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GALLERY O

Allegory (1556)

I MAGINE YOU COULD REACH INTO THE PAGE AND
I turn this picture over like the cover of a book. Behind it you
would see apoftrait o{ Bemardo Rossi, Bishop of Treviso. That
is, i{ you happened to be a close friend of his. The portrait and
its cover panel have been separated for centuries-the bishop's
celebrated visage now resides in a Naples museum.

Those who found "Allegory" had little dif{iculty making
the connection. Even if there hadn't been an explicit reference
to the portrait on the back, art historians would have recog-
nized the coat-of-arms propped against the tree from Rossi's
signet ring in the Naples painting.

We can only speculate why Lorerrzo Lotto {c. 1480-1556)
painted this scene contrasting the li{e o{ virtue and the life
o{ vice as a companion to the bishop's portrait. The Renaissance

byLorenzo Lotto

love of learning is evidcnt in the child's "playthings": scroli,
carpenter's scluare/ {lute, compass. Thc satyr in the gloomy
woods seeks truth in wine. An empty arnphora rvith a piglike
snout 1olls at the feet of the beastll'sensualist.The background
hints at the ultirnate fatc,s oi these nro souls: a shiprvreck ior
one, a quick ascent to heerr-en ior- the other.

Thc tree in the foregrountl has much to say as well. Blasted
by lightning or rvind, it nor.retheless has sprouted anew-on
the "good" srde. It rr-r11 no doubt try to regain the stature of
its peers on the right llvhose virture we need not impugn-
Nature is not prone to hurlan vicc). But why stop therel \\Ihat
keeps it {rom growing tallerl Our first {eature articlt r-r-;:
some data, rnakes somc cstimates, and clrar,r's SOlle u rr,, --: r :
about the upward-striving life of tre es.
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Cover artby Sergey lvanov

What's that we hear? Across the
snowy stillness, in the enveloping
murk of midwinter . . . the dulcet
tones of the Magic Flute? the Fiddler
on the Roo{? seventy-six trombones?
We're getting close . . .

We humans take great pleasure in
sound. Before we saw the world we
heard it, in the long prenatal darkness.
And in our typically anthropocentric
way/ we tend to think that sound was
made for us.If we can'thear it, it's not
a "sound." We now know that the
range of vibrations that human beings
can hear is actually quite narrow, and
that nonaudible sound can be very
useful. Paradoxically, we build ma-
chines to help us see what we can't
hear and, perhaps more importantly,
see what we couldn't otherwise see.

The Kaleidoscope in this issue ex-
plores the world of sound. And as the
oblivious tubist on our cover plays
"Auld Lang Syne," we wish our read-
ers health and happiness in 1994.
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One example of military-to-civilian conversion

Y YOUNGEST SON, RICH-
ard Aldridge, is an aerospace
engineer, commercial pilot,
and certified flight instructor.

Much to my chagrin, he also flies
aerobatics! Richard has had a life-
long love of flying and has learned
more about airplanes than anyone
I've ever met. He wili help me de-
scribe an interesting
and unique technol-
ogy that only Russia
has, one that could
have a timely applica-
tion in the United
States.

Last |anuary, Rich-
ard learned of a re-
markable new kind of
vehicle that had been
a military secret for
many years. The Rus-
sians decided to de-
classify it and try to
market it for civilian
use. This vehicle flies like an air-
plane but is neither an airplane nor
a hovercraft. It is called a WIG (for
"wing-in-ground effect") or, more
commonly, a wingship.

The Russians began developing
such aircraft in the early 1950s and
had produced several versions. They
are designed to take off and land on
water, and fly most efficiently iust
above ground or water level. They
were to be used as military cargo ve-
hicles and troop transports, and also
as weapon platforms that could fly
undetected under enemy (that was
us!)radar. More recently, it was pro-
posed that the wingships be used for

rescues at sea. The Russians cur-
rently have two models of wingshiP
in use: the Orlenok (Eagiet) and the
Lun (Hen-harrier).

The Lun is huge-some 74 m
Iong, with a 44-m wingspan and a
tail height of 15 m. It cruises at
about 500 km/hr with a range of
3,000 km and a maximum altitude

of 3,000 m. But what is most sig-
nificant is its huge payload-
around 100,000 kg. The Lun can
take oif from water with a total
mass of 400,000 kg.

Here is Richard's description of the
wing-in-ground effect (perhaps a more
quantitative version will appear in a
subsequent issue of Quantuml:

The wing-in-ground effect is the phe-
nomenon of drag reduction when an air-
plane flies near the ground. "Dtag" is
the retarding force that the plane's en-
gines must overcome. It is made up of
two components. Parasite drag is the
drag due to viscous effects and pressure
differences on the fore and a{t sections

of a body. This is the drag most of us are
familiar with. The second type of drag
occurs when lift is produced, and so is
calledlift-induced drag. This is the drag

that is reduced during flight close to the
ground.

The easiest way to explain liit-ln-
duced drag is by vortex generation. -\c-
cording to Bernoulli's principle, rr-hen a
wing produces li{t, the total pressu:e on

the upper suriace rr the
wing is less rra: :l-.q to-
tal pressure . r ::-. bot-
tom suriace. T:;s a net
pressure puSil-: the
wing up-;rr'.:: i: lift.
Because oi:h=:; fres-
sure differences, a-r irom
under the rring at h-rgher
pressure spi1ls around
and over the lvingtips to
the area above the rting,
where the pressure is
lower. When this hap-
pens vortices are pro-
duced-little tornadoes
that are tilted sideways.

These vortices can be ahazard (which is
why air traffic controllers delay small
airplanes from taking off behind large
airplanes).

Why wouid these vortices cause
drag? Because they are columns of spin-
ning air that contain rotational energy.
How then does an airplane operating
near the ground create less lift-induced
drag? These vortices at the wing tips
interact with the ground, which hinders
their production and reduces their size.
Thus, they require less energy to pro-
duce, which means less drag. This re-
duced drag makes the wingship much
more efficient than a regular airplane.

To help bring this technology to
a North American market, Richard

JII'IlJIRYiTIORUIRY



flew to Moscow in midwinter and
took an overnight train to Nizhny
Novgorod (formerly Gorky, where
Andrey Sakharov had been exiled).
He was brought onto the frozen sur-
face of the Gorky Sea (a reservoir i00
km north of Nizhny) to observe one
of the wingships in flight. On his
next trip there, he brought with him
Peter Garrison of Flying magazine
and leaders of ARPA, a US govern-
ment group interested in possible
uses for the wingships.

Richard arranged for a full-scale
demonstration flight on the Caspian
Sea, where an ARPA team of engi-
neers and scientists observed the
spectacular performance of the
Lun's smaller sibling, the Orlenok.
(The team included Dick Rutan,
who designed the plane that flew
around the world nonstop-the
long-winged Voyager.l

Readers in the US who watched
the horrifying Califomia fires in No-
vember may have guessed where this
editorial is headed. When Richard
saw the C-130 transport planes and
helicopters try to catry enough water
to put out those fires, he realized that
this task was a perfect match for the
Lun. With modifications, it could do
the job far better than any other kind
of aircra{rt. The Lun could take off and
land on watert and it could be loaded
with water with high-speed pumps
built into its huil.

Since the density of water is
about 1,000 kg/m3 and the Lun has
a payload of 100,000 kg, it could
carry 100 m3 of water, and more if
modified with smaller fuel tanks.
This is 26,400 galions of water for
each flight, allowing a blanket of wa-
ter 1 foot deep, 20 feet wide, and 1.77

feet long to be dropped on a fire for
each flight from the water to the fire.
Two or three of these wingships
might put out fires quickly and eas-
ily, well before they could do the
terrible damage they now do.

What a great opportunity to fit
Russian technology to the task of
saving the homes and lives of
people in the nation that this tech-
nology was originally designed to
threaten.

-Bill G. Aldridge
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Why do trees grow so tall-but no taller?

by Anatoly Mineyev

VERYONE KNOWS THAT
there are no trees as tall as one
kilometer. What factors influ-
ence the height of a tree? What

quantitative laws determine its
thickness and height? Can one un-
derstand and explain them using el-
ementary physical estimates?

Let's open a reference book to
find data for the height h and trunk
diameter d (measured near the
ground) of some trees. Figure I
shows the data with the ratio hld
plotted against 1/d. Also shown are
some lines delimiting our data: the

h/d

200

100
80
60

40

20

Figure 1

Dependence of a tree's relative haight (hld) on its diameter (d). The left-hand
portion coruesponds to the thickest fteas, the right-hand portion represents
thin trees.

horizontal line hld: 50 and three
slantedlinesh=const.

It's evident that all varieties of
trees here on Earth seem to follow
certain regularities. To figure out
what they are, 1et's formulate a few
obvious questions.

Why is theratiohld limited to 50
for thick trees with a base diameter
d > 0.4-0.5 m (to the left of point B

in figure 1)? Why can the ratio hld
exceed 50 for thin (d < 0.2 m) trees,
but only under a certain height
(10-20 m)? Why is the maximum
height of trees on Earth 100-150 m?

lvlechanics: $l'enuth and elasthily
Let's start at the center oi frgure

I and consider the horizontal line
AB (hld = 50). What is the origrn of
this limit? It's natural ro suppose
that a slender tree rrith a high value
of hld can't bear the ic.ad and will
get broken. Indeed one oi the basic
parameters determLning the maxi-
mum value of J: ; rs the strength of
the trunk. Let's consider the limits
connected rlrth thrs strength (a) in
the ideal case oi a r-ertical tree and
in two appro\11-nations intended to
model Nature: ,b' a tree at an angle
with the vertrcal and (c) a tree influ-
enced by the r'-ind.

To simplrrr- rhe estimates, a tree
is assumed to be a solid cylinder of
diameter d and height fi. The den-
sity p and the maximum stress o,,o,

of the tree rvil1 be taken to be

and

p = 500 kg/m3

o,r", - 107 N/mr

(a) A vertical tree. For such a tree
the maximum stress is equal to the
pressure at the ground o = p*h,
where c : 10 m/sec2 is the accelera-
tion due to gravity. Substitution of
the numerical data for o."* and p

yields an estimate of the maximum
height for a strictly vertical tree: h-,"
= 2 km. Too high! Apparently no
tree in nature is strictly vertical.
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At right: "A resource{ul little guy."
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(b)A tilted tree. In the more real-
istic situation of a tree inclined at an
angle cn, there is a torque acting on
the trunk:

h.
trt= rr78-slno",

wherem = nph& I ais the mass of the
trunk. At ecluilibrium t, is compeni
sated by the torque t, of the elastic
forces in the trunk, which is esti-
mated to be t, : 7rF, where 1, is the
characteristic distance from the axis
of rotation to the point of applica-
tion of the force ar'd Fris the force.
The factorl, is equal to the radius of
the tree at its base lr : dl2l; the force
F, is equal to the product of the av-
erage stress o and the cross-sectional
arca of the base F, - oP, frornwhich
we get q- of . The exact expression
for the torclue x2 is similar to this es-

timate:
1t.fi

Tn =:O1o = -6d".'432
Equating t, and t, results in

h_ o
d 4pghsincr'

Inserting the values for the density
and maximum stress yields

rft) _ 5oo
l.dJ-,. = .hrirrcr'

OI

Ia)
ll=

Id l-^* - .,,?sino'

with ft and d in meters.
Apparently only low trees can tilt

to a marked degree. Thus, when h/d
- 50 and h - 20-30 m (a common
tree), the possible inclination is less
than 20" (sin cr . 0.3), and it's less
than 3o (sin o < 0.1) only for the tall-
est trees (h - 100 m). This means
that a very tall tree must be nearly
vertical or cluite thick. If the tilt of
the tree is near the limit, the tree
either breaks or is "forced" to get
thicker in order to decrease the ratio
hld.When the tilt is large (which is
the case with a shrub or a tree with
a well-developed crown), the limit of

the ratio hld is

which corresponds to sins - 0.3-0.5.
(c) A tree and the wind. Wind is

another cause of the torques that
stress a tree. Let's assume a value of
v - 30 m/sec (100 km/h) for the ve-
locity of a strong wind. At such a
high velocity the aerodynamic force
acting on the trunk is determined by
the inertia of the wind-that is, the
resistance to drastic changes in the
wind velocity blowing around the
trunk. This force can be written as

the product of a wind-blast pressure
and a characteristic area:

F* - P"irs"h*'

When v is large enough, the pressure
P* depends only on the parameters of
the air flow: its densiry p and veloc-
ity v. Dimensional analysis gives us

P. =o.tP.atf t 
^l

Now let's write the characteristic
areaof a trunk 4s S"r,,, = SK,, where S

: dh is the area of the section of the
trunk perpendicular to the air flow
and K, is the coefficient of the shape
and characterizes the deviation of
S.n,, from S. For trees with a small
crown/ 0.5 . & < 1; for trees with a

large crown, Kr, l.
Now we can write the following

expression for the {orce of the wind:

F*= P,otPdhK,

The corresponding torque can be
written

Using the relationship between the
torque and the stress in the tree, we
get the limit:

(#)-"" =

the parameters-omu - 107 N/m2, p,o

- 1.3 kg/m3, v - 30 m/sec-we obtain

Thus, a strong wind can explain
the nature of the plateau AB in fig-
ure 1. It should be noted that among
the different parameters of a tree it is
onlv the ratio o lK.that enters into

,fiNII

the formula for (hldl*, and the influ-
ence of this ratio is not very critical.

Now let's look at the more "regu-
lar" dependence on the right side of
figure 1, corresponding to young trees
with smallbase diameters. Why is it
possible for them to increase the ra-
ao hld to 100 and even more? Let's
tum again to the formula

rh'\ F;
(aJ-* - l-rr,*'

The first thing that comes to rnind is
that these trees are partiallysseened
from the wind by taller trees, rcmem-
bering the dependerce lhldl - vt.
Also, the younger trees usually have
smaller crowns (& - 0.5-U. These
reasons might explain theinrease in
the ratio hld for slender trces-

But why is there a drastic change
in the dependence hld =fldl fuointB
in figure ll at h - IO-2O m? Appar-
ently this is the characteristicheight
at which a ttee can bend to a great
extent or deviate from the vertical.
Assume that the wind has tilted a

tree such that sin cr - 0.3-0.5. Then
we obtain a ratio hld equal to 5O

when the tree's height h is at that
10-20-m mark.

ThE $hhilily ulfiEFttrlffi $Itaru

Now let's consider some esti-
mates of the stability of the trunk's
shape when it is firmly anchored in
the ground. The trunk is assumed to
bend a little under the action of ex-
ternal forces. This results in (a) stor-
age of energy Uo related to elastic
deformation and (b) a decrease in
gravitational energy U- due to a low-
iring of the centei of iravity.

Clearly, the condition AU" < Uu

must be satisfied-otherwiJe the

rh) 30 40

[aJ-.. =17 to 
^,14 ' rh\ 40

l-l =-(dJ*,. - 
^tq

L
T, =l* *z

TE

tSKl
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bend would increase and the trunk
will break. Now let's formulate the
limitations resulting from this con-
dition. We'll bend a trunk with a
constant cross section along its
length. Intuition tells us that the
trunk assumes the shape of an arc.
The corresponding change in the
gravitational energy is

LUr= mglh-h),

where mg is the weight of the trunk,
h is the height of the unbenttree, and
h, is the height of the tree when bent.
The values of h and h, are shown in
detail in figure 2, which explains as

well the way to calculate them:

L=aB,
h,:RsinB,

where p is in radians. Thus,

LU": mgR(B - sin B).

When the bend is small (B << 1), we
can use the approximation sin p =
p - p'16, which yields

L(J =mgRB3 =mghg--c- 5 6R2'

Now let's evaluate the potential
energy stored in a rod when it is bent
slightly. Note that the bending of a
thin rod (d .. hl reduces to simple
deformations of the cross section:
compression and tension. The rc-
lated stress o in the cross section can
be obtained by using Hooke's law

o=tEr

where E is Young's modulus and e is
the relative deformation (compres-
sion or tension). tr our case, r = ZlR,
where Z is the absolute deformation.
Layers to the right of point O in fig-
ure 3 will undergo compression, and
those to the left will undergo tension.
The energy o{ deformation per unit
volume can be estimated as the prod-
uct of the force per unit area and the
relative displacement:

la)

Figure 2
(a) An upright fiee and (b) the same
tree bent by the wind.

In the entire trunk, the energy of
elastic deformation will be Uu =
o e V. whereo ande arethelevelmm , m m
of stresses and relative deformation
at the middle of the radius. Since o*
= t*E, t- : rf2R,V =Itth, andr = df2,
we obtain

L =lgd?E

d2EVU, =-=" L5R2

x dahE
64 R2

or

Thus we have arrived at the result-
ing limit:

Inserting the values o{ E = 5 . 10e Pa
and p - 500 kg/m3, which are char-
acteristic of wood, we obtain

Figure 3
(a) Parameters of a bent tree; (b) de-
pendence of stress on trunk radius r;
(c) top view of the ttunk's uoss
section.
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Now, what have we come to un-
derstood from the "mechanical" pa-
rameters of wood that describe its
elasticity and density? Quite a bit,
actually: the middle and right-hand
portions of figure 1. The red line in
figure 4 (on the next page) marks the
initiai curve; the thick lines show
the limits associated with the
strength of a vertical trunk, stability
under the action of its own weight,
and the effect of strong winds.

As you can see/ the ideal case of
a vertical tree doesn't occur in na-
ture. Strong winds account for a pla-
teauof hf d = const. Stabilityconsid-
erations for the trunk under the
influence of gravity on very thick
trees (several meters in diameter)
results in even more severe limits
for the ratio hld than the influence
of a strong wind. However, purely
mechanical considerations do not
clarify the nature of the maximum
height for trees. As one wouid ex-
pectt a tree proves to be much more
complicated than a dried-up stick
driven into the ground.

ltllalel' l'uns qttiefly

Now let's tum our attention to the
movement oI watil inside a trce.
Water unites the roots, trunk, and
leaves into a single living system.
Let's estimate the characteristic ve-
locities of water in the three most
important cases (fig. 5): (a) during
evaporation from the foliage-v,o,;
(b) during flow in the trunk-v*; and
(c) during absorption by the roots
from the soil-v,oo,. We'll move from
the top to the bottom of a tree-and
from simple to complicated estimates.

(a) The velocity of water in the fo-
liage. The crown of a tree needs to be
cooled continuously as it is heated
by the Sun. Otherwise the over-
heated foliage would cease to func-
tion. When there is a gentle breeze,
the solar heat can basically be carried

0tlAIiIlJtit/[rITUnt
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hld

1,000

0.1 1 10 100 4-t1--t1

Figure 4
Limitations related to a ftee's physical parameters.

nels, the resistive force F.". is deter-
rnined by the viscosity of water.

If the layers of a licluid move with
diffcrent velocities, a kind of "fric-
tion" between them arises-the vis-
cous force. lf we want to quantita-
tivcly describe a viscous liquid, we
can consider the elemcntary cx-
ample of a liquid flowing between
two parallel plates set close to one
another. If one plate is fixed ancl thc
other movcs with a velocit.v r', then
a viscous {orce arises betrr,een them:

4,.. ='15;,

where S rs the :rrea of each plate, 7r

is the distance between them, ancl

the factor 11 rs the coef{icicnt of vis-
cosin ,t1 - 10 I kg/m secforu'ater).

\\-hen water flows through a tr.rbe

rrith a diameter d and a lcngth 7, the
change in the veiocity from the rvall
to the center of the tubc is oi the or-
der of vld; the area of the u.aLl is S .-

ld. This gives us

F.. 
". - qv7.

In the case of uni{orm flort, the vis-
cous force is balanced by the cliffer-
cntial pressure:

Frrrr= LP4t '
4

This leads to an estimate oi the dif-
ferential pressure along the length 1:

4,, ^ 11' 
.,d,

The precise formula (Poiseuille's
law) gives the value

^P =32il!'d)'

Lifting a liquid to a height h with
a velocity v,, in the Earth's gravita-
tional field through a channel of di-
ameter d,, recluires a diiferential
pressure

Ap, =p*sh +lz\\i'
@i,

off by the evaporation of water from
the surfaces of leaves or needles.
This primes the "pump" that ex-
tracts water from the soil. The heat
balance for aleaf o[ area S, consum-
ing solar radiation is

ct4oS, = Q",,rp*%orSr.

On the left-hand side we have the
input of solar energy/ and on the right-
hand side we have the output of en-

ergy due to evaporation from the

leaf's surface. Here 4. denotes the
average flux of solar energy at the
Earth's surface (0. - 10'W/m2); a is
the portion of energy consumed bY a

Ieaf (o - 0.2{.3 accounts for the re-
flection of light from the leaf's sur-
face, its orientation, and the screen-
ing effect of the crofin); p* is the
density of water (P* : tCtu kg/m3); and

Q",,n it the latent heat of vaporization
for water (Q",^n - 2 ' lob |/kg). From
this it follows that the velocity of
water supplied to the crown's surface
for subsequent evaporation is

aq
'fol 

Qu"'P* 
'

With the values of the parameters
given above, v ror- lO 7 m/sec - 4' 104
m/h. This formula shows that v,o, de-

pends only on the illumination and is
proportional to it. When the wind is
blowing, the rate of heat loss rises,
which results in an increase in v,o,.

(b) The velocity of water in the
trunk. Within the trunk water flows
through very thin channels that are

the "skeletons" of once-living cells.
The diameter of these channels is ex-

tremely sma1l----o{ the order of 1}s m
in conifers and as large as 1-2' 104 m
in deciduous trees. When water
moves slowly through the thin chan-

t
Figure 5

vroot

Water flow in a tree.

.( 32vv )
= o,,r[,. d_ )

strong wind
(v: 30 m/s)
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where v = 10{ m2/s is the so-called
kinematic viscosity of water. This
formula shows that when v,, is
small, the value of Ap does not de-
pend on velocity, and in the opposite
extreme it is proportional to v,,. The
characteristic value of the velocity
at which the dependence of Ap on vo
drastically changes (it becomes
much more difficult for a tree to
pump the water) i. %n,, = gfi,132v.
AJter substiruting the values frirg and
V, %n- - (3 10'ld!,(here v.n* is mea-
sured in m/sec and d., in microns).
This estimate yields v"n* - 10 cm/h
for conifers with vessels 10* m in di-
4mete! for deciduous trees the cor-
responding values are d,, - 10-a m
and v"n* - 10 m/h.

Despite the approximate nature
of the formula fior v"h^,,the experi-
mental values {or the velocity of
water in the vessels of actual trees
that can be found in the literature
are quite close to our estimates. In
a wayt a tree "feels" the region
where the dependence of Ap on ve-
Iocity changes drastically.

The differential pressure along
the trunk that corresponds to the
characteristic velocity is

Lpr,- 2p*gh.

For high trees with h - 100-150 m,
the value of Ap is about 20-30 atm.

(c) The velocity of water in the
roots. To penetrate into the roots
of a tree, water must cross the'
boundary of the root cell. This is
not a simple task, since the water
molecular must cross a barrier-
the cell membrane-that is a
double-layered, semipermeable
boundary - 10-8 m wide. Water dif-
fusion across the membrane is
very slow. Simple though tather
cumbersome estimates result in
%oo, - 10-t m/sec =4. lO-5 mlh.

Now all three characteristic ve-
locities for water in a tree have been
obtained. A comparison of these val-
ues is quite interesting. The amount
of water flowing through the roots,
the trunk, and the foliage must be
the same. Thus, the area of the roots

(or, strictly speaking, of the root-
hairs) S,oo., of the water-carrying sys-
tem of the trunk S,,, and that of the
crown Sro, must vary inversely with
the corresponding velocities. Taking
S, as the unit area, for conifers we
get (at a velocity vo .- 0.1 m/h under
natural illumination and in rather
wet soil) S,o, i S* I S,oo, = 200-300 : t :

2,500-3,000. From this it foilows
that the area oI the bottom is greater
than that of the top, and each of
them is far gyeater than the total
cross-sectional xea of the vessels in
the trunk. When it forms the crown,
a tree must increase its surface to a
great extent. How does it do this
while expending the minimum
amount of building materials?

Similar problems often appear in
both Nature and engineering. A
lightning bolt is "compelled,, to
branch out into smaller and smaller
channels. The frost on your win-
dowpane must make the same "de-
cisions." So does a snowflake.

The method of solving the prob-
Iem is the same, as a rule: repeated
division into smaller and smaller
structures/ and the last structure is
the one engaged in the fundamental
process (absorption of water by the
root hairs, evaporation of water by
the leaves, the dissipation of electric
energy by lightning).

So now we know how water trav-
els inside atree. This knowledge has
helped us estimate the velocity of
water transport and understand the
reason for the vast branching struc-
tures of roots and twigs. But the mist
that hangs over the left-hand curve
in figure t has not yet lifted.

The grntlllh ollrees
It's quite possible that the crux of

the problem lies not in strict physi-
ca1 limitations on a tree/s height.
Perhaps trees just don't have enough
time to grow as tall as we might
wish. Let's iook at the evolution of
the size of an individual tree. When
the tree is short, the relation hf d
assumes approximately a steady-
state value. In this case the growth
of the tree slows down greatly as
time goes on.

Let's take apart one simple ex-

ample and show how it can be real-
ized in nature. Let the increase in
trunk mass per yearbe Am : const.
Then the mass increases linearly
with time: m(tl - r. But the height of
the tree, when the ratio hld is con-
stant, will increase at a substantially
lower rate: the estimate

m-dzh--!-
(htd)'

results in

h - 1lm -'..lt .

Thus, the dependenceh - fu? results
from the postulate rn = const. Is it
really valid? The increment of mass
per yex is determined by the
amount of foliage formed in the
crown (where the photosynthesis
takes place), which is then distrib-
uted throughout the tree.

For all trees the ratio of the mass
of the water pumped to the top to
the mass of the organic substances
synthesized in the crown varies
within narrow iimits-on average it
is k - 300. This means that the in-
crease in trunk mass is proportional
to the amount of water pumped to
the treerop: Lm = m*f k. During one
year this yields ffi* : p*vrr?rS(r),
where p* is the density ofwater, v*
is the velocity of water flowing up-
ward, Tris the duration of pumping
during ayeat, andS(t)is the effective
area in the trunk's cross section that
is involved in water transport. The
first three factors on the right-hand
side can be assumed to be constant
(p- = loa kg/*3, vrr: v"6u-the char-
acteristic velocity of water transport
through the trunk, and T, is the
length of the spring-summer grow-
ing season). The effective area taking
part in pumping is

s(r)_ s,_r(r).N.,

where S,,nn is the area of an indi-
vidual ring- in the tree and N, is the
number of rings. As a rule, the thick-
ness of ayearlyringdecreases as the
years go on (you can examine the
rings on a tree stump'to verify this).
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Thus, the area of the rings remains
virtually constant.

To simplify our reasoning we
can assume S,,""(t) : const. As for
the number of rings in a tree that
engage in water transport/ we
must keep in mind that eventually
the cel1s in the inner layers be-
come obstructed with the sub-
stances being transported and wa-
ter ceases to flow in them. Thus,
only a small layer of wood near the
bark actually participates in lifting
water. So the number of rings N,
feeding the crown is rather small.
It's not more than a few dozen in
conifers and even fewer (less than
10) in deciduous trees.

So, where have we gotten? All the
factors in the expression for the in-
crease in the trunk's mass are virtu-
ally constant in time. So it seems
probable that tree growth gradually
slows: h - ?'tE.

What's so interesting about this
dependence? Well, it makes it clear
that the growth rate decreases

drastically with time. If a tree grew
to a height of 50 m in 50 years, it
would pass the 100-meter mark at
the age of 400, and it would reach a

height of 200 m in 3,200 years. It
looks like this is the end of the story.
Of course, we must remember the
numerous not-too-rigorous notions
and suppositions we allowed our-
selves in our long iourney in the
mist.

To add the finishing touch to our
investigation, let's list some evolu-
tionary considerations that work
against gigantism in trees.

1. The vegetation around a tree
competes with it, if not for ai.rspace
above, then certainly for nutrients in
the soil. The low-lying plants adapt
to changes in nutrient levels more
easily than the big plants.

2. Over a period of hundreds and
thousands of years, insects and mi-
croorganisms have pienty of time to
undermine a tree's strength and vi-
tality. Destruction begins from the
core of the trunk, where the cells

have practically ceased functioning.
3. Every 10a years or so the Earth's

climate changes drastically. The last
Great Ice Age, for example, ended
about 10a years ago.

4. There is no competition among
100-m trees for sunlight. So there are
no evolutionary reasons for growing
to 200-300 m: the greatff effort
needed to lift water that high would
not be compensated by any conceiv-
able gain.

5. For a tree to be a candidate for
record height, it must have an ex-
tremely vertical and very thick
trunk, and it must have a compara-
tively small crown as well. We
might say that giants work for them-
selves and not for posterity. Such
trees have a lower reproductive rate
in comparison with species that are
smaller but have a well-developed
crown of foliage.

A11 this seems to explain why
there are no "leafy mastodons"
more than 150 m tall anywhere on
Earth. o
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81 01
Alphanumeric exchange. Replace the letters in the equations given in
the figure with digits (the same letters with the same digits, different
letters with different digits) so as to make the equations true. (A. Savin)

fl.*\r'

\

8103
Staying ahead. of the iceman. Why don't fast-flowing rivers freeze at
temperatures far below zero (Celsius)? (S. Krotov)

r)'u
IJ

nf.
8102
Broken calculator. Each digit on the display of a standard hand calcuia-
tor is represented as a certain combination of seven bars. Something has
happened to my calculator: some of the bars in the rightmost place fail
to turn on. However, I learned how to tell all ten digits in the broken
place from one another, but if one more bar were broken, I'd be unable
to always figure out the corect digit. How many bars are inoperative?
(V. Dubrovsky)

8105
Cutting an equilateral triangle, Two lines divide an equilateral triangle
into four pieces as shown in the figure. It turned out that the areas of the
red triangle and the blue quadrilateral are the same. Find the obtuse
angle between the lines. (V. Proizvolov)

8104
Arithmetic of the hunt. For years now the famous Baron Mrinchhausen
has gone to a lake every morning to hunt ducks. Since August l, L993,
he's been saying to his cook every day, "Today I shot more ducks than
two days ago, but fewer than a week ago." What is the greatest number
of days he can make this statement/ taking into account that the baron
never lies? (A. Kimartsev)
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Penl'osg patlerlt$

and qtla$i-ct'ystals

What does tiling have to do with a high-tech alloy?

by V Koryepin

HIS ARTICLE IS DEVOTED
to the mathematics of quasi-
crystals-a new kind of mate-
rial that was discovered in

1984. Actualiy, their "physical" dis-
covery was preceded by the creation
of intriguing (and absolutely el-
ementary! ) two-dimensional math-
ematical models of quasi-crystalline
structures. At first these construc-
tions, called Penrose patterns/ were
viewed merely as elegant little trin-
kets, but at the present time hun-
dreds of research articles on the
physics and mathematics of quasi-
crystals have been published. So
this topic of{ers an opportunity
that is all too rare nowadays: to get
a glimpse of a new, rapidly devel-
oping area of modern science by
studying very elemerltaryt almost
recreational material.
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We'll be considering a certain
kind of tiling of the plane. A tiling
is a covering of the entire plane with
nonoverlapping figures. It's likely
that an interest in tiling first arose
in connection with the manufacture
of mosaics, ornaments/ and other
decorative designs. Many orna-
ments are composed of repeated
motifs.

One o{ the simplest tilings is
shown in figure 1. The plane here is
covered with identical parallelo-
grams. Any parallelogram in this til-

Figure 1

ing is obtained from the shaded one
by translation by a vector nu + mv
(where u and v are the vectors along
the sides of the shaded parallelo-
grat:rt n and m are integers). It
shouid be noted that the entire til-
ing is taken into itself when it is
translated by either of the vectors u
or v. This important property can be
taken as a definition: a tiling is
caTled periodic with periods t and v
if the translations by these vectors
take it into itself. Periodic tilings
can be quite intricate, and some of
them are very beautiful.t

0uasi-pmiodh liling$ olthe plane

There exist interesting nonped-
odic tilings of the plane , too.Inl974
the English mathematician Roger
Penrose discovered cluasi-peilodic
plane tilings. The propertles of these
tilings naturally gereralize the prop-
erties of periodic tilings.

lSee the Gallery Q and
Kaleidoscope departments in the
November/December 1991 issue of
Quantum for a number of charming
periodic tilings by M. C. Escher.-Ed.

Figure 2
Penrose's example of a quasi-pefiodic
tiling of the plane with rhombi of two
types.

An example of such a tiling is
shown in figure 2. The plane is com-
pletely covered without gaps and
overlaps by rhombi of two kinds.
These are the wide rhombus, with
angles of 72 and 108o, andthenar
row rhombus, with angles of 36. and
144 (fig.3). Of course, we assume
that the side lengths of both rhombi
are the same. This tiling is non-

-7

/ 108" I

L,J ffi
Figure 3
Wide and narrow rhombi.
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Figure 4
A quasi-periodic tiling with four types
of polygons.

periodic-it can be shown that no
translation can take it into itself. But
it has another important property
that makes it similar to periodic
tilings and justifies the name quasi-
periodic: any finite part of this tiling
occurs in it an infinite number of
times. A nonperiodic tiling that has
this property is called quasi-pefiodic.

It',s interesting that the tiling in
figure 2 canbe taken into itself by a
rotation through 7 2o abott a certarn
point. Periodic tilings never have
such fivefold rotational symmetry.2

Another quasi-periodic tiling con-
structed by Penrose is shown in fig-
ure 4. Here the plane is covered with
four kinds of polygons: star, rhom-
bus, regular pentagon/ and 7-gon in
the shape of a paper boat. The best-
known example of a quasi-periodic
tiling is shown in figure 5; Penrose
managed to tile the entire plane
with two kinds of chickens.

lnllatiolt and dellalion

Each of the three quasi-periodic
tilings above is a covering of the
plane with translations and rota-
tions of a finite number of tiles. It
can't be fit onto itself by any trans-
lation, but any finite part of it is
found in the entire covering infi-
nitely many times and "equally of-
ten" throughout the plane.

2This fact was proved in the article
"Diamond Latticework" in the
|anuary/Iebruary L99l issue of
Quantum; see also problem M100 in
the last issue.-Ed.

Figure 5
P enr o s e' s two - chick en tiling.

These tilings can be subjected to
some special operations. Penrose
cailed them inflation and deflation.
They'11 help us understand the
structure of the coverings described
above. They also can be used to cre-
ate Penrose patterns.

The illustration of inflation that
is easiest to grasp is provided by the
so-called Robinson triangles. These
are two isosceles triangles P and Q
with angles 36,72o,72 arrd 108",

P

Figure 6

36o, 36o, respectively,
such that the equal
sides of Q and the base
of P are the same
length-let's say they
are 1 unit long (fig. 6).

Problem 1. Using
figure 7, prove that the
equal sides ofP and the
base of Q are also the
same length-namely,
t, where t is the fa-
mous "golden sec-
tion"3 {L + J5ll2lthe
positive root of the
equation t2 = t, + ll.

The triangles P and
O can be cut into
smaller triangles simi-
lar to the initial ones
with the ratio of simi-
larity lf r,, as illustrated
in {igure 7: t}rrelir;:e AC
in triangleP is drawn to
bisect the angle DAB,
and the line CE so as to
cut off an isosceles tri-
angle CED (tECD =

lEDCl. The "Q-tri-
angle" FHI can be cut into two
"Robinson pieces" by the line IG
such that HG = HI.

Problem 2. In figure T,provethat
If AB : IF : l, then ABC, ACE, and
IGH are congruent triangles similar
to triangle P, and ECD and GIF are
congruent triangles similar to Q.

Figure 7

3See "The Ancient Numbers n
and't" in the Kaleidoscope of the
lanuarylFebruary l99l issue of
Quantum.-Ed.
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Thus, we've cut up the two origi-
nal triangles into three equal tri-
angles of type P and two of type Q.
Comparing figures 6 and 7, we see
that the dimensions of the new tri-
angles are smaller than those of the
initial ones by a tactor of 1/r. This
special cutting is called deflation.
The inverse operation of gluing P-
and Q-triangles together into bigger
triangles of the same shape is called
inflation. As figure 7 shows, two P-
triangles and one Q-triangle can be
combined to make one P-triangle,
and a pair of triangles, one of either
kind, make up a bigger Q-triangle.
The measurements of the new tri-
angles are t times greater than those
of the initial triangles.

It's clear that we can repeat the
operation of in{lation to get a pair of
triangles whose dimensions are tr2

times greater than the initial tri-
angles. If we repeat the inflations a
sufficient number of times, we can
get arbitrarily large Robinson tri-
angles.

Now imagine that we take a P-
triangle, inflate it by adding a con-
gruent P-triangle and a correspond-
ing Q-triangle, then complete the
inflated triangle to a still bigger tri-
angle, and so on (for instance, as in
figure 8). Clearly, we can think of the
triangles that are added to the one
obtained in the previous step of this
process as partitioned into P- and Q-
triangles of the initial size. Thus we'Il

get an expanding portion of the plane
tiled with the copies of the original
Robinson triangles. Sooner or later,
any point in the plane will be covered
with this growing tiled area, so the
process actually defines a tiling of the
entire plane with Robinson triangles.
This can be compared to the process
of gradual crystallization in two di-
mensions except that, as we'Il soon
see, it's more like "quasi-crystalliza-
tion."

I'11give a sketch of the proof that
the chain of iterated inflations can
be organized so as to obtain a non-
periodic tiling.

Let's consider the limiting ratio r
of the number of triangles to that of
Q-triangles in an arbitrary tiling of
the entire plane with triangles of
these two sorts. That is, we draw a
large circle of radius R and count the
numbers poarrd eoof P- and Q-tri-
angles inside this circle. Then r is
the limit of the ratio p^f q^as R ap-
proaches infinity:

r=IimPR.
p_* 

ea

I'll show first that for any peilodic
tiling using the triangles P and Q, the
number r is always rational. Suppose
a tiling has periods u and v. Draw a
grid of parallelograms with sides u, v
(fig. 9), choose (and shade) one of
them, and denote by p thenumber of
triangles with their bottom vertices
(with respect to the Snd) lying in the

Figure 9

shaded parallelogram. (If a triangle
has a horizontal base, we look at its
left bottom vertex.) Do the same for
Q-triangles to define the correspond-
ing number q. Theunion of all these
p + q ffiarLgles is a so-called funda-
mental rcgion of our periodic tiling-
a polygon made of tiles whose trans-
lations by vectors nu + mv with
integer m and n tile the entire plane
without overlaps. Then

Indeed, let\ be the number of par-
allelograms in our grid that lie com-
pletely inside the circle. Then po is
approximately equal to the number
of triangles with their (left) bottom
vertices in these parallelogramspn =
pA{*. The error of this approximation
accounts for the triangles in the
circle whose respective parallelo-
grams stick out o{ the circle, and for
the triangles that don't fit in the
circle themselves but their parallelo-
grams do. A11 such triangles lie
within a ring between circles of ra-
diiR - d andR + d with some fixed
d. So their number is not greater
than the area nl(R + dlz - (R - dP)
= ZndR of the ring divided by the
area of the triangle, which is pro-
portional to R, while No is propor-
tional to R2. Similarly, qR= qNR,
where the error of the approxima-
tion is negligible with respect to
NR. It follows that in the limit the
ratio of the numbers of P- and Q-
triangles is equal to this ratio
counted for the fundamental re-
gion-that is, to pf q. This shows

15
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Figure B
Inflating P-triangle devowing the plane.
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Figure 10

that for any periodic tiling the value
of R must be rational.

We complete the proof that the
tiling is nonperiodic by showing that
its R is irrational. Imagine that we
deflate our tiling. Then it is not hard
to see that the initial fundamental
region will contarn p' : 2p* q
smaller triangles and q' - p + e
smaller Q-triangles. A little thought
will show that we can assume, with-
out loss of generality, that in the
sequence of inflating triangles used
to construct our tiling the position
of each triangle (except the first)
with respect to the previous one is
the same. This means that each tri-
angle in this sequence, just likd the
very first triangle, generates the til-
ing of the plane by its copies and the
copies of the corresponding Q-tri-
angle, and this tiling repeats the
original one except that it's scaled
up by a fixed tactor. So the limit of
the ratio of the numbers of P- and Q-
tiles in the inflated tilingis the same
as in the original tiling. And, of
course/ the same as in the deflated
tiling as well. This can be written as

P -P' =2P+q =t*-!-lQn-A- p.rt -'- o1q+t'

Solving this equationforpf q, we get

Pl q : ^c: (J5 * lll2, whichis a con-
tradiction, because this number is ir-
rational. Thus, our tiling cannot be
periodic.

Problem 3. Show that a tilingpro-
duced by iterated inflations contains
infinitely many copies of any of its
finite parts. Along with the
nonperiodicity thatwe have already
proved, this will show that our tiling
is quasi-periodic.

The tiling of the plane with
Robinson triangles isn't unique-
there are infinitely many such
tilings. Roughly speaking, this is
because the deflation of the triangle
ABD in figure 7 could be done by
drawing the bisector from vertex B
rather thanA. Using this freedom of
choice, we can turn the triangular
tiling into the rhombic tiling in fig-
ure 2. The chicken tiling is aiso gen-
erated by Robinson triangles.

[ualily
The method of creating quasi-

periodic tilings given above looks
like a clever guess. But there is a
regular way of constructing quasi-
periodic coverings. It's based on
the so-caIled duality ftansforma-
tion, rntroduced by the Dutch
mathematician de Bruijn.

I'11 illustrate his idea by way of
the example of tiling the plane Figure 11

with rhombi (see figure 2). To be-
gin with, we draw a grid (denoted
by G) that consists of five sets of
lines. The lines of each set arepar-
allel to one of the sides of a fixed
regular pentagon. The distance
between two neighboring lines of
each set is one unit (see figure 10).
The only restriction on the rela-
tive positions of the sets is that no
three lines can meet at one point
(it can be proved that such a grid
can indeed be constructed). The
lines of grid G cut the plane into
an infinite number of polygons
called the f aces of the grid; the
sides and vertices o{ these poly-
gons are called the edges and
nodes of the grid, respectively. (A
similar terminology will be used
for the quasi-periodic tiling T
we're going to construct: its faces,
edges, and nodes are the tiles
(rhombi), their sides, and their ver-
tices, respectively.)

Now let's perform the duality
transformation. It relates the faces,
edges, and nodes of the grid G to the
nodes, edges, and faces of the tiling
7 in accordance with the rule de-
scribed below.

Let's assign the numbers l, 2, 3,
4, 5 to the sides of the regular pen-
tagon used in the construction of
the grid (fig. 11) and the corre-
sponding sets of parallel lines.
Denote the vectors drawn from
the center of the pentagon to the
midpoints of the sides with corre-
sponding numbers ts Er1 E2t Eu, Eo,

€r; we can assume that these are
unit vectors. Assign the numbers
0, +1, +2,... to the lines of each set
so that the numbers increase along
the directions of vectors e, (starting
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from the initial pentagon). Thus,
every line can be denoted as l,(nl,
where-r is the number of its set and
n is its number in this set.

Now we associate with every face
F of the grid G a set of five numbers
nr(Fl, nr(Fl, ..., nr(Fl, where n,(Fl = n
of the fiace F lies between the lines
1,lnl and 1,(n + Il of the rth set (r = 1,

2, 3, 4, 5). These numbers are
uniquely defined for any face, be-
cause for any of the five sets of lines,
the {ace F belongs to exactly one
strip between the lines of this set.
Now we can locate the node N =
N(F) of our tiling that is " dual" to
the faceF of the grid G. This node is
the point whose position vectorv(F)
is given by

v(F) : n,(F)e, + nr(Fler+ nu(F)e,
+ no(Fleo + nulFler.

To construct the nodes of the new
tiling we choose a fixed point O and
use it as the endpoint of each of
these position vectors. Thus, every
face of G is assigned to a node of the
tiling 7. To form the tiling, some of
the nodes must be joined with
edges-these will be the sides of the
rhombic tiles. The rule of joining is
simple: two nodes, N, = N(F,) and{
= Mfr), are joined with an edge ol
the tiling if and only if the corre-
sponding faces F, and F, of the grid
G have a common edge. So each
edge of G is associated with an edge
of T.

Finally, consider an arbitrary
node A of the grid G. It is always
the intersection of exactly two
straight lines of the grid, so it's a
vertex of exactly four faces of the
grid Fy Fz, FB, F, around A. Then
the corresponding nodes of the til-
ing N,, N, N., N, will be joined in
just this order to form the quadri-
IateralN,NrNrN, It is not di{ficult
to show (see problem t of the
editor's postscript) that every edge
of our tiling T is of unit length and
is parallel to one of the vectors e-.
This means that N,NrNrNo is I
rhombus similar to one of the two
rhombi in figure 3. Thus, the con-
struction of the required rhombic
tiling is completed.

It remains to show that this tiling
is indeed quasi-periodic; for that, see
the last section of this article.

The duality transformation illus-
trated above is a general method for
constructing quasi-periodic tilings.
The regular pentagon in our con-
struction could be replaced by any
regular polygon with not less than
seven sides.

0uasi+el'iodic tiling nl tfil'ee-

dimensionalspam
Another way to generalize is to

apply duality to quasi-periodic
tilings in space. Indeed, there exists
a three-dimensional generalization
of Penrose patterns. Space can be
tiled with parallelepipeds of a spe-
cial kind without gaps and overlaps.
Each of these "tiles" is a copy of one
of two parallelepipeds-the so-called
Ammann-M ackay p ar allelepip eds. A
parallelepiped is determined by the
three vectors joining one of its ver-
tices to the endpoints of the edges
issuing from this vertex. For the first
Ammann-Mackey parallelepiped
these three vectors are

er: (0, l,,cl,
er= (<,0, -1),
e, = (T, 0, -ll;

for the second they are

eu= (0, -I, 1ll,

€. : (t,0,ll,
eu: (0,l, r).

Figure 12
The icosahedron-a regular polyhe-
dron with 20 triangular faces, 30
edges, and 12 vertices.

The tiling of space with translations
and rotations of these paralielepi-
peds can't be taken into itself by
translation, but any of its finite
parts is repeated infinitely many
times in the entire tiling, so it,s
quasi-periodic. This tiling is con-
nected with the symmetries of the
icosahedron (fig. 12), which never
occur in periodic tilings.

It rumed out that this very symme-
try is characteristic of an aluminum
and manganese alloy Alo.ruMro.,,
(discovered in 1984) when it'is
cooled quickly. Thus, Penrose
tilings shed light on the structure of
this new substance. And not iust
this one-other quasi-crystals have
been found recently. Scientists are
currently studying these novel sub-
stances both experimentally and
theoretically.

Edllon$ E$tscl{ft wlry does it uronfi?
The article you've just read deals

mostly with the "whats', and
"hows" of quasi-periodic tilings. It
explains what the term means and
how these tilings can be con-
structed. However, many of the
"whys" remain unexplained, espe-
cially those concerning the duality
transformation. Actually, it's not
very easy to prove that the construc-
tion based on duality described
above reaily leads to a quasi-periodic
tiling. On the other hand, we believe
that many of our readers would be
interested in the proof and would
even like to do it themselves. So
we've decided to divide it into a
number of simpler steps and present
these in this postscript as a series of
statements to be proved. We'1l freely
use notations introduced in the ar-
ticle.

The first group of statements will
bring about a better understanding
of the structure of Tand the connec-
tion between the tiling and the grid
G that generates it.

l.LetArandArbe the nodes of ?
corresponding to adjacent faces F,
andFrof grid G. If the common side
of F, and F, lies on a line of the ith
set, then t6e vector Afi = x",.

2. The quadrilateral N,NrNuNo
formed from the edges of 7 is de-
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scribed in the article for anynode of
G is always a "wide" or "rrartow"
rhombus (fig.3). These rhombi will
be called "tiles."

Now let's take any two faces F
and P of G, choose arbitrary points
P andP', respectively/ in these faces,
and move along a straight line from
P to P'. As we move, we'll pass
through a series of faces. Denote
them by F, = F, F2, ..., F,: F'and 1a-

bel Au the node of 7 corresponding
to F, (k = L,2, ..., nl. Consider the
vf!!9!sum ArE * ,qr(* ... *
An-tAn'

3. All the vectors in this sum that
are parallel to e, have the same direc-
tion-that is, they are all ec1ual ei-
ther to ei or to -e,. The first possibil-
ity occurs if the angle between
vectorse, and F/ isacute/ the sec-

ond if tie angle is obtuse. What
happens if these vectors are per-
pendicular?

4. Suppose that after replacing
each vector in the ,.r* 4{ *

m * ... .T*fi with the appro-

priate vector te, and collecting like
terms/ the sum cre t * czEz+ cae3 + c4e4

+ c5es emerges. Then the following
relation holds:

n,lPl=n,(Fl+c,

(the numbers n,(F) were defined
above, in the section about duality).

This statement isn't quite trivial,
because the same vector (here,

+4 lcan be represented as a linear
combination of the vectors e- in
many different ways. So the specific
way in which we defined the coeffi-
cients cj is important.

In the sequence of nodes Ar...A,
each node (except A,) is joined with
an edge to the next (because faces Fo

and Fo. , are adjacent). Any such se-
quence of nodes with the edges con-
necting them will be called a

"path." If all the edges in a path
make acute angles with a certain
direction (as in statements 3 and 41,

we'll say it's a "progressive" path.
5. Any two nodes in Tcan be con-

nected with a progressive path. The
distancerbetween any two nodes is
greater than 1 except when they are

the endpoints of an edge (z = 1) or of
two edges issuing at an angle of 35
from one node (r = 2 cos 721.

5. The duality correspondence
associates different faces of G with
different nodes of T-that is, it's a
one-to-one correspondence.

7. Statement 4 holds for any path
frorn A rAr...A, with F and F' defined
as the {aces of G associated with its
endpoints.

Now it can be shown that the
rhombi resulting from the duality
transformation really tile the plane
without gaps and overlaps. (This fact
by itself is not used, though, in the
subsequent proof that these rhombi
form a cluasi-periodic structure.)

B. Every edge of ? is a common
side of exactly two rhombi.

9. Take any rhombus from 7 and
fix a point A in it. Move from A to
an arbifiary given point X along a
straight line and consider the emerg-
ing chain of rhombi, each of which
(except the first) borders on the side
of the previous one that is crossed by
the segment, X. This chain is finite.

Since the last rhombus in the
above chain coversX, it follows that
our rhombic tiles leave no gaps on
the plane.

10. Two overlapping tiles (that is,
different but having common inte-
rior points) cannot have a common
vertex.

11. ff tiling T contains overlap-
ping tiles, then there are two edges

with a single common point (that is
not their common vertex). The
shortest distance between their end-
points is less than 1.

12. If two edgesAB andBC make
an angle of 36, then no two edges
drawn from A to C can have a com-
mon point other than their common
endpoint.

Comparing statement 11 with
statements 5 and 12, we conclude
that our tiles do not overlap, so 7
is an actual tiling. The next two
statements show that it is non-
periodic. We'll use the notation
s,(r) for the strip between the iines
l,(nl and 1,(n + l) of grid G.

13. If T has a period p, then p is
representable asp,e, +... +pueu with
integer coefficients p, such that for
any face F there exists a face F' that
satisfies the equation n,(Fl: n,(Fl + p,.

14. Given two arbitrary sets of
five integers each-(n,, ..., no) and
(P r, ..., P.)-there is a positive integer
k such that the intersection of five
strips s,(n, + kpr), i = l, . . .,5, is empty.

The nonperiodicity of 7 follows
from statements 13 ar;ldL4, because
il p = pre, + ... + ps€s is a period o{ 7,
therS by statement 13, together with
any face F the grid G must contain
the face F, such that nr(Frl: ni+ pi,
where n- = n,lFl, and the faceF, such
that n,lFrl : n,(Frl + pi: ni+ 2p , and,
in general, the face Fu such that
n,(Fel = n,+ kp,for any k. But that
would mean that the intersection of
the strips s,(n, + kp ) is a face of G for
any k and so is a nonempty set/
which contradicts statement 14.

To make sure that Tis quasi-peri-
odic, we have to show that any finite
partToof Tis repeated in Tinfinitely
many times. The concluding series of
statements demonstrates that there

v

Figure 13

1r(n)
12@ +
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arc arbitrarily many translations that
carry a7I the nodes in 7o into other
portions of T, and, therefore, ?o has
arbitrarily many copies in ?.

Choose an arbitrary line I from,
say, the first set of lines that form
grid G, and denote by v the vector
joining the points where this line
meets two successive lines of the
second set, lr(nl andlr(n + 1). Simi-
larly, let v'be the vector intercepted
on l by two lines of the third set.
Then, because of our order of num-
bering lines in a set, the correspond-
ing vectors for the fourth and fifth
sets will be -v' and -v (fig. 13).

15. For any integers i, i, and k
the translation along the vector v
takes the strips sr(il, sr(il,and sr(k)
into s,(i), sr(l + 1), and su(k - 1), re-
spectively.

15. If we shift all the lines of the
third and fourth sets by a vector
with a smail enough length (less
than a certain 6)without moving the
three other sets of lines, the part To

of 7 remains unchanged.
17 . For any E > 0 one can find in-

tegers n and m such that Inv - mv'l
< e. (Hint: show that the ratio of the
lengths of v and v'is irrational-in
f.act, it equals ll,c-anduse the Frac-
tional Parts Theorem from the ar-
ticle "Ones Up Front in Powers of
Two" in the last issue of Quantum.l

18. Let's choose n and m using
statement 17 tor e : 6, where 6 is
the number from statement 16.
Then the translation by the vector
t : rTEz + me3 - ffiEo - neu will take
7o into another finite part of T.

The iast statement ensures the

existence of at least one copy of 70.
The more pairs of integers m, n sat-
isfying lnv -mv'l < e = 5 we can find,
the more copies of 7o we get. Choos-
ing a and n: with a sufficient mar-
gin-say, for e : 5/100-we'11 get a
hundred pairs (n, ml, (2n,2m1, ...,
(100n, 100m) satisfying this inequal-
ity, ar.d so, a hundred reproductions
of Q. We can show in the same way
that the number of reproductions of
7o is arbitrarily large.

The proofs will be published in
the next issue. o
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BaclilrackinU Io Faraday,s law

Electrolysis and energy conservation

by Alexey Byalko

HE MOLECULES OF ANY
chemical compound consist of
atoms. Electrons are respon-
sible for the interaction be-

tween atoms. Flowever, the elec-
trons in an atom are not all on an
eclual footing. The fundamental role
in chemistry is played by the elec-
trons in the outer shell. Stable mol-
ecules are formed when the energy
of the coupled system of atoms is
lower than the sum of the energies
of these atoms when they're on their
own.

In a number of cases the forces
holding the individual parts of a
molecule together are those of elec-
trostatic (Coulomb) attraction. This
happens when one part of a mol-
ecule has an excess number of elec-
trons-this is a negative ion. An-
other part of the molecule lacks the
same number of electrons-this is a
positive ion.

When the ions of a substance ate
in a medium with a high permittiv-
ity e, the Coulomb forces between
them are weakened by the same fac-
tor e. As a result some ions become
freer and begin to move relative to
one another. Such solutions are
called electrolytes.

Electrolytes are good conductors
of electric cuffent. The carriers of
charge in electrolytes are ions, and
so the conductivity of electrolytes is
called ionic. The passage of current
through an electrolyte is accompa-

nied by chemical reactions at the
electrodes that lead to the separation
of the elements constituting the
electrolyte. This process is called
electrolysis. And it is with electroly-
sis that the electronic nature of a
chemical interaction manifests it-
self most vividly.

The great English physicist
Michael Faraday (1791-1857) was
the first to investigate electrolysis.
He proved experimentally that the
mass of the substance separated dur-
ing electrolysis is proportional to the
charge and the chemical equivalent
of the substance. The discovery of
the laws of electrolysis played an
essential role in the formation of
modern concepts of the structure of
matter. But now we can do the op-
posite: we can derive Faraday's laws
from these concepts.

It will be easier to do this using a

concrete example. Let's look at the
electrolysis of water (HrO). Pure wa-
ter dissociates rather easily into the
ions H* and OH . To increase the
ionic conductivity we add a salt,
acid, or base that strongly dissoci-
ates into ions-f or instance,
NaOH-to the water.

Let's place electrodes-that is,
chemicaily inert conductors-into
this electrolyte and connect them
to a battery. Positively charged
Na* ions now move to the nega-
tively charged cathode, and the
negative OH- ions move to the an-

ode. This is why positively charged
ions are called cations and nega-
tively charged ions anions. When
they reach the,electrodes, the ions
are neutralized: anions give their
extra electrons to the anode, and
cations gain the electrons they
lack.

We can write down the chemical
reactions taking place at the elec-
trodes:

4OH--+ 4e- +Or+ZHrO (anode),

4HrO + 4e- -+ 2H, + 4OH- (cathode).

These reactions eventually lead to
the dissociation of the water:

ZHrO -+ 2Hr+ Or.

For every two hydrogen atoms and
one oxygen atom formed, two elec-
trons must pass through the circuit.
Measuring the current 1 and the
time t of its passage, we find the to-
tal charge: q : It.Dividing this
charge by the electronic charge e, we
find the total number of hydrogen
atoms formed:

It
flH=

e

The number of oxygen atoms
formed during this time is

hn^=- ."2e
In general, the number of atoms of

o
C
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o
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G)a
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the substance formed on the elec-
trode is equal to

wherev is the atom's valence or oxi-
dation state-that is, the number of
electrons added or removed from the
neutral atom to make a stable ibn.

To find the mass of the products
in the reaction, we need to multiply
the numbers n, and no by the
masses of the corresponding atoms.
The mass of the atom is equal to
Af N, where A is the atomic mass
of the substance and N is Avo-
gadro's number.

Now we can write Faraday,s
law for the mass of the substance
separated at the electrode during
time t with the current 1
flowing through the elec- ;*L
trolyte:

ItA
flf=-

Nev

*The mass of ': .

the electrolytic
products is propor-
tional to the current and is
independent of the volt-
age V across the elec-
trodes. The product l/e =

16.02 10'r)x (1.6. lQ tol =
96,400 C/mole is denoted
by F and is called Fara-
day's number.

The energy expended is ,

equal to E = 1Vt. What is
this energy expended on? ,r

Some of it is transformed
into heat. The rest of the en- i
ergy goes to ionic discharge at
the electrodes and is trans-
formed into the chemical energy
of the products obtained during
electrolysis. Let's return to the
electrolysis of water and deter-
mine this energy.

Using a catalyst, let's make the
hydrogen and oxygen formed during
the electrolysis of water react. This

reaction releases energy in the form
of heat:

that the energy transformed into the
chemicai energy of the electrolytic
products is equal to W. From the
conservation of energy it follows
that W < E = IVt (the difference E -

W went into the |oule heating
% of the electrolyte). Hence, the

i following inequality must
r hold:

WWV) -=-It veN

Thus, it follows from
conservation of energy that
when the voltage across
the electrodes is less than
V*i. : WfveN, electrolysis
cannot take place at alll

Let's find the value of this
minimum (or threshold) volt-

age for the electrolysis of
fu. water. It's known

from experiments
that when 1

formed-that is, when there
is complete combustion of 1 mole
(2 g) of hydrogen-the energy I4l =
56.7 kcallmole is released. We
must be careful that our units are all
in the same system. Therefore, we
use the conversion 4.186kI = 1 kcal
to find thatW = 237 kllmole. Thus,
the threshoid voltage is

It
ve

W=Q,(*.- +- \l\ nt utl

It trlu.o
=l) 

- 

!

"l/e 2

'|-' '
'td

a iry' 
- 

mole (18 g) of water is

*_

1"

,::.'

w
vNe

237 kllmole

where l"ls.o is the molar mass of
water and Qn is the heat of com-
bustion for hydrogen.l This means

2(6.02 lox mole-1)(1.60.10-1, C)

=1.23Y.

A potential difference is estab-
lished between the electrolyte and
the electrode placed in it. This oc-
curs because metals are capable of

notations: q is the total charge, Q, is
the heat of combustion.)

lRemember that the heat of com-
bustion for a fuel is the amount of
heat released with complete combus-
tion o{ 1 g of fuel. (Don,t mix up the
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passing into a solution in the form
o{ ions. Here the electrode is nega-
tively charged and the electrolyte is
positively charged. Along the sur-
face of the electrode alayer of posi-
tive ions is formed. Notice that this
potential difference doesn't cause a
curent to flow through the hal{ cell
(that is, one electrode with its corre-
sponding electrolyte). The ions are
in a state of dynamic equilibrium
with the electrode.

Another variant is possible,
whereby the metal is positively
charged and the electrolyte is nega-
tively charged. This occurs when
the electrode placed in the electro-
lyte doesn't "dissolver" but rather
negative ions of the electrolyte pre-
cipitate onto its surface.

It's impossible to measure the
voltage in a half cell directly. How-
ever/ we can choose a specific half
cell as a standard and measure the
potential difference when it is com-
bined with various other half cells.
If we assign a zero potential differ-
ence to the standardhalf cell, we can
attribute the measured potential dif-
ference to the other cell. This poten-
tial difference is known as the oxi-
dation potential q.

The table above presents results
obtained by this method. Plati-
num was chosen as the standard
electrode and the electrolyte is a
one molar2 solution of hydrogen
ions. The energy needed to reduce
1 mole of the given substance from
ions is determined by the oxida-
tion potential.

Since we are usually interested in
the voltage between a pair of elec-
trodes rather than the potential of an
individual electrode, it's clear that
the choice of standard electrode can
be arbitrary. What's important is
that a certain minimum potential
difference is necessary for the cho-
sen pair of electrodes if electrolysis
of each substance in the electrolyte
is to occur.

The oxidation potentials for the
metals in the table are listed in de-
scending order. Notice that the se-

2A one molar solution contains one
gram-atom of hydrogen per liter of
solution.

quence of metals (including hydro-
gen)-K, Na, Mg, Al,Zt, Fe, Pb, H,
Cu, Ag, Au-is the electrochemi-
cal series for the metals, so well
known from chemistry.In this se-
ries each metal can replace afiy
metal to its right in a salt solution.
For example, the following reac-
tions are possible:

Ztt + Ctt** -+ Cu + Ztr**,
2Na + 2F{* -+ 2Na* + Hr.

You can see from this example how
physics gives a quantitative descrip-
tion of a law noted empirically in
chemistry. The reactions occur in
the direction in which energy is re-
leased, and the threshold voltage is
directly proportional to the amount
of energy released.
, Now, using the table as a guide,

we can say why hydrogen, and not
sodium, is liberated at the cathode
during electrolysis of an aclueous
solution of NaOH. The threshold
voltage for electrolysis of the
NaOH solution is equal to 3.94Y
(2.71V + I.23 V). ff the potential
difference across the electrodes V
< 1.23 V, electrolysis cannot take
place; if 1.23 V < Y <3.94 V, then
metallic sodium cannot form. If V
> 3.94 V, sodium can be formed,
but it will rapidly teact with the
water.

The fact that there are different
electrolytic threshold voltages for
different metals provides a way of
separating one metal from an-

other. Imagine you have copper
with small impurities of silver and
gold. How can you extract the
noble metals? Electrolyze the cop-
per salt CuSOn by using this
unpurified copper as the anode.
The following reactions are pos-
sible at the anode: liberation of
oxygen, dissolution of copper (that
is, ion formation), and dissolution
of silver and gold. Metallic copper
precipitates on the cathode. If the
potential difference of the elec-
trodes is taken to be rather small
(smaller than 0.80 V - 0.34 V =

O.45 Vl to prevent the dissolution
of silver and gold and the elec-
trolysis of water, the anode is de-
stroyed. Ions of copper Cu** pass
into solution and precipitate on
the cathode, while the silver and
gold-which are insoluble at this
potential difference-remain at
the anode.

Now let's look at the vol-
tage-current characteristics of the
electrolytes. The situation here is
different for different kinds of
reactions-for instance, fot reac-
tions occurring in batteries and
the electrolysis of water.

In a battery the chemic al reac-
tion is chosen so that the sub-
stances formed when the battery is
discharged during use either re-
main in solution or precipitate on
the electrodes. When the battery is
charged, the reaction will be re-
versed, which will restore its ini-
tial state.

Reaction oN) Reaction 0 (v)

K- +e -+K 2.92 H.+e -+tH, 0

Na.+e -+Na 2.7L |Cu* + e- -+ f cu -0.34

*Ans**e -+jMg 2.37 Ag. + e- -+ Ag -0.80

]Al*. * e- -+ ]nl \.66 jn"".+e -+ jAu -1.50

lzn.- + e- --> |zn 0.76 Br -+ jBr" + e 1.06

|re"+e -+|re o.44 oH --) jH,O + ]O, + e t.23

|eb*+e -+|rb 0.13 Cl -+ jCl, + e- 1.35
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Figure 1

During electrolysis hydrogen or
other gases might be liberated; a
metal in the solution might be re-
duced and precipitate. Then the re-
action cannot be reversed.

In the second case, at a voltage
lower than the threshold V
there is no current, and the r"rlJl
tance of the electrolyte is practi-
cally infinite. When the potential
difference becomes negative, the
anode and cathode change places
and, starting at the voltage -V^iot
the current reappears. So t-iie
voltage-current graph looks like

Figure 2

figure 1.

If, during a reaction o{ the first
typet a substance has already been
liberated at the electrodes, the
electrolyte, along with the elec-
trodes, becomes a source of current
with an electromotive force exactly
equal to the threshold voltage.
Therefore, the voltage-current re-
lationship obeys Ohm's law but is
shifted by the threshold voltage
(fig.2l. When the applied voltage is
zero, the battery acts like the
usual current source while the
chemicals last.

The slope of the lines in figures
1 and 2 are characteristic of the
electrolyte's conductivity and in
the case of[Iat electrodes is directly
proportional to the electrode cross
section and ion concentration. It is
inversely proportional to the dis-
tance between the electrodes. (The
graphs are valid for low current
densities. )

To conclude, I'd like to under-
score the fact that the existence of
a threshold voltage in electrolysis
is a direct consequence of Fara-
day's 1aw and the law of conserva-
tion of energy. This phenomenon
demonstrates the interrelationship
of chemical and electrical forms of
energy.

Exercise
Electrolysis of i liter of an aque-

ous solution of AgNO, is per-
formed at ayoltage V = | V. One
gram of silver precipitates. By how
many degrees does the tempera-
ture of the solution rise? (Neglect
heat losses.) o
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The Uood old Pylhauorealt Theorgln
We never tire of using it-and "reproving" it!

by V. N. Beryozin

OME THEOREMS AND
problems have unusual fates.
For instance, why have profes-
sional and amateur mathemati-

cians always been so interested in the
Pythagorean theorem? Why were so
many of them not satisfied with the
existing proofs, but kept seeking for
their own, which brought the total
number of proofs-during the
twenty-five comparatively observ-
able centuries-to several hundred?

When we talk about the Pyth-
agorean theorem, peculiarities imme-
diately start cropping up, starting
with its name. It's widely thought
that it was not Pythagoras who gave
the first wording of the theorem. And
it's equally doubtful that he gave any
proof at all. If Pythagoras was a real
person (and some people doubt even
that!|, then he most probably lived in
fifth and fourth centuries s.c. He
never wrote anything himself. He
called himself a philosopher-which
meant/ to his way of thinking, a

"lover of wisdom." He founded the
Pythagorean union, whose members
occupied themselves with music,
gymnastics, mathematics, physics,
and astronomy. He must have been
an outstanding orator, too, judging
from a legendary account of his ar-
rival at Croton. "The first appearance
of Pythagoras before the people of
Croton began with a speech ad-
dressed to the youth, in which he
gave such a rigorous and, at the same
time, fascinating presentation of the
duties of youth that even the elders of
the town asked him not to leave them
without instructing them as well. In

his second speech he pointed to the
law and moral purity as the bases of
the {amily. In the following two he
addressed children and women. As a
consequence of his last speech, in
which he particularly censured
luxury, thousands of valuable
women's dresses were brought to
Flera's temple, since the women
dared not appear in them in public."
However, even as late as the second
century e.o.-that is, 700 years after
Pythagoras-there lived and worked
very real people, prominent scien-
tists, who were under the clear influ-
ence of the Pythagorean union and
held in great respect what was alleg-
edly created by Pythagoras.

It's also beyond doubt that the in-
terest in the theorem is generated
both by the important place it occu-
pies in mathematics and by the sat-
isfaction experienced by the authors
of new proofs, who have overcome a
problem mentioned by the great Ro-
man poet Horace (55-8 n.c.): "It is dif-
ficult to express well matters of com-

a

Figure 1

mon knowledge." Originally, the
theorem established the relation be-
tween the areas of the squares con-
structed on the hypotenuse and legs
of a right triangle: the squarc con-
structed on the hypotenuse is equal
in area to the sum of the squarcs on
the legs.

Several relatively simple proofs of
the theorem are based on this geo-
metric version of its statement. One
of these is based on figure 1. In it, a
square of side (a + bl is divided into
four congruent dght triangles with
sides a, b, andc, and a smaller square
with side c. Equating the areas of the
large square with the sum of the ar-
eas of the four triangles and the smail
square, we find la + b)z = c2 + 4(abl2l,
which leads algebraically to the re-
su1t.

A second relatively simple proof
was devised by a young general in the
American army named fames A.
Garfield, who would later serve as
President of his country.In figue 2,
two copies of triangle ABC are ar

ranged to fit into a
trapezoid.It follows
that triangle ABE
is an isosceles

, right triangle.'t Equating the
\, area of the
\ trapezoid
\ with the sum
\, of the areas

\ of the tri-
', angles

o

C

0)a
f
o
J
(D
:ixo

C

Figure 2

A gives the
desired re-
sult.
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Figure 3

Actually, this is not a new proof:
hgwe2ishalf of figure 1(canyousee
how? ). A genuinely new proof is illus-
trated in figure 3. The original tri-
angle is denoted ABC, wrth its right
angle at C; the square on the hypot-
enuse AB is built externally, two
other squares-intemally. The sides
of the smaller squares are extended
wherever the squares overlap. We see

that the extension of the side of the
square on BC parallel to BC passes

through the vertex of the square on
AB opposite A, and a similar {act is
true for the square on the other leg
AC.

Problemt
1. Devise a proof of this observa-

tion. Also, prove that it would re-
main true if the squares on the legs
were constructed extemally, and on
the hypotenuse-internally.

This is the crucial point for the
proof in question, as well as for a
handful of other proofs. Now, it's
easy to understand that the figures
of the same color in figure 3 are con-
gruent. The big square on the hypot-
enuse is cut into four red trapezoids,
four yellow triangles, and a blue
sQuare; we can write this as 4t + 4y
+ b. The square on the bigger leg,
AC, is cut into two red trapezoids,
one yellow triangle, one blue square,
two purple triangles, and one green
trapezoid: 2r +y +b +2p +g; andthe
third square can be represented as y
+ g. But aredtrapezoid and a yellow
triangle clearly come together to

Figure 4

make the original right triangle,
which is cut intop +& sop + I = r +
y. Finally,

2r + 2y + b + 2p + 29 = 4r + 4y + b,

which completes the proof. A
graphic illustration of this cut-and-
paste argument is given in figure 4,

where all the squares are con-
structed outside the triangle, and
one purple-green triangle in the
square or.AC is replaced with a con-
gruent red-yellow triangle. (The re-
maining purpie and green pieces in
the "leg squares" correspond to one

of the red-yellow triangles in the
"hypotenuse square.")

And here's another cut-and-paste
proof-it could also be called a

"hinge" proof (fig. 5)The squares on
the legs of the original right triangle
ABC are constructed internally, and

the smaller one-on BC-is
shifted along BC so as to
abut on the big one from the
outside. The triangle BDE
thus formed in figure 5a is
congruent toABC. Now we
cut the two-square figure

ACEDFG along BA and BD, and
turn triangle ABC about A through
90' clockwise and fiiangle BDE
about D through the same angle
counterclockwise. Bingol The tri-
angles neatly fit together on the
other side of the remaining piece
(fig. 5b) and form . . . the square on
the hypotenuse!

Modem geometryprefers an alge-
braic formulation of the Pythagor-
ean theorem: if the sides of a right
triangle are measured with the same
unit of length, then the square of the
number expressing its hypotenuse
equals the sum of the squares of the
numbers expressing the legs. To put
it more succinctly, the square of the
hypotenuse is equal to the sum of
the squares of the legs. I'11 give two
proofs that use this algebraic formu-
lation.

The square in figure 6 is divided
into four congruent right triangles
and a smaller square. This figure
accompanied the famous proof of
the Pythagorean theorem in a trea-
tise by the great Indian mathemati-

A

lProblems supplied by the editor.
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Figure 6

cian of the 12th century, Bhaskara
Acharia. (The text of the proof con-
sisted of one word: "Beholdl")

If the side length of the big square
(which is the hypotenuse of the
given right triangle) is c, and the legs
of the triangle are a and b, then the
side length of the smaller square is
la - bl, and we have

c, = (a-b)' + +af; ,

OI

c2=a2+b2.

In figure 7 the given right triangle
is divided into two smaller triangles
by the altitude from the right angle.
All three triangles are similar to one
another. And this is the clue to the
next proof. The areas of any similar
figures constructed on the sides of
the given triangie are in the same
ratio as the areas of the squares on
the respective sides. So the areas of
the three triangles in figure 7 canbe
written as ka2, kbz, and kcz with a
certain constant tactor k. But the
area of the big triangle equals the
sum of the other two-that is, kcz :
kaz + kbl, or c2 = az + b2. This is a
very instructive proof, and it has the
simplest possible diagram.

In the centuries that have passed
since the discovery of the Pyth-
agorean theorem, a lot of students
must have gotten bad grades for mis-
takes they made in its proof. But
undoubtedly the converse state-

ment is even more treacherous in
this sense, because students often
mix the two theorems and, instead
of the latter, refer to the direct state-
ment. Here's what the converse
theorem says: ifthe sides a,b, andc
of a triangle satisfy the relation a2 +
b2 : c2, then the triangle is a right
triangle, and its right angie is oppo-
site the side c. The proof doesn't re-
cluire a drawing and is quite simple.
Suppose the equality a2 + b2 = c2 is
true for a given triangle. Construct

Figure B

a right triangle with legs a and b.
Then, in accordance with the direct
Pythagorean theorem, its hypot-
enuse is c2 : 1@J@. It follows that
the side lengths of this triangle are
equal to those of the given triangle,
so the two triangles are congruent/
and the given triangle is also a right
triangle.

The Pythagorean theorem can be
generalized in many ways. First of
all, it can be rewritten in the follow-
ing coordinate form, which is clearly
equivalent to the original statement:
the scluare of the distance from a
point in the coordinate plane to the
origin is equal to the sum of the
squarcs of its coordinates (fig.Sa). In
this form it remains valid for space
of three (fig. 8b) as we1l as any other
number of dimensions.

Problem
2. Prove the three-dimensional

variant of the coordinate version of

Figure 9

the Pythagorean theorem.
Another three-dimensional gen-

eralizationwas probably established
in the 17th century and is quite of-
ten used in applied mathematics. It
turns out that if three faces of a tet-
rahedron are right triangles with
right angles at their common vertex/
then the sum of the squares of their
areas equals the square of the area of
the fourth face (fig. 9).

Problem
3. Prove this "Pythagorean theo-

rem for a tetrahedron."
In closing, I should mention that

the Pythagorean theorem has a
plane generalization, too. It belongs
to Pappus of Alexandria (3rd cen-
turye.o.) and states thatif threepar
allelograms are constructed on the
sides of an arbitrary triangle, two of
them externally and one internally,
in such a way that the sides of the
first two parallelograms parallel to
sides of the triangle pass through
the vertices of the third parallelo-
gram (fig. l0l, then the area of the
latter is equal to the sum of the ar-
eas of theffusttwo. The Pythagorean
theorem follows from this by the
observation made in the third proof
above (see problem 1).

To prove Pappus's theorem, shift
the sides of the external parallelo-

Figure 10

2t

Figure 7
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Figure 12

Figure 13

Figure 15

Figure 11

grams parallel to the triangle's sides
so that they issue from the vertices
of the third parallelogram as shown
in figure 11. Of sourse/ the areas of
the parallelograms don't change un-
der this operation. Now if we cut the
original triangle off from the penta-
gon thus obtained (see figure 1 I ), the
remaining area will be equal to the
sum of the areas of the external par-
ailelograms. And if we cut off the
shaded triangle (which is clearly
congruent to the original one) from
the same pentagon, we'Il leave the
third parallelogram. This immedi-
ately proves the theorem.

Problems
4. Figures 12-15 illustrate four

28

other proofs of the Pythagorean
theorem. Restore these proofs.

5. Lunes of Hippocrates. Three
semicircles are constructed on the
sides of a right triangle as shown
in figure 16. Prove that the total
area of the two shaded "lunes"
thus obtained is eclual to that of
the triangle.

6. A right triangie is divided into
two triangles by the height from the

right angle
(fig. 7). The
radii of the
incirles of
these small
triangles are
rrandrr. Find
the inradius
of the big tri-
angle.

7. In a right
triangle, a and
b are the 1egs,

c is the hypot-
enuse/ and h
is the height
on the hypot-
enuse. Prove
that a triangle

with side lengths a + b, h, and c + -h is
also a right triangle. O

Figure 16
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MATH
INVESTIGATIONS

The PtnaTheoreln-Part I

A tribute to Joe Konhauser's memory

by George Berzsenyi

I N THE FIRST PART OF THIS
I two-part column my purpose is
I to introduce my readers to a won-
I derful problem area, which was
recently cal1ed to my attention by
Professor Stan Wagon of Macalester
College in St. Paul, Minnesota. Stan
Wagon learned about it from the late
Professor |oseph D. E. Konhauser/
who featured it in his well-known
"Problem of the Week" (P of W) pro-
gram. In Stan's words, this problem
has "vastly improved my math-
ematical life and eaten up a lot of my
free time." I trust my readers will
not escape unscathed either.

In its simplest forrn, the Pizza
Theorem is as follows: If a circle is
divided into eight parts by chords
tfuouglt an arbiuary point inside or
on the boundary of the circle, if the
resulting "pseudoradii" form equal
angles with one another, and if the

rusulting " p s eudos ector s" ar e color ed
alteruately black and white, then the
sum of the black areas is equal to the
sum of thewhite areas. Myfirst chal-
lenge is: Verify this tesult. There are
at least three di{ferent ways to accom-

The late Professor foseph D. E.
Konhauser was a superb problem-
ist, an insightful geometer, an
inspiring teacher, and a great
friend. In particular, he has made
many memorable contributions as
a member of the Putnam Problems
Committee, as a member of the
USA Mathematical Olympiad
(USAMO) Committee, and as the
editor of the Pi Mu Epsilon lournal
and its "Puzzle Section." Irom
1968 till his untimely death (in
1992),he was also well known for
his "Problem of the Week,,
program at Macalester College,
never repeating a problem and
keeping meticulous files on all the
wonderful challenges he shared
with his students and colleagues.

plish this task; two of them don,t
even require calculus.

My second challenge is: General-
ize and extend the above theorem.
CIearIy, one may be able to vary the
number of chords, one may attempt
to use more than two colors, one can
search for extensions to three dimen-
sions, and may consider ellipses in
place of circles. One may also define
the pseudosectors via equidistant
points on the circle rather than equal
angles between the pseudoradii. One
can abandon even the common inte-
rior point in favor of sectors drawn in
succession, forming specified angles
with one anothe4 a problem of this
type was recently posed and solved in
Kvant, the Russian-language sister
journal oI Quantum.

In part II of this column, I,11 pro-

vide precise references, but for the
present/ it may be best for you to
investigate your own ideas.

hr conclusion, I want to thank Stan
for letting me use his material. After
foe's death, he not only took over his
P of W program, but he is making the
problems available via e-mail to
many other mathematicians around
the world. Presently, with Prof.
Daniel Velleman of Amherst College,
he is busily editing the best of the
700+ problems that appeared in |oe,s
program/ for a volume of the Dolciani
Series of the Mathematical Associa-
tion of America. Perhaps my readers
are familiar with Stan's earlier books
and will look forward to the appear-
ance of this one. I also wish to thank
Prof. Hung Dinh of Macalester Col-
lege for sharing with me the p of W
materials while he was running the
program during Stan's sabbatical,

and Prof. |ohn Duncan of the Uni-
versity of Arkansas and Prof. Tho-
mas Banchoff of Brown University
for their speedy responses to my in-
quiries about various extensions to
the problem.
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HOW DO YOU
FIGURE?

Challeltuo$ in phy$ics and lnatlt

tUIallt

M101
Thirty plus. The six most active stu-
dents in a class formed 30 different
committees, every two of which in-
tersected with each other-that is,
had at least one member in com-
mon. Prove that it's possible to form
one more committee intersecting
with each of these 30 committees.
(S. Fomin)

Ml02
In terms of increasing polynomials.
Prove that (a) the polynomialy = P,
(b) any polynomial, can be repre-
sented as the difference of two poly-
nomials each of which is a mono-
tonic increasing function. (V. Pikulin)

Ml03
A test for congruenceJ Equal sides of
two acute isosceles triangles are the
same length, and the radii of their
incircles are the same/ too. Are these
triangles necessarily congruent?
(A. Yegorov)

M104
Integer rcots of integer quadratics.
Find (a) at least one pair, (b) all pairs
of nonzero integers (p, ql, such that
the equations x2 + px + q: 0 and x2
+ qx + p: 0 both have integer roots.
(E. Turkevich)

Ml05
Swapping apartments. In a certain
city only paired exchanges of apart-
ments are permitted: if two families

swap their apartments, they can't
take part in any other exchanges on
the same day. Prove that any complex
exchange of several apartments can
be performed in two days. (N. Kon-
stantinov, A. Shnirelman)

Plrysics

Pl 01
Float and sinker. A thin homoge-
neous cylindrical float is made out
of a light substance with a density
p,. A lead sinker of density p, is tied
with fishing line to the bottom of
the float. What conditions must the
ratio of the masses of the sinker and
the float satisfy for the float to rest
vertically in the water? (Neglect the
forces of surface tension. The den-
sity of water is po.) (M. Semyonov)

P1 02
One-dimensional ideal gas. Behind
a piston in a cylindrical vessel there
is a "one-dimensional" ideal gas of
"molecules" that are small elastic
balls moving only in the direction of
the cylinder's axis (see the figure).
The mass of each molecule ism, the
initial velocity is v, the initial con-
centration is no, and the initial vol-

ume behind the piston is Vo. Find
the expression relating the pres-
sure and volume for such a " gas."
(M. Semyonov)

P1 03
Removing stains, Some people,
when they get a greasy stain on their
clothes, use a hot iron to remove it.
What is the physics underlying this
procedure? (S. Krotov)

Pl04
Curious meter rcader. Once when I
was looking at my electric meter
I found a curious thing. When I
switched on a lamp of power Prfor
I minute, the disk in the meter
made N, revolutions; when another
lamp of power P, was switched on,
the disk made N, revolutions. How
many revolutions AI3 did the disk
make when I switched on both
lamps? (A. Deshkovsky)

Pl 05
Telephoto shooting. It's known that
when you take a picture of long ob-
jects from a distance with a tele-
photo lens, these objects appear flat-
tened along the line of sight.
Determine the change in the ratio of
transverse to longitudinal dimen-
sions in an image obtained with a
telephoto lens having a focal length
F: 1 m in comparison with the ob-
ject itself-an automobile moving
toward the photographer at a dis-
tanceL=200m.

ANSWERS, HINTS & SOLUTIONS
ON PAGE 55
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KALEIDOSCOPE

Sonus thal shaller and winds lhal howl

these sonic
phenomena?

HE PHYSICS OF SOUND IS
one of the most "lively" areas
of science. Suffice it to say that
humans have long felt that they

possess the most perfect "device" in
acoustics (and in optics as well).
However, step by step PeoPle dis-
covered that the world is filled with
sounds imperceptible to our ear.
Only by keen observation of ani-
mals, who have far better acoustical
"equipment" than we do, and by
inventing new, artificial senors,
have we greatly enlarged the palette
of sounds and put them to use on
our behalf. Architecture, music,
medicine, engineering-these are
but a few of the fields where our
modern understanding of sound is
applied. This installment of the Ka-
leidoscope is full of examples.

Questions and problems
1. The sound of an artillery

shell exploding reached one ob-
server in 3 s and another observer in
4.5 s. Use graphical techniclues to
find the position of the explosion if
the distance between the observers
was 1km.

2.lt's known that if a source of
sound and a person are at approxi-
mately the same height, the sound
is heard at agteatil distance in the
direction of the wind than other-
wise. Why?

3. Why does the wind howl?

How sound is your
reasoning about
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4. What kind of
wave is produced by
a violin bow-
transverse or longi-
tudinall

5. The air pres-
sure in an auto-
mobile tire can
be deterrnined by
the sotrnd it
rnakes when you
strike the ti re
with a metal ob-
ject. How?

6. Why does the
banlo have a ringing
sound, while the harp
has a soft, singing tone?

7. The loudness of a

sound is inversely propor-
tional to the square of the dis-
tance from the source. A student

sitting in the fifth row is about
three times as far from the

teacher as one in the first
row/ yet they hear the

teacher almost equally
well. Why?

resonating box?
9. The sound absorp-

tion of glass is much lower than that
of air. Yet we car. greatly decrease
street noise by closing the window,
and if there is a storm window, we
can almost completely preyent any
sound from coming into the room.
How can we explain this?

10. Why is it so quiet after a
snowfall?

11. Why does a half-full kettle
make more noise just before boiling
than a full one?

12. When there is automobile
traffic beneath your win-

dows, sometimes the

8. Which of two tun- when you shoot it out of a rifle but
ing fork resounds fly silently when you throw it?
longer-one held in a 16. What is the shape of the shock
vise or one placed on a wave when an airplane flies by at su-

13. An opera singer can break a
large wine glass by singing a certain
note loudly for a few seconds. Why?

14. Why does a whip "crack"?
15. Why does a bullet whistle

personic speeds?
17. Why does a door opened

slightly from a noisy corridor hardly
decrease the sound leve1 at all?

Microexperiment
If you blow near one end of anar

row pipe, sound of a certain frequency
wil1be produced. Try to estimate the
frequency.

It's interesting that. . .
. . . in tenth-century Russia the

interiors of churches and temples
were "acoustically enhanced." Spe-
cial clay vessels were placed in the
walls and domes, serving as resona-
tors.

. . . the system of sound signals
used by some African tribes was so
highly developed that they could be
considered as having a "telegtaph"
more sophisticated than the opticai
telegraphs in Europe that preceded
the electrical telegraph. This sonic
telegraph was used to report the

sinking of the lusr-
tania: "The Great
Ship oi White
People Has Sunk,
Many People Per-
ished" resounded
in drum language
all over the con-
tinent/ from
Cairo to Ibadan.

. . . the echo in
the Castle oi
Woodstocl< in
Creat Britain

. . . the frequency range of the
human voice is far less than that of
human hearing (20-20,000 Hz). The
highest notes produced by a modern
female singer correspond to frequen-
cies of about 2,350H2; the record at
the lower end (held by a man, we
assume) is 44H2.

. . . the energy carriedby an ordi-
nary sound wave is very small. If a
thermally insulated glass filled with
water absorbs all incident sound en-
ergy coresponding to a value of 70
decibels (the volume of loud talk-
ing), it would take about 30,000
years to warm it to the boiling point
from room temperature.

. . . the secret of dolphins being
able to "see" distant objects with
ultrasound lies in the narrow direc-
tionality of their acoustic signals. In
this way bottle-nosed dolphins in
the Black Sea can accurately swim
up to a piece of buckshot (4 mm in
diameter) thrown into the water at
a distance of 20-30 m from the ani-
ma1.

. . . one of the many practical ap-
plications of ultrasound in medicine
arises because it's possible to con-
centrate it in a very smali volume of
tissue without affecting the rest of
thebody. O

ANSWERS, HINTS & SOLUTIONS
ON PAGE 60
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"The theory of sound, as it is
normally understood, is part of
the same field of study as the

theory of oscillations in
general. . . . As a rule we shall
consider only those classes of
oscillatory motion for which our

ears proved to be a good
sensing device. Without

hearing it is doubtful whether
we would be as much

interested in oscillations as the clearly repeats no

eyes are in light."-$i1 John , fewer.than l7 svl-

wiiliam stirtt Rayteish .i',flT;ftf;1:1:;1r1
where a loudly spoken

word reverberates as an echo
30 timesl

-\ glass hums loudly.

-.\S This annoying sound

- 
I can be significantly
damped by sticking a

small piece of model-

, ing clay in the center
of the windowpane.
Can you explain how
this works?
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PHYSICS
CONTEST

SIop oll rBd, Uo oll UrEEll. r r

"When you walk on a path going north,
you will only meet people coming from the north.

At the crossroads, you'll meet people coming from the east,
from the west . . ."-l\tssk Bassomb

by Arthur Eisenkraft and Larry D. Kirkpatrick

HEN YOU'RE DRIVINC
down a road and you see a
yellow 1ight, don't you won-
der when the light will turn

red? Maybe there should be an addi-
tional light-say, a blue one-that
tells you that the yellow light will
be changing to red any moment
now. But then again, maybe there
should be an orange light that tells
you that the blue light willbe end-
ing soon and that the red light is
imminent. But then again . . .

Who needs yellow lights at inter-
sections? Who decides whether the
yellow light should be one second,
two seconds, ot four seconds? Are
yellow lights always set to encour-
age safe driving? Let's analyze what
happens when you approach a yel-
1ow light.

As you drive down the road at a
certain speed, you may see the light
turn from green to yelIow. You must
make a decision to keep going or to
step on the brakes and come to a

stop. If you're relatively close to the
intersection, you know that you can
continue at the same speed and
make it through while the light is
still ye1low. If your distance to the
intersection is larger, you may de-
cide to stop.

34 J[utlARY/rtBRUIRY rss4

Let's assume that you want to
keep going. To calculate your safe
distance from the intersection, we
simply calculate the distance you
must go to get through the intersec-
tion while the light is yellow. This
may be easier to follow if we use
some real numbers as an example.
Let's assume that the speed limit
is 50 km/h, which is ecluivalent to
30 mph or2Srnf s. Let's also assume
that the yellow light is on for 3.0 s

before the light turns red. Therefore,
you must travel a distance of 59 m
during the time the light is yellow.
If the width of the intersection is
15 m, you can safely proceed
through the intersection if you are
closer than 54 m. We'll call this the
" go zorte."

If you decide to stop whenyou see

the light turn yellow/ you must
know the distance you will travel as

you move your foot from the gas
pedal to the brake (the coasting dis-
tance) and the distance it takes your
car to stop (the braking distance).
Once again, let's look at some real
numbers and perform a calculation.
The car is once again travehngat2S
m/s. If your response time is 1 .0 s, the
car will travel a distance of 23 m. If
the deceleration of the car is 5 m/s2,

the carwill travel an additional53 m
whilebraking. This distance is calcu-
lated according to the following
equation:

,? -,0' :Zas,

where v* is the final velocity, vo is
the initial velocity, a is the accelera-
tion, and s is the distance traveled.
The car can be safely stopped if it is
at least 75 m from the intersection.
We'll call this the " stop zone."

But wait-what happens if you
you're 65 m from the intersection?
If you try to stop/ you'llfind yourself
in the intersection. If you try to con-
tinue, you'll find yourself going
through a red light. You're in
trouble! We'll call this the "di-
lemma zote."

A safer intersection would not
have a dilemma zone. If the yellow
light time were 4.0 s, the go zone
wouldbe 77 rn.Thestop zonewould
still be 76 rn.If you are closer than
77 m, yol can safely proceed. If you
arefarther than75 m/ you can safely
stop. If you are between 75 and77
m/ you can safely go or stop. This
"overlap zone" provides for a safe
intersection.

Rather than using data from a
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single intersection, this month's
contest problem asks you to do the
work of a highway engineer and pro-
vide the relevant equations for safe
intersections.

A. What is the general equation for
the (a) go zorrq (b) stop zone, (c) di-
lemma zone or overlap zone?

Assume a response tirne t,,' a
maximum braking acceleration a,
a yellow light time tu, a speed vo,
an intersection width w, attd a car
length 1.

B. For what speeds will there al-
ways be a dilemma zone?

C. Rewrite the equations in part
A assuming that the car is going
downhill when you see the yellow
light.

Please send your solutions to
Quantum, 1 840 Wilson Boulevard,
Arlington, YA 2220L within a
month after receipt of this issue.
The best solutions will receive spe-
cial certificates from Quantum.

Atwood,s lnaruslous lnac]tiltes
In the |uly/August issue we asked

readers to solve two versions of
Atwood's machine. Correct solu-
tions were submitted by feff Dodson
of Vista, California, and Scott Wiley
of Weslaco, Texas.

Figure I shows the situation for
part A. Let's choose a coordinate
system in which down and left are
positive. This means that both
masses will have positive displace-
ments when the system is released.
Using the notation in figure 1 we
can write down Newton's second

Figure 1
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law for each mass:

MS-T = MA, (1)

T = ma. (21

With our choice of coordinates/ we
can write the connection between
the accelerations as

A=a. (3)

Solving equations {1-3) yields

o-( M ) zn=lr* 
-)r= ,r'

( vtm\ t7-=l lg=- Mg.
\M+m) 3

Notice that the acceleration of the
system is larger than we calculated
for the fuli Atwood's machine. This
makes sense because the sack is no
longer being retarded by gravity.

If we place the system in part A
on a moving cattt we have the situ-
ation depicted in {igure 2. Using the
notation in figure 2 and our earlier
choice of coordinates, we can once
again write down Newton's second
law for each mass:

Mg-T:Ma1,
T: Ifia2t

-T: msa3.

We have used the observation that
the tension in the rope exerts a force
7 to the left on mass rn and therefore
by Newton',s third law must exert a
force 7to the right on the beam (and
hence on the cart).

We now need a relationship be-
tween the accelerations. To do this
we look at very sma1l displacements
of the three masses. MassMwill fall
a distance drthatis equal to the dis-
tance that mass m moves to the left
and the distance the cart moves to
the right. Therefore,

4= dz- d3

and

a, = a2_ ar. (7)

The easiest way to solve equa-
tions (4-7) is to use equation (7) to
replace a, in equation (4) and use
equations (5) and (5) to replace a" and
ar. Solving for 7 we get

mMm.f-

Mm+ Mmr+ mm,

Plugging this value for 7 back into
equations (4-5) gives us the values
for the accelerations:

M(m + mr)

az=

Mm+ Mmr+ mm,

M-,
Mm+ Mmr+ mm,

-Mmd,= E." Mm+ Mmr+ mml

Notice that in the limit m3 ) @

these equations reduce to the an-
swers we obtained in part A. O

4,.=

(41

(5)

(6)

o

a+

$ Talk hack to us s
We actually like it! We want
to know what you think about
Quantum. So

E df0p us a line at euantum,
1840 Wilson Blvd.,
Arlington VA 22201

or

tr Zip us an electron or two at
7 2030.3 L 62@compuserve.com.
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ANTHOLOGY

A pl'incess ol malhemalic$
Sofya Kovalevskaya proves a thing or two

by Yuly Danilov

REMARKABLE EVENT IN THE LIFE OF
Sweden's capital city of Stockholm took place in
November 1883 and caught the attention of many
Swedish newspapers. One democratic newspaper

wrote: "Today we shal1 report not about the arrival of
some banal prince of royal blood or some other person
of no significance. No, it is a princess of mathematics,
Mrs. Kovalevskaya, who honored our town with a visit
and who will become the first female privat-dozentr in
all of Sweden." It would not be an affront to truth if the
newspaper had added: "And not only in Sweden, but
also Germany, England, France, Russia, and every other
country."

But there were also articles of another kind. The fa-
mous writer August Strindberg, an ardent opponent of
women's emancipation, tried to prove/ as Kovalevskaya
herself had jokingly remarked, "how harmful, useless,
and uncomfortable is such a monstrous phenomenon
as a female professor of mathematics." To the credit of
the Scandinavian people we can say that the sympa-
thies of the overwhelming majority were with
Kovalevskaya, andStrindberg's angry philippics had no
effect. Sofya Kovalevskaya was heartily accepted, and
"our pro{essor Sonya" acquired in Sweden a second
homeland.

And it was there that her extraordinary mathemati-
cal talent andliterary gifts were revealed with a special
brilliance. She delivered lectures on selected math-
ematical topics with great success at theUniversity of
Stockholm (twelve courses from 1884 to 1890) and
wrote Reminiscences of Childhood (1890), the novel
Woman-nihilist(l99ll, and (together with the Swedish
writer Loeffler-Edgren, who was the sister of the math-
ematician and rector of the University of Stockholm
Mittag-Loeffler) the drama Struggle for Happiness
(1887), to say nothing of her shorter pieces. It was there,
in Sweden, that S. V. Kovalevskaya created her princi-
pal mathematical work, "On the Rotation of a Solid
Body about a Fixed Point," which became a bona fide
mathematical sensation and was awarded the Prix

Borodin of the French Academy of Sciences in IBBB.
Her mentor was the German mathematician Karl

Weierstrass, who not without hesitation kindly agreed
to give Kovalevskayaprivate lessons. A scientist with
a classical turn of mind, Weierstrass did much to cre-
ate a foundation for mathematical analysis after the
period of Sturm und Drang (storm and stress), when
new results poured as if from a horn of plenty but did
not always satisfy the requirements of rigor. It was
Weierstrass (and some of his pupils) from whom
Kovalevskaya acquired that brilliant control over
higher transcendental functions that is so characteris-
tic of her later work. But Kovalevskaya herself was not
a "cold classicist," so to speak. Her romantic nature
knew passion and fantasy. One of her very first works-
on the analytical dependence of partial differential
equations (brought to a so-called normal form) on ini-
tial values-carries the clear imprint of her genius:
Kovalevskaya not only proved, in a simple and clear
wayt a result achieved earlier by Cauchy, she also con-
structed a quite unexpected example showing the
nontriviality of the result. Weierstrass experienced a joy
uncommon for a teacher: he saw that he was able to teach
his pupil more than he himself knew! From that time on,
any textbook on partial differential equations necessar-
ily includes the very important Cauchy-Kovalevskaya
Theorem.

The theory of the spinning top long remained an in-
accessible fortress and did not yield to the efforts of out-
standing mathematicians. One could solve (or, as math-
ematicians prefer to say/ integrate) the equations of the
top for only a few particular cases. Before Kovalevskaya
only two such cases were known (if we don't count a
few insignificant variants): "Euler's top" and
"Lagrattge's top." Noting what was common to these
two particular cases, Kovalevskaya posed a question:
does there exist at least one more solution of the top
equations that possesses this same feature? To answer
it, Kovalevskaya had to use not only her virtuosic skills
in the theory of higher functions but also the original
way of thinking and flight of fancy that was such a
part of her mental makeup. Taking an extraordinarilyrA kind of assistant professor.
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daring step, Kovalevskayaposited that time is not a real
magnitude (as everybody thought then and many think
now) but a complex magnitude. This "crazy" assump-
tion enabled her to analyze the top equations more
completely than her forerunners did and to find the
only remaining unknown case of integrability: the fa-
mous "Kovalevskaya top."

After it was proved that there are no other general
solutions of the top equations other than those found
by Euler, Lagrange, and Kovalevskaya, a search began
for particulaz solutions of a given form. Marry other
questions were resolved regarding the stability of the
solutions, their connection with the symmetry of the
problem, and so on. New iife was breathed into the
theory of the top, and it continues to live today.

I won't describe the delight and admiration with
which the mathem atical world received Kovalev-
skaya's remarkable result and how ashamed were those
who stubbornly refused to make university chairs ac-
cessible to women. You'Il learn more about this in
Kovalevskaya's reminiscences/ presented below.

Reports of Kovalevskaya's remarkable success were
foliowed with special attention in Russia. Russian
mathematicians, with the great P. L. Chebyshev at
their head, were unanimous in their desire to bring
their famous compatriot back to her homeland, but-
alas!-such decisions were made (and continue to be
made)bypersons who aren't scientists. General Kosich
appealed to the president o{ the Russian Academy of
Sciences, Grand Prince Konstantin Konstantinovich
Romanov-a poet who published his verses under the
pseudonym "K. R." In his letter general Kosich re-
minded the prince o{ Napoleon's words: that "any state
must value the return of its outstanding citizens much
more than conquering arich city."

The answer given by the secretary of the academy,
K. S. Veselovsky, read: "SofyaVasilyerrna Kovalevskaya,
who has acquired abroad so high a reputation with her
scienti{ic works, is no less known among our own math-
ematicians. The brilliant success of our fellow citizen
abroad is the more flattering for us, in that it must be as-
cribed completely to her own high qualities, insofar as
patriotic feelings could not have worked on her behalf
there. It is especially flattering for us that Mrs. Kova-
levskaya was appointed to the position of professor of
mathematics at the University of Stockholm. The ap-
pointment of a woman to a university chair could only
be due to an especially high and absolutely extraordinary
opinion of her talents and knowledge, and Mrs.
Kovalevskaya had completely justified such an opinion
by her truly remarkable lectures. . . ."

But "because there is no access to a professorship in
our universities for ladies, whatever talents and knowl-
edge they may possess, there is no position for Mr.
Kovalevskaya in ourfatherland so honorable and so well
remunerated as that to which she has been appointed in
Stockholm. The position of teacher of mathematics in
Women's Higher Courses is much lower than a univer-
sity chair. And in other educational institutions where
women are allowed to be teachers, the course of math-
ematics is restricted to only the element ary parts."

Translated from the bureaucratic into common lan-
Suage, this meant that in Russia there was no place for
Kovalevskaya. But "our professor Sonya" took a place
all the more secure in the hearts and minds of those
who were fortunate to know her personally and those
who made her acquaintance many yearclater, and wiil
continue to meet her, in her scientific works, which
haven't lost their significance. Now "our Sonya" be-
longs to the whole world.

o
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Se1f-portraut
{Excerpt)

f,fl y love of mathematics was manifested for the first
lll time, as far I can recall, in the following way. I had
an uncle, Pyotr Vasilyevich Korvin-Krukovsky (the
brother of my father), who lived 20 verstsl from our es-
tate in his village of Ryzhakovo. A man well on in
yearst he had handed over his farm and household to
his only son, and because he now had a lot of time on
his hands, he often visited us and lived with us for
months at a time. My uncle was an idealist in the full

lThe verst is an old Russian unit of distance, roughly
equal to one kilometer.-Ed.

sense of the word and in many respects was a man not
of this world, as they say. He was educated at home,
but he nevertheless had vast and various but (as is com-
mon with self-taught persons) far from solid ideas about
things, which he acquired exclusively as a result of his
This excerpt is taken from the stenographic record of a
conversation with S. V. Kovalevskaya in May 1890 in the
editorial offices of the journal Russkaya stafina.It was
reviewed and prepared for publication by Kovalevskaya's
brother, F. V. Korvin-Krukovsky. From S. V. Kovalevskaya,
Reminiscences. Nov els. Moscow: Pravda Publishing
House, 1986, pp. 388-401.
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own curiosity, without any help from anyone and with
the most inadequate preparation.

His favorite occupation and the sole pleasure remain-
ing in his li{e was reading. In this respect the library in
our country house held a strong attraction for him.

He read indiscriminately and with equal pleasure ev-

erything that he came across-novels, historical essays/

works ol popular science, and scholarly treatises' Kind
and sweet-tempered by nature, he'loved children im-
mensely. Although at that time he
was a 5O-year-o1d man, he had the
soul of a child. So despite the differ-
ence in our ages/ I developed an ex-

tremely close, almost schoolmatish
kind of friendship with mY uncle.I
was drawn to him by his stories; and
he, soaring in the realm of fantasY,

often forgot that there was a child
present and, feeling the need to share

his thoughts with someone/ poured

out his soul to me. I vividlY recall
the many long hours we spent to-
gether in the corner room of our
large country house-in the so-

called "tower" (which was in fact
the library). My uncle told me fairy
tales, taught me how to play chess;

then, suddenly carried awaY bY his
ideas, he would initiate me into the
mysteries of various economic and
social proiects that he dreamed of be-

queathing to mankind. But mainlY
he liked to retell what he had
learned and read over the course of his long life. And it
was during these c,onversations that I happened to hear

about some mathematical notions, and these left an es-

pecially deep impression on me' I leamed from my uncle
,bourt th" scluaring of the circle, about asymptotes (lines

to which a curve continually approaches but never
reaches), and about many other things that were quite in-

comprehensible at the time, but which nevertheless
seemed mysterious and at the same time particularly
atffactiYe to me.

To all this, fate decreed that another, purely acciden-

tal event would be added that intensified the impression
that these mathematical expressions had made on me.

Before our arrival from Kalug4 our country house was

being completely renovated. As part of this work, wall-
paper had been ordered from St. Petersburg. But the nec-

e*rary qrrartity was not calculated exactly, and there was

not enough wallpaper for one of the rooms. At first it was

decided that more would be ordered from St. Petersburg,

but as often happens in such cases, due to the casual

nature of country life and the laziness inherent in ali
Russian people, everything got put on the back bumer.
Time passed, and while plans were made and altetna-
tives were considered and reconsidered, the renovation
came to an end. Finally it was decided that one piece

of wallpaper was not worth sending to the capital for-
it was some 500 versts away.Itwas decided that all the
other rooms were in good order, let the nursery stay the
way it was-without wallpaper. The walls could simply
be covered with plain paper. A lot of newspapers had
collected over many years in the attic and had sat there
utterly useless.

By a happy coincidence, in one pile of old newspapers

and other junk there were printed notes of lectures on
differential and integral calculus by
the academician Ostrogradsky that
my father had attended as a very
young officer. The walls of my nurs-
ery were papered with those verY
pages. I was eleven years old at the
time.

One day, looking at the walls, I
noticed some things depicted there
that I had heard about from mY
uncle. Since I was electrified by his
stories in general, I began to scruti-
nize the walls with added attention.
It amused me #eatly to look at
these sheets, yellowed with time, all
peppered with strange hieroglyphs
whose significance completely es-

caped me, but which I felt certain
must mean something very clever
and interesting. For hours on end I
would stand in front of that wa1l,

reading and rereading what was
written on it. I must confess that at
that time I fid not have the foggiest

idea what it meant, but I was strangely drawn to this ac-

tivity. As a result of long examination, I leamed many
places by he art, and certain formulas, just by their appear-

ance, became imprinted in my memory and left a deep

mark there. I remember especially well that in the most
conspicuous place on the wall there was a page with an

explanation of infinitesimals and limits. How deeply
these notions impressed me can be seen {rom something
that occurred years later. I was taking lessons {rom A. N.
Strannoly'ubsky, and as he explained these very concepts

to me, he was surprised at how cluickly I understood
them. "You understood them as if you had already
known them." And indeed, from a purely formal point
of view, I had known many of them for a very long time.

I received my first systematic instruction in math-
ematics from I. I. Malevich. It was so long ago that now
I do not remember his lessons at all. They remain only
as dim memories. Nevertheless, they influenced me

$eatly and were very significant in my development.
Maievich taught arithmetic especially well and in

his own unique way. But I must confess that when I
began my studies, arithmetic did not interest me much.
It is likely that, due to the influence o{ my uncle Pyotr
Vasilyevich, I was more partial to various abstract
discussions-for example, about infinity. In general,
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during my entire lifetime, the philosophical aspect of
mathematics appealed to me more. I saw mathematics
as a science that opens completely new vistas.

In addition to arithmetic, Malevich also taught me
elementary geometry and algebra. Only afterl had be-
come acquainted to some extent with the latter did I
feel such a strong atffactuorr to mathematics that I be-
gan to negiect other subjects.

Seeing my preference, my f.ather, who in general had
a strong prejudice against learned
women/ decided to stop my math-
ematics lessons with Malevich.
But somehow I managed to
wheedle a copy of Bourdon's
Course in Algebra from Malevich,
which I began to study assidu-
ousiy. Because all day long I was
under the vigilant supervision of
my governess, I had to engage in a

bit of subterfuge. When I went to
bed, I would put the book under
my pillow and then, when every-
body else was asleep, I wouid read
all night long by the dim light of an
icon lamp or night light.

Given the situation I could not
even dream of continuing regular
studies in my favorite subject,
and it appeared that my math-
ematical knowledge was doomed
to remain for a long time within
the realm of Bourdon's Algebra,
but something happened that
caused my father to change his mind to some extent
regarding my education.

One day Professor Tyrtov, the owner of a neighboring
estate, brought us his elementary textbook on physics. I
tried to read this book, but to my distress in the section
on optics I found trigonometric formulas, sines, cosines,
tangents. What is a sine? I was at a loss to answer this
question, and I was forced to tum to Malevich for a so-
lution to the riddle. But because his program of instruc-
tion did not include this topic, he told me that he did not
know what a sine is. So, working with the formulas given
in the book, I tried to explain it myself. By a strange co-
incidence, I chose the same path that was used histori-
cally-that is, I took a chord instead of a sine. For small
angles these magnitudes almost coincide. And because
in Tyrtov's textbook all the formulas involved only in-
finitesimal angles, all these formulas squared perfectly
with my basic definition. But this set my mind at ease.

A short time later, when in conversation with
Tyrtov the subject of his textbook arose, he expressed
doubt at first about my ability to understand it, and
when I said I had readit through with great interest, he
said, "You're bragging!" But when I told him the route
I took to expiain the trigonometric formulas, his tone
changed completely. He immediately went to see my

father and urgently began trying to convince him of the
need for me to be taught in the most serious way. While
making his case, he compared me with Pascal. After
some hesitation my father agreed to hire A. N.
Strannolyubsky as my teacher. We began working to-
gether and over the winter we covered analytic geom-
etry and di{ferential and integral caiculus.

The next yearlmarried V. O. Kovalevsky, and soon
we went abroad, but there we soon separated. I went

to Heidelberg to continue my stud-
ies in mathematics, and he went to
another university to study his dis-
cipline-geology. . . .

From Heidelberg I went to Ber-
lin, but at first I was disappointed
there . . . The capital of Prussia
turned out to be . . . backward. De-
spite all my petitions and efforts, I
failed to receive permission to at-
tend the university in Berlin.

Then . . . professor Weierstrass
took an interest in me. Noting the
refetences from my Heidelberg pro-
fessors and seeing that I was well
prepared and eager to leam, and not
just because it was the fashionable
thing to do, he proposed that I
study with him privately. These
studies were the most important
influence on mywhole mathemati-
cal career. They determined irre-
versibly, once and for all, the direc-
tion I took in my further scholarly

activity, and all my works were done in the spirit of
Weierstrassian ideas.

Weierstrass himself I consider one of the greatest
mathematicians of all time and without doubt the most
remarkable among living mathematicians. He gave to
all of mathematics a completely new direction and cre-
ated not only in Germany but also in other countries a
whole school of young scholars who travel the path he
indicated, developing his ideas.

While attending Weierstrass's lectures, I also be-
gan to prepare myself for the doctoral degree. But
because at that time the doors of the University of
Berlin were closed to me as a woman, I decided to
turn to Gottingen. According to the rules of German
universities, in addition to passing an examination, one
also was required to present a scholarly work-the so-
called "inaugural dissertation"-to receive a doctoral
degree. Weierstrass suggested several topics to me for
development, and during the two years I spent in Ber-
1in I produced not one work, as required, but three. Two
of the treatises were in pure mathematics ("OnPartial
Differential Ecluations" and "On Reducing a Class of
Abelian Functions to Elliptical Functions") and the
third was astronomical in nature ("On the Shape of
Saturn's Rings").
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I submitted all three works to the University of
Gottingen. They were acceptable to such a degree that
the university, contrary to the established rules, found
it possible to free me from the examination and public
defense of my dissertation, which in essence is a pure
formality, and conferred on me the degree of doctor of
philosophy summa cum laude.

At that same time the first of the aforementioned
works was published in Crelle's )ournal lCrelles lour-
nal ftr die reine und angewandte
Mathematik) under the title "Zur
Theorie der partiellen Differenzial-
gleichungen" l"On the Theory of
Partial Differential Equations").
This was an honor that few math-
ematicians received and was even
gteater for a beginning mathemati-
cian, since this iournal was then
considered the most important
mathematical publication in Ger-
many. The best mathematical
minds worked on it, and previously
such mathematicians as Abei and

|acobi published their works there.
My astronomical work "On the
Shape of Saturn's Rings" was not
published until many years later
(1885) in the journal Astronom-
ische Nachrichten.

In 1874I returned to Russia.
Here I studied with far less inten-
sity, and the conditions of daily life
were much less conducive to schol-
arly endeavors than in Germany. I worked with long
and frequent interruptions, and I barely had the time
to keep current in the mathematical field. During the
entire time I was in Russia, I did not produce a single
independent work. The only thing that provided some
mathematical support was my correspondence and
exchange of ideas with my dear teacher Weierstrass.

Various circumstances distracted me from serious
scholarly activities in Russia. They had to do both with
Russian society at large and the conditions under
which I had to live. At that time all of Russian society
was seized by the spirit of moneymaking by various
commercial enterprises. This current swept up my
husband and-I must confess my sins-it partially took
me with it as well. We went in for constructing gran-
diose stone houses with commercial bathhouses at-
tached. But in the end the market crashed, and we were
ruined completely.

Soon after I returned to Russia the newspaper New
Times was created. My husband was a close acquain-
tance of the publisher, ar,d so we {e11 into the New
Times circle. I tested my literary skills on this paper as

a theater critic.
hr 1 882 I again went abroad, and since then I have iived

there almost permanently, only now and then visiting

Russia for short periods to settle some business matters.
During my li{e I have had an opportunity to see many cit-
ies and countries, and so can justifiably say that except
for Italy and Spain, I am rather well acquainted with Eu-
rope. And, with the exception of Sweden, I know Paris
best of all. I was there on many occasions, and even now
I generally spend my vacations in France.

Returning abroad,I again energetically took up the
science from which I rested for so many years in Russia.

ciently clarified,
new angle.

First off I went to Paris and made the
accluaintance of the outstanding
mathematicians working there, in-
cluding the renowned Hermite, and
also met the younger mathemati-
cians Poincar€ and Picard. These
two arel in my opinion, the most
gifted among the new generation of
mathematicians in all of Europe.

At that time I was engaged in
writing an extended new work,
"On the Refraction of Light in
Crystals." Generally in mathemat-
ics one stumbles on topics for inde-
pendent research by reading the
treatises of other scientists. And so
I was brought to this theme by
studying the works of the French
physicist Lame.

I finished work on my treatise in
1883 and created a bit of a sensation
in the mathematical world, be-
cause the question of the refraction
of light had not yet been su{fi-

and I considered it from a completely

I submitted this treatise in 1884 to the new iournal
Acta Mathematica (itwas {ounded in 1BB2}. Although
the Acta are published in Sweden, it is a true interna-
tional publication, because it is subsidized not only by
the Swedish king but also by foreign states, including
France, Germany, Denmark, and Finland. Now [in
1890] it has become one of the biggest and most influ-
ential mathematics journals. Leading scholars of all
nations work together on it, and it touches on the most
burning questions, so to speak, that attract the atten-
tion of modern mathematicians. It often happens that
several people are engaged with one and the same prob-
lem simultaneously. In general the conditions under
which a serious mathematics journal is published are
quite different ftom those of other periodicals. That is
why the Acta Mathematica are issued not at a prede-
termined time but according to how material is accu-
mulated, new problems ripen, and solutions are found.
Usually two volumes are published in ayear.

In addition to my treatise on the refraction of light,
several other papers of mine have appearedir,theActa
Mathematica.In 1883 the second of the works I pre-
sented as a dissertation in L874 at the University of
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Gottingen was published under the title "On the Re-
duction of a Class of Abelian Functions to Eiliptical
Functions."

All of my scientific papers are written in German or
French. I know them on a level with my native Rus-
sian. But in mathematical works language plays an
insignificant role. The main thing in this case is con-
tent, ideas, notions; and to express them mathemati-
cians have their own language: formulas.

In the early 1BB0s the recently founded University
o{ Stockholm began to develop. At that time I was well-
enough known in the mathematical world both be-
cause of my writings and because of personal acquain-
tance with almost all the European mathematicians of
note. Especially often I had a chance to meet in Berlin
and Paris with the chief mathematician (now the rec-
tor) of the University of Stockholm, Professor Mittag-
Loeffler, who was one of the best pupils of a teacher we
had in common/ Karl Weierstrass.

So in 1883 I was invited to Stockholm to deliver lec-
tures on mathematics. . . .

When I first arrived in Sweden I proposed to deliver
my lectures either in German or in French. Most of my
students preferred that I lecture in German. But a year
later I was able to deliver lectures in Swedish. This did
not present arry great difficulties for me, because im-
mediately after my arrival I was accepted by Swed-
ish society and began taking lessons in the Swedish
language.

At first I was invited as a privat-dozent. But in less
than a year I was appointed professor and continue to
hold this position. In addition to delivering lectures, my
duties include participation in meetings of the univer-
sity council, where I have the right to vote on a level
with other professors. A professor's salary in Sweden
is 5,000 kronas ayear (a Swedish krona is a little more
than a deutsche mark; 700 kronas are equal to 1,000
francs). I deliver four lectures a week-that is, I speak
for two hours straight on two days each week. Because
my lectures are devoted to very special topics, I do not
have very many students-about 17-18.

During my first year in Sweden I worked with great
diligence and seriousness. It was there that I wrote the
most important of all my mathematical works, for
which I received aprizefrom the Academy of Sciences
in Paris. In this paper I investigated the problem "On
the Motion of a Rigid Body About a Fixed Point under
the Influence of Gravity." It was a problem of $eat sig-
nificance that includes, among other things, the theory
of apendulum. At the same time it was one of the most
classical problems, so to speak, in mathematics. The
greatest minds directed their efforts at a solution-
Euler, Lagrange, Poisson, and others. But in spite of
that, it was far from being completely solved, and we
knew only a {ew cases for which a completely rigorous
mathematical solution had been found. In the history
of mathematics one can point to only a {ew cluestions
that, like this one, made one wish so strongly for a

solution and to which so much talented effort and
diligent work had been brought to bear with, in the
majority of cases, so few results of any substance.
Not without cause did a German mathematician call
this problem die mathematische Nixe ("the math-
ematical mermaid").

This problem had always interested me greatly, and
many years earlier-almost from the time I was a stu-
dent-I started to test my strength on it. But for a long
time all my efforts remained fruitless, and only in l BBB

was my work crowned with success. You can imagine
how happy I was when at last I was able to achieve a
rcally important result and take an important step to-
ward solving so difficult a problem.

In the same year the Academy of Sciences in Paris
announced a competition for the best paper on the fol-
lowing topic: "On the Motion of a Rigid Body." One of
the conditions set by the Academy was that the paper
must bdng to completion or elaborate in some substan-
tive way the knowledge attained to date in this area ot
mechanics.

At that time I had already achieved the main results
of my work. But thus far they had remained in my own
head. Because the problem I had solved was perfectly
appropriate to the topic proposed by the Academy, I
began to work with even greater zeal it order to impose
order on all my material, work out the details, and
write the paper before the deadline.

When all of this was finished, I sent my manuscript
to Paris. According to the rules of the competition, it
had to be sent anonymously-that is, I wrote a motto
on my work and attached a sealed envelope containing
a piece of paper with my name and the same motto
written on it. So when the works were evaluated, their
authors remained unknown.

The results exceeded my expectations. About fifteen
papers were submitted, but only mine was considered
worthy of. a prize. But that was not all. Because the
same topic had been proposed three times in a row and
each time had gone without an answer, and taking into
account the importance of the results I had achieved,
the Academy decided to increase theprize from 3,000
to 5,000 francs. Then the envelope was opened, and all
learned that I was the author of that work. I was im-
mediateiy informed and went to Paris to participate in
a meeting of the Academy that had been called in con-

iunction with the competition. I was received with ex-
traordinary solemnity. They asked me to take a seat
near the president, who delivered a flattering speech,
and in general I was heaped with honors.

As I had mentioned earlier,I have been living in
Sweden since 1883 and in that time I have assimilated
Swedish life to such an extent that I feel at home there.
Stockholm is a very beautiful city, and the climate is
not bad at all-only the spring is unpleasant.

I have a wide circle of acquaintances, and I spend
quite a bit of time in society. I even pay visits to the
royalcourt.... O
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LOOKING BACK

A polal'izel' in the shadotnl$

One physicist's contribution to the wave theory of light

by Andrey Andreyev

I N THE HISTORY OF SCIENCE
I th" work of Etienne Malus is
I overshadowed by the more
I weighty achievements oi his con-
temporaries-the great French
physicists of the early 19th century.
Yet his talents were highly regarded
by such scientists as Laplace and
Lagrange, Arago and Young. He was
a remarkable experimenter and ge-

ometer/ well versed in chemistry
and engineering. He was also a good
conversationalist, a staunch soldier
who participated in a long war, and
a man of enormous persistence and
ambition that allowed him to ad-
vance rapidly in his scientific career.
Malus was destined to live a short
life (and he spent only seven years
working in physics), yet his scien-
tific legacy is great and might have
been far greater.

Malus did his most important
work in the area of optics. He began
his experiments in the years when a

firm basis for the wave theory of
light was gradually being formed.
You may recall that two theories of
light vied for prominence by the
turn of the 19th century. The first
considered light a flow of particles-
"corpuscles"-that travel along a

straight line in accordance with the
laws of mechanics. Reflection of
these corpuscles is similar to that of
an elastic ball, and refraction of par-
ticles passing from one medium to
another is explained by the atfiac-
tion of one of the media. It was Sir

Isaac Newton himself who elabo-
rated the so-called corpuscular
theory most rigorously. The com-
peting theory considered light a

wave moving in an elastic me-
dium-" eth sv' t -and explained both
re{lection and refraction by a change
in the direction of the wavefront.
The creator of the wave theory of
light was a contemporary of
Newton's, the Dutch physicist
Christiaan Huygens.

The corpuscular theory domi-
nated science for the entire lBth
century/ but signs of a conversion to
the wave theory appeared as the cen-
tury drew to a close. In particular,
physicists had long noted the won-
derful optical properties of Iceland
spar/ a clear, colorless form of cal-
cite. A thin light beam passing
through a crystal of this mineral
splits into two rays: one that follows
the well-known refraction law-the
ordinary ray-and one that doesn't
obey the law-the extraordinary ray.
Surprisingly, the light beam is split
even at normal incidence on a natu-

ordinary
ray

ral {acet of the crystal, and the ex-
traordinary ray is deflected to form
anortzeto angle ofrefraction (fig. 1).

It was noted also that the rays pass-

ing through Iceland spar differed
from the original beam and did not
divide if they passed through an-
other crystal of Iceland spar. This
phenomenon came to be called
double refraction.

Malus was the first to see similar
features in any reflection of light,
thus demonstrating the general na-
ture of a phenomenon resulting
from some intrinsic natural property
of light. He coined the term "polar-
izattorr" for this phenomenon, and
since then the branch of optics bear-
ing that name has become one of the
most interesting and important.

Although Malus adhered to the
corpuscular theory all through his
life, his discovery stimulated much
research in support of the wave
theory. His experiments were
simple and can be repeated in a

school lab. But before we turn to
them, let's skim the pages of his bi-
ography. We'lIsee that his wonder-
ful discovery was preceded by no
less wonderful and difficult times
filled with danger, great deeds, love,
and glory.

Yuulh

Etienne Louis Malus was born in
Paris on luly 23, 1775. Little is
known about his parents. His father,
a member of the gentry, held the

.4 orrrrnrdin,rv
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position of treasurer, This was a
profitable position with a comfort-
able income to support his family.
Little Etienne was educated at home
and proved to be an able pupil. His
mother introduced him to the world
of Greek and Roman poetry. In his
later years Malus loved the classical
writers and cited by heart pas-
sages from Homer, Anacreon,
Horace, and Virgil. In his lei-
sure time he often composed
verses in Latin. However,
his friends did not consider
versification his strong
suit.

The boy's other favor-
ite subjects were algebra
and geometry, and it's
no wonder he entered
the Paris Engineering
School in 1793. But
the French Revolu-
tion had been going
on for four years, and
as fate wi11ed it, the school
closed just before the final ex-
aminations. The young engineer en-
listed as a volunteer in a battalion of
the Paris militia. And this was the
start of his military career.

At this time a campaign was be-
ing conducted in the north of
France. At the Dunkirk fortress
Malus was assigned to field fortifica-
tion work. One of the engineers su-
pervising the work noticed the un-
expected skill with which it was
done. A brief conversation with
Malus showed him that here was a
young man of promise. |ust at that
time the Polytechnical School
(Ecole Polytechnique) opened in
Paris, and at this engineer's urgent
request the youth with a bright fu-
ture was enrolled as one of its first
students.

The Polytechnical School imme-
diately became one of the most sig-
nificant educational institutions in
France, where outstanding physi-
cists and mathematicians were
hired to teach. The curriculum
spanned two years and was very in-
tensive. As time went on it gradu-
ated many French physicists of
world stature.

After graduating from the

Polytechnical School, second lieu-
tenant-engineer Malus left Paris to
join the army somewhere in central
Europe. Military roads brought him
to the right bank of the Rhine,
where he stayed for eleven months
in the garrison in the o1d town of
Gissen. These months were prob-

ably the happiest for the passionate
young man. He was on the verge of
marrying the eldest daughter of the
chancellor of the university, a Pro-
fessor Koch, but suddenly he re-
ceived orders to present himself at
Toulon and join the expeditionary
arr::.y, whose destination nobody
knew.

Cam[aiUn

The name of Napoleon Bonaparte
now intrudes powerfully into the
leisurely course of our narrative.
Across Europe wars were raging-
what historians would later call the
Napoleonic wars. And one of their
most dramatic chapters was about
to be written: the Egyptian cam-
paign.

By 1797 Great Britain was the last
undefeated foe of the French Repub-
lic. The English fleet under Admiral
Horatio Nelson was too strong and
could ruin any direct attack on the
British Isles. To achieve victory over
England, Bonaparte needed to attack
from another direction-in Egypt.

Equipping the expedition, Bona-
parte planned to carry out a compre-

hensive investigation of the " cradle
of. civilizatiort," and he decided to
bring with him to Eglpt almost the
entire French Academy of Sciences.
This scientific contingent was 1ed by
a devoted friend of Napoleon's and
one of the founders of the Poly-
technical School, the renowned

mathematician
Gaspard Monge.
Preparations for the
risky gambit were
top secret. In under-
taking his first naval
campaign, Bonaparte
relied more on good
luck than on his own
forces.

On February 27, 1798,
Malus embarked on a

ship at Toulon that was
part of the advance guard
of the "Egyptian squad-
ron." On |une 10 he took
part in the attack on Maita.

Admiral Nelson was delayed
by a storm at Gibraltar and unwit-

tingly passed the French near the is-
land of Crete. So Malus disembarked
successfully with the rest of the ex-
peditionary force on the shores of
Egypt.

The campaign began success-
fully-the poorly equipped Egyptian
troops were defeated in a few fierce
battles. Malus took part in the fa-
mous battle at the Pyramids, where
more than once he stared death in
the face. But Malus's days in Egypt
weren't filled entirely with war.
Gaspard Monge remembered his
pupil and invited him to collaborate
in preparing his Description of
Egypt.Once, while he was engaged
in cartographic work, Malus discov-
ered the ruins of the remarkable
town of San. Soon Bonaparte
founded the Egyptian Institute in
Cairo. Monge was elected its presi-
dent, and Malus became one of the
fellows.

For some time after the defeat of
the Mamelukes, Malus lived in
Cairo. From there he went to Upper
Egypt, where he 1ed a geographical
and archaeological expedition at
the Nile Delta and visited the an-
cient pyramids at Giza with the

OUAlllTUM/I.IOI(IlllG BAC[ 45



celebrated general Cleber. The gen-
eral liked the young officer, and he de-
cided to takd him on the Syrian cam-
paign as a member of his division.

As you may know from reading
history, this campaign was a disas-
ter for Bonaparte. Malus shared all
the calamities suffered by the
French army in Syria. However/ as a
brave officer he distinguished him-
self during the siege ollaffa, where
he constructed trenches and other
fortifications and took part in bitter
fighting in the streets of the town.

Plague

When Bonaparte's army left to
begin its siege of the Fortress of
Saint )ean d'Arc, once a major
stronghold of the Crusaders and now
in the hands of the sultan's arrrry,
Malus received orders to remain in
|affa. From the depths of the Syrian
desert, or perhaps from the heights
of the Lebanese mountains, one of
the most terrible diseases known to
mankind, the constant companion
of wars and destruction, stole to-
ward the uninvited guests: the
plague (or Black Death). It {ollowed
in the wake of the French army. Lr
the garrison left at faffa there were
300 wounded, 400 suffering from
the plague, and only 50 healthy sol-
diers. Around them the town was
dead, the traces of the recent defeat
were still fresh in the streets. On the
eleventh day Malus took ill with the
same horrible disease that raged
among the troops. Malus's notes
give only a pale idea of what he lived
through during those days when the
signs of the plague became evident,
surrounded by dying comrades.

The siege of Akkra dragged on.
The sick kept arriving atlatfa and
increased the number of infected
persons. The plague was now in ev-
ery home. The only servant who
helped Malus faithfully during his
illness died along with the last of his
friends. He was alone and helpless.

But Malus was lucky: after a

month of illness he embarked at last
on a ship sailing for Eg1pt. He wrote
that on his return voyage "the sea
air had a strong effect on me, it
seemed to cure me of asthma, head

winds delayed the ship at sea, and
that greatly promoted my recovery."
The ship dropped anchor near the
Delta, but the ordeals of the young
captain-engineer wete not over yet.
He was to spend a month in a quar-
antine surrounded by the diseased,
which delayed his recovery. But all
ended well. Malus fully recovered
and could now leave the hospital,
though he had to part with all his
personal belongings.

The epidemic of the Black Death
brought Bonaparte's army to the
brink of disaster. Under these condi-
tions he couldn't get favorable terms
for an armistice, and in addition the
shortage of provisions was felt more
and more. The scientific activity of
the Egyptian Institute gradually de-
creased and finally stopped. At the
same time as Malus was battling his
sickness, Gaspard Monge fell dan-
gerously ill (though fortunately he
soon recovered). Meanwhile the vic-
torious troops of Russian Field Mar-
shal Suvorov routed the French in
Italy. Fortune, which had smiled on
Bonaparte for so long, now seemed
to betray him.

BeUrn
Soon after his recovery Malus was

given a new assignment, one that
looked more like leave than duty.
The soldiers of the garrison where
he was sent lived in huts made o{
palm leaves just as the Arabs did.
Near his hut horses and camels
peacefully grazed, the fenced yard
was full of hens, geese, and ducks.
There was utter calm. The peaceful
amusements had a restorative effect
on Malus. Here he decided to study
physics, and he wrote an essay on
the nature of light, in which he dis-
cusses in detail the basic principles
of the corpuscular theory.

Meanwhile the French army con-
tinued its campaigns. In August
1799 Bonaparte decided to leave his
troops and return to Paris. He was
forced to do this by the obvious fail-
ure of the Syrian campaign, which
complicated the situation in Europe
and threatened to deprive him of all
the power he had attained. Com-
mand of the army was assumed by

Malus's comrade, General Cleber.
Despite some partial successes, the
condition of the expeditionary army
got worse. Malus resumed his mili-
tary duties and again took part in
battles. However, the brave general
was soon assassinated by a Turk,
which led to a weakening in control
over the Army. In the fall of 1801 it
lay down its arms.

Malus returned to France, still
cherishing in his heart an old affec-
tion. Throughout the three years he
was away he received letters from
Gissen. At last he could rr.arry
Louise Koch. It was a happy union.

Another ten years of military life
sent Malus all over Europe. By 1810
he had reached the rank of major-
engineer, but his scientific interests
drew him to Paris. In August 1810
the brave soldier of Napoleon's army
was elected a member of the French
Academy of Sciences. He took his
honored place among the leading
scientists of Europe, and he had a
right to it: by that time Maius had
discovered and described the phe-
nomenon that would immortalize
his name in science-the polariza-
tion of light.

Iiscouery
On |anuary 4, 1808, the Academy

of Sciences announced a competi-
tion for the answer to the following
problem: "Devise an experimentally
verified mathematical theory for
double refraction of light in different
crystals." The prize was awarded to
Malus. By this time he was known
in scientific circles as the author of
a treatise on analytical optics in
which he generalized several partial
geometrical methods of construct-
ing characteristic optical surfaces.
He had also presented the academy
with his experimental work on mea-
suring the refractive index of trans-
parent and opaque wax by the
Wollastone method. So his success
in the contest wasn't wholly unex-
pected. His new work, like his pre-
vious works, was favorably received
by the committee, composed of
such persons as Lagrange, Gaiyu,
Gay-Lussac, and Biot. However, it
should be mentioned that Malus,
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Figure 2

fearful that one of his rivals might
block him by discovering the new
properties of light that he had just
observed, presented a substantial
portion of his work to the academy
on December 12, 1808, not waiting
for the deadline for the competition.
So his discovery dates from the end
of 1808.

Let's look briefly at the sequence of
observations Malus made. As men-
tioned above, a narrow light beam
passing through a crystal of Iceland
spar is split to produce two rays: an
ordrnary ray and an extraordinary ray.
If we direct one of these rays through
another sample of Iceland spar,
double refraction does not always
occur. It/s interesting that, if we ro-
tate the second crystal about the di-
rection of the light beam, we can find
aposition for which thebeam refracts
normally and another position for
which the same beam refracts abnor-
mally. In intermediate positions two
beams of different intensity emerge
from the second crystal.

These properties were discovered
by Huygens at the end of the 17th
century. One day, at home in
Paris, Malus looked through a
double-refracting crystal at sun-
beams reflected from the window-
panes of the LuxembourgPalace,
which was opposite his apartment.
Rotating the crystal, he suddenly
noticed the very same change in the
refraction of the beam passing
through the crystal, just as if it had
passed through Iceland spar. Instead
of the two equally strong images
that he expected, Malus observed
only a single image-now ordinary,
now extraordinary. This strange
phenomenon startled him: he tried

to explain it by variations of light in
the atmosphere. But as night fell the
light from a wax candle confirmed
the daytime results. This time,
though, Malus observed the reflec-
tion from awater surface. This was
how he came to understand that
light changes its properties-be-
comes polarized-not only after
passing through Iceland spar but af-
ter being re{lected by any surface.
Thus, polarizattonis one of the fun-
damental properties of light.

In his article Malus wrote: "lJn-
der certain conditions the effect of
some substances on light causes the
reflected and refracted light to ac-
quire certain properties that make
them essentially different from the

Figure 3

emitted source light. Theproperty of
light I shall describe is connected
with this kind of change. The par-
ticular property was observed previ-
ously under certain conditions in
the form of the appearance of a
double image after light passed
through calcite. It was thought,
however, that this phenomenon was
a feature of that particular crystal-
line substance, and it was not sup-
posed that this phenomenon might
arise not only in all doubly refractive
crystals but also in all solid and fluid
transparent or even opaque bodies."

Let's examine polarization from
the modem viewpoint. A direct cor-
ollary of the electromagnetic theory
of light is that light waves are trans-
verse waves. This means that the vec-
tors representing the oscillating elec-

tric E and magnetic H fields are per-
pendicular to the direction of wave
propagation, and not only that, these
vectors are perpendicular to each
other (fig. 2). Given the direction of
the beam n, we can choose the direc-
tion of E (and, correspondingly, H)
arbitrarily in the plane perpendicular
to n. In natural sunlight all directions
of E are equallyprobable. However, if
the light is completely polarized, all
of the E vectors point in the same di-
rection. If this direction happens to be
vertical, the light is said to be verti-
ca1ly polarized.

When double refraction occurs/
the ordinary and extraordinary rays
are complet ely poladzed-the polar-
ization of one ray is perpendicular to
that of the other ray. This effect is
due to the asymmetrical afiarrge-
ment of the atoms within the crys-
tal. One can imagine a crystal that
strongly absorbs one of these rays, in
which case a single polarized light
beam will be emitted. Crystals of
this kind are called polarizers, and
physicists nowadays use tourmaline
to polarize light.

Hrcl'imenls
Now we'll look at Malus's experi-

ment in some detail. Figure 3 is an
engraving of his actual experimental
setup, while figure 4 is a schematic
rendering. Let a narrow beam of
natural light strike a glass mirror M
such that the angle of incidence is g.

The reflectedray passes through a

sheet of tourmaline 7 that can be ro-
tated about the reflected ray. As the
sheet is rotated an observer sees the
light intensity increase and decrease.
The orientations for minimal and
maximal intensities differ bv 90".

Figure 4
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Now, if the reflected light retained
the properties of natural light, we
wouldn't see any change in the
light intensity when we rotate the
tourmaline crystal. On the other
hand, if the reflected ray is com-
pletely polarized, certain orienta-
tions of the tourmaline crystal
would not allow any light to pass.

through. Since we do not observe
such an extreme case in our ex-
periment, we conclude that the
polarization of light reflected by
glass is only partial-that is, the re-
flected ray is a mixture of natural
and polarized light.

If we increase the angle of inci-
dence Q, we find that the reflected
light becomes more and more polar-
ized until the light is completely po-
larized at a special angle 06, now
known as Brewster's angle. As we
increase the angle of incidence even
more, the polarization decreases. In
1815 Brewster derived the relation-
ship tan 0o = n, where n is the index
of refraction of the glass, by recluiring
that the reflected and refracted rays be
perpendicular. (You should try ob-
taining this relationship yourself. 

)

Malus measured Brewster/s angle for
water to be 53o, as would be expected
for arefractive index of 1.33.

Having discovered polarization,
Malus wanted to obtain wide beams
of polarized light, but he did not
have any tourmaline crystals. Once
again, the Luxembourg glass came
to the rescue. Maius noted that
when light is reflected at an angle Qo,

the polarization of the r etr acted r ay
is also maximal-at about 15%. So
if one combines several plates of
glass and directs a light beam
through all of them at an angle Qo,

the light ray that emerges will be
almost completely polarized.

Malus also determined the inten-
sity of the completely polarized light
I after passing through a second
polarizer. If the second polarizer is
rotated through an angle u from its
position of maximal intensity, then
1 = 1o cos2 cr. In the modem view, the
electric field vectorE is imagined to
consist of components perpendicu-
lar and parallel to the transmission
axis of the polarizer. Only the

E7=Ecoso

l-Et'
t - transmission axis

Flgure 5

component para1le1 to the transmis-
sion axis passes through thepolarizer;
the other component is absorbed.
This means that the electric field vec-
tor is reduced by a factor of cos cr,

where o is the angle between an in-
cident electric field and the transmis-
sion axis (fig. 5). Since the intensity of
the light is proportionaLto E2, we ob-
tatlr a {actor of cos2 cx. (Remember
that Malus didn't espouse the wave
theory of iight!)

Malus's ideas were developed fur-
ther in a famous series of experi-
ments by two French physicists, his
contemporaries and friends Fresnel
and Arago (t 816), in which the inter-
ference of polarized beams was in-
vestigated. Fresnel also quantified
the relative degree of polarization of
light reflected from and passing
through a dielectric. Unfortunately,
Malus did not live to see these new
achievements.

0lony
The treasure trove Malus discov-

ered brought him well-earned glory
for several years. He jealously
guarded his reputation as the first to
make the discoveries in this field,
and was deeply offended when an
academician questioned Malus's pri-
ority in one particular experiment.
Malus was recognized around the
world. The Scientific Secretary of
the Royal Society in London, Tho-
mas Young, notified Malus most
graciously that he had been
awarded the Rumford Medal and
acknowledged that Malus's work
caused him to doubt the theory o{
interference he had been developing
for a number of years!

The pinnacle of Malus's scientific
career was his election to the fellow-
ship of the "Forty Immortals," as the
members of the Academy of Sci-
ences (Institute de France) were
called in France. His friend Arago re-
mernbered that on the day of his
election he promised to tel1 Malus
the results, but for some reason the
voting was delayed, and the unfore-
seen postponement caused the great
physicist to think he had been re-
jected. This thought drove him to
despair, and even his loving wife
couldn't console him. A fearless
warrior lost courage due to an imag-
ined rebuff by the Academy. Arago
saw this as a clear indication of the
profound importance of academies
in the life of science.

In 1810 Malus became an exam-
iner at the Polytechnical School.
This position was somewhat higher
than that of an ordinary teacher: the
examiner checkedboth the degree of
preparation of the students and the
level of teaching of the professors. A
year later Malus took on the duties
of principal after the aged Monge re-
tired, and only a few formalities re-
mained before he could take the post
permanently. After the wartime
deprivations of his youth, he now
had everything necessary for the
full enjoyment of 1ife. His friends
expected him to make even more
discoveries. Then a sudden and
acute case of consumption carried
him off. It's possible that the traces
of plague in his weak body hastened
his end. Madame Malus never left
his side in his last hours. Her
husband's death was too much for
her, and she died a few months later.
Malus was 35 years o1d.

The discoveries of Malus have
played a key role in the development
of physics. In characterizing the po-
larization of light as a fundamental
phenomenon, he capped the preced-
ing work of Bartholine, Newton, and
Huygens. The newly discovered
properties of polarized light helped
provide an experimental basis for
the revolution in optics that oc-
curred iust a few years after Malus
died: the transition to the wave

48 JAITtlABY/rrBRuIRY rss4

theory of light. e



AT THE
BLACKBOARD

Choppiltu up Piclr,s lheoreln
But watch out for the frogs!

by Nikolay Vasilyev

O EVALUATE THE AREA OI
a polygon, \re can rule the
plane into a grid of equal
squares, lay the po11-gon over

the grid, and count the numberN, o{
squares lying completely inside the
polygon and the number N, of
squares that have at least one com-
mon point with the interior of the
polygon. Then, ii the area of one grid
square is 1, the areaA of the polygon
satisfies the relation

N, <A < AL.

(This fact can be used for an accurate
definition of the area of a polygon
and other figures.)

Below we'lllook only at polygons
whose vertices are nodes of the
grid-that is, intersection points of
the lines of the grid. We'll call them
grid polygons. It turns out that the
area A of such a polygon can be ex-
pressed by this simple formula:

A= i+!-t,
2

where i is the number of the nodes
strietly inside and b is the number
of the nodes on the border of the
polygon (that is, on its sides and ver-
tices).

This formula is usually called
Pick's Theorem a{ter the mathema-
tician who discovered it in 1899.
(However, we cannot be sure that
this natural formula, which allows
for a number of different proofs,
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never occured to anyone before
that.l) The proof of Pick's Theorem
in this article, and some of its appli-
cations presented here, will have
linkages with some of the math
challenges in Quantum's FIow Do
You Figure? department.

Simple tt'ialtUle$

Let me remind you that all the
polygons-in particular, the trt-
angles-that we consider are grid
polygons: they have their vertices on
the nodes of the square grid. We as-

sume that the grid is infinite in all
directions and the side length of a
grid square is 1.

The area of any grid triangle is
easy to compute by representing it
as the sum or di{ference of the areas
of right triangles and grid rectangles
whose sides lie on the grid lines
through the vertices of the triangle
in question. If you do this for the tri-
angles in figure 1, you'll see that the
area is always a"half-integer" num-
ber-that is, a number of the form
ml2with an integer m.

Let's say that a triangle is simple
if there are no nodes inside it or on
its sides, its vertices excepted. This
name was chosen because any other
triangle can be composed of simple
ones (see statement 10 below). No-
tice that all the simple triangles in
figure I have arT.areaof ll2.We'11see
that this is no coincidence.

Figure 1

lThis seems to be the only trace left
in the history of mathematics by its
author, G. Pick. At least/ our
mathematical encyclopedia has no
entry for him. For another proof of
Pick's Theorem see/ for instance,
Introduction to Geometry by H. S. M.
Coxeter (New York: |ohn Wiley &
Sons, 1961).-Ed.

In math challenge M14 (in the
September/October 1990 issue of
Quantuml we examined the follow-
ing situation: three frogs that sit ini-
tially at three vertices of a unit grid
square start to play-what else?-
leapfrog. Any one of them-say A-
can jump over any other-say, B-to
land at point C symmetric to A
about B (fig. 2-it's clear that the
frogs wili always hit the nodes of our
gridl. What are the triples of points
where the frogs can find themselves
after a series of leapsl (This question
was posed in the solution to M14-
it generalized the question of the
problem proper.)

We'll call a triangle accessible 7f

there exists a series of iumps after
which the frogs, starting at three
vertices of one grid square, arrle at
the vertices of this triangle. The
transformation of a triangle consist-
ing of a replacement of one of its
vertices with the landing point of a
frog that jumped from this vertex
over any of the other two vertices
wiII be called simply a iump.

THEonr^ 1. The following three
properties of grid triangles are
equivalent to each other: (1) a tri-
angle has an area of 112; (2) a tri-
angle is simple; (3) a triangle is ac-
cessible.

You can convince yourself that
this theorem is true by proving the
subsequent 12 statements. Those
that are supplied with hints in the
solution section are marked with a
star. The rest will be not very diffi-
cult if you prove them in this order:

3=+4 l=2 10uuu
5+6=7=8=9+11=12

1. A jump does not change the
area of. a triangle.

2. kry accessible triangle has an
area of lf 2.

3* .If. a line is added to a simple
triangle ABC to form a parallelo-
grarn ABCD, then there will be no
nodes of the grid inside or on the
border of ABCD (except for its ver-
tices).

4* . A simple triangle remains
simple after arry iump.

5 
*. One of the angles of a simple

triangle is always obtuse or right.
The second case is possible only
when all the vertices of the triangle
belong to the same square of the
grid. Such a simple triangle-with
side lengths l, l, J2 -will be called
minimal.

6. With a single iump it is possible
to turn any simple nonminimal tri-
angle into a triangle whose longest
side is shorter than the longest side
of the original triangle.

7*. Arry simple triangle can be
turned into a minimal one in a finite
number of jumps.

8. Any simple triangle is acces-
sible.

9. Any simple triangle has the
area If2.

10*. Any triangle can be cut into
simple triangles.

11. The area of any grid triangle is
equaltomf2,wherem is an integer,
and the integer m is also the num-
ber of simple triangles into which it
can be cut (that is, the number is
constant for any given triangle).

12. Any grid triangle of. arealf2is
simple.

Our Theorem I immediately fol-
lows from statements 2,8, arrd 12.

Prove these additional properties
of simple triangles:

13. For any segment AB joining
two nodes of the grid there is a node
C such that the triangle ABC ts
simple.

14. The node C in the previous
statement can be chosen so that the
angle ACB is obtuse or right.

\ \ / I
Ul_
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If the plane is tiled with congru-
ent copies of a parallelogram such
that any two of them either have an
entire common side, a commonver-
tex/ or no common points at all,
then the vertices of these parallelo-
grams form a grid. We say that this
grid is generated by the initial par-
allelogram. For instance, the grid
considered throughout this article
is generated by a unit square. But
we can also think of it as gener-
ated by certain other grid parallelo-
grams (like the red parallelograms in
figure 3).

1 5. A parallelogram generates our
square grid if and only if its diagonal
divides it into two simple triangles.

This property carl also be refor-
mulated as follows.

16. A grid triangle is simple i{ and
only if all the triangles obtained
from it by translations that take one
of its vertices into each of the nodes
of the grid do not overlap (fig. 3).

Let's return to the leapfrog prob-
lem. Assume the frogs start at the
vertices of some fixed minimal tri-
angle rather than an arbitrary one
(which was assumed in the original
formulation of the problem). After
any jump a frog always lands on a
node that is, both horizontally and
vertically, an even number of
squares from where it started.
Therefore, it always hops in its own
grid of bigger squares (measuring 2 x
21. In figure 4 each of four such
"subgrids" that together constitute
the entire unit-square grid has its
own color.

By Theorem 1, the frogs are a1-

ways at the vertices of a simple tri-
angle. This implies the following in-
teresting property:

17. The vertices of any simple tri'

angle always belong to three fuffer
ent subgrids described above (and
are colored differently).

Now it's not difficult to answer
the question about the possible po-
sitions of our three frogs (in the case
of a fixed initial triangle).

18. Three frogs can get to three
given nodes of the grid if and only if
these nodes are the vertices of a
simple triangle and are the same
colors (fig. a) as the vertices of the
initial triangle. (The "only if" paft of
this statement has already been
proved.)

This statement, together with
statement 13, provides an answer to
the second question posed in the
solution to M14 (about the possible
positions of two frogs):

19. If three frogs are jumping ac-
cording to our rules, then any two of
them can hit those and only those
pairs of nodes that do not have other
nodes on the segment joining them
and have the same color as the ini-
tial nodes occupied by these two
frogs.

Tl'ianUulalions of a polyUon

We've studied in detail a particu-
1ar sort of grid polygon (triangle) that
corresponds to the values i = 0, b :
3, A = L12 in Pick's Theorem. But
this particular case allows us to pass
directly to the most general one by
using the theorem about cutting an
arbitrary polygon into triangles (the
grid is not needed any longer).

Consider a poiygon (not necessar-
ily convex) on the piane and a finite
set K of points inside it or on its bor-
der such that all the vertices of the
polygon belong to K. A triangulation
with vertices in the set K is, by defi-
nition, a partition of the polygon into
triangles with vertices inK such that
every point of K is a vertex of all the
triangles that contain this point.
(That is, the
points of K
are not al-
lowed to lie
in the inte-
rior or on the
sides of the
triangles-
see figure 5).

Tnronuu 2. (a) Any n-gon can be
cut into triangles by its diagonals;
the number of these triangles al-
ways equals n - 2. (Such a partition
is a triangulation with the vertices
at the polygon's vertices.)

(b) Ma*b points ontheborder of
a polygon (including a1lits vertices)
and i points in its interior. Then
there exists a triangulation with its
vertices at these points. The number
of triangles in such a ftiangulation
alwaysequalsb+2i-2.

Part (a) is a particular case of (b)

for b : n, i = 0. The proof of (b) will
again be divided into a series of
simple statements.

20*. From the vertex of the larg-
est angle of ann-gon ln, 3l1, a diago-
nal that entirely lies inside the poly-
gon can always be drawn.

2l.Il a diagonal of an n-gon cuts
lt into ap-gon and a q-gon, then a =
p + q-2.

22. Any n-gon can be cut into n -
2 triangles.

23. The sum of the angles of ann-
gon (not necessarily convex) equals

ln -21n.
24.* Any triangle with a number

of points given inside it and on its
border that include all its vertices
has a triangulation with the vertices
at these points.

25. The same is true for anyn-gon.
25. The number of triangles in a

triangulation is equal to b + 2i - 2,
wherei andb are the numbers of the
vertices of the triangulation in the
interior and on the border of the
polygon, respectively.

This yields Theorem 2.
27. Derive Pick's Theorem A = r

+ blZ - I from theorems I and 2.
A good way to prove statement 25

is to find the sum of angles of all the
triangles in the triangulation in two

Figure 5
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Figure 6

different ways. This method proves
to be useful in many other problems
of combinatorial geometry, includ-
ing problems dealing with partitions
of polygons. I'11 give two more ex-
amples.

A partition of an n-gon into sev-
eral polygons will be called regulat
if no vertex of any polygon lies on a
side of another, unless it is also a
vertex of the other polygon.

28.I{ ann-gon is divided regtilarly
into k-gons (for a fixed integer k) so

that i is the number of vertices in-
side and b is the number of vertices
on the border of the fl-gon/ then the
number m of k-gons is given by the
formula (fig. 6)

b+2i-2
ft7= 

-
k-2

29. (This is a version of Euler's
Theorem-see also "Topology and
the Lay of the Land" in the Septem-
ber/October 1992 issue.)If No points
of the plane and{ segments joining
some of them form a polygon di-
vided regularly into N, polygons,
thenNr-N,*No:1.

Exercises
These applications of Pick's

Theorem are connected mostly with
various problems and theorems
about polygonal curves on a grid,
rather than with computing the areas

of given polygons.
30. Suppose that the ratio of the

areaof apolygon to the square of one
of its side lengths is irrational (as is
the case for, say, an ecluilateral tri-
angle). Prove that it is impossible to
draw a similar polygon such that all
its vertices are nodes of the grid.

Sl.LetA andB be two nodes such
that B lies p squares to the right of
A andq squares above it (so the dis-

Figure 7

tance between them is i?id
Find the distance from the line AB
to the node closest to this line but
not lying on it.

32. A chess king made the rounds
of all the squares on the chessboard,
visiting every square once. [A king
can move from the center of any
square to the center of any of the 8
neighboring squares.) The center of
each square was joined to the center
of the next square on the king's
route (the last square was ioined to
the first one). It turned out that this
path formed a closed polygonal path
with no self-intersections. (a) What
is the greatest possible length of
such a path? (b)What is the greatest
area that this path can bound? (The
side of a square is 1 unit long.)

Part (al has already been exam-
ined in Quantum (March/April
1991, mathchallenge M30). Here I'11

give another solution. But let's begin
with part (b). ey Pick's Theorem the
area bounded by the path is equal to
6412 - 1 : 31. The grid here consists
of. all 54 centers of squares, and all
these nodes lie on the border of the
polygon. Now 1et's look at part (a).

Figure 7 shows a path in which 35 of
54 moves are diagonal and have a

length of Jr. Let's prove that it's
impossible to increase this number.
Since the largest path will have the
largest number of such segments,
this will show that the path in figure
7 has the largest length.

Look at the 1 x 1 squares that
have their sides parallel to lines of
our grid and whose diagonals are the
diagonal line segments of the path.

Figure B

One half of this square lies outside
the polygon bounded by the king's
path. The totaLareaof all thesehalves
is not greater t}rran 72 - 31 = 18, be-
cause they all go into the7 x 7 square
on our grid. So the number of diago-
nal moves does not exceed 36.

Thus, the answers to this prob-
lem are (a|28 + 35"1r, b)31.

33. You have to draw a closed non-
self-intersecting polygonal path along
the lines of a square grid that passes

through all the nodes inside arect-
angle measuringp x q squares (see fig-
ure 8, where p = I0, ct=9l.bl Forwhat
p andclis this possible? (b)What will
the length of this path be? (c) What
area will it bound? O
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Boston Uniuersity$ PR0tulYS

"Have any plans for the sum-
lr.et?." It's a cluestion you usually
don't hear until May. But if you're a
high school student with a passion
for math, you might \ /ant to start
thinking about the Program in
Mathematics for Young Scientists
(PROMYS) at Boston University.

PROMYS is a residential program
designed for 60 ambitious students
enteringgrades 10 through 12. From
|u1y 3 to August 13, participants will
explore the creative world of math-
ematics. In addition to tackling in-
teresting problems in number
theory, more experienced partici-
pants may also study abstract alge-
bra, dynamical systems, and the Ri-
emann zeta function.

Problem sets are accompanied by
daily lectures given by research math-
ematicians with extensive experience
in Prof. Arnold Ross's longstanding
Summer Mathematics Program at
Ohio State University. A staff of 18

college-age counselors lives in the
dormitories and is available to discuss
mathematics with the students. Each
participant belongs to a problem-solv-
ing group that meets with a profes-
sional mathematician three times a
week. Special lectures by outside
speakers ofter a broad view of math-
ematics and its role in the sciences.

Admission is based applicants'
solutions to a set of chailenging
problems, teacher recommenda-
tions, high school transcripts, and
essays explaining their interest in
the program. The estimated cost is
$1,300 for room and board; books
may cost an additional $100. Finan-
cial aid is available, and no student
should be deterred from applying
due to financial considerations.

For application materials, write

HAPPEN INGS

Bullelin Board

to PROMYS, Department of Math-
ematics, Boston University, 111
Cunningham St., Boston, MA
022L5, or call 617 353-2553. Appli-
cations will be accepted from March
1 until lune l, 1994.

Desiuninu sludeltl$
High school students from across

the country have a chance to design
their ideal youth community center
and win college scholarships by en-
tering the 1994 National Architec-
tural Design Competition, spon-
sored by the New |ersey Institute of
Technology School of Architecture.

Why a community center? "Be-
cause of its relevance to high school
students in both urban and suburban
areas," explains Prof. Mark Hewitt,
the competition's coordinator, " arrd
to emphasize the need for architects,
new and practicing to get involved in
these types of community revitaliza-
tion projects." Students will design
both the interior and exterior o{ a
small drop-in center that includes
recreational facilities for teenagers.

The top prize is a five-year fuil-
tuition scholarship to NIIT's
School of Architecture, the eighth
largest architecture school in the
US. Second prize is a five-year
half-tuition scholarship, and cash
awards of $250 will be presented
to four third-prize winners.

Entry forms must be submitted
by |anuary 28, 1994. Competition
information packets wi1l be mailed
to entrants on February 1 1. The
deadline for project submission is
March 28, and winners wi11be an-
nounced on May 2.

To receive an entry form or for
more information, call 201 595-3080
(in New |ersey, I 800 222-NIIT), or
write to Mark Hewitt, School of

Architecture, New |ersey Institute
of Technology, University Heights,
Newark, NJ 07102-1982.

When ilood UoE$ lad
Blood-so accessible, renewable,

and vital to life-has always been a
primary focus of medical research. A
new, lavishly illustrated report from
the Howard Hughes Medical lnsti-
tute takes a close look at recent sci-
entific advances and how they apply
to the treatment of biood disorders.

Blood: Bearer of Life and Death
describes the progress made in under-
standing how blood cells develop and
function, and how faults in the blood-
stream can cause disease in humans.
The report touches on the AIDS epi-
demic; cancer patients who cannot
make new blood cells after chemo-
therapy; sickle cell disease, hemo-
philia, and other inherited di.sorders;
and the high death toll from blood
clots. The publication also describes
gene therapy research for blood disor-
ders, and how scientists are closing in
on the "mother" ce11 of the blood-
stream: the stem ce11. The ability to
manipulate stem cells could have far-
reaching therapeutic value.

This report is the fourth in a con-
tinuing seri.es and is available free of
charge to teachers and students.
Write to the Howard Hughes Medi-
cal Institute, Office of Communica-
tions, 4000 |ones Bridge Rd., Chevy
Chase, MD 20815-6789.

A plam Io ruilhh
The Russian journal Prologue is

seeking original student papers in
mathematics, the sci.ences, and the
humanities. Published qu arterly, Pro-
logue serves as a kind of training

CONTINUED ON PAGE 61
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9 Stable electron
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12 _mater
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ANSWERS,
HINTS &

SOLUTIONS

tlllath

M101
It's not difficult to show that a set

of n elements has exactly 2" subsets.
In particular, six students, theoreti-
cally, could form 26 = 54 committees
(including an empty committee).

Divide all the possible 54 subsets
of the set of our students into pairs
lA, Al, where A is an arbitrary sub-
set and A is its complement (which
consists of all the students that
don't enter the setA). Since there are
32 pafus and 30 committees, both
subsets of at least one pair are
nonempty and aren't committees.
Let A be one of these subsets. If it
intersects with all the 30 commit-
tees, it's the subset we need. If it's
disioint with a certainsubset B, then
the second set of the chosen pair,A ,

contains the committee B. But B
and, therefore, A intersect with all
the other committees, so A is the
desired subset.

You can prove that it's impossible
to organize more than 32 commit-
tees satisfying the condition.

M102
(a) The required representation

can be written out explicitly:

,' = !@ 
+t)' - 11x' + Bx + 1).

(b) First let us note that i{A(x) and
B(xl are polynomials that can be
written in the required form, then so
are (A + Bl(xl and lA - B)(x). The
proof of this result uses the fact that
the sum of two monotonic increas-
ing functions is monotonic increas-
ing, and some simple algebra.

Let's prove the statement by in-
duction over the degree of a polyno-

mial. For degree zero (constant func-
tions) the statement is triviai. Sup-
pose it's true for any degree less than
n. Write an arbitrary polynomial
P,(xl oI degree n in the form

e,(xl=ax'+Pn_1(xl,

where P,_J*l is a polynomial of de-
gree not greater than n - 1 that sat-
isfies our statement by the induc-
tion hypothesis. By the note at the
beginning of this paragraph, it will
suffice to prove our statement for
the polynomtal ax". For odd nt we
can write a* = (a + 1)x" - lx" rf a >
-1, and ax" = lx" - (I - alx" lf a < -1.
Since kx" is monotonic increasing
for k > 0, these representations sat-
isfy the requirements of the prob-
1em.

If r is even we must go a bit fur-
ther. Note that

(n + llx" : (x + 1)". I - 2;a+ I

- Q, ,(xl,

where Q,_,(x) is of degree n - l, and
hence is covered by the induction
hypothesis. Now we can write

ct

Figure 1

ay" =-a 1n+l)x"n+l

= 
a (r+1)n*'- a 

*n*t
n+l n+l

- 2e,-,(*),n+l
which leads to the desired represen-
tation.

For an even r? = 2k we can give
another argument. By the inductive
coniecture, xk = P(x)- Q(x) with in-
creasing polynomials P and Q. It fol-
lows that

*k:lnlxl - e(")12
: 2Pzlxl + 2Q2(x)- [P(r) * Q(x)]2.

SubstitutingP(x) forx in the formula
in part (a), we'll get a representation
of Pz(xl as the difference of increas-
ing polynomials. The same can be
done for Q'z(x) and [P(x) + Q(x)]',
yielding the required representation
for *k. (A. Vaintrob, V. Dubrovsky)

M103
The answer is no (in general).

This would be easy i{ we ignored the
requirement that the triangle is
acute. Indeed, let's fix a circle (with
center O and radiusz) and a pointM
on it, and consider an isosc,eles tri-
angleABC circumscribed about this
circle whose base touches the circle

co

Figure 2
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at pointM. As we change the height
AM of this triangle, we clearly see
(fig. i on the preceding pace) that its
sideAB can be made arbitrarily long
by stretching the triangle either ver-
tically (AM -+ *) or horizontally
IAM -+ 2r). Since the side length
changes continuously, arry value of
AB greater than its minimal value
AoBo is taken at least twice: once for
the height greater than AoM, once
for the height smaller than AoM.

However, it might happen that
one of these two triangles with the
same side lengths is always obtuse,
so we have to undertake a more ex-
tended investigation.

Put x : OA (fig.2). Then, from
similar triangles AOD ard ABM,
we have ABIAM : OAIAD. Let-
ting Y = AB, x = AO, we have Y =
AM OAIAD : (x * rlxllx'-r' .

Letting t = xlr, we can rewrite the
latter expression as

y = AB= rr",E. t1)vr-r

Since we are thinking of r as fixed,
the expression gives y = yltl as a
function of t. We are interested in
the behavior of the function on the
interval Ji, t, *. Direct calculation
shows that when t = Jr, the side

length of the right isosceles triangle
isy =r(2 * ,Dl=9.+tr, while, say, for
t = 1.5, which is greater than uli , yltl
= r.3JS l2=3.35r. Sincey(r)-) @ as

t ) @t a value such as 3.4t is taken
at least twice: in the intervallJl, t.Sl

and in the interval (1.5, -1.
This concludes the solution of

our particular problem, but an inter-
ested reader may go further and find,
using derivatives, that the function
y{t) decreases for 1 < t < t and in-
creases for t < t < €/ where the point
of minimum t is the famous "golden
section" (Js * tll2 = I.5lB. This
ubiquitous number, which you may
have met many time in the pages of
this magazine, crops up yet agarn!
(V. Dubrovsky)

Ml04
We'll solve part (b) first. The an-

swer to this problem consists of the

following pairs (p, ctl: $, 4l1,15, 611,

(6 , 5l , ln, -n - ll for all irlteger n (n +
0, -I ). Let xt, x, and y1, yrbe the in-
teger roots of the trinomials * + px
+ q aladrc + qx + pt respectively. Us-
ing the formulas for the sum and
product of the roots of a quadratic,

xr + x2= -P, Yt + Yz: -Q,
xtXz= e, yryz= p.

Dividing the product of the first two
equalities by the product of the
other two (pq + Ol yields

lr iLl-:+ - l>1.
l"' *'l

Similariy, one of the addends in the
absolute value sign above must be
greater than or equal to lf 2, andwe
can assume that this will be x, (if it
is not the first, we can simply rela-
bel them). Then

lr It>-
l",l 

- ,'
or

lxrl <2.

Consider the two possibilities.
1. lx,l : 1. Thenx, must be a non-

zero integer of the same sign as xr.
If lxrl = n, thenp : -(x, + xrl : t(n + 1 ),

e = n. For natural numbers n, the
polynomial * + nx - (n + 1) has in-
teger roots (-n - 1 and 1).

Thepolynomial* +nx+ (n + 1)de-
mands closer examination. We can
write its discriminant as (n - 2l' 'g.
Since the roots are integers, this
must be a perfect square of some in-
teger b. Then we have (n -2lz -62 -
B, or (n -2-bl(n-2 +bl:8, wheren
and b are positive integers. This equa-
tion is true oniy If n-Z-b :2 atdn
-2 + b = 4-thatis, n : 5 (and b = ll.

Thus, we get the pairs l-n - l, nl
lor ln, -n - 1), which is the same) for
all integern other than 0 and -1, and
the pair (n + I , nl {or n :5 only-that
is, the pair (6, 5) and, symmetrically,
15, sl.

2. lxrl :2. Then lIf x, + llxrl > I
yields lxrl a2. The case lxrl = 1 was,
with a change in notation, consid-
ered above, and the case lxrl = 2leads
to the pairs (4, 4) andl-4, 4), the sec-
ond of which is no good (the equa-
tion x2 + 4x -4 = 0 has no integer
roots).

M105
Let's depict each apartment as a

point on the plane, and a move from
one apartment to another as ar7 ar-
row joining the corresponding
points. Clearly, the set of arrows
that represent an arbitrary complex.
exchange is always such that in each
point one arrow begins and one
ends. Therefore, if we start at ar,y
point and move along the arrows,
we'Il always be arriving at new
points until we come back to the
beginning of our route (this is inevi-
table, because there is a finite num-
ber of points). Similar closed circuits
are formed by other arrows, so all
the arrows fall into a number of
closed ch.ains-cy cles (fig. 3 ). Thus,
it will suffice to prove the statement
for a cyclic exchange of apartments.

Suppose we have to perform the
exchange Ar-+ A, -+ ... -+ An)
At-tlrrat is, move the residents of
apartment A, into apartment A,
from Arinto A, and so on. On the
first day, let's perform the swapsA, <+

A,-r,Az€ Ao-2,...-in genetal, Ao
€ An_*(if we make the convention
that Ao= A,li the residents of the
apartments An and, in the case of
even r?/ Ao,rstay where they are for

(t r)/r \
r-+- tt -*-I l=r.
( x, x, )\y, yz )

At least one of these factors must be
gteater than or equal to 1. Without
loss of generality, we can assume
that this is the first, so that

50 JA[lUARY/IIEBUARY 1Og4
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Physics

Pl 01
The buoyancy {orce (see figure 5) is

equal to the weight of the displaced
water and is gven by Fo : poSl'g where
S is the cross-sectional area of the float
and J'is the length of the submerged
portion of the float. From the mass of
the float we find that S : mlprl, wherel
is the total lengh of the float. Combin-
ing these two relationships we obtain

E. = *s%l' .-b ----p, 
1

The float will float if the buoyant force
balances the weight of the float and the
force F exerted by the sinker. Since
the sinker is also in the water, this
force is given by F + mg: Fo, where

In order for the float to sit in a
vertical position, the torque pro-
duced by the buoyant force about
point O in figure 5 must be at least
as large as the torque due to the
float's weight:

F*1'sin0 - mglsin0D\

22'
where 0 is the angle the float makes
with the vertical. Substituting in our
first formul a for Fo, we get

mcfu-r, l'> *gI,
p, l

or

Po - 1) /',- /p,
- 

. 
- - 

t-.

Pr l'z' I lPo
Taking into account the relation for
1'f 1, we obtain

which results in a second constraint:

E_,_tM, \/-q'
m 1-Po

Pz

Thus, the conditions on the mass
ratio are

/0, _r ps_r

t_Po 
-- 

t_Pn
Pz Pz

Pl 02
Let's consider the collision of one

molecule with the piston. The time
between collisions is At = 21fv, and
the momentum transferred to the pis-
ton is AP, = 2mv. The average force
acting on the piston ir /, = tprltt =

mtPll. When the piston moves with
a speed vo the molecules colliding
with it gain an additional speed Av =
2v.. During the period between colli-
sicins the length of the gas cylinder
changes by

N=-vplt=-++

-that is,

o, [r* *(,_h]l=.E,
PoL m( P,)) !Po'

Therefore,

F,.=-s-rrlr-*JFigure 4

the time being. On the second day,
the swaps Ar<) An, Ar<) A,, tt ...
that is, Aoo A,*, o-are carried
out. As the result of both exchanges,
the residents of apartment Au move
toA, , ,n u=Ar, ,fork:1,...,n_ I,
andfuomA,to An*t_n= At, which is
what we wanted.

This sequence of exchanges is
geometricaliy illustrated in figure 4.
II Ar, ..., An atethe vertices of a regu-
lar n-gon with center O, then the
first series of exchanges corresponds
to the reflection about line OA,, and
the second series results in the re-
flection about line OM, where M rs
the midpoint of A,Ar. We can prove
that two reflections about lines in-
tersecting at point O at an angle cx

performed one after another result
in a rotation about O through the
angle 2o. In our case we get a rota-
tion throughZnln. This rotation re-
aranges the vertices of the polygon
cyclically.

,' _ o, [r * MIt_ o. ll7 ooI nrl p.]_]

'--__--7 Arr,,

F=Mg-poM,=r{, :l

Comparing these two expressions
for Fo yields

The inequality 7'< I results in the
constraint

po _I
t\t n,l<r

rl - 
1_ po

P:
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to the paper (or another piece of fab-
ric that absorbs fatty substances).

Pl 04
The reading on any meter is pro-

portional to the expenditure of the
thing being measured. In our case,
the reading on an electric meter is
proportional to the amount of en-
ergy consumed, or (since the time t
: 1 minute is fixed) to the power. It
doesn't matter what units are used
to measure the power-turns of a
counter/ numerals, and so on. Thus,
N = KP. If. PtlP2 = N,/N, then it's
ciear that

PP
N.=N,-l=Nnl,, ,P,,

where Pr= Pr+ P,
But what if PtlP2+ N,/ZNr? It is

reasonable to suppose that someone
else in the apartment is consuming
electricity (for instance, watching
TV). Then

N, = I((p, + po), (1)

Nr= K(pr+ pnl, lZ)
ru, = K(P, + Prl. (3)

Solving the first and second equa-
tions simultaneously we obtain K
and Po:

N _N.
K-----t -L 

r4lPr- r,
and

.- 4N" -PrN,P_ r'2n: N, N, (51

Then

N,= 1Nr-Pr{*(ru,-nr,)r.
P,.- P,

= 
PrN, -PrAL.

Pr- P,

Note that if the two lamps have the
same power rating, we will be divid-
ing by zero in our equations. This
tells us that we do not have enough
information to obtain an answer in
these situations.

P1 05
To find the longitudinal magnifi-

cation we look at the similar tri-
angles in figure 6 formed by the rays
passing through the center of the
lens:

We now use the lens formula

from which we get

t, - Touo,- l.

(We assume that the piston is much
more massive than a molecule, and
that vn = const.) Therefore,

, _ mllv!
,' 

f3

The total force acting on the piston
due to all the molecules is F: Nl,
where N = nfos (S is the area of the
piston), and so the pressure is

^/l 
n-l-S ml?v?D- 'I- UU U U

f 
--

_ noVo. mli . Sz .vZ

s3J3

=nomvZv: .

V3

From this we get

PV3 = ndnvo'Vo' ="orr,

-that is, a one-dimensional adia-
batic:

'?=3' i=1'PV'r=Const/ y=-l

P1 03
The removal of grease stains from

clothes by ironing them is based on
the fact that surface tension de-
c,reases as the temperature increases.
So if a hot iron is applied to one side
of the stained fabric and a piece of
ordinary paper is pressed against the
other side, the grease is transferred

Figure 6

58

o =t-r=b .,L,L

111
I

Lb F,

1 1 I (1)
T-

L-Lr'b+\ F'

to find the ratio blL and obtain

K,= F 
l2l' L-F

To find the longitudinal magnifi-
cationKr: Lz'lLzwe let the car more
forward one car length and again use
the lens formula:

!(r*,,'l*1[r-.:) I

r[ L)b[ i)=, (3]

Using the approximations Lr.. L
and Lr' << b, we obtain

(r 1\ L^ t" I
ll. il+--i= ,' t4t

Using equation (1| to substitute for
1/F, we have

L: (h\2
K. =r=l: I' L) \L) =(*l

Lz',L"
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a
1

,r1'
'u,

b
t-l l-l -,,1t-,--lr,n
Lr r'- J lJD rt-rJ Figure B

numbered 4, 3, 5 must work properly.
Comparing 3 an.d9, we find that the
second bar must work, too. These
four bars (2,3, 4,5) allow us to distin-
guish between any two digits except
4 and 9, which require either of the
bars 1 and7. So two bars were inop-
erative (5 and l, or 5 an:d7l.

8103
The "delay" in the fueezingof riv-

ers at temperatures weil below 0'C
results from water motion. Lr a fast-
flowing river the layers of water are
continuously intermixed from the
surface down to the bottom of the
river. A{ter being cooled to 0'C, the
upper layers mix with the lower lay-
ers that are walmer, so their tempera-
ture increases above 0'C. Freezing
begins only when all the water down to
the very bottom is cooled to 0oC, and
the deeper a river is, the longer it takes.

8104
The answer is 6 days. The num-

bered points in figure B represent
days (point I corresponds to August
1,19931.If, according to what he
claims, Mrinchhausen shot fewer
ducks on a certain day than on some
other day, we draw an arrow {rom
the point corresponding to the first

A

Figure 9

day to the point of the second day.
The figure shows that the baron
couldn't repeat his claim for seven
days (or more), because that would
create a closed chain of arrows,
which is impossible: moving along
the arrows, we always get a greater
number of ducks shot, so we can't
return to the start. For six days, the
red arrows in figure 8 should be
erased, which destroys the circuit.
It's easy to give an example satisfy-
ing Mrinchhausen's conditions: he
could shoot one duck on |uly 31,
two ducks on August 2,three ducks
on August 4, forx on August 5, five
on |uly 30, and so on along the ar-
rows, ending up with 8 ducks on
August 5, while before |u1y 30 he
could shoot, say, 1994 ducks a day.

8105
The triangles ABN and CAM in

figure t have the same area. A 120"
clockwise rotation of the triangle
ABC abort its center takes it into
itself and takes the triar;,gle CAM
into the triangle ABMt with the
same area having point M, on BC-
that is, intoABN. Since this rotation
takes CMintoAN, the anglebetween
theselinesis 120,or 180'- 120':50
(which is the same).

Piclr's Theol'em
(Hints for starred items)
3. Let Mbe the midpoint of a seg-

ment ioining two nodes. Then the
point symmetric to an arbitrary
node with respect to point M is also
a node.

4. Let the vertexA of a simple tri-
anfl,e ABC jump over vertex B onto
a node A' . Complete parallelograms
ABCD and BA'EC. Then ABCD is

Figure 7

The ratio of transverse to longitudi-
nal dimensions changes as follows:

(F )'
L" _K,\ _L,lr_ r)
L: K,L, r, r F )'

lL-r)
which reduces to

L: L,(L_F\
ltt

r' , [ . ]u) Lrt I t

_Lt2oo_t =D9LLrlL.

-that is, the car in the image is
"flattened" by factor of about 200!

Bl'aintea$Brs

81 01
Since HE: I + O + H + N, the

numbers HE and IOHN = (HE)3 yield
equal remainders when dividedby 9.
Searching through all possible re-
mainders, we find that the remain-
ders of n andn3 when dividedby 9 are
the same only for n = 9k, n = 9k - l,
or fl = 9k + 1. It remains to check
three possible values 6or HE-17 , lB,
and l9-since even253 is a four-digit
number. The answer is HE : 17,
IOHN - 4913.

8102
Number the seven bars making a

digit as shown in figure 7a . Compar-
ing the calculator digit B with 0, 5,
and 9 (fig. 7bl, we see that the bars

0tlAilTUtl/[r{$I{tRS, lil!rIS & S0tUTt0lllS 5g



obtained frorrr BA'EC by a transla-
tion that takes all nodes into nodes,
so there cannot be any nodes inside
and on the perimeter of BA'EC.

5. Draw grid lines through all ver-
tices of the given simple triangle
ABC and consider the rectangle
bounded by four of these lines that
contains the triangle. One of the
triangle's vertices must be a vertex
of the rectangle; 1et this vertex beA.
Label the rectangle A DEF. If neither
B nor C coincides withE-say, B lies
on side DE, C on EF-then the per-
pendiculars to DE and EF drawn
from B and C, respectively, meet in
a node of the grid that lies in the tri-
angle ABC (perhaps, on its border).
This is impossible, since the triangle
is simple. Otherwise, one of the ver-
tices B and C-say, B-coincides
with E. Then the angle ACB is ob-
tuse or right.

7. The distances between nodes
can only take values such that their
squares are (positive) integers. There-
fore, a decreasing sequence of these
distances necessarily terminates.

I 0. Perform these operations in
any order: any node lying in the in-
terior or on the border of a triangle
(one of the triangles of the partition
aheady obtained) is joined to the
vertices of this triangle.

20. This is obvious for a convex
polygon. In a nonconvex polygon,
choose its greatest angle. This angle
is greater than 180". Draw its bisec-
tor up to the border. Then slide the
point thus obtained along the side
until the segment joining it to the
vertex of the chosen angle meets
another vertex of the polygon.

24. Proeeed by induction. Sup-
pose that a triangulation exists for
arry n points. Take a set of n + I
points and remove one of them.
Draw the triangulation for the re-
maining points, then consttuct a
new triangulation by connecting the
"rrew" point to some of the others.

ltuleidoscope
1. See figure 10. Here t, = 3 s, tr=

4.5 s,1= I km, v = 340 m/s (the speed
of sound).

I

Figure 10

2. Usually the wind speed is
greatil at high places than near the
ground, so the wavefronts become
asymmetrical (fig. 11), which results
in higher values for the speed of
sound in the direction of the wind
than in the opposite direction. Thus,
the sound wave propagating against
the wind will be deflected upward
(the curveAB in figure 1l ), while the
sound wave traveling with the wind
will be lowered (the curve AC).

3. Air becomes unstable when it
flows around wires or twigs, which
results in vortices coming from the
obstacles. These vortices create os-
cillations in the air pressure that we
perceive as sounds.

4. In the string the waves are trans-
verse; in the air they are longitudinal.

5. The greater the air pressure in
the tire, the higher the pitch of the
sound induced.

6. When a string is plucked by a
hard fingernail or pick, higher har-
monics are produced than when a
soft finger is used. The higher har-
monic oscillations add a ringing
quality to the sound of a banjo.

7. Because the sound is reflected
many times in a closed space, the
room is more or less homogeneously
fi1led with the energy of the sonic
oscillations.

8. A tuning fork gripped in a vise
rings longer because it emits a sound
wave of lower intensity.

9. When a sound wave makes the
transition from air to glass and then
from glass to air, it is partially re-
flected, which results in a decrease
in the amount of energy that pen-
etrates the window.

10. There are small empty spaces
between flakes of newly fallen snow
that absorb sound (just as modern
sound-absorbing panels do).

ffiffi ffi &$tffi ts;rffif#ffiuaffi ffi ,$$r jffiffi

ngure r r

11. The air cavity in the kettle
serves as a resonator for the sound.

12. A piece of modeling clay in-
creases the mass of the window-
pane, which leads to a decrease in
the natural oscillation frequency of
the g1ass. This destroys the reso-
nance between the windowpane and
the traf{ic noise.

13. A glass has certain resonance
frequencies, and if one of them co-
incides with the frequency of the
sound produced by the singer, the
glass might break.

14. Either the tip of the whip
strikes another part of the whip, pro-
ducing a snapping sound, or it trav-
els faster than the speed of sound
and emits a shock waYe.

15. A bullet shot from a rifle
moves with a velocity greater than
the speed of sound inair, so a shock
wave is produced.

16. The shock wave takes the
form of a conic surface moving at
the same speed as the airplane.

17. The sound wave undergoes
diffraction in the narrow opening,
and when the sound passes through
the opening it propagates through-
out the room.

Micr o exp er iment. The frecluency
can.be determined from the wave-
length, which is approximately equal
to four times the length of the pipe.

PylhaUorEalt

Theul'em
1. In figure 12, the counterclock-

wise rotation about the vertex B of
the given right triangl e ABC takes A
into a vertex D of the external
square on the hypotenuse, and line
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Figure 12

CA into the extension of the side of
the internal square on BC parallel to
BC, thus rnakrng the statement in
question obr-ior-rs. Similarly, the
clockwise rotation proves the second
statement-for the ertemal square on
BC and intemal square on AB.

2.If Blx, v, Ol is the projection of
A\x, y, z) onto the -x1'-p1ane, then the
triangle OBA, u'here O is the origin,
is a right triangle. Therefore, OB2 =
x'+f, andhence OA)=OB1 +BA)
:l^ f y lrL

3 . Let ABCD be the given tetrahe-
dron with right angles at the vertex
D, and let P be the projection of D
onto ABC (iig. 13). Then the area of
ABC equals the sum of the areas of
ABP , BCP , and CAP .If cr is the angle
between the planes ABC and DBC,
then area(BCP)larcalBCD) = cos u.
The triangles BCP and BCD have
a common side BC, so the ratio of
their areas equals the ratio of their
heights dropped on this side. But
these heights have a common base
H, since P is the proiection of D,
and form a right triangle PHD rr,ith
angle PHD = o- tsee figure 13). Simi-
larly, point D is the projection oi A
onto BCD, so arealBCD)larea\ABC)
= cos 0 as well. It {oilows that

Figure 13

arealB CPI : area(B C Dlz I arca(AB Cl.
Writing out similar expressions

for the triangles CAP and ABP, ard
summing all the three of them, we
get the formula in the box below.

As we noted above, the sum on
the left side is equal to the area of
ABC, and this completes the proof.

4. In figure 12 (in the article), the
1e{t side consists of four copies of the
shaded triangle and the two squares
on its legs. The right side consists of
the same four copies and the square
on the triangle's hypotenuse. Since
both figures have an area of (a + blz,
it follows that the sum of the areas
of the squares on the left equals the
area of the square on the right.

In figure 13, it's not hard to show
that all the colored quadrilaterals are
congruent to one another. Two of
them are combined in two different
ways (figures l3a and 13b) to make
two hexagons, the first of which
consists of two copies of a given tri-
angle and two squares (a2 + b2l, and
the second consists of the same two
triangles and one square (c2).

In figure 14, both the areas of the
square on BC and of the right piece
of the square on AB are equal to
twice that of the red triangle; a simi-
lar relation is true for the blue tri-
angle. So the sum of the areas o{ the
two colored triangles is ec1ua1 to half
the area of the square on the hypot-
enuse/ andat the same time, half the
total area of the squares on the legs.

In figure 15, triangles ACD and
AEC are similar (they have a com-

mon angle A and equal angles ACD
and AEC),soAD : AC : AC : AE, or bz

= AC = AD . AE = IBA - BDI(BA + BE)

= (c - al(c + al = s,z - ,2.
5. The Pythagorean Theorem

shows cluickly that the semicircle
on the hypotenuse is equal in area to
the sum of the semicircles on the
Iegs.1 Subtracting the areas of the
white circular segments (see figure 15

in the article) from both sides of this
equality, we get the desired relation.

6. The radii in question are pro-
portional to the corresponding sides
of their respective triangles. There-
tore,?=r12+rr2.

7. The area of the triangle can be
expressed as ab12 or chf 2, so (a + bl2
+ h2 : a2 + b2 + 2ab + h2 = cz + Zch +

h' = lc + h)2. Now use the converse
of the Pythagorean theorem.

LHippocrates of Chios (c. 460 a.c.)
used this diagram in his attempts to
"square the circle." While he was able
to draw a triangle equal in area to the
Iunes, which are bounded by arcs, this
does not lead to a construction of a
square equal in area to the entire
circle. Much iater, this construction
was proved impossible. {D.E. Smith,
History of Mathematics, Vol. II, New
York: Dover, 1958, pp. 303-304)-Ed.

,,BULLETIN BOARD"
CONTI}/UED FROM PAGE 53
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area(act)+ area(cAP)+ area(ABp)=;hu)larea(BcD)' + area(cAD)' + area(eao)')
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TOY STORE

Apermulalul'b haU ol triclrs
Hints for solving a boundless class of puzzles

by Vladimir Dubrovsky

the original locations of the chips, so
you can view the resulting displace-
ment of the entire triangle of six
chips: it's shifted "down" by a vec-
tor equal to its height. These solu-
tions are probably the shortest pos-

sible (which is difficult to prove,
though), and I don't know any regu-
lar way to discover them. My guess
would rather be that the author of
theptzzle started from the end: first

Figure 1

Figure 2

I N THE LAST INSTALLMENT
I of or'r, Tov Store I described two
I p.rrrr., wrrn coloreo cnrps on a
I ir,r,go,rr grlo ras yo., *^y recarl/
one of them was in fact a simplified
version of a p'tzzle with "cannonball
pyramids," each made of four balls,
that are supposed to be rearranged
by rolling). In both ptzzles your task
was to transform a given arrange-
ment of chips into another given
arrangement by moving them in
" tri.ads" -triangles of three chips
touching each other-according to
certain rules. Now it's time to ex-
plain how to do these and similar
puzzles. However, only a few of the
questions posed in the last issue will
receive a complete and exhaustive
answer below. A complete answer/
I think, kil1s a puzzle-something
must always be left for further im-
provement and investigation. Be-
sides, I simply don't know the an-
swers to a couple of questions about
these puzzles. Write to Quantum iI
you have better luck with them.

Il'iads
I'll begin with elegant solutions

to the three "specific" problems
about the triads that were found by
the author of this puzzle himself.
(As you may recall, you have to
move a triangle of three chips at at
time-a "triad"-in attempting to
transform the initial setup into the
target arrangement.) These solu-
tions are shown in figures 1-3; the
arrows indicate what triad is moved
and where it is placed in each par-
ticular move. Figure 1 also shows

he might have found several series
of moves that restored the initial tri-
angular shape, and then fit a beauti-
ful coloration. However, using these
operations as building blocks, we
can construct new operations that
generate many other reafialge-
ments of chips. In fact, not just
manytbut any! And not only that:
any rearr angement (or p ermutationl
of chips can be composed of these

"blocks" so as to
bring the big tri-
angle o{ chips back
to its initial place.
And this part of the
job can be done in a
quite regularway-
that is, by using
some technique ap-
plicable to virtually
all "permutational
puzzles."

How can we
prove that every
conceivable permu-
tation in this puzzle
is really possible?
If we consider each
of the six chips as
distinct from the
others, there are 5! :
t.2.3.4.5.5=720
of them, and it
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elegant to consider each one sepa-
rately. But it will suffice to obtain a
fairly small number of permutations
that are known to generate any other.
For instance , all exchanges of pairs ol
chips (tr anspositionsl constitute such
a set. Given a permutation that is to
be performed, we take any chip not
yet in its prescribed location and
swap it with the chip in this loca-
tion; then we repeat this operation
until the required order is estab-
lished.1 A transposition of the
chips in places a and b is denoted
(a, bl. In {act, we don't need all
transpositions. The swaps {a, xl of a
chip in a fixed location a with any
other one will do: you can readily
verify that the transposition (x, yl
can be obtained as the result of three
successive exchanges: (a, x) followed
by lr, y) followed by la, xl again,
which is written as (x, yl = la, ,1.
(r, y) . la, x\. The sign o, which
means "foliowed by," is often
dropped. From place a the chip
jumps to place x in the first swap,
stays at x in the second swap, and
jumps back to a in the third: a -+ x
-+ x -+ a. Simi1arl1' I x -) a ) y ) y
and y -+ y ) a -+ x. Or, if the loca-
tions of chips are numbered l, 2, ...,
6, the "neighbor exchanges" (r, r + 1),

i = 1,2,..., 5, suffice to generate any
transposition (you can easily prove
this yourself or look up the proof in
the solution to exercise 4 i.n "Some
Things Never Change" in the Sep-
tember/October 1993 issue of Quan-
tuml. O{ course/ these remarks
about representing permutations by
means of transpositions are true for
any finite number of chips or other
objects and are useful in solving a lot
of permutational puzzles.

So let's take a closer look at the
operation in figure 1. Number the
chips (fig. 4a). Then after this opera-
tion the distribution of numbers will
iook like figure 4b (check it!). The
corresponding permutation can be
depicted graphically by arrows join-
ing the initial and final position of
each chip (fig. 4c):we see that it con-
sists of three disjoint pair exchanges
(at this point we'll ignore the shift of

ISee also math challenge M105 in
this issue.

-->

Figure 4

the triangle of chips as a whole,
shown in figure 4d). This operation
by itself, which will be denoted by
o, is of little help, because all we can
do with it alone is repeat it several
times, and every second repetition
restores the initial arrangement. But
using the sym metries of the equilat-
eral triangle/ we can produce a fam-
ily of "clones" of cx (fig. 5). Two of
them-B and y-are the "rotations, "
so to speak, of cr by +120", and the
other three-d, F, and y-are the
"reflections " of a", B, and y about the
corresponding symmetry axes of the
triangle. Now we have enough ma-
terial to undertake an item-by-item
search through various combina-
tions o{ our six "clones" in order to
find simpler and easier-to-handle
operations-those that don't move
all the chips at one time. If you try
to do this small investigation your-
self, sooner or later-depending on
how proficient you are with permu-
tations-you'Il come up with com-
binations like crpy or cr yo that leave
two of the chips in their places and
move the other four in cyclic order.
We could get along even with these
operations alone and complete the

c.\di.) A' ' ' 
;{1".

is graphed in figure 5 (on the next
page). Notice that none of the three
moves that produce 5 involves chip 5,
so this chip-and the entire triangle,
for that matter-remains in its initial
place. So if we perform 5 after the op-
eration cx yo (which moves four of
the same five chips in the opposite
direction-6 -+ 4 -+ 3 -+ 2 -+ 6) we
get the desired result: the transposi-
tion (1, 2l (frg.5)! It remains to add
to this operation its /'symmetric
clones" to obtain all neighbor ex-
changes (1,2l1,12,3l1, (3,4l1, (4, 5),,5,
6),16, l) and, therefore, any transpo-
sition-and any permutation at all.

Now let's see whether we can
perform the above permutations so
as to eventually bring the big tri-
angle to its starting position. As is
shown in figures 4d and 5, the opera-
tions cr and cr shift the triangle along
the same vector vo ec1ua1 and paral-
lel to the altitude to the "bottom"
side of the triangle. Similarly, the
vectorrn of translations produced by
B and B'is equal and parallel to the
altitude dropped to the left side of
the triangle-that is, it's obtained
from vo by a clockwise 120o rota-
tion; and vy/ corresponding to y and

H 3
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solution (fans of Rubik's
cube will understand
me-they can do won-
ders with four-cycles),
but the operation in fig-
ure 2 provides us with a

shortcut. The first three
moves of this operation
restore the triangular
shape of the set of our
six ships, but create a

cyclic move of five of
them: in our numera-
tion, 1-+2-s3-+4-+6
+ 1. This permutation,
which will be labeled 6,

I a+.{.1.*.
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f , is obtained from v,by
a counterclockwise 120"
rotation. The sum of the
three vectors is zero, so
the sum of any two of
them is the negative of
the third. Notice also
that the inverse u-r of the
operation u creates the

1

a

62.-o<-o o

\\t5 t4*t3

uyu

Figure 6
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o /\,-ao:

\\t5 t4€ t3
6

samepermutation, but the opposite very uneconomical, but the search
vector -v* (to perform o-1 iust read fot ashort solutionis another, much
figure I from the right to the left).
These observations allow us to con-
trol the shift of the triangle without
changing the permutation. For in-
stance/ the swap operation in figure
6, o"To.6, translates the triangle by
2vo+ v,(6 yields a null shift), while
o( yo-'d grves the same transposltlon
and a shift by only v, (= v* + v, - vo).

We'd like to eliminate this shift, so
let's try to create operations that
only translate the triangle of chips
without rearranging them. Such op-
erations can be composed by using
yet another tricl<: iteration. Any per-
mutation, when repeated (iterated) a
sufficient number of times, van-
ishes-all the permutated elements
return to their initial places. (This is
obvious for a cyclic permutation,
and every permutation can be repre-
sented as several disjoint cycles-
see the solution to problem Ml05 in
this issue. ) If a permutation is accom-
paniedby a shift, then such anitera-
tion yields a pure shift (by a multiple
vector). For instance, t' : y " yresults
in the translation of all six chips by
2v,. Again, the permutation cr. B is a

coinbination of two disfoint three-
cycles (fig.7l.Its shift is vo + Vn : -v,.
Therefore, (up)'puts every coiir back
where it was and shi{ts thewhole tri-
angle by -3v,. So the product of these
two iteraticin y'(oF)t is the "ptrre"
translation by -u.,. And, finally, add-
ing this translation to the transposing
operation created above, we get
"ptre" transposition of chips 1 and 2:

t : o ycr-16y2(cxB)3. Thus, we can re-
afi ange-at least theore tically-our
six chips in any way, and in the
same six places that they occupied
initially. There could be little doubt
that the vast majority of solutions to
particular triad problems based on
the operation t and its "clones" are

t5 t4 tB

x

more difficult problem.
One more question about the tri-

ads still remains open. We can get all
permutations, but what about the
translations of the triangle of chips?
It follows from what was said above
that it can be shifted by any vector
of the form nvd + mvo with integerm
and n: v, = -(vo + vul'and adds noth-
ing new. But these'shifts constitute
only some of all possible positions of
the triangle on the grid over which
our chips travel. It's not difficult to
show that if there is at least one at-
tainable position of the triangle
other than those given by the above
translations, then all possible posi-
tions are attainable. The question is
whether we can shiftthetriangleby
a vector different from nv,+ mvR.
Let us lcnow if you prove or disprove
this statement.

Cannon[all pyralnid$

In the last issue we also examined
the "cannonball pyramids ," aprtzzle
in which colored pyramids rolled
around a board like the one in figure
B. To apply permutations to this
ptzzle, we first have to find se-
quences of moves (rolis) that rear-
range the pyramids in such a way
that the places in the box occupied
by the whole set of pyramids before
and after these moves are the same.
One such sequence is illustrated in
figure 8. If the pyramids are num-
bered as in this figure and rolled in
the order 7 , 2, 2, l, l, 4, 4, 6, 6, 10,
11, 11, 8,8,2,2,1,4,6, lO, lO, ll,
ll, 8,2, 7 about the hole marked
with a star, they will form the fol-
lowing cycle of iength seven: 1 -+ 2
+ 8 + 11 -+ 10 --> 6 -+ 4 -+ I (that
is, pyramid 1 will arrive at the place
o{ pyramid 2, which in turn moves
to place 8, and so on). Using the

Figure 7

symmetry of the box, we can obtain
a similar cycle in the right half of the
box: 2 -+ 3 -+ 5 -+ 9 -s 12 -s ll -+ 7
-+ 2. These two cycles-1 and t, re-
spectively-are shown schemati-
ca1ly in figure 9a. Such cycles appear
in many permutational ptzzles
(Magic Rings, a ptzzle consisting
simply of two intersecting rings of
colored beads, was popular several
years ago), and in most cases they
can be handled in the manner ex-
plained below.

Consider the operation C :
lz*l-2r2 t where 72, 12 are, of course,
double iterations of J and r, and l-z
and ra are inverses of 12 and f lthey
move each element of their respec-
tive rings to the second place count-
ing counterclockwise). The expres-
sirn ABA-18-| is called the
commutator of A andB, so C is the
commutator of 12 andr2. (In the gen-
eral case we would have to consider
the commutator of l" andz*, where
n and m are the numbers of seg-
ments of the left and right rings be-
tween their points of intersection,
and use it in the way we'll use C.)
You can verify that C exchanges
two pairs of elements, as is seen in
figure 9b. Next we modify C using
"conjugation." The coniugate of
operation Aby B is the operation
BAB 1. Generally speaking, it creates
the same effect as A,but in a differ-
ent place. In our case, the permuta-
tion produced by the conjugate of C

04 JAtltlARY/TTBRtlARY rss4
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by l is 1C1: (fig. 9c). It can be wdtten
as two transpositions (1, 6l|18, 9),
where only element 9 lies on the
right ring. A simple further modifi-
cation allows us to replace t here by
any element on the right ring. For
example/ (1, 6)(8, 3) (fig. 9c) is pro-
duced by the coniugate of C by r21

(that is, by rzlCl-trz). Since we can
exchange element 8 with any e1e-

ment of the right ring, we cafl at-
range any permutation of the seven
elements of this ring and element 8,
though such a permutation may be
accompanied by the transposition
lI, 6l.Symmetrically, we cafl ar-
range an atbifiary permutation of
the elements of the left ring and el-
ement 7, possibly, accompanied by
the transposition (3, 9l.It's clear
enough that using both kinds of per-
mutations we can obtain any te-
quired affangement except that two
elements may be transposed. But

lcl t

with the given coloration of our can-
nonball p),ramids/ this doesn't create
a problem: some of them are the same
color and their transposition doesn't
change the overall color design.

I've outlined the solution for the
case when both in the initial and
target states of the puzzle the pyra-
mids are arranged according to fig-
ure 8-with the three empty spaces
in the middle of the box. If this is not
the case, we must find and remem-
ber a sequence o{ rolls R, that turns
the initial arrangement into any
standard one (with the "holes" in
the center, as in figure 8), and an-
other sequence/ R2/ that turns a stan-
dard arrangement into the target one
(ignoring the colors). BetweenR, and
R, we can insert a permutation P of
the standard arrangement of pyra-
mids such that R,PR, turns the ini-
tial color design into the target one.

I'd like to finish this discussion of
the cannonball pyramids with an ad-
ditional question: if all the pyra-
mids were colored differently, what
permutations could be obtained
from a given one? Now we can/t ig-
nore the extra transposition that may
occur when we use the method de-
scribed above. This method allows us
to produce any even permutation-
that is, representable as an even num-
ber of successive transpositions-and
nothing else. (The article "Some
Things Never Change" cited above
will help you understand why this is
true.)But this doesn't mean that other
(odd) permutations can't be obtained
in a di,fferentway.

So, the next time you come across
a new permutational puzzle, don't
forget this magic unscramllling kit:
commutator s I coniugates I iter a-
tions, and symmetries. In my expe-
rience/ it has proved to be of univer-
saluse. O

C = l2rzl 21 2

Corl'eclions

Vol. 4, No. 1:
p.37, exercisc 14, 1.1: for 1993

read 1994; l. 6: for 1993, 1992, ...
tead \994, 1993, ... .

p. 46, co1. 3, qT6, 1. 2'. ;t'or m > n
=3readn1>n>3.

p. 60, co1. 3, exercise 2, 11.

10-11: lor method of problem 3
Id,rd method oi problem 2.

p. 62, co1. 1, exercise 1,1, 1. 10: lor
l9\) 3 r e at7 lL)9 1 ; ictt 199 ) rc ttd 1993.

p. 61, col. 1, $1,11. 10-15: /or
Parrs oi these classe s are marked
-r.:.:i Tu-o classes ionning one sLrch
pair are mar-hcd; tor belongs perma-
nenrh- ro orlc of these cight classes
r. ..-,r e J11 har. onlv eight orienta-
gi.'-r-1r11L t,i cach c]lss.

Cover 3, co1. 1, jl2, l. ).9:for fig-
ure 5 1.d.7.7 figure 5b.

Covcr 3, figure 5b: the circle
abovc the one marked c should be
considered empty, all the othcr
nine circles have chips in them.
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-Eiploratory Problems in Mathematics
,,by F rede rick W. Steven.son

Presents open-ended problems that introdurce stuclents at all levels to the
creative side of mathematics. Offers you specific problems that are
strictly fbr intellectLral enjoyment ancl excitement yet have timple room
for proper mathemartical exploration. Guiclelines are given on how to

begin, but the solutions are Lrp to yoLr. 1992, 169 pp., ISBN 0-87353-
338-0, #49582, $ 16.00*.

Galculator Logic Systems and Mathematical
Understandings

by Enid R. Burrows
Helps jurnior ancl senior high school students explore the ways different calcu-
lators can be ursed el'fectively and how to construct appropriate algorithms for

cnlculator computzrtior-r. Inclr"rdes lrany exercises as well as a review ancl a clarifi-
cation of biriary operations ancl fr"rnctions. 1990, 133 pp., ISBN 0-87353-295-3,
$43682, $22.50x'.

Fractals for the Glassroom
by Heinz-Otto Peitgen et ul.

Part One: Introdr-rction to Flactals ancl Chaos

Part Two: Complex Systems and the Manclelbrot Set

An exciting, dynamic view of chaos theory ancl l'r'arctal geometry and how they
relate to each other, to other aspects of mathematics, and to natural phenomena.
Both contain bear-rtifirl color photographs. Part I , 1992,450 pp., ISBN 0-387-
91041-X,#440B2,list price $29.00'k. Part 2, 1992,500 pp., ISBN 0-387-97122-8,
#501B2, I ist plice $29.00'r'.

Fractals for the Classroom: Strategic Activities,
Vols. 1 & 2
by Harlnrut Jiirgens et al.
These hands-on activities will show you the r-rnderlying rnathematical principles,
cheiracteristics, and bear-rty of fi"actals. Vol. I inclLrcles nine color slides, 1991, 128 pp.,
ISBN 0-381-91346-X,#482B2, list price $19.951'. Vol.2, 1992, 187 pp.,ISBN 0-
387-97554-3, #48382,list price $ 19.95x.

SPECIAL PACKAGE PRICE for all lbLrr fiactals books . . .

NOW ONLY $80* ($97.90 if bought separately), ISBN 0-81353-370-4,#58982.

NCTM has more materials for math enthusiasts like you. Ask for a free catalog today!

NATIONAL COUNCIL OF TEACHERS OF MATHEMATICS
1906 Association Drivc, Reston, VA22091-1593 . Tcl. (703) 620-9840, Iux (703) 416-2910. For ordcrs only, call (800) 235-7566

*207o discount to NCTI\4 individual nrcutbct's


