reply personally to each one). So keep
on writing—it’s one of our most im-
portant “reality checks.” Our e-mail
address is quantum@nsta.org. Our
home page is at http://www.nsta.org/
quantum.
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Math
M166

Denote the angular measures of
the “inner” arcs AB of the given
circles by 2o and 28 (for the circles
ABM and ABP, respectively—see
figure 1). Let us express MP in terms
of a, B, and I = AB. Angle AMB is
subtended by the arc 20; angle APB
either is subtended by the arc 2
(fig. 1) or is adjacent to an angle sub-
tended by the conjugate (“outer”)
arc of measure 360° - 28 (fig. 2). In
either case, by the Inscribed Angle
Theorem, ZAMB = ZAMP = o,
ZAPM = B. Also, angle MAB, as the
angle between the tangent AM to
the circle ABP and its chord AB, is
half the measure of the arc it inter-
cepts: ZMAB = . Now, applying the
Law of Sines to triangles ABM and
AMP, we get

_ ABsinZABM _ Isin(o.+B)

AM - -
sin ZAMB sino,
MP = AM sinZ/ZMAP
sin ZAPM
_ AMsin(o+B)  Isin® (o +B)
- sinf} N sinosin3

(LABM = ZMAP = 180° — o. - B).
The length NQ can be found in

the same way except that the sym-

bols o and B are interchanged. But

Figure 1
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360°— 2B

this permutation doesn’t affect the
result. So NQ = MP.

Our argument shows that any tri-
angle AMP, where M and P are the
points at which an arbitrary line
through B meets the given circles,
has angles o, B, and 180° — o. - B. So
all these triangles—in particular,
AMP and AQN in the problem—are
similar. This observation suggests
another solution: it suffices to prove
that, say, AM = AQ. This can be
done by showing that these chords
subtend equal or supplementary in-
scribed angles. This solution is left
to the reader. (V. Dubrovsky)

M167

The answer is yes. An example
can be constructed by using the
method of small pertubations (see
“Nudging Our Way to a Proof” in
the March/April 1995 issue of
Quantum).

Any power P?(x) of a polynomial
P[x) can be obtained as a product of
several squares and cubes of P(x):
P2(x) = [P2(x|]¥, P¥* * 1(x) = P3(x] -
[P2(x)}k- 1. Therefore it suffices only
to ensure that P?(x) and P3(x) have
positive coefficients. If this is true
for a certain P(x), then any suffi-
ciently small change in the coeffi-
cients of P will only slightly change
the coefficients of P> and P3, so they
will remain positive. But if, in addi-
tion, P has at least one zero coeffi-
cient, the small perturbation can be

chosen so as to make it negative and
our goal will be achieved.

It is most natural to seek a polyno-
mial with only one zero coefficient,
all the other coefficients being ones.
A quick check shows that the squares
of all such polynomials of degree no
greater than three have a zero coeffi-
cient. The polynomial of lowest de-
gree satisfying our requirements is

Plx)=x*+x3+x+ 1.

The coefficients of P? and P? are
positive integers; written in order,
they coincide with the digits of
11,0112=121,242,121 and 11,0113 =
1,334,996,994,331. (The algorithm
for multiplying polynomials is ex-
actly the same as the one for multi-
plying integers, except that no car-
ries are made for polynomials. But in
our particular case 11,011 is squared
and cubed without carries anyway.)

Thus, the required polynomial
can be written as

Plx)=x*+x3-ex>+x+1,

wheree is positive and small enough
to ensure that the coefficients of P2
and P2 differ from the coefficients of
P% and P3 (P(x) = Py(x)) by less than
one and thus remain positive.

M168

Let z be the smallest of the given
side lengths and A the area of the tri-
angle in question. Then the relation
between its altitudes takes the form

24_24 24
z b'¢ y

/

or xy —yz —zx = 0. But then we have
2+yi+ 2= (x+y-z
which is the square of an integer.

M169

(a) Clearly, any position of the




battleship leaves room for the first
cruiser. To prove that the second
cruiser can be placed after the first
two vessels, divide the “ocean” into
eight rectangular sections as shown
in figure 3. Any of them gives
enough room for a cruiser that
doesn’t border on the neighboring
sections. On the other hand, any
ship can have common squares with
at most two sections. So after the
first two ships are drawn, at least
8 -2 -2 =4 sections will be free for
the second cruiser.

Figure 4 shows a similar partition
(into 12 rectangles) for destroyers.
The battleship, two cruisers, and no
more than two destroyers can oc-
cupy at most 5- 2 = 10 of its sections
and will always leave free at least
12 - 10 = 2 sections for the next de-
stroyer. Of course, each of these sec-
tions can hold a destroyer with its
one-square-wide neighborhood (see
figure 4)

Finally, the 16-section partition
in figure 5 proves that room for the
submarines can always be found,
too. Each of these sections is the
one-square neighborhood of a one-
square ship (perhaps truncated by
the borders of the ocean). And the
battleship, two cruisers, three de-
stroyers, and three or fewer subma-
rines overlap with no more than

2 (1 +2+3)+3=15sections, leav-
ing at least one section free for the
next submarine.

The trick with this problem is
that the approach that springs to
mind—counting the total area of the
neighborhoods of the ships already
drawn and making sure there’s some
empty space left—doesn’t lead to a
solution, at least not directly.

(b) An arrangement that leaves no
room for a battleship is easy to find.
We don’t even need to use all nine
of the smaller ships—see figure 6.

M170

The answer is N = n{n + 1)/2 - 1.

Denote Tarantoga’s definitions
by S, S,, ..., S,. Imagine that the
professor represents them by n
points on the plane and marks the
dissertation that shows that
sepulation in the sense of S. is
sepulation in the sense of S, (which
will be denoted by S, — S,) by draw-
ing an arrow from point S, to S, thus
constructing an oriented graph with
n vertices. The last condition of the
problem means that the arrow
§;— §, can never short-circuit an al-
ready drawn path of arrows leading
from S, to S, (fig. 7).

Some of the points may be joined
by a pair of opposite arrows. Let’s see
how many of these there can be. Con-
sider all these double
arrows. Notice that

they can’t form a

cycle, because the

single arrow in such a

cycle drawn last

would make a “short-

circuit” (fig. 8). So, if

we delete single ar-

rows from Taran-

Figure 3 Figure 4

toga’s graph and re-
place each double
arrow with a single

(nonoriented) edge,

we'll get a graph onn

vertices  without

cycles. We can show

that such a graph has

no more than n - 1

edges.

Indeed, delete any

Figure 5 Figure 6

of its edges. The
graph falls into two

Figure 7

disconnected pieces (otherwise this
edge would have to be a segment in
a cycle). Delete another edge. The
graphs falls into three pieces. After
we delete k edges, we get k + 1
pieces. But the number of pieces is
no greater than n, the number of
vertices.

Thus in our original (oriented)
graph, there are not more thann -1
double arrows. Since Tarantoga’s n
points make n{n — 1)/2 pairs, the to-
tal number of arrows (defended dis-
sertations) does not exceed

2(11—1)—{17(11_1)—(11—1)}
=n(n+1)_1:N.
2

Now let’s explain how to orga-
nize the production of such a set of
Ph.D.’s.

First, n — 1 graduate students de-
fend the dissertations S, — S,
S,—8,..,8, =S, Thenn-2stu-
dents defend the dissertations
S8, 18>8y 1Sy =S, 1
and so on, until one student defends
S, — S,. After that another n - 1 stu-
dents defend the dissertations
S8, 1Sy 128, 4088,
This amounts ton(n-1)/2+n-1 =
n(n + 1)/2 - 1 dissertations, none of
which follows from those defended
earlier. On the other hand, all the n
definitions are proved to be equiva-
lent: this follows from §, — S,

A T R T S I I
——Fe
oL
7
o\/
Figure 8
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Physics

The center of mass of the half of
the snake that is inside the tube is
located at a distance /4 from the end
of the tube. Its coordinates are as
follows (see figure 9, which gives a
view from above):

X, :—Z, y; =0.

The center of mass of the free end
of the snake, which can coil arbi-
trarily on the plane, can be located
at any point inside a circle of radius
I/4 whose center is at the origin of
the coordinates—that is, its coordi-
nates (x,, y,) conform to the inequal-

ity
s 1Y
X%*‘Yig[zj- (1)

Since the masses of both parts of
the snake are equal, the coordinates
of the center of mass of the entire
snake must be located midway be-
tween the centers of mass of the two
halves and can be found from the
following relationships:

XX X 1

Fem =TT Y
Nt _n
cm 2 2

Using these equations, we express X,
and y, in terms of x__and y__:

cm cm’

Y :Q‘ycm'

Xy = 2Xcm =,
4

Figure 9
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Inserting these expressions into
equation (1) we obtain

or

This means that the center of mass
of the entire snake can be found at
any point inside a circle of radius I/8
whose center is at (-1/8, 0) (the
shaded circle in figure 9).

P167

At the moment when the bar’s
position on the inclined plane is x
(x < 1), we can write the equation for
its acceleration as

Ma, = Mgsino. - EN[l—?j, (1)

where N = 1/2r is the total number
of rollers on the segment of length I,
N(1 - x/I) is the number of rollers
that come into contact with the bar
at this moment, and F, is the fric-
tional force acting on the bar from
one roller. Assuming that the bar
doesn’t slide on the rollers, the fric-
tional force F; imparts a tangential
acceleration la | to every roller that
is in contact with the bar. Therefore,

2
mr a,

!

Fr=
B

or
F;=ma,. (2)

Inserting equation (2) into equation (1)
yields the dependence of the bar’s
acceleration on its position on the
inclined plane (x < I):

gsino
PRl
M 2r 1

When x > ], the bar no longer has
contact with the rollers and it slides
along the plane with an acceleration

5=

a =g sin 0.

The general form of the function a(x)

aA

g SIN O $---=-===cccmmeo

gsin o
m I
+]\—/I 2r
0

Y

e R

Figure 10

is shown in figure 10.

P168

This problem doesn’t require a
precise analytical solution but
rather an estimate, because the con-
ditions of the task clearly indicate
that we can neglect some important
factors. First let’s find the amount of
saturated water vapor in the vessel
and compare it with the amount of
water:

By = cid =4-10"" mol.

RT
Obviously it’s a very small fraction
of the total mass of water in the ves-
sel (n,,, = 0.05 mol), so the second
question is clear: the water would
never evaporate without the help of
an absorbent substance.

To calculate the time needed for
the absorbent to take up the water
vapor, we assume that the vapor is
always saturated. Then its concen-
tration is

N P
V kT
Let’s choose a coordinate axis x per-
pendicular to the absorbent’s sur-
face, so that the number of vapor
molecules colliding with the
absorbent’s surface area S in a time
At is
N

1N
col = _;SVXALL,
and a similar formula describes the
period T necessary for all the water
molecules N, to be absorbed:




After simple rearrangements we
have

_ 2Ny JHRT

N, Ps

J18:107.8.3.278
=D s
18-870-100

=105,

where u is the molecular mass of
water.

This answer is paradoxically
small. We can only say that under the
conditions of the problem the absor-
bent immediately takes up most of
the molecules. In reality it falls far
short of absorbing every incoming
molecule, so the process takes much
longer. Also, when only a little water
is left and the vapor is no longer satu-
rated, absorption will be slower: the
fewer molecules there are in the flask,
the slower the absorption.

P169

When connected to a battery, the
capacitor is charged to a potential
difference V, and its plates acquire
charges +g and —¢, where

The upper plate is attracted by the
electric field produced by the lower
plate, so it is pulled down by a force

E = gE,

where E is the strength of the lower
plate’s field. Since the linear dimen-
sions of such capacitors are nor-
mally large compared to the dis-
tance between the plates, we can
approximate this field by that of a
uniformly charged infinite plane.
The intensity of such a field doesn’t
depend on the distance from the
charged plane and is given by

_ 5 _4q _V
2e, 2608 2y

The force F causes the upper plate
to move and stretch the spring. Like
the force of gravity, this electrical

Figure 11

force doesn’t depend on the plate’s
position. However, the elastic force
of the spring is proportional to the
plate’s displacement. So a plate of
mass m will oscillate harmonically
about the equilibrium position
(fig. 11), where

F+mg=F,. (1)

The amplitude of the plate’s oscilla-
tion is equal to the distance h be-
tween its initial and equilibrium
positions. Therefore, the plates do
not touch as long as this distance h
is less than half the initial distance
between the plates—that is,

1
h<=1I,.
<20

Let’s denote the spring’s stretch
in the initial state by Ax,. In the new
equilibrium position its stretch is
Ax, + h, from which we get

F, = klAx, + h).
As the upper plate was initially at
the equilibrium position,
mg = kAx,,.
Combining the formulas for F, and
mg with equation (1) yields
F + kAx, = k(Ax, + h),

or
h=—.
k
Thus the plates don’t touch each
other if

F 1
—<=I,
k 2

or

2
k>g§:mﬁ:eﬁy.
]0 ]O ]o

P170

Light rays do not travel in a
straight line in an atmosphere where
the refractive index n decreases with
altitude. Rotation of the wave front
of the light and a corresponding bend
of a light beam are the consequences
of the fact that the lower the refrac-
tive index of a medium, the greater
the speed of light v = ¢/n in it.

Let’s denote by Ah the width of the
optical channel where the light rays
travel around the planet at a constant
altitude. Consider two rays at the in-
ner and outer edges of this channel.

The beam that travels at a con-
stant altitude h, (fig. 12) circles the
planet in the time

2m(R+ hy)

V1

- ok

t= = 2R+ hy) 0
C

The other beam, traveling in this
channel at a distance Ah << h, above
the first beam, must circle the
planet at a height h, + Ah in exactly
the same time—only in this case
will the wave front passing through
the channel be perpendicular to the
circle of radius R + hy;:

_ 2n(R+ hy + Ah)
= o
ng —o(hy + Ah)

c

=2n(R+ hy + Ah)

Since both times are equal, and
Ah <« hj, we get

ol

Figure 12
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This phenomenon is called circu-
lar refraction, and there is evidence
that it may occur, for example, in
the atmosphere of Venus.

Brainteasers

B166

If Ciliegia works at the slower
rate, then he finishes 6 stools be-
tween Friday and Sunday, and his
total number of stools is a multiple
of 5 as well as 3. Any such number
is a multiple of 15, and in fact 15 it-
self works, if we start Ciliegia work-
ing on Wednesday. And there are no
other solutions possible: if he started
working n days before Friday, then
5n=3n+2),son=2.

But there is another possible inter-
pretation of the problem. Perhaps
Ciliegia, working at his fast pace, will
tinish on Friday; and at his slow pace,
on a Sunday more than one week
later. Then, if n is the number of days
before Friday that he started, and m is
the number of weeks between the
Friday and the Sunday, then Ciliegia
works n + 1 days at the fast rate and
7m + (n + 1) + 2 days at the slow rate,
sowehave 5(n+1)=3(7m +n+3), or
21m =2n-4. We need a solution of
this equation in integers. There are
general and standard ways to do this,
which the reader is invited to con-
sult in any book on number theory.
Meanwhile, we will note that since
2n -4 is even, m must also be even.
Lettingm = 2k, we have 42k = 2n -4,
or2lk=n-2,0rn=21k + 2. But
21k, being a multiple of 7, represents
an integer number of weeks. So n
days before Friday is still a Wednes-
day, no matter how many weeks
intervene.

B167

The required rearrangement can be
achieved by the following three steps:

15(624)37 — 16(245)37 —
12(456)37 — 1234567.

It’s not difficult to see that this is the
shortest solution. We leave it to the
reader to show that any permutation
can be obtained in a similar way.
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B168

The water level went down.

B169

Label the veins on the left side in
the initial pattern g, b, ¢ and the veins
on the right A, B, C, as shown in fig-
ure 13a. Now we note that each sub-
sequent pattern is obtained from the
previous one by moving one left vein
in the order b, a, ¢, b, a, c, ..., one
position down (the vein in the lowest
position jumps to the top) and, at the
same time, one right vein (in the or-
der B, C, A, B, C, A, ...) moves one
position up (or from the very top to
the bottom). The unknown pattern is
shown in figure 13b.

a b

oI

Figure 13

B170

Denote the sides of one of the
squares traced clockwise and the
straight lines containing them by
a, b, ¢, d and of the other square by
a,, by, ¢, d,. Then we have to prove
that the lines AC and BD are perpen-
dicular, where A is the intersection
point of a and a,, B is the intersec-
tion of b and b, and so on. We’ll see
that this is true for any two squares,
whether they form an octagon or not
(fig. 14). It’s clear that if we shift the
band bounded by 4, and ¢, in paral-
lel to itself, then the new segment
A’C’ will be parallel (and equal in

[~ C

Dl
Figure 15

length) to AC (fig. 14). The same is
true for the band b,d,.

Therefore, it will suffice to prove
our statement for any convenient
position of the second square ob-
tained from the initial position by
parallel translation—for instance, in
the case where the centers of the
squares coincide (fig. 15). But in this
case BD is obtained from AC simply
by a 90° clockwise rotation about
the common center of the squares.
Thus, we have proved not only that
AC 1 BD, but also that AC = BD.
(V. Dubrovsky)

Toy Store

1. The recursive equations for r,
and u, remain the same, but the
“initial values” of these numbers
must be changed: now we have
1, =2, u, = u, = 1. The correspond-
ingly modified calculation yields
1,=3-2%-2_-1(k22), u, =2k-!
foroddk>1, and u, =2%-1-1 for
even k.

2. For any 0-1 string A = a,...q,,
denote by N[A) its number in our
table—that is, its “distance,” in
moves, from the zero string; by r{A)
the corresponding “shaded digit”—
that is, the sum
a, +...+a, (mod2);

Ay

andby A=aq,...q,
the string obtained
by drawing a bar
over every other
digit one in the

’
G

Figure 14

C string (for in-
stance, (110101) =
110101). We have
to prove that




N(4)= (al...akr)z,

wherer =r{A). Notice that the string
a,...a,r always has evenly many
ones, and therefore

(al...akr)2 = (al...ak0>2 — 1,

no matterif r=0orr=1.

Let’s apply induction over the
number n of ones in a string. Let
n=1.We canignore any digits O that
occur to the left of the single digit 1
in our string. Then the string
A =10...0, and N(A) = 2k~ 1, where
k is the number of digits in string A.
On the other hand, here r{A) = 1. So

(4r(4)), =(10..0T), =2" -1

= N(A)/

which complies with our formula.
Now suppose the formula is valid
for all strings with fewer than n
units and consider an arbitrary
string A with n units. Again, we can
ignore leading digits O and write our
string as A = la,...a,. In the table
this string occurs before 10...0 (with
k zeros). The distance between these
strings equals the distance between
the k-digit strings 0...0 and
A’ = a,...a;, which in turn, by the
induction hypothesis, is equal to
N(A') = (q...a,1"),, where 1’ = 1(A").
Now, using the fact that r = 7(A) =
1 -1, we get

N(1g,...a;)= N(10...0)- N(a,...a )

S —1—(a1...akr')2

:2k+1 _(

al...akO)l —(l—r’)

:(1[11..‘czr«k_0)7 —iT

= (la1 ar)

completing the proof.

3. It’s not hard to see that the
folded binary representations of —-n
are obtained from those of n by
“switching the bars.” For example,
5 can be written as (1101), or as
(1111),, while -5 has the represen-
tations (1101}, or (1111},). So it

will suffice to consider positive in-
tegers. We'll call a folded binary rep-
resentation even or odd depending
on whether there are an even or odd
number of terms in the alternating
sum. It’s easy to see that both kinds
of representation of an even number
n =2k are obtained by adding zero at
the right of the corresponding repre-
sentation of k; the odd representa-
tion of an odd number n = 2k + 1
must end in the digit 1 and is ob-
tained by adding this digit to the
even representation of k; and the
even representation of n = 2k + 1 =
2(k+1)-1endsin 1 andis obtained
by adding 1 to the odd representa-
tion of k + 1. The number one has
two representations: 1 and 1 1. Now
the proof can be completed by in-
duction.

4. Denote by N, the sequence of
the numbers of the rings (or shields)
moved in the first 25 — 1 steps of the
optimal solution to the correspond-
ing puzzle. The argument used in
the article to derive the equation for
1, shows that N, = N, kN, 4, so
that N, = 1, N, = 121, N, = 1213121,
and so on. But the similar sequence
for the Tower of Hanoi satisfies the
same equation, so the two se-
quences coincide.

5. Number the dollsO, 1, ..., k-1
in order of size starting from the

biggest. Represent any possible ar-
rangement of the dolls by a 0-1
string such that the ith digit in it
(counting from the right) is 0 if the
ith doll is hidden in the next doll
and 1 otherwise. The zeroth digit,
corresponding to the largest doll,
will always be 1, so we can simply
delete it. By the description of our
game, the remaining (k — 1])-digit
string will change in exactly the
same way as our binary model. We
have to transform the zero string
into (a) the string 110...0 (the first
moment when the leftmost digit
turns into one); (b) the string 11...1.
It follows that the answer is (a) 251,
(b) u; _, (which was calculated in
the article).

Surprises

1.If f,  ,/f, has alimit y, then
fn—l

fn—l _ fn +fn—l =14

a f fa

has the limit 1 + 1/y. Since a se-
quence can have only one limit, we
seethaty=1+1/y,ory2-y-1=0,
and thus

J5+1
7
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2. This requires

e
W+L

+W-L=0,

so W2 = 2 - W2, which reduces to
L = J2W. Then the winning per-
centage is

174 1
=—=2-1
W+L 1+42

3.1f P=W/(W+ L), then L =
W(1 - P)/P. So we have

w2 s W-L=wP+w-1"Lw
W+ L P
:WP+W—%W+W
1
=W[P+2——j
P

:WW+LPEP+2—l
% P

= (W+L)(P* +2P-1).

Magic of 3 < 3

(See the January/February issue of
Quantum)

1. See figure 16.

2. See figure 17. This is the lo shu
with 1 taken from each number.

3. There are two solutions. Shift
the entire bottom row of cards to the
top of the square, or move the entire
leftmost column of cards to the
square’s right side.

219 | 224 | 223
26 | 222 | 218
21 | 220 | 225
Figure 16
1 81 3
6141 2
510 7
Figure17
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The latest magic

This will update my offer of
$100 in “The Magic of 3 x 3”
(Quantum, January/February
1996) for an order-3 magic square
made with nine distinct square
numbers. Lee Sallows, mentioned
in my article, wrote a program
that found many almost magic
squares in which only one diago-
nal failed to give the magic sum.
His square with the lowest con-
stant is shown in figure 1.

Such semimagic squares exist,
as John Robertson of Berwyn,
Pennsylvania, has shown, if and
only if they consist of three trip-
lets of numbers in arithmetic pro-
gression, all with the same differ-
ences between adjacent terms.
Corresponding terms in the trip-
lets need not be in arithmetic pro-
gression, as required for the
square to be fully magic. Robert-
son has also shown that finding
all such squares is equivalent to
finding all the rational points on
certain elliptic curves.

In most cases found by Sallows,
the constant is also a square, as in
the example given (fig. 1). How-
ever, this is not true of all partial
magic squares, as shown by the
counterexample in figure 2, dis-
covered by Michael Schweitzer, a
Gottingen mathematician.

The constant for rows, col-
umns, and one diagonal is the
nonsquare 20966014. In my ar-
ticle I said that order-3 squares
made of squares are possible with

1272 | 46* | 58
22 | 113 | 942
74| 822 | 972

constant = 147*

Figure 1

zero in one cell. I should have
added that squares of this type are
magic only in rows and columns.

Robertson sent a variety of
4 x 4 magic squares made with
distinct squares, and called my
attention to R. D. Carmichael’s
Diophantine Analysis. Order-3
magic squares for powers of n are
impossible unless three powers
can be in arithmetic progression.
For this to be true, the equation
a” + b% = 2¢® must have solutions
with distinct integers for a, b, and
¢. Leonhard Euler proved there
are no solutions for n = 3. This
rules out order-3 squares made
with cubes or multiples of cubes.
Carmichael also shows impossi-
bility for n = 4 and multiples of
fourth powers. I have been in-
formed by Noam Elkies that if
Andrew Wiles’s proof of Fermat’s
Last Theorem is valid, as almost
all number theorists now believe,
then it can be shown that
a® + b? = 2¢" has no solution for
n greater than 2.

Even though three squares can
be in arithmetic progression,
there may be no way to construct
a 3 x 3 fully magic square with
nine distinct squares. Schweitzer
has shown that if such a square
exists, the central term must
have at least nine digits, and if the
entries have no common divisor
greater than one, all entries must
be odd.

—Martin Gardner

35% [3495%| 29582

36422(2125%( 17852

27752 2058%{ 30052

constant = 20066014

Figure 2




TOY STORE

Nesting puzzies

Part II: Chinese rings produce a Chinese monster

VERY OLD LEGEND (AT

least, some books say it’s very

old) has it that the puzzle dis-

cussed in this article was in-
vented in ancient China by a soldier.
As was required by his demanding
profession, he often had to take up
arms and leave home, marching
great distances. And so he was sepa-
rated from his family for many
weeks and months. His young wife
missed him very much, and every
time he returned home from an-
other war he found her upset and de-
pressed, her beautiful eyes getting
sadder and sadder. The warrior gave
her wonderful flowers of wild plum,
made funny figures from rice stalks
and sprigs to dispel her melancholy
for a while, but the long, dark nights
brought grief to her heart again. One
day, after a fierce battle in which our
brave warrior was badly wounded,
an idea for an amusing new toy oc-
curred to him, one that would help
the young woman in her long wait.
Using the bamboo shaft of his spear

Figure 1

by Vladimir Dubrovsky

Figure 2

and silk threads that he had unrav-
eled from his headband, he made a
game that could be played for days
on end. He presented it to his wife,
and soon she had again become pret-
tier than everybody else, her eyes
shining brighter than ever before.

Whatever you might think about
the plausibility of this legend, the
puzzle, which is usually made of
wire as shown in figure 1, is very old
indeed. Suffice it to say that its Rus-
sian name, meleda, stems from a
verb that has long been out of use in
the Russian language. (The verb
means “to dawdle or loiter.” By the
way, the French word for this toy,
baguenodier, has a very close mean-
ing, and in modern China it’s called
“the horror of guests,” because it
can be played ad infinitum.)

It’s known for certain that the
ancient Scandinavians used this
mechanism as a lock for their
trunks. Most probably they were the
first to bring the puzzle to Europe.

The Europeans gave it its most com-
mon and internationally accepted
name of the “Chinese rings.” The
puzzle won the honor of being de-
scribed and studied by such out-
standing mathematicians as
Cardano (in 1550} and Wallis (in
1693), and they failed to find its
complete solution! Apparently, a
full solution was first published by
the French mathematician L. Gros
in 1893. However, the puzzle is still
being reinvented from time to time.
The last time it was patented in
Europe was in 1931 (in Hungary),
and it was patented in the US in
1977. The same or similar idea was
used in many other puzzles (see fig-
ures 2 and 3).

Figure 3
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How it works

The modern version of the
“soldier’s puzzle” (fig. 1) consists of
a long and narrow wire loop; a num-
ber of rods with rings hinged at their
top ends and small bulbs or hooks at
their bottom ends; and a metal plate
with a row of holes into which the
rods are inserted. Each ring except
one (at the right end of the puzzle
viewed as in the figure) is hooked
around the rod next to the right. The
loop is passed through all the rings
so that it embraces all the rods. All
these elements can loosely move
with respect to one another, but
while the rods and plate make one
piece that is mobile but cannot be
disassembled, the loop can be sepa-
rated from the rings. And this is ex-
actly what you have to do with this
puzzle.

To solve it, you first have to un-
derstand what'’s possible with this
tricky construction. This requires a
lot of imagination if you don’t actu-
ally have the toy, but even if you do,
it’s a rather difficult task—the
puzzle acts like a living thing in
your hands, almost, and it’s hard to
find any system in its behavior. I'm
sure, however, that Quantum read-
ers could complete this task both
ways—in your head and with your
hands. Unfortunately I can’t take a
break while writing this article and
wait for your results, so I'll have to
give out the answer in order to pro-
ceed.

The first ring (numbered as in fig-
ure 1) can freely be taken off or put
on the loop at any time. For any kth
ring (k > 1) this is possible only if
ring k — 1 is put on the loop and all
the previous rings (with smaller
numbers) are taken off. (In fact, the
construction allows rings 2 and 1 to
be put on or taken off simulta-
neously, in one move, but it will be
more convenient to ignore this pos-
sibility for the time being.)

Now we can create a mathemati-
cal model of the Chinese rings and
complete the solution with pencil
and paper. And we will, after we get
to know a younger sister-puzzle of
the Chinese rings.
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The locking-tisk puzie

This puzzle was invented by Wil-
liam Keister of New York not too
long ago. It’s a rather enigmatic-
looking object (fig. 4) resembling a
slide rule.! As you see in the figure,

it consists of a gray “sheath” that
holds a red sliding “shuttle blade”
with a row of white interlocking
rotary pieces shaped like a heraldic
shield (fig. 5.

(Sorry, Ican'thelp - ]
all these chivalric ¢
associations!)Ini- /
tially all the
“shields” point
upward (fig. 6a).
Your task is to “unsheathe the
blade.” This can be done only
through the right end of the sheath
(as viewed in the figures)—the left
end is made narrower. What’s more
important, this is possible only
when all the shields are oriented
horizontally (fig. 6b}—more exactly,
they must point to the left (not to
the right—mind the rightmost
shield!). In principle the construc-
tion allows you to turn some of the
shields to the right, but this will
only add redundant moves to your

Figure 5

I'm afraid that for younger readers
of Quantum the slide rule is an
equally enigmatic object. The
Kaleidoscope in this issue contains a
description of this once common tool.

a

Figure 6

solution (think of why, or just take
my word for it). Thus we can with-
out hesitation confine ourselves to
two positions of a shield—upward
and leftward.

Once we agree to this, it becomes
quite easy to describe all possible

“elementary” transformations of the
puzzle. We see in the figures that the
edge of the opening in the sheath is
curved in such a way that there is
only one place where shields can be
turned. We can either push the
shuttle all way to the left (as in
figure 6a) and reorient the rightmost
shield, or pull it to the right until it
gets stuck (fig. 4), which brings to the
“turntable” the left neighbor of the
first vertical shield counting from the
right. In other words, we can tumn ei-
ther shield 1 or shield k (k > 1), if
shields 1, 2, ..., k - 2 are horizontal
and shield k - 1 is vertical.

Now the similarity between the
locking-disk puzzle and the Chinese
rings becomes apparent. Based on
this similarity, we’ll introduce a
common mathematical model for
both puzzles.

Transformations of zeros and ones

Suppose each of our two puzzles
has m basic elements—rings in the
one case and shields in the other.
Each of these elements in either
puzzle can be in one of two possible
positions. These two positions can




be labeled 0 and 1. Then the entire
state of either puzzle will be repre-
sented by an m-digit string of zeros
and ones. To be more definite, we'll
write 1 in the kth place of a string if
the kth “Chinese ring” is put on the
loop and 0 otherwise; for the second
puzzle, ones will designate vertical
shields, zeros horizontal. Now the
transformation rules for both
puzzles amount to the same rule for
transforming 0-1 strings:

Given a sequence of zeros and
ones, we can either alter its last
(rightmost) digit—from O to 1 or
from 1 to O—or the left neighbor of
the first 1 counting from the right.

For instance, 101100 can be
changed to 101101 or 100100. The
first of the two operations can be ap-
plied to any 0-1 string, the second to
all strings except 00...0 and 10...0
(they don’t have any “digits to the
left of a 17 at all). In these terms, our
goal is to turn the unit string 11...1
into the zero string 00...0 using only
these operations. It will be more
convenient, however, to start with
the inverse problem of turning
00...0into 11...1.

It should be said that our model
deprives the puzzles of some of their
special features (for instance, it ig-
nores the third possible orientation
of a shield—pointing to the right).
These features make the real
puzzles trickier than their “math-
ematical skeletons,” but don't affect
their optimal solutions.

So let’s take the zero string
00...00 and start to transform it.
The first move is determined
uniquely: 00...00 — 00...01. The

00...0

10...0

Figure 7

second is also unique: 00...01 —
00...11 (because we certainly don’t
want to return to the initial string
by reversing the first move). In fact,
for every position we achieve, there
are two possible next moves—but
one of them will take us back to the
position we came from. So if we
want to make progress in the
puzzle—and assuming that the
puzzle can be solved—we will find
a unique chain of positions that
solves it. In particular, the sequence
of positions cannot contain “loops”
(such as those illustrated in figures
7a and 7b). We can arrange them in
a straight path joining 00...00 to
10...00 (fig 7c). Let’s show that this
path includes all possible 0-1
strings of the same length.

Denote by r, the smallest number
of moves needed to transform the k-
digit zero string into 100...0. By the
rules of our game, the first move that
replaces the kth (leftmost) zero in the
initial string by a digit one is
010...0 = 110...0. So the entire trans-
formation falls into three stages. The
first stage takes 00...00 into
0100...00. Since it essentially
changes the (k - 1)-digit string 00...00
into the (k - 1)-digit string 10...00,
this stage consists ofr, , moves. The
second stage consists of the single
move 010...00 — 1100...00. The
third stage turns 110...00 into
1100...00, and is actually the inverse
of the first stage. So it, too, consists of
1, _, moves. Thus we get the equation

=1, +l+r_,=2r_,+1]

with r; =1 (0 — 1). Does this ring a
bell? We already solved it in the first

sl 00...0

.0 10...0

10...01

10...00

part of this article (in the last issue
The formula for r, is

r =2%-1.

So the path from 00...0 to 10...0 has
2k “stations” on it (including the
endpoints)—that is, all 2% possible
k-digit 0-1 strings. The accompany-
ing table illustrates this result for
the case of 5-digit strings.

Now we can solve the problem of
finding the smallest number of
moves that take the string 00...00
into the string 11...11. For an initial
string of k zeros, denote this number
by u,. Repeating the above argument,

n 5 4 3 d(n)
0 0 0 -
1 0 0 0 1
2 0 0 0 1
3 0 0 0 -1
4 0 0 1 1
5 0 0 1 1
6 0 0 1 -1
710 O 1 -1
8 0 1 1 1
9 0 1 1 1
1010 1 1 1
11 0 1 1 -1
121 0 1 0 -1
13 0 1 0 1
1410 1 0 -1
15 0 1 0 -1
16 1 1 0 1
17 1 1 0 1
18 1 1 0 1
19 1 i 0 -1
20 1 1 1 1
21 1 1 1 1
22 1 1 1 -1
23 1 1 1 -1
24 1 0 1 -1
25 1 0 1 1
26 1 0 1 1
27 1 0 1 -1
28 1 0 0 -1
29 1 0 0 1
30 1 0 0 -1
31 1 0 0 -1
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we find that this sequence of moves
consists of two parts: 000...0 —
110...0 (as we’ve seen, it takes
r,_, +1=2%"1Imoves)and 110...0 -
111...1, which coincides with

0.0 —» 1.1,
—— ——

k-2 zeros k-2 ones

and so takes u, , moves. Thus we
have

_nk-1
u, =2 + U,

withu, =1, =1, u, = 2. A sharp look
at the first three rows of the table
(and the columns labeled 1 and 2)
will show thatu, = 1 and u, = 2. This
information gives u, recursively, but
a final closed formula depends on
the parity of k. For odd k we get

k- - 2
e =2""1425 % 4 4074

21<+1 _1
3 !

and for even k

k-1 k-3

k+1
277 =2
+2 +... —_—

3

These are the numbers of moves
needed to take apart a locking-disk
puzzle with k shields. As for the
Chinese rings, as was mentioned
above, the first two rings can be
taken off or put on the wire loop in
one move.

Problem 1. Recalculate the num-
bers 7, and u, for the Chinese rings
given this condition.

Well, now we know how long the
shortest solution is. But notice that
we still don’t know how to con-
struct it. But this is not so difficult.
When we transformed the zero
string into the unit string, the only
thing we had to take care of was not
to reverse the same digit twice in a
row—this condition determined all
the moves uniquely. But if we want
to start with 11...1, which is actu-
ally the case with the real puzzles,
we'll have to choose between two
possible initial moves. Of course,
even if we make the wrong choice,
we'll solve the puzzle anyway: we’ll
move down the table, reach the
10...0 string, do an about-face, and
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go all the way back up the table un-
til we reach the zero string. How-
ever, it would be better to start “up-
ward” from the very beginning. The
shaded column in our table will help
us start in the right direction.

Notice that every move changes
the parity of the number of ones in
a string. Zeros and ones in the
shaded column mark the strings
where this number is even or odd,
respectively. On the other hand,
moves that alter the rightmost digit
always alternate with those altering
one of the other digits. These re-
marks imply the following simple
“parity rule”: if we start with a
string consisting of k ones (and a
number of zeros) and want to move
up the table in order to obtain the
zero string, we must begin by re-
versing the rightmost digit if k is
odd; for even k we must first reverse
the left neighbor of the first digit
one from the right. (Of course, this
rule must be inverted if we are go-
ing to move down the table, to
10...0.)

So the shortest solution of the k-
piece locking-disk puzzle begins
with turning the first shield for an
odd k and the second shield for an
even k.

This rule completes the solution,
but not the investigation of our
puzzles.

Folded binary system

Suppose we are given two arbi-
trary positions of one of our puzzles.
Can we determine the “distance” (in
moves) between them and the short-
est transformation of one into the
other (that is, the first move in this
transformation)? This would be easy
if our table were big enough to in-
clude both positions. The distance
would then be equal to the difference
of their numbers in the table (found
in its first column), and the first move
would be determined by their order
(plus the parity rule). So all we need
to answer both questions is to learn
how to calculate the number of a po-
sition in the table without writing
down the table itself.

The rule for this calculation is re-
ally remarkable. We take the “binary

code” of the given position (let it be,
for example, 10111), adjoin the cor-
responding “shaded digit”—the sum
modulo 2 of its digits—at its right
end (in the example, we get 101110,
draw a bar over every other digit one
(101110), and read the string thus
obtained as if it were the ordinary bi-
nary notation of a certain number in
which the signs of the powers of
two corresponding to the barred
ones are reversed (2° - 23 + 22 - 21),
The value of this alternating
sum of powers of two (in our ex-
ample, 32 - 8 + 4 -2 = 26) is the
number of the given position in
our table—that is, the smallest
number of moves needed to obtain
this position from 00...0, and vice
versa.

Problem 2. Prove that this rule
holds for all 0-1 strings. (Hint: a 0-1
string—say, 10111, which we con-
sidered above—can be obtained
from the zero string in a series of
steps in which the units appear in
the string, one at each step, from left
to right: 00000 — 10000, 10000 —
10100, 10100 — 10110, 10110 —
10111. Trace these steps using the
table of transformations.)

The representation of an integer
as the alternating sum of decreasing
powers of two is called its folded
binary representation and is de-
noted by a 0-1 string in which every
other digit one has a bar. We write,
for instance, 26 = (101110),. Notice,
however, that this number also has
another folded binary representa-
tion: 26 = (101010),.

Problem 3. Prove that any non-
zero integer (positive or negative)
has exactly two folded binary repre-
sentations, with an even number of
units in one of them and an odd
number of units in the other.

As an exercise, you can check the
following formulas for (k + 1)-digit
strings:

(10..0T) =1, = g% 1,
(ITIT...IT) =1, (for odd k),
(lTlT...ITO) =1, (for even k),

where 1, is defined as above.



Return of the dragon curve

Look again at our table. Let’s
move from top to bottom, writing
out the numbers of digits changed as
we pass from each line to the next
(these numbers are found in the top
line of the second column):

]'/ 2/ 1/ 3/ 1/ 2/ ]‘/ 4/ 1/ 2/
1,3,1,2, 1,5, ....

Do you recognize this sequence?
Yes, you saw it in the first part of
this article: it’s the sequence of the
numbers of disks successively
moved in solving the Tower of
Hanoi puzzle!

Problem 4. Prove that the se-
quences describing optimal solu-
tions of the two kinds of puzzles will
coincide no matter how long they
are continued.

So the Tower of Hanoi is, in a
certain sense, isomorphic to the
Chinese rings puzzle (and to its
“slide rule” and “digital” relatives).

It would be interesting to develop
this observation and establish the
correspondence between the ordi-
nary binary codes of the states of the
Hanoi Tower and the folded binary
codes we studied above. But our
table reveals another, much more
interesting relationship.

Each move in the table alters one
digit in the current string—0 to 1 or
1 to 0—and so changes the sum of all
digits by 1 or —1. These changes (de-
noted by d(n), where n is the num-
ber of a move) are written out in the
last column. Imagine a bug crawling
on the coordinate plane: it starts at
the origin; crawls along a unit seg-
ment joining it to point (1, 0); turns
by d(1) - 90° = +90° (in the positive,
counterclockwise direction—that is,
to the left); crawls another unit seg-
ment, ending at (1, 1); then turns by
d(2)-90° = 90° again; crawls to (0, 1);
makes a d(3)- 90° = -90° turn (to the
right); moves to (0, 2); and continues
in the same way, reading the se-
quence d(n) and making the corre-
sponding turn at the end of each unit
segment it covers. Draw the bug’s
path. You must have seen it in
Quantum: it’s the so-called main
dragon design (see the article

“Dragon Curves” in the September/
October 1995 issue). A proof of this
remarkable fact is not difficult, but
lies beyond the scope of this article.
It’s based on one of the definitions of
the dragon design and the following
equation for the sequence d(n):

Dy 41 =Dy 1Dy,

where D, denotes the segment
[d(1), d(2), ..., d(2¥ = 1)} of the se-
quence (corresponding to the trans-
formation of the k-digit zero string
into 10...0) and D, is obtained from
D, by reversing the order and signs
of its terms. The equation is proved
by the same argument as the equa-
tion for r, derived above.

This connection between our “bi-
nary puzzle” and the dragon curve
may seem rather artificial. But it
goes far beyond the formal analogy
between the recursive relations de-
fining the sequences of moves in the
puzzle and turns on the dragon path.
Aswe've seen, given a 0-1 string, we
can compute the number n of the
line in our table where it appears. It
turns out that the location of the nth
turn of the main dragon design on
the plane can be computed from this
binary string in much the same way.
We merely have to replace the pow-
ers of two in the folded binary rep-
resentation of 1 by the same powers

of the complex number 1 + i, and
the alternating coefficients 1 and -1
by ... Butno, I don’t want to reveal
all the secrets right away. That
would be too much for one article.
Besides, I'm sure you’ll have much
more fun finding them yourself,
which is not so difficult now. After
that, you'll be able to establish, per-
haps, the most remarkable property
of the main dragon design (see prob-
lem 1lc in “Dragon Curves”|): ex-
tended to infinity, this polygonal
path—together with three copies of
it obtained by rotating it through
90°, 180°, and 270° about its origin—
fill without gaps and overlaps the
complete unit-square grid.

I began the first part of this article
by comparing nesting puzzles with
the popular Russian matryoshka
doll (which has a number of similar
nested dolls inside). I'll finish with
a problem in which the matryoshka
itself is used as a nested puzzle.

Problem 5. A matryoshka toy con-
sists of k nested dolls. You are al-
lowed to open either the largest or the
next largest unhidden doll, remove
the next smaller doll from it or put
the next smaller doll in it, and close
it. Initially all the dolls are hidden in
the largest one. What is the least
number of moves required to (a) ex-
tract the smallest doll; (b) completely
disassemble the toy? Q)

a
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