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Saint Apollonia Destroys a Pagan Idol (ca. 1450) by Antonio Vivarini

T’S CURIOUS THAT, PAINTING IN THE MID-15th

century, Antonio Vivarini depicts the destruction of a
work of art from antiquity. The transition to the Renais-
sance was well under way by this time, and one would
expect to see the greater tolerance of that period reflected
here. More than tolerating Greek and Roman culture, the
Renaissance actively embraced it. How to explain this
untimely assault?

Perhaps Vivarini’s motives (or more likely, his patron’s)
are more subtle. After all, Vivarini is showing us the
statue, intact, as if to say: “Back then, when St. Apollonia
was alive, we had reason to fear the ideas represented by

this object, but no longer. Now that our Faith is fully
established, we can appreciate the beauty of this sculp-
ture, as well as the beauty of St. Apollonia’s action.”
Was the irony of the saint’s name—taken from one of
the greatest gods in the Greek pantheon—lost on
Vivarini and his patron? Or the irony of destroying the
representation of something that the saint, and Vivarini,
and his patron all agree does not even exist?
Nonexistent things clearly wield a fair amount of
power. Without ascribing sainthood to our authors, we
direct your attention to the article on page 4, where John
Wiley investigates (nonexistent?) magnetic monopoles.
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The so-called “ozone hole” over Antarc-
tica has been the subject of much re-
search and debate since it was first ob-
served in the early 1980s. It engendered
fears that levels of atmospheric ozone
might be falling elsewhere, posing a
threat to life forms on Earth, since ozone
absorbs harmful ultraviolet radiation
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Will the National Science Education Standards
be used to sell our students short?

HE NATIONAL RESEARCH
Council of the National Acad-
emy of Sciences (NAS) released
its draft standards for science
education in grades K-12 in late
November. No doubt you read about
them in the newspapers. Since then
I have been working with more than
30 biology, chemistry, physics, and
earth and space science teachers to
interpret these standards. We have
also had access to science educators
and university scientists as we work
through our interpretations.

You may be wondering: what are
these “standards,” and where did
they come from? And why do they
need “interpreting”?

The National Science Teachers
Association had asked the NAS to
take on the task of preparing those
standards so that we could gain wide
acceptance for a document that
would say what science young
people should learn before they
graduate from high school. I wanted
to use those standards in a project
designed to provide a solid six years
of science for all students. This
multiyear course of study would in-
clude physics, chemistry, biology,
and the earth and space sciences,
each of which would be taught every
year in grades 7 through 12.

Now, we have encountered a sur-
prising amount of criticism from
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many of our science education col-
leagues, who feel that we have mis-
interpreted the National Science
Education Standards. So I thought it
might be useful to get the input from
some of our best science teachers
and from some of our best science
and math students—readers of
Quantum magazine.

Most science educators, and many
scientists, take the position that real
science or math—something of sig-
nificant depth—is beyond the reach
of most American young people.
They suggest instead that we try to
achieve something they call scientific
“literacy” in our students. Science-
literate students would be able to
use science words in the right con-
text and even be able to explain in
words some of the laws and theories
from science. But the greater empha-
sis would be placed on the relevance
of the science to immediate personal
or societal problems. The underly-
ing assumption is that scientific
methodology would enable a person
to solve such problems even though
he or she lacks a quantitative under-
standing of science.

I have taken the position that
most young people can learn real
science, and learn it at significant
levels, if it is sequenced properly
over long periods of time. It is essen-
tial that abstractions come only

after the students have experienced
what they’re learning about. For ex-
ample, various kinds of motion
should be observed, and only then
should the words distance, time, and
speed be used descriptively. Next,
symbols would be used for these
quantities. Finally, numbers with
units would be used. Only when
concepts like speed, velocity, accel-
eration, displacement, and time
have been well developed should
students begin to learn relationships
among these concepts, or their rela-
tionship to force or work. And, of
course, before one talks of force and
work, these concepts must first be
grounded in experience.

So what do you think? If you are a
student, do you believe that most of
your fellow students are capable of
learning physics and chemistry, as
well as the quantitative and abstract
aspects of biology and the earth and
space sciences? Or do you think that
you have some special, unique, inher-
ent ability? I pose the same question
to the teachers among our readers.
You know your friends well. You can
answer this question.

Now, I'm not asking whether
they are inclined to learn such ma-
terial, or feel disposed to study it as
things stand now. It’s obvious that
many students have voted with
their feet, avoiding science and




math like the plague. I'm merely
suggesting that we educators should
be providing experiences that give
rise to a sense of awe and excite-
ment—the kind of feeling about sci-
ence that you have already experi-
enced. That positive feeling, along
with striking examples of how sci-
ence is useful, should provide suffi-
cient motivation for any student.
Am Iright? Or am I way off base?
Send me your views by letter or by
e-mail (bgaldridge@nsta.org).
—Bill G. Aldridge
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Magnetic monopoly

A real monograph on something that may not exist

by John Wylie

HE REALLY FUN THING

about writing an article for

Quantum is spending time in-

vestigating something trivial in
the name of science and education.
This article represents some digging
I did into the subject of magnetic
monopoles. As a physicist, T don’t
feel that monopoles are particularly
trivial. But my wife Holly, a very
talented artist, wonders why I would
spend so much time researching and
writing about invisible little things
that may not even exist. This is, of
course, precisely why I find mag-
netic monopoles so fascinating—
they don’t exist. I can’t tell you why
they don’t exist, but I might be able
to tell you a little about how they
might behave if they did. This is one
of the things that makes being a
physicist so much fun—imagining
things that could be. In any case, if
I can pass on my interest in mono-
poles to the Quantum reader, then
maybe my wife will learn to under-
stand me just a little better.

North Pole, South Pole

Before going into the subject of
magnetic monopoles, it’s worth
pointing out that you actually know
quite a bit about poles in general.
The first ones you ever learned
about were likely the Earth’s geo-
graphic poles—the North and South
poles, as they are called. The next
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ones you learned about were the
magnetic north and south poles.
These were first noted in 1269 by
Petrus Peregrinus de Maricourt, a
French military engineer, who no-
ticed that the lines of force around
a lodestone seemed to originate
from two distinct locations. The
simplest example of these today are
the painted ends of the magnetized
needle in a compass. Usually the
end of the compass that points
north is painted red and is called the
north-seeking (or more simply, just
the north) magnetic pole. The other
end of the needle, which is often
painted blue, is called the south
magnetic pole.

Of course you know that as far as
magnetism is concerned, north poles
are attracted to south poles, and so we
can conclude that near the Earth’s
north geographic pole (where the po-
lar bears live) lies a south magnetic
pole and near the Earth’s south geo-
graphic pole (where the penguins live)
lies a north magnetic pole. In fact
these two distinct kinds of poles are
not coincidental. The south magnetic
pole lies a little to the south of the
north geographic pole, so that in my
location of Toronto, Canada, my
compass actually points about 10°
west of true north. The fact that the
Earth’s geographic and magnetic
poles don’t coincide makes for an in-
teresting study in itself. It turns out

PARTICULAR SPECULATIONS

that the Earth’s magnetic poles wan-
der about in time and that a good to-
pographic map will tell you just how
much you can expect the north mag-
netic pole to vary in position over the
years. Moreovet, there is geologic evi-
dence that the Earth’s magnetic poles
have been reversed in the past and
that these reversals happened rela-
tively suddenly.

But what is always true about
magnetic poles, whether in the
Earth, a compass needle, or any mag-
net or magnetic device, is that they
always occur in north-south pairs.
These pairs are called magnetic di-
poles. A magnetic monopole would
be the occurrence of an isolated
north or south pole, unpaired. There
are pretty good reasons to think that
such a beast should exist, and most
of these reasons have to do with the
symmetry of nature. You may hear
a physicist say that the Maxwell
equations that govern electromagne-
tism become perfectly symmetrical
if magnetic monopoles exist. This in
itself is not a bad reason to believe
in monopoles, but we shall see that
Dirac, working in 1931, found a way
to explain one of the great mysteries
of physics, and the matter rested on
there being at least one monopole
somewhere in the universe. We’'ll
look into this and see how physicists
are looking for monopoles. But first
we had better fill in some basics.

Art by Sergey Ivanov
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Electric and magnetic monopioles

Let’s go back to some basic elec-
tricity and magnetism and recall
that the force on a charge due to an
electric field is F = gE. An electric
“dipole” is composed of two sepa-
rated charges +¢g and —-g. We could be
very formal and call each charge an
“electric pole,” one positive and one
negative. The electric pole strength
could be defined as g = F/E. One
such pole on its own would be called
an electric monopole.

If we do the same thing for mag-
netism, we would say that two equal
but opposite magnetic poles with
pole strengths g* = F/B constitute a
magnetic dipole. Here B is the mag-
netic field. A magnetic monopole
would be the occurrence of a lone
magnetic pole, north or south, of
pole strength g*. Since we know
how to investigate problems involv-
ing electric monopoles, otherwise
known as charges, we know how to
make calculations involving mag-
netic monopoles. We can, for in-
stance, write down what the mag-
netic field due to a single isolated
monopole must be!

The electric field due to a single
charge q is a radial field that obeys
the inverse square law. The magni-
tude of the field a distance r away
from the charge is

E= 4
47580 1"2
where g, = 8.85 - 10712 C2/N - m?.

Hence the magnetic field due to a
monopole must be

B:MO q*

’
41 rZ

where p, = 41 - 107 N/A2.

You might be wondering how we
knew exactly what the magnetic con-
stant y/4m had to be. I'll tell you
without proof or explanation (you can
look forward to learning more about
this as your physics education
progresses) that the root of the ratio of
the electric constant k, = 1/4ne, to the
magnetic constant k= u,/4n must
equal the speed of light c. (In fact, the
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magnetic constant L, in S.I. units is
defined in terms of our choice for the
electric constant and the speed of
light—it’s not an experimentally de-
termined value in itself.) From this
follows the amazing relationship

1

Ho€o

:C,

which ties together electricity, mag-
netism, and light as parts of the
same physics. You already know, for
instance, that light (or, more gener-
ally, electromagnetic radiation) is
composed of oscillating electric and
magnetic fields. For our purposes,
this means that we have a good
working formula for the magnetic
field due to a magnetic monopole.

Sadly, and perhaps surprisingly, a
lone magnetic monopole has never
been found, but this does not pre-
vent us from wondering what its
properties might be.

Properties of @ magnetic monopole

In 1904 ].]. Thomson studied the
theoretical motion of an electron in
the vicinity of a magnetic mono-
pole. Of course, he wanted to know
how he would recognize a magnetic
monopole if he was ever to be so
lucky as to come across one. We are
experienced in testing for the pres-
ence of electric monopoles \Lhap
and I'll remind you how we do
We fire a charge at it and look for its
characteristic deflection.’ To detect
the presence of a magnetic mono-
pole, we will also im [
test charge toward it, b
understand what h:: of -
tion we are looking £ [he force
exerted by a charge on another elec-
tric charge is in the radial direction;
the force exerted on a moving
charge by a magnetic monopole is

!Although I haven’t mentioned it
yet, we can also think of a
gravitational field as being generated
by a gravitational monopole (usually
called a mass). We detect the presence
of such a pole also by looking at the
deflection of a moving test mass.
Unlike poles in electromagnetism,
there is no negative pole in gravity,
and so there is no repulsive
gravitational force.

a )

electron g \, ® v (into page)

F
B
b e
@F (out of page)
electron q
v

Figure 1

more complicated and will require
a careful explanation.

In figure 1a, we set up the configu-
ration of our imaginary expeniment.
Our test charge of mass m and charge
g will have an initial velocity v to-

ward our nxed and stationary mag-

s, both par-
velocity, ¥ tii one
i e and

distance be

iS ZeT0 -h— velocity wil

radial ucld lines and there will be no
force exerted on the charge. It will
eventually collide with the mono-
pole. This is an extremely unlikely
scenario, and so we will sketch out
the motion of our test charge for
nonzero aiming errors. Our charge
finds itself moving across magnetic
field lines. If the magnetic field were
uniform, the charge would simply
move in a helical path about the
field lines. In the special case where
the charge’s velocity makes a right
angle with the magnetic field lines,
the charge would move in a circular
orbit. Most high school students



study these situations and even
learn to calculate the radius of the
charge’s circular (or helical) motion.
Our situation is different for two
very important reasons. The field is
not uniform—it is diverging. So the
charge finds itself entering regions of
stronger and stronger magnetic field.

We can understand the charge’s
trajectory if we break its behavior
down into two stages. In figure 1, the
two essential characteristics of the
charge’s motion are summarized. At
all times, one can imagine breaking
the charge’s velocity into two compo-
nents: the radial component, parallel
to the magnetic field lines; and the
tangential component, which will
always be perpendicular to the field
lines. Initially the charge’s motion is
largely, but not entirely, radial as it
has been directed toward the mono-
pole with only a small aiming error.
In figure 1a, the initial, small, tangen-
tial component of the velocity of the
charge is shown as being “into the
page.” There is no force on the charge
due to its radial component of the
velocity. The force on the charge due
to its tangential component will also
be tangential as shown (try out your
right-hand rule here to make sure

a

you're with me on this).

The first general characteristic of
our test charge is now apparent. As it
approaches the monopole, it will ex-
change translational motion for circu-
lar motion. We know that an ex-
change of translational kinetic energy
for rotational kinetic energy must
take place, because the magnetic field
is conservative. Since the force on a
moving charge is always perpendicu-
lar to the charge’s velocity, the force
cannot change the speed of the
charge, only its direction. The charge
that initially was directed toward the
monopole will slow its direct ap-
proach toward the monopole while
picking up a circular motion. Since
the field grows in strength as the
charge nears the monopole, this effect
becomes stronger and stronger until
the charge has a purely circular mo-
tion and is no longer approaching the
monopole. Although the charge had
a largely radial velocity to begin with,
it will eventually have a purely tan-
gential motion.

In figure 1b, we consider the force
on the tangential component of the
charge’s velocity due to the mag-
netic field. In this case, the force is
“out of the page.” So here’s the sec-

b

ond general characteristic of our
charge’s motion: as the charge gains
rotational motion, a repulsion be-
tween the charge and the monopole
grows that must reconvert the rota-
tional motion back to translational
motion but now in the opposite di-
rection from whence it came. Put-
ting this all together, we would ex-
pect our charge to approach the
monopole but begin spiraling in
along one of the field lines and being
repulsed as it does so. At some point,
the charge will have only circular
motion and, still being repulsed, will
begin to spiral out again along the
same field line. Finally, we would
expect the charge to come firing back
at us with the same speed that we
initially gave it. This motion is not
unique to a purely radial field such as
that from a monopole. Any strongly
diverging magnetic field will reflect a
moving charge in this way.

The motion of the charge is plot-
ted in figure 2 in three dimensions.
The initial velocity of the charge
was in the z direction and the initial
position of the charge was at the
pointx =1, y = -5 relative to a mono-
pole at the origin. The variables plot-
ted are dimensionless quantities

0.5

Figure 2

0.5 1 1.5

Computer calculations of an electric charge’s trajectory near a magnetic monopole.
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used to describe the charge’s mo-
tion. Figure 2a represents a “top”
view of the charge’s x, z motion.
Notice how the charge exchanges its
translational motion for rotational
motion, at first slowly and then
more and more quickly as the mag-
netic field strength increases. Figure
2b shows an end-on view of the
charge’s motion. The charge is ini-
tially coming toward us (out of the
page) and reaches a point where its
motion is purely circular. The repul-
sive forces then send it back in the
-z direction, re-exchanging its circu-
lar motion for translational motion.
The spiral motion of the charge
along a radial field line is clearly
seen in the two views shown.?

The problem with Thomson’s
question of 1904 is that it assumes
that we might somehow be in a po-
sition to fire electrons at a station-
ary monopole. Solving this problem
certainly gives us insight into the
properties of a monopole, but we are
far more likely to have one go zip-
ping by us than to trip across one
just sitting around. We'll have to get
a bit more sophisticated in our ideas
for detecting monopoles, but first
it's useful to realize that there is
much in nature that we can better
understand in terms of our mono-
pole physics.

Magnetic monopoles in nature

The title of this section is a bit of
a cheat, since magnetic monopoles
don’t exist (or at least, one has never
been seen). Nevertheless, our stud-
ies of monopole physics will allow
us to understand nature better. To
see this, let’s first investigate the
field produced by a magnetic dipole.
In figure 3 we have a magnetic di-
pole and we wish to calculate the
magnitude of the field at a point x

21 can’t take total credit for the idea
of making these computer plots. In
1988 I gave a talk on monopoles at a
training session for the Canadian
International Physics Olympiad Team.
One member, David Hogg, sent me
some similar computer plots that he
did in the physics computer lab in his
first year at MIT. It’s always satisfying
when a former student becomes my
teacher.
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Figure 3

Magnetic field (solid lines) of a dipole,
which is the superposition of the two
radial fields (dotted lines) surround-
ing each separate pole.

from the dipole’s midpoint and on a
line along the dipole’s axis. The clas-
sic field lines due to a dipole (think
of the Earth or a simple bar magnet)
have been sketched in. The magni-
tude of the field is found by super-
posing the individual monopole
fields:

wherer, =x-I/2 andr, =x +1/2. Far
from the dipole, for x > I, the expres-
sion simplifies to give

B(x)= H—OZ—?,

4n X

where m = g*1 is the magnetic dipole
moment. This is the correct expres-
sion for the on-axis dipole field
(which is not usually calculated in
this way). You might have a little
fun and write down the expression
for the magnetic field far from the
dipole but along a line perpendicu-
lar to the line of the dipole. This is
also an inverse-cube field, and so one
could argue that the magnetic field
due to a magnetic dipole, far from
the dipole, goes as 1/x°.

The point of all of this is that the
field due to a magnetic dipole is the
superposition of two radial mono-
pole fields. The above calculation is
just one way of confirming this. Re-
member that the separation be-
tween the poles of a dipole is I. Sup-
pose we examine the dipolar field at

a distance r <« I from one of the
poles. Essentially we would see only
the monopolar radial field so that,
while monopoles do not exist in
nature, the behavior of a charged
particle close to one of the poles in
a dipolar field (or more generally,
any multipolar field) is essentially
that discussed in the previous sec-
tion. To find a stunning example of
this, let’s visit the Van Allen Radia-
tion Belts.

In May of 1958, an American
physicist namedJ. A. Van Allen an-
nounced that there was an intense
belt of high-energy particles sur-
rounding the Earth. The announce-

ment was based on the readings
from a Geiger counter he had placed
e first

on the rocket that launched th
US satellite (Explorer I). Subs
studies showed two
belt within two Earth

Earth’s center and an outer belt be-
tween two and eight Earch radii. The
] ly protons originat-

DWeT _-t‘.‘,.‘:;b of
400 and 1,000 km
so low that the

in the inner belt may have energies
as high as 3.0- 107 €V, and the ¢ inten-
sity is such that as many as 000
particles may cross a 1- ;r:i area
each second. It’s estimated thzat, to

produce such figures, an average pro-
ton must remain trapped within the

Figure 4



belt for 10 years! What could ac-
count for this containment of high-
energy charged particles?

In figure 4, the Earth’s magnetic
field is shown with the inner Van
Allen Belt sketched in. The trajec-
tory of a proton initially headed out
of the belt is shown. As in our ear-
lier discussion, the proton will spi-
ral in along a field line toward a
magnetic pole, but will eventually
be reflected back upon its initial
line. Reflecting back from the other
pole in a similar fashion, the proton
could be trapped for years.

It’s time now to return to the
main thrust of this paper—investi-
gating the physics of monopoles. I
promised we’d explore a great mys-
tery in physics, and so—here we go.

Dirac monopoles

In 1931 Paul Dirac used quantum
mechanics to study the properties of
a magnetic monopole and found a
possible answer to the question of
electric charge quantization. It re-
mains to this day a mystery why
electric charge exists only in mul-
tiples of the fundamental charge
e=1.6-10"" C. Dirac found an ex-
pression for the magnetic pole
strength that seemed to indicate
that if at least one magnetic mono-
pole exists in nature, electric charge
would necessarily be quantized.
Dirac used some pretty advanced
concepts from quantum mechanics
to do this, but using our modern
understanding of superconductivity,
we can avoid the advanced math and
get to the heart of the matter.

A superconductor allows current
to flow with absolutely no resis-
tance. Many metals become super-
conducting below a very low tem-
perature (often comparable to the
temperature of liquid helium). Re-
cently there has been a great deal of
interest in the field of high-T_ super-
conductivity, where some special
compounds have been made to su-
perconduct at high critical tempera-
tures—in the neighborhood of
T, =100 K. Imagine if you will a loop
made of superconducting wire. An
emf induced in the wire for however
short a period of time will cause a

I induced current

A induced
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Figure 5

permanent current to flow. There is
no resistance to damp out the in-
duced current. We could induce this
current by passing a magnetic flux
through the loop. A magnetic flux is
the product of the magnetic field
passing through a current loop and
the loop’s enclosed area. Faraday’s
law states that
do

emf=-—"

dt’

where ¢ is the magnetic flux through
the loop of wire. If at any time the
flux through the loop is changed, an
emf will be induced in the loop and
hence a current. The negative sign
in Faraday’s law is a nod toward
Lenz’s law, which states that the
induced emf will oppose the change
that caused it.

Imagine as well that a monopole
with pole strength g* (as in figure 5)
is directed toward our superconduct-
ing loop. An initial current I would
be induced, producing a magnetic
field B through the loop, which
would, in turn, oppose the direction
of the field due to the monopole that
caused the induction. After the
monopole has passed through the
loop, the induced current still flows
in the same direction so as to produce
a field that will replace the diminish-
ing monopole field. So, as a mono-
pole passes through the loop, a cur-
rent will flow in only one direction.

1
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Figure 6

This is very different from the
current induced in a current loop as
a magnetic dipole is passed through
(figure 6). In this case, the current in-
duced as the magnetic dipole ap-
proaches the loop is in the same di-
rection as that for the monopole, but
the induced current for the receding
dipole is in the opposite direction.

The current induced in a super-
conducting loop by a passing mono-
pole will remain long after the
monopole has gone. This signature
event would allow one to detect the
passage of a magnetic monopole.

Many experiments have been de-
signed along these lines. One prob-
lem that arises is to manufacture a
large enough superconducting detec-
tor that can be shielded from exter-
nal variations in the ambient mag-
netic field. On February 14, 1982
(St. Valentine’s Day), a physicist
named Blas Cabrera, working on an
experiment at Stanford University,
recorded the signal of a single large
candidate event that gave exactly
the right signature for the induced
current. Cabrera used a four-turn,
superconducting loop with an area of
20 cm?. The “Valentine’s event” was
stated to have an uncertainty of only
+5%. Even though Cabrera could not
attribute the event to any cause other
than the passage of a monopole, it is
not generally accepted as proof that

CONTINUED ON PAGE 46
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BRAINTEASERS

Just for the fun of it

River traffic. A raft and a motorboat set out downstream from a point A on
the riverbank. At the same moment a second motorboat of the same type
sets out from point B to meet them. When the first motorboat arrives at B,
will the raft (floating with the current) be closer to point A or to the second
motorboat? (G. Galperin)

B142

Double-edged ruler. Construct the center of a circle drawn on the plane
using only a ruler with two parallel edges whose width is smaller than the
diameter of the circle. (A. Demidov)

B143

Candle in front of a mirror. The image of a candle is seen in a mirror.
What will happen to the image if a sheet of glass is placed between the
mirror and the candle? (The orientation of the glass is the same as that of
the mirror.)

B144

Number system unknown. Find the number n such that the alpha-
numeric equation KYOTO + KYOTO + KYOTO = TOKYO has a

solution in the base-n number system. (As usual, each letter in the
equation denotes a digit in this system, and different letters denote
different digits.) (V. Dubrovsky, A. Shvetsov)

B145

X-ray vision required. Three red and three blue disjoint loops are drawn on
the plane. A part of the figure is covered with a sheet of paper so that one
loop is covered completely and all the others are partially visible (see the
figure). What color is the covered loop? (V. Proizvolov)
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Smale’s horseshoe

Mathematical footwear that left an imprint

by Yuly llyashenko and Anna Kotova

HEN THE AMERICAN
mathematician and Fields
Prize winner (1966) Stephen
Smale offered his “horseshoe”
to the world some 30 years ago, it
caused a sensation in the theory of
differential equations. And vyet this
construction is simple enough to be
presented within the framework of
the high school math curriculum.

Symbolic dynamics

To get our feet wet, we begin with
a problem introducing symbolic dy-
namics that was used in the 56th
Moscow Mathematical Olympiad:

For any two real numbers a and b con-
sider the sequence
p,=[2lan+ b}, n=0,1,2, ...

(where {x} and [x] denote the fractional
and integer parts of a number x, respec-
tively).! Any set of successive terms of
this sequence will be called a word. Is
it true that any ordered set of k zeros
and ones is a word in the sequence p,

for a certain pair of numbers a and b if
(a) k=4, (b) k=52

That is, we form the arithmetic
progression na + b, then take the frac-
tional part of each term. We double
each fractional part, then form a new
sequence by taking the integral part
of each result. Experimentation for
different values of a and b will show
that the sequence p, consists of ones

IMore formally, [x] is defined as the
largest integer not greater than x,
while {x} is defined as x — [x].—Ed.

and zeros. Indeed, the fractional part
varies in the interval [0,1), so the in-
teger part of twice the fractional part
is either O or 1.

This problem has a nice geomet-
ric interpretation. Consider a circle
whose circumference has length 1,
touching a number line at its origin.
Now imagine that both halves of
the axis are wound about the circle.
Then any point x on the axis fits
onto the point on the circle ob-
tained by rotating the origin
through the angle 360°{x} about the
circle’s center. Clearly, all points of
the axis that differ by an integer fit
the same point on the circle, be-
cause the corresponding rotations
differ by an integer number of full
turns, and so are actually the same.
So, the points x and {x} are repre-
sented by the same point of the
circle. Now the problem about the
sequence p, turns out to be a prob-
lem about symbolic dynamics of ro-
tations of a circle. What do we mean
by this?

Consider
the points on
the circle
correspond-
ing to b,
a+b,2a+b,

2a+b

12

a+b

SYMBOLIC DYNAMICS

thesequence{na+b},n=0,1,2,.... We
also see that all these points are ob-
tained from the first one, b, under suc-
cessive rotations through the angle a
(here and below all angles are expressed
in fractions of a full turn). If pointna + b
lies on the upper semicircle from 0
(inclusive) to 1/2 (exclusive), the cor-
responding value of p, is 0. For points
on the lower semicircle, p, = 1.

Now we can explain the phrase
“symbolic dynamics.” Dynamics re-
fers to the motion of a point around
the circle under repeated (iterated)
rotations. Symbolic refers to the
character of the information about
the positions of the point: we're in-
terested only in what half of the
circle the point belongs to, rather
than its exact location. Symbolic
dynamics allows us to solve the
problem easily.

If there are many successive zeros
in our sequence, the angle of rota-
tion, or rather its fractional part, is
small, because our moving point

S &
Y
o 7

N %
~0

b N

... [see figure
1). As we
noted above,
they can be
viewed as
representing

na+b

Figure 1

Figure 2
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stays on the upper semicircle under
a sufficiently large number of suc-
cessive rotations by the angle a.
When it finally gets into the lower
semicircle, it will have to stay there
for a rather long time as well (because
a is small—see figure 2). Therefore, a
sequence in which a solitary 1 pops
up in the midst of a long series of 0’s
can'tbeawordinp,.

In particular, we can show that
for k = 5, the word 00010 can never
occur. Indeed, the fact that there are
three zeros in a row in p, means that
lal < 1/4 of a full turn. At the same
time, the segment 010 shows that
the point made a jump from the up-
per semicircle down to the lower
one, and then back to the upper one.
This is possible only when lal > 1/4
of a full turn. This contradiction
shows that the answer fork = 5 is no.
As for the case k = 4, any of the 16
possible k-digit words of zeros and
ones can occur in p_ (this can be
proved by direct search, which we
leave to the reader as an exercise).

Vocabulary

This olympiad problem is a good
example of “symbolic dynamics.”
We would like to consider more gen-
eral situations like this. To do so, it
will be convenient for us to intro-
duce a number of general notions.
Consider a map of a certain do-
main—say, from the plane, although
this restriction isn’t obligatory—
into another (plane) domain. The
first domain (where the map is de-
fined) is called the phase space of the
map. The maps resulting from suc-
cessive repetitions of the original
map are called its iterates. More ex-
actly, these are positive iterates,
while the repetitions of the inverse
map are negative iterates (with re-
spect to the original map). Iterates
are defined on a domain that, in gen-
eral, is a part of the entire phase
space. Throughout this article we’ll
use the notation f?(x) for the nth it-
erate of a map f. (For n > 0, it’s f ap-
plied n times; for n < 0, it’s the in-
verse map ! applied Inl times; and
for n = 0, it’s the identity map.)

We define the orbit of a point x
under a map f as the set of the images
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of x under all iterates /2 of f (n € Z).
This set is defined only for points x
in the intersection of the domains of
all iterates, both positive and nega-
tive.

Now imagine that the phase
space is split into two parts, S, and
S,. To each point whose orbit is well
defined we assign its “fate.” That is,
we consider a sequence a, of zeros
and ones defined by the following
rule: a, = 0 if the point f*(x) belongs
to Sy, and a, = 1, if f*(x) € S;. We
denote this sequence by o(x) and call
it the fate of point x. Along with the
“full fate” (or just “fate”), which is
obtained when n ranges from —oo to
o, we'll sometimes use its “seg-
ments”: the future and past fates,
which correspond ton>0andn <0,
respectively, or finite fates, corre-
sponding to various finite segments
of numbers n, <n<n,.

Symbolic dynamics deals only
with this information about orbits—
it doesn’t care about the exact posi-
tion of the point f(x), but asks only
which part of the phase space this
point belongs to. It studies natural
questions similar to those that were
discussed in the olympiad problem
above: can any finite or infinite se-
quence of ones and zeros be realized
as a fate of a certain point? If it can,
how many points have a given fate?
Solving our first problem, we found
that some sequences can’t be fates of
points. The second question, about
the set of points with a given fate,
wasn’t discussed in this setting and
is left to the reader as another very
useful problem.

The horgeshoe map

In this setting, we can begin to talk
about Smale’s horseshoe. We must
admit right from the start that this
map doesn’t look like a horseshoe at
all. The origin of the name will be ex-
plained at the end of the article.

Take a unit square. Divide it into
five equal vertical strips and, simi-
larly, into five equal horizontal strips
(fig. 3). Leave only the second and
fourth vertical strips; denote the left
one S, the right one S,; similarly,
denote by S, and S| the second and
fourth (from the top) horizontal strips.

1/4

1/4

Figure 3

Now consider the map that con-
tracts the rectangle S, by a factor of
1/5 vertically, stretches it fivefold
horizontally, and lays what’s ob-
tained over Sj. Some thought will
show that the point in the top left cor-
ner of our unit square at a distance 1/4
from the top and left sides is left in-
tact under this mapping. So this turns
out to be the point relative to which
the vertical contraction by a factor
of 1/5 and the horizontal dilation by
a factor of 5 are performed.

This is how our map will work in
the rectangle S,. But its domain con-
sists of two rectangles—S, and S;. On
S, it’s defined quite similarly except
that the top left corner of the big
square must be replaced with its bot-
tom right corner. The map contracts
S, five times vertically, stretches it
five times horizontally, and lays it
over $/. The point in the original
square at a distance of 1/4 from its
bottom and right sides remains fixed
(fig. 3).

Thus, the horseshoe map is the
map shown in figure 3. Its phase space
is the union of the rectangles S, and
S,; its range is the union of Sj and §;.

It turns out that the set of points
for which full orbits of this map are
defined is much leaner than the phase
space itself. To describe it, we’ll need
a construction of Cantor’s perfect set,
also called the Cantor discontinuum,
or just the Cantor set.

Cantor's perfect set

The definition of the Cantor set
we’ll give here is not exactly the
usual one. Consider the segment



[0, 1]. Divide it into five equal parts,
leave the second and fourth inter-
vals, and erase the other three. Then
do the same operation with each of
the remaining segments: divide it
into five parts, delete the parts at the
ends and in the middle, and so on.2

The segments left after the first
step, [1/5, 2/5] and [3/5, 4/5], will be
called the segments of the first rank.
Then, by induction, the segments of
the nth rank are constructed as the
corresponding pieces of the seg-
ments of the (n - 1)st rank. Denote
by W, the union of all the segments
of rank n.

We define Cantor’s perfect set C
as the intersection of all sets W,
n=123,...

Is this intersection nonempty?
How many points does it contain?

It turns out that the set C has
exactly as many points as the entire
segment [0, 1].

To prove this remarkable state-
ment, let’s write down all numbers
from O to 1 in the quinary number
system (that is, to the base 5 rather
than our ordinary 10) and consider
the segments of rank n:

[1/5,2/5]=[0.1,0.2],
[3/5, 4/5] = [0.3, 0.4]

(fractions on the right side are
quinary—that is, the expression
0.a,a,a,... denotes the number
a,/5 + a,/25 + a,/125 + ..., where
0 < a,<4). We see that the numbers
from these segments can be de-
scribed as those whose first digit af-
ter the (quinary) point is 1 or 3. (The
right endpoints of our segments
seem to be exceptions. However, we
could write them as periodic frac-
tions 0.2 = 0.14 and 0.4 = 0.34, or
simply ignore them—they’ll be de-
leted in the next step anyway.) What

2The classical construction divides
the segment into three parts, erases the
central one, puts the other two through
the same operation of erasing the
central third, and proceeds in the same
way to infinity. (A related construction,
“Cantor’s staircase,” was discussed as
problem 7 in “Bushels of Pairs” in the
November/December 1993 issue.) We
can satisfy ourselves that the “two-
fifths” and “two-thirds” constructions
are equivalent.

happens when the segments of rank
1 are subdivided into segments of
rank 2? Two smaller segments of
length 1/25 remain from each of
them:

[1/5 +1/25,1/5 + 2/25],
[1/5 +3/25, 1/5 + 4/25],
[3/5 + 1/25, 3/5 + 2/25],
[3/5 + 3/25, 3/5 + 4/25].

In the quinary notation, the num-
bers in these segments are written as
0.11...,0.13..,,0.31...,, 0.33..., re-
spectively, so their second digits af-
ter the point are 1 or 3 as well.

And it’s clear that this will con-
tinue forever: for any number from
the set W its first n quinary digits
are only ones and threes. (You can
prove this rigorously by induction.)

So, any point of Cantor’s set defined
above can be written as an infinite
quinary fraction all of whose digits
are ones and threes.

Conversely, any such fraction
represents a point from the set C.
Indeed, if the first digit after the
point in a quinary fraction is 1, the
corresponding point belongs to the
left segment of the first rank; if this
digit is 3, the point lies in the right
segment. Since the second digit is
also 1 or 3, the point belongs to one
of the segments of rank 2. Then, by
induction, we can show that this
point belongs to W, for any n—that
is, to the intersection of all the sets
W, which is the set C.

Now, if we replace all the ones in
our fractions with zeros, and all
threes with ones, we'll get all pos-
sible infinite fractions consisting of
ones and zeros. But they can be
thought of as binary representations
of all the numbers from 0 to 1! This
establishes a one-to-one correspon-
dence between Cantor’s set and the
entire segment [0, 1].

It’s an interesting exercise to
verify that the total length of all
the intervals that are deleted from
[0,1] in the course of constructing
Cantor’s set is 1. This means that
we’ve built a subset C of the unit
interval that contains as many
points as the entire interval, but
doesn’t take any room on this inter-
val at all!

Symbolic tynamics of the horseshoe map

Before we get to points that have a
prescribed infinite fate on the horse-
shoe map, let’s consider a simpler
question: what does the set of points
with a given finite fate look like?

For instance, let a, = 0 or ag=1.
What is the corresponding set of points
in the phase space? The answer can
be read directly from the definition.
The fact that a, = 0, by definition,
means that the image of x under the
zeroth power of f belongs to S,. But
f0is the identity mapping: f9(x) = x,
and so the condition a, = 0 means
that point x lies in S;. And a, = 1, of
course, corresponds to S;.

Now let’s examine the same
question for a finite fate of length 2.
What is the set of points with given
values of the pair a,a, (which can be
00, 01, 10, or 11)?

Look at figure 4. The points 00 are
those that lie in S, along with their
first images. This means that the
image of such a point belongs to the
second of the five equal squares into
which the rectangle Sj is divided.
What are the sets (pre-images) from
which these squares are obtained
under the map f? The answer is
clear: we must cut the rectangle S,
into five equal vertical rectangles.
The map f takes the kth of these
rectangles (counting from the left)
into the kth square from the left in
S¢. So the set of points with the fu-
ture fate 00 is the second from the
left vertical strip in S,. Similarly, the
fate 01 awaits the points from the
fourth strip from the left in S;. The
sets of points with the future fates

S
§1
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f
000700 01 10 11
Figure 4
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10 and 11 are the second and fourth,
respectively, of the five vertical
strips in §,.

Now it’s easy to draw the points
whose future fate begins with three
given symbols a,a,a,. Consider, for
instance, the set of points with the
future fate 000. They all lie in the
strip with the future fate 00. The
map f takes this strip into a narrow
horizontal rectangle of height 1/25
and length 1. But we want the points
in question to have the fate 000.
This means that their images under
the second iterate f> must lie not
only in the narrow rectangle but in
Sy too. The intersection of S, with
this rectangle is a 1/5 x 1/25 rect-
angle, the darkest in the figure, and
it is the image of the set with the
fate 000 under 3. Therefore, this set
itself is the vertical narrow red strip
(of width 1/125)—the second of the
five strips into which the 00-strip
can be divided.

These arguments can be consid-
ered indefinitely and lead to the fol-
lowing lemma. In its statement, we
use a coordinate system whose origin
is at the lower left-hand corner of the
original unit square. We express these
coordinates in quinary notation.

Lemma 1. The set of points with a
given infinite future fate w* =
a,a,...a,... is a vertical segment
consisting of points whose x-coordi-
nates all equal a(w*) = 0.0y,...x,....,
where o, = 1if a, = 0, and o, = 3 if
a, = 1, and whose y-coordinates
vary from O to 1.

To prove this we note that, as was
illustrated above, all the points with
a given fate of length n have their x-
coordinates in a fixed segment of the
nth rank—one of those that ap-
peared in the construction of the
Cantor set. A rigorous proof is left as
a problem for the reader.

Now we come to the main result
of our research.

THEOREM. Any sequence o of ze-
ros and ones that is infinite in both
directions can be realized as the fate
of one and only one point. The set of
all points that have a well-defined
infinite fate consists of the points
whose x-coordinates belong to the
Cantor set C on a horizontal side of
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the square and whose y-coordinates
belong to the Cantor set on a verti-
cal side.

Proof. The given sequence o =

..4_,a_,a,a,4d,... can be represented

as a combination of two subse-
quences—one infinite to the right,
the other to the left: o* = aya,a,...
and o = ...a_ja ,a_,. We need one
more lemma to conclude the proof
of this theorem. Lemma 2 carries
the result of lemma 1 over to se-
quences infinite to the left, and is
proved in exactly the same way.

LemMmA 2. The set of points with a
given infinite past ®™ = ...a_,...a_,is
a horizontal segment whose points
have the same y-coordinate b(w~) =
0.B,B,....,where B =1ifa =0,
and B, = 3if a_, = 1, and whose
x-coordinates vary from 0 to 1.

Thus, we've found the set of all
points with the future fate o* (it’'s a
vertical segment) and the past fate -
(it’s a horizontal segment). So what is
the set of points with the fate w?
Clearly, it’s the point of intersection
of these two segments! Such a point
always exists and is unique.

So the theorem has been proved, and
we can gather the fruits of our labor.

Gorollaries

First let’s consider the points
with the simplest fate—the stable
points shown in figure 3. The top
left one, u,, stays in its place in S,
throughout the entire past and future.
Its fate consists only of zeros. Simi-
larly, the fate of the bottom right
stable point u, consists only of ones.

Besides stable points, there’s another
kind of interesting point—periodic
points. These are the points that come
back to their initial positions after a
number of iterations of the map f.
How many such points are there?

An unexpected and remarkable
property of f is that the number of
these points is infinite.

CoroLLary 1. The map f has infi-
nitely many periodic points.

Proof. A periodic point has a pe-
riodic fate—that is, a periodic se-
quence of zeros and ones. Not only
that—our theorem allows us to
prove the converse statement: if the
fate of a point is periodic, then the

point itself is periodic.

Indeed, suppose that for some
positive integer p the fate of a point
x satisfies the property

(04 a

n+p_ Yn
for any n € Z— that is, it’s periodic
with period p. Then the point itself
returns to its place after no more
than p iterations of the map f, be-
cause points x and f?(x) have the
same fate, and therefore they coincide
by the uniqueness of a point with a
given fate. It remains to note that
there are infinitely many periodic
points, since there are infinitely
many periodic sequences of 0’s and
1’s, and each defines a periodic point.

In the course of its evolution under
iterations of the map f, a periodic
point x “jumps” between a finite
number of positions—namely, x, f{x),
..., f?|x), where p is its period. Another
type of orbit is one that approaches a
certain limit point as n — . This
means that all the points of such an
orbit with sufficiently large numbers
stay within a neighborhood of the
limit point, no matter how small it is.
It’s easy to see that the limit point u
must necessarily be a fixed point of
the map 1. Indeed, if points f%(x) ap-
proach point u as n — oo, then point
f7* 1(x) approaches f{u), because, by
the definition of f, the distance be-
tween 2+ I(x) and f{u) is no greater
than five times the distance between
f4x) and u, so it also tends to 0. But
the sequences f7(x) and f* (x) geo-
metrically are the same (they differ
only in how they are numbered), so
they approach the same point, and
flu) = u. All these considerations can
be applied to the limiting behavior of
an orbit as n — — as well.

Combining the past and the fu-
ture limiting properties of an orbit,
we come up with the following defi-
nitions: an orbit is called homo-
climic if its points approach the
same fixed point both as n — < and
n — —oo, If they approach different
fixed points in the infinite past and
infinite future, we say that the orbit
is heteroclimic.

CoroLLARY 2. The map f has infi-
nitely many homoclimic and hetero-
climic orbits.



To prove this, consider a point
whose fate consists of uninterrupted
zeros starting from a certain mo-
ment in the future and reaching
back from a certain moment in the
past. There are infinitely many such
points, and so infinitely many or-
bits. Let’s show that each of these
orbits is homoclimic with the limit
at the stable point 1, from §,.

Suppose, for instance, that “fu-
ture zeros” appear at the moment n:
a,=a, ,=..=0.Then the infinite
future fate of fX(x), k > n is the same
as that of 11 (for 11, the fate consists
only of zeros). By lemma 1, f%(x) and
u, have equal x-coordinates. So f¥(x)
for k > n always stays on the same
vertical segment in S, and, by the
definition of f, is pulled closer tou, by
afactor of 1/5 with every application
of f. This means that f¥(x) approaches
u, as n — . The same argument
holds for the past except that the ver-
tical segment through u;, must be re-
placed with the horizontal one.

Replacing zeros with ones, we’ll
obtain homoclimic orbits approach-
ing the second fixed point u, (in S, ).
And if ones are substituted for zeros
only in the past or in the future,
we’ll get heteroclimic orbits.

Notice that the description of
homo- and heteroclimic orbits we
used here is complete—that is, any
of these orbits has a fate that con-
tains uninterrupted zeros and/or
ones on both ends.

The next statement generalizes
the previous one.

CoroLLary 3. For any two points
x and y there exists a point whose
orbit approaches the orbit of x in the
future and the orbit of y in the past.

Try to prove this fact yourself.
The result you may want to use (and
which was factually used in the
proof of corollary 2) appeared in our
proof of the theorem above: any se-
quence of ones and zeros that con-
sists of the “past” half o~ and the
“future” half w* is realizable as the
fate of the point with coordinates
(a(w*), b(w~)), where a and b are as
defined in lemmas 1 and 2.

We conclude with one more prop-
erty of periodic orbits, whose proof
is also left as an exercise.

Cororrary 4. For any period p,
there are only a finite number of pe-
riodic points.

This means, in particular, that
any periodic point with a given pe-
riod has a neighborhood free of other
points with the same period. An-
other interesting question that can
be asked in this context is how
many periodic orbits with a given
smallest period p there are.

So why was the example we ex-
amined so sensational? Why did it
change mathematical thinking with
regard to dynamics?

L aplace and Smale:;
tieterrminism and chaos

About two centuries ago, in his
treatise A Philosophical Essay on
Probabilities, Pierre Simon Laplace
wrote: “A rational being that at any
given moment knows all the forces
animating nature and the relative
positions of all its constituent sub-
stances could—if its mind were suf-
ficiently comprehensive to subject
all these data to analysis—embrace
in one formula the motion of the
greatest bodies in the universe on a
par with the smallest atoms. Noth-
ing would be left uncertain to it—it
could take in at a glance both the
future and the past.”

These words contain a great
philosophical discovery: all evolu-
tionary processes in the universe
can be described by ordinary differ-
ential equations, perhaps in a phase
space of a very high dimension.

This concept is based on a math-
ematical fact situated not on the
leading edge of the science of that
time but well beyond it—the exist-
ence and uniqueness theorem for
the ordinary differential equation.
This theorem was proved later by
Augustine Louis Cauchy.

For a long time it seemed that the
philosophy based on this theorem
adequately described the reality
around us. Smale’s horseshoe map
provides grounds for a completely
different point of view.

Imagine that we observe a process
described by the map f above: we keep
track of the evolution of points under

iterations of this map. As before,
we're interested in the fate of a point
rather than its actual orbit. Suppose
we repeat our experiment twice with
the same point: both times we choose
a point with the same initial coordi-
nates and see where it’s taken by our
map and its iterates.

The problem is that we can’t mea-
sure coordinates with complete accu-
racy. If initial coordinates are speci-
fied by the experimenter, then the
points chosen in the two trials won’t
coincide exactly—they’ll differ a little
bit from each other. And, as we know,
the smaller the difference, the longer
the fates of the points will coincide.
However, a time will necessarily
come when the fates will part.

Imagine that the first experiment has
been performed and the infinite fate of
the first point has been written down.
Also, imagine another experiment con-
ducted at the same time: someone
tosses a coin and writes a zero if it’s
heads and a one if it’s tails. This results
in another infinite sequence of zeros
and ones. Then the two sequences are
merged: we write out the first sequence
from —eo up to a certain moment in the
future—say, n = 1,000—and from this
moment on we write the second se-
quence. By the theorem about the real-
ization of an arbitrary fate, there is a
point whose fate coincides with the
new sequence. This point will be at a
distance no greater than 57190 from the
first one (their y-coordinates are the
same, because they have the same past
fate and their x-coordinates have the
same first 1,000 quinary digits). So from
the point of view of any experimenter,
the two points will be indistinguish-
able. Nevertheless, their fates, starting
from a certain moment, are different,
and the difference is random in nature.

This effect also manifests itself in
more complicated processes de-
scribed by differential equations. It’s
called experimental irreproducibility.
We can perform the same experi-
ment, reproducing its initial condi-
tions as accurately as possible, and
after a lapse of time observe com-
pletely dissimilar results.

During the last decade, research
into the chaotic behavior of deter-
ministic systems has been a matter
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of the most lively interest. In many
real systems described by differen-
tial equations, determinism ends up
being a purely theoretical property.
In practice, inevitable deviations
lead to chaotically different results
in seemingly identical experiments.

But let’s return to our remarkable
map. We haven't yet explained what
the horseshoe is doing there in its name.

Smale’s horgeshoe

The original mapping considered
by Stephen Smale was constructed as
follows. Take a rectangle (fig. 5),
squeeze it horizontally and stretch it

vertically so as to make a tall and
narrow vertical rectangle out of the
low and wide initial one, then bend it
into a horseshoe and superimpose over
the original figure as shown.

This composition of two maps is
just what was originally called the
horseshoe map. At first glance it has
almost nothing in common with the
map we considered above. However,
if we restrict the domain of the new
map, we'll easily see the similarity.

Consider the intersection of the
domain and range of the horseshoe
map: it consists of the two red rect-
angles S, and S, in the figure. Suppose

the inverse map is linear on S and S,
(that is, it reduces to uniform dila-
tions parallel to the sides of these
rectangles—Smale included this con-
dition in his construction). Then the
complete inverse image S of S, is a
long rectangle near the lower base of
the original rectangle; similarly, from
S, we obtain a long rectangle S| near
the top base of the original rectangle.
The map takes S into S, and S/ into
S,. And this reminds us of our map f
above, though it isn’t the same.

A useful problem is to formulate and
prove an analogue of our main theorem

for this (piecewise) linear map. (@]
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HOW DO YOU
FIGURE?

Ghallenges in physics and math

Math
M141

Incompatibility with primes. A
natural number is put through the
following operation: its last digit is
split off and multiplied by 4, then
the product is added to the remain-
ing number. (For instance, 1995 is
thus transformed into 219.) The re-
sult is again subjected to the same
operation, and so on. Prove that if
the sequence thus obtained contains
1001, then it doesn’t contain any
prime numbers. (B. Ginzburg)

M142

Factored by substitution. Prove that
for any polynomial P(x) of degree
greater than one, there exists a poly-
nomial Q(x) such that P(Q(x])) can be
factored into two factors (all the poly-
nomials have integer coefficients).
(A. Kanel)

M143

Equal sections. (a) Three lines are
drawn through a point in a triangle
parallel to its sides. The segments
intercepted on these lines by the tri-
angle turn out to have the same
length (see figure 1, in which the
three equal segments are colored red).
Given the triangle’s side lengths g, b,
and ¢, find the length of the segments.
(b) Four planes are drawn through a

Figure 1

point in a tetrahedron parallel to its
faces. The sections of the tetrahedron
created by these planes turn out to
have the same area. Given the areas
a, b, ¢, and d of the faces, find the area
of the sections. (A. Yagubiants,
V. Dubrovsky)

M144

Eccentricity of rectangles. For any
rectangle, let’s call the ratio of its
larger side to its smaller the eccentric-
ity of the rectangle. Show that if rect-
angle B is inscribed in rectangle A (so
that each vertex of B is on a different
side of A), then the eccentricity of B
is not less than the eccentricity of A.
(N. Vasilyev)

M145

Patriotic squares. Each square in an
n x n array of squares is either red,
white, or blue. Each red square bor-
ders a white square and a blue
square (so that they share a common
edge). Each white square borders a
red square and a blue square, and
each blue square borders a white
square and a red square. If k is the
number of squares of a given color,
show that (a) k <2n?/3, (b) k >n?/11.
(F. Nazarov)

Physics

P141

Soft landing. A vessel contains two
liquids that do not mix. Their corre-
sponding densities are p, and p,, and
they form two layers in the vessel of
thickness h, and h,, respectively. A
small streamlined body is lowered
into the vessel. The body reaches
the bottom at the very moment its

velocity is zero. What is the body’s
density? Assume that the fluids are
nonviscous. (M. Balashov)

P142

Bermuda Triangle fantasy. Using a
special radar altimeter, astronauts in
the Skylab space station found that
the surface of the water in the Ber-
muda Triangle is 25 m lower than the
normal ocean level. Assuming that
this sag is caused by the existence of
a spherical cavity filled with water
lying just under the ocean floor, esti-
mate the radius of this cavity. The
depth of the ocean there is h = 6 km,
and the average density of the bed-
rock p, = 3 - 10 kg/m?. (A. Stasenko)

P143

Name that gas. A tank contains a
pure gas, but it’s not known which
gas. An expenditure of 958.4 J is
needed to increase the temperature of
1 kg of this gas by one degree Celsius
at constant pressure, while an expen-
diture of only 704.6 J is needed to do
this at constant volume. What gas
does the tank contain? (K. Sergeyev)

P144

Ring in a B-field. A ring of diameter
d = 6 mm made of very thin wire
with a resistivity p=2- 108 Q- m
and a density D =9 - 102 kg/m3 trav-
els along the perpendicular bisector
between the poles of a magnet and
is not able to turn. Estimate the
change in the ring’s velocity if it
was v, = 20 m/s before the ring en-
tered the magnetic field. The mag-
netic field is perpendicular to the
plane of the ring, and the velocity
vector is parallel to this plane. The

CONTINUED ON PAGE 46

QUANTUM/HOW DO YOU FIGURE? 19




Airplanes in 0zone

“The ozone layer is situated at an altitude of 20-50
kilometers. . . . In the absence of this ozone ‘screen’
protecting us from ultraviolet radiation, which is harmful in
large doses, life on Earth in its present form would be

J

impossible.’

Physicist’s Encyclopedic Dictionary

by Albert Stasenko

ISH IN ASPIC, LINGUINI IN

clam sauce, “pigs in a blanket”

—you’ve probably heard of

them, even if you haven’t actu-
ally eaten them. But “airplanes in
ozone”? What on earth does that
mean!?

Let’s back up a bit. As you prob-
ably know, the atmosphere in which
we go to school, converse, and fly,
the air we breathe, is basically com-
posed of nitrogen and oxygen. But it
also contains the so-called minor
gases, whose role is actually far from
minor.

One of the most important of the
minor gases is ozone. Its chemical
symbol is O,, in contrast to ordinary
oxygen (O,). Perhaps your nose has
been tickled by this gas after a thun-
derstorm, or in a coniferous forest, or
in a house where an ozone generator
is operating. (“Ozone” means “odor-
ous” in Greek.) From the human point
of view, the most important role
ozone plays is blocking harmful ultra-
violet radiation from reaching the
Earth’s surface. As you may recall,
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visible light is confined to the range
of wavelengths 0.35-0.7 um, and that
the energy of a quantum of radiation
(photon) is proportional to its fre-
quency and inversely proportional to
its wavelength.

As it turns out, ozone itself is
produced primarily by ultraviolet
radiation, but of shorter wave-
lengths (less than 0.2 um). The en-
ergy of these UV photons is high
enough to split the relatively stable
oxygen molecule in two. Then
these loose atoms attach them-
selves to two other oxygen mol-
ecules, producing two molecules of
O,. These new molecules (ozone)
are less stable than molecular oxy-
gen (they have a lower bonding en-
ergy), so they can be broken by pho-
tons with a somewhat longer
wavelength, though still in the
ultraviolet range of the spectrum
(0.22-0.29 um). Thus, acting in con-
cert, oxygen and ozone absorb al-
most all the UV radiation coming
from the Sun and let only a tiny frac-
tion of it pass—which is nonetheless

STRATOSPHERIC. PHY¥S1GS

From the entry “Atmosphere” in The Young

quite enough for a bad case of sun-
burn if you're not careful.

Although the spectral range
where ozone “works” is narrow, the
corresponding amount of absorbed
energy is three times that of the rest
of the spectrum. And if it weren’t for
ozone, the UV radiation would have
nothing to contend with on its trip
to the Earth’s surface. It’s clear now
why we owe such a debt of gratitude
to the ozone in our atmosphere—it’s
our main bulwark against the UV
radiation that’s so harmful for life
forms on our planet.

Of course, I've simplified the
mechanism of ozone formation. Dif-
ferent processes take place at differ-
ent altitudes, and many substances
participate in the synthesis (and de-
cay) of ozone. Figure 1 shows the
system of other atmospheric reac-
tions that also produce ozone.

Recently scientists, and then re-
porters and all of forward-thinking
humanity, were alarmed by the
“ozone hole” over Antarctica. As a
result, international agreements

Art by Yury Vashchenko



i
+

CHH SO R Ty HE ¢ O 8 H RV OIE O i B S 1Y e Riala LirdMia
(45 8 3 S¥IE: ST HEOY s ) iminid PO Ay 1Y o FOH AT s i 98} FREWLE
[ Mg S OFH AeRK =S HIFEHIVE 9
3+ . s
ST Catyo(aes fis o ERZINCT AW VSR Tl M o Dl 2 CHOINE o B BN
IR RO R H oVa B ST e gz S 2
JICW: XA Lol : SRS O YD) 2y 3 1Y
ol PR AR Y W= NTe H RO HE RIS B> 2] BisL M T3 23,5 Mol = X A4 @ K S M1 s
R OO O S e is EPCTUHL =N ePlzs Nel) Y IR = T
i
4 - ‘
> !
I
| ‘
~ |
i : ] i
Figure 1

were concluded that prohibit the substances that “eat” ozone isn’t birth and death of ozone is played
production of agents containing shown in figure 1. This figure is out. We’ll use only what is most
chlorine that are responsible for de- shown not to intimidate but toillus- necessary for our discussion.

stroying ozone—for instance, the trate what will be discussed below. First of all, the total density of
freon in refrigerators and the propel- To reassure the hesitant reader, I'll the atmosphere (a mixture of many
lant in aerosol cans. However, the just say that this isn’t the entire set gases) decreases monotonically
system of reactions involving such of reactions where the drama of the with altitude. If the atmospheric
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temperature were constant and
equal to T, the pressure p and density
p of a gas with a molecular mass M
would vary with altitude y according
to the Boltzmann barometric equa-
tion

p_D_,

Po Po

~Mgy/RT

(1)

The subscript O corresponds to pres-
sure at sea level.

However, the ozone’s density
does not vary monotonically and
assumes a maximum value at an
altitude of about 20-30 km (fig. 2),
depending on the geographical lo-
cation, season, and time of day. Of
course, the fact that the variation is
not monotonic has almost no effect
on the dependence of the total den-
sity of the mixture of gases consti-
tuting the atmosphere on altitude,
since the ozone’s density is less
than the total density by many or-
ders of magnitude. However, it is
just at these altitudes that airliners
will be flying in the near future. At
first glance, there’s no problem: Fly
in, fly out—bye-bye! It reminds me
of an old Russian riddle about a boat
slicing through the water: “I cut, I
cut, but there’s no pain; I go along,
but leave no trace.” But this saying
is totally inappropriate for an air-
liner from the ecological point of
view.

The middle of figure 1 schemati-
cally shows the exhaust of an air-
craft engine as well as the chemical
reactions going on in and around it.
Again, they are not shown to in-
timidate you: even those who solve
this system with computers don't
know everything about the coeffi-
cients in these reactions. So we can
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just contemplate the big picture.
The point is, the airliners will de-
liver this heap of chemicals into the
very heart of the ozone layer—that
is, at altitudes where the ozone con-
centration is the greatest. Mind you,
it will be the most peaceful civilian
aviation. It will be used by business
travelers with briefcases full of
agreements and contracts, tourists
and relatives flying to other conti-
nents, and exchange students trav-
eling to other countries. So “disar-
mament” treaties are out of the
question here—this is the aviation
that we all use.

For commercial aviation to be
profitable, the airline companies
need not a few jet planes but hun-
dreds of them. In sum, these planes
will burn 50-100 million tons of
fuel in the atmosphere, producing
among other things about one mil-
lion tons of the nitrogen oxides NO,
NO,, ... . For convenience, we'll de-
note this set of oxides as NO,. Sur-
prisingly, even nitrogen “burns”
(oxidizes) in the high-temperature
regions of jet engines. Some of the
substances expelled by a jet engine
are harmful to the ozone, and first
among them are the nitrogen oxides
themselves (fig. 1). These reactions
are directly responsible for ozone
depletion. However, this figure
also shows that there are ozone-
producing reac-
tions—both in the
jet engine itself TA
and in the atmo-
sphere. Since the
production of extra
amounts of nitro-
gen oxides may
shift the chemical
equilibrium and de-
crease the amount
of ozone in the air,
it’s very tempting
to decrease the con-
centration of NO_
by any means pos-
sible. But how?

First of all we
need to take a

Cl(r) 2
pL

A solitary round stream

Why does a jet plane need a “jet”—
the high-speed stream of air that its
engines produce? Clearly, it’s the jet
that contains the backward momen-
tum necessary to obtain the plane’s
reactive (forward) force, or “thrust.”
A jet airplane “swallows” the air
that comes in, consumes some of it
(oxygen) to burn fuel (kerosene, as a
rule), and then expels the heated
mixture backward, producing the
thrust necessary for flight. When
kerosene or any other hydrocarbon
is burned in the presence of nitro-
gen, a gaseous mixture is produced,
as shown in figure 1. If hydrogen
were burned instead of kerosene, no
carbon radicals would be present in
the jet. But nitrogen oxides will nev-
ertheless appear in even greater
amounts.

Now let’s consider the mechanics
of a jet. We denote the velocity of the
jet relative to the airplane asu, the ex-
haust velocity of the jet from the en-
gine as u, (the subscript A comes
from the German word Ausgang,
which means “exit”), and the jet’s
velocity at a great distance from the
plane as u_ (it’s equal to the veloc-
ity of the air relative to the airplane,
or simply to the velocity of the air-
plane itself). Bursting into the atmo-
sphere with a velocity of lu, - u_|,

1‘2
— =const
X

= lu(r) —u_)

close look at the
trail left by a jet
airplane.

Figure 3




the jet begins to move relative to the
air with a small and monotonically
decreasing velocity lu-u_| < u,, u_.
While this is happening, the gases in
the jet mix continuously with ever
new regions of the atmosphere. In
this new mixture of gases, the con-
centration of the initial gases will
smoothly decrease from the jet’s
axis to the periphery (see the curve
C(r) in the top part of figure 3).

Similarly, the velocity ulr) - u_
will decrease in the radial direction,
so that layers of the stream moving
at different distances from the axis
will “rub” on one another. The dis-
tant layers will slow the motion of
the nearest ones. A reader well
versed in physics will have restated
it already: “The axial component of
momentum is being transferred ra-
dially.” Such a reader will certainly
have introduced the corresponding
coefficient of dynamic viscosity (in-
ternal friction), and that of diffusion
to describe the mass transfer, and fi-
nally the coefficient of thermal con-
ductivity for the transfer of heat.
Good work! But maybe we're not so
far advanced. Let’s try to describe
these phenomena more simply.

The transfer of all the values men-
tioned and also the motion of the jet’s
particles radially are described in
terms of stochastic (random) motion.
From the theoretical point of view,
this kind of motion is explained in
detail in, for instance, the Textbook
on Physics by Richard P. Feynman,
where you'll find the famous ex-
ample of the drunken sailor who ar-
bitrarily chooses one of four direc-
tions at each intersection in an
unfamiliar town (backward or for-
ward, to the right or to the left). Let’s
get to the crux of the matter. A par-
ticle that comes to a certain point
(fig. 3) will interact with another
particle and then move in any direc-
tion with equal probability. How-
ever, after traveling a characteristic
distance I, it collides with the next
particle and again changes direction
stochastically.

It can be shown that, on average,
each step increases the square of the
distance by I2. Consider a particle
that has made N steps and whose

position is described by the radius-
vector r,. The particle came to this
point from some other point r,_, =
ry— 1. This equation tells us that the
vectors ry,_,; and 1 are not necessar-
ily parallel. Let’s raise this equation
to the second power:

5/ T

=r2

o2y - L

The motion of the chosen particle is
accurately described, because this is
its own history, represented by some
zigzag line. But since we are inter-
ested in the mean value of the coor-
dinates of a vast number of particles,
we sum these squares of the dis-
placements and divide the sum by
the number of particles. In this way
we obtain the mean value. In doing
so we observe that in the last item
the displacements 1 are directed
along and counter to vector ry,_
with equal probability. Thus, aver-
aging over a large number of par-
ticles yields

(@y=@%_H+12+0.

Then, beginning with N = 1, we ob-
tain the next equation by math-
ematical induction:

(%) = NI?

—that is, the average square of the
particle’s displacement during ran-
dom motion is proportional to N
(hence, the mean square displace-
ment <r1%]> is proportional to /N
and not to N, as would be true for
uniform motion).

If the particle’s velocity between
collisions is v, then the time neces-
sary forastepist=1/v,soinatimet
the particle makes N = ¢/t steps. Fi-
nally, denoting r,, simply as r, we get

{2 = tlv.

The magnitude D, which is propor-
tional to Iv, is called the diffusion
coefficient. The exact result for the
case under consideration looks
similar:

(1% = 4Dt. (2)

Let’s denote the concentration of
certain particles in a stream as n—

they can be particles of soot, for in-
stance. Multiplying this concentra-
tion by their travel speed, we get the
density of these particles in the
airplane’s frame of reference: nu_
(it’s assumed here that the jet’s ve-
locity relative to the atmosphere is
negligibly small compared to u_).
Now multiply both sides of equa-
tion (2] by the flux density and by
the number r:

rHHnu_ = 4nDu_tn.

The left-hand side of this equation is
the total flux of all the particles
through a circle of area n(z?). If the
particles are neither attaching them-
selves to one another nor splitting
themselves up—that is, when the
total number of particles doesn’t
change—the left-hand side is con-
stant, too. On the right-hand side we
see the combination u_t = x—that s,
the distance from the airplane. Con-
sequently,
1

n = (3)

Thus, we almost know the
“mechanism” for a jet in the dy-
namical frame of reference attached
to the airplane. The jet’s particles
diffuse radially as they are carried
backward from the plane with an al-
most constant velocity u_ = x/t. So
on average they move along the pa-
rabolas x ~ r2. At the axis this results
in a hyperbolic decrease in the con-
centration (equation (3)).

Readers who are further along in
physics will quickly grasp how the
concentration varies with both coor-
dinates:

L e—rz/(4Dx/uw)'

n(x, r) ~ pr

(4)

o0

(Recall that x/u__ is the time t.)

Both the momentum and the heat
content will change in the same
way:

n(x, r) _qlx, 1) T(x,1)-T.
n, T, -T,
_u(x,r)-u, (4)
= 4—% -
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Equations (4) and (4') will not be of
much use, however, in what follows.
All they can do is give the equation
for the lines where all the dimension-
less parameters in equation (4’) take
constant values—for example, 107!,
102, 1073, and so on; that is, the lines
where the stream is “diluted” by at-
mospheric air down to a concentra-
tion of one tenth, one hundredth, one
thousandth, and so on, compared to
the initial value. These lines have the
characteristic shape shown in the top
part of figure 3.

Drops behind

Now let’s find the conditions
leading to the condensation of water
vapor in the stream. First of all, the
stream must become rather cool.
However, this is not enough to be-
gin condensation. A certain amount
of water is necessary to form a satu-
rated vapor—only then will the
“dew” appear. Strictly speaking, the
pressure of the water vapor at some
point in the stream p must not be
less than the saturated pressure p,.
Previously we saw how p_ changed
with the location. What about p ?

Now it’s time to recall equation
(1). In the argument of the exponen-
tial function there is a relation be-
tween two energies: the potential
energy of a molecule (or one mole M)
at altitude y above sea level and its
characteristic thermal energy kT at
a temperature T (or RT for one
mole): mgy/kT = Mgy/RT. It turns
out that this formula is a special
case of Boltzmann’s more general-
ized assertion: if a system composed
of a vast number of identical mol-
ecules is in thermodynamic equilib-
rium, and if these molecules can be
characterized by certain energy lev-
els (say, E; and E,), the relation be-
tween the numbers of molecules at
these levels obeys the formula

But what is evaporation if not a
process of “fishing out” a molecule
from a liquid into a gas? Perhaps
you've encountered the concept of
the heat of vaporization L—that is,

the energy needed to extract one ki-
logram of vapor from the liquid
phase (the corresponding value for
one mole is ML. This energy can be
taken as a measure of the depth of
the potential energy well where the
molecules of liquid are located and
from which they must be taken to
form gas. So, according to Boltz-
mann’s principle and by analogy
with equation (1), we can write the
relation of the densities of saturated
vapor and liquid as p_/p® ~ e L/RT, or
for pressure values as

7, =ple 5)

Note that this dependence on tem-
perature (the exponential one!) is
much steeper than the hyperbolic
decrease (~1/x) of the jet’s parameters
along its axis (equations (3) and (4)).
Now let’s sketch the change in
the water vapor pressure p_ and satu-
rated vapor pressure p, along the
jet’s axis. There are several possibili-
ties, as shown in the bottom part of
figure 3. For curve 0, the amount of
vapor at every point in the stream is
less than the amount necessary for
saturation. In curve 1, the condensa-
tion condition is met only at a single
point A and the drops evaporate be-
fore they begin to grow. Curve 2
crosses the saturation curve at two
points, B and C; the vapor pressure
between these points is greater than
that necessary for saturation, which
means that in this region the forma-
tion of drops is possible. However,
after starting to grow at point B, the
drops may disappear after point C if
the water vapor pressure in the
stream becomes less than the satu-
ration pressure, because they diffuse
away from the jet into the “dry” at-
mosphere. Finally, in curve 3 there
is the necessary amount of vapor in
the atmosphere itself and this vapor
is close to saturation—p _=p.T —
but it does not condense, perhaps
because there are no foreign par-
ticles to serve as “seeds,” perhaps for
some other reason. But the jet just
happens to contain such particles,
and the vapor, which begins to con-
dense on them at point B, will not
evaporate now, so that the drops will
not disappear, but may even grow at

the expense of atmospheric water
vaporifp > p.T..

Let’s consider the case when all
the water vapor produced in the air-
craft engine has condensed as drops.
It’s known that a great number of
soot particles (carbon resulting from
incomplete combustion) are ex-
pelled from the exhaust nozzle into
the jet. Measurements show that
their density at the nozzle’s opening
varies from 10" to 107 m=3. When
these foreign particles are present,
vapor condenses specifically on
them and doesn’t wait until a sig-
nificant supersaturation (and hence
supercoocling) has been achieved.
Indeed, this is the very reason why
people build fires to combat frost in
orchards and gardens: the vapor con-
denses on the smoke particles and
the phase heat dissipates into the
air, thus preventing the frost from
forming on the plants and damaging
the crops.

So, each soot particle acquires
“its own portion” of water vapor.
From this one can obtain the char-
acteristic size of the water droplets:

4
3 mP0an, =py,

a=3 _Spy . 16)
4mn, p°

Here we neglect the volume of the
soot particle itself, considering this
center of condensation to be very
small.

Now let’s make some estimates,
for, as the old Russian saying has it,
a theory without estimates is like
soup without salt. Assume that the
atmospheric pressure and density
are an order of magnitude less than
the corresponding values at sea level
(you can use equation (1) if you like).
Let the temperature at the nozzle be
three times that in the surrounding
atmosphere; hence, the jet’s density is
one third that in the surrounding air:
Pa = P../3 = py/30 (here we assumed
that the pressure in the jet exactly
equals the atmospheric pressure, in

CONTINUED ON PAGE 48
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- J8sse James discovers
~ the heat equation

Viewing the redistribution of wealth

as a diffusion process

by Kurt Kreith

EGEND HAS IT THAT JESSE
James was a Robin Hood of the
Wild West. According to one
ballad,

Jesse James was a lad, who
killed many a man,

He robbed the Glendale train;

He stole from the rich and he
gave to the poor,

He’d a hand and a heart and
a brain.

Had Jesse used his brain to study
physics instead of train schedules,
he might have considered alternate
means for implementing the social
goals attributed to him. In particu-
lar, he might have noted that the
spread of dye in a petri dish, the dis-
persion of fumes in the atmosphere,
and the flow of heat in a rod all rep-
resent “diffusion processes”’—ones
that bear an interesting relationship
to Jesse’s economic agenda.

Monetary tiffusion

To see how such physical con-
cepts might relate to Jesse’s situa-
tion, let’s consider eight individuals
of varying wealth arranged in a row
(other arrangements will be consid-
ered later). I'll label these individu-
als with integers 1, 2, ..., 8, and de-
note their assets by u(1), u(2), ...,

individual 1 B 3 4 5 6 7 8
u(x) $160 | $30 | $80 | $110 | $200 | $80 | $60 | $40
Figure 1

1(8), respectively. This situation is
represented in the chart shown in
figure 1.

One way of “sharing the wealth”
is to begin by recording the differ-
ences in assets between each indi-
vidual listed and that person’s two
immediate neighbors. For example,
individual 3, with assets of $80, has
$50 more than one neighbor and $30
less than the other; individual 5 (who
may not like the next set of instruc-
tions!) has $90 more than one neigh-
bor and $120 more than the other.

Having recorded such pairs of differ-
ences for each individual in the row,
Jesse might (with some friendly persua-
sion) impose the following rule:

“At my command, let there be a
transfer of funds, from richer neigh-
bor to pooretr, equal to 10% of the
differences just recorded.”

For example:

Individual 3 is to receive $3 from
individual 4, but at the same time
must pay $5 to individual 2,
leading to a net loss of $2;

Individual 5 must pay $9 to in-
dividual 4 and $12 to individual
6, leading to a net loss of $21;

Individual 8, having only one
neighbor, receives $2 from indi-
vidual 7.

When all these transfers are com-
pleted, there exists a new social or-
der represented by the list of assets
in figure 2.

At first glance, this method of
sharing the wealth leaves much to
be desired. Individual 4, who started
out with assets of $110, grew
wealthier, while individual 3, who
started out with $80, lost money.

individual 1 2 3 4 5 6 7 8
u(x) $147 | $48 $78 | $116 | $179 | $90 $60 $42,
Figure 2

21
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individual 1 g 3 4 5 6 7 8
wealth | $137.10 $78.80 | $118.50
Figure 3

Individual 7, who started out with
only $60, saw no change. Finally, we
should note the need of “special
rules” for the individuals at the ends
of the row. Having only one neigh-
bor, they engaged in only one trans-
fer of funds.

The virtue of this particular rule
becomes clear only if we are willing
to repeat it a number of times. While
it’s tedious to do many iterations,
doing one more may help fix the ideas
in your mind. In figure 3, I've started
to enter the results of applying
Jesse’s rule to the chart in figure 2.
(I'1] leave it to you to complete.)

JBsse’s rules restated

In anticipation of having to repeat
this process many times, it may help
to express the underlying rules in
functional notation:

u(1) becomes 1(1) + 0.1[u(2) - u(1)];
u(x) becomes u(x) + 0.1[u(x - 1)
—u(x)] + 0.1[u(x + 1) — u(x)]
or ux) + 0.1Ju(x - 1) - 2u(x)
+ulx+1)]for2<x<7;
u(8) becomes u(8) + 0.1[u(7) — u(8))].

Making use of spreadsheet soft-
ware (see “Look, Ma—No Calculus!”
in the November/December 1994 is-
sue of Quantum or the sidebar on
page 31), we can program these rules
to yield the results in figure 4 (show-
ing six iterations). In fact, with mod-
ern software like Microsoft® Excel,
we can easily repeat these same rules
40 times and then obtain a graphical
representation of the result (fig. 5).

The process represented above is,
in the physical world, called diffu-
sion. It occurs in a variety of situa-
tions, such as the diffusion of toxic
substances in a lake, diffusion of heat
in a rod, and the diffusion of smoke in
the air. A more theoretical example
concerns the location of a small par-
ticle subject to Brownian motion.
While we may know exactly where
such a particle starts out, with time
our knowledge becomes one of prob-
abilities. This “diffusion of certainty”
is another example of the kind of pro-
cess under consideration.

To make our discussion more
specific, we'll focus on the diffusion
of heat in a rod. However, the pos-
sibility of other interpretations
should also be kept in mind.

The heat equation

Underlying Jesse’s scheme for dif-
fusion of wealth was a repeated ap-
plication of the rule

u(x) becomes u(x) + 0.1[u(x - 1)
—Ju(x)+ulx+1)]forx=2,3,..., 7

(the modifications at the ends of the
rows will be discussed later). If we
measure time in minutes (or any
other unit of time) and represent the
wealth of individual x at time t by
u(x, t), this rule can also be written

ulx, t+1)=ulx, t) + 0.1[u(x -1,
—u(x, t) + u(x + 1, t)]

or

ulx, t+1)—ulx, t) =0.1[u(x -1, t)
—u(x, t) + u(x + 1, t)].

Those who have studied calculus
may recognize this latest formulation
of Jesse’s rule as the finite-difference
form of the “heat equation”

u,=0.1u,.

That is, u(x, t + 1) — u(x, t) corre-
sponds to “the change of u(x) in a
unit of time,” or u,. Similarly,

ux-1,t)-2ux, t)+ulx+ 1, t)
=[ulx+ 1, t)-ulx, t)]
~[ulx, t) ~ulx-1]]

is called “the second difference of u
in x” and corresponds to u . How-
ever, calculus won’t be needed to
follow this discussion. Rather, I'll
show how spreadsheets can be used
to represent discrete versions of the
heat equation and to obtain excel-
lent approximations of its solution.

Jesse’s rules were based on a trans-
fer of money between individuals and
their immediate neighbors. In our
physical interpretation, such a flow of
money corresponds to “the flux of
heat” (formally defined as the flow of
energy across a unit of cross-sectional
area). We're all familiar with the fact
that a cup of hot tea will cool faster
in a refrigerator than at room tem-
perature—that is, that the rate of heat
flow depends on the difference in
temperature between the tea and its
environment. Qur particular rule—
making the flow of money propor-
tional to the differences in wealth
between individuals and their imme-
diate neighbors—corresponds to
Fourier’s law: the flux of heat at any
point is proportional to the tempera-
ture gradient at that point.

The fact that money flows from
richer to poorer corresponds to the
assumption that heat flow is propor-
tional to the temperature gradient
multiplied by a negative constant.

In the notation of

=»

 lteration 1 2 3 4 5 6 8 partial differential
0 160.00 3000 | 80.00 | 110.00 | 200.00 | 80.00 | 60.00  40.00  equations, this cor-
1 147.00 4800 | 7800 = 116.00 @ 179.00 A 90.00 A 60.00  42.00  respondsto
2 13710 60.90 = 78.80 11850 @ 16380 @ 9590 & 6120  43.80 flux = —ct .
3 129.48 70.31 80.98 119.06 152.48 99.22 62.93 45.54 *
4 12356 | 7729 | 8372 11859 | 14381 @ 10092 = 64.82  47.28 Jesse'srulewasspe-
5 118.04 8256 8657  117.63 | 137.00  101.60 @ 66.68 4903 cificincallingfora
6 11530  86.60 = 89.27 11646 | 13152 & 101.65 & 6840 A 5080  transfer of 10% of

the difference in
wealth between

Figure 4
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Jesse's Redistribution of the Wealth

Figure 5

adjoining individuals in each unit of
time. This corresponds to setting
¢=0.1in the above equation. In terms
of heat flow, c represents the conduc-
tivity of the material through which
heat is flowing. As anyone who has
picked up a hot frying pan knows, ¢
is quite large for metals and consider-
ably smaller for pot-holders.

This interpretation raises the ques-
tion of whether Jesse could have ex-
pedited the distribution of wealth by
increasing ¢ from 0.1 to 0.6, or even
larger. It’s at this point that some dif-
ferences between our discrete model
and the corresponding differential
equation appear—ones that the reader
can discover by experimenting with
the spreadsheet model discussed
above. It turns out that making ¢ too
large prevents an orderly “sharing of
wealth.” Indeed, this fact is closely
related to chaos theory, but that’s
another story. For now, let’s just note
that if Jesse is in a hurry, he should
consider increasing the frequency at
which money is transferred rather
than making c inordinately large. For
example, rather than transferring
60% of the wealth every minute, he
could insist on a transfer of 1% of the

Assets

2 Individual

wealth every second. It’s this sort of
issue that distinguishes the difference
equations we’re considering here
from the partial differential equations
traditionally used to model the diffu-
sion of heat.

The ends of the row

Interesting issues of a different
kind arise at the ends of the row.
Here individuals 1 and 8 were sub-
ject to the special rules

u(l, t+1)=u(l, t) + 0.1[u1(2, t)
-u(l, t]]

and

u(8,t+1)=u(8, t)+0.1[u(7, t)
- U(8, t)/

respectively. In the case of heat flow
in arod, such special rules correspond
to a particular boundary condition at
the ends of the rod.

The fact that there is no transfer of
money at the left of individual 1 or to
the right of individual 8 makes Jesse’s
rule correspond to arod that isinsulated
at both ends. One consequence of this
boundary condition is that the total
amount of money owned by the indi-
viduals in the row remains constant.

In order to include other boundary
conditions in our monetary version of
the heat equation, it will be conve-
nient to introduce two fictional char-
acters at the ends of our row—indi-
viduals numbered 0 and 9. Individual
Ois located at the left of individual 1,
while individual 9 is at the right of
individual 8. Suppose now that the
assets of individual O are, at all
times, postulated to be identical to
the assets of individual 1, and that
individual 1 (who now has two
neighbors) implements the same
rule as individuals 2-7. That is,

U(O, t) = u(l/ t) (1)
and

u(l, t+1)-u(l, t)
=0.1[u(2, t) - 2u(1, t) + u(0, t)]. (2)

This situation (readily represented
in a spreadsheet) is in fact equiva-
lent to the insulated boundary con-
dition previously considered (why?).
However, this boundary condition
now corresponds to a special rule
being imposed on the fictional
individual O rather than requiring
that we impose a special rule for the
(less fictional) individual 1. Are you
able to impose a special rule on the
fictional individual 9 to achieve a
corresponding situation at the right
end of the row?

The advantage of including such
fictional individuals is that they en-
able us to represent other kinds of
boundary conditions. For example,
suppose that we change the rule for
individual 0 from

u(0, t) = u(l, t) for all ¢

to
u(0, t) = 0 for all ¢,

while individual 1 continues to
abide by equation (2). Individual 0
now plays the role of a “tax collec-
tor” who, at each transfer of funds,
takes 10% of individual 1’s assets.
These rules can also be represented
on a spreadsheet.

In this situation the total amount
of money in the row is not conserved.
Rather, the tax collector drains off
funds every time money changes
hands. (One could also impose a tax
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Jesse's Redistribution of the Wealth
with a Tax Collector at One End and a Robin Hood at the Other

Iteration
30

Figure 6

on money exchanged within the row.
Can you think of a physical analogy
for this in the case of heat flow?)
With a tax collector situated at
the left end of the row, let’s now
consider putting a “Robin Hood” at
the right end—that is, an individual
who gives or takes money from in-
dividual 8 depending on the amount
of money concentrated at the right
end of the row. This can be accom-
plished by settingu1(9, t) = 100 for all

[

very needy less needy

Figure 7

5=

very wealthy

Figure 8
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less wealthy

=)
o
Assets

Individual

values of t, thereby subjecting indi-
vidual 8 to the rule

u(8, t+1)-ul8, t)
= 0.1[u(7, t) - 2u(8, t) + 100].

In physical terms, these rules corre-
spond to a rod with conductivity 0.1
whose left end is in ice water and
whose right end is in boiling water
at 100°C. The graph in figure 6
shows the outcome of applying
Jesse’s rules 40 times with these

ufx=11) ux+1,t

u(x, t)
large cuppedness

u(x, t)

b

large cappedness

ux-1,1t)
=1y ux+1,t

boundary conditions.

Note that this form of diffusion
doesn’t seem to be leading us to
Jesse’s goal of economic equity. As
in the real world, proximity to the
tax collector is a decided disadvan-
tage in this scheme of things!

Cups and caps

Now that we're able to relate
monetary diffusion to a physical
phenomenon—namely, heat flow in
a rod—Ilet’s return to the “bottom
line” in the original economic
model: “Will I get richer or poorer?”
Answering this question in the long
run requires that one know the out-
come of this process for large values
of t, and this may be difficult to pre-
dict. However, the implications of a
single transfer of funds for indi-
vidual x at time t depends only on
the value of the “second difference”

Du(x, t) = ulx -1, t) - 2u(x, t)
+u(x+1,t).

If D?u(x, t) is positive, then indi-
vidual x’s assets will increase as
t >t +1; if D%u(x, t) is negative, they
will decrease; if D?u(x, t) = 0, they
will remain unchanged.

Noting the importance of the
quantity D?u(x, t) for our diffusion
process, we'll refer to it as the “degree
of cuppedness of u(x, t) at time t.” This
curious terminology turns out to be
appropriate for both social and geo-
metric reasons. That is, a cup may

ux-1,1t) ux+1,t)

u(x, t)

small cuppedness
u(x, t)
ux+1,t)

small cappedness




be considered a symbol of need, with
its shape representing the degree of
need (see figure 7a). At the same time,
a graphical representation of u(x, t)
indicates that “positive cuppedness”
corresponds to a distribution that is
convex upward (that is, cup-shaped)
at x (fig. 7b).

On the other hand, negative cup-
pedness (which will also be referred
to as cappedness) may be regarded as
a symbol of relative wealth, with
the shape of the cap representing

the degree of wealth (fig. 8a). Also,
cappedness corresponds to a distri-
bution that is convex downward (or
cap-shaped) at x (fig. 8b).

Where are we heading?

Assuming that the diffusion pro-
cess is approaching a steady state,
we would expect it to have an
“equilibrium solution”—that is,
one that has zero cuppedness and
zero cappedness at every value of x.
As you may have guessed by now,

the condition that

ulx-1)-2u(x)+ulx+1)=0
for1 <x<8

requires that the graph of u(x) consist
of 10 points (0, u(0)), (1, u(1)), ...,
(9, u(9)) all of which lie on a straight
line in the (x, u)-plane. As in Euclid-
ean geometry, this line will be deter-
mined by two endpoints (0, 1z(0)) and
(9, 11(9)). In the case of heat flow, this

CONTINUED ON PAGE 51

N ORDER TO APPLY JESSE’'S RULE TO THE
original eight individuals, we can use a nine-col-

How to make a sprearsheet

(SEE ALSO “LOOK, MA—NO CALCULUS!”
IN THE NOVEMBER/DECEMBER 1994 ISSUE)

whose values are

umn spreadsheet. The first column will keep track 3 ,ter;ion ? | ‘2’ I “3’

of how many times we have applied Jesse’s rule. (2] o 160.00 30.00 80.00 |
We’ll label the remaining columns 1, 2, ..., 8 across i ; 7% gg-ggfizg-gg
the top to keep track of the wealth of the eight indi- 5 3 129.48 2031 | 80.98
viduals. Just below these numbers we enter each % g ﬁg.gi ;Z.gg gg.g
PETBEN'S A68ETE: (8] 6 115.30 86.60 89.27

A | B | ¢ | o | E [ F [ &6 [ #H [ 1

e [l o i | i B bl Now, in accordance with the discussion on page

|80.00

‘ 29, let’s introduce the fictional character at the left

enter the rules:

The third row of the spreadsheet will now be used to

The fact that we are about to “program” a rule is sig-
naled by entering an equal sign in front of the rule it-

‘ end of the row (in Excel there’s a command “Insert”
for doing this). The program for an insulated rod be-

comes
- " A B | c ] D [ E
u(1) becomes u(1) + 0.1[u(2) - u(1]]; AT L L .
—~1)= 0 —c2 160 30 80

U(X) becomes H(X) +0.1 [U(X 1 ) ZU(X) + u(X +1 )] [3]-n2+1  |-c3 =C2+(B2-2°C2+ D2)/10  =D2+(C2-2°D2 + E2)/10 |ZE24(D2-2°E2 + F2)10
for2<x<7. [a]-A3+1  |=C4 =C3+(B3-2'C3+ D3){0  =D3+(C3-2'D3 + E3)10 |=E3+(D3-2E3 + F3)/10
=2=1 [5]-Ad+1  |=C5 ~C4+(B4-2'CA + DAY10 =D4+(C4-2D4 + EY10 |=E4+(D4-2E4 + F4)10
1(8) becomes u(8) + 0. 1[u(7) - u(8 )] A5+ |=C6 =C5+(B5-2°C5 + D5)/10_ =D5+(C5-2'D5 + E5)/10 | =E5+(D5-2"E5 + F5)/10
7 |=A6+1  |=C7 =C6+(B6-2°C6 + DB)10 | =D6+(C6-2"D6 + E6)10 |=E6+(D6-2°E6 + F6)/10
=A7+1__|=c8 =C7+(B7-2°C7 + D7)10_|=D7+(C7-2°D7 + E7)/10_|=E7+(D7-2°E7 + F7)/10

A spreadsheet that includes the rule for the tax col-

self: lector looks like this:
A [ B | C D
[d Moraton, I B - I— T {1 . Iz > [3 .
210 U D - N T— =z [0 0 160 30 80
3 1A+t =B2+(C2-52)/10 =C2+(B2-2'C2 + D2)'10_|=D2+(C2-2"D2 + E2)/10 [3]-A2+1  |-B2 [=C2+(B82-2°C2 + D2)/10_|=D2+(C2-2°D2 + E2)/10 |=E2+(D2-2°E2 + F2)/10
— =A3+1 =B3 =C3+(B3-2"C3 + D3)/10 |=D3+(C3-2*D3 + E3)/10 |=E3+(D3-2*E3 + F3)/10
| 5 |=Ad+1 =B4 =C4+(B4-2*C4 + D4)/10 ;=D4+(C4-2'D4 +E4)10 |=E4+(D4-2"E4 + F4)/10
. X . . =A5+1 =B5 =C5+(B5-2*C5 + D5)/10 ‘=DS+(C5-2'DS +E5)/10 |=E5+(D5-2*E5 + F5)/10
7 |=AB+1 =B6 =C6+(B6-2*C6 + D6)/10 |=D6+(C6-2"D6 + E6)/10 |=E6+(D6-2*E6 + F6)/10
Contlnulng these rules down flVe more rows ylelds T=A7:1 =B7 =C7+(B7-2*C7 : D7)/10 }:D7:(C7-2‘D7 : E7)/10 =E7:(D7-2‘E7 + F7)/10
A B [ c | D
[i i . . &
S T = = Converting these spreadsheets into graphs required
=B2+(C2-B2)/10 =C2+(B2-2*C2 + D2)/10 =D2+(C2-2"D2 + E2)/10 .
“ro:(CaBay10 SoonB52Co+ Doyi0__|=Dos(C52Da + Eayio an advanced spreadsheet program and a sizable com-
=B4+(C4-B4)/10 =C4+(B4-2'C4 + D4)[10 |=D4+(C4-2'D4 + E4)/10
e e lwi puter. Consult the reference manual for your software
=B6+(C6-B6)/10 =C6+(B6-2"C6 + D6)/10 =D6+(C6-2'D6 + E6)/10 | : :
-B7+(C7-87)/10 =C7+(B7-2°C7 + D7)10 SD7+(GT-2D7 + EV10 to see if and how this can be done. Good luck!

QUANTUM/FEATURE 31




Art by Sergey Barkhin

VENIF YOU HAVEN'T TAKEN

any “official” astronomy courses,

you've certainly had occasion to

acquaint yourself with the out-
standing achievements in as-
tronomy. Naturally, your physics
course touched on mechanics, of
which celestial mechanics is a part.
And there’s natural history, and ge-
ography, and ancient and medieval
history . . . lots of opportunities to
learn about this great branch of sci-
ence. In all these subject areas, astro-
nomical problems were undoubt-
edly discussed in passing—topics
like planetary motion and star obser-
vation, navigation and eclipses, and
the mechanics and properties of
worlds beyond our own. This cez-
tainly testifies to the ancient ties con-
necting humans with the cosmos, as
well to a continuing interest in what
Johannes Kepler called “celestial
physics.”

Today you'll take part in only a
few acts of the majestic show that
nature presents daily on the celestial
stage.

Questions and problems

1. How many angular minutes
does the Earth rotate every minute?

2. What is the altitude of the Sun
if a vertical object casts a shadow as
long as it is tall?

3. When does the altitude of the
stars above the Earth’s horizon not
change during the course of a day?

4, For an observer situated at one
of the Earth’s geographic poles, the
Sun is above the horizon for half a
year and below the horizon for the
other half. What about the Moon?

5. Why does Venus’s terminator
(that is, the line separating day and
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KALEIDO:

How'S your a

"Astronomy, considered most generally, is
consists of defining celestial motions that dpy

night) look like an elliptical arc from
the Earth?

6. Is it possible to see a reflection
of the Sun in the water of a deep
well?

7. As observed from the Earth, the
Moon takes at least two minutes to
rise completely above the horizon.
How long does it take the Earth to
rise above the horizon for an ob-
server on the Moon?

8. The clouds on Venus are so
thick that the stars can’t be seen. If
you were on Venus, could you be
sure that the planet was rotating on
its axis? If so, could you determine
in which direction it was rotating?

9. What does Saturn’s ring look
like to observers at the equator and
at the poles of that planet?

10. If there is a total lunar eclipse
on Earth, what does an astronaut on
the Moon see?

11. Why do total eclipses of the
Sun in the northern hemisphere oc-
cur more often in summer than in
winter?

12. A white wall illuminated by
the setting Sun looks brighter than
the surface of the Moon at the same
height above the horizon as the Sun.
Does this mean that the lunar soil
consists of dark rocks?

13. Does the Sun look the same
from the Moon as from the Earth?

14. Would the apparent position
of the stars change if the Earth’s at-
mosphere suddenly disappeared?

15. What observations prove that
comets don’t travel in the Earth’s
atmosphere, as was believed in an-
cient times?

16. Why are more meteorites ob-
served from midnight to dawn than
from evening to midnight?




DOSCOPE

' astronomy?

/IS the great problem of mechanics, which
dppear arbitrary.—Pierre Simon de Laplace

Microexperiment

The disks of the Sun and Moon
near the horizon seem to be larger
than when they are higher in the
sky. How one can prove experimen-
tally that this discrepancy is only
apparent?

It’s interesting that . . .

...one of the oldest known obser-
vatories is Stonehenge in Great Brit-
ain. This site is about four thousand
years old. The first “real” astro-
nomical observatory didn’t appear in
Europe until the 16th century.

... the detailed study of the heav-
ens was stimulated by astrology. For
example, about 2,500 years ago
Assyrian priests could predict the
dates of eclipses.

... the name of the inventor of the
telescope is unknown. We know only
this much: in 1604 a dealer in glass for
spectacles, a Dutchman by the name
of Janssen, “made a copy” of a tele-
scope that belonged to an Italian who
remained nameless.

.. . telescopes don’t produce en-
larged images of stars at all. A tele-
scope serves to increase the angular
distance between stars and the
amount of light reaching the eye from
a distant object. This is why people
construct giant telescopes with re-
flectors several meters in diameter.

... optical instrument making be-
came one of the first areas where the
direct participation of physicists
raised an empirical cottage industry
to the level of technological produc-
tion.

. .. the first complete astronomi-
cal textbook appeared in 1618:
Kepler’s Epitome of Copernican As-
tronomy.

.. . the famous English astrono-
mer William Herschel quite seri-
ously believed that the Sun is inhab-
ited. He thought that the Sun’s
surface is cool enough to support life
and that only the clouds floating
above it are very hot.

. . astronomical observations
have lent support to some of the
most important theories in physics.
For example, the way light bends in
the Sun’s gravitational field, which
was observed during a solar eclipse,
or the deviation in Mercury’s orbit,
which was discovered in 1845,
couldn’t be explained by classical
science, but fit quite naturally in the
new conceptual framework pro-
vided by the general theory of rela-
tivity.

What to read in Quantum

g5 “Mushrooms and X-ray As-
tronomy,” July/August 1994, p. 10

4 “An Act of Divine Provi-
dence,” May/June 1993, p. 41

M “The Inevitability of Black
Holes,” March/April 1993, p. 26

IT “Late Light from Mercury,”
November/December 1993, p. 40

22 “The Universe Discovered,”
May/June 1992, p. 12

X “Optics for a Stargazer,” Sep-
tember/October 1994, p. 18

£ “What Little Stars Do (And the
Big Old Planets Don't),” March/April
1994, p. 22 (@

—Compiled by A. Leonovich

ANSWERS, HINTS & SOLUTIONS -
ON PAGE 60

Editor’s note: The Kaleidoscope in
the September/October issue was also
compiled by A. Leonovich.
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PHYSICS
CONTEST

The first photon

“Have other eyes, new light! And look! This is my glory,
unveiled to mortal sight.”—Bhagavad Gita

by Arthur Eisenkraft and Larry D. Kirkpatrick

N ENVIRONMENTALLY
rich village inhabited by curi-
ous people had been fully ex-
plored. All of the interesting
corners and crevices of this remark-
able land had revealed their secrets.
There were no mysteries left. Oh, of
course, some of the villagers re-
marked that a finer microscope may
reveal a little more detail. But most
were pleased with the comfort they
felt in the familiar surroundings.

Such was the state of physics at
the turn of the 20th century. The
great syntheses of Newton and Max-
well remarkably explained so much
about forces and motion, electricity,
magnetism, and optics. Albert
Michelson, America’s first physics
Nobel laureate, remarked that phys-
ics was complete and the following
years would be devoted to simply
increasing the precision of the ex-
periments. Yet there existed a prob-
lem or two that appeared to be stum-
bling blocks. One was the
photoelectric effect—the ability of
light to free electrons from a metal-
lic surface.

Maxwell and Hertz provided the
theoretical and experimental evi-
dence to convince the entire physics
community that light was an elec-
tromagnetic wave. Almost a century
earlier, Thomas Young had argued
that light was a wave phenomenon
and even measured the wavelength
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of this light. Yet a wave picture of
light presented numerous difficul-
ties in explaining the photoelectric
effect. If the light is very dim, it
should take hours to free an elec-
tron. Contrary to this prediction, the
electrons are freed almost instantly.
If the light is very intense, the expec-
tation was that many electrons
would be freed. However, intense,
bright red light does not free even a
single electron. Finally, when the
light is able to free electrons, the
kinetic energies of the electrons do
not depend on the energy reaching
the surface of the metal in a given
time.

In what now seems like physics
folklore, the young patent clerk
Albert Einstein stepped onto the
scene to propose that light behaves
like a particle (known as a photon)
and that each photon has an energy
that depends on its frequency. More
precisely, Einstein attributed an en-
ergy to each photon of light accord-
ing to the equation

E = hv,

where h is Planck’s constant
(6.63 - 10347J - s) and v is the fre-
quency of the light.

The electrons are bound to the
metal with a certain energy defined
as the work function ¢. When a pho-
ton strikes an electron in the metal,
the electron acquires all the

photon’s energy and the photon dis-
appears. The maximum kinetic en-
ergy a freed electron can attain is
equal to the difference between the
energy of the photons of light and
the work function. (Some of the
electron’s kinetic energy is lost in
getting to the surface. In fact, if it
loses too much, the electron cannot
escape the surface.)

Assume that the work function for
a given metal is 3 eV. (One electron-
volt equals 1.6 - 10717 J, the energy
acquired by an electron falling
through an electrical potential differ-
ence of 1 V. Using this energy unit,
h=4.14-10"1eV-s.) A photon of red
light (wavelength = 620 nm) has an
energy equal to 2 eV. Since all pho-
tons of this light have energies of
2 eV, no single photon can provide
the 3 eV required to free the electrons
from the surface. No matter how in-
tense the red light (no matter how
many 2-eV photons are present), the
electron will not be freed. If ultravio-
let light of wavelength 310 nm im-
pinges on the metal, each photon has
a corresponding energy of 4 eV and
electrons come flying off the metal.
The maximum Kkinetic energy K
these electrons can have is the differ-
ence between the two energies:

K. ..=hv-0.

An electron freed by this ultraviolet
light may have a kinetic energy as

Art by Tomas Bunk






large as 1 eV.

A vending machine provides a
useful analogy for what is happening
here. Assume we have a vending
machine that can’t accept multiple
coins. You can submit only one coin
at a time—a penny, a nickel, a dime,
or a quarter. Potato chips cost 10
cents. If you put a penny in the ma-
chine, the penny is returned or lost.
If you put a nickel in the machine,
the nickel is also returned or lost.
However, if you put a dime in the
machine, a bag of potato chips is re-
leased to you. If you put a quarter in
the machine, one bag of potato chips
is released and up to 15 cents is re-
turned in change. Note that when 25
cents is deposited, two bags of po-
tato chips are not released. One coin
can yield one bag or none—that’s
the rule.

The work function of the metal is
the price of the potato chips. The
energy of the incident photon is the
value of the coin dropped into the
machine. If an electron is freed, the
kinetic energy it attains is repre-
sented by the change the machine
releases. A low-energy photon of
light (a coin less than 10 cents) is
unable to free the electron (or a bag
of potato chips.) No matter how
many nickels you have, you will not
be able to free the potato chips. No
matter how intense the light (lots
and lots of low-energy photons), no
electrons will be released. If a high-
energy photon is incident on the
metal surface, electrons will be
emitted. (If a quarter is placed in the
machine, a single bag of potato chips
will be released. More photons
(more quarters), more electrons.

The photon (particle) nature of
light satisfactorily explains the ex-
perimental results of the photoelec-
tric effect. However, it is not able to
explain the wave aspects of light so
clearly demonstrated by Young,
Maxwell, and others. This leaves us
with the question: What is the true
nature of light?

More insight into the nature of
light was attained in the next de-
cades, as it was shown that light be-
haves like a particle in an elastic col-
lision between light and an electron,
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where the momentum of the photon
of light is shown to be h/A = hv/c.
Arthur H. Compton earned recogni-
tion for these experimental studies
in 1922.

The problems for this month fo-
cus on the particle nature of light
and the associated energy and mo-

. mentum of the photons.

A. Monochromatic light sources
with a variety of wavelengths were
incident on lithium and the maxi-
mum kinetic energies of the emitted
electrons were recorded by Millikan
(of the famous Millikan oil drop ex-
periment, which measured the
charge on an electron) as follows:

Wavelength (nm) Kinetic energy (eV)

433.0 0.55
404.7 0.73
365.0 1.09
312.5 1.67
253.5 257

Plot these data and find the numeri-
cal values of Planck’s constant and
the work function for lithium.

B. Show that a free electron can-
not completely absorb a photon. (In
a metal, the surrounding atoms can
participate in the collision, allowing
energy and momentum to be simul-
taneously conserved.)

C. (i) The human eye is so sensi-
tive that it can detect single photons
of light. If the pupil of the eye has a
diameter of 0.5 cm, at what distance
would you place a 50-W light source
(of wavelength 500 nm) so that the
number of photons reaching the pu-
pil is one per second on average? (ii)
At what distance should the light
source be placed so that the density
of photons is on average 1 photon
per cubic centimeter?

Please send your solutions to
Quantum, 1840 Wilson Boulevard,
Arlington VA 22201-3000 within a
month of receipt of this issue. The
best solutions will be noted in this
space and their authors will receive
special certificates from Quantum.

Superconducting magnet

Our contest problem in the No-
vember/December 1994 issue was
adapted from the XXV International
Physics Olympiad held in China and

was concerned with the operation of
a superconducting magnet using a
superconducting switch.

A. Because the resistance r of the
superconducting switch is zero, the
voltage drop across the switch must
be zero—that is, V, = 0. Because the
coil is in parallel with this switch,
the voltage drop across the coil must
also be zero—that is, V_ = 0. There-
fore,

v =0=-r2.
At
This means that the current I,
through the coil cannot change (see
figure 1). Conservation of charge (or
equivalently Kirchhoff’s current
rule) requires that

I=1,+1.

Therefore, any change in the total
current I must result in a change in
the current I  through the supercon-
ducting switch, and I, must drop lin-
early to -4 A. At t = 6 min, the cur-
rent is flowing clockwise around the
loop containing the coil and the su-
perconducting switch.

B. Because the current through
the superconducting switch I_ is
zero, the voltage across the switch
V, remains zero even when the
switch changes to the normal state
and returns to the superconducting
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state. This means that the voltage
across the coil V, must remain zero,
and the current I, through the coil
cannot change. Therefore, the total
current I will also not change (see
figure 2).

C. At t = 3 min, the resistance of
the superconducting switch sud-
denly jumps from 0 to 7, = 5 Q. Be-
cause the current I through the coil
cannot change instantaneously due
to its inductance, the total current ]
(and thus the current I, through the
superconducting switch) must drop
from E/R to E/(R +1,). With R =,
both currents will drop to one half
their original values, as shown in fig-
ure 3.

The currents now approach their
steady-state values exponentially
with a time constant t = L/R,, where
R, is the total resistance connected to
the inductance. Since the two resis-
tances are in parallel, we have

L 10H
T=—=——"—=435
R 25Q
At steady state, there cannot be
any current through the supercon-
ducting switch. Otherwise, there
would be a voltage drop across the
coil, necessitating a changing cur-
rent through the coil in violation of

the steady-state condition. There-
fore, the current from the power
source returns to its original value
and all of this current must pass
through the coil.
AsinpartB, att=
6 min there is no
current through the
superconducting

=]
o

current I (A)

the power switch K and increasing
the total current I to 20 A. Note that
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o

switch and, there-
fore, there are no
changes in the cur-
rents when the su-
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o

6

time (min)

perconducting
switch returns to
Z€ero resistance.

current I, (A)

o

D. Unfortu-
nately, we made an
error in the state-
ment of this part of
the problem. It

(=)

3 6

time (min)

should have stated
that “we will de-
stroy the switch if
the current through
the switch in the
normal state ex-
ceeds 0.5 A.” The
parenthetical re-
mark that follows is
correct, but is not
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relevant to the prob-
lem.
Begin by closing
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READER SURVEY

Free buttons for Juamium readers!

We’ll send an attractive Quantum button to everyone who completes and returns this questionnaire. (Photocopies
are acceptable.) Anyone who reads Quantum regularly—whether a subscriber or not—is eligible to complete this
survey and receive a button. All information is completely confidential and strictly for research purposes.

1. Sex

2. Age

0 Male 3 Female
O Under 15 0 45-54
0 15-24 0 55-64
0 25-34 3 65+
0 35-44

3. Marital status
O Single
O Married

O Separated/divorced/widowed

4. Education

O Attending elementary school
O Attending middle school
O Attending high school
0O High school graduate
O Attending college
College graduate:
0 Bachelor’s degree
O Postgraduate study without
degree
0 Master’s degree
0 Doctorate or equivalent

5. Occupation

O Student

O Teacher/professor

O Other educational professional
O Researcher/scientist

O Professional/managerial

O Professional/nonmanagerial

O Retired

6. Do you have access to a computer?

3 Yes, at home
3 Yes, at school/work
3 No

7. Do you use the Internet? (Check all

that apply)
3 Yes, for electronic mail
3 Yes, for downloadable informa-
tion (FTP, telnet)
3 Yes, for the World Wide Web
(multimedia)
O No

8. How do you get Quantum?

3 Subscribe

O Newsstand

3 From the library
O From a teacher

0 From a colleague/friend
03 Other

9. Approximately how much time do

you spend reading each issue?
0 Half-hour or less
3 Half-hour to one hour
3 One hour to two hours
0 More than two hours

10. Would you still read Quantum if it

had fewer illustrations?
O Yes 0 No

11. What is your favorite department

in Quantum?
0O Brainteasers
O Challenges in Physics and Math
O Physics Contest
0 Math Investigations
0 Kaleidoscope
O Anthology
0 In the Lab
3 At the Blackboard
3 Toy Store
O Happenings
0 Don't have a favorite

12. What types of periodicals do you

read regularly?

O Science magazines (Scientific
American, Discover, Omni, etc.)

O Literary magazines (The New
Yorker, Harper’s, Atlantic
Monthly, etc.)

O Education journals (Education
Week, Teacher, Scholastic, The
Science Teacher, etc.)

O Computer magazines (Byte, PC
Magazine, Mac Week, etc.)

3 Other

13. Optional—please include any
comments you may have about
Quantum, positive or negative
(content, design, price, delivery,
etc.). Attach a separate sheet if
necessary.

To receive your button, complete
the following (please print neatly):

Name

Address

City

State

Zip
Please return this form no later

than JULY 1, 1995, to:

Elisabeth Tobia

Quantum magazine, NSTA
1840 Wilson Boulevard
Arlington, VA 22201-3000

Or you can fax it: 703 522-6091.




MATH
INVESTIGATIONS

Maximizing the greatest

Quod differtur non aufertur

HE LATIN SAYING IN THE

subtitle might be loosely trans-

lated as “You can put off solv-

ing problems, but you can
never really get rid of them.” To
demonstrate the truth of this, we
will revisit a problem area first
called to my attention by F. David
Hammer, with whom I enjoyed a
lively mathematical correspondence
throughout the 1980s.

In one of his letters David sug-
gested the problem of finding the
maximum value of the greatest
common divisor of n3 + 1 and
(n +1)2 + 1, as n ranges through the
set of positive integers. I posed it
in the Third Texas Mathematical
Olympiad in 1981; my first chal-
lenge to my readers is to show that
the answer is 7, attained when
n =5 (mod 7). David also found
that the corresponding answer
forn*+1land (n+ 1)*+1is 17;
I used this recently as a problem in
Math Horizons.

It turns out that the situation
gets more complicated for expo-
nents greater than 4, and a lot more

by George Berzsenyi

The purpose of this column is to direct
the attention of Quantum’s readers to
interesting problems in the literature
that deserve to be generalized and
could lead to independent research
and/or science projects in mathemat-
ics. Students who succeed in unravel-
ing the phenomena presented are en-
couraged to communicate their results
to the author either directly or through
Quantum, which will distribute
among them valuable book prizes and/
or free subscriptions.

complicated if we add an arbitrary
integer k, rather than 1, to each in-
tegral power. Nevertheless, in view
of the wide availability of powerful
computer algebra systems, it should
be possible to shed some light on the
relationship of m and k to G(m, k),
the greatest common divisor of
n™ + k and (n + 1)™ + k, as n ranges
through the positive integers. After
some initial investigations by my
colleague Allen Broughton (using
the computer program Maple),
I found some answers and many more
questions (using Mathematica).
I hereby challenge my readers to

surpass our findings.

It turns out that G(2, k) =4k + 1,
as one can readily deduce from the
identity

(211 + 3)(n? + k)
+(2n+ 1)((n+ 1P + k) =4k + 1.

This was the basis for Problem 13 of
the 1985 American Invitational
Mathematics Examination. No such
identity is known for G(m, k) for
m > 2. By applying the Euclidean Al-
gorithm to the polynomials n™ + 1
and (n + 1)™ + 1, I managed to derive
similar expressions for G(m, 1) for
3 <m <7, but didn’t get further. I
also made some tabulations of
G(m, k) for 3 <m, k <10, but didn’t
manage to discern any patterns. In
particular, it would be of interest to
know for what values of m and k is
G(m, k)= 1?

To whet your appetite, the for-
mulas behind G(3, 1), G(4, 1), and
G(5, 1) are displayed in the box be-
low. Perhaps you will succeed in
finding similar formulas for other
values of m and k and some patterns
among them. Q)

(Bn?-6n+5)(n+1P +1)-(3n2+3n-4)n2+1)=2-7
(20m% - 10n% - 1211 + 23)((n + 1)* + 1) - (2003 + 70n? + 68n - 5)(n* + 1) =3 - 17
(1200* - 850 + 1502 = 30n + 91((n + 1) + 1) - (120n* + 51503 + 79002 + 3951 — 159(n5 + 1) = 11 - 31
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LOOKING BACK

The breat Art

The controversial origins of “Cardanos formula”

HIS ARTICLEIS DEVOTED TO
the major achievement of six-
teenth-century mathematics:
the discovery of the formulas
for solving algebraic equations of the
third and fourth degrees. The events
surrounding this discovery still have
the power to hold us spellbound, as
the fates of four scholars—del Ferro,
Tartaglia, Cardano, and Ferrari—be-
come capriciously intertwined. The
title of this article refers to
Cardano’s Ars Magna, published in
1545. In the words of Felix Klein,
~this extremely valuable work con-
tains seeds of modern algebra that
transcend the bounds of the old
mathematics.”

The 16th century marked the re-
vival of European mathematics after
its medieval hibernation. At first,
European scientists tried to under-
stand and study what was done by
their classical and oriental (Indian
and Arabic) predecessors. The first
achievements of sixteenth-century
mathematicians themselves were in
algebra. (This is because algebra was
in its infancy then, whereas geom-
etry was already a fully developed
science.)

The state of algebra at the end of
the 15th century was summarized
in one of the first mathematics
books printed, Summa de Artith-
metica, Geometria, Proportione et
Proportionalita, published in Venice
in 1494. The book was in Italian, and
s0 it was one of the first scientific
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by Semyon Gindikin

books that was not written in Latin.
Its author was Luca Pacioli, a monk
and a friend of great Leonardo da
Vinci. At the end of the book Pacioli
writes: for solving cubic equations,
“the art of algebra has not yet given
a method, as it has not given a
method for squaring a circle.” These
words were apparently taken as a
statement of the impossibility of a
formula for solving cubic equations.

Scinione del Ferro

However, there was a person who
wasn’t deterred by Pacioli’s opinion.
Scipione del Ferro (1465-1526), a
professor of mathematics in Bolo-
gna, managed to find a method for
solving the equation

X3+ ax = b. (1]

Since negative numbers weren’t
used at that time, the letter coeffi-
cients in equation (1) (and through-
out the article) are assumed to be
positive. So equation (1) and the
equation

x*=ax+Db (2)

were considered completely differ-
ent equations! Del Ferro’s own ex-
plication has not been preserved. He
conveyed his method to his son-in-
law and successor in his professor-
ship Annibale della Nave and to his
student Antonio Maria Fior. After
his teacher’s death, Fior decided to
take advantage of the secret entrusted
to him to become invincible in

problem-solving debates (“scientific
duels”) that were the custom back
then. At the end of 1534 he chal-
lenged Niccold Tartaglia, a math-
ematician from Venice, to a debate.

Niccolo Tartaglia

Tartaglia was born in 1499 in
Brescia into the family of a poor
mounted postman named Fontane.
In his childhood, when his town was
seized by the French, he received a
wound in his larynx and thereafter
spoke with difficulty. That’s where
his nickname “Tartaglia” (“stam-
merer”) comes from. From his early
years, Niccold was left in the care of
his mother. They were so poor that
he went to school for only two
weeks. In his writing class this was
enough time for him to reach the
letter K. Tartaglia was forced to
leave school without ever having
learned to write his own name.
However, he continued to study on
his own and became a “master of
the abacus” (something like a
teacher of arithmetic in a private
commercial school). After 1534,
Tartaglia lived in Venice.

Tartaglia’s scientific studies were
stimulated by his contact with engi-
neers and artillery officers from the
famous Venetian arsenal. In 1537 he
published New Science, a book de-
voted to mechanical problems. This
book played an important role in the
development of ballistics. In 1546 he
published another book, Problems



and Diverse Inventions. In the first
of these books Tartaglia followed
Aristotle in maintaining that a body
projected at an angle first flies along
a slanting line, then in a circular arc,
and, finally, falls vertically down.
But in the second book he states that
the trajectory “has no segments that
would be absolutely straight.” Tar-
taglia translated Archimedes and
Euclid into Italian, which he called
“popular” (vernacular) in contrast to
Latin.

When Tartaglia received Fior’s
challenge, he thought he’d score an
easy victory. He wasn’t even con-
cerned when he discovered that all
thirty of Fior’s problems involved
equation (1) for different a and b.
Tartaglia assumed that Fior himself
couldn’t solve his problems: “I
thought that none of them could be
solved because Brother Luca assures
us in his treatise that this sort of
equation cannot be solved with a
general formula.”

The “combatants” had 50 days to
present their solutions to a notary
public. When that time had almost
run out, Tartaglia heard a rumor that
Fior knew of some mysterious
method for solving equation (1) after

all. The prospect of treating 30 of
Fior's friends to a banquet—for
those were the rules of the battle
(one friend féted for each problem
solved)—didn’t appeal to Tartaglia.
He made a titanic effort and, eight
days before the deadline (on Febru-
ary 4, 1535), fortune smiled on him:
he found the method he needed.
Thus armed, Tartaglia solved all his
opponent’s problems in two hours,
whereas Fior solved none of Tar-
taglia’s problems in time. (Strangely
enough, he didn’t even manage to
solve one problem that could have
been solved by del Ferro’s method.)

Soon Tartaglia discovered a
method for solving equation (2). The
Fior-Tartaglia “duel” and Tartaglia’s
victory became widely known. He
was asked to reveal his secret, but he
refused. Then someone turned up
who managed to persuade him—
Gerolamo Cardano.!

Gerolamo Cardano

Cardano was born in Pavia on
September 24, 1501, into a lawyer’s
family. After graduating from the
university, Gerolamo decided to de-
vote himself to medicine. He was an
illegitimate child, so at first he had
to practice in the prov-
inces for a long time.
It wasn’t until August
1539 that the physi-
cians’ college of Milan
accepted Cardano, af-
ter its rules had been
changed especially for
that purpose. Later he
even became the rec-
tor of this college.
Cardano was one of
the most renowned
physicians of his time,
second only perhaps
to his friend Vesalius.

In the twilight of
his life Cardano wrote
an autobiography,
Book of My Life.
There he mentions his

IKnown variously in

the literature as

':u ML lrms'lmu mumunmhnmwﬁlm u.uul.-'fu ‘tul»llluanu GerOIamo Cardano’

The only known portrait of Niccolo Tartaglia.

Geronimo Cardano, and
Jerome Cardan.—Ed.

mathematical work only a few
times, but writes in detail about his
medical studies. Cardano claims
that he described methods of treat-
ing as many as five thousand dis-
eases; that the number of medical
problems he diagnosed reached forty
thousand; and that his therapeutic
suggestions numbered almost two
hundred thousand. We should, of
course, treat these figures with a
healthy dose of skepticism. None-
theless, Cardano’s fame as a physi-
cian is indisputable. He asserts that
he experienced only three failures in
his medical practice.

But his medical work didn’t take
up all his time. In his leisure mo-
ments he engaged in all kinds of
intellectual activities: philosophy,
astrology, physics, mechanics,
mathematics.

Cardano worked up the horo-
scopes of both the living and the dead
(including Jesus Christ, Petrarch,
Ddrer, Vesalius, and Luther). The
Pope made use of Cardano’s services
as an astrologer. (One nasty legend
has it that Cardano took his own life
to confirm his own horoscope.)

Cardano’s book The Subtlety of
Things (1550) was translated into
French, and throughout the 17th
century it was a popular textbook on
statics and hydrostatics. When
Galileo observed the oscillation of a
natural pendulum (a chandelier in a
cathedral), he followed Cardano’s
advice to use one’s own pulse for
measuring the time. Cardano wrote
about the impossibility of perpetual
motion. Some of his remarks can be
interpreted as the virtual work prin-
ciple. Cardano established experi-
mentally the ratio of the densities of
air and water. He invented the sys-
tem of coupling two shafts for the
king’s coach, now called the cardano
joint {(or cardano shaft) and widely
used in cars. (To be fair, I should
point out that the idea of such a joint
dates back to antiquity; also, one of
Leonardo’s drawings depicts a com-
pass with a cardano joint.)

Some of Cardano’s works were
encyclopedic in scope. During the
Renaissance encyclopedias were
written by individual scholars. The
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first encyclopedias that were
the result of collective effort
didn’t appear until a century
and a half later.

Cardano wrote an enor-
mous number of books
(some were published, some
remained in manuscript
form, and some he de-
stroyed—see the last sec-
tion). Just a description of
them filled up an entire
book, On My Own Works.
His books on philosophy
and ethics were popular for
years. His book On Conso-
lation was translated into
English and influenced
Shakespeare. Some Shake-
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spearean scholars even as-
sert that Hamlet recited his
famous monologue “To be or not to
be . ..” with this book in his hand.
For forty years Cardano played
chess (“I would never be able to ex-
press in a few words how much
damage, without any compensation,
it caused in my domestic life . . .”);
for twenty five years he played at
dice (“. . . but dice caused me even
greater harm than chess did”). From
time to time he would forsake all
other activities to engage in gam-
bling. As a by-product of this passion
Cardano wrote A Book on Dice-
playing in 1526 (not printed until
1663). This book studies problems of
probability and combinatorics; it
also contains some observations
about the psychology of gamblers.

Cardano and Tartaglia

By 1539 Cardano had finished his
first entirely mathematical book,
The Practice of General Arithmetic.
His intention was that it replace
Pacioli’s Summa. When he heard
about Tartaglia’s secret, he was con-
sumed by the desire to enhance his
book with it.

In January 1539 Cardano asked
Tartaglia to send him the rule for
solving equation (1) either for publi-
cation in his book or on the condi-
tion that it be kept secret. Tartaglia
refused: “Begging His Lordship’s
pardon, but if I wish to publish my
discovery I'll do it in my own book
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Milan in 1493 (woodcut).

and not in someone else’s.” On Feb-
ruary 12, Cardano repeated his re-
quest. Tartaglia didn’t budge. On
March 13, Cardano invited Tartaglia
to visit him in Milan and promised
to introduce him to the governor of
Lombardy. It seems Tartaglia found
this prospect enticing: he accepted
the invitation. The decisive conver-
sation took place at Cardano’s home
on March 25.

Here’s an excerpt from the notes
of this conversation (it should be
kept in mind that they were taken
down by Tartaglia; Cardano’s stu-
dent Ferrari says they don’t com-
pletely correspond to the facts):

Niccolo. I am telling you, I turned
you down not only because of this chap-
ter and the discovery made in it, but
because of the things that can be discov-
ered knowing it, for this is the key that
unlocks the door to countless other
areas for investigation. I would have
found a general rule for many other
problems long ago if I were not so busy
at present with translating Euclid into
the vernacular (by now I have reached
the end of the 13th book). But when this
work, which T have already begun, is fin-
ished, I am going to publish a work for
practical application along with the new
algebra . . . If I reveal it to any theoreti-
cian (such as Your Lordship), he will
easily be able to make use of this expla-
nation to write other chapters (because
this explanation is easily applicable to
other questions) and publish the fruits

of my discovery under his own name.
This would destroy all my plans.

Signor Gerolamo. 1 swear to you by
the Lord’s Holy Gospel and not only
pledge my word as an honest man never
to publish this discovery of yours, if you
entrust it to me, but also promise—and
let the conscience of a true Christian be
your guarantee—to encipher it such that
nobody will be able to read this writing
after my death. If I am trustworthy, in
your opinion, do it; if not, let us drop the
matter.

Niccolo. If 1 did not believe this oath
of yours, I would certainly deserve to be
considered a nonbeliever myself.

So Tartaglia allowed Cardano to
persuade him. It’s difficult to under-
stand from the notes above what
made him change his mind. Was he
really so moved by Cardano’s oaths?
After divulging his secret, Tartaglia
immediately left Milan—he even
declined to meet with the governor,
which was why he took the trip in
the first place. Did Cardano hypno-
tize him, or what?

When on May 12 Tartaglia re-
ceived the freshly printed Practice
of General Arithmetic without his
“recipe” (the method of solution
was rendered in the form of a Latin
poem—they couldn’t write formu-
las back then), he calmed down
somewhat.

Cardano received from Tartaglia a
finished method for solving equation (1)



without a trace of a proof. He spent
a great deal of effort on carefully
verifying and substantiating the
rule. From our vantage point it’s
hard to understand what the prob-
lem was: just substitute into the
equation and check it! However,
without well-developed algebraic
notation, things that can now be
done automatically by any high
school student were then accessible
only to a few select people. Without
acquainting ourselves with the origi-
nal texts of that time, it’s impossible
to evaluate the extent to which al-
gebraic techniques “economize” our
thinking. The reader must always
bear this in mind so as not to be mis-
led by the apparent “triviality” of
problems that aroused such feverish
passions in the 16th century.

Lutlovico Feprari

Cardano had a young assistant in
his mathematical work, Ludovico
Ferrari (1522-1565). In a list he made
of his fourteen students, Cardano
counted Ferrari as one of the three
most outstanding.

In 1543 Cardano and Ferrari went
to Bologna, where della Nave al-
lowed them to acquaint themselves
with the papers of the late del Ferro.
There they verified that del Ferro
had known Tartaglia’s rule.

Apparently they and their con-
temporaries knew almost nothing
about del Ferro’s formula. Cardano
would hardly have pursued Tartaglia
so relentlessly if he had known that
the same information could have
been obtained from della Nave.

Today almost all historians of math-
ematics agree that del Ferro invented
the formula, Fior knew about it, and
Tartaglia rediscovered it knowing
that Fior had it. But none of these
facts has been rigorously proved!

At the end of his life Tartaglia
wrote: “I can assure you that the
described theorem has been proved
neither by Euclid nor by anyone
else, except only Gerolamo Car-

dano, to whom we showed it. ... In
1534 in Venice I found the general
formula for the equation. . . .”2

2Another source gives the date as
February 4, 1535.

It’s hard to make ends meet in
this story.

By 1545 Cardano had learned
how to solve not only equations (1)
and (2), but also the equation

x3+ b = ax, (3)

as well as a “complete” cubic equa-
tion that contains a term with x2. By
the same time Ferrari had created a
method for solving fourth-degree
equations.

Ars Magna

Either his acquaintance with del
Ferro’s papers, or heavy pressure
from Ferrari, or most likely an un-
willingness to bury the results of his
work of many years made Cardano
include everything he knew about
cubic equations in the book Ars
Magna, sive De Regulis Algebraicis
(The Great Art, or On Rules of Al-
gebra) published in Nuremberg in
1545.

In his preface Cardano presents
the history of the issue:

In our time Scipione del Ferro discov-
ered a formula according to which the
cube of the unknown plus the unknown
is equal to the number. It was a very
beautiful and remarkable work. Because
this art exceeds all human adroitness
and all mental clarity of a mortal, it
must be considered a gift of heavenly
origin, and also an indication of the
mind’s power, and this is so glorious a
discovery that he who achieved it can be
expected to achieve anything. Compet-
ing with him, Niccold Tartaglia from
Brescia, our friend, having been chal-
lenged by del Ferro’s student by the
name of Antonio Maria Fior, solved the
same problem in order to not to be de-
feated, and after repeated requests made
over a long period of time, passed it on
to me. I was misled by the words of Luca
Pacioli, who said that there is no general
solution to equations of this kind, and,
although I possessed many discoveries
made by myself, I nevertheless did not
despair of finding what I did not dare
look for. However, when I received this
chapter and reached its solution, I saw
that it can be used to do much more:
and, already with greater confidence in
my deeds, I made further discoveries
during my investigation, partly on my
own, partly together with Ludovico
Ferrari, my former student.

Cardano’s method of solving
equation (1) can be presented in an
updated form as follows. We’ll look
for a solution to equation (1) in the
form x = — . Then x + o = p and

x3 + 3x%0 + 3x0 + a3 = B3, (4)

Since 3x%0 + 3x02 = 3x0(x + ¢t) = 3x0,
equation (4) can be rewritten as

x3 + 3ofx = B3 - . (5)

Let’s try to choose the pair (o, B)

knowing the pair (a4, b) such that

equation (5) coincides with equation

(1). To this end, the pair (o, B) must

be a solution of the simultaneous
equations

30P =g,
Bé-ad=h

or the equivalent system of equa-
tions

3
BS(_(XS) = _;77/
B3 +(-ad)=b

By the property of the roots of a qua-
dratic equation, B3 and —o2 are the
roots of an auxiliary quadratic
y? — by —a3/2.7 = 0. Since we are look-
ing for positive roots of equation (1),
B > a. Thus, by the quadratic formula

5 3
B3=é+ bi.i.ai
2 4 7
and
b P2, a2
4 27
Therefore,
b [b* a8
X=3 =+ [+ =
2 V4 a7
4 b, |P? ad
4 7

If a and b are positive, x is positive
too. :

This calculation follows Car-
dano’s train of thought only ideally.
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He reasons in geometric terms: if a
cube with side length § = o + x is cut
by planes parallel to its faces into a
cube with side length o and a cube
with side length x, then in addition
to the two cubes, three rectangular
parallelepipeds measuring o X o X x
and three others measuring o X x x x
are obtained. The relation between
their volumes yields equation (4); to
pass to equation (5), the parallelepi-
peds of different types are united in
pairs.

“Since I was aware that the part
that Tartaglia gave me was discov-
ered by means of a geometric proof,”
Cardano wrote, “I thought that this
is indeed the royal way leading to all
the other parts.”

Equation (2) can be solved by sub-
stituting x = B + o, but here we might
run into the case where the initial
equation has three real roots, while
the auxiliary quadratic has no real
roots. This is the so-called irreduc-
ible case.? It caused Cardano a lot of
trouble (and probably Tartaglia as
well).

Cardano solved equation (3) by
means of reasoning that was very
daring for that time: he turned the
negativeness of a root to good ac-
count. No one before him used nega-
tive numbers so resolutely, though
even Cardano himself was still far
from free in his treatment of them:
he considers equations (1) and (2)
separately!

Cardano also gave a complete ac-
count of the general cubic equation
x> + ax* + bx + ¢ = 0 (and Tartaglia
surely had nothing to do with this
problem!). In modern terms, substi-
tuting x = y — a/3 in this equation
eliminates the term with x2.

Cardano dared to consider not
only negative numbers (he called
them “purely false”), but also com-
plex numbers (these he called “truly
sophistic”). He noticed that if we
operate on them according to certain
natural rules, then any quadratic
equation without real roots can be
thought of as having complex roots.
Perhaps Cardano arrived at complex
numbers via the “irreducible” case.

3We'll offer a special treatment of
this case in an upcoming issue.—Ed.
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The Great Art also reflected
Ferrari’s personal contribution—a
method for solving quartic equa-
tions.

In modern terms,
method for the equation

x*+ax>+bx+c=0 (6)

Ferrari’s

(to which a complete quartic equa-
tion is easily reduced)* consists of
the following.

We introduce an auxiliary vari-
able t and rewrite equation (6) in the
equivalent form

RN
[X2+—+t)
2
2\ (7)
=2tX2—bX+(t2+at—C+I).

Then we choose ¢ such that the two
roots of the quadratic polynomial in
x on the right side of equation (7)
coincide—that is, its discriminant is
ZEro:

2
b2—4<2t-(t2+at—c+%):0.

Thus we get an auxiliary cubic equa-
tion for t. Let t, be any of its roots—
it can be found by Cardano’s for-
mula. Then equation (7) can be
rewritten as

2 b 2
X2+£+tj =2t (X—j 8
( 5 "o 0 at, (8)

This equation breaks down into two
quadratic equations that yield four
roots of the original equation.

So Ferrari’s method reduces a
quartic equation to one cubic and
two quadratic equations.

However, the place of The Great
Art in the history of mathematics is
primarily due not to its particular
results about cubic and quartic
equations but to the fact that cer-
tain general algebraic notions (for
instance, the multiplicity of a root)

4Quartic equations are also
discussed in “What You Add is
What You Take” in the November/
December 1994 issue of Quantum.
—Ed.

and statements (if the equation
x3 + ax* + bx + ¢ = 0 has three real
roots, then their sum is —a) appeared
here for the first time.

Ferrari and Tartaglia

It’s not hard to imagine the im-
pression The Great Art made on
Tartaglia when it appeared in 1545.
In the last part of his book Problems
and Diverse Inventions (1546),
Tartaglia published his correspon-
dence with Cardano and the notes of
their conversation. He attacked
Cardano with curses and re-
proaches. Cardano didn’t respond to
the attack. On February 10, 1547,
Ferrari rather than Cardano re-
sponded to Tartaglia. He objected to
Tartaglia’s reproaches, pointed out
the flaws in his book, and in one
case blamed him for appropriating a
result obtained by someone else and
for having a faulty memory (appar-
ently a grave accusation in those
days). In the end, Tartaglia was chal-
lenged to a public debate “on geom-
etry, arithmetic, or disciplines con-
nected with them such as Astrology,
Music, Cosmography, Perspective,
Architecture, and so on.”

In his reply of February 19,
Tartaglia tried to draw Cardano
himself into the squabble: “I wrote
in such a heated and insulting tone
in order to force His Lordship (not
you) to write something in his own
hand, because I have some old scores
to settle with him.”

Wrangling over the conditions of
the debate dragged on. Tartaglia be-
gan to understand that Cardano
would remain on the sidelines.
Then he began to point up Ferrari’s
dependence, calling him “Cardano’s
creature” (as Ferrari called himself
in his challenge). The “Questions”
that Tartaglia, according to tradi-
tion, sent in reply to the challenge
were addressed to both: “You, Si-
gnor Gerolamo, and you, Signor
Ludovico . ..”

In the end, Tartaglia agreed to a
debate with Ferrari. It took place in
the presence of many noble persons,
but with Cardano absent, in Milan
on August 10, 1548. Only Tartaglia’s
brief notes about the debate have



Gerolamo Cardano at the age of 46 (woodcut).

survived, and it’s almost impossible
to restore any real picture from them.
It seems, though, that Tartaglia suf-
fered a defeat.

However, the debate had nothing
to do with the problem that aroused
the controversy. In general, debates
of this sort were as little related to
clarifying the truth as real duels.

For each actor a closing scene

In 1556, a year before Tartaglia
died, his General Treatise on Num-
ber and Measure began to come out.
It contained the results in combina-
torics and probability that Tartaglia
obtained during the years of his dis-
pute with Cardano. The Treatise
says very little about cubic equa-
tions. The final parts of the Treatise
appeared after the author’s death.

Ferrari achieved widespread fame
after the debate. He gave public lec-
tures at Rome, led the cadastral ad-
ministration in Milan, and took part
in the education of the king’s son. But
he left no other traces in science! He
died in 1565 at the age of 43.

Cardano outlived them both. But
his life wasn’t easy. One of his sons
poisoned his wife out of jealousy
and was put to death. Another son

became a tramp and
robbed his own father.
In 1570 Cardano him-
self was put in prison
and his property was
confiscated. (The reason
for the arrest remains
unknown. We know
only that while he was
waiting to be arrested
he destroyed 120 of his
books.) Cardano ended
his days at Rome in the
position of “private per-
son” (his expression),
receiving a modest pen-
sion from the Pope. He
devoted his remaining
days to writing the au-
tobiographical Book of
My Life. The last event
mentioned in this book
is dated April 28, 1576,
and on September 21,
1576, Cardano died.

In his last book Car-
dano mentions Tartaglia four times.
He writes that Tartaglia preferred to
have him as a “rival and victor
rather than a friend and person in-
debted to him for his good deeds.”
Elsewhere he numbers Tartaglia
among his critics who “did not
range beyond the scope of gram-
mar.” However, in the closing pages
he writes: “I confess that in math-
ematics I borrowed a few things, al-
beit an insignificant number, from
brother Niccolo.”

Apparently his conscience was
bothering him!

The Cardano-Targaglia contro-
versy died away and was all but for-
gotten. The “cubic formula” was
linked to The Great Art and gradu-
ally came to be called Cardano’s for-
mula, though for some time del
Ferro’s name was also mentioned—
after all, del Ferro’s authorship was
emphasized by Cardano himself.
However, such injustices in naming
aren’t all that rare in mathematics.

Historians of mathematics re-
turned to the controversy at the be-
ginning of the 19th century, after
rediscovering the existence of the

offended party, Tartaglia, who had
been practically forgotten by that
time. The story attracted attention
once again, and amateurs as well as
professionals were ready to fight for
Tartaglia’s honor. As the story was
repeated countless times and
worked its way into popular culture,
Cardano was sometimes made out
to be an adventurer and a scoundrel
who stole Tartaglia’s discovery and
took full credit for it.

By the end of the 19th century
some of the discussion took the form
of serious studies in the history of
mathematics. Mathematicians un-
derstood the important role played by
Cardano’s works in sixteenth-century
science. What Leibniz said two cen-
turies earlier became clear to many:
“With all his faults, Cardano was a
great man; without them he would
have been perfect.”

The great historian of mathemat-
ics Moritz Cantor (1829-1920) (not to
be confused with Georg Cantor, the
creator of set theory!) repeated the
conjecture, voiced by Ferrari many
years earlier, that Tartaglia didn’t re-
discover del Ferro’s rule, but got it
ready-made from other sources.

Over the course of a century and a
half, passions died away, then flared
up anew. But perhaps this is one of
those questions that even now cannot
be answered unambiguously.

And the formula for solving cubic
equations remains forever “Cardano’s
formula.”
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Readers write . ..

Prof. Doris Schattschneider
of Moravian College (Bethle-
hem, Pennsylvania) points out
that the proof of Napoleon’s
theorem by tiling in “Sugges-
tive Tilings” (July/August
1994) appeared earlier, in an
article by John F. Rigby (“Na-
poleon, Escher, and Tessela-
tions,” Mathematics Maga-
zine, Vol. 64, 1991, pp.
242-46) of which the author of
the Quantum article was not
aware. Rigby’s article also
gives many interesting histori-

cal references.
N\ /

“HOW DO YOU FIGURE!”
CONTINUED FROM PAGE 19

dependence of the magnetic field B
on the x-coordinate (along which
the ring moves) is shown in figure 2,
where B, = 1T, a = 10 cm.
(V. Afanasyev)
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Figure 2

P145

Nuclear disintegration. A nucleus of
mass M traveling with velocity v
breaks into two identical pieces.
The internal energy of the nucleus is
E,, and that of each piece is E,
(E, > 2E,). Determine the maximum
possible angle between the velocity
vector of one piece and the vectorv.
(I. Slobodetsky)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 55
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“MAGNETIC MONOPOLY”
CONTINUED FROM PAGE 9

monopoles exist, since no other sig-
nificant events were recorded in the
experiment.

In 1983 a group at Berkeley put
together an apparatus that tried to
combine the signals from a number
of superconducting loops, each hav-
ing an area of the order of 1 m?. No
monopole events were observed.
The method holds great promise,
however, as it is very sensitive and
is independent of the mass and
speed of the passing monopole.

Faraday’s law would require the
loop to produce a current that would
produce a flux equal and opposite to
the total flux of the monopole pass-
ing through the loop. Since the
whole monopole passes through, the
entire flux of the monopole must be
balanced by the loop. Calculating
this total flux is easy if we imagine
a spherical surface of radius r about
the monopole. The flux is then

Mo g* )
=—==—-4nur
¢ 4w ¢?

=WUoq™.

The astute physics student should
have an objection to this. Why do I
calculate the total flux of a mono-
pole here when, in most situations,
it is only the flux due to the compo-
nent of the magnetic field perpen-
dicular to the face of the current
loop that contributes to induction
effects? The difference here is that
we're not simply changing a magni-
tude or a direction of flux with re-
spect to the current loop—we’re ac-
tually passing an isolated source of
field lines through a loop.

To see how this makes a differ-
ence, imagine breaking each field
line into components perpendicular
and parallel (and in the radial direc-
tion) to the face of the current loop.
As the monopole approaches the
current loop, the magnitude of the
perpendicular field lines increases
and an induced emf will result in the
loop due to Faraday’s law. However,
the radial field lines parallel to the
face also contribute an induced emf.

To understand this, imagine the mo-
tion of the current loop from the
frame of reference of the monopole.
As the actual wire passes over the
radial field lines, the free charge car-
riers in the wire will experience a
Lorentz force, and this will cause a
current to flow in the same direction
as that due to the induced current
due to the perpendicular field lines.
And so it really is the total flux of
the monopole that must be balanced
by the superconducting loop.

Now comes the really amazing
part. It was discovered experimen-
tally in 1961 that the flux through a
superconducting current loop is
quantized and can take on only
multiples of some finite minimum
flux. Remember that in our experi-
mental apparatus, the passage of a
monopole would leave a permanent
current flowing in the supercon-
ducting loop. Since the flux through
the loop depends on this current,
which is in turn due to the motion
of a charge carrier, it means that the
charge carrier may take on only dis-
crete energy states. This should
sound familiar—a charge moving in
a circular orbit taking on only dis-
crete energy states? The Bohr model
of the hydrogen atom gives just such
a result. Bohr insisted that an elec-
tron moving in a circular orbit of
radius R should satisfy

2rR =nk = nﬁ,
p

where A is the de Broglie wavelength
of the electron, given by A = h/p. Here
p = mv is the momentum of the elec-
tron and A is Planck’s constant.

In our case, we can think of an
electron charge carrier as moving in
a circular orbit about a uniform
magnetic field B. The Lorentz force
will result in a centripetal accelera-
tion, and so

2
eVB=m—V—.
R

Combining these two results gives

h
B(TERZ)=HE.



The flux through the loop is just
h
= B(rR*)=n—.

Therefore, the flux through a current
loop is quantized. The flux quantum
(or fluxon) is very small, with a
value of about 2 - 101> T - m?2. This
quantization would not normally be
observable in a macroscopic sys-
tem—that is to say, not every elec-
tron traveling in a circular orbit must
be treated quantum-mechanically.
Superconductors, however, are a
rare breed of materials where quan-
tum-mechanical behavior becomes
apparent on a macroscopic scale.
This should be the topic of another
article in Quantum, but in processes
like superconductivity and superflu-
idity (fluid flow with no viscosity),
macroscopic-scale quantum correla-
tions between single electrons are
very real and very apparent. The pas-
sage of a monopole through a super-
conducting loop would result in the
loop having a flux of only a couple
of fluxons. It’s remarkable that cur-
rent technology (pun intended) can
accurately measure a flux as low as
one fluxon, and this is only possible
with the development of supercon-
ducting semiconductor devices.
Let’s combine our results for the
total flux that must be balanced by
the current loop due to the passage
of a monopole and the flux quanti-
zation condition. We finally arrive at

Hoq*e=nl.
2

This is the famous Dirac quantiza-
tion condition for the magnetic
charge of a monopole. It’s expressed
here in S.I. units—something that
isn’t normal for quantum-mechanical
results, which is why it may not
look immediately familiar to those
who have seen it before expressed in
other unit systems. Dirac first de-
rived this result in 1931, and the
monopoles it describes are to this
day called Dirac monopoles. What it
says is truly remarkable. If at least
one monopole of any magnetic
charge g* exists in the universe,
then electric charge must necessar-
ily be quantized. It’s a great mystery

of physics why electric charge is, in
fact, quantized. There’s no reason
for this to be so. It just is. The exist-
ence of a Dirac monopole would
provide a reason for charge quantiza-
tion, and physicists like knowing
the reasons for things.

We can actually estimate a mass
for a Dirac monopole from the
quantization result. You know that
an electron has mass but no measur-
able size. The mass of an electron is
considered to be tied up in its elec-
tric field energy. The electric and
magnetic field energies obey

U, o< E2,

B2
< =
Um CZ 7
where c is the speed of light and E and
B are electric and magnetic fields.
Since the fields of an electron and a
monopole are proportional to the
electric and magnetic charge, respec-
tively, we can estimate the mass of a
Dirac monopole according to

Using our quantization condition,
we find the minimum mass for a
Dirac monopole to be
2
my, > e 5 4.700m, |
HoCTe

Thus, a Dirac monopole would have
a mass of a little more than twice
that of a proton. It is conceivable
that a Dirac monopole could be pro-
duced in a modern particle accelera-
tor, but this has not turned out to be
the most efficient way of searching
for them.

The large magnetic charge and
relatively small mass of a Dirac
monopole means that it’s possible
for one to be accelerated to very high
velocities by galactic magnetic fields
and to interact strongly with matter.
A high-speed monopole crashing
into material would be like a bowl-
ing ball thrown through a china
shop. So why don’t scientists see
monopoles? It must be that there are

very few of them around, if they ex-
ist at all.

The inflationary model of the
universe may offer an explanation.
It’s thought that if primordial mono-
poles were produced in quantity by
the big bang, the rapid inflation of
the universe would have reduced
the monopole density in a way
that’s in agreement with the upper
level of the density that can be pre-
dicted based on the non-observance
of monopoles.

Finally, the Dirac theory of a
monopole isn’t the only contender.
Other theories, most notably grand
unified theories (GUTSs for short)
also predict the existence of mono-
poles. These GUT monopoles
would have very different properties
from a Dirac monopole—most nota-
bly, their mass could be as much as
1016 times that of a Dirac monopole.
This huge mass would mean that a
GUT monopole could only have
been produced at the time of the big
bang. If this were the case, then it’s
quite likely that there is some
higher meaning for the quantization
of both electric and magnetic
charge. In physics, mysteries beget
mysteries.

Question

We have, up to now, only consid-
ered the motion of an electric charge
in the presence of a monopole. Now
imagine that, as in figure 7, a mono-
pole of pole strength —g* and mass
m is moving with an initial veloc-
ity v, and finds itself in the vicinity
of a stationary and fixed monopole
of pole strength +Q*. Let the initial

. |

OC—> o
Q* -q*

Figure 7

Yo

separation between the two mono-
poles be r,. Describe the motion of
the moving monopole. Are there
any limits placed on this motion by
the magnitude of the initial veloc-
ity?

ANSWER ON PAGE 60
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“AIRPLANES IN OZONE”
CONTINUED FROM PAGE 25

which case the jet will be neither
compressed to the axis nor sprayed
aside—this is the so-called “stan-
dard mode”).

Of course, water vapor constitutes
only a fraction of the gaseous mixture
in the jet—the jet also contains atmo-
spheric nitrogen (which does not
burn), carbon dioxide, and other
agents (refer again to figure 1). Let
the vapor concentration be 5% =
1/20; we take p? = p,/20 = p,/600 =
2 - 103 kg/m3. The density of soot
particles (condensation centers) is
assumed to be n, ~ 1013 m=3. Now
the size of a drop can be obtained
from equation (6):

9.10-3
a=3 (32107 =04 um.
41-103.10°

No doubt you’ve seen the white
trails left by high-flying airplanes—
they consist of these droplets. Some-
times they stretch out for hundreds
of kilometers. But what does all this
have to do with ozone?

Chemisorption of nitrogen oxides

Here’s what it has to do with
ozone: the droplets can absorb the
nitrogen oxides, which turns the wa-
ter in the drops into a nitric acid so-
lution. The process by which sub-
stances are taken in is called
absorption (from the Greek word for
“devour”), and when accompanied
by a chemical reaction, it’s known
as chemisorption. Such processes
are used in chemical plants that pro-
duce nitric acid, for instance.

In many respects a jet containing
drops isn’t at all similar to towering
structures used to produce nitric
acid. First, the supply of water isn’t
limited in a land-based industrial
plant, so a continuous flow of water
absorbs the nitrogen oxides. Second,
the pressure of the nitrogen oxides
is an order of magnitude greater in
an industrial plant than in the jet,
and this higher pressure increases
the rate at which the oxides are
dissolved (true, the temperature in
the stratosphere is rather low—
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T, =217 K, which promotes disso-
lution). We can estimate the maxi-
mum concentration of nitric acid in
the jet’s drops. As the concentration
of gaseous nitrogen oxides at the
nozzle’s outlet is about one hun-
dredth that of water, the concentra-
tion of nitric acid will not exceed
one percent. And third, the airliner’s
jet contains other substances in ad-
dition to nitrogen oxides.

Thus, generally speaking, all the
reactions occurring in the gas phase
(fig. 1) can take place in a jet’s drops
as well (at different rates, of course).
These reactions must be taken into
account if we are to decide the ques-
tion whether absorption of sub-
stances in the airplane exhaust by
water drops increases or decreases
the percentage of ozone in the atmo-
sphere.

These drops actually gave rise to
the hope that the harmful exhaust
gases could be hidden away some-
where. How? Well, the drops could
collide with one another and merge to
form larger drops, which freeze. They
would gain weight and fall. They
would thus carry the oxides to the
lower layers of the atmosphere,
where the oxides would return to the
air after the drops evaporate. But, as
is well known, the addition of these
oxides to the lower regions of the at-
mosphere actually increases the
amount of ozone—which is what
happens in the famous London smog.

“Hey, wait!” the thoughtful
reader will say. “I don’t think it’s at
all clear that a jet’s white trail, with
all its drops, actually makes the trip
downward.” True, it’s not clear at
all. But this doesn’t prove that the
drops disappear—we can suppose
that, as the drops grow larger, the
tail becomes transparent. Recall
that fog, which consists of small
drops, is opaque, while rain, which
contains much more water per unit
volume, allows one to see for quite
a distance.

Indeed, to estimate the average
visibility along some beam of light,
let’s circumscribe the beam with a
cylindrical surface whose radius is
equal to the average radius a of the
drops. If the drop’s center lies within

the cylinder, it would block the
beam. The number of centers that
are located within a cylinder of
length L is N =nna”L, where n is the
concentration of the drops and maL
is the cylinder’s volume. Therefore,
the average visibility is

x L 1 1
Z =—i= =
N na’n na’p,/m

4 ~.3-+0 0
_goap B

- 7

na’p, Py

where pY is the density of water.
Thus, the larger the drops (the
greater their radius a) at a fixed den-
sity of water vapor p , the more
transparent the cloud.

But we mustn’t forget that the jet
of exhaust streaming behind an air-
liner isn’t strictly round, and it
doesn’t have a strictly horizontal
axis. To study in greater detail the
possible future fate of drops that
have absorbed nitrogen oxides, we
need to take another step forward
and consider how a flying machine
disturbs the atmosphere.

Freg vortices and warm streams

Let’s begin with a fly. Maybe
you’ve encountered this problem in
the course of your studies. A closed
box with a fly standing on the bot-
tom rests on a scale—this is state
number one. State number two: the
fly takes off and hovers somewhere
inside the box without touching the
walls. Is it possible to distinguish
between these two states by looking
at the reading on the scale?

The answer is no—the scales will
show the same weight in both
states. As the fly supports itself in
the air, it produces a flow of momen-
tum—that is, a force directed down-
ward—that is exactly equal to the
fly’s weight.

However, as the fly throws the air
mass downward, air must return to
the fly’s location from above. The air
begins to circulate inside the box, as
shown qualitatively in figure 4a by
the blue and red lines. It looks very
much like the air flow around a hov-
ering helicopter.

Now let the fly (or helicopter) not



Figure 4

just hang in the air but move for-
ward with a constant velocity V.
Then in the reference frame at-
tached to the center of mass, air is
blown backward with velocity
u_ =-V. Drawing the flow lines, we
can see that two vortices with al-
most parallel axes arise in the plane
perpendicular to the direction of
flight. (So as not to overload figure
4a with details, we have shown only
one vortex, which is located to the
right of the fly.)

An airplane produces almost the
same air flow as a fly or helicopter,
but it doesn’t combine the lifting
and thrust functions: the wings cre-
ate the lift and, unlike the fly, the
thrust is produced not by the wings
but by a propulsion device (propeller
or jet engine).

We can explain vortex generation
at the wing tip qualitatively in an-
other way. As the air flowing around
a wing produces lift, its pressure on
the bottom surface of the wing is
greater than that acting on its upper
surface: p_ > p,.. According to
Bernoulli’s law, the air velocity
above the wing is greater than that
below: V> V_|{fig. 4b).

In addition, at the wing tip the air

tries to flow upward due to this pres-
sure difference. If we draw the trajec-
tory of an air particle, we get a helix
that runs off from the wing tip—this
is a so-called trailing (wing tip) vor-
tex. Figure 4c shows the rear view of
a plane with two trailing vortices.
Thus, the emergence of these two
vortices is directly connected with
the generation of lift by a moving
wing. (This explanation is suitable
only for subsonic flow around a
wing, but it’s quite sufficient for our
purposes here.)

There is yet another force that
lifts the jet: the buoyant force F,.
The jet is warmer than its surround-
ings and looks like a dirigible filled
with a gas (air) of somewhat less
density (indeed, according to
Clapeyron’s law, p ~ 1/T at constant
pressure). To estimate the upward
velocity due to buoyancy, we
change the continuous bell-shaped
radial distribution of temperature
and density in the jet for a stepwise
distribution. These values are as-
sumed to be constant and equal to
T, andp,  inside a cylinder of a cer-
tain radiusr, and equal to T_and p_,
in the undisturbed atmosphere out-
side this cylinder (see figure 5).

Thus, we'll imagine that a part of
the exhaust jet of length Ax is placed
in a cylindrical cellophane package
with insulated walls and that this
package (a sort of dirigible) is lifted
in the cool atmosphere by the buoy-
ant force

AF, = (p.. = pylgmriAx.

Here nir 2Ax is the volume of that por-
tion of the exhaust jet of length Ax
where the jet can be considered ap-
proximately a cylinder, although we
know that a real stream of exhaust

Figure 5

expands slightly. However, sincep_ =
p.M/RT_,andp, =p M/RT, 6 weget

T -T
AR, = pmgnrezAX—mj%.

m

Thus, the buoyant force is propor-
tional to the square of the exhaust
jet’s cross-sectional radius and to the
temperature difference between the
jet and the atmosphere.

Let this force result in movement
of the jet upward with a constant
velocity v,. Then a counterbalanc-
ing drag force will arise that is (as
has been said many a time) propor-
tional to the density of air flowing
around the object, the square of the
velocity, and the cross-sectional area
S, = 2r Ax perpendicular to the vec-
tor vy

AF; = p vi28, = p vi22r Ax,

Setting F, equal to Fy, and taking
into account that T (x) ~ 1/x and
r,~ \/x , we get
s 1 1
Vi~ =DV~ X
r X

-1/4

If the exhaust jet “escapes” due
to this buoyant force from the in-
fluence of the vortices, its further
motion will be determined basically
by the buoyant force. We can write
this as

dyl vy x4

~ ’

dx u u

=) =)

which after a bit of integration gives
us y/ ~ x3/4, The resulting axis of the
jet will look like the solid curve
shown qualitatively in figure 6 (on
the next page).

Now it’s time to look back at the
mess I've made
here and, as
they say in po-
lite society,
“beg your par-
don” for every-
thing I've ne-
glected so far.

- First, the
vortex thread
itself, like the
exhaust jet, will
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Figure 6

“diffuse” into the surroundings be-
cause of the friction of layers against
one another—they rotate with differ-
ent circular velocities about the axis.
This means that a vortex also diffuses
radially, so the radial dependence of
its circular velocity becomes more
complicated than equation (2).

Second, the field of vortex veloci-
ties will affect not only the jet’s axes
but their periphery as well, because
a jet isn’t a line—it has a certain
cross-sectional size. The individual
elements in the exhaust jet will be
“gone with the wind” each in its
own way depending on its location
relative to the axis.

Third, after being slowed by the
atmosphere, the jet may disintegrate
into individual pieces that will flow
upward as individual clumps, not as
a cylinder.

I also neglected many other
things that may affect the evolution
of an individual drop, the possibility
that drops might fuse together, and
the rate of precipitation of the entire
trail of drops together with the ab-
sorbed nitrogen oxides.

But then, maybe there are those
among our readers who can con-
dense these thoughts into equations.

Conclugions

So—will the stratospheric airlin-
ers of the future be harmful for the
atmospheric ozone? Perhaps, yes—
but almost everything that human
beings do is harmful in one way or
another, including breathing. In-
deed, when we breathe, we produce
carbon dioxide (animals do the
same)—plants ingest it and return
oxygen to the atmosphere, and this
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is an equilibrium process. So, before
drawing any conclusions, it’s impor-
tant to compare the expected harm
with what goes on in nature.

It’s known that up to the present
time volcanic eruptions have put
more nitrogen oxides into the atmo-
sphere than all the airplanes in the
world. Even in the future, when the
contribution of harmful substances
from commercial airliners will be
comparable to that from natural
sources, it will nevertheless be dif-
ficult to determine by means of
measurements just who is doing the
polluting. So both now and in the
future the important instrument in
determining the contribution of
aviation to this process will be theo-
retical estimates based on physical,
chemical, and mathematical models
of the sort considered here.

Further studies may show that
this ozone problem isn’t as tragic as
it was presented by some nervous

journalists who were frightened by
the “ozone hole” over Antarctica.
Some scientists consider that there
is no problem at all: the solar radia-
tion, they say, is absorbed by the
entire atmosphere and not just by
the ozone. And folk wisdom points
to the value to crops of a weak solu-
tion of nitric acid—stated in differ-
ent terms, naturally: “If there are
thunderstorms in the spring or early
summer, the harvest will be abun-
dant.” Why? Well, plants need nitro-
gen, and even though the atmo-
sphere consists mostly of nitrogen,
they can’t take it directly from the
air—it has to be combined with
other elements. That’s where the
thunderstorms come in. When light-
ning discharges, the atmospheric
nitrogen forms chemical com-
pounds that are dissolved in the
raindrops to turn them into weak
solutions of nitric acid. The nitric
acid solution reacts with the miner-
als in the soil and frees up certain
substances—phosphorus and potas-
sium, among others. These ele-
ments are necessary for the rapid
growth of plants.

Sounds familiar, doesn’t it? This
is much like what happens in the
exhaust jet from an airplane. So we
can’t exclude the possibility that, in
the third millennium A.D., 2 new
saying will appear: “If a supersonic
airliner flies over your garden in the
spring, expect a large pumpkin in
the autumn.”

“THE FIRST PHOTON” CONTINUED FROM PAGE 37

this is the value of the circulating
current. Because the superconduct-
ing switch has r = 0, I, cannot
change and I, must increase by
20 A. In other words, I, changes
from -20 A to zero.

Because there is no current
through the superconducting switch,
we can now change it to the normal
state r = r,. We now gradually reduce
the total current I to zero while keep-
ing I, < 0.5 A. Because

V. <(05A)5Q) =25V,

the current through the inductor
must obey

N
e % 2BV _poa s,
At L 10H

Therefore, the current must be
dropped to zero over a minimum of
80 s. These conditions are satisfied
in figure 4 (on page 37) with AI/At =
0.1 A/s.

As a final step, we can return the
superconducting switch to the super-
conducting state and open the power
switch K.
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“JESSE JAMES” CONTINUED
FROM PAGE 31

corresponds to the fact that “a solu-
tion of the heat equation is deter-
mined by two boundary conditions at
the ends of the rod.”

There are, however, variations in this
problem that lead to different kinds of
equilibrium solutions. For example, at
the same time as the eight individuals
are obeying Jesse’s rule, they may also
be receiving income. Assuming f{x)
denotes the income of individual x at
timet=1,2, ... (income received just
after, say, a monthly transfer of funds
has occurred), we find that

ulx, t+1)=u(x, t) + 0.1[u(x, t - 1)
—u(x, t) + u(x, t + 1)] + f|x),

which corresponds to the partial dif-
ferential equation u, = 0.1u_, + f(x).
Here the steady-state solution will
again be determined by u(0) and u(9),
but it would in general not be linear.

Another possibility is for Jesse to
impose different transfer rules on
the individuals in a row. This corre-
sponds to a heat flow in a non-
homogeneous rod whose conductiv-
ity varies with x according to a
function ¢(x). It leads to the differen-
tial equation u, = (c(x)u,), whose
steady-state solution would in gen-
eral also not be linear.

Such problems can, however, be
programmed in a spreadsheet to de-
termine the nature of an equilib-
rium solution, if one exists.

A two-timensional model

With these perspectives in mind,
we can see another approach to
Jesse’s problem of equalizing the
wealth. If the number of townsfolk
is large, we might choose to arrange
them in a rectangular grid rather
than a straight line. Displaying the

assets of 24 townsfolk could then
lead to a grid such as figure 9.

A reasonable rule here is to require
each individual to compare assets with
four neighbors—that is, the individuals
above, below, to the right, and to the
left. This comparison would be fol-
lowed by a transfer of assets of 10% of
each difference from richer to poorer.

In figure 9, the individual with
$70 would receive a total of $11
from two horizontal neighbors
while receiving $13 from two verti-
cal neighbors. Analogy suggests that
such a process should correspond to
two-dimensional heat flow (for ex-
ample, in a thin metal plate).

The reader is invited to explore
this phenomenon in the context of
the problems that follow.

Problems

1. Show that in one dimension, an
individual of “zero cuppedness” is one
whose assets equal the average of the
assets of the two immediate neighbors.

2. As an alternative to Jesse’s rule
for basing one-dimensional transfer
of funds on differences, consider the
following: Att=1,2,3, ..., each in-
dividual passes 10% of his or her
assets to each neighbor. How does
this compare with Jesse’s rule?

3. If in a rectangular array the
wealth of an individual is denoted
by u(x, y), what is an “index of
cuppedness” corresponding to the
“reasonable rule” cited above—that
is, one in which an individual lo-
cated at (x, y) compares assets with
four neighbors located at (x - 1, y),
(X/ y+ 1)/ (X+ 1/ Y)/ and (X/ y= 1)2

4. Rather than defining “zero
cuppedness” for two-dimensional ar-
rays, we'll say that an individual whose
assets remain constant is “at harmony
with her or his neighbors,” or simply
“harmonic.” Can you find a harmonic
individual among the 24 townsfolk

arrayed in figure 9?

$50 | $100 | $80 | $140 | $120 | $40 5. Show that a har-
monic individual is one
$90 | $200 | $160 | $70 $90 $20 whose assets equal the
average of those of his,
$40 $30 | $130 | $130 | $130 | $80 or her four immediate
neighbors.
$50 $120 | $200 $20 $50 $80 ANSWERS, HINTS
. & SOLUTIONS ON
Figure 9 PAGE 61
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HAPPENINGS

Student inventors show their Stuff

Duracell/NSTA Scholarship Competition awards
$90,000 in savings bonds

OULDN’'T LECTURES BE

more interesting if students

could record what the

teacher said and draw dia-
grams of the material at the same
time? And wouldn’t it be helpful for
drivers to know when another ve-
hicle is in their blind spots? How
about having a small robot to sort
your recyclables? Or a cane that gets
longer for going down stairs? What
about a bike taillight that signals
when a biker is braking, and a stop
sign for school crossing guards that
automatically lights up the corner
stop sign to warn drivers on dark
mornings?

These handy devices do exist—but
currently each is one of a kind. They
were invented by six high school stu-
dents—the top winners in the
Duracell/NSTA Scholarship Compe-
tition, which awarded $90,000 in
prize money.

Higti-tech note-taker takes first place

Ara Knaian of Newton, Massa-
chusetts, designed and produced
Note-Taker, a portable computer
with a built-in microcassette tape
recorder. While recording what is
being said, this device also lets the
user draw charts or diagrams. "I
originally conceived of it as a tool for
reporters,” the Newton North High
School senior said. “Its main appli-
cation, education, occurred to me
later.” Knaian says the combined
analog/digital device “allows the
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user to simultaneously take notes
and think about what is being said.”
For his ingenuity, Knaian won first
place and a $20,000 US savings
bond. Knaian has been accepted at
MIT, where he will major in physics
or electrical engineering. His spon-
sor on the Duracell project was Ri-
chard Duffy, a physics teacher at
Newton North High School.

Mara Lynn Carey of Palm Beach,
Florida, was the second-place win-
ner for The Determinator, a robot
that sorts recyclables. “The Deter-

Judges in the 13th annual Duracell/NSTA Scholarship Competition (I-r): Mary

minator began by researching digital
logic,” the Martin County High
School senior said, and it resulted in
an invention that sorts plastic, glass,
steel, and aluminum. Carey received
a $10,000 savings bond for her ef-
forts. She has been accepted at Geor-
gia Tech, where she plans to study
electrical engineering.

Other second-place winners who
received $10,000 savings bonds are
Benjamin Thas of Gainesville,
Florida; Scott Jantzen of Shoreham,
New York; Mohammed Omer Khan

Nalbandian (seated), Arthur Eisenkraft, Huk Yuk Cheh, Morris Shamos. The
first- and second-place winning devices are displayed on the table—back row
(I-1r): The Determinator, Advanced Bike Tail Light, S4-Super Scintillating Stop
Sign; front row (I-r): Note-Taker, Easy Step, Ultrasonic Eye.



of Gaithersburg, Maryland; and
James Zajkowski of Harrington
Park, New Jersey.

Ben Thas improved upon existing
taillights by inventing the Advanced
Bike Tail Light, which blinks during
pedaling, then brightens and burns
steadily when the rear brakes are on.
“A plus of this light is that since the
circuit has been kept simple and the
most expensive parts are a transistor
and a miniature transformer, it
would be easy and inexpensive to
mass-produce,” the Eastside High
School sophomore noted.

Scott Jantzen came up with the
idea of building the Easy Step after he
broke his leg. “When on crutches,
sometimes I felt like T was going to
fall down the stairs because of the
instability,” he said. Easy Step is an
adjustable cane that extends and con-
tracts and is especially useful for
climbing stairs. The Shoreham-Wad-
ing River High School junior keeps
busy with soccer, track, and lacrosse.

Mohammed Khan created the Ul-
trasonic Eye after personally experi-
encing a need for a device that de-

tects and identifies objects in a
driver’s blind spot. “I would like the
Ultrasonic Eye to be placed in every
truck in America,” declared the
Watkins Mill High School senior.
“Tronically, I came up with this de-
vice when I was searching for a
ranging system to be part of a robot
that I was making. The robot did not
know how to avoid people in its
path. While brainstorming how to
solve this problem, I came up with
reflecting sound to determine the
distance of objects ahead of the ro-
bot. That’s when it dawned on me
that it would be nice if a car had
such a device.”

James Zajkowski said his idea for
the S4-Super Scintillating Stop Sign
“originated when I, a fledgling
driver, noticed how difficult it was
to see school crossing guards during
dawn’s early light or in inclement
weather.” The Northern Valley Re-
gional High School junior added, “If
S4 can stop even one accident, I be-
lieve all crossing guards should be
equipped with one.” By illuminating
not only itself but also a second sta-

Bulletin Board

Russian-American stutlent exchange

For the fifth consecutive year, the
American Regions Mathematics
League (ARML) is organizing an ex-
change program for American and
Russian high school students inter-
ested in mathematics. Partially
funded by the United States Infor-
mation Agency, the trip will take 25
American high school students to
Moscow and St. Petersburg this
summer for four weeks of math-
ematical studies together with
cultural experiences and sight-
seeing. Students will live with Rus-
sian families, and the language of in-
struction will be English. The dates
of the program will be July 13
through August 10, and the cost for
each student will be $1,400, includ-
ing airfare from Washington, D.C.

For more information, write to
Eric Walstein, Montgomery Blair

Magnet Program, 313 Wayne Av-
enue, Silver Spring MD 20910 (e-
mail: Walstein@vax.mbhs.edu).

Quantum WWWinner

Visitors to Quantum’s World
Wide Web home page had an ad-
vance opportunity to solve one of
the brainteasers that appear in this
issue. It’s impossible to know how
many declined to take part, but Matt
Nehring, a graduate student in phys-
ics at the University of Colorado,
took up the challenge—and elec-
tronically submitted a correct an-
swer to brainteaser B144. For his ef-
forts Matt will receive a Quantum
button and a copy of this issue, as
well as a mention at our Web site.

All our readers are invited to try
and solve the next cyberteaser. Our
home page is at http://www.nsta.org/
quantum.

tionary stop sign when it is raised, the
S4 heightens awareness around cross-
walks. Moreover, the device has sev-
eral applications in road repair.

Rwards ceremony in Philadelphia

The first- and second-place win-
ners, their parents, and their science
teachers were guests of Duracell at an
awards ceremony in Philadelphia on
March 23, moderated by NASA
Teacher in Space designee Barbara
Morgan. The winners demonstrated
their devices for a luncheon audience
and exhibited them for thousands of
science teachers at the National Sci-
ence Teachers Association’s 43rd
annual convention.

Now in its thirteenth year, the
Duracell/NSTA Scholarship Com-
petition also named ten third-place
winners, who each received a $1,000
savings bond; 25 fourth-place win-
ners, who received a $200 savings
bond; and 59 finalists, who were eli-
gible for a $100 savings bond.

Judging began in late January,
when a panel reviewed 781 entries
and selected 100 for final judging at
Duracell headquarters in Bethel,
Connecticut, at the end of February.
Four judges examined and operated
each device during final judging,
looking for inventiveness, precision,
and energy efficiency.

Every student who entered the
competition received a sports water
bottle from Duracell and a certifi-
cate of participation from NSTA.
Many of the finalists will have their
devices displayed at conventions
and exhibits around the country.

Administered by NSTA, the
Duracell/NSTA Scholarship Compe-
tition has awarded more than
$500,000 in scholarships, savings
bonds, and cash awards to 65 students
over the past thirteen years. Q)

fWIIHI'S happening? N

Help us fill Happenings and the Bulletin
Board with short news items, firsthand re-
ports, and announcements of upcoming
events. Send the information to

Quantum
\

National Science Teachers Assoc.
1840 Wilson Boulevard
Arlington VA 22201-3000
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QUANTUM/HAPPENINGS b3




Across

1 Fruit rot
5 Titles of reverence

10 English chemist
Frederick Augustus
_ (1827-1902)

14 Rim

15 Type of intestine

16 Relocate

17 ___ wax (ozocerite)

18 More arid

19 “S” shaped curve

20 CHX,

22 Atlantic and Pacific

24 Sibling: abbr.

25 Type of foundation

26 Of the sea

29 __ vertebrae

33 Organic compound

34 Attack

35 Expert

36 Trig. function

37 “The ___ bird
catches . ..”

38 60 coulombs: abbr.

39 Printer’s measures

40 Line of talk

41 Sport shoe part

Briss x

]
Crass SCience by David R, Martin
1 4 3 4 5 6 7 8 9 10 11 12 13
42 Oolite 6 Art historian 47 South Am. rodent

44 Hypothetical
massless particles

45 __ inline

46 Edge

47 ___ gage (measures
pressure)

50 Near the apex

55 In a violent rage

56 Philistine god

58 Hawaiian goose

59 ___ oil (juniper tar
oil)

60 Burseraceae tree
resin

61 Shady mountain
side

62 City in Iowa

63 Frozen raindrops

64 Order to dogs

1 Jacob’s wife

2 Icelandic literary
work

3 __ fiber (from the
gebang palm)

4 Petroleum product

5 Class of sugars
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Alfred
7 Edge
8 Epoch
9 Science of blood
10 Rhizopod protozoan
11 Town near L. Albert
12 Type of parity
13 Dregs
21 _ -structure
constant
23 Concern
25 Nut container
26 Microwave source
27 Type of acid
28 Wash lightly
29 Scottish island
30 Supporting role
31 Expert: suff.
32 Pennies
34 Holy person
37 Cyclic ethers
38 Element 13
40 British gun
41 Tllegal football
block
43 Serpentes members
44 1967 Physiol.
Nobelist Ragnar ___

51 Arch

52 Philippine island
53 Trivia books

54  Walesa

57 Everyone

48 Muslim religious
leader

49 Was carried

50 Novelist James ___

SOLUTION IN THE NEXT ISSUE

SOLUTION TO THE
MARCH/APRIL PUZZLE




Math
M141

Our operation takes a number
x=10a+b(0<b<10)intoy=a +4b.
Since x = 10y — 39b, the numbers x
and y simultaneously are or are not
divisible by 13 (since 39 = 3 - 13).
Therefore, if the sequence in ques-
tion contains 1001 = 13 - 77, all its
terms must be divisible by 13. The
only prime divisible by 13 is 13. But
it’s immediately verifiable that 13 is
a stable point in our operation
(1 +4 -3 =13), so it cannot precede
1001; on the other hand, all “descen-
dants” of 1001 are also easy to find:
1001 —» 104 — 26— 26 — ..., and the
number 13 is not among them either.

M142

Let Px)=a x%+a, x""1+.. +q,
a,>0,n>2.Put Q(x) = Px) + x. Then,
for each integer k between 1 and n,
(QUx)F = (Plx] + xP = By{xIPlx] + ¥
where B, (x] is a certain polynomial (it
can be written out using the binomial

formula, but we don’t need it at all).
So,

P(Q[x)) = (a,B,[x)P(x) + a x") +
(a, B, |x)P(x)+a,_ x271)
+...+4
= R(x)- Px) +
(axt+a, _x"~ 1+ ..
= (R(x) + 1)P(x]),

+ a)

where R(x) is a polynomial of degree
no less than 2, and we’re done.

M143

(a) The answeris 2/(at + b +¢1),
or, more symmetrically,

2 1 1 1
==+,
r a b ¢

ANSWERS,
HINTS &
SOLUTIONS

P A P A B A,

Figure 1

where r is the unknown length.
We'll show this using a method that
can be applied in the three-dimen-
sional case as well.

Let’s first prove that if three seg-
ments joining the vertices A, B, and
C of a triangle to points A, B,, and
C, on their opposite sides meet at
point P (fig. 1a), then

P4 BB PG,
AA, BB, CC,

Let PP”and AA’be the altitudes of
triangles PBC and ABC, respec-
tively. From similar triangles A, PP’
and A;AA’, we see that the ratio
PA|/AA, is equal to the ratio
PP’JAA’. This ratio is in turn equal
to the ratio of the area of PBC to that
of ABC (since these triangles have a
common base).

For similar reasons, the left side
of equation (1) can be rewritten (us-
ing absolute-value signs to denote
area) as

IPBCL 1APCI 1ABP_|ABCI
|ABCl |ABCl 1ABCl 1ABCl

completing the proof.

Now, if P is the point considered in
the problem, then by the similarity of
the triangles cut off by the lines
through P and the original triangle

(fig. 1b) we get AP/AA, = r/a, so
PA,JAA, = (AA,~ AP)JAA, - 1-1/a,
and in the same way

ﬂzl_il _PCI —1_1.
BB1 b cG c

Together with equation (1) this
yields the equation

s_r(l+l+lj=1
a b ¢

and the expression for r given above.

(b) The solution for the three-
dimensional case repeats the previ-
ous one almost without any
changes. Four segments in a tetrahe-
dron ABCD meeting at a point P
(fig. 1c) always satisfy

PA  PB  PC, PD,
—t—4+—+—=1 (2)
AA, BB, CC, DD,
The only difference in the proof is
that we must replace the areas of tri-
angles by the volumes of tetrahedrons
(PA,/AA, = vol(PBCD)/vol(ABCD),
and so on).

Then, if x is the unknown area
and A is the vertex opposite the face
of the area g, then x/a = (AP/AA, P,
for instance, because the ratio of the
areas of similar figures is the square
of their ratio of similarity, and the
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planes considered in the problem
cut off from the given tetrahedron
similar tetrahedrons with the ratios
of similarity AP/AA,, BP/BB,, and
SO on.

Expressing the left side of equa-
tion (2) in terms of the ratios x/a, x/b,
x/c, x/d, we arrive at the equation

3 GRGRCRHIE

which yields the answer

2
X =( T 1 3 1 1 j
az+b2+ci+d?
(V. Dubrovsky)

M144

Let o be the angle between the
larger sides of A and B (fig. 2). It’s

Figure 2

not difficult to see that o < /4. Let
the sides of rectangle B be equal to
k and 1 (where k > 1), so that the ec-
centricity of B is equal to k. Then
the sides of rectangle A are equal to
k cos o, + sin o and cos o + k sin o
Note that the first is not less than the
second, since o < 1t/4, so cos o 2 sin o.

Now k2 sin o0 > sin o (since k > 1).
It follows that

kcoso +sina
Tk,

coso + ksino

which says that the eccentricity of
A is not greater than that of B.

M145

Suppose R, W, and B are the num-
bers of red, white, and blue squares,
respectively. We will prove that the
result for R, the number of red
squares. First we note that R <3W.
To prove this we take any white
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R

Figure 3

square and put a check mark on each
red square bordering it. Then we
take any other white square and put
a check on any red square bordering
it that has not yet been checked. We
continue this until there are no
more white squares left. Since each
white square borders on at least one
blue one, at each step we have
checked no more than three red
squares. But this means that

R<3W. (1)

In the same way we can show that
W <3Band B<3R.

Take any red square x, and con-
struct a chain of three squares, con-
sisting of a white square x, border-
ing on square x,, then a blue square
x, bordering on x,. Wherever we can,
we construct a “corner chain” (see
figure 3). Note that we can construct
a corner chain so long as one of the
squares marked with an asterisk in
figure 3 is blue.

In each “straight” chain, we put
a check mark on the white square,
and in each corner chain we put a
check mark on each red square. We
construct a chain, and check a
square, for each red square (the
chains may overlap).

Now the number of checked white
squares is equal to the number of
straight chains. Also, each blue
square that is not part of a corner
chain is checked not more than four
times (it cannot belong to more than
four corner chains). It follows that

R<W +4B. (2)

Similarly, W< B +4R and BER +4W.
Adding inequalities (1) and (2}, we
find that 2R < 4(W + B), and finally
that n2 = R+ W + B < 11R, which
proves part (b).

It is left to the reader to show that
these bounds on R are the best pos-
sible—that is, that 2/3 cannot be
replaced by a smaller number or
1/11 by a larger number.

Physics

We take advantage of the fact that
the initial potential energy of the
body on the surface of the upper lig-
uid is expended during its motion to
overcome the force of resistance.
Therefore,

mg(h, + h)) =W, + W,,

where m is the body’s mass, g is the
acceleration due to gravity, W, is the
work performed by resistance in the
upper liquid, and W, is the analogous
value for the lower liquid. Since the
body is streamlined, the resistance is
the buoyant force: F, = p,Vg in the
upper liquid and F, = p,Vg in the
lower liquid (where V is the body’s
volume). Thus,

W, =p,Vgh,
and
W, = p,Vgh,.

Substituting these values for W, and
W, in the first equation above and
taking into account that m = pV
(where p is the body’s density), we
get p(h, + h,) = p,h, + p,h,, from
which we get

_ Py +pyhy
h+h,

However, most readers of Kvant
(Quantum’s sister magazine, in
which this problem first appeared)
solved the problem in a more com-
plicated way.

Two forces act on an object mov-
ing in a fluid: gravity (mg = pVg) and
buoyancy (F, = p,Vg and F, = p,Vg,
respectively). Since the object is
streamlined, the resistance in each
liquid does not change as it sinks.
This means that the object moves
with a uniform acceleration. Let’s
write the equation for this motion.
For the upper liquid, mg - F, = ma,
(the acceleration is directed down-
ward); and for the lower lig-
uid, F, - mg = ma, (the acceleration
is directed upward). It follows from
these equations that in the upper



liquid (density p,), the body sinks
with an acceleration

al = g p — pl 7
while in the lower liquid it sinks
with an acceleration

After passing through the upper
liquid, the object acquires a velocity
Vy = at;, where t, is the time it
takes to drop through that layer.
This value can be found from the
kinematic equation

ait?
b= %

Therefore,
Vo =+2a.h, .

This value is in turn the initial ve-
locity of the object in the lower lig-
uid. Since the final velocity is zero,
V, — at, = 0, where t, is the time it
takes to drop through the lower
layer. It follows that

In this amount of time the object
will cover the distance h, in the
lower liquid. Thus,
asts
h, =V, ——22,
27 Vo Ty

Inserting the expressions for V,,, a,,
and t, in the last equations yields

2 2 2
Vo 1V _1Vy _ahy

h, =
a, 2a2 2a2 a,
from which we get
ﬁzﬂzp‘pl'
b a py-p

Solving the last equation, we arrive
at the same result as that above:

p= Py +pyhy
h+h,

Note that accelerated motion of
a body (even in an ideal liquid)

generally involves something called
“apparent mass,” which diminishes
the acceleration. The effect is negli-
gible, however, when p > p,, p,.

P142

The ocean surface is everywhere
perpendicular to the force of gravity,
which is directed radially to the
Earth’s center. The existence of the
cavity beneath the ocean floor
causes the surface to be curved, be-
cause the total gravitational force
acting on water due to the cavity
and due to the rest of the Earth’s
mass is, generally speaking, not di-
rected along the planet’s radii.

In the reasoning below we’ll use
an analogy between the electrostatic
field of a point charge Q and the
gravitational field of a point mass M.
(Recall that the gravitational field of
a sphere of mass M is equivalent to
that of a point mass M placed at the
center of the sphere.)

The force acting on a test charge
q from the charge Q and the force
attracting the test mass m by mass
M are correspondingly

R-—H
4me, r?
and
I =GMm,
g 2

where r is the distance between Q
and g (or M and m). These formulas
are quite similar: F, ~ 1/r? and
F,~1/r* F,~q, and F, ~m—that s,
the dependence of these forces on
distance is the same, as is their de-
pendence on the test charge and test
mass. By this analogy, we introduce
the gravitational potential ¢ 5 for the
gravitational field of a point mass M,
which is equal to the potential en-
ergy of a unit mass in a field of mass
M. The expression for ¢_ is analo-
gous to that for the potential ¢, =
(1/4me,)(Q/r) of the electric field of a
point charge Q:

M
==,
0, ,
The minus sign in this formula re-
flects the fundamental difference
between F_ and F the bodies are

always attracted by gravitational
forces. Since the potential energy is
taken to be zero at infinity (that is,
at very large r), it is negative every-
where due to the attraction in the
gravitational field.

The force of gravity is everywhere
perpendicular to the water’s surface,
s0 the work performed by this force
when a particle is shifted along the
water’s surface is zero, which means
that the potential energy is constant
at any point on the surface. There-
fore, the surface of the ocean (which
is to say, the surface of the Earth) is
an equipotential surface (analogous
to an equipotential surface in an
electrostatic field).

Let’s determine the potential of
the Earth’s gravitational field at
point A far from the cavity (on the
opposite side of the Earth) and at
point B right above the cavity (fig. 4).
For point A the field distortion
caused by the cavity can be ne-
glected, so the potential is

M
q)A =_GE/

where R is the Earth’s radius and
M = (4/3)nR3p, is its mass. To find
the potential at point B, we apply
the superposition principle. Figure 5
(on the next page) shows the super-
position of the gravitational field of
the Earth and the cavity. It’s clear
from the figure that the potential at
point B is composed of the Earth’s
gravitational field (with no cavity)
and that of the spherical mass
whose density is p , - p,—that is,
the point mass u = (4/3)n(p,, - p,),
where r is the radius of the cavity and
p,, is the density of water. Thus,

M H
el
. R-3 r+h-9%

Figure 4

QUANTUM/ANSWERS, HINTS & SOLUTIONS Y




-0
Py
= 4
Pr— Py
P1
Figure 5

(see figure 5). As the ocean’s surface
is an equipotential, ¢, = ¢, or

M__ M b
R R-8 r+h-9&

Rearrangement of this equation
gives us

3 1

-M = .
R(R-8) r+h-35

Therefore,
M+ ) -82]= RR-9)
u
Neglecting 2 on the left-hand side
and & on the right-hand side yields
Mo np=R,
w

or, substituting

_M_ R _p
o rPp,-p,
we obtain

r+h Rép,

3 p.-p,

=1
r

Therefore,
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3

r pr

r+h P, — Py,

=§-6.4-106-25m2
2

= 240 km?.

Here we have used the numerical val-
uesR =6.4-10°m, p =3 103 kg/m?,
p,, =1-10%kg/m3 and & = 25 m. We
won’t solve this equation for r—
we'’ll just estimate its value. Re-
membering that h = 6 km from the
statement of the problem, we can
get a first estimate by taking the
square root of 240 = 15.5 km. Us-
ing this value in the left-hand side
yields a value less than 240 km?.
Therefore, we choose a larger
value until we find that r is about
18 km.

P143

When heating a gas at constant
volume, the energy is spent only on
increasing the gas’s internal energy,
while heating it at constant pres-
sure requires energy to perform
work as well. Let’s write down the
law of conservation energy in both
cases:

mc AT = AU, (1)
mc AT = AU + W, (2)

where ¢, is the specific heat capac-
ity of the gas at constant pressure
(that is, the amount of energy neces-
sary to raise the temperature of 1 kg
of gas by 1°C at constant pressure),
c, is the specific heat capacity at
constant volume, AT is the change
in temperature, AU is the change in
the internal energy of the gas, m is
the mass of the gas, and W = PAV is
the work performed during gas ex-
pansion (AV is the change in volume
and P is the pressure).

Since an increase in temperature
by the same number of degrees at
either constant pressure or constant
volume corresponds to the same in-
crease in the gas’s internal energy,
we can write

cpmAT = c,mAT + PAV.

By applying the ideal gas law (PV =
nRT), we can express the amount of
work performed by a gas in terms of
its molecular mass p and the gas
constant R:

PAV = 2 RAT.
u

Substituting this formula in equa-
tion (1) yields Cp=Cyt R/, from
which we get

R

Cp — Cy

= 32.7 kg/kmole.

From this we deduce that the
unknown gas is oxygen with a small
impurity of a heavier gas.

P144

The ring is affected by an acceler-
ating force from the magnetic field.
It’s not an easy task to calculate it
“head-on,” but it can be elegantly
found by invoking energy relations.
As the ring travels between the
poles of the magnet, a certain
amount of heat is dissipated in it,
which is just equal to the change in
the ring’s kinetic energy. This is
because the interaction energy of
the ring with the magnetic field is
zero both before the ring enters the
field and after it leaves the field. Our
calculations will be greatly simpli-
fied if the change in velocity is
small. We’ll make this assumption
and see later whether it’s justified or
not. And we’ll make one other as-
sumption: the ring is small com-
pared to size of the magnetic field, so
we won't be interested in what goes
on when the ring enters or leaves the
field.

Thus, the current induced in the
ring is

_ AD/At _ BySvy/a

I = const.
R R
The time it takes the ring to travel
through the field is
=24,
Vo

The thermal energy dissipated equals



202
Q=IRi = 2B3S VO‘
aR

The change in velocity can be found
from the equation

v} m{vy - av)
2 2

=mvyAv =Q,

from which we get

2B}S* Bid?
AvV=——>r—=———
maR 8Dpa

P145

In the reference frame attached to
the center of mass of the nucleus
and moving with velocity v relative
to the Earth, the fragments fly off in
opposite directions with equal ve-
locities. The kinetic energies of
these fragments are equal to the dif-
ference in the internal energies of
the nucleus and the fragments. If the
velocity of each fragment is v, then
mv}

2

2

= F,-2E,.

From this we get the velocity of each
fragment:

m M

The velocity of a fragment in the
laboratory reference frame (attached
to the Earth) is the vector sum of v
and v,. The velocity v, of the frag-
ment in the reference frame of the
nucleus can be directed anywhere.
However, the vector v’ of the
fragment’s velocity in the labora-
tory system forms the maximum
angle with the vector v when the
vector v, is perpendicular to the
vector v’ (fig. 6). In this case the vec-
tor v’ of the fragment’s velocity
forms an angle o. with vector v that

Figure 6

=025m/s < v,

satisfies the equation

2(E, - 2E,)
Mv?2

Brainteasers

B141

The problem can be solved in the
standard way by using equations of
motion. Here’s a more elegant solu-
tion.

Let C be the point upstream from
A at the same distance from A as B
(CA = AB). Imagine a third motor-
boat that moves parallel with the
first: it starts from C at the same
speed, in the same direction, and at
the same moment as the first mo-
torboat. Since this third motorboat
and the second motorboat move at
the same speed relative to the raft
(that is, to the water), both move to-
ward the raft, and both are
initially equidistant from
the raft, they will always
remain equidistant from
the raft. When the first mo-
torboat arrives at B, the
second covers the same dis-
tance and arrives at A. So at

AD and BC, respectively. Then PQ
passes through the center O of the
circle. Indeed, the reflection in the
diameter perpendicular to AB and
CD swaps the points A and B and
the points C and D, and so it swaps
the lines AC and BD. Therefore, it
leaves the common point P of AC
and BD intact—that is, P lies on this
diameter (or its extension). This rea-
soning applies to Q as well, so PQ is
just the extension of this diameter.

Now we can find the unknown
center as the intersection of PQ and
any other similarly constructed line.

B143

By drawing some rays we can see
that the candle’s image will move
closer to the mirror after the sheet of
glass is placed between the mirror
and the candle (fig. 8). The blue lines
show the paths of the rays without
the glass, and the red lines corre-
spond to the case when the glass is
present.

]
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this moment the raft will <

be the same distance from
the second motorboat as
from point A (that is, the
imaginary third motor-
boat). (V. Dubrovsky)

B142

Use the ruler to draw two paral-
lel chords AB and CD (fig. 7). Find
the intersection points P and Q of
the lines AC and BD and the lines

Figure 7

e
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Figure 8

B144

The answer is n = 9. Inspecting
the first digit from the right in the
given equation, we find that 2- O is
divisible by n. So either O = 0 or
O =n/2.In the second case, from the
third digit we derive K > n/2, but
from the fifth digit we see that
3-K<T<n-1,s0K < n/3. It fol-
lows that O = 0. Now we have these
equations: 3 - T = Kn + Y (from the
second and third digits), 3 - Y = ¢n.
(where ¢ is the number carried from
the fourth to the fifth digit), and
3 - K+ ¢ =T (the fifth digit). Multi-
plying the first equation by 3 and
substituting the expressions for 3Y
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and 3K from the two other equa-
tions, we get 9T = (T —¢)n + cn1, and
so nn = 9. We must also check that
there’s at least one solution for this
n. In fact, there are four: KYOTO =
13040, 16050, 23070, or 26080.
(V. Dubrovsky)

B145

The covered loop is red. To prove
this, we first note that the upper
blue arc can’t be connected to any of
the other three blue arcs, because
otherwise we’d be unable to close
the red arc embracing the blue arc
connected to the upper arc. If the
three smaller blue arcs are parts of
the same loop, the red arcs embrac-
ing them are also parts of one loop.
Together with the two upper arcs
this makes four partly visible loops,
whereas there must be five. This
leaves only one possibility: two of
the smaller blue arcs belong to one
loop, the third to another. Then
three blue loops have uncovered
parts, so the completely covered
loop is red. Figure 9 shows how this
is possible.

Figure 9

Kaleidoscope

1. The Earth turns 15’ on its axis
every minute.

2. The Sun is at an altitude of
¢ = 45°.

3. This will occur if the observer
is at one of the Earth’s geographical
poles or if the star in question is situ-
ated at one of the celestial poles.

4. The visible path of the Moon in
the sky practically coincides with
that of the Sun, but the Moon makes
a complete revolution not in a year
but in a month. So if the observer is
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at one of the poles, the Moon will be
above the horizon for two weeks and
below the horizon for another two
weeks.

5. The terminator on Venus is a
semicircle, which is seen from the
Earth at an angle as a semiellipse.

6. Yes—you can see such a reflec-
tion in equatorial regions.

7. For an observer on the Moon,
the Earth neither rises nor sets.

8. Yes, one can—for example, by
studying the behavior of a pendu-
lum.

9. At the equator the ring looks
like a band crossing the sky at the
zenith; at the poles it can’t be seen
at all.

10. On the side of the Moon fac-
ing the Sun, the astronaut will see a
total solar eclipse; on the other side,
only the brighter stars will be seen
against a black sky.

11. In summer (in the northern
hemisphere) the distance between
the Sun and Earth is greater than in
winter, so the angular size of the Sun
in summer is a bit smaller than in
winter. On the other hand, the dis-
tance between the Earth and Moon
on average does not depend on the
season. This why the Moon covers
the Sun completely more often in
summer than in winter.

12. The distances from the Earth
and the Moon to the Sun are practi-
cally equal. So, if the Moon and the
wall had the same coefficients of
reflection, their brightness would
appear identical. So it can be inferred
that the lunar soil is composed of
dark rocks.

13. No, it doesn’t. From the Moon
one can see the solar corona, while it
can be observed from the Earth only
during a total eclipse of the Sun.

14. Light beams are deflected (re-
fracted) in the Earth’s atmosphere,
so if the atmosphere were absent,
the visible position of any star
would shift slightly. For example,
stars that can be seen near the hori-
zon would disappear.

15. Comets participate in the di-
urnal rotation of the heavens.

16. Meteorites that encounter the
Earth’s “morning” hemisphere are
traveling in the direction opposite the

Earth’s rotation, by and large, while
those that strike the “evening” hemi-
sphere are basically chasing after the
Earth. So meteorites entering the at-
mosphere during the wee hours do so
at a higher velocity and burn more
brightly than those arriving before
midnight.

Microexperiment. To verify that
the difference in size at the horizon
and zenith is only apparent, project
an image of the disk (it’s easier to do
this with the Sun) on a sheet of pa-
per using a lens with a long focal
length (why?). The lens and paper
must be perpendicular to the light
beams. Measuring the images in both
cases (the disk near the horizon and
at the zenith), one can see that they
have the same diameter.

This is the situation in which a
magnetic pole is moving in an inverse-
square magnetic field. It’s the mag-
netic equivalent of an electron mov-
ing in the electric field due to a
proton or, for that matter, a mass
moving in the gravitational field due
to another mass. The conditions are
right for the moving monopole to
orbit the stationary one. The total
energy of the moving pole is the sum
of its kinetic and potential energies:

1 5 Mg Q*g*

E=—mv
2 4t r

The force equation for the moving
monopole is

Bo Q*g* _ mv?

A 2 r

Combining these gives us

Fo_Mo QFq*
8t r

The initial energy of the moving
pole is

Ei :_l_mvg _M_Ogl
2 4n 1

We can solve for the radius of the



resulting orbit by equating these
two energies. This gives

_ Mo Q*q*
8t E

There are limits on this result. If
the initial velocity v, is too high, the
initial energy will be positive and
there will be no solution for the or-
bital radius. The monopole will es-
cape the pull of its neighbor. Too
low an initial velocity may cause
the monopoles to collide, if in fact
they have any size.

What would we call our little
magnetic atom? The author is par-
tial to the name “Wylium.”

J8sse James

1. The condition D?u(x) = u(x - 1)
—2u(x) + u{x + 1) = 0 implies that
u(x-1)+u(x+1)

u(x)= 5

2. This rule is the same as Jesse’s!
Individual x gives 0.1u(x) to each

neighbor, but receives 0.1u(x - 1)
from one neighbor and 0.1u(x + 1)
from the other, for a net change of
0.1[2u(x) + u(x - 1) + u(x + 1}].

3. The quantity

[ulx-1,y)-2ulx, y) +ulx + 1, y)] +
[U(X, y- 1) _ZU(X/ Y) + U(X, y+ 1)]

now determines whether the indi-
vidual located at (x, y) will get richer
or poorer. In calculus it corresponds
to the “Laplacian” Au, defined as

Au = Uy + Uy

4. The leftmost individual with
$130 receives a total of $10 from two
vertical neighbors and gives a total
of $10 to two horizontal neighbors.
(Since that individual is at harmony
with her or his neighbors, we could
say that the distribution is “har-
monic” at that location. In calculus,
functions u(x, y) satisfying Au = 0 are
called “harmonic functions.”)

5. Setting the expression in prob-
lem 3 equal to zero yields the equa-
tion in the box below.

ux-Ly)+ux+l,y)+ux,y-D+ulx,y+1)

ll(X, Y):

4
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p. 5, col. 2, first display equation:
fora, - +a,reada, - 10 + a,.

p. 5, col. 2, third display equation:
for 9a, 99a, read 9a, + 99a,.

p. 6, col. 2, q1, 4 lines from bot-
tom: for n - o(n) read n - c,(n).

p.7,col.3,11,1 1: fora, read a, = 1.

p. 7, col. 3, 92, 1. 2: for not divisible
by n read not divisible by p.

p. 8, col. 1, second display equation:
for \/ﬁlog4 2n read \J2n log4 2n.

p. 8, col. 3, problem 5: for p* read p,.

p. 23, problem M128, 1. 14: for
points A and C read points A and D.

p. 32, col. 3, exercise 1, L. 4: for side
AA,C read side CA,.

p. 35, col. 2, 411, line before display
equation: for CC’ read C'C,.

p. 41, col. 1, exercise 4, 1. 2: for in
terms of the perimeter of the length
read in terms of the length.

S

Corrections

p. 42, col. 2, second display equation
from bottom: for

1 1 1
—+—, |—+—C08
Y2 2% 7 gl
read
o111 n
[ = == g08
Vo 2V2 2 a2

p. 43, col. 1, problem 7, solution, 1. 2:
for cos (A + B) read cos (A + B)].

p. 58, problem M129, {1, 1. 11: for
2 +nread w+ n.

p. 62, problem 7(a), 1. 3: for 2(x - 1)*
read 2(x - 2)%.

p. 62, problem 7(b), L. 1: for 1 + i/2
read -1 +i/2.

p. 62, problem 7(c), 1. 1: the equation

should read
V2 124242 -1
2

Vol. 5, No. 3

p. 9, col. 1: the display equation at
the bottom of the column should
read

(Kt .
h= |—2 =4.10° = 400 km.
Voo

Our thanks to Prof. Paul Middents of
Olympic College for bringing this to
our attention.

p. 9, col. 2, 91, 1l. 1-2: for Three
hundred kilometers ... a mere 4% ...
read Four hundred kilometers ... a
mere 5% ... .

p. 12, fig. 4: the middle braid
should be labeled “C”; the equation
“B.C = D" applies to the entire fig-
ure.

p. 35, col. 1, problem 1, last line:
for...x 17 read ... x 17 + 1.

-/
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TOY STORE

Head over hesls

The mechanics of an odd top

DITOR’S NOTE: A LETTER

arrived a while back at the edi-

torial offices of Kvant (the Rus-

sian-language sister magazine
of Quantum). A tenth-grader at the
Titarevskaya Secondary School,
V. Tkachov, wrote: “I bought a top in
a toy store. When I set it in motion,
it flips over and rotates on its handle.
What physical laws underlie such a
motion? What do the dimensions of
the top have to be to make such para-
doxical behavior possible?”

We think the answer to this let-
ter will be of interest to many of our
readers. This article was written by
Sergey Krivoshlykov, a tenth-grader
at Secondary School No. 45 in Kiev,
and is based on the report he submit-
ted to the Fourth Student Scientific
Conference in the city of Kiev.

The top described in Tkachov’s
letter is often referred to as Thomp-
son’s top. It is a ball with the top part
cut off. In the middle of the cut there
is a handle that is used to spin the
top (see figure 1, where the sizes are
given in millimeters).

If the top is spun with the ball in
the lower position, it flips over while
rotating so that its handle touches the
table top, then it pops up on the
handle and continues spinning, up-
side down, in a stable manner (fig. 2.
When the angular velocity decreases
to a certain point, the top resumes its
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Figure 1

initial orientation. At first glance
such behavior seems very strange.
When the top flips up onto its handle,

S

Figure 2

the top increases its potential energy.
What makes it do this? It’s widely
known that any system tends to
minimize its potential energy.

Let’s begin by considering the rota-
tion of a rigid body about its axis. Take
a large flywheel (say, a bicycle wheel)
that can freely rotate about a rigid
horizontal axle. Setting the flywheel
in motion, let’s grab its axle with both
hands and try to tum it in the verti-
cal plane, as shown by the blue ar-
rows in figure 3. We immediately feel

a strong resistance. The spinning fly-
wheel tries to conserve both the size
and direction of its angular momen-
tum, and hence the angular velocity
of the rotation as well as the direction
of the axle. Now let’s apply more
force. Strange as it may seem, we will
not achieve the desired result. The
axle turns—but not in the vertical
plane, as we thought—no, it tums in
the horizontal plane, as shown by the
red arrows in figure 3.

This is strange only at first glance.
It’s known that as rigid bodies rotate,
the external torque (a vector) equals

RS

the rate of change of the angular mo-
mentum (another vector):

n/
¢

’T
7

Figure 3

Art by Yury Kononenko







Figure 4

There is an analogous formula for
linear motion: the external force
acting on a body equals the rate of
change of the body’s momentum:

A(mv)
At

Thus, the vector change of the angu-
lar momentum Al of the flywheel in
a small time interval At is parallel to
the torque 1 (fig. 4)—that is, it lies in
the horizontal plane. So the new vec-
tor for the angular momentum lies in
the same plane. Note that because 1
is perpendicular to Im, the change in
the angular momentum A(lw) is per-
pendicular to the angular momentum
I itself. (Figure 4 shows A(I®) greatly
enlarged.) So in our case the size of the
angular momentum does not vary—
only its direction changes. This
means that the angular speed of the
flywheel about its horizontal axis also
does not vary.

If we try to twist a flywheel rotat-
ing in the opposite direction, its axle
will also turn in the horizontal
plane, but in the opposite direction.
This movement of the axis of a rap-
idly spinning body perpendicular to
the applied forces is called its “pre-
cession.”

If the size of the external torque
is constant, the rate of change of o
will be constant as well (A(Iw)/At =
const). In this case the flywheel’s
axle revolves with a certain angular
velocity Q, known as the precessional
velocity. The larger the applied
torque, the larger the precessional

velocity of the flywheel:
AIo)/I
oo 80 _ (Io) /I
At At
3 A(Iw) i _T
At Jo Io
64 MAY/JUNE 1885

(Since the angle A¢ is small, Ad =
Allw)/Iw).

It's clear that the faster the fly-
wheel rotates (that is, as ® and Io
increase), the smaller the preces-
sional velocity for the same external
torque (because the angle A¢p will be
smaller in a time interval At—sece
figure 4).

Let’s consider a common rotating
disklike top. Initially, when the an-
gular velocity is high, its axis is prac-
tically vertical. Then this velocity
decreases due to friction at point A
and air drag, and the top begins to
precess about the vertical axis, cir-
cumscribing a conical surface whose
apex is at point A (fig. 5). Why does
this happen?

Figure 5

Let’s consider the forces acting on
the top. The force of gravity mg and
the reactive force of the table N cre-
ate a torque that tries to turn the top
over. As a result, the top’s axis
moves perpendicular to the plane of
these forces—that is, it precesses.
The direction of the motion of the
axis is shown in figure 5 by the red
arrow. During this precession the
top’s axis circumscribes a conical
surface whose apex is at point A.

It should be noted that the pre-
cession of the axis existed in the
very beginning of the gyration due
to the unavoidable push given to the
top when it was “launched” (it’s im-
possible to spin a top ideally), but
the corresponding precession was
small.

In addition to the torque pro-
duced by the two forces mg and N,
the top is affected by the torque due
to the frictional force F;, relative to
its center of mass. Figure 6 gives an
enlarged view of the top’s tip. If the

Tf / axis of rotation

center of mass

point of tangency

Figure 6

point of tangency of the axis with
the table top doesn’t lie on the rota-
tion axis of the top (the top is tilted),
the torque due to the frictional force
lies in the figure’s plane and points
in the vertical direction. The change
in the top’s angular momentum
(forced by friction) is also directed
toward the vertical, so it is friction
that causes the top’s axis to assume
the vertical position.

This can be clearly demonstrated
by setting the top in motion at an
angle with the vertical. After a while
its axis assumes the vertical posi-
tion. According to the right-hand
rule, the torque due to the frictional
forces is directed toward the verti-
cal, so the change in the angular mo-
ment is also directed vertically and
the top’s axis tends to assume a po-
sition perpendicular to the plane of
rotation. In sum, the tilted top is in-
fluenced by two torques: the torque
due to the pair of gravity-related
forces (the downward force of grav-
ity and the upward supporting force)
and the torque due to the frictional
force. These two torques are always
present when a top spins.

Now let’s get back to Thomp-
son’s top and try to explain its be-
havior. Since this top consists of a
truncated sphere, its center of grav-
ity is lower than the geometric cen-
ter of the sphere it’s based on. When
we spin the top, we unintentionally
incline its axis from the vertical. Be-
cause the top is spherical, its point
of support shifts as a result. Never-
theless, the axis of rotation will be
vertical, so it will not coincide with
the top’s geometrical axis. Since the
center of gravity lies lower than the
geometric center of the sphere, the



Figure 7

tilting of the top results in a displace-
ment of the center of gravity from the
axis of rotation (fig. 7). It will take the
position O’ and will rotate about the
vertical axis. As it rotates with a high
angular velocity, the top’s center of
gravity will rise for the same reasons
a ball suspended on a thread rises
when the thread is twirled, as shown
in figure 8.

Figure 8

However, the top will not stop in
the horizontal position, and after it
passes through that position because
of its inertia, its handle will come into
contact with the table (fig. 2). As soon
as this happens, the support point will
“jump” from A to B (fig. 9) and the
top, rotating about its axis, will pre-
cess about the axis BB’. In other
words, Thompson’s top will now spin
just like a “standard” top. Under the
influence of the frictional torque, it
will bring its axis in line with the ver-
tical axis BB’ and continue to rotate,

N
N
N
N
N
N

Figure 9

but now upside down.

This reasoning shows that the
odd behavior of Thompson’s top re-
sults from friction. Indeed, if there
were no friction, after the top’s
handle touches the table top, the
top would return to the horizontal
position and continue spinning as
long as its angular velocity is high
enough. Then, under the action of
the torque due to gravity, it would
return to its initial position (fig. 2).

Here is another experiment re-
lated to Thompson’s top. If this top
is set in motion on a surface covered
with a thin layer of powder, the
powder will leave a trace on the
top’s surface, in effect recording the
trajectory of the point of tangency of
the top with the plane. This trace is
shown in figure 10. On top the line

bottom view side view

Figure 10

curls like a helix, but on the equator
it changes direction and begins to
uncurl backwards. Why does this
happen? The law of conservation of
angular momentum requires that
the top rotate in the same direction
in both its initial and upside-down
positions. Let’s spin the top in the
clockwise direction (viewed from
above). If the top doesn’t stop rotating
about its axis when turned upside-
down, it would rotate counterclock-
wise in the new position. So, to con-
serve the size and direction of its
angular momentum, the top must
stop spinning about its geometrical
axis at a certain moment in time and
then begin rotating in the opposite
direction. According to figure 10, this
occurs when the top lies on its side.

Asfor the top’s dimensions, they can
be different, but one condition must
be met: the center of gravity must not
coincide with the geometric center of
the truncated sphere. O]
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