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THE "WILD BEASTS" OF THE FAUVIST MOVE-
I ment sought to capture the interplay of light and
shadow with their rough-hewn brushstrokes. Whether
it be the wake of a tugboat or the ripples stirred up by
a sudden breeze, the fauvists were able to fueeze the
moment on canvas. As dedicated observers of the

Tugboat on the Seine, Chatou (1906lrby Maurice de Vlaminck

natural world, they may have wondered about a curi-
ous phenomenon while making their studies-the ap-
pearance of seemingly random patches of stillness on
the rippling surface of a body of water. To find out the
cause of these "islands of calm amidst stormy seas,"
turn to page 46.
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Birds of a feather flock together. Three
articles in this issue-"Calculus and
Ineclualities, " "Cauchy and Induction, "
and "The Sum of Minima and the
Minima of Sums"-flutter about the
common theme of inequality. Special
attention is paid to a well-known for-
mula proved by the French mathemati-
cian Augustin Louis Cauchy.
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HE RISE OF ONLINE TECH-
nologies is providing boundless
opportunities for students and
teachers of math and science in

ways that were inconceivable 50
years ago. Thanks to the Internet,
student learning is no longer con-
fined by the walls of the classroom.
Students in different classrooms are
working together on hands-on ex-
periments, are conversing real-time
with experts from NASA, and are
following adventurers on their sci-
entific treks through the jungle and
into the deepest reaches of the
ocean.

One exciting example-and a

website that should be bookmarked
by all students and teachers-is
www.Tty S cience. or I t created
through a unique IBM partnership
with the New York Hall of Science
and the Association of Science
and Technology Centers (ASTC).
TryScience provides dynamic on-
and off-line science experiences for
young people, offering instant access

to the expertise and resources of
more than 450 ofthe world's leading
science centers. Through interactive
exhibits, experiments, virtual field
trips, and scientific research, this
continuously updated site chal-
lenges and engages students in ways
that spark imaginations and stir
brain cells.

Still, IBM knows that, while un-
precedented learning experiences

FRONT MATTER

lllol a siluer hullel-
a uoldEll oppol'tunily

How technology can improve
science education

are under way in many classrooms
throughout the nation, new tech-
nologies alone won't be enough to
push math and science learning for-
ward for all students. As promising
as technology is, it is not a silver
bullet. A computer, for instance, can
never replace a good science teacher,
and Internet access and computer
iabs alone cannot improve math-
ematics instruction.

As we all are too well aware/ stu-
dents in the United States are not
performing nearly as well as their
international peers in a range of
mathematic and scientific areas.
Most recently, in the Third Interna-
tional Mathematics and Science
Study (TIMSS), U.S. eighth graders
performed in the bottom half in
mathematics and only average in
science compared to their peers in
other developed countries. U.S.
twelfth graders performed even
more dismally, scoring third from
the bottom in mathematics literacy,
second to last in advanced math-
ematics, and at the very bottom in
physics. These results are alarming,
given research showing that chil-
dren who take and pass algebra and
other academic math and science
courses experience gteater success
later on in school. To turn this situ-
ation around, we need to address
weaknesses in our curriculum,
which TIMSS researchers described
as "a mile wide and an inch deep,"

and make a fundamental commit-
ment to teacher quality in ways that
integrate the best that technology
has to offer.

As part of our deep commitment
to education, IBM has been work-
ing hard to improve math and sci-
ence education in a host of ways.
Through our award-winning Rein-
venting Education grant program/
we are contributing over $40 million
to school partners in the United
States and in seven countries
throughout the world to develop and
implement innovative technology
solutions designed to drive higher
student achievement and enhanced
academic productivity. Each of our
proiects is working to overcome a

specific barrier to school reform,
with a number of our sites specifi-
cally addressing math and science
education.

For example, workingwith teach-
ers in Rochester, Minnesota, IBM
has created Visual Venture, software
that integrates math and science
curriculum to help students in the
middle grades gain a true command
and appreciation of mathem atical
models by using them to investigate
the world around them. The soft-
ware features innovative image pro-
cessing technology that simulates
real laboratory experiments, empha-
sizing problem solving, inquiry-
based learning, and hands-on expe-
riences.

OU[[IU]iIlIROlllT ]iilIIIIR



Through Reinventing Education,
IBM also has worked with West
Virginia educators statewide to use
resources from the Internet to de-
sign exempldry online instructional
activities for high school students.
The activities focus on four core
subjects, beginning with math-
ematics and expanding to science,.
language arts, and social studies,
with concentrated attention given
to the academic areas in which stu-
dents have shown they need the
most help and practice. To ensure
high quality, each activity is sub-
iect to a rigorous, online iurying
process before being posted on a
special site on the World Wide Web
for use by teachers and students
throughout the state.

An independent evaluation from
the Center for Children and Tech-
nology found that students who fre-
quently use these lesson plans
scored significantly higher on state
math tests than students who used
them only sometimes or not at all.
This technology is now being used
by over 40,000 teachers around the
world to bring curriculum online in
exciting ways that continue to
boost student achievement.

While new curriculum is critical,
IBM knows that it is perhaps even
more important to give teachers the
training and support they need to
help students achieve at higher 1ev-
els. Through a Reinventing Educa-
tion partnership with the Chicago
Public Schools, IBM has created
Learning Village, technology which
is designed to raise the quality of
mathematics instruction. Learning
Village provides seventh and eighth-
grade teachers with instant access to
new, hands-on aigebra, geometry/
and data analysis curricula devel-
oped by IBM curriculum specialists,
as well as to off- and online re-
sources/ including a " math dictio-
nary" thatis being incorporated into
lessons. Included within Learning
Village is a password-only site that
serves as the district's newest ve-
hicle for professional development.
The site provides online discussion
sites that enable staff to collaborate
on new teaching techniques and

strategies, discuss mathematical
content and pedagogy, and share in-
formation on problems and best
practices.

IBM's leadership in math and sci-
ence education extends on a policy
level through Achieve, Inc., the non-
profit that resulted from IBM's lead-
ership on the 1996 and 1999 Na-
tional Education Summits and that
IBM Chairman and CEO Louis V.
Gerstner |r. co-chairs. Achieve is
involved in a major initiative, with
the help of The Coilege Board, to
develop and administer a new stan-
dards-based math test for eighth-
grade students that will compare
results school by school and state by
state-and will include curriculum
and prof essional development assis-
tance for teachers. Eleven states
have agreed to participate, and IBM
continues efforts to get other states
on board.

IBM's leadership in information
technology depends on this work,

as well as our other efforts to raise
the quality of math and science
education and of public education
more broadly. For IBM to remain at
the forefront of innovation and dis-
covery, we know that we must pro-
vide cutting-edge technologies to
schools that open new doors to
learning, in tandem with initiatives
that get at the heart of necessary
changes in math and science educa-
tion. Only in this way can our
schools and teachers prepare our
young people to become the next
generation of scientists and re-
searchers, responsible citizens, and
visionary leaders.

To learn more about IBM's ef-
forts in education, please visit
twwv. ib m. co m / ib m / ib m giv e s .

Stanley Litow

Stanley Litow is Vice President,
Corporate Community Relations,
and President, IBM International
Foundation.

Aris Noutsos (Tessaloniki, Greece)

Bruno Konder (Rio de )aneiro, Brazil)

Theo Koupelis (Wausau, Wisconsin)

Gottfried Peru (Graz, Austria)

Andrey Meshkov (Coiumbus, Ohio)

fohn Beam (Be11aire, Texas)

Po-Ling Loh (Madison, Wisconsin)

Congratulations! Each of you will
receive a copy of this issue of Quan-
tum and the classic Quantumbtt-
ton. In addition, one swimmer in the
pool of successful respondents re-
ceives a special flotation device: a
copy of Quantum Quandailes, the
reading material of choice lor {erry
rides and slow moments anytime,
anywhere.

HAPPENINGS

Cy[el'Teil$ort tnliltltors

I' OU DIDN'T NEED ANY HICH-

f t..h tools to determine which
I musketeer placed where in the

big fencing competition. Maybe a
pencil and paper were enough.
Maybe you eYen did it in your head.
But to win a prize,youneeded to visit
our website and submit a correct an-
swer. Did you? If not/ you have an-
other chance: the next CyberTeaser
awaits at rwvw.nsta. otg/ quantum.

Here are the ten who slashed
their way to victory:

ferold Lewandowski (Troy, New
York)

Iason Langley (Lawrenceville,
Georgia)

Oleg Ivrii (Toronto, Ontario)
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BRAINTEASERS

Jusl lol' Ihe lun ol it!
831 1

Plumbing their passion. The founder of the Czech state, princess
Libusha, was being wooed by three princes. She invited them to solve
the following problem: "If I gave half the plums in this basket plus one
more plum to one prince, half of the remainder plus one more plum to
the second prince, and half of what remains plus three more plums to
the third, the basket would be empty. How many plums are in the
basket? "

831 2
Musketeering swordplay. At the royal fencing competition in France,
the first four places were taken by Athos, Porthos, Aramis, and
D'Artagnan. The sum of the places taken by Athos, Porthos, and
D'Artagnan was 6; the sum of the places taken by Porthos and Aramis
was also 6. What was the place taken by each of the musketeers if
Porthos ranked higher than Athos?

831 4
Bir-to-bir couespondenca. Solve the following number rebus. Identical
letters correspond to identical digits, while different letters correspond
to different digits.
(This puzzle comes to us {rom Azerbalian, one of the Caucasian repub-
lics. In their language, the word BIR means one and DORD means four.)

831 3
A dozen and almost Put the numbers 1 through B in the circles such
that the sum of the numbers at the vertices of each blue triangle is 12

and the sum at the vertices of the red triangle and the red square is I 1.

iH!E!r:

@ffiffi ffi

831 5
Spoon shadow. A sunbeam is reflected on the wall by a cup of tea. If we
lower a teaspoon toward the center of the surface of the tea, what shape
will the shadow take in the reflected spot on the wall?
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Flux and lixity

What is the energy stored in a magnetic field?

by V. Novikov

HE FACT THAT A MAG.
netic field generated by an elec-
tric current has energy can be
seen from an analysis of electro-

magnetic induction. Let's carry out
an experiment according to the dia-
gram shown in figure 1. If we move

Figure 1

the contact of the potentiometer to
decrease its resistance, the curent
in the circuit will increase. The
higher the current, the larger the
magnetic field generated by this cur-
rent. An increase in the magnetic
field means an increase in the mag-
netic flux passing through the sur-
face encircled by the circuit. Accord-
ing to Faraday's law, the change in
magnetic flux generates a self-in-
duced emf in the circuit, which is
equal to

(o AO*=- *, (1)

where A(D is the change in the mag-
netic flux over a small time interval

At. This emf induces current/ which
in turn generates a magnetic field
directed counter to the original mag-
netic field. Thus the magnetic flux
of the new field " tries" to compen-
sate for the change in the primary
field; or, in other words, it does its
best to maintail the original curent
at a constant level. To overcome
this e{fect, one needs to perform
some work against the self-induced
emf. Let's calculate this work.

If the increase in current from 1 to
1 + Al is accompanied by the appear-
ance of a self-induced em{ '8, the
energy source (battery) performs
some work against this emf:

LW = -'&ILt.

Plugging equation (1) for the self-in-
duced emf into this equation yields

ro
11,x/=_11f=/A<D.

At 12)

Now recall that every circuit can
be characterized by a certain con-
stant value I measured in henries
(the self-inductance). This is the co-
efficient of proportionality in the
equation coupling the magnetic flux

this flux:

So if the current increases by 41, the
magnetic flux will increase by

A@ = IA1. 14)

Therefore, equation l2J for the rrork
can be written as

LW = LILI: OA1. (5)

Figure 2 shows the dependence of
the magnetic flux Q on the current
1. The work AI4l is equal to the area

LIo

Figure 2

If the current in the circuit
changes from 1: 0 to some value 16,

the work performed by the electric
battery against the self-induced emf
can be obtained by summing a1l the
AI4/. This total work is equal to the
area oI the triangle OEF ({igtre 2l:

of trapezoid ABCD.
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Now we should 
"t ""t whether

afly extta heat wi1l be dissipated in
the circuit due to the appearance of
the self-indpced em{.

Imagine that, before the begin-
ning of our experiment/ we de-
formed the circuit and reduced its
areato zero (figure 3). In this simple

Figure 3

case no self-induced emf appears
when the current increases from
zeto to 10. The tesistance of the de-
formed circuit remaines the same,
so the same amount of heat is dissi-
pated in the deformed circuit as in
the original one. Of course, this is
true if the rate of increase of the cur-
rent is identical in both cases. Recall
that in the first experiment we in-
creased the current (by moving the
contact to decrease the resistance)
rather slowly, so for any value of R,
set by the potentiometer/ the cur-
rent had enough time to settle to the
value determined by Ohm's law
(we assume that the internal resis-
tance of the source is negligibly
small).

So the release of heat in the cir-
cuit doesn't depend on whether the
source per{orms the additional work
reflected in equation (6).

Everybody knows that energy
doesn't disappear or appear out of
nowhere. It can only be transformed
from one type to another. Since the
increase in the energy of a system is
equal to the work per{ormed, we
might ask: What was the extra work
of the electric battery turned into?
The reason this work had to be per-
formed is the ability of the circuit to
"resist" any attempts to change (in
our case/ to increase) the magnetic
flux through the area delimited by
the circuit. Therefore, it's natural to
call the energy into which the per-
formed work was transformed the
eneryy of the magnetic field of the
current-carrying circurr. To con-
vince ourselves of this, we might
conduct an experiment that would

demonstrate how the stored mag-
netic energy can be transformed into
other forms of energy (say, into
heat).

Let's consider one such experi-
ment. Assume that points A and B
of our circuits were instantaneously
shorted. The voltage drop between
points A and B ereatedby the exter-
nal current source will drop to zeto.
In the deformed circuit, the current
stops flowing immediately. How-
ever/ in the original, non-deformed
circuit the current cannot disappear
immediately because, according to
the law of electromagnetic induc-
tion, any change in the current (in
this case, a decrease) generates a self-
induced emf that "tries" to main-
tain the previous level of the cur-
rent. As a result, the decrease in the
current in the original circuit from
1o to zero will occur during a certain
time interval. In this period some
amount of heat-willbe dissipated in
the circuit at the expense of the
magnetic energy "stored" in the
space around this circ,uit. (Try to
show on your own that the amount
of heat released a{ter shorting the
circuit between points A and B
equals the magnetic energy Llnzlz ac-
cumulated by this circuit.)

So we can conclude that the.cur-
rent l flowing in the circuit charac-
terizedby the self-inductance L gen-
erates a magnetic field in the space
near the circuit. The energy of this
field is

magnetic field. This example will
help us understand how a magnetic
field is generated by current at the
"microscopic level," so to speak. By
"microscopic" we mean that the ap-
pearance of the current will be ex-
plained by analyzing equations that
describe the motion of electrons and
ions.

Let's consider a metal rlng of cir-
cumference J uniformly rotating
about an axis passing through the-
center of the ring perpendicular to
its plane (figure 4). We assume that
the ring is sufficiently narrow so

Figure 4

that the linear speed of all its seg-
ments is constant and equal to vo. At
time t = 0, a constant tangential
braking force Fis applied to the ring.
The ring eventually stops rotating.
However, the force F produces more
than just a braking effect.

It's easy to see that the current
must increase in the ring. Indeed,
recall how solid metals are con-
structed. The atoms are ionized and
located at the nodes of the crystal
lattice, where they oscillate ever so
slightly near the equilibrium posi-
tion. It looks as if the crystal lattice
forms the solid framework of the
metallic body. In contrast to the
ions, the conducting (free) electrons
can move freely between the nodes
of the lattice, forming a kind of
"electron gas."

Now let's return to our metal
ring. We can think of it as being
composed of two rings, one inside
the other (figure 5). In this figure
blue corresponds to the crystal lat-
tice, while red represents the elec-
tron gas.

At first, when the ring is rotating
with constant speed, both the crys-
tal lattice and the electron gas take
part in this motion. However, the
braking force F is applied only to the
solid framework, not to the {ree elec-

17J

Our experiment illustrates the
case where the energy of the mag-
netic field induced by the current
was created by an external source of
electrical energy (a battery). Clearly
the energy of the magnetic field
must not depend on how the field
was generated, much as the kinetic
energy of a moving object doesn't
depend on how the speed was im-
parted to the object.

To make this point clear, 1et's
consider another example that illus-
trates how it's possible to directly
transform the kinetic energy of a
moving body into the energy of a

,,1
rr -Ll"rn- )
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Figure 5

trons. The electron gas will be
slowed only as a result of its inter-
action with ions in the lattice. This
is the very process that underlies
electrical resistance in the meta1.
For the sake of simplicity, we can
neglect this interaction, proceeding
as if, for example, the ring had been
cooled to an extremely low tempera-
trlre, atwhich metals lose their elec-
trical resistance and become super-
conductors.

Therefore, the conducting elec-
trons will pass the crystal lattice
while the ring is braking. The differ-
ence in the speeds of the ions and
the electrons generates a current.
Let's calculate the value of this cur-
rent.

Denote by v, the speed of the ions
in the crystal lattice and by v"the
speed of directed motion of the con-
ducting electrons. The total charge
flowing through a cross section of
the ring during a time interval At
consists of the charge of the crystal
lattice confined in an arc of length
vrLt and of the electron gas located
in an arc of length vrAt (figure 5). ff
the total charge of all the ions that
donated their electrons to the elec-
tron gas is Q, the total charge of the
conducting electrons will be -Q,
because the ring as a whole is elec-
trically neutral. Therefore, the
charges in the corresponding arcs ate

v,Af Ove\tQ-T and--. I ,

through a section of the metal ring
per unit time-that is, we can calcu-
Iate the current in the ring:

r= 1 [o",1'-o&+lArL I I I
Q, ' 

(8)

=1\vi-ve).

In the analysis above we ne-
glected the direct interaction of con-
ducting electrons with the ions in
the crystal lattice. However, in the
braking process other forces come
into play, which will slow the elec-
trons even in a superconducting
ring. These are forces generated by a
vortical electromagnetic field.

When current arises in the ring it
generates a magnetic field. Since the
strength of the current varies, this
magnetic field is not constant. Thus
it generates a vortical field in the ring.
The forces of this vortical field affect
the electrons and impede any change
in the curent in the ring. In other
words, they act to decrease the rela-
tive speed of the electrons and ions
(see equation B). Therefore, these
forces slow the electrons and acceler-
ate the ions in the crystal lattice. The
work performed by these forces in
displacing a single positive charge
along the ring is the self-induced emf
(note that, in contrast to electrostat-
ics, the work of a vortical field along
a closed trajectory is not zero).

To picture the dynamics of the
motion of the crystal lattice and
conducting electrons (that is, the
electron gas), it's convenient to con-
sider them individually. Figure 6a
shows the details related to the mo-

tion of the crystal lattice (the blue
ring) and figure 6b does the same for
the electron gas (the red ring). Now
we can wdte Newton's second law
for the crystal lattice and the eiec-
trons. Let the masses of the blue and
red rings be M and m, respectively,
and let their accelerations be a, and
a".Then

Mar= QE-F,mau=-QE, (9)

where E is the strength of the vorti--
cal electric field, which we will now
calculate.

Since the work performed by the
vortical field to displace a unit
charge along the ring is equal to the
self-induced emf (EI:'6), then

. z lAO LN
I ltt l\t
QL( Lv, Ay.)_ QLr- -\=-7[ t- *)=-7\ai-a')'

Thus equation (9) describing the
motion of the crystal lattice and the
electron gas will be transformed as

follows:

Mar: -wlai- a") - F,

rna"= p(ar- a"), (10)

where for the sake of simplicity we
introduced a parameter

Q2L[= - .

1'

Solving system (10) for a, and aet we
get the ecluations for the accelera-
tion of the rings:

Fu
ui ---i up --ui,- 

M+*v " m+p
m+w (li 

)

where l is the circumference of the F

ring. Now we can find the total a

amount of electric charge flowing Figure 6
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The minus sign means that both the
crystal lattice and the electron gas
are slowed during the braking pro-
CCSS.

Using equations (1 1), we can find
the time that passed from the start
of braking to full stoppage of the
crystal lattice:

/
L=-vo =!l( nt* -u \

ai Fl ;11 (12)

Now it's easy to find the speed vn :
y the electrons will have when brak-
ing o.f the lattice is complete:

m
v = \'o * acL =-\'o.m+p

Thus the final value of the curent
in the ring (at vn: v, r4 : 0) is

. O Om
'=-7'=-1 **r'o' (14)

Now we can return to the prob-
lem equationted above and find the
energy of the magnetic field gener-
ated by the current induced in the
ring during braking. Here we'1lfind
it convenient to use the energy con-
servation.

Initially (t : 0), all the energy of
the ring consisted of the kinetic en-
ergy of the electrons and crystal lat-
tice-that is,

rr mv2o , twv2o

-rr --T"22
During braking, a portion of the

energy was used for work against the
force F. Clearly this "Ioss" of energy
is AU : W : Fs, where s is the path
traveled by arly point of the ring
(crystal lattice) during braking:

S=v^r +aitz ="i(** *P 
)." 2 2Fl m+$)

Therefore,
n/ 

-u)w=5lM+ ' t

2 [ m+V)

The current arising in the ring
during braking generates a magnetic
{ield. Consequently, at the end of
the braking period, when the speed
of the crystal lattice becomes zero,
the energy of the ring consists of the

1 0 JAiTttARY/TTBRtlARY zoor

kinetic energy of the electrons

u -*r'-*r3( * \'"e- z z lm+p)
and the energy of the magnetic field
U-. According to the conservation
of energy,

Ur: K"+ U-+ W,

we obtain

u-=uo-w-K"=#.422

-,8(** *p )-y"3( - )'t[''- **u1- , t-*u]

can be transformed into magnetic
energy by braking the revolving cir-
cuit. This restriction doesn't depend
on the self-inductance I of the cir-
cuit.

Many's the time Quantum has
demonstrated the inner relations of
seemingly different phenomena.
Now we see how the mechanical
properties of a metal are linked to
the magnetic field. O

Quantum on magnetic fields:
Kaleidoscope, "Electromagnetic

Induction," March/April 1991, pp.
32-33.

A. Chernoutsan, "Michael, Meet
Albert," September/October 1993,
pp.43-44.

S. Eatman, F. Muir, and H.
Hickman, "Phlogiston and the Mag-
netic Field," March/Aprll 1994, pp.
35-37.

|. Wylie, "Magnetic Monopoly,"
May/)une 1995, pp.4-9.

A. Ruzmaykin, "On the Nature
of Space Magnetism," September/
October 1995, pp. l2-L7.

A. Stasenko, "Magnets, Charges,
and Planets," Mayflune L997, pp.
42*45.

A. Mitrofanov, "CanYou See the
Magnetic Field? " |uly/August 1997,
pp. 18-22.

D. Tselykh, "Magnetic Field-
work," September/October 1998,
pp. 4647.

A. Stasenko, "A Rotating Capaci-
tor," Mayflurre 1999, pp.34-36.

V. Kartsev, "Magnetic Personal-
ity," Mayflttne 1999, pp. 42-45.

{13)

_ mr?,

2 , ,z'
(m+F)

Plugging the parameter p into this
equation and taking into consider-
ation that

nl\ -_, l
nr+lt O

(see ecluation 1-ll, rve get

.' lr Qr L Lt)
-1'r Q: l1l 2'

So we've arrived again at the
equation u.e obtained earlier for the
magnetic field energy of a circuit
carrying current 1.

In conclusion, \\'e should make
note of an interesting feature of the
phcnomenon r. q \ tr heen investigat-
ing. We knort- that the arithmetic
average oi nro positive numbers
cannot be smaller than their geo-
metric mean-that is,

llr -.1 > I lnll 
'

consecluentlr',

llu 1

-:-.

( rr'- Lt t- J

Therefore, it can be concluded irom
ecluation ( 151 that

I ,-.. . -

U..<1--
tl

Thus, no more than li', ..i lha
initial kinetic energ)-oi rhe Jr:tcrtd.
motion of the conductrng electri,ns

(15)
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HOW DO YOU
FIGURE?

ChallBltUB$

lary is 0.2 mm, the speed of
ejected water v = 2 mls, and
sound frequency f : l00OFJ.z.

(Y. Chernyshev)

P31 3
Moisture in a hydrogen tank. A

cylinder of volume V = 2 liters con-
tains hydrogen(m:2 g) and a small
amount of water. The pressure in
the cylinder is P, : 17 atm. The cyl-
inder is heated in such a way that
the pressure rises to P, = 25 atm.
How much water evaporates? What
are the initial and final tempera-
tures? Hint:lJse a table giving data
on the pressure-temperature rela-
tionships of water saturated vapor.

(A. Buzdin)

P31 4
Two coils and a capacitor. Two

coils with self-inductance I, and L,
are connected in parallel. What will
be the maximum currents in the

Figure 2

coils if a capacitor with capacitance
C and charged to a voltage V is con-
nected to them in parallel as shown
in figure 2? (O. Savchenko)

P31 5
Conical reflector. A point source

P is located on the axis of a hollow
cone with a reflecting inner surface
(figure 3). An image of P is {ormed on
a screen S by rays making a single re-
flection from the cone and passing

the
the

Physics

P31 1

Rubber meridians. A strong rub-
ber net envelops an elastic ball. The
threads of the net lie along the me-
ridians of the ball. What shape will
the ball assume if the intemal pres-
sure is increased?

P31 2
Chopping drops. To obtain iden-

tical water drops, a caplllary tube is
connected to a large vessel of water
equipped with a piston (figure 1).

Figure 1

Water flows from the capillary when
the piston moves in the vessel. A
piezoelectric crystal is attached to
the outer surface of the capillary's
free end and connected to a low-fre-
quency sound generator, which in-
duces oscillations in the stream of
water. At sufficiently large oscilla-
tion amplitudes, the stream is
chopped into absolutely identical
drops. Find the radius of these drops
i-{ the internal diameter of the capil-

Figure 3

Figure 4

through a lens I. The rays cannot
reach the lens directly, because they
are blocked by a diaphragm. How
will the image be transformed if the
lens is screened with the dia-
phragms shown in figures 4a and 4b?

(D. Belov)

tlllAIh

M311
Internal identity. Prove that in

any arithmetic progression consist-
ing of natural numbers there exist
two numbers with identical digit
sums. (S. Genkin)

M312
Triangles on the march. For a given
chord MN of a circle, consider all
triangles ABC such that AB is a di-
ameter of the given circle not inter-
secting MN and the sides AC and
BC pass through the endpoints of

CONTINUED ON PAGE 33
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The hil'lh 0l louu{Elnpel'alul'e phy$ics

Properties of helium near absolute zero

by A. Buzdin and V. Tugushev

HE PROPERTIES OF SUB-
stances at low temperatures
have attracted scientific atten-
tion for a long time. In the 1Sth

century the renowned French scien-
tist Antoine Lavoisier (17 43-L794)
wrote that if the Earth could be sub-
jected to such severe cold that all the
rivers and oceans became moun-
tains of ice and the air turned into a
visible liquid, this transformation
would open up new possibilities for
obtaining unusual new liquids with
unheard-of properties. Lavoisier's
premonition of a fascinating new
low-temperature world has come
true in full measure. Low-tempera-
tures research is now a major branch
of modern physics.

The behavior of substances near
absolute zerohas nothing to do with
their usual properties at ordinary
temperatures. Many beautiful phe-
nomena appear only at extremely
1ow temperatures/ while under stan-
dard conditions they are masked, as

a rule, by the thermal motion of at-
oms. For example, one needs very
low temperatures to see supercon-
ductivity-the ability of a substance
to cafiy electric current without
even the slightest resistance to its
flow. This arnazing phenomenon,
which has no parallel in classical

physics, was discovered by the out-
standing Dutch scientist Heike
Kamerlingh-Onnes llB53-I9251.
Kameriingh-Onnes was the first to
obtain liquid helium, and he under-
took a comprehensive examination
of its properties. It was the possibil-
ity of performing routine work at
low temperatures that allowed
Kamerlingh-Onnes to discover. su-
perconductivity. This article tells
the story of how liquid helium was
produced and how superconductiv-
ity was discovered.

liquelaflion olUases
Investigations at 1ow tempera-

tures are closely related to the liclue-
faction of gases. As you know, many
gases become liquids only at very
low temperatures. When a liquid
" gas" (that is, a substance that is
gaseous under standard conditions)
is poured into a vessel, it evaporates
and, in doing so, absorbs heat from
the surroundings. As long as there is
even a drop of liquid gas in the ves-
sel, the temperature remains con-
stant (equa1 to its boiling point).

The history of the liquefaction of
atmospheric gases begins in lB77
and is marked by the names of the
French scientist Louis Paul Caiiletet
(1832-1913) and the Swiss physicist

Raoul-Pierre Pictet ( 1842-19291.
Cailletet's scientific approach al-
lowed him to achieve licluefaction oi
the basic atmospheric gases a iew
weeks before Pictet did rr-hile
Pictet's engineering skills 1ed to the
creation of devices based on the cas-
cade principle subsequentlr- used in
most cryogenic research.

In one experiment Cailleter tried
to liquefy acetylene under hlgh pres-
sure. A seal in the appararus iarled
and the compressed gas began to
leak out. Cailletet, who u-as observ-
ing the experiment careiullr-, no-
ticed that as soon as the leak began,
a thin cloud formed in the r-essel and
then immediately disappeared. The
researcher suggested that the pres-
sure drop caused bv the leakage had
abruptly cooled the gas and pro-
duced the c1oud, which was nothing
but condensed acetylene. Painstak-
ing experiments confirmed this hy-
pothesis.

Without wasting any time,
Caiiletet began liquefying atmo- >
spheric gases. The first target was f
oxygen. This gas was compressed to fl
300 atrn in a thick-walled glass ves- !
sel, where it was cooled with er-apo- !
rating sulfur dioxide to -29'C. \\ hen r=

the vessel was rapidll- depre ssur-r -ed, I
Cailletet could see a .:r;ll :- '*l oi i

12 J[ruttARY/rrBRUIBY 2oo1



ffi'-*t -

g

ffi
s--

ffitt,s;
"q
tri

OUAlllTUllil/FIATURI

P6We4Es+se'

ffi,t=
::ii€r:, 1::'
:i+:::a:''

$,:



the condensed gas. There was no
doubt-this cloud was liquid oxy-
gen. In December 1877, Ca|^Jetet
submitted a repoft on the results of
his experiments on liquefaction of
oxygen to the Paris Academy of Sci-
ences. Soon Cailletet managed to
obtain licluid nitrogen.

It isn't difficult to understand
why the gases were cooled in
Cailletet's experiments. When a gas

expands rapidly enough, there is no
appreciable heat exchange between
the system and its environment. So

under such conditions the expan-
sion of the gas is almost adiabatic.
According to the first 1aw of thermo-
dynamics, in in adiabatic process
LU : -W-that is, the change in the
internal energy of the gas is equal to
the negative of the work performed
by the gas on its environment. When
the gas expands, it performs positive
work on its surroundings (I4l' > 0).
Correspondingly, external forces
perform negative work during this
process. Thus AU < 0, which means
the gas is cooled, since its internal
energy is proportional to its absolute
temperature.

In addition to temperature, there
is another very important parameter
that radtcally affects the liquefac-
tion of gases. At the end of the 18th
century the Dutch physicist Martin
von Marum (1750-1837) performed
a series of experiments with ammo-
nium to verify the Boyle-Marriotte
law. He was a careful observer and
couldn't help noticing a paradoxical
phenomenon. At first, the pressure
increase was inversely proportional
to the volume occupied by the com-
pressed gas. When the pressure
reached 7 atm, something unex-
pected occurred: it couldn't be in-
creased any more by further com-
pression. Liquid ammonium
appeared in the cylinder, and addi-
tional compression only produced
more liquid, not higher pressure.

Compression of gases was the
main tool used to liquefy ggses in
experimental thermodynamics in
the first half of the 19th century.
However, in spite of many attempts/
scientists couldn't liqrr"fy such gases

as hydrogen, nitrogen, and oxygen.

These substances remained gaseous
however high the pressure used to
compress and liquefy them. No won-
der the researchers considered these
gases //permaneflt." In other words/
they believed that hydrogen, nitro-
gen, and oxygen could not exist in
the liquid state. However, it was baf-
fling why some gases were perma-
nent while others were not. This nut
was cracked not by experimentalists
but by the famous Dutch theoretical
physicist fohannes Van der Waais
(1837-t9221.

In the second half of the 19th cen-
tury Van der Waals deduced a very
simple equation to describe the be-
havior of real gases. The "ideal gas"
so often used in physics calculations
is a rough model that approximates
the properties of real gases only at
high temperatures and low densi-
ties: the higher the temperature and
the lower the density, the better the
model functions. In contrast, at low
temperatures and high densities a
very important role is played by the
interactions among the molecules of
the gas, as well as the size of the
molecules (both neglected in the
ideal gas approach). The Van der
Waals equation for real gases took
both facts into consideration.

Figure 1 shows experimental iso-
therms for real gases (the solid
cuwes) and some theoretical curves
from the Van der Waals equation.
Clearly the Van der Waals isotherms
describe the behavior of real gases

more precisely at higher tempera-
tures. In other words, the Van der
Waals equation is also an approxi-
mate model of real gases. However,
this equation describes the phenom-
enon of two different states (phases)

of matter-licluid and gaseous. The
equation predicts that there is some
critical temperature above which
the difference between these phases
disappears.

The main feature of isotherm 1in
figure I is the presence of the seg-
ment where pressure increases with
volume. It's not hard to see that this
segment of isotherm 1, where the
pressure changes in the same direc-
tion as the volume/ means the gas is
unstable in that region.

Indeed, let's consider gas in a cyl-
inder with a piston: In the region
between points a andb on isotherm
I, any random decrease in the voi-
ume of the gas would decrease the
pressure exerted on the piston,
which means a further compression
of the gas. Therefore, in this region
the Van der Waals theory cannot be
applied: The transition of gas to liq-
uid (liquefaction) occurs here. The
pressure in the system remains con-
stant during condensation and is
equal to the saturated vapor pres-
sure. This constant pressure corre-
sponds to the horizontal part of the
real isotherm between valves V, and
Vr. When condensation is complete,
we have no more gas in the system.
Only experimentation yields the
precise value of V at which conden-
sation begins.

When the temperature rises, the
maximum and minimum of the un-
stable segment of the isotherm ap-
proach each other and at some tem-
perature they "fuse" (isotherm /1 in
figure 1). This critical temperature
7" is a characteristic parameter of
each gas. When the temperature is
higher than Q, the gas cannot be liq-
uefied, however great the pressure
applied to it. In other words, { is the
minimum temperature at which a
substance can exist in the liquid
state. The corresponding value for
the critical pressure P" is the maxi-
mum pressure of the saturated gas,

while the critical volume V" deter-
mines the maximum density of the

P(l

D
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Figure 1
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gas. As the gas approaches the criti-
cal point, the difference in the den-
sities of the gas and liquid becomes
small, and it disappears entirely at
the critical conditions. Note that for
an ideal gas 4: 0, which means that
condensation doesn't occur at any
(finite) pressure. This is explained by
the fact that the interactions be-
tween molecules aren't taken into
account in the ideal gas model.

Now it's clear that researchers
were trying (and failing) to liquefy
some gases at temperatures higher
than their critical points. Since this
cannot be done at arLy pressure/
these gases were erroneously consid-
ered "permatrerrt."

Geilinu close to lhuid lelium
Although Cailletet managed to

obtain liquid oxygen, he was still
confronted with the problem of
keeping an appreciable amount of it
in the liquid phase, because oxygen
evaporates rapidly under normal
conditions. He never managed to
solve this problem. The next step-
from condensation to true liquefac-
tion-was taken by the Polish physi-
cists Karol Stanislav Olszewski
(1845-1915) and Zygmunt von
Florenty Wroblewski, who replaced
the inefficient and low-output appa-
ratus of Cailletet with Pictet's cas-

cade machines and obtained liquid
oxygen, " calmly boiling in the test
tube." However, despite repeated
attempts/ Wroblewski and Olszew-
ski could not expand the list of liq-
uefied gases/ because hydrogen
strongly resisted all attempts at liq-
uefaction. The first person to ob-
serve hydrogen in the liquid state
was the British physicist Sir |ames
Dewar in 1898.

In Holland the baton in the gas liq-
uefaction race was passed to Heinke
Kamerlingh-Onnes, a friend and fis-
ciple of Van der Waals. In 1BB2
Kamerlingh-Onnes headed the Cryo-
genic Laboratory at the University of
Leyden. His first step in this fieldwas
to verify experimentally the theoreti-
cal predictions of the Van der Waals
theory of the critical values of the
temperature and pressure at which a

gas can be converted to a liquid.

Kamerlingh-Onnes tested many
different gases/ cooling them to
lower and lower temperatures and
measuring their isotherms. The sci-
entist was most intrigued by he-
lium, which at that time resisted
repeated attempts at liquefaction.
The fact that helium remains gas-
eous down to extremely low tem-
peratures makes it possible to obtain
data on the interactions between gas

molecules from experimental iso-
therms (because at low tempera-
tures the deviation of a real gas from
the ideal gas model due to molecu-
lar interaction manifests itself most
clearly).

In l9O7 Kamerlingh-Onnes pub-
lished the results of his measure-
ments of helium isotherms in a

wide temperature range from -216"
to +100"C. This was followed
soon after by measurements at the
temperature of liquid hydrogen
l-2s9.Cl.

Research at such low tempera-
tures required special equipment
and led to the development of the
technology of gas liquefaction. And
this would be a good time to say a
few words about the special talents
of Kamerlingh-Onnes, who played
such a decisive role in the progress
made in low-temperature physics at
the Leyden laboratory.

Kamerlingh-Onnes was one of
those innovators who understood
that sophisticated experimental
techniques called for skilful and
professionally trained specialists.
He felt that the time o{ amateur
professors performing experiments
with clumsy home-made devices
had passed forever. Penetration into
the deeper levels of natural mecha-
nisms could be made only by
means of a special "industry" de-
voted to scientific instrumentation.
In 1901 Kamerlingh-Onnes orga-
nized a glass-blowing workshop at
his laboratory. He continually
stressed that physical observations
must be performed with astronomi-
cal accuracy: "Door meten tot
weten" ("Through measuring to
knowing"). These demands could
only be met by radically improving
the training and professional skill

o{ the researchers. In essence, the
Kamerlingh-Onnes's cryogenic
laboratory became the prototype
and model for research institutes in
the 20th century.

Kamerlingh-Onnes was also well
aware of the vital importance of
timely in{ormation exchange among
scientists. To this end he founded
the journal Communications from
the Physics Laboratory at the Uni-
versity of Leyden, which pubiished.
the results of experiments con-
ducted at his institution. Moreover,
the doors of his lab were wide open
to anyone who wished to work in
cryogenic physics and technology.
This was an absolutely new scien-
tific style and a new type of relation-
ship between scientists from differ-
ent countries and diverse scientific
schools.

Lhuelaclion olhelitlm
Above all, Kameriingh-Onnes

was interested in the critical param-
eters of helium, mainly at its criti-
cal temperature 7". By measuring
helium isotherms at ever lower tem-
peratures/ he concluded that 7" was
somewhere between 5 K and 6 K.
Kamerlingh-Onnes felt that helium
could be chilled to subcritical tem-
peratures by rapid expansion of the
gas after it had been compressed to
100 atm and cooled by liquid hydro-
gen. Indeed, during such an experi-
ment Kamerlingh-Onnes observed a
dense gray cloud. This cioud would
seem to conJirm the condensation of
helium.

However, further experiments
showed that the actual reason for
the appearance of this cloud was the
presence of a tiny amount of hydro-
gen, which was not removed from
the helium despite careful purifica-
tion. When the experiment was re-
peated with helium subjected to
additional processing, no cloud
appeared in the system. When
Kamerlingh-Onnes increased the
rate of expansion, he again observed
a light hazy cloud. However, this
cloud was not dense and disappeared
within seconds. Thus the cluestion
of the value of helium's critical tem-
perature was stil1 open.
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Figure 2

On |u1y 10, 1908, the crucial ex-
periment was carried out. The idea
behind this experiment is shown in
figure 2. Strongly compressed he-
lium passes from the compressor to
a heat exchanger, where it is chilled
by liquid hydrogen. The compressed
and cooled helium goes ro a receiv-
ing tank through a speciai valve V1,

where it expands drastically and
coois. While the temperature of the
helium in the receiving tank is
higher thanT", no condensation oc-
curs there and the chilled helium
returns to the compressor through
the heat exchanger. In the heat ex-
changer this portion of the helium
provides additional cooling to the
compressed helium going in the op-
posite direction, so the new portion
of gas entering the receiving tank
has a lower temperature than the
previous one. This step-by-step cool-
ing decreases the temperature of the
helium expanding in the receiving
tank down to the critical value,
where condensation begins. The
heiium produced is collected into a
Dewar flask through a special valve
v2

The experiment started at 5:45
e.n. with the licluefaction of 20liters
of hydrogen needed to cool the he-
lium. This work was finished at 1:30
p.lt. Extreme caution was required
during the preliminary cooling of
the system with liquid hydrogen.
The smallest amount of air leaking
into the system would ruin the ex-
periment. The air would condense

due to contact with the liquid hy-
drogen and freeze onto the glass ves-
sel containing helium, making all
further observation impossible. Cir-
culation of helium began at 4:20
P.M., and at this moment the
liquifier's internal cryostat entered
the still unknown region of ex-
tremely low temperatures.

For a long time the temperature
indicator hardly moved. After addi-
tional adjustment of the apparatus/
the researchers observed a gradual
decrease in temperature, but soon it
stopped. Almost the entire supply of
liquid hydrogen had been used up,
but there was still no sign of helium
liquefaction. At 7:30 p.m. it seemed
as if their attempt to liquefy heiium
had failed, but at this critical iunc-
ture one of Kamerlingh-Onnes's col-
leagues suggested that the absence
of further progress of chilling helium
could simply be caused by the fact
that the thermometer was im-
mersed in an invisible boiling liquid.

The researchers illuminated the
collecting tank from beIow, and
suddenly they clearly saw that the
vessel was filled almost entirely
with a liquid, which became visible
due to the reflection of the 1ight.
They had produced almost 60 cm3
of liquid helium. Here is how
Kamerlingh-Onnes described the
historic moment: "It was a wonder-
ful sight-the first view ever of a
liquid with an almost immaterial
appearance. Its entry into the vessel
went unnoticed. It was not noted
until it had filled the vessel, and
then its surface was outlined as
sharply as the edge of a knife. I was
hrppy that I could show liquefied
helium to my respected friend Van
der Waals, whose theory was the
thread that guided our experiments
to the very end."

As that famous experiment drew
to a close, Kamerlingh-Onnes tried
to obtain solid helium by decreasing
the pressure in the vessel where the
liquid was boiling. To obtain the
lowest possible temperature, he let
the liquid boil until only 10 cm3 was
left in the receiving tank and then
connected this helium cryostat to a
vacuum pump that decreased the

pressure over the boiling helium to
0.01 atm. Flowever, there were no
signs of solid helium, so
Kamerlingh-Onnes supposed that
the freezing point of helium could
not be reached with his apparatus.

Later, he made two other at-
tempts to solidify helium, but again
he failed. In 1922 Kamerlingh-
Onnes made his final attempt to
solidify helium. Using a dozen
pumps to remove the vapor above "

the liquid helium, he decreased the
pressure down to 0.013 mmHg and
attained a temperature of 0.83 K!
However, the helium remained lic1-

uid even at this record low tempera-
ture.

In his first experiment with liq-
uid helium, Kamerlingh-Onnes was
astonished by its very low density.
It turned out to be less dense than
water by a factor of eight. This
means that the helium atoms are
iocated at relatively large distances
from one another. Therefore, it's
much more difficult to solidify
such a substance in comparison
with ordinary liquids.

This is why helium remains a licl-
uid down to extremely low tempera-
tures. However, it would be liquid
even near absolute zero, because in
this temperature region its solidifi-
cation is prohibited by the laws of
quantum mechanics. Indeed, in clas-
sical physics the thermal oscilla-
tions of particles become weaker
and weaker as the temperature
drops. The intermolecular attractive
forces must eventually lead to so-
lidification of the cooled substance.
However, according to quantum
physics, the notion that atoms stop
moving completely at absolute zero
is erroneous. In reality, the atoms
perform so-called " zerolpoint" vi-
brations even at zero temperattue,
and these oscillations have nothing
to do with thermal motion.

Thus the unique behavior of liq-
uid helium at low temperatures is at
odds with classical physics. At nor-
mal pressure this substance doesn't
freeze at temperatures near absolute
zero. A huge pressure of p: 30,000
atm is needed to solidify helium at
T : t.78 K.
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Kamerlingh-Onnes noticed an-
other strange property of liquid he-
lium in his very first experiment
with helium licluefaction. When the
temperatuie was decreased below
the boiling point, the density of he-
lium increased as expected, which
meant that helium can be com-
pressed by cooling (or expanded by
heating). However, at 2.2 K there
was a sharp peak in the density-
temperature p1ot, and further cool-
ing decreased the density o{ the liq-
uid helium. Research conducted by
Kamerlingh-Onnes in the last years
of his life uncovered other anoma-
lous properties of helium chilled
below 2.2K.

Later, after the death of
Kamerlingh-Onnes in 1925, his stu-
dents published the results of their
studies of liquid helium. In 1932,
Keesom and Clausius found a drastic
increase in the specific heat for he-
lium near T = 2.2 K. A few years later
it became clear thatthis temperature
is the landmark of a phase transitior!
which changes not only the specific
heat but many other properties of 1iq-

uid helium. In the temperature range
from 7 :2.2K to its boiling point,
helium is just a licluid with more or
less ordinary properties. This liquid
is referred to as He I.

In contrast, at T < 2.2 K helium
exhibits unexpected and paradoxical
properties. In 1938, the outstanding
Russian physicist Pyotr Kapitsa
found thatatT <2.2 Kliquidhelium
(referred to as He II) has no viscosity
and can flow in a narrow capillary
without resistance. In other words,
friction is unknown to He II. This
property of He II was called " super-
fluidity." The theory of superfluid-
ity was created by Kapitsa's col-
league, the great Soviet theoretician
Lev Landau. The creative unity of
their experimental and theoretical
work was highly appreciated by the
scientific world: Both researchers
became Nobel laureates.

In his experiments with liquid
helium, Kamerlingh-Onnes actu-
a1ly observed the transition to su-
perfluidity, but he had no concep-
tual framework to appreciate and
describe the significance of this

event. It should not be forgotten
that quantum physics was at that
time in its infancy. To explain the
behavior of liquid helium at 1ow
temperatures, the old classical
views had to be thrown out and a

new theory created. This work
could be performed only by physi-
cists of the next generation. In
Kamerlingh-Onnes's time, the very
process of helium liquefaction was
a great scientific victory-one that
seemed to be the last stage on the
road to absolute zero.

Dhcouery ol supenconductiuily
Having created a special tech-

nique for attaining temperatures
around 1 K, Kamerlingh-Onnes and
his collaborators performed numer-
ous experiments to test the proper-
ties of various substances at "he-
lium temperatures." It's relatively
easy to measure the electrical resis-
tivity at ar:y temperature. Quite
understandably, Kamerlingh-Onnes
began to study the behavior of elec-
trical resistivity at low tempera-
tures. However, it wasn't just ex-
perimental simplicity that led him
to do it.

At the beginning of the 20th cen-
tury there were two electrical theo-
ries that provided opposite predic-
tions of the behavior of electrical
resistivity at Yery low tempera-
tures. One of them proclaimed that
resistivity should disappear at abso-
lute zero temperature. Indeed, resis-
tivity in metals is inversly propor-
tional to the time between two
successive collisions of an electron
with oscillating atoms. When the
temperature drops, the amplitude
of the atomic oscillations drops (it
looks as if the atoms "shrink"), so
the chance of encountering an atom
becomes negligibly smal1. This
means the resistivity should tend to
zero as 7 -+ 0.

The other theory said that low
temperatures freeze anything, so
electrons stop "wandering" in the
metal and condense onto the host
atoms. In this case/ no carriers of
electricity would remain in the
metal, which translates to an infi-
nitely high resistivity as 7 -+ 0.

Kamerlingh-Onnes chose plati-
num as his first test material when
he began measuring resistivities at
low temperatures. Surprisingly, his
results didn't fit either theory: The
resistivity of extremely cold plati-
num did not depend on tempera-
ture at all! However/ one might
come to expect anything in this
crazy {rozen world. Kamerlingh-
Onnes noticed that the resistivity
of various platinum samples was
lower as their purity increased. He
concluded that existence of a finite
resistivity as T -+ 0 (so-called ze-
sidual resistivityl results from im-
purities, while a clean metal should
have a vanishingly small resistivity
at zero temperature. However,
Kamerlingh-Onnes erroneously
supposed that the resistivity of pure
metals should gradually decrease to
zero even at "helium tempera-
tures. "

Therefore, the problem was to ex-
amine the resistivity of the cleanest
possible specimens. For example,
gold can be purified much better
than other metals, and better than
platinum in particular. As expected,
the residual resistivity of gold was
much lower than that of platinum
and it decreased more as the speci-
mens became purer.

Exploring this problem further,
Kamerlingh-Onnes began to investi-
gate the resistivity of mercury at 1ow
temperatures. This substance is a
liquid at room temperature, so it's a

rather simple task to obtain highly
purified mercury specimens by suc-
cessive distillation. The results of
the seemingly routine experiments
that followed were utterly unex-
pected. The resistivity of mercury
did not gradually decrease as it was
cooled-when the temperature was
slightly lower than the lioiling point
of helium, the resistivity dropped
drastically and became immeasur-
ably small.

On April 28, 1911, Kamerlingh-
Onnes reported the results of his re-
search to the Royal Academy of Sci-
ences in Amsterdam. He calied the
newl phenomenon "superconduc-
tivity."

CONTINUED ON PAGE 27
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Wher'B do [l'nhlems Golnell'om?

The art of problem composition

by l. Sharygin

WIFE PUTS DOWN A BOOK
indignantly and turns to her
husband: "Do you remember
the poem you wrote for me on

our wedding day? They're saying in
this book that it was written by
some guy named Petrarch!"

I'd like to begin this article with
two contradictory statements. On
the one hand, I don't recommend
that every student who reads this ar-
ticle immediately start composing
problems. On the other hand, I in-
vite you to take a crack at compos-
ing problems (starting with geom-
etry problems) and send them to me.
They might appear in our magazine
someday.

In this article I'd like to give you
the benefit of my long experience in
composing geometry problems, to
tell you some of my secrets/ and to
formulate some aesthetic and even
ethical principles.

For convenience/ we can divide all
problems into three categories: text-
book exercises, competition prob-
1ems, and Olympiad-style problems.
We might also add another category:
" creatiYe" problems, but this is more
of a "subtext" than a formal feature,
since the " creativtty" has more to do
with how the problem is solved than
with the problem itself.

Now let's peek into the problem
maker's "bag of tricks."

ftelormulalion
Here's an example of a problem

that makes use of the technique of
reformulation.

Problem 1. A circle is circum-
scribed about a triangle, and a diam-
eter is drawn that is perpendicular to
one side. This diameter is then pro-
jected onto a second side. Prove that
the length of the projection is equal
to that of the third side of the tri-
angle.

The solution is left to the reader
(who may want to recall that a seg-
ment of length s projected onto a
line with which it forms an angle 0,
is equal to s cos 0).

The {ollowing theorem is well
known.

B

Theorem. If arbitrary points A',
B', and C' arc taken on lines AB, BC,
and CA, respectively (distinct from
the vertices of triangle ABC), then
the cfu cles p assing through points A,
B', and C', A', B, and C', and A', B',
and C have a common point.

This theorem is sometimes called
Miquel's theorem, and the sommon
point of the circles is called the
Miquel point and is denoted by M.

The proof of this theorem is not
very complicated. The only diffi-
culty, when no oriented angles are
used, is in examining all the differ-
ent cases of various mutual posi-
tions of the points C', A', and B'.In
the situation shown in figure 1a,
calling M the point of intersection of
the circles passing through points A,
B' , C' and A' , B, C' , it is not difficult
to proYe that the points A' , B' , C, and

a
Figure 1

b
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M lie on a circle. (for example, we
can show that ZC and IB'MA' are
supplementary.)

Here is a problem suggested at an
A1l-Union Oiympiad.

Problem 2. A point E (different
from Aand B) is given on side AB of
a convex cluadrilateral ABCD. Seg-
ments AC andDE intersect at point.
-F. Prove that the circles circum-
scribed about triangles ABC, CDF,
and BDE have a common point.

Solution. A close examination of
figure lb and the statement of the
problem shows that probiem 2 corn-
cides with the theorem above. In-
deed, it's sufficient to reformulate
the condition of the problem in
terms of triangle AEF, renarning the
points as follows: E -+ B, B -) C',
F -+ C, C -+ B', and D -s A'. Cer-
tainly the statement of the problem
is less natural and thus is less attrac-
tive than that of the theorem.
Maybe I'm wrong about the origin of
problem 2-so much the worse for
the organizers of the Olympiadl

Elegant and effective problems
can arise when a geometrical prob-
lem is translated into the language
of algebra. For example, consider the
well-known problem of construct-
ing a triangle given its three alti-
tudes (are you able to solve it?). The
idea is that the triangle with sides a,
b, and c is similar to the triangle
with sides llho, llhb, and Ifh".

Let the lengths of the triangle's
altitudes be a, b, and c, and let its
sides be x, y, and z. If this triangle
is acute, we immediately obtain a
system of equations for x, y, and z.
Thus we have the following prob-
lem (figure 2).

Problem 3. Solve the system of
equations

it)itl\x--c- +\iI'-c'=2,
-t - ) ,-r i
rl 

-,1' 
L , 7-t) -u *\- -tt =Xt

) ,) ' i , )
\Z--ta -FrX--tt'=Y.

Knowing the origin of this sys-
tem, we easily find the condition
for its consistency (this is the con-
dition that the triangle with sides
I I a, | /b, and I I c be acute) and then
solve the system. Prove that both

Figure 2

the system and the construction
problem cannot have more than
one solution.

The change in the problem state-
ment obtained by passing from the
direct proposition to the inverse one
can also be classified with this kind
of problem, although it's a bit of a
stretch. (We should stress that the
boundary between different kinds of
problems is rather fuzzy. One and
the same problem may illustrate dif-
ferent methods, especially since the
final problem is often obtained by a
combination of several methods.)
This method has many variations,
but here I'11give only one example
that demonstrates how a trivial di-
rect proposition can give rise to a
problem with rich geometric con-
tent. By looking at various right.tri-
angles, we can see that the ortho-
center H of acute triangle ABC lthe
point of intersection of the altitudes)
possesses the property

IHAB = ZHCB,
ZHBA = ZHCA,
ZHAC : ZHBC.

So the following problem arises
quite naturally.

Problem 4. Find the locus of
points Mforwhich IMAB: ZMCB
and zMBA: IMCA, where ABC is
the given acute triangle.

Solution. It's clear that the point
of intersection of the triangle's alti-
tudes belongs to the locus in ques-
tion. The nontrivial problem is to
find if there exists only one such
point inside the triangle. We prove
that this is indeed the case. Let's ex-
tend AM, BM, and CM until they
intersect the triangle's sides at points
41, 81, and C, (figure 3). Points A, C,

Figure 3

A' and C, lie on a circle (since
ZALACT = lArCCt). Therefore,
lMArCl: Z.MCA : ZMBC, and
ZMAC = ZMCtAr. Thus points M,
B, A, and C, also lie on a circle and
ZMBAT : ZMC rA1 = ZMAC.Denot-
ing the angles by a,9, and q, as in fig-
ure 3, we find that u + P + 0 : nl2,
which implies that AA, BB, and
CCrarc the altitudes of the given tri-
angle. However, the locus of points
we seek is not exhausted by the
single point of the altitudes'intersec-
tion. The arc AB of the circle circum-
scribed about triangle ABC and the
midpoints of arcs BC and CA also
belong to this locus (prove this fact).

Pl'ollems [uilton olhel' [l'ollems
Often in geometry, the structure

of a problem involves working other
geometric figures or results into a
given diagram. Solid geometry prob-
lems of this kind are often used in
Russian university entrance exams.
When the structure of such prob-
lems is complicated, the solution
usually comes step by step, stacked
like books on a bookshelf or a set of
nested wooden dolls.

However, such problems don't
necessarily have a complex underly-
ing structure. Here is a simple ex-
ample made up of two (or three) sub-
problems.

Problem 5. The diagonals of a

convex quadriiateral divide it into
four triangles. Prove that the prod-
uct of the areas of two opposite tri-
angles is equal to the product of the
areas of the two other triangles.

Problem 6. Prove that the square
has the maximum area among all
quadriiaterals inscribed in a given
circle.
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We invite the reader to solve
these two problems, while we pose
a new one based on them.

Problem 7. Quadrilateral ABCD
is inscribed in a unit circle. The di-
agonals of this quadrilateral inter-
sect at point M. Find its area if it is
given that the product of the areas of
triangles ABM and CDM is ll4.

Solution. To solve this problem,
it's sufficient to note (figure 4l that
SrS3 : S2S4 : 1/4 (problem 5) and that

S=Sr+Sr+Sr+So

> 2nlffi+2/ffi= z

(the arithmetic mean is greater than
or equal to the geometric mean).

In addition, Sorcrl2 (problem 6),

since the arcao[ the square inscribed
in a unit circle is 2. A11 this implies
that ABCD is a square and its area
is 2.

Many problems are constructed
so that they can be solved using a
particular idea. And wouldn't you
know, it often turns out that these
problems have a different (and
sometimes simpler) solution.

Here's one of my problems of this
sort. I wanted to compose a problem
in which the reasoning that three bi-
sectors of a triangle meet at a point
(more exactly, that the third bisec-
tor passes through the point of inter-
section of two other bisectors of
angles of a triangle, not necessarily
internal ones) was repeated twice. hr
addition, the second stage had to be
essentially dependent on the first
stage of the solution. I can't say the
resulting probiem was particularly
successful, since it's based on a well-
known construction, nevertheless/
here it is.

Figure 5

Problem 8. The measure of angle
Bof triangle ABCis 120'.ApointM
is taken on si.de AC and point K is
on line AB such that BM is the bi-
sector of angle ABC and CK is the
bisector of the angle adjacent to
angle ACB. Segment MK intersects
side BC at point P. Prove that ZAPM
= 30".

Solution. Our reasoning will in-
volve two steps. For triangle BMC,
lines BK and CK are the bisectors of
the external angles B and C, respec-
tively (figure 5). Therefore, MP is the
bisector of angle BMC, and P is the
point of intersection of the bisec,tors
of external angles that are adjacent
to angles B and M of triangle ABM.
Thus AP is the bisector of angle
BAC. FtnaLly, we obtain

ZAPM=ZPMC_IPAM
=tlrvaruc-zBAMl

: llrlzeaut) = 30".

We used the fact that the measure
of an exterior angle of a triangle is
equal to the sum of the two remote
interior angles.

Finally, a problem may be con-
structed so as to obtain a required
result (this trick is often used in ex-
ercises). By way of example, here is
a"trap" (such problems are encoun-
tered very welyl. The numerical
data are selected so as to create an
unusual geometrical structure. In
spite of some drawbacks (I had to
resort to a trick in the statement), I
like this problem. However, it can
be classified neither as an OIym-
piad-style problem (it's unusual to
suggest problems with numerical
data at Olympiads) nor as a competi-
tive-type problem (even the best stu-

dents can get caught in atrap, which
contradicts the purpose of a compe-
tition). Rather, it's an instructional
problem.

Problem 9. A convex quadrilat-
eral with two sides 5 units long and
two other sides 10 units long lies at
the base of a pyramid. The height of
the pyramid is 7 units, and the 1at-
eral faces are inclined at the angle of
60o to the basal plane. Find the vol-
ume of the pyramid

Solution. From the statement o{
the problem, the measure of the di-
hedral angles at the base is 60o or
120" (but not necessarily 60'-this is
the invisible "fine print" in the prob-
lem statement!). The projection of
pyramid's vertex onto the plane of
the base is equidistant from the
sides of the quadrilateral (more ex-
actly, itis equidistant from the lines
to which the sides of the quadrilat-
eral belong). Therefore, this quadri-
lateral cannot be a parallelogram. Its
two adjacent sides are 6 units long,
and the two other sides, also adja-
cent/ are 10 units 1ong. Now, if AB
= BC = 10 and AD : DC = 5 (see fig-
ure 6), there exist two points (O, and
Orl that are equidistant from its
sides (figure 6). The conditions of the
problem imply that the distance

B
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from the projection of the pyramid's
vertex to its sides is 7 I 15 . If the ver-
tex is projected into point O1, which
is the center.of the circle inscribed
in ABCD, the area of ABCD must be

rcL.
-Ja

However, this area cannot exceed 60'
(it equals 60 when angles A and C
are 90o), and

te L> eo.
J3

Thus the pyramid's vertex is pro-
jected into point Or, and the dis-
tance from this point to the sides of
cluadrilateral ABCD is 71"13 .

Now we easily calculate the area of
ABCD, which is

_.7 28(I0-6) /^ =-lJ ..'E'

and the volume of the pyramid,
which is

64

n'3

A srudlh nase
Many general theorems that give

us a powerful instrument for solving
problems, such as Ceva's theorem in
geometry or inequalities about the
various means in algebra, may be
also used to compose problems.
Consider, for example, Pascal's
theorem: If six points A, B, C, D, E,

and F lie on a circle, then three
points at which the pairs of lines AB
andDE, BC andEF, andFA and CD
intercect lie on a line. Here is a prob-
lem linked to Pascal's theorem.

Problem 10. Let sides AB andDE
of an inscribed quadrilateral ABDE
intersect at point M andlet sides BD
and AE intersect at point K. Prove
that the tangent to the circle drawn
through points B and E meet on line
KM,

It's easy to see that this theorem
is a particular case (more exactly, a

limiting case) of Pascal's theorem,
where points B and C coincide, as do
points E and F. Two sides of the
hexagon referred to in Pascal's theo-
rem, in the limiting case/ have be-
come tangents.

Prof essional mathematicians
who help organize mathematical
olympiads often derive elegant and
interesting problems from their sci-
entific work. Particular cases of fun-
damental theorems and numerous
lemmas that arise in proving almost
any theorem can often be reformu-
lated as problems for high school
students. Such examples rarely oc-
cur in geometry/ since the modern
view of this subject differs consider-
ably from the version taught in
school (in saying this, I mean no
slight to geometry). In this article I'11

give only one-perhaps not the most
characteristic or shining-example.

There exists a"zigzag" theorem.
Two circles (possibly in space) are
given. It's known that there exists a
set of 2n points ArAr..Ar, such that
the points with odd numbers lie on
one circle, the points with even
numbers lie on the other, and ArA,
: ArAs: ...: Az,A,. Given all this,
there exist in{initely many such sets
of 2n points, any point of the first
circle may be taken for point A, and
the distance between the consecu-
tive points in these sets is the same
as for the basic set.

I don't know of any elementary
proof of this theorem. However, its
particular cases can be used as el-
ementary problems. Here is one of
them.

Problem 11. Two circles with ra-
dii R and r are given in the plane; the
distance between their centers is a.
Find the side of a rhombus such that
its two opposite vertices lie on one
circle and two other vertices lie on
the other.

I leave this problem as a challenge
to the reader, giving only the answer
here:

.,rR2 + z2 - a2 .

Uanying fie pl'ollem shilElnsltt
The following set of problems il-

lustrates what can happen when you
vary the statement of a problem just
a bit: Construct a triangle (a) given
its three sides; (b) given its three me-
dians; (c) given its three altitudes; (d)

given its three angle'oisectors. This
examples show how a smal1 change

in the statement of a problem can
result in an enormous change in its
level of difficulty. Problem (a) is a
standard textbook exercise. Problem
(b) is only a little more difficult, al-
though quite interesting. Problem (c)

is much more difficult, andproblem
(d) cannot be solved with straight-
edge and compass.

An interesting method {or writing
series of problems was suggested by
the high school teacher V. Kutse-
nok. Consider a geometric relation-
ship-for example, the equality

tth,, = bhr, (1)

-and 
ask the question: What are the

properties of a triangle for which the
relation obtained from ( 1 ) by replac-
ing the altitudes by medians or bi-
sectors holds? As a result, we obtain
the following problem.

Problem 12. Two points, A andB,
are given in the plane. Find the locus
of points C in the plane such that
the following ecluality holds for tri-
angle ABC:

(a) amo = b-o (mo and mb are
medians of triangle ABC);

(b) aF,: b\u $" and Bo are bisec-
tors of triangle ABCI.

The solutions for both cases are
similar. Consider case (a).

Let AA, and BB, be altitudes of
the triangle, and let AAo and BBobe
its medians. It follows from the
statement of the problem that the
right triangles AA,A, and BB,B, are
similar. The two possible affaflge-
ments of points 41, As, Br, and Bo on
the sides of triangie ABC are shown
in figures 7 a and 7b. In the first case,
points A, B, As, and Bo lie on a circle.
SinceAoBo is parallel to AB, this fact
implies that the trapezoidABoAoB is
isosceles, so AC = BC.In this case C
is on the perpendicuiar fisector of
AB.

In the second case, points C, M,
Ao, and Bo 1ie on a circle. In the in-
scribed quadrilateral CA'MBo, dr-
agonal AoBo is half of AB and is bi-
sected by diagonal CM. Diagonal
CM equals '13-", "o 

CM divided by
diagonal AoBo in the ratio 3:1. Now
we use the fact that if a quadrilateral
is inscribed in a ctrcle, then the prod-
ucts of the segments of its two di-
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a

Figure 7
agonals are equal. We obtain mj :
3482, which is a constant. Thus the
desired locus consists of the perpen-
dicular bisector of segment AB an.d
the circle centered at the ryrdpoint
of AB with the radius AB"l3 .

In case (b), point C must be 1o-

cated on the perpendicular bisector
of AB or ott ara arc of the circle from
which AB subtends an angle of 50".

Sometimes problems can be ob-
tained by varying the statement of a
well-known result. Here I'11give just
two examples. The well-known
Steiner-Lehmus theorem states that
a triangle is isosceles if its two bisec-
tors are congruent. This theorem is
quite natural, though the proof is
rather complicated (in contrast to
similar theorems about congruent
medians and bisectors in a triangle,
which are easily proved). Here we
see the "bad behavio{' of bisectors,
which is displayed in full measure in
the following problem.

Problem 13. In triangle ABC,the
angle bisectors are AAr, BBrand
CCr.Is the triangle isosceles if it has

(a) congruent bisectors of the ex-
ternal angles A and B?

(b) congruent segments KA, and
KB, where AA, and BB, are the bi-
sectors of the interior angles of the
triangle and K is their intersection
point?

(c) equal distances from point C,
to the midpoints of sides CA and
CB?

ldl c4t: cPJ
(e) the circle passing through

points A1, 81, and C, is tangent to
side AB of the given triangle?

The answer is no in all five cases.

Cases (d) and (e) are the most diffi-

cu1t. In this article I'11 consider only
case (e), which I got to know through
some gossip in mathematical
circles. I'11 demonstrate how a

nonisosceles triangle possessing the
desired prop erty canbe constructed,
but I won't explain how this solu-
tion was cooked up.

Aar_B
Figure B

Let AA1, BB' and CC, be the bi-
sectors of triangle ABC (figure B).

Consider points A, and Bron the ex-
tensions of sides AB such that CA,
= CAt and CB2= CBr It's clear that
points 41, 42, B, and B, lie on a
circle (check that the angles
ZB2A.A2and lArBrB, are equal). ff
it turns out that AC, and BC, are
equal to the tangents drawn from
points A and B to this circle, then
this circle touches AB atpoint Cr.fi
the length of a segment equals the
sum of the tangents drawn from its
endpoints to a circle, then this seg-
ment is tangent to the circle. The
proof of this fact is left to the reader.
Thus the following equalities must
hold:

AC? : AB1. AA2'

BC? : BAt. BB2.

It is well known that an angle bisec-
tor of a triangle divides the side to
which it is drawn into two segments
which are proportional to the other
two sides. This fact allows us to ex-
press each of the segments in terms
of the lengths of the three sides. We
get

AN, = bC

' c+u

and so on. Then we find that each of
these two equations is equivalent to

la + b + c)(a + b)2 : clc + al(c + bl.

It remains to prove that a
nonisosceles triangle exists such
that its sides satisfy this relation. A
numerical example is easy to find.
Let c : l, a + b : 1 + i,. Then, rewrit-
ing the previous equation in terms
of )., we have ab : )"(2 + )")2. ff i" is suf-
ficiently small, we can find numbers
a and b sutisfying these equations,
with a + b.

Another interesting series of
problems is related to the situation
in which a tetrahedron has congru-
ent faces. Many necessary and suffi-
cient conditions are known for the
tetrahedron to have congruent faces.
Not trying to be complete (or even
to set a record), I'll formulate the fol-
lowing problem.

Problem 14. Which of the foilow-
ing conditions are necessary and
sufficient for a tetrahedronABCD to
have congruent faces?

(a) For each pair of opposite edges,
the edges are equal.

(b) The perimeters of a1lthe faces
are equal to each other.

(c) The sums of the plane angles
adjacent to all the vertices are equal
to 180".

(d) The following ecluality holds:
ZBAD:ZBCD:ZABC:ZADC.

(e) The following equalities hold:
ZBAC : ZBDC, IABD : IACD,
IBAD:1BCD.

(f)The radii of the circles circum-
scribed about all the faces are equal.

(g) The radii of the circles in-
scribed in al1 the faces are equal.

(h) The areas of all the faces are
equal to each other.

(i) The segments connecting the
midpoints of the opposite edges are
perpendicul ar pair by pair.
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(j) The center of the circum-
scribed sphere coincides with the
center of mass of the tetrahedron.

(k) The cpnter of the inscribed
sphere coincides with the center of
mass of the tetrahedron.

(1) The centers of the circum-
scribed and inscribed spheres coin-
cide.

(m) The sum of the cosines of the
dihedral angles is -2.

(n) There exist four spheres with
centers located at the sphere circum-
scribed about the tetrahedron such
that each of these four spheres
touches a face in an interior point
and the planes of three other faces.

That's enough. Generally speak-
ing, it's possible to formulate several
dozen such conditions, especially if
we take into account that some of
the conditions may be mixed. For
example, the first eight conditions
are written as a combination of
three equalities. We can combine
them in a different way, taking one
equality from, say, item (a) (two op-
posite edges are equal) and two
equalities from item (c) (the sums of
the plane angles adjacent to two ver-
tices are equal to 180').

In this problem, almost all the
conditions are necessary and suffi-
cient for the tetrahedron to have
congruent faces. You may have
guessed that item (g) is an exception
(again, bisectors mess things up).
And this is indeed the case. Try to
construct a counterexample. (You
might want to start by taking two
pairs of noncongruent isosceles tri-
angles which possess the desired
property.)

Item (n) is very difficult to
prove-at least, I don't know of any
elementary proof.

By the way, item (e) occurred to
me as I was writing this article. It's

o

worth noting that here the fact that
the tetrahedron is a spatial figure is
essential: i{ A, B, C, and D lie in a
plane, the property indicated in item
(e) is not sufficient for the triangles
to be congruent.

Generalizalions
The development of mathematics

is associated with a continuous
chain of generahzatrons. When using
gener aliz ation in compo sing elemen-
tary problems/ we don't expect to
obtain fundamental results. Never-
theless, it's important to understand
the significance of this method.

Gener aliz ations can f ollow diff er-
ent directions. Sometimes it's pos-
sible to remove some constraints in
a problem and extend the proposi-
tion to a wider set of objects. For
example, I once encountered the foi-
lowing problem in an old mathemat-
ics journal.

Problem 15. Side AD ol an in-
scribed quadrilateral ABCD is a di-
ameter of the circle, and the bisec-
tors of angles B and C meet on side
AD. Prove that AB + CD : AD.

I didn't like the solution to this
problem presented in the journal.
After thinking about it, I found an-
other solution that didn't use the
condition thatAD was a diameter of
the circle; it turned out to be redun-
dant. As a result, a new problem was
born.

Problem 15'. The bisectors of
angles B and C of an inscribed quad-
rilateral ABCD meet on side AD.
Prove that AB + CD = AD.

My solution (there are many oth-
ers) used the following reasoning.
Consider point P on AD at which
the bisectors of angles B and C meet.
Draw the circle circumscribed about
triangle BCP and denote by M the
second point of intersection of this
circle with AD. Taking into account
the congruence of the various angles
in inscribed quadrilateraLs ABCD
ar-1 BCPMI we can prove that tri-
angles ABM and CDM are isosceles

IAB : AM and CD = CM, respec-
tively). I invite the reader to finish
the proof.

This example also shows that it's
very useful to try different methods

when solving a problem, paying
special attention to more geometri-
cal methods, since they allow for
deeper understanding of the intrin-
sic properties of figures and make it
easier to distinguish between the
essential and the secondary. Let's
look at another example. In1990, at
the All-Union Mathematical Olym-
piad, the following problem was pro-
posed.

Problem 16. Points D and E lie on
sides AB andBC, respectively, of tri-
angle ABC. Points K and M divide
segment DE into three equal parts.
Lines BK and BM intersect side AC
at points T andP, respectively. Prove
that

rp <]-ec.a(l

The very statement of the prob-
lem left me cold-it was too tedious
and contained too many different
letters. I didn't like the solution ei-
ther-it didn't agree with the prin-
ciples I had already worked out.
Having found a better solution (from
my point of view), I was able to re-
formulate the problem and make it
more general.

Problem 16'. Two rays emanate
from the vertex of an angle and lie
inside this angle. A line intersects
the sides of the angle at points D
and E and it intersects the rays at
points K and M. Prove that the ra-
tio KMIDE attains its maximum if
DK: ME.

To prove this fact, we consider
another line that intersects the sides
of the angle at points E and D, and
intersects the given rays atpoints K,
and M, (figure 9). Set DK: ME : a,

KM : b, and OD, : ?'"OD. Draw line
DMrparallelto DE through Dr. We
have

DrKr= )"a, KrMr= ),b,

DtMr 
-X(a+b)MtEa'

(from similar triangles DtMzM,
EMM.). This is algebraically equiva-
lent to

)'(a+b\DtMt--;*.DtE,
/,"\a+ 0)+ o

Figure 9
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DtKr==](- Orn,
LA+D+A

( x(a+b\ \
K,M, =t--=-r------L - 

Lo ln,r.L 
II(a+b)+a )ta+b+a ) 

r

Here we used several pairs of simi-
lar triangles, and well-known prop-
erties of proportions

Ultimately, the problem is re-
duced to proving a simple algebraic
inequality:

x(bx +zau) b
- 2a+b'(x(a+b)+ a)(),a+ a+b)

which can be written as

l),-l)za(a+bl>0.
Another possible direction of gen-

eraLizationis carrying over a geomet-
ric fact from one obiect to another-
in particular, extending geometric
properties from plane to three-di-
mensional figures. That's what gave
rise to the following problem.

Problem 17. Two tangents AB
and CD are drawn to two spheres
such that points A and C lie on one
sphere and B and D on the other.
Prove that the projections of AC and
BD onto the line connecting the
centers of the spheres are equal.

For the case of the plane, this
problem is simple lhere AB and CD
are the common external and inter-
nal tangents, respectively, to two
circles). For the spatial case, it isn't
very difficult either. The solution
relies on the fact that the midpoints
of the tangents common to two
spheres lie in a plane that is perpen-
dicular to the line connecting the
sphere's centers (the proof of this
iact is left to the reader). In my
view, this problem is remarkable,
because here the three-dimensional
analogue of a proposition formu-
lated for plane figures remains
valid, which is a rare occurrence.
Often it's necessary to construct a

counterexample that disproves
such a generalization. For example,
the simple proposition of plane ge-

ometry stating that the foot of at
Ieast one altitude in any triangle
lies on the corresponding side
(rather than on its extension) gives

the following problem for the three-
dimensional case.

Problem 18.Is it true that the foot
of at least one altitude of any tetra-
hedron belongs to the corresponding
face?

The answer is no. A counter-ex-
ample is provided by a tetrahedron
in which two dihedral angles corre-
sponding to two skew edges are ob-
tuse.

Rather often a problem can be
generalized in different directions,
generating a series of problems.
Consider this weil-known theorem:
The sum of distances fuom an arbi-
trary point inside an equilateral tri-
angle to its sides is constant. (For
those of you who are unfamiliar
with this statement, I'11 sketch out
theproofhere. The areaof the equi-
lateral triangle under consideration
equals the sum of the areas of the
three triangles that have the sides of
the given triangle as their bases, and
whose common vertex is an arbi-
trary point inside the equilateral tri-
angle.)

The assertion of this theorem can
easily be extended to the case of any
convex equilateral polygon. It's less
obvious that it also can be extended
to the case of any equiangular poly-
gon. Indeed, let ArA, ... Anbe an
equiangular polygon (see figure 10,
where n is taken to be 5). Consider
the regular rr -gon Ar'Ar' ... Ar'whose
sides are parallel to the sides of the
initial n-gon containing it. For any
point M inside ArA, ... Ar, the sum
of distances to the sides of Ar'A' ...

A,'is constant. The distance fuomM
to any side of the initial n-gon is less
than the distance frorn M to the par-
allel side of the enveloping regular n-
gon by a constant amount. Thus the
sum of the distances from M to the
sides of ArAr... A, differs from the
sum of distances from M to the sides
of Ar'Ar' ...An'by a constant. There-
fore, it is itself a constant.

We can make a further generali-
zation that combines the preceding
ones.

Problem 19. Given n different
unit vectors in the plane that add up
to zerot consider the convex n-gon
with sides perpendicular to those

vectors. For any point inside this n-
gon, the sum of distances to its sides
is the same.

Other ways of generalizing the
initial theorem about the equilateral
triangle are possible-for example,
we may consider the three-dimen-
sional case. It would be interesting
to learn if the three-dimensional
analogue of problem l9 is valid.

0hcoumies and pnoblems

The examples in the preceding
sections illustrated certain tech-
niques. However, the main source of
new problems is inquisitiveness, the
desire to reveal the essence of a prob-
1em, the ability to look at a well-
known fact from an unusual point of
view. This is when the most inter-
esting geometric problems appearl
ones that can be called discoveries.
Here is one of the most elegant
Olympiad-sty1e problems that has
appeared in recent years.

Problem 20. Is it possible to saw
three regular tetrahedrons with a
unit edge from a wooden unit cube?

This problem was suggested at
the All-Russia Olympiad in 1989.
It's interesting that the problem o{
cutting two unit tetrahedrons from
a unit cube had been discussed in
many collections of olympiad prob-
lems, and it turned out that as many
as three tetrahedrons can be cut!
Indeed, consider three edges of the
cube that cross in pairs. Each of
them will be the edge of a tetrahe-
dron. The midpoints of the opposite
edges of every tetrahedron coincide
with the center of the cube. Now it
remains to prove that these tetrahe-
drons have no other common points.

Whether or not an elegant fact
that you've discovered was known
earlier is not rea1ly that important.
It sometimes happens that an old
geometric theorem comes as a sur-
prise to experts in geometry. Unfor-
tunately, much has been lost in ge-

ometry over the past thousands of
years.

I consider the following problem
one of my best geometric discoveries.

Problem 21. What is the maxi-
mum number of lines that can be
drawn through a point in three-di-
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Figure 10

mensional space such that all the
angles between them, taken in pairs,
are equal?

The answer is six. I'm certainly
aware that this fact had probably
been discovered in ancient times-
for instance, Archimedes may have
known it.

It's not difficult to prove that the
number of such lines cannot exceed
six. Indeed, let J, and l, be two lines
from the set of lines under consider-
ation passing through point O. Then
all other lines of this set must be-
long to the intersection o{ two coni-
cal surfaces: for the first surface, I, is
the axis and lris its generating line;
for the other surface, 1, is the axis
and 7, is the generating line. Such
conical surfaces cannot intersect on
more than four lines.

An example of the six lines in
question is provided by the diago-
nals of an icosahedron (the regular
20-hedron that has 12 vertices). If it's
difficult for you to imagine an icosa-
hedron, you can construct the ex-
ample as follows. Take six vectors
(a, +b, ol, {+b,0, al, ar.dlo, a, +fu1 avrl
use them as the directing vectors of
the lines to be constructed. Since all
these vectors have the same length,
the absolute values of their paired
scalar products must be equal as

well. Assuming that a > b > 0, we
obtain the equatiorr a2 - ab - b2 = 0.
For example/ we can set b = I and

In geometry, as in no other field
of mathematics, the distance be-
tween a textbook problem and an

open problem can be short. For ex-
ample, the statement of the follow-
ing problems doesn't seem to differ
much: Find the minimum value of
the area of a triangle containing a
unit circle and find the figure of
minimum area that can be used to
cover any plane figwe of unit diam-
eter. Nevertheless, the first problem
is a simple exercise, while the sec-
ond is the open Lebesgue problem
on minimum covering. To state
such an interesting and meaningful
problem, one must possess a deep
understanding of mathematics. You
should keep in mind the proverb
that one fool can ask a question that
a hundred clever men can't answer.

Also in contrast to many other
fields of mathematics, geometry al-
lows experimentation in the direct,
physical sense of this word. Many
geometric discoveries in ancient
times were the result of observa-
tions and experiments. It's possible
that the remarkable contemporary
geometer Connelii, who constructed
a de{ormable n-hedron (an n-hedron
that can change its shape so that
every face remains unchanged), ex-
perimented in the course of his
work-that is, created physical
models. The Connelli n-hedron
solved one of the oldest mathemati-
cal problems. The {act that this so-

lution turned out to be quite el-

ementary seems fantastic, taking
into account the level of develop-
ment of modern mathematics. This
is possible very rarely, and perhaps
only in geometry.

I'd like to give an example of a
small discovery made experimen-
tally. Here is a problem in elemen-
tary geometry: What is the maxi-
mum number of unit squarus that
can be cut frcm a square with side
length 4 + a, where O < u< 1l This
problem attracted the attention of
many remarkable mathemati-
cians-for example, the Hungarian
Paul Erdos. It was the source of an-
other problem that was suggested in
the journal Mathematics in School.

It's known that 17 unit squares
can be cut from a square with side
length 4 + a. Find the minimum
possible o for which this can be
done.

Maybe this problem isn't very el-
egant/ but nevertheless it makes
sense. We certainly didn't expect our
readers to give an exact answer. The
majority of them gave the answer
illustrated in figure lLa, for which

,EO(=-.
2

An unexpected solution was sent
in by members of the mathematics
club of school 51 in Kiev (headed by
V. N. Shkolnik). The accompanying
letter indicated that the members
experimentally found that the mini-
mum s, is obtained from the arrange-
ment shown in figure 1lb. You can
verify that, for this arrangement, o(

is several hundredths smaller than
that shown in figure 1la. Since I
don't have a detailed description of
the experiment, it's fifficult to judge

the validity of this statement. Be-
sides, my mathem atical training
prevents me from accepting this
"proof." ("And why is that?" yort
may ask. It's worth discussing.) It's
quite possible that the arrangement
shown is indeed the optimal one for
the case under consideration. The
point is, you don't have to be a bud-
ding mathematical genius to make
geometric discoveries-this prob-
lem shows that any student can do
it. And that includes you! O

A1

t+JB
2

II7\
\^/II
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CONTINUED FROM PAGE 17

In 1913 Kamerlingh-Onnes was
awarded the Nobel Prize.Inhis cer-

emonial lecture he suggested that
the phenomenon of superconductiv-
ity might be related to the quantiza'
tion of energy discovered by Max
Planck 11858-1947) at the end of the
20th century. But nearly a half-cen-
tury would pass before the complete
theory of superconductivity was cre-
ated on the basis of quantum me-
chanics, as the great scientist pre-
dicted.

Having detected the transition of
matter to a previouslY unknown
state, Kamerlingh-Onnes tried to
thoroughly investigate its proper-
ties. The first question was: How
small does the resistivity o{ a super-
conducting material become? To
answer it, he needed to invent a

method of measuring infinitelY
small resistivity. As usual, he suc-
ceeded brilliantly, producing a

clever new method of measure-
ment.

The apparatus consisted of a coil
made of lead wire (figure 3) that
could be connected to abattery via
a switch (1), while another switch (2)

could short-circuit the coil. At the
start of the experiment switch 1 was
closed and switch 2 was open. The
coil was cooled by liquid helium in
a Dewar flask and maintained in the
superconducting state. The current
from the battery passing through the
coil created a magnetic field around
it, which was easily detected by a
compass needle placed outside the

Dewar flask. Switch 2 was then
closed (guess how the electric cur-
rent is distributed between the
branches of the circuit) and after a
while switch 1 was opened. Now the
superconducting coil was short-cir-
cuited by switch 2.In an ordinarY
coil this would lead to damping of
the current in the coil and fading of
the generated magnetic field around
it. However, the compass needle
stayed deflected, which confirmed
the existence of an electric current
in the coil, even though it was dis-
connected from the battery.

By observing the needle over the
course of many hours (until all the
helium evaporated from the bath),
Kamerlingh-Onnes could not detect
any change in the position of the
needle. This meant there was no
electrical resistance in the coil-
otherwise the energy would be dis-
sipated, current would decrease, and
the magnetic field would disappear,
causing the needle to return to its
initial position.

Kamerlingh-Onnes was able to
estimate the upper limit of the resis-
tivity of the superconducting lead
coil, which turned out to be lower
than its resistivity in the normal
(nonsuperconducting) state by at
least a factor of 10.

To date, the longest-lived un-
damped current is about two years.
Perhaps this current would have
flowed into the 21st century if trans-
portation workers had not gone on
strike and interrupted the supply of
liquid helium. Even after two years
of current circulation, there were no
indications that it was being
damped, from which we might infer
that the resistivity of a superconduc-
tor is practically zero.

The practical application of su-
perconductivity shows great prom-
ise. A superconducting electromag-
net consumes no energy, so it could
provide an easy way of producing ex-

tremely strong magnetic fields. Such
fields are usually generated by huge
currents flowing in electromagnets/
which dissipate a tremendous
amount of heat in the coils. This
heat impedes any further increase of
cuffent necessary for stronger fields.

The use of superconductors in trans-
formers, electric motors/ and genera-

tors also promised great advantages
that would more than compensate
for al1 the expenses involved in
working at helium temperatures.

Kamerlingh-Onnes was the first
to construct a superconducting elec-

tromagnet. However, he was disaP-
pointed in his endeavor. The experi-
ments carried out at the LeYden
Cryogenic Laboratory definitelY
showed that the phenomenon of
superconductivity disappears for
magnetic fields greater than some
critical value. These critical (thresh-

old)values were rather small-a few
hundred gauss, which is signifi-
cantly lower than the intensity of
the fields generated even in small
electrical machines. Large currents
also destroyed superconductivity,
because the related magnetic field
surpassed the critical value even at
rather moderate values of electric
current.

Many tanks of licluid helium later,
superconducting materials were in-
vented, which were capable of resist-
ing strong magnetic fields and carry-
ing huge curents without destroying
the superconductivity. More than
forty years of tenacious work was
necessary to produce the first super-
conducting magnets that were of
practical importance. At present, the
mainstream of superconductivitY
studies is aimed at creating materiais
that become superconducting at high
temperatures-PerhaPs, even at
room temperatures.

Research into the physical ProP-
erties of substances at low tempera-
tures plays a prominent role in mod-
ern science. The prediction of
Kamerlingh-Onnes has indeed come
true: "From every {ield gf PhYsics
come problems whose solution is to
be found at helium temperatures.
Looking into the future, I see mea-
surements being made everywhere
in cryostats filled with liquid he-
lium, which will flow as freely as

water. This work will certainly pull
off the veil used by thermal motion
to hide the internal world of atoms
and electrons at ordinary tempera-

CI
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charged capacitor. Would the
charges induced in the plate
change if the space between
the capacitor plates is filled
with kerosene?

5. A dielectric bar is situated be-
tween the plates of a charged paral-
Iel-plate capacitor (figure 1). Draw

Flgure i
the electric field lines, neglecting
the distortion at the edges of the
plates.

7. A charged metal ball is sur-
rounded by a thick spherical dielec-
tric layer. Plot the pattern of the
lines of force inside and outside the
dielectric. Why does the electric
field change at the metal-dielectric
boundary?

8. Two small metal balls are con-
nected to a distant voltage source.
How will the attractive force be-
tween the balls change if you im-

S OUR EPICRAPH HINTS,
we'l1 be looking at an interac-
tion between two types of
matter that involves electric-

ity. From this broad areaof physics
we'l1 start with questions of the be-
havior of nonconducting objects-
insulators (or dielectrics)-in elec-
tric fields. In fact, the first electrical
phenomenon that people noticed
was the movement of such objects
in an external, non-uniform electric
fie1d.

Thousands of years of observa-
tion and experimentation have
given us a good grasp of the proper-
ties of many dielectrics. Some un-
usual phenomena were also discov-
ered along the way-for instance,
pyroelectricity (electrification of
crystals during heating) and
segnetoelectricity ( spontaneous
electric polarization due to me-
chanical stress). Eventually each of
these phenomena led to applica-
tions in science, technology, and
everyday life-in extremely sensi-
tive devices for finding defects in
machine parts or for listening to the
heart. They are exploited in the
manufacture of miniature capaci-
tors and sensing transducers, mi-

",..ordinary matter
is a kind of

sponge with
respect to
the electrical
fluid ..,"

-BenjaminFranklin

crophones, and telephones.
They help us visualize heat
radiation and obtain "ther-
mal photographs." Prezo-
electrics are used in ciga-
rette lighters, and dielectrics are the
foundation of acoustical and optical
electronics, which may provide fu-
ture computers with new compo-
nents to replace outdated electronic
chips. A new technical term has
even been coined for them: "smart
dielectrics. "

However, it should be noted that
success{u1 research into the physical
properties of various dielectrics
would be impossible without a deep
understanding of their molecular
structure. In turn, data on the spe-
cific features of electrical processes
occurring at the microscopic level
provide the key to obtaining new
information about the structure of
atoms and molecules.

Let these questions and problems
serve as your admission ticket to
this fascinating field.

Questions and problems
1. Why are sma1l pieces of paper

attracted to a charged plastic comb,
but not to either plate of a parallel-
plate capacitor?

2.Why do a1l attempts to remove
the charge of a dielectric to ground
end unsuccessfully?

3. The plates of a vertical parallel-
plate capacitor, charged and discon-
nected from a battery, are partially
immersed in a liquid dielectric.
Where is the electric field more in-
tense-in the air or in the dielectric?

4. Why do electroiytic capacitors
have such alarge capacity?

5. A metal plate is inserted in the
space between the plates of a Figure

i

I

I

I
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lnaterialism

merse them in a liquid dielectric
without changing the distance be-
tween them?

9. When the plates of a parallel-
plate capacitor are connected to a
battery, they start to attract each
other. How will the attractive force
change if a dielectric plate is inserted
into the capacrtor (figure 2)?

10. Given two capacitors o{ the
same capacity, in which the same
dielectric material is used, why is
the one designed to operate at a
higher voltage physically
larger?

1 1. The voltage drop
across a charged capaci-
tor disconnected from a

battery doubled when its
dielectric leaked out.
What is the relative dielectric con-
stant of this liquid dielectric?

12. A parullel-p1ate capacitor is
charged, disconnected from the volt-
age source/ and lowered into kero-
sene. How does the energy stored in
the capacitor change?

13. The plates of a dielectric-filled
and charged capacrtor are short-cir-
cuited for the briefest moment.
When the potential di{ference across
the capacitor decreases by afactor of
three, the plates are disconnected.
Then the potential difference slowly
increases to 213 of its initial value.
whv?

14. Which substances reflect elec-
tromagnetic waves better-metals
or dielectrics?

15. Does an electron interact with
a neutral atom?

15. What can you say about the
structures of the following mol-
ecules: (a) carbon dioxide, which has
no dipole moment (that is, it's a non-
polar molecule); (b) water, which is

i

I

I

i

I

a strongly polarized molecule
with a pronounced dipole mo-
ment?

Microexperiment
Electrify a plastic comb by fric-

tion and watch how it attracts small
pieces of paper. But when you place
the same pieces near the terminal of
a charged battery, nothing happens.
whv?

It's interesting that ...
...at the beginning of the
1Sth century the English
physicist Stephan Grey

11695-1736) found that friction-
induced electrification
of an object proceeds
more efficiently if it is

first heated. This is because the heat
causes moisture to evaporate, which
reduces conductivity and improves
the object's dielectric properties.

...the first description of pyroelec-
tricity appeared as early as the
fourth century s.c. The details of
this phenomenon were investigated
in the middle of the l8th century by
the German physicist Franz Maria
Aepinus 11724-18021, who worked
in St. Petersburg. He showed that
electrification of tourmaline crystals
induced by heating is fundamentally
different from electrification by fric-
tion, which was well known at that
time.

...the concept of dielectric perme-
ability, which characterizes the at-
tenuation of an electric field in di-
electric bodies, was introduced by
Michael Faraday (1791-18671 in
1837 under the name of "specific
inductive capacity."

...it may have been Faraday who
predicted the existence of electro-

static analogues of per-
manent magnets. These
dielectrics, which gener-

ate a permanent and constant
electric field, were termed
"electrets" at the end of the

19th century by the re-
nowned English physi-
cist Oliver Heaviside

(1850-1925). The first artificial elec-
tret was obtained about 80 years ago

from a mixture of palm resin and
rosin.

...at the beginning of the 19th
century, the French mineralogist
Ren6 |uste Hauey (I7 43-1822) found
that pyroelectric crystals can be
electrified by pressure. He used this
property to construct a sensitive
electroscope. Later this effect, which
is an intrinsic property of many crys-
tals, was called "piezoelecttic."

...the maximum possible polar-
ization of dielectrics was achieved
in 1918 in crystals of Seignette
(Rochelle) salt. Thus a new term,
s eignette- e7ecft ic, was coined.
Nowadays the dielectric permeabil-
ity of certain ceramic materials can
attain huge values-as high as

20,000.
...many tissues in living organ-

isms (for example, blood vessels) are
electrets. This fact must be taken
into consideration if ar- ,

tificial vessels are
used-they must be
pretreated in an
electric field to
prevent an in-
crease in coagula-
tion, which could
lead to the forma-
tion of a blood clot. O

ANSWERS, HINTS & SOLUTIONS
ON PAGE 53
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PHYSICS
CONTEST

REATION CAPTIVATES THE
mind. We view creation as a
series of miracles. The birth of
a human being is an act of cre-

ation. The first simple thought of a
young child is another act of cre-
ation. We create and we admire
those individuals whose creations
extend our own perceptions. As a

culture, we struggle with the cre-
ation of the world by inventing sto-
ries and theories as to how every-
thing we know came into being. "In
the beginning, God created the
Heavens and the Earth" is one such
story. The Big Bang is another such
story. /'Non-being existed not/ nor
being" from the Upanishads is stil1
another story.

The painter, the writer, and the
composer share their personal con-
ceptions of the world and allow us to
peer into their minds. The scientist
must also create a personal concep-
tion. The scientist, however, bears
the pressure oI alarge constraint. As
fertile as the imagination may be,
the scientist's creation must be con-
sistent with measurements of the
physical world.

The greatest scientists create
their world views and help us to see
our world through their lenses. As
noted in the quote above, Weyl de-
scribes how the inner vision of the
scientists guides their work. The
great scientists have such a superb
intuition about the world that when
they conceive of a world different
from the one we know, we often dis-

A Uood lhuol'y

by Arthur Eisenkraft and Larry D. Kirkpatrick

ln my work, I have
always tried to unite

the true with the
beautiful; but when I
had to choose one or

the other, I usually
chose the beautiful.

cover that the "real" world embod-
ies manifestations of their vision
and that society's earlier view was
myopic. Of course, that vision is
further corrected centuries later by
a new set of corrective lenses, which
further clarifies the blur.

How does a good theory get
judged? It must first be able to ex-
plain what the prevailing theory has
successfully explained. It must also
be able to explain some known phe-
nomenon that the prevailing theory
is unable to explain. When that
theory is able to predict something
that nobody has perceived, and that
something is then discovered, we
realize that we have a very good
theory.

One such good theory is Newton's
theory of gravity. When Newton pro-
claimed that every mass attracts ev-
ery other mass with a force that is
inversely proportional to the distance
between them, he was able to explain
the motion of the planets about the

-H e rman n Weyl :',ffi fK:fr:TH$ ::,il:i'lf"",:

Sun. Kepler had described this quite
we11, but Newton's synthesis did
more. It was able to explain why the
ratio of the square of the period to the
cube of the distance was a constant
for all planets orbiting the Sun. New-
ton provided a means to weigh the
Sun. He was also able to describe the
motion of the tides. What was
Newton's surprise prediction? Long
after Newton's death, slight perturba-

perturbations were signaling the ex-
istence of a planet that nobody knew
about. IJranus' discovery was an
enormous support for Newton's
theory of gravitational attraction.

Einstein's theory of gravity sup-
planted Newton's 200-year success
story. Einstein's warping of a space-
time continuum was able to explain
the motions of the planets and was
as successful as Newton's explana-
tion. Einstein's creation was also
able to explain the precession of
Mercury's orbit about the Sun. The
precession was well known but it
could not be explained using
Newton's theory. Einstein suc-
ceeded in shedding light on this
puzzle. What did Einstein predict
that nobody knew about? He pre-
dicted the bending of light as the
light passed by a large mass-a bend-
ing that was larger than one might
expect from Newton's gravity and
Einstein's earlier E : mc2. When
Arthur Eddington viewed the eclipse
of 1919, his experimental team
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found that Einstein had indeed pre-
dicted a phenomenon that nobody
had envisioned.

Niels Bohr and all of his eol-
leagues were aware that hydrogen
had a distinct spectrum. Rydberg
found a mathematical means of cal-
culating the wavelengths of the
emitted light. Bohr's theory of elec-
tron orbits about the nucleus was
able to do a better job than Rydberg.
Bohr postulated that the electrons
were restricted to orbits whose an-
gular momentums were whole
number multiples of Planck's con-
stant dividedby 2n:

Combining this with the notion that
the electrons move in circular orbits
due to a Coulomb force

mv2 _ !+r,
T I.

Bohr was able to find both the radii
and the energy levels of the different
orbits. The energy levels could be
succinctly described in terms of the
lowest energy assigned to the tight-
est orbit:

E.E-lLn- a I
n-

where E, is the ground state energy
of -13.6 eV and n is the number of
the orbit.

Bohr was able to explain the spec-
trum of hydrogen by noting that
electrons jumping from one energy
level to a lower energy level would
emit photons with an energy core-
sponding to the difference in energy
of the two levels. If the electron
jumps from the n : 3 orbit to the
ground state n :2t

4-Ez=hf'
where h: 6.53 x 10-34 f.s is Planck's
constant and lis the frequency of the
light.

The visible spectrum of hydrogen
emerged from jumps of the electron
from the n :3 level to the n : 2 Ievel,
the a = 4 level to the n = Zlevel, and
the n = 5 level to the n = 2 level.
What if the electrons could also
jump from higher levels to the n : 1

level? Bohr could calculate those fre-
quencies of light-frequencies in the
ultraviolet pprt of the spectrum.
When explorations of the ultraviolet
took place, Bohr's predictions of the
frequencies were right on.

Bohr also predicted frequencies of
light for the hydrogen spectrum,
which would be emitted if an elec-
tron jumped to the n = 3 level. These
infrared frequencies were also right
on. Some of these frequencies had
been known. Some had not. The fre-
quencies corresponding to jumps to
the n = 4 and n= 5 levels had never
been observed. As humans, our eyes
limit our world view to the visible
spectra. Bohr, with the assistance of
his very good theory, helped us peer
into the invisible world.

What else did Bohr's theory tell us
that we never expected? Bohr was
able to createan understanding of the
periodic table andpredict the chemi-
cal properties of element 72, which
had previously been a blank in the
table. The discovery of element 72
(named hafnium after Bohr's home
town) came just hours before Bohr
was to accept his Nobel Prize.

Our first contest problem for this
month draws from Newton's and
Bohr's theories.

1. This problem comes from a
wonderful, slim book Thinking Like
a Physicist, edited by N. Thompson.
A small moon of mass m andradius
a orbits a planet of mass M while
keeping the same face towards the
planet. Show that if the moon ap-
proaches the planet closer than

loose rocks lying on the surface of
the moon will be lifted off.

2. This problem was first given at
the 7th International Physics Olym-
piad in Warsaw, Poland, in 1974. A
hydrogen atom in its ground state
collides with another hydrogen
atom in its ground state at rest.
What is the least possible speed for
which the collision is inelastic? If
the speed is greater, a photon is
emitted that can be observed in the
direction of the initial velocity or in
the opposite direction. How much

do the frequencies of these photons
differ from the frequency they
would have if emitted from an atom
at rest? The mass of the hydrogen
atom is 1.67 x 10-27 kg and its ion-
tzation energy E = 13.5 eV : 2.18 x
10-18 I.

Battel'hs altd httlls
In the |uly/August 2000 issue of

Quantum we asked a series of ques-
tions about identical light bulbs
wired to an ideal battery. Our faith-
ful contributor Art Hovey from
Amity Regional High School in
Connecticut, and Griney GonenE
from Ankara, Turkey, submitted
correct solutions for these circuits.

In figure 1, bulb A is the brightest;
it has the standard brightness as it
has its own path to the battery. Bulbs
B and C are equally bright because
they are wired in paraliel and have
the same current. They are dimmer
than bull: A because their path has
more resistance. For real bulbs that
do not obey Ohm's law, the current
through these bulbs will not be one-
half o{ that through bulb A.

We now look at the questions
about removing or short-circuiting
various bulbs. (1) If bulb A is re-
moved from its socket, the other
two bulbs do not change brightness
as they have an independent path to
the battery. Note that we are assum-
ing that the battery is ideal-that is,
it can provide any amount of current
demanded by the circuit. (2) If bulb
C is removed from its socket, bulb
B will go out as its path to the bat-
tery is broken. Bulb A is not a{fected.
(3lIf a wire is connected across the
terminals of bulb A to short-circuit
it, all of the bulbs wiil go out as the
short-circuit across bulb A also
shorts out the path through bulbs B
and C. (a) If bulb C is short-circuited,
it goes out. Bulb A is not affected.
Bulb B gets brighter because there is
less resistance on its path. In fact, tt
becomes as bright as bulb A as the
two are now wired in parallel.

In figure 2, bulb A is the brightest
as all of the current passes through
it. Bulbs C and D are the dimmest
and bulb B has an intermediate
brightness because its path has less

nh
2n
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Figure 1

resistance. (1) Removing bulb A
breaks the circuit to the battery and
all of the bulbs go out. (2) Removing
bulb C causes bulb D to go out as its
path is broken. Bulb A will get dim-
mer because removing one of the
parallel paths increases the resis-
tance in A's path. Because bulb A
and bulb B are now in parallel, they
will be equally bright. (3) Shorting
bulb A causes bulb A to go out and
converts this circuit into the circuit
of figure 1. Removing the resistance
of bulb A causes ail of the other
buibs to increase in brightness. (4)

Shorting bulb C removes some of
the resistance in the path of bulb A,
so it will brighten. Bulbs B andD are
now in parallel and have the same
brightness. Two competing effects
determine the change in brightness
of bulb B. There is more current
from the battery but only half of it
flows through bulb B. If we intro-
duce the concept o{ voltage, we can
argue that bulb A getting brighter
reclui.res buib B to get a bit dimmer.

If we wire up the bulbs as shown
in figure 3, we immediately notice
that all of the bulbs have the same
brightness except ior bulb E, which
does not glow. We can use symme-
tty to atgue that there should be no
current through bulb E. (1) If bulb A
is removed, the circuit becomes the
same as that in figure 2. The sym-
metry for bulb E is removed and it
will now glow. The resistance of the
circuit increases so there is less cur-
rent from the battery. But all of the
current now must pass through bulb
C. The latter effect wins and bulb C
brightens. Bulbs B and D dim. (2)

Removing bulb E {rom its socket has
no affect, as there was no current
through bulb E in the original cir-
cuit. (3) Removing bulbs A and E
causes bulb B to go out. Bu1bs C and
D wiil not be affected. (4) Removing
bulbs A and D leaves us with three
bulbs wired in series. Bulb E will
brighten and bulbs B and C will dim.
(5) Shorting-circuiting bulb A pro-
vides a direct path for bulb B to the
battery. Therefore, it will brighten
to the standard brightness. Bulbs C
and E are now in parallel so bulb E
will brighten. Bulb C was in series

with one other bulb, but is now in
parallel with bulb E and the combi-
nation is in series with bulb D. This
means that bulb C will dim. The re-
sistance in the path of bulb D de-
creases-the resistance of one bulb
to that of two bulbs in parallel-so
bulb D will brighten. (6) Short-cir-
cuiting bulb E has no affect on the
brightness of the other three bulbs,
as there was no current through this
branch. (7) Short-circuiting buibs C
andE at the same time also short-cir-
cuits bulb A. Therefore, these three
bulbs will go out. The remaining
bulbs each have a direct path to the
battery and will brighten to the stan-
dard brightness. (8) Shorting bulbs A
and D leaves us with three bulbs in
para1le1, so each will brighten to the
standard brightness. O

CONTINUED FROM PAGE 11

MN. Prove that the altitudes of all
such triangles drawn from vertex C
to side AB meet in a point.

(E. Kulanin)

M313
Underlyingn. Given n real num-

bers x, x2t ...t Xrsatisfying the con-
ditioni x, + xr+ ... + xn: 0 and xr2 +
,z' * ... + xr2 : 1, Prove that there
exist i and I such that x, x,< -lfn.

(N. Vasilyev and'E. Stolov)

M314
More than four. Prove that if the

product of two positive numbers is
greater than their sum, then the sum
is greater than 4, (N. Vasilyev)

M315
Exactly one-fourth. A point D is

taken on the base AC of isosceles
triangle ABC such that the circle
inscribed in triangle ABD has the
same radius as the circle that
touches the extensions of segments
BC and BD and segment CD (the
escribed circle of triangle BCD).
Prove that this radius equals ll4 of
the triangle's altitude drawn to a leg.

(I. Sharygin and N. Vasilyev)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 49
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AT THE
BLACKBOARD I

The $tlln ol minima and

the minima ul sutn$

by R. Alekseyev and L. Kurlyandchik

I N THIS ARTICLE WE PRESENT

I a general method that makes it

I fl i:*l' :"["',1?,]:, T,""'"ff]].
lying idea is quite simple. Consider
two functions, l(x) and g(x), defined
on an intervalla, bl that attain their
respective minima at two (in the
general case, different) points (fig-
ure l).

The following inequality holds:

minl(x) + ming(x)< min ('f(xl + g(xll.

We can prove this easily by induc-
tion. We single out one function af-
ter another on the right-hand side to
obtain

min(1,(x) +...+f,(xll
> min (f JA * ...* f ,_rlrll + mtnf n$),

and so on.
Note that a similar principie

holds for maxima:

max(frlx)+...+f,(xll
( max frk) * ... + maxf nlx).

Minima olquadl'ath lunctions and

quadrath inequalites
We begin with the functions /(x) :

a* + 2bx, where a > 0. To find the
minimum, 1et's complete the square:

a* +zbx=r(r'.r2"-5-T)

=,(1". 2)' - 5)=,(". 
r,)' - +

ming(x)
minl(x)

Figure 1

Indeed, the minimum of the sum /(x)
+ g(x) is attained at a certarnpoint of
the interval la, b).The values of /(x)
and g(x) at this point are not less
than the respective minima o{ these
functions. It's clear that the inequal-
ity becomes an equality if the
minima of /(x) and g{x) are attained
at the same point.

In the case of n functions, we
have the same situation:

* f,l*)).

o
@o
(o
o

!D
fo

mln /r(x) + ... + min f,(x)
< min (f J"l *
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Thus the minimum equals

,( b'\_ b)'\-i)--;
and is attained at the point

b

a

Now consider n functions

fr(*) :ar*+2brx,
fz&) :a;*+Zbrx'

I

f,(x) =an*+2b,x
and apply to them the basic inequal-
ity. The function lr(x) attains its
minimum,

_b?
ai'

at the point

*=-L.
ai

The minimum of the sum is at-
tained at the point

br +. . .+b,
at +...+ an

and equals

ar +...+ an

As a result, we obtain the inequality

b? bl -@,+...+bn)2
-T...T-A1 An A1 -f ...* An

(for the sake of convenience, we
changed the signs on the left- and
right-hand sides).

Now we can easily prove several
well-known ineclualities.

Exercise 1. From the above for-
mula derive

(a) the Cauchy-Bunyakovsky-
Schwarz inequality

@
> crdr+...+crdri

(b) the inequality between the
quadratic and arithmetic means

tr..*b] -b,+...+b,lt- --tInn

(c) the inequality between the
arithmetic and harmonic means

at +...+ an , n
n -1+...*1

al an

Hints: (a) Make the change of
variables ar: cl, ... , an: cl, br :
crd1, ... , br: cndo) (b) set ar= az= ...

- an n; (c) set br: br: ...: bn: l.

truonential functions
In this section, we consider a

more complicated function f(xl : ae"

- bx - b, where a > 0 ar'd b > 0.
Exercise 2. Find the minimum

value o{ this function.
Answer. The minimum value is

h
-blna,

a

and it is attained at

h
x = Ina.

a

Thus, for n functions

f t: a,e* -brx-b,

f': o'u''-bo'-bn"'
(where all coefficients a, and b, arc
positive), we obtain from the basic
inequality

hb_
b1lna+...+bnlnaar an

br+...+bn>(b,+...+b,)hL.' al +...+ an

Now a bit of algebraic transforma-
tion yields

l?f \?)'>lT*)''-'.
Exercise 3. From the above for-

mula derive
(a) Cauchy's inequality between

the arithmetic and geometric means

a, +...+ a ^

tt

(b) the elegant inequality

/h t , ,h.+. +b..

bl' ... b2, >l0I+'"+bn l' ittt\n)

(c) the very useful inequality

crb, +...+ cnb, ) 
"!' 

....' 
"2"

i{ b, + ... + b,,: 1.

Hints: (a) set br: br: ...: bo: llr;
(b)set at = az- ... - an: 1; (c) set

^at^aoff =, , "'t Ln=1-'
Dt Dn

There are certainly many other
methods of proving these inecluali-
ties, but every proof is based on a
different idea. Here all the inequali-"
ties were obtained by a unified
method. (Another rather general
method of deriving inequalities was
described in the November/Decem-
ber 1999 issue of Quantum in the
article "Obtaining Symmetric In-
equalities. " )

tunflions ol two ual'iahles

and ]liildel't inequality

The basic principle-the sum of
the minima of several functions
does not exceed the minimum of
their sum (and the sum of their
maxima is not less than the maxi-
mum of their sum) remains valid for
functions of several variables. The
proof of the principles is also the
same.

Consider the simplest linear
function of two variables:

f(", y): ax + by.

Surprisingly, this simple function
makes it possible to derive non-
trivial inequalities.

Problem. Prove the inequalities:
(a)

11 ,1 T
^lai +bi +...+lai+*,

m
> r/(r, *. ..+ a,) +(b, +...+bn)',

(b)

if ar>-b, br> O, for all i, andif p > O

and q > 0 are such that I lp + I I q : I
(Holder's inequality).

Solution. Consider n functions

f ,(x, vl = arx + b1Y,

I

f ,l', Y) : anx + b,Y'
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The main thing i, to *rk" ,
proper choice of the set on which
the functions will be considered.
Since we deal with functions of two
variables defined on a plane, we can
consider their minimum on any geo-
metric figure.

(a) Consider a circle of unit radius
centered at the origin of the coordi-
nate system (figure 21. What is the

x2+v2:l
Figure 2
geometric meaning of the function
f(r, y) : ax + by? It's clear that it is
the scalar product of the vectors (c,

bl and (x, y). But the scalar product
equals the product of the vector's
lengths and the cosine of the angle
between them! The cosine is maxi-
mal for the zero angle, and the
length of the variable vector lx, y)
does not vary when its endpoint lies
on a circle. Thus the function l(x, y)

Figure 3

attains its maximum on the vector
lxs, ysl that is coliinear to (a, bl ({ig-
ure 3). This vector is equal to

(ob'\
(xo,yo)=l r- |\ v'' v/ 

\"lo'*b'' {o\b' )
and the scalar product is

@0,Yo)'(o,b)=tt" -b'

Thus, in the case of the unit circle,
we have

rnax(ax+byl=4a2 +b2.

Now we can easily prove inequality
(a). On the left-hand side of this in-
equality, we have the sum of the

3 0 JAIllARY/TEBRttARY 2oot

maximum values of the functions [,
fz, ..., f n on the unit circle; on the
right-hand side, we have the maxi-
mum of the sum of these functions.

(b) Consider the set consisting of
points lx, y), x, y > 0, tor which

t1
xo 'y' =1.

Let's find the minimum of the
function flr, y) = ax + by on this set.
This can be done analytically (we
invite the reader to do it), but a result
obtained earlier in this article allows
us to find a simpler solution. Let's
apply inequality (c) in exercise 3:

.11
ax +by =:-. psx +:-. qbypq

.11.,_r
>(0o"1; @bv)a --(no1; @b)'.

Verify that this inequality be-
comes an equality when x/y = bla.
Thus the minimum of f(x, y) on the
set under consideration is

,If

loa)' 'lob)'.

If we now set

^po

p
and

,1q.ub=-;q'
that is, if we consider the linear
function

cP dq_X*_Y,
pq

this minimum will be cd. Setting

^_c( ,_dl - cfl, dfl
dl=-, UI=-,..., An=-, Un=-pqpq
for each of the functions f 1, f2, ..., f ,,
we obtain Holder's inequality!

We now want to compare the in-
equalities of Cauchy-Bunyakovsky
and of Holder. It's clear that the first
one is a particular case of the second
for p : q : 2. Thus if we define a

"length" for the vector (a, bl as

l{o, a)lr=(a'+b')+ ,

then we find that the scalar product
of two vectors does not exceed the
product of their "lengths."

This is the geometric interpreta-
tion and the meaning of Holder's in-
equality.

On the basis of the method de-
scribed, we have proved a number of
inequalities (including several clas-
sical ones) using only a modest set
of functions. We invite the reader to
try proving other inequalities using
this method.

Exercise 4. Prove the following
inequalities for positive numbers ar, "

a2t ,..t ant b1, b2, ..., brl
bt

\tat.r, +ffir*b"

(t + a,)...(t + a, ) > (t +,X ar. r,")"
(Huygens' inequality);

(c)

. I .-L

lol *...*oi)' (uf * .*b1)'
< arbr+...+ arbo

it q < 0 and I I p + I I ct = I (the inverse
Holder inequality);

(d)
, ,t , ,1

(rfl *.. .*oX)'+(a,r +. ..*bi)

=({o, 
* br)P +...+(a,*b,)')+ ,

where p > 1 (Minkowski's inequal-
ity). Prove thatf.or p < 1 the inequal-
ity is in the opposite sense.

Hints: (a) Consider the linear
function Y = atxt+ ... + anxnof nvari-
ables on the set consisting of points
lx1, ..., xr) such thatxr' ... 'xn= n and
use the inequality between the
arithmetic and geometric means to
find the minimum. (b) Set br: br:
... = bo= I in the preceding inequal-
ity. (d) Again, consider the linear
function y : a(r + ... + d;n on the
set defined by the condition

xl +...+xfl=1,

where the number q is determined
by the condition

and use Holder's inequality to find
the minimum. O

11
pq

1-\

1

<4k, *b,)...(o,+b,);

(b)

\
\
\



AT THE
BLACKBOARD II

Cauchy and induction

by Y. Solovyov

HE ARITHMETIC MEAN OF A SET OF POSI-
tive numbers is not less than their geometric
mean:

xl +x2 +...+ x-

This famous inequality, first proved by the French
mathematician Cauchy, was published in 1821. Since
then it has considered one of the most difficult numeri-
cai inequalities. Over 180 years a few dozen different
proofs of this inequality were found. The proof given by
Cauchy occupied several pages of complicated manipu-
lations. I propose that you learn the simplest proof I
know. It's both elegant and instructive, I think. But {irst
we need to reformulate the Cauchy inequality.

What is the purpose of reformuiating
a problem? Experienced mathemati-
cians know that it can be very use-

, ful. Simple proofs of complex theo-
rems often consist of a chain of

reformulations.
At the outset/ the nth root on

the right-hand side of the given ineclual-
ity looks scary. Let's divide both sides by
this root. Then the right-hand side be-

comes 1, and on the left-hand side we ob-
tain the arithmetic mean of the numbers

Relol'mulatim
Given the conditions

Yt' O' "'' Y'> 0'

Y1 "'Yn= l'
we need to prove that

Yr+Yz*...*I, _,

-1I

n

Now recaIl the method of mathematical induction.
We will prove the inequality step by step, increasing n
by one every time. For n = 1, the inequality is evident
(it becomes a strict equality). Assume that we have
managed to prove it for a certain n and try derive it for
n+1.

T[e indufliue sflep

We need to prove that if
ztu 0, ... , Znr 0, zn*r> 0,

- _1-1 ...-n-n_l-'t

thenzr+ ... + zn* Zn*t )n + 1. We operate under the
assumption that inequality (-)holds for any suitable set
of n numbers. Let y1 = Zyt ..., yr_t : Zr_t, yn: zrZ, * r.
Then both conditions

Yt'0' "'' Yn> 0'

Yr "'Y'= l'
hold, and we assume that the inequality yt + ... * yn) fr
is proved; that is,

Zr+...+zn.zn*t2fl. (--)

Note that up to this point we only made a series of re-
formulations of the problem. But where is the proof?
Here it is.

If necessary, reorder the number s Z1r .. .t z, * , so that
z,> I andZn*t 11. This is clearly possible If not all z,
are equal to one. Now add 1 to both sides of inequality
(**) andreplace Zn.Zn*, + 1 by the sum zn+ zn,, on the
ieft-hand side. To justify this replacement, we must
prove that zn + zn * t2 Zn. z, *, + l, or

z +z ,-z .z ,-l>0.n n+t n nLt

The left-hand side factores as

zn(l - zn t r) - I - zn * t) : 2n- 1)(1 - z, * rl 2 0.

This inequality is certainly true, since zn> I andzr*,
< 1. This concludes the proof.

Now take another look at the proof. The only non-
trivial step in it is the choice of the numbers znandz,*r.
Everything else is the use of the mathematical induc-
tion and a chain of reformulations. O

o
-o
o
=o
ri
a
l
x-

(-)
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AT THE
BLACKBOARD III

Calculus and inequalilies

by V. Ovsienko

ENRI POINCARE ONCE SAID THAT MATH-
ematics is a way oi making the same statement
about completely different things. This is espe-
cially true of calculus, which is a sort o{ lock-pick-

ing tool that will open many doors to the astute prob-
lem-solver.

We'lI consider three different problems and solve
them by the same method. The method is based on a
well-known fact:If the derivative of a function is posi-
tive, then it is an increasing function (and vice versa-
if its derivative is negative, it is a decreasing function).

lneqmlities inuoluinu $ilte$ 0r' cl$iltss
The inequalities

sinx<x,
*2cosx>1-;,

which are valid for x > 0 (figure l), are traditionally
proved in school by geometric means. However, the
analytic proof is simpler and doesn't require much in-
ventiveness.

Consider the first inequality. The functions yr{x) : sin
x and yrlxl : x coincide at zero . Therefore, it's sufficient
to prove that the second function grows more rapidly
than the first one for x > 0 (in other words, we need to
prove that y(x) : x - sin x is an increasing function). But
the derivative y'(x): I - cos x is greater than zero. Thus
the inequality is proved.

To prove the second inequality, we proceed in exactly
the same way. The function

|)

y(x) = cosx-r*A,2

is zero {or x:0. Its derivative is y'(x): -sin x + x. Thus,
y'lxl ,0 for x , 0 (by virtue of the first inequality); that
is, y(x) is an increasing function and, therefore, is posi-
tive.

Exercises
1. Prove that for x > 0,

.r'
(a) srnx>-Y-?;

l1v- v'
lbl cosx<1-,' +,''))4

o
-:<
-Ca
tr
p
C
o
C)
J

_o
t

Hint: follow the above proofs. Af-
ter differentiating, use the preced-
ing inequalities.

2. Continue the chain of
equalities for sin x and c,os x.

lnequalities in a tl'iangle
For a triangle with angles o, B, and y

(figure 2), the following inequality
holds:

sinu+sin[i+sin, 
= 

t1' 
.t- 

2

Here is a proof. First of a1l, we no-
tice that the inequality holds if the
triangle is equilateral (o: 0 = V :
50")-in this case it becomes an
equality.

Now let the triangle be isosce-
les with angles o = 60o + x and

F : y: 60 - xfZ,where x is a num-
ber such that -60" < x < 120".
Then, the expression sin o. +
sin B + sin y is a function de-
pending on x:

/(x) = sin (50" + x) + 2 sin (60'- xl2).

Its derivative is /'(x) = cos (60" + x) -
cos (60" - xl2).It's clear thatf lxl > 0 for
-50o<x<0andflxl<0for
0 < x < 120". Thus the func-
tion /(x) attains its maximum
at the point x : 0 and is
smaller the more x deviates
ftom zeto.
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Figure 1

Now let cr be fixed and the angles p and y vary: B : 6

- x and y: 6 + x. Again, the given expression is a func-
tion of x:

l(x) : sin (6 - x) + sin (6 + x) + sin cx.

Its derivativeisf(xl: cos (6+x)-cos (6-x). Again,f'(x)
is greater than zero for negative x and is less than zero
for positive x. In other words, the expression sin u +
sin p + sin y is smaller the more the triangle under con-
sideration differs from an isosceles triangle.

The inequality is thus proved, since any triangle can
be obtained from an equilateral triangle by varying the
angle u first and then the angles B and y. We proved that
under such a variation, the expression sin o + sin p +
sin y always decreases.

Exercise 3. Prove the inequalities

(a) cosu+cosB+.ory=f,

(b) sina'sinp.siny ='{',-gl

(c) coso'cosP'"ory<1

if cr, B, and y are the angles of a triangle.

Caurhy's ineqtlfllily
For any nonnegative numbers a1t ...t ant the inequal-

ity between the arithmetic and geometric means

A' +...+ A^ r

;->\lat'""an
holds. This is ca1led Cauchy's inequality. We prove it
by the same method as above-that is, by calculating
the derivative of a function.

To begin with, consider the simple case of n = 2.
Certainly this inequality canbe proved by various geo-

metric means (some of them are.very elegant), but we'Il
use calculus to prove it. For definiteness ,let a 1b. Then
b : a + x, where x is a nonnegative number. Now the
expression

a+b 
-1*

2
is a function of x;

)tt-l X

L

Thus l(x) is an increasing function, the arithmetic mean
is greater than the geometric mean/ and the difference
between them is gteater the larger the difference b - a

Now we prove Cauchy's inequality for the general
case. In fact, this is a repeat of the proof for n:Z.We
only need to know the derivative of the function

-i L l'

ix^ =x"'
This derivative can be found in any textbook on calcu-
Ius and is

For definiteness, let arl az. ... a an It's clear that for
ar: ... : ar, the inequality becomes an equality. Let's
take n equal numb ers ar = at: ... : a, a1;1d increase them
step by step beginning from the second number. The
process takes (n - 1) steps. At the first step, we have

all at*Zt ...t aI*2.1
n-7

wherear+Z:ar.
At the second step, we have

a1, a2t ?Z-1 Y,..., aZ+Y,
n-2

where a2+l:as.
Finally, we obtain our given set of numbccts all a2t ...t

an.

We'll prove that at every step the difference between
the arithmetic and geometric means increases. Thus
we'llnot only prove the Cauchy inequality but also see

its "dynamics." At the mth step, we have the follow-
ing set of numbers:

Al, ,.., A-, Am+Xt ...t Am+X.
\_f

n-m

CONTINUED ON PAGE 48
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: 0 and the derivative

("*) = *"r-'

" >0.
a+x

a(a+ x).
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BOUT 2,OOO YEARS AGO,
while performing astronomi-
cal observations, the ancient
Greeks noticed that the length

of a chord of a circle depended on the
degree-measure of the subtended
arc. The Greek astronomer Ptolemy
measured the length of a chord with
a given central angle, then took the
ratio of this length to the radius of
the circle, and drew up a tab1e. If the
central angle is 0, and the length of

LOOKING BACK

Plulelny,s lriuoltolnolry

by V. Zalakavai

the chord is c, then c:2R sin 0 (see

figure 1). So Ptolemy was in fact
making a table of sin 20 for 0' < 0 <

90".
Ptolemy also extended his table

to chords of obtuse angles. For ex-
ample, if he wanted the length of
AC (figure 2), he first computed the

length of BC, then, notingthat AB
is a diameter, Ptolemy used the
Pythagorean theorem to get AC.
Since AC : 2R sin a, and BC = 2R
sin B, this is equivalent to using the
relationship sin2 cr + cos2 u: l.

Another of Ptolemy's achieve-
ments was the theorem that now
bears his name-Ptolemy's theorem.

Theorem. The product of the di-
agonals of a quadrilater al inscrib ed in
a circle equals the sum of the prod-
ucts of its opposite sides (figure 3).

Figure 1

Figure 2

d"{
i,l,, . ,-, ,'

*':,ir ,i.;r;;;"

'I
C'

ao
(O
o

i!)l
o

Figure 3
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Proof. Consider a point M on di-
agonal AC such that IABM :
ICBD. Srnce ICDB and IMAII are
both inscribed in the circle, and both
intercept arc BC, ZCDB = IMAB.
Hence tnanglcs BCD and ABM are
sin-rilar. Thus,

I]D CD
AB AM,

SL)

AB CD: ALI BD. ill
Now' ZABD : ZI'IBC b.v construc-
tion, and IBCM : IADB iboth are
inscribcd lrtgles interce pting ar c

AB). Thus triangles ABD and MBC
are similar.
Hencc

AD -BDCM BC,
and

AD . BC : BD CM. (2)

Adding equations (1) and (2) tcrm
by term, we obtain

AB.CD + AD BC

= BD\AM + CM): BD . AC,

which is what we wanted to prove.
We can use Ptolemy's theorem to

derive a numbe r oI trrgonome tric
formulas.

Let us take diamet cr AB of a given
circle, and choose points C and D on
one of the semicirclcs it cletermines

Figure 4
(figure,1t. Let IAOC = 2u. arLcl IAOD
= 2B; then AC : 2R sin tr, AD :
2R srn B, BC = lR cos u., BD = 2R cos B,

and CD: lR sLn ro.- 0).
Using Ptole n-rr's theorem and

taking into :rccerunt that AB : )R,
we obtain
2R.zRsmtcr-p - ln cus o rR sirB

: 2R srn c/. l,R crs 3,

OI

Wc invite the reader to derive a

similar formula for sin (r, * 0).
(Hint: inscribe the quadrilateral in
a circle such that its diagonal is a di-
amcter. )

Thus lve have derived two impor-
tant triElonometric formulas:

sin (o - BJ = sin u cos B - cos cr sin B,

sin (u + 0) = sin cr cos B + cos o sin B.

Combine them term by term to
obtain

sinio.- Bl + sin(u * F) = 2 sin u cos B,

or

sin u cos B

= r,,1sin (o.- Pl + sin (a + B)). (3)

Cornbining tcrrr-r by term the for-
rnulas ior the cosine of the sum (or

difference) oi nvo angles {try to de-

rive therl yourselfl, u,.e obtain two
more formulas:

cos n cos B
: '/r(.or (cx - Il) + cos tc + [3ll, ('1)

sin u sin B

= '/r(.o. (s - 0) - cos (u + B)). (5)

Formulas (3), (4), and (5)are called
the products-ro-sums formulas. We
can derive from them some corre-
sponding sLtms-to-products formu-
las, by a change of variablcs.

Lct cx : lx + y)12,0 = (" - y)12, and
substitute into formula 3. We ol"ltain

x+y x-y1slr1 - COs - :S[1 x + sln )'.2Z
Sirnilarly, we can derivc formulas
fcrr sin x- sin y/ cos x + cos y, and
cos x - coS 1z 3s products. These for-
mulas are very uscful fclr proving
trigonometri c i dentitics.

Example 1. Calculate, without
using tables or a calculator, the
value of the expression

I * 2sin zo'.
2sin 10'

Solution. The given expression is
equal to

1*4sin70'sin10'
2sin10'

_ 
1-2(cos(',0-cos80 )

2sin10'

2cos80' _t

2sin10'

Example 2. Calctlate, without
using tables or a calculator, the
value of the expression 16 sin 20" sin
40" sin 60o sin 80o.

Solution. Using the well-known
values of sin 50'and cos 50o, we
find that the given expression is
eclual to

"nl6sin20' sin40"' 
* 

sin80"
2

= 4.'8(cos2o" - cos60")sin80"

= +-,6(coszo" sin80' - j'r"to' 
)

Example 3. Solve the equation

4 sir.Zx sin 5x sin 7x: sin 4x.

Solution. The given equation is
equal to

4 sin2x sin 5x sin 7x
-2sin2xcos2x:0,or

2 srn2,x (2 sin 5x sin 7x- cos 2x) = 0,

or

sin2x = 0 -+ x =Ln, n. Z;
or

cosl2x = 0 -+ x = *(2"+l), n e Z.
24',

Here are some more exercises.
1. Calculate, without using tables

or a calculator, the value of the ex-
pressions

I.
{al _ -2sin50";' Zcos2O'

(b) cos 10o sin 20o cos 50o;

(c) tan 2Oo tan4Oo tan 60o tan B0o.

2. Solve the equations
(a) 2 cos 2x sin x + sin 2x cos x

= sin 4x cos x;

(b) sin 2x sin x + cos2 x
: sin 5x sin 4x + cosz 4x;

(c) 4 sin x sin 2x sin 3x: sin 4x. 0

= +,e(j('*1 oo"+ sin 6o' )- ]'*so' )

= zJa[smao" + f - smso' 
) 
=,
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PROBLEM
PRI M ER

Prohlems leach tl$ houl lo lhinlr

by V. Proizvolov

OU CAN'T LEARN MATH-
ematics by watching someone
else do it. Active learning in-
volves solving problems of in-

creasing difficulty-if you keep solv-
ing problems of the same difficulty,
they simply become routine exer-
cises. If a particular problem puts up
a 1ot of resistance you can stare at

the ceiling or knit your brow (there's
no law against it), but the best thing
to do is to take a sheet of paper and
a pencil and start experimenting:
make some estimates, consider par-
ticular cases, sketch out your ideas,
and so on. Leonard Euler once said,
"My pencil is sometimes more
clever than my head."

{{;.
..i.,re' t?'

"Freeze, die, come back to life"-
this catch-phrase from a Russian
children's game would be good ad-
vice for anyone who wants to solve
a math problem. To overcome the
problem you need to focus your at-
tention deep into its conditions and
its setting, until you reach the first
glimmer of an idea and the hope of
success. Solving a problem involves
not only an intellectual challenge
but a test of will-you need a "fight-
ing spirit."

It's not necessary/ (and not even
possible) to solve all the problems
known to mathematics. So you need
to select whatever you find appeal-
ing, instructive, interesting, and
within your powers. In the process/
you'll develop your taste andbecome
more mathematically " cultured. "

Among other things, mathemat-
ics teaches you to be honest-to
yourself and to others. You can't
beat around the bush while answer-
ing a mathematical question. And
honesty is a necessary condition for
rigorous thinking. But besides that,
in solving problems we not only
learn how to prove what(s true/ we
also learn how to guess at the truth.
And the ability to guess is a neces-
sary part of productive thinking.

The beautiful world of math-
ematical problems is continually be-
ing replenished, which shows that
mathematics is indeed a living sci-
ence.

Try to solve the following prob-
lems without looking at the solu-
tions.

o
C
(u

()
O-)

oa
_o
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Problem l. Is it possible! A11 the
positive integers from 1 through 100
are written in ascending order.
Twenty-five of them have been
crossed out. Is it possible to cross out
25 more numbers such that the sum
of allthe remaining numbers equals
the sum of all the numbers that
were crossed out?

Solution. Yes, it's possible. The
first hundred positive integers can
be broken down into 50 pairs such
that the sum of every pair is 101.
Assume that there are k complete
pairs in the 25 numbers that were
crossed out; the remaining 25 - 2k
numbers in this set do not create
such a pair. To these 25 - 2k un-
paired numbers we add25 - 2k num-
bers that make pairs with them and
cross them out. Then we cross out
k pairs of numbers from those still
not crossed out. We end up with a
totalof 25 complete pairs of crossed-
out numbers, which amounts to half
the sum of all positive integers from
1 to 100.

Ptoblem 2. Zigzag in a circle. The
vertices of the polygonalline ABCD
lie on a circle (figure 1). The mea-
sures of angles B, C, and D arc each
45o. Prove that ABz + CDZ : BCz +

DEz.

Solution. Since ZABC : IEDC :
45", arcs AC ar-.d CE are each 90o, so
AE is a diameter of the circle. There-
forc, AB2 + BE2 : AE2 andAD2 + DE2
: AEz (figwe2). Now, takinginto ac-
count that BE : CD and AD = BC
(both pairs of chords intercept equal
arcs), we obtain the desired equality:
AB2+CDz:BCz+DEL.

Problem 3. Three-digit numbers.
Three three-digit numbers are given.
Their decimal notation includes all
the digits except zero, and their sum
is 1,655. The first digit of each num-
ber was interchanged with the last
one to obtain three new three-digit
numbers. What is the sum of the
new numbers?

Solution. The answer is 1,665.
The sum of the last digits of the
three given numbers must be 5, 15,

or 25. But it cannot be 5 or 25 be-
cause these numbers cannot be rep-
resented as the sum of three di{fer-
ent one-digit numbers (from 1 to 9).
Therefore, the sum of the three last
digits is i5. Thus the sum of the
middle digits is also 15, as is the sum
of the first digits. Now it's clear that
the sum of the numbers with the
first and last digits interchanged re-
mains the same-that is, 1,555.

Here's one possible triad of num-
bers that satisfies the condition of
the problem : 159, 672, 834.

Problem 4. Equal areas. Three
segments CtA2, CzBt, andArB, with
endpoints lying on the sides of tri-
angle ABC are parallel to the sides
and pass through a point P (figure 3).
Prove that the areas of triangies
ATBTCL and ArBrC, are equal.

Solution. The areas of triangles
AP.P and ArBrP are equal since
they have the same base and equal a1-

titudes. The areas o{ triangles A'B'P
B

A

andArBrP are eclual for the same rea-
son. Thus the areas of triangles
AtB! and ArBrP are also equal.
Similarly, we can prove that the ar-
eas of triangles CrArP and CrArP are
equal, as are the areas of triangles
CpP and CrBrP. Thus the areas of
triangles AptCr and ArBrC, are
equal.

Problem 5. A chess position, A
chess position possesses the follow-
ing property: On every vertical and-
on every horizontal row, there is an
odd number of pieces. Prove that
there is an even number of pieces on
black scluares.

Solution. Let's renumber the ver-
tical and horizontal rows of the
chess board and put the letter A in
the black squares of the vertical
rows that received an odd "YetticaL"
number. Put the letter B in all the
other black scluares (figure 4). Simi-

Flgure 4

larly, put the letter C in the white
squares of the horizontal rows that
received an odd "hortzontal" num-
ber. Let the number of pieces on A
squares be a, on B squares beb, ar.d
on C squares be c. The statement of
the problem implies that both a + c
andb + c are even. Thereforc, a + b
is also even-that is, there is an even
number of pieces on. the black
squares.

Problem 6. Six points. Find six
points in the plane such that any
five of them can be covered by two
scluares having a unit diagonal, but
all six points cannot be covered by
two circles having a unit diameter.

Solution. Place a unit scluare in
the plane such that its sides are par
allel to the coordinate axes. Mark its
four vertices and two points inside

Figure 2
'gr)
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Figure 3
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Figure 5

it: one 0.1 to the right of the center
and the other 0.1 below the center
(figure 5). It's easy to see that any
five points of these six can be cov-
ered by two squares having a unit
diagonal. Now notice that no three
vertices of the square can be covered
by a unit circle (indeed, if it were
possible, the circle would have cov-
ered the scluare's diagonal). Thus
each circle must cover two vertices
of the scluare apiece. For example, let
one of them cover the two left ver-
tices and the other cover the two
right vertices. Then the left and
right sides of the square coincide
with the diameters of these circles,
and the point that is below the cen-
ter would remain uncovered. Simi-
larly, if one circle covers the two
upper vertices and the other covers
the two lower vertices, the point to
the right of the center would remain
uncovered.

Problem 7. Chords in a circle.
Several chords are drawn in a circle
such that each one of them passes
through the midpoint of another.
Prove that all the chords are diam-
eters of the circle.

Solution. Consider the chord a
that is farthest {rom the center of the
circle O and call its midpoint A.By
the statement of the problem, this
chord contains the midpoint B of

another chord b. Therefore, OB is
not perpendicular to the original
chord, so OB > OA. On the other
hand, OB < OAby the definition of
chord a. Thus OB = OA, and the
points A ard B coincide. Since the
midpoints of the different chords a
and b coincide, they are diameters.
Thus we see that the chord farthest
from the center is a diameter. There-
fore, al1 the given chords are also
diameters.

Problem 8. A set of weights. Aset
of 100 weights is given, and it is
known that they can be put in pairs
such that the difference in the
weights in each pair is always the
same. Show that the weights can be
distributed between the two pans of
a scale, 50 weights per pan/ so that
the scale is in balance.

Solution. Divide the weights into
the pairs described. Take any 25
pairs and place the lesser weight of
each pair on the left pan of the scale
and the other weight of the pair on
the right pan. For the other 25 pairs
of weights, we do it the other way
around: Place the heavier weight on
the left pan and the iighter weight
on the right pan. The scale will be in
balance.

Problem 9. Calendar equation. (a)

Do natural numbers x, y, and z ex-
ist that satisfy the equation 2Bx +

30y + 3lz :365? (b) Nonnegative
integer numbers x, y, and z satisfy
the equation 28x + 30y + 3lz = 365.
Provethatx+y+z=12.

Solution. (a) To give an afffuma-
tive answer to this question, it's suf-
ficient to recall the calendar. An or-
dinary (not leap) year has 355 days:
one month has 28 days (x : 1), four
months have 30 days (y = 4), and
seven months have 3l days (z = 71.

This equation also has other solu-
tions-for example, x :2, y = L, z:
9. (b) Assume that x + y + z < lI.
Then28x+30y+ 3lzSll .31 =341.
Thusx +y+z > ll.Assumethatx+
y + z2 13. Then 28x + 30y + 3lz>
13 . 28 : 364, and the equality is
possible only when x = 13 and y : z
:0; in all other cases, 28x + 30y +

3lz> 366. Therefore, x + y + z : 12.
Problem 10. Constructing a rect-

angle. A 2x2 square was cut into"
rectangles by lines parallel to its
sides. The rectangles are painted
black and white in a checkerboard
pattern. It turned out that the total
area of the black rectangles was
equal to the total area of the white
ones. Prove that it is possible to put
the black rectangles together to
form a lx2 rectangle.

Solution. The lines cut the given
rectangle into even and odd vertical
and horizontal strips. Let's rearrange
the vertical strips so that all the odd
strips are on the left and all the even
strips are on the right. Then we re-
aruarlge the horizontal strips so that
all the odd strips are on the top and
all the even strips are on the bottom
(figure 6). Now the given rectangle
has been broken down into four rect-
angles, and the sum of the areas of
the black rectangles equals that of
the white ones. It's clear that it is
possible to produce a 1x2 rectangle
from the black rectangles.

Problem ll. Around the table.
Twelve people had a conference at a
round table. AJter the break they sat
at the table again, but in a different
order. Prove that there are two per-
sons who have same number of
people between them as before the
break (counting clockwise from the
first person to the second).

ttc
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Solution. Assume that a1I pair-
wise distances between the partici-
pants changed after the break. Sup-
pose they walked clockwise from
their places to the new ones. Then
the total distance covered would
equal an integer number of complete
circuits (the proof of this fact is left
to the reader). On the other hand, by
our assumption, all the participants
covered different distances, which is
possible oniy if one of them re-
mained in place, the second covered
llI2 of the eircuit, the third covered
2112, and so on. The last person
must have covered lll12 of the cir-
cuit. The total distance covered is
66112, or 5.5 full circuits. But this
contradicts the fact that the total
distance covered equals an integer
number of complete circuits.

Problem 12. Alternate tiangles.
Two congruent equilateral triangles
ate afianged so that their intersec-
tion forms a hexagon. Prove that the
sum of the lengths of three pairwise
nonadjacent sides of the hexagon
equals the sum of the lengths of its
three other sides.

Soiution, All the triangles L1, L2,

..., A,u are similar (figure 7). So to
prove that the sum of three pairwise
nonadjacent sides of the hexagon
equals the sum of its three other
sides, it's sufficient to prove that the

Figure 7

Figure 9

sum of the aititudes in triangles A,,
Ar, and Au drawn to the sides of the
hexagon equals the sum of the cor-
responding altitudes in triangles A,
Ao, and Au. Notice that the sum of
the areas of triangles ArArA3,
A3A4As, and ArAuArecluals the sum
of the areas of triangles A.A3A4,
A 4A sA 6, and A uA rAr{figure B ), since
each of these sums plus the area o{
the equilateral triangle yields the
areaof. the hexagon 4.A2ABA44,A6.
Since the bases of all six triangles are
equal, we find that the sums of their
altitudes are equal as well.

Problem 13. Constant perimeter.
Two equilateral triangles (not neces-
sarily congruent!) were arranged so
that their intersection formed a

hexagon. Then the triangles under-
went a parallel translation, and their
intersection formed another hexa-
gon (figure 9). Prove that both hexa-
gons have equal perimeters.

Solution. The sums of the perim-
eters of the six triangles situated
around both hexagons are equal,
since every one of them equals the
sum of the perimeters of the given
equilateral triangles. Thus we have

Pt+ Pz+ Pz+ Pq+ Ps+ Pe= Q1+ qr+
ez+ e++ es+ ee, where thenumbers
pi are the perimeters of the 'old'
shaded triangles, and the numbers q,
are the perimeters of the 'new'
shaded triangles. A11 twelve border-
ing triangles are similar; therefore,
there exists a coefficient k such that
pi: karutd er: kbr.We substitute
these eclualities in the above equa-
tion for the sums of the perimeters
to obtain a1 + a2+ a3+ a4+ ar+ au=
br+br+br+bo+br+bu.

Problem 14,Two chords. A circle
is divided into n2 equal arcs by n2
points. Among these pointst n are
painted red and the other n b1ue.
Prove that there exist two equal
chords, one of which has red end-
points and the other blue.

Solution. Let the length of the
circle be n2 units. Then the length of
afiy arc whose ends are at the given
points can take only one of the n2 -
1 possible values-nameLy, 1,2, ...,

n2 - l. Consider all possible arcs that
have differently colored endpoints
and such that if we travel from the
red endpoint to the blue endpoint,
we are going clockwise. There are
exactly n2 such arcs. So, by the pi-
geon-hole principle, there are two
arcs, AB and CD, of the same length.
Then chord AC with red endpoints
equals the chord BD with blue end-
points.

Problem 15. Cutting a square
into squarcs. A square is cut into 36
smaller squares. The area of one of
these small squares is distinct from
1, while the areas of all other squares
equal L Find the area of the original
square.

Solution. There must be a side of
the original square that is adjacent
only to squares ol area 1. Therefore,
the side of the original square is an
integer n. So the side of the square
whose area differs from I is an inte-
ger k. Now we have n2 - k2 = 35, or
(n + kl(n - k) = 35. The possible val-
ues ofn + k and n-k are the pairs of
factors of 35. Since k + l, we find that
we must have n + k = 35, n - k = l.
This yields n = L8, and the area of the
original square is lB2 :324. OFigure B

A.o
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IN THE LAB

Whal ha[polt$ al lhe houndal'y

by A Borovoy and Y. Klimov

\.ENTS OCCURRING AT THE
boundary of a liquid and another
medium don't get a lot of atten-
tion in high school physics

course. But surface tension, wetting,
and capiilary action underlie many
interesting observations and experi-
ments that have been known since
way back when or have been fiscov-
ered quite recently-some very
complicated, some very simple.
That's what this article is about.
Let's begin with a famous demon-
stration that is easy to perform.

llomemade "$[eedhoal" attd

diuel'UinU ninUs

Take a piece of paper and cut out
a"boat" like the one shown in figure
1a. Place a drop of concentrated soap
solution or a small piece of soap onto
point A. Put the boat in a bowl of wa-
ter. It should start moving forward.

Instead of the boat, you can make
a spinner like the S-shaped object in
figure lb. Place soap at points A and
A'. In which direction will the spin-
ner rotate?

The next experiment requires
some practice, but your efforts will
be rewarded with a beautiful demon-
stration. Take a container of clean,
pure water and touch the surface
with a fountain pen filled with black
ink. It will produce a colored spot
that spreads on the water's surface.
Now take a rod that has been rubbed
with soap, or simply a piece of soap,
and touch the center of this spot-
it wil1be disrupted and turn into a
thin ring. Touch its center again
with the pen (this time you might
use ink of a different color) and then
use the soaped rod. This cycle can be
repeated many times to produce a
pattern of concentric rings of differ-
ent colors (figure 2). If you carefully

Figure 2
lower a plece of blotting paper onto
the water, you can transfer the im-
age to it.

A practical application was found
for this experiment-it is used in fa-
pan to produce paper with an aston-
ishing variety of beautiful patterns.

We can easily explain what's go-
ing on in these experiments if we
picture the water as a stretched film.
The famous English physicist Tho-

mas Young was the first to advance
this model. In December 1804, he
published a paper explaining the
capillary action using a stretched
film to model the surface of a liquid.
This model was soon confirmed by
other experiments and was generally
accepted.

Thus, the surface of uncontami-
nated, clean water is a stretched
film. Water with soap or ink in it is
also a film, but it is less eiastic.
Clean water has a stronger "desire"
to shrink than soapy or tinted film,
so it drags the edge of the other
films, pulling the boat or inky ring
toward it.

There are rrrarly ways to deter-
mine experimentally the degree of
"elasticity" of surface films. This
value is known as surface tension
and is represented by the Greek let-
ter o. One of simplest methods is
based on the process of drops form-
ing at the end of a tube. Take a pi-
pette with a narrow tip and fill it
with water. Carefully begin to
squeeze out a drop and see how it
gradually grows and chapges shape.
Eventually the drop separates from
the pipette and falls (figure 3).

t-l LrLU\--l l) l( -o
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Note that the drop separates from
the pipette only when it becomes
large enough. While the drop is
small, surface tension holds it at the
tip of the pipette. At the moment of
separation, the weight of the drop
mg ecluals the force of the surface
tension F. Or, as your physics text-
book might put it,

mg = Znro,

where r is the radius of the "rtecl<"
of the drop just before it separates
from the pipette.

By counting, say, 100 drops and
determining their total mass M :
100m using a scale, we can deter-
mine the coefficient of surface ten-
sion of the test fluid:

m9
Znr 2OOxr

Unfortunately, this method is
very inexact and inaccurate. First,
it's not easy to measure the radius
of the droplet's neck (in laborato-
ries, the neck is optically magnified
and projected onto a screen where
the measurements are performed).
Second, the process of separation of
a liquid drop is more complicated
than just the rupture of the neck.
For example, a small droplet is
formed simultaneously with the
original large drop. Also, in a real
experiment there are other sources
of error.

However, if we want to obtain
merely an order of magnitude for o
or to qualitatively compare the sur-
face tension of , say, clean water and
a soap solution, it's sufficient to use
a pipette and assume that the radius
of the separating drop's neck is equal
to the inner radius of the tip of the
pipette. The latter can be measured,
for example, with a calibrated wire
that fits snugly in the opening o{ the
pipette.

For the sake of comparison, 1et's
write down the values of o for some
liquids (in SI units, N/m): water at
20'C (0.073), soap and water solu-
tion (0.04), olive oil (0.033), kero-
sene (0.026), and mercury (it gradu-
ally decreases in air from 0.5 to
0.4).

A nipple and [ow h damp it
It's interesting that the forces of

surface tension are responsible for
so-called capillary waves (that is,
ripples on water). They can be ob-
served by using the same pipette.
Fill a bowl with water, place the pi-
pette near the surface, and release
the drops into the water. The rapidly
running concentric waves are actu-
ally waves of surface tension. (Gen-
erally speaking, the mechanism of
wave formation and propagation on
the surface of water is not that
simple. The leading actors in this
show are the force of gravity and
surface tension. However, the model
of an elastic film is adequate for ex-
plaining ripples on water.)

There's an old story that in an-
cient times pearl divers, who fished
for pearls at the bottom of the
Aegean Sea, took some olive oil in
their mouths before diving. When
they reached the bottom, they re-
leased the oil, which rose to the sur-
face and eliminated the ripple,
thereby producing a clear "window"
that let sunlight into the depths.
This made it easier for the divers to
work on the floor of the sea.

Here's another interesting obser-
vation. " In calm weathu cefiain
pattems, which are similu to moire
patterns, can be clearly seen on the
smooth sea sutface," wote the re-
nowned Russian geophysicist V. V.
Shuleikin. " If one looks c1osely, it's
easy to see that the ripples appear
within the boundary of a bfighter
background, and that the bright
spots and the bands observed
against this background corrcspond
to places on the sea's surf ace wherc
the ripples are damped." He and his
colleagues cawied out experiments
in which the coefficient of surface
tension was measured by the cone
detachment method. These experi-
ments showed that the coefficient of
surface tension of rippling water
equals that of pure water. In con-
trast, it was significantly smaller in
the area of the bright spots. They
concluded that ripples on the sea
surface are damped by a film of oil
or some other substance. It was no

simple matter to explain this pecu-
liar phenomenon.

Studies subsequently showed
that surface films only damp small
waves effectively, but they can also
prevent the appearance of foam on
the crests of large waves during
stormy weather. This rather modest
help can be of vital importance in a

shipwreck, as Shuleikin pointed out:
" It is important in practice to damp
only the foamy crests, which pose a 

"

great threat to the ship and even
more to a lifeboat being lowered."

ltll[afl i$ fie sfiaru ota dnop?
The answer to this seemingly

simple question depends on a num-
ber of factors. If the shape were de-
termined only by forces of surface
tension, the drops would assume a
shape whose surface area is mini-
mal. Every student knows this
shape-it's a sphere. However, the
Earth's gravity "distorts" this ideal
form, so in many cases the drops are
fiattened, and only very small drop-
lets keep their spherical shape. What
if we try to exclude gravity-or
rather, counterbalance the force of
gravity by some other force?

In 1843, the Belgian physicist |o-
seph Plateau conducted an experi-
ment that was soon named after him
and introduced into every school
textbook. Plateau found the concen-
tration o{ alcohol in a water solution
that makes the density of the mix-
ture eclual to that of olive oil. He
then introduced some olive oil into
the solution and obtained a spheri-
cal drop. The explanation is obvious:
the buoyancy counterbalances the
force of gravity, while surface ten-
sion is responsible for the spherical
shape.

It's interesting that in the state of
weightlessness one can 6btain large
balls of various liquids. Such drops
were observed in space in the course
of experiments with electrical weld-
ing. These drops consisted of molten
metal.

You can reproduce Plateau's ex-
periment at home using castor oil
and water. The density of this oil is
just slightly less than that of water,
so if you pour pure water in it, the

Mg
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slowly sinking water drops are
spherical. You can stain the drops
with watercolors to produce a splen-
did display qf multicolored balls in
the glass of oil.

A more difficult but even more
spectacular experiment can be car-
ried out with liquid epoxy resin and
saline solution. Pour table salt into
a jar filled with water. After a while
the salt will diffuse upward and pro-
duce a solution in which the con-
centration decreases with height.
Correspondingly, the upper layers
of the solution will have a lower
density than the lower ones. In
such a solution of variable density,
a drop of epoxy resin will hover at
a certain height. You can use what-
ever method you like to color the
drops.

Tmm ola dl'ied drol
A puzzhngphenomenon ( at least

at first glance) occurs when a drop
o{ some solution dries. This is a

very simple experiment. Place sev-
eral drops of not very concentrated
saline solution on a glass plate and
let them dry. Naturally white spots
of salt wiil eventually appear in
place of the drops. The strange
thing is that the salt precipitates
not uniformly, but as a set of alter-
nating rings. The reason for this
strange behavior is the intermit-
tent, "jumpy" ttat:ute of the drying
process.

g Zi[ us an electron or two
at quantum@nsta.org
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CONTINUED FROM PAGE 39

Consider the expression

a, +---+ a.^

nv

as a function of x;

l(") =
at +...+ an,(n- m + l)+ (.n- m')x

Its derivative is easy to calculate: Thus the Cauchy inequality is
proved.

Two other proofs of this inequal-
ity can be found in the articles
"Cauchy and Induction" and "The
Sum of Minima and the Minima of
Sums" in this issue of Quantum.
Compare the advantages and disad-
vantages of these proofs. O

, tL-
f 'lx)=-

n

17n..... 111.t7

(4,,, +r)"'

Clearly f'l*l ,0 for x > 0. Indeed,
the radicand is less than 1:

a\a\...arT
t , nl
(d," + xJ

= 
o, 0t ..... o,r, al.

Oltt + .\ tI,,, L X (l 
11] 

L xan (arr,*')"-'"
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Physics

P31 1

Let's consider one of the threads
and choose a sma1l segment of
length 1 (figure 1). Denote the ten-
sion of the elastic thread by T. The
resultant force Q acting on the seg-
ment has a magnitude 2T sin (alZ).
If 1<< R, where R is the radius of the
thread's curvature along the chosen
segment/ then u = UR .. 1, so the
above expressions can be simplified:

sin(alll: alz, and Q = glRlr.

Since our segment is in a state of
equilibrium, the sum of all the forces
acting on the segment is zero. This
means that the ball acts on the thread
with a force F : -Q. According to
Newton's third law, the thread acts
on the ball with an equal force di-
rected to the center of the ball.

ANSWERS,
HINTS &

SOLUTIONS

Any circle on the ballparallel to
the "equator" is crossed by the same
number of threads ("meridians")N.
The circumference of such a circle
with radius r : R cos Q (where Q is
the angle formed by the ball's radius
drawn to the circle and the equato-
rial plane) rs2l:2zrR cos Q. There-
f.ore, a segment oi the spherical en-
velope with area I x / is covered by
the following number of the threads:

Nn- l.
2nRcosQ

Thus the pressure developed by the
rubber net and applied to the enve-
lope is

.ONT- '- 12 2rR2 cosQ'

If the ball's envelope retained its
spherical shape, the pressure would
increase with the angle Q. However,
according to Pascal's law, the pres-
sure is the same at afiy point within
the ball. Thus the envelope cannot
be spherical: Its equatorial diameter
is greater than its vertical diameter.
The radius of curvature of the merid-
ians decreases toward the equator
and increases toward the poles in
such a way that R2 cos Q : const. As
a result, the ball looks like a pump-
kin (figure 2). Perhaps the shape of a
real pumpkin is determined by a
similar phenomenon-structural
"support cords" aligned with the
meridians?

P31 2
Due to the effect of the mechani-

cal (sonic) oscillations, the stream
emerging from the capillary tube
wi1lbe slightly crimped. The stream
would also be crimped even without
the piezoelectric crystal driver, be-
cause its surface wil1be disturbed by
the edge of the capillary tube. Of
course/ the capillary edge produces

a stronger disturbance when it oscil-
lates due to the vibrating piezoelec-
tric crystal. Therefore, the stream is
disturbed earlier than it would have
been in the absence of the piezoelec-
tric element. In any case, the ampli-
tude of the crimping is small com-
pared to the radius of the stream/ so
we will assume that the stream is
approximately cylindrical and that
its radius is equal to the internal ra-
dius of the capil1ary.

It's natural to assume that the
volume of a drop is determined by
the amount of water flowing from
the capillary during one period of the
sound oscillation:

*s) A''u vT=lrR3'
+J

Taking into consideration that T =
1 ll -,,^ -^,a/i / vvL FjLL

hl I rdl
16 t

= 0.25 mm.

P31 3
A graphical solution to this prob-

lem is the simplest route. The total
pressure P(7) in the cylinder is the
sum of the saturated vapor pressure
P"(7) and the hydrogen pressure
P,g),According to the ideal gas
equation,

P*(r)= -l.ar
FnY

(z ror tcs)(s.ar.l/r T.tl.,
(z ro* kg/motxz.tor m3)

= (+.ts.to'r a lr)r.
Let's calculate Pr(Tl at two tem-

peratures. For example, P, = 15.5 .

10s Pa at T :373 K and P, = 18.8 .

105 Pa at T : 453 K. Now we plot the

4g

Figure 2
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graph PH(?)versus 7as shown in fig-
ure 3. Using the table for saturated
vapor pressure/ we plot the function
P.(T). Adding the functions Pr(?)
and {(7) gives us the dependence of
pressure in the cylinder on tempera-
ture P(7). From this plot we obtain
the initial and final temperatures in
the cylinder: Pr: 17 . 10s Pa yields
7, = 380 K, while P2:25. 10s cor-
responds to Tr= 440K.

Let's find the mass of the evapo-
rated water. Assuming the vapor to
be an ideal gas/ we obtain the values
for the initial vapor pressure P., and
final vapor pressure P., {rom the
curves in figure 3. At T1 = 380 K, the
hydrogen pressure is Pr, = 15.5 . 10s
Pa, so

P"r: Pt- PHr = 1.5 . i05 Pa.

Similarly, at T2: 440 K, Prr= 18 .

105 Pa, so

P"z: Pz- Ptn= 8 . 105 Pa.

Using the ideal gas law for the
water vapor at (Ps,7r) and (P"2, T2l,
we have

P"rV =mt RTt and P"rV =ltLRTz,!t, F"

where mu, and mvz are the initial
and final masses of vapor in the cyl-
inder. From these equations we get
the mass of the evaporated water:

Lmu=my2-mv!=+o[t'-+)

_ (rs ror ks/'not)(z ro-r m3)

8.31|/K.mol

f+-*'l rr' *=6 ro-3ks.(440 380/ K

5 0 JArrtlIRY/TEBRtlAfiY 2oot

P31 4
Since the coils are connected in

parallel, the voltages across them are
identical: Vr,= Vtr. However,

V, =L,M' ,nd v, =LnN2."' 'at 'Lt
Thus

Initially, there were no currents in
both coils, so it follows from equa-
tion (1) that at any instant in time

LJt: L2r2, l2l

This means that both currents reach
maximum values simultaneously.

Evidently, 1, and I, are greatest
when the capacitor is discharged. At
this time energy conservation re-
quires that

cvz 4tl trt] ,i,

-T-.

222
The system of ecluations (2) and (3)

yields

-f L,ct -r/ t___________L-' ' 
1L,(r, *Lr)'

, ,,1 L,C
lt-r.--/ '\L'(L'+L.,)

P31 5
Rays making a singie reflection

from the cone travel as if they were
emitted by a continuum of imagi-
nary point sources located on a
circle. Each of these imaginary
sources is symmetrical to the point
source P reiative to the correspond-
ing generatrix of the cone. The image
of this circular source formed on the
screen is a ring (figure 4). It's impor-
tant that the bundle of rays traveling
from each point source to the lens is
planar: It doesn't pass through the
entire surface of the lens, but rather
along the corresponding diameter
(for example, the rays emitted by
point source P' travel in the vertical
plane). Thus the attenuation of such
a ray depends on the shape and ori-
entation of the fiaphragm.

Clearly the symmetrical dia-
phragm shown in figure 4a (page 11)

will attenuate the rays emitted by all
the imaginary sources equally. In this

Figure 4

I

Figure 5 '

case, the brightness of the ring on the
screen will be decreased uni{ormly.

The diaphragm shown in figure 4b
(page 11) will transmit without at-
tenuation the rays whose planes form
angles o . o0 with the vertical plane.
Thus the brightness of the corre-
sponding upper and lower parts of the
ring on the screen will remain the
same. In contrast/ the other rays will
be partially blocked by the dia-
phragm, and attenuation of the rays
traveling closer to the horizontal
plane will be stronger. Therefore, the
brightness of the side areas of the ring
will decrease as the angle o increases
from u = oo to u : nlL.The image will
look like that in figwe 5. It's clear that
the image is symmetrical relative to
the vertical and horizontal axes.

tUIaIh

M31 1

Let abe the first term of the pro-
gression and d be its common differ-
ence. We can assume that d > O.

Then all terms of the {orm a + 10"d,
where n is a sufficiently large num-
ber (such that 10" > a), have the
same sum of digits equal to the sum
of digits of the numbers a and d.

,NtrNzLr-=L.-. (i)'Lt 'Lt

PIT\:P-.lTl+PtTl



A similar argument will show the
proposition to be true not iust for
decimal notation, but no matter
what base of notation we use for
writing the terms of the progression.

M312
Points M and N are the feet of the

altitudes of triangle ABC drawn
from vertices B and A, respectively.
Therefore, the third altitude of this
triangle passes through their inter-
section point H. In addition, points
C, M, N, and Hlie on a circle 6 with
the diameter CH, since ZCMH :
ZCNH: 90'. Let P be the center of
this circle. Notice that as the diam-
eter AB rotates/ the measure of angle
C remains the same. Indeed, it is
equal to half the difference oi the
arcs MNandAB, which are constant
in measure (see figure 5). Since the
chord MN does not change, the
circle 5 (along which point C and the
diametrically opposite point H
move) and its center P also remain
the same. The diameter CH, which
is a part of the altitude under consid-
eration, just rotates about point P.

M313
First, consider the extreme case

when the given numbers take two
different values: k of them are eclual
to a <0, and the remaining ln-k) are
equal to b > 0. Then ka + (n - klb :
0. Thus ka: -(n-k)b andkaz + (n-
kl6z - *(n - klab - kab : 1, from
which we get ab : -l I n. Choosing x,
: a, Xi: b satisfies the requirements
of the problem.

We try to reduce the general case
to this one by "moving the variables
apart." Notice that if we replace the
pair of numbers u, v (u < v)by u - t
and y + t (t > 0), their sum does not
change and the sum of squares in-
CICASCS:

lu-tl'+ft+tlz
:112+#+2tlv-ul+t2.

Let a <0 be the minimum and b > 0
be the maximum of the given num-
bers xr, X2, ...r Xo.If this set contains
two numbers different from a andb,
move them apart without changing
their sum so as to make one of them
equal to one of the extreme numbers
a or b. A little thought will show
that after several such operations,
we obtain a set of n numbers in
which a1lbut one number (call it c)

ecluals a.
We have now replaced the origi-

nal set {xr} with a new set of num-
bers, mostly equal to a or b. Assume
that k of these new numbers are
equal to a, and rr7 : ri - k - 1 of them
are equal to b. The sum of these
numbers is 0, and the sum of their
scluares is not less than 1:

ka+c+mb:0,
ka2+c2+mb2

: -(" * mbla + cz - (ka + clb > l.
Since a 1 c < b,we have (c - al(c -bl
=ca-c2+cb-ab>0.

Adding this inequality to the pre-
ceding one/ we obtain the desired
inecluaiity

-lm+k+l)ab:-nab>l
or

ab < -lf n.

So choosing a ard b again satisfies
the requirements of our problem.
This proof also shows that equality
is achieved only for the extreme
cases we started with.

This problem also has a direct, if
slightly artificial, algebraic solution.
For any i (1 < i < n), we have

(x,- allx,- b)< 0.

Adding up all these inequalities, we
obtain

14 -tr*b)Ir, +nab<O. (1)

ii<l i:I

But

"\
L"? =1 and )x, = o,
i<l i=l

thus, inequality (I) turns into

nab < -1.

M314
This probiem has many different

solutions based on the following
simple inequalities for two positive "

numbers:

"2 - tl >')_ -XY,
x+v , 2xv" / >"!xv> -'-/ .2 n ' x+y

For proofs o{ these basic inequali-
ties, see for example Beckenbach
and Beliman, An Introduction to
Inequaliites, Washington, DC:
MAA, New Mathematical Llbrary,
r95r.

We present four such solutions;
the reader can choose the most at-
tractive one from his or her point of
view.

1. The condition ab > a + b canbe
rewritten as

la- rllb - 1) , 1.

The expressions in both parentheses
must be positive (indeed, if O < a < I
and0 < b < 1, then la-ll(b - 1). 1).

Then, by the inequality between the
arithmetic and geometric means for
the numbers a - 1 and b- 1, we have

a - 7 + b - 1 > z @ - t)(b - t), z,

fromwhichweget a+b>4.
2. The given condition is equiva-

lent to the condition that the har-
monic mean of a and b is greater
than2:

( ,-r +b-I 
.l I 

2ab| _ I 
- 

_ \ ','

I z ) a+b'-'
But the arithmetic mean is greater
than or equal to the harmonic mean:

a+b Zab_\_
2 - a+b'

since (a - bl'> 0. Therefore,

a+b>4.
3. Dividing the given condition

by a and b, we obtainFigure 6
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from which.we get

a+b> 9+L+z>+.
ba

4. We can add one more inequal-
ity on the left of the given ineclual-
ity:

(a+b\2\ '/ > ab> a+b.
4

Then, for S = a + b wehave S2/4 > S.

Thus, 52 > 45, which (since S , 0)
yields S > 4.

M315
Using the fact that two tangents

drawn to any circle from the same
point are equal, we denote the vari-
ous line segments as shown in figure
7. (We also use the fact that the tan-
gents drawn from point D to each of
the two congruent circles form con-
gruent angles; thus, all these tan-
gents are equal.) Equating the two
tangents drawn from point B to the
farther circle and taking into ac-
count that AB = BC = x + y, we ob-
tain

y+22:y+x+u,
from which we obtain

x+u=22. (1)

Now the solution can be com-
pleted by standard manipulations
involving the formula that expresses
the area of the triangle in terms of its
semiperimeter s: K = -rst and in
terms of the radius r oof the escribed
circle tangent to side a: K: to$ - a).
If h denotes the altitude drawn to a
leg of triangl e ABC and r denotes the
radius of the equal circles, then the
area So"" is equal to

- x+v
=Stsc=Saso*Sosc

(x+u\
= r(x + y + z) + rl y + z +'::=a - z - u I

\2)
( x+u x+u \

=Il X+ \z+-+V+--U Il.22)
= r(Zx +2y).

It follows that r : hl4.

Figure 7

This result can also can be ob-
tained geometrically, using equa-
tion (t). The blue quadrilateral
with vertex C (see figure 7) can be
flipped over and placed so that C
coincides with E, and so that the
sides formed by radii of the two
circles also coincide. Then EM = u,
and AM = x + u. But MC : (z - u) +
Z + L1 = 2z : x+ u/ so Mis in fact the
midpoint of. AC. By construction,
ZEMN is supplementary to ZBAC,
so MN is parallel to AB. Since MN
is also perpendicular to radius ON
(again by construction), MN is tan-
gent to the circle, and it is not hard
to see that N, O and P are collinear.
Now it is wellknown that MN, the
line through a midpoint of triangle
ABC and parallel to side AB,bi-
sects any line from C to AB. So it
bisects the altitude from C to AB,
and PZ is eclual to haif this alti-
tude. It follows that r : hl4, as be-
fore.

Brainlea$El'$

831 1

Let us suppose that the suitors
didn't do too weil with this probiem,
and were all spurned. We line them
up, and ask them to give back their
plums, in the reverse order in which
they took them out. The third suitor
must first give back his three "ex-"
tra" plums. Then there are three
plums in the basket, which must
have been half of what remained
when the second suitor was done.
The third suitor had been given the
other half (three more plums), and so
now must put them back as wel1.

Now there are six plums in the
basket, and the second suitor must
first give back his one " extra" plum.
This puts seven plums in the basket,
which is half of what the second
suitor must have seen at the begin-
ning of his turn. He must now put
back the other ha1f, which is also
seven plums.

Now there are 14 plums in the
basket. The first suitor must follow
his colleagues, by putting his "ex-
tra" plum back, so there are 15
plums in the basket. Then he puts
back an eclual number, and there are
30 plums. This must have been the
state of the basket at the beginning
of the story.

831 2
The first condition implies that

Aramis placed fourth in the compe-
tition. From the second condition it
follows that Porthos was second,
and from the finai condition it fol-
lows that D'Artagnan was first and
Athos was third.

o, | *t,b>L+Y
DA
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Figure 9

831 3
Two solutions are possible (see

figure 8).

831 4
Note that D < 3, and D is even.

Thus, D : 2. Then R is either 3 or 8.
But R cannot be eight, since in this
case 4I would have ended in the
digit 5, which is impossible. Thus R
= 3. Now we have 1: 8, which then
yields B=6andO:1.

831 5
The paths of the sunbeams are

shown in figure 9a. The spoon
blocks some rays falling on one side
of the surface and some rays re-
flected from the opposite side of the
surface. So two shadows will simul-

taneously appear on the light spot
projected on the wall-one on the
upper edge and another on the bot-
tom edge (figure 9b). As the spoon
comes nearer to the surface, the two
shadows will grow and eventually
connect.

l(aleido$co[E
1. Polarized charges appear on the

piece of papert which is a dielectric.
The electric field is stronger near the
comb, so the attraction toward the
comb is stronger than the repulsion
from it (figure 10). In contrast, equal
and opposite forces act on a polar-
ized dielectric placed in the homo-
geneous field of a parallel-plate ca-
pacitor.

2. In contrast to the free electrons
in metals, the charges in a dielectric
are bound.

3. The intensity of the fields in
the air and the dielectric are eclual.
Attenuation of the field inside the
dielectric due to its polarization is
compensated by an increase in
charge density in the lower part of
the plates.

4. The film of dielectric oxide
formed at the surface of the plate is
very thin.

5. The charges wiII not change.
5. Both the direction and the den-

sity of the lines of forc,e will change

inside the bar due to polarization of
the dielectric (figure 11).

7. See figure 12. When the bound-
ary of the dielectric is crossed, the
number of lines of force changes
abruptly due to the presence of po-
Iarized charges.

B. When the metal balls are im-
mersed in the dielectric, the voltage
difference and, consequently, the
intensity of the electric field be-
tween them do not change. This is
achieved by increasing the charge of
the balls by a factor of e, where e is
the relative dielectric constant of
the liquid. Therefore, the attractive
force between the ba1ls will increase
by a factor of e.

9. The charge on each plate will
increase by a factor of e (see, for ex-
ample, the solution to the previous
problem). The intensity of the field
generated in the afuby each plate
will increase by the same factor.
Therefore, the attractive force be-
tween the plates will increase by a
factor o{ *.

10. The higher voltage requires a
thicker layer o{ dielectric, which
decreases its capacitance. To have
the same capacity, it is necessary to
increase the area of the plates. Both
reasons lead to an increase in the
capacitor's size.

ll. e:2.
12. The energy will decreaseby a

factor of e.

13. The dipole moments in a di-
electric are oriented in the electric
field with a certain time lag.

14. Metals reflects electromag-
netic waves better than dielectrics.

15. Yes, it will, because both the
atomic nucleus and the electronic
shell change their mutual location
in the field generated by an electron.
Mutually repulsing electrons are
shifted in the direction dpposite to
the electric field, while the attracted
nucleus is displaced in the direction
of the external field. As a result, the
atom acquires a dipole moment.

15. See figure 13.
Microexperiment
The eiectric field generated near

the terminals of a battery is too
weak to produce any discernible
polarization of dielectrics.

Figure 10

Figure 12

oco
H

o
-o..

,/\Hr/\Hd '\i
Figure 13Figure 11
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INFORMATICS

ru 2000

by Don Piele

OUNG CHILDREN IN THE WESTERN WORLD
are sometimes told by their parents/ "If you dig
long and deep enough you can dig a hole to China."
I never made it to China thatway, but I finally did

make it to Beiiing by plane on the occasion of the 12th
International Olympiad in Informatics, the first IOI to
be held on the continent of Asia. The weeklong event,
September 23-30,2000, was packed with excursions,
entertainment, competitions, friendship, awards and, of
course/ abundant Chinese food.

We arrived in Beijing with the Canadian team after a
l2-hour flight from Vancouver, British Columbia. Our
delegation had gathered in Vancouver from all parts of the
United States. Team leader Rob Kolstad from Colorado
Springs, coach Hal Burch from Pittsburgh, coach Greg
Galperin from Boston, and myself, USACO director, from
Wisconsin. Team members Percy Liang and |ohn
Danaher intemrpted their freshmalyear at the Massa-
chusetts Lrstitute of Technology for the trip. Greg Price
from Thomas |efferson HS of Science and Technology in
Alexandria, Virginia, and Reid Barton from Arlhgton,
Massachusetts, rounded out the USA team of four.

l0lguides
Shortly after arriving in Beijing, we walked through

the sliding glass doors into the welcoming signs of our
Chinese IOI guides. In their red and black vests display-
ing the IOI2000logo, they were easy to spot. Their first
job was to greet us at the airport and get us safely trans-
ported by bus to our hotels. The team members were
dropped off at the CATIC Grand Hotel and the deiega-
tion leaders went to the four star Continental Grand
Hotel. We had arrived at 3 pm in the aftemoon a bit tired
from the long flight. It was very tempting to want to lie
down for a short nap, but we all resisted knowing it is
best to suffer the sleep loss early in order to adjust
quickly to the l2-hour jet lag.

$ummer Palace sttcur'$iolt
We awoke the next day ready for our first excursion.

As is customary at IOI events/ several days of excursions
had been planned for the week. Our first trip was to the

Summer Palace, a huge park in the northern part of
Beijing that was the summer home for royalty for nearly
800 years. It had been restored after being destroyed in
1900 during the Boxer Rebellion. Our tour guide led us
through this crowded park, which is both a favorite tour-
ist attraction and a popular retreat for Beiiingers. The
huge Kunming Lake within the park was built com-
pletely by manual labor. A popular actl-vity is to take a
dragon boat ride on the lake. Another attraction is the
world famous 729-meter-long corridor that is decorated
with 8,000 paintings.

0leninu cerelnoils$
The opening ceremonies were held in the Beiiing

International Convention Hall. Mrs. Chen Zhili frorn
the Ministry of Education, delivered the opening address
in Mandarin Chinese followed by an English transla-
tion. For entertainment we were treated to a number of
outstanding performances featuring acrobats, musi-
cians, and a troop from the Beijing Opera. Afterwards,
all5l2 guests including 275 contestants from 75 coun-
tries filed into a reception hall to try their hand with
chopsticks as they sampled dished from an elaborate
Chinese buffet. Zide Du, chairman of the organizing
committee from China, was happy to see that his long
hours of hard work had finally paid off and IOI2000 was
officially underway. His daughter was on hand to join
in the festivities.

Senmalfl$$slnhly
That evening the delegation leaders met to choose

the problems for the first competition day. The prob-
lems were presented by the scientific committee and
accepted unanimously on the first vote. This happens
so infrequently that the general assembly gave the sci-
entific committee a round of applause. It is not easy
to get approval of the first try from all countries.

Now the only thing left for many countries was trans-
lating the problems into their native language. Our de1-

egation was fortunate and skipped this time consuming
task since the official language of the IOI is English and
a1l contestants receive a copy in Engiish.
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tin$l comrutition
Early the next morning, the contestants began the

first of two five-hour competitions. This gave the del-
egation leaders a break, ,.rd -rry headed Lack to their
room for some sleep after an all-night translation ses-
sion. After the contestants had finished programming
their solutions to the three problems, it was time to
begin the grading process. Using an.automated system,
the work of grading the contestants'programs was dra-
matically reduced. Differences in program performance
were detected by running a series of test cases against
each program and checking for speed and aecuracy.
After all the programs were tested, the results were
made available to each contestant, along with the test
cases. This gave the contestants the opportunity to
double-check the grading process using their own com-
puters. Our team was pleased with the first day's results.

Secoltd Encursion
Between competition days we were treated to an

excursion to the heart of Beijing, beginning with the
Forbidden City. This was the seat of imperial power
during the Ming and Qing dynasties (1358-1911). It has
been written, "Without seeing the magnificence of the
royal palace/ one can never sense the dignity of the
emperor." We were given lots of opportunity to wander
around the beautiful courtyards and inside the build-
ings. It reminded me of scenes from the motion picture
The Last Emperor.

Our next stop was Tienanman Scluare, which was
decorated with imported flowers for the October 1

celebration of the People's Revolution in China. Our
team got in the spirit of the occasion by waving the red
flag and Mao's Little Red Book, which were always
available from obliging vendors. Kim Schrijvers, the
team leader from the Netherlands, was able
to quickly round up over 100 unsuspecting
IOI participants for his "spontaneous" group
photo on the square.

Second colnrulitiolt day
The second day was pretty much a carbon

copy of the first competition day with the ex-
ception that the problems presented were a bit
harder and arriving at an agreement on them
took a bit longer. All in all it appeared that the
creation of the International Scientific Com-
mittee had been a good idea since their work
was very helpful to the Chinese Scientific
Committee in selecting and testing out the
competition problems. The final distribution
of scores in the competition also confirmed
that the problems were at the proper level of
difficulty for a good distribution of scores.
Now the guessing game began as the delega-
tions wondered if their scores were high
enough to get bronze, silver, or gold medais.

Following the last day of competition, we headed out
in buses to the Chinese acrobatic show. This was a
highly entertaining show featuring young children who
could balance on just about anything and make it look
easy. One boy was able to do a one-handed handstand
on the head of another boy who was standing up. An-
other young girl constructed a tower of furniture sup-
ported below by a companion and managed to balance
on the very top of a stack at least 30 feet high.

Ihe ErealWall
The highlight of this day was a trip to the Great Wall

of China, one of the great wonders of the world. This
2,000 year old structure, stretching for 4,500 miles
stands today as a symbol of Chinese ingenuity and
willpower. At one time every fourth person in China
worked on the wall. It's a steep climl: in some places
to even walk on the wall since it goes straight up a
mountain instead of taking the more gentie contour.
After we had walked and climbed about as far as our
tired legs could carry us/ we returned to an outpost
tower on the wall for a fully catered banquet. Chairs
and tables had been hand carried onto the wall along
with all of the dishes, glasses, and food for this spec-
tacular occasion. As we sat together eating our meal,
watching the sun set in the west and the lights come
on illuminating the Great Wa1l, it was hard to believe
this was really happening. A few of those at our table
looked at each other and shook our heads, "This is
truly unforgettable."

ClosinU csrelnoltit$
Based on everything that Ihad aheady seen this

week, and everything I had been told about Chinese
ceremonies, I was expecting a grand finale. I was not
disappointed. It began with video highlights of the

.j
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week/s activities, featuring scenes proiected on large
overhead screens within the convention hall. Official
dignitaries from China occupied a special position in
the first row. After a series of eiaborate stage perfor-
mances and speeches, it was time for the medals to be
awarded. As is custontaty, only half of the participat-
ing students were awarded medals. Sixty-nine bronze
medals were handed out individually to the winners.
Gregory Price from our team won the bronze medal.
Forty-seven silver medals were awarded, and two of
them went to team members Percy Liang and |ohn
Danaher. The coveted gold medal was reserved for the
top twenty-three participants, and Reid Barton got one
of them. This was the second gold medal this year for
Reid at an International Olympiad. He was awarded a
gold medal at the Mathematics Olympiad held in Ko-
rea earlier in )uly.

Special recognition went to |ing Xu of China for be-
ing the best female contestant at the Olympiad. Only
six of the 27 5 participants were women. A perfect score
was recorded by one contestant/ Mikhail Baoutine, from
the Russian Federation. He was awarded the winner's
trophy, a gold medal, and a laptop computer. A11 three
of his teammates also won gold medals, making this the
first time in IOI history that one country has won four
gold medals.

Final lanquet
That evening we were bused to the Red Rooster The-

ater and Restaurant in downtown Beiiing where our
party of over 500 was served a marvelous Chinese meal
by waiters and waitresses on roller skates. It always
amazedmehow quickly every sit-down dinnerin China
was served, no matter the size of the party. The num-
ber of good service people in restaurants and shopping
centers was one of the many things that astounded me
about China. And the tall, slender, dancing and singing
models decked out in alluring attire who entertained us
that night was another surprise. It was the Beijing ver-
sion of a Las Vegas chorus line.

lllew enuil'0nments
Starting in 2001, the computing environment wiil

include LINUX with the GNU C/C++ and the Free Pas-

cal compilers. This will allow for more interesting prob-
lems and really speed up the grading process. This was
adopted by the General Assembly on the recommenda-
tion made by our head coach, Rob Kolstad, in a presen-
tation to the group.

Palindrome Uolletn
Of the six problems used at IOI2000, one of the easi-

est ones to solve was Palindrome. A palindrome is a
symmetrical string that reads identically from left to
right as from right to left. The problem was to write a
program which, given a string/ determines the minimal
number of characters that needs to be inserted into the
string to make a palindrome.

As an example, by inserting two characters, the string
" Abgbd" can be transformed into the palindromes
" dAbAbAd" or " Adb\bdA." However, inserting fewer
than two characters does not produce a palindrome.

INPUT
The input file name is PALIN.IN. The first line con-

tains one integer, the length of the input string N,
3 < N < 5000. The second line contains one string of
length N.

OUTPUT
The output file name is PALIN.OUT. The first line'

contains one integer, which is the desired minimal
number.

SAMPLE INPUT
5
Absbd

SAMPLE OUTPUT
2

Memol'ahle l0l
After such an elaborate IOI in China, our delegation

agreed that we had underestimated the amount of work
that it takes to put on an event of this magnitude. This
is a concern, because we are hosting the IOI in 2003.
Hopefuily, memories will have faded by then and our
guests will forgive us for not having a branch of the
Great Wall anywhere near Chicago. For now, the torch
has been passed to Finland, who will host the 2001 IOI
in Tampere. Zide Du and the entire Chinese organiza-
tion did a wonderful job making the first IOI of the 21st
century such a memorable one.

Photos
Being a member o{ the International Committee of

the IOI has afforded me the opportunity to visit area of
the world I have never been. As a result I often take
many digital photos. A complete set of 240 photos in
China can be viewed at www.zing.com. Search under
Albums for IOI2000.

0ul' spmsnn
All expenses for training and travel for the USA team

was paid for by our sponsor, USENIX. USENIX is the
Advanced Computing Systems Association, which
brings together engineers, system administrators, scien-
tists, and technicians working on the cutting edge of
computer science.

Finally
To find out more about the USACO or IOI2000, go

to our web site at www.usaco.org and click on 2000,
then click on the International Olympiad in Infor-
matics. To test the waters/ try out our training materi-
als at ace.delos.com/usacogate. When you are ready tor
a stimulating informatics challenge, join our USA 2001
competition through our USACO web site. O
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