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Law of the Wild (1881) by Charles Raleigh

THE ELEMENT OF SURPRISE IS CRUCIAL TO A
I successful hunt. Animals have many ways of mask-
ing their physical presence while stalking prey. The
white coat of the polar bear, for example, allows it to
blend in with the arctic landscape. Tn fact, polar bears
have been observed covering their black noses with a
paw while hunting for amea\ presumably to keep it from

standing out like a sore thumb. The bear above seems
to have avoided the watchful eyes and ears of the seal
by swimming up silently from behind. The hunter may
soon become the hunted, however, if that ship on the
horizon is looking for bear skins to fill its ho1d. To ex-
plore other conditions that might a1low you to stealth-
ily approach your prey/ turn to page 40.
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If someone were to walk a mile in your
shoes, it is thought that they would
soon share your experiences and outlook
on life. If you were to walk along beside
them, however/ you might also come to
share something else-a common veloc-
ity. But what velocity would that be and
how would it be chosen? To get in step
with the phenomena of group velocity,
turn to page 47.
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BRAINTEASERS

Just lol' the lun ol it!
8306
Quad query. Side AD of quadrilateral ABCD equals its diagonal BD. The
three other sides of this quadrilateral are equal to each other. The
diagonal BD divides angle ADC into two equal parts. What are the
possible angular measures of angle BAD!

8307
Solve the circle. Side AE of pentagon ABCDE equals
the other sides of this pentagon are equal to 1. What
circle passing through points A, C, and E?

its diagonal BD. AII
is the radius of the

8308
Paycheck enty. One hundred of{icials of a government agency were
invited to a meeting. Chairs were afiarrged in a rectangle with l0 rows
and 10 chairs in each row. The meeting didn't begin on time, and the
officials started talking to their neighbors and exchanging information
about their salaries. Those officials who iearned that among their
neighbors on the left, right, in front, behind, and on the diagonals, there
was not more than one person with a higher salary, decided they them-
selves were highly paid. Which is the maximum possible number of
highly paid o{ficials?

831 0
It's a bteeze. Once, when I returned from a weekend trip to the country,
it was very stuffy in the rallway car. Therefore, I stepped out onto the
piatform at the end of the car, but the air was not any better. When the
train slowed down for a station, fresh air blew from an afu vent. When
the train stopped, the air quit flowing. However, the fresh air blew from
the vent every time the train slowed down for a station. what caused the
air flow? Was I standing on the platform at the front or the rear of the
car? I should add that all windows and the door to the platform were
open.

8309
Meeting on the bridge. Nick left Nicktown at 10:18 e.u. and arrived at
Ceorgetown at 1:30 n.m., walking at a constant speed. On the same day,
George left Georgetown at 9:00 e.ivr. and arrived at Nicktown at
I l:40 e.n., walking at a constant speed along the same road. The road
crosses a wide river. Nick and George arrived at the bridge simulta-
neously, each from his side of the river. Nick left the bridge 1 minute
later than George. When did they arrive at the bridge?

o
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The phy$ics ol chemical Feacliolt$

Don't overlook the interactions

by O. Karpukhin

IN A CHEMICAL REACTION,
I nn" set of substances is converted
I in,n another set of substances. For

! .*r-pl", burning is a chemical re-
action that yields water and carbon
dioxide gas. Mixing an acid and an
alkali produces a salt. Usually when
we study chemistry we "close our
eyes" while the molecules are inter-
acting and only "open our eyes"
again when the products of the
chemical reaction have already been
formed. And yet it is the processes

occurring when the molecules inter-
act that determine the composition
of the products of the chemical reac-
tion.

Any chemical reaction consists of
two basic stages. First, the reacting
particles must meet. Second, a
chemical conversion occurs/ where-
by quantum shells are rearranged
and new molecules are formed out
of the original ones. Chemical phys-
ics is thus subdivided into two ma-
jor areas: chemical kinetics and el-
ementary event theory.

Chemical kinetics studies how
the reacting particles meet, what
external forces aflect them, and
what equations describe the changes
in the concentration of the reacting
substances in the course of a reac-
tion. In addition, it studies how the

rate of a chemicai process depends
on the concentrations of the re-
agents (the original substances in-
volved in a chemicai reaction), the
temperature, and other conditions
under which a reaction proceeds.

The elementary event theory of
chemical conversion investigates
the very process of interaction of the
colliding particles as well as changes
in the quantum shell configuration
and interatomic distances within
the molecules.

This article is devoted to chemi-
cal kinetics. The major problem of
chemical kinetics is the incidence of
meetings (that is, collisions) of the
reacting particles.

The particles participating in a

reaction are not necessarily mol-
ecules. Neutral atoms/ charged ions,
or some other particles can also take
part. Before we deal with specific
reactants, we'll examine the interac-
tion of arbitrary particles in its most
general form.

Let a reaction between particles
of type A and B proceed in some
volume where the reactants are dis-
tributed uniformly. Such a reaction
is called bimolecular. We assume
that all the partlcles are spheres of
radius z. Each cubic centimeter con-
tains ao particles of type A and bo

particles of type B. We know that
particles in a gas move chaotically,
which means that their speeds and
directions keep changing. However,
the root mean scluare speed of all
particles <v> is virtually constant.
This value depends only on the tem-
perature T of the medium and the
particle's mass m:1

tskr
/-,\ _ I\'/ \ m

During time t, particles of type A
travel the mean distance

Ekr
S = - 

j-t.
Vm

We assume that the B-particles
are motionless and that the veloci-
ties of the A-particles don't change
after collisions.

As it moves, an A-particle col-
lides with all B-particles lvhose cen-
ters are located not more than 2r
from its trajectory-that is, with
those B-particles inside the cylinder
shown in figure 1. During a time
interval t anA-particle collides with

lThis is a reafiaflgerr,ent of an
equation you probably encountered in
your high school physics textbook:

mG\' 3,E=--)-r-=-kT.22
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all B-particles that are located in the
volume

, V = 4nPs.

Of course, anA-particle can meet
not only B-particles but otherA-par-
ticles as well. It can also collide with
other objects in the medium. How-
ever/ these collisions don/t interest
usl because they don't induce a
chemical reaction between the sub-
stances A and B.

As we mentioned, each cubic
centimeter of the medium contains
boparticles of type B. Therefore, ev-
ery A-particle will collide with aoV
B-particles. Since the number of A-
particies in one cubic centimeter is
an, the total number of collisions be-
tween A- and B-particles during
time t wi1lbe

n = Vaobo.

Correspondingly, n/t collisions
between A- and B-particles occur per
unit time:

n " lzkr
- = 4ttr' ^i-aobo.r!m

In this caiculation we didn't take
into account that B-particles also
move, the velocities of the particles
change after every collision, and the
distribution of the particles in the
volume is homogenous only on av-
erage. However/ the precise theory,
which takes all these factors into
account, corrects our results by no
more than 10%.

It also should be noted that not
every collision between A- and B-
particles results in a chemical con-
version. However, the number of
elementary chemical events is pro-
portional to the number of these
collisions.

The number of chemical conver-
sions occurring in a unit volume per
unit time is called the rate of chemi-
cal reaction. The rate of the reaction
between A- and B-particles is deter-
mined by the expression

. . lzkr
W = a4rcr' "l-aobo, (l 

)\m
where s is a dimensionless propor-
tionality coefficient relating the
number of collisions and the num-
ber of chemical conversions.

The parameter o essentially signi-
fies the probability of a reaction
occuring between two particles if
they happen to collide. The value of
this probability and the nature of the
factors it depends on are considered
in the theory of elementary chemi-
cal conversion, which is beyond the
scope of this article.

Equation (i) describes the law of
mass action: at arLy moment the rate
of a chemical reaction is propor-
tional to the product of the concen-
trations of the reactants at this mo-
ment. The proportionality coef-
ficient K that stands before the prod-
uct of the concentrations is called
the rate constant of the chemicalre-
action at a given temperature.

In a bimolecular reaction be-
tween particles of equal mass the
rate constant is

'zkTK = 4unr2.l-\m
Let's calculate the rate constant

for a simple chemical reaction.
Problem 1. A bimolecular reac-

tion proceeds in an ideal gas under
normal conditions (pressure 760
mm Hg, temperature 0'C). The con-
centrations of both reagents are
equal, and there are no other sub-
stances in the medium. The mass of
molecules A and B is about 30
atomic mass units (l amu = 1.67
. 10-27 kg). The radius of the mol-
ecules is

r :2.5. 10-8 cm.

Find the rate of this reaction.
Solution. As a first step, let's ob-

tain the mass of the molecules:

m = BO . 1.67 .1047 kg= 0.5 . 10-2s kg.

The root mean square speed of
the molecular motion is

,\ BFft17\ 
- 

)-\'/-1 _

-

_ /3 1.38.rO-',"1 lK.273K
1 o.s ro-2skg

= 480 m /s.

The constant rate of the reaction
is

K = 4unrz<v>

:4urc(2.5. 10 8 cm)2 . (4.8 . 10a cm/s)

= 3.Scx . 10-10 cm3/s.

We see that the rate constant is
expressed in units of cm3/sec. Ac-
cording to Avogadro's 1aw, one mole
of an ideal gas (6 . 1023 particles) un-
der the normal conditions occupies
ZZ. liters. This means that 1 cm3 of
gas contains 2.7 .I}re particles-that
is, 1.3 . 101e molecules of each type
A and B (ao: bo = L.3 . 101e cm-3).

Thus, the rate of the reaction is

14/ : 3.8o(1O-to .pa/s) .

' (i.3 101e cm+)2

= 6.5a. lgza 
"pa/s.

This means that 6.5 . 1028 colli-
sions occur per second ]retween A
and B molecules in every cubic cen-
timeter of gas.

Let's see what would happen if
every collision led to a chemical
conversion. In this case, all the moi-
ecules would react in a very short
time:

L=
ao _ 1.3 . 101e crn -3

w 6.5.1028s lcm-3

= 2.10-10s.
Is this realistic?
A mass of about 30 smu corre-

sponds to molecules of ethane (30
amu) or oxygen (32 amu). Therefore,
the reaction described above is a
model of gas burning in a conven-
tional gas oven. As you well know,
gas doesn't burn ali by itself-you
need to ignite it with a match or
some other device. This means that
the value of o, in the reaction be-
tween ethane and oxygen is very
small.Figure 1
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If a chemical process proceeds at
a constant temperature, we only
need to know the value of the rate
constant K to determine how the
concentrations of the reactants
change during the entire process.
Thus the law of mass action can be
written as follows:

w = KIA)lBl, ll,i
where the symbols [A] and [B] de-
note the concentrations of the re-
agents thatvary during the reaction.

It's not easy to calculate theoreti-
cally the precise value of the rate
constant of a chemical reaction, so

in most cases it's determined experi-
mentally.

Problem 2. Find the rate constant
of the chemical reaction between
reagents R and S if experiments have
shown that I0"/" of each substance
is chemically converted per second.
The initial concentrations of each
reagent were 1 mole/liter.

Solution. In I liter of the reacting
mixture, 0. I mole of each reagent is
converted per second. Thus 6 . 101e

elementary events of chemical ln-
teraction occur per second in 1 cm3.
So the rate of reaction is

W : 6. l01e cm-3 s-1.

Plugging the values of the initial
concentrations and the reaction rate
I//into equation l2),we get the value
of the rate constant for this reaction:

K== =Y = =o.l 
littt

[a]o[s]o 
"'- mol s

=1.7 .lO)o cm3 / s.

We obtained the value of the rate
constant K corresponding to con-
stant concentrations [R]o and [S]0. tr
the rate of this proeess were con-
stant, the reagents R and S would be
completely consumed during the
first 10 seconds, because 10% of the
reagents is processed in one second.
However, this doesn't happen in a

real chemical experiment-the con-
centrations of the reagents decrease
over the course of the reacti.on, so
the rate at which they're consumed
(that is, the reaction rate) decreases
as well. Therefore, at different stages

of the reaction different amounts of

[N], (mo1e/liter)

a

wt

0.1

0.08

0.06

0.04

0.02

024681012t4
b

Figure 2

the reagents are consumed during
equal time periods.

Problem 3. Given the value of the
equilibrium constant of a bimolecu-
lar reaction between reagents R and
S (see problem 2), calculate how the
concentrations of the reagents
change over time.

Solution. To calculate the change
in concentration of the reagents over
time, let's divide the time into small
equal intervals. Since these interuals
are small, we assume that the reac-
tion rate doesn't vary during any of
them.

First, let's choose time intervals t
equal to 6 s, 2 s, and 1 s. In figure 2a
the green line shows the concentra-
tion {or t : 6 s, while the black and
blue lines correspond to 2 s and 1 s,

respectlvell,. Frgure fb shoi.-s th.
reaction ratc o\-c1 tttr,,,.- -.-.,:,*
rr ith thc.c .1ff t \itl-.1:: :.-

In a r'.al rr.':-ir t ::, , :.--:.: ..'

tLons ot thl' l-J:-:l:: ', .:1-, : :-:- 1*-
.u.]r' .. -.t -,--.: .,: ... 

' ,
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of t. To obtain precise values for the
concentrations at any given moment/
we must find the limit as t ap-
proaches 0, taking into account that
the reaction rate varies continuously.

Differential calculus allows us to
solve a problem like this precisely.
At any given moment, the concen-
tration of a reagent [N1, it given by
the equation

0.8

0.4

0.2

[ru],=#, (3)

where lNlo is the initial concentra-
tion and t is the time that has
elapsed {rom the beginning of the
reaction.2

Plugging the values for the equi-
librium constant and the initial con-
centrations into equation (3), we get
the formulas describing how the
concentrations and the reaction rate
change over time:

,l

L rr t )t I_0.1t

6, 10lo l
- 

- 

Llll
1+ 0.1t

0.1
W, = --?mol ,liter s\

(1+ 0.1t)-

6101n -r r

(1+ 0.lt)'

The red lines in {igures )a arrdZl't
show the plots of these functions.
You can see the difference between
the curves obtained by thrs method
and those obtained by the approxi-
mate method.

Equation (3) makes it possible to
calculate the concentrations of the
reagents and the reaction rate at aty
moment and {or any initial concen-
trations of the reagents.

Howevet, chemical Frirccsses
don't alr'r,a)'s consist,-,i ; .-:t:,; :i-
emental-\ l'LlJ:i :- ::::-.:..:- -.^:::'l'-
tron bctr'.-c:-: :.'. - .:--.-:- : -.t':,1'aS.
Cl':::.::--:' -- -i-.-r--r iar
lll 1': - ::--: . . ::-:'.' -4,: ::arlate SeV-

: - -.:I.1'(Iltlal
-: -- -: -, : ,': i1c iriierential
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eral elementary reactions occurring
simultaneously. For example, the
products of a reaction may interact
among thernselves or react with the
initial reagents. Obviously in such a
case, equation (3) doesn't describe the
kinetics of the process. We need to
develop a more complex equation
that incorporates the rate constants
of all the elementary reactions in-
volved in the process.

But not only do we have to deter-
mine the rate constants of all the
elementary reactions-we must en-
sure that the process actually pro-
ceeds according to the given set of
reactions.

Problem 4. In figure 3a the data
points represent measurements of
the concentration of hydrochloric
acid as cyclohexene is chlorinated in
the presence of a catalytic agent.

CH, CH,
n,cAtH, n"cz/\cn.- | .-l II I +HCl , r}{'C\\V/CH H2CV,'CHCI

CH CHz

In figure 3b the data points represent
experimental data on formaldehyde
concentration during the synthesis
of dimethyl dioxane.

cHs_ ,CHz_ CH2_ OH
H-C-H+ -c- +ll CH,,/ -t Ortoc

cHs- -CH2_ CH2-
-.* Hno * )C- 'o' CHrt \O-CHrl

Which of these reactions can be
described by the equation for bimo-
iecular reactions?

Solution. If a reaction is bimo-
lecuIar, the change in the concentra-
tion of the reagents over time is de-
scribed by equation (3).

Let's rewrite equation (3) in an-
other form:

11
m= [ru10 

+rt' w

This ecluation describes a straight
line in the inverse-concentration-
time c.oordinates. The constant rate
of bimolecular reaction equals the
slope of this line.

[HCI] (mole/liter)

0.1s

0.05

a

[CH2O] (mo1e/Iiter)

0.3

02040
b

Figure 3

Using the concentration values
given in figures 3a and 3b, we plot
the dependencies of the inverse con-
centrations of the initial substances
on time (figures 4a and 4b). Indeed,
in the case of cyclohexene chlorina-
tion we get a straight 1ine. So this
reaction is bimolecular. The corre-
sponding equilibrium constant is

K =O.02liter/mole 
. s.

By contrast, the plot illustrating
the second reaction is far from being
linear. Therefore, this reaction is
complex and cannot be character-
izedby a single rate constant. Spe-
cial studies revealed that the prod-
ucts of this reaction (dimethyl
dioxane and water) interact with
each other and yield the original
substances. In other words, this pro-
cess involves two elementary bimo-
lecular reactions occurring simulta-
neously.

Now we know how the simplest
kind of chemical interaction be-

1/[HC1] (liter/mole)

02040
b

Figure 4

tween two substances proceeds. We
also know how the reaction rate
and the reagent concentrations vary
over time. We can calculate the in-
stantaneous values of the concen-
trations at afly moment if we know
the rate constant and the initiai
concentrations of the reagents.
Moreover, we can distinguish bi-
molecular reactions from other pro-
cesses.

In reality, several elementary re-
actions proceed simultaneously in
most chemical processes, and their
products react with one another.
Analysis of the entire set of such
reactions requires more complex
equations to describe the course of
a real chemical process. Some o{
these equations are very difficult
even for experienced professionals,
who apply the entire arsenal of mod-
em mathematics and computational
techniques. It seems that modern
chemists must be very skillful in
physics and mathematicsl O

0.1

0.4

o.2

1/[CH2O] (liter/mole)

t (min)
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TacklinU tttui$led hoops

Untangle these wire pretzels

by S. Matveyev

ET'S MAKE A CiRCLE OUT OF THIN
smoothly curve it to give it a more comp
shape, and flatten it against a plane (figure
1 ). What we have is a f1at, tangled hoop.

Is it ltossible to disentnngle the wire hoop
to obtcrin the circle ttgcrin without lifting
it frctm the plane!

We assume that the wire has zero
thickness, so that at the points
where one section of the wire
passes above another
(we'11 call them double
points), the upper
section also lies on
the plane. The wire is
very flexible, but not in-

Figure 1

finitely flexible, so that the radius
o{ curvature is not zero-otherwise
the wire breaks. In particular, the
method of straightening loops
shown in figure 2 is prohibited.

l'1
/?,*\

zf / l.*.,

'{vl?/

We knou' that
it's possible to clis-
entangle thr hoop in

space. After all, r,r'e ob-
tained the tangled hoop

from a wrre circle. If we
perform the samc opera-
tions in reverse, u-e'11 get
the original circ1,--. Since we
started from a circle, we
avoided all thc ditircultres in-
volving knots-Li u'e had
started {rom a knotted hoop,
such as the ortc:ltorr'n itt

\?r'%') 4

{*
Frgure 2

v
Figure 3

figure 3, wc would be unable to clisen-
tlngle it into I circ[c even iti \|ilec to
say nothing of the plane. (See, for cr-
ample, O. Viro's article ir-L tl-re )Ia1-1
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Hpe]'imenta [it, t[in[ a lit
Let's begin with the wire hoop

shown in figure 1. If you play around
a bit with a piece of wire (or thread),
you'I1 see that this hoop can be dis-
entangled (see figure 4).

signed a number that remains the
same throughout the process (such
a number is called an invariant).
Then the invariant is determined for
the initial and the desired states of
the object. If different values are ob-
tained, it means that it is not pos-
sible to pass from the initial to the
desired state-after all, that's why
it's called an invariant: it cannot
change during the process!

So let's try to assign a number to
every hoop on the plane, The first
idea that comes to mind is to count
the double points in the hoop. Alas!
this is not an invariant, as you can
see from figure 4. However, examin-
ing this figure, we notice that double
points appear and disappear in pairs.
This leads to the idea that the parity
of the number of double points is an
invariant (in other words, the remain-
der upon division of the number of
double points by two is an invariant).

This is indeed the case, as we will
see later. This fact implies, for ex-
ample, that the hoop in figure 5a
cannot be disentangled (it has seven
double points, while the circle has
no double points-this prevents us
from transforming the hoop into the
circle). The hoop in figure 5d has
four double points; thus its invariant
is zero, the same as for the circle.
Does this mean that it can be disen-
tangled? No, it does not, because we
don't know whether the condition
of zero invariants is sufficient. Thus
the question of whether the hoop in
figure 5d can be disentangled re-
mains open.

*d:Wr\)ll *-t
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Figure 6

The reasoning above must con-
vince you that it makes sense to
search for invariants in this case.
Let's do just that.

The inuat'iant /
Let a tangled hoop be given in the

p1ane. Take an arbitrary point A on
this hoop and choose one of two pos-
sible directions of going around the
hoop. We'll move a point along the
hoop, starting at point A, with unit
speed in this direction. The velocity
vector will turn about A'and its end-
point will move along a circle cen-

'\ * tered at A'. When we complete the

to its initial state; therefore, the to-
tal number of revoiutions of this
vector about A' is an integer. We
assign revolutions made rn the posi-
tive direction (counterclockwise) a
plus sign and revolutions made in
the negative direction (clockwise) a
minus sign.

Look at figure 6. In this figure, the
endpoint of the velocity vector is
shown as a dashed curve and is
shifted from the circle to make it

Figure 4

Now I invite the reader to disen-
tangle hoops a-f in figure 5.

I hope you succeeded with hoops
b, e, and f. But your inability to dis-
entangle hoops a, c, ald d should
convince you that hoops exist that
cannot be disentangled. How can we
prove that aparticular hoop cannot
be disentangled?

To prove that a certain construc-
tion or process is impossible, math-
ematicians often use the foliowing
remarkable method. Every state of
the object under consideration is as-
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A. ) tour around the hoop and return to
/ * point A, the velocity vector returns

Figure 5
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easier to see what's going on. In re-
ality, the red curve is tightly wound
on the circle, and points 1'-6' coin-
cide. A11 in all, the velocity vector
performs -1 revolution: from point
1'to point 2', orre revolution; from
point 2' to point 3' and from 5' to 6' ,

no revolutions; from point 3' to
point 4', one revolution in the nega,
tive direction; and from 4'to 5', one
revolution in the negative direction
as well.

The invariant we promised (we'11

denote it by Y) equals the absolute
value of the total number of revolu-
tions of the velocity vector. It's
clearly independent of the choice of
the starting point A, nor does it de-
pend on the initial direction taken;
indeed, changing the direction
merely changes the sign of the total
number of revolutions. For example,
for the hoop in figure 6, the invari-
ant is 1.

We'1lshow (without giving a rig-
orous proof) that V is actually an
invariant. When the hoop is disen-
tangled, the position of the velocity
vector changes smoothly, without
making any jumps. Therefore, the
number V must also change
smoothly. However, V is an integer
and it can turn into another integer
only by making a jump, which con-
tradicts the criterion of continuity.
Therefore, V remains unchanged
and is indeed an invariant of the dis-
entangling operation.

Now we can tackle the hoop in
figure 5d. For this hoop, V: 3 (check
this on your own!); therefore, it can-
not be disentangled into a circle, for
which V: 1.

If you actually verified that V : 3
for the hoop in figure 5d, you must
have noticed that, in practice, it's
not so easy to calculate the number
of revolutions of the velocity vector.
In fact, it's easy to miscalculate.
However, there's an easier way to
calculate V.

For this purpose we choose a di-
rection in the plane-for example,
the direction of the axis Oy (see fig-
ure 5)-and mark the points of the
hoop where the velocity is parallel
to Oy and in the same direction. We
write the number +1 near a marked

point if the small section of the
hoop containing this point lies to
the left of it; we write the number
-1 near a marked point if the sec-
tion of the hoop containing this
point lies to the right of it. (If the
section containing the marked
point lies on both sides of it, we
don't write any number. This hap-
pens when the vector is traveling
along a loop and suddenly starts
looping in the other direction at the
marked point-it traces a sort of
flattened " 5." artd never completes
the first loop.) Now we can say the
invariant V ecluals the absolute
value of the sum of allthe numbers
written.

For example, in figure 6, we write
+1 atpoints I and2 and-l atpoints
3,4, and 5. Thus V = I for this hoop.
We invite the reader to prove that
this method actually gives the value
of V for any hoop.

***
v=0 v=

Figure 7

In figure 7, for any nonnegative
integer n, a hoop whose invariant V
equals n is shown. We recall that if
a hoop can be disentangled into a

circle, its invariant I/ must be equal
to the invariant of the circle-that
is, to 1.

The inuat'ianlf
The ecluality V : 1 is a necessary

condition for a hoop to be disen-
tangled into a circle. But is this con-
dition also sufficient? At first I
thought it was, but unsuccessful at-
tempts to disentangle my belt, ar-
ranged as shown in figure Bb, con-
vinced me that it wasn't and
simultaneously elicited an impor-
tant observation: when I picked the

t2| 1'rl
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Figure B

belt up off the floor (figure 8a), it
was twisted completely around
twice!

Let's replace the hoop with a band
that lies on the plane such that its
middle line coincides with the hoop
(figure 9a). Disentangling the hoop
in space (for example, returning it to
the initial state in which it was be-
fore placing it on the plane), we ob-
tain a twisted band. We denote the
number of complete twists (where
the "front" is twisted around and
faces the front again) by R. This
number is our secon d invariant, and

b

Figure 9
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if the hoop is to be disentangled into
a circle, this invariant must be zero.
To be more specific, the number of
complete twists is given a plus sign
if the band is twisted as in figure 8a
and a minus sign if it's twisted as in
figure 8c (recall the difference be-
tween a left- and right-threaded
screw).

We'l1prove that the number R is
indeed an invafiant-that is, it
doesn't change when the hoop is dis-
entangled in the p1ane. It's sufficient
to notice that disentangling the
hoop determines a method for disen-
tangling the corresponding band.
But the number of twists of the band
remains unchanged not only when
the band is disentangled in the
plane, but even for any three-dimen-
sional motion.

It can be proved (we won't do it
here) that the invariant R can be
calculated as follows. Choose a di-
rection for going around the hoop.
Then mark every double point with
the number +1 if the lower velocity
vector is directed to the left of the
upper velocity vector; otherwise,
mark this double point with -1. It,s
easy to see that these numbers are
independent of the direction cho-
sen. The invariant R equals the sum
of these numbers. For example, the
hoop in figure 9b has three positive
and four negative double points;
thus, its invariant R is -1. There-
fore, this hoop cannot be disen-
tangled in the plane.

lllecs$$any and sutlident condilions
We've akeady seen that the con-

ditions V: 1 and R = 0 are necessary
for the hoop to be disentangled into
a circle. But are these conditions
sufficient? In other words, is it suf-
ficient to check that V = I and R = 0
to be sure that the hoop can be dis-
entangled into a circle? The answer
is yes.

Fundamental theorem. In order
for a hoop to be disentangled into a
cfucle in the plane, it is necessary
and sufficient that its invariant V be
equal to I and its invariant R be
ze o.

This theorem gives the complete
answer to the question formulated

Cd
Figure i0
at the beginning of this article. The
simple methods described above for
evaluating V and R allow us to
quickly check the necess ary and
sufficient conditions in the theorem.
We invite the reader to apply this
theorem to the hoops depicted in fig-
ure 10.

Prnol ollfie lundamental flteonem
We've already proved that V and

R are invariants; thus the necessity
of the conditions V= I and R : 0 is
aheady proved. To prove suffi-
ciency, we must show that every
hoop forwhich V : I andR = 0 can
be disentangled into a circle in the
plane.

Consider a hoop of this type. We
know thatit can be disentangled in
three-dimensional space. We de-
note by R, the positron of the hoop
at the time f in the process of dis-
entangling it. The moment t will be
ca11ed singular if the hoop krhas a
vertical tangent at one or more of
its points. Assume that there are no
singular moments. Then the hoop
can be disentangled in the piane.
Indeed, assume that the ceiling of
the room where we work with the
hoop is parallel to the plane to
which the hoop belongs. Imagine
that the ceiling starts dropping un-
ti1 it reaches the plane with the
hoop. In the process / eyety hoop ft,
goes to acertainplane hoop K,. The
absence of vertical tangents guaran-
tees that no folds (points with zero
radius of curvature) occur in the

hoops Kr. The family of hoops K,
determines the desired method foi
disentangling the given hoop into a
circle in the plane.

Now consider how the hoop K_
behaves when the moment t : ,o is
singular-that is, the hoop passes
the state Krn with a vertical tangent.
A typical picture of this passage
through the vertical state is shown
in frgure 11. We see that when the
hoop utdergoes the transformatiori
K, ) Kr^ + Kr. in space/ the cor-
responding plane hoop undergoes
the forbidden transformation Kr. -+
Kro - Kr, during which the br'eak
Krn occurs and a ioop appears on the
hoop Kr,.

It can be proved (but not here)
that the process of disentangling any
hoop in space can be performed in
such a way that only a finite num-
ber of singular moments occurs and
all of them are typical-that is, a
single loop appears or disappears at
each of these moments.

Assume that a loop disappeared at
the moment ,0. We cannot destroy it
in the plane; thus we contract it into
ayery small loop and won't change
it in future transformations (we con-
sider it "frozen" or glued in place).

Now assume that a loop has ap-
peared at a singular moment. We
cannot create a loop by transforming
the hoop in the plane, but we can
create two (mutually annihilating)
loops, as shown in figure 12. Thus

Figure
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Figure 12

t1,pe 3(k3)

Figure 14

we create two loops, contract the
extra one into a very smal1 loop, and
"freeze" tt.

Continuing the process of disen-
tangling simultaneously in three-di-
mensional space and in the projec-
tion onto the plane, we transform the
plane hoop into a circle with a finite
number of smali l"frozen"l loops.
These loops can be classified into
four types depending on where the
loop is situated (inside the circle or
outside of it) and in what order its
double point passes (first the upper
and then the lower thread, or vice
versa). Then we can change the order
of the loops by pulling one through
the other, as shown in figure 13.

If k, denotes the number of loops
of type i, then V : | + k, + kr- kz-
koandR =k, -kz*kr-ko. Recall-
ing that V= 1 and R = 0, we obtain
the system of equations

fk, +k,-kr-k+=0,1',
Ik, -k, +ks - k+ =0,

from which it follows that k, = ko
and k, : kr. A pair of loops of types
I and 4 can easily be destroyed, as

ure 13
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shown in figure 12; the same is true
for pair of loops of types 2 andS (fig-
ure 4).It remains to transform our
circle with loops into a real circle.
The theorem is thus proved.

0hslttaltuliltu ltooN tllillt se[-

interser

Now let's change the statement
of the problem by saying we're al-
lowed to create self-intersections
while we're disentangling the hoop.
More precisely, we're allowed to
pull the lower part of the loop
through the upper part near double
points, as shown in figure 14. This
problem statement doesn't seem
cluite natural (indeed, to perform
such a transformation, we must cut
the hoop and glue it back together,
which can wear down even the most
patient experimenter). And yet a {or-
mal mathematical problem investi-
gated by the American mathemati-
cian H, Whitney in the 1930s can be
reduced to this very statement. In
fact, Whitney's problem served as

the starting point for this article.
Since we are now interested in

disentangling hoops in the plane
with s elf -interc ections allowe d, the
reader is invited to prove the follow-
ing statements.

1. The number k, is an invariant
of the operation of disentangling
with self-intersections. (Hint: recall
the method for evaluating V de-
scribed above.)

2. The number R is not an invari-
ant of the operation of disentangling
with self-intersections. (Hint: ex-
periment with a belt, exchanging
the upper and lower parts near one
of the double points.)

3. The remainder R'upon division
of R by 2 is an invariant of the opera-
tion of disentangling with self-inter-
sections. (Hint: every operation of
self-intersection replaces the num-
ber + 1 marking the double point
wlth -r I .l

4. The number R'is an invariant
of the operation of disentangling
(without self-intersectionsl) the
hoop in the p1ane.

To make {urther progress, we'I1
need the notion ol a simple loop:

Figure 15

this is a portion of the hoop that be-
gins at a double point, ends at the
same double point, and has no self-
intersections (though it may inter-
sect other portions of the hoop, as

shown in figure 15). Now try to
prove the following series of propo-
sitions.

5. Every plane hoop has a simple
loop,

6. Every simple loop can be con-
tracted(with self-intersections! ) into
a smallloop without affecting other
parts of the hoop.

7. Any hoop can be transformed
(with self-intersections) into a fig-
ure eight, a circle, or a circle with a

finite number of small loops inside
it.

B. Any hoop can be transformed
(with self-intersections) into any
other hoop if we first add to one of
these hoops several (how many?)
loops.

9. (Whitney's theorem) A hoop
with invariant V, can be trans-
formed into another hoop with in-
variant VrIf. and only if V, = Vr.

In conclusion/ we present three
more problems related to the initial
problem statement (concerning the
process of disentangling without
self-intersections).

10. For arrypair ofintegers mand
n with an odd sum (m > 0), construct
a hoop with invariants V = m and R
: n. Why don't any hoops exist with
invariants V: 1 and R : 1?

I 1. Formulate and prove an ana-
logue of Whitney's theorem for dis-
entangling hoops without self-inter-
sections.

12. Prove that any hoop on the
sphere can be transformed (without
self-intersections) into either a circle
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Plrysics

P306
Model behavior. A working 1:10

scale model of a helicopter is pow-
ered by 3O-watt engine. What would
be the minimum power needed to
lift a real helicopter built from the
same materials?

P307
Flow factors. Gas leaks from a

balloon through a small ho1e. How
much will this flow change if the
temperature of the gas is increased
by a factor of four and the pressure
by afactor of eight?

PsOB
Spark generator. The discharge

gap of a spark generator (figure 1) is
set to a voltage V, and a resistor R is
chosen to elicit n discharges per sec-
ond. Find the mean power dissipated
by the resistor if the capacitor is
completely discharged during a
spark. (P. Zubkov)

X

HOW DO YOU
FIGURE?

ChallErUB$

P309
Generating heat. An inductance

coil has many wlndings of a wire
with a high resistivity. The ends of
the coil are connected. A strong per-
manent magnet is placed near the
coil. The magnet is quicldy removed
so that it generates an electric cur-
rent in the circuit. In the first 100
ms, 0.01 | of heat is released; in the
next 100 ms, an additional0.006 | of
heat is released. How much heat
will be released in the circuit over a
long period?

P31 0
Shadow on the waLL. On a bright

sunny day, when the Sun is high
over the horizon, look at the
shadow cast by the clean edge of a
piece of cardboard on a smcioth
screen (say, a white waII). Now
place your finger near the cardboard
as shown in figure 2. When you
bring your finger closer to the card-
board, a second shadow will emerge
from the dark region of the screen
in addition to that produced by your
finger on the bright part of the
screen. Explain this result.

(G. Solovyanyuk)

IUlaI[

M306
Sit and ponder.Infinitely many

seats are lined up along a racecourse
and numbered 1,2, 3, 4, .... An in-
competent cashier sold tickets for
the first m places, but sold more
than one ticket for some seats, and
no tickets for others. Altogether, she
soldn tickets, where n> m.

The spectators enter one by one.
Each attempts to sit in the seat for
which he or she holds a ticket. If no
one is in the seat, they occupy it. If
that seat is already occupied, the
spectator says "Oh!" and moves to
the seat with the next higher num-
ber. If this seat is unoccupied, the
spectator takes it. Otherwise, the
person again says ttOhttt and moves
to the seat with the next higher
number. This continues until the
spectator finds an unoccupied seat.

Prove that the number of "Oh!"s
uttered is independent of the order
in which the spectators enter.

(A. Shen and N. Vasilyev)

M307
Prove your point. Two intersect-

ing circles are given in the p1ane. A
is one of the points where the circles
intersect. In each circle a diameter is
drawn that is parallel to the tangent
to the other circle at point A, and
these diameters do not intersect.
Prove that the four endpoints of
these diameters 1ie on the same
circle. (S. Berlov)

M308
Reasonable roots! It is known

that f(x), g(x), and h(xl are quadratic
trinomials. Can the equation
fkhkll = 0 have the roots | , 2, 3, 4,
5, 5, 7, and B? (S. Tokarev)

M309
Draw a line. Three potnts A, B,

and C are given in the plane. Draw
a line through point C such that the
product of the distances from points
A andB to this line is greatest. Does
such a line always exist?

(N. Vasilyev)

CONTINUED ON PAGE 24Figure 2
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laser poinlor

Shedding light on this remarkable little device

by S. Obukhov

I T'S ABOUT THE SIZE OF A
! ballpoint pen, or even smaller (it's
I sometimes sold as a key chain
I gadget), and it's the source oi inex-
plicable delight. I know some very
respectable people who bought one
the minute they saw it and cannot
stop playing with this marvelous
little thing-a laser pointer.

Why is it so amazing? Let's back
up and look at its venerable ances-
tor, the flashlight.

Everybody knows that a flash-
light can iliuminate objects at a dis-
tance of 5-20 meters. The resulting
luminosity depends mainly on how
tightly the ilashiight is focused. In
an ideally focused flashlight, the ra-
diant tungsten filament in the in-
candescent bulb must be located at
the focus of the parabolic reflector.
To adjust the flashlight, we move
the reflector in both directions or
even remove it and slightly rotate
the bulb in the holder before align-
ing the reflector again, trying to find
the best mutual disposition of the
bulb and the reflector.

The size of the filament is a few
millimeters. Therefore, if one part of
the filament is placed at the focus,
other parts of the filament will lie
outside the focus. This is why a

flashlight beam always diverges. The

angle of divergence of a flashlight
beam (in radians) is approximately
equal to the ratio of the filament size
to the diameter of the reflector (sev-

eral centimeters): a= 4 mml4 cm:
0.1 rad, or about 5 degrees.

In everyday life, we rarely need to
measure angles with the naked eye,

except maybe such angles as 90o,
45", and the like. How can we visu-
alize an angle of 5o? Amateur as-

tronomers know how-they use de-
vices that are always "athafld," so

to speak: their own arms. Stretch out
your arm in front of you and spread
your forefinger and middle finger to
form the "Y for victory" sign. Now
close one eye and look at your fin-
gers with your other eye. The angle
formed by your two fingers is about
5o, or Lll}radtan.

I often use this method to mea-
sure the angle between the Sun and
the horizon in order to determine
the time left before sunset. By the
way, the angular size of the Sun is
about 0.5o, or 30', which is the same
as that of the Moon. The angle
formed by the fingernail of your in-
dex finger at the end of your out-
stretched arm is approximately
three times greatff (about 1.5').

Some flashlights have large re-
flectors (10-12 cm). The divergence

angle of the beam for such flash-
lights is correspondingly smaller (by

afactor of 3). Also, very small high-
power bulbs are available that focus
the beam even better.

At what distance can one see the
beam of a flashlight? The power con-
sumption of a conventional flash-
light is about 1 W. Only 1/20 of this
energy is radiated in the form of vis-
ible light; most of the energy is con-
verted to heat and thermal radiation.
A flashlight radiates power P within
a solid angle II = TEa2. At a distance
R the radiated power incident on a
unit surface area is Pl,f,J-Rz).In turn,
the power P of the light entering the
eye from a distance R is PS"""/(QR2),
where S"," is the areaof the fupil. In
darknes6, the pupil of the human
eye has a diameter of about 7 mm,
so S"," = 0.5 cm2. If the Power o{ the
incid'ent light is greater than a cer-
tain threshold value p-rn/ we can see

the light. The minimal threshold
power p-1, of the human eye can be
as 1ow as 10-18 W, which corre- .u

sponds to several photons striking E
the retina per second. q

This remarkable sensitivity is f;
possible only after the eye has had $
time to adiust to the darkness. If we u=

could conduct an optical experirnent a
in compiete darkness without an t
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atmosphere/ we might perceive the
light of an flashlight from a distance
of ten thousand kilometers. In real-
ity, the threshold of the human eye
is many orders of magnitude higher,
primarily because of the presence of
other bright objects in the field of
vision-streetlights, houses, stars,
the Moon, and so on. In this article,'
when we analyze optical experi-
ments performed in the open air on
a moonless night, we'll use the
value p-rr, = 10-13 W. Plugging nu-
merical values into the equation

yieldsR=27km.
At what maximum distance can

we illuminate an object with a flash-
light? Alas, this distance is only few
dozen meters. When we illuminate
an object (say, a cat), we want to see

the light reflected from the object.
The total power of the light incident
on an object situated at a distance R
is given by the equation PSllaRzl,
where S is the area of the object's
surface (for a cat,S" = 200 cm2). We'lI
assume the cat is white (and not gray
orblack), which means that most of
the incident light is reflected (as dif-
fuse light), not absorbed. If the re-
flected light is scattered in all direc-
tions, only a negligible portion of it
will enter the observer's eye. This
fraction is equal to the ratio of
pupil's area to ll4 the area of a

sphere of radius R-that is, S","/
(nR2). The faetor 1/4 corresponds'to
the case where the reflecting surface
is perpendicular both to the direc-
tion of the beam and to the observer.
We also take into account that the
total light reflected from the surface
is proportional to the solid angle at
which this surface is viewed by the
observer. The power of the light en-
tering the eye is PS"S",./(noRa).
Ecluating this to ppi1, we g€t

o = oEt''= = 45 m. lz)
X P-i'''nf)

Therefore, a cat carr see the beam
of a flashlight from dozens of kilo-
meters away, but we can illuminate

the cat from only a distance of 45 m.
(A similar situation arises with
speed traps, where a police officer
uses a radar gun to catch speeders. If
the car is supplied with a radar de-
tector tuned to the proper frequency,
the driver will know about the trap
long before the car becomes "vis-
ible" to the radar gun.) Equation (2)

shows that if you want to double the
detection radius for watching a catl
you must increase the power of your
flashlight by afactor ot2a :16. Cor-
respondingiy, the cat will detect
your flashlight from four times far-
ther away.

lasel' ruiilen
An inexpensive laser pointer can

project a spot o{ light on objects situ-
ated in the dark hundreds of meters
away. The technical description on
the package says that the pointer's
range maybe 200, 500, 800, or even
1,200 m. Keep in mind that the
power consumption of a laser
pointer is negligible. In the United
States one can purchase 5-mW laser
pointers, while in Europe the power
is restricted to 1 mW. Usually, the
specified parameter is the power
consumption, while the radiation
power is about 50% of this value.

The ability of such a low-power
device to put a bright red dot on a1-

most every building on a poorly lit
street is trtly arnazing. Clearly this
capacity is related to the extraordi-
narily small divergence of the laser
beam. Theoretically, the divergence
angle o is determined only by the
diameter of the emerging beam D
and the wavelength 1.:

u: ),1D. (3)

For a laser pointer that throws a red
beam (with a wavelength of 600-700
nm), one can use the equation

o (millirad) = l/D {mitlimeter). (4)

It's worth noting that the same
equation determines the angular
resolution of the human eye, but in
that case D is the diameter of the
pupil. Since both the diameter of
the laser beam and the size of the
pupil are almost the same and equal
to several millimeters, the beam's

divergence angle is approximately
eclual to the resolution angle of the
eye. In actuality the laser beam's di-
vergence is somewhat wider: about
1 cm for every 10 m of its path.
Therefore, at a distance of 1 km the
beam's diameter willbe I m. Nev-
ertheless, to the human eye the
spot of light looks like a point at
any distance, with an angular size
equal to that of |upiter in the night
sky.

Now we can explain why equa-
tion (2) can't be used for a laser
beam. When we deduced it, we as-

sumed that the diameter of the
flashlight beam projected at the dis-
tant object is far greater than the size
of the object. Thus the object is il1u-
minated by only a small fraction of
the radiated light. If, however, we
use a laser pointer to illuminate a

distant object whose angular size is
greater than the resolution of the
human eye, all the light from the
laser beam will strike the object and
be scattered. Therefore, the factor
S./(OR2) should be replaced by 1; so

we get

PS"u.
n 1___)r)_-. (5)
' nR2

This equation can be illustrated as

follows. Imagine a tiny bulb of
power P: 0.003 W "attached" to the
far end of the laser beam. Whatever
object we direct the laser pointer's
beam at, the bulb " attached" to the
end of the beam shows up on the
same object and shines in our direc-
tion. If we see the light from this
bulb, we'll consider this light the
reflected beam from our laser
pointer. The equation for the largest
distance at which the reflected beam
will be visible is the same as the
equation for the maximum distance
at which one can see the bulb "at-
tached" to the end of the beam:

R=

Plugging numerical values into this
equation, we get R : 700 rn.

Note that this equatron cLffers
from equation i2l: to rlouble the

(1)

(6)

nOr mllt --

pS"r"

ftPn i.
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rarlget it's sufficient to increase the
power by a factor of 4 (rather than
16).

Beam lumindsity
As you know, the power of com-

mercially available lasers is strictly
limited. So why do some seem
brighter than others? Here another
{.actor comes into piay: wavelength.
The sensitivity of our eyes is
strongly dependent on the wave-
length, which in commercial laser
pointers may be 633, 650, 570, or
680 nm. The beam of a laser pointer
with a wavelength of 650 nm seems
to be five to ten times brighter than
a beam with a wavelength of 670-
580 nm, while a 633-nm beam looks
twice as bright as a 650-nm beam.
The sensitivity of the human eye is
greatest for green light with a wave-
length of 555 nm, so lasers operating
at this wavelength would seem
brightest. Indeed, the brightest laser
pointer, which has recently come on
the market, radiates a green beam
with a wavelength of 532 nm. Its
luminosity is about eight times that
of a 650-nm laser pointer.

The dependence of apparent
brightness on wavelength should be
taken into account in estimating the
distance at which the laser beam is
visible. To do so, we assume that the
sensitivity p,oi. changes with the
wavelength of the radiated light. Ad-
vertisements claiming that a certain
laser pointer generates a beam vis-
ible at a distance of X hundred
meters lX :2, 5, B, 12, etc.) should
be taken with a grain o{ sa1t, to say
the 1east, since p-,, strongly de-
pends on the amount of background
light from stars/ the Moon, street-
lights, and so on.

In addition, the brightness of the
laser spot strongly depends on the
reflective properties of the illumi-
nated surface. We've assumed that
the illuminated surface scatters the
reflected light in all directions. What
about the special reflective materi-
als used for highway signs, lane
markers, and safety vests for road
workers? A surface coated with such
a material reflects light in the direc-
tion almost entirely opposite that of

the incident beam (the angle be-
tween the incident and the reflected
beams doesn't exceed 3"). In this
case, the brightness of the reflected
light is greater than the brightness of
the light refiected from an ordinary
Iight-scattering surface by afactor of
about nlfua2) 

= 400. If a 3-mW beam
is reflected from such a special sur-
face, an observer will perceive the
same amount of light as if a well-
focused flashlight with angular di-
vergence of 3o were attached to the
end of the laser beam and directed
back to the observer.

Unfortunately, at large distances
the diameter of the beam may ex-
ceed the size of the surface coated
with the reflective material. If the
diameter of the beam is 1 m at a dis-
tance of 1 km and the size of the re-
flective target (say, a street sign) is
0.5 m, only a quarter of the beam's
power is reflected back to the ob-
server. To estimate the distance at
which the reflected light will be
seen/ we can use a equation that
looks like equation (2) deduced for a
similar estimate with a flashlight:

lPsJ"
fl = 41 ' "c"eye (7)

! P-inicQQ'

In this equation we need to use cr :
dlL:0.0005 for the solid angle II =
no,2, introduce an additional factor
A' : ll40O in the denominator de-
scribing the focus of the reflected
beam, and insert the size of the
street sign-approximat ely 0.2 m2-
in place of S.. As a result, we get R
- 3.5 km.

lasel' poinEl's and niglrtuision
Interesting results can be ob-

tained by observing reflected light at
night with an infrared viewer. To do
this, attach a laser pointer with a
rubber band to the body of the
viewer such that their optical axes
are approximately paral1el.

An infrared viewer is a combina-
tion of binoculars and a cathode-ray
tube, which amplifies the intensity
of the incident 1ight.

By themselves, binoculars sig-
nificantly increase the viewing
range in 1ow light, because all the

light collected by the objective
lenses of the binoculars is trans-
ferred to the obseler's eyes. For ex-
ample, if we use binoculars whose
objectives have a diameter of 50
mm/ the collecting area will be in-
creasedby afactorof (501712 =50 (the
pupil of our eye has a diameter of 7
mm).

Binoculars with large objectives
are most suitable for night viewing,
but the magnification should be
small. For example, 7x binoculars
(50 x 7l are better for this purpose
than 12x binoculars (50 x 12). The
amount of light collected by both
binoculars is equal, but the image
will shake more in 12x binoculars
than in 7x binoculars.

Note that the first figure in the
description of the tlpe of binocular
gives the entrance aperture/ while
the second figure gives the magnifi-
cation. The value of the exit aper-
ture can be determined as the ratio
of the entrance diameter of the bin-
oculars and the magnification. For
example, 7x (50 x 7)binoculars have
an exit aperture o{ 50 mml7 = 7.1
mm. This value is approximately
equal to the diameter of the pupil of
the human eye adapted to pitch
darkness. In 7x (35 x 7) binoculars
the diameter of the exit aperture is
35 mm f7 :5 mrn, so these binocu-
lars yield iess light. In broad daylight
the difference between these bin-
oculars is negiigible, because under
these conditions the diameter of the
pupil is oniy 2-3 mm, which is
smaller than the exit apertures of
both binoculars.

If at night we can see an object
with the naked eye from a maxi-
mum distance Z, then with 50 x 7
binoculars we could see objects at a
distance of 72. Similarly, if all the
stars in the Universe were equally
bright and all the visible stars were
Z light years away, we could see
stars at a distance o{72 through the
50 x 7 binoculars. Thus the volume
of the Universe open to our view
would be increased by a factor of 73
: 343. The number of visibie stars
will increase by the sar:re factor! In
the real LJniverse, stars are not dis-
tributed homogeneously and they
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are not equally bright, but our esti-
mate of the increase in the number
of visible stars achieved by using the
binoculars rernains valid.

The cathode-ray tube of the infra-
red viewer magnifies light by a fac-
tor of several thousand (or even tens
of thousands). The maximum sensi-
tivity of this tube occurs in the red'
and near-infrared part of the spec-
trum, which is cluite suitable for ob-
serving the red light of a laser
pointer. A11 laser pointers (from the
cheapest to the most expensive) that
generate red light of various shades
are virtually identical in brightness.
An observer equipped with an infra-
red viewer can detect light emitted
by a point source if only a few pho-
tons enter the objective of the
viewer per second. Note that in this
case complete adaptation to dark-
ness isn't necessary. The actual sen-
sitivity threshold could be lowered
further still (by a iactor of 10 or
more), because the collecting surface
of the viewer is much larger than the
pupil o{ our eye. Using such a viewer,
I was abie to see the iight from a la-
ser pointer reflected from low-hang-
ing clouds.

Can we aim the beam of a laser
pointer directly at avery distant ob-
ject-say, an orbiting satellite or a

distant ship on the open sea at
night? These objects are so far away
that the light reflected by them can-
not reach an observer. Nevertheless,
the problem can be solved with the
help of an infrared viewer. The sen-
sitivity of this wonderful device is so

high, it car,trace the trajectory of a
laser beam traveling through the air.
Maybe it's not so amazing after alL.

No doubt you've seen the beams
from searchlights in the night sky.
Sometimes we can see the beam of
a flashlight glimmering in the mist.
What it means is that some of the
beam's energy is dissipated by fluc-
tuations of the air density or by mi-
croscopic particles floating in the
a]l.

The length of the segment of a
beam's trajectory where it can be
observed from the side is necessar-
ily limited-we see the beam only
where it is sufficiently concentrated.

Figure 1

At large distances, the intensity of
the beam decreases due to its diver-
gence/ so that the beam seems to
disappear. The angular divergence of
a laser beam is approximately equal
to the angular resolution of the hu-
man eye/ so at large distances a la-
serbeam is seen as avery thin thread
of light. And this thread is visible at
any distance from the observer!
Even if we don't see the light re-
flected from the distant ship, we'Il
see the beam {rom our laser pointer
burrowing through the air and strik-
ing the ship (or even the satellite).

To understand why the bright-
ness of the laser beam's trajectory
doesn't depend on distance, let's
examine figure 1. It shows two seg-

ments of the beam's path Axl and
Axr, whose lengths are chosen in
such a way that they have the same
angular size As as viewed by an ob-
server. The distances from these seg-

ments to the observer are approxi-
mated by the equations xl = l/01 and
xr= lf a, which yield Ax, = lLuf urz
and Axr: lLuf arz, or Ax, = laxr2f 1

and Ax, : taxr2ll. We'll assume that
the power of the diffused iight per
unit length of the beam's path
doesn't depend on the distance x. In
this case, the power of the light scat-
tered in segments I and 2 (Ap, and
Lpr, respectively) are proportional to
the lengths of the segmentsi or/
equivalently/ to the square of the
distances to them: Ap, - Acxxr2 and
Lpr- Laxrz. However, the power of
the iight traveling to the observer
from segments I and 2 is inversely
proportional to the square of the dis-

tances to these segments. Therefore,
the power of the light reaching the
observer from beam segments I and
2, both having the same angular
size, does not depend on the distance
to these fragments. This means that
the beam's trajeetory is uniformly
brightl

However, at distances of about
ten kilometers our approximations
are no longer valid. This is due to the
fact that at such distances the
beam's intensity drops off sharply
because of scattering in the atmo-
sphere. Thus the beam becomes
dim. In addition, if the beam is di-
rected vertically, the decrease in air
density at high altitudes leads to a
decrease in the power of the diffused
light, which also contributes to a

decrease in the brightness of the
beam's trajectory. Assuming the
length o{ the visible trajectory to be
10 km, we can estimate that the
angular error of the laser pointer is
10-a rad for an observer located to
one side of the laser pointer at a dis-
tance of 1 m. This value is smailer
than the angular divergence of the
laser beam.

Can astronauts orbiting the Earth
see the light from a laser pointer?
Apparently it's possible. An esti-
mate obtained by using equation (7)

yields a visible range of about 2,000
km. Spacecraft usually orbit the
Earth at much lower altitudes (sev-

eral hundred kilometers). Beam scat-
tering due to fluctuations in air den-
sity is significant only in the lower
layers of the atmosphere, so this
phenomenon won't have much af-
fect on our estimate.

So here's a cluestion for you: if we
can see a satellite in the night sky,
does that mean the light from our
Iaser pointer can be seen, from the
satellite? To answer this question,
let's compare the intensity of the
light received by an observer on
Earth and received by an astronaut
in an orbiting spacecraft. If we see

the spacecraft, it means that the
sunlight reflected by the spacecraft
and scattered in all directions
reaches our eyes in sufficient quan-
tities. Assume the size of the space-
craft to be 3 m. The intensity of sun-
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light at the surface of the spacecraft
is 1-2 m(mm2. Our low-power la-
ser pointer generates the same
amount of light as reflected by I
mm2 surface of the satellite-that is,
lllSOOl2 - 10-s of its radiation. How-
ever/ this light is concentrated
within a solid angle that is smaller
by a factot of 106 than the angular
divergence of the light reflected by
the spacecraft. So, if we can see the
spacecraft, the astronauts can see
the light from our laser pointer.

"ll0 ltotl0o[ dhectly intn t]le lasel'

l8altl"

You see this warning in practi-
cally any lab where lasers are used.
Every scientist knows that laser ra-
diation can cause irreversible dam-
age to the eye. To appreciate the
dangers of a laser pointer's beam,
let's evaluate its intensity, which is
the power incident on I mm2 of sur-
face illuminated by the laser. If we
assume the diameter of the laser
beam is 3 mm and its power is 3
mW, we get an intensity ILp : 0.3
mW/mm2. To compare thi; value
with something familiar, let's recall
that the intensity of solar radiation
is about 1 kW per square meter of
the Earth's surface:1, : 1 mW/mm2.
So, it's no more dangerous to look at
the spot made by a laser pointer than
it is to watch a sunbeam playing on
the wall. Perhaps this was why the
corresponding upper limit was set
for the power of lasers used by ordi-
nary consumers.

Remember, though, laser point-
ers are meant f or pointing at
things-just as the old wooden
pointers were. They're not meant to
be pointed at people. A laser pointer
should never be aimed at a person/s
eyes. |ust as one must be careful not
to poke someone in the eye with a
wooden pointer, negligence in using
a laser pointer can lead to a severe
eye injury. This is because the lens
in our eye is like a cameralens with
a variable focal length; it forms an
image on the retina like a camera
forms an image on film. If a pencil
of light entering the eye is strictly
parallel and the lens is focused at

"infinity," all of the incident light
wi11be focused and directed by the
lens to a single spot on the retina.
This spot will be very small (about
the wavelength of the incident
light, or 1 micron). If, however, the
lens is focused at that moment on
an object I m from the eye, the
beam will not be focused sharply on
the retina-the size of the blurred
spot on the retina will be about 30
microns.

Let's compare the intensities of
the light landing on the retina in
both cases. In the case of precise fo-
cusing, 1, = 3 kflmm2, while for the
blurred spot, 1:3 W/mm2. It's also
instructive to compare these values
with the intensity of the light pro-
jected on the retina when one looks
directly at the Sun. The angular size
of the Sun is about 1/i00 rad, and the
focal length of the lens is about 1

mm. Therefore, the diameter of the
Sun's image on the retina will be
about 0.1 mm. Assuming that ali the
sunlight entering the pupil (diam-
eter'. 2 mm) is concentrated in a
circle with a diameter of 0.1 mm, we
get the intensity of the sunlight land-
ing on the retina: Is = 0.4 W/mm2.

These figures convincingly show
that one should not look directly
into even a low-power laser, bedause
the resulting intensity of the light
striking the retina may be 10a times
higher than the maximal intensity
possible under natural conditions by
looking directly at the Sun. On the
other hand, if the laser beam
"brushes across" eyes focused on
some other object (not the laser),
only temporary blindness may re-
sult without irreparable damage to
the eyes. There's no reason to probe
the boundary between these two
cases. It's much better to heed the
warnings and never aim a laser
pointer at people.

In the nineties, when laser point-
ers were very expensive, they were
mostly used to indicate targets in
shooting galieries. It's not far-
fetched to think that some people
might react to a red spot on their
chest by puiling a gun and firing at
the person with the laser pointer
(the author lives in Florida, where

many people have permission to
carry a concealed handgun). Many
states in the U.S. have enacted leg-
islation that makes it illegal to mis-
use laser pointers. For example, in
California, aiming a laser pointer at
people "in a menacing manner" is
punishable by 30 days in jail.

$omething to fiiltfi illourt
What's brighter: a 5-mW laser

pointer, the Sun, or a 1,000-W elec:
tric bulb? By definition, brightness is
the light radiated in a unit solid
angle from a unit surface of the ra-
diating body. Take a sheet of paper
and illuminate it alternately with a
laser pointer, a sunbeam, and the
light from a powerful bulb placed l0
cm away and equipped with a reflec-
tor. Calculate the power landing on
a unit area of illuminated surface
and compare the data obtained.
Now imagine a small lens instead of
the paper. Estimate the ratio of the
brightness at the focal plane of the
lens in all three cases and show that
you obtained the brightness ratio for
the three sources of light. Do you
know now why a laser's brightness
is tens of thousands of times that of
the Sun? O
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Gaspard Monge-the father of descriptive geometry

by V Lishevsky

ANY SCIENTISTS HAVE
had remarkable fates, but
few of them lived lives as in-
teresting and full of adven-

ture as Gaspard Monge. He was a
talented scientist (mathematician,
engineer, chemist, and metallur-
gist), but he was also a prominent
figure in the French Revolution. For
example, he signed the death sen-
tence of Louis XVI. Born into a poor
family, Monge became a revolu-
tionary and a |acobin, struggling
against the privileges of nobility;
yet he became a count and a per-
sonal friend of the emperor Napo-
leon. After the monarchy was re-
stored he was expelled from the
French Academy of Sciences and
died in exile.

Gaspard Monge was born on
May 10, 1746, in the small town of
Beaune in eastern France. His father
was a semiliterate itinerant ped-
dler, but he tried to give his chil-
dren the best education that was
available at the time for members
of the Third Estate (lay citizens
who did not own land). Two of
Gaspard's brothers became profes-
sors, just as he did: the youngest,

|ean, became a professor of math-
ematics, hydrography, and naviga-
tion; and the middle brother, Louis,

was a pro{essor of mathematics and
astronomy. It's interesting that
Louis Monge participated in the La
Perouse expedition (an early scien-
tific exploration of the Pacific
Ocean), and was one of the three
men who remained alive.

Gaspard started school at the age

of six and soon became a top stu-
dent. After leaving school tn 1762,
he entered Holy Trinity College at
Lyons, where he taught physics
while still a student. Gaspard spent
the summer of 1754 at home, as he
usually did, and there chance inter-
vened in his life in a big way.

On his days off from school,
Gaspard and his friends made a map
of his native town. This map caught
the eye of a military engineer who
headed the military schooi at
M6zidres. He invited Gaspard to at-
tend this school, and Monge was
admitted to the drafting depart-
ment. The other department
trained military engineers, but only
children {rom noble families could
attend.

Monge became interested in a
probiem that was very important
in military engineering: the place-
ment of fortifications so as to
make them less vulnerable to guns
located at a ceftain point. Monge

solved this problem very quickly,
but the professors at first refused to
consider his solution, supposing
that a student couldn't perform all
the complex calculations that
were involved. When at last a pro-
fessor agreed to look at Monge's so-
lution, he was amazed by its sim-
plicity and novel approach. The
method was considered so impor-
tant that it was made a military se-

cret. This is why Monge's method-
Iater called descriptive geome-
try-remained largely unknown for
so long.

DesmiRliue [Eolnelry
The theory of
projection and
elements of de-
scriptive geom-
etry were known
beforq Monge.
His achievement

was to create a new fleld of scicnce
frorn disjorntcd {acts, individual so-

lutions, and (not always correct)
methods of dcpicting three-climen-
sional objects. In this sense/ Mongc
can bc consiclered the founcler oi de-

scriptive geometry, r,r''hich he de-
finecl as " tt ntetltctd ol r7e -scnbrng
lltrt'c-dirttcnrlr,llil/,,1''.... r')./1.cI
httving ortlv tst-ct drrtt.',t: st,:ri:-;. "
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As with many great ideas,
Monge's idea was simple. Geomet-
ric objects consist of points. So to
depict a spatial object, we must find
a method for depicting points in
space. Consider a point in space, and
draw a perpendicular from it onto a
horizontal p1ane. We obtain a projec-
tion of the point. However, al1'
points lying on this perpendicular
have the same projection. To distin-
guish among those points, we intro-
duce a vertical plane. Then the two
proiections (onto the horizontal and
the vertical planes) unambiguously
determine the position of the point
in space (figure 1).

Figure 1

Thus, Monge reasoned, if we de-
pict the orthogonal projections of a
point onto two planes, the position
is determined unambiguously.

Monge went further. To depict
both projections on the same piece
of paper, he suggested rotating the
vertical plane about the line of its in-
tersection with the horizontal plane.
Then all the constructions could be
carried out on the same complicated
drawing. Using this sort of drawing,
it's possible to reconstruct a three-
dimensional object, determine the
distance between its points, and so

on (figure 2).

Figure 2

The descriptive geometry in-
ventedby Monge underwent certain
changes in the course of its develop-
ment; however, its foundations re-
mained more or less the same. The

Ieauhen and sdentist

Russian geometrician B. N. Delone
wrote: "fust as elementaty geom-
efty is now presented almost as it
was practiced by Euclid and ana-
lytic geometry as it was presented
by Descaftes, descriptive geometry
is now seen in a form that is very
close to that proposed by Monge."
His book Descriptive Geometry
wasn't published untll 1799, when
the underlying ideas ceased to be a
military secret.

At the age of 23
Monge became a

professor at the
military school
at M6zidres. In
1770 he was ap-
pointed to a chair

inphysics, andsoon afterto achair
in mathematics as well. While
teaching, Monge conducted re-
search in various fields; however,
he didn't publish anything on de-
scriptive geometry, since it was
still a secret.

At this time his mathematical
writings appeared in print for the
first time-specifically, his work on
the theory of the development of
surfaces, the calculus of variation,
and the integration of certain func-
tions. Monge presented four "mem-
oirs" to the Academy of Sciences, on
the calculus of variation, infinitesi-
mal geometry, partial differential
equations, and combinatorics. As a
result, on April B, 1772, Monge was
elected as a corresponding member
of the Paris Academy at the tender
age of twenty-five.

Monge devoted much of his time
to teaching. He delivered lectures in
theoretical and experimental phys-
ics, chemistry, mathematics, stone
cutting, and the theory of perspec-
tive and shadows.

Monge was given to broad ges-
tures while lecturing. In his old age,

when it became fifficult for him to
describe geometric surfaces with his
arms, he stopped delivering lectures
altogether, remarking that he had
"lost his gesture."

Students were fond of the young
professor. Monge went on excur-

sions with his students to work-
shops and factories, strolled in the
outskirts of M6zidres, and regaled
them with many interesting and in-
structive stories. One of his students
later recalled that sometimes Monge
waded across a wide creek to get to
some factory, not wanting to spend
time looking for a bridge, and not
interrupting his stream of words.
His students followed him (literaliy
and figuratively) without paying any
attention to the obstacles strewn in
their path-such was the powerful
spell Monge cast over these young
minds.

In 1777 Monge married a young
widow, Marie Catherine Horbou.
She was a calm and kind wornarr;
they lived a happy life together and
had three daughters.

Madame Horbou inherited a met-
allurgical workshop from her first
husband. Monge became interested
in metal processing and particularly
in chemistry, as a result of which he
organized a chemical Iaboratory at
the M6zidres school.

As evidence of his successes in
chemistry, consider this: earlier
than Lavoisier, Monge proved that
water consists of hydrogen and oxy-
gen. He also synthesized water from
these gases. (Lavoisier himself ac-
knowledged Monge's priority in this
matter.)

However, mathematics re-
mained the primary field of interest
for Monge. He developed various
practical applications of descriptive
geometry, studied pafiral differen-
tial equations, and investigated
some aspects of differential geom-
etry.

Monge also participated in the
multifaceted activity of the Acad-
emy of Sciences. He took part in
meetings, worked on various com-
mittees, and offered reviews of in-
ventions and scientific papers. At
the same time, Monge continued
teaching. In 1783, he was appointed
examiner of the naval and artillery
guards. Reviewing the test results,
Monge found that the cadets had a
poor grasp of theoretical mechanics.
So he wrote a textbook on statics (in
178B).
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Heuolutionat'y

In 1789, revolu-
tion burst into
flames in France.
On |u1y 14, Pari-
sians stormed
the Bastille. Af-
ter Paris, the

provinces rose in rebellion. New
power structures were organized, as
well as new armed forces, cal1ed the
National Guard. On August 25, the
National Constituent Assembly
adopted the Declaration of the
Rights of Man and Citizen.

The great French scientist Louis
Pasteur said that science has no fa-
therland, but every scientist does.
These words certainly apply to
Gaspard Monge. He couldn't ignore
events-he joined the Patriotic Soci-
ety, then the People's Society, and
finally, the |acobin C1ub.

The surrounding countries
formed an alliance against revolu-
tionary France. War broke out, and
the National Constituent Assem-
bly declared that "the fatherland
was in danger." The revolution en-
tered a new stage on August 10,
1792, when the king was dethroned
and power passed to a "Provisional
Executive Council," consisting of
ministers elected by the Legislative
Assembly. Gaspard Monge was ap-
pointed minister of the Navy and
the colonies.

At its first meeting on September
2I, anewly elected "Convention"
proclaimed the abolition of the
monarchy and the establishment of
the republic. The king was tried and
sentenced to death. Monge, who
was the acting chairman of the
Council at that time (the ministers
occupied this post in rotation),
signed the sentence.

The French Republicwas in a dif-
ficult state. Weapons and food were
scarce. Poorly trained, badly armed,
hungry soldiers fought against supe-
rior enemy forces. On behalf of the
revolutionary government, Monge
organized the production of gun-
powder, guns, and sabers. He found
a stock of saltpeter, which was nec-
essary to produce powder. Under his

management, iron works began to
produce guns {in Paris, as many as
1,000 guns were produced daily).
Monge organized foundries to cast
gun barrels. He helped train workers
and provided food for them, though
he was half-starved himself. When
his wife offered him a piece of
cheese to go with his usual piece of
bread, he refused.

As a result of the counterrevolu-
tionary coup on the 9th of Thermi-
dor ()u1y 27), 1794, the leaders of the
|acobin dictatorship-Robespierre,
Saint-|ust, and others-were exe-
cuted. They were succeeded by a
"Directorate" of five men, who held
France together for the next few
years. Monge, who was an active
|acobin, had to go into hiding.

The Convention closed the Acad-
emy of Sciences and secondary
schools. Arms production dropped
and many factories and textile mills
closed. Monge turned his entire at-
tention to teaching.

fcon Polylerlrniqttg
Monge played a
substantial role in
founding the fa-
mous Ecole Poly-
techniquer (Po1y-
technic School)

l'. r''-. tT.i-.$d.: :'fil in l79S_for a
long time he was its director. The
school was his favorite creation; he
gave it all his spare time and even
money (for scholarships). The schooi
lived up to its expectations. At vari-
ous times, such prominent scien-
tists as Ampdre, Coriolis, Gay-
Lussac, Becquerel, Arago, Fresnel,
Poinsot, and Poisson studied there,
along with many generations of bril-
liant engineers.

The prominent engineer Brisson,
who studied under Monge, recalled
that nobody could teach as well as
Monge. He used gestures/ poses, and
changes in his voice to develop and
explain ideas. He followed his stu-
dents' eyes and saw how weli they

1 To learn more about f,co1e poly-
technique, read the article
"Revolutionary teaching" in the
March/April 1998 issue oI Quantum.

understood the lecture. Monge was
a real friend to the students-he
used every means to extend their
range of interests and talents, and
was always glad to be of help. An-
other student, Dupin, described
Monge's appearance: " He was tall,
strong, and muscular. His face,
broad and short, resembled a
lion's. The eyes were large, lively,
and sparkled from beneath his
dense black eyebrows. His fore"-
head was high, with deep wrinkles
that showed his sharp intellect. His
remarkable f ace was usually
calm-the face of a man deep in
thought."

Monge wrote several textbooks
on descriptive, analytic, and differ-
ential geometry that were used by
several generations of students.

llllonge and lllapoleon

The situation in
France took its
course. In Feb-
rtary 1795, the
Directorate ap-
pointed the 26-
year-old general

Bonaparte to commander-in-chief in
Italy. In May of the same year
Monge went to Italy on behalf of the
Directorate. There he met the future
emperor, and this acquaintance
played an important role in Monge's
life.

Bonaparte and Monge had met
earlier (when Monge was minister of
the Navy); however, Monge didn't
remember his visitor. In Italy,
Bonaparte recalled their meeting: "A
young artillery officer visited the
minister of the Navy in 1792; he
may not have remembered that oc-
casion-he had many visitors. But
that obscure officer will remember
his kindness forever."

A trusting relationship quickly
developed between the general and
the scientist. It was the mutual at-
traction of two intelligent people;
later, it developed into a warm
{riendship. Although relations be-
tween them were not always serene,
Bonaparte found in Monge a real
friend who remained faithful up to
his death.
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When Bonaparte undertook the
Egyptian campaign tn 1798-1799,
Monge took part in it. This expedi-
tion nearly killed Monge-he was
taken ill with plague, and the fact
that he didn't die was due to the care
he received from the renowned
chemist Berthollet.

It was in Egypt that Napoleon
uttered the immortal phrase: "Put
the donkeys and the scientists in
the middlel" Some people see this
as showing disrespect toward scien-
tists. Recognizing the sense of hu-
mor of the future emperor/ we must
note that he was placing in the
middle of the square those things
that were most valuable: scientists
and animals that carried weapons/
water/ and food.

In Egypt, Monge and other scien-
tists conducted scientific research.
Their aim was to contribute to
progress and education in Egypt. To
this end the Cairo Institute was es-

tablished; Monge was elected its
president and Bonaparte its vice
president. The French scientists
compiled a "Description of Egypt,"
studied antiquities and agriculture,
and worked on a project to build a
canal linking the Mediterranean and
Red seas.

However, the French army's situ-
ation got progressively worse, and
not only in Egypt. The Russian gen-

eral Suvorov defeated the French in
Italy, and the situation on other
fronts was just as dire. Napoleon
decided to return to Paris. In August
1799,he left the army and sailed for
France. Monge, Berthollet, Murat,
and others were with him. On Octo-
ber 16, 1799, Bonaparte arrived in
Paris. He was welcomed by crowds
of enthusiastic people.

On the 18th of Brumaire (Novem'
ber 9), 1799, the Directorate and
then the Parliament were abolished.
Power passed to three consuls, but
in fact all power was concentrated in
the hands of the first consul-Napo-
leon Bonaparte. On December 24,
1799, the first consul appointed
Monge senator for life.

Monge left the post of director of
the Ecole Polytechnique, but re-
mained a professor there. He contin-

ued his studies in applying algebra
and calculus to geometry. He also
made a major contribution to the
theory of machinery.

On August 21, 1803, Monge was
appointed vice president of the Sen-

ate, and on September 23 the sena-
tor from Lidge. The Senate adminis-
tration was mainly carrying out the
instructions of the first consui. In
particular, Monge was given the
task of organizing the production of
guns at Lidge.

At the end of 1803 Napoleon re-
stored the status of personal awards
abolished by the revolution. Monge
was the first civilian to receive the
Royal Order of the Legion of Honor.
Napoleon said: " I'm envious of you
scientists-you must be happy to
b ecome't' amous without b esmir ch-
ing yourself with blood."

On May 18, 1804, a new Consti-
tution was adopted in France. Napo-
leon was made emperor for life.
Monge carried out various orders
that came from the emperor. In par-
ticular, he studied the feasibility of
constructing a canal from the river
Ourccl to Paris; worked on a project
for an airborne assault on England
using 100 balloons, each 100 meters
in diameter, and so on.

On May 20, 1805, Napoleon ap-
pointed Monge president of the Sen-

ate. Soon he was made a count and
received 100,000 francs to purchase
an estate. Monge was at the pinnacle
of his career, but his health was de-

teriorating. In the beginning of 1809
he lost the use of an arm. He had to
abandon teaching, but continued to
advise the emperor on various scien-
tific issues. In 1810 Monge headed a

commission studying rockets and
gave areport on a study of armor and
a monograph on the metallurgy of
iron and steei. The emperor asked
his advice about the foundries of
Tuscany, ores on the island of Elba,
the production of cannons, and
many other issues.

Eventually Napoleon's empire
went into decline. The defeat of his
Grand Army in Russia and at the
"Battle of the Nations" near Leipzig
led to Napoleon's abdication and
exile.

When Napoleon returned briefly
from his first exile in Elba, Monge
came to the Tuileries palace on the
first day after his return to the
throne. After Napoleon's second ab-
dication, Monge had to leave France
and went to Belgium, where he died
on |uiy 28, 1818.

His body was moved to Paris and
buried in the famous Pdre-Lachaise
cemetery. There was no official cer-
emony/ but many academicians,
friends, and students came to pay
homage.

Monge is known in the history of
science as the inventor of descrip-
tive geomettyt as the man who
made draftsmanship a working tool
of engineers. The well-known Rus-
sian scientist V. I. Kurdyumov said:

" If the blueprint serves as the lan-
guage of enginearing, then descrip-
tive geomefty is its grammar, since
it shows us how to read the ideas of
others and to present our owl1;
Monge is the creator of this univer-
sal language." We also must re-
member his work in other fields of
mathematics (calculus and differen-
tial geometry), as we1l as in chemis-
try, metallurgy/ meteorology, optics,
hydraulics, and arms and glass pro-
duction. Monge even suggested a hy-
pothesis for the origin of life on
Earth. His life is an impressive ex-
ample of service to science. O

CONTINUED FRCM PAGE 13

M31A
Prctblent solv er s. Eight stuclents

were solving eight problems. It
turned out that every problem was
solved by exactly five students.
Prove that there exist two students
such that every problem was solved
by one or the other of thcm. What if
cvery problem was solvecl by exactly
four students?

(N. Vasilyev and S. Tokarev)

ANSWERS. HINTS & SALUTICNS
OII PAGE 51
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LL FIVE REPRESENTATIVES
of the 2000 United States Phys-
ics Team won medals at the
XXXI International Physics

Olympiad held in Leicester, En-
gland, from 8-16 |uly. Overall,296
students from 64 countries com-
peted and were awarded a total of 15

gold medals, 11 silver medals, and
42bronzemedals. While the compe-
tition is among individuals, unoffi-
ciai rankings placed the US seventh
after China, Russia, India, Hungary,
Iran, and Taiwan. China also had the
top student, LuYing who scored43.4
out of 50 points. China's team was
the only team with five gold medals.
The US won one siiver and four
bronze medals and was one of only
five teams to receive five medals.

Gregory Price of Falls Church,
Virginia, was the top US competitor,
placing 15th and receiving a silver
medal. He is a student at Thomas

|efferson High School for Science
and Technology in Alexandria, Vir-
ginia, and was nomi-
nated by |ohn Dell.

Bronze medalist An-
thony Miller graduated
from Hopewell Valley
Central High School in
New |ersey, where he
studied physics with
Mary Yeomans. This fall
he is a student at Prince-
ton. |ason Oh also won a

medal at the 1999 Olym-
piad held in Padua, Italy.
|ason graduated from the
Gilman School in Balti-
more/ Maryland, where
he studied physics with
Edwin Lewis. This fall he

Medal winners (left to right): Gregory Pfice, lason Oh,
Anthony Miller, loseph Yu, Michael Vrable

The traveiers arrived
in England two days be-
fore the start of the com-
petition to adjust to the
time and parity shift.
|ust when our travelers
had begun to walk on the
left-hand side of the side-
walk and look right first
when crossing a street/
they would encounter a
roundabout where traffic
circled clockwise. While
they adjusted, there were
also sights to see-Big
Ben, the Houses of Par-
liament, and, catty-cot-
ner across the Thames,

by Mary Mogge

is a student at the California Insti-
tute of Technology. Michael Vrable
of Del Mar, California, graduated
from Torrey Pines High School. He
was nominated by his physics
teacher William Harvie and is cur-
rently a student at Harvey Mudd
College. )oseph Yu graduated from
University High School in Irvine,
California, where he studied physics
with Glenn Malin. This fall |oseph
is a student at the Massachusetts
Institute of Technology.

$elefiion and FaininU
The selection process for the 2000

U.S. Physics Team began in |anuary,
when high school teachers through-
out the country nominated over
1300 students. The first round of ex-

aminations in late |anuary produced
approximately 175 semifinalists
who were given a second screening
examination in March. Using the
results of the second examination,
transcripts, and letters of recom-

mendation, the 24 members of the
team were selected. More informa-
tion about the team and its mem-
bers and additional photos can be
found at the US Physics Team
website, www. aapt. org/olympiad.

The team members met at the
University of Maryland for a nine-
day extensive training camp in late
May. Their activities at the camp in-
cluded tutorials, la.boratories, prob-
lem sets, examinations, and guest
lectures on curent research topics.
At the end of the training camp, five
team members were selected to
represent the US at the OlymPiad.

They and alternate Sean Markan
reconvened at the University of
Maryland on 2 |uIy for a three-day
mini-camp devoted to enhancing
their laboratory skills. Then it was
on to England accompanied bY
coaches Mary Mogge and Leaf
Turner.

Shilts ollarity altd litns
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the 135-meter London Eye, a giant
cantilevered Ferris wheel. There
were conveyances to ride-a double-
decker bus, a tour boat on the
Thames, and the Underground.
There was cuisine to taste-sand-
wiches with unusual fil1ings,
strangely flavored potato chips, and
"sweets" for dessert.

Then on Saturday, it was on to
the University of Leicester. The
University is the site of one of the
largest space research laboratories in
Europe and there are rockets dis-
played in the lobby of the Physics
Building. The town of Leicester was
first settled in Roman times and as

Britain's first "environment city"
features many parks and open
spaces. Castle Park is Leicester's
"01d Town," containing ancient
wal1s, historic buildings, shops, and
restaurants.

Ihe exams
The five-hour theoretical exam

on 10 |uly consisted of three prob-
lems. The first had five major sub-
parts involving a bungee jumper, a

Carnot engine, the age of the Earth
from radioactive decay, the total
electric energy associated with a
charged sphere, and a circular ring of
thin copper wire rotating in the
Earth's magnetic field. The second
theory problem modeled two differ-
ent ways of experimentally deter-
mining the charge-to-mass ratio of
the electron. In Part A of the third
question, students investigated
problems associated with detecting
gravitational waves using a detector
consisting of two perpendicular
rods. Part B of the problem con-
cerned the effect of. a gravitational
field on the propagation of light in
space.

The five-hour experimental ex-
amination on 12 )uIy consisted of
two experiments. In the first experi-
ment, the students determined how
the conductance of a light-depen-
dent resistor varied with wavelength
across the visible spectrum. They
needed to correct for the energy dis-
tribution of the emitted light. The
second experiment was an investiga-
tion of the motion of a magnetic

puck as it slid down a U-shaped alu-
minum track. The students were
asked to propose a theory and design
an experiment to check how the
force acting on the puck depended
on velocity and track inclination.

Links to recent exams can be
found at the International Physics
Olympiads website, www. jyu.fi/
tdk/kastdk/olympiads.

Sil' lsaac and Alice
Amidst the rolling green hills of

England, it took very little effort to
imagine an apple falling from a
tree-or atardy rabbit being pursued
by a little girl in a pinafore. When
not chailenged by interesting phys-
ics problems, the students toured
Cambridge, where Newton studied
and taught, or Oxford, where Halley
observed and Charles Dodgson
wrote as Lewis Carroll. The partici-
pants had the opportunity to have
lunch at a college of the university.
Entering the almost cloisterlike
walled college gardens provided wel-
come refuge from streets bustling
with too many toudsts.

The students had other opportu-
nities to experience the intersection
of Newton's laws and whimsy when
they visited Alton Towers, a castle-
themed amusement park with gar-
dens and more than its share of
plunging thrill rides. Or when they
took part in a simulated space mis-
sion at the Challenger Learning
Center. The center, located in Le-
icester, promotes hands-on learning
of science and technology.

ThB 2000 Uniled Slates Plrysim Team

The other members of the US
Physics Team (with their teachers
and high schools) are Badr Albanna
(George Lang, Sidwell Friends
School, Washington, DC), Dario
Amodei (Richard Shapiro, Lowell
HS, San Francisco, CA), Owen Baker
(Michael Morrill, Columbia HS,
Maplewood, Nf), Brian Beck (Robert
Shurtz, Hawken School, Gates
Mi1ls, OH), |effrey Bruidge (LBJ HS,
Austin, TX), Kevin Chan (Adam
Weiner, The Bishop's School, La
|o11a, CA), Susan Dorsher (Gary
Anfenson, St. Cloud Technical HS,

St. Cloud, MN), David Gaebler (Beth
Markham, home schooled, Cedar
Rapids, IA), Charvak Karpe (Pratima
Karpe, home schooled, Stillwater,
OK), Olivia Leitermann (Ronald
Francis, AndoverHS, Andover, MA),
Samuel Lindsay-Levine (Digby
Willard, St. Paul Central HS, St.
Paul, MN), Sean Markan {Richard
Dower, The Roxbury Latin School,
West Roxbury, MA), David Marks
(|onathan Bennett, North Carolina
School of Science and Mathematics,
Durham, NC), Nilah Monnier
(Caroline Evans, Brookline HS,
Brookline, MA), Vladimir Nova-
kovski (|ohn De1l, Thomas fefferson
HS, Alexandria, VA), Michael
Rolish (Hirenda Chatterjee, Cherry
Hill HS, West Cherry Hill, N|),
Abigail Shafroth (Manu Patel, T.C.
Williams HS, Alexandria, VA), Ryan
Timmons (Leonard Klein, Wylie E
Groves HS, Beverly Hills, MI), Brian
Tsang (Stan Eisenstein, Centennial
HS, Ellicott City, MD)

Assisting the author were Leaf
Turner-senior coach (Los Alamos
National Laboratory, NM), Warren
Turner-coach (Brunswick School,
Greenwich, CT), Boris Zbarsky-
junior coach (MIT undergraduate,
member of the 1995 andl997 teams,
and gold medalist in 19971, |ennifer
Catelli-senior iab assistant and
Ryan McAllister-lab assistant {both
University oi Maryland graduate stu-
dents). The support staff is headed by
Maria Elena Khoury and Annette
Cole-man at the American Associa-
tion of Physics Teachers. Major fi-
nancial support is provided by AAPT,
the American Institute of Physics,
and its member societies.

The XXXII International Physics
Olympiad wiII be held in Antalya,
Turkey, from28 |une to 6luly 2001.
If you are interested in appiying or
nominating a student and do not
receive an application by early De-
cember, please contact Maria Elena
Khoury at AAPT [301209-3344 or
mkhoury@aapt.orgl. O

Mary Mogge (professor of Physics at
C alifornia State P olytechnic Univer -

sity-Pomona) has been a coach of the
US Physics Team since 1995 and is cur-
rcntly academic dir ector.
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HENUMBERru:3.14159
26 s 3 s 89 7 9 3238 4626433 832
97 502884197 r...,
which equals the ratio of the cir-

cumference of a circle to its diam-
eter, has been attracting the atten-
tion of mathematicians for thou-
sands of years. For a long time,
mathematicians dealt only with in-
tegers and fractions representable as

the ratio of two integers-these num-
bers are called rational. A1l attempts
to represent n in this form failed.

The number fi occurs in the for-
mula for the area of a circle, S : nR2,

and many mathematicians, both
professional and amateur, tried to
solve a famous problem: construct a

square that is eclual in areato a given
circle using only a comPass and
straightedge. This problem was so

well known that any other difficult
problem was eventually comPared
with it, and the terrn squaring the
circle has become synonymous for
an unsolvable problem.

The notation 7r comes from the
Greek word neptpetp, which means
perimeter.

Mathematicians in ancient
Greece knew how to construct a

square whose area is twice that of a
given square: one merely constructs
a square whose side length is eclual

to the diagonal of the given square
(figure 1). However, all attempts to

Figure 1
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represent the length of the side of
this square in terms of the side of the
given square using only rational
numbers failed. This fact was under-
stood by the foliowers of Pythagoras,
and it undermined the con{idence of
mathematicians that the number n
might be represented as the ratio of
two integers. From this time on, a
competition began to calculate n
with greater and greatet accuracy.

The ancient Egyptians often set n
equal to 3; this is equivalent to set-

ting the length of the circumference
of a c,ircle equal to the perimeter of
the inscribed hexagon. At the same
time, Egyptians used the formula

(R,''
.S=l-dl\e)

for calculating the arca ofa circle. In
e[fect, they were equating n to

f tr)'= 3.r.04s...
\e )

Other approximations of n can be

found among the records of manY
ancient civilizations. In the sacred
books of the |ains (an Indian reli-
gious sect), we encounter ryaP-
proximation of fi as -vm

3.1522777..., and in ancient Chinese
texts 7t was sometimes aPProxi-
mated by the fraction 355lll3 =

3.I41 5929 ...-an astoundingly high
degree of accuracy! But this became
apparent only in modern times,
since we have been able to compute
fi to many decimal places. At the
time it was unclear which aPProxi-
mation was better: 355lll3 or the
simpler number 2217, which was
used by the ancient Greeks' Note
that2217 = 3.1428571... .

KALEIDOSI

In the fifth and fourth centuries
n.c., the Greek mathematicians sug-

gested using polygons inscribed in a

circle and circumscribed about it

Figure 2

(figure 2l for finding approximate
values of t. They noticed that the
perimeter of circumscribed circle is
greater than, and the Perimeter of
inscribed circle less than, the cir-
cumference of the circle. This idea
was exploited by Archimedes, who
found the perimeters of the in-
scribed and circumscribed 5-, 12-,

24-,48-, and 96-gons using formulas
for doubling the number of sides of
a polygon. It's surPrising that
Archimedes could make these Pre-
cise calculations at that time, re-
peatedly computing square roots
with very high accuracy. As a result,
he concluded that n is within the
range

^ 1137 ^ 2669
tt- Lt, U-8069 I869i

-that is, between 3.140995 ard
3.L42825.

Claudius Ptolemy, who was fa-
mous not only as the inventor of the
heliocentrie planetary system but
also as a mathematician, comPuted
the perimeter of the regular in-
scribed 720-gon and obtained for n
the value 3771120 : 3.14165... . He
also introduced the notions of angu-
lar degree, minute, and second.
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The next step was made by
Francois Vidte fifteen hundred years
later. He calculated the perimeter of
regular inscribed and circumscribed
393,216-gons and obtained the esti-
mate

3.141 5926535 < n < 3.1415926537.

This estimate yields 10 valid
decimal places for n. The Dutch
mathematician Adrian van Roomen
used a 230 = 1,073,741,824-gon to
obtain 17 valid decimal digits. The
last mathematician who took this
approach was the Dutch mathema-
tician Ludolf van Ceu1en. He spent
ten years calculating the perimeters
of regular polygons by doubling the
number of their sides-the same
method used by Archimedes. Ludolf
reached the 32, 5 12,25 4,7 20 - gon and
obtained 20 valid decimal digits for
n. He concluded his work with the
words, "Whoever has the desire, let
him go further." Infact, he himself
went further and obtained 35 valid
decimal digits for n.

The story of r and its approxima-
tion continued. Around the turn of
the 19th century, the concept of the
limit in calculus made it possible,
among other things, to consider the
sums of an infinite number of sum-
mands. In L67I, |ames Gregory
found that the function arctartx cafl
be represented as an infinite series

x3 ,5 x7arCtAIlX=X--+---+...357
For x : 1, this series (known as the
Leibniz series after one of the inven-
tors of the calculus) yields

We may group the terms of this se-
ries in two ways:

x=?-:).(* +).(;-+J.
and

f,=,-(: *) (+;)
-( 

t -, )-
1.11 13)

It's clear that the terms in paren-
theses are positive. Thus we see
from the first equality that, taking
an even number of terms, we obtain
a number just shy of nl4; taking an
odd number of terms, we obtain a
number just a little larger thannl4.

This series made it a lot easier to
calculate n, although it requires no
less than 50 expansion terms tb ob-
tain three valid digits; for four valid
digits, about 300 terms are required.

Abraham Sharp noticed that with
x: 

"813, 
we have

11)

-T... 

t,729 2673 I
and the first six terms of this series
yield n with an error of less than
0.0005.

Leonard Euler also took part in
calculating n-he used the relation

nl1
-=arctal]-+arctalf-423

and found out that Lagny, who had
earlier calculated 128 decimal figits
of m, made a mistake at digit 113
(and, therefore, the subsequent dig-
its were also wrong).

The formula

n = 24 arctar, I + B rr"tr., A8s7
+4arctan \

239

turned out to be even more conve-
nient, since the terms of the series
decrease more and more quickly as
the argument of the arctangent be-
comes smaller.

The middle of the 19th century
was marked by a pursuit of more
decimal digits of n:

lB44: 200 digits (Dase);
lB47:248 digits (T. Klausen);
I 853: 330 digits (Richter);
lB53: 440 digits (Dase);
1853: 519 digits (W. Shanks).
A hundred years later, after com-

puters were invented, the chase con-
tinued:

1949:2,037 digits (von Neumann,
ENIAC),

1958: 10,000 digits (F. |enuit,
rBM-704),

1961: 100,000 digits (D. Shanks,
rBM-7090),

1973:1,000,000 digits (|. Guiyu,
M. Boiye, CDC-7600),

L9B6: 29,360,000 digits (D. Bailey,
Cray-2);

l9B7:134,217,000 digits (|. Kana-
da, NEC SX-2),

1989: 1,011,195,69L digits (D. and
G. Chudnov sl<y, Cray -2 + IBM-3040).

However, all this has become
more of a sport and less of a math-
ematical activity. It's no wonder the
last result was include d tn Guinness
World Records. It's interesting that
mathematicians have studied the
sequence of digits in the decimal
representation of n and have estab-
lished that a1l digits occur in this se-
quence with the same frecluency.0

0l|Alllrll]t|/t(il.Et[0st0Pr 2g

x "15(. t I 1
_=_t t__I

6 3t. 9 4s r89

n-l11_t

4 3 57



PHYSICS
CONTEST

r

I
t
i

L

ONSERVATION LAWS ARE
everywhere! Conservation of
energy is one of the most use-
ful laws in all branches of sci-

ence. Other conservation laws in
physics include charge, momentum/
angular momentum, and those asso-

ciated with the more esoteric baryon
and lepton attributes. But conserva-
tion laws are much more pervasive.
They even apply to poker. Certainly,
the number of cards is conserved in
any one game. The amount of
money can also be conserved if the
game is carefully constructed.

The World Series of Poker is held
in Las Vegas each year.It is not a

tournament for the poor or the faint
of heart. In the final game each
player buys in for $10,000! This year
there were 512 players/ so the total
amount of money in the game was
$5,120,000. The game is Texas Hold
'em and the rules recluire that no
money be taken from the game or
added to the game-so-called "table
stakes."

As the game proceeds, some play-
ers accumulate lots of money while
others lose. However, at all times
the totai amount of money in the
game is a constant-S.12 million
dollars. When players lose all of
their chips, they must exit the game.

So the number of players is not con-
served, but the amount of money is.

After all but one of the players
have lost their chips, the winner has
accumulated $5,120,000. You can
imagine the size of the bets when

Y
C
f

c0
a
cd

E
oF

_ohhf
t'- ^ - |ltC

Relatiuislic oolt$Brtlalion lauus

by Larry D. Kirkpatrick and Arthur Eisenkraft

ln mathematics you
don't understand

things. You just get
used to them.

-Johann 
von

Neumann

there are only two players left at the
table. No, the winner does not get to
keep all of the mone); the money is
divided among the players according
to when they left the game. Of
course/ those leaving early get
smaller amounts and the last player
gets the most. This year the winner
pocketed $1,500,000 and the second
place player walked away with
$895,500. Even the players who fin-
ished in 37th through 45th place
won $15,000.

Poker may not interest some
readers as such, but it is actually one
small example from a branch of
mathematics called game theory.
Games (in mathematics) are situa-
tions that involve people or ma-
chines with conflicting interests.
Simple games can have complete
"solutions" but serve as insights
into more complex games like
checkers and chess and more serious
games like politics, warfare, and
property law. One type of game is
the zero-sum game/ where one
player's loss is another player's gain.
Not all games are zero-sum games.

The stock market or the nation's
economy can gain value over time.

We are very familiar with the
conservation laws of energy and
momentum in classical mechanics.
Although in special relativity the
sizes of time intervals, lengths, en-
ergies, momenta/ angular momenta/
and so on are not the same in differ-
ent inertial reference systems, the
conservation laws are still valid.
However, we must modify our clas-
sical expressions for energy and
momentum to make them work in
relativistic situations.

The relativistic momentum p is
given by

P = Ymvl

where m is the (rest) mass of the
particle, v is its speed, and

with B : vf c, the ratio of the speed
of the particle to the speed of light.
Notice that the relativistic momen-
tum reduces to the classical value
for slow speeds-that is, when v -+
0. This must be true because we
know that Newton's laws of motion
work very well for ordinary speeds.

The photon has no rest mass but
it does have momentum. Therefore,
we must use a different expression
for the momentum of a photon:

3ll ilottttltBtR/otctttlBtfi 2ooo
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where'.h : 6.63. 10-34 f.s is Planck's
constant and )" and f are the waYe-
length and frequency of the photon,
respectively. .

The relativistic energy ol a par-
ticle with nonzero mass is given by

E = ymcz.

When the particle is at rest y: 1, so

the rest-mass energy is E = mc2. This
is Einstein's famous equation giving
the equivalence of mass and energy.
The difference between the total
energy and the rest-mass energy is
eclual to the kinetic energy of the
particle. We can show that this re-
duces to the classical formula for the
kinetic energy as v -+ 0:

KE: ymcz - mc2 = ly - llmc2.

We now use the binomial expansion

(1 +x)"=l+r7Xt

when x << 1. This gives us

=(r*|o' -r)*P =i,*u'.

The relativistic energy of a pho-
ton is

E: hf: pc.

With these new expressions, con-
servation of energy and linear mo-
mentum work the same way they do
in classical physics. The mathemat-
ics can be more difficult because the
factor y depends on the speed of the
particle.

Our contest problem this month
comes to us from the second exam
used to select this year's US Physics
Team. lsee Happenings for a report
on the success of this yea{s team-
each team member won a medal.)
The problem was created by Leaf
Turner, who works at Los Alamos
National Laboratory and is a senior
coach of the team.

A relativistic particle decays into
two photons. One of the photons
travels along the positive x-axis with
frequency /1, while the second pho-
ton travels along the negative x-axis
with frequency fz < f r.

N0l/tllilBER/0tItllilBtB 2000

A. What is
particle?

B. What is
particle?

C. What are the frecluencies of the
photoqs in the rest frame of the par-
ticle?

You are given the formula

P'*=FtPr*FrL,
C

where f', is the x-component of the
momentum of either photon in the
laboratory reference frame and E,
and prare the energy and x-compol
nent of the momentum/ respec-
tively, of the photon in the rest
frame of the particle.

D. What are the functions F, and
F, in terms of B?

Please send your solutions to
Quantum, 1840 Wilson Boulevard,
Arlington YA2220l-3000, within a

month of receipt of this issue. The
best solutions will be noted in this
space.

BollinU whsgls
Our problem in the May/|une

2000 issue of Quantum required
readers to solve three problems con-
cerning cylinders, hoops, and
spheres rolling down inclines. The
first two problems, considered stan-
dard fare for first-year college phys-
ics, were solved correctly by Alex
Rifkin, Michelle Chung, and
Victoria Butta of Amity Regional
High School in Woodbridge, Con-
necticut. Victoria tried the more dif-
ficult and subtle third problem.
Their teacher, A. Hovey, correctly
solved most of this problem.

A. To show that all uniform, solid
spheres arrive at the bottom of the
incline with the same speed, inde-
pendent of their radii and masses/
we use conservation of energy. The
loss in potential energy is equal to
the gain in kinetic energy-both
translational and rotational:

mgh=i,*r'*!lo'

or

the velocity v of the Therefore

the rest mass of the v -

msh = !,,,' - j(i -^')[F]

B. Any object's moment of inertia
can be written as kmR2, where k is
a constant that depends on the shape
of the object. Comparing the relative
speeds of a cylinder lk = I l2), a hoop
(k : 1 ), and a solid sphere lk : 21 5l of
the same mass requires us to solve
Part A for the general equation:

- I 'rllr'.mgh=i*r' ,,

which yields

Eil'-Vt*i.'
Notice that the mass of the ob-

jects does not appear in the answer
and, therefore, does not affect the
speed. All objects with the same
shape have the same motion. For our
three objects/ we get

tr-
cylinder: v = 

{5Sh

hoop: v = GE

spherc: v =

C. Part C requires us to compare
the linear and angular accelerations
for three cylinders when they are
inclined at an angle s. The cylinders
all have the same length, outer ra-
dius, and mass. The first is solid, the
second is a hollow tube with walls
of finite thickness, and the third is
a hollow tube with walls of the same
finite thickness, filled with a licluid
of the same density.

This problem recluires an analysis
of the rolling dynamics of the cylin-
ders. We will need to find the fric-
tion required to roll without slipping
since the static friction can take on
any value less than or equal to pF*
(Since it is inconvenient to use o as

both the angle of the incline and the
angular acceleration, we will refer to
the angle of the incline as 0.)

For the linear motion we have

\r=ma

10

-fh7"
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or

F-sin0-Ft=rrro.

And for the rotational motion,

)t=Iu

RFi = lct.= 1!

Therefore,

R, F,a=-.I
Solving for the {orce of friction F,
and thu accele ratitln o, wc g,et

^ I lmR)F = rlr.! S1r 0 

-

l-tlmR)
and

a = .g sin 0 -*--l- .- 
7+I f ntR)'

The limiting angle for rolling
r,vithout sliding will occur when the
frictional {orce is cqual to the nor-
mal force F-:

pm,sc.so - rns sin ,44t- ,
1+ U mR'

yielding

tan0:p(1+rnR2/1).

We must now find the rotaticlnal
inertia of each cylindcr.

1. The first cylinder has a rota-
tional lnertra I : mR)12. Using the
ecluations above, we iincl that

and

a = ]ssine

tan 0 = 3pr.

2. The second cylinder has a rota-
tional inertia I : mlR2 + r2l, where r
is the inner radius of the cylinder.
We can find r by recognizing that the
solid cylinder and this hollow tube
have the same mass and therefore
the densities p must be di{ferent by
a factor n, where

P:P*r11=flPsohd'

Setting the mass o{ the solid cylin-
der cqual to that of the tube

pruR21= npnl\R)-P),

we gct

..) ,.(r-l\t" = l<-
\ i7 I

Therefclre

I r ,()n-ltI I rrlR- . r-l= l2lR' | -" '
)2\n)

The corresponding acceleration ancl
llmiting anglc are

2ntt=-tsin0
4n -1"

and

- 4n -1tan0 = .u.
2n-l'

3. The thircl cylinder has the same
dimensions as the tube but has less
mass rotzrting; that is, the licluid
does not rotate due to a lack of fric-
ticln between it and the wal1s:

, -,/n-I\r'- = ll
tn )

nll-l w l
111,,,1,. =-------- - l?7

TER'I

=(' i ),,I n-l

The rotational inertil is

t =!m . rR'- r')' 2 
,-'r"" i''

, / ,2 \
l-i r- ' J-''')I' ,: t"'(R +r-)
-\ ^ /
| *r:(2n-l)-Trllf\ | I r.z\nt

The corresponding acceleration and
limiting angle are

2n)
17 = 

-gsinO

)n-,)n-1
and

^ )n) +)n_ Itanu=
)-n- |

Since all of the angular accelera-
tions cr are equal to a/R, the ratios of
the linear and angular accelerations
are

, 3n 3n2t._-'4n-1'2i +Zn-I
The ratios of the tangents for the
limiting angles are

,. 4n-l
l---

3(2n - 1)

2nz +2n-I
3(2n - 1)

When the cylinders exceed the
largest limiting angle and none of
them have the necessary friction to
roll without sliding, they al1 have
the same linear acceleration:

F, sin 0 - F,: ma

F1= Ums cos 0

The angular accelerations are given
by

R4 Rptmgcoso

II
Since the rotational inertia is differ-
ent for each cylinder, the corre-
sponding angular accelerations are

2p cos 00t=

2pr cos 0 nu2= R 2n-l'

2Lr cos 0 n2

and

0:= 2n-l o

Uisit
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I N THIS ARTICLE WE'LL DIS-
l.rrs several oroblems in which
I porygorr. are srrceo up lnto trl-
I angles. For example/ a sqluare can
be cut into triangies in many differ-
ent ways (see figures 1-4).

AT THE
BLACKBOARD I

Tl'ianuular $uruery

by O. lzhboldin and L. Kurlyandchik

triangles. The question naturally
arises: can we slice a square into tri-
angles, all of which are actte?

In addition, in allthe figures there
arc atleasttwo triangles with a com-
mon side. Is this always the case?

In figures 2 and3, all the triangles
have the same area, and there is an
even number of them. Is it possible
to cut a square into an odd number
of triangles of equal area?

Figure 5

Figure 1

Let's examine these figures care-
fully. For example, in figures 1 and
4 all the triangles are right triangles,
and in figure 2 they are all obtuse

Figure 2

Figure 3

$ 4 irottEilrItR/[tGtirBtR zooo

Figure 4

More generally, it will be interest-
ing to find out if a polygon can be
broken down into triangles under
certain constraints. These may be
constraints imposed on the angles of
the triangles, their number, their ar-
rangement/ and so on.

Acttm Fialtuls$
Problem l, Is it possible to cut a

square into acute ftiangles!
It's quite natural to begin solving

this problem by attempting to cut a

scluare as required. A start might be
to cut the scluare along a diagonal
(figure 5) or two diagonals (figure 6).
In both cases we reduce the problem
to cutting a right triangle into acute
triangles. How can we cut a triangle FigUfe

Figure 6

into other triangles? There are three
simple possibilities (figures 7-9).

In all three figures, at least one of
the resulting triangles is not acute!
We invite the reader to try cutting a

few triangles-it's very likely you'll
end up with the hypothesis that the
answer to our question is no. We
now have a situation that is famil-
iar to every mathematici4n: we can
continue trying to find the desired



Figure B

Figure 9

outcome, or we can search for a
proof that such an outcome doesn't
exist. We invite you to ponder this
problem; the answer will be given a
little later. Meanwhile, we'I1 move
on to another problem.

Tl'iangles ttul[t chalt loundal'ies
In all the figures shown above,

there exists a triangle such that its
sides don't contain the vertices of
other triangles. We'll call these rn-
angles with a clean boundary.

Problem 2. Is it possible to cut a
convex n-gon into triangles such
that none of them has a clean
boundary!

We'll prove that such a result
doesn't exist. Assume the contrary.
Let Tbe the number of triangles cre-
ated by slicing, and let Vrr,, be the
number of "internal" vertices-that

since, by our assumption/ we can
assign to every triangle an internal
vertex that lies on its boundary.
Notice that different triangles are
assigned different vertices/ since no
vertex can be internal for two tri-
angles simultaneously.

Let's calculate the sum of the
angles in all the triangles. On the one
hand, it is 180" . 7. On the other hand,
the sum of the angles adjacent to in-
temal vertices is 180 o .V^r, and the
sum of the angles adjacent to the ver-
tices of the polygon is 180' (n-Z).
Thus the total sum of the triangles'

i?:litililltt:i"Ttf,?f::'jT The ineqrratiry tt < t+Z

angles is not less than 180" . Vrr,, +
180' . (a - 2). Thereforg we have

180" . T> 1B0' . ynt
+ 180" ln-Zl > 1B0o.Yi,,t,

which contradicts the inequality
Vrnr2 T obtained earlier.

Thus we proved the following
theorem.

Theorem l. Whenevu a convex
n-gon is cut into triangles, at least
one triangle has a clean boundary.

Exercise 1. Is this theorem true
for nonconvex polygons?

lllJithoulcolllllloll $ids$
Problem 3. Is it possible to cut a

convex n-gon into triangles such
that no two triangles have a com-
mon side!

We begin with the simplest case,
where n : 3. The desired result is
shown in figure 9.

Now try to slice a convex quadri-
Iateral in the desired fashion. It
would be quite natural to begin by
cutting a square. Look at figures 1-
4'. each of them contains a pair of
triangles with a common side.

Again, we face a dilemma: either
try to prove that no such outcome
exists or continue the search for the
desired outcome.

It tums out that such an outcome
is impossible-that is, no matter
how a convex n-gon (n> 4l is sliced
up, there are at least two triangles
with a common side. However, the
proof is rather complex.

We'll begin with an important
auxiliary proposition.

Theorem 2. Let a convexn-gonbe
broken dottn into T triangles and
let V be the total number of veftices
of those triangles. Then V < T + 2.

Proof. The sum of all the angles in
all the triangles is 180' . T. We now
calculate this sum in a different
way. Divide the set of vertices of all
the triangles into two parts.

hr the first p art, we include all the
vertices of the given n-gon (they are
shown in red in figure 10). All the
other vertices belong to the second
part (they are shown in blue in fig-
ure l0).

Figure 10

It's clear that the sum of the
angles adjacent to the red vertices
equals the sum of the angles o{ the
n-gon; thus

the sum of the "red angles"
180".(n-2).

Consider an arbitr ary blue vertex.
It's clear that the sum of the angles
adjacent to it is either 180" or 350'
(see figure 10); in any case, it is no
Iess than 180". Since there are V - n
blue vertices, we have

the sum of the "blue angles"
> 180" .(V - nl.

Thus

180" . 7
: the sum of all angles of all triangles
= the sum of the "red angles"
+ the sum of the "blue angles"

> 1Bo" . ln _zl. ,jor*rf 
ti!rl

The desired inequality follows:

V<T+2.
The theorem is thus proved.

Solulion I Uollem 3
Assume that we have cut a con-

vex n-gon into triangles in such a
way that no two of them have a
common side.

Let's calculate in two different
ways the number of segments that
are sides of the triangles. We'll call
these segments "sides" and denote
their number by S. It's clear that

s:37,
since every triangle has three sides
and no sides o{ two different tri-
angles coincide.

We divide the set of vertices and
the set of sides into two classes:
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(i) Boundary vertices and sides-
that is, those that 1ie on the bound-
ary of the given n-gon. We denote
the number of.boundary vertices by
Vo and the number of boundary
sides by So.

(ii) Internal vertices and sides-
that is, all those that arerrtt bound-
aries. These are denoted by V,, and
S*, respectively.

It's clear that

V = V6+ Vin,

and
S=56+S,,.

We now establish a relationship
between the number of boundary
sides, 56, and the number of bound-
ary vertices, Vo. We do this by "tak-
ing a tour" of the boundary of the
given n-gon. During this tour the
"vertices" and "sides" alternate,
which means there are iust as many
of each:

vu = sr'

There exists also a relationship
between the number of internal
sides S,. and the number of internal
vertices Vi.; however, it's more
complex:

3%,r'St,'

To prove this inequality, we se-

lect those internal vertices that lie
within a side. We'll call such verti-
ces interior and denote their number
by %,,,. Clearly V* 2 %,,r.Therefore,
to prove the inequality 3Vrn2 S,,, it's
sufficient to prove that

3fr,,'Str'
This inecluality will be proved if

we're able to assign to every interior
vertex three internal sides such that
every internal side corresponds at

Figure 11 . vertex A corresponds to
one red side, for which this vertex is
inteilor, and two blue sides.

least to one vertex. Such a coffe-
spondence exists and is iliustrated in
figure 11.

We must make sure that every
internal side corresponds at least to
one interior vertex. This is obvious
for sides that contain a vertex. If an
internal side doesn't contain any
vertices, it's a part of a side of an-
other triangle. Then at least one of
its endpoints is an interior vertex/
and it is this vertex that corresponds
to the side under consideration.

Thus 3Vrrr, ) Si,, and, therefore,
3Y," > Srr,. Therefore,

3T : S : Si, + Sr, S 3V,, + Vo: 3(V,,

+ V,,) -ZVb:3V -ZVrn<3V -2n.
Consequently,

V2T+zlrn.

Now, since n> 4,wehave

V>T+8lrrT*2,
which contradicts theorem 1.

Thus we have proved the follow-
ing theorem.

Theorem 3. Whenever a convex
n-gon ln> al is cut into triangles,
there exist at least two triangles
with a common side.

Examine the above proof care-
fu11y and solve the following exer-
cises.

Exercises
2, Let a triangle be cut into 7 tri-

angles such that no segment is a
common side of two triangles. Let B
denote the total number of vertices
of the triangles in the decomposi-
tion. Prove that

V=T+2.
3. Let an n-gon ln> 4 be cut into

triangles. Prove that there exist at
least n - 3 segments, each of which
is a common side of two of the tri-
angles.

4. Theorems 2 and 3 include the
condition that the polygon be con-
vex. Are these theorems true for
nonconvex polygons?

Acuile Fianglgs mtli$iled
In two of the problems we solved

in the preceding sections, the de-
sired division of the polygon into

triangles didn't exist. It rnay appear
that if we can't perform the desired
division the first time, it doesn't
exist at all. However, this isn't the
case! Indeed, return to problem 1,

where we wanted to cut a square
into acute triangles. Although we
couldn't do it on our first try, such
a result is possible and is shown in
figure 12.

Figure 12

Exercises
5. In figure 12, there arc 24 tri-

angles. Is it possible to achieve the
intended result with fewer triangles?

6. Prove thatany convexpolygon
can be cut into acute triangles.

T'ianUles ol equal area
Problem 4. Is it possible to cut a

square into an odd number of tri-
angles of equal areal

The statement of this problem is
similar to the problems solved
above. However, it is much more
difficult. The answer is no. The au-
thors have not been able to prove
this fact using elementary methods
and would be most appreciative if
someone could furnish one. Alert
readers may recall a very difficult
solution given in the article "Z-adic
Numbers" in the |u1y/August 1999
issue of Quantum.

AIl as$0l'tlllenl ol decm[osilions
We've merely grazed the surface

of the problem of cutting polygons
into triangles. In this field, many
interesting problems can be formu-
lated, and each of them couldbe the
subject of a research paper. Yaria-
tions are numerous-we haven't
even exhausted the cutting of a

square. We invite our readers to
solve the following problems.

Problems
4. In figure Z, the square is cut

3 $ tlottIl'tBtfl/otcmBtB 2ooo



Figure 13

into 12 obtuse triangles; in figure
13, it is cut into 10.Is it possible to
cut a square into a smailer number
of obtuse triangles? What is the
minimum number of triangles that
are possible in such a decomposi-
tion?

5. Is it possible to cut a square
into triangles/ no two of which are
the same, such that all of the tri-
angles are

(i) right triangles,
(ii) isosceles triangles,
(iii) isosceles right triangles,
(iv) similar to each other,
(v) of ec1ua1 perimeters,
(vi) of equal area?

6. Is it possibie to cut a square
into

l1l "very obtuse" triangles-that
is, is it possible to cut a square such
that one of the angles of every tri-
angle is gteater than 120"? Greater
than L79"?

(ii) "almost equilateral" triangles
with all angles less than 70'?

(iii) triangles with given angles u,

B, and y (for example, with angles of
30o, 60o, and 90')?

(iv) Find ai1 angles u such that a
square can be broken down into tri-
angles whose angles are a1l less
than s.

7. Is it possible to cut a square
into triangles such that every tri-
angle has exactly

(i) two neighbors,
(ii) three neighbors,
(i)n neighbors (where n is a given

number)?

Two triangles are called neigh-
bors rf they have at least one com-
mon point (this is one version of the
definition) or a common segment
(this is another version). O
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AT THE
BLACKBOARD II

0ul' old lnaUltelic-Eniumatic ll'iend

by E. Romishevsky

ECENTLY QUANTUMPUB-
lished an article titled "The
Enigmatic Magnetic Force"
{}uly/August 2000) that de-

scribed the properties of the Lorentz
force. In this article we'lllook at the
interplay between its electric and
magnetic components and explain
the nature of the magnetic force,
which affects a current-carrying
conductor placed in an external
magnetic field.

As a first step/ let's investigate the
magnetic forces on a conducting bar
moving uniformly in a homogenous
magnetic field. A magnetic field B is
perpendicular to the constant veloc-
ity vector v of a rectangularbar as shown in figure 1. We
assume that the bar is thin; its edge length d is much
shorter than the edge lengths a andb.

The positive ions occupy fixed locations in the bar
while the free electrons are evenly distributed through-
out the volume of the bar. While the bar moves, the
charges experience magnetic forces F*: 4v x B, which
act in opposite directions on the positive and negative
charges. As a result, the free electrons are shifted down-

Ba

ward, so the upper and lower faces of
the bar acquire charge densities of o*
and o-, respectively.

As with a parallel-plate capacitor,
these charge densities produce a ho-
mogeneous electric field E_, between
the upper and lower faces of the bar.
The resulting electric forces coun-
terbalance the magnetic forces. In
other words, the magnetic force pro-
duces an electric field that counter-
acts its effects:

Frn: Fs,

or
qvB = qE,

and
Er: ofeo.

As a whole, the bar remains electrically neutral be-
cause the magnetic field doesn't create any new charges.
The field only separates the charges already in the bar.
Therefore, ot : lo-l and the total magnetic force acting
on a conducting bar moving uniformly in a homogenous
magnetic field is zero.

However, if the bar's velocity is increasing, or if the
bar enters a region with an increasing magnetic field, a

braking force acts on the bar. There will be a correspond-
ing increase in the electric field and the surface charge
densities.

A conducting bar moving in a magnetic field is the
prototype of the main element in powerful generators
used to produce electrical energy. The electromotive
force (emf) is produced by the magnetic force F, = qv x
B that we've been examining here. In our case, the emf
: vBd.

Let's look at another example of the important role
played by the magnetic force. Connect a battery with
emf Vo to the opposing faces of a fixed metal bar as

shown in figure 2. If the resistance between the faces is
R, the battery generates an electric current I =volRthat
is homogenous through any cross section parallel to theFigure 1
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Figure 2

faces. Because the voltage drop between the opposing
faces is Vo, there is a homogenous electric field E within
the bar that is perpendicular to the faces connected to
the battery.

The free electrons in the bar will be driven by this
field to the right with a velocity vr, creating an electric
current

I : Vbl R : nevobd = r7av6S,

where n is the density of the free electrons, e is the
charge of an electron, and bd is the cross-sectional area
S. It should be noted that the velocity of the electrons
is opposite the direction of the electric field and the
current.

The positively charged ions that form the lattice of
the metal are, naturally, at rest during this process. If
there is no external magnetic field, the oniy magnetic
field in the system is the internal magnetic field gener-
ated by the motion of the free electrons, and this field
is negligibly small.

Now let's switch on an external magnetic field with
the same strength as in the previous case. Note that the
magnetic field must be perpendicular to the direction
of the electric cuffent. The electrons, moving with the
drift velocity, experience a magnetic force that deflects
them downward, thereby producing an extra negative
charge on the lower face and an extra positive charge on
the upper face.

The charges accumulate until they generate a down-
ward, transverse electric field that counterbalances the
magnetic force just as in the case of uniform motion of
the bar in a homogenous field. The main difference in
this case is that only electrons produce the electric cur-
rent.

In the steady state (which is established very quickly
after the external magnetic field is applied), the average
motion of the electrons is again directed horizontally
and a transverse electric field E_, : o/e, is observed in the
reference frame of the bar. This electric field E, coun-
terbalances the magnetic force Fr: euoB acting on the
moving electrons and creates a force, directed down-
ward, on the motionless positive ions. This is how the
magnetic force is transmitted to the metal bar.

The strength of the force acting on a wire of length a
placed in a homogeneous magnetic field B and carrying
a current I can be calculated as follows. A positive ion
experiences the force

Fr: eEr: euoB.

Since the number of positive ions in the bar is N : nabd,
where n is the density of electrons or positive ions, the
total force is

Fror: eu'Bnabd : IBa,

wherel=nevoS ands:bd.
The generation of a voltage drop between the oppo-

site surfaces of a current-carryingwire placed in a mag-
netic field is calIed the Hall effect. Edwin Herbert Hall
(1855-1938) discovered this phenomenon in 1879, long
before |. |. Thomson (1855-1940), discovered the elec-
tron. O

Quantum on magnetic field:
D. Tselykh, "Magnetic Fieldwork," September/Oc-

tober 1998, pp.46-47.
A. Dozorov, "Core Dynamics," March/Aprll 1999,

pp. 14-17.
A. Stasenko, "A Rotating Capacitot," Mayflune

1999, pp.34-36.
V. Kartsev, "Magnetic Personality," Mayflune 1999,

pp.42-46.
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IN THE OPEN AIR

$houliltu inlo the wind

by G. Kotkin

HEN SOMETHING MAKES
a noise off in the distance and
the wind is blowing away
from us and toward the

source/ why is the sound so faint? At
first glance it seems obvious. When
you throw a stone into the wind, it
doesn't travel as [ar; a bird heading
against the wind doesn't fly as fast.
But let's do justice to the title of this
rnagazine and get quantitative.

Let the sound speed relative to
the air be c and the wind speed be u.
Then the speed of the sound signal
relative to the Earth is c - u, and the
time it takes to travel a distance l
equals t:lllc- u). During that time
the signai travels (relative to the air)
a distance

l'=ct= 7"

c-u
This value 1' determines how

much the signal weakens: when we
are at a distance I from the source of
sound (traveling into the wind), we
hear the sound as if we were a dis-
tance l' from the source and there
was no wind.

Let's assume that u : 15 m/s (a

relatively strong wind), c = 330 m/s,
and I : 50 m. Then 7'= 52 m. The
wind "moves" us nearly 2 m away
from the source. We might not even
notice it. But actrally, the effect of
the wind is far stronger. So there
must be another explanation.

Note that the wind speed is not
the same at every altitude; it in-
creases with height above the Earth.
It would seem that this shouldn't

affiect the propagation of sound
when the source and the receiver are
at the same altitude. If the receiver
(or the source) of a signal is lowered,
the signal travels along part of its
path through layers of air that move
slower. In that stretch, the weaken-
ing of the signal will be less pro-
nounced. But in reality, if a person
listening (or shouting) sits down, the
ability to hear the shout gets worse.
Despite this paradoxical result, the
key to theprzzle is the dependence
of wind speed on altitude.

E

D

To clarify the peculiarities of
sound propagation, 1et's consider the
following example. Imagine a mo-
torboat M moving with velocity c
relative to the water at some angle
to the cuffent (figure 1). Let a person
sitting in the boat (we'11 call her
Captain) " airr," at the smokestack C
of some factory, which canbarelybe
seen in the distance. If there were no
current/ the boat would land at point
A.ln fact, the velocity of the boat
relative to the riverbank is v : c + u.
If the velocity of the stream u were
constant the entire distance to the
bank, the boat would land at point
B. But the velocity of the stream
decreases as one approaches the
shore, so the value and the direction
of the boat's velocity v also vary. As
a result, the boat moves along the
curve MD.

Let Captain fall asleep for a short
time while holding the rudder in the
same position. While she sleeps,
let's look at a drifting ice floe NF.
While drifting, this ice floe is rotated
by the water, which lags behind the
floe on one side (N) and overtakes it
on the other (F). The same thingwill
happen to the boat. It will rotate, so

the direction of its velocity will
change despite the fact that the rud-
der is being held firmly in the same
position. When Captain wakes up,
she will see that the boat is moving
along the cuwe ME and is now head-
ing away from the shore.

This little exercise has made it
easier for us to describe the propaga-

tion of sound signals. Their trajecto-
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ries (rays) twist like the trajectory of
the boat with the sleeping captain
(figure 2-the wind is blowing from
right to left),. The area MLN is a

"dead zotae"; the sound rays do not
reach it. In this area a person can
barely hear a sound from the source
S. (The sound is partly audible in the
dead zone because of reflection from'
the Earth's surface and diffraction.)

Remember, though, that our first
explanation was also qualitatively
correct, but it was at odds with nu-
merical experimental values. So
let's test our second theory with
numbers as well. We'i1 evaluate the
distance to the dead zone.

Consider the sound ray SLM (fig-
we2l. Assume that it's almost hori-
zontal. Let's choose a small vertical
section AB of. the wave front, so
small as to be virtually straight (fig-
ure 3). After a time At, this section
will be shifted to a new position A'B'
such that

and

AA'=lc-uolLt

BB'=(c-urlLt,

where uoanduBare the wind speeds
at the altitudes of point s A anrd B , re-
spectively. This displacement will
be accompanied by a turn through a
small angle cr:

B, B'
A.=ta.rr0"= 

-
A'B'

_(c-ue)-(c-us) _ LuLt
Nl Lh'

where A'8" : AB = Lh and Au - 178

u^.
Thus the section of the wave

front rotates with an angular speed

Figure 3

Figure 4

c[, Lu(D=-=-
Lt Ah'

The vector c (sound velocity rela-
tive to the air) rotates with the same
angular velocity.

Assume the angular speed ro to be
constant along the entire trajectory
of the sound ray, so the section SIM
(figure 2l canbe considered an arc of
a circle. The speed of the sound sig-
nal relative to the Earth v : c - 1) = c
is related to the radius r of this circle
as follows: v = 0Y. Thus (figure 4),

So=or -r-L ="Lh.co Lu

Triangle OSF yields

sF = ^[o* -oF' =

= ^lirh = E"hN' ."V Lu

Thus an observer located at the
same altitude.h as the sound source
will enter the dead zone at the dis-
tance

ss'= 2SF - 2.["rt.Vlu
In numerical estimates we usu-

ally replace the ratio of increments
with the ratio of the values them-
selves. Thus we get Lulr'/- = ulh.
Finally,

rT; ;
SS' = 2h. I o' 

= 3h.r '
\ u \u

Plugging the values h: 1.5 m, c
= 330 m/s, and u = 15 m/s into this
formula, we get

SS'= 20 m,

which is quite reasonable. An exact
numerical calculation of the shape of
the sound ray yields the same result.

Of course, there are many other
factors that reduce our ability to
hear a word shouted into the wind,
but our calculation gives some as-

surance that we've found the main
culprit.

Exercises
1. One summer day, a beetle de-

cided to fly to the Sun and took off
with a speed c =2mls. However, it
didn't take into account that there
was a light breezefrom the south at
u =1 m/s. To what angle will the
beetle deviate from its target in the
reference system of a sparrow sitting
on a branch? This heroic flight oc-
curred near Novosibirsk, where the
height of the Sun over the horizon
at midday is cr = 60'.

2. Find the trajectory of the beetle
flying to the Sun (see the previous
problem) when the wind speed u in-
creases with altitude h according to
a linear law: u = bh (where b :
const).

3. A plane AB separates a region
of still air from air moving with ve-
locity u (figure 5). A sound wave ar-
rives at this boundary plane from
the area of still air at an angle cr to

uAS-Br lc

Figure 5

AB. Tlr..e velocity of the incident
wave is c. At what angie to AB wlll
the wave front of the refracted wave
move after entering the region of
moving air? O

Quantum on sound and sound re-
fraction:

A. Varlamov and A. Malyarov-
sky, "The Oceanic Phoqe Booth,"
May/|une 1993, pp. 37-39.

Kaleidoscope: "Songs that Shatter
andWinds that Howl," |anuary/Feb-
rrtary 1994, pp. 32-33.

A. Eisenkraft and L. D. Kirk-
patrick, "sea Sounds," March/April
I99 6, pp. 3 4-4q September/October
1996, pp. 35-37.

L. Brekhovskikh and V. Kurte-
pov, "Waves beneath the Waves,"

lanuaryfFebruary 1998, pp. 16-19.
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IN THE LAB

]louu lnaltybuhhles are inyotll' [uhhly?

by A. Stasenko

OMETIMES A LIQUID "BOILS
oYer" for no obvious reason.
This happens when a liquid is
pumped up to the surface from

deep wells, when a pipe carrying
coolant at a power plant bursts, or
when a bottle of champagne, beer, or
soda pop is opened. Who hasn't
looked with pleasure on a carbon-
ated beverage, sparkling with danc-
ing bubbles, on a hot summer day?

When such liquids are transported
in pipelines, it's important to know
what volume of the gas dissolved in
them has separated from the liquid
as bubbles. Of course, one could sim-
ply take a sample, but in the time it
takes to analyzeit, what relationship
will it have to the mixture at the
time the sample was taken? It would
be better to use an electromagnetic
field-information about how it is
changing travels with a speed of the
order of the speed of light, so that the
actual technological processes will
appear "fiozert" or quasi-static, to
use the scientific term.

Let's consider how an ordinary
parallel-plate capacitor can test the
properties of a liquid flowing through

it almost instantaneously. Assume
that the liquid has a dielectric con-
stant € and contains gas bubbles (of

various sizes) in which e, : 1 (figure
1). We'll consider a bubble "Iarge" rf
its size is comparable to the length 7

and width d of the capacitori corre-
spondingly , " srr,all" bubbles are
those whose dimensions are much
less than d.

Let's say we connect the plates of
a capacitor (each of area S) to a bat-
tery with constant emf V. We intu-
itively feel that "something" will
differ in the cases when the capaci-
tor is filled with iiquid or gas. What
is this enigmatic "something" bnd
how should we measure it?

If we neglect the resistance of the
connecting wires and the internal
resistance of the battery, the voltage
drop across the capacitor will always
be a constant value V. More pre-
cisely, the eiectrical conductance of
the gas-fluid mixture is assumed to
be negligibly small compared to the
conductance of the wires or internal
conductance of the battery. There-
fore, in the extreme cases under con-
sideration (lic1uid or gas inside the

capacitor), the strength o{ the elec-
tric field in the capacitor will be the
same: E = Vld. In contrast, the
charge on the capacitor will be dif-
ferent in the two cases. Indeed, the
capacitance of an empty parallel-
plate capacitor is C, : xoS f d, while
the capacitance of a capacitor filled
with a dielectric is e times greater:
C,= eCr. The charge on the filled ca-
pacitor is qre = C rrV.In other words,
in the cases considered, the charge
and its surface density on the plates
will differ by a factor of e:

Q": eQt, 6" = eolr

where

OrV
or =t-9-od

By the way, the strength of the elec-
tric field between the plates will be
the same at every point, even if the
dielectric substance is only partially
"inserted" into the capacitor (figure
1). Were this not so, the work per-
formed in moving a test charge
along the path abcf a would not
equalzero, and this is strictly forbid-
den in electrostatics.

We can see that if at a given mo-
ment the dielectric occupies part of
the capacitor's length 1'f 1, the totaL
charge on the capacitor will be

( 7',\ t'4=qr[I-i)*'1,7

=ejl[,.1(.-,t) (r)d [ 1' ')
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If the dielectric moves into the
capacitor with a constant speed v
ll' = vtl, a direct current will flow in
the circuit;

t = 4= tosv '(. - I)dL d /-'- -' 
0l

at0<r<1.
v

When liquid fills the entire length of
the capacitor, the charge reaches its
largest value, e, = tet, and remains
at this value.

In contrast, when a bubble enters
the capacitor, its charge will de-
crease at the same rate, andthe elec-
tric current willf1ow in the opposite
direction (figure 2). Therefore, even
if our flat pipe is opaque, we can
"see" the motion of the gas and liq-
uid parts of the fluid mixture
through changes in the electromag-
netic field.

From the technological perspec-
tive, this type of flow-a gas-fluid
mixture in which large bubbles fili
the entire cross section of the pipe-
is undesirable. For example, in the
production of carbonated water,
both phases are separated in such a
flow, while the intent is that they be
mixed. Let's 100k at a more useful
type of flow.

This time, let the gas "bubble"
take the shape of a flat slit of width

Figure 3

+o'AS

_O,AS

Figure 4

h, parallel to the plates of the capaci-
tor (see figures I and 3). As be{ore,
we must perform zero work in mov-
ing the test charge along the path
abcfa (frgure 3). In other words, the
potential difference between points
a and / is equal to that between
points b and c:

E,(d -h) + Erh = V, (3)

where E, is the field strength in the
slit and E. is the corresponding value
in the dielectric (that is, in the liq-
uid) on both sides of the slit. In ad-
dltion,

Er= eEr. (4)

By the way, this is what your
physics textbook says: the relative
dielectric constant of a medium is
a physical magnitude that shows
by what f actor the electric field
strength (E,) inside a uniform di-
electric substance is less than the
field strengthin avacuum. And this
stipulation is tacked on: the defini-
tion is correct only in particular
cases-say/ for plates in a uniform
field (and it's invalid for a hollow
sphere). So let's think more carefully
about the physical meaning of e. Pre-
viously we considered it to be the
factor by which the capacitance of a
parallel-plate capacitor filled with a
dielectric is greater than that of an
"enpty" capacitor.

Imagine that we cut a prism with
a cross-sectional area AS out of our
device (figure 4). The capacitor
plate earries an electric charge
+oAS, and in a vacuum the electric
field above this plate is E, = o/eo (be-
low the plate-that is, outside the
capacitor-it's zero). Our dielectric
prism is located in an external elec-
tric field E/ so it's polaizedby that
fieid. This property is illustrated by
the dipoles, which are oriented ver:
tically.

Inside the prism, the unlike
charges of adjacent dipoles cancel
each other out, while their non-
compensated "tails," with charges
of +6'45, protrude outside the prism.
Therefore, the dipoie moment of the
prism is Ap = o'A,Sd'and is directed
upward-that is, from the negative
charge to the positive charge. The
strength of the electric field gener-
ated by these polarized charges
equals E'= -o'lEo and is directed
counter to the dipole moment and
the external field. Thus the strength
of the total electric field is

E,=E'+Ei--{*9.to to

One step remains. Let's introduce
the concept of the volume density o{
the dipole moment:

p=,L=Prr=o,=-€0E,.
LSd',

This physical value is related to the
total field in the dielectric according
to following equation:

P=eo(e-tlE.,

which may be considered a general
definition of the 1oca1 relative di-
electric constant valid for any point
ln both a uniform (homogeneous)
and nonunlform (heterogeneous) di-
electric.

Equations (3) and (4) yield the
electric charge on the plates when
the gas slit is longer than the capaci-
tor of length I (that is, the bubble
projects beyond its edges):

{ = e6€sE. = tc sI/F\t" 6\"/'
Here we used the notation of the
volume dielectric constant

q

cLll

Figure 2
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\.1 - 1+(e-t)hld'

which takes into account the por-
tion of the volume (h/d) occupied by
the flat slit.

If we use ecluation (1) analogously
to examine the process by which the
"bubble" gradually moves into the'
capacitor with a constant speed v,
we can use equation (2) analogously
to find the current flowing in the
circuit:

v
1 1+(e-t)hl d

t(e -I)h I d

This formula is quite different from
ecluation (2), although it coincides
with it whenhld -+ l-that is, when
the gas bubble is moving into the
capacitor (see the falling branch of
1(t) in figure 2).

However, the time has come to
say a few words about small bubbles
(the left side of figure 1). Although
these bubbles are small, their total
relative volume car, vary within
broad limits-from zero (when the
gas phase is absent) to one (when all
the small bubbles are fused into a
single large gas bubble). The diffi'
culty in describing such a heteroge-
neous medium is aggravated even
more by the fact that the bubbles
may have different radii, and the dis-
tances between them may vary ran-
domly. Moreover, they may collide
and fuse into larger bubbles, or a
large bubble may disintegrate into
smaller bubbles. To make the pic-
ture even more confused, there is an
electric field, which polarizes the
bubbles and therefore converts them
to interacting dipoles.

Speaking of which, do you know
in what field a bubble-dipole is situ-
ated? Answer: in the total electric
field generated by all sources-the
free charges in the plates and the
bound (polarized) charges. So what is
the precise meaning of the phrase "a
bubble is situated in the field" ? Per-
haps it refers to the field that would
be located in the place occupied by
the bubble if the bubble itself were
removed from this place (a charge
must not affect itself)-then in the

"emptiness" left by the bubble there
would remain a field generated by
all the remaining electric charges.
Many outstanding scientists have
racked their brains over this prob-
lem: Irving Langmuir, Rudolf
Clausius, Ottaviano Mossotti,
Hendrik Lorentz ...

Now you see that our problem is
not trivial. In such cases physicists
often say: let's break the problem
down into smaller parts. First, we'll
consider a single spherical bubble in
an infinite volume of 1ic1uid, where
a uniform electric field f. is gener-
ated sufficiently lar (" at rnfinrty")
from the bubble. Then we'l1 assume
that there are many such bubbles in
the liquid (N bubbles in one cubic
meter), but all these bubbles are
identical and located (on average) at
the same distance from one another
(this distance is about 1/ 3.,N 

). As a

result, we'll obtain some effective
dielectric constant, averaged over
the entire volume, that character-
izes this bubble-liquid mixture.

However, even this moderate
plan of theoretical work cannot be
realized easily. But then, we don't
have to go the whole way: the two
examples given above showed that
the result depends on the total vol-
ume of the bubbles in the space be-
tween the plates. Therefore, the de-
pendence of the electric current in
the real circuit on time wiil di{fer
from that in these examples.

Have we taken ail the important
factors into account? Not by a long
shot. For example, the dielectric
substance will be drawn into the
capacitor due to the interaction be-
tween the charged plates and the
induced charges in the substance.
This means that/ in the first case
(shell-like large bubbles), a bubble in
the capacitor will be compressed
from the left and right by two "pis-
tons" of fluid. Similar compression
takes place in the gas-liquid mixture
if the total volume of the bubbles
varies within the space, so that the
motion of the fluid is not uniform.

Also, in reality the resistance of
the connecting wires and the inter-
nal resistance of the voltage source
are not negligibly small. ff their sum

is r, the voltage difference across the
plates of the capacitor will be

:- =v - il(t),c(r)

which in contrast to the previous ap-
proximation is not a constant value.
In a precise theory we would also
have to take into account the induc-
tance L of the circuit and the corre-
sponding self-induced ernf -LdI I dt,
so that Kirchhoff's law assumes the
form of an awful differential eclua-

tion for the electric charge:

, d'q dq Lr ,,l.----++r '+--v.
dt' dt C(t)

which describes the damped oscilla-
tions. This equation is a tough nut
to crack, because the capacitance C
varies with time (this variation is
the cornerstone of our method of
testing the gas-liquid mixture). But
we would expect that the simple de-
pendences of charge and current (the
solid lines in figure 2) on time will
show an oscillating p atterfl (the dot-
ted curves in the same figure).

We might propose other methods
of measurement. For example, we
may charge the capacitor to some
voltage and switch the battery off.
Since the conductance of the dielec-
tric licluid is negligible (and the con-
ductance of the gas is even smalier),
the charge on the capacitor plates
will be constant. When a liquid
with a different bubble content
flows through such a capacitor, the
difference in potential across the
plates will change. Such devices are
known as capacitor-type transduc-
ers and are widely used in science
and technology.

We must admit that such mea-
surements yield only the total rela-
tive volume of the gas phase, not the
number of bubbles per unit volume.
It would also be nice to know their
average size. For this, we'd need to
exploit other physical phenomena
and use other instruments (for ex-
ample, optical devices). So, before
you open that bottle of soda, think
about the number of bubbles in it and
the laws of nature. Bon app6titl 0
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AT THE
BLACKBOARD III

0l'ouuelocily
by Helio Waldman

I T'S NICE TO SEE GROUPS OF PEOPLE WALKING
I together on a path, groups of birds flying together in
I the sky, groups of ducks swimming together on a
I lake. It seems so natural that they do so. And yet, we
know that to do so, each member of the group is exer-
cising some kind of control over its position and veloc-
ity: the velocity of the group is unlike the velocity that
each of its members would have if travelling by itself.
Are they following aleader, or is the group leading it-
self? What kind of rules are the individuals following,
and how do these individual rules relate to their coliec-
tive, group behavior? These are nice questions to ask,
but they may be tough-or fun-to answer.

Waues
The concept of group velocity also arises in the con-

text of waves. In this domain, it relates to the speed with
which perturbations in a wave move in space, and with
respect to its basic structure. The basic wave is gener-
ally thought to be something like:

s(x, t) : A cos(ot - kx), (11

where s is the wavelike variable quantity (for instance,
an electric or magnetic field, pressure, or deformation),
t is time, x is the wave direction in space/ a:Znf T , k:
Znllu, T is the time period, and l. is the wave period in
the x-direction of space, also called the wavelength.

The basic waves have their own speed, called the
phase velocity. Consider, for example/ a srest of the
wave described by equation (1), that is, a point where s
: A. In equation (1), crests occur whenever the argument
of the cosine function is a multiple of 2x. The equation
of motion for the crest is then

cor-kx=mZn.

By differentiating this equation, we get the phase
velocity, which is the speed with which crests/ or any
other "constant phase" points of the wave/ move:

In practice, however, one would never meet with a
basic wave in its "pure" form as described by equation
(1). Let's see what happens when two waves (a"group"
as elementary as possible)with the same amplitude, but
slightly diff erent frequencies and wavelengths, superim-
pose, forming a spatial-temporal pattern given by

srrlx, tl: A[cos(arrr - krr) + cos(ort - kzrl]. (3)

From the rules of trigonometry:

sr:t11= 2A."r(q+, - 
k' j k' ,)

/ c'-r, - c'-r. k, - k, \'cos[ r r- , rl

which is the product of two basic waves! We can see
that the sum (superposition) of two basic waves is
equivalent to the product (or "modulation"l of two
other basic waves. These two other basic waves may be
identified by direct inspection of the sinusoidal factors
in equation (a). The first factor, which may be called a
caruier in the language of communications, has its tem-
poral and spatial frequencies given by the averages of the
temporal and spatial frecluencies of the basicpomponent
wayes. The second factor, which may be called the
modulation of the caruier, has its frequencies (tempo-
ral and spatial) given by one half of the corresponding
differences between the frequencies of the basic waves.

4t

(2)
dx rr)\/ - _ - _'P- dt- k

l4)
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Figure 1. A "group" of two waves.

If ro and k are the averages, and aro and Ak the half-dif-
ferences, we have

s,, (t) : ZAcos(at-kx)cos(Arrl' t-Ak'x). (5)

Figure 1 shows a snapshot of this wave for some in-
stant of time. One sees that the carrier is multiplied by
another wave represented by a sinusoidal envelope.

Because the figure is stationary, it cannot show that
the waves will, in general, have two different velocities.
By applying equation (2) to each wave, we see that the
basic wave crests move with velocity ot/k while the en-
velope wave crests move with velocity Aro/A-k. The
former is called the phase velocity of the composite
wdve; the latter is called the group velocity, which in
the limit (for very small lro) is given by

da
"aR

This example is still artl{icial, since the modulation
itself is also an infinite wave. A more natural instance
of the same phenomenon is given by an electromagnetic
pulse with finite duration, formed by a finite number of
wave crests. In this case, it is possible to show that the
pulse may also be decomposed into basic waves given
by equation (1), only there are not iust two anymore, but
rather a continuum of frecluencies that occupies a spec-
tral range about as wide as the inverse of the pulse du-
ration. In spite of the increased complexity of the situ-
ation, the group velocity given by equation (6) will keep
its validity insofar as the pulse is not distorted beyond
recognition by the effect of the higher-order derivatives
of ol with respect to k.

We started with the discussion of moving objects
(birds, people, and so on), and went on to discuss waves.
One might ask whether we are not mixing things up.
Let us remind ourselves that waves are a succession of
identical objects, which may be thought of as cycles,
crests, or individuals with astandardized behavior. The
next sections show that this individual behavior deter-
mines the velocity of any group of individuals that for
some reason has detached itself from the regular pattem

of a periodic queue. This "group" velocity is in general
different from the velocity of the surrounding crowd (the

"phase" velocity).

Inmt'lmenm [atlst'n$ ([eflt$)

Let's see how the group velocity given by equation
(6) emerges naturally from the behavior of the members
of the "group." For this purpose/ let's establish a rela-
tionship between the phase and group velocities given
by equations (2) and (6), respectively:

da a(Xv,\ , dr,
v_= 

-=---r------i-1 
= v^t 11--!. (7)Edkdkudk

Since )"k = 2n = constant/ one has

vs= vp-^* (B)

In order to visualize how this relationship between
phase and group velocities emerges from the behavior
of the succeeding objects in each wave/ the reader may
perform ayery simple experiment at home. It is enough
to take two combs of similar, but not equal, spacings,
and just superimpose them: observing them against the
light, one can see an interference pattern (called "beats")
between the two periodic patterns. If we slowly move
one comb against the other, we can see that this inter-
ference pattern moves much faster than the moving
comb, and not necessarily in the same direction. If the
comb with the largest spacing moves to the right with
the other comb fixed, the interference pattem will move
to the left.

Figufe 2, when B is shifted L)'" to the ilght, the pattem
moves )" to the left,

Let's see what is happening. Let )" be the spacing be-

tween the spokes of comb A, and (1, + A),) of comb B ({ig-

ure 2). The motion of the beat pattern may be in{erred by
following the point of coincidence between spokes of
both combs as one of them moves with respect to the
other. If A). > 0, every time B moves Al, to theright with
respect to A, the point of coincidence moves to the A
spoke immediately to the left; that is, it moves l" to the
1e{t. Thus, the pattem moves against the direction of B
with respectto A, but ),/A)" times faster. Now suppose A
moves with velocity v,and B with velocity vr+ Lvoin
the same direction in space. The pattem will tlien move
with velocity v,-lXla,)'lLvo, which approaches equation
(8) when all increments tend to zero.

The examples above show that a pattern formed by
the superposition of two periodical structures moves
with respect to them with a speed that depends on the

(6)
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derivative of the basic wave velocity with respect to its
spatial period. Hence the distinction between phase and
group velocities.

This distinction disappears/ of course, if all basic
periodrc patterns move with the same exact velocity.
This happcns with elcctrolnagncric waves in vacuum.
Since they a1l move with the same velocity c = 300,000
km/s, any interference pattern benveen thern will also
move with the same r,,elocity c. In matter, however,
propagation velocities depend on the wavelength, be-
cause the "frequency response" of the atoms to alter-
nating excitations is not f1at. This results in a group
velocity different from the phase velocity.

Tl'affic
Let's now see how we can uncover this same concept

from the individual behavior of objects in a moving
queue. Consider, for example/ a sequence of cars in a
traffic-saturated road, with the vehicles traveling with
speed v and spacing i" between them. Along the traffic
flow there is a "congested" zone, where the spacing is
reduced to l. - A), and the speed to v - Av (figure 3). In
this case, if we can show that the boundaries of the con-
gested zone move with the same speed and direction,
this zone is characterized as a " gro'op," and its bound-
aries move with a group velocity vr.

v-Lv i+i
F Ei E E
li_^^

Figure 3. "Congested" zone in a road.

Consider the front of the congested zone moving
ahead wrth speed rlo < r/ - Ay. A car in the congested zone
approaches the froilt with speed y - Ay - v., which is also
the speed with which the car sees the eha of the con-
gestion approaching it. When it arrives at the end of the
congestion/ it increases its speed 16 12, thus moving away
from the car behind it with relative speed Av. After time
Ai/Av, the spacing between them will have increased
{rom i - A}, to }", meaning that the congestion front
reachecl the next car behind; that is, it moved ), - A).
backr'vard as seen from any car in the congested zone.
Thereiore,

r -Av -v _ t-ol- r^r)
Ir"J

In th; ,]:t:: irr srla11 rncrements:

=. -)-+. re)
.!)' I

Thrs .:-,-.:, _ -: i t:t;tttirrn oi equation (8), with
undistur:-::t-:::-- >t::* -:.k::-tg thc role oi phase ve-
locity, anj.: -:a:-- r- -t::i t..-t::..riln-q group r.eloc-
ity v.*. lJsrn:.-::- :: :rr--rr-:mii :aa sene conch:sion

may be reached about the tail of the congested zone.
In this example, one can see explicitly how the group

velocity, now represented by the congestion velocity,
depends on the behavior of the drivers, that is, on the
spacing l, between cars as a function of the speed v of
the traffic flow. The conventional behavior (recom-
mended by the transit authorities, and followed by the
typical driver) implies spacing proportional to speed,
thus making y proportional to ),. Setting v = Alufor any
constant A, one gets % = 0 in equation (9), meaning that
the group velocity is Zero in this case. Therefore, con-
ventional driving behavior produces static traffic jams
that move neither forward nor backward! In practice,
one may observe that such congested zones last for
hours, even after the generating cause has disappeared.

Some people wonder why traffic iams do not move
forward with the traffic flow. In ecluation (9), one can see
that for this to happen lrn = ,), the moving cars would
have to maintain their sfeed independent of the spac-
ing ),, that is, drivers would have to be extremely im-
prudent. This vision, however, suggests some intrigu-
ing possibilities. In a futuristic situation, one might
consider cars being driven by networked automata.
Their driving behavior might then be safely repro-
grammed so that tra{fic jams move forward or back-
ward, thus restoring traffic fluidity after some time! For
example, if the spacing is proportional to the square of
the speed (doubling when the speed increases only
41.4%1, we can see from equation (9) that traffic jams
would move along with the traffic at one half of the
traffic's speed (v" : vl2l.On the other hand, a more ag-
gressive behavio'r in which the spacing is proportional
to the square root of the speed (thus doubiing only when
the speed is quadrupled), would make traffic jams mi-
grate against the flow of traf{ic, with the same speed as
the traffic (rr = -rl.

Conclusions

Group velocity is usually seen as a concept that
emerges in the analysis of the behavior of groups of
waves. We have tried to argue that it is actually more
widely applicable, as it characterizes the collective
motion of groups of objects that follow a standard indi-
vidual behavior given by a functional relation between
velocity and spacing. The double interpretation reflects
an ambiguity in the way we may decompose such se-
quences of moving objects. Decomposing them into in-
dividuals seems more natural in the analysis of "social"
situations such as traffic. Decomposing them into su-
perposed periodic structures (waves) is more conve-
nient, for example, in the analysis of the propagation of
electromagnetic pulses in linear media. In modern phys-
ics, this ambiguity reemerges in some exotic contexts/
such as the wave-particle duality of the behavior of el-
ementary particles. O
Helio Waldman is a professor in the School of Electrical and
Computu Engineering at the State (Jniversity of Campinas,
Sao Paulo, Brazil.
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Plrysics

P306
Both the helicopter and the scale

model are kept in the air by the re-
active {orce arising when the rotors
force the air downward. According
to Newton's third law, the reactive
force acting on the rotors and sup-
porting the helicopter has the same
magnitude as the force exerted on
the air stream by the rotors.

Let's denote air density by p, the
cross-sectional area of the airstream
by S, and the air speed by v. During
a short time A, the rotors push air
with a volume SvAt and rnass 17? =
pSvAt. Therefore, the momentum of
the propelled air changes by

Lp=mv=pS*tt.
According to Newton's second law,
the air experiences a force F equal to

^apt =: = OSy2.
At

A force of the same magnitude acts
on the helicopter. To hold the heli-
copter in the air, this force must be
equal to its weight:

pSv2 : Mg. (t)

The power P of the engine is
equal to the energy imparted to the
airstream in one second:

n mrz pSv3

2Lt 2

Plugging in

from equation (1), we get

,= aw
lPs

ANSWERS,
HINTS &

SOLUTIONS

Since the mass of the helicopter is
proportional to its volume (that is,
to the third power of its linear
sizel-M* 13, while S - I3-equa-
tion (2)yields

P - L712.

Thus the ratio of the power of the
helicopter's motor to the power of
the model's motor must be equal to
the ratio of their linear sizes raised
to the 7 f2 power-that is,

P (t\7tz
-t _ I

Pmodel [l.oa"r,J '

from which we get

P: P-.d.I . lo7l2 = 95 kW.

P307
The number of molecules that

escape {rom the balloon during time
tis

t^,Z = . nS(v*)t,2'
where (v,) is the mean value of the
projection of the molecular velocity
onto the x-axis (which is perpen-
dicular to the wa1l where the hole
is), S is the area of the hole, and n is
the concentration of gas molecules
in the balloon (the number of mol-
ecules per unit volume).

(v,) is proportional to the speed v
of the thermal motion of the mol-
ecules. Since

(p is the molar mass of the gas),
("") - r,8. ft 

" 
ideal gas equation P

= nkT yields n = PlkT.
Therefore,

This equation says that a four-
fold increase in temperature/ com-
bined with an eightfold increase in"
pressure/ increases the leakage rate
by afactor of four.

P3OB
To ensure stable operation of the

spark generator, the discharge in the
spark gap must not affect the charg-
ing of the capacitor. This is possible
when the time it takes for the ca-
pacitor to discharge across the spark
gap is far less than the time required
for a battery to charge it to the volt-
age V.

In this case, there is no current in
the spark gap when the voltage
across the capacitor is zero. Under
these conditions, the spark gap re-
stores its dielectric properties. The
next discharge will occur when the
voltage across the gap (and across
the capacitor) reaches V.

While the capacitor is being
charged to the voltage V, thebattery
performs work W = qE, where q:
CV is the charge on the capacitor.
According to the energy conserva-
tion law, W : Q + CV2f2,where Q
is the energy dissipated by the resis-
tor whiie the capacitor is being dis-
charged. Therefore,

Cvz=Q+CWIZ,
from which we get

Q = Cv'-€(r -vlzzl.
Since the duration of the dis-

charge across the spark gap is small,
we neglect the energy dissipated by
the resistor during this time.

If the capacitor is charged n times
per second, the mean power dissi-
pated by the resistor is

r = ncvz(r ;+)

af(t

t,

p =!y, @.2 "1Ps (2)
DD

'z-' T t
L-- \1 --.T i7
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P309
The rate of decrease of the current

in the circuit drops as the current
decreases, 6ecause the induction
emf is equal to the product of the
current in the circuit and the resis-
tance of the wire in the coil:

AI
-L: = RI

Lt
OI

,N _,- ,.Af .I
This equation says that the current
decreases by the same factor in
equal time intervals. This is also
true for the dissipated power. There-
fore, in the next 100 ms, 0.01 . 0.52 J

o{ heat will be dissipated by the coil.
The total amount of heat is given by
the following sum:

Qtot,l =0.0r(r+ 0.6+0.62 +0.03 +...)l

- o'01 
T = 0.025 T.

t-0.6 '

P31 0
We can't use the concept of dif-

fraction to explain the phenomenon
of "two shadows" because the size
oi the diffraction pattern at such a

distance is very small.
The problem can be solved if we

take note that the Sun is not a point
source of light. It has a certain finite
angular size. With this in mind, and
referring to figure 1, we can explain
the strange phenomenon of a

"countershadow. "
The angular size of the Sun is

about a half-degree. Although this
isn't much, it's enough to produce
indistinct shadows on a sunny day.
The degree of blurring of the
shadow's edge depends on the dis-
tance from the object to the screen.
Although the shadow's edge in our
experiment appears sharp, that's not
really the case. In addition to an area
of "complete shadow," there is also
a gray region called the penumbra.
When your finger approaching the
object cuts off some of the rays fall-
ing into the penumbra, a counter-
shadow appears on the screen. Fur-
ther motion of the finger downward

Figure 1

produces a fusion of the complete
shadow with the penumbra at the
boundary between the illuminated
part of the screen and the penumbra.

By measuring the distances be-
tween object (cardboard) and the
screen and between your finger and
the object, as well as the size of the
countershadow just before both
shadows fuse, we can determine the
angular size of the Sun using some
very simple geometry.

llllath

Ms06
Suppose k > 0 is the largest num-

ber on a seat for which a ticket has
been sold. Let K > k be the largest
number with the following property:
for any r from k through K, the num-
ber f(il of tickets sold for seats num-
bered from k through i is at least a
great as the number g{i) : i -k + 1 of
these seats.

Now it is clear that after everyone
has been seated, then for any ii = k,
k + 1, ..., K, the ith seat will be oc-
cupied, and fliil - g(ii) "Oh!"s will
have been uttered in going from the
Ith piace to the (i + l)st place. After
all, this is exactly the number of
seats lacking for the spectators with
numbers k through l.

If there are more spectators than
those who occupied seats k through
K, we consider the least number k'
> K, and repeat the same reasoning
for the spectators occupying seats k'
through a K', (where K , k'), and so

on. (Note that this description hoids
evenifn<m.l

Thus, not only is the total num-
ber of "Oh!"s independent of the

order in which the spectators arrive,
so is the number of "Oh!"s uttered
as spectators pass from place r to
place (i + 1), for each value of r.

M307
Denote the given diameters by

BC and DE and the centers of the
corresponding circles by O, and Or.
From O, and O, we draw perpen-
diculars to the corresponding diam-
eters and call the point of their inter-
section F (see figure 2). We'll prove
that F is the center of the desired
circle.

Notice that OrF ll AOz, since OrF
and AO, are perpendicular to BC.
Similarly, FO2ll AO,. Therefore,
AOrFo2is a parallelogram, and so
FOr= AOr= BOrandFOr= AOr=
DOr.Hence the triangles BO'F and
FO2D are congruent, and we have
FB : FD. Moreover, from the con-
struction, point F lies on the perpen-
dicular bisectors of segments BC
and DE; therefore, FC = FD : FE, as

was to be proved.

M30B
The situation is not possible.
Suppose that the numbers I,2,3,

4, 5, 7, and 8 are the roots of the
equation flslhlxll) = 0. ff the line x =
a is the axis of the parabola defined
by the equation y = h(x), then h(x,)
= h(x2l if and only lf x, + xr:2a, The
polynomial /(g(x))has no more than
four roots. However, the numbers
h(l), h(21,..., h(8) are a list of its roots,
with some repeats. It follows that a
: 4.5 andhl4l = h(s), hl3) : h(6), h(2)

= h(71, and h( 1 ) : h(B ). In addition, we
incidentally proved that the num-
bers h(1), h(2), h(3), ar.dh(4) form a

monotonic sequence.
Similarly, considering the trino-

mial l(x) and its roots g(h(1)), s(hlz)),

Figure 2
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sb(3)1, and g(h(41), we find that h(rl
+ h(l : 2b and h(2) + hl}l = 2b, wherc
the line x : b is the axis of the pa-
rabola defined by the ecluation y =
g(x). However, a little algebra shows
that if h(x) : A* + Bx + C and I(1) +

h(41 : h(21 + h(3), then A : 0. Thus
we have arrived at a contradiction.

M309
First, consider a line I through C

that intersects segment AB-that is,
those passing inside the angle ACB.
Let ZACB: 2y. The product P of the
distances from points A arrdB to line
I equals (see figure 3)

P=ab sinQ sinry
= ablcos (0 - v) - cos (q + v)|12,

where Q and V are the angles formed
by l with segments AC and BC, re-
spectively. In this expression, the
quantities a, b, and 0 * V: 2y arc
constant/ so P is largest when cos (q

- V) is largest, which is when Q = y.
This maximum is given by

P' = ab(I - cos 2yll2 : ab sinz y.

If 1 passes outside angle ACB, the
formula for P is the same (see figure
4). In this case, the sum Q + V = n -
2y = 26 is also constant and ecluals
the exterior angle at the vertex C of
triangle ABC. The maximum value
of P is attained for Q : y and equals

Pz = ab sin2 5'

Thus if the angie 2y = ZACB > nlZ,
then the desired line is the bisector
7' of angle ACB lrn this case, sin2 y >
sin2 5 and Pr > Pzl.If 2y < nlZ, then
the desired line is the bisector 1" of
the exterior angle at vertex C of tri-
angle ABC (Pr < Pzl.If 2y: nlL, then
Pr: Prand there exist two lines with
the same maximum product P: 1'
and 1".

M310
Each problem was not solved by

three of the eight students. Suppose
that no two students exist who (to-
gether) solved allthe problems. This
means that, for every pair of stu-
dents {X, Y}, there exists a problem
P,*,r,that they didn't solve. There
exists I 712 = 28 pairs {X, Y}. How-
ever/ every one of the eight problems
can play the role of. P,, 

", 
only for

three pairs lX , Yl, and 8 . 3 : 24 < 28 .

Thus we arrive at a contradiction.
The main reasoning we used here

is making the transition to comple-
mentary sets and "negations." Simi-
lar reasoning makes it possible to
show that if there are p problems
and a students/ every problem was
solved by no less than n - m stu-
dents, and n(n - ll > pm(m - 1), then
there exist two students who solved
(together) all problems. If n(n - 1) ...
(a-k + 7)>pm(m* 1)... (m-k+ll,
then, for a certain k > 1, there exist
k students who solved (together) all
the problems.

Bl'ainlea$Ers

8306
Let ZBDA= ZCDB: o. Since BC

= CD, we have /.CBD : cr. There-
torc, BC ll AD. Two cases are pos-
sible (figure 4).

(Il AB is parallel to CD. Then
ABCD is a rhombus, ABD is an equi-
IateraL triangle, arrd ZBAD = 60'.

(2) AB is not parallel to CD. Then
ABCD is a trapezoid. By the state-
ment of the problem, it is isosceles
and zBAD = LABD = 2cr. Thus we
have u + 2a + 2s: 180". Therefore,
u:36", and LBAD = 72'.

So the answer is 60" or 72.

A
Figure 4

Figure 5

8307
Let's construct a triangle AOE

congruent to BCD as shown in figure
5. It foliows from the conclition of
the problem that ABCO and EDCO
are rhombuses. Indeed, in cluadrrlat-
eral ABDE, BD = AE, and AB : DE.
Thus it is a parallelogran, so AB
DE and AE 11 BD. Nol, CD ancl OE
make equal angles rvith the paral1e1
lines BD and Af, and so Of CD, so
that OEDC is a rhombus. It's clear
that O is the cenrer of the desired
circle, and its radius equals 1.

Bs08
We can break the 10 x 10 scluare

dorvn into twenty-five 2 x 2 squares.
It's clear that there can't be more

Figure 6
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HIS MONTH'S CYBERTEASER
was a bridge too far for some con-
testants/ however, the majority

of you were able to bridge the men-
tai gap and correctly calculate the
time that Nick and George arrived
at the span in cluestion. The follow-
ing were the first ten correct solu-
tions to the problems received at
Qu antum headcluarters :

ferold Lewandowski (Troy, New
York)
Nick Fonarev (staten Island, New
York)
Marco Devigili (Verona, Italy)
Theo Koupelis (Wausau, Wisconsin)
Anastasia Nikitina (Pasadena, Cali-
fornia)
Michael H. Brill (Morrisville, Penn-
sylvania)
Bruno Konder (Rio de |aneiro, Brazlll

sum of the distances walked by each
of them-that is,

-e)

= L( ,r, - 2ll).
16\ 2 )

Setting these expressions equal to
each other, we obtain

L( 21r\ 31r_l llt__ l=-16[-" z ) 32'

which gives us t : 11 o'clock.

831 0
The key to the problem is the in-

ertia of the air in the car. When the
car slowed down, the air continued
to move forward. This increased the
pressure at the front platform and
decreased the pressure at the rear
platform. Hence, the storyteller was
standing on the rear platform as the
decreased pressure would cause air
to {low from the vent.

than two highly paid officials in
each square; thus the number of
such officials cannot exceed 50. Fig-
ure 6 shows an arrangement and
salaries of the officials such that 50
of them can consider themselves
highly paid.

8309
It took Nick 3 hours 12 min-

utes-that is, 16l5 hours-to reach
Georgetown, and it took George 2
hours 40 minutes-that is, 8/3
hours-to reach Nicktown. Denot-
ing the distance between the towns
by I miles, we find that Nick was
walking at a speed of 5L I l6mph and
George's speed was 3I/B mph. We
can determine the length of the
bridge 7, since we know that George
crossed it one minute faster than
Nick: rGUsL - 8U3L: 1/60. This
yields 1: L132. Let t be the moment
the boys reached the bridge. At this
moment, the total distance walked
by both boys was L - Ll32 = 3lLl32.
On the other hand, this equals the
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HAPPENINGS

facopo De Simoi (Treviso, Ita1y)
fohn Beam (Bellaire, Texas)
Manny Dekermeniian iMenlo Park,
California)

Our congratulations to this month's
winners/ who will receive a copy of
this issue of Quantum and the cov-
eted Quantum button. Everyone
who submitted a correct answer (up

to the time the answer is posted on
the web) is entered into a drawing
for a copy of Quantum Quandailes,
a stimulating collection of 100

Quantum brainteasers. Our thanks
to everyone who submitted an an-
swer-right or wrong. The new
CyberTeaser can be found athttp:ll
www.nsta.org/quantum. O

ilu,-r,
Dennis Loonev
Senior Vrcc President ancl Chief Financirl Otiicer
Date: 10/0,1i00

PocketScope 37
Princeton
University Press 39
Discovery
Channel School Cover4
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INFORMATICS

Pel'lecl shullle

by Don Piele

OW MANY TIMES DO YOU NEED TO SHUFFLE
a deck of cards to feel reasonably certain that the
cards are in random order? If you shuffle more
times, do you feel the randomness improves? If you

are yery good at shuffling and are able to get the maxi-
mum amount of intermingling with each shuffle, will
the randomness improve? Let's investigate these ques-
tions assuming we perform a "pertect shuffle." You may
be surprised at the outcome.

What is aperfect shuffle? Take a deck of 52 cards and
divide it in the middle (called a cut) so you have two
piles of 26 cards each. Call the top pile A and the bot-
tom pile B. Now shuffle the cards together by taking one
card from the bottom of pile A, followed by one card
from the bottom of pile B. Repeat this process , alternat-
ing cards from pile A and pile B until all cards are in-
terlaced into one pile. This is a perfect shuffle.

Actually, it is calied a"perfect in-shuffle" because al1
the cards, including the top and bottom card, aremoved
inside the deck to new positions. Had we decided to take
our first card from the bottom of pile B, then we would
have performed a "perfect out-shuffle." In this case the
top and bottom cards always stay on top and bottom.

It is easy to see that in a perfect in-shuffle alI the cards
move to new positions. If you number the cards con-
secutively from I to 52 (from bottom to top), then the
bottom card from pile B (originally in the I position)
moves to position 2, and all other cards in pile B move
to even higher positions. For plle A, all cards move into
lower positions. Thus, all cards change their position
after one perfect in-shuffle. All of the perfect shuffles
done here willbe in-shuffles and I will leave as an exer-
cise the examination of out-shuffles.

What happens if we continue to do more perfect
shuffles?

Let/s take a small deck of 4 cards {1,2,3,4} and see
what happens.

Cut the cards A = |.3, 4], B : {1,2}. Do a perfect shuffle
to get {3, 1,4,2}.

Cut the cards A = 14,21, B :13,1). Do a perfect shuffle
to get {4, 3,2, ll.

Cut the cards A :{2,I1, B :{4,3]1. Do a perfect shuffle
to get {2, 4, 1,3]1.

Cut the cards A =11,3]1, B :{2, 4}. Do a perfect shuffle
to get {1, 2,3,4}.

We get the same order we started with after 4 per-
fect shuffles.

The matrix PS stores the order of the cards through
all perfect shuffles.

PS = ({1,2,3,41 , {3, L,4,21 , 14,3,2, ll ,
t2, 4, L, 3l , {L, 2, 3, 4ll

If we represent each card by a rectangle and color it
by its original position number, we can easily get a vi-
sual representation of the PS matrix. Notice that the top
and bottom rows are identical and the middle row is the
reverse of the first row. Also note how short the expres-
sion to create this visualization is in Mathematica.Hte
assigns the color for each position in the PS matrix and
Rectangle draws the corresponding rectangle.
AspectRatio makes the rectangles square.

ShowlGraphics ITable [ {IIue I (pSI Ij, i] I ) / 41,
Rectanglel{i, -j}, {1 + i, 1 - jl, lL, L,4l,
l), L, 5)ll, AspectRatio + 5/41

I wonder how many perfect shuffles it takes to get
back to the original order for a deck of 52 cards? What
about a deck of n cards? Before we can answer that ques-

l:?i1l

[i :il
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tion we need to develop an algorithm to automate the
perfect shuffle. Let's implement the algorithm in
Mathematica with a small deck of six cards.

Th algoniflrm'
First make a deck of six cards with nange.
cards=Range [6]

1r,2, 3, 4, 5, 6l

Divide them in two with Partition.
PartitionIcards, 3]

(t 2 3\tt
[4s6)
Now take one card from the bottom of each pile and

interlace them in a perfect in-shuffle. This can be done
in Mathematica as follows:

RotateRight 12"1

(4 s 6\ttt,l 2 3)

Note: To do an out-shuffle you would not apply
RotateRight to interchange the rows.

Transpose [9o]

Flatten [2"1

14, l, 5,2, 6, 3\

And there you have the results of the first perfect
shuffle. Now compose these commands to create a
shuffle function that wi1l be applied over and over again.

shuffle [cards_l : = Flattsen [Transpose
[RotateRight IPartition Icards, Length Icards] ./

2] I I I

The built-in Mathematica corrrrrrarrd ttestr,ist ap-
plies the shuffle functions to the deck of cards 3 times.

Nestlist I shuf f Ie, cards, 3 ]

(t z B 4 s 6)
lo r s z (,3l
lr. 4 6 r 3 slt-l
\1234s6)
For a deck of six cards, it returns to its original order

in 3 perfect shuffles. There goes any conjecture that a

deck of n cards requires n perfect shuffles to get back to
its original order.

If we use the restwhil-er,ist command, we can
make our program even smarter. Now it knows when

to stop iterating the shuffle function.It applies this func-
tion as long as the shuffles are all unequal.

PS = NestWhilelist [shuff1e, cards, Un-
equal, A11l

(t 2 3 4 s 6)
lo I s z 6 3lt_t
12 4 6 1 3 sl
fr234s6)
Showing the graph of our PS matrix, we see the per-

fect shuffles in color.

ShowlGraphics lTable[ (Irue t (Ps I I j, il I ) /
57, Rectangle[{i, -i]. {1 + i, 1 - j}l},
{i, L, 5L {), L, 4lll, AspectRatio + 4/61

Let's see what happens with 52 cards.

cards = Rangels2l,

PS = NestWhitelistlshuffle, cards, Ilnequal,
A11l;

show lGraphics [Tab1e [ {Iftre t (Ps t t j, il l) /521 ,
Rectangle[{i, -j}, {1 + i, 1 - j}l}, {i, L, 521,

U, L, 53)ll, AspectRatio + 1l

The card order is reversed after 26 shuffles and re-
turns to the original order in 52 shuffles.

0lhel' decks
We're not done yet. We need to investigate other deck

sizes. First we define a Perfectshuf f Ie function that
will investigate a deck of size n (n is even) and return
the minimum number of shuffles necessary to get back
to its original order. We call this number the Perfect
Shuffle Number. We compose the commands into a

tiil
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one-1ine Perf ectshuf f 1e function. The ?Evene
checks that the input is even. The r,ength of the per-
fect shuffle matrix is one more than the Perfect Shuffle
Number. .

PerfectShuffleln_?EvenQl := Length
lNestWhilelist IshuffIe, Range [nl, Unequal,
Ar_11I - 1

Now we apply this function to decks of size n,where
n goes from 4 to 200 in jumps of size 2, and graph the
results:

PSlillnibers = Talole [ {n, perfectshuf f1e [nl ],
{n, 4, 2OO, 2l1l

ListPlot IPSNumbers]

E r:r rl

L5r:l

Ir:r I 15r:l Erlrl

Clearly, no deck takes more perfect shuffles than its
size to get back to its original state, and most take con-
siderably less. But to investigate larger decks, we will
need to find a faster algorithm. This one is slowed down
by the fact that it keeps track of all shuffles. We need
to keep only the most recent shuffle. This fact is re-
{lected in the following, much faster algorithm.

FastPerfectShuffle [n_l := trlodule [{x, y, i},
x = Rangelnl; y = shufflelxl; i = 1;
V'rhilelx =t y, y = shuffletyl; i++l; iI

We can quickly examine the Per{ect Shuffle Number
for n up to 1000.

PSNurnbers = Tabl_e [{n,
FastPerfectShufflelnl), {n, 4, 1000, 2lli

ListPl-ot IPSNumbers]

El'0

EEI]

+0 rl

trlrl

A malhemalhalsolulion
Is there a mathematical expression that computes

Perfect Shuffle Numbers? Yes-according to Martin
Gardner in his book Mathematical Carnival. The num-
ber of perfect in-shuffles needed for a deck of size n (n is
even) is the smallest x where 2x: 1 modulo (n + 1). So
let's create a wlathPerfectshuf f Ie function that uses
this expression to compute the Perfect Shuffle Number.

MathPerfectsShuffle[n_] := Module[{x}, x
= 2; While[Mod[2x, n + 1] * 1, x++l; xl

Mat,hPsNunbers = TabLe[{n,
MathPerfectshufflelnl), {n, 4, 1OOO, 2llt

The resulting graph for n up to 1000 is identical.

ListPLot IMathPSNurnbers I

Erlrl

EEE

+tl !l

EI:'E

tlr[l E 
'l 
rl ,t rl rl 1[ r:r r]

5lr

Your lurn
What happens ii 1.ou use the out-shuifle insteacl o{ the

in-shuifle for e:rch shuiflel Go through a sirr-iilar analy-
sis. Can yoll colrre up ruth a i.r-r:lthematical expression
that prodr,rces a rnathent:111cal sclutirtn?

USACO

The USA Computrng Oh'mpiacl IUSACO)will begin
rts 2000-1001 st-irson rrith the first Internet cornpetition
to bc heLl \or-embcr 8 15, 2.000. The fall competition
ls ir. progrilmrlir]g contest open to a1l prc-college stu-
elents thronghor-rt the rr.orld. You rlay sign up by join-
ing tl-re rn:rrhng hst hs-computing@delos.com.

Problems :rnd rules rvi1l be posted to thc hs-comput-
ir-rg mailing hst. Solutiol-rs must be written in C/C++ or
Pascal and must be rcturned via e-rnail by the contest
completion deadline.

Stuclents can r,vork on problem solutions anywhere
thev rvish during the one-week period. No entry fees are
chzirged, ancl all winners will receive an official award
and have their names immortalized on the USACO Web
p:lges.

To find out more about thc USACO and thc results
of our USA 2000 team at the 2000 International Olyrn-
piad in Informatics (IOI) in Beijing, China, go to our Web
site at www.usaco.org and click on 2000 and thcn IOI.
To get started using our tratning materials, go to

EfiI:' +rl fl EEI] ;1 ilil lrl rl 
'l ace. delos. com/usacogate. o
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