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GALLERY [@)

of Lila Acheson

Fanny/Fingerpainting (1985) by Chuck Close

HEN THIS WORK IS CONFINED TO THE PRINTED

page, the illusion that it is a photograph is intensified. If
you saw it in the gallery, however, it would be hard to mis-
take this large canvas—over two and a half meters tall—for
asnapshot. And yet, even as it looms in the distance, it looks
like a photo. Why? For one thing, the painting mimics the
graininess of some black-and-white photographs. This can
be attributed to Close’s technique of applying paint with his
fingertips and the remarkable subtlety of his touch. Also,
parts of his subject are “out of focus”—something you rarely
if ever see in a painting or drawing,

Clearly the artist used a photo of his subject as he
painted, and he probably meant to create a photographic
illusion. But he also chose to render this image with his
bare hands, not entrusting it to an industrial process
steeped in chemicals and burdened by hardware. Some see
the portrait of Fanny, the artist’s mother-in-law, as aggres-
sively unflattering. Others think just the opposite.

You'll find another kind of digital image in the Happen-
ings department. And Mark Biermann explores “depth of
tield”—one factor affecting the clarity of photographs—in
the article beginning on page 26.
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Cover art by Vera Khlebnikova
There’s more than one way to skin a cat,
as they say. The same goes for drawing
“dragon designs,” as our artist has dem-
onstrated for us. Seeming to emerge from
a common origin (though actually it’s a
matter of dispute “who begot whom”),
the pure, abstract, “traditional” version
heads “north,” plowing right through our
logo. A dandified rendering, pinwheels
spinning and bow ties akimbo, saunters
off to the right. A rather plodding dragon
design walks off the lower edge, mum-
bling to itself “left, left, right, left . . .,”
as if trying to remember the way home.
And exiting to the left is the elegant,
self-assured dragon curve.

While many of us have squandered
an afternoon finding shapes in clouds,
mathematicians seem to see them just
about everywhere. For an introduction
to these curious designs and the math-
ematics behind them, turn to page 4.
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The torch IS passed

But I intend to stay close to its light!

EVERAL TIMES OVER THE

past year, an announcement

has appeared in the pages of

Quantum magazine, as well as
the other journals published by the
National Science Teachers Associa-
tion (NSTA). Perhaps you noticed it.
The announcement solicited appli-
cations for the position of executive
director of NSTA—the position I
have held for the past 15 years. I
have been happy to serve science
education in this capacity—the job
is a wonderful combination of teach-
ing (or “persuading”!), learning, trav-
eling, and writing—all things I enjoy
doing. But the time has come for me
to cut back on my professional ac-
tivities, and the announcements
were part of an extensive search for
a new executive director.

I'm pleased to announce that
NSTA’s board of directors has found
a new executive director. He is Dr.
Gerald F. Wheeler, a professor of
physics at Montana State Univer-
sity, and he will have begun serving
in his new capacity by the time this
issue is printed. [ have known Gerry
for many years, and I am confident
that he will be an energetic propo-
nent of the association and of sci-
ence education in the years ahead. In
addition to being a close personal
friend, Gerry was a site director in
Montana for one of the projects I
have directed—Scope, Sequence,
and Coordination of Secondary
School Science (SS&C).
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Gerry’s path in science has been
interesting and somewhat unortho-
dox. In college he majored in science
education and acquired a broad back-
ground in science. It wasn’t until
graduate school that he narrowed his
focus, and I admire the fact that he
earned a Ph.D. in experimental
nuclear physics without majoring in
physics as an undergraduate. He has
taught science at every level, and he
is the coauthor (with Larry Kirk-
patrick, Quantum’s field editor for
physics] of a college-level textbook
(Physics: A World View).

In addition to his experience in
the classroom, Gerry has served as
president of the American Associa-
tion of Physics Teachers (AAPT).
This has undoubtedly helped pre-
pare him for the administrative
tasks he will face as executive direc-
tor of the largest association of sci-
ence teachers in the world.

One role that Gerry will not be
taking on as the executive d
of NSTA is that of publisher of
Quantum. I will continue to serve
in that capacity at least through
December 1996. I will also continue
to direct the SS&C project and serve
as chair of the Global Summit on
Science and Science Education,
scheduled to take place in San Fran-
cisco in December 1996.

So I invite Quantum readers to
join me in welcoming Gerry Wheeler
as the new executive director of
NSTA. I look forward to working

with him in the years ahead. I'd also
like to thank those who have made
my tenure as executive director so
productive and enjovable.

In tiis issue ... .

As we begin the new school year,
Quantum brings vou several things
that are not 2t 2ll new. One is a clas-

sic, actually—zhe first feature article,
“Dragon Curves.” It first appeared in
izn, in the second issue
; ist in calling
magazine, when itisin fact
This year
25th birthday,

scripts on page 39. (Of course, we
hope all our readers patronize all the
advertisers in Quantum!)

An award from Folio magazine

We all know that Quantum is a
great magazine, but it’s nice when
“outsiders” recognize it. Recently we
learned that Quantum was awarded
a 1995 Folio Editorial Excellence
Award (see the announcement on
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page 34). Congratulations to the writ-
ers, editors, translators, and artists in
Moscow, Washington, and around
the world who collaborate to produce
this unique publication.

Survey results

I'd like to thank all those who
responded to the reader survey in
the May/June issue. We have tabu-
lated all the evaluations and pon-
dered every comment. While it was
in no way a “scientific survey,” it
told us a lot about our readership.
We appreciate that so many of you
took the time to share your thoughts
with us.

Even when we’re not “surveying”
you, we're interested in what you
think. Whether you send your mes-
sages by letter, fax, or e-mail, or in-
scribe the guest book at our World
Wide Web site, we read everything
you send, even if we do not reply to
you personally. Please be assured
that your opinions matter, and that
where possible we will try to imple-
ment any changes you suggest.

—Bill G. Aldridge

fWhﬂ['S hiappening? N

Summer study ... competitions ... new
books ... ongoing activities ... clubs and as-
sociations ... free samples ... contests ...
whatever it is, if you think it's of interest to
Quantum readers, let us know about it!
Help us fill Happenings and the Bulletin
Board with short news items, firsthand re-
ports, and announcements of upcoming
events.

Whats on your mind?

Write to us! We want to know what you
think of Quantum. What do you like the
most? What would you like to see more
of? And, yes—what don't you like about
Quantum? We want to make it even bet-
ter, but we need your help.

Whats our address?

Quantum
National Science Teachers Assoc.
1840 Wilson Boulevard
Arlington VA 22201-3000

Be a factor in the
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Dragon curves

Fear not! They're as tame as they are beautiful

by Nikolay Vasilyev and Victor Gutenmacher

DITOR’S NOTE: THE PUBLI-
cation of this article marks the
25th anniversary of Kvant, the
Russian-language sister maga-
zine of Quantum, which was cel-
ebrated this year. We searched
through a number of the early issues
of Kvant and picked out this article
(which originally appeared in the
second issue of Kvant in February
1970) for several reasons. First, al-
though dragon curves have been re-
peatedly described and discussed in
the literature in the intervening
years, they have lost none of their
beauty and have acquired even
greater mathematical significance
with the development of fractal
theory and other fields of math-
ematics. Also, this article is the very
first example of the international
collaboration in which Kvant has
been involved since it was born and
which eventually brought into exist-
ence the magazine you hold in your
hands—it was based on the manu-
script of the article “Number Repre-
sentations and Dragon Curves” by
the Canadian mathematicians Chan-
dler Davis and Donald Knuth, which
was published in Journal of Recre-
ational Mathematics (vol. 3) in the
same year. (See also Martin Gardner’s
articles in the March, April, and July
1967 issues of Scientific American
and in Mathematical Magic Show,
pp. 207-209, 215-220.]
But perhaps the most compelling
reason for our choice was the man-
ner in which the authors reworked

the original material, a manner that
seems to us the epitome of Kvant’s
style and marks the difference be-
tween this presentation and many
others. The authors drop some inter-
esting proofs that are too sophisti-
cated and complex for a popular
magazine, but they still provide
plenty of food for thought: ideas of
proofs to be completed, hints to
elaborate on, a lot of attractive prob-
lems (we can add one more: try to
reproduce the dragon patterns using
your computer, as we did in prepar-
ing the illustrations).

So, rediscover and enjoy the be-
witching beauty of mathematical
dragons!

What s a dragon curve?

Take a long paper strip, fold it in
half and then in half again. Stand the
folded strip on edge and open it to a
right angle at each crease (fig. 1).
Looking at it from the top, you'll see
something like what’s shown in fig-
ures 3a and 3b (which correspond to
the foldings in figures 2a and 2b).

After three foldings we can get
essentially different patterns (fig. 3¢,
3d) depending on how we folded the

./ |

Figure 1
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strip. If the strip is folded four times
or more and opened to right angles,
we can obtain many different

a b
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N
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Figure 3
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Figure 4

patterns. Figure 4 shows one of the
patterns produced by folding in half
five times.

It’s practically impossible to fold
the strip more than seven times—
the eighth fold would already yield
28 = 256 layers! But we'll soon learn
how to draw patterns corresponding

to multiple folds of the strip without
the strip. In figure 5 you see one of
the patterns that could emerge if we
creased the strip 12 times. It consists
of 212 = 4,096 segments.

If the strip is creased more than
three times, then after unfolding it
some of its corners will necessary
touch one another (fig. 3d and fig. 4).
Because of numerous contacts of
this sort, large patterns have areas
that look like a grid rather than one
long rectangularily bending path. To
make the path visible, we can round
out its corners (as shown by the blue
curve in figure 4). The illustration
on page 4 contains curves generated
in this way.

It was just such a pattern that sug-
gested to John E. Heighway, an
American physicist, the name
“dragon curves.” Anyone who has
seen a dragon will readily confirm
that this is exactly how that creature
looks. The straight-segment pat-
terns generating dragon curves are
called “dragon designs.”
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A polygonal path like this one (called the main dragon design) is obtained if,
starting with a segment, we always rotate the piece of the design already
constructed in the same direction (here clockwise). This corresponds to the
method of bending the strip in half shown in figures 2a and 2c¢: always “from
right to left and upward.” Figure 4 illustrates the beginning of the design (32
segments); here we have 4,096 segments. If we continue the construction, the
path will slowly curve around its origin, making a full revolution in 8 “duplica-
tions.” The red points lie on a logarithmic spiral (see the Kaleidoscope in the

March/April 1995 issue of Quantum).
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Drawing long dragon tesigns

The dragon design obtained by
folding a paper strip n1 times is said to
be of the order n. Let’s investigate the
structure of dragon designs and learn
how to draw them for large enough n.

The first method. A dragon design
of ordern consists of 27 segments, and
soithas2”—1Dbends. Since thisnumber
is odd, the midpoint of a dragon design
falls at one of its vertices (forn > 0). In
figures 3 and 4 the midpoints are
markedwith greencircles. You'llnotice
that they divide the corresponding
patterns into two congruent halves
obtained from each other by a 90°
rotation. And this turns out to be a
general rule.

THEOREM 1. A dragon design of order
n with the endpoint O extended by
the same design rotated by 90° about
O becomes a dragon design of order
n + 1. Conversely, any dragon design
of order n + 1 can be obtained in this
way from a design of order n.

This becomes clear when we
analyze our construction. Suppose we
want to fold the strip n + 1 times.
Crease it once. Its two halves coincide
and will be folded in exactly the same
way further (fig. 6). Now open the last

!

Figure 6

nbendsto90°. Thisyieldstwoidentical
dragon designs of order n stuck together
(fig. 7). It remains to pull them 90°
apart—we get a dragon design of order
n + 1. These considerations can be
transformed into a more rigorous proof
of both statements of the theorem,
which is left to the reader.

Figure 7




Now let’s see how dragon designs
canbedrawnusingthis theorem. Since
they run along the lines of a square
grid, it’s convenient touse graph paper.

Take any short dragon design—for
instance, just one segment. One of its
endpoints will be assumed to be its
beginning, the other its end. Extend it
by the same pattern rotated 90° about
the end (the direction of rotation is
chosen at will). Then the new design
can be extended in the same way
beyonditsend. This process continues
as long as desired and possible. The
construction can be performed
automatically and quickly if you have
some tracing paper or, better still,
slightly transparent graph paper.!

Of course, dragon curves can be
drawn in quite the same way, only we
must always round out the middle
bend.

All dragon curves have one
remarkable property: they never
intersect themselves; or, equivalently,
dragon designsnevertraversethesame
segment twice. Thus, even though a
dragon design may pass twice through
the same point (a grid node), it never
visits the same point more than twice.
It’s not clear from theorem 1 how to
prove this property—on the contrary,
the longer and more intricate designs
orcurvesyoudraw, the more surprising
it is how their bumps and pits fit each
other. However, aproofof this property
becomeslessdifficultifyouuseanother
theorem on the “duplication” of dragon
designs—which, by the way, gives
another method for drawing “long”
designs.

The second method. In figure 8
alternate vertices of black paths are

Figure 8

1A more state-of-the-art method
would be to use a computer with
graphing tools.—FEd.

joined with red segments. You see
that the red segments constitute
dragon designs again. This turns to be
a general law, too.

Togivethisanexact wording, notice
that each red segment is the
hypotenuse of anisoscelesright triangle
whose legs are segments of the initial
design (these triangles are shaded in
the figure). Each of these triangles is
obtained from theneighboring triangles
under a 90° rotation about their
common vertex. In other words,
moving along the red path, we’ll meet
these triangles alternately on the right
and left sides of the path.

Tueorem 2. Construct on each
segment of a dragon design of order n
as its hypotenuse an isosceles right
triangle such that any twoneighboring
triangles are obtained from each other
under a 90° rotation about their
common vertex. Then the legs of all
these triangles make a dragon design
of ordern+ 1. Conversely, any dragon
design of order n + 1 can be obtained
in this way from an nth-order design.

Indeed, let’sexamine the last folding
of our strip. Look at figure 9. We want
to fold the strip n + 1 times. Let’s first
make n creases and view the strip
from the edge (the red line in figure 9).
Then crease it once more and open
the last fold to 90° (the black line in
the figure?). Now the strip goes from
bends A to bends B along the legs of
theisoscelesright triangle A BC rather
than straight along its hypotenuse.
Open the bends A and B to 90° as
shown in figure 10 for a single bend.
Then the legs of our right triangles
will form adragon design of ordern+1
and their hypotenuses a design of the
nth order.

These considerations are readily
turned into an accurate proof of both
statements. You can try another

A, B

Figure 9

2Qur black line is /2 times longer
than the red line, but this doesn’t
matter because we're interested in the
line’s shape rather than its size.

YV -

Figure 10

approach and derive theorem 2 from
theorem 1.

Usingtheorem?2, twodragon designs
of order n + 1 can be obtained from
each nth-order design, because the
triangle on the first segment can be
constructed on either side.

Notice that when we pass to a
dragon design of the next order by
theorem 1, the entire path becomes
twice as long, while the length of each
segment remains the same. When we
apply theorem 2 for “duplication,”
the length of the design increases by a
factor of /2, while each segment
becomes shorter by a factor of 1/4/2..

Now practice drawing dragon
designs using theorem 2.

Words

The property described in theo-
rem 2 can be explained very simply
if we look at dragon designs (or
methods of paper folding, if you
wish) from a somewhat different
standpoint.

Imagine a turtle crawling along a
dragon design (fig. 11). Every time it
reaches a bend, it has to turn 90° to
the left or right. From the turtle’s
point of view, its path is determined
by the sequence of turns. For ex-
ample, for the design in figure 3a
(with the start at the red point) the
sequence is left, left, right. Denoting
the turns by their initials, we get the
“word” LLR that defines this par-
ticular sequence. (A “word” in many
branches of mathematics and logic

B

Figure 11
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Figure 12

is an arbitrary sequence of letters.) So
we can write out any dragon design
symbolically using a sequence of the
letters L and R. Note that a design of
order n (that is, one in which the pa-
per is folded n times) corresponds to
a word with 221 letters.

To obtain figure 3¢ from figure
3a, the strip must be folded once
again from right to left (fig. 3a, 3c
and fig. 12). But then a new fold ap-
pears on each segment of the strip.
Not only that, figure 12 clearly
shows that new bends have alter-
nate directions. Thus we get

L L R
— LLRLLRR
. R L R

that is, the word that codes figure 3c.
One more fold to the left would give
the design coded by the word

LLRLLRR
—LLRLLRRLLLRRLRR.

RLRLR

Draw this design. It’s called the
main dragon design of order 4. If you
want, round out its corners as
Heighway suggested.

If you repeat this procedure with
the last word (starting the alternat-
ing sequence of letters with L),
you’ll get a 31-letter word—the code
of the main dragon design of order
5 shown in figure 4.

Of course, we can start our alter-
nating sequences of letters with R
rather than L—this would simply
yield other designs.

It’s not hard to see that our
method for producing a “dragon
word” of order n + 1 from a word of
order n corresponds exactly to the
second duplication method de-
scribed in theorem 2 (inserted letters
correspond to added triangles). In
general, the entire “theory of dragon
designs” could have been developed

8 SEPTEMBER/OCTOBER 1996

algebraically rather than geometri-
cally, by using operations on words
composed of the two letters L and
R—the codes of dragon designs—in-
stead of rotation, triangle construc-
tion, and so on.?

You can continue on this path
and get to know a number of inter-
esting properties of “dragon words”
and dragon designs by solving the
following problems.

Exercises

Some of these exercises are simple,
while others involve significant in-
vestigations. We supply full solutions
to some, only hints to others.

1. Suppose that after 30 folds the
distance between neighboring creases
on our strip has become 1 cm. How
long was the original strip? Was it
longer or shorter than the distance
from the Earth to the Moon?

2. How will the dragon design
change if its generating paper strip is
stood on the other edge? How will
the corresponding word change?

3. Give an example of a “word” in
L and R that does not define a dragon
design.

4. Suppose a turtle has crawled
along a dragon design and read a
word consisting of the letters L and
R. What word will it read if it crawls
along the same design in the oppo-
site direction? If the word of the
original curve is w, we write w to
denote this new word. For example,
if w=LLR, then w = LRR.

5.1f u and w are dragon words, de-
note by wu the word obtained by
writing u right after w. (For example,
ifw=LLR,u=RL, thenwu=LLRRL.)
Using the definition of w given in prob-
lem 4, prove that (a) for any w and u,
wu =uw. (b)Ifw, , , is the word corre-
sponding to a dragon design of order
n+1,thenw, ,=w,xw,, wherew,
is the code word of a certain nth-
order dragon design and x is a one-
letter word. (c) If wis a code word for
a dragon design, then w differs from
w only in the middle letter. (d) The
code word of a dragon design of or-
der n is uniquely determined by the

3The algebraic approach was used
by Davis and Knuth (see the editor’s
note at the beginning of the article).

sequence of n letters in the 1st, 2nd,
4th, ..., 27~ 1th places of this word.

6. Theorems 1 and 2 each allow us
to obtain two dragon designs of order
n + 1 from a design of order n: with
theorem 1 we can choose either end-
point for the center of 90° rotation,
with theorem 2 we can choose either
side of the first segment to construct
the triangle. Are the two designs of
order nn + 1 in the first case the same
as in the second or are they, generally
speaking, different?

7. Let our turtle crawl from point
A with a constant speed starting
along the direction AB and making
a 90° turn every 15 minutes. Prove
that it can come back to A only in
an integer number of hours and only
perpendicular to AB.

The next few exercises are really
full-length investigations and are
left to the reader as open questions.

8. Prove that a dragon design
traces no segment more than once.

9. Consider a dragon design and
rotate it about its endpoint O by 90°,
180°, and 270°. Prove that no two of
the four designs thus obtained have
a common segment.

10. Consider the set of all polygo-
nal paths of 27 equal segments that
satisfy the following property: if we
split any of them into 2% pieces con-
sisting of 27~ % segments each, then
any two adjacent pieces can be ob-
tained from each other by a 90° ro-
tation about their common point for
any k, 2 < k < n. Prove that this set
coincides with the set of dragon de-
signs of order n.

11. Let’s draw the main dragon
design on the coordinate plane so
that its first three vertices are (0, 0),
(0, 1), (1, 1). Using theorem 1, we can
extend this design as many times as
we wish, getting successively the
designs of order 1, 2, 3, ... . Imagine
we've drawn all of them—that is, an
infinite dragon design (the main
dragon design of order ). Its first 27
segments form the nth-order design.
Prove that (a) The endpoint of the
nth-order design has the coordinates
(2872 cos (nm/4), 27/ sin (nr/4)) (the
red points in figure 5). (b) The code
word of this design can quickly be
written by the following rule. First
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These curves are obtained after 12 “duplications” starting

with a segment; the rotations are alternately clockwise
and counterclockwise. The larger curve always bends

at right angles; it fills up an isosceles right triangle

with a uniform pattern. The other curve is
obtained in exactly the same way except that
right angles of rotation are replaced here
with angles of 95°. This makes the struc-
A ture of the curve dramatically visible.

This dragon curve of order 12 is called
1 ] its midpoint.

each other by a 90° rotation!
yourself, you’ll perhaps have
the curve with a colored pencil.
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we write out alternate letters L and
R leaving blank spaces between
them: L R L R .... Point with a
finger of your left hand at the first
letter and enter this letter in the
first space with your right hand.
Then point at the second letter with
your left hand and enter it in the
second space with your right hand,
point with the left hand to the third
letter, and so on, through all the let-
ters without skipping those written
at the earlier steps:

LLRLLRRLLLRRLRRLLLRL...

(c) If four main dragon designs are
generated from the same point as in
problem 10, then each segment of
the integer square grid will be traced
by exactly one of them (fig. 13). This
is a difficult theorem first proved by
Donald Knuth. The proof is based on
a clever representation of complex
numbers n + mi with integer n and
m in a special “number system”

T

Figure 13

whose base consists of the numbers
1+1,1-1i -1+1 and -1 - 1. This
number system is similar in a cer-
tain sense to the “balanced ternary
system” described in “Number Sys-
tems” (exercise 11)in the last issue
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COSMIC CHARGE

On the nature of space magnetism

Untangling the turbulent source of the “hydromagnetic dynamo”

by Alexander Ruzmaykin

HE EARTH’S MAGNETIC

field was discovered long ago.

The magnetic fields of other

planets, stars, and galaxies were
discovered in our century, some of
them quite recently. We know now
that magnetic fields 102 to 104
times stronger than the Earth’s are
formed in pulsars. Cosmic magnetic
fields are fundamentally different
from those of permanent magnets
made of steel or alloys. Like the
fields in electromagnets, they are
produced by currents flowing in an
electrically conducting medium.
However, cosmic electromagnets
are not, as a rule, fed by an external
emf, but operate as a self-excited dy-
namo (electromagnetic generator).
The moving medium serves as the
“armature” in this dynamo. This
article is a brief introduction to cos-
mic dynamos as a source of large-
scale magnetic fields in outer space.

Magnetic fields in nature

Your textbook tells you that mag-
netic fields are created by electric
currents. Historically, though,
people familiarized themselves with
magnetic fields using permanent
magnets. Recall how clearly the iron
filings “drew” the magnetic lines of
force. These lines are always closed.
A simple observation shows that the
needle of a compass orients itself
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tangent to the magnetic lines of
force. In fact, this is how the Earth’s
magnetic field was discovered.

With the help of modern space-
craft equipped with devices more
sensitive than a compass, the mag-
netic fields of other planets were
discovered as well—those of Mer-
cury, Mars, Jupiter, and Saturn. For
example, the Martian magnetic
field was first detected by magne-
tometers on the Soviet space station
Mars-3. At the planet’s equator the
magnetic field is 6 - 10-8 T. Jupiter,
as it turned out, has the strongest
magnetic field (4 - 10~* T at the
equator—approximately 10 times
that of the Earth’s field).

In the beginning of our century
the Sun’s magnetic field was discov-
ered. The Sun is just a rank-and-file
member of the stellar community.
No wonder that the magnetic fields
of other luminaries were also found.
Certain stars have fields tens of
thousands of times stronger than
that of the Sun.

A magnetic field exists also in the
interstellar medium. This is defi-
nitely not a field created by stars.
The magnetic field of a star de-
creases with distance so radically
(generally it’s inversely proportional
to the cube of the distance) that it
usually doesn’t reach even its near-
est neighbor. At the same time, the

magnetic field in our galaxy (the gi-
gantic system of stars and gases seen
at night as the great swath of the
Milky Way) spreads over a huge dis-
tance exceeding by far the space be-
tween two neighboring stars. This
field is rather weak—about 10-1° T.

The discovery of space magne-
tism raised the question of why it
exists. There are few solid bodies in
space, so the physical processes are
occurring in liquid or gaseous media
composed of electrons, positively
charged ions, and neutral atoms and
molecules. The Earth’s magnetic
field (figure 1la on page 14) arises
from the motion of material (mol-
ten iron with impurities of carbon,
sulfur, and silicon) in the liquid
shell of the Earth’s interior (it’s a
spherical layer between 0.19 and
0.55 of the Earth’s radius). In gas-
eous stars (such as our Sun) the
magnetic field is generated in the
outer (partially ionized) shell, which
is about 1/10 of a stellar radius
thick.

Thus, cosmic magnetic fields are
produced by currents flowing in an
electrically conducting medium. In
a similar way magnetic fields are
generated in the coil of an electro-
magnet (figure 1b). However, to pre-
serve the current in an electromag-
net, one needs an external source of
energy. Meanwhile, “battery” emfs

Art by Dmitry Krymov






Figure 1

Comparison of magnetic fields. The
magnetic field of the Earth (a) re-
sembles that of a permanent magnet.
However, the nature of these fields is
different. The magnetism of a perma-
nent magnet is explained by compli-
cated quantum-mechanical properties
of the particles in the solid body. The
Earth’s magnetic field, on the other
hand, is generated by electric currents
flowing in the liquid core. In this
respect, the Earth’s field is similar to
that of an electromagnet (b).

produced from chemical or thermal
effects are usually weak or absent in
space. The main source of magnetic
fields in space is the motion of the
conducting medium itself.

Cosmic magnetic fields are not
constant. For example, the large-
scale solar field changes its polarity
almost periodically once every 11
years. This process is connected
with the cycling of solar activity,
which manifests itself through dark
sunspots, the solar corona, solar
flares, and other phenomena. In re-
cent years such cycles of activity
were also found in many other stars.
The familiar magnetic field of Earth
also proved to be variable. Over long
periods of time—about 200,000
years—it changes direction by 180°:
the north magnetic pole becomes
the south pole, and vice versa.
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Why the magnetic field varies in the
conducting medium

The electric field formed by a
charge disappears when this charge
is neutralized by another one of op-
posite sign. In plasma, which con-
sists of equal amounts of moving
positive and negative charges, any
extra charge of one sign arbitrarily
appearing in some area will quickly
be neutralized. It’s clear that the
greater the electrical conductivity of
the plasma, the shorter the period of
neutralization of the electric field.
The magnetic field in a plasma is
generated by moving charges—elec-
tric currents. Clearly, this field will
change with electric current.

Let’s first examine how current
changes in an ordinary metal wire
that you can find in any room. Con-
sider a winding of radius r made of
wire with a cross section /> and re-
sistivity p. Let the winding be con-
nected to a battery generating a cur-
rent I, which produces a magnetic
field B around it. The field is per-
pendicular to the plane of the wind-
ing and equals B_, = u,I/2r, where
Uy =4n-107 T m/A. The magnetic
energy in this system can be esti-
mated as

2
E= Binax iJUS.
2u, 3

Then let’s turn the current source
off in such a way that the electric
circuit remains closed. At first
glance, the current will stop imme-
diately due to the conductor’s non-
zero resistance R. In fact, however,
the current won't stop all at once. Its
rate of decrease is determined by the
rate of the heat loss P = I?R. The cur-
rent is fed by the magnetic energy
stored around the winding. (Note
that the magnetic energy is larger by
far than the kinetic energy of the
current carriers—that is, the elec-
trons.) This energy will be con-
sumed in the time

E _ y
1==~10"°c1%
P

where 6 = 1/p is the conductivity of

1 for copper wire of cross-sectional
radius I = 1 cm. The conductivity of
copper is about 6- 107 (Q - m/)~'. This
yields a time 1 of less than one hun-
dredth of a second.

Now let’s turn to plasma in outer
space. Usually its conductivity is
the same as that of weak conduct-
ing metals, but the volumes occu-
pied by the currents are huge. In this
case the characteristic time for the
field to change becomes very large.
For example, the plasma conductiv-
ity in the upper shell of the Sun is
about 10° (Q - m|! (mercury, nickel-
chromium alloy, and bismuth have
approximately the same ¢ at room
temperature). The Sun’s radius is
about 7 - 108 m. So the damping
time of the magnetic field produced
by currents in a shell whose radius
is one tenth of the Sun’s radius is
105 s, or 100 million years! Of
course, this is just an approxima-
tion. Still, compare it with the frac-
tions of a second characterizing the
damping in copper wire. This
means that ordinary electrical resis-
tance has little effect on large-scale
magnetic fields once they have been
created. Then how do we explain
the fact that the Sun’s magnetic
field, say, changes after a very short
period of time—only 11 years?

The answer is that the medium is
moving. The motion of a medium
having free positive and negative
charges is equivalent to the motion
of a conductor. Textbooks on phys-
ics say that the motion of a conduc-
tor in a magnetic field brings about
an electromotive force, and when
the ends of the conductor are closed,
electric current will flow in the cir-
cuit. This secondary current gener-
ates its own magnetic field, which
adds to the original field. It's worth
noting that in an ideally conducting
plasma (that is, plasma whose resis-
tance is zero) the total superim-
posed magnetic flux @ = BS will be
constant during these changes (S is
the area of the circuit). So the mag-
netic field produced by a moving
conductor seems to move along
with it. Such a field is said to be



Figure 2

Change in the magnetic field when
the particles of an ideally conducting
plasma are shifted from position 1-2
to 1-2".

frozen in the plasma. One can pic-
ture the behavior of a magnetic field
in a moving conducting medium as
a thread thrown into a stream: not
only is it carried along, it also
stretches if the particles moving in
the stream move away from one
another.

When this “freezing” takes place,
the movement of the plasma as a
whole transports the magnetic lines
of force. But the relative motions of
different parts of the plasma deform
the lines of force, curving and
stretching them. A magnetic line
connecting two previously adjacent
plasma particles will connect them
in the future as well—that is, it will
follow the displacement of these
particles (fig. 2). The number of mag-
netic lines of force permeating any
area encircled by a closed circuit of
moving liquid particles is constant
(at p = 0). The magnetic field B can
increase as a result of deformations
that draw regions with the same
field orientation closer together, and
vice versa—it can decrease when
regions with the opposite field orien-
tation are brought together. It fol-
lows from the equality B = ®/S: if ®
is constant, then B changes in in-
verse proportion to S.

The simplest way to amplify the
frozen magnetic field is to pinch
(compress) a plasma layer (that is,
decrease S). This idea is used as the
simplest explanation for the huge
magnetic fields of pulsars. A pulsar
is a compact neutron star of radius
r = 10 km. If we assume that the

neutron star had been formed by
compression of an ordinary star of
radius r, = 10° km, we find that its
radius decreased by a factor of 10°
during compression. The conserva-
tion of magnetic field yields

2R i
nry"B, = nr°B,

where B, is the field before com-
pression and B is the resulting field
of the pulsar. Thus, the magnetic
field is amplified by a factor of
(r,/r)* = 1010, So the rather “modest”
magnetic field of an ordinary star of,
say, 0.01 T turns into a very strong
field of 108 T.

On the other hand, plasma mo-
tion deforms and tangles the mag-
netic lines of force. For small-scale
fields, as we saw, heat loss becomes
significant.

It turns out that in certain kinds
of plasma motion the effect of am-
plification of a large-scale field ex-
ceeds, or at least is not less than, its
damping. In such a case the moving
plasma works as an electromagnetic
generator and so might naturally be
termed a “dynamo” (at one time
generators were called “dynamos”).
The action of a dynamo is usually
demonstrated by means of a wire
frame with electric current rotating
in a magnetic field.

Hydromagnetic dynamo

The dynamo in a conducting me-
dium, in contrast to the usual gen-
erators, must work without wires,
windings, and, most importantly,
without an external magnetic field
(which is a prerequisite for an ordi-
nary dynamo!). As the energy source
in the natural dynamo is only hydro-
dynamic plasma motion, it is called
“hydrodynamic.” To start the hy-
drodynamic generator one needs

In a large-scale modern generator
the current, which produces a
magnetic field, is taken from the
generator itself, and there is a close
similarity between natural and
commercial dynamos in this point.
However, the placement of the
windings and the overall design are
matters of human ingenuity. Can
nature achieve the same effect
without insulating materials? That’s
the question!

only a weak initial magnetic field.
Such weak fields are usually due to
various interactions among the
charged plasma particles.

The idea of explaining the Earth’s
and Sun’s magnetic fields on the
basis of hydromagnetic motion was
first proposed in 1919 by the well-
known English physicist J. Larmor.
But is such a self-inducing hydro-
magnetic dynamo possible—one
that “works” without external
sources of emf? The affirmative an-
swer to this question is best illus-
trated by the following visual ex-
ample.

Let’s take a circular cord com-
posed of individual rubber rings
(fig. 3a). Let the rubber rings imitate
the magnetic lines of force of the
same orientation (marked with ar-
rows). Now we curve the cord to
form a figure eight (fig. 3b), place one
ring of the eight on the other, and fi-
nally stretch the double-cord to re-
store its initial size (fig. 3¢). Note
that all the arrows point in the same
direction. Thus, the number of mag-
netic lines of force passing through

a

Figure 3

Doubling of the cord of magnetic lines
of force.
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any cross section of the cord is
doubled. Repeating the procedure of
folding and stretching, we can
double in each step the number of
magnetic lines in the cord until we
reach the limit determined by the
rubber’s elasticity. Note that start-
ing from any point in the initial
cord, one could return to it making
only one pass along the cord. How-
ever, it will take two passes to re-
turn to the starting point after the
cord has been doubled. Thus, the
new (doubled) cord isn’t entirely
equivalent to the initial one. To
avoid this complication, in each step
we can cut the cord at the joint of
the figure eight, connect the free
ends of the circles, and then put
them together as one doubled cord
that is equivalent to the initial one.

Under natural conditions the
doubling operation can be performed
by the movements of the medium in
which the weak initial magnetic
field is “frozen.” It’s not hard to
imagine movements of this kind—
say, repetitive turns about mutually
perpendicular axes followed by
stretching.

The elimination of nonequiv-
alences of the doubled cord (in rela-
tion to the initial one) can be per-
formed by electric resistance: the
heat losses lead to the smoothing
and removal of the magnetic lines
where the curvature is greatest.
Electric resistance also prevents the
cord’s cross section from becoming
arbitrarily small after the repeated
stretching that the doubling entails.
The resistance will keep the cord’s
diameter almost constant.

Our example of the dynamo is
simple and easy to picture. But is
that how it’s done in nature? If so,
the motion of the conducting me-
dium must be organized in a particu-
lar way. Let’s see what kind of
movements such a medium per-
forms in space.

Nonuniform rotation

For all the planets, stars, and gal-
axies, the simplest motion is rota-
tion. However, if all the parts of a
body rotate with the same angular
velocity (that is, rotate uniformly),
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the magnetic lines of force will ro-
tate together with the body and re-
main practically constant. To bend,
stretch, and fold the lines, one needs
the relative motion of the neighbor-
ing plasma particles—that is, the
rotation must be nonuniform. Now,
solid bodies make only uniform cir-
cular motion—otherwise they
would be destroyed. Liquid and gas-
eous bodies, on the other hand, can
rotate nonuniformly. Observations
of the Sun have shown that the
equatorial parts of our star make a
complete revolution several days
earlier than the polar regions. Indi-
rect data show that the unseen in-
ner regions of the Sun rotate even
faster. The gaseous disk of our gal-
axy also rotates nonuniformly: its
inner regions perform more rota-
tions in a given time than its outer
regions.

To visualize more clearly this non-
uniform rotation, think of the con-
centric circles of a carousel (fig. 4a).
Let the circles that are closer to the
center rotate more quickly than the
outer ones.

Now let’s seat several people on
various circles such that they are
arrayed on the same diameter of the
largest circle. The passengers are
given a rubber rope attached to the
ends of the diameter, imitating a

a
& B
b
B
Figure 4

A horizontal magnetic line of force
turning into a spiral after a number of
turns of a nonuniformly rotating
body.

magnetic line of force. Now let’s
start the carousel. It’s not hard to
see that after several turns the rub-
ber rope (magnetic line) will curve
into a spiral (fig. 4b). At first the
line lay along the diameter, and
then it shifted closer to the circum-
ference. Thus, the nonuniform rota-
tion turned a radial magnetic field
into an almost tangential (azi-
muthal) one.

Notice that the rotation forms
pairs of circles with magnetic fields
directed counter to each other. One
circle will be located above the car-
ousel, the other will be below it.
However, as in the previous case, a
problem arises: how do we keep the
initial radial field constant?

Perhaps some other type of mo-
tion would help? Can one make
something like a figure eight?

Helicity

The medium of outer space is
characterized by chaotic, irregular,
one might say turbulent, motion.
We see such motion when observing
water flowing in a mountain stream
or near a whirlpool. It’s also charac-
teristic of the surrounding air. It is
because of this chaotic motion that
perfume or smoke quickly spreads.

Due to its chaotic, irregular na-
ture, the turbulent movements of
the conducting medium (plasma)
usually entangle any magnetic field
rather quickly and reduce to it to
fragments. However, under space
conditions the turbulence has a cer-
tain “regular” character.

Instead of real turbulent flow,
let’s imagine a set of individual spi-
ral vortices that combine transla-
tional motion with rotation about
their axes. Let some of them rotate
clockwise, the rest of them counter-
clockwise. The spiral movement of
the vortex is able to lift up the mag-
netic line so that it looks like the
Greek letter omega (fig. 5) and then
turn it. However, clockwise and
counterclockwise vortices produce
loops with opposing magnetic fields.
The question is, what will be the
effect of a large number of vortices
whose direction of rotation varies—
that is, real turbulent flow?
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Spiral motion of a conducting me-
dium stretching a magnetic line (a)
into a loop (b) and rotating the loop
(c). A current parallel to the field is
generated.

In the homogeneous situation,
the number of clockwise and
counterclockwise vortices is the
same. Such a set of vortices has
the property of mirror symmetry.
Indeed, let’s install a mirror at any
location and look at the reflection
of the vortices: in the mirror the
clockwise vortices become counter-
clockwise vortices, and vice versa.
However, since the number of both
kinds of vortices is the same, the
picture remains basically un-
changed after reflection.

Now let’s recall that bodies in
outer space rotate. Imagine this
situation: in a layer of liquid the
density is greater at the bottom
than near the surface and the en-
tire layer rotates about an axis
running through it. There are vor-
tices in this layer (both clockwise
and counterclockwise). How will
they behave?

Each vortex turns “by itself,” and
in addition it can rise or sink in the
layer. Any ascending vortex will
expand like a bubble that finds itself
in a more rarefied medium. The lat-
eral movement that arises during
this process (fig. 6) will deviate from
the purely radial due to the rotation
of the layer as a whole (much as a
person walking on a rotating disk

Figure 6

Rotating plasma layer whose
density decreases upward. The
overall rotation of the layer imparts
additional angular velocity to an
ascending and expanding vortex.

deviates from a radial course). This
means that the vortex is given an
additional rotation caused by the
overall rotation of the layer.

Clearly, the effect of the overall
rotation is the same for all rising
vortices—clockwise and counter-
clockwise. The vortices that are
sinking are compressed, but the ef-
fect of the overall rotation will be
the same as for rising vortices. In
sum, the effect of the overall rota-
tion on the aggregate of vortices in
a nonuniform layer leads to an in-
crease in the number of vortices ro-
tating in the same direction as the
plasma as a whole. However, a
plasma with, say, counterclockwise
vortices outnumbering clockwise
can easily be seen to have lost the
property of mirror symmetry.

The turbulence described is
termed “spiral.” Notwithstanding
its chaotic nature, it has on average
a certain added rotation. Helicity is
the organizing feature that charac-
terizes turbulence in rotating heav-
enly bodies with nonuniform densi-
ties such as planets, stars, and
galaxies.

Spiral turbulence in heavenly
bodies acts in concert with nonuni-
form rotation. As we saw previously
(fig. 4), nonuniform rotation trans-
forms a radial field into a field di-
rected almost azimuthally—or to be
more exact, along a spiral. Spiral
turbulence lifts up many loops in
the azimuthal field and then turns
them in different directions (fig. 7).

Figure 7

The combined effect of nonuniform
rotation and spiral motion on the
magnetic field. The rotation of the
initial field (B,) winds the azimuthal
field (B¢). The spiral motion lifts loops
up from this field, then these loops tear
off, turn, stretch, and merge to produce
a new field directed parallel or counter
to the initial field B,

But as vortices of a certain orienta-
tion dominate, the summing of the
loops will result in a common radial
field with a particular direction. If
the new radial field has the same
direction as the initial one, the mag-
netic field becomes stronger. If the
new field is directed counter to the
original field, a reversal of the field
is possible. This makes it possible to
explain the repeated changes in field
direction that occur in the Sun and
other stars. Note that in the case of
the figure eight we obtained a dy-
namo with continual amplification
of the field—but with no reversals.

One shouldn’t forget that the
hydromagnetic dynamo works
under marked turbulent tangling
and destruction of magnetic lines
of force. Thus, strengthening and
weakening of the field take place
simultaneously with the con-
tinual birth of new and the death
of old magnetic fields.

The hydromagnetic dynamo is
widely used to describe the mag-
netic fields of stars, planets, and gal-
axies. In particular, such a dynamo
seems to be the main “motor” of the
repetitive solar activity. Q)
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BRAINTEASERS

Just for the fun of it

Winnie wins? Winnie-the-Pooh and Rabbit took a bag of 101 candies to
play a mathematical game. Each of them in turn takes a number of candies
from 1 to 10 out of the bag. When the bag is empty, they count their
candies: Winnie-the-Pooh wins if the two numbers are coprime, otherwise
Rabbit wins. Which of them can force a win and how, if Winnie begins the
game? (K. Kohas)

B152

Long printout. A computer printed out
two numbers: 21995 and 51995, How R
many digits in all were printed? =
(V. Pushnya, 10th grader) at el

B153

Up or down! A Ping-Pong ball is
tossed into the air. Will it take longer
for it to go up or to come back down?
(A. Savin)

Square a cube. You are given a cardboard cubical box without a
cover (its sides and bottom are squares of unit area). Cut it into
three pieces that can be put together to form a square of area 5.
(V. Proizvolov)

B155

Sick of chess. Judith and Nigel played the same number of games in a
chess tournament, fell ill, and quit. All the other participants played
against one another, as was intended by the rules. The total number of
games played is 23. Did Judith and Nigel play against each other during
this tournament? (V. Bliznyekov, 10th grader)

Asnuisy) jeaed Aq Uy

ANSWERS, HINTS & SOLUTIONS ON PAGE 59
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Erucated guesses

“It is the mark of an instructed mind to rest satisfied with the
degree of precision which the nature of the subject permits
and not to seek an exactness where only an approximation

of the truth is possible.’

by John A. Adam

J

Aristotle

E MAY NOT BE AS ERU-

dite as Aristotle, or as bril-

liant as Enrico Fermi, but we

can learn to apply elemen-
tary reasoning to obtain “ballpark
estimates” for problems (subse-
quently named “Fermi problems”)
in the manner attributed to that
great physicist.

Several years ago a short article
by David Halliday appeared in
Quantum (May 1990). It was called
“Ballpark Estimates,” and in the
context of a specific problem Halli-
day showed how to obtain order-of-
magnitude answers to problems by
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breaking them down into their
components and making appropri-
ate common-sense estimates. The
problem was to estimate how many
“rubber atoms” are worn from an
automobile tire for each revolution
of the wheel. We shall consider a
slight variant of this problem below,
but what I find especially appealing
in Halliday’s article is the dialogue
he provides en route with a typical
reader’s questions. While not neces-
sarily a prerequisite to this article
(having got you to read this far, I
don’t intend to let you go easily!),
urge you to read it nonetheless.

Of course, the ideas expressed and
methods used in such Fermi prob-
lems go far beyond physics into the
realm of everyday activities (though
filling the Earth with sand may not
qualify as an everyday activity).
Two excellent resources I have en-
joyed reading and using are
Innumeracy by John Allen Paulos
and Consider a Spherical Cow by
John Harte. You'll recognize some of
the problems cited here if you have
already encountered these books.
After a while you'll get comfortable

FERMI PROBLEMS

with posing and estimating answers
to your own Fermi problems. The
book by Paulos will be an eye-
opener for many: in particular, he
shows the power of plausible as-
sumptions coupled with simple cal-
culations. The book by Harte is a
good introduction to mathematical
modeling (particularly environmen-
tal problem solving) with little or no
use of calculus. While we're on the
subject of interesting books, The
Universe Down to Earth by Neil de
Grasse Tyson has some chapters (1
and 3] relevant to the present article.

In much of what follows, letters
are used to represent typical dimen-
sions or other quantities. This will
enable you to obtain your own esti-
mates, though you should resist the
temptation to just “plug in” your
numbers in the formula without fol-
lowing the prior reasoning. Almost
certainly we’ll differ on typical sizes
of objects (for instance, grains of
sand). But almost as certainly we’ll
choose typical dimensions in the
range (for this example] of
107! mm <d <2 mm, so we probably
won't differ significantly in our
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subsequent order-of-magnitude an-
swers. Remember that it’s to be un-
derstood that whenever ratios of di-
mensional quantities are to be
sought, a conversion of units may
be necessary in order to compare
like quantities. For completeness,
actual numerical estimates are
given—some of their values may
surprise you.

Needless to say, the question will
be asked: so what if I know how to
estimate the number of grains of sand
that would fill Buckingham Palace?
(Now there’s a thought!) Apart from
a spell in jail for attempting to verify
such an estimate, it’s a great encour-
agement to realize that a “back of the
envelope” type of calculation can be
carried out with a modicum of salient
information for a “real world prob-
lem.” Not only might this save a con-
siderable amount of money and com-
puter time on occasion, it might also
give you a greater appreciation for the
power of arithmetic. I've seen the
“lights go on” when intelligent, edu-
cated people realize at last the distinc-
tion between 10° seconds (11% days)
and 10” seconds (32 years). Some-
times we need the right pegs to hang
numbers (and concepts) on!

Among the simplest estimation
problems are those arising from ra-
tios of lengths, areas, and volumes.
Thus, if D is a typical linear dimen-
sion of a given object (for example,
a classroom), and d < D is a typical
linear dimension of a smaller object
(for example, a piece of popcorn—
we'll say popped!), then N = D3/d? is

the approximate number of smaller
objects that would fill the latter.
Thus, by using appropriate choices
of D and d we can come up with es-
timates for the following questions.

1. How many golf balls does it
take to fill a suitcase?

2. How many pieces of popcorn
does it take to fill a room!

3. How many soccer balls would
fit in an average-size home!

4. How many cells are there in a
human body?

5. How many grains of sand
would it take to fill the Earth!?

Related problems involve volu-
metric measures of fluids.

6. What is the volume of human
blood in the world?

7. How many one-gallon buckets
are needed to empty Loch Ness (and
thus expose the monster)?

Sometimes everyday objects are
obviously represented (or misrepre-
sented) by cubes. Thus, if we are ask-
ing how many objects with a typical
linear dimension d will fill a space
with linear dimensions g, b, ¢, the for-
mula N = abc/d® is appropriate. So for
problem 1, we might suggest a = 20,
b=24,c=8,andd = 1.5 inches, respec-
tively, so N = 10%. For problem 2, sup-
posea=101ft, b=20ft c =15 ft(class-
room size), and d = 1 cm. Then, after
conversion to metric units,
N = 3,000 - 30% = 108. For problem 3,
consider D = 30 ft and d = 1 ft, which
gives N=10* Problem 4 yields 1014, and
the answer to problem 6 is less than
1/200 mi? (both of these are discussed
below). For problem 5, values of
D = 10* km and d = 1 mm yield
N=(10*-10°- 10%- 10P = 10%°. A cubic
Earth, you ask? Don’t worry, you'll get
over it without falling off (see the com-
ment on problem 14 below). Using the
fact that 1 ft3 of liquid (water, soup,
blood, and so on) is about 7.5 gallons, we
arrive at N = 102 buckets to empty
Loch Ness (problem 7). The loch has
a volume of approximately 2 mi®, so
2-5,280% - 7.5=10'2. And while we're
talking about gallons, here’s problem 8.

8. One gallon of paint is used to
cover a building of area A. How
thick is the coat!?

Clearly, if A is in square feet, then
the thickness d = 1/7.5A ft. For the

“cubical house” of problem 3 (full of
soccer balls by now, you'll recall), A
=6-302=5-10%ft2, sod=10"ft=
10+ in.

Questions of a more sophisticated
nature require, not surprisingly,
more terms in the estimation for-
mulas. Thus we have the following
problems.

9. How much dental floss does a
convict need! A recent newspaper
article featured the story of an in-
mate at a correctional center in
West Virginia who escaped from the
prison grounds by using a rope made
from dental floss to pull himself

over the courtyard wall. The rope
was estimated to be the thickness of
a telephone cord, and the wall was
18 ft high. Taking 4 mm for the di-
ameter of a telephone cord and
1/2 mm for the diameter of the
floss, then the number of floss fibers
in a cross section is (4 + 1/2)> = 60,
and if each packet of floss contains
the standard length of 55 yards, the
number of packets required is
N =(20-60)/(55 - 3)=7.

10. Estimate the number P of pi-
ano tuners in a certain city or re-
gion. Consider a population in the
region totaling N, with an average of
p pianos per family (generally p < 1).
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Suppose that pianos are tuned b
times a year on average (generally
we expect 0 < b < 2), so the number
tuned per year is approximately
Npb/n,, where n, is the average size
of a household. If each tuner tunes
n, pianos a day (0 < n, < 4 in gen-
eral), this corresponds to 250n, pi-
anos per year (for a reasonable work-
ing year of 50 - 5 days). So the
number of tuners in the region (city,
town, country) is approximately
Npb/250n,n,. Let’s pop in some
numbers. If, for New York City, say,
N=10",n,-5 b=05, p=02,
n,=2,thenP= (107 -1071)/(250 - 10)
= 4 . 102—that is, an order of mag-
nitude of 102 to 10°%.

11. Estimate the number C (for
cobbler) of shoe repairers in a city or
region. If such a person spends on
average t hours on a repair job in an
average working day that’s T hours
long, T/t is the average number of re-
pairs performed per day. Clearly,
some shoes are worth repairing and
some are not. Suppose the “average
pair of shoes” is repaired on average
every n years, leading to a repair rate
of 1/n per year. For a 250-day working
year, our cobbler can perform an av-
erage of 2507/t repair jobs a year, and
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in a population of N, repairs N/n pairs
of shoes each year. This leads to an
estimate of Nt/250nT cobblers in the
region. Thus, if we take as our region
this time the whole of the United
States (we're being a little ambitious
here, of course, but this is a question
I'm constantly being asked), then N=
2.5-108,t=1/2, T=10,n=2;s0C =
(2.5-10%-1/2)/250 - 2 - 10) = 10%

12. Estimate how fast human
hair grows (on average) in mph. If
the hair is cut every n months (usu-
ally n <2) and the average amount
cut off is x inches, then x/n inches
per month = x/n - 1/(5,280 - 12) -
1/(30 - 24) mph = 108{x/n) mph. If
n =2 and x = 1, then the rate of hair
growth is approximately 10-® mph.

Now back to the blood problem
(number 6).

6. (redux) Estimate the total vol-
ume of human blood in the world.
For a population of 5 - 10° with an
average of 1 gallon of blood per per-

son, V=5-107/7.5=7-108 ft3. This,
as Paulos points out, could be con-
tained in a cube of side length
(7 - 108)1/3 = 900 ft. Putting things
a little more prosaically, since
Central Park has an area of
1.3 mi?, all this blood would cover
Central Park to a depth of about
(7-108)/[1.3 - (5,280)2] = 20 ft. Hmm.

13. Estimate the number of ciga-
rettes smoked annually in the US.
Let f be the fraction of people in the
population who smoke and n the
average number of cigarettes smoked

perday. Then N=2.5-10%-365 - fn=
101 if f=10" and n = 10.

14. The asteroid problem. In the
light of the impact(s) of ex-comet
Shoemaker-Levy on Jupiter’s outer
atmosphere, the question has been
raised: could it happen here on
Earth? It may have happened al-
ready—one theory for dinosaur ex-
tinction (not Gary Larson’s)! is that
about 65 million years ago such an
encounter occurred—this time with
an asteroid. Eventually dust from
the impact settled back on the sur-
face of the Earth, having done a su-
perb job of blocking sunlight and
thus devastating plant and animal
life. According to one hypothesis,
about 20% of the asteroid’s mass
was uniformly deposited over the
(now rather inhospitable) surface of
the Earth—about 0.02 gm/cm?.
Question: how large was the asteroid?
(You may feel that at this point, a
more appropriate question would be:
“What was the name of the bus
driver?” But don’t worry, we'll get to
that later.) Okay—the mass is clearly
about 4nR2 - 0.02 - 5 if R is the radius
of the Earth in centimeters. This
must be equated to density times vol-
ume for a cube of side length L (this
is the simplest geometry to consider:
the largest sphere that can be in-
scribed in a cube of side L differs in

IHis memorable cartoon shows
several tough-looking dinosaurs
standing around, smoking cigarettes.
The caption reads: “The real reason
dinosaurs became extinct.”—Ed.




volume from that cube by a factor
7/6 = 1/2, so this won't affect our or-
der-of-magnitude estimate). Suppose
we take a typical rock density of
2 gm/cm?, so that 213 =0.4nR?, which
gives us L = (0.2nR2)1/3. Since R =
4,000- 1.6 - 10° cm (converting miles
to centimeters) = 6.4 - 108 cm, then
L=6-10°cm, or 6 km (10 km by or-
der of magnitude). This is not unrea-
sonable for an asteroid (even though
the dinosaurs may disagree).

15. Thickness of an oil layer. Per-
haps no one likes to take their medi-
cine. Rumor has it that Benjamin
Franklin noted that 0.1 cm? of oil
(was it cod-liver 0il?) dropped on a
lake spread to a maximum area of
40 m?. If d is the thickness of the

layer in meters, then 40d = 1077, so
d=25-10"19m, or 25 angstroms. In-
terestingly, this corresponds to a
“monomolecular layer” of 10-12 at-
oms (with atom-space-atom-... for
amolecule), which is about right for
a molecule of “light” oil.

16. The number of leaves on a
tree. If r is the typical radius of a
tree’s canopy, the surface area of the
canopy is 4nr?; and if d is (in the
same units asr) a typical leaf size, an
estimate for the number of leaves is
4nr?/d?. Clearly leaves don’t cover
the “surface” of the canopy continu-
ously; this does, however, compen-
sate for the fact that there are many
leaves on branches inside the canopy.

For a small tree (for example, a 15- to
20-year-old yew|, the leaf canopy has
aradiusr=4ftand d=11in,so N =
3 - 10*—that is, an order of magnitude
of 10*-10° in general, if we include
larger trees as well.

17. Weekly supermarket revenue.
If there are n, checkout lines serving
an average of n, customers per hour,
the average customer receipt is x dol-
lars, and the store stays open an aver-
age of n, hours a day, then in an av-
erage week R = 7n,n,n.x dollars. If,
for example, n, = 10,n, = 10, and n, =
14, then we find that R = 10° dollars.

18. Daily death rate in a city or
region. If in a city or region of popu-
lation n, the average number of
deaths per day (as listed, for ex-
ample, in the obituary section of the
local newspaper| is n,, we can by a
simple proportion get an estimate of
the daily death rate d in the coun-
try (with a population NJ. Thus,

d = Nn,/n,. Clearly there are limits
to the validity of this crude analysis.
Death rates vary considerably from
country to country. Nevertheless,
one can get “lower bound” esti-
mates for world death rates in a
similar fashion. Thus, if n, = 10¢ and
n, =30, then N=2.5 - 10°.

19. The number of blades of grass
on the Earth. If 40% of the Earth’s
surface is covered by land, a fraction
f, of this land is covered by grass. If
the average number of blades of
grass per square inch is n, then N =
(0.4)4nR%*f,n for R measured in
inches. Thus, forR=4,000-5,280- 12,
f, =102 or 107! (this is difficult to es-
timate without a little research), and
n =20, then N=10' or 107,

Now let’s return to a variant of
the car tire problem.

20. What is the average depth of
tread lost per revolution of a car tire?
This can be answered by a simple pro-
portion: the distance d we require is
to a typical tread ¢ (for a new tire) as
tire circumference 2nR is to length of
useful mileage L. Thus, d = 2nRt/L,
which for R=1ft, L = 5 - 10* mi,
t = 5 mm corresponds to (after con-
versions!) to d = 107 mm.

21. Population square. If each
person on Earth were given enough
space to stand comfortably on the
ground without touching anyone
else, estimate the length of the side
of a square that would contain ev-
erybody in this way. If we give ev-
eryone a square 1/2 m on a side, then
the side of the large square is
L=(5-10°42.1/2-10° km =35 km.

22. Human surface area and vol-
ume. To estimate these quantities
crudely but quickly, consider a cyl-
inder of radius r and height h: if r =
1/2 ft and h = 6 ft, then V = nr2h =
5ft3, and S = 2nrh = 20 ft2. Since 1 ft
=0.3m, V=0.1 m3 Now we’rein a
position to return to problem 4.

4. (redux) Estimate the number of
cells in the human body. If we as-
sume an average cell diameter of
10 microns, or 10~° m, then since
1 ft =0.3 m, V from problem 22 is
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approximately 10°! m3, so N =
1071/(1075)3 = 101 cells.

23. The average rate of growth of
a child from birth to 18 years. Over
this time span the “speed” equals ap-
proximately (b, — hy)/18=1/18 m/yr=
1073/(20- 400 - 20) km/h = 10~ km/h—
that is, about the same order of mag-
nitude as the speed of hair growth!
Perhaps we could label children as
super- or subfollicular
depending on whether
or not they grow faster
than their hair!

The remaining es-
timation problems
concern SETI (the
search for extraterres-
trial intelligence) and
interstellar launches.
The astronomer
Frank Drake has
done the work for us
in providing the famous Drake for-
mula for the number N of extant
technical civilizations in the galaxy.
Here “technical” can be taken to
mean at least as technologically ca-
pable as we are on planet Earth.
Thus, if n_ equals the mean number
of stars in the galaxy, /. the fraction
of these stars with pIpanetary Sys-
tems, n_ the mean number of plan-
ets suitable for life per planetary sys-
tem, f, the fraction of planets where
life actually evolves, f; the fraction
of thosen f; on which intelligent or-
ganisms have evolved, f, the fraction
of those intelligent species that have
developed communicative civiliza-
tion, and f, the mean lifetime of
those civilizations in terms of the
age of the galaxy, then

N= nsfpnpfbfifcfl'

Of the seven quantities on the right
of this expression, the first is astro-
nomical in nature and well known
to be about 4 - 10!, The next two
numbers are really educated astro-
nomical guesses. The two following
(f, and f;) are biological in nature,
and here we’re on pretty shaky
ground, because we only have a
sample space of one (ourselves!).
The final two numbers are sociologi-
cal in nature, and so in this context
they’re pure guesswork! Thus it hap-
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pens that the numbers one puts in
are indicative of one’s philosophical
stance: like it or not, we all have pre-
suppositions about the universe we
inhabit. Just for fun, let’s see where
this leads for the optimist and the
pessimist. In both cases we might
take fp = 0.2 (remember that almost
half the stars in our galaxy are
thought to be binary systems at least)

and n = 0.1. For the remaining four
numbers, our optimist takes 1.0, 1.0,
0.5, and 10%/10'° = 104, respectively,
yielding N = 10°-10°. Our pessimist,
on the other hand, takes the last four
numbers to be 0.1, 0.1, 0.1, and
10%/10%0 = 1079, respectively, yielding
N = 10. Which are you?

At this point, a timely reminder:
whether for a debate or a mathemati-
cal model or merely an estimate,
the argument is only as good as the
weakest assumption built into it.

24. Mean distance between two
civilizations. Our galaxy has the
shape of a disk 10° light-years (LY) in
diameter and about 10* LY “thick.”
Obviously stars are concentrated
more toward the galactic center, but
we can get a crude upper-bound esti-
mate of the mean distance between
two civilizations by dividing the vol-
ume of the galaxy [r(10°)?/4] - 10* =
10 cubic LY by the optimist’s figure
of N = 10°. (Remember that 1 LY =
6 - 102 mi is the distance light trav-
els in one year. Work
it out for yourself.)
Taking the cube root
of 108 gives us approxi-
mately 500LY. On the
other hand, if N= 10
(the pessimist’s esti-
mate), the distance
is2 - 10*LY.

25. How many launches of inter-
stellar space vehicles might we ex-
pect per year? Suppose that on aver-
age each civilization is able to
launch s such vehicles per year. If
N = 10°—our most optimistic esti-
mate—there will be (at steady state)
some 10°s vehicles arriving per year
somewhere or other within the gal-
axy. Suppose there are approxi-
mately 10! inter-
esting places to visit
(each star!). Then
we can  expect
10%s/101! = 10755 ar-
rivals at a given “in-
teresting place” per
year. Suppose it is
claimed that here
on Earth we receive
v such visits per
year. The mean
launch rate s should
then be 10°v per year, or a total of
10!y launches per year within the
galaxy. This corresponds to
1011210 if v = 1-10%. All in all, it
seems rather excessive, especially if
you try to compute the quantity of
material required to make such large
numbers of spacecraft!

Oh, yes—one more thing. In prob-
lem 14 1 asked (among other things)
what was the name of the bus driver.
There’s a good chance it’s John.

Why? A simple estimate will suf-

fice. Taking a “typical” sample,
there are 28 full-time faculty in my
department (Mathematics and Statis-
tics). Seven of us have the first name
John. From this I draw the inescap-
able conclusion that one person on
four (yes, even including women) is
named John. Of course, this is only an
estimate . . . Q)

John A. Adam teaches mathematics at
Old Dominion University in Norfolk,
Virginia. He does not drive a bus in his
spare time.
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Glarity reality
and the art of photography

‘Is there always an advantage in replacing a blurred
Image with a sharp-focused picture? Isn’t the blurring

frequently just what one needs?’

J

Philosophical Investigations

by Mark L. Biermann

S SEEING ALWAYS BELIEVING?

Or for that matter, is seeing nec-

essarily understanding? Recently,

the veracity of images has been
called into question because of digi-
tal image processing techniques. In
movies like Rising Sun, based on a
novel of the same name, the ability
of computer experts to manipulate
images was pivotal to the story line.
Time magazine used image process-
ing to alter a cover photograph and
to change, or “morph,” Bill Clinton
into Jimmy Carter.

Figure 1
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Yet the manipulation of images
in order to convey specific informa-
tion and impressions is not a recent
development. For decades photo-
journalists and photographic artists
have been manipulating cameras
and film to produce “special effects”
and ambiguous images. While digi-
tal image processing relies on image-
capturing techniques and sophisti-
cated computers, photographers can
produce surprising images using ba-
sic characteristics of cameras and
similar imaging systems. One such
characteristic is
the depth of
field. In figure 1,
I photographed
everyday objects
but controlled
the depth of
field to produce
a rather strange
photograph. By
studying depth
of field, we can
understand how
such a photo-
graph is made.

Throughout
the following

FUZZLY PHYBIES

Ludwig Wittgenstein,

discussion, a still camera, such as a
single-lens reflex camera, is used as
an example of a typical imaging sys-
tem. However, the results of this
discussion can be applied equally
well to other imaging systems, such
as television cameras or camcorders.

Depth of field

In taking any photograph, the
camera is focused for a single subject
distance. However, a person viewing
the photograph will see that objects
appear to be in focus over a range of
distances from the camera. For ex-
ample, a camera focused on an ob-
ject 4 m away may produce a photo-
graph in which objects as close as
3 m from the camera and as far as
6 m from the camera all appear in fo-
cus. The range of distance from the
camera over which subjects appear
in focus is referred to as the depth of
field. The depth of field for this situ-
ation is 3 m, running 3 m to 6 m
from the camera.

Why does a range of distances
appear in focus in a photograph even
though the camera was focused at a
single distance in front of the cam-
eral! The answer lies in the final



imaging system for most photo-
graphs, the human eye. The eye, like
all imaging systems, is limited in
the fine detail it can detect. This ef-
fect is known as resolution—the
finer the detail discernible by an
imaging system, the greater its reso-
lution. While the eye is impressive
in the detail it can resolve, some
things are just too small for the eye
to image effectively. We use micro-
scopes, magnifying glasses, and
similar instruments to see detail
finer than the resolution of our eyes
permits.

But what does all of this have to
do with depth of field? No imaging
system, be it a camera or a projector,
produces a perfect image. This is due
to the fundamental wave nature of
light and often is due to design limi-
tations in the imaging system. As a
result of this inability to produce a
perfect image, a point on an object is
never imaged as a point on the film
in a camera. The image is a small
blur, often referred to as the circle of
confusion or disk of confusion.
Hence, even objects that are exactly
“in focus” are not imaged perfectly.
A well-designed camera, however,
forms a circle of confusion that is
much smaller than the eye can per-
ceive, so human beings perceive
good photographs as being sharp and
in focus. Using a magnifying glass or
a microscope, one can in fact see
these circles of confusion in photo-
graphs that are in focus. Further, if
the camera or film is not function-
ing properly, the circles of confusion
can be seen with the unaided eye.
This degradation in photographic
quality is one manifestation of what
is commonly referred to as graini-
ness in photographs.

Depth of field can be explained in
terms of this circle of confusion.
Cameras produce a photographic
image in which the circle of confu-
sion is much smaller than the hu-
man eye can perceive for the object
located where the camera is focused.
For subjects progressively closer to
or farther from the camera, the im-
ages on the film become more and
more out of focus—that is, the cor-
responding circles of confusion get

larger and larger. Eventually, the
circle of confusion becomes so large
that it is visible to the unaided hu-
man eye and the image in the pho-
tograph becomes blurry. However,
there is always a range of distances
in front of and behind the plane of
best focus that produces a circle of
confusion too small for the eye to
perceive. The resulting photograph
therefore appears to be in focus over
this range of distances, or depth of
tield. Optical engineers or designers,
then, define the depth of field as the
range of distances from the camera
over which the circles of confusion
in the resulting images are smaller
than the human eye can detect.
The depth of field is closely re-
lated to another quantity, the depth
of focus. Although the depth of focus
is not discussed in detail here, defin-
ing the term is worthwhile in order
to avoid confusion. The depth of
field refers to the range of distances
in focus in front of the camera lens,
or in object space. Similarly, there
exists a spatial range behind the
lens, in image space, where one can
place the film and obtain an image
that is “in focus.” The situation is
illustrated in figure 2, which shows
a cross section of an imaging system
viewed from the side. The horizon-
tal line across the center of the draw-
ing represents the center of symme-
try for the circular lens system and
is called the optical axis. The dis-
tance from the subject in best focus
to the lens is called the object dis-
tance S, while the distance from the
lens to the image of this object is §’.
Typically, the film in a camera is
placed at §’. The circle of confusion
that can be resolved by
the eye has a diameter
D. Subjects at X and Y X
in object space are
within the depth of

so that when they reach Y’ they have
spread over a circle of confusion of
diameter D. However, the circle of
confusion due to light from X has
a diameter less than D at the film
location—a distance S’ behind the
lens. The subject at X is therefore
“in focus” on the photograph and
within the depth of field. An analo-
gous description holds for light
originating at Y, except this light is
focused behind the film plane and
the limiting disk of confusion oc-
curs while the light is converging.

The depth of focus is the distance
range along the optical axis over
which light imaged at §’ forms a disk
of confusion of diameter less than D.
It is the range around the image
plane that corresponds to the depth
of field range in the object space. For
example, if the film is too close to
the lens, the light from S would not
have converged sufficiently to form
a circle of confusion too small for
the eye to detect. Note that in
figure 2, X" and Y’ do not define the
depth of focus but are located
within it.

Before discussing depth of field in
detail, two final quantities, the fo-
cal length and the aperture, must be
defined. The focal length of a lens is
the image distance S’ for an object
infinitely far away from the lens.
The point at which the light is fo-
cused is called the focal point. A
shorter focal length means that the
lens brings light to a focus closer to
the lens—that is, it is a more pow-
erful lens. The requirement that S
be infinitely large is met when in-
coming rays of light are parallel to
the optical axis. In practice, optical

field. In order to see
this we begin by fol-
lowing the rays of
light that originate at
those points. Light
from X is brought to a
focus at the point X".
The light rays from X
then diverge from X’

Figure 2

Cross section through the center of symmetry of an
imaging system, viewed from the side. Objects at X,
Y, and S are imaged to X', Y, and S’, respectively.
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designers and engineers often as-
sume “infinity” is 10 to 100 times
the focal length. The aperture of a
lens is determined by the area of the
opening through that lens. A larger
lens opening allows more light to
pass through the lens. The aperture
is usually described in terms of nu-
merical aperture or a closely related
quantity, the f-number. The aper-
ture of a camera lens is usually given
in terms of the f-number and pho-
tographers often refer to this quan-
tity as the f-stop. For light coming
from infinity, the f-number is given
by the focal length divided by the
diameter of the lens opening. Hence,
the smaller the f-number, the larger
the lens opening for a given lens. For
light originating closer to the lens
than infinity, the f-number is typi-
cally slightly larger for a given lens,
allowing less light through the sys-
tem. However, the effect is small
enough that it is often ignored.

A photographer's perspective

Experienced photographers know
that depth of field depends primarily
on three aspects of an imaging situa-
tion: the focal length of the lens, the
f-number being used, and the distance
from the subject to the camera (de-
noted as S in figure 2]. While many
parts of an imaging system can play
a role in determining the depth of
field, these three are all that need be
considered in most situations.

Figure 3

The depth of field depends in-
versely on the focal length of the
camera lens. If one fixes the f-num-
ber and the subject distance, it’s pos-
sible to view the effect of focal
length alone on the depth of field.
The two photographs in figure 3 il-
lustrate the dependence of depth of
field on focal length. In both cases,
the subject distance—the distance
to the card with the “M” on it—is
fixed at about 5 m, and the f-number
is 8 (this is usually written {/8). The
“N” and “F” cards are 1 m in front
of and behind the “M” card, respec-
tively. The photograph in figure 3a
was taken with a lens of focal length
of 50 mm, while the focal length of
the lens used for the photograph in
figure 3b was 135 mm. It’s obvious
that the depth of field decreased
when the focal length increased.
The image made with the 50 mm
focal length lens reflects a depth of
field of about 10 m, while the 135-
mm lens gives a depth of field of
about 1.5 m. So, to maximize depth
of field, minimize the focal length of
the lens being used.

Now let’s see what happens when
we fix the focal length and the f-
number and vary the subject dis-
tance. In figure 4a, a camera lens of
focal length 55 mm is focused at a
point about 0.5 m from the lens. The
depth of field is limited to several
centimeters. In figure 4b, the subject
distance is now several meters.

Depth of field as a function of lens focal length. The photographs were
taken with lenses of focal length of (a) 50 mm and (b) 135 mm.
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While the numbers on the meter
stick are now too small to read, not
only is the entire meter stick in fo-
cus, but the depth of field is now of
the order of several meters instead of
several centimeters. So, to maxi-
mize depth of field, maximize the
distance to the intended subject.

Finally, we'll fix the focal length
and the subject distance and vary
the f-number. Both photographs in
figure 5 were taken using a lens of
focal length of 50 mm and a subject
distance of about 2.5 m (again the
distance to the card with the “M” on
it). The photograph in figure 5a was
taken using an f-number of {/2.8,
while the photograph in figure 5b
resulted from an f-number of £/22.
Remembering that the larger the f-
number, the smaller the aperture,
it’s obvious that the smaller lens
opening leads to a greater depth of
field. The f/22 photograph has a
depth of field of about 4 m, while the
£/2.8 photograph has a depth of field
of less than 1 m. So, to maximize the
depth of field, maximize the f-num-
ber, or, equivalently, minimize the
aperture size.

An optical engineer's perspective

Having determined what we
must manipulate in order to control
the depth of field, it would be advan-
tageous to understand why these-
aspects of the imaging system affect
the depth of field as they do.




Figure 4

Depth of field as a function of subject distance. In image (a) the lens is focused at a
point about 0.5 m from the lens. In image (b), the lens is focused at about 4 meters.

The optical engineer sees the ef-
fect of the lens’ focal length on the
depth of field as a consequence of a
quantity known as the longitudinal
magnification. An imaging system
causes two types of magnification in
the image it produces. The most fa-
miliar is the lateral (or transverse)
magnification. In fact, it’s so com-
mon that if someone refers to the
magnification of an imaging system
it’s almost certain that the lateral
magnification is being discussed.
The lateral magnification is the ra-
tio of the image height to the object
height and is greater than 1 in mag-
nitude if the image is larger than the
object. This is illustrated in figure 6

a

Figure 5

(on the next page), where h is the ob-
ject height and A’ is the image
height. The lateral magnification is
then M = h’/h. Using similar tri-
angles in figure 6, we can also see
that the magnitude of M is S’/S.
The longitudinal magnification
is closely related to the lateral mag-
nification. Longitudinal magnifica-
tion relates distances along the op-
tical axis in object space to
distances along the optical axis in
image space. For example, light
originating at a distance S in front of
the lens in figure 6 is imaged at a
distance §" behind the lens. Assume
that the object is moved a small dis-
tance L closer to the lens. Then the

b

longitudinal magnification M; pro-
vides the relationship between L
and the shift in the location of the
image L'—that is, M, = L’/L. Using
a little calculus and algebra, it can
be shown that M, = M?, or

gE

M :7’)'
S2

(1)

i

The details of this derivation are
straightforward but lengthy and
can be found in introductory op-
tics texts. It’s important to re-
member that the magnitude of the
longitudinal magnification is
equal to the square of the lateral
magnification,

Depth of field as a function of aperture size (f-number). The f-numbers used in the two photo-
graphs were (a) {/2.8 and (b) f/22. (Remember, the larger the f-number, the smaller the aperture.)
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l being overwhelmed by
the minute details that
they will deal with later
in their work. Two of

Figure 6

Cross section through the center of symmetry of
an imaging system, viewed from the side. The
lens forms an image of height h’ from an object
of height h. Shifting the object a distance L
along the optical axis causes the image to shift a

distance L’ along the optical axis.

We can see the relationship be-
tween the depth of field and the lon-
gitudinal magnification in figure 6.
As before, we assume that the film
is at the plane of best focus, a dis-
tance S’ behind the lens. Light origi-
nating a distance L closer to the lens
than the original source will be im-
aged a distance L’ behind the film.
The light converging on the shifted
image point will form a circle of con-
fusion on the film plane. The greater
the value of L, the larger the corre-
sponding circle of confusion on the
film and the more easily the human
eye will be able to resolve this blur.
Since a large value of the longitudi-
nal magnification implies a large
shift of the image location L’ for a
small shift in the object location L,
it follows that a large value of M,
leads to a small depth of field. That
is, even a small shift in the object
location will cause a circle of confu-
sion on the film that will be resolv-
able by the eye.

But where does the focal length of
the lens fit into all of this? Having
established the relationship be-
tween the depth of field and the lon-
gitudinal magnification, we must
now relate the longitudinal magni-
fication and the focal length. To do
this, we use one of the simplest re-
sults from the study of imaging sys-
tems. In the early stages of the de-
sign or analysis of an optical system,
optical designers and engineers of-
ten assume that an imaging system
is perfect. This allows them to study
some of the important characteris-
tics of the optical system without
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the quantities that can
be  obtained in this
simple analysis are the
lateral and longitudinal
magnifications. Within
the “perfect imaging”
assumption a simple re-
lationship of the form

1
PR )

holds true, where f is the focal
length of the lens. The derivation of
this equation, sometimes called the
thin lens equation, can be found in
most introductory physics and op-
tics texts. Rearranging this equation
we find

S 3

which gives the magnification in
terms of the focal length and the
object distance. Using equation (1),
it follows that

S’Z fl

.M _5*_
SZ

L

(S—f)z (4)
This equation explicitly relates the
longitudinal magnification to the
focal length of the lens. We can
malke the relationship even simpler
by recognizing that in most situa-
tions S » fand ignoring f in the dif-
ference term to obtain

M, == (5)

This is an excellent approximation in
most cases. For example, for the case
of alens with a focal length f = 50 mm
imaging an object a distance S =2.5m
from the lens, the error due to the
approximation is only about 2%.
The relationship between the
longitudinal magnification and the
focal length is now clear. As one in-
creases the focal length of the lens,
the longitudinal magnification also
increases. But we have seen that as

the longitudinal magnification in-
creases, the depth of field decreases.
We have found the basis for what
the photographer observes. In order
to maximize the depth of field, one
must minimize the longitudinal
magnification, and this can be done
by minimizing the focal length.
We can also understand the de-
pendence of the depth of field on
object distance S in terms of the lon-
gitudinal magnification. From equa-
tion (5), we see that as S increases,
the longitudinal magnification de-
creases. This is consistent with the
observations of a photographer. In
order to maximize the depth of field,
one must minimize the longitudinal
magnification, and this can be done
by maximizing the object distance.
In order to understand the effect
of the f-number—that is, the size
of the camera aperture—on the
depth of field, we can’t use equa-
tions (1) through (5, because equa-
tion (2) deals only with the loca-
tions of components in the
imaging system along the optical
axis. Characteristics of the imag-
ing system that are off the optical
axis, such as aperture size, are not
described within the assumptions
that lead to equation (2). However,
the relationship between aperture
size and depth of field is easily
described in terms of the circle of

a i
o
b :
: >
: o>
: film plane
Figure 7

Depth of field as a function of aper-
ture size (revisited). The angle
subtended by the cone of light
converging to form an image is
controlled by the aperture size.



confusion. In figure 7a, light from
across the entire lens is brought to
a focus on the film. In three di-
mensions, this means that a cone
of light that subtends a large angle
8 converges on the film plane.
This imaging situation provides
abundant light to the film by col-
lecting light over a large cone and
focusing it to a single point on the
film. However, this situation also
leads to a cone of light that rapidly
diverges as one moves in front of
or behind the plane of best focus.
The diameter of the circle of con-
fusion increases rapidly along the
optical axis. Light from subjects
only slightly closer to, or farther
from, the lens is focused at such a
large angle that the circle of con-
fusion is resolvable by the eye for
subjects near the object that is in
best focus. The depth of field can
be increased by decreasing the size
of the cone over which light is col-
lected. This is done by decreasing
the size of the aperture while leav-
ing all other variables fixed. Figure
7b shows that for a small aperture
the size of the circle of confusion
increases very slowly along the op-
tical axis. This leads to a large
depth of field. In order to maxi-
mize the depth of field, one must
minimize the rate at which the
circle of confusion increases in
size. This is done by minimizing
the aperture size (maximizing the
f-number), just as a photographer
would suggest.

It should be noted that while fo-
cal length, object distance, and f-
number are the most important
quantities in determining the depth
of field, other characteristics of an
imaging system can also contribute.
An example is the quality of the
lens design and the accuracy with
which that design is executed. How-
ever, these “higher order” effects
can reasonably be ignored when dis-
cussing consumer cameras and
similar systems.

Using tiepth of field

When one understands both
what affects depth of field and
why it does, it is possible to use

depth of field to
create intrigu-
ing photo-
graphs.  The
ability to con-
trol the depth
of field leads to
an ability to
produce a vari-
ety of special
effects. T have
had some suc-
cess in using
depth of field to
create interest-
ing images. Fig-
ure 8 is an ex-
ample of using
a very shallow
depth of field in
order to empha-
size an object
that occupies
little of the
photograph. All
of the grass and
weeds in the
background
blend together
and the clearly
focused flower
seems to jump
out of the im-
age. Figure 9 is
a photograph of
a stack of 3-
inch  plastic
pipe taken from
the end of the
stack. During shipping, two of the
pipes had shifted so that they were
extending beyond the plane of
most of the pipe ends. One pipe
was about 20 cm beyond the other
pieces and another extended about
60 cm. The two pipes appear in-
creasingly blurry as their ends ex-
tend farther from the plane of best
focus. Let’s refer back to figure 1.
It builds on the effects seen in fig-
ure 9, with a second stack of pipe
visible. I took the photograph in
figure 1 while standing about
0.5 m from the ends of a stack of
pipe. The camera was focused on
the pipe ends visible through the
nearer pipe. The clearly focused
pipes are about 5 m from the cam-

Figure 8

Shallow depth of field. As a result, only the flower
appears in focus.

Figure 9

Objects lying off the plane of best focus. The two pipes that
extend beyond the others are out of focus.

era so that the nearer pipe ends are
horribly out of focus.

It’s fascinating that the com-
plex phenomenon of depth of field
is described in relatively simple
terms using basic theory and
mathematics. With an under-
standing of depth of field, it’s pos-
sible to view photographs and
other images with a critical eye,
aware that special effects aren’t
limited to the movies. (@]

Mark L. Biermann has recently taken a
position as assistant professor of phys-
ics at Buena Vista University in Storm
Lake, lowa. At the time of writing this
article, he was an assistant professor of
physics at Whitworth College in Spo-
kane, Washington.
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KALEIDOS

All hent out

“The force of any spring is proportion&l 1

F COURSE, ROBERT HOOKE
was talking about one of the
most obvious kinds of defor-
mation—elastic deformation.
But from our earliest school days
we’ve heard about other kinds of de-
formation that play very important
roles. Think back on those prob-
lems of elastic and inelastic colli-
sions, bodies in equilibrium,
changes in shape and volume, me-
chanical oscillations . . . The list
goes on and on, and an understand-
ing of deformation as it relates to
the properties of physical bodies is
so important for science and tech-
nology that we can say without ex-
aggeration that the study of these
properties is one of the most impor-
tant tasks of modern physics.
When we study physics in high
school we find that we need to un-
derstand deformation in many dif-
ferent areas. In mechanics and ther-
modynamics it’s taught from a
macroscopic viewpoint; when the
discussion turns to explaining
atomic and molecular interactions,
it's presented on the basis of mo-
lecular kinetics; and when we poke
into the nature of elastic forces, we
find ourselves using electromag-
netic theory. The occurrences of this
notion in the world around us are
indeed kaleidoscopic.

Questions and problems

1. When is a rope stressed more—
when you pull it by its ends in dif-
ferent directions or if you pull it
with both hands after attaching it to
a wall? In both cases each hand de-
velops the same amount of force.
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2. A heavy cylinder falls freely.
What forces act on each horizontal
layer from the adjacent ones?

3. Two forces F, and F, are
brought to bear on a board resting on
supports (fig. 1). Will the board sag
differently if the two forces are re-
placed by a single force F = F, + F,?

Figure 1

4. Tron and copper wires of the
same size are suspended vertically,
their bottom ends connected by a
massless horizontal bar. Will the bar
remain horizontal if a mass is at-
tached to its midpoint?

5. How do the relative elonga-
tions of two wires with equal
masses attached and made of the
same material differ if the length
and diameter of the first are twice
those of the second? What about
their absolute elongations?

6. In the manufacture of wire a
metal rod is pulled through a set of
openings that continually decrease
in diameter. What kinds of deforma-
tion take place during this process?

7. Why do spring dynamometers
have limiters that restrict the elon-
gation of the springs?

8. Why do fishing rods have long,
flexible ends?

9. Why does a bullet merely
punch two small holes in a soft plas-
tic cup of water, but smashes a glass

cup to bits?

10. The ends of two weightless
spiral springs of different lengths are
connected as shown in figure 2. If
one were to graph the stretching
force F versus the displacement x of
the point where the force is applied,
what shape would it take?

Figure 2

11. How does the period of verti-
cal oscillation change for a load sus-
pended from two identical springs if
a connection in series is replaced by
a connection in parallel?

12. A body A is suspended by a
thread. Another body B is attached
by a spring to A. Then the thread is
burned. Will the accelerations of the
falling bodies be the same?

13. Why can a quartz rod undergo
drastic cooling without shattering?

14.1t takes a lot of effort to tear off
a piece of wire, but a red-hot wire can
be broken much more easily. Why?

15. How does the stress in a rod
change if you heat it without allow-
ing it to expand?

16. How does a body’s energy
change during elastic deformation?

17. A compressed steel spring has
a potential energy. What happens to
this energy when the spring is dis-
solved in an acid?

18. Which of two massless
springs with the same dimensions,

J
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DSCOPE

1t of Shape

8/ to its elongation . . ."—Robert Hooke

<|

one copper and one steel, acquires
more potential energy under identi-
cal loads?

Microexperiment

Take a rubber tube and slide a
metal ring onto it such that the ring
stays put when you hold the tube
vertically. Now stretch the rubber
tube.. What happens to the ring, and
why?

It’s interesting that . . .
... the scientific interests of Rob-
ert Hooke were so wide-ranging that

An early form of the balance spring of
a watch. One historian of science
called it the “most important single
improvement ever applied to portable
timekeepers,” and it serves as an
example of the disputes engendered
by Hooke’s working methods. Abbott
Payson Usher writes: “The invention
of the balance spring has been
claimed by Huygens, Hautefeuille,
and Hooke. But though Hooke’s work
may not have been known on the
continent, owing to the secrecy with
which he invested his experiments,
there is little doubt of the priority of
his work.” (From A History of Me-
chanical Inventions, New York:
Dover, 1988)

he often had no time to bring his
research to a conclusion. This gave
rise to acrimonious disputes with
such authorities as Newton,
Huygens, and others concerning the
priority of their discoveries. How-
ever, “Hooke’s law” was so convinc-
ingly validated by many experi-
ments that Hooke’s priority in this
matter was never doubted.

... at the beginning of 18th cen-
tury mining accidents due to broken
elevator chains became more fre-
quent. Many scholars, including the
famous Gottfried Wilhelm Leibniz,
tried to improve the iron chains, but
without success. It was a senior
mining adviser, W. Albert (a lawyer
by training), who thought of replac-
ing the chains with wire ropes or
cables. This made it possible to ex-
ploit one of the most important
properties of iron—its high tensile
strength.

.. . the English physicist and en-
gineer O. Reynolds was the first to
explain why wet sand lightens in
color when you walk on it. In 1885
he showed that the volume occupied
by the grains of sand increased due
to shear deformation, causing the
upper layer of sand to rise above the
water level temporarily.

. .. the individual crystals of a
number of metals grown from a
melt are so soft they can easily be
bent by your fingers. But you can’t
unbend them! This is an example of
the wonderful property of pliable
deformable bodies to harden.

... an explanation for plastic defor-
mation didn’t come until the 20th
century, when physicists discovered

“dislocations”’—that is, defects in a
solid body’s crystal lattice. From the
modern point of view, this kind of
deformation is the “movement of dis-
order” within a crystal.

... nowadays superelastic alloys
are available that behave like rubber
and are able to endure huge elastic
deformations—two orders of magni-
tude greater than ordinary metals.
On the other hand, many kinds of
alloys can be brought to a super-
elastic state, when they flow under
very low pressure like heated glass.

... it’s possible to combine oppo-
site mechanical properties in “com-
posites”—compound materials that
include a light pliable base and a fiber
filling made of a very strong material.

... one can measure deformations
that are less than an atomic diam-
eter—provided they’re oscillatory and
thus can easily be transformed into
electric signals. By the way, the hu-
man ear can also “measure” similarly
small deformation of the eardrum.

... the deformation of quartz and
some other dielectrics results in the
appearance of an electric charge on
their surfaces. And the polarization
of dielectrics in an electric field can
produce a deformation. These phe-
nomena are known as direct and in-
verse piezoelectric effects.

. . when lead is bombarded by
neutrons for a long time, it rear-
ranges itself internally and becomes
so elastic that a bell made of it might
chime as resonantly as bells cast
from the best bronze.

ANSWERS, HINTS & SOLUTIONS
ON PAGE 59
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Winner of

For QOutstanding Fulfillment
of its Editorial Mission

Quantum received an award for
editorial excellence from Folio: The
Magazine of Magazine Management
(published by Cowles Business
Media). The award was based on
Quantum’s fulfillment of its editorial
mission.

Wission Statement

Quantum is a magazine of math and
science for anyone who wants more
than a textbook treatment of these
subjects. Quantum articles are not
written like articles in scientific
journals; by engaging the readers
(rather than dictating to them), they
lead the reader to work out problems
on the side. Some articles are elegant
expositions of sophisticated concepts, and some give
an unexpected twist to a well-known idea or phe-
nomenon; others show that there is no such thing as
a silly question. In addition to its feature articles,
Quantum introduces “fun” to the sometimes mun-
dane worlds of science and math, with departments
like “Brainteasers” (fun problems requiring a mini-
mum of math background), “Looking Back” (bio-
graphical and historical pieces), and “Gallery Q” (an
exploration of links between art and science), among
others.

A large part of the reader involvement comes from
the beautiful illustrations that accompany the
articles; the presence of high-quality art in Quantum
is an outgrowth of the belief that a good science and
math magazine should nourish the complete person;
that good art will train the visual imagination, which
is important in these disciplines; and that if Quan-
tum art helped students become comfortable with
(and even welcome) confusion and learn to “question
their way out of it,” such a habit of inquiry might
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carry over into their reading of
scientific and mathematical texts.

The article “Follow the Bouncing
Buckyball” by Sergey Tikhodeyev
(p. 8) describes and explains how
the atomic structure of carbon
lends itself to the formation of
polyhedrons known as “bucky-
balls.”

 Engaging the reader. The article
“Six Challenging Dissection
Tasks” by Martin Gardner (p. 26)
gives readers the chance to
formulate proofs using what they
already know about the properties of geometry,
combined with new twists from the man who for
many years wrote the “Mathematical Diversions”
column in Scientific American.

Fun. The department Quantum Smiles offers “A
Mathematical Handbook with No Figures,” by
Yuly Danilov (p. 42). After being introduced to a
charming problem book filled with amusing
mathematical abstractions, readers are given a
sampling to try on their own.

High-quality art. Throughout the issue, most
articles are accompanied by sophisticated illustra-
tions that serve to complement, represent, and
transcend the text.

To order, call

1-800-SPRINGER




HOW DO YOU
FIGURE?

Ghallenges in physics and math

Math
M151

Successive felicity. A positive inte-
ger will be said to be felicitous if one
can choose a number of digits from
its decimal notation such that their
sum equals the sum of all the re-
maining digits. (a) Find the smallest
felicitous number a followed by a
felicitous number. (b) Are three suc-
cessive felicitous numbers possible?
(N. Zilberberg)

M152

Concurrent perpendiculars. A point P
is marked in a square A;A,A,A, and
joined to its vertices. Prove that the
perpendiculars dropped from A, , on
line PA,i=1,2, 3, 4 (of course, A,
here should be read as A,) all meet at
the same point. (A. Vilenkin)

M153

Equispaced roots. Under what con-
dition on the coefficients of a cubic
equation x3 + ax? + bx + ¢ = 0 do its
three roots form an arithmetic se-
quence? (M. Bezborodnikov)

M154

Down with twos! Written around a
circle are n numbers, each equal to
0, 1, or 2. They are simultaneously
put through the following transfor-
mation: all twos are replaced by ze-
ros and then all the numbers next to
them clockwise are increased by
one. Initially there are k > 1 twos. (a)
How many such transformations
are sufficient to eliminate all twos?

(b) Suppose in addition that there
were no zeros initially. Prove that
there will be k ones and n — k zeros in
the end. (N. Alexandru [Romanial)

M155

Mathematics of floating timber. On
a bank of a rectilinear river a num-
ber of logs lie, each of them making
an angle less than 45° with the bank
edge. (The logs are disjoint seg-
ments.) Prove that one of the logs
can unobstructedly be rolled into
the river in a direction perpendicu-
lar to itself (see figure 1) without
changing this direction. (V. Ilyichev)

Figure 1

Physics

Sheltered gun. A howitzer fires from
under a deep shelter inclined at an
angle o with the horizontal (fig. 2).

Figure 2

The gun is placed at a point A located
a distance I from the base of the shel-
ter (point B). The initial velocity of
the shell is v,. Assuming that the
shell’s trajectory lies in the plane of
the figure, find the maximum
distance it will travel. (S. Krotov)

P152

Atomic battery. One element of an
atomic battery is a capacitor with
one plate covered with radioactive
material that emits alpha rays with
aspeed of vy =2.2-10° m/s. Find the
emf of this element. The ratio of the
electric charge of an alpha particle
to its mass is k = 4.8 - 107 C/kg.
(A. Grigorenko)

P153

Water under a piston. There is a
small amount of water in a nipple at
the bottom of a cylinder closed with
a flat piston of diameter D = 5 cm
(see figure 3). The diameter of the

A

Figure 3

nipple is d = 2 mm. When the piston
is lowered at a constant temperature
by H = 10 cm, the water in the nipple
rises by h = 1 mm. Find the saturated
vapor pressure at a temperature of
20°C. (V. Belonuchkin)

CONTINUED ON PAGE 41
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PHYSICS
CONTEST

Snlit image

“‘All these years, your left hand, modest
but sinister accompanist,
has seen itself in the mirror
grown stronger.”

—Al Zolynas, “Dream of the Split Man”

by Arthur Eisenkraft and Larry D. Kirkpatrick

T SPECIAL MOMENTS WE'RE

able to bring all of our attention

to bear on a single item. We fo-

cus our minds, our gaze, and
our efforts. Similarly, wouldn’t it be
interesting to take the light imping-
ing on a surface and focus it to a
point? Using the properties of trans-
parent materials and our knowledge
of Snell’s law and geometry, we can
construct an object for this pur-
pose—a lens. A convex lens bends
all rays of light parallel to the prin-
cipal axis (the axis of symmetry of
the lens) in such a way that they
converge at a single point referred to
as the focus (fig. 1).

The lens also takes the light
emerging from one point and fo-
cuses that light to a point on the
other side of the lens. This works
whether the light source is on the
principal axis (fig. 2) or off axis
(fig. 3). This then provides the sur-
prising and technologically vital
property of image formation in
lenses. All slide projectors, cameras,
copy machines, microscopes, and
binoculars are dependent on a lens
being able to produce images.

In forming a real image, all light
leaving points of the object and pass-
ing through the lens come together
on the far side of the lens (fig. 4).
Snell’s law (n, sin 8, = n, sin 6,) can
be applied to each ray to determine
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Figure 1

Figure 2

D&ﬂ\

Figure 3

T&&\

Figure 4

its direction upon leaving the lens.
The intersection of any two of the
rays determines the location of the
image. However, it's much easier to
use “special rays” that are easy to
draw. In such a ray diagram, a ray of
light leaving the “top” of the object

parallel to the principal axis must x

. C
pass through the focal point. A ray
through the center of the lens is
undeflected. This ray is, in essence,
traveling through two parallel sides
of a piece of glass. The intersection 2
of these two rays gives the location <
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Figure 5

of the “top” of the image. Ray dia-
grams are quite an asset in deter-
mining the image’s location and size
(fig. 5).

Beware of the misconceptions
that befall those students who begin
to believe that this helpful ray dia-
gram describes how the light actu-
ally behaves. The ray diagram is a
map—it shouldn’t be mistaken for
the landscape. Those who place all
their trust in a ray diagram may be-
gin to believe that if part of the lens
is removed, part of the image is also
removed. Do our Quantum readers
understand how the image changes
if the top half of the lens is covered?

Those who focus only on the ray
diagram may forget that the light
diverges after passing through the
image location, and may never dis-
cover other interesting optical phe-
nomena. The tool of ray diagrams
should not limit your understanding
nor your curiosity.

This month’s contest problem
provides you with a broken lens and
asks for a description of the result-
ing light pattern. It was first given at
the 1972 International Physics
Olympiad in Bucharest, Romania.

A. A lens of focal length f is cut
into two parts perpendicular to its
plane. The half-lenses are moved
apart by a small distance 8 (fig. 6—
the gap is exaggerated due to typo-
graphic considerations). How many
interference fringes appear on a
screen at a distance L from the lens
if a monochromatic light source
(wavelength A) is placed at a distance

2

o

)

——

d (d > f) on the other side?
B.Iff=10cm,d=20cm, §=0.1
c¢m, A =500 nm, and L = 50 c¢m, cal-
culate the number of fringes.
Please send your solutions to
Quantum, 1840 Wilson Boulevard,
Arlington VA 22201-3000 within a
month of receipt of this issue. The
best solutions will be noted in this
space and their authors will receive
special certificates from Quantum.

Weighing an astronaut

The problem in the March/April
issue asked you to “weigh” an astro-
naut given calibration data from the
Body Mass Measuring Device
(BMMD). This problem was given as
a class assignment by Art Hovey at
Amity Regional High School in
Woodbridge, Connecticut, and by
your author (LDK) to sophomores at
Montana State University. The best
solutions at ARHS were submitted by
Kurt Rohloff and Lori Sonderegger,
and the best one at MSU was written
by Dave Peters.

T2/4n2 (s2)
A
0.12 +

0.10

0.08 ~

0.06

A. The equation for the period T
of the simple harmonic motion of a
mass m on a spring is given by

T=2m |2,
k

where k is the spring constant. In
our case, the total mass m is the
sum of the mass of the chairm_and
the mass of the astronaut m,. Squar-
ing both sides and solving for T, we
obtain

This is of the form y = ax + b. There-
fore, if we plot a graph of T?/4r2 ver-
sus the mass used in the calibra-
tion of the BMMD, we should
obtain a straight line with a slope
of 1/k and a y-intercept of m_/k
(fig. 7). This allows us to obtain
the numerical values k = 748 N/m
and m_=15.4 kg.

B. We can now use these values
and the numerical data for astronaut
Garriott to discover that he lost
2.3 kg of mass during 58 days in
space.

C. The third part of this problem
asked you to calculate the reading
on the scale as a person rides down

} p g ; ; ; —
< > 10 20 30 40 50 60 70 m (kg
Figure 6 Figure 7
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Figure 8

an incline as shown in figure 8
(which was figure 1 in the March/
April contest problem). We begin by
calculating the acceleration of the
entire system (skateboard, scale, and
person) down the incline. Because
the component of the force of grav-
ity down the incline is m g sin 6, the
acceleration of the system down the
incline is g sin 6. This is also the ac-
celeration of the person, which al-
lows us to use Newton’s second law
to find the forces acting on the per-
son. Assuming that the scale reads
the force applied normal to its sur-
face, let’s look at the vertical forces
acting on the person. The force of
gravity mg acts downward and the
force of the scale F_ acts upward.
Therefore, the difference in these
two forces must yield the mass
times the vertical component of the
acceleration:

mg - F = (mg sin 6) sin 6,
or

F,=mg (1 - sin® 6)
= mg cos? 8
= (588 N cos? 8.

This is the standard solution given
by the top students on the prelimi-
nary exam to select the 1995 US
Physics Team that competes in the
International Physics Olympiad and
the one expected in textbooks. How-
ever, there is a problem—the person
will have a very difficult time stand-
ing vertically on the scale. This diffi-
culty was pointed out by Dr. Albert
A. Bartlett, professor emeritus at the
University of Colorado and a past
president of the American Associa-
tion of Physics Teachers. Please refer
to his follow-up article on page 49 for
a more complete explanation.

Call for
manuscripts

NINETEEN NINETY-sIX marks the 25th anniversary of The
Club of Rome’s study The Limits to Growth. To provide
its young readers with both information and current
perspectives on this study, Quantum invites the
submission of papers for a special issue on The Limits to
Growth and its 1992 sequel, Beyond the Limits.

Several authors have already expressed an interest
in writing for such a special issue. Victor Gorshkov of
the St. Petersburg Nuclear Physics Institute will
prepare a paper that presents ideas from his recent
book Physical and Biological Bases of Life Stability
(Springer, 1995). Kurt Kreith will show how a
spreadsheet investigation from “Look, Ma—No
Calculus!” (Quantum, November/December 1994)
illustrates “the four generic ways in which a
population can approach its carrying capacity.”

We seek additional papers that analyze this study and
its implications from a variety of points of view. Such
papers might address the changes (and growth!) that
have occurred since the publication of The Limits to
Growth. They might also address the advances in
computer technology that make such models (“state of
the art” in 1970) accessible via desktop computers
available at most American high schools and in many
secondary schools around the world. Or they might
review both the study and its critics, shedding light on
the ways in which science and public opinion interact in
the search for solutions to the environmental challenges
confronting the current generation of students.

Prospective authors are invited to send a query to
Managing Editor
Quantum

1840 Wilson Boulevard
Arlington VA 22201-3000

Fax: 703 522-6091

E-mail: quantum@nsta.org
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INVESTIGATIONS

Prolilems heget problems

“We shall have to evolve
Problem solvers galore—
Since each problem they solve
Creates ten problems more.”

—Piet Hein

by George Berzsenyi

SISTART PREPARING THESE
columns, time and again I plan
to comment on the reactions of
my readers to previous columns,
but time and again I fail to do so.

Clearly, such concerns are of little
importance—hence the present de-
parture from practice. In like man-
ner, I will also start my future col-
umns by first reporting on the

I hereby apologize for these short-
comings, which are partially due to
my desire to limit the columns to
one page and thereby simplify my
life and that of the managing editor.

IN THE MARCH/APRIL 1995 1ssUE of Quantum, George

: . . =7: 11,2,3,5,9, 14,19
Berzsenyi recalled a puzzle he first posed in 1980. z g {{1 235015 20} 25]
He considered sets of n positive integers whose oy s e s he
A _ n-9 1(1,2,3,5,9, 16, 25,30, 35)
pairwise sums never match. That is, p, + p, #p, +p; n=10: 12,8, 11, 14,22, 27, 42, 44, 46)
for distinct 1, j, k, and I. Powers of 2 form such sets: ol {1' 2’ 6, 10’ 18, 32/ 34’ 45/ 52’ 55, 58]
{20, gL o 22-1.Sodoff,, ..., f,, ), wheref, are the 010 {1: 2: 3: 8, '13’ ’23, ’38, '41, ’55’ /64, ,68, 7]
Fibonacci numbers: f, = fy=1and fi=f,_y+fi_o 513 1,212, 18,22, 35, 43, 58, 61, 73, 80, 85, 87)
fori>2. Aunique and “minimal” choice among all - 14: (12,7, 15,28, 45,55, 67, 70, 86, 95, 102, 104, 106|

such n-element sets is obtained as follows. Choose

those with the minimum value of p,. From this
selection, choose those with minimum p_ . Con-
tinue this process. For n < 7, but not otherwise, the
Fibonacci sequences are minimal.

Let P(n) be the value of p, for the minimal n-ele-
ment set. Berzsenyi examined the case of n =12, for
which he proved 57 < P(12) < 74. His lower bound
was obtained analytically; his upper bound from a
student’s example. Readers were challenged to “nar-
row the gap.” For starters, our computer found the
following minimal sets for 7 <n < 14:

Thus, P(12) = 72, and we have met Berzsenyi’s chal-
lenge!

Here’s a related puzzle. As before, let {g/} be a set
of n “matchless” positive integers. Suppose they
satisfy the additional constraint that no g is the av-
erage of any two others. Denote the value of g, for
such a minimal n-element set by Q(n). Clearly,
Q(n) = P(n). Some minimal sets of this kind are
given below:

n=3 11,24}

40
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comments received on previous col-
umns.

Several readers found a couple of
mistakes in one of the examples
given in my “Distinct Sums of Two-
somes” (March/April 1995). One of
these was pointed out by an anony-
mous reader from Arizona on a
beautiful postcard showing the
Saguaro National Monument. Com-
puter solutions for n < 12 were pro-
vided by Curtis Cooper and his best
student, Chris Campbell (Central
Missouri State University in
Warrensburg), James Cortese
(Champaign, Illinois), Kang Su
Gatlin and Ted Carlson (students at
the University of San Diego, Depart-
ment of Computer Science), David
Reynolds (Beaverton , Oregon),
Geary Younce (Fairfax, Virginial,
and my most frequent correspon-
dent, Brian Platt (Woods Cross,
Utah). In particular, they all proved
that for n = 12, the best possible
value fora, is 72, and that there are
four such sequences. Most of them
also sent me a copy of the computer
programs that generated their re-
sults. Their responses were most
appreciated.

We were also happy to receive a
letter from Sheldon Glashow and

Eric Carlson (Harvard University)
addressing this problem and posing
arelated one, which I hereby offer as
our new challenge. Their letter is
reproduced below. Since Glashow (a
Nobel laureate in physics| is one of
the founding editors of Quantum,
and since Carlson {also a physicist)
was one of the most outstanding and
enthusiastic participants in the
competition I conducted through
The Mathematics Student’s “Com-
petition Corner” in 1978-1981, [ was
particularly pleased with their inter-
est in this problem.

“HOW DO YOU FIGURE!?”
CONTINUED FROM PAGE 35

P154

Cylinders, charges, and magnetic
fields. Two long, thin-walled, non-
conducting cylinders can rotate
freely about a common axis as
shown in figure 4. The radius of

Figure 4

the large cylinder is twice that of
the small one. The cylinders have
equal surface charge densities.
The outer cylinder is set in motion
with an angular velocity . In
what direction and with what
velocity will the other cylinder ro-
tate? (V. Mikhaylov)

P155

Such a strange lens. A cylinder of ra-
dius R = 5 cm is composed of two
identical semicylinders made of
glass with a refractive index n = 2.
The semicylinders touch along their
plane surfaces. Without separating
these surfaces from one another,
one semicylinder is rotated such
that the angle between the axes of
the semicylinders is 90°. A pencil
beam of light is directed onto the
convex surface of one of the
semicylinders so that it is perpen-
dicular to the plane surfaces and
passes through the intersection of
the two axes. What does the emerg-
ing beam look like? By what factor
will its cross-sectional area increase
at a distance L = 1 m from the opti-
cal system? (A. Zilberman)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 56

n=4:
n=>5;:
n=~6:

This problem, like its predecessor, can be attacked
by computer, but that’s not much fun. Let’s turn
to more general considerations.

The reader should be able to prove that P(n + 1)
> P(n) + 1 for all n > 2. More interestingly,
Berzsenyi’s arguments lead to quadratic lower
bounds on both P(n) and Q(n):

2 _ 2 _
mm>£?”4,Q@pn2H.

What about upper bounds on P(n) and Q(n)?
Surprisingly, the upper bounds are quadratic in n
as well. The proof is somewhat technical. Let p be
the smallest prime number greater than n. Number
theorists have shown that there is an integer x such

that the smallest solution to x™ =1 (mod p) is m =
p - L. (For example, if p = 7, we have 3°= 1 (mod 7)).
A set of n positive integers may be defined in terms
of x and p:

q;=[pi+(p-1)x] {mod p(p - 1)
fori=1, ..., n. We have shown that the set {g } sat-

isfies the criterion of the second problem. T hat is,
it g, +q =q,+q,theni=kandj=1I(ori=1and
j = k). Furthermore, 1 < g, < p(p - 1). In particular,
we find that Q(n) < n{n + 1) for n one less than a
prime. There is always at least one prime between
n and 2n, and large primes are more closely spaced.
Consequently, our result yields a quadratic upper
bound on Q(n) for all n. Roughly speaking, and for
large n, Q(n) and P(n) must lie between n?/2 and n2.
Refinements of these bounds would be welcome.
—FEric D. Carlson,

Sheldon L. Glashow

(Harvard University)

QUANTUM/MATH INVESTIGATIONS
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IN THE LAB

A tell-tale tril and a chemical clock

Two simple experiments with alternating current

VERYBODY KNOWS THAT

alternating current (AC) peri-

odically changes its direction

and amplitude. Do you want to
see with your own eyes that it in-
deed “changes direction”? It’s not
only possible, it’s actually quite
easy to do.

Seeing the current alierriate

Set up the apparatus shown sche-
matically in figure 1. Using ordi-
nary thumbtacks attach a piece
of aluminum foil to a wooden
board or piece of plywood. Sol-
der an insulated copper wire to
one of the tacks.
Using plastic
or wooden
clothespins
attach an- 7
other simi-
lar wire to the iron
spike of an awl. Con-
nect both wires

to the termi- 4
nals of the ”'CGC
secondary

winding of a step-down
transformer (110 to 6-10 V).
Don'’t even think of connecting
the apparatus directly to an elec-
trical outlet—you’ll get a
short circuit, and then
where will you be? In
trouble, that’s where.
Take a strip of filter
paper (if unavailable,
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[

by N. Paravyan

use a strip of newspaper|, moisten it
with a 10% solution of ammonium
chloride containing also 0.3 g of
thiocyanate or potassium ferrocya-
nide, and place this paper on the foil.
Now switch on the alternating cur-
rent (through the transformer,
please!) and quickly run the awl

along the strip of paper (don’t press
too hard). A broken colored line will
appear on the paper: magenta for
thiocyanate or blue for potassium
ferrocyanide. Why is it broken?
The solution used to moisten the
paper contains ions—mostly NH,*
and CI~. When the current is turned
on, the awl becomes an anode for one
semiperiod, resulting in a discharge of
chloride ions: 2Cl- - 2e — Cl,. The
chlorine immediately combines with
iron to produce ferric chloride:
2Fe + 3Cl, — 2FeCl,. The fer-
ric chloride in turn reacts
with the thiocyanate
or potassium fer-
rocyanide to
produce the

S

S magenta or

s blue sub-
stance.

When current
flows in the reverse
direction, the alu-
minum foil be-

' Y comes the an-
' 3 ode, where
TN colorless alu-
minum chlo-

ride is formed: 2Al + 3Cl, — 2AICL,,
which doesn’t produce colored agents
upon reacting with the ions in the
solution. So there will be a
“gpace” in our line.
Then the direction of
the current changes
and the iron spike

L 3
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becomes an anode again, resulting in
a colored segment on the paper, and
so on. These are the processes that
“draw” the broken line with regular
alternating dashes and spaces.

An electolytic timepiece

There are many and various
“watches” made by nature itself—
geological, biological, and chemical.
One can also make an electrolytic
watch. Here’s how.

Take a small jar—a rectilinear flat
cuvette will be most suitable (fig. 2).
Pour a saturated solution of table
salt into the cuvette up to 2/3 its
height. Cut two electrodes from a
steel can (don’t use an aluminum
can!) so that they’re almost the same
height as the cuvette. Solder insu-
lated copper wires to each electrode.
Tape each electrode to a wooden rod
and lower the electrodes into the
solution. Connect one electrode to
the terminal of a step-down trans-
former. Connect the other wire to
the terminal of an AC ammeter
rated at 5 A, connect its second ter-
minal to the free terminal of the
transformer.

Now our apparatus consists of a
source of alternating current, a cu-
vette with sodium chloride electro-
lyte, two immersed electrodes, and
an ammeter—all of them connected
in series. Turn the power on and pay
close attention to what’s going on in
the cuvette. Note the ammeter
readings.

awl

wooden
support

aluminum
paper foil

Figure 1

You'll see that the current gradu-
ally increases, and the solution be-
gins to boil near the electrodes—in
fact, quite a bit of steam is produced.
After a while the boiling becomes
very intense, the current reaches a
maximum—and suddenly drops to
almost zero. At the same moment
the boiling stops. Then the current
begins to increase again, the boiling
becomes more and more intense and
turbulent—and the process stops
again. This will keep happening un-
til the current is turned off. So, the
apparatus is a true electrolytic time-
piece. How can we explain this pe-
riodic boiling and simultaneous pe-
riodic change in the electric current?

The sodium chloride solution has
a large resistance and so it becomes
heated when the current passes
through it. The temperature gets so
high that the electrolyte boils. Be-
cause of the increasing number of
gas bubbles, after a certain amount
of time the electrodes are practically
completely insulated from the solu-
tion (steam is a dielectric). Then the
circuit is broken, the boiling stops—
and the electrodes again make con-
tact with the solution. Then every-
thing repeats again . . . and again . ..

And why do the readings on the
ammeter increase? The heating of
the solution causes a drop in its re-
sistance, and according to Ohm's
law the electric current in the cir-
cuit increases.

Now continue with the experi-
ment. Turn the transformer off,
leave only one steel electrode in the
cuvette, and take away the other.
Connect a very thin bare copper or
a steel wire 0.5 mm (or less) in di-
ameter to the transformer’s termi-
nal in place of the electrode you re-
moved. Wrap the wire with
insulating tape and, holding it by
the tape, turn the transformer on.
Touch the surface of the electrolyte
with the free tip of the wire and
gradually immerse it to a depth of
about one centimeter.

What occurs in the electrolyte
isn’t just boiling—the process is ac-
companied by the glowing of the
red-hot tip of the wire, with spec-
tacular bursts of yellow flame and a

electrodes

cuvette with
electrolyte solution

Figure 2

periodic sharp cracking sound. All of
this can be easily explained.

First, the wire becomes red-hot
due to its small diameter. However,
the periodicity of the heating can’t be
seen by the naked eye because the
interruptions in the current are too
rapid. Second, in our system com-
posed of one very large and one very
small electrode, current rectification
occurs (one-way conductivity). This
leads to electrolysis of the table salt.
In the process, hydrogen is produced
at the small electrode (wire), which
then mixes with very small drops of
sodium chloride solution and ex-
plodes with a yellow flame and a
cracking sound. In addition, at high
temperatures water vapor decom-
poses at the surface of the red-hot
wire: 2H,0 — 2H, + O,. The result-
ing mixture of hydrogen and oxygen
also flares at the tiniest spark—or
rather, it explodes with a loud report.

Can any of these effects be ob-
served if we used DC rather than AC?
Using a rectifier for the 6-10 V output
voltage, you can create all of these
effects even more spectacularly, be-
cause an additional process occurs in
parallel with the ones described—the
electrolysis of the aqueous solution of
sodium chloride.

One final note. If you don’t have
an AC ammeter, it doesn’t matter.
In its place you can use a light bulb
rated for 6-10 V and 5-10 W. The
effect you produce will be no less
spectacular. Q)
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ﬂTHE FACTORY DIGITAL T-SHIRTS

Full Color Image
Photographic Quality
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1 Shirt $14.95
Order Both Shirts For Only $25.95
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Send Check or Money Order To:
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‘ Attention Students and Teachers!

* Are you or is someone you know considering a career in
engineering or technology?

» Would you like to check your potential for succeeding in
engineering school before you apply to college?

If so, take the
National Engineering Aptitude Search+!

The NEAS+ is an academic survey package that helps high school
students determine their strengths and weaknesses in “engineerin,
basic skills” subjects-mathematics reasoning, science reading an
reasoning, and practical understanding.

The NEAS+ is a self-assessment package-you take the test, you check
it, and you review your work, either alone or with a teacher, mentor
or tutor. The NEAS+ package includes a student information “guide”
ablou_t engineering, the survey components, answers and explanatory
solutions.

To order, send $17.25 (check or money order) to:

, Inc.
1420 King Street, Suite 405
Alexandria, VA 22314-27%4

Quantity discounts available to high schools, colleges, and other
groups. Call JETS at (703) 548-5387 for more information.

NEAS+- helping high school students make
informed decisions about their futures.
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Junior Engineering Technical Society (JETS)
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A CRASHCOURSE IN STATISTICS

An Innovative Book/Multimedia Approach to Collecting, Organizing,
and Analyzing Data

A CrashCourse in Statistics is different from other books
on the subject. The accompanying Windows multimedia
CD-ROM is actually a statistics “lab” offering hands-on
experiments, examples, and simulations using video,
#4 sound, and animations. This marriage of CD-ROM multi-
media and traditional print media is an exciting new
educational format!

Students are introduced to the fundamentals using real-
world examples and plain-English explanations. A
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is the only prerequisite. This course covers:
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» frequency distributions
+ elementary probability

+ normal distribution

+ confidence intervals

* sampling

* graphs

* regression analysis

and more!

About the Author

Educated at the University of the State of New York and The George Washington
University, Joseph J. Carr is currently a systems engineer working in the fields of
radar engineering and avionics architecture. Carr is the author of over 50 books
and several hundred journal and magazine articles on technical subjects.

Learn Statistics through Interactive Multimedia!

CrashCourse in Statistics
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System Requirements

+ aminimum 80386-DX PC running Microsoft Windows 3.1

+ minimum 4 megabytes of RAM (8 megabytes recommended)
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AT THE
BLACKBOARD

The quadratic

Strengthen your grip on quadratic equations,
quadratic functions, and their graph—the parabola

ET'S BEGIN BY RECALLING
how to solve the quadratic
equation

X +px+q=0 (1)

with real coefficients p and g. This is
one form of the general quadratic
equation, although it may not be the
form to which you’ve become accus-
tomed. If our notation seems different
and strange, you are welcome to re-
cast our results using your own nota-
tion. You will find that anything you
already know is expressed here in an
equivalent form, although sometimes
our forms are more convenient for
our discussion. Many of our results
will in fact be familiar to you, but
some are bound to be new. The equa-
tion can be rewritten in the form

[“2) :i(p2 ~4q) (o]

(which is easily verified by removing
the parentheses). The number
D = p?> — 4q is called the discrimi-
nant of equation (1). The equation
now takes the form

S
[X+£] =—D, (3)
2 4

and it becomes clear that if D is non-
negative, then equation (1) has two

by Vladimir Boltyansky

real roots
%=1 (p+D) 5, = (0= D). o

which are different for D > 0 and
coincide for D = 0.

In the case of negative D, equa-
tions (1) and (3) have no real roots,
because their left sides cannot be
negative for any real x. In this case
we can rewrite equation (3) as

2
1 A2
£X+§J —Z(\/—Dz) =0, (5)

where i is the imaginary unit—that
is, i = —-1. Now we factor the left
side and get

[-D /-D
[X+p—\ij[X+p+\ ‘ij,
2 2 2 2

from which it follows that the equa-
tion has two complex solutions

be] :%(—p+\/$1‘),

1 , (6)
=3 ( D J_Dz)

This argument is summarized by
the following theorem.

TueoreM 1. The quadratic equa-
tion (1) with real coefficients p and
q has two roots whose form depends

on the value of the discriminant
D =p?-4q. If D > 0, the roots are
real and distinct (see equation (4));
if D = 0, the roots are real and coin-
cide; and if D < 0, the roots are com-
plex numbers (with a nonzero
imaginary part—see equation (6)).

The next theorem was established
by the famous French mathematician
Francois Vieta (1540-1603), one of
the pioneers in introducing letter
notation and the modern system of
algebraic symbols.

Treorem 2. The roots x, and x, of
quadratic equation (1) satisfy the
relations

X, +X,=-pD, X;X,=(. (7]

This statement can be proved by
direct calculation. For instance, in the
case of real roots (that is, for nonne-
gative D) we find from formulas (4)

x,+3, =—(-p+=D)+ (-p-+-D)
=~
x%, = (-p +¥=D)(-p-¥-D)
= i(pl -D)=q.

In the case of complex roots (for D < 0)
Vieta’s formulas (7) are similarly
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derived from equations (6).
THeoREM 3. Any quadratic trinomial
can be factored into linear factors

X2+ X+ =(x—-X,)(Xx-X,),

where x, and x, are the roots of qua-
dratic equation (1).

Indeed, by Vieta’s formulas we
have

X2+ px+q=x>— (X + X)X + XX,
=[x - xy)(x - x,).

Sometimes the factorization is
conveniently achieved by complet-
ing the square (compare with equa-
tion (2)) rather than calculating roots
using formulas (4) or (6). For ex-
ample,

x2 + 8x—33 = (x + 4)* - 49,
which leads to the factorization
x2+8x-33 = (x-3)x+11).

And one more note. In the case of
an even integer p it’s often conve-
nient to use the formulas

1 p2
—pD=|£]| -
4 [ZJ 1

and

2

Now we're fully versed in all
kinds of quadratics and can get to
some problems.

Problems

1. Prove that the discriminant D
of the quadratic x> + px + ¢ = 0 is
equal to (x; - x,)?, where x, and x,
are the solutions to this equation.

2. Check by direct substitution
that the numbers given by formulas

YA YA

N Y S ‘
x\0 X  x 0 x1=%

Figure 1 Figure 2
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(4) are solutions to equation (1) for
D = 0. Do the same with the num-
bers from equations (6) for the case

"D <0.

3. Solve the following quadratic
equations:

(a) x> -5=0;

(b) x2 +7=0;

(c) x* +3x=0;
(d)x2-7x+12=0;

(e) x2-x-30=0;
(f)x2+4x+5=0;

(g) x* + 10x + 25 = 0;
(h)x2+2(a-1)x-(6a+3)=0;

(i) x2+2(a+3)x +(a*+2a+9)=0;
(j) %2 -2(a* - 1)x + (a* - a®>+ 1) = 0;
(k) 2x2 -5x +2 =0

(1) (1 + a)x® + 2xa® +1

-{1-a)=0.

4. Prove that for D > 0 the graph
of a quadratic functiony =x% + px + ¢
intersects the x-axis at two points
(x,0), (x,, 0), wherex, and x, are the
roots of the equation x> + px + ¢ =0
(fig. 1). For D = 0 the graph touches
the x-axis (fig. 2). Finally, for D <0
the graph lies completely above the
x-axis—they have no common
points (fig. 3).

5. Write out the quadratic equa-
tion that has the following roots:

(a)x, =1, x, =-2;

(b) x, = x, = -4;

(c)x, = 23, x, = 2 + 31,
(d) x, =a + bi, x, = a - bi;
(e) x, =3 - 4i, x, = 2 - 5i.

6. Prove that for any p and ¢ the
system of equations

{y+z:_p/
yz=q

has two solutions: y = x;, z = X,;

¥ = X,, z = X, (real or complex, dis-
tinct or coincident), where x, and x,
are the roots of the quadratic
x> +px+q=0.

7. Prove that the graph of the qua-
dratic function y = x2 + px + g is
symmetric about the line x = —p/2
(fig. 4).

8. Prove that the roots of the qua-
dratic x* + px + g = 0 (with real p, )
are real and positive if and only if
D=20,p<0,g>0.

9. Find necessary and sufficient
conditions for the roots of the qua-
dratic x2 + px + ¢ = 0 (with real p, q)
to be real, nonzero and (a) of the
same sign, (b) of different signs.

10. Prove that if one root of the
quadratic x* + px + q = 0 (with real
coefficients p, g) is real, then the
other is real, too.

11. Prove that if one root of the
quadratic x? + px + g = 0 (with real
p, q) is not a real number—that is,
has the form a + bi with b =0, then
the other root of this equation is
equal to a - bi; in particular, it’s not
real either.

12.. Find the set of all real x satis-
fying the inequality x> + px + ¢ < 0
(with realp, g). (The answer depends
on D!J

13. Solve the following strict qua-
dratic inequalities (and make dia-
grams):

(a) x2-5x+6<0;
(b) x2 - 10x + 25 > 0;
(c) x2-x-12>0;
(d) x2 - 12x + 38 > 0.

14. Solve the following weak qua-
dratic inequalities:

(a) x2-3x-18<0;
(b) x> - 8x + 16 < 0;
(c) x2 + 6x +520;
(d) x* - 14x + 50 < 0.

YA A YA
P
)
> — X7 e, =
x 0 x 0\ x X\ X)Xy 0/%4 x
Figure 3 Figure 4 Figure 5
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15. Prove that if the roots of both
quadratic equations

x*+px+q, =0,
2+px+q,=0

are real and belong to the segment
[a, b], then for any k > O the roots of
the equation

+px+q +kx2+px+q,)=0, (8)

if they are real, lie on the same seg-
ment.

16. Prove that if the roots x;, x, of the
equation x* + p,x + ¢, = 0 and the roots

x;, x, of the equation x> + p,x + g, =0

y=x2+px+q

(e}
Y

N

are all real and alternate—that is,
X, < X; <X, <X, (fig. 5, then for any
k > 0 the roots of equation (8) in
problem 15 are real, one of them be-
longing to the segment [x,, x,] and
the other to [x,, x,].

17. In the conditions of problem
16, prove that for any negative k # -1
the roots of equation (8) are real, one
of them belonging to the segment
[x5, X,], the other lying outside[x,, x,].

18. For what values of a does the
equation x? + ax + 6 = 0 have inte-
ger roots?

19. For what values of a does the
equation (x — 10){x - a) + 1 = 0 have
integer roots?

20. What are the signs of the num-
bers p and g if the graphs of y = x* +
px + q looks like the ones in figure 6?

21. Let x, and x, be the roots of
the quadratic x> + px + ¢ = 0. Find p
and g knowing thatx, + 1 andx, + 1
are the roots of the equation x? - p2x

+pg =0.

Figure 8 22. Points A and B distinct from
YA YA YA
X .=
0 X 0 N X
e \\
a b — c
Figure 9

the origin are given on the x- and
y-axes, respectively. Prove that
there exists one and only one qua-
dratic function y = x2 + px + ¢
whose graph passes through A and
B (fig. 7).

23. For what real values of a is the
function y =x? + 2ax + 1 positive for
all real x?

24. The equations x> + p,x + ¢, =0
and x* + p,x + q, = 0 have real coef-
ficients such that p,p, = 2(q, + q,).
Prove that at least one of the equa-
tions has real roots.

25. Consider a polynomial f(x, y)
= ax®* + bxy + cy? with real coeffi-
cients a > 0, b, c. Prove that one of
the following statements is true:

la] flx, ¥) - alx - m,y)ix - m,y)
where m, # m, are real numbers
(here fis said to be a hyperbolic poly-
nomial);

(b) fix, ¥) = a(x - my)?, where m is
real (a parabolic polynomial);

(c)flx, v) > O for all real x, y except
x =y =0 (an elliptic polynomial).

26. Prove that the graph of the
trinomial y = x? + px + g is obtained
from the graph of y = x2 under a
translation (fig. 8) by the vector
a=(-p/2,-D/4).

27. Prove that the system of equa-
tions

y=x>+px+q,
y=ax+b

has no more than two solutions for
any real q, b (fig. 9).

28. Prove that the interior of the
parabolay = x* + px + g—that is, the
set of all points (x, y) such that
y > x* + px + g—is convex (which
means that the segment joining any
two points of this set lies entirely in
this set—see figure 10).

YA

Figure 10
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FOLLOW-UP

Life on an accelerating skatehoard

What is “weight” anyway?

HE CONTEST PROBLEM
“Weighing an Astronaut” in
the March/April issue of
Quantum contains a most in-
teresting problem. A drawing on
page 37 shows a person standing on
the platform of a bathroom scale on
a skateboard that is accelerating
down an incline that makes an angle
0 with the horizontal, as shown in
figure 1. The question asked is,
“What does the scale read?”
This problem contains two flaws:

1. A person could not stand as
shown with his or her body
in the orientation shown in
figure 1.

2. The question of the reading
of the bathroom scale can-
not be answered without in-
formation about the me-
chanical construction of the
scale.

A study of these flaws leads us to
see serious inconsistencies that ap-
pear when one uses the conven-
tional textbook definition of

Figure 1

by Albert A. Bartlett

“weight.” This leads us to a much
improved definition of weight that is
given by the International Standards
Organization (ISO).

Analysis of the problem

Let’s think about a frame of refer-
ence in which the measured free-fall
acceleration is g, (a vector). In this
frame, the weight of a mass m is
W, = mg,. Now consider a second
frame of reference that has an accel-
eration a,, (a vector) with respect to
the first frame. The free-fall accel-
eration in the second frame is a vec-
tor g,, which is given by the vector
equation

8 =8 — - (1)

The weight of the mass m in the
second frame will be W, = mg,. An
observer at rest in the first frame
will say that “up” is the direction of
-g,, and an observer at rest in the
second frame will say that “up” is
the direction of -g,.

The utility of equation (1) can be
verified by applying it to the com-
mon problem of a person standing
on the platform of a bathroom scale
in an elevator that is accelerating
upward or downward as shown in
figure 2. The beauty of equation (1)
is that it is a vector equation that
can be applied in cases where the
accelerations are not collinear.

Let the laboratory be frame 1, in
which we see the skateboard accel-
erating down an incline that makes

elevator accelerating upward

Tazl

81 81

—ay)

elevator accelerating downward

l ag)
81 8
81
T‘au
Y Y

Figure 2

an angle 6 with the horizontal. Let
frame 2 be the frame in which the
skateboard is at rest. For this case, g,
is the free-fall acceleration (approxi-
mately 9.8 m/s?) measured in the
laboratory. If we neglect friction and
the rotational inertia of the
skateboard’s wheels, the skateboard
will have a vector acceleration a,, of
magnitude g, sin 6 down the incline.
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—d
21 7
ay, =& sin B
Figure 3

The vector —a,, will point up the
incline.

Figure 3 shows the vector addi-
tion of equation (1) for this problem.
The vector triangle of figure 3 is a
right triangle because the magnitude
of a,, has been shown to be g, sin 6.
From figure 3 we can see that the
magnitude of g, is g, cos 6, and the
direction of g, is perpendicular to
the surface of the incline down
which the skateboard is rolling. If
you were on the skateboard, you'd
tell us that “down” is the direction
of g, and that “up” is the direction
of -g,. In order to stand “up,” you'd
have to stand so that your body is
perpendicular to the incline, which
seems unnatural. This is why ski
instructors tell you to “lean for-
ward.” In the frame of the ski slope,
the direction of “up” is parallel to
the trunks of the pine trees. In the
frame of the skier (or skateboard
rider) accelerating on a slope, “up”
is not parallel to the pine trees but
is perpendicular to the surface of the
slope.

In figure 1, the person’s body is
shown as being parallel to the pine
trees, which means that it is at an
angle 6 to “up” in that person’s ac-
celerating reference frame. If you
tried to stand like that, you’d fall
over to the left. This appears to be
correctly represented in the lower-
left corner of the cover of the March/
April issue. The man shown riding
a horizontal platform down the
steep incline appears to be falling
backward to the left.

In order to get to the question of
the reading of the platform scale,
let’s avoid the difficulty of “which
way is up” by replacing the person
with a point mass m that rests on
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the platform on the scale. We must
then assume that the coefficient of
friction between m and the platform
is of the order of unity so that m
won’t slide on the platform as the
scale accelerates down the slope.
Now we can ask, “What is the read-
ing of the scale?”

To answer this, we need informa-
tion about the mechanics of the op-
eration of the scale. In particular,
does the scale read the magnitude of
the force acting on its platform inde-
pendent of the direction of the force,
or does it read only the component
of the force that is perpendicular to
the platform? If the scale reading R,
is the total force F, acting on the
platform, the scale will read

R, =F =W, =mg, =mg, cos 6.

If the scale reads only the compo-
nent of the total force that is perpen-
dicular to its platform, its scale read-
ing R_will be

R, =F, cos 0 =mg, cosb
= mg, cos” 6.

Figure 4 shows how a person
would stand in riding a skateboard
down an incline. In this case, the
scale reading is R, = mg, cos 6.

Figure 4

Problems in tefining weight

There is much clarity and consis-
tency to be gained by replacing the
traditional definition of weight with
the ISO definition that has been used
above. Almost universally in text-
books, unnecessary confusion is
caused by the use of the conventional
definition of weight, which says that
weight is the product of mass times
the acceleration of gravity.

This can be illustrated by tracing
seven steps in the development of
weight and related concepts as they
are encountered sequentially in

typical introductory physics texts.

1. Texts start by describing mea-
surements of the free-fall accelera-
tion (g = 9.8 m/s?) and this quantity
is called the acceleration due to
gravity.

2. Next, the texts define the
weight of a mass m as the product of
m and g, which they call the force of
gravity:

W = mg.

3. When a person of mass m
stands on a bathroom scale in an el-
evator that has an acceleration up-
ward or downward of magnitude q,
the scale reading R is

R =mlg £ a).

4. This quantity is a force that is
much like a weight. But it does not
match the definition of weight given
in step 2 above, so textbook authors
have to coin a new name for R.
Texts generally call R the “apparent
weight” of the mass m.

5. Now imagine cutting the cable
so the elevator is in free fall. The
apparent weight R goes to zero. Here
is our first point of confusion. To be
logical, we should say that when the
apparent weight goes to zero, the
resulting condition is “apparent
weightlessness.” Instead, texts call
this condition “weightlessness.”

6. Now the confusion becomes
serious. An astronaut in orbit is ob-
served to be weightless. But accord-
ing to the textbook definition of
weight (mass times the acceleration
due to gravity), the astronaut still
has weight. This has led to vigorous
(and generally unproductive) debate
as to whether or not an orbiting
weightless astronaut has weight.

7. Now for the final confusion.
Weight was originally defined to be
due solely to gravity, and apparent
weight was defined to be due to
gravity plus the acceleration of a ref-
erence frame. But in the chapter
where we learn that the laboratory
frame is on the rotating Earth, the
texts tell us that the reading of the
bathroom scale in the laboratory is
the result of gravity plus the effect of
the centripetal acceleration that
arises from the rotation of the Earth.



Therefore, the reading of the scale in
the laboratory is really an apparent
weight.

Here we have the ultimate confu-
sion. In step 2 we defined the read-
ing of the scale in the laboratory to
be a weight. We then defined appar-
ent weight to be quite different from
weight. But now we find in step 7
that what we defined to be weight is
really an apparent weight! The text-
books rarely point out this glaring
internal inconsistency.

The definition of weight

The ISO gives us the definition of
weight that we need to eliminate
these inconsistencies: The weight of
a body in a specified reference sys-
tem is the force that, when applied
to the body, would give it an accel-
eration equal to the local accelera-
tion of free fall in that reference sys-
tem. The main requirement of this
definition is that we give up the use
of the words “acceleration due to
gravity” to describe the free-fall ac-
celeration that is measured in the
laboratory. In effect, we are asked to
call the free-fall acceleration the
“free-fall acceleration” in all frames
of reference. This definition does not
change the common relation that
we use to calculate the weight of an
object:

W = mg.

Let’s retrace the textbook steps 1
to 7 above to see how this definition
of weight eliminates the serious in-
ternal inconsistencies resulting
from the use of the conventional
definition. When the frame of refer-
ence is the surface of the Earth, the
magnitude of the free-fall accelera-
tion is approximately g = 9.8 m/s?
and all weights have their conven-
tional numerical magnitudes:
W = mg.

In the accelerating elevator, the
free-fall acceleration is ¢ + g, and a
mass m on a scale in the elevator
causes the scale to read m(g + a).
This scale reading is called the
weight of m in the frame of the ac-
celerating elevator. The magnitude
of the weight in the accelerating
elevator has changed from its value

in the laboratory frame, but this
should cause no problem because
we have always emphasized to stu-
dents that weight is not an intrinsic
or invariant property of the mass m.
The confusing term “apparent
weight” is no longer needed! When
the elevator containing m is in free
fall, the free-fall acceleration with
respect to the elevator is zero, so the
weight of m in the frame of the fall-
ing elevator is zero, and it is then con-
sistent to say that m is weightless.

With reference to the frame of an
orbiting spacecraft, an astronaut has
zero free-fall acceleration, and so
the astronaut is weightless. Finally,
when we look at the rotating Earth,
no confusion results from saying
that part of the free-fall acceleration
in the laboratory is due to gravita-
tion and part is due to the Earth’s
rotation.

So, the ISO definition of weight
gives internal consistency to our
nomenclature and usage. It elimi-
nates the confusion that is perpetu-
ated in textbooks and has plagued
generations of physics students.
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HAPPENINGS

Gaught in the Web

Mir Discovery, and Atlantis

This has been a busy year for Rus-
sians and Americans working together
in space. The pictures on this page are
a small sampling of the images stored
at various NASA sites on the World
Wide Web. These images, taken with
the IMAX large-format movie camera,
were found at http://www.hq.nasa.gov/
office/pao/NewsRoom/today.html.

E

-

February.

The Russian Space Agency’s Mir Space Station is
seen over the Pacific Ocean during rendevous
operations with the Space Shuttle Discovery in

If you are particularly
interested in the shuttle
missions, NASA has set
up sites devoted to some
of them. For instance,
you can find video clips,
still pictures, and tons of
information at http://
shuttle.nasa.gov/sts-71.
If your interests lie else-
where—the Hubble Space
Telescope,
the Ulysses
solar mis-
sion, the
Apollo 11
lunar land-
ing, what-
ever—just
make a bookmark for
http://www.nasa.gov/
hgpao/hgpao_homehtml.
You're sure to return
time and again, be-
cause you’ll find much
more than you were
looking for.

Agency

Photo courtesy NASA and Russia

Photo courtesy NASA and Russian Space Agency
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Gennady Strekalov plays guitar and sings with
Atlantis astronauts Charlie Precourt, Bonnie
Dunbar, and Greg Harbaugh aboard the Mir
Space Station.

Cyherieaser winners

It seemed like a simple question,
and several visitors to the Quantum
home page handled it with aplomb.
(See brainteaser B153 on page 19.)
Others were a bit more tentative.
And some, we're sorry to report, had
it backwards. But we hope everyone
enjoyed thinking about this little co-
nundrum,

The following will receive a copy
of this issue of Quantum and a but-
ton designed by staff artist Sergey
Ivanov:

Jim Hanby (Lexington, South Carolina)
Louis Smadbeck (Martha’s Vinyard,
Massachusetts)

Jeff Dodson (Long Beach, California)
Hal Harris (St. Louis, Missouri)

Ben Davis (Wayne, Maine)

Paul Grayson (Urbana, Illinois)

Daniel Jordan (Roscoe, Illinois)
Cheng-Chih Chien (Columbus, Ohio)

The next CyberTeaser has been
posted and awaits your attempts to
crack it. Go to http://www.nsta.org/
quantum and follow the link.
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“... The impact of solid bodies is the most fundamental
of all processes that have taken place on the terrestrial planets.”

—FEugene Shoemaker
“Why Study Impacts?” 1977

MAKE AN IMPACT WITH

Craters!
A Multi-Science Approach to
Cratering and Impacts

by William K. Havtmann

Make an impact in your classroom with this
interdisciplinary guide to cratering. How do
craters form? Where can they be found? What can
craters tell us about planetary science? How have
impacts affected Earth’s history and the history of
life? Craters! includes 20 ready-to-use, hands-on
activities that use cratering to teach key concepts
in Physics, Astronomy, Biology, and Earth
sciences. Special features include a custom CD-
ROM packed with supplemental images for
classroom activities, a specially-written summary
of research on Shoemaker-Levy 9’s encounter with
Jupiter, and a detailed background section for
teachers. Whether used as a stand-alone
curriculum unit or mined for individual activities,
you’ll agree that this book is right on target!

KEY FEATURES

® Custom CD-ROM packed with images of impact
sites on Earth, the Moon, and many planets and NG
planetary bodies in our solar system. N

® Specially-written account of research on the
comet Shoemaker-Levy 9 impact with Jupiter.

® Detailed background on cratering designed to
enhance teacher preparation.

® Curriculum Matrix and extensive resources list
for extensions

® Fully compatible with SS&C and NAS science
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standards

® Collaboration between NASA, the Planetary
Society, and NSTA Grades 9-12, 1995, 204 pp.,

* Extensively reviewed by teachers to meet NSTA%s Includes Mac/Windows CD-ROM
high standards for excellence in publishing. #PB120X $24.95

TO ORDER, CALL 1-800-722~-NSTA m

VISA, MasterCard, Discover and purchase orders accepted




Across

1 Phosphatase unit
5 Soviet linguist
Nikolay ___ (1864-
1934)
9 Type of spectros-
copy
14 Type of parity
15 Pelvic bones
16 966,314 (in base 16)
17 Soil
18 53,181 (in base 16)
19 Musical group of
nine
20 Math subject
22 Chemical suffix
24 Distilled coal
25 Earth: comb. form
26 Automobile
27 10712 (pref.)
28 Sunny mountain
side
31 Parabolas, e.g.
33 Mite: comb. form
34 State of matter
35 Gramophone
inventor
39 10'8: pref.
40 Orbital path
42 Samuel’s teacher
43 Like computer
numbers
45 "Mr. Basketball”
____Holman
46 Hawaiian wreaths
47 Biologist ___ Carson
(1907-1964)
49 Cosmologist Sir
Hermann _
50 Element 30
53 Characterized by:
suff.

Briss

]
cm]ss SEIE"[:E by David R. Martin
1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16
17 18 19
20 21 22 23 24

54 For each

55 Zeta follower

56 Priest’s robe

57 For hydrogen, it
equals one

61 Domesticated

63 Anthropologist
Franz __ (1858-
1942)

65 Lunch time

66 Parapet passage

67 Trails

68 About 4.9289 cm?:
abbr.

69 More hurt

70 Sea eagle

71 “Y" followers

Down

1 44,762 (in base 16)

2 Amoral

3 1980 Nobelist in
Chemistry

4 FORTRAN data
type

5 1076 pref.

6 ___ process |(for
butter manufacture)

7 Side bone

8 About 57
9 Microbiologist ___

Dubos (1901-1982)

10 Blood group system

11 Mind: comb. form

12 700,076 (in base 16)

13 Sodium: comb. form

21 Gamble wager

23 Least wet

26 Trig. functions

27 Pressure unit: abbr.

28 43,755 (in base 16)

29611

30 Horse color

31 Unit of heat (abbr.)

32 Alphabet run

34 Antifreeze chemical

36 Spotted

37 Smelly

38 ___ prius

40 Eon subdivision

41 Friend

44 Circle part

46 ___ transformation
(of special relativ-
ity)

48 Astronomer Edwin
__(1889-1953)

49 Ten decibels

50 Epsilon followers

51 Novelist ___ Svevo
(1861-1928)

52 City on the Sambre

54 Qut-of-date

56 __ wax (ozocerite)

57 Oceanographer ___
Ekman (1874-1954)

58 Facial feature

59 Manage

60 River near
Schladming

62 Poet’s before

64 Row
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Math
M151

(a) The answer is a = 549. The
sums of digits of felicitous numbers
are always even. Therefore, if the
numbers a and a + 1 are felicitous,
then a ends in 9; otherwise the
sums of their digits differ by one and
are of different parity. The number
a can’t have only two digits, be-
cause 99 + 1 = 100 isn’t felicitous. If
a has three digits, a=xy9 (the bar
here denotes decimal notation),

then y < 9 and a+1=x(y+1)0. So
x+y=9,x=y+1.Thus,x=5,y=4.
(This is the only 3-digit solution,
not just the smallest.)

(b) The answer is no, because, as
follows from the above discussion,
of three successive felicitous num-
bers a, a + 1, a + 2, two—namely a
and a + 1—must end in 9, which is
impossible.

M152

Let’s rotate the square (fig. 1)
about its center by 90° so that A,
goes into A,, A, into A, and so on.
Then the lines PA,, PA,, PA,, PA,
will be taken to the corresponding
perpendiculars (PA; becomes the
perpendicular to PA, through A,
because it’s rotated 90°, and so on).
So the four perpendiculars meet at

Al A2
P
/>
A, A,
Figure 1
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the image P’ of P under this rotation.

M153

The required relation is ¢ = ab/3
—243/27; or, equivalently, the num-
ber —a/3 must be a root of the equa-
tion.

Indeed, if x;, x,, x; are the three
roots, then by the Factor Theorem
we can write

Lrad+cx +d=(x-x)[x-x)x-x,).

Multiplying out the product on the
right and equating the correspond-
ing coefficients of the two polyno-
mials, we get

—{x, + X, + X3) = a.

But since the roots form an arith-
metic sequence, x; + X, = 2X;, SO
x, =-a/3.

Try to derive similar conditions
for quartic equations.

M154

The answer to part (a)isn—k + 1.
We'll consider it together with (b).

Isolate the “series” of the given
numbers that begin with a two and
includes all the ones that immedi-
ately follow this two (clockwise). If
a series includes m ones, m 2 0 (see
figure 2, where the number imme-
diately after these ones, which is 2
or 0, is denoted by an asterisk), then

Figure 2

a A Ay
2 %
0 1
b A A
2 *
%) 0
%)
C Ay Ay
2 1 1 1 1 %
@ 2 1 1 10
@ 0 2110
@ 0 02 10
@ 0 00 2 0
@ 0 0 0 01
Figure 3

after m + 1 steps it will have zeros
instead of all its ones. The subse-
quent asterisk number will turn
into 1. Figures 3a-3c show the evo-
lution of a series form =0, 1, 4, re-
spectively (the sign & there denotes
0 or 1). Each series undergoes an
evolution of this sort. Therefore, if
there were k twos initially and the
longest series contained m <n -k
ones, then after m + 1 transforma-
tions no twos will be left. If, in ad-
dition, the n - k numbers distinct
from 2 in the initial arrangement
were all ones, they all will be re-
placed with zeros after at most
n-k + 1 steps, while the k twos will
turn into ones. (N. Vasilyev)

M155

Choose any log I, at random and
try to roll it down into the river.
Suppose it gets blocked by a log I,.
Then try to roll ], away. If it also gets
blocked by some log, call this log .
Proceeding in the same way, we ob-
tain a sequence I, I, ... of logs in




which each log is blocked by the
next one. Since the number of logs
is finite, either this sequence will
have to stop at a certain log I , in
which case I, can be rolled away
unobstructedly, or it will close in a
loop—that is, a certain log will ap-
pear in it for the second time. So it
suffices to show that the second pos-
sibility never occurs.

To this end, for any log I we’ll
construct a certain domain E(I) of
the bank such that E(I,) c E(I,) (and
E(I,) # E(I,)) whenever log 1, ob-
structs log I.. So for the sequence of
logs 1, 1,, ... considered above we’ll
get a “strictly expanding” sequence
E(l,) c E(I,) c ..., which means that
none of the logs can reappear in our
sequence.

Think of the bank as the upper
half-plane bounded by a horizontal
line b and of the logs as line seg-
ments. Consider the shadow S|(I) of
each log I—that is, the set of points
that lie above and on the segment I
and two rays at an angle of 45° to b:
one drawn to the right (and upward)
from the right endpoint of I, the
other drawn to the left from the left
endpoint (fig. 4). We can see that any
log that has no common points with
S(1) will never get caught by I while
it’s rolled into the river.

Now define the extended shadow
E(l) of 1. Start at any point on [ and
move to the right along I and along
the right slope of S(I) until we en-
counter the first log I, intersecting
this slope. Then continue moving
along the border of S(I;) up to the
next log I, (intersecting the right
slope of S(I,)), and so on. The path
thus traced is a part of the border of
E(I). The remaining part is traced
similarly, starting from the same
point and moving to the left. The set
E(I) consists of all points above and
on the path we've traced (fig. 5). By

Figure 4

Figure 5

construction, any log !’ either has no
common points with E(I) or lies en-
tirely in E(I). In the first case I’ is dis-
joint with S(I), too, and so I doesn’t
obstruct rolling I’ into the river. In
the second case the extended
shadow E(I') of I’ lies in E(I) (even if
the borders of E(I’) and E(I) have a
common point A, the ascending
parts of these borders must coincide
starting from A).

So, if 1 obstructs I’, then E(I') c E(l),
which completes the proof.

Physics

Among all possible trajectories
we take the one tangent to the shel-
ter. Consider the flight of the projec-
tile in the frame of reference with
axes directed as shown in figure 6. In
this system the “horizontal” projec-
tion (that is, directed along the OX-
axis) of the shell’s initial velocity is
Vox = Vo €0s (0 — o), and the “vertical”
projection (along the OY-axis) is
Voy= Vp Sin (6 — o), where ¢ is the
angle of the initial velocity vector
relative to the horizontal plane.

The point of tangency C deter-
mines the maximum height of the
shell’s ascent over the “horizon,”
which according to figure 6 is I sin c.
At this point the projection of the
shell’s velocity v upon the OY-axis
is zero, and

2
h/ — VOY
2g

/4

where g’ = g cos o is the “accelera-
tion due to gravity” in the chosen
reference system (the projection of
vector g upon the “vertical” axis
QY). Thus,

V§y= 28R,
and therefore
v¢ sin? (¢ — o) = 2(g cos oI sin o).

In particular this means, that if an
additional relationship holds—that
is,

2gl sin a - cos a = gl sin 200 > v,

—there exists no tangent trajectory
(a projectile will not “touch” the
shelter). In this case the maximum
travel distance corresponds to a shell
fired at an angle ¢ = /4 with the true
horizontal plane and is equal to
Lmax = VOz/g'

If the opposite inequality is true—
that is,

v¢ 2 gl sin 20

—then to touch the shelter the shell
must be fired at an angle of

Jglsin2a

Vo

0., =0 +arcsin

If

vo _

5 <sin2o
vy +28l

(which means that ¢, > ©/4—show
this!), the initial slope corresponding
to the longest flight againis ¢, . =n/4,
andL_, =v,?/g.1f the opposite takes
place—that is,

2
Vo

2

vy +2gl

>sin2o

v O (which in turn means that
g X 0oy < T/4)—then
8 Vg
o Oinic = Pran
0 (0 \/*
@) Isin 20
< I > =0+ arcsing——,

Vo
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and

2
Vv,
L P
Lmux = —sin zéinit
g
ve . Jglsin2a
= —sin2 o+ arcsin ——— |,
o | v
© X 0 J

P152

The electromotive force of an
electrical source is equal to the work
required for an external force to
move a unit charge through the
source. The emf is maximal when
the alpha particle can’t reach the op-
posite plate in the capacitor due to
the electrostatic repulsion—in other
words, when the kinetic energy of
an emitted alpha particle is equal to
its potential energy at the opposite
plate of the capacitor. So,

2 2
€= 10 2 5.10° V=500 kV
2g 2k

P153

Since there is water in the nipple
at the outset, the water vapor in the
vessel is saturated. Its pressure
doesn’t change during the
downstroke of the piston, and all
the vapor in the “disappearing” vol-
ume

D’

4H

7
7
X}

is converted to water. The mass of
the condensed water is

4
m=P" ,
4h
where p = 10% kg/m3 is the density
of water. The Clapeyron equation

gives the pressure of the saturated
vapor:

_mRT_ (d\"hRT
nv Dj H u

P

=216 kPa.

Note: In this formula the values D
and d, H and h make dimensionless

b8 SEPTEMBER/OCTOBER 1995

ratios. Hence, they can be measured
in any units—but, of course, in the
same ones. For example, D and d are
expressed in millimeters, while H
and h are expressed in centimeters.
If all the other values (p, R, T, and u)
are expressed in SI units, the result
will be in pascals.

P154

A charged nonconducting rotat-
ing cylinder is like a circular electric
current that generates a magnetic
field. The system looks like a long
solenoid with a large number of
tightly packed windings along its
entire length 1. The total current
flowingin all the “windings” can be
expressed in terms of the total
charge on the cylinder:

MQ_G~23RZ

T 2n/e

I = oRlw.

The field inside such a cylinder is
homogeneous and proportional to
the current:

B = 0ol = ooRlw,

where o is the proportionality con-
stant,

As the outer cylinder accelerates
to an angular velocity o, the varying
magnetic field generates a vortex
electric field that acts on the electric
charges on the inner cylinder and
causes it to rotate. The angular ve-
locity of this cylinder increases to a
value o, that corresponds to a zero
magnetic field permeating the inner
cylinder (which also generates a
magnetic field). Recall that the inner
cylinder is very light.

Thus we get

aoRlw + aorlw, =0,

and therefore

R
O, =~-—0=-20.
r

So the inner cylinder rotates in the
opposite direction with twice the
angular velocity.

Try to solve a similar problem,
when the inner cylinder is set in
motion first. Remember that the
outer magnetic field is very small.

P155

It will be convenient to consider
the refraction in two mutually per-
pendicular planes. In doing so, we’ll
draw large angles to make the fig-
ures easier to interpret, but consider
them small enough to replace the
sines of angles by the angles them-
selves.

Thus, for the incident beam
shown in figure 7, the angle of re-
fraction is half of the angle of inci-
dence ¢, and the refracted ray crosses
the principal axis just at the glass—
air boundary. The beam emerges

2SN

Figure 7

with the angle ¢ relative to the axis,
and is deflected by oL from the axis
at a distance L away from the sys-
tem.

For the incident beam shown in
figure 8, there is no refraction at the
entrance of the system, but the
beam emerges with the angle ¢ rela-
tive to the axis. The corresponding

Figure 8

deflection from the axis at a dis-
tance L away from the system will
also be ¢L (here we assume that
L > R).

Thus, the narrow light beam is
(almost) focused to a point shortly
after it leaves the composite lens
and then becomes a normal diver-
gent conic beam. The ratio of the
beam’s area when it enters the sys-
tem to its area at a distance L from
the system is

$,:8, = R2:I* = 1:400.



Brainteasers

B151

Any two numbers whose sum is
101 are coprime, because if they had
a common divisor, it would be a di-
visor of 101. But this number is a
prime, so its only divisor less than
itself is one. The rules of the game
could as well be formulated as “do
anything, then Winnie wins.”

B152 |

If 21995 consists of n digits and 5!
of m digits, then 107 -1 < 2195 < 107,
10m-1 < 5199 < 10m, Multiplying the
corresponding terms of these in-
equalities, we get

1011+m—2 & 101995 < 10n+m

It follows that n + m - 2 < 1995
<n+m,or1995=n+m-1. So the
total number of digits in the two
given numbers is 1996.

B153

The flying ball has to work
against air resistance and thus con-
tinuously loses energy. So the total
energy of the rising ball at a certain
height is greater than that of the fall-
ing ball at the same height. Since the
potential energy at these two mo-
ments is the same, the kinetic en-
ergy and, therefore, the speed of the
ball at a certain height is greater
when it rises than when it falls. So
the time of descent is greater than
the time of ascent.

B154

We can cut the box along four
edges and unfold it to make the Z-
shaped figure shown in figure 9. This
shape is then transformed into the
desired square by cutting along the

dashed lines. There are other solu-
tions as well.

B155

The total number of games in a
round-robin tournament with n par-
ticipants is T, = n(n - 1)/2. If there
were Kk participants apart from
Judith and Nigel, we can write
T,<23<T,,, Since T, - 15, T, =21,
T, =28, T, = 36, two values of k are
possible: k = 6 and k = 7. In either
case the number of unplayed games
(28 — 23 or 36 — 23) is odd. This
means that Judith and Nigel haven’t
played each other—otherwise they’d
both have an even number of
unplayed games, each the same
number.

Toy Store

1. The first player wins by putting
the first coin at the center of the
table and each subsequent coin such
that it is symmetrical about this
center to the coin placed immedi-
ately before that. This is always pos-
sible, because the position after each
move of the first player is centrally
symmetric.

2. The strategy described at the
end of the article is equally appli-
cable for any odd m with only this
correction: the number four must be
replaced by m + 1 and the intervals
considered there must accordingly
be replaced by (m + 1)k - m < s <
(m + 1)k. It follows that the first
player wins for all N with the excep-
tion of N =0 mod (2m + 2),! when
player A wins; N =1 mod (2m + 2),
when the second player wins; and
N=(m + 1) mod (2m + 2], when
player B wins. The winner, whoever
itis—player 1,2, A, or B—plays the
winning strategy from his or her first
move, except forN=2, 3,

.., m mod (2m + 2),
when the first move of
the winning (first) player
is even.

The winning strategy
for an even m is similar.

IThe notation x =
y mod z means that x - y
is divisible by z.

All values of N are divided into in-
tervals of the form (m+ 2k + 1S N<
(m+2)k+1).EN=(m+2k+1]
where 2 <1< m + 1, the first player
starts with an even move that leaves
astock of (m + 2)k or (m + 2)k + 1; if
N = (m + 2)(k + 1), the first player
starts by taking one stone and in the
next move takes an odd number of
stones so as to leave a stock of the
same size as above. Following this
rule the first player will collect an
even number of stones for any N
except N =1 mod (m + 2) and thus
forces a win. In the exceptional case
this strategy can be applied by the
second player after any initial move
of the first. So here the second
player wins.

You can try to extend this analy-
sis to the game in which player A
wins by collecting an odd number of
stones and player B by forcing an
even score for A. The result will be
similar but not the same.

Kaleidoscope

1. The rope will be stressed more
in the second case.

2. None.

3. Yes, since the deformation of
the board depends on where the
forces are applied.

4. No, because the elongations of
the wires will be different due to the
different values of Young’s modulus
for iron and copper.

5. The relative elongation for the
first wire is less by a factor of 4; the
absolute elongation is less by a fac-
tor of 2.

6. In front of the opening, com-
pression occurs, followed by stretch-
ing.

7. This is done so that the defor-
mation of the springs does not ex-
ceed their elastic limits.

8. To decrease the force of the jerk
when the fish is caught on the hook.

9. When a bullet passes through
it, a plastic cup deforms, increasing
in volume by an amount equal to
the volume of the bullet. A glass cup
is not capable of this, and under the
force of pressure from the water it
cracks.
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Figure 10

10. See figure 10.

11. The period is halved.

12. While the spring is stretched,
body A falls with greater than free-
fall acceleration; body B falls with
less than free-fall acceleration.

13. Quartz has a low coefficient of
linear expansion, so when the tem-
perature changes the length of the
rod hardly changes and no signifi-
cant deformation occurs.

14. When the wire is heated, the
mean distance between atoms in-
creases and the attractive forces be-
tween them decrease.

15. The stress increases.

16. The internal energy of the
body increases.

17. It turns into the internal en-
ergy of the solution.

18. The copper spring.

Microexperiment

Since the diameter of the tube’s
cross section decreases when the
tube is stretched, the ring will fall.

Dragon curves

1. The length of the strip was
smaller: 239 ¢cm = 1,0243 cm =
10,700 km, whereas the distance to
the Moon is 384,000 km.

2. The design is changed to its
mirror reflection. In the code word
the letters L are replaced with R’s
and vice versa So if we take a
“dragon word” and exchange all the
L’s for R’s and R’s for L’s, the new
word will describe a similar dragon
curve. That is, the two curves will
have the same shape, regardless of
their size or position.

3. An easy example is LLLLL,
since a “dragon word” must have
27-1]etters for some integer n. But
even this is not sufficient. You can
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convince yourself that there is nota
dragon curve of order 2 with the
word LLL.

4. If wis the first word, then the
second is w (see the statement of
problem 5). This is true for any path;
for dragon designs the transforma-
tion amounts simply to replacing
the middle letter in wwith the “op-
posite” (see problem 5c).

5. (a) Some examples will make
this clear. (b} This is simply a re-
statement of theorem 1 in terms of
words. (c) This is a restatement of
theorem 2. We can write this result
algebraically:

wLw = wRw
and

wRw = wLw.

Notice that a word must obey this
condition in order to qualify as the
word of some dragon curve. (d] An
example will make this clear. Let’s
construct a word of order 4, given
four arbitrary letters in positions 1,
2, 4, and 8:

Problem 5b shows that the letters in
positions 7-15 must be the comple-
ments of those in positions 1-7.
Hence we can fill in certain of them
already:

RL R __L __LRL

But problem 5b tells us that the let-
ters in positions 1-7 also form a
dragon word, so we can fill in more:

RL_R_RLLRL_L_RL.

Going further with the result of
problem 5b, we see that the first
three letters must also form a dragon
word. This allows us to fill in the
remaining blanks:

RLLRRRLLRLLLRRL.

In fact, this construction is more
easily done backwards, considering
the first three letters, then the first
seven, and so on. This effort is left to
the reader.

6.In general, the two theorems yield
different designs. (Consider, for in-
stance, the design with the code word
RRLLRLLLRRLRRLL.)

7. Assume that the line AB is
horizontal. The number of segments
in the turtle’s path where it crawled
to the right equals the number of
segments where it crawled to the
left, so their total number h is even.
Similarly, the total number v of ver-
tical segments in the path is even,
too. But horizontal and vertical seg-
ments are alternating, and since
their total number h + vis even, we
get h=v.So h + v = 2h is divisible
by four, the total time is an integer
number of hours, and the last seg-
ment is vertical.

L azy-tiay antidotes

(See the Kaleidoscope in the July/
August issue)

Problems

1. Four coins. For example, the
upper one, center one, and the two
under the center one. Note that
from every trio of coins that forms
an angle, at least one coin must be
removed, and one of them must be
a vertex. But then it’s necessary to
remove the center coin as well.

2. There are no such numbers.
Since the product is odd, it follows
that all the numbers are odd, and the
sum of four odd numbers is even.

3. 130°.

4. The middle finger.

5. Yes. For instance, a right tri-
angle.

6. Three candles remained. The
rest of them burned away.

7.Its areais 0, since 35 =17 + 18.

8. The digit 5.

9. Four kilometers.

10. Six hundred kilometers.

11. The digit 0.

12. Two Years Before the Mast by
Richard Henry Dana, Twenty Years
After (a sequel to The Three Muske-
teers) by Alexandre Dumas, and
Twenty Thousand Leagues Under
the Sea by Jules Verne.

13. The triangle is an 1sosceles
right triangle.

14. The angle remains equal to 1°.

Games

See the Toy Store article in this
issue, “Winning Strategies,” on
page 61.
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A manual for the mathematical gambler

N THE KALEIDOSCOPE ARTI-

clein the previous issue of Quan-

tum, five mathematical games

were described. These sorts of
games can just be played like any
other games, but it’s often more in-
teresting to investigate them in or-
der to find a winning strategy for one
of the players. Although usually we
find them in books on recreational
mathematics, many of them are
rather difficult to analyze and con-
tinually appear at math competi-
tions. Some became the subject of
serious research, and some remain
yet unresolved. For all the diversity
of mathematical games, there are
only a few general methods of ap-
proaching them. We’ll use our five
Kaleidoscope games to illustrate
some of these approaches.

All these games are played by two
players who take turns making
moves allowed by the rules and thus
changing the current state (or posi-
tion) of a certain, let’s say, “object.”
Each player tries to bring the object
into a state considered to be a win-
ning one for this player. Our games
have only a finite number of posi-
tions, necessarily come to an end
after a finite number of moves,! and
don't allow for draws. With this sort
of game, we have only two logical
possibilities: either the player who
makes the first move (the first
player) can win regardless of what

by Vladimir Dubrovsky

the second player does, or there’s a
way to force a win for the second
player. So the problem is to deter-
mine who wins and what the win-
ning strategy is.

Game 1.2 The first player puts a
white checker on any square of a
chessboard, the second puts a black
checker on any other square. Then
they move their checkers horizon-
tally or vertically, one square at a
time. To win, a player must put a
checker on the opponent’s checker.

If the players are in a peaceful
mood, they can enjoy shifting their
checkers as long as they wish. (Inci-
dentally, this is impossible with the
other four games.) Otherwise, the
second player always wins. The
strategy is very simple: initially,
player 2 puts the black checker on
any square diagonally adjacent to
the initial square of player 1 (figure 1

Figure 1

IFor the first of the games below
this is true only with a certain
reservation.

2The order of the games here is
different from that in the Kaleidoscope
article. '

shows two of the possible initial
positions); then player 2 simply re-
peats the moves of player 1 (moves
the checker in the same direction)
until player 1 is forced to move a
white checker onto the square adja-
cent to (alongside of) the black
checker’s square, when—bang!—the
black checker jumps on the white
one.

It’s easy to see why this strategy
is indeed a winning one. If the black
checker was initially placed, say,
“southwest” of the white one,
they’ll be in the same relative posi-
tion after every exchange of moves.
So player 1, to avoid an early defeat,
will always have to go “north” or
“east,” which will inevitably drive
that player’s checker into a trap in
the northeast corner of the chess-
board (fig. 2).

This idea of repeating the
opponent’s moves can be regarded as
a peculiar kind of symmetric strat-
egy. These strategies are helpful in

Figure 2
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various games. Here’s a classic ex-
ample of such a game.

Exercise 1. Two players in turn
place nickels on a rectangular table
until there’s no room for the next
coin. The one who makes the last
move wins. Which of the players
can ensure a victory?

Game 2. Initially, there are two
piles of nine candies each. Two
players in turn move a candy from
one of the piles to the other and eat
two candies from either of the piles.
The one who can’t make a move
loses.

This is also a simple game to ana-
lyze. First, we notice that every
single move decreases the number N
of candies in the two piles by two, so
N is always even. Then, it’s clear
that a move can always be made
while N > 4. As for the case N =2,
there are two possibilities: (1) both
“piles” consist of one candy; (2) one
pile has two candies, the other is
empty. The next move can be made
only in case (1) and that would be
the end of the game.

Now, the number N necessarily
becomes equal to 2 after eight
moves. But each move changes the
parities of the numbers of candies in
both piles (because one candy is
shifted to the other pile). So after
eight moves the parities are the
same as they were initially—that is,
both these numbers are odd. This
means that only the first of the two
cases for N = 2 is possible, and this
allows for one more move—the
ninth. So this game is, so to speak,
counterfeit: it always takes exactly
nine moves, and the last move is
always made by the first player. So
this player always wins, regardless
of how the game was played!

Notice the idea of invariant par-
ity used here. By the way, the win-
ning strategy in the previous game
implicitly used a similar idea: by
choosing the initial square of the
same color as the first player’s, the
second player ensures that the two
checkers appear on squares of the
same color after every exchange of
moves. This makes it impossible for
the first player to win even if the
second player makes moves at
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random. In the “candy game” we
can represent the numbers a and b
of candies in the piles as the square
(a, b) on the intersection of the ath
column and bth row of a big chess-
board. Then the (“chess”) color of
this square never changes during
the game, so we can’t get to
squares (2, 0] and (0, 2) from square
(9, 9), because it differs in color from
the first two.

The next game is also, in a certain
sense, “deceptive.”

Game 3. A chess knight is set on
a corner square of a chessboard.
Two players in turn mark a square
such that any unmarked square can
be reached by the knight according
to the ordinary rules of chess with-
out hitting the marked squares. The
player who can’t mark a square in
this way loses.

This is an example of a game that
can be analyzed using the technique
of graphs. Join the centers of any pair
of squares that are one knight's
move apart from each other with a
line. This creates a set of 64 points
(the centers) some of which are
joined with lines (edges). Such ob-
jects are called graphs (a part of our
graph is shown in figure 3). Initially,
our graph is connected: each of its
vertices can be reached along the
edges from the knight’s corner, and
s0 any two vertices are connected by
a path along edges. A move of the
game is equivalent to erasing a ver-
tex and all the edges issuing from it.
The vertex must be chosen so as not
to destroy connectedness of the
graph. When can this be done? The
answer is very short: always!

This is true for any connected
graph. And here is a proof.

Define the distance between
two vertices of a graph as the
smallest number of edges in a path
joining them (this number is well
defined for any connected graph).

VRN

N
()
(%
X5

L7
LR

Figure 3

Fix a vertex K (in our case it’s natu-
ral to choose the vertex that corre-
sponds to the knight’s location) and
find the vertex A most distant from
the fixed one (if there are several,
take any of them)|. This vertex can
be erased. Indeed, if after deleting
vertex A and the edges issuing
from it some vertex V becomes
separated from K, then every path
that joined K to V before we deleted
A had to pass through A. But this
means that V was farther from K
than A had been, which contradicts
the choice of A.

So this game, as well as the pre-
vious, always lasts a fixed number of
moves—namely, 63—and always
ends in a victory for the first player,
regardless of what moves have been
made, as long as they all were cor-
rect. However, as a game proper, it
may be of some interest: if the time
for amove is limited, it may simply
become hard to find a correct move
at a certain stage of the game.

The last two games are real inter-
esting mathematical games. The
first has some especially interesting
theory behind it, which I'll only
touch on. Both can be analyzed by
means of another widely used
method—reverse analysis, starting
from the end of the game.

Game 4. Two players in turn take
stones from two piles. They are al-
lowed to take either any number of
stones from one pile or equally
many stones from both piles at a
time. The player who takes the last
stone-wins. (In the Kaleidoscope
article the initial numbers of stones
in the piles were 13 and 10.)

This game was described by the
Dutch mathematician W. A. Wyt-
hoff in 1907, and his name is often
invoked when the game is dis-
cussed. He didn’t know, however,
that this is an ancient Chinese folk
game, called tsiangshitze |“collect-
ing stones”). Wythoff’s paper was
the first in a long series of works
devoted to the theory of this game,
which turned out to be surprisingly
rich.

Each state of this game is de-
scribed by a pair of nonnegative in-
tegers (n, m)—the numbers of stones
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in the “first” and “second” pile. Of
course, from a practical point of
view there’s no difference between
the states (n, m) and (m, n), but for
the graphic interpretation we’ll use,
it’s more convenient not to unite
them. This interpretation is quite
natural: every pair (n, m} is in the
usual way associated with a square
in a “positive quadrant” of an infi-
nite chessboard (fig. 4). Imagine that
we put a chess queen on the square
(n, m) corresponding to the current
state of the game. If a number of
stones are taken from the first pile,
the queen goes the same number of
squares to the left; taking stones
from the second pile is equivalent to
a downward move of the queen, and
taking equal numbers from both
piles moves the queen diagonally
left and downward by the same
number of squares. The player who
first manages to put the queen on
the (0, 0) corner square wins.

Since a queen, moving according
to these rules, can’t escape the cor-
ner, all squares (states) fall into two
classes: safe squares, starting
from which the first player

34 5 6 7 0

can force a win, and dangerous
squares, which bring victory to the
second player.

Now, beginning from the end—
that is, the final (0, 0) square—we’ll
scan the board and color the danger-
ous positions red and the safe posi-
tions green. The (0, 0) square is, of
course, dangerous (actually, not just
dangerous—it’s disastrous: when
your opponent reaches it, you lose).
Then, any square that lies horizon-
tally, vertically, or diagonally to the
right of or above a dangerous square
is safe, because starting at such a
square you can put your opponent
into a dangerous position in one
move. Applied to (0, 0), this rule
gives the coloring shown in figure
5a. Now we apply a second rule:
color a square red if the file, rank,
and diagonal through it are solid
green below and to the left of it (any
move from such a square creates a
winning position for the opponent).
So we color the new dangerous
squares (2, 1) and (1, 2) red and color
the squares from which these can be
reached in one move green (by the
first rule;—see figure 5b). Proceeding
in the same way, sooner or later
we'll get as far as we want; figure 5¢
illustrates the coloring of the 13 x 10
corner rectangle of the board that
covers our particular initial state (13,
10). In fact, the color of this square
becomes clear at the fourth step of
the process, when the square (7, 4) =
(13 = 6,10 - 6) is colored red. This
shows that (13, 10)is a
green, safe square— c

—
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that is, the first player wins this
game. The strategy is to make
moves that lead to “red squares”—
dangerous states. By our construc-
tion, this is always possible. For in-
stance, in our particular case the
first move can be made in three
ways: by taking either 7 stones from
the 13-stone pile, 2 stones from the
other pile, or 6 stones from each of
the piles.

The mathematically interesting
part of this game is the sequence of
“dangerous pairs” (1, 2), (3, 5), (4, 7),
(6, 10), (8, 13), ... (by symmetry, it
suffices to write out the pairs (n, m)
with n < m). The kth pair (a,, b,) in
this sequence is given by the follow-
ing unexpected relation: a; = [k1],
b, =a, +k, where 1=(1+ J5]/21is
the famous “golden section.” (See,
for instance, “The Ancient Num-
bers mand t” in the Kaleidoscope de-
partment of the January/February
1991 issue of Quantum.). Another
description of this sequence can be
given in terms of the “Fibonaccian
number system,” which was de-
scribed in exercise 14 of I. M.
Yaglom’s “Number Systems” (in
the last issue of Quantum): the
numbers a, are all those numbers
whose Fibonaccian notation ends in
an even number of zeros, and b, is
obtained from a, by adding a zero at
the end of the Fibonaccian notation
of a,. (See also exercise 15 in that ar-
ticle, where the numbers a_, b_ are

n’ "n

discussed from a different point of

7 8 9 1011 12 13
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view.) All the pairs (a,, b,) can eas-
ily be written out using the follow-
ing property: if (a, b) is a dangerous
pair, then the pairs (b-1,a+b-1)
and (b + 1, a + b + 2) are dangerous.
I leave these remarkable properties
as (not easy!) exercises.

Game 5. There is one pile of
stones, from which a player can re-
move one, two, or three stones in a
move. The player who ends up with
an even number of stones wins. The
initial number of stones in the pile
is N = 25.

This game can also be modeled
on a square grid and investigated
with “reverse analysis.” However,
unlike the situation in Withoff’s
game, now we’ll have to take into
account how many stones are col-
lected by each of the players. So it
will be convenient to give names to
the players—say, A and B—and de-
note by a and b the numbers of
stones they’ve gathered by a given
moment in time, respectively; these
numbers will be called A’s and B’s
(current) scores. Of course, the num-
ber s of stones left in the pile at the
same moment is s = N — (a + b),
where N is the total number of

stones; s will be called the (current)
stock. Any current position is com-
pletely described by the correspond-
ing pair of integers (a, b) and will be
represented by the square (a, b) of
the grid (fig. 6). The game starts at
square (0, 0), proceeds in one-, two-,
or three-square moves (A goes to the
right, B upward), and stops at any of
the terminal squares (a, b) with
a+ b = N. Terminal squares form the
diagonal “line” joining squares
(0, N) and (N, 0).

Notice that now we must provide
for four rather than two (as in
Wythoff’s game) kinds of positions.
Indeed, a position (a, b) with the
scores of a and b of different parity
is inequitable with respect to the
players, because one of them must
add an even and the other an odd
number of stones to what they’ve
already collected. Such a position
can be favorable, say, to A regardless
of whose turn it is to move. So we
have to consider all of four logical
possibilities: a position can be a win-
ning one either for the first player
(that is, whoever goes first, A or B, can
force a win), for the second player, for
player A (regardless of who goes first),
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or for player B. We'll color the corre-
sponding squares green, red, white, or
black, respectively.

So we start coloring from the
end—that is, from the terminal row.
The terminal squares (a, b) with
even a ([0, N), (2, N=2), ...) are left
white; all the rest are colored black.
Now A’s goal can be described as
“reaching a white terminal square,”
while player B is heading for a black
terminal square.

It’s interesting that this rule for
defining a winner is equally appli-
cable to the case of an even N, where
the original rule is simply meaning-
less. In other words, if two players
apply the rules of this game to an
original stock of evenly many
stones, then the final scores of both
players will have the same parity.
So in this case we can redefine the
winner—say, by saying that A wins
if each player has an even number of
stones at the end and B wins if each
has an odd number. In fact, both this
rule and the original rule can be con-
sidered part of the same general rule,
if we say that the winner of the game
is A if A’s final score is even, and it
is Bif A’s final score is odd. Then it’s
not hard to see that our analysis ap-
plies just as well if N is even.

Ileave it to the reader to extend the
coloring—first to the “preterminal”
diagonal row, then further down.
The resulting pattern for N = 17 is
shown in figure 6. Verify it and
malke sure that for N = 25 the square
(0, 0) is also red—that is, in our game
the first player loses. The strategy
for A is: always go to a red or white
square. Player B should step only on
red and black squares.

Actually, the painting quickly
becomes rather boring—you will
notice that the pattern repeats itself
(this is obvious in figure 6), which
makes your work completely me-
chanical. So you may want to derive
and prove a general rule for coloring
any square directly, without build-
ing a painted road to it. For instance,
any two squares in the same hori-
zontal or vertical row eight squares
apart ((a, b)and (a + 8, b) or (a, b) and
(a, b + 8)) or on a diagonal parallel to
the terminal row two squares apart



(la, b) and (a + 2, b - 2)) are always
the same color.

All these regularities in the pat-
tern boil down to the following ob-
servation.

If the game begins with an ini-
tial stock N in the interval
4k — 3 <N <4k, then the first player
can score a number of the same paz-
ity as k. To achieve this, the first
player should make only odd moves
(take one or three stones) and al-
ways leave a stock divisible by four
or greater than that by 1.

In other words, the first player
must take one stone if N =4k -3 or
4k -2 and three stones for N=4k - 1
or 4k. This leaves a stock of 4(k — 1)
or 4k — 1) + 1, so any reply of the
second player brings the stock s into
the interval [4(k - 1) - 3, 4(k - 1)].
Now the game starts anew, as it
were, with N = s and the first player
making the first move again. Then
another exchange of moves will
bring s into the next interval of this
form [4(k - 2) -3, 4(k - 2]], and so on.
So there will be exactly k exchanges,

in which the first player will score
the sum of k odd numbers—a num-
ber of the same parity as k.

Our initial stock N = 25 can be
represented as 4 - 6 + 1, so any first
move leaves a stock s in the inter-
val4-6-3<s<4.6. This means
that the second player can apply the
strategy described above to score an
even number (because 6 is even) and
force a win. The same conclusion is
true for any N of the form
8/+1=4-(2]) + 1. The value N = 8
is a winning one for player A (the
rule for determining the winner in
the case of an even N was described
above), and N = 8] + 4 is a winning
value for B. All other values of N are
winning ones for the first player.

Exercise 2. Classify all values of N
according to the result of this game
if the players are allowed to take as
many as m stones, 1 <m <M. Hint:
consider separately the cases of odd
and even m. Q
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On page 32 of the May/June issue of Quantum it is
asked “how many angular minutes does the Earth ro-
tate every minute?” The answer given is based on the
assumption that the Earth spins 360 degrees on its axis
in 24 hours.! But this is not true. In a “typical” day the
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sis, but since our 24-hour period, which we call a day,
is based on a yearly average, it is in fact the case that
the Earth spins (360 + (360/365)| degrees in one of our
days. This means that, at New York’s latitude, sun-
set is later each day beginning about December 7, not
December 21.2

'The answer is correct to three significant
figures.—Ed.

IWagon, Stan. “Why December 21 is the
Longest Day of the Year.” Mathematics Magazine,
63 (1990), 307-311.
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