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“Wo Sprichworter auch nicht helfen!” (1982) by Jurgen Czaschka

E'VE ALL BEEN IN PLACES “WHERE CLEVER SAYINGS

are no help at all” (Sprichwort means proverb or adage).

When you’re up against the wall—whether it’s a tight dead-

line or a methodological impasse—a bystander’s glib reference
to “mind over matter” might just drive you up it.

Austrian-born Jurgen Czaschka came to art by way of phi-

losophy and literature. Before picking up his engraver’s tools,

he earned a doctorate from the University of Vienna and
worked as a journalist and lecturer. So it’s not surprising to find
philosophical (one might say existential) overtones in this and
many other of Czaschka’s works. For instance, his engraving
of Sisyphus resting—the eternal boulder bearing down on him
from one direction, a resigned but resolute Sisyphus providing

equal pressure from the other—owes its inspiration to the
writings of Albert Camus.

A distinctive feature of Czaschka’s graphic work is the
asymmetry of the limbs on his human figures. This emotion-
ally charged exaggeration of natural perspective seems to say:
symmetry may be beautful, but it’s not human (recall Blake’s
tiger with its “fearful symmetry”).

Perhaps you also noticed something funny about the
shadow. If the light beams striking the figure are parallel, we
would expect the shadows of his legs to be parallel. There
can’t be two light sources—otherwise each leg would cast two
shadows. Maybe the article “Late Light from Mercury” on
page 40 will shed some you-know-what on the matter.
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Cover art by Yury Vashchenko

In his cover illustration Yury
Vashchenko again uses the technique of
covering the picture with tissue paper.
(Recall the cover of the May/June issue
and the portrait of Kepler therein.) This
softens the colors and creates an illusion
of fog, lending the image a dreaminess,
or a sense of the proverbial “mists of
time.”

Here the tissue has the effect of tak-
ing the edge off a rather severe and ab-
stract notion. The cover points to the
lead article by Andrey N. Kolmogorov,
another in the series of “primers” by the
great Soviet mathematician. Not sur-
prisingly, Vashchenko’s graph turned
out more colorful than its model, the
purely functional graph on page 9. After
all, color manipulation is yet another
technique in the graphic artist’s bag of
tricks. But we can’t help noticing that
the title—"Bushels of Pairs”—might be
the most colorful thing of all. (It was
supplied by a Quantum editor—perhaps
Kolmogorov would have found the no-
tion of bushels of pairs preserving func-
tions a bit . . . jarring.)
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Savoring science

It's spicier than we're led to believe

S A PERSON INTERESTED IN

science, you have learned or are

now learning science in a very

compressed mode. Sadly, in the
rush to convey as much subject mat-
ter as possible in the least amount of
time, textbooks filter out the “extra-
neous,” leaving you with only the es-
sential content. What is more often
lost is the essence of science.

Learning science would be far bet-
ter if it were modeled on the way
you would write a textbook, rather
than on how you read one. To write
such a book, you need to go to the
library, search the literature for each
topic related to your book, translate
the research findings into simpler,
explanatory language, and prepare
the manuscript. Your book becomes
expository, offering facts, terms,
derivations and deductions, and de-
tailed descriptions and explanations
of models or theories. In effect, the
finished book deprives the reader of
the most important aspects of learn-
ing: a search of the literature, analy-
sis, interpretation, and synthesis,
along with coherent exposition.
These benefits accrue only to the au-
thor, and the reader—usually a stu-
dent—is thereby deprived of a real
opportunity to learn. Not only that,
the reader is forced to do something
difficult and perhaps useful, but of-
ten boring and uninspiring.

One of the most interesting and
satisfying things about doing research
for a textbook is coming face to face
with the history of science and math-
ematics. It's very revealing to see how
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hard it was for scientists and math-
ematicians of the past to carry out the
original research for a particular dis-
covery or the creation of a theory. For
example, consider Isaac Newton and
Robert Hooke, scientists who were
contemporaries and who did most of
their work in the mid-1600s.

Sir Isaac Newton was clearly one
of the world’s greatest scientists and
mathematicians. Newton invented
the differential calculus so that he
could develop appropriate equations
involving the rates of change of dis-
tance and velocity with time, leading
to what are now called Newton’s
Laws of Motion. He invented the in-
tegral calculus in order to establish
the points from which distances were
to be measured for use in his Law of
Universal Gravitation. But it is not to
these monumental works that I shall
now refer. Instead, let me draw your
attention to Newton’s “New Theory
of Light and Colors.”

Newton’s theory of light and col-
ors appeared in the February 19,
1671/72, issue of Philosophical
Transactions, a publication of the
Royal Society. The ambiguity in the
year is due to the fact that England
still used the Julian calendar, while
the rest of Europe was on the
Gregorian calendar (England did not
change to the Gregorian calendar
until September 1752).

The series of experiments that
led Newton to his theory of colors
is most interesting. His detailed lab
work, the reasoning associated with
it, and the way he used observation

and measurement to lead to hypoth-
esis and new experiment teach us
more about science than any text
that might refer to his work. Two
aspects of this paper stand out.
Science textbooks often state
that Newton used one prism to split
light into its component colors and
another prism to recombine the
light to form “white” light. Al-
though Newton did at one point use
two prisms in a way similar to this,
this was not what he deduced from
the research described in the journal
article. That experiment simply
convinced him that the effect was
not caused by irregularities in the
prisms themselves. Newton actu-
ally used a prism and a lens, and it
was in this way that he found con-
clusive evidence that different col-
ors are refracted differently—that,
for instance, blue light has a higher
refractive index than red light.
Perhaps as important as Newton’s
theory of colors was his observation
that the diameter of a circle of color
at the focal point of a lens necessar-
ily has to be of the order of 1/50 the
diameter of the lens. So it would
make no difference how skillfully
you grind and polish a lens: the color
effect is a defect linked with the re-
fractive index of the glass for that
color. He then deduced that to make
a telescope for which the objective
would not have color defects, he
would need something that focused
light, but not a lens. He realized that
a parabolic surface of revolution
would produce such a focus, because




all colors reflect equally. This led
him, after a two-year delay due to the
Plague, to invent the reflecting tele-
scope. He also suggested—but to my
knowledge no one has ever made—a
reflecting microscope. So if someone
out there wants to do something cre-
ative, make one!

Robert Hooke, in developing the
law F = —-kx, which later came to bear
his name, actually came up with the
idea in 1671, but he didn’t have time
to prepare a paper for publication. So
he did something quite common for
that period. He published a 14-letter
Latin anagram—a jumbled series of
letters in which his discovery was
concealed. He indicated that he
would subsequently publish the de-
tails. Two years later he did publish
his famous paper, and he translated
the anagram. Nowadays students of-
ten must learn this law in a 20-
minute class or lab period, yet the
original science took years, and the
experimental work alone consumed
several months.

This history shows much more
than can be summarized in a few
lines of a textbook. There are ancil-
lary benefits that involve technology
and culture. These off-the-beaten-
path intellectual sojourns should be a
central part of everyone’s education.

This is the philosophy behind
Quantum’s Anthology department.
We believe it’s valuable to read im-
portant scientific writings as they
originally appeared. The Anthology
installment in the next issue—an
autobiographical sketch by the great
mathematician and teacher Sofya
Kovalevskaya—will be somewhat
different from those that have ap-
peared in the past, but it will give a
picture of mathematics as lived in
the flesh and blood by one of its
leading practitioners. Her struggles
as a woman in science resonate to
the present day. We think her story
in the January/February issue will
enrich your sense of the scientific
endeavor. In the meantime, on page
35 we offer a biographical sketch of
the Swiss mathematician Jacob
Steiner, as promised in the May/June
issue.

—Bill G. Aldridge
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Bustiels of pairs

And each pair preserves a function

by Andrey N. Kolmogorov

DITOR’S NOTE: THIS AR-

ticle continues the elementary

presentation of our modern un-

derstanding of functions and
graphs that was begun in the last
issue of Quantum.

A rief review and a clarification

In “Home on the Range” you got
acquainted with the general under-
standing of the term “function.” A
function is an arbitrary mapping of
a certain set E onto another set M.
The set E is called the domain and
the set M the range of the function.
To define a function with domain E,
for each element x of E we must
specify a distinct “object”!

y = flx).

However we do it, we get a function
with domain E. For instance, the set
E may comprise the students of your
class, and y = f{x), for any student x,
may be the second letter of the
student’s name (here we're assum-
ing that none of the students in the
class have a name consisting of a
single letter—though I once knew a
girl named Olga who was usually
called simply “O”.

When a function is given in this
way, its range M is defined auto-

You know from the previous article
that the values of a function can be not
only numbers but days of the week,
boys or girls—anything at all.
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matically: it’s the set of all objects
y for which there is at least one x
from E such that f(x) = y. Therefore,
in describing the meaning of the
term “function,” we need not ex-
plicitly describe the range. It will be
correct, for instance, to say simply
that “a function is a law that assigns
to any element x of a set E a certain
object y = f{x].” As you may recall
from the previous article, however,
we shouldn’t consider any of these
descriptions definitions. If we really
wanted to define the concept of a
function in terms of the concept of
a “law,” we’d be asked to give an
accurate definition of what a “law”
means, and so forth. So we’ll think
of the concept of function as one of
the basic notions of mathematics,
whose sense is only explained rather
than defined formally.

In school, you usually deal only
with number functions, whose do-
main consists of numbers and
whose values are numbers—real
numbers, by and large. You can
graph real-valued functions of real
arguments on the “number plane.”

Some textbooks say that a num-
ber plane is a plane onto which co-
ordinates have been introduced in
some prescribed way. Taking this
literally, we find that there are a lot
of number planes. Every time your
teacher draws coordinate axes on
the blackboard, the surface of the
blackboard becomes a number

GRAPHICAL PRIMER

plane, and you create new number
planes in your notebooks—some-
times several planes on a single
page!

In the third section of this article
you'll get to know the sort of num-
ber plane mathematicians actually
use. But first I want to make one
additional comment regarding
“Home on the Range.”

The functions in high school al-
gebra are usually given “analyti-
cally” by means of formulas. The
domain of such a function, unless
otherwise stated, is taken to be the
set of all those values of the argu-
ment for which the operations on
numbers prescribed by the formula
can be carried out. For instance, if
the sign “N” is understood as the
“arithmetic square root,” as is cus-
tomary in high school, then the for-
mula

Y:f(X):(\/;) (1)

allows us to compute the value of y
that corresponds to a given x only if
x is nonnegative (otherwise, the root
can’t be extracted).

For any nonnegative x,

y = fix) = x. 2)

This formula is simpler than for-
mula (1), and we’d like to look upon
it as defining our function. However,

Art by Yury Vashchenko







Mon | Tue | Wed | Thu | Fri | Sat | Sun Mon | Tue | Wed | Thu | Fri | Sat | Sun
Petya v Kolya v v/
Kolya v v Petya v v
Sasha v v Sasha v v/
Volodya v Volodya v
Figure 1 Figure 2

the domain of the function given by
formula (2) consists not only of non-
negative numbers x but of all num-
bers x. So if we want to give a new
definition of exactly the function de-
fined by formula (1), we have to
write

- f(x) = b'e forx >0,
y= ~ lundefined for x <O. 3)

Similarly, the function g(x) =
(x* = 1)/(x = 1) can be written as

x2+x+1 forx=0,
g(x) =

undefined forx=0. (4)

One has to be precise with such al-
gebraic transformations (especially
on examinations!).

The graph of a function

Figure 1 shows a “duty chart”
similar to the one we discussed in
the previous article. We already
know that it’s the graph of a func-
tion: the name of a boy can be con-
sidered a function of a day of the
week. Since there are seven days in
a week and four boys, we've drawn
7 x 4 = 28 squares, but check marks
appear in only seven of them.

If the boys had decided to arrange
their names in alphabetical order,
they would get the table in figure 2.
It looks different, but it depicts the
same distribution of jobs—that is,
the same function. In both tables, 28
squares correspond to 28 possible
pairs (day of week, boy). Of these 28
pairs, even pairs are singled out:

(Sun, Sasha), (Mon, Petya),

(Tue, Kolya), (Wed, Sasha),

(Thu, Volodya), (Fri, Petya),
(Sat, Kolya)
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—that is, all the pairs of the form
(day of week, boy on duty that day),

or, formally, the pairs (x, f{x]). Only
the selection of these pairs is essen-
tial in defining the function.

After seeing this example, you
probably won’t be surprised by the
following definition:

The graph of a function f is the
set of all pairs® (x, y), such that (1)
the first element x of a pair belongs
to the domain of the function and
(2) the second element of the pair'y
= f(x).

In our example the graph of func-
tion f is

L= {(Sun, Sasha), (Mon, Petya),
(Tue, Kolya), (Wed, Sasha),
(Thu, Volodya), (Fri, Petya),
(Sat, Kolya)}.?

For the functions f,, f,, f,, f, given
by the following table

x | filx) | flx) | filx) | filx)
Al A| B | A|B
B|A|B |B|A

this definition yields the graphs

F1 = {(A/ A)/ (Br A)}/
rz = {(A/ B)/ (B/ B)}/
rg = {(A/ A)I (BI B)}/
111 = {(A/ B)I (B/ A)}

It’s clear that for functions with
a finite domain, the number of ele-

2All the “pairs” in this article are
“ordered pairs”: the pair (1, 2) differs
from (2, 1). The first and second
elements of a pair may coincide: (1, 1)
and (2, 2) are pairs, too.

3Braces are commonly used to
denote arbitrary sets.—Ed.

ments in the graph (that is, of the
pairs constituting the graph)is equal
to the number of elements in the
domain. For functions with an infi-
nite domain, it’s impossible to write
out all the pairs (x, f{x)). So we have
to describe these pairs by means of
their properties.

For instance, the graph of the
function

y=f(x)=+1-x

consists of all number pairs of the
form (x, v1-x?) (fig. 3)]—that is, of
all the pairs (x, y) satisfying two con-
ditions: x2 + y*> = 1 and v > 0. This
definition for the graph of this func-
tion can be written as

I={xy x*+y=1y20}
The most general definition for

the graph of a function can be writ-
ten in the following form:*

T ={x vy ly=Aflx)}

By defining the graph of a function

AY

<Y

-1 1

Figure 3

“We use the standard set-theory
notation {x | A(x)} for the set of all
objects x satisfying the condition A(x).
For instance, {x | x2 = 1} is the set of all
numbers x such that x> = 1—that is,
the set of two numbers {1, -1}.




as the set of the pairs each of which
consists of a value of the argument
and the corresponding value of the
function, we've cleared the notion
of graph of all incidental details. In
this abstract understanding, every
function has a unique graph.

The number plane

Let’s turn to real functions of the
real variable, which you encounter
most frequently in school. The
graph of such a function is usually
defined as the set of points P(x, y) on
the number plane with coordinates
(x, y) satisfying the equation y = f{x).
This formulation and the general
definition of a graph given in the
previous section are similar but
slightly different. There we talked
about the set of pairs (x, y), while the
usual “textbook” definition deals
with the set of points P with coor-
dinates x and y. But we can try to
bring the two formulations to a full
agreement, can’t we?

It turns out to be quite easy. And
it is this simple solution that gained
ground throughout the modern sci-
entific literature. The number plane
is defined as the set of all pairs of
real numbers. The number plane is
denoted by R2. Symbolically, this
definition is written as

R’-{x,y)lxe R yeR].

If you think it over for a moment,
you'll see that with this definition of
the number plane, the usual textbook
definition of the graph of a real func-
tion of the real variable becomes a
special case of the general definition
given in the previous section.

AY

Y

(1IN
1/

Figure 4

Now the notation P(x, y) for a point
with coordinates x and y becomes
redundant. Points of the number
plane are thought of simply as pairs
of numbers (x, y) by themselves. And
we can simply say “point (0, 0)” (the
origin), “points (1, 2), (-1, -2),” and so
on.

It's worthwhile to note that the
term “number line” must also take
on a new meaning: the number line
is simply the set of real numbers R
itself. Then the points of the num-
ber line should be identified with
the real numbers. Geometric lan-
guage is often applied to numbers,
though this is not always pointed
out directly in high school text-
books—for instance, the set of num-
bers [a, b] = {x | a<x < b}is called a
“segment,” “point” 2 is said to lie
“on” the segment [1, 3], and so on.

Let’s define a plane geometric fig-
ure as any set of points in the num-
ber plane. An example is the circle
with center (0, 0) and radius 1 (fig. 4).
This is the set of points—that is,
pairs of numbers (x, y}—such that x*
+ y? = 1. Naturally, points and geo-
metric figures in the number plane
can be presented pictorially in a dia-
gram. To this end, coordinate axes
are chosen on a physical plane (like
a sheet of paper or blackboard), and
a point (x, y) of the number plane is
represented by a “physical point”
with coordinates x and y. Of course,
this can be only an approximate rep-
resentation. Graphs drawn on paper
or on the blackboard are also only
approximate images of “real” graphs
of functions, which we now identify
simply with subsets of the number
plane, from our new point of view.

AY
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Figure 5

It is these “real” graphs that are
meant when we say that a function
is fully determined by its graph.

Suppose a set of pairs M = {(x, y)}
is given. It may be, for instance, any
“figure” in the number plane. What
should be required additionally to
ensure that this set is the graph of a
certain function?

The answer is clear: the necessary
and sufficient condition for a set M
to be a graph is that it not contain
two pairs (x, y,) and (x, y,) with a
common first element x and differ-
ent second elements y, and y,. (Give
a proof yourself.] The red curve in
figure 5 is the graph of a function,
while the black one is not.

A set of pairs (x, y) that doesn’t
contain two pairs of the form (x, y,),
(x,v,), ¥, #y, may be called a func-
tional graph. Notice that we've de-
fined this concept without resort to
the notion of “function.” Isn’t it
possible then to take it as a starting
point for a formal definition of the
very notion of function, which
we've been considering so far a fun-
damental one—that is, not subject
to a formal definition? The answer
to this question is not at all simple,
so I don’t want to go into it here.

Geometric transformations

To help you get used to the
breadth of the general notion of
“function,” let’s consider the sim-
plest geometric transformations.

To turn a plane figure about a
point O (fig. 6), we can place a sheet

Q
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i
/
/
/
/
/
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‘ L
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Figure 6
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of tracing paper on the plane, trace
the figure, pin the paper at point O,
turn the paper over, copy the figure’s
copy from the tracing paper back
onto the plane (using, say, carbon
paper). Under this operation all
points of our figure are rotated about
point O in the same direction and
through the same angle.
Let

Q= RY(P) (3)

be the position of point P after a
counterclockwise rotation through
angle o about O. If the point O and
the angle o are fixed, formula (3) re-
lates a uniquely defined point Q to
each point P. According to our gen-
eral definition, R is clearly a func-
tion. Its domain is the set of all
points P of the plane.

The angle of rotation must be
given with a sign. In figure 7, point
Q, is obtained from point P by a ro-
tation through 120°, while point Q,
is the rotation of P through -120° (or
240°). If Q is obtained from P by a
rotation through o degrees, then P
can be obtained by rotating Q
through —o degrees: that is, if Q =
R%(P), then P = R;*(Q). Thus, a ro-
tation R is always an invertible
function.

It’s more common to refer to ro-
tations as mappings rather than
functions. The inverse mapping of
the rotation RY is the rotation R7.
Symbolically, we write this as

R:(RS(P)) = P,

(R%) = R

A rotation maps the set of points of
the plane onto itself. If the plane is
viewed as the set of all its points
(which is the case in the modern
presentation of geometry), we may
say that a rotation is an invertible
mapping of the plane onto itself.
Invertible mappings of the plane
onto itself are called geometric
transformations of the plane. Geo-
metric transformations have ap-
peared in our magazine in the past,
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Figure 7

and will certainly appear repeatedly
in the future.® For the time being,
here’s just one more example of a
geometric transformation of the
plane. A mapping

P—Q=TP

of the plane onto itself is called a
translation if all points P are dis-
placed the same distance and in the
same direction (fig. 8).

Vectors

Maybe you're tired of getting ac-
quainted with new notions and un-
usual interpretations of notions you
already know. But let’s make one
last effort. Let’s try to understand
what’s meant by the graph of a
translation P — Q = T(P). According
to the general definition, it’s the set
of all pairs of points (A, B) such that

T(P,)
T(P,) T(P,)
P
1
p2 PS
Figure 8

SKolmogorov is referring to Kvant,
not having lived long enough to
participate in the creation of
Quantum. But such articles have
appeared in these pages as well—see,
for instance, “[Getting to Know]|
Inversion” in the September/October
1992 issue.—Ed.

B = T|A). Choose one such pair of
points (A, B)). How can the other
pairs be characterized? For any of
them the segment AB has the same
length and the same direction as the
segment A B, (fig. 9). The graph of
the translation T is, by definition,
the set of all these pairs (A, B).

It’s conventional to assume that
any pair (A, B) defines a “bound vec-
tor” ﬁ, and bound vectors AB

T
and A'B" define the same “free vec-
tor” if the segments AB and A’B’ are
equal in length and have the same
direction.

More simply, a bound vector is
just a pair of points (A, B) itself, and
a “free vector” AB is the set of all
bound vectors (A’, B’) equal to (A, B)
in length and direction. But accord-
ing to the general definition of a
graph, this set is nothing but the
graph of the translation T defined by
the condition T|A) = B.

IfTA)-B, TIA,) =B, TIA,) = B,
..., We write . '

The logic involved in creating
general notions has led us to a some-
what unusual statement: a free vec-
tor a is nothing other than the graph
of the corresponding translation T,
by this vector. You should ponder
this statement well and make sure
you understand that this conclusion
is an inevitable consequence of our
definitions of a graph, free vector (a
set of bound vectors equal in length

A A
./"BO/. 2
AO AZ
Figure 9




and direction to one another), and
bound vector (a pair of points). I
should point out, however, that
these definitions of bound and free
vectors are not universally ac-
cepted—they simply strike me as
the most convenient.

Problems

Here are some problems to help
you check your understanding of
this article.

A brief review

1. State the domain of the follow-
ing functions:

(@) f0)=—",

(0) 5= 7=
x* -1

(©) A=

2. What condition should be
added to the formula f(x) = x2 + 1 so
as to obtain a definition of the func-
tion f,(x) from problem 12

3. What condition should be
added to the formula f(x) = 1 so as to
get a definition of the function f,(x)
- (i3] + (=5

Note. In problems 1 and 3 the
sign V denotes the “arithmetic
square root”—that is, a nonnegative
number,

The graph of a function

4. How many functions with the
domain {1, 2, 3} whose graphs are
subsets of the set {(1, 1), (1, 2), (2, 1),
(2,2),(2,3),(3,3)} are there? (See fig-
ure 10.) How many of these func-
tions are invertible?

Figure 10

5. Show that the graph of the in-
verse function f! is defined by the
formula L, = {x, ¥) 1y, x) e r}.
(Naturally, we assume that the
function f has an inverse.)

The number plane

6. Describe the graph of the
Dirichlet function

[1, if xis rational,
10, if x is irrational.

D(x) =

7. A number x in the interval [0, 1]
is expanded into an infinite ternary
(that is, to the base three) fraction x
= 0.xx,x,... (x,=0,1, or 2). The
functlon y C(x) is defined as the
number y in [0, 1] whose expansion
into a binary fraction y = 0.y,y,y,...
is given by the condition

1, if x_# 0 and there are no
ones among the digits x,
T S

0 in any other case.

Try to draw the graph of this func-
tion. Show that it contains an infi-
nite number of horizontal line seg-
ments. If you're familiar with the
notion of a continuous function, try
to prove that function y = C(x) is
continuous. (In this problem we do
not avoid ternary fractions whose
digits, starting from a certain place,
are all twos, and binary fractions all
of whose digits, starting from a cer-
tain place, are ones. For example, we
assume that in the ternary notation

0.222...=1,0.1222... =0.200..., and
in binary notation 0.111... = 1,
0.010111... =0.011000... .)

Geometric transformations

8. Describe in geometric terms
the transformations of the number
plane given analytically by the fol-
lowing formulas: (a) (x, y) — (-v, x),
(b) (X/ Y) — (X/ —Y)/ (C) (XI Y) — (Y/ _X)I

(d) (X/ Y) - (_Xr Y)/ (e)(XIYJ%(X"' ]‘IY)I
() (x,y) = (x+a,y+a)

9. For rotations about a common
center O, prove the formula

HP)=Rs[Re)]  (4)

10. Prove that for any two centers
O, and O, the transformation

F(P) = RS [Rx(P)
is a translation. By what distance and
in what direction?
Vectors
11. Prove the formula

Ta(Tb(P)) = T;Hb(P)- (5)

12. Prove that the transformation

F(P) = T,[R3(P)]
is a rotation through angle o.. What
point is its center?

Note. Formulas (4) and (5) can be
written more concisely as R2R? =
R¥*Pand TT, =T, ,. Takinga func
tion of a funct10n is in many re-
spects similar to multiplication. But
this is a special subject that can’t be
developed within the scope of this
article. I'll use the above short nota-
tion for a function of a function (a
composition of mappings) in prob-
lems 13 and 14.

13. Prove that TT, = T,T, for any

two translations, and that R% R =
RPRY for any two rotations about a
common center. Give an example
showing that, in general, R R[3 £
RB R“ if the centers of rotatlons OI
and O2 are different.

14. Give an exhaustive explana-
tion of the case in which R RB =
RB R°

SIt might be well to remind you
that the ternary fraction 0.x,xx,... (x,
=0, 1, 2], by definition, is equal to x =
x /3 +x,/3% + x,/3* + ..., and the binary
fraction 0. BAA N ( O 1) equals y =
y1/2 +y,/2%+y /2% . This problem
is the most dlffwult one in the article,
but also the most interesting. While

solving it, you may discover, in
addition to the aforementioned
properties of C(x], other peculiar
features of this function. For instance,
it is nondecreasing and maps the
interval [0, 1] onto itself. (We offer a
solution to this problem in the answer
section.)—Ed.
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REASONABLE EXPLANATIONS

The case of the mythical beast

Sherlock Holmes unravels a “diabolical” mystery

by Roman Vinokur

T HAPPENED IN THE
fifth century a.n. on the
rocky shores of a deep lake in
what is now northern En-
gland. A wandering monk, Brother
George, had come here to convert
the local inhabitants to Christian-
ity. The path Brother George had
chosen was long and difficult, but he
was a man of courage. To his sur-
prise, the locals told him that a
mighty god lived in the lake. They
took the monk to the very edge of a
high cliff that drops down to the
still, cold water. The hills around
the lake were thickly forested, so
the smooth surface of the water
seemed to be painted green.

“Suddenly a giant beast rose from
the depths. Its head looked like that
of an enormous seal, and it had a
single white horn in the middle of
its shiny black forehead. The locals
looked frightened, but they told the
monk that the water god ate only
plants. The creature looked at them,
its head almost reaching the top of
the cliff. The locals dropped to their
knees, bowed low, and asked the
beast not to punish them. Brother
George lifted his crucifix and or-
dered the creature in God’s name to
return to the nether world. But the
creature paid no heed.

“Now, in those days, missionar-
ies could handle the sword as well as
the Word—it was a dangerous occu-
pation. Grabbing a spear that one of
the locals had dropped, Brother

|\

George threw it and hit the beast
right in the eye. The creature
howled, fell back, and disappeared
into the waters forever . . .

“Since then, no one has seen it for
certain, although a few people have
said they’ve seen it from afar.”

After a short pause the young
marine engineer, John Turner by
name, continued his story.

“I think the beast was a dinosaur
who came from a distant sea to live
in this lake, and that its relatives
stayed behind. There probably
weren’t many of them, but enough
to survive as a species . . .”

Sherlock Holmes appeared pro-
foundly interested. “I wish you
much luck in finding that creature
in the lake,” he said, leaning back in
his chair, “or anywhere else, for that
matter. I suppose you have spent a
great deal of your time trying to dis-
cover it for science. I see some im-
pediments to any such expectations,
but it’s not impossible . . . And what
is your opinion, Dr. Watson?”

I'said that such a discovery would
be wonderful, and that there was a
chance that some breeds of dinosaur
could survive—for example, crea-
tures like the crocodiles and lizards
of our own time. Moreover, one of
my patients, a well-known geogra-
pher, told me about mysterious gi-
ant beasts inhabiting the wild
jungles of Cameroon. He didn’t hap-
pen to see these creatures himself.
Nevertheless, a few of the local

hunters met up with them, and their
reports of the mokele-mbebve (as
they called the “dinosaurs”) seemed
perfectly credible.

Suddenly Holmes laughed in the
hearty, noiseless manner that was
peculiar to him and said, addressing
our fair guest, “By the way, I believe
your little black poodle would be
pleased to help its master hunt for
unknown animals, wouldn’t it?
Pray, do not be surprised, sir. That
is my line of work—to know
things.”

Nonetheless our brave mariner
was flabbergasted. “Sir,” he said,
“I've read about your talents, but
please refresh my memory—where
exactly did we meet before? My dog
Judy is indeed a little black poodle.”

“I saw bite marks on the heels of
your shoes,” replied Holmes, laugh-
ing softly. “That usually happens
when one has a frisky puppy at
home. Besides, I chanced to see
through the window that you
stopped in Baker Street to watch a
black poodle that was out for a walk
with its master. At that moment
you looked like someone recalling
something very familiar and pleas-
ant. You piqued my curiosity, and so
I took a look at your heels when you
sat down next to me. That’s all there
is to it. So now you can see that I am
not a magician. But pray, explain to
us how we may be of service.”

“Ireally want to find that beast in
the lake,” Turner said decisively. “I
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Figure 1

designed a vessel to carry me under
the surface so I could explore the
depths of the lake. Here’s a sketch.”
He produced the drawing shown in
figure 1. “It’s like a big bottle: a hol-
low sphere with a cylindrical tube
coming out of it. A hermetic door
and a window are built into the side.
The window is made of plate glass,
and everything else is steel. L had the
vessel built according to my instruc-
tions and brought to the shore of the
lake. I planned to tow it to the
middle of the lake and sink it with
special anchors, which are not
shown in the drawing.

“But here I came across a serious
problem. I had hired some workers
to do a few final tasks on site—in-
stalling ventilation hoses and tele-
phone lines and sealing the opening
at the top of the tube. These work-
ers became ill, and they tried to con-
vince me that there was something
amiss with my underwater vessel—
that the devil had taken up resi-
dence there to thwart my plans.
They wouldn’t listen to reason, so I
proposed to spend one hour in the
vessel to show them that nothing
would happen.

“Tt was a clear, warm day. The
sun shone encouragingly, a light
breeze blew from the lake. But to
my astonishment, Judy tried to keep
me from getting into the vessel. She
clamped her jaws on my pant cuffs
and wouldn’t let go. But somehow I
got loose and entered the vessel,
closing the door behind me. Almost
immediately I felt as if my insides
were shaking. Everything went
black. An inexplicable fear welled
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up inside me. I couldn’t take it any
longer and jumped out of the vessel.

“ Afterwards, I tried again—sev-
eral times, in fact—with the same
result. The workers believe that the
devil is making fools of us to prevent
our investigation of the lake. They
think he lives in the depths and
sometimes transforms himself into
the legendary unicorn. Sir, I am re-
lying on you and your deductive
method to explain this to me—un-
less, of course, the workers are right
and there are unclean forces at work
here.”

“Neither God nor the devil has
ever made a personal appearance in
my life,” Holmes said thoughtfully.
“Tsuspect that the marine beast has
nothing to do with what you expe-

Figure 2

rienced either, and that the dreadful
cause you seek lies in inanimate
nature. I came across a similar case
once, when I was investigating the
death of a hunter who had taken
shelter in a small cave to escape bad
weather. There were no signs of
struggle with man or beast—no
wounds, nothing to indicate how he
had died. To tell you the truth, I
could not have solved the mystery
without the help of my former
teacher, a well-known professor of
physics .. .”

Holmes took a small toy out of
his pocket. It was made of multicol-
ored glass and looked very much
like Turner’s underwater vessel. He
raised it to his lips and blew across
the opening (fig. 2). After several
tries he managed to produce a clear,

sustained whistling sound. I caught
a confused glance from our guest,
and I felt a little awkward on my
friend’s account. I thought he was
showing signs of entering his second
childhood.

“This whistling toy,” Holmes
began to explain, “is what a physi-
cist would call a Helmholtz resona-
tor. It's named after the scientist
who first used resonators to analyze
sounds according to the frequency of
their oscillations. The device con-
sists of two basic elements: a thin
tube open at both ends and a cham-
ber that is much bigger in volume.
A change in the air pressure at the
outer end of the tube causes the air
inside the resonator to move. Let’s
imagine that some air flows into the
chamber. This causes an increase in
the pressure in the chamber, which
inhibits any further flow of air into
the chamber. Similarly, a flow of air
out of the chamber causes a decrease
in the air pressure in the chamber,
which inhibits any further outward
flow of air. This means that the air
inside the chamber can be viewed as
a kind of spring, and the air in the
tube plays the role of a mass at-
tached to the spring. In this sense
the Helmholtz resonator is like a
simple oscillator (fig. 3).

“I should point out that this anal-
ogy is not always valid. It is valid
only when the speed of the air par-
ticles is approximately the same
along the entire length of the tube.
This holds true at sufficiently low
frequencies, when the length of the

Flelmholls
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sound wave in the air is much larger
than the dimensions of the resona-
tor. Otherwise, several simple oscil-
lators would be needed to model the
vibrations of the air in the vessel.”

“AsTIrecall,” the engineer offered,
“the natural frequency of a simple
oscillator is

K/M
f=2t——, (1)
ks

where K is the spring constant and
M is the mass. What would you say
about the natural frequency of the
Helmbholtz resonator, Mr. Holmes?”

“If the length of the tube is much
greater than its diameter, the fre-
quency is equal to

v, [S
Cooam vl 12)

where v_ = 340 m/s is the speed of
sound in air, S is the cross-sectional
area of the tube, V is the volume of
the chamber, and I is the length of
the tube. Substituting the dimen-
sions of the underwater vessel into
equation (2)...” Holmes took a pen-
cil and his notebook and looked at
the engineer’s sketch (fig. 1). “We
find that

f,=5Hz.

Agreed?”

“I think I follow you,” Turner
said in an unsure voice. “The toy
whistled when you blew across its
neck. In my case, the wind did the
blowing. But the wind blowing off
the lake wasn’t that strong . . .”

“You are correct,” Holmes
agreed, “at least as far as the wind’s
role is concerned. When air flows
past an object, the wake behind it is
not regular. There one can find so-
called ‘vortices’ (fig. 4), which alter-
nately leave the object in such a way
that a definite period of time elapses
between the formation of successive
vortices.

“This ‘vortex stream’ was inves-
tigated theoretically by Theodore
Karman not so long ago. Air pres-

Figure 4 N

sure in a vortex is less than in the
undisturbed atmosphere (this is why
tornados act like huge vacuum
cleaners, sweeping up everything
they come across). Likewise, the air
pressure in vortices is less than in
the spaces between them. If the ob-
ject is symmetrical, the total air
pressure behind it changes harmoni-
cally. The frequency of the alternat-
ing pressure can be expressed by
using only the dimensions of the
actual physical parameters:

i Zk%/ (3)

where v is the speed of the air flow, a
is the effective size of the object, and
k is a dimensionless coefficient that
depends on the object’s shape and ori-
entation. The value of k is usually
found experimentally, but theoretical
predictions can also be made. For in-
stance, if the air flow is perpendicu-
lar to a long cylinder, the value of k
is found to equal approximately 0.2,
provided that a = D (where D is the
diameter of the cylinder). Considering
that the wind speed at the time of
your incidents at the lake shore was
about 5 m/s (as you said, the wind
was not blowing strongly), and sub-
stituting all values into equation (3)
(I know that D =0.2 m and k = 0.2},
we get

fi =5 Hz.

“I should point out that, in the
case we are investigating, the role of
the object can be played not only by
the tube as a whole but also by its
upper rim. Nevertheless, we can
again use equation (3), supposing

that a = h, where h is the wall thick-
ness. All that remains is to measure
the coefficient k. In the present case,
however, I believe the role of the
tube as a whole is more significant,
since both frequencies are the
same.”

“So f =f,” cried Turner, “which
means there was acoustical reso-
nance! And so the amplitude of the
oscillations in air pressure in the
underwater vessel could be quite
large. The same phenomenon
causes the whistle to produce a
noise. But—"

“Of course you didn’t hear any-
thing,” interrupted Holmes, finish-
ing the engineer’s thought. “Sound
with a frequency of less than 16 Hz
is inaudible. It's called infrasound,
and its effect on human beings is not
completely understood. We do
know, however, that high-intensity
ultrasound causes headache, fatigue,
and anxiety. Moreover, powerful
infrasound can cause more serious
problems. Our internal organs
(heart, liver, stomach, kidneys) are
attached to the bones by elastic con-
nective tissue, and at low frequen-
cies they may be considered simple
oscillators. The natural frequencies
of most of them are below 12 Hz
(which is in the infrasonic range).
Thus, the organs may resonate.

“Of course, the amplitude of any
resonance vibrations depends sig-
nificantly on damping, which trans-
forms mechanical energy into ther-
mal energy. In the ideal case of zero
damping, the resonance amplitude
would increase to infinity. In real
cases, however, this amplitude de-
creases as the damping increases.
Also, the amplitude is proportional
to the amplitude of the harmonic
force causing the vibrations. Such a
torce produced by Karman vortices
is approximately proportional to
pv?, where p is the air density and v
is the wind speed. Your troubles, sir,
were relatively harmless because
the wind happened to be weak. In
the case I mentioned earlier—the
dead man in the cave—the winds
were of gale force . . .”

“But what do you make of Judy’s
behavior?” I asked my friend. “She
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tried to save her master. So, it
seems, dogs can sense infrasound as
well as smells that we cannot per-
ceive?”

“Well, at least they do it better
than people,” Holmes replied,
laughing. “By the way, the wave-
length of infrasound with a fre-
quency of 5 Hz equals

}L:L=340 rn/s=

f 5Hz

68 m

This value is much greater than the
maximum size of the vessel (about
3 m), so our model is correct. How-
ever, I had one more reason to cal-
culate the infrasound wavelength
for this case. It’s a well-known fact
in acoustics that small sources of
sonic waves—small, that is, in com-
parison with the wavelength of the
sound being radiated—cannot be

very powerful because of their lim-
ited ability to radiate the sound.
This is why you felt the infrasound
only when you were in your under-
water vessel or very close by—most
of the acoustical energy was kept
inside.

“T trust, sir, after our conversa-
tion, you can explain to your work-
ers that the devil was not to blame
for the discomfort they experienced
in your underwater vessel.”

“Most certainly,” the engineer
replied gratefully. “I will do so first
thing tomorrow.”

... Asit turned out, “tomorrow”
was the day the First World War
began. An isolated British destroyer
was torpedoed by a German subma-
rine and sank with all its crew
aboard—except for officer John
Turner. He found himself swim-
ming in the endless sea. Time
passed, but no one came to save

him. He was tired and cold. He had
all but lost hope when he felt some-
thing large swimming nearby.
“Shark!” he thought with horror. He
looked around . . . It wasn’t a shark,
but a giant beast with a white horn
on its broad, seal-like forehead. For
a while they floated side by side.
Then the beast swam off at great
speed and dove into the depths of
the ocean. Half an hour later, Turner
was being hoisted into a boat in the
strong arms of an American sailor.

“Do you know, sir, that you are
a lucky man?” The voice Turner
heard was cheerful and husky. “Our
captain hasn’t slept for two days
running. He thought he saw a huge,
horned seal or something in his bin-
oculars. He ordered us to change
course to get a closer look, and we
found you instead! If it hadn’t been
for that mirage . . . why, it saved
your life, didn’t it, sir?”
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FRACTIONAL PARTS THEOREM

Ones up front in powers of fwo

And equal rights for pigeons

by Vladimir Boltyansky

AISING THE NUMBER TWO

to integer powers, we notice

that ones keep emerging again

and again at the beginning of
the numbers obtained. How often
do they crop up? In other words,
what’s the probability that a power
of two chosen at random begins
with the digit 1¢

Let’s make the statement of this
problem more exact. In the illustra-
tion on the facing page, fifteen num-
bers are written out, and four of
them begin with one. Write these
numbers on fifteen cards, shuffle the
cards, and choose one card at ran-
dom. The probability that the num-
ber on this card begins with one is
4/15.

Now take the first n powers of
two—that is, the numbers 2}, 22, ...,
2. Suppose a_ of them begin with
one (in decimal notation). Then the
probability that a number chosen at
random from the numbers 2!, 22, ..,
27 begins with the digit 1 is equal to
a_/n. This probability depends on 1,
the number of the powers we took.
We'll see below that, as n grows, the
ratio a /n approaches a certain num-
ber p,—in other words, a /n has a
limit. We write

a,/n—p asn— oo, (1)

Tt is this limit that is called the prob-
ability that a power of 2 chosen at
random begins with the digit 1.
You'll understand this article bet-
ter if you solve the following prob-
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lems, which illustrate what it
means when we say that the “prob-
ability that a term of some infinite
sequence taken at random will sat-
isfy a certain property.” In general,
this probability is equal to the limit
as n — o of the ratio of the number
of terms satisfying the property,
among the first n terms, to the num-
ber n. Notice that this probability is
not always well defined, because the
limit may not exist.

Problems

1. What is the probability that a
random positive integer is divisible
by 3?

2. What is the probability that a
digit in the decimal expansion of the
number 161/222 taken at random is
a five? A two?

3. What’s the probability that a
positive integer taken at random is
a perfect square?

Calculating the limit

Clearly, there is exactly one two-
digit number among the powers of
two that begin with one (namely,
16). And there’s exactly one three-
digit number among the powers of
two that begin with one (namely,
128). The same is true for four-digit
numbers, too.

In general, for any k > 1, there is
exactly one k-digit power of two
that begins with one. Indeed, the
smallest k-digit number that is the
power of two must necessarily begin
with one—otherwise, dividing it by
2, we would get a smaller k-digit

power of two. And no other k-digit
power of two begins with one, be-
cause the next power of two has 2 or
3 in the first place, the following one
begins with an even greater digit,
and so on, until we run into a (k + 1)-
digit number.

From this it follows that if 22 has
m digits, then there are exactly m -1
numbers beginning with one among
the powers 21, 22, ..., 2"—thatis, a_=
m — 1. But the number 27 has m dig-
its if and only if

1081208 10%,
or
m-1<nlog2<m.
Substituting a_ + 1 for m, and rear-

ranging these inequalities, we get

1og2—l << log?2.
n n

Now it’s clear that

ﬁg_éplzlogQ::0301oa“
n

Thus, a little more than 30 per-
cent of the powers of two begin with
one.

Problems

4. Denote by p_ the probability
that a random power of two begins
with the digit g. Assuming that






these probabilities are well defined,
prove the equalities p, + p, =p,; p, +
D; =D, Dy + D; = D3i Dg + Py =D,

5. Prove that p, =1 -3 log 2 =
0.096... .

The last problem shows that the
powers of two begin with 1 more
than three times as often as with 4.

The general probilem

Now let’s try to answer a more
general question: what is the prob-
ability that a power of a given posi-
tive integer 1 taken at random be-
gins with a digit q (in decimal
notation)?

Suppose the decimal notation of
the number I” begins with g:

g-10m<? < g+ 1)10™

for a certain integer m. Dividing
these inequalities by ¢ - 10™, and
taking the logarithm to the base 10,
we arrive at

0<(nlogl-logq)-m

< logq—ﬂ. (2)
q

Now, (g +1)/1=1+1/g<2 <10, so
the number on the right-hand side is
less than 1. Inequalities (2) show
that the fractional part of the number
nlogl-log q is less than log(qg + 1)/q.
(Let me remind you that the frac-
tional part {x} of a number x is the
difference between x and its integer
part [x]: {x} = x - [x], and [x] is the
largest integer not exceeding x.)
Conversely, if the fractional part of
the number n log I - log q is less
than log (q + 1)/g—that is, if in-
equalities (2) are valid for some in-
teger m—then the decimal notation
of I" begins with ¢. So our problem
is equivalent to this: what is the
probability that for a positive inte-
ger n taken at random,

{niog]—logq}< logLH?
q

The following theorem will help us
solve this problem.
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FracTioNAL PArRTs THEOREM. Let o
be an irrational number and B an
arbitrary real number; let I be an
interval of length h contained in the
segment [0, 1]. Consider the infinite
arithmetic sequence o + B, 200 + B,
..., 0.+ B, ... . Then the probability
that the fractional part of an arbi-
trary term of this sequence belongs
to the interval I is equal to h.

I'll give a proof of this theorem in
the last section. Now I'll show how
it’s applied to our problem.

First of all we notice thatif /is a
power of ten, then all the powers of
I begin with one: in this case the
problem is trivial.

So let’s assume that [ is not a
power of ten. Then the number o =
log 1is irrational (see problem 6 be-
low). Set o= nlog 1, B = -log g in the
statement of the Fractional Parts
Theorem. The theorem then tells us
that the probability that a term of
the sequence nlogl-logg(n=1,2,
...) has a fractional part lying in the
interval [0, log (g + 1)/q)is equal to log
(q + 1)/q. And this yields the solution
we seek: the probability that a ran-
domly chosen power of a number 1
(not a power of ten) begins with the
digit q is equal to Iog (q + 1)/q.

Unexpectedly, this probability
does not depend on I! For instance,
powers of two and powers of three
begin with 1 equally often (namely,
with a probability of log 2).

Problems

6. Prove that if a positive integer
I is not a power of 10, then log I is
irrational.

7. Compute the probabilities p,,
..., D, defined in problem 4. Give a
new proof of the equations in that
problem.

8. Find the probability that a ran-
domly chosen power of two begins
with the combination of digits 1000.

9. Find the probability that a ran-
domly chosen power of a number I
(distinct from a power of ten) begins
with a given combination of digits
q,4,...q9, where q, # 0. Derive, in
particular, the fact that a power of |
can begin with any combination of
digits q,q,...q, (g, # 0).

10. (a) Given a randomly selected
power of a number [, I # 107, prove

that the probability that its second
digit is O equals

p? =log(11-21-31-...-91)
—log (9!) - 9.

Hint: this probability is the sum of
the probabilities that a power of I
begins with 10, 20, ..., 90.

(b) Given a randomly selected
power of a number I, [ # 107, prove
that the probability that its kth digit
(starting from the left) is g (for any
k>1,g=0,1, ..., 9)equals

pi=3 log[l +

q+101'j’

where the sum is taken over all i
from 10%-2 through 10%-! - 1.
11. Using the result from problem

10(b), prove that P{qk) —1/10ask —

o, Hint: use the estimate In (1 + x)
< x for x > 0,! and the relations

log[1+ij— log| 1+ !
10i 10i+q

< log[l +

q
1004(i - 1)}

L Inl1+— 9
In10 1004(i - 1)

1 q

In10 1004(i - 1)

_L[l_lj
100In10\i—-1 i/

12. Generalize problems 9 and
10(b) to the case where the powers
of I are written in the number sys-
tem with a base b > 1. In particular,
the formula of problem 10(b) in the
binary system for g = O takes the

form
, 2K 41 21+ 3 2k -1
p = log ; ,
0 2 k-1 k-1 k
2 257 +2 25 -2
IThis inequality can be proven, for
instance, by using the methods from

“Derivatives in Algebraic Problems”
in this issue.—FEd.




S0 niear and yet so far

As another illustration of how
the Fractional Parts Theorem
works, consider this problem:

Let a number o be irrational.
Prove that cos nom > 0.999 for a cer-
tain positive integer n.

Notice that the inequality cos nomn
> 0.999 is equivalent to these:

2mmn — € < nOK < 2mm + €,

where € = cos™ 0.999 and m is an
integer, or
no € I3
m<—+——<m+—.
n b4

In other words, the inequality cos nom
> 0.999 is valid if and only if the
number {no/2 + ¢/2x} belongs to the
interval (0, &/n). According to the
Fractional Parts Theorem, a positive
integer n taken at random satisfies
this condition with a probability of
e/m = cos 0.999/n = 0.014. So for a
sufficiently large N approximately
1.4 percent of the numbers 1,2, ..., N
satisty this condition.

Of course, here we could take any
number less than 1 instead of 0.999.
This means that the number cos nom,
for any fixed irrational o, approaches
1 arbitrarily close, though it never

becomes exactly equal to 1.

Problems

13. Arcs of length 1 are marked
off one after another starting from
an arbitrary point A on a circle of
radius 1. Let A, A,, ... be the succes-
sive endpoints of these arcs. Prove
that any arc of this circle contains a
point A..

14. Prove that the function f(x) =
sin x + sin ox is not periodic for any
irrational o.

15. Consider two infinite arith-
metic sequences a,, a, +d,, a, +2d,,
..and ay, a, +d,, a,+2d, ... . The
numbers d, and d, are positive and
their ratio d,/d, is irrational. Does
there exist a term in one sequence
and a term in the other sequence
such that the absolute value of their
difference is less than 0.000001?

16. Consider the set of circles of
radius € whose centers are all the
points with integer coordinates—a
“forest of radius £.” Draw a line that
makes an angle ¢ with the x-axis
such that tan ¢ is an irrational num-
ber. Prove that this line will inter-
sect the forest no matter how small
the radius ¢ is (see figure 1).

A proot

Our proof of the Fractional Parts
Theorem is based on the following
two assertions:

Figure 1

1. For any irrational number o
and any integer 1 > 0 there exists a
positive integer p such that po. dif-
fers from the nearest integer m by
no more than 1/I:

\poc—m[<l.
1

2. As before, let I be an integer > 0.
Consider an arithmetic sequence
with a difference & such that 18| < 1/1.
Take its first n terms and suppose
that f_ of them have fractional parts
in the interval I of length h, from the
statement of the theorem (we shall
call such terms “favorable”). Then for
all sufficiently large n,

A

n

2
<—.

_hl :

Now I'll show how the Fractional
Parts Theorem is deduced from these
two statements. Recall that the Frac-
tional Parts Theorem concerns a se-
quence of the form x = o + B, x, = 20
+B, ..., x =no + B. Write out the first
n terms of the sequence and circle
every pth of them starting with x,
where p is the number from state-
ment (1) chosen for a certain I > 0:

EDXy - X ,@Xp+2, o

The circled numbers form an arith-
metic sequence with a difference
po. Since we're interested only in
their fractional parts, it doesn’t mat-
ter is we add an integer to the terms
of the sequence or subtract an inte-
ger. We can therefore replace this se-
quence by the sequence with the
same first term x, and the difference
8 = pa. — m, where m is the integer
from statement (1). By statement (1),
18] < 1/1, so statement (2) implies, for
all sufficiently large n, that

where n'' is the number of all circled
terms, and !/ the number of favor-
able circled terms, among x,, x,,

x_. Now let’s do the same thing
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starting from x,, then from x,, and so
on. We'll get p sequences, each sat-
isfying similar inequalities (with n®
and f% for the sequence starting
withx,, k=1,2, ..., p). Summing all
these inequalities, and taking n large
enough to make them all true, we

Z n Z

where f, = f + ... + f#) is the num-
ber of favorable terms in the given
sequence X, X,, ..., X,. Therefore,
this sequence satisfies the expres-
sion If /n—hl <2/Ifor any I > 0 and
all sufficiently large n, or f,/n — h as
1 — oo, This is what the Fractional
Parts Theorem states. It remains to
prove statements (1) and (2) to com-
plete the proof of our theorem.
Proof of statement (1). Divide the
segment [0, 1]into ] equal parts and con-
sider the numbers {of, {204}, ..., {(I+ 1)o.
Since o is irrational, these are all dif-
ferent. Using the “pigeonhole prin-
ciple” (see, for instance, “Pigeons in

Every Pigeonhole” in the January
1990 issue of Quantum), we can
think of these I + 1 numbers as “pi-
geons,” and the ] sections of the seg-
ment [0, 1] as “pigeonholes.” By this
very useful (though obvious) prin-
ciple, two pigeons must sit in the
same pigeonhole—that is, there are
two numbers p o and p,a, p, > p,,
whose fractional parts differ by no
more than 1/1. So for p = p, - p, there
is an integer m such that |pa — ml =
l(p,o.—p,0)l =m < 1/1, and we’re done.
(In terms of pigeons, our theorem
may be viewed as the “pigeonhole
principle for infinitely many pi-
geons,” and it says that our “frac-
tional-part pigeons” are distributed
uniformly in their pigeonholes.)
Proof of statement (2). Suppose
that the first n terms of the given se-
quence are x,, X,, X,, ..., X, (see figure
2). For any integer k, let I, be the im-
age of the interval I translated k units,
so that I, c[k, k+1]. Let g be the num-
ber of intervals I, that lie entirely be-
tween x, and x_(that is, ¢ does not
count any interval [, that x and x
may fall in). Then a case-by-case
analysis will show that no matter
where x and x_ fall, g-1<Ix - x|

N = (n-1)8 < g + 2. It follows that

nd-3<n-16-2<gq
<n-16+1<nd+1. (3

Let i, be the number of the

terms x, in the interval I..
Then (see figure 3) (i, - 1)5
<h,ori, <h/§+1. Summing
these inequalities over all (at
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| most g + 2) intervals I, that
¢ contain the terms x, 71 =1, ...,
' n, we get the following upper

bound for the number £, of fa-

In this figure, and throughout
*r/ the proof, the difference & of the
sequence is assumed to be
positive. The only change that should
be made in the case of § < 0 is to
replace 8 with 18] in all formulas.

k I k+1

| ! I |
© ©®© ©06 00 006 © 06 00 6 0 0

(1, — 1)8

Figure 3

vorable terms:

f,=X1, S(q+2)(:+lj
h+3

<(nd+3)

6
_*_7

<n(h+38) .

(here we use the right-hand portion of
inequality (3), h<1andd<1/I<1).On
the other hand, for each of the g in-
tervals I, between x and x, (1, + 1)§
> h, s0 1, > h/8 - 1. Summing these
yields

f, >q(}61—1]>(n8—3)@

>n(h—5)—§

(here we use the left-hand portion of
inequality (3)). Combine the two
bounds:

‘fn —nh<n6+6<n(l+6}
) 1 on

Now it remains to divide by n and
choose n such that 6/6n < 1/I(orn >
61/8).

Problems

17. Prove the following two-di-
mensional generalization of the
Fractional Parts Theorem:

Fix a coordinate frame on the
plane. Define the fractional part of a
vector v with coordinates (x, y) as the
vector {v} with coordinates ({x}, {y})
(fig. 4). Let M be a polygon contained
in the square S with the vertices (0, 0),
(0, 1), (1, 0), (1, 1). A vector u will be

CONTINUED ON PAGE 45
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Just for the fun of itl

B96

Logic behind coincidences. I've thought of a three-digit number such
that each of the numbers 543, 142, and 562 coincides with it in exactly
one decimal location. Guess what this number is. (V. Proizvolov)

B97

Entropy and Tesseract. While driving down an unfamiliar road, I noticed
a sign that said: “Entropy—150 ents, Tesseract—110 tesses.” Apparently
the residents of Entropy measure distance in units called “ents,” and the
folks in Tesseract measure distance in “tesses.” I drove further down the
road. Before I came to either town, I saw another sign: “Entropy—10
ents, Tesseract—26 tesses.” Find the point between Entropy and
Tesseract where the distance from Entropy, measured in ents, equals the
distance from Tesseract, measured in tesses. (T. Stickels)

B98

Tiling with dominoes. A chessboard is covered with 32 dominoes so
that each domino covers exactly two squares. After counting the domi-
noes oriented horizontally and vertically, it was found that there are
evenly many dominoes with each orientation. Will this be true for any
covering of the chessboard with 32 dominoes? (V. Proizvolov)

B99

Halving it all (cont’d). Three line segments are drawn in a convex
quadrilateral: a diagonal and both midlines (the segments that join the
midpoints of opposite sides). The other diagonal divides one of these
segments in half. Prove that it bisects the other two segments as well.
(N. Netsvetayev, V. Dubrovsky)

B100

Reaching one hundred. Find a path to the center of the maze in the
figure such that you get 100 by performing the operations along this
path. (A. Larionov)

ANSWERS, HINTS & SOLUTIONS ON PAGE 58
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A simple capacity for heat

As usual, it's not as simple as it seems

by Valeryan Edelman

M SURE THAT MANY OF

you will look at the title of this

article and shrug your shoul-

ders: “What’s so interesting
about that? Yes, we need to know
heat capacities in order to calculate
the thermal energy required to raise
the temperature of an object. It’s cer-
tainly essential for technology, so
people were found who were willing
to spend gobs of time measuring the
specific heats for various materials.!
(These measurements aren’t so dif-
ficult in principle—most of us have
even studied a bit of calorimetry in
school.) Then they compiled tables
and reference books—anyone can
use them, and there’s nothing more
to think about. So, you’ve come up
with a trite and rather boring topic.”
And yet. ..

If you look through the most
weighty scientific journals, you can
always find papers in which specific
heat is studied, and not always that of
newly created materials. Often quite
ordinary materials are investigated,
often under unusual conditions. So,
what’s the big secret? Why—in this
age of lasers, high-energy physics,
microelectronics, thermonuclear

IThe heat capacity of an object is
the amount of heat required to raise
the temperature of the object by one
degree and is a property of the
particular object. The specific heat is
the heat capacity per unit mass and is
an intrinsic property of the material
from which the object is made.—Ed.

synthesis, and so on—hasn’t the in-
terest of physicists in this apparently
routine subject faded? The answer is
that the specific heat is closely related
to the structure of matter and the dy-
namics of the motion of subatomic
particles. Sometimes it’s a measure-
ment of specific heats that makes it
possible to know at least something
about the nature of things when the
most modern methods are useless.
If you want to see this connection
with your own eyes, you won’t have
far to look. Figure 1 will help con-
vince you. It shows how the specific
heat of ordinary water changes with
temperature. Of course, the first
thing that impresses anyone is the
jump at 0°C—the temperature at
which water changes from solid to

LAWS AND LAWBREAKERS

liquid. But that’s not the whole
story: in both the solid and liquid
phases, the specific heat depends on
temperature in a complicated way
(see the blowup of the water portion
of figure 1). Mind you, this is the
case with water, which not so long
ago served as the standard for spe-
cific heats!

Modern science can explain what
occurs with water, but we’ll not
study this phenomenon. It’s better
to start with the simplest thing we
know: ideal gases.

Strictly speaking, this subhead
isn’t quite accurate, since we're going
to be talking about the actual gases
that are ideal in one sense only—at

c(J/g) c(J/gl c(J/g)
A A A
—_— —> 42 _\_/
4 — water - 4 water
4.1+ t (°C)
3 3 y >
0 50 100
2 o )
icg BT -
1- LT L1
e t°C)
T T T T T T »
200 -150 -100 -50 O 50 100
Figure 1
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Table 1

gas He Ar

Xe H N

2 2

O CO NH CH

2 2 3 4

¢, l1/g- K] 3.15

0.31

0.096 10.26 0.74

0.66 0.65 1.62 1.68

Specific heat of gases at room temperature and constant volume.

room temperature the following law
holds with great precision:

PV = NKT.

Here, as usual, P, V, and T are pres-
sure, volume, and absolute gas tem-
perature; N is the number of mol-
ecules; and k = 1.38 - 10 J/K is the
Boltzmann constant. The average
energy of translational motion of a
gas molecule is equal to

tr

E =3kt
2

Let’s look up the values for the
specific heat at constant volume for
several gases in a standard reference
book (see table 1). At first glance it’s
difficult to see any regularity in
these numbers. But let’s take our
time and put these values into an-
other form. We'll be guided by the
fact that one gram of different gases
contains different numbers of mol-
ecules. The formula for E_ shows
that we need to compare the values
for one molecule. It’s not hard to
recalculate the numbers in table 1.
Remember that a mole of any sub-
stance has the same number of mol-
ecules (Avogadro’s number: N, =
6.02 - 10%). It’s easy to find the heat
capacity of one mole—that is, the
molar heat capacity: ¢ = ¢, 1, where
u is the molar mass of the sub-
stance. So the heat capacity for one

molecule is

_ u

mol sp :
N
A

Naturally this value is very small,
and it will be convenient for us to

compare the valuesof ¢’ =c_ [k

mol cmol
(it’s easy to convince ourselves that

c’ , is dimensionless—it’s just a

number).

Let’s calculate the values of ¢/ |
for the gases in table 1 and see what
happens. What is striking about

table 2 is that ¢l is the same for

all the monatomic gases. In other
words, the molecular heat capacity
of all the single atomic gases is the
same and equal to 1.5k—that is, % k.
But this coefficient % is a very fa-
miliar number: it’s the same coeffi-
cient that appears in the formula de-
scribing the average energy of
translational motion for molecules
in an ideal gas. Since the molecular
heat capacity c_, = AE/AT, we get

ol

3,AT 3

mol

2 AT 2

The result is remarkable: for he-
lium, neon, and argon, all the heat
is completely transformed into the
kinetic energy of translational mo-
tion of the atoms. One might imag-
ine that the atoms could rotate, but
it’s evident that no heat goes into

this motion, and so there is no heat
capacity associated with this rota-
tion. Generally speaking, this con-
clusion holds at moderate tempera-
tures only (the data in tables 1 and
2 were obtained at such tempera-
tures). At very high temperatures
(thousands of degrees), things get a
little complicated. Experiments and
theory both show that rotations can
be induced. Still, we won’t make life
more difficult at this point. Even so,
questions crop up: what about the
molecular heat capacity of gases
whose molecules consist of two or
more atoms? Their molecular heat
capacities are somewhat greater
than %k. It’s curious that for di-
atomic gases—hydrogen, oxygen, ni-
trogen—the extra amount per atom
is very close to »k. However, for
multiatomic gases the situation is
more complicated: the extra amounts
are equal to ~0.65k/atom for CO, and
only ~0.34k/atom for CH,. So maybe
it’s not just a matter of the number of
atoms per molecule.

Let’s approach this problem from
another direction and see what dif-
ferent types of motion are possible
for the molecules. A diatomic mol-
ecule can be represented as in figure
2: atoms connected by a spring.
Translational motion of the mol-
ecule can be described as the motion
of its center of mass along three
mutually perpendicular axes x, y, z
(see figure 2). A molecule can be ro-
tated about the y-axis and the z-

Table 2

gas He Ar Xe H, N, 0, CO, NH, CH,
c, (/g K) 3.15 0.31 0.096 10.26 0.74 0.66 0.65 1.62 1.68
¢ =c_Jk 1.50 1.50 1.50 2.45 2.49 2.53 3.42 3.30 323
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Figure 2

axis—that is, perpendicular to the
spring. Molecular rotation about the
x-axis (along the spring) is excluded.
This rotation is analogous to rotat-
ing a monatomic molecule, and
we’ve seen that energy does not go
into such rotations. Finally, the at-
oms themselves can oscillate along
the x-axis toward each other.

Thus, for a diatomic molecule, tak-
ing translational motion along three
coordinate axes into account, we find
that there are six possible types of
motion (they are also called “degrees
of freedom”). If a molecule is made of
n atoms and n > 3, it becomes difficult
to paint a similar picture. But there’s
a simple rule that allows us to calcu-
late the number of degrees of free-
dom: the total number is equal to
three coordinates for each atom times
the number of atoms, or 3n. This in-
cludes three degrees for the transla-
tional motion and three degrees for
the rotations about three mutually
perpendicular axes.

Using this recipe, let’s calculate
the number of possible motions for

different gas molecules and add
three lines to table 2 (see table 3).
Now we’ll look at the multiatomic
gases CO,, NH,, and CH,. Each of
these molecules can be rotated
about the three axes, but the num-
ber of possible types of oscillation
for these molecules is different:
there are three types of oscillation
for CO,, six for NH,, and nine for
CH,. Yet the molecular heat capaci-
ties of these gases are almost iden-
tical! It’s reasonable to assume that
the energy added to the molecule is
expended on translational and rota-
tional motions, not atomic oscilla-
tions. In other words, oscillations do
not contribute to the molecular heat
capacity. But then it’s also reason-
able to exclude the oscillations in di-
atomic molecules, arguing that the
additional (as compared to mona-
tomic molecules) molecular heat ca-
pacity is exclusively related to the
rotations.

As we can see from table 3, for
the diatomic molecules at room
temperature, this addition is very
close to %k for each rotational de-
gree of freedom. If the same rule is
applied to multiatomic molecules,
then the molecular heat capacity is
equal to 3k. (Actually, it’s some-
what higher, but we won’t pay
much attention to this for the time
being.)

We've arrived at an interesting re-
sult: for each of all possible motions
of a molecule as a whole (be it a dis-
placement along one of the coordi-

nate axes or a rotation about one of
these axes), there is an addition to
the molecular heat capacity of k.
Physicists call this conclusion the
equipartition theorem.

Oscillations; theorembusters?

So—if it’s a theorem, why isn’t it
universal? Why is an exception
made for oscillations? We can cer-
tainly say that the “extra” molecu-
lar heat capacity in multiatomic
molecules is related to oscillations,
but the contributions from oscilla-
tions for CO, (0.15k for each oscil-
lation) and CH, (0.025k per oscilla-
tion) are so different that it’s not
worth talking about equipartition.

The situation gets even more
complicated if we look at a huge
“supermolecule”—that is, a piece of
a solid body. All the molecules in
solids are located at the nodes of the
crystal lattice and can’t move
translationally or rotationally. The
only possible kind of motion (if we
neglect motion of the object as a
whole) is atomic oscillation about
their equilibrium positions. There-
fore, the molar heat capacity of sol-
ids is related to the oscillational ex-
citation. This molar heat capacity is
not insignificant; almost all crystals
have nearly identical molar heat
capacities under ordinary condi-
tions: close to 25 J/mole - K. This is
known as the Dulong and Petit law.
For example, here are the molar heat
capacities of some solids (in joules
per mole - K):

Table 3

gas He Ar Xe H, N, 0, CO, NH, CH,

c, /g K| 3.15 0.31 0.096  10.26 0.74 0.66 0.65 1.62 1.68

¢ Jk 1.50 1.50 1.50 2.45 2.49 253 342 330 323

translational

degrees of freedom 3 3 3 3 3 3 3 3 3

rotational

degrees of freedom 0 0 0 2 2 2 3 3 3

oscillational

degrees of freedlom 0 0 0 1 1 1 3 6 9
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aluminum 24 .4
silver 25.2
copper 24.6
gold 26.5
lead 26.6

It’s easy to calculate that the heat
capacity per atom in a solid is 3k on
average—that is, for each oscilla-
tion. To understand this, we need to
look at the experimental results.

First, it would be nice to know
whether the molecular heat capac-
ity of a gas depends on temperature.
If it does, how? Let’s look at several
gases: helium, hydrogen, and oxygen
(fig. 3). Right away we can see that
for the monatomic gas (helium), the
molecular heat capacity is constant.
However, the behavior of the heat
capacity for hydrogen is quite an-
other story. At low temperatures it’s
equal to 1.5k—that is, hydrogen be-
haves like a monatomic gas. At T =
70 K the molecular heat capacity in-
creases; at T=250 K it attains a new,
almost constant value: ¢_ = 2.5k.
But right around 1,000 K a new in-
crease kicks in, and at 2,000 K the
molecular heat capacity for hydro-
gen becomes greater than 3k. With
a further increase in temperature,
the heat capacity continues to in-
crease, but we won't examine this
region, because too many other phe-
nomena take place when a gas is
heated to such high temperatures.

Let’s now see how oxygen be-
haves over the same temperature
range. It’s impossible to measure the
heat capacity for oxygen in the gas

Figure 3
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phase at temperatures markedly
lower than 100 K, since it condenses
to a liquid. However, if this were not
so, then at low temperatures the
molecular heat capacity of gaseous
oxygen would be equal to 1.5k. The
experimental curve begins at 2.5k
and increases to 3.5k by 2,000 K.
What conclusions can we draw
from these experimental data?

1. There is always a translational
motion of the gas molecules, and
the heat capacity related to it
does not depend on temperature.

2. Rotations and oscillations vanish
at low temperatures—they're
“frozen,” so to speak. At room
temperature rotations are present,
but oscillations are still frozen.
For example, rotation for hydro-
gen molecules is “unfrozen” at T
=100 K.

3. There is only one type of oscilla-
tion in the oxygen molecule, but
the molecular heat capacity in-
creases by 1k, not by %k as we
might have guesed. Therefore,
the molecular heat capacity for
each unfrozen oscillation is equal
to 1k.

We’ve come across this number
before: it’s the heat capacity as-
signed to each oscillation in a solid!
What can we make of these results?

Note that the factor /4 appears in
the translational motion of mol-
ecules, where the energy is purely
kinetic energy; and that the factor of
1 appears in the oscillations, where
the energy is both kinetic and poten-
tial. Since the energy in oscillations
changes back and forth between ki-
netic energy and potential energy,
the average value of the kinetic en-
ergy is equal to that of the potential
energy. If the total energy of the os-
cillation is kT that is , the contribu-
tion to the molecular heat capacity
is 1k), the average value of the ki-
netic and potential energies is
JkT—again we've returned to %.
These conclusions agree very well
with many experiments and are
confirmed by the theory based on
quantum mechanics.

Of course, the case considered

here is the simplest of all possible
ones. We could examine it in more
detail. In calculating the degrees of
freedom, we regarded an atom as a
single particle, but that’s not the
case. Each atom has its own internal
degrees of freedom for each electron.
However, hundreds of thousands of
degrees are needed to defrost them.
As a matter of fact, plasma physi-
cists study gases in which electron
motion is defrosted.?

We can go even further: the nuclei
consists of individual neutrons and
protons, but even these aren’t el-
ementary. However, to excite such
thermal motion, millions and billions
of degrees, or even more, are neces-
sary. Here’s where the path into our
deep past begins—into the history of
the birth of stars, galaxies, and the
universe itself. And the first step on
this path is an understanding of ideal
gases and their laws.

2See “The Fourth State of Matter”
in the last issue of Quantum.—Ed.
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HOW DO YOU
FIGURE"?

Ghiallenges in physics and math

Math
M96

Pentagon slashing. Does there exist
a (nonconvex) pentagon that can be
cut into two congruent pentagons?
(S. Hosid)

M97

Arcs in opposition. A circle is di-
vided into 3k arcs, k of which are of
unit length, k others are of length 2,
and the remaining k are of length 3.
Prove that at least two of the 3k
endpoints of the arcs are diametri-
cally opposite. (V. Proizvolov)

M98

Integral solution. Find all positive
integer solutions (x, y) of the equa-
tion x¥ — y* = x + y. (A. Zaychik)

M99

Complete coverage. One thousand
squares are drawn on the coordinate
plane such that their sides are par-
allel to the coordinate axes. Prove
that one can choose some of these
squares in such a way that the cen-
ter of every given square is covered
by at least one and no more than
four of the chosen squares. (A.
Plotkin)

M100

Polygons follow rules. For what n
can a regular n-gon be drawn on pa-
per ruled with equally spaced paral-
lel lines so that all its vertices lie on
the lines? (N. Vasilyev)

Physics

Snow catcher. A woman skiing
across a field with a speed v = 20
km/h in a heavy snowfall observed
that her mouth encountered N, = 50
snowflakes per minute. After turn-
ing back, she noticed that only N, =
30 snowflakes hit her mouth per
minute when skiing with the same
speed. Estimate the visibility during
this time, assuming S = 24 cm? for
the area of the skier’s mouth in the
direction of travel and d = 1 cm for
the average diameter of the snow-
flakes. (M. Semyonov)

P97

Electrical cube. A set of 28 identical
resistors R connect all the corners of
a cube. Calculate the equivalent resis-
tance between two adjacent corners.
(C. Worner)

P98

Say “seaweed.” The objective of a
camera for underwater photography
is a thin plano-convex lens with a di-
ameter D = 10 mm made of glass
with a refractive index n = 1.8. Its
convex surface has a radius of curva-
ture R = 7.5 cm and is on the water
side of the lens. Estimate the dis-
tance F from the lens to the photo-
graphic film needed to shoot distant
objects underwater. The refractive
index of wateris n = 1.3. The cam-
era is filled with air with a refractive
index of 1. (V. Pogozhev)

P99

Draining experience. What energy is
dissipated in the circuit shown in fig-

ure 1 when the switch K is toggled?
The values of all the components are
known. (S. Zhuravlyov, V. Peterson,
V. Pogozhev, M. Semyonov)

szﬁ ) -
;gg_—«

Figure 1

P100

One ring, three strings. A thin ho-
mogenous ring of radius R = L/2 is
suspended by three identical vertical
pieces of nonstretchable string of
length L, their fixed ends forming a
horizontal equilateral triangle (fig. 2).
Estimate the period of small torsional
oscillations of the ring. (S. Krotov)

Figure 2

ANSWERS, HINTS & SOLUTIONS
ON PAGE 54
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Al THE
BLACKBOARD

Derivatives in algebraic problems

Taking the implicit route to counting roots

RY TO ANSWER THIS QUES-
tion: “How many roots does
the equation

(1/16) = logl/w b'¢

have?” This equation can’t be solved
in explicit form, but you can try to
graph the functions on both sides. If
you do this, most likely your graphs
will look like those in figure 1 (on the
facing page). This suggests that
there’s only one root x,, and for this
root (1/16)" = x, = log, ., x,- But . ..
just take x = 1/2: (1/16)'”? = J1/16 =
1/4, and log, . (1/2) = (1/4)log, , (1/2)
= 1/4. In addition, for the root
x = 1/2 the common value of
our functions is not equal
to x, which means that
our equation has one o
more root: the two (L

graphs are symmetric
about the line y = x, so 4
their common points

not on this line come in
symmetric pairs—along with
' (1/2, 1/4), the point (1/4, 1/2)
also belongs to bo®h graphs (check
. x=1/4—it’s aroot, too!). So there
-~ are at least three roots. Are there
¢ any other roots? To answer
. this question, ared to un-
derstand how the three
roots happen to emerge,
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by Alexander Zvonkin

we have to examine our functions
more thoroughly. We’ll do this later
on. Now let’s look at some simpler al-
gebraic problems whose solution in-
volves calculus—in particular, differ-
entiation.

Example 1. For a given real num-
ber a, determine how many values of
x are roots of the following equation:

x3-3x=a (1)

There’s a general formula for
solving a cubic equation, similar to

a well-known quadratic formula,
but much more cumbersome. How-
ever, we don’t need the roots them-
selves, we need only to find their
number. Can’t we find it without
solving the equation?

o

Pk




Figure 1

Let’s sketch the graph of the func-
tion f{x) = x> - 3x. It’s an odd function
(fl=x) = f|x)) with three zeros: x = 0, x
=—/3, and x = +/3; its derivative f(x)
=3(x*>—1) has two roots x = =1, is posi-
tive for x < -1 and x > 1, and negative
for -1 < x < 1. So the function in-
creases on the interval (—oo, —1), attains
its (local) maximum at x = -1, falls
from x = -1 tox =1, has its minimum
at x = 1, and again rises on (1, «); the
values at extremal points are f[-1) =2
and f{1) =-2. Finally, we get the graph
shown in figure 2a. The number of
the roots of our equation simply
equals the number of intersections of
the graph with the horizontal line y
= a (several lines are drawn in figure
2b). So we can “read” the answer right
from the graph: equation (1) has only
one root for a < -2 and a > 2 (or lal >
2), three roots for lal < 2, and two roots
for lal = 2 (the red lines in the figure).

A more rigorous proof of this re-
sult is based on a fundamental prop-
erty of continuous functions, the
Intermediate Value Theorem,
which says that whenever a con-
tinuous function takes a value
greater than a and a value less than
a at some points x, and x,, it neces-
sarily takes the value a at a point x

Figure 2

between x, and x ; and on the obvi-
ous observation that a monotonic
function takes any of its values only
once. In particular, our function f(x)
has three intervals of monotonicity:
(—eo, 1], [-1,1], and [1, ); so our
equation can have not more than
three roots—at most one root in
each of the intervals. On the other
hand, it does have a root in the first
interval for any a <2 (because func-
tion f takes values both less and
greater than any such a on this in-
terval), and it has a root in the sec-
ond interval for any a € [-2, 2] (be-
cause f|-1) =2, f{1) = -2), and a root
for a =2 2 in the third interval. Com-
bining this statements, we get the
answer. Note the special role of the
red lines in figure 2b that touch the
graph at the extremal points—they
mark the changes in the number of
roots.

Similar arguments apply to the
exercises below. As a rule, they are
easy to reproduce, so I'll leave them
to the reader.

Exercise 1. Find the number of
the roots of the equations (a) 3x5 —
50x® + 135x = a; (b) x%¢* = a.

Example 2. How many roots does
the equation

a¥=x

have?

Sketching the graphs y = a*and y
= x for a varying from zero to infin-
ity, we get the five essentially differ-
ent cases shown in figure 3. Now
the answer is seen with “the naked
eye.” In fact, the only thing left to do
is find the value a = a, correspond-
ing to figure 3d—that is, to the case
when the line y = x is tangent to the
curve.

Let x, be the x-coordinate of the
point of contact. Since at this point
both the values of the two functions

y = @ and y = x and their slopes co-

incide, we can write the following
two equations:

X0 s
{ao _XO’
X0 —
%0 lng; =1

(because (a*)’ = a* In a). Substituting
x, for aio in the second equation
yields x, = 1/In a,; plugging this into
the first equation and taking the
logarithm, we get

Ing, In L —Inlna,,
Ina, Ina,

orlnln a, = -1.1t follows that In a,
=1/e, or
g, = B2,

So equation (2) has one root when

YA YA YA YA YA
1 /
1 1 1 1
X x % "X X
a b c d e
Figure 3
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0<a<1ora=e, two roots when 1
< a < eY and no roots when a > e'’e.

Exercise 2. Find the number of
roots of the equation x/In x = a.

Example 3. For what values of a
does there exist a positive b such
that the equation

x2+a=2blnx

has a unique solution?

Again, let’s begin with a drawing.
In figure 4 you see three different
cases of the relative positions of the
graphs of fix) = x> + a and g[x)=2bInx
(for b > 0).It’s clear that the only case
in which the graphs can have a
unique common point is when they
are tangent to each other (fig. 4b).
Equating the values of the functions
and their derivatives f(x) = 2x and
g'|x) = 2b/x at the point x of contact,
we obtain

x?+a=2blnx,
2x =2b/x.

Since x must be positive (otherwise
In x is undefined), we have x = /b
from the second equation, and so

a=blnb-b. (3)

This condition is necessary and
sufficient for the graphs to touch
each other (at the point x = Vb . So
the problem is reduced to the fol-
lowing question: for what a is there
avalue of bsuch thata=blnb-b?

Question: why is the condition b
> 0 omitted?
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Let’s plot the graph of function (3)
in the (b, a)-plane (see figure 5). It
shows that the answer has the form
a > a, where a, is the minimum value
o{b,) of the function ¢(b) = b In b - b,
which can be found from the equation

ap
b, -
0 : B
ao _______ !
Figure 5

o'lb,) = 0. Since ¢'(b) =In b, b= 1 and a,
= q)(bo) =-L

Question: equation (3) has two
roots for -1 < a < 0. What does this

mean for the graphs in figure 4?
Make a drawing.

So far we’ve only been counting
the roots of equations. But some-
times knowing the number of roots
of an equation helps us solve it. For
instance, when you know that an
equation has only one root, you can
simply try to guess its value.

Example 4. Solve cos x = 1 —x2/2.

One root of this equation is quite
easy to guess: x = 0. Are there any
other roots? Look at figure 6. The
graphs of functions y = cos xand y =
1 — x%/2 are so close to each other
near the point x = 0 that it’s impos-
sible to tell without a special exami-
nation which of the two figures—6a
or 6b—is correct. Let’s try to prove
that cos x> 1 —x?/2 for all x # 0 (that
is, figure 6a is the correct one, and
the root x = 0 is unique).

Consider the function f{x) = cos x
-1 + x2/2. This is an even function
(fl=x) = flx)), so we can confine our-
selves to only positive values of x.
Since f{0) = 0, it suffices to show that
flx) increases on the interval [0, =) or
that the derivative f(x) is positive for
x > 0. But f/(x) = -sin x + X, so f(x) >
0 follows from the well-known in-
equality sin x < x (for x > 0).

The next example has to do with
a generalization of the arithmetic-
geometric mean inequality (x + y)/2
> [xy forx >0, y > 0. Rewriting it
in the form

[}
1o

B¢ SoX+5Yy

pof
Lo

4

suggests the more general inequality
in example 5.

g N

a

Figure 6

]

b
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, y=log, x

Figure 7

Example 5. For any positive a and
b such that a + b = 1 and any posi-
tive x and y,

x%yP < ax + by,

with equality holding if and only if
X =Y.

First, we rework the inequality,
replacing b with 1 - g, carrying all
the terms over onto one side, and di-
viding the inequality by y > 0:

a-f—(xj +1-az=0.
y \y

Denoting x/y = t, we arrive at the

A particular case of this inequality
was offered as math challenge M68 in
the November/December 1992 issue
of Quantum.—Ed.

3/4

1/2
- —— :
1/4

1/|4 1}6 1

inequality
flt)=at-t*+1-a=0,

which is to be proven for all ¢t > 0 and
0 < a < 1. 1leave this proof as an ex-
ercise for the reader. (Hint: using
derivatives, show that the minimal
value of f{t) is zero and is attained
only once—at the point t = 1; this
accounts for the case of exact equal-
ity, too.)

Exercise 3. Solve the following
equations: (a)Inx=x-1; (b)sinx =
x—(1/16)x.

Now we can return to the prob-
lem posed at the beginning of this
article. We'll consider an even more
general question.

Example 6. How many roots does
the equation

| »
/2 3/4 1 x

xY

1/|4 ll/e 1/2 3i/4 1

a* =log, x

have?

Figure 7 presents all six possible
cases of the relative positions of the
graphs y = a*and y = log x that occur
as parameter g sweeps from infinity
to zero. Note that the graphs are sym-
metric to each other about the line y
= x, because the functions on both
sides of the given equation are mutu-
ally inverse. We see that the critical
values of g, at which the number of
roots changes, are (1) a = a—when
the two graphs touch each other and
the line y = x (fig. 7b); (2) a = 1; and
(3) a = a—when the graphs are tan-
gent again, but cross the line y = x
at right angles (fig. 7¢). In fact, we've

CONTINUED ON PAGE 43
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Art by Dmitry Krymov

HE SINE AND COSINE ARE THE BASIC ELE-
ments of trigonometry, the science of measuring the
parts of triangles. These functions are used by con-
struction engineers, geodesists, and others.

By definition, the sine of an angle o is the y-coordi-
nate of the point M on the unit circle centered at the
origin such that the angle between the positive x-axis
and the ray OM is o.. The cosine of o.is the x-coordinate
of this point. The relation between these two functions
is given by

cos? o+ sin2a =1
and

LT
cosa=81m| —— o |.

It’s interesting that the sine was introduced not by
the ancient Greeks (although they made the major con-
tributions to the study of the geometry of the triangle)
but by the Indians, whose mathematical interests were
closer to practice. The term “sine” itself owes its ori-
gin to a grammatical misunderstanding. In their calcu-
lations the Indians made extensive used of half the
length of the chord subtending a given arc (in figure 1,

MA = sin o =
VA Y% MN) rather than
the whole chord.
They called it
ardhajiva—"half
of a bowstring.”!
Later the word
ardha (“halt”) was
dropped, and jiva
became the name
of the “sine line”
(MA in figure 1).
The Arabs, who
passed Greek
knowledge along
to us, also deliv-

Figure 1

1Similarly, our “chord” and “arc” come from the Greek
yopdn (string) and the Latin arcus (bow).
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ered the science and culture of India to Europe. For in-
stance, the “Arabic numerals” that we use were bor-
rowed from the Indians. And the notion of sine also
reached us through the Arabs. They transliterated the
word jiva as jiba, which is written in Arabic in the same
way as jaib (in Arabic script vowels are denoted by spe-
cials signs above or under the line and are often simply
omitted). The word jaib means “cavity,” and when in
the 12th century Arabic treatises were translated into
Latin, this word was rendered as sinus, the Latin word
with the same meaning.

The Indians used the cosine, too. Their kotijiva— the
sine of the remainder (after subtracting from 90°)—
eventually turned into the Latin sinus coplementi—the
sine of the complement, “cosine” for short. Another
trigonometric function introduced by the Indians was
utkramajiva, the difference between the radius and the
“cosine line”; in Europe it was named sinus versus, the
reversed sine. In modern notation it’s defined by the
formula sinv o = 1 — cos o. In figure 1, the cosine of the
angle o is equal to OA, and sinv o equals AB, the height
of the circular segment MBN. It’s interesting that in
Russia the height of the segment used to be called the
“arrow,” which takes us back to the Indian bow with
the bowstring MN.

Let’s skip over most of the many trigonometric for-
mulas and turn to the graph of the function y = sin x.
It’s called the sine curve, or sinusoid, and seems very
artificial, though its undulations resemble waves on
water. Indeed, fluid waves, as well as radio, light, and
sound waves, are directly linked to the sine function.
To make a template for drawing the sine curve, wind a
sheet of paper several times around a candle and cut it
with a sharp knife at an angle of 45° to the candle’s axis
(its wick). After unrolling the paper (fig. 2), you’ll get two

q Figure 2
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wonderful templates of a sinusoid
with the radius of the candle taken
as the unit. The graphs of all func-
tions of the form y = a sin (kx + b) +
c are also called sinusoids. They can
be obtained from the standard sine
curve by shrinking or stretching
along the axes and by translation. So
the graph of y = cos x =sin (n/2-x]isa
sine curve, as is the graph of y = sin’x
= Isin (n/2 — 2x). You can also see a
sine curve when you look at a spring
or drill from the side.

Now let’s consider the hyperbola y
= Iy x and turn it 45° clockwise about
the origin (fig. 3). The equation of the
curve thus obtained is x> — y* = 1
(why?). It will intersect the x-axis at
points B(1, 0) and B’(-1, 0); from here

YA

1 O
coshit B

Figure 3

on we'll be considering only its right
half. Turn back to figure 1 for a mo-
ment and note that the value o there
can be interpreted as twice the area of
the circular sector OBM.

Now take a point M on the (ro-
tated) hyperbola and define the pa-
rameter t as twice the area of the hy-
perbolic sector OBM taken with a
plus sign if M is in the upper half-
plane and a minus sign if M is below
the x-axis. Then ¢ takes all real val-
ues from —ee to o, and each value of
t corresponds to one and only one lo-
cation of point M on the hyperbola.
For every t the coordinates of the
corresponding point M are called the
hyperbolic cosine and sine of ¢; they
are denoted by cosh t and sinh ¢, so
M = (cosh t, sinh t).

Obviously, cosh? t—sinh? ¢t = 1. The
area of a hyperbolic sector can be
computed by means of integration.
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This vields the following expressions
for the hyperbolic functions in terms
of the exponential function e

et +et . et—et
cosht =- , sinht = :
2 2

By using these formulas, you can
derive the addition formulas for
cosh (t £ s) and sinh (¢ + s). You’ll
find that they are almost the same
as the addition formulas for cos and
sin. (The only difference is that the
signs in the trigonometric and hy-
perbolic formulas for the cosines are
opposite.) In fact, there’s a very close
connection between the trigono-
metric and hyperbolic functions.

This becomes clear if we pass from
the real to the complex numbers.
Recently we’'ve met with another
hyperbolic function—the hyperbolic
tangent tanh ¢ = sinh ¢/cosh t—in the
context of hyperbolic geometry and
relativity (see “In the Curved Space
of Relativistic Velocities” in the
March/April 1993 issue of Quan-
tum.)

The graphs of y = sinh t and y =
cosh t are shown in figure 4. We see
that one of the functions is even
and the other is odd. The graph of
cosh t is also called the catenary or
“chain line” from the Latin catena
(chain), because it’s the shape taken
by a chain suspended at its ends.

Besides trigonometric and hyper-
bolic sines and cosines, there are
other kinds as well—for instance,
lemniscatic, which are defined via
the lemniscate of Bernoulli. This
curve (fig. 5) is the locus of points in

YA
cosht

sinh t

~Y

Figure 4

Figure 5

the plane such that the product of
their distances to points F, and F, is
constant and equals a quarter of the
square of the distance between
them. It was discovered by Jakob
Bernoulli almost exactly 400 years
ago, in 1694. He described it as
“shaped like a figure 8, or a knot, or
a ribbon bow,” and used the Latin
word lemniscus (a ribbon fastened
to a victor’s garland) as its name.

If F F, = \2, the Cartesian equa-
tion of the lemniscate is

(x2 + y2)? = 2(x% - y2).

The equation in polar coordinates
(z, ¢) is simpler:

2 =2 cos 2¢.

The argument of lemniscatic
functions, as it was in our first defi-
nition of sine and cosine, is the arc
length measured counterclockwise
from the origin O in the right half of
the lemniscate and clockwise in the
left half. The lemniscatic sine sinl ¢
is defined as the length of OM if M
is on the right half of the curve and
—OM if it’s on the left half. The
lemniscatic cosine is defined by the
formula cosl t = sinl (wk — t), where
o is the arc length of one half of the
curve.

These functions also have much
in common with the trigonometric
functions. Their graphs differ very
little from the sine curve, and the
functions themselves have proved
extremely useful in modern math-
ematics.




HE REMARKABLE SWISS

pedagogue and ‘humanist

Johann Heinrich Pestalozm

(1746-1827) is widely, consid-
ered the first theorist of primary
education and the originator'of the
ideaof-eombining it with prod
labor. He_tested—his_ideas
brought them tolife in an exc
boarding-school for poer_children
that he founded. His colleaguestras
eled allover Switzerland, selectin
pupils and persuading parents to
send their children to~the school
(this was ofteén the hardess. part of
their job).

In 1814, in the mountains of Swn-z
zerland, one of Pestalozzi’s colleagues

met a young shepherd\named Jacob
Steiner, the son of a poor'peasant. At
that time Jacob could barely read or
write, but he had taught himself
some mathematics and astronomy,
which especially interested him\at

the time. The knowledge and inters
ests of the young peasant astounded

Pestalozzi’s colleague, who began
urging the elder Steiner to forego the
service of his valuable assistant and
send him to school. It wasn’t easy, but
in the end the 18-year-old Steiner
(born in 1796) left his native village—
forever. He went to Iverden, a town
near Bern, and entered Pestalozzi’s
boarding school free of charge. Steiner
had no money for education, for food,
or for lodging.

Steiner spent four years at

__university cente

\who paid little—after
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estalozzi’s school in Iver&'en Firs
ent to classes, then he taug
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d something better.
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Steiner left for Hei-
delberg, Ger anﬁk the nearest fnajor
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onetheless, in He¢idelbéyg Steiner

~mpade his first mathemagical ac-

uaintances: the outbtanding talents

f this Swiss were oljvious t§ every-
ne he met.

In 1821 Steiner learned that a
teaching pOSlthn had\ opened \up at
a gymnasium (second ry schod]) in
Berlin. He set off imm dlately he

_position would give him a regufar
income-But to fill the Vacancy e
needed to pass examin] thHS n

the trip and settle
dovyn in a strange city.

eatn: his daily bread
himself, Since he was
only quahfled to be a
mathematlcs “teacher,
he was. forced to
overburd@ﬁ himsel
with private students,

all, Steiner had no for-
mal education. These
private lessons; which
Steinendetested, pre-
vented hl‘m from " egu-
larly attending classes
at the umverS*ity Dur—
ing the three years he
spent in Heidelberg,
Steiner managed \to
take only a few univer

sity courses (which
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the results were unlikely to fill the
gymnasium administrators with
enthusiasm.

First off, the candidate for the
teaching position was asked if he
was familiar with the gymnasium
curriculum. “No, I'm not,” Steiner
replied curtly. What else could he
say? In Prussian gymnasiums Latin
and Greek were part of the curricu-
lum. This son of a Swiss peasant
knew these languages no better than
you or I, dear reader. Steiner proved
to be rather indifferent in math-
ematics as well: while he displayed
a wide-ranging and profound under-
standing of geometry, his grip on
algebra and trigonometry was rather
feeble. Wide gaps were also discov-
ered in the field of mathematical
analysis. However, the young man’s
striking abilities in geometry and
the flattering testimonials he
brought with him did the trick:
Steiner was allowed to teach math-
ematics for two years in all grades
except the last. During this time he
was required to pass all the exams in
the gymnasium curriculum and an
extra exam in mathematics. He suc-
cessfully took this extra exam much
later. As for the others, Steiner never
did pass them.

Later, Steiner taught in a second-
ary school for 14 years. This became
possible only after a vocational
school opened in Berlin. There the
curriculum in mathematics and the
natural sciences was broadened; the
ancient languages were no longer
part of the curriculum (so the teach-
ers didn’t have to know them). But
even though the school’s organizer
and director was one of Pestalozzi’s
students, at first Steiner was ac-
cepted only as a teaching assistant.
After passing additional exams in
1829 he became a full teacher. Alas!
We have to admit that the irritable
and abstracted Steiner wasn’t a good
teacher. He worked enthusiastically
with gifted students, thinking up
brilliant individual challenges for
them (in geometry most of all—see
problems 1, 2, and 6 and the appen-
dix). The rest of the students an-
noyed him: Steiner simply couldn’t
understand their lack of ability and
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interest in mathematics. From time
to time, when he couldn’t take it
any more, he’d quit his regular job
and earn a living by private lessons
again. The same happened also dur-
ing the fortunately short period
when Steiner was barred from teach-
ing at the gymnasium because he
failed to pass an exam (the voca-
tional school had not yet opened).
However, he would invariably come
back to his old school, where people
were used to his idiosyncrasies and
where his mathematical talents
were highly valued.

Choosing problems for his stu-
dents, Steiner acquired an interest in
elementary geometry that never
faded for the rest of his life. Let’s
turn to some of Steiner’s results in
this field. We'll begin with problems
dating back to the great Euler.

Protilem break

Euler established that the three
midpoints of the sides of an arbi-
trary triangle, three bases of its
heights, and three midpoints of the
segments of heights from their inter-
section point (the orthocenter of the
triangle) to the vertices lie on one
circle. This circle is called an Euler
circle or the 9-point circle of a tri-
angle. It’s remarkable that in any
triangle the Euler circle touches the
inscribed and three escribed! circles
(fig. 1). This is often called
Feuerbach’s theorem, after the per-
son who was the first to prove it.
Few people know that Steiner, igno-
rant of Feuerbach’s result, proved

Figure 1

'That is, the circles that touch one
side of a triangle and the extensions of
the other two sides.—Ed.

this theorem just two years later and
published his result immediately, so
that many mathematicians learned
of it from Steiner’s version rather
than Feuerbach’s.

1. Let a circle S centered at in the
orthocenter H of a triangle ABC meet
its midlines B A (Il AB), C,B, (Il BC),
and A C, (Il CA)atpoints F and F,, D,
and D, E, and E,, respectively. Prove
that AD = AD, = BE = BE, = CF, =
CF, (Steiner’s theorem).

Two triangles ABC and A B ,C,
are perspective from perspectivity
center P if lines AA,, BB, and CC,
meet at P. Two triangles ABC and
A B C, are directly similar if they
are similar and have the same orien-
tation: tracing their perimeters in
the orders A - B — Cand A, — B,
— C,, respectively, we move in the
same direction—clockwise or coun-
terclockwise. It’s not hard to show
that two such triangles can always
be brought into coincidence by
means of a spiral similarity (also
called a rotational dilation)—that is,
a dilation relative to some center Q
combined with a rotation about Q.
Point Q is called the center of simi-
larity of triangles ABC and A B C,.

2. Let a, b, ¢ be lines forming a
triangle T; let line [ cut a, b, ¢ at
points A, B, C,. Raise perpendicu-
lars to the sides of triangle T at these
points: a, L a, b, L b, c, Lc. Lett
denote the triangle formed by lines
a, b, c,. (a) Prove that triangles T
and t are directly similar and per-
spective; that their circumcircles §
and s intersect at right angles (that
is, their tangents at either of their
common points P and Q are perpen-
dicular to each other); and that one
of the points P and Q is the similar-
ity center of the triangles and the
other is their perspectivity center
(all these assertions are theorems of
Steiner’s). (b) In what way will these
theorems change if we replace the
perpendiculars a,, b,, ¢, with three
lines through A, B, C, that make
the same (in absolute value and di-
rection) angle oo with a, b, ¢, respec-
tively (0 < o0 < 90°)?

The next series of problems, con-
cerning a complete quadrilateral,




Figure 2

stems from the great Gauss. Steiner
certainly knew how to choose his
predecessors!

A complete quadrilateral Q is a
figure formed by four lines in the
“general position”; the four tri-
angles formed by all triples of these
lines are called the triangles of the
quadrilateral Q. The intersection
points of the lines are the vertices of
the quadrilateral Q; the segments
that join “nonadjacent” vertices
(that is, those not lying on one of the
given lines) are called the diagonals
of the quadrilateral Q.

3. (Gauss’s theorem) The mid-
points of the three diagonals of a
complete quadrilateral lie on one
line (fig. 2). This line is called the
Gauss line of the quadrilateral.

4. The circumcircles of the four
triangles of a complete quadrilateral
intersect at one point (fig. 3). This
point C is called the Clifford point
of the quadrilateral.

The statement of problem 4 was
known before William Kingdom
Clifford (1845-1879). But Clifford in-

Clifford
point

Figure 3

vented a remarkable construction
(the Clifford chain) in which this
problem is included. A complete n-
lateral N is defined as any set of n
lines in general position; it contains
n complete (n—1)-laterals M, M, ...,
M, each obtained by removing one of
the n lines. The Clifford point of a
“complete bilateral” (a, b) is simply
the common point of a and b, and the
Clifford circle of a “complete trilat-
eral” (a, b, ¢) is the circle passing
through three Clifford points of
bilaterals (a, b), (b, c), (¢, a}—that is,
the circumcircle of the triangle with
sides a, b, c. Then, for any even n the
Clifford circles of (n — 1)-laterals M,,
M, ..., M meet at one point, called
the Clifford point of the complete n-
lateral N (for n = 4 it’s the statement
of problem 4). If n is odd, then n
Clifford points of (n — 1)-laterals M,
..., M_lie on one circle—the Clifford
circle of N.

Auxiliary problems

5. (a) The bases of perpendiculars
dropped on the sides of a triangle T
from a point M of the circumcircle
lie on one line (fig. 4). This line wis
called the Simpson-Wallis line of
point M relative to triangle T.

(b) Line w bisects segment MH
(where H is the orthocenter of tri-
angle T).

6. (Steiner’s theorems) (a) The
orthocenters of four triangles of a
complete quadrilateral Q lie on one

Simpson-Wallis
line

Figure 4

line (fig. 5). This line s is called the
Steiner line of Q. (b) In any complete
quadrilateral Q its Steiner line s is
perpendicular to its Gauss line.

Biography continued

Let’s get back to Steiner’s life
story. The greatest success of his
Berlin period was his acquaintance
with an amateur mathematician,
rich manufacturer, and talented en-
gineer and railway magnate by the
name of August Leopold Crelle
(1780-1835). Although he wasn’t an
outstanding scientist, he was a
member of the Berlin (Prussian)
Academy of Science and a corre-
sponding member of the Petersburg
(Russian) Academy of Science. He
was given these honors not for his
scientific activity but for his engineer-
ing achievements and organizational
talents. But a successful entrepreneur
must have a good understanding of
people, and Crelle showed that he
knew them well.

The first specialized mathemat-
ics journal in Europe was founded in
1810 by the well-known French
mathematician Joseph Diez Ger-
gonne (1771-1859) and was titled
Gergonne’s Annals. Crelle decided
to found a German mathematics
journal. In lining up authors for the
journal, Crelle counted mostly on
two persons absolutely unknown to
professional mathematicians but in
whose talents he believed strongly.
They were a semi-educated Norwe-
gian student, N. H. Abel, and a sec-
ondary school teacher, Jacob
Steiner. The first issue of The Jour-

Gauss
line

Steiner
line

Figure 5
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nal of Pure and Applied Mathemat-
ics appeared in 182.6. The bulk of the
issue (and of those to follow) con-
sisted of articles by Abel and
Steiner. In fact, the first three issues
contained 15 articles and shorter
items by Steiner! The “Crelle jour-
nal” (as mathematicians dubbed it)
became “the leading mathematical
journal in the world.” (Gergonne
stopped publishing his in 1831. It
was revived, however, by another
French mathematician, Joseph Liou-
ville (1809-1882), with a title that
was a direct imitation of the Crelle
journal.)

The Crelle journal became
Steiner’s rostrum for his geometri-
cal ideas. In addition, the influential
Crelle was the force behind Steiner’s
election to the Berlin Academy of
Sciences (1834): Steiner’s outstand-
ing scientific writings published in
the Crelle journal provided a strong
justification. After that it wasn't
hard to secure Steiner’s election as
a professor. In 1835 Steiner left his
secondary school and took a posi-
tion in the department of natural
sciences at Berlin University.

It's interesting that the indiffer-
ent school teacher Steiner turned
into the outstanding university pro-
fessor Steiner. In the secondary
school he was irritated by students
who were strangers to mathematics.
But students who were enthusiastic
about geometry inspired Steiner; his
lectures, striking in their form and
zestful in their delivery, were great
successes. Even the Swiss accent of
the extraordinary professor was
popular with the students. They
were impressed by Steiner’s habit of
calling students to the blackboard to
solve the problems he would con-
tinually pose during his lectures. (In
our own time, this was the standard
practice of academician I. M.
Gelfand at Moscow State Univer-
sity, and it was enormously popular
with his students as well.)

The success of Steiner’s lectures
actually had a partly negative influ-
ence on the history of geometry. For
instance, as late as the second half of
this century, lectures in projective
geometry in many of the world’s
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universities were delivered according
to the badly outdated scheme worked
out by a semiliterate Swiss shepherd.
Also, Steiner’s archaic terminology
was still used in this area, even
though it had been dropped in every
other field of mathematics.

Steiner felt he was the leader of
German geometry. He reacted with
almost pathological displeasure to
any deviation from his tenets.
Steiner’s most illustrious contem-
porary in geometry was professor
Julius Pliicker (1801-1868). He rep-
resented the analytical trend in ge-
ometry, which sought to replace
geometric images with coordinate
notation and work with these coor-
dinate representations of geometric
objects by means of elaborate alge-
braic techniques. This was enough
to make Steiner—a pure geometer
who didn’t admit analytical meth-
ods in geometry—extremely antipa-
thetic to Pliicker. But Pliicker might
have had two other flaws in the eyes
of the son of a poor peasant family
who didn’t have a university educa-
tion. Pliicker was the scion of a fam-
ily of industrial magnates in the
Rhine Valley and was extraordinarily
wealthy. In addition, he had gradu-
ated from two universities—Bonn
and Paris. No wonder Pliicker’s writ-
ings aroused Steiner’s fury.

Pliicker was often sloppy in his
treatises: slips of the pen and other
easily removable defects abounded,
so there were grounds for Steiner’s
attacks. Steiner’s furious (and
mostly unjust) criticism wore
Pliicker down to the point that he
temporarily gave up geometry, re-
turning to it (with great success, I
might add) only after Steiner’s
death. In the interim he turned to
experimental physics and enjoyed
great success in that field. It’s pos-
sible that, were it not for Steiner’s
attacks, the development of physi-
cal structural analysis and the dis-
covery of cathode rays—which was
made by Pliicker’s student, Johann
Wilhelm Gittorg (1824-1914)—
might have been postponed for
many years.

So even the shortcomings of great
scientists can sometimes work to

the benefit of science!
Overexertion and malnutrition in
his youth made Steiner very weak
and sickly in the last two years of
his life. To undergo a treatment he
would often go to his native Swit-
zerland. But in 1863 he did not come
back from one of these trips. He died
on April 1, 1863, in a hotel room, ab-
solutely alone. The long period dur-
ing which he lacked material means
prevented him from settling down
to married life. He bequeathed a
sum of money to the Berlin Acad-
emy of Science—for the establish-
ment of a prize for geometry writ-
ings (meaning pure geometry, of
course). A certain sum was left to
the administration of his native can-
ton in Switzerland—to stimulate
the best mathematics pupils of the
primary school for poor children.

Anpendix

Constructions with straightedge alone

The postulates of Euclid’s Ele-
ments assert the possibility of in-
definite extension of a given line
segment, of drawing a line through
two given points, and of drawing a
circle with a given center (point) and
radius (segment). Along with the
postulates implied but not formu-
lated by Euclid—concerning the
possibility of finding the intersec-
tion of two given lines (for example,
given by a pair of points of each), of
two given circles (defined by their
centers and radii), and a given line
and circle—these postulates de-
scribe the entire range of construc-
tion problems “solvable according
to Euclid.” These problems boil
down to the aforementioned postu-
lates—that is, they are to be solved
with straightedge and compass.

In 1797 Lorenzo Mascheroni’s
Compass Geometry was published
in Italy. The book claimed that all
problems in construction solvable
with a straightedge and compass
are solvable with compass alone—
with one natural restriction: a line
segment cannot be constructed with
compass. However, using a com-



pass, one can find any number of
points of a segment if two of its
points are known. Much later a
book by George Mohr (1640-1697)
of Denmark was discovered. It was
published in 1672 (125 years before
Mascheroni’s treatise) in two lan-
guages (Danish and Dutch) and
proved the same theorem.?

Jacob Steiner got interested in con-
structions with straightedge alone
(see problems 1-3 below). He succes-
sively examined constructions with
straightedge alone that can be per-
formed if the following figures are
drawn in the plane: (a) two parallel
lines or a segment divided by a given
point in a given rational ratio; (b) a
parallelogram; (c) a square; (d) a circle
with its center. He showed that in
case (d) all the constructions “per-
formable according to Euclid” can be
carried out with straightedge alone.
(Of course, we can’t construct a circle
with a given center and radius using
only a straightedge. But we can find
any number of points on this circle.)

Problems

These constructions should be
done with straightedge only.

1°. Parallel lines AB and ] are given.
Construct (a) the midpoint C of the
segment AB; (b) the point D on this
segment such that AD = AB/n, where
n is a given integer.

2°. Given are points A, B and (a)
the midpoint C of AB, (b) the point
D on AB such that AD = AB/n.
Draw a line I through a given point
M parallel to AB.

3°. Given a point M, a line ], and
(a) a parallelogram, (b) a square, draw
through M a line (a) parallel, (b) per-
pendicular to 1.

4°. Given a circle S with center O
and (a) five points A, B, Q, K, L, (b) six
points Q, K, L, P, M, N, construct the
points of intersection of (a) the line
AB and the circle with center Q and
radius KL; (b) the circles with centers
Q and P and radii KL and MN, respec-
tively.

5°. (Hilbert’s problem) Prove that
it’s impossible to construct the cen-

2See also “Constructions with
Compass Alone” in the May 1990
issue of Quantum.—Ed.

ter of a given circle with ruler alone
(without compass!).

The shortest network

Steiner used to give his students
problems of finding the best con-
figuration or a figure from this or
that viewpoint. Here’s one of his
favorites.

Three villages are given. Connect
them in a network of roads of mini-
mum length.

It’s more or less clear {though it
remains to be proved) that the solu-
tion is given either by two sides of
AABC (except the longest one) or by
segments AP, BP, CP, where the
sum of distances from P to the ver-
tices of the triangle is as small as
possible (fig. 6a and 6b). One can
prove that the solution of Steiner’s
problem is given in figure 6b if ev-
ery angle in AABC is less than 120°
and in figure 6a if ZB > 120°.

A
B c

a b
Figure 6

In the case when the number of
villages n > 3, the minimum net-
work may be similar to figure 6a—
that is, consisting of roads connect-
ing the villages. Such a network is
called a framework. It’s always pos-
sible to find the shortest network by
an exhaustive method (nowadays
computers are used to find the solu-
tion of Steiner’s “general” problem
with a larger number of “villages”).
In most cases the best network is
similar to the one given in figure
6b—that is, one with extra network
“nodes” where three roads meet; the
roads form an angle of 120° between
one another. Such nodes are called
Steiner points, and the networks
containing them are called Steiner
networks (fig. 7). Alas! We have no
general methods of finding minimal
Steiner networks connecting n
places—we don’t know when “the
absolutely minimum” network is a

D C

Figure 7

framework and when it’s a Steiner
network. It has been proposed that
the minimum framework cannot be
considerably longer than the mini-
mum Steiner network. In the worst
case it will be 24/3 times longer
(that is, 15% longer), but this hy-
pothesis has been proven only for
the case of n < 5.

Asyou can see, Steiner’s “general”’
problem turned out to be not so
simple. Steiner himself could come
up with only a few examples of such
networks for the case of n > 3. Today
we know little more than he did!?

Problems

6°. Prove the result formulated by
Steiner (depicted in figure 6).

7°. Find the shortest network con-
necting four points A, B, C, D that are
vertexes of (a) a square; (b a triangu-
lar pyramid (tetrahedron).

*For more on the Shortest Network
Problem, see the May/June 1993 issue
of Quantum.—Ed.
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Late light irom Mercury

What delayed the message from the fleet-footed god?

LMOST NOBODY WONDERS

why it takes time for light to

reach the Earth from a heavenly

body. The light from the Sun
travels for eight minutes before it
reaches the Earth. It's easy to verify
this number. The distance between
the Sun and the Earth is 150 million
kilometers—that is, 1.5 - 10"' m. The
speed of light is about 3 - 10% m/s.
Dividing the first number by the sec-
ond, we get 500 s = 8 min.

However, the general theory of
relativity makes some very impor-
tant corrections to such reasoning.
The phenomena explained by this
theory are best demonstrated by
Mercury. And that is the planet
we'll look at.

The distance between the Earth
and Mercury attains maximal or
minimal values when the Sun and
Mercury are in conjunction—that is,
when the Earth, the Sun, and Mer-
cury lie on the same straight line.
These distances arer,_ = 1.38 astro-
nomical units (AU) at superior con-
junction (fig. 1),' when the distance
between the Earth and Mercury is
maximal, andr_, =0.62 AU at infe-
rior conjunction (1 AU equals the
average distance between the Sun
and the Earth). Multiplying these

'A reminder: the planets move
almost in the same plane, which is
known as the ecliptic plane (or simply
the ecliptic). Here we're not taking
into account that the planetary orbits
are ellipses; this would lead to slight
variations inr,_and r

min’

by Yakov Smorodinsky

;5 Mercury superior inferior
conjunction conjunction

® Sun

@ Earth

Figure 1

numbers by 8 min/AU, we obtain
the approximate time it takes light
to travel from Mercury to the Earth
from both positions. Of course, this
calculation yields correct values if
we're not interested in the details.
But it’s the details that we’ll be ex-
amining in this article!

Let the light beam pass near the
Sun when Mercury is at superior con-
junction. The general theory of rela-
tivity leads to the conclusion that the
speed of light is less in the Sun’s gravi-
tational field than in a vacuum (much
like what happens when light propa-
gates in transparent matter).”> This
decrease in the speed of light is very
small, and calculations show that it
corresponds to an increase in the
light’s travel time of 0.00024 s (a light
beam travels 72 km during this time).

*This is one way of modeling the
experimental observations. An
alternative way would be to assume
that the light travels a longer
distance. This has the advantage of
making the speed of light constant, in
agreement with the special theory of
relativity.—Ed.

Modern radar technology has made
it possible to record such an exotic
effect.

What are we to make of this num-
ber, 72 km? Clearly, it’s hard to cal-
culate this value. However, we can
get an idea of its order of magnitude
if we understand the concept of a
gravitational radius and can use di-
mensional analysis.?

The quantitative characteristic of
the gravitational field of a massive
body is the gravitational potential
energy per unit mass. According to
Newton’s law of universal gravita-
tion, this gravitational potential is
given by

e L
r

This formula contains two values:
the product GM, which characterizes
the source of the field (the Sun, in
our case), and the distance r. Usually
in the general theory of relativity a

3See “The Power of Dimensional
Thinking” in the May/June 1992 issue
of Quantum.—Ed.
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different characteristic value is used:
R = 2GM .
&r CZ
This gravitational radius is known as
the Schwartzschild radius. The Sun’s
Schwartzschild radius is equal to
3 km, and the Earth’s is only 9 mm.*

The gravitational potential can
now be rewritten as

The left-hand side is the gravita-
tional potential in dimensionless
units—that is, the quantity does not
have any dimensions of length,
time, or mass. This means that its
value does not change if we change
our system of measurements. The
quantity ¢/c? is used to characterize
the strength of the gravitational
field in most cases.

A light beam passing near the
surface of the Sun (r=R_ =7 10°m]
can be expected to decrease in veloc-
ity by a value proportional to ¢/c?,
since this is the only value charac-
terizing the Sun’s gravitational field:

We can say that space near the Sun
has the optical characteristics of a
medium with a refractive index
slightly greater than 1. If we assume
that the gravitational field acts only
near the Sun—for instance, over a
distance of a few solar radii (we’ll
say 10 solar radii, for the sake of ar-
gument)—we can estimate that the
travel time of the light increases by
At, which is determined from the
following equation:

t+At= B &
Vigne C—AV
10R

“It’s conventional to define R, with
a factor of 2, although you may
sometimes encounter formulas
without this factor.
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or

Ar 10, Av _10R, R, 10R

gr

c cC c R

o) C
=10"*s.

This estimate yields a time dur-
ing which a light beam would travel
30 km. Of course, this estimate is
very approximate; in particular, the
choice of the factor of 10 is ex-
tremely arbitrary. Not only that, the
correct formula takes into account
the distance between the Sun and
the planets as well as the solar ra-
dius, since time travels more slowly
along the entire path (not just near
the Sun). Nevertheless, our estimate
is useful for getting a

still other problems. It’s not so easy
to know the location on the planet’s
surface where the light beam is re-
flected—what’s being measured is
the time the signal travels from the
Earth to the planet and, after reflec-
tion, back to the Earth (the radar
echo).

Nevertheless, such experiments
were done by a group of American
physicists. They measured the sig-
nals sent to Mercury, Venus, and
Mars. The results corresponded to
theory, but the errors were still too
large (about 5-10%).

Figure 2 shows one of the curves
for the signal delay on different days.
Zero on the abscissa corresponds to
the moment of superior conjunc-
tion.

| I | 1 | .
>

feel for the problem. A
The more precise for-
mula in the general 200 |-
theory of relativity is
160 -
2
At=£Rﬂ{l+1n&D—], g 120 -
c L, Y
-~
V
where the logarithm = 80
contains the ratio of a0 |
the Sun’s radius to the
Earth-Sun distance r,
and the ratio of the ~300
Sun’s radius to the
Mercury-Sun distance Figure 2

r,. And it was the loga-
rithm that we missed in our reason-
ing. This logarithm isn’t insignifi-
cant—it’s equal to 11.2. So the
precise formula is

224R
= —igr .
C

At

In order to verify this formula
with experimental observations, we
need to know the moment corre-
sponding to superior conjunction as
if the Sun had no effect on the light
beam. For this we need to know the
astronomical distances with an ac-
curacy of 1-2 km. Such require-
ments are at the outer limits of
modern technology.

The experimentalist encounters

-200 -100 O

100 200 300
days

Light deflection in the Sun's field

As was mentioned above, space
near the Sun affects a light beam as
if it were an optical medium with a
refractive index slightly higher than
1. This means that the light of dis-
tant stars should curve as it passes
the Sun, much like what happens
when it passes through a prism. In
principle this phenomenon was
known long ago. When Sir Isaac
Newton presented the theory of
light as a flow of tiny particles, it
was clear to him that light should be
attracted by the Sun. Since in a
gravitational field the acceleration
of all bodies is the same and doesn’t
depend on mass, the trajectory of



light likewise doesn’t depend on the
light particle’s mass and takes the
form of a parabola. Remember, plan-
etary masses aren’t present in
Kepler’s laws of planetary motion.’
From such considerations Sande-
mann obtained in 1801 the formula
that resulted in a deflection angle of
6=R_ /R, =0.85"for a light beam
passing near the edge of the solar
disk. However, this result turned
out to be wrong. In 1915 Einstein
worked out a new formula based on
the general theory of relativity, and
it gave a value for this effect that
was twice as large:

2R
o=—E=17".
RO

The light deflection was mea-
sured for the first time in 1919 by
expeditions mounted by the Royal
Astronomical Society of London to

*See “The Fruits of Kepler’s
Struggle” in the January/February
1992 issue of Quantum.—Ed.

northern Brazil and the Gulf of
Guinea to observe the total solar
eclipse. On September 27, 1919,
Einstein wrote to his mother: “Good
news today! Lorentz just cabled me
that the British expedition indeed
proved the deflection of light near
the Sun.”

From then on, the Einstein effect
has been measured during virtually
every solar eclipse. Nevertheless, it
is pretty difficult to obtain a value
with a suitable accuracy. One needs
to measure very accurately the posi-
tions of stars near the Sun and repeat
the measurements after a half-year,
when the Sun is no longer in that re-
gion of the sky. In the meantime,
the state of the atmosphere has
changed, the refraction in the Sun’s
atmosphere has changed—in short, a
whole system of corrections has
arisen, which makes it very difficult
to compare data from the two mea-
surements.

Nevertheless, many astronomers
have worked long and hard to de-
crease the error, and have managed to
reduce it to the point that it’s now

possible to talk about agreement be-
tween theory and experiment within
error limits of no more than 1% of the
magnitude of the effect measured.

To date the best results have been
obtained in research involving
eclipses of quasars (powerful sources
of radio waves). The advantage of
observing radio sources is obvious:
it doesn’t have to be dark out to
record their radiation, so they can be
studied at any time.

In conclusion, we can now con-
sider it an established fact that mas-
sive celestial bodies act like huge
converging lenses. The refraction is
much greater than could be ex-
plained by the attraction of a light
quantum to the Sun in accordance
with Newton’s law of universal
gravitation. The law was imprecise,
as it turned out: light is attracted
more strongly than a simple body
with a mass calculated according to
the formula mc? = hv (the energy of
a quantum). And the phenomenon
responsible is the curvature of space
near a massive body—in this case,
our Sun. Q)

“DERIVATIVES IN ALGEBRAIC PROBLEMS”
CONTINUED FROM PAGE 31

already found g, (see example 2)—
it’s equal to e'e. Similarly we can
find the value of a,: if x, is the point
where y = a* intersects with y = x,
then g = x, and x In a, = -1 (this is
the slope of a* at x = x ). Eliminat-
ing x, and solving for a , we get a, =
e*. Here’s the final answer: the equa-
tion has three roots for 0 < a < e, one
rootfore*<a<1,tworootsfor 1 <a
< e'¢, one root for a = e¢, and no roots
for a > elle.

(Editor’s note: Although it’s quite
correct, this graphic solution seems
almost too concise—deceptively
simple. It would be a very good ex-
ercise for the reader to restore all the
missing details. A full-scale solution
is offered in the follow-up article on
p. 44.)

Exercises

4. Find the number of roots of
(a) 3x* + 4x® - 36x* = g; (b) e* = ax.

5.Solve (x-1)e- '+ x*-3x+2=0.

6. Solve these equations in two vari-
ables: (a) 1/x + 2+/x = 3y(1 - In y);
(b) In x/x = e°¥; (c) 4*+ 1 = 2%+ ! sin y.

7.Foreveryn=0,1,2, ..., draw the
set of points (p, ¢) in the (p, g)-coordi-
nate plane for which the following
equations for x have exactly n roots:
(a) x* = 3px + g; (b) p* = x2 (x > 0).

8. Without calculating the num-
bers e* and n°, determine which of
them is larger. Q)

ANSWERS, HINTS & SOLUTIONS
ON INSIDE BACK COVER
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The other hal of what you See

Don't believe it 'til you prove it!

IGURE 7 IN “DERIVATIVES IN
Algebraic Problems” (p. 31),
which illustrates the equation
a* = log, x, looks pretty con-
vincing. But when you think more
about it, you understand that the
good advice to believe only half of
what you see applies here perfectly.
As it turns out, an accurate justifi-
cation that the number of roots of
this equation is correctly repre-
sented in this figure isn’t so easy to
provide as it may seem. This short
article provides a proof.
First, consider the case a > 1. In
this case, as the graph suggests, the
equation

a* =log, x (1)
is equivalent to a simpler equation
a¥=x. (2)

Indeed, a little algebra shows that
equation (2) implies equation (1). To
show that equation (1) implies equa-
tion (2), we can proceed indirectly.
Suppose a*=log x. Can a* be greater
than x? Well, taking log_ of both sides
preserves this inequality (since a > 1),
so we would have x < log, x, or a* < x
< log, x, which is a contradiction.
Similarly, a* > x implies a* > log, x.
Therefore, if a* = log x, the only pos-
sibility left is that a* = x.

Equation (2) has been already
studied in “Derivatives in Algebraic
Problems.” A question that might
need an additional explanation is
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by Vladimir Dubrovsky

why there are not more than two
roots for 1 < a < e'/*. However, it’s
easily answered by examining the
function f(x) = a* - x, whose zeros are
the roots of equation (2). The deriva-
tive f(x) = a* In a — 1 is increasing
and has only one zero x, = -In In a.
So the function itself decreases for x
< x,, has a minimum at x,, and in-
creases for x > x,, which means that
it can have at most one root in each
of the intervals (-, x,] and [x,, o).
The actual number of roots depends
on the minimum value f(x,): there
are no roots, one root, or two roots
if flx,) >0, fix,) = 0, fix,) < O (or, as the
graphs of a* for different a’s clearly
show, a>a, a=a, a<a, where a® =
x,), respectively. This is in full agree-
ment with what was said in the
article (it was shown there that a, =
elle),

The case 0 < a < 1 needs a subtler
inspection. First of all, we note that if
fix) = a* - x, then f(x) =a*lna-1n x.
ForO<a<1andx>0, wehavea*>0,
Ina <0, and -In x < 0. Hence, f(x) <0
for x > 0, and f|x) decreases from 1 to
—oo as x varies from 0 to . Since it is
still true (for O < a < 1) that equation
(2) implies equation (1), there is at
least one root for equation (1). Since
the graphs y = log, x and y = a* are
symmetric with respect to the line
y = x, any other possible root x of
equation (1) must have a counterpart,
¥’ = a*=log_x, which is also aroot (the
reader is invited to check this). Points
(x, x’) and (x’, x) in the coordinate
plane are symmetric points of inter-

section of the two graphs.

Now let’s rewrite equation (1) as
x = log, log, x, and use the formula
log, u = In u/In a. Taking into ac-
count that In a < 0, we’ get the equa-
tion

In(-lnx)-xlna=In(-lna) (3)

The possible number of roots of
equation (3) can be found by the
method used above, except that now
it’s better to take two successive de-
rivatives of the left side of equation
(3}, which we'll denote by g(x):

g (x)= L ~Ing,
xInx
” Inx+1
g(x)=- -y
%) x*In*x

Since g”(x) has only one zero (at x =
1/e) and changes its sign at this
point from plus to minus, g'(x) has a
local maximum at x = 1/e (see figure 1
on the facing page) equal to —e —1n g,
which is the absolute maximum on
0 < x < 1, the domain of equation (3).
So for In a = —e (that is, for a = ¢7),
g’(x) <€ 0, which means that g(x) is
decreasing on 0 < x < 1, and equation
(3) (and equation (1) as well) has ex-
actly one root—that of equation (2).
As a gets smaller than e, the upper
graph in figure 1 is shifted still
higher. Clearly, it has two roots for
a < e, so g|x) has three intervals of
monotonicity, and, therefore, not



Y

Figure 1

more than three roots. (A different
argument can be found in the solu-
tion of problem M85 in the May/June
issue, where it’s proven that the de-
rivative of a differentiable function
with n zeros has at least n — 1 zeros.
This problem is another good ex-
ample of using calculus in algebraic
problems.)

It remains to show that for 0 < a

< e equation (1) really does have
three roots. To this end, we’ll show
that for these values of a the func-
tion ¢(x) = a* - log_ x is decreasing in
some small neighborhood of the
root x, = x,(a) of equation (2). It will
follow that ¢(x,) < ¢(x,) = O for some
X, > x,; since ¢(1) = a > 0, function ¢
must have a zero between x, and 1,
and along with it a third, “counter-
part” zero smaller than x,, as we
know.

Let’s trace the value s(a) of the de-
rivative a* In a of a* at point x,(a) as a
decreases from e. For a = e we have
x, = 1/e and s(a) = -1. For a < e the
graph of y = a* lies below the cor-
responding graph for a = ¢, so x,(a)
< 1/e(fig. 2). Therefore, s(a)= a* Ina
=x,Ina<Ine*/e=-1.But ¢'[x ) = s(a) -
slal*, because (log x) = (x In a)!, and
sla! >-1.So ¢'[x,) < (-1)-(~1)=0, which
means that ¢'(x) is negative in some
neighborhood of x, and we're done.

Summing up, we've proved that our
equation has three roots for 0 < a < e,
onerootfore*<a<1anda=e two

Figure 2

roots for 1 < a < e'¢, and no roots for
a> el

This problem provides an excel-
lent (and nontrivial) opportunity to
use graphing calculators and even
more sophisticated computer tools. It
really requires some effort to make
them show you the three roots in the
case 0 < g < e or to compute the
roots, even for a = 1/16, when two of
them are 1/2 and 1/4. Ql

“ONES UP FRONT”
CONTINUED FROM PAGE 20

said to hit M ifu = ‘Oﬁ, where O is
the origin and point U lies in M. Let
a = (a,, a,) be a vector such that the
numbers a,, a,, and 1 are rationally
independent. That is, a linear combi-
nation of n a, + n,a,, with integers n,
and n,, is itself an integer only for n,
=n,=0. Consider an infinite sequence
of vectorsa+b,2a+b, ..., na+b, ..,
where b is any vector at all. Then the
probability that the fractional part of
a term in this sequence taken at ran-
dom hits M is equal to the area of M3

18. A flea is jumping on an infi-
nite chessboard of unit squares. It
moves a distance x to the left and a

3The further generalization of this
theorem—to n-dimensional space—is
true as well. (The “difference” of the
sequence—vector o—must have
coordinates none of which is
representable as a linear combination
of other coordinates and the number 1
with rational coefficients, and the area
of the set M must be replaced by its n-
dimensional volume.)

distance y upward with each jump.
Prove that if the numbers x and y are
rationally independent with one,
the flea will necessarily hit a black
square. Will this remain true if we
require only that x, y, and y/x be ir-
rational?

19. The numbers A, A, and &t are
rationally independent. Prove that

the simultaneous inequalities
sinnk, > 0.999999,
sinnA, > 0.999999

have a positive integer solution n. (@]

ANSWERS, HINTS & SOLUTIONS
ON PAGE 59
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PHYSICS
CONTEST

Electricity in the air

“Go, wondrous creature! mount where science guides,
Go, measure earth, weigh air, and state the tides . . .
Go, teach Eternal Wisdom how to rule—

Then drop into thyself and be a fool!”

—Alexander Pope

by Arthur Eisenkraft and Larry D. Kirkpatrick

HIS MONTH’S CONTEST

problem is based on part of one

of the theoretical problems

given at the XXIV Interna-
tional Physics Olympiad that was
held in Williamsburg, Virginia, in
July (see the September/October
1993 issue of Quantum). The prob-
lem was written by Anthony
French of MIT, who served as the
chair of the examinations commit-
tee, and is based on an actual appli-
cation of physics to a real-world
situation. The first part of the solu-
tion is based on Gauss’s law, one of
the most fundamental laws of elec-
tricity and magnetism.

Carl Friedrich Gauss was the great-
est mathematician of his time and
along with Archimedes and Newton
may have been one of the three great-
est mathematicians ever. He devel-
oped the method of least squares for
fitting curves to data points and used
this method to calculate an orbit for
Ceres, the largest of the asteroids, af-
ter it couldn’t be found. He was hon-
ored for this work when the name
Gaussia was given to the 1001st aster-
oid. The gauss—a unit of magnetic
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field strength equal to 10* tesla—
honors his work in magnetism. While
still a university student he devised a
method of drawing a seventeen-sided
regular polygon using only a compass
and straightedge. He then went fur-
ther to show that certain regular poly-
gons (for example, one with seven
sides) could not be constructed this
way.

Gauss’s law tells us that the elec-
tric flux through a closed surface is
proportional to the electric charge
that is enclosed by that surface. To
calculate the electric flux, we imag-
ine dividing the surface into many
small regions. For each region the
contribution to the electric flux is
given by the component of the elec-
tric field perpendicular to the sur-
face E_ times the surface area A of
that region. By convention, the con-
tribution is positive if the electric
field is directed out of the enclosed
volume and negative if the electric
field is directed inward.

Because total electric flux is just
the sum of all of the individual con-
tributions, we can write Gauss’s law
in the form

SEA=Tne,

&

where g, = 8.85 x 1072 C?/(N - m?) is
the permittivity of free space. For
more information about Gauss’s
law, see the contest problem in the
July/August 1992 issue of Quan-
tum.

Gauss’s law is very useful for
finding electric fields in cases of
high symmetry. For example, let’s
find the electric field outside of an
infinitely long, straight wire carry-
ing a positive charge per unit length
L. To exploit the symmetry, we
choose the gaussian surface to be a
cylinder of radius r and length L that
is coaxial with the wire. By symme-
try, we expect that the electric field
will point radially outward from the
wire and have the same magnitude
at a given distance from the wire.
This means that the electric field
will be parallel to the ends of the
cylinder and will not contribute to
the flux. Therefore, the flux is given
by the electric field times the area of
the curved surface of the cylinder:

Art by Tomas Bunk
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The enclosed charge is equal to the
charge per unit length times the
length of the cylinder:

qenc =AL.

Putting these two expressions into
Gauss’s law, we can solve for the
magnitude of the electric field:

A

E= .
2nsor

Notice that the length of the gaussian
cylinder cancels as we expect.

From the standpoint of electro-
statics, the surface of the Earth can
be considered a good conductor that
carries a total charge Q and an av-
erage surface charge density o, We
can also consider the Earth a perfect
sphere with a radius R = 6,400 km to
simplify the geometry. Under fair-
weather conditions, this surface
charge density produces a downward
electric field E at the Earth’s surface
equal to about 150 V/m.

A. Use Gauss’s law to calculate
the magnitude of the Earth’s surface
charge density and the total charge
carried on the Earth’s surface. Is this
charge positive or negative?

The magnitude of the downward
electric field is observed to decrease
with height and is about 100 V/m at
a height of 100 m. This occurs be-
cause the air above the Earth’s sur-
face contains a net charge.

B. Use Gauss’s law to calculate the
average net charge per cubic meter of
the atmosphere between the Earth’s
surface and an altitude of 100 m. Is
this charge positive or negative?

The net charge density you calcu-
late in part B is actually the result of
having almost equal numbers of
positive and negative singly charged
ions (g = 1.6 - 10*° C) per unit vol-
ume (n, and n ). Near the Earth’s
surface, under fair-weather condi-
tions,n =n =6-10°m=. These ions
move under the action of the verti-
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cal electric field and their speed v is
proportional to the strength of the
electric field:

v=1.5 10" XE,

where v is in m/s and E is in V/m.
C. How long would it take for the
motion of the atmospheric ions to
neutralize half of the Earth’s surface
charge, if no other processes such as
lightning occurred to maintain it?
Please send your solutions to
Quantum, 1840 Wilson Boulevard,
Arlington, VA 22201 within a
month after receipt of this issue.
The best solutions will receive spe-
cial certificates from Quantum.

Animal magnetism

The best solution to the May/
June contest problem was submitted
by Eric Joanis of Waterloo, Ontario.
This problem appeared on the semi-
final exam that was used to select
the 1993 US Physics Team that
competed in the International Phys-
ics Olympiad.

In the problem we asked our read-
ers to show that the mass of a par-
ticle in a mass spectrometer is given

by

2 192
L

pA% 1)

As explained in the problem, a
particle with a mass m and charge g
gains kinetic energy as it travels
through a potential difference V ac-
cording to

2

1mv*=qV. (2)

Once the particle enters the mag-
netic field B, the magnetic force pro-
vides the centripetal acceleration

2

qvB = mv_
R

Combining these two equations
yields equation (1) for the mass of
the particle, which can be deter-
mined when the radius of its path

can be measured.

Part B of the problem involved
some target practice with an elec-
tron in a magnetic field. If the field
is perpendicular to the page, the par-
ticle travels in a circular path in the
page. Since we know the mass of the
electron, we can solve equation (1)
for the magnetic field:

1 2mV

"2V g

From the geometry in the figure
above, we see that

é = Rsina.
2
Therefore,
B 2sino (ZmV.

d\/q

If the magnetic field is parallel to
AT, the problem grows in complex-
ity. There are now two components
of the velocity. The component par-
allel to the field, v cos o, is unaffected
by the field. The component perpen-
dicular to the field, v sin o, causes the
electron to move in a circle. The com-
bined motion is that of a helix.

If the electron traveling along the
helical path is going to hit the tar-
get T, the time it takes to travel a
distance d (due to the parallel com-
ponent) must equal the time it
takes to complete one circle of the
helix (due to the perpendicular
component). The parallel time is
given by

3)



The perpendicular time is

b 2nR
vsino,

Because the radius R of the helix is
determined by the component of the
velocity perpendicular to the field,
we have

R= mvsinoc/
gB

and the perpendicular time be-
comes
_2nm

L B (4]

Since the two times must be equal,
we can equate equations (3) and (4)
and solve for B to obtain

_ 2mmvcoso

qd

B

Solving equation (2) for v and substi-
tuting, we find that

B= 2ncosa |2mV
d q

Note that the direction of the field
does not matter.

The electron will also hit the tar-
get if it completes two circles or
three circles or k circles before it
travels the parallel distance to T. In
that case we must modify the final
equation to take this into account:

B kZchosoc //2mV.
d \ q

Part C of the contest problem
asked readers to find the numerical
values for the magnetic field given
V=1000V,d=5cm, and o = 60°.
For the field perpendicular to the
page, B = 3.7 mT,; for the field paral-
lel to the page, B = k(6.7 mT). [®
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MATH
INVESTIGATIONS

Periodic binary sequences

Complex formulas for simple things

N THIS COLUMN WE'LL EX-
plore periodic sequences of 0’s
and 1’s defined by

n=0,12,...,

where f{n) is to be specified. For the
simplest choices of f{n)—that is, if
fln) =0 or fin) = 1—we simply repro-
duce them; whereas if fin) = n, we
obtain(a )=(0, 1,0, 1, ...); and if f(n)
=n+1,weget{a)=(1,0,1,0,..).
The latter are a bit more promising,
but clearly we must employ better
machinery to obtain more interest-
ing sequences of 0’s and 1’s.

If fin) =L.n/2], where| x| denotes the
greatest integer less than or equal to
x,weget(a)=(0,0,1,1,0,0,1,1, ...
while for fin) =Ln/2+ 1, we get (a ) =
(1,1,0,0,1,1,0,0, ...). My first chal-
lenge to my readers is to prove that
the choices fin) = Ln*/2] and f{n) =
Ln?/2] + 1 produce the sequences (a )
=(0,0,0,1,0,0,0,1, ...) and (@) =
{1,1,1,0,1,1,1,0, ...). My next chal-
lenge is to construct the functions
that will similarly generate the two
other nontrivial sequences of period
length 4:¢0,1,1,0,0,1,1,0, ...)and
1,0,0,1,1,0,0,1, ...).

Clearly, one should also be able
to generate all sequences of 0’s and
1’s of period length 3, 5, 6, and so on.
Still other challenges await you. For
some of them, you might need to
investigate functions of the form f{n)
=1 p(n)], where p(n) is a higher order

50 NOVEMBER/DECEMBER 1883

by George Berzsenyi

polynomial. Hence the following
questions arise: Do all polynomials
p(n) lead to periodic sequences (a_)?
Can one determine from the degree
and/or coefficients of p(n) the period
length of (a )? Can one construct in
such manner all periodic sequences
of 0’s and 1’s? If not, what other
simple machinery is needed to ac-
complish the task? Some of these
questions may be quite difficult, so
you should be happy with partial
results.

The purpose of this column is to direct
the attention of Quantum’s readers to
interesting problems in the literature
that deserve to be generalized and
could lead to independent research
and/or science projects in mathemat-
ics. Students who succeed in unravel-
ing the phenomena presented are en-
couraged to communicate their results
to the author either directly or through
Quantum, which will distribute
among them valuable book prizes and/
or free subscriptions.

Reater response

I'd like to thank my readers for
communicating their thoughts to
me concerning the problems dis-
cussed in earlier columns. In par-
ticular, I'm deeply indebted to Brian
Platt, whose insightful comments
and continued interest are most ap-
preciated. In a future column, I'll
share some of Mr. Platt’s original
investigations about chaotic behav-
ior, which he was kind enough to
share with me.

I also wish to thank Mark Rupright
for his wonderful solutions of the
problems posed in my column “Digi-
tized Multiplication 2 la Steinhaus”
(July/August 1993); and Michael
Filaseta and Ben Rahn, who submit-
ted their proofs that three 3’s cannot
occur in any of the rows of
Hilgemeier’s “likeness sequence”
(presented in the last issue). Mr.
Rahn'’s proof is reproduced below for
my readers’ scrutiny:

Assume three 3’s occur consecu-
tively in certain rows. Let S be the set of
all natural n such that row n contains
three consecutive 3’s. By the Well Or-
dering Principle, there is a least element
of the set S—call it k. If row k contains
three consecutive 3’s, then either the
first two or the last two of the three 3’s
describe the presence of three consecu-
tive 3's in the k — 1 row. Thus, k - 1 is
also in the set S. Note that kisnot 1, so
k -1 is still a natural number. But this
contradicts the fact that k is the least
element in set S. Therefore, three con-
secutive 3’s never occur in any given
row.



HAPPENINGS

The American Mathematics
Gorrespondence School

Math by mail for ambitious high school students

TTENTIVE READERS OF OUR
magazine were probably per-
plexed when the Math by Mail
department, introduced in the
March/April 1991 issue of Quan-
tum, never resurfaced. Happily, the
idea of a mathematics correspon-
dence school in the United States
did not fade away. The eminent
Russian mathematician 1. M.
Gelfand, who founded the Math-
ematics Correspondence School in
the Soviet Union almost 30 years
ago, has been instrumental in devel-
oping a similar project in this coun-
try: the American Mathematics
Correspondence School (AMCS,).

AMCS is sponsored by the Cen-
ter for Mathematics, Science, and
Computer Education at Rutgers
University, where Prof. Gelfand
now teaches. The program gives
ninth-grade students an opportunity
to develop their mathematical abil-
ity by working with university
mathematicians. They hone their
skills on highly effective, nonstand-
ard problem-solving models in alge-
bra, geometry, and analytical geom-
etry. The school is independent of
the school day, but teachers are en-
couraged to become mentors to stu-
dents in their schools.

Interested students who apply to
become part of AMCS take an en-
trance exam to determine their
mathematical aptitude. Those who
perform satisfactorily are admitted
to the school and receive bimonthly
assignments. The students write

solutions and explanations of their
work and mail them to Rutgers,
where they are reviewed by faculty
members and graduate students in
the Department of Mathematics.
These mathematicians then send
their comments back to the stu-
dents.

The texts for AMCS are books
written by Prof. Gelfand and his col-
leagues. Two of them—The Method
of Coordinates and Functions and
Graphs—have been translated from
the Russian and published by
Birkhiuser. These paperbacks cover
a great deal of mathematics in a

compact format. Additional texts in
geometry, algebra, and trigonometry
are in preparation.

The American Mathematics Cor-
respondence School began in 1991-
92 with a program for ninth graders
primarily in New Jersey. For 1992—
93 AMCS continued with these stu-
dents (who entered Level Two) and
began a new program for entering
students (Level One). AMCS is cur-
rently accepting applications for
1993-94. The registration fee is $50
(due upon return of the entrance
exam). However, no student should
be deterred from applying because of
financial considerations.

The Mathematics Correspon-
dence School in the former Soviet
Union graduated 70,000 students,
many of whom have gone on to be-
come prominent mathematicians
and scientists. Its US cousin hopes
to encourage mathematical talent
here in much the same way. For fur-
ther information about the Ameri-
can Mathematics Correspondence
School, please contact

Harriet Schweitzer

Assistant Director

Center for Mathematics, Science,
and Computer Education

SERC Building—Room 239

Busch Campus—Rutgers University

Piscataway NJ 08855-1179

E-mail: harriets@gandalf.rutgers.edu

Phone: 908 932-0669
Fax: 908 932-3477 (@
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NYNEX Science and Technology
Pwards

The NYNEX Foundation invites
teams of high school students in
seven northeastern states—New
York, Massachusetts, Maine, Ver-
mont, New Hampshire, Rhode Is-
land, and Connecticut—to devise
their own practical solutions to
community problems using science
and technology. But in this compe-
tition, the winning ideas won’t just
sit on the drawing board. In addition
to $210,000 in scholarship money to
be awarded, the NYNEX Science
and Technology Awards will pro-
vide development grants totaling
$250,000 to the top three teams to
enable them to bring their winning
ideas closer to fruition. How? By
working as interns with scientists or
urban planners to carry out a pilot
project in a real-life setting, or to
build the prototype of a new inven-
tion, or to test a theory in a sophis-
ticated laboratory.

Administered by the National
Science Teachers Association
(NSTA), the competition calls for
teams of two to four high school stu-
dents to focus on a specific problem
and come up with a scientifically
sound solution. Students may
choose any issue affecting the pub-
lic quality of life in a specific geo-
graphic area—providing vital ser-
vices, serving people in need,
preventing crime, or protecting the
environment, to name just a few
possible areas of investigation.

A panel of judges will choose the
12 finalist teams, who will come to
Washington, DC, in April for the fi-
nal judging and awards, including
$60,000 for the first-place team and
up to $40,000 for the second-place
team. All team awards must be used
by the students to cover future edu-
cational expenses.
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In its inaugural year the competi-
tion is restricted geographically to
the states listed above. Future com-
petitions may expand to include the
remaining states.

Application materials are being
sent to teachers in October. Addi-
tional applications can be obtained
by calling 800 9X-TEAMS. The
deadline for entering is February 11,
1994. Preliminary judging will be
held in New York City in March.

Finst Step to a Nobel Prize in Physics

The Institute of Physics of the Pol-
ish Academy of Sciences announces
the Second International Competi-
tion in Research Projects in Physics
for Secondary School Students. Last
year 134 papers were submitted by
students from 23 countries. Three
students won a diploma and a re-
search stay at the Institute of Physics:
Melvin Boon Tiong of Singapore, “Es-
timating the Attractor Dimensioin of
the Equatorial Weather System”; Tan
Galloway, “Beta Backscattering by
Metallic Elements and Simple Com-
ponents”; Dmitry Ruslanovich
Bituck, “The Dynamics of the Earth’s
Climate Complex Behaviour.” David
Zeltser of the USA won an honorable
mention with his paper “A Predicted
Uncertainty Principle and Mechani-
cal Unit of Charge Based on Analogy
and Dimensional Analysis.” The or-
ganizers have decided to publish a
supplement to Acta Physica Polonica
(in cooperation with its editors) con-
taining selected papers from the first
competition.

The general rules of the competi-
tion are as follows:

1. All secondary school students
are eligible for the competition. The
only conditions are that her or his
school cannot be considered a uni-
versity college, and the participant
must not turn 20 years of age before

March 31, 1994.

2. There are no restrictions on
the subject matter of the papers,
their level, or the methods used.
The student has full discretion in
these areas. However, the papers
must have a research character
and deal with physics or topics
directly related to physics.

3. A participant can submit one
paper or several, but each paper
must have only one author. The pa-
per should not exceed 20 normal
typed pages.

4. The papers will be judged by
the Organizing Committee. The
number of papers receiving awards
or other citations is not restricted.
All awards in each category are con-
sidered equivalent. The authors of
award-winning papers will be in-
vited to the Institute of Physics for
a one-month research stay. Ex-
penses in Poland will be paid by the
institute; winners will be respon-
sible for travel expenses to and from
Poland.

5. Two copies of each paper, in
English, should be sent by March 31,
1994, to

Dr. Waldemar Gorzkowski

Secretary General of “First Step”

Institute of Physics, Polish Acad-
emy of Sciences

al. Lotnikéw 32/46, (PL) 02-668
Warszawa

POLAND

6. Each paper should contain the
name, birth date, and home address
of the author and the name and ad-
dress of his or her school.

For further information on the
competition, contact Dr. Gorzkowski
at the address above; by phone at
(022)435212; by fax at (022)430926; by
e-mail at gorzk@gammal .ifpan.edu.pl
or gorzk@planif61.bitnet.
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Math
M96

Two examples of the required pen-
tagon are shown in figure 1. It can be

Figure 1

shown that any pentagon satisfying
the condition of the problem is simi-
lar to one of these pentagons—with
appropriate values of the parameters
o and B, of course. The only way to
divide a pentagon into two pentagons
(one shaded and one white) is to cut
it along two adjacent segments AB
and BC, where A is a vertex of the
pentagon and C a point on the oppo-
site side. Let a and 360° — o be the
measures of the angles formed at
point B, with a (o < 180°) in the
shaded part. Let ¢ and 180° — ¢ be the
angles formed at C, with ¢ in the
shaded part. Angles o and ¢ of the
shaded piece must correspond, in
view of the congruence of the pieces,
to two angles of the white piece. One
of these two angles must be 180° - ¢,
because otherwise either piece would
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have four angles—a, ¢, 360° — o, and
180° — ¢—whose sum, 540°, is equal
to the total sum of all five angles of
any pentagon (obviously, neither a
nor ¢ can correspond to 360° - o). If o
= 180° — ¢, from the shaded piece (fig.
1a) we see that one of the two angles
of this piece next to atis ¢ = 180° —q,
and the white piece shows that the
other angle next to o = 180° - ¢ is
360° — a.. Then the remaining angles
can be labeled  and
o— P (to get the total
of 540°). Matching
equal angles of the
two pieces, we find
that the correspond-
ing sides marked in the figure must
be equal. The case ¢ = 180° — ¢ = 90°
(fig. 1b) is examined similarly.

M97

Color the 3k endpoints of the
given arcs red and subdivide the arcs
of length 2 and 3 into unit arcs by
means of black points. Thus, we get
an additional k + 2k = 3k black
points, which, along with the 3k red
points, make up the vertices of a
regular 6k-gon. The vertices of the
figure are diametrically opposite
each other.

Suppose the statement of the prob-
lem were wrong. Then every red
point of the given circle C, is dia-
metrically opposite a black point. So
opposite every unit arc with red end-
points there lies a unit arc with black
endpoints—that is, the middle third
of an arc of length 3 with red end-
points (fig. 2a). We remove these two
opposite arcs and bend the two re-
maining (larger) arcs until the end-
points of the arcs we removed over-
lap. We arrive at a smaller circle C,
(fig. 2b), with an inscribed (6k — 2)-
gon. This new circle consists of 6k
— 2 unit arcs with 3k — 1 red end-
points and as many black ones. Since

180°-a

the points of C,
that were dia-
metrically oppo-
site remain so on
C,, every red
point stays oppo-
site a black one.
Our operation de-
creases by one
the numbers of
arcs of length 1
and 3 with red
endpoints and in-
creases by one
the number of
arcs of length 2.

Repeat this operation with the
circle C, to obtain a circle C, of
length 6k - 4, and follow suit until
we arrive at a circle C, in which
there are only 2k arcs of length 2,
with red endpoints and black mid-
points, forming a regular polygon
with 4k vertices. This is a contradic-
tion, because in such a polygon ev-
ery red point is opposite another red
point, whereas our operations pre-
serve diametrically opposite pairs,
which originally consisted of a red
and black point each.

The statement of the problem is
generalized to the case of a circle di-
vided into k arcs of length 1, I arcs of
length 2, and k arcs of length 3 with
an even sum k + 1. (V. Dubrovsky)

M98

The only positive integer solu-
tion of the given equation is (x, y) =
(2, 5). Let’s show that there are no
other solutions.

For positive integers x and y, the
right side of the equation is positive.
So let’s first find the pairs (x, y) such
that the left side of the equation is
positive—that is,

Figure 2

x>y, (1)
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or (In x)/x > (In y)/y. Using the de-
rivative of the function (In x)/x,
which equals (1 - In x)/x?, we find
that this function increases on the
interval (1, e] and decreases forx > e
(see the graph in figure 3). Since 2. < e
<3 and(In4)/4 =(In2)/2 < (In 3)/3 (be-
cause 3% > 23), we get the following list
of the pairs (x, y) satisfying inequality
(1): (x, 1) with x> 1; (2, y) with y 2 5;
(3,2); and (x, y) with3<x <y. We can
verify by direct substitution into the
equation that the pairs (x, 1) and (3, 2)
do not satisfy it and the pair (2, 5)
does. If y > 6, we have 2y > y?, and
also 27-! > (y — 1)* (since 2F > k2 for
any value of k > 4). Hence

Woyr=2 -1y 5 2y—- 1P -y?
=y -4y +2>y+2.

So these pairs must be discarded.

It remains to show that our equa-
tion has no solutions for 3 <x < y ei-
ther. Fix x, putting x = a = 3, and
consider the difference @’ — y? as a
function of y for y > a + 1 (which is
equivalent to y > a for integers y and
a). Write it as

a’ — y“ = (a)’ _Zi] +(X_a_+l~_ya)_
a+1 a+1

Then the derivative of the first term
equals

Ina-a-y*=(lna-1)a" + (@’ -y9)
>0,

because a >3 > ¢ and ¥ - y* > 0 by
inequality (1). So the first term is an
increasing function of y and, there-
fore, is greater than its value at the
point y = a. This fact, together with
some algebraic manipulation, yields

a+1 Y
ay_ya>[aa_a JWL,Y a-1
a+1 a+1
a yﬂ
= + y—a-1
a+1 a+1( ) (2)

>a"*+y*(y-a-1),

(because a>>a + 1fora>3,andy >
a+1).Fory>a+2, we know thaty
—a-1>1, so the right side of equa-
tion (2) is not less than

a®2yyi-lsgay.
Fory=a+ 1, a>4,it equals
a° 2244 3>4a>2a+1=a+y.

Finally, fora=3,y=a + 1 =4, we
simply calculate

@ -yi=3-43-17>3+4=a+y.

This problem provides an addi-
tional illustration of how deriva-
tives are used in solving equations
(see also the article beginning on
page 28). (A. Zaychik, V. Dubrovsky)

M99

The geometric idea of the solu-
tion is concentrated in the following
lemma:

If five squares with sides parallel
to the coordinate axes have a com-
mon point, then one of them con-
tains the center of another.

To prove it, assume that the com-
mon point of the squares is the ori-
gin O. By the pigeonhole principle,
two of the five centers must lie in
the same quadrant (defined by the
axes), and we may assume this is the
first quadrant. Denote these squares
by S, and S,, and their centers by O,
(x,, ¥,) and O, (x,, y,), respectively.
Choose the greatest of the four co-
ordinates of O, and O,—let it be x,.
Figure 4 shows that the square with
the bottom left vertex at O and the
right side passing through O lies in
S,. This new square consists of all
the points (x, y) such that 0<x<x,
0 <y < x,. In particular, it contains
O,. So S, also contains O,, and we

Figure 4

have proved the lemma.

Now we can describe the selec-
tion of the squares required in the
problem. Let Q, be the largest of the
given 1,000 squares (or one of the
largest, if there are several—the
same stipulation is implied in what
follows). Further, let Q, be the larg-
est of those of the given squares that
have their centers outside Q, (if
there are any); Q, the greatest of the
squares with centers outside Q, and
Q,; and so on. Since there is a finite
number of squares, this process ends
up with a square Q_ such that all the
centers are covered by the set of
squares Q,, Q,, ..., Q,. This set then
satisfies the first requirement of the
problem. To verify the second re-
quirement, it will suffice to show
that no five of the squares Q, have a
common point, for then no five can
contain the same center of a square.

Suppose such a point exists. Then
by the lemma above, the center of one
of these five squares must belong to
another square, which is impossible:
by construction, fori < j, the center of
Q,is outside Q,. On the other hand,
we have constructed the sequence of
squares Q,, Q,, ...,Q, so that Q. is
smaller than Q. Hence the center of
Q. cannot be inside Q, either. This
completes the proof.

M100

The required polygon can be
drawn for n = 3, 4, and 6 (fig. 5, on
the next page). Let’s prove that for
any other value of n this is impos-
sible. First we make this obvious
observation: if points A, B, and C lie
on the lines of the given grid, then
the point D such that the vector
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CD is equal to AB or-AB also lies
on one of the lines (fig. 5). Now take
an arbitrary regular n-gon A A ... A_
with the vertices on the grid and a
point O on one of the lines,_agd
draw the vectors equal to AB, ,
—_— —_

AB,, ..., A B from O.The vectors
are all equal in length, and the
angles between consecutive pairs of
vectors are all equal (since each is
equal to an exterior angle of the
original polygon). Therefore, their
endpoints B, B,, ..., B, form another
regular n-gon on the grid. Denote by
k = B,B,/A A, the factor of similar-
ity of these polygons. For any n > 7
this factor is less than 1, because k
= B,B,/OB, (fig. 6), and in the tri-
angle OB B, the angle B OB, is the
smallest (since it’s smaller than
360°/6 = 60°). Therefore, repeating
this construction an appropriate
number of times, we can obtain a
polygon X X ...X whose side length
km- A A, is as small as we wish—for
instance, smaller than the distance
between the lines of the grid. But
this is impossible, because any poly-
gon on the grid has a side with the
endpoints on different lines, and this
side, of course, can’t be shorter than
the spacing of the grid.

In the case n = 5 this proof must
be modified. In the first step we
draw ten vectors equal to i?BJ,

e — ;
+AB,, ..., AB frompoint O, thus
creating a regular decagon inscribed
in our grid. And this was shown to
be impossible. (V. Dubrovsky)
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Physics

Let a unit volume of air contain
p snowflakes. Then

N, =pS(v+v,)
N, = pS(V— VX) '

where v_is the velocity of the wind
in the skier’s direction. This yields

:N1+N2.

p
2vS

Visibility can be estimated by calcu-
lating the average length L of a cyl-
inder with a cross-sectional areca A
that contains one snowflake, where
A is equal to the area of a snowflake.
The volume of this cylinder times
the density of snowflakes must
equal 1:

LAp=1.

Solving for L and approximating A
by d” gives us

P97

We can imagine deforming the ar-
ray of resistors in figure 7a (on the
facing page) to the topological equiva-
lent network shown in figure 7b. We
can now see that there is no current
flow in the plane of the hexagon
CDEFGH, since these comers are all
at the same potential. Therefore, the
network is reduced to seven paths—
the direct path AB containing one
resistor and six parallel paths contain-
ing two resistors each, yielding an
equivalent resistance of R/4.

P98

Even though figure 8 (on the next
page) has been drawn with the inci-
dent ray at a fair distance from the
optic axis for clarity, we need to re-
member that we only consider rays
that are very close to the optic axis.
We'll assume that we can ignore the
thickness of the lens and use the
small-angle approximation that sin 6
=tan 0=0.

At the first surface, Snell’s law
tells us that

n_sin o =n sin f,
w

or
n o =nf.

Similarly, at the second surface we
have
ny=39,

where vy = o — B. From the figure we
see that

hl

tand = 1 =9.
F

o |

Therefore, F= h/3. But h = Rooand
= ny = no - nP = no - n,o0. Putting
this all together, we find that
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It's clear from the symmetry of
the diagram that the electrostatic
energy in the initial and final states
is the same, so the dissipated energy
is equal to the work performed by
the battery. In the initial state (fig.
9a), we have g, = q, = CV, and q, =
CV.. But conselvatlon of charge re-
quires that g, + g, = q,. Therefore, V,
= 2V,. We also know that V, + V, =
€, Wthh means that V, /% and V
=2%%.Thus, q,=q, = /oC and g, =
%%€C. In the final state (fig. 9b), we
can write down that g " = 24¢C and
q,’ = q; = %€C from the symmetry
of the two figures.

To get from the initial state to the
final state, we need to take a charge
Aq = q,’ - q, from capacitor 3
through the battery to capacitor 1.
Therefore, the battery must perform
work W = €Aq = 1, Cé>.

Figure 8

P100

There are two basic techniques
for finding the period of small oscil-
lations. One begins with Newton’s
second law of motion and the other
with the statement of the conserva-
tion of mechanical energy. Let’s use
the latter technique.

Rotation of the ring about the
vertical axis through an angle ¢ from
its equilibrium position results in a
horizontal displacement of the
lower end of the string

Ax =rsing = gsinq).

1 3

-

+
[\=]

Figure 9
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Using the Pythagorean theorem we find
that the vertical distance from the
support to the string is shortened to

’ 2 L3¢2
[/ = |[2

N2
4-3)
8

where we have used the binomial
expansion to get rid of the square
root. This means that the ring rises
a distance

E=iY
8 7

and the gravitational potential en-
ergy of the ring is given by

2.
GPE:ngh:ngL%a

The kinetic energy of the ring is
given by

KE=1imv?=1imro’
9
®
= I'HLZ g,
where we have ignored the kinetic

energy associated with the vertical
motion.

0]




The period of oscillation is given
by the square root of the ratio of the
coefficient of the velocity squared to
that of the coordinate squared.
Therefore,

TZZTC\/Z,
g

which is the same expression we get
for a simple pendulum.

Brainteasers

B96

If the first digit of the unknown
number were 5, the second digit
couldn’t be 4 (from 543) and the
third digit couldn’t be 2 (from 562).
So the first digit would have to be 1
(from 142). Similarly, the second
digit isn’t 4. Therefore, from 543, we
see that the third digit is 3; then,
from 142, that the first digit is 1;
and, from 562, that the second is 6.
This gives us the answer: 163.

Ba7

A little experimentation will
show that I must be closer to En-
tropy than to Tesseract. Between
the two signs I've driven 150 ents —
10 ents = 140 ents, and also 110
tesses — 26 tesses = 84 tesses. Equat-
ing these two, we find that 1 ent =
3/5 tess. It’s not hard to find, then,
that the distance from Entropy to
Tesseract is 20 tesses. Suppose that
at the point we seek I am x tesses
from Tesseract and also x ents from
entropy. Then, measured in tesses,

X+§X=20,
5

so x = 12.5 (tesses). This is the re-
quired position.

B98

Consider the 32 squares in the odd
horizontal rows (the first, third, fifth,
and seventh)| of the chessboard. Each
horizontal domino covers two or
none of them, and each vertical
domino covers exactly one of these
squares. So the horizontal dominoes
cover an even number n of these
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squares, and therefore the number of
the remaining squares, 32 - n, is also
even. But it’s equal to the number of
vertical dominoes, which means that
the answer to the question is yes.

B99

Suppose first that diagonal AC
bisects BD (see figure 10). We will
show that AC bisects midline MN.
The key is to note that if AC bisects
BD, then the (perpendicular) dis-
tances from D and B to line AC are
equal. ({This can be proven, for ex-
ample, using congruent triangles.)
This means that area(ADC)
area(ABC). Conversely, if area|ADC)
= arealABC), a similar argument
shows that AC bisects BD. So AC
bisects BD if and only if it divides
the area of the quadrilateral in half.

Figure 10

We now show that this same con-
dition is both necessary and suffi-
cient for AC to bisect a midline. For
suppose arealADC) = area(ABC).
Then, since areaAMC)="sarealABC)
and area(ANC) = YharealADC), we
have area(AMC) = area|ANC), so AC
bisects diagonal MN of quadrilateral
ANCM. Another such argument
shows that if AC bisects MN, then
area|ADC) = area|ABC). Hence the
conditions that AC bisects each of
the three segments in the problem
statement are all equivalent to the
statement that AC bisects the area
of the quadrilateral.

B100

The path is 3 - 29 + 13 = 100.

Bushels of pairs

Here is our answer to problem 7.

If a number x, 0 <x < 1, is written
as 0.x x,x,... in ternary notation, we
can locate it on the number axis as
follows. Divide the segment [0, 1]into
three equal parts and choose the left,
middle, or right third, if x, =0, 1, or
2, respectively (in each of the three
cases x is represented as 0 + x’, 1/3 +
x/,or2/3 +x’, where x’ = 0.0x,x,... lies
between 0 and 1/3, respectively).
Then divide the chosen third of [0, 1]
into three equal parts again and
choose one of these parts according to
the value of x, by the same rule. The
chosen segment (which is a ninth of
[0, 1]) is again trisected, and so on.
Thus we get an infinite sequence of
nested segments whose lengths make
up a geometric sequence 1/37, and
the point x is their unique common
point.

Suppose x, =1, and x # 1 forall i <
n. Then, by the deflmtlon of y=Clx),
in bmary notation, y=0.y,...y__100...,
wherey, =0ifx =0, andy = 1ifx =
2 for 1 <i<n-1, nomatter what the
digits x_for j > n are. This means that
C(x) is constant on all the “middle
thirds” that arise in our trisecting pro-
cess. As for the value of C(x), it’s clear
that as long as we don’t come across
a 1 moving along the sequence x,, x,,

., the value of y increases by 1/27 ev-
ery time we choose the right third in
the ith step (that is, when x, = 2). This
allows us to sketch the graph (a part
of it, of course) on the “middle thirds”
(fig. 11).

It’s hard to believe that this func-
tion, the graph of which seems to con-
sist only of horizontal segments, nev-
ertheless takes any value in [0, 1].
(Notice that the sum of their lengths
1/3+2/9+4/27 + ... +(1/3)(2/3) +
is equal to 4[1/(1-2%)] = 1—that s, to
the length of the entire segment [0, 1]!)
Indeed, the value y = 0.y,y,y,... (in
binary notation) is taken at the point
x = 0.x,x,x,... (in ternary notation),
where x =2y

We now show that the function
C(x) is nondecreasing. This can be
proven by a close examination of the



2. Writing out

YA

the decimal expan-
e ; sion of 161/222 =
0.7252252252...,
718 EEL we see that every
B4 Lo i third digit is five,
" i and every (2 + 3k)th
5/8 | —_ b and every (4 + 3k)th
i R digits are twos. So
1) TR — L Ty the probability to
iy Ay b choose afiveis 1/3,
3/8 |- — . I and that of choos-
S ing a two is 2/3.
14 o | | e Note that, in the
- AN y BEE limit, the pres-
1/8 = L P ence of the initial
- RS digit 7 does not af-

0 . - A ———> fect the answer.
1/9 2/9 1/3 23 7/9 8/9 1 x st
Figure 11 k? are all the per-

construction of the function. Suppose
x < x’, and the ternary expansions of
x and x’ first differ in their nth digit.
Ifx, =x’=1forsome;j<n, thenyand
y’ are identical, since both have dig-
its O after the jth (binary) place. If
there is no digit 1 to the left of x,
things are more complicated. If x =0
andx’'=1or2,theny =0andy ' =
1.Evenify, =1forall k > n, itis still
true that y<y’. If x =1, thenx'=
2.Herey =1andy, =0fork>n.But
y, =1, and soy’ 2 y. So C(x) is non-
decreasing.

Readers familiar with a rigorous
definition of a continuous function
will prove without difficulty that a
nondecreasing function that maps an
interval onto an interval—in particu-
lar, C(x)—is continuous. This func-
tion serves as a counterexample to
anumber of statements about func-
tions that look quite plausible but
are, in fact, wrong. Its graph is called
Cantor’s staircase in honor of the
creator of modern set theory, Georg
Cantor.

Ones up front

(Solutions supplied by the editor)

1. The probability in question is
1/3.1f a, is the number of multiples
of three that don’t exceed n, then n/3
-l<a,<n/3.S01/3-1/n<a/n<
1/3,and a /n — 1/3 as n — oo.

fect squares not
exceeding n, then their numbera_=
k is not greater than vn, so a /n <
1/4/n — 0 asn — . A random inte-
geris a square with zero probability.
4. In the sequence 1, 2, 22, 23, ..,
every number beginning with 1 is
followed by a number beginning
with 2 or 3, and every number begin-
ning with 2 or 3 is preceded by a
number beginning with 1. Soif a (q)
is the number of powers of two not
exceeding 27 and beginning with g,
then a (1) = a (2) + a,(3) or a (1) =
a(2)+a,(3)-1, depending on the ini-
tial digit of 27. In either case, divid-
ing by n and letting n tend to infin-
ity, we get p, = p, + p,. The other
relations are proven similarly.
5.1In the notation of the previous
solution, a (1) +a (2)+... +a,(9)=1.
Therefore, p, + p, + ... + p, = 1, and,
by the relations of problem 4,

1=p1+(p2+p3)+(p4+p5)
+ (p() +p7) + (pg +p9)
=2p1+132+p3+p4
=3p, + Dy

Sop,=1-3p,=1-3log2.

6. Suppose log 1 is a rational num-
ber m/n. Then I = 10™", or I" = 10™.
This is possible only when [ is a
power of ten.

7.1t was shown in the article that
p,=1log (g +1)/q. It follows that
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1 2k+1 1 2k+2
p21<+p21<+]= 0g + Og2k+1
2k+2
=log
2k
k+1
=log——
k
:p]<

fork=1,2,3,4.

8. The number 27 begins with the
digits 1000 if 10000...0<27<10010...0
(where the numbers on both sides
have the same number of digits). This
can be rewritten as {nlog 2} <log 1.001,
and, by the Fractional Parts Theorem,
the unknown probability is equal to
log 1.001.

9. Let Q be the number written as
q,q,..-q, in decimal notation. Then
the powers of ] in the statement must
satisfy the inequalities Q - 10" < " <
(Q +1)- 10™. Then an argument like
that in the article, or in the previous
solution, leads to the answer p = log
[(Q +1)/Q]. Since (Q + 1)/Q > 1, this
probability is positive, so any combi-
nation of digits appears at the begin-
ning of a power of I sooner or later.

10. (a) By the previous problem,

B =Iog£+log2+ +logﬂ
10 20 90

=log(11-21-----91)—log(9!-10°)
=log(11-21-----91)—log(91) - 9.

The probability p(qk 'is equal to the
sum of the probabilities that the k ini-
tial digits of a power of I form a num-
ber 107 + g, where i runs through all
(k — 1)-digit numbers—from 10¥-? to
10%-1 — 1. By problem 9, these prob-
abilities are equal to log[1 + 1/(10i + g)],
respectively.

11. Let s¥ be the sum of log (1 + 1/10i)
over all 7 from 10%-? to 10¥-' -~ 1. The
hints in the problem statement are
the results of various algebraic ma-
nipulations, which are left to the
reader. Using these, and the formula
in problem 10(b), we obtain the fol-
lowing expression:

08




O0< sk —pl <

q

ol

1001n10 i-1

g ( 11 j
1001n10\10%-2 -1 10%-1-1

-0

as k — oo (the sum here is taken over
the values of i specified above and
readily “telescopes”). This is true for
allg=0,1,...,9, sousing pi + p*! +

k)
vt D)
(k)

+(s¥— pl) + ... + (M- pf) — 0, which
means that s — 0.1. The first in-
equality above then assures us that

=1, we get 10s%—1 = (s¥— pi¥|

p‘f‘ — 0.1 as k — o0 as well.
12. In the number system to the
base b > 1, p! is expressed by the

formula obtained from the “deci-
mal” formula in problem 10(b) by re-
placing the number 10 with b and
replacing log with log,. The proof is
practically the same.

13.1f A, is the initial point on the
circumference, then the length I of
the arc A A (measured in the direc-
tion in which the unit arcs are
marked off) is equal to n - 2nk, where
k is a integer such that 0 <n - 2nk <
2n—thatis, I =2n{n/2n}. Point a_hits
an arc Q of length h if the number x,
=1 [2mhits a corresponding interval of
length h/2w. This happens with a
positive probability according to the
Fractional Parts Theorem (with $ =0,
o=1/2n).

14. Taking x = /2 + 2rnk with an
integer k, we get

f(n + 27d<j
2

= sin(rE + an] + [noc + anocj
9 2

=1+ sin{Zn[E + kaﬂ
4

=1+ sin[Zn{a + ka}}
4
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By the Fractional Parts Theorem,
{0/4 + kol is arbitrarily close to 1/4 for
a certain value of k, so sin (2rt{o/4 + ko))
can be arbitrarily close to sin (/2] =
1. Thus, the function f(x) can take
values arbitrary close to 2. On the
other hand, f{x) < 2 for all x. If f(x)
were a periodic function with a period
T> 0, it would take all its possible val-
ues on, say, the segment [0, T]. Being
continuous, it must take its maxi-
mum value M <2 at some point in
this segment. Since for any a < 2
there is a point x such that f{x) > g,
M must be exactly equal to 2. But
fix) =2 onlyif sin x = 1 and sin ox =
1—that is, x = /2 + 21k and ox = 7t/2
+ 2mn for certain integers n and k. It
follows that o = (4n + 1)/(4k + 1),
which contradicts the assumption
that ouis irrational. So f is nonperiodic.
15. The answer is yes. Putting o
= d /d, we can write the condition
that the absolute value of the differ-
ence between the kth term of the
first sequence and the nth term of the
second sequence is less than 10 as

l{a, — a,) + dy(n - ko)l < 1076,
or

-6 -6
10 <n+a—l<oc<10 ,

2 2

where a = (a, - a,)/d,. Applying the
Fractional Parts Theorem to the se-
quence a — ko, k=1, 2, ... and the
interval I =[0, 10¢/d,], we see that for
some k (even for infinitely many val-
ues of k) {a — ko hits the interval I.
Choose any such value of k, and let
-la - ko], where [x] denotes the great-
est integer not exceeding x. For this
choice of n and k, we have n + a - ko
= {a - ka}, and this number is between
-10°/d, and 10%/d, (in fact, it is be-
tween 0 and 10°/d,). Finally, we must
be sure that n is positive. To do this,
we must choose k so huge that a — ko
is negative. The Fractional Parts
Theorem assures us of infinitely
many possible values of the positive
integer k, so we can choose k as large
as we need. This completes the proof.
16. The equation for the given line
has the form y = ax+ b, where a=tan ¢

is irrational. Fix ¢ > 0. It suffices to
show that there exists a pair of inte-
gers (m, nn) such that lam + b —nl <¢,
because this inequality means that
the line intersects the vertical diam-
eter of the “tree” centered at (m, n).
By the Fractional Parts Theorem,
{am + b} < € for some integer m. Us-
ing such a value for m, and letting nn
= [am + b], it’s not hard to see that
the inequality we need is satisfied.

It will be useful to note that in
fact we've proven that even the half-
line defined by y = ax + b, x> 1, inter-
sects the forest. Of course, this re-
mains true for any ray on the line y =
ax + b. If the ray is defined by restrict-
ing the line to values of x such that x
> x, or x < x,, we'd only have to con-
sider the sequence am + b with m >
x,, or -am + b with m > - x, respec-
tively.

17. The statement of this problem
can be proven in much the same way
as its one-dimensional version in the
article, though this would require a
considerably more involved tech-
nique. Here we give a proof based on
a different idea; some of its details are
omitted but they are easy to restore.

We'll use the following notations:
if a vector v is drawn from a point x,
then its endpoint will be denoted by
x +v; M + v for any figure M is the fig-
ure obtained from M by translation
along vector v. And any vector (or
point) with integer coordinates will
be called simply an integer vector (or
point).

The proof consists of several steps.

(1) Letf ={na}, F, = O +1{, where
a is the vector from the statement of
the problem, and let O be the origin.
Then the set of all points F is every-
where dense in the square S—that
is, for any point X in S and any € >
0 there is a point B such that FX<
€. In vector notation, this means

—
that x —f | <& where x = OX !

To prove this, we first divide the
square S into small equal square
“pigeonholes,” each with diagonal <
€. We choose n so large that we can
find two of the points, F, and F, such

IThe one-dimensional version of
this statement is known as
Kronecker’s theorem.



Since £ is an arbitrary positive num-
ber, this means that p(M) = area(M).
S1m11arly considering the boxes B,
that cover M, we can prove that p(M )
< area (M).

Strictly speaking, this proof is still
incomplete: we've made an implicit
assumption that the probabilities
p(Q), plM), and so on, actually do ex-
ist. But it’s not difficult to modify the
argument so that it yields both the
existence and the value of p(M). All
the probabilities p for the entire infi-
nite sequence a_in the estimates
above can be replaced with the corre-
sponding probabilities p, for a finite
segment of this sequencea, a,, ..., a,
if we add to the bounds appropriate
terms of the form ¢/N, where ¢ does
not depend on N. Thus, we can show
that for any € > 0, Ip, (M) — area(M)! <
2¢ + ¢/N < 3¢, if N is large enough. But
this just means that p, (M) has a limit,
and it’s equal to the area of M.

18. Draw coordinate axes parallel
to the sides of the squares of our
chessboard with the origin O at a ver-
tex of one of the squares and a scale
such that a unit segment on each of
the axes is twice the side length of a
square. Then any two points whose
corresponding coordinates differ by
an integer number of such units lie in
squares of the same color. In particu-
lar, a point A and a point B such that
vector OB is the fractional part of
vector OA are always the same color.
So the probability that our flea F hits
a black square equals the probability
that the fractional part of the vector
OF hits (in the sense of problem 17)
a black square. Since two of the four
chessboard squares that make up a

unit square (with respect to our coor-
dinates) are black, this probability
equals 1/2 > 0.

The answer to the second question
is no. Consider a flea that starts at the
bottom right corner of one of the
white squares and jumps such that x

= /2. It will always stay on the
extension of the diagonal of the initial
white square drawn from the starting
point, so it will always hit white
squares. But this doesn’t satisfy the
requirement that y/x be irrational.
However, we can imagine another
flea that starts at the same point, but
jumps with such that x= /2,y =2 +
/2 . For this insect all three numbers
x,y, and y/x = /2 + 2 are irrational.
It always lands in the same column,
but an even number of squares apart
from the first flea—therefore, on the
same color (white) as the first one.

19. The inequalities in the state-
ment will be true if, for a sufficiently
small € > 0 and some integer &,

\
na, — (E + 21d<}
)

This inequality can be rewritten as
na,—k)-1/4l<e(i=1,2), wherea, =
A/2m oraslna}-1/4l<e(i=1,2). The
two-dimensional generalization of the
Fractional Parts Theorem (problem 17)
applied to the vectorsa=(a,, a,)and b =
0, and the polygon (square) M de-
fined as the set of points (x, y) such
that Ix-1/4l <¢, ly - 1/4l < ¢, shows
that our inequalities in n have infi-
nitely many solutions.
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TOY STORE

Tricky rearrangements

Variations on a rolling permutational theme

N THIS INSTALLMENT OF THE

Toy Store I'll continue introducing

to you the family of “rolling

block” puzzles and games. The
last issue contained a rather extensive
treatment of the rolling pyramids.
This time, though, I'll offer neither
solutions nor any substantial hints—
only what the puzzles are like and
what you’re supposed to do with
them. In fact, one of the two puzzles
below has no rolling parts—it should
rather be pigeonholed as “rearrange-
ments on the triangular grid,” which
links it with the simplified, flat ver-

by Vladimir Dubrovsky

I'd like to thank Anatoly Kalinin,
a Moscow engineer who has gath-
ered a wonderful collection of intel-
lectual toys and games. A great
many of the items in his collection
were sent by their creators from all
over the former USSR and are little
known in other countries. Among
them are the first two puzzles be-
low, as well as the rolling pyramids
from the previous issue.

Cannonball pyramids

The puzzle shown in figure 1 was
designed by the authors of the roll-
ing pyramids, A. Dryomov and

G. Shevtsova. And, on the
face of it, it’s not much dif-
ferent from the rolling
pyramids. It, too, con-
sists of “pyramids”
that can be rolled in a
hexagonal box. But
these are special
pyramids—each of
them is made from
four small balls glued
together—they look like
the pyramids of cannon-

Figure 1

sions of the second puzzle and with
the rolling pyramids as well. In an up-
coming issue of Quantum—after (I
hope) you've meditated on these
puzzles and come up with your own
solutions—we'll return to them and
discuss their underlying mathemat-
ics. Then you’ll see that they have
much more in common with each
other and with the pyramids than is
apparent at first glance.

balls you see near old can-
nons in museums. (By the way, if
you're going to make this puzzle
yourself, notice the round holes in

"ﬁl'llll'l‘l
‘:‘:’a"’é‘:’
&°) a‘@

Figure 2

the bottom of the box that prevent
the pyramids from slipping when
they’re rolled. A good material for
the bottom is styrofoam.) The num-
ber of pyramids (12), their coloring,
and the shape of the box are also dif-
ferent, but it’s the shape of the pyra-
mid that gives this puzzle its essen-
tially new quality. In the rolling
pyramids puzzle we could divide the
box into triangles such that each
pyramid occupied exactly one tri-
angle in any possible arrangement,
and one triangle was left free. With
the cannonball pyramids such a di-
vision is impossible, because after
rolling a cannonball pyramid it still
occupies two old spaces (holes) and
only one new space. We also see in
figures 1 and 2 that the empty holes
can wander away from one another
and all over the box.

The task you have to accomplish
is the same as in all puzzles of this
kind: one given arrangement of pyra-
mids must be transformed into an-
other by a suitable sequence of
moves (rolls). In particular, the authors
offer the arrangement in figure 1 as the
standard initial position and those in fig-
ure 2 as the target positions.

One problem with this and other
original mechanical puzzles is that
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to play with them you have to make
them, and this may require more
work and time than you can spare.
So here’s a way out. Draw a triangu-
lar grid whose vertices make the
same pattern as the holes in the bot-
tom of the box, and replace each
pyramid with three round chips of
the same color placed at the vertices
of the corresponding triangle of the
grid. (We'll call such a triangle of
chips a “triad.”) Then any move
(roll of a pyramid) will be repre-
sented by a jump of one of the chips
of the corresponding triad over the
other two chips onto the node of the
grid immediately beyond them—if
this node is free, of course (fig. 3). In
order not to mix the chips from dif-
ferent triads of the same color, you

can assign different numbers to such
triads and write these numbers on
the chips. This is useful in solving
the puzzle, too, because the num-
bers will allow you to follow the dis-
placements of each particular triad.

The term “triad” here was borrowed
from the name of the next puzzle, where
checkers are also rearranged by mov-
ing “triangles of checkers.”

Triads

The triad puzzle is shown in fig-
ure 4. As you seg, it’s quite simple—
I mean, you don’t need any special
“equipment” to play with it: just six
checkers, three of one color and
three of the other. That doesn’t
mean it’s easy to solve. It was cre-
ated by Sergey Grabarchuk from
Uzhgorod, a town in western
Ukraine. He has invented a great
number of ingenious puzzles and
even wrote a book of recreational
problems, The Jar of Diamonds,
with his own illustrations. (We plan
to acquaint you with some of them
in our Toy Store in the future.)
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Take the six checkers and place
them on a table so as to make the tri-
angle shown in the left part of figure
4a. You're allowed to choose any
three checkers touching each other (a
triad) and slide this triad as one whole
piece along the surface of the table
parallel to itself (that is, without turn-
ing it) so that it finally joins the re-
maining checkers again at some new
position. Then new triads are '
formed, and you can repeat a
similar move with one of
them. As you make your move,
be sure the stationary checkers
don’t budge. Your task is to obtain
the pattern shown in the right part of
figure 4a.

This is the easiest problem of the
three presented in figure 4. Figure 4b
presents a more difficult problem,
and the trickiest one of all is figure
4c. Try to find as short a solution for
each as you can.

In these problems, the final big
triangle of checkers might end up
shifted with respect to its initial lo-
cation. It’s interesting to find solu-
tions that bring this triangle (as a
whole) back to where it was at the
start, if such solutions exist.

Another problem that arises
naturally is to examine all possible
permutations of the checkers in the
big triangle, assuming that all the
checkers are marked differently
(say, numbered from 1 to 6)—both
with and without returning the tri-
angle to the initial location. And, of

course, all of these questions can be
posed for the case of another num-
ber of checkers and the initial fig-
ures they form.

Timbleweed

The cube is a shape that is as
suited for rolling-block puzzles as
the pyramid (regular tetrahedron, to
be exact). Even more so, perhaps,
because the cube has a property that
the pyramid lacks: the orientation
taken by the cube after rolling to a
certain location depends on the
route it took to get there. This
makes the rolling-cube puzzles
three-dimensional in essence: we
can’t just replace the cubes with flat
chips, as we did with the pyramids.
So this kind of puzzle deserves a
separate treatment—here we'll take
a look at only one possible applica-
tion of rolling cubes.

It's a game rather than a puzzle,
and it was designed by a 40-year-old
Moscow professional artist, Andrey
Korovin. Perhaps his bent for ab-

straction, which is
>\ apparent in his
landscapes, is
3. responsible
- for the

Figure 5

game’s mathematical flavor, and his
artistic imagination suggested the
name “Tumbleweed” for the game.

The rules of the game are simple.
The playing area consists of a rectan-
gular field measuring 5 x 6, and you
need 10 cubes (fig. 5). Each player gets
a set of five cubes of different colors
(say, green and yellow). One face on
each cube the control face—is painted
a contrast-

ing color
(here, red
and blue—

see figure 6).
Initially, the

Figure 6
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Figure 7
cubes are placii -‘.:Ii chess pieces
along the short sides of the field, their
control faces up T':_ plavers take
turns rolling their cubes (to any free
adjacent square!, one cube at 2 time.

Each cube mus
one of the squares a
side, its control face u

t over to
the opposite
p. The player

There are a few

additional rules

that prevent draws. We won't dwell

on them here—vou’ll think up rules

of this so ‘ter you try to play a
couple of

From th atical point of

g ggested by the
author of Tumbleweed seems more
interesting. A cube is placed, its con-
trol face up, on the shaded square of
the table in figure 7. One player
chooses a square with a number, and
another player must find a sequence
of rolls that consists of this number
of moves and brings the cube to the
chosen square (control face up, of
course). A correct solution gives the
first player a point. Then the players
exchange roles.

See if you can find the required se-
quences of moves for all numbered 29
squares. Can you explain why each
square is numbered as shown in fig-
ure 72 What other values can the
numbers take so that the problem re-
mains solvable? What numbers
should be written in the table if the
cube’s faces were all colored differ-
ently and its final orientation must be
the same as the initial one? Q

“ANSWERS, HINTS & SOLUTIONS”
CONTINUED FROM PAGE 62

Derivatives

Value of g
lal > 216

lal =216
216 > lal > 88
lal =

lal < 88

Number of roots

(O IN-NEGVR SR

(b)

Value of a Number of roots
a<0

a=0
O<a<4de?
a=4e?

a> 4e?

W~ O

2.

Value of a Number of roots
a<0
O<ac<e
a=e
e<a

o= O

3.(a)x=1(lnx<x-1forallx=1,
x> 0); (b)x =0 (sin x > x — x*/6 for all
x #0).

4. (a)

Value of a Number of roots
a<-189 0
a=-189 1

-189 < a < -64 2
a=-64 3

64 <a<0 4

a=0 3

O<a 2

q

@

Figure 15

(b)

Value of g Number of roots
a<0 1
O<a<e 0

a=e 1

e<a 2

(Note that this problem is reduced to
exercise 2 by substituting In x for x.)
5.x =1 (point x = 1 is the mini-
mum point of the left side of the
equation—examine its derivative).

6.(a)(x, y)=(1, 1); (b) (x, y) = (e, + 21k,
k=0,41,12,...;(c)(x, ¥) = (0, ®/2 + 2mk),
k=0,%1,%2, ... .(In equations (a) and (b)
the minimum value of the function on
one side of the equation is equal to the
maximum value of the other side; the
same applies to equation (c) after divid-
ing by 2~.)

7. (a) See figure 15: for the points
(p, q) in the shaded area the equation
has three roots; the white area, in-
cluding the origin (0, 0), corresponds
to one root; the curves g = £2p*?, p
> 0, correspond to two roots.

(b) See figure 16: the white area
means there are no roots; the gray area—
one root; the red area—two roots (for p
< 0 the equation is undefined); on the
border lines g=eInpand p =1, there is
one root; on the line g = 0, there are no
roots, but at the point (p, g) = (1, 0}, there
are infinitely many roots.

8. e™ > m¢. Hint: e™ > n¢ is equiva-
lent to In n/n < 1/e, but 1/e is the
maximum value of (In x)/x.

Figure 16




NEw OPTIONS IN MATHEMATICS

College of Arts and Sciences, Northwestern University

Mathematical

Experience for
N U:D Northwestern

Undergraduates

Northwestern University announces the formation of an expanded set of programs for selected students
interested in mathematics and its related fields. MENU will be offered for the first time to entering students
in the fall of 1993. If you have strong intellectual curiosity in this direction and seek a major university

and the opportunity to work closely in a small and personalized setting with other students and professors,

read on.
HISTORY In 1976, Northwestern inaugurated the Integrated Science Program (ISP), which is
a successful, one-of-a-kind effort to bring together mathematics and the sciences at
the undergraduate level. This was followed by the creation of a parallel program in
Mathematical Methods in the Social Sciences (MMSS). Enrollment in these programs
is limited to approximately 30 students per year.
FEATURES OF MENU is a set of special concentrations for students with a strong interest in mathematics
MENU and its applications in the sciences and social sciences. MENU is designed to bring together

students seeking to develop an active, hands-on approach to mathematics and encourage
the exploration of advanced topics in special seminars with program faculty. MENU will
provide smaller classes, more individualized advising and seminar programs for selected
students wishing to concentrate in mathematics in a multidisciplinary setting. The principal
entry route will be Mathematics B90, a three-quarter sequence covering the foundations
of analysis. During the first year, students applying to MENU will indicate one of several
possible routes: ISP* MMSS* and the new MENU programs in Mathematics, Mathematical
Physics, Statistics, Computer Studies, and Decision Sciences.

WHY A SPECIAL At Northwestern University, we combine the strengths of a research institution with a small
PROGRAM? size to offer individualized programs at the undergraduate level, where students receive
an in-depth approach that leads to superior preparation and more informed choices for
graduate study or professional preparation. As a student interested in obtaining the best
possible education, your personal interests are given the highest priority.

APPLICATION Applications will be accepted by the director of MENU during the Freshman Year from

PROCEDURE students who are enrolled in Mathematics B90. The specific MENU programs will begin
with Sophomore Year. It is expected that MENU students will take some calculus in high
school, including the BC and/or AB examinations administered by the CEEB Advanced
Placement Program. Other specific questions can be administered by the Director by
writing to: Mark Pinsky, Director of MENU, Kresge 324, Northwestern University,
Evanston, IL 60208-2206

* High School students interested in entering ISP or MMSS must complete the relevant application concurrently
with the Northwestern application in the last year of high school.

Northwestern University is an equal opportunity, affirmative action educator and employer.
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