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f, MONG THE MANY DIFFERENT PERTURBA-
ll tions of physical space'depieted above, you will {ind
a soapy film stretched across a circular wire . Upon
closei'observation, yor. *i11 discover that the shape oi
the wire frame combi:res both a Mobius strip and triple
Mobius sffip. The so4py film, however, has no trouble

rvorking rvithrn this r.::r::. ::ri-i;r'ailon to establish
the minimal suri:tcc :l;. i: i : : -.-.: ine trame. To learn
rlore abr-ut thr i...-:-:-:-: -:---:',- rt soap films to re-
real ele ..;-:t: -:-:j..;::: . -*:- ::.:.-j complexmathemati-
cai if;-.:::::: :-l:1 l l:i: -. -lJtenvofd, yoU'1l nevef
it'- r .: : : -;: -- *--. ,. ::l- :a::li fr'a,V again.
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The displaced person hovering over our
submerged cover girl hints at a solution
to problems of buoyancy that can often
make you {eel that you are in way over
your head. With a little insight, how-
ever, you'll soon be swimming with the
sharks without fear and tackling even
the weightiest issues. Dive in by turn-
ing to page 34.
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8291
A11 square! The number 11 111 lI2 222 222 - Z ZZB BZB is a perfect
square. Find its square root.

8293
The hose knows. A man is filling two tanks with water using two hoses.
The first hose delivers water at the rate of 2.9 liters per minute, the
second at arate of 8.7liters per minute. when the smaller tank is half
full, he switches hoses. He keeps filling the tanks, and they both fill up
completely at the same moment. what is the volume of the larger tant
if the volume of the smaller tank is 12.6 liters?

8292
The right approach. Line segment MN is the projection of a circle
inscribed in a right triangle ABC onto its hypotenuse AB. prove that
angle MCNis 45'.

8294
The culprit in the caves. sixteen caves are arranged in a row. The sheriff
of a nearby town, whom the residents respectfully call Big Brow, knows
that a robber, called Elusive )oe, is hiding in one of those caves. The
sheriff also knows that, on advice from his friends, Elusive |oe moves
from one cave to the next every night. The sheriff with his deputies can
search only one cave a day. can the sheriff catch the criminal before the
end of May if he starts searching the caves on the first of May?

8295
A watched pot. A small pot with water is placed into a large pot, which
is also filled with water. The iarge pot is placed on a gas-stove burner,
and the water in it is brought to a boi1. will the water boil also in the
small pot?
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[Ulinimal sul'lace$

Embarking on a plane discussion

by A, Fomenko

HEN THE 19TH CENTURY
Belgian physicist Plateau be-
gan experimenting on the
shape of soap films, he could

hardly imagine that this work would
initiate a new direction in scientific
research, whose vigorous develop-
ment would continue to the present,
and which is now known as Plateau's
problem. Most of us have been famil-
iar with Plateau's experiments since
childhood: all children like blowing
soap bubbles or making soap films
with a wire ring.

Here is some advice for those
who want to obtain beautiful soap
films. You need some thin, flexible
wire, some dishwashing detergent, a

glass or bowl of warm water, and
some glycerin (one can do without
it, but if the mixture contains glyc-
erin, the films willbe more stabie.
Mix the soap into the water, then
add the glycerin. Make a ring with a

handle from a piece of wire, dip the
ring into the solution, then carefully
take it out. Changing the shape o{
the ring will change the shape of the
film.

When we remove the wire ring
from the soapy water, a striking iri-
descent soap film forms inside the
ring. The size of the {ilm can be
rather large. However, the larger it

is, the more quickly it will burst
under the force of gravity. On the
other hand, if the ring is small, grav-
ity may often be ignored in the study
of soap fiims. We shall use this fact
below.

Hon is a $ofl[ Iilm tot'med?
Let us consider how the Proper-

ties of the surface layer of the liquid
change as soap is added to it. Figure
la shows schematically the bound-
ary between two media-water and
air. The arrows indicate the attrac-
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with a uniform 1ayer, with the non-
polar end of the molecule oriented
outward (figure lb). Pushing the
water molecules down, the soap
molecules ieduce the capillary ten^-
sion. This circumstance renders the
surface film more elastic, and it is
this elasticity that allows the soap
film to form when we dip and re-
move the wire ring.

A cross section of the wire is
show in figure 1. When the wire
reaches the surface, the surface
swells and covers the wire. This oc-
curs because the number of mol-
ecules near the wire decreases tem-
porarily (figure 1b). Therefore the
surface tension, which depends on
the number of water molecules in
the surface layer, increases. This
makes the region of the surface near
the wire more flexible, which in
turn gives rise to the formation of a
soap film when the ring is removed
from the water.

It is also clear that the thickness
of the soap film enclosed by the ring
cannot be less than the sum of the
lengths of two soap molecules (fig-
ure 1c). The formation of a soap film
is illustrated in figure ld. As the
wire ring is lifted out of the water,
the flexil:le film covers the ring and
is dragged along by it. The force of
gravity restricts the size of the sur-
face, so that when the ring is far
enough from the liquid, the film
breaks.

lvlinima!$tlrlacss as a modellor

soap lilms

The physical principle underlying
the formation of soap films is very
simple. A physical ryst"rn will not
change its shape unless it can
change easily to another shape with
less energy. The energy of the sur-
face of a soap film is often described
in terms of the surface tension of the
liquid. It depends on the attractive
forces between the molecules and
on the fact that these forces are un-
balanced at the boundary of the sur-
face. The presence of unbalanced
forces gives rise to the following in-
teresting effect: the liquid film turns
into an elastic surface that tends to

Figure 2 Figure 3

minimize its area and thus mini-
mizes the surface energy per unit
area. Here we disregard the force of
gravity and the air pressure.

For these reasons/ we can model
a soap film with a smooth surface of
minimal areathatspans the contour
formed by the wire. In mathematics,
this is cailed aminimal surface.The
classical theory of such surfaces is
part of the calculus of variation.The
branch of mathem atical analysis
dates back to the eighteenth cen-
tury. Today, this theory also uses
the more modern methods of topol-
ogy and differential geometry. While
the theory cannot be explained in
detail using only the tools of el-
ementary mathematics, many of its
results can be illustrated by example
and verified experimentally. In this
process/ some elegant geometric
probiems arise that can be solved us-
ing simple mathematics.

$imple cottlottr$
Let us first consider the case in

which the contour of the wire is
warped only moderately, so that no
point is "on top of" another point.
More specif icalLy, we mean that we
can find a plane such that the pro-
jection of the contour onto this
plane is convex/ and any two di{fer-
ent points of the contour prolect
onto two di{ferent points of the
plane. In these cases/ an advanced
theorem guarantees that there ex-
ists a unique minimal surface
spanned by this contour. If the con-
tour is planar, the existence and
uniqueness of a minimal surface
seems clear: the contour bounds a
region of the plane, and it is clear
(see figure 2l that any other surface
spanning it has a larger area than
the plane surface.

Diflel'entlilms s[anned [y tlte same

c0llloul'

If we al1ow the wire to assume
contours more complicated than
those described above, the unique-
ness theorem will not ho1d. Figure 3
shows a simple example of this,
which can be verified experimen-
tal1y. Notice that the contour in fig-
ure 3 cannot be projected "nicely,,
onto any plane: in any projection
(onto any plane), there are pairs of
points, or even entire segments/
which project onto a single point.

Problem 1. Design other contours
that can be spanned by different
minimal surfaces. Is it possible that
more than two such surfaces exist?

If the contour formed by the wire
meanders wildly (for example, if it
ties itself in knots), the uniqueness
of the minimal surface breaks
down, and the structure of a mini-
mal surface can become yery com-
plicated. For example, it can de-
velop singularities, points near
where the surface cannot be ob-
tained by warping a simple disk,
but contains branches. Using soap
films, such a surface can be mod-
eled by starting with a wire contour
that itself contains branches.

Branc[inU coltlout's
A simple contour of this type is

shown in figure 4. The minimal sur-
face spanned by this contour has a
whole segment consisting of srngu-
lar points. Branching from this seg-
ment/ the surface forms three plane
sheets with an angle of 120" be-
tween them. The factors responsible
for this effect can be clarified by
solving the following problem.

Problem 2. (i) Connect three

OUAlllIUII4/TIATUBI
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Figure 6

points by segments such that the
sum of their lengths is minimal.
Solve the same problem for (ii) the
vertices of a square, and (iii) the ver-
tices of an arbrtrary quadrilateral.

The answers to this problem are
given in figure 5, and the parts of the
corresponding minimal surfaces are

shown in figure 5. Notice that all the
angles here are equal to 120' and that
there are two possible answers to
problem (ii) (see figures 5a and 5b).

It is interesting that there is no
minimal film in which more than
three planar regions intersect along
a single segment. This fact can be
explained using simple geometric
considerations. Suppose four planar
regions lhat are pan of a minimal
surface intersect along some seg-

Figure 7

\a

Figure B

CO

ment/ and project the surface onto a
plane perpendicular to this segment
(figure 7). We now want to be sure
that the sum of the segments that
are the projections of the planar re-

gions is minimal. But in fact we can
replace the point where all four seg-

ments intersect with two Points in
which three segments intersect (fig-

ue 7), and the result of problem 2

shows that the sum of the lengths
will be smaller.

The three-dimensional situation
corresponding to this argument is
shown in figure 8. Let us look a bit
deeper into this situation. It is not
hard to see that splitting the inter-
section of four planar regions into
two intersections of three planar re-
gions will reduce the total area. The
minimai surface is in stable equilib-
rium: small perturbations of the film
can only increase its area. This
means that the sum of the forces
acting on every point of the film is
zero. At the singular points, where
three sheets converge, this observa-
tion means that the sum of the three
forces acting in the directions of
these sheets must be zero. This im-

plies that the angle between the con-
vergent sheets is 120'.

Problem 3. Draw a polygonal line
of minimal length connecting five
vertices of a regular pentagon. How
many such lines exist?

Other beautiful branching films
can be obtained if the film is
spanned by afuame of a tetrahedron
or cube (figure 9). Notice the singu-
lar points at which several singular
edges converge.

Problem a. (i) Find all the angles
between the planes of the minimal
surface spanned by the edges of a

regular tetrahedron (figures 9a and
9b). Find the length x of the side of
the central square for the minimal
surface that is spanned by the edges

of a cube (figure 9b).
Problem 5*. Is it possible that

three singular curves converge at a
singular point of a minimal surface?

What can be said about five singular
curves?

0En conflouns

The interaction of a surface with
its boundary contour is a very im-
portant characteristic of the surface.
Various special cases of this interac-
tion can be studied by topological
methods. It follows from the physi-
cal properties of a minimal surface
that it cannot contain holes. If it did,
surface tension would force the hole
to expand until the entire film, or
part of it, collapsed at the boundary
line. It is easy to test this property
experimentally: iust puncture a soap

film quickly with a thick piece of
wire or a rod. In advanced work, a

mathematical definition of a soaP

film's boundary is based on this
property.

This is, of course, a mathematical
model, which simplifies reality. In

Figure 9
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other/ a different minimal surface
begins to appear. This surface, cailed
a catenoid, spans both the circles
(figure 10c).

This surface possesses many in-
teresting properties. For example, it
can be obtained by rotating a cat-
enary curve about its axis of symme-
try. To construct this curve, con-
sider two points in a vertical plane,
and suppose that one endpoint of a
heavy chain is attached to each
point. The chain hangs freely under
the force of gravity, and the shape it
assumes is called a catenary. Rotat-
lng this curve about its axis of sym-
metry/ we obtain a catenoid, and
arranging it vertically we obtain the
minimal surface shown in figure
10d.

Note that the minimal surface is
not a cone with its vertex at the ori-
gin. Figure 10d shows how such a
cone would change its shape to as-
sume a position with minim aL area
(provided that the boundary circles
are fixed). The cone ultimately be-
comes a catenoid. This phenom-
enon is similar to the situation in
which a fourfold singular point
splits into two threefold singular
points. Indeed, we can think of fig-
ure 7 as showing the transformation
of a "one-dimensional cone,, con-
sisting of two intersecting segments
into a more complex curve with two
threefold singularities. In princrple, a

similarphenomenon
occurs in the case of
a two-dimensional
cone. In this case,
however, the vertex
is transformed into a
circle, the narrowest
cross-section of the
catenoid. In both
cases, deforming the
film (or one-dimen-

sional curve) decreases its area (or
length) and makes the surface (or
curve) assume a position giving the
minimal arca {or length).

[lllinimal sul'laces in nature
It turns out that minimal surfaces

are widespread in nature, since they
are the most economical way to
form skeletons of living organisms.
The most striking example is pro-
vided by the skeletons of radiolaila:
These are microscopic sea organ-
isms with various peculiar shapes.
The English scientist D'Arcy Went-
worth Thompson in his book On
Growth and Shape was perhaps to
first to notice that capillary action
plays an important role in defining
the shape of these organisms.
Radiolaria consist of sma1l bunches
of protoplasm confined in foam-like
forms similar to soap bubbles or
films. These organisms are rather
complex in shape, and the minimal
surfaces they exhibit have, in gen-
eral, many branch points and edges,
which occur where the bulk of the
organism's liquid mass is concen-
trated. We can easily see a similar
concentration of iiquid in soap
films: the liquid flows along the film
until it meets an edge where three
sheets coincide. Here the liquid
thickens the film so that the singu-
lar edges of the minimal surface are
highlighted. A similar process oc-
curs in radiolaria. As the liquid is
concentrated along the branching
edges, solid fractions of the seawater
separate out and settle along the
edges, gradually forming a solid skel-
eton. The geometry of this skeleton
can be visualized by looking at the
branching edges of a soap foam; that
is, the edges shared by soap bubbles
in the foam. These edges form a
complex network that is the 'liquid
skeleton' of the foam. When an or-
ganism with such a skeleton dies,
the soft tissues graduallyvanish, and
a solid skeleton, evolved as de-
scribed above, remains.

Thus the skeleton is f ust a repre-
sentation of the system of branch-
ing edges and singular points of a

CONTINUED ON PAGE 13

Figure 10

fact there exist stable minimal sur-
faces that contain holes, in the sense
that they "hang" on a wire loop but
leave some parts of it free (see figure
11a). This phenomenon is explained
by the fact that a real wire has a fi-
nite thickness, which can, in certain
cases/ stabiiize a mathematically
unstable construction. For this to
happen, the wire must be suffi-
ciently thick compared to the size of
the minimal surface.

Another example is shown in fig-
ure 1 lb. In this case, the contour is
an open curve with two ends that
can be straightened into a flat seg-
ment. Mathematically, there cannot
be a minimal surface that spans a
segment embedded in three dimen-
sions and that does not intersect it-
self. This anomaly can be explained
by the fact that the segment does not
form a 1oop.

Seuel'al coflottt s
Let us now consider the proper-

ties of minimal surfaces whose
boundaries consist of, say, two
circles. Let's take the two circles in
two parallel planes, both perpen-
dicular to a vertical axis and cen-
tered on this axis (figure 10a). If the
circles are{lar apart from each other,
the minimal film coincides with
two plane disks spanned by these
circles (figure 10b). However, if the
circles are moved closer to each

Figure 1'1
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[Uloleculan inlenactiolt$ u[ close

Distant relations

by G.Myakishev

I F THERE WERE NO ATTRAC-
I ,lr. forces between molecules, all
I *r,,", woulci be in a gaseous

I ,,r," under all conditions. The
molecules are held together and can
form liquids and solids only because

of the attractive forces.
However, the attractive {orces

alone cannot produce stable atomic
and molecular structures. Stability
is based on the balance of forces,
which is ensured by the existence of
repulsive forces that act at ex-
tremeiy small distances between at-
oms and molecules.

There is no doubt about the exist-
ence of intermolecular forces. To
determine the value of these forces
and their dependence on the dis-
tance between molecules is, how-
ever, a very difficult task.

Uan den tftlaah fumm
Although there are no methods o{

measuring directly the intermolecu-
lar forces at afly distance, we now
know a great deal about them, but
not everything.

A Dutch physicist, |ohannes
Diderik van der Waals (1837-1922),
was the first to introduce this con-
cept and prove the key role of inter-
molecular forces in the description
of real gases. He did not attempt to
determine the exact dependence of

these forces on distance, but simply
proposed that the repulsive forces
act at small distances, whiie at large
distances they are replaced by the at-
tractive forces, which slowlY de-
crease with distance.

On the basis of these very simPle
postulates and his own logic and
intuition, van der Waals obtained an
ecluation describing the state of real
fluids (gases and liquids). Van der
Waals' real gas model describes not
only gases and liquids but also melt-
ing and evaporation. The intermo-
lecular {orces are often called the
van der Waals forces.

Until the beginning of the twen-
tieth century, it was impossible to
theoretically analyze the intermo-
lecular forces. The simple and well-
known gravitational {orce clearly
could not be a significant factor in

Eleclt'omaunelic ltaltlpe ol the
0rioltlalioltal lorces

intermolecula[ lorc8s

thc intcraction of objects u ith such
small masses as molecr-rles. There-
fore, the only way to explain the ori-
gin of molecular interactions rvas to
propose that the intern-rolecular
forces were electromirgnetic, Lle -

cause other forces rt'ete unl<nown in
that time.

Atoms, and especialh- rlolecules,
are very complcx s\')ILlrl> consisting
of a large number ot charged Par-
ticles. The structure oi such systems
was unl<nown. Thc Iorces acting
between the mole ci-t1es clearly de-

pended on their su-Lrcture. Of course,

only very simple cases were consid-
ered in the beginnrng.

In many molecules (for instance,
water molecules) the positive and
negative charges are distributed in
such a way that the average position
of the centers of positiv.e and nega-

tive charges do not coincide. As a
first approximation, such a mol-
ecule can be modeled as an electric
dipole, that is, a system of two Point
charges, +c1 ar-.d -q, separated bY a

small distance I (figure 1). The elec-
trical properties of such a molecule
are characterizedby the dipole mo-
ment
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At first, nobody knew how to cal-
culate the dipole moments of these
molecules. Such calculations were
impossibie before the advent of
quantum mebhanics.

If, on the other hand, it is as-
sumed that the dipole moments
of two molecules, p, and p2t are-

known, then the dependence of the.
interaction force on the distance
between the molecules can be calcu-
lated with the help of Coulomb's
law. The attractive force between
two dipoles is maximal when they
are located along the same line (fig-
ve 21. This force appears because

(HH
Figure 2

the distance between the unlike
charges 2 and 3 is slightly less than
the distance between the like
charges 1 and 3 or 2 and 4.

Since the force of the dipole-di-
pole interaction depends on the
mutual orientation of the dipoles, it
is called the orientational force. The
stochastic thermal motion continu-
ously changes the orientation of the
molecular dipoles. Therefore, the
force of interaction between the di-
poles should be calculated as the
mean value of ail possible orienta-
tions. The calculations showed that
the attractive force is proportional to
the product of the dipole moments
pl and p2of the molecules and in-
versely proportional to the intermo-
lecular distance raised to the sev-
enth power:

, PtPz
r or - -----i- '

I

Compared with the Coulomb
force that acts between two point
charges, and is proportionalto lf12,
the orientational force decreases
very rapidly.

lltdttflitte 0olarilalion) lomes
Another type of relatively simple

molecular interaction arises be-
tween two molecules, only one of
which has a dipole moment. The
dipole molecule generates an elec-

tric field thatpolarrzes another mol-
ecule in which the electric charges
are initially uniformly distributed.
As a result, the positive charges are
displaced in the direction of the elec-
tric field, while the negative charges
are shifted in the opposite direction.
The nonpolar molecule is therefore
slightly stretched; it acquires a di-
pole moment and becomes polarized
(figure 3).

€=o
Figure 3

The attractive force in this case
can also be calculated. It is propor-
tional to the dipole momentp o{ the
polar molecule with a coefficient u,
which characterizes the ability of a
nonpolar molecule to be polarized.
This force is also inversely propor-
tional to the seventh power of the
intermolecular distance:

-pa.r 7t'

This attractive force is cailed the
inductive or polarization force, be-
cause it is generated by the molecu-
lar polarization that is induced by
the electrostatic induction.

Disrur$ion lomes
It is widely known that attractive

forces arise not only between polar
molecules but also between nonpo-
lar molecules. For example, a1-

though the atoms of inert gases have
no dipole moment/ they neverthe-
less interact with each other. The
origin of these forces was deter-
mined only after the creation of
quantum mechanics.

Qualitatively and crudely, the
generation of such forces can be ex-
plained as follows. In atoms and
molecules the electrons perform an
intricate motion around the posi-
tively charged nuclei. Although the
average atomic (molecular) dipole
moment of the nonpolar structures
is zero, the electrons may assume
an asymmetric "positiort" at atty
particular moment of time and im-
part the molecule with a flonzero

instantaneous dipole moment.
Such a short-term dipole generates
an electric field that polarizes the
neighboring nonpolar atoms (mol-
ecules). Therefore, the former non-
polar molecules turn into stochas-
tically induced instantaneous
dipoles that interact with each
other. The total force of interaction
between nonpolar molecules re-
sults from the average interaction
of all possible instantaneous di-
poles with the dipole moments gen-
erated by the mutual induction of
the adjacent molecules.

Quantum mechanics says that in
this case the attractive force is pro-
portional to the polarizability of the
two molecules o, and u, and in-
versely proportional to the seventh
power of the intermolecular dis-
tance:

. dt02
td------;-,

T,

These forces are called "disper-
sion" forces, because optical disper-
sion, that is, the dependence of the
refractive index on the frequency
(co1or) of the light, is determined by
the interaction.between the nonpo-
1ar molecules.

The dispersion forces act between
al1 atoms and molecules because the
nature of this force does not depend
on whether a molecule has a dipole
moment. Usually, the dispersion
forces are larger than the orienta-
tional or inductive forces. However,
if polarized molecules (such as wa-
ter molecules) take part in the mo-
lecular interaction, the orientational
force can be larger than the disper-
sion force (by a fiactor of 3 for water
molecules). When the interacting
polar molecules have large dipole
moments (CO, HCi, etc.), the orien-
tational forces are dozeris or even
hundreds of times larger than all
other forces.

The principal {eature of all three
types of force is the IlrT law, which
describes their attenuation with dis-
tance. However, at distances greater
than the molecular size another ef-
fect comes into piay: the limited
velocity of propagation of the elec-
tromagnetic interaction. Therefore,

10 lrlAY/JUuI 2ooo



Figure 4

at distances of about 10-s cm the at-
tractive forces decrease more rap-
idly, proportional to lf r8.

ftepulsiue lol'ces
Let's consider the repulsive forces

that exist between molecules at .very

small distances. This problem is less
complicated, on the one hand, and
more complicated, on the other.
Since the repulsive forces grow ex-
tremely rapidly when the molecules
approach each other, it is not neces-
sary to know the precise law govern-
ing this rise in the analysis of many
molecular events.

However, in contrast with the
attractive forces, the repulsive forces
are much more "individ:ual," that is,
they depend strongly on the struc-
ture of the interacting molecules.
Even if we know how molecule A
repels molecules B arrd C, we cannot
say how molecules B and C repel
each other. When molecules come
in direct contact with each other,
their individual character is felt
more strongly than at large dis-
tances.

A rather good agreement between
experimental data and theoretical
calculations is obtained by assuming
that the repulsive forces change as

o -r- rep 
rl3 

.

Since the attractive and repulsive
forces are proportional to lf 17 and
If rt3, respectively, we may plot an
approximate dependence of the total
intermolecular force on the distance
between molecules or atoms. In fig-
ure 4 the repulsive forces are as-

Figure 5

sumed to be positive and the attrac-
tive forces are negative. The total
force is zero at a distance ro, which
is approximately the sum of the ra-
dii of the molecules.

In studying alarge number of at-
oms and molecules, it is more con-
venient to use the potential energy
instead of the interaction force. The
aim is to obtain the average charac-
teristics of the molecular system.
The mean potential energy deter-

mines, as we shall see very soon/
many features of the structure and
properties of matter.

Since the change in potential en-
ergy is equal to the work performed
by the force, we can find the depen-
dence of the potential energy on dis-
tance from the relationship between
the force and the distance. There is
a ru1e that 1f a force varies with dis-
tance as lf f , the corresponding po-
tential energy will vary as U -
I f rn-t . This rule agrees with dimen-
sional analysis (energy is force times
distance).

The potential energy, as we
know, can be determined with re-
spect to an arbitrary level. Usually it
is assumed that U -+ 0 as r ) et
which yields the potential energy
plot shown in figure 5, where Uo is
the depth of the potential wel1.

However, the potential curve
(that is, the dependence of the poten-
tial energy on distance; figure 5)will
have this shape only when the mol-
ecules approach each other along the
line connecting their centers (for ex-
ample, if the molecules approach
each other in the plane A in ligwe 6).
In other cases the potential curve
looks like that shown in figure 7 (the
molecules move in the plane B) or in
figure 8 (they move in the plane C).

T[e lasic pl'ollem

Many properties of a substance
can be explained if the character of
the interaction of its molecules is
known. We will discuss here only
one Yery general problem: how the
dependence of the potential energy
on intermolecular distance can be
used to quantitatively determine the
difference between a gast a liquid,
and a solid on the basis of kinetic

1l

Figure 6

Figure 7 Figure B
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theory. As a first step, however/ we
will consider the energy of molecu-
lar motion.

If we know the dependence of the
potential energy on distance/ we can
determine the character of the mo-
tion using only energy conservation.
Let's assume that one molecule is at
rest and the other is in motion. The.
motion of the molecule depends on
its total energy. According to energy
conservation, the total energy of the
molecule is constant:

E = Eu + LI: const,

where E,. is the kinetic energy andU
is the potential energy.

First, consider the case where E :
E, > 0 (figure 9). The total energy can
be plotted as a straight line parallel
to the r axis, because it has the same
value at any value of r. When the
molecule moves along the r axis, its
kinetic and potential energies vary:
the higher the potential energy, the
smaller the kinetic energy/ and vice
versa (don't forget the negative sign
of the potential energyl). If the mol-
ecule moves from the right to the
le{t, its kinetic energy grows to a

maximum at the point r = ro, where
the potential energy assumes the
smallest va1ue. The kinetic energy
will then decrease and vanish at r :
r, where the total energy ecluals the
potential energy. The molecule can-
not enter the region where r < rr. If
it cou1d, then the potential energy of
the molecule would be greater than
the total energy/ which means that
the kinetic energy would be nega-
tive. The kinetic energy/ however, is
always positive.

At the point r : r, the molecule
stops and starts to move in the op-
posite direction as a result of the re-

Figure 9

12

pulsive force. This is the so-caIled
turning point of the molecular tra-
jectory. The molecule subsequently
moves in the positive r-direction and
goes to infinity.

Quite a different scenario occurs
when E : Er. O (figure 9). In this case

the molecule is situated in the po-
tential well and cannot escape from
it. This is the bound state of mol-
ecules, in which they oscillate near
the equilibrium position. Separation
of the system into two independent
particles is impossible without in-
creasing its total energy to E > 0.

Enel'gy olmoleculal' intel'action in

solids, liquids, altd Uasss

Let's now determine the cluanti-
tative criterion for distinguishing
gases, liquids, and solids on the ba-
sis of kinetic theory.

Gases. More information on the
state of a real gas can be obtained by
plotting the potential energy of a
molecule as a function of the dis-
tance to the nearest neighbors (fig-
ure 10). The potential energy of this
molecule is zero along most of its
trajectory, because the mean ilter-
molecular distance in gases is much
greater than the molecular size. The
molecule's nearest neighbors are 1o-

cated at points I and 2. The mol-
ecule travels at an appreciable dis-
tance from neighbor I and closer to
neighbor 2.

The mean potential energy of the
molecule is negative and very sma1l.
Its value is equal to the area delin-
eated by the potential curve be-
tween points I and 2 and the z axis
divided by the length of the interval
1-2. The total mean energy is neces-
sarily positive; otherwise, the mol-
ecule would be bound to its neigh-
bors. This is possible only if the
mean kinetic energy of a molecule
in the gas is larger than the mean
value of the absolute value of its po-
tential energy:

L =lnl.-r( l" '

In fact,
E-E --- -k,u,

where D is a negative value.

Figure 10

Liquids. In licluids and solids the
molecules are situated at smal1 dis-
tances from each other. Therefore,
every molecule interacts with sev-
eral nearest neighbors. Let's con-
sider how two nearest molecules
located at a distance of about 2ro
from each other affect the given
(central) molecule.

The potential curve in question
can be obtained by superimposing
the curve plotted in figure 7 (two-
body interaction) on the curve ob-
tained by shifting the first curve
slightly farther than 2ro. Since the
values of the potential energy are
added, the depth of the potential
well increases almost twofold, while
the energy peaks decrease (figure 1 1 ).

When the interactions with other
molecules are taken into account,
the potential curve looks like that
piotted in figure 12.

In order for a molecule to remain
in the licluidjts mean energy must
be negative (E . 0). This is the pre-
requisite condition for a molecule to
remain in the potential well that is
formed by its neighbors. If E , 0, the
molecule will escape from the well
and leave_th" Ilq"t4.

Since E : Ek + tf and U < 0, the
mean kinetic energy in the liquid is
less than the absolute value of the
mean potential energy: { . tDt.
Since this inequality is not very
strong/ Ep is only slightly lower

lllAY/JUlllI 2OOO
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than the absolute value of the poten-
tial energy: 4 < tDt and lEl < lunl
(the minimal value of the potentidl
energy). For this reason a molecule
cannot reniain in a well very long.
The stochastic character of molecu-
lar motion causes the energy of the
molecules to change continuously,
sometimes reaching a value higher
than the average energy/ sometimes
lower than it.

When the energy of a molecule
exceeds the height of the potential
barrier that separates one well from
another, the molecule jumps from
one equilibrium position to another.
This is the principal feature that de-
termines the character of the ther-
mal motion and the fluidity in licl-
uids. The mean energy of a molecule
increases with increasing tempera-
ture, causing the frequency of jumps
between the potential wells to in-
clease.

Solids. In solids the potential en-
ergy of interaction of a molecule
with its nearest neighbors resembles
the potential energy of interaction in
liquids (figure 12). However, the po-
tential wells in solids are slightly

Figure 12

deeper than in liquids, because the
molecules in solids are closer to
each other. As in the case of liquids,
the condition 4 . lDl is satisfied in
solids. However, the kinetic energy
of the molecules in solids is consid-
erably lower than in liquids. Solids,
as we know, are formed by cooling
a liquid. In solids the mean kinetic
energy of molecules, therefore, is
markedly lower than the absolute
value of the potential energy:

{ * rur.

In figure 12 the mean energy of
the molecule inside a potential well
is represented by the straight line ia-
beled E. The molecule oscillates at
the bottom of the potential well.

The barriers separating the adjacent
wells are so high that the molecules
are confined in the wells and escape
from their cells very rarely. To
change one equilibrium position for
another (that is, to jump from one
well to another), a molecule must
acquire an energy that is much
larger than the average energy. Such
an event occurs very rarely. For this
reason solids, in contrast with liq-
uids, retain their shape. A

Quantum on moleculat interac-
tion:

A. Eisenkraft and L. D. Kirk-
patrick, "Cloud Formation," lanu-
ary fFebruary 199 5, pp. 36-38.

B. Yavelov, "Yan det Waals and
His Equation, " November/Decem-
ber 1997, pp.35-37.

A. Leonovich, "The Nature of
Ideal Gas," May/|une 1998, pp.32-
aaJ.).

V. Meshcheryakov, "Planetary
Building Blocks, " |uly/August I 998,
pp. 4-10.

A. Dozorov, "Electric Multi-
po1es, " September/October 1999,
pp. 4-8.

Figure 12
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complex minimal surface. The cell
membranes play arole in the forma-
tion of the solid skeleton of
radiolaria, because they accumulate
salt from the seawater. Figure l2
shows two radiolaria skeletons.

Figure 13 shows two minimal sur-
faces formed by soapbubbles in cubi-
ca1 and tetrahedral frames. Its simi-
larity to figure 12 is amazing. The

Figure 13

radiolaria skeletons accurately repro-
duce the structure of the branching
edges of the minimal surfaces.

Minimal surfaces play an impor-
tant role in chemistry, where the in-
teraction at the boundaries of differ-
ent media is responsible for the
nature and rate of many chemical
reactions. Well-known membranes,
such as an ear-drum, membranes
that surround cel1s in living organ-
isms, or membranes that separate

different organs from each other, are
examples of minimal surfaces.

This interesting subject attracts
experts in many fields such as biolo-
gists, chemists, and physicists. As
we have seen/ many interesting
mathematical problems involve
minimal surfaces. The correct state-
ment and analysis of these problems
would provide a better understand-
ing of this wonderful natural phe-

13
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Proving its value to mathematicians

by V. Senderov and A. Spivak

HE USUAL SCHOOL CUR-
riculum does not include very
much number theory. How-
ever/ anyone interested in

mathematics will eYentually want
to study this beautiful part of the
subject and will want to know
about Fermat's little theorem. This
theorem is not just beautiful. It is
also useful. The computer scientists
R. Graham, D. Knuth, and O. Pata-
shnik, the authors of the textbook
entitled Conuete Mathematics tor
students of computer science, in-
cluded this theorem in their book.

The theorem we present here was
discovered by Pierre Fermat (a law-
yer in Toulouse, France who lived
from 1601 to 1665) irr1640.It can be
stated very simply: if p is a prime
and a is an integer, then aP - a is a
multiple of p.It may not be obvious
at first why this modest proposition
is so important. But in fact it does
deserve very close attention.

We start with some concepts that
can be easily understood by a sev-
enth grader and end with some re-
cent discoveries in cryptography.

Parliculan cases

Of any two consecutive integers
a and a + l, one is even, and the
other is odd. Therefore, the prod-

urct a(a + l) = az + a is even for anY
LtLteger a.

We can prove that a2 + a is divis-
ibte by 2 in another way by consid-
ering two cases:

If a is even, then a2 is also even,
and the sum of the two even num-
bers a anda2 is even;

If a is odd, then a2 is also odd, and
the sum of the two odd numbers a
and a2 is even.

This is a remarkable property of
the polynomial az + a. A special case

of Fermat's little theorem concerns
similar results about another poly-
nomial, a2 - a: (a - lla. A11 the in-
teger values of this polynomial are
also even.

Exercise 1. Prove this fact.
Let us consider the polynomial

a3 - a. It can be easily factored:

aB - a = a(a2 - t) = a(a - 1) (a + 1).

This is the product of three consecu-
tive integers/ so/ as we have akeady
seen, it must be even. But we can say
more. Since one of the three con-
secutive integers is divisible by 3,
their product la - L)a(a + l) : a3 - a

is a multiple of 3 (and thus it is a
multiple of 6).

Exercise 2. Prove that for any in-
teger a the sum a3 + 5a is a multiple
o{ 6.

Let us continue examining inte-
ger values of the polynomial an - a

for various exponents n. What about
the value ol n: 4t For a :2 and a =
3, the polynomial a4 - a takes the
values of 2a - 2 : 14 andBa - 3 = 78.
These values are even and have no
common divisor other than 2 (and
1). No luck! This bad luck has to do
with the f.act that 4 is a composite
number. Fermat's little theorem
says that the values of the polyno-
rnial ap - a, for integer values of a, all
have a common factor if p is prime.
It says nothing about what happens
when p is not prime.

Let p :5. Let us calculate several
values of the polynomial as - a. For
a = +I and for a = 0, we obtain zero.
Further calculations yield 2s - 2 :
30, 3s - 3 :240, 4s - 4 :1020, 5s - 5
:3120, 6s - 6 :7770,... . A11 these
values are multiples of 30.

Let us prove that this pLttern con-
tinues. Since 30 :2 . 3. 5, the proof
of the divisibility by 30 breaks down
into three parts: first, we must prove
that as - a is a multiple of 2, then
that it is a multiple of 3, and, lastly,
that it is a multiple of 5.

The first part is not difficult: a5

and a have the same parity: either
they are both even, or both odd. The
second part is also straightforward:
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a5 - a : ala4 - l) = alaz - l) laz + ll
= a(a - I){a + l)la2 + l),

and the product of three consecutive
integers is divisible by 3.

The third part of the proof is
slightly more difficult.It is clear that
one of any five consecutive integers
is divisible by 5. Therefore, the prod-
rct la - Z)la - l)ala + l)(a + 2) rs a'
multiple of 5. Unfortunately, this is
not the factorization of the polyno-
rnial as - a, which factors as la -
Lla(a+lllaz+l).

What can we do? A straightfor-
ward method is to try allremainders
obtained upon division by 5: any
integer gives a remainder o{ 0, 1,2,
3, or 4.If the remainder is 0, then the
second factor in(a - Ilala + Illa2 + l)
is divisible by 5. If the remainder is
I or 4, then the first or third factor
is divisible by 5. If, on the other
hand, the remainder is 2 or 3, then
we will have a fourth factor. For stu-
dents who are unused to working
with remainders, we give the follow-
ing explanation: if a : 5b + 2, i.e., rf
a gives a remainder o{ 2 obtained
upon divisionby 5, then a2 + I = (5b2

+ 212 + I = 5(5b2 + 4b + 1). The case a
: 5b + 3 can be treated analogouslY.

Another approach to the same
result is the following. We can write:

a2+I:(a-21(a+2)+5.
Therefore, if we are interested only
in the remainders obtained upon di-
vision by 5, then az + I can be re-
placed by (o - 2lla + 21. We can use
this notation to express this idea:

a2 + !=la-zlla +2) (mod 5).

The symbol "=" is read "is congru-
eflt to," and "mod" is read "mod-
ulo." The notation was suggested by
Gauss in 1801. By definition, a is
congruent to lr modulo n if a - b ts a
multiple of n, i.e., il a - b : kn,
where k is an integer.

The notation

a=b (mod n)

is useful because the properties of
congruences are similar to those of
equalities. For example, congru-
ences may be added: If a =b (mod n)
and c =d (modn), then a + c=b + d
(mod n).

l8 rrtAY/JUltI 2ooo

Let us prove this. By definition, a
: b + kn and c = d + ln,where k and
I are integers. Therefore,

a+c:lb+knl+ld+ln)
:b+d+lk+11n.

Q.E.D.
By analogy, the formulas

a-c:lb+kn)-ld+ln)
=b-d+lk-11n,

ac: (b + knlld + lnl
: bd + knd + bln + klnz

: bd + lkd + bl+ kln)n

show that congruences can.be sub-
tracted and multiplied. Since they
can be multiplied, they can also be
raised to an integral power: if a = b
(mod n), then for any natural num-
ber m the congruertce a- = b- (mod
n) is valid.

However, one can divide congru-
ences only with some caution:

6:36 (mod 10),

but
t+5 (mod10).

Exercise 3. Solve the congruence
3x= 11 (mod 101).

Exercise 4. Which integers satisfy
the congruence l4x = 0 (mod 12)?

Exercise 5. Let k + 0. Prove that
(l) it ka= kb (mod kn), then a = b

(mod n);

litl rf ka = kb (mod n) and the
numbers k andn are coprimes, then
s=b E\odnl.

Let us look further at the polyno-
mials aP - a.We shall prove that, for
any integer a, a7 - a is divisibleby 7.

As before, we can consider all seven
remainders obtained upon division
by 7: 07 - 0 : o, 17 - r : o, 27 -2 =

t}g : 7. 18, ..., 67 - 6 : 279,930 : 7
. 39,990. We can even be slightly
economical: Since any integer can
be represented as a : 7b, 7b t l, 7b
+ 2, ot 7b + 3, we can consider only
the cases a = 0, 1,2, and 3 when
checking Fermat's little theorem.

Mechanical checking, however,
is not very useful. Factoring the
polynomial is more revealing:

a7 - a : ala6 - a) = a(a3 - t) (a3 + 1) =

a(a - ll la2 + a + ll(a + llb2 - a + ll.

Since

a2+a+l:la2+a-5)+7
=a2 * a-6 = (a-2lla +3) (mod 7)

and since

a2-a+I=a2-a-5
: la + zl(a - 3l (mod 7),

we have

a7 -a=a(a-llla-2)(a
+ 3l(a + tl(a + 2)(a - 3) (mod 7).

The product of seven consecutive
integers is divisible by 7, so a7 - a

must be divisible by 7 lor any inte-
ger a. This proves Fermat's little
theorem for the case p = 7.

Exetcise 6. Prove that
(i) the greatest common divisor of

the numbers a7 - a is 42;
(ii) the greatest common divisor

of the numbers ae - a is 30. (Note
that 30 is not divisible by 9. This
relates to the fact that 9 is not a

prime number.)
Now consider the case p = 11. It

is clear that

arr - a = a(aro - tl = a(as - l)(as + 1)

= ala - ll(aa + a3 + a2 + a + ll
la+l)laa-a3+a2-a+l).

It is not so easy to guess/ this time,
what to do next. An exhaustive
search through all eleven remain-
ders is still possible. Such a search
will show that the values of the
polynomial a4 * aB + a2 + a+ I are di-
visible by 11 for a=3,4,5, and9
(mod 11), and the values ol aa - a3 +

a2 - a + 1 are divisible by 1l for a =
2, 5,7, and B.

If we remove the parentheses in
the product (a - 3)la - alla - 5l(a - 91,

we obtain

la2 - 7 a + lZlla2 - L4a + 45)

=(a2+4a+llla2-3a+l)
:a4+a3-10a2+a+l

- a4 + a3 + a2 + a+l . (mod 11).

Similarly, we can verify that

la-z)la-5)la-7)la-B)
:a4 -a3 + a2-a+ I (mod 11).

What do we do next? For P = 13,
our method recluires that we raise
the numbers 1 through 12 to the
power of twelve and remove paren-
theses in the product of thirteen fac-
tors,7 - 6, a - 5, ..., a i5, a + 6. This
is very tedious, even if we use onlY



k 1 2 D 4 5 6 7 8 9 10 1i t2 13 t4 15 t6 t7 18

4k 4 8 12 t6 an 24 28 31_ J() 40 44 48 52 56 60 64 68 72

4k mod 19 4 8 t2 16 1 5 o 13 17 2 6 10 t4 18 lo 7 11 15

Table 1

the numbers !, 2, 3, 4, 5, and 5 and
multiply "orrly" six parentheses (a2

- rllo2 - 4lla, - elbr- r6l(a2 - 25)la2

- 361.
As p increases/ the number of

cases to be looked at increases. To
prove Fermat's little theorem in gen-
eral, we must use more powerful
arguments.

Exercises.
7. (i) Prove that the product of any

four consecutive integers is divisible
by 24.

(ii) Prove that the product of any
five consecutive integers is divisible
by t20.

(iii) Prove that a5 - 5a3 + 4a is di-
visible by 120 for any integer a.

8. Prove that, for any natutal a, as

ends with the same digit as a (in
decirnal notation).

9. Prove that msn - mn, is divis-
ible by 30 for any integer m and n.

10. Prove that if k is not divisible
by any of the numbers 2, 3, and 5,
then ka - 1 is divisibleby 240.

11. (i) Prove that 2222ssss +

55552222 is divisible by Z.
(ii) find the remainder upon divi-

sionby 7 of 1L314 * 1516)17+ lBlelu.
12. Prove that the number 11lo -

1 ends in two zeros (i.e., it is divis-
ible by 100).

13. (i) Find a1l integers a such that
aro + | ends in zero.

(ii) Prove that the number aloo +
1 cannot end in zero for any integer
a.

l4.Let nbe aneven number. Find
the greatest common divisor of the
numbers an - a, where a is an inte-
ger.

15. Let n be a natural number
greater than 1. Prove that the great-
est common divisor of the numbers
a'- a, where d runs through all the
integers, coincides with the greatest
common divisor of the numbers a,
- a, where a = 1,2, 3, ... ,2r. Notice
that this fact implies that the great-
est common divisor of the numbers

a' - a, where a is an integer, coin-
cides with the greatest common di-
visor o{ the numbers of the type
listed, where a is a natural number.

Tlte gereral ca$s
Let us write the numbers L,2,3,

... , p - 1, multiply each of them by
a, where a is not divisible by p, and
consider the remainders upon divi-
sion of these products by p. For ex-
ample, for p = 19 and a = 4, we ob-
tain table l.

The lower row of the table con-
tains the same numbers as its upper
row. However, they are arranged in
a different order! It turns out that
this is a general ru1e. Not only for p
= 19 and a = 4,but also for any prime
p and any integer a which is not a
multiple of p, we obtain the same
rcmainders I, 2, 3, ..,, p - | in some
order.

Why is it so? First of a1l, the lower
row cannot contain 0, because the
product of two numbers a and b,
neither of which are multipies of a
prime p, cannot be divisible by p.
Second, all numbers in the lower
row are different. This fact can be
proved indirectly: if the numb ers xa
and ya have the same remainders
upon division by p (where x and y
are both less than p), then their dif-
ference xa - ya = (x - y)a is divisible
by p. However, this cannot be true
because x - y is not divisibl e hy p
(it's too small). These two simple ob-
servations are enough: there exist
exactly p - I different remainders
obtained upon divisionby p, and all
of them must appear once in the
lower row of the table.

Exercises.
16. Does a natural number n ex-

ist such that the number 1999n ends
in the digits 987 654321?

17. Prove that if an integer k is
relatively prime to a naturalnumber
n, then there exists anatutal.number
x such that kx - 1 is divisibleby n.

18. Prove that if the integers a and
b are relatively prime, then any in-
teger c can be represented 2s c: ax
+ by, where x and y are integers.

We recall that Fermat's little
theorem asserts that, for any integer
a and prime p, the number aP - a :
alan - t - 1 ) is divisible by p. Thus, for
the numbers a that are not multiples
of p, this theorem can be formulated
as follows.

Theorem l. If an integer a is not
divisible by the prime p, then the
remainder obtained upon division
of 6t-r by p is 1.

Proof. The remainders obtained
upon divisionby p of the numbers a,
2a, 3a, ... , (p - lla are 1,2,3, ... , p -
1 (to within a permutation). There-
fore,

a .2a . 3a. ... . lp - I)a
=1.2.3.... lp-rl (modp).

We thus have

ap-t(p - 1)l = lp - t)t (modp).

Dividing both sides by lp - 1)!, we
obtain the desired congruence

6P 1 :1 (mod p).

Without using exercise 4(ii) or
congruences/ we may also reason as
follows. Since the product (an - r -
1)(p - 1)! is divisible by p and since
(p * lll is not divisibleby p, the num-
ber ap - r - I is divisible by the prime
p.

Exercises.
19. Find the remainder when 32ooo

is divided by 43.
20. Prove that if an integer a is not

divisible by 17, then either aB - I or
a8 + 1 is divisible by 17.

21. Prove that m6rn - mn61 is di-
visible by 56,785,730 {or any inte-
gers m and n.

22. Eind all primes p such that
5P' + I is divisible byp.

23.Let p be a prime number other
thanZ. Prove that 7p - 5p - 2 is divis-
ible by 6p.
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x I 2 3 4 5 6 7 8 o 10

1 1 2 3 4 5 6 7 8 o 10

2 2 4 6 8 10 1 3 5 7 9

J 3 6 o 1 4 7 10 2 5 8

4 4 8 I 5 L) 2 6 10 3 7

5 c 10 4 9 3 8 z 7 I 6

6 6 I 7 2 8 3 9 4 10 5

7 7 3 10 6 2 L) 5 1 8 4

8 8 5 z 10 7 4 1 9 6 3

o 9 7 5 3 1 10 8 6 4 2

10 10 o 8 7 6 5 4 3 2 1

24. Prove that for any
primep the sum lP I + ZP-r +

... + (P - 1)P- I leaves a remain-
der ofp - 1 upon division byp.

25. Choos'e any six-digit
number divisible by 7. Re-
move its leftmost digit, and
append it to the right. Prove
that the number thus ob-
tained is also divisible by 7.
For example, from the num-
ber 632,387, which is divisible
by 7, we obtain 323,876,
which is also divisible by 7,

and from the number 200,004
we obtain 42, both of which
are divisible by 7.

26.Let pbe a prime num-
ber distinct frorn 2,3, and 5.
Prove that the number con-
sisting of p - | digits 1 is divisible by
p (for example, 111,111 is divisible
bv 7).

27* . Prove that, for any prime
number p, the number 11...1122...
22...99...99 consisting of 9p digits
(first p ones/ then p twos, then p
threes ... , arrd, finally, p nines) gives
the same remainder upon division
by p as the number 123,456,789.

tlllullipliuation tables

Let us consider all n - I different
nonzero remainders upon division
by n. Let us construct a multiplica-
tion table by putting the remainder
obtained as a result of division of aZr

by n at the intersection of
column a and row b. For
example, for n :5 we have

Table 2

Forn : 11 we have table 3.
In both examples, n is a

prime number. Therefore,
every row and every column
contain a permutation of
the numbers 1,2, ... , fr - l.
If, however, we consider a
composite number, the table

will definitely include zero. For ex-
ample, forn= 4wehave

Table 4

The situation for n : 12 is simi-
lar (table 5). Again, some rows con-
tain zeros! In general, for any com-
posite n : abrwhere | < a < b . n,
the intersection of row a and co1-
umn b contains the remainder ob-

tained upon division of abby n,
which is 0.

Thus, if n is composite, there
exist djvrsots o[ zero, i.e., non-
zero remainders a and b such
that the product ab is divisible
by n. However/ even for com-
posite n, some rows of the mu1-
tiplication table do not contain
zeros.In table 4, they are the
first and the third rows; in table
5 they are the first, fifth, sev-
enth, and eleventh rows. It is
easy to see that the rows with
numbers that have a common
divisor with n (different from 1),

and only such rows, include ze-
ros.

Exercise 28. Prove this state-
ment.

Let us remove from the table all
rows that contain zeros. (If n is
prime, then there is nothing to re-
move.) For n = 4, we obtain a table
consisting of only two rows and two
columns:

Table 6

For n = 12, wehave a 4 x 4 table:

fabb 7

Exercise 29. Note that
each of the tables 2-7 is sym-
metric with respecq to its two
diagonals. Prove that this is
the case for any n.

tulerh lheu'em
To generalize Fermat's

little theorem for the case of
composite numbers n, we re-
tain in the multiplication
table only the rows and col-
umns that contain no zeros.
In other words, we consider

Table 3

r8

2 3 4 5 7 9

1 1 a J 4 5 5 10 ll

a 6 8 10 II L 8 10

6 9 0 o 9 0 9

4 8 0 4 ll 4

5 3 1 o I1 9 L 7

6 0 (^ 0 6 6

7 7 Z o 4 11 6 I 8
a() 5

I 8 4 0 4 0 4 U

q o o o 5 .1

10 10 8 (l 10 6

11 8 2

x I J 7 11

1 I D 7 11

) 5 1 11 7

J 5 1i 1 5

11 11 7 5 1
X I 2 3 4

1 i 2 o 4

2 2 4 I 3

o 3 1 4 2

4 4 3 2 1

llilAY/JUlllI 2OIO

Table 5

x a J

I .1

1 0 2

3 2 1

X 1 6 8 10 11

7 8 9

2 4 4 6

o 3 6 J 6

4 8 8 0 4 8

5 10 B 4

6 6 0 6 0 0

10

8 I 8 4

6 3 0 6 3 0

4 2 0 8 4 2

11 10 9 7 6 5 4 I



the remainders that are relatively
prime to n and that are obtained
upon divisionby n.In the new table,
the rows (or the coiumns) differ from
each other'only in the order of the
numbers.

Exercise 30. If we denote by a1,
a2r ... t arthe remainders obtained
when we divide by the natural
number a and which are relatively
prime to n, and then multiply each
remainder by some number k that
is relatively prime to .n/ we obtain
the numbers ka1, ka2, ... , kar,
which are also relatively prime to n
and which also give different re-
mainders when divided by n. Prove
this statement.

Because of the result of exercise
30, the sequence of the remainders
obtained upon division of the num-
bers ka, kar, ... , karby n can there-
fore differ from the sequence a, a2,

... , a, only in the order of the ele-
ments. By analogy with the case for
prime numbers p, we obtain the fol-
lowing relationship for the compos-
ite number n:

karka, ... kar= at az ... a, (rnod n).

We thus have

(k'- 1) at a2 ... ar=O (mod n).

Therefore, the product (k'- 1) at az ...
a, is divisible by n. Since a,, a2t ... r

a, are coprime to n, k' - 1 is divis-
ible by n. l{ n is a prime number,
then r = n - l, and we have the as-
sertion of Fermat's little theorem.
The general statement of Euler's
theorem is the following.

Theorem 2. If k is an integer rcla-
tively prime to a natural n, then k,
- I is divisible by n, where r is the
number of natural numberc that arc
less than and relatively prime to n.

Exercises
31. Prove that if k is not divisible

by 3, then
(i) k3 gives a remainder of I or B

upon division by 9;
(t1 7.st gives a remainder of 1 or

242 r;;pon fivision by 243.
32. (i) Prove that if a3 + bB + c3 is

divisible by 9, then at least one of the
numbers a, b, or c is divisible by 3.

(ii) Prove that the sum of squares
of three integers is divisible by 7 iI

and only if the sum of the fourth
powers of these numbers is divisible
bv 7.

33. Prove that 7z'- - 77 is divis-
ible by 10.

34. What are the three last digits
in the rrurnber 799eez

35. Prove that, for odd positive
integers fr,Znt - 1 is divisibleby n.

36*. Find all natural n > 7, for
which the sum l' + 2n + ... + (n- L)"
is divisible by n.

37*. For all natural numbers s,
there exists a natural number n
that is a multiple of s and such that
the sum of the digits of n is equal
to s.

tuht''s lunclion
In 1763, Leonard Euler 11707-

1783) introduced the notation q(n)
for the number z of the remainders
(upon division by n) that are rela-
tively prime to n. For example, <p(1)

: l, q(4) :2, and q]21 : a.
If p is prime, then gfu) : p - I.It

is easy to calculate g(p-), where m
is a natural number. Let us write all
p- possible remainders:0, l, 2, ... ,
p* - l. Among these numbers, only
the remainders0, p,2p, ... , pm -p are
divisible by p. Therefore,

glp"'): ])tn - pm 1

We now calculate q(1000), i.e.,
the number of numbers from the
first thousand that are divisible
neither by 2 nor by 5. For this pur-
pose/ we subtract from 1000 the
number of even numbers in the
first thousand; we also subtract
200, which is the number of mul-
tiples of 5 in the first thousand. We
must also take into account that
some numbers (those ending in the
digit 0) are divisibleby 2 and by 5.
There are 100 such numbers, each
of which was counted twice. The
correct result, therefore, is given
by the formula

q(1000) = 1000 - s00 - 200 + 100 = 400.

Exercises
38. Find <p(2o5b), where a andb are

natural numbers.
39. Let p and 4 be different prime

numbers. Find (i) q(pql arrd (ir)
g(p'qbl, where a and b are natural
numbers.

40. So1ve the ecluations (i) g(7") :
294; (ill tO(3.Srl : 360.

In principle, the method we have
used allows us to calculate <p(n) for
any natural number a. For example,
to calculate q(300) we write the
numbers I through 300 and remove
from this list 150 even numbers,
100 numbers divisible by 3, and 60
numbers divisible by 5. We recall
that some numbers were removed
twice (and some even three times).
We must also restore this injustice
by subtracting a count of 50 num-
bers divisibleby 2.3 = 6,30 num-
bers divisibleby 2. 5 : 10, and 15
numbers divisible by 3 . 5 : 15.
Flowever, each of the ten numbers
that are divisible by 2 . 3. 5 = 30 was
first removed three times (because
each is divisible by 2, 3, and 5) and
then restored three times (a mul-
tiple of 6, lO, and 15), We still must
remove these ten numbers. We thus
have

rp(300) :300 - 150 - 100

-60+50+30+20-10=80.
As you see, this method is rather

simple. However, as the number of
prime divisors of n increases, the
number of terms in the resulting
formula also increases.

Theorem 3. The Euler's function
is multiplicative. That is, if m and
n ate relatively pfime natural num-
bers, then

<p(mnl = q@)<p(nl.

Corollary. If n = pi'p;' .....p!" 
,

where p1, p2, ... , p, ttre diff erent
prime ntunbers and tt,, a)/ ... I o\are
natural numbers, then

Proof of Theorem 3. Consider the
numbers mx + nyt where 0 ( x < z
and 0 ( y < m. They can be repre-
sented as a table of dimension n x
m. For example, for n:5 and m : 8

: ,''(r- i)

q(")=,r(ri")o(r!'),r(rt"

=(oi' -r,i" ')(r!' -ri' ')

(ri' - ,f'-')
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\\re have

Table 8

The remainders obtained upon divi-
sion of the numbers from this table
by mn are all different. If two re-
mainders were ec1ual, then the fol-
lowing congruence would be true:

mxL + nyr= mx2 + nyz (mod mn),

where 0( xr, Xz < fr, and 0 < yr,
yz. m.This congruence imPlies
two other congruences:

mxt + nYt= mxz + nYz (mod m)

and

mxt + nyr= mx2 + ny2 (mod n)

The first of them implies the con-
gruence

nyt= nyz (mod m).

Since m and n are relatively prime,
we find from this congruence that

Yt=Yz (mod m).

Recalling that 0 < 11 and y2 < m, we
obtain yt=yz. By analogy, the con-
gruence modulo n yields the equal-
ity xr: xr.

Thus a1l mn numbers in the table
give different remainders upon divi-
sion by mn. B:ut there are as many
numbers in the table as there are
different remainders upon division

by mn. Therefore, the numbers in
the table exhaust all possible re-
mainders. In other words, for any
number d = 0, l, ... , mn - 1, thare ex-
ists a unique pair of integers x, y
such that0( x. n, O< y . m, and d

=mx+ ny(modmnl.
In table 8, the even numbers oc-

cupy four columns, while multiples
of 5 occupy only one row. This is
part of a more general rule:

GCD(mx + ny, ml: GCDlny, ml
= GCD(y, m).

By analogy, GCD(mx + ny, n) :
GCD(x, n). For this reason, the table
that we are considering has g(m) co1-

umns containing numbers that are
relatively prime to m (these are col-
umns/ where y is relatively prime to
ml and q(n) rows containing num-
bers that are relatively prime to n.

The proof of Theorem 3 now be-
comes easy: in order for d tobe rela-
tively prime to mn, it is necessary
and sufficient that d be relatively
prime to m and n. Such numbers d
occupy the intersections of rp(m)

columns (which contain numbers
that are relatively prime to m) and
g(n) rows (which contain numbers
that are relatively prime to n). We
thus have a " gtid" that contains a

total of <p{m)9(n) num-
bers. Q.E.D.

Exercises
41. Consider the

table of m rows and n
columns (table 9l that
contains the numbers 0
through mn - l.

(i) Construct such a

tab\e for m :3 and n: 4.
In this table, strike out
all even numbers and Table 9

then those of the remaining num-
bers that are divisible by 3. Notice
that the remaining numbers are ex-
actly those lhat arc relatively prime
to 12; Notice that the remaining
numbers do not form a grid.

42. Complete the following out-
line of a second proof of Euler's theo-
rem:

(1) the numbers that are relatively
prime to n occupy rp(n) columns in
table 9;

(2) the remainders upon division
of allm numbers of any row in table
9 by m are aLI different;

(3) each column contains exactly
g(m) numbers that are relatively
prime to m;

(4) a number is relatively prime to
mn if and only if it is relatively
prime to n [such numbers are in the
rp(n) columnsl and relatively prime
to m feach column contains q(m)
such numbers].

43. A circle is divided into n equal
parts by n points. How many differ-
ent ciosed polygonal paths exist that
are made up of n equal segments
whose vertices are at these points?
(Two polygonal lines that can be ob-
tained from each other by a rotation
are considered identical. Figure 1

shows a1l such lines for n = 20.)

Figure 1
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44. For any fiatutal numbers m
and n, prove the following equali-
ties:

(i)

q(m)q(nl : q( LCM[m, n)l<plGCD(m, n)) ;

(ii)

q(mnl = q(LCM l-, nll GCD(m, n);

(iii)

q(m)q(n)GCDlm, nl
= <p(mn)9(GCDlm, n)1.

(iv) Let m andn be natural num-
bers, and GCD(m, nl,l. Prove that
q(mnl, q@lq,,r|.

45. Solve the equations
(i) rp(x) = 18;
(111<plxl :127
(iii)x- q(xl: t2;
(iv). <p(x2) =*-r,
lvl <p(x) = xlz;
(vi) <plxl: xl37
(vii)- g(x) = xf n,where n is a natu-

ral number and n > 3;
(viii) <p(nx) : <p(x), where n is a

natural number and n > 1.

0[en-key Ercl,ypliott
Let us assume that we need to

receive an encoded message from a
friend, but we did not come to an
agreement with him in advance
about the cipher to be used. What
shall we do? Does a method exist
such that it could be made public,
and anyone (both your friends and
your enemies) could encrypt mes-
sages using this method, but only
your friends could decipher those
messages?

This would be a remarkable
method. Other encryption methods
are based on the use of a secret key
for encoding and decoding messages.
This new method would have an
"open key." That is, anybody could
encode a message/ but only the au-
thor of the encryption system can
decode it.

RSA encryption. An encryption
method with an open key was in-
vented in 1978. That year, three
mathematicians, R. A. Rivest, A.
Shamir, and L. Adleman, encrypted
an English phrase and promised a
reward of 100 dollars to the first per-
son who could decode it. Here is the

encrypted phrase:

y = 9 6869 6137 5462206147 7 140922
2s 43 5 588290s7 5999 r t2457 43 19 87 4
59 s t209 30Br 629 822s r 4s7 083 5 59 3
I 47 66228839 89 52BO L 3 39 1 9905 5 I 8
2994st57815t54.

The encryption method was ex-
plained in detail. First, the original
phrase was represented as a se-
quence of digits by straightforward
substitution (the letter d was en-
coded by 01, the letter b by 02, the
letter c by 03, ..., the letter zby 25,
and a space by 00.) Thus, the origi-
nal phrase was written as a 78-digit
number x. A prime 54-digtt number
p and a prime 55-digit number q
were then multiplied (obviously by
computer) to obtain

pq = 1143815257 57 888867 6693257
7 9 9 7 6 | 4 6 61201 02t 829 57 212423 62
s 62s 5t 8 429 3 s7 0 69 3 s24s7 3389 7 83
0597 t23s63958 7050589 8907 5r47 5
99290026879s43s4r.

Now, here is the key point:

y: xeoo7 (mod pq).

Do you see it? They published the
product pq, the number 9007 , the
encryption method, and, of course,
the number y. -Ihey even revealed
that the number p consists of 64 dig-
its, and qof 65 digits. Only the num-
bers p and q remained unknown.
The task was to find x.

The solution was given in 1994
by Atkins, Craf.t, Lenstra, and
Leiland. The numbers p and qwerc

p : 3490529 s10847 6s09 49 r47 849 5
1 9903 898 13 3417 7 64638 49 3387 843
990820577,
q : 327 69 | 329 9 32667 09 s 499 6t9 88
19083 4 461 41 3 t7 7 6 429 67 9 9 29 425 3
9798288s33.

The booll errtitled Introduction to
Cryptography, says: "This remark-
able result (the decomposition of a
I29-diglt number into prime factors)
was obtained by using an algorithm
called the quadratic-sieve method
(this method was designed for prime
factorization). The calculations re-
quired enormous resources. About
600 people participated in the project,
headed by four persons who thought

of it. About 1600 computers, joined
by the intemet, were used."

A description of the quadratic-
sieve method, however, would di-
vert us considerably from the topic
of this arti.cle. We shal1 therefore
Ieave its description for another
time and briefly discuss here the
basic idea of the RSA encryption
method (the acronym RSA stands
for the authors' names - Rivest,
Shamir, and Adleman).

This idea is extremely elegant.
First, if p and q are known, we can
find <p(pq) = (p - rllq - 1). Secondly,
(and this is an important idea) if

ef:r+kqlpql,
where e, f, and k are natural num-
bers, then {or any number x that is
relatively prime to pq, we find, by
Euler's theorem, that

' 'a(P4l 
- '- 'x"'=x ("^) =x'I

= x (mod pq).

Do you see the importance of the
numbers e and f? In our example, e

= 9007 [the only requiremen t for e is
that it must be relatively prime to (p
- t)lq - 1); however, it is not wise to
use e : I or e = (p - tlh- 1) if you
want to keep your secrets]. As has al-
ready been mentioned above, lis the
solution of the congruence

ef=r (modq(pq)).

An algorithm for solving such
congruences based on Euclid's algo-
rithm is described in the Appendix.

The congruences

yt'=yef:* (modpq)

show that it is sufficient to find the
remainder upon division of yf by pq
to calculate x. The numbers are cho-
sen in such a way that x< pe, where
x is divisible by neither p nor q. This
circumstance, however, does not
impose any severe restrictions on us:
If p and q arcIarge numbers, the prob-
ability that x is fivisible by p or q is
negligible. In addition, we cafl at-
range that the encryption algorithm
wii1, i{necessary, slightly change the
message being encrypted {without
changing its meaning) such that x
and pq become relatively prime.
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Why do many people think that
the RSA encryption algorithm has
an open key? Because the numbers
pq and e can,be made public. Any-
one having a computer (and a pro-
gram that can operate with multi-
digit numbers) can then encrypt a

message. The message can be easily
decoded if the number f is known.'
However, the only available method
for finding / recluires that the num-
bers p and cl be known. That is, pq
must be factorizedinto primes. Cur-
rently, no efficient methods are
available for solving the latter prob-
lem. The successes achieved in1994
do not count: if the numbers p and
q would consist of , say,300 digits or
more/ then no internet resources
would be sufficient. On the other
hand, we have no proof that it is
impossible to find an efficient algo-
rithm (that is, an algorithm whose
execution time depends on the num-
ber of digits in a polynominal fash-
ion) for factoring integer numbers
into primes.

Appendir
A method for raising to a higher

powet. In order to raise a number x
to the power 9007, it is sufficient, by
definition, to perform 9006 multipli-
cations. It is possible, however, to
reduce the number of operations: we
can calculate *, (*)2 = *, (*12 : x8,

... , l*'oo8l2 = x4oq6, and, {inallY,
(*ooep : xstez I and then use the for-
mula

x9007 _ x. x). xa. #. x32. x256. x512. xSle) |

which is based on the binary repre-
sentation of9007:

9007rc: 10 oo11 oo10 1112.

We represented 9007 as the sum
| + 2 +4 + 8 + 32 + 256 + 512 + 8192
and got by with only 20 muitiplica-
tions (13 squarings and 7 multiplica-
tions) instead of 9006. The saving of
computational effort is enormous.
For an alert (fau1t-finding)reader, we
note that in the above consider-
ations, we should have discussed
multiplication modulo pq, rather
than conventional multiplication.
To keep the number of digits man-
ageable, we must not only calculate

the product at eachstep, but also the
remainder upon divisionby pq.

The advantages of this method for
raising to a power increase as the
power increases. For example, if the
exponent of the power consists of
several dozen or hundreds of digits,
the straightforward method of rais-
ing to this power is impractical even
if the most powerful computers are
used. But the method based on the
binary representation works even
for such big numbers.

Exercise 46.* Suppose that we may
perform two operations: multiply a

number by 2 and increase a number
by L II the binary representation of
the number n is a-a*'.... a1ao, what
is the minimum number of opera-
tions required for obtaining from 0
the number (i) 100, (11) 9907t (iii) n ?

Euclidean algorithm. Euclidean
algorithm is a method for finding the
largest common divisor. It is based
on the formula

GCD(a, bl: GCD(a - bq, bl,

which holds for any integer num-
bers a, b, and q.

Exercise 47.Prove this fact.
Here we need a method for solv-

ing linear ecluations based on Euclid-
ean algorithm rather than the algo-
rithm itself.

Suppose we are given relatively
prime e and m [in the case given
above, m = q(pcill.We must find
numbers f and k such that

ef:l+km.
If m is not very large, an exhaustive
search of all m remainders is pos-
sible. For large m, an exhaustive
search is impractical. It tums out that
Euclidean algorithm provides a fast
method for solving this problem.

Let us demonstrate how this
method works by considering the
example with e : 9OO7 and m :
19876. (We had originally wanted to
use a value of m with more than one
hundred digits, but lost our nerve at
the last moment.) The equation

9007f:L+l9\76k
can be written as

9007f : I + 9007 .2k + 1862k,

or as

9007(f-2k):t+r952k.
Leta=f-2k.Then

9OO7a=l+LB62k.

Notice that this is an equation of the
same type as the original equation,
but with smaller coefficients. The
next step is

1862. 4a + 1559a : | + 1862k,

i.e.,

7559a=r+l\62lk-4a1.
Let k - 4a: b. Then

1559a=l+1862b.

We rewrite this equation as

1559(a-b):r+303b.

Letting a - b : c, we obtain the eclua-

tion

1559c: | + 3OBb.

Similar transformations yield

44c:I+303(b-Scl,
44{c-6dl:L+39d,
5x:1 +39(d-xl,

d:b-5c,
x=c-6d,
y=d-x,

44c: | + 303d,
44x: | + 39d,
5x: | +39y.

The computer would continue the
calculations until the coefficient of
one of the unknowns becomes 1. We
can stop here since it is clear that x
: 8, y = 1 is a solution to the last
ecluation. If x and y are known, we
find

d:x+y=9,
c=x+6d:62,'
b=d+5c:319,
a:b+c=381,

k: b + 4a:1843,
{:n*)k:4067.

We have triumphed! Here are the
values ol f andk, and here is the veri-
fication:

9007.4067=36,631,469
=l+19876'1843.

o
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M291
Coruupt copies. A student solved

a1l the problems in a mathematics
olympiad. Before sending his solu-
tions by mail, he gave them to his
two friends to copy. The next day,
these two students copied the solu-
tions. However, each of them made
several (different) errors when copy-
ing. Before sending these copied so-
lutions, the two students, in turn,
gave the solutions to four other stu-
dents (each of them to two friends).
The next day, these four students re-
peated the procedure, and so on.
Each new copy retained all the pre-
vious errors and may have added
new errors. It is known that some
day each new copy will contain at
least ten errors. Prove that there is a
day when a total of at least eleven
new errors are made in the copies.

M292
What's your angle! 1. In triangle

ABC angle A is equal to o. The circle
that passes through A and B and is
tangent to line BC intersects the me-
dian drawn to side BC lor its exten-
sion) at a point M, which is different
fuomA. Express the measure of angle
BMC in terms of u.

M293
Roofs of the problem. Let x, and

x, be the roots of the equation * +

px + q: 0. Prove that if t satisfies the
inequalities lt'-o

x1( 1-J1x2,' 2t+p

HOW DO YOU
FIGURE?

ChallBltUE$

then t must in fact be equal to either
xt ot x2.

M294
What's your angle! 11. In triangle

ABC, ZBAC : a ar.d ZABC :2a,
The circle with center C and radius
CA intersects the line containing
the bisector of the exterior angle at
vertex B at points M andN. Express
the measures of the angles of tri-
angle AMN in terms of cx,.

M295
Proof positive. Let positive num-

bers ar, a2t ... r aroo be such that

111
.........................._r...........-J L_a l

l+ a, l+ a, I + a,66

Prove that at. az. ... . at*o> 99roo.

Physics

P291
Tugged boat. A motor is located

on a cliff at the shore of a lake. The
motor winds a rope uniformly on
its drum and pulls a boat directly to
the shore. At a certain instant the
rope makes an angle cr with respect
to the horizontal, and the boat's
speed is v. At this instant, a small
knot on the rope is half as far from
the boat as it is from the motor.
Find the velocity and acceleration
of the knot at this instant of time.
(S. Varlamov)

P292
Water world. The surface of a

planet, which has the same size,
mass, and atmospheric composi-

tion as Earth, is covered entirely
with an ocean whose temperature
is +1OoC and whose constant depth
is 230 m. An internal process heats
the ocean to a temperature + 100 oC,

but the depth of the ocean and the
size of the planet's hard core remain
the same. Assuming that the size of
the solid part o{ the planet remains
the same during the heating, find
the mean thermal expansion of
water in the indicated temperature
range. (S. Varlamov)

P293
Spear-ited debate. What speed is

required for a long, thin spear of mass
M, which is uniformly charged by a
positive charge Q along its length I,
for the spear to pass completely
through two adjacent layers of thick-
ness -h, in which the electric field is
directed both against the velocity of
the spear (in the first layer) and along
it (in the second layerl. In each case
the intensity of the electric field is E.
The total thickness of the two layers
is less than the length of the spear.
(O. Savchenko)

P294
Birth of the Earth. At present,

natural uranium contains q, :
99.28% uranium-238 and q, :
0.72o/, uranium-235. The nuclear
half-life of %8U is r, = 4.56. 10e years
and that of 235U is t, : 0.71 . 10e
years. Assuming that the numbers
of each uranium isotope were iden-
tical at the Earth's birth, find the age
o{ our planet. (V. Mozhaev)

CONTINUED ON PAGE 26
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]liuh-speed hazal'ds

Crafting a solution

by l. Vorobyov

VEN THE NEAREST STARS
are Yery distant objects. As for
the galaxies, the distances to
them are mind-boggling. For ex-

ample, it takes light about a million
years to travel from the Andromeda
Galaxy to our Solar System.

Can we ever hope to reach the
Andromeda Galaxy, say, in a week?
According to clocks on Earth, this is
utterly impossible, as no spacecraft
can travel faster than the speed of
light. However, this is possible for
an interstellar traveler aboard the
spacecraft if the spacecraft moves at
a sufficiently high speed. At relativ-
istic speeds clocks (and all other pro-
cesses) slow down. The higher the
speed, the more the clocks slow
down.

How should one travel to An-
dromeda if one must get there in a
week? The distance of one million
light years must be covered in I152
of ayear. Calculations based on the
theory of relativity give an incred-
ible result: the flight must occur
with a constant acceleration a
: 700 gl Here g is acceleration due
to gravity at Earth's surface.

However, how can one deal with
such accelerations? At an accelera-
tion of 700 g our weight increases
700 foldl This would be like having

a steamroller ro11 over the star trav-
e1er. Our b1ood, which must circu-
late throughout the body, would
also increase in weight 700 times.
Hearts cannot handle such a load.
Steep turns sometimes cause pilots
to pass out temporaily because
blood does not reach the brain, al-
though in this case the acceleration
a is no greater than 5-10 g. The load
on the heart could be reduced by
assuming a supine position, thereby
reducing the height to which the
blood must be raised. But even an
acceleration of 10 g in this position
can be endured for only three to five
minutes.

Can some alternative method of
traveling at such large accelerations
be devised? Can a spacecraft be de-
signed in such away as to eliminate
such large increases in weight?

Before attacking the enemy, one
should get to know him. Where
does the weight come from?

Standing on a spring scale causes
the arrow to be deflected from its
zero position. The Earth attracts the
body, but since the body is station-
ary relative to the scale, this force
must be counterbalanced by the
spring within the scale. The spring
therefore shows the weight W: mg
(where m is the mass of the body).

Let's assume that we are measur-
ing the weight (the reading on the
scale) in an elevator that is rising
with acceleration a. The scale now
reads mla + g), which indicates an in-
crease in weight. In this case the
force of the spring not only counter-
balances the gravitational attraction
of the Earth but also accelerates the
body.

If, on the other hand, the elevator
is in free fall, the scale will readzero,
because all bodies fall with the same
acceleration. The body's displace-
ment therefore is exactly the same
as that of the scale; the spring re-
mains relaxed. Holding an apple in
the hand in an elevator in free fall,
one would not feel its weight be-
cause the apple falls freely with the
hand without exerting any pressure
on it.

This simple experimeot shows
that weight is W= mla + gl if the ac-

celeration a is directed upward. If
the acceleration a is in the same di-
rection as the acceleration due to
gravity g, andlf lal: lgl (free fal1), we
have a state of weightlessness. This
is the state experienced by astro-
nauts when they are orbiting the
Earth with the engines turned off.

It is important that weight is de-

termined both by acceleration and

cd
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a
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by gravitational attraction. One
component can now be canceled by
the other. The state of weightless-
ness can be attrained because the ac-
celeration due to gravity does not de-
pend on mass or the composition of
the falling bodies. This fundamental
property was discovered by Galileo.
Even today, however/ some re-
searchers occasionally cannot resist
the temptation to check this prop-
erty with greater accuracy.In 1954,

|ohn Roll, Robert Krotkov, and Rob-
ert Dickey measured the relative
gravitation al acceler ation of gold
and aluminum to an accutacy of
0.00000000001!

Let's now consider a massive
body (the spacecraft) that produces a
gravitational acceleration a equal to
the acceleration desired for travei-
ing. Let's then place engines on this
massive body that are capable of at-
taining this acceleration. The trav-
eler is comfortably situated in a pri-
vate cabin, which falls freely toward
this body. The cabin falls with accel-
eration a,b:ut since the engines are
running, the body is accelerating at
the same rate.If the initial velocity
rs zero, the distance between the
passenger's cabin and the spacecraft
remains the same. The passenger
experiences weightlessness in the
free-falling cabin, which is moving
with the appropriate acceleration at
the same time.

At the halfway point of the jour-
ney, however, deceleration of the
spacecraft must be initiated in order
to slow the spacecraft down. How-
ever/ we must maintain the match
between the acceleration of the
spacecraft and the free-fal1 accelera-
tion of the cabin, thus preventing the
cabin from ramming the spacecraft.
In addition, there is the danger of lag-
ging behind or colliding with the
spacecraft as a result of a change in its
acceleration. The spacecraft, there-
fore, needs to be better designed.

Let's dril1a shaft through the cen-
ter of the massive body, which has
the shape of a sphere, in the direc-
tion of acceleration. The gravita-
tional acceleration changes as a

function of the distance from the
center of the sphere. Denote the ac-

Figure 1

celeration due to gravity at the
sphere's surface by aoand the radius
of the sphere by rn. Figure 1 shows
how the acceleration a varies with
distance r {rom the sphere's center.

At the distances between -ro to ro
(that is, inside the sphere) accelera-
tion due to gravity varies according
to the 1aw

fa=ao_,
ro

while at r > |rol (outside the ball) the
gravitational acceleration is de-
scribed by the equation

(,\'
a= _aol _

\IoJ'
The negative sign means that the
acceleration is always directed to-
ward the center of the sphere.

When the sphere is moving uni-
formly (without acceleration), its
center is the point of stable equilib-
rium. Small deviations of the cabin
from the sphere's (spacecraft's) center
are corected by the restoring force. If
the acceleration a'of the spacecraft is
slower than ao, the cabin will always
find a position at which the gravita-
tional acceleration is a'. This position
can be found from the plot by draw-
ing a straight line parallel to the r axis
at a distance a'below it. The ordi-
nates of the two points of intersec-
tion give the positions. However, the
point in the shaft corresponds to the
stable equilibrium point. If the
change in acceleration of the space-
craft is small, the cabin willoscillate
near a new ecluilibrium position,
monitoring the agreement between
the two accelerations. The cabin re-
mains in the state of weightlessness
all this time.

If the sphere decelerates at the
same ratel the equilibrium position
will be on the other side of its cen-
ter.

We have proposed a radical
method to combat the effects of very
large accelerations. What hurdles
must be surmounted to realize this
fantastic project? It does not violate
the laws of nature. The main prob-
lem is the energy source. But this is
the Achilles'heel common to all in-
terstellar space projects. How can
such a massive bodybe constructed?
One can use either a body of very
large volume or a material of very
high density. O

Quantum on gravitation, space
voyages/ and weightlessness:

A. Stasenko, "From the Edge of
the Universe to Tartarus," Marchf
April, 1995, pp. 4-8.

A. Byalko, 'A Fiight to the Sun,"
November/December 1996, pp. 16-
20.

V. Surdin, "Swinging from Star to
Star," March/April 1997, pp. 4-8.

V. Mozhaev, "ln the Planetary
Net, " |anuary fFebruary 1998, pp. 4-
8.

S. Pikin, "Weightlessness in a

Car\", |uly/August 1998, p.31.

CONTINUED FROM PAGE 23

P295
The plate thickens. The lumi-

nous flux from a point source is
measured with the help of a smail
photosensitive detector located at a
distance t = 0.I m from the source.
A plane-parallel glass plate is placed
between the source and the detec-
tor in such a way that its plane is
perpendicular to the line ponnect-
ing the light source and the detec-
tor. The refractive index of glass is
n: 1.5. For what thickness of the
plate will the reading of the detec-
tor not change? Glass is transpar-
ent. The coefficient of reflection k
at the glass-air boundary for a nor-
mal angle of incidence is given by
k: ln - ll2ll" + t)2. (S. Varlamov)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 49
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KALEIDOS

Doyotlknowthehit
1

I

6. The dissociation of molecules
that takes place during the dissolv-
ing of salt crystals in water leads to
a growth of the potential energy of
interaction between the ions. To
what is this process attributed?

7. What can cause a drastic in-
crease in the number of electron-
hole pairs in semiconductors?

8. Two uncharged plates of dis-
similar metals have identical con-
centrations of free electrons. Which
plate will become negative when the
two plates are brought in contact
with each other?

9. Are thermionic emission and
evaporation of a liquid similar pro-
cesses?

10. How can the saturation cur-
rent in a vacuum diode be
changed?

t 1. Why is a relatively
small voltage sufficient to
maintain the glow of an
electric arc?

12. Why do electrons
rather than heavy ions (although
they are also accelerated by the elec-
tric field) play the major role in col-
iision ionization that leads to self-
maintained discharge in gases?

13. Can a hydrogen atom absorb
a photon whose energy is l4rger than
its binding energy?

14. Is more energy required to free
the first or the second electron from
a helium atom?

15. Can a free proton capture an
electron (and produce a hydrogen
atom) without any rudration?

15. In what part of the atom-its
nucleus or its electron shell-do
the processes that lead to the emis-

sion of B-rays occur?

I ffiTi:,lHf :#,::T# ffi , 
;3:;;:'*: Ts,:'iil"f:iT:

f '";TliljiT[f:T?rnl;T: W x*rJi [i;lli'"]iTJ
ergy. We usually encounter it in the erogeneous world. In other words,
final basic physics course involving binding energy is one of the wonder-
the study of forces that bind nuclear fully universal notions that unifies
particles. Let's, however, take a various types of physical firterac-
broader view of the binding energy tions.
and consider it as the work needed to We hope that by reading this Ka-
pull apart two bodies attracting each leidoscope you will see the physical
other to a distance at which they no world in a less pessimistic light than
longer atfiact each other. We shal1 suggested by the verses of the {a-

then see that in many cases the bind- mous XMI century English poet |ohn
ing energy is indispensable in under- Donne. Had he been acquainted
standing the principles of the con- with the binding energy, he would
struction of the universe. certainly have been more optimis-

Is it not the binding energy that is tic.
"responsible" lor the stability of
plaietary systems/ molecules, at- Problems and questions
oms, and their nuclei? Carefully ex- 1. An astronaut is on
amining such seemingly dissimilar board a spaceship orbiting
phenomena and processes as melt- the Earth. Does the state of
ing and evaporation, ionization and weightlessness that he expe-

the photoelectric effect, the fiight of riences attest to the loss of
connection with the Earth?

2. The kinetic energy of a satellite
in a circular orbit is positive. What
is the sign of its total mechanical
energy?

3. Does a rocket require more
energy to escape the planet's gravi-
tation when it is launched from the
surface of the planet or from a

circular orbit?

)
I

I

"lnto elements the
universe is split. The

bonds are torn, and the
world hath gone to

pieces."
John Donne

4.Why does evaporation of
a liquid in a jar result in the
cooling of the licluid in the
absence of any heating?

5. Why can wet sand, -.

but not dry sand, be
used to sculpture a fig-
ure?

2 I rirAY/Jttntt 2ooo



)OSCOPE

lhindinU EltErUy?
I

I

17. The light emitted by the sur-
face of a star has a higher frequency
than that of the light viewed by an
observer. What is the
reason for this difference
in frequencies?

Microscopic experiment
Drop some vegetable

oil into water in a large pan. What
shape will the oil drops take? What
are the forces that bind them and
prevent them from spreading uni-
formiy on the surface of the water?

It is interesting that...
...the opponents of the theory of

Copernicus believed that the Earth
was too heavy, too inert, and too
sluggish to be able to rotate about its
axis. Otherwise, they believed, the
planet would break up into pieces,
like a flywheel spun out of control.
Later Kepler had to contrive special
invisible spokes that bound the

planets to the Sun
and moved them in
their orbits.

...the energy needed to launch an
object with mass of one kilogram
outside the range of the Earth's
gravitation can be obtained by burn-
ing one and a half liters of gasoline
(without allowance for the losses).

...the stability of most of the ob-
jects that surround us is determined
by the factthatthe energy of thermal
motion of their molecules is not suf-
ficient to break the chemical bonds
that hold the molecules together.

...in the 1920s quantum mechan-
ics was used to explain the nature of
chemical bonds. Laborious calcula-
tions of manyyears, with the help of

quantum mechanics, have finally
yielded complete agreement be-
tween experiment al data and theory.

This was the birth of quantum
chemistry, which today uses
powerful computers to per-

form the calculations.
...analysis of the radiation of

the northern lights led to the
conclusion that in the high atmo-
spheric layers the oxy-
gen molecules are dis-
associated by the solar
ultraviolet radiation
into atoms, which then
scintillate individually.

...when the temperature is higher
than five or six thousand degrees,
thermal ionization takes place in
gases. The electrons are ejected.from
the atoms and the substance under-
goes a transition to the plasma state.
Plasma radiation can be used to de-
termine the nature of stars, of the
ionosphere, and of a gaseous dis-
charge; it may also provide a key to
solving the nature of ball lightning.

...Nieis Bohr, the author of
the famous model of the
structure of the atom/.
which was named after
him, published one of his
papers on this model
with the title "Binding of
an electron by the positive nucleus."

...the extreme chemical inertness
of rarc (noble) gases was explained in
the study of outer electron shells of
their atoms. When these shells are
completely filled, the binding of the
electron with the nucleus is stron-
gest. In helium the energy of this
bond is the strongest among all at-
oms.

... A century ago, a youngphysicist
named Ernest Rutherford was able to
explain the phenomenon of the ion-
rzation of gases by recently discov-
ered radioactive substances. In the
experiments he used an electroscope
that rapidly &scharged in the ionized
air. This important device was made
from a silk brush. It was electrified by
stroking its base with a "watm, dry

tobacco pouch." Evaluate
the 1evel of experimental
techniques used a hundred
years agol

...the inevitable failures
of alchemists to convert

one chemical element into another,
that is, to transform the nuclei, is ex-
plained by the {act that the binding
energy in the nuclei per particle is
about one million (l) times gteater
than the energy of chemical bonds
between the atoms.

...The atomic nuclei that contain
a so-called magic number of protons
and neutrons have larger binding en-
ergies and therefore a greater resis-
tance to decay. The search for such
nuclei, which are islands of stability

outside the range of Mendeleev's
table, has recently been rewarded:
the 114th element was synthe-
sized in alaborutory a[ Dubna.

...Quarks, which are the smallest
structures in the particles inside the
nucleus, do not exist in a free state,
although experiments have firmly
convinced researchers of their exist-
ence. The forces "gluing" the quarks
together are so unusual that inabil-
ity of a quark to escape was given
the name "confinement." O

ANSWERS, HINTS & SOLUTIONS
ON PAGE 53
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PHYSICS
CONTEST

I NVENTINC THE BETTER
I downhill vehicle coniounds engi-
L,."rr. ll the measure ol success is
I tn. speeci oi the car or skateboard
at the bottom of an incline, how
does one choose the proper wheels?
Solid wheels, spoked wheels, cylin-
ders, rotating casters, spheres, hoops,
and a combination of these shapes
inhabit our palette of possibilities.

The decision making certainly
requires an understanding of rolling
bodies. Although most people ap-
pear cluite familiar with wheels, a

few simple ptzzles reveal the
subtlety of the motion. Ask some-
one to trace the motion of a point on
the outside of a bicycle wheel as it
moves across your line of sight.
Compare this with the actual trace
as you roll a disk and construct the
path. The path is a cycloid-not the
first guess of most peoplel

A simpler ptzzle recluires you to
place one quarter next to another
with the faces of Washington up-
right. As the quarter on the right
ro1ls without slipping on the other,
what will be the orientation of
Washington when the coin reaches
the left-hand side of the fixed cluar-
ter? Try it and then explain it.

Final1y, take a ruler and rest it on
the wheels of a cart. As the cart
moves forward, will the ruler move
with the cart? If not, why not?

When viewing a rolling (without
slipping) wheel, we notice that the
bottom of the wheel is at rest with
respect to the ground. There is no
skidding here. The speed of the cen-

RollinUwheels

by Arthur Eisenkraft and Larry D. Kirkpatrick

The fly sat upon the
axel tree of the

chariot-wheel and
said, What a dust do

I raise!

-Aesop 
(6th

century B C )
ter of the wheel is equal to the speed
of the wheel. When the wheel
moves one meter to the right, the
center of the wheel moves one
meter to the right. The top of the
wheel is also moving to the right,
but at what speed?

An analysis of the kinetic energy
of the wheel will help reveal the
motion of the wheel. If the wheel is
a solid cylinder, the kinetic energy
of this fixed rotating cylinder is
equal to the kinetic energy of each
of the small elements

x=) L*r'.
/-t 2

Since each mass has the same
angular velocity rrr, the velocity of
each small mass is equal to r(D/

where r is the distance from the cen-
ter of rotation.

K= ! !-r'*'
Lt2

=ff! *rz\r,.r)=l1r'.
2\Z-t t 2

where 1 is defined as the rotational

inertia oi the rotating object. The
rotational inertia is a measure of the
difficulty of starting the rotation of
an object in the same way mass is
indicative of the difficulty of accel-
erating an object.

For a rolling wheel, the instanta-
neous rotation is about the point in
contact with the ground. The defini-
tion of kinetic energy is unchanged
but the moment of inertia about this
new point must be determined. The
parallel axis theorem can be used to
determine this new rotational iner-
tia

I = I"*+ mdz,

where d is the distance of the rotat-
ing axis from the center of mass. In
the case of a rolling body, the instan-
taneous point of rotation is the
ground, which is one radius from the
center of mass of the wheel. The
kinetic energy of this rotating wheei
is

K =!Ir' =L(t^^ + mR2\a22 Z\'"', t

=!I^*r'+!*R'u,
l. , 1 z: 
Z,r-r'*1mvr*.

Our analysis of the rolling wheel
has become much simpler. The ki-
netic energy o{ the rolling wheel is
equal to the rotational kinetic en-
ergy of the wheel about its center of
mass plus the kinetic energy of the
entire mass moving with the veloc-
ity of the center of mass.

C
:f
m
a
(d

E
oF

_o

30 ltAY/JUtuI 2ooo



(r' ./

\\,

a1!4

t*9,
, ei.,

l .r?.'

,' 4<

FE
j?-'jS'

2A'

,,, ., t

d{J

Wr',
-.,lltJ'i'\\';s

.. -s. \\qS r\ S.

,'\\.' 1l )"6\\ i$
\

:r€;,*
- @i'**:

<_::-:- _ _ .1

kdd- +'

/ .'., <i '!l
|.,, -.y '

OUAlllTUltil/PllYSICS COlIITSI

W-- lr. ^,-.iif :tI'i4"*

d.t

v

, f*.-,

"#

.-\ -C



That being the case, we can see

that the center of the wheel moves
withv"-, and the wheel spins with
an instantaneous angular velocity rrr

about the point in contact with the
ground. All points have a tangential
speed equal to ov. For the point on
the ground, the velocity is zero, for
the central point the velocity is roR,
and for the top point the velocity is
2oR. The top of the wheel moves at
twice the speed of the center of
MASS.

We can use conservation of en-
ergy to {ind the speed of a wheel as

it rolls down an incline. The loss in
potential energy is equal to the gain
in both translational and rotational
kinetic energy.

, I , l_ rIITgk=i*r;*+-t(-JJ-.

Different wheels will have differ-
ent speeds owing to their different
rotational inertias.

To fully understand the rolling
wheel, we must delve into the dy-
namics of the motion. Why would
the wheel rotate-why would any-
thing rotate? If I were to place a pen
on the table, how might you apply
a force to rotate the pen? A force at
the center of mass will accelerate
the pen, but a force at arry other
point is required to rotate the pen.
This "off-center" force is called a
torque and is defined as the cross
product of the distance and the ap-
plied force.

r=rxF.
The force of gravity acts on the

center of mass and cannot be respon-
sible for the rotation. Similarly, the
normal force of the surface on the
wheel has no r (off-center compo-
nent). It is the frictional {orce at the
bottom of the wheel that creates the
rolling.

Designing a wheel requires other
considerations than the analysis
above. The engineer must take into
account the strength of materials
needed, the ease of manufacturing,
the cost of materials and production,
the need for maintenance and repair,
the durability, and the aesthetics.

Maximizing the speed of a wheel
and ensuring safety, low cost, and
durability often requires compro-
mise and creativity.

Part of this month's Quantum
problem was originally given in
Bucharest, Romania, rn 1972.

A. Show that all solid spheres will
arrive at the bottom of the incline
with the same speed, independent of
their radii. The rotational inertia of
a solid sphere ts 215 mRz.

B. Determine the relative speeds
of a cylinder, a hoop, and a solid
sphere (all of the same mass) at the
bottom of an incline. The rota-
tional inertias are lf 2 mR2, mR2,
andZl5 mRz .

C. Consider three cylinders of
the same length, outer radius, and
mass. The first cylinder is solid.
The second is a hollow tube with
walls of finite thickness. The third
is a hollow tube with wa1ls of the
same finite thickness, filled with a
licluid of the same density (both
ends are closed by thin plates of
negligible mass). Find and compare
the linear and angular accelerations
for the cylinders when they are
placed on an inclined plane of angle
g. The coefficient of friction be-
tween the cylinders and the in-
clined plane is p. Friction between
the licluid and the wall of the cylin-
der is negligible.

Please send your solutions to
Quantum, I 840 Wilson Boulevard,
Arlington YA222OI-3000, within a

month of receipt of this issue. The
best solutions will be noted in this
space.

A questiun olcompluily
Our problem in the November/

December 1999 issue of Quantum
was taken from last summer's In-
ternational Physics Olympiad that
was held in Padua, Italy. A vertical
cylinder filled with gas and capped
by a moveable glass plate is illumi-
nated for a finite time by a laser.
As the gas absorbs the light, the
glass plate is observed to move
upward.

A. In order to find the final tem-
perature and pressure of the gas,
let's begin by noting that the initial

temperature is the same as room
temperature, which is given to be
20.0'C. The initial and final pres-
sures are the same. The difference in
the pressures inside and outside the
cylinder must be large enough to
support the weight of the glass plate.
Therefore,

Pf=Pr=Po+3,
TET.

where Po = 101.3 kPa is the atmo-
spheric pressure. With a radius r :
50 mm and a mass m : 800 g, we
find that P,= 102.3 kPa.

Now let's find the initial volume
of the gas. According to the ideal gas

law, we have

,, -nRTg,Pi

Since we are only given the dispiace-
ment As of the glass plate, we will
need to find the initial height of the
glass plate in order to find the final
volume.

,- V, nRTs
'-1 n? P1,nr2 + mg'

Therefore,

Ia *m\
V, =V,l "r -" l.
' '[ hi )

Using the ideal gas 1aw, we have

_7,
- f o T

nR

Plugging in As:30.0 mm, we get 4
= 322K:49"C.

B. The mechanical work per-
formed is given by the force exerted
by the gas on the glass plate multi-
plied by the displacement

W=lPonr2+mg)As,

which gives a value of 24.31.
C. The internal energy of the gas

increases by

A,U : ncrLT,

?Z
m(r

Tf =To
:)
Potultr

.('.f)
'I - ,rro\
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and using the first law of thermody-
namics, the heat absorbed must be

Q= LU,+W
T6As, i._ " \- n", -T + \Potn' + mgJAs

= As(Porr2.-r;(1.r)

This gives a numerical value of
Bs.3 l.

D. Given that the laser is on for
only 10.0 s, the power of the laser is
P: QlLt = 8.53 W. The wavelength
)" of the laser light is 514 nm, so the
energy of each photon E = hcl)",
where h = 6.63. 10-34 |.s is Planck's
constant. Therefore, the number of
photons emitted per unit time is

?=r.rxt01e s-1.
hc

E. We can now calculate the effi-
ciency of this "heat" engine for con-
verting light energy into gravita-
tionai potential energy to be

meAs
T.l=---o-- = 0.28"/".'o

F. When we rotate the cylinder so
that its axis is horizontal, we have
an afiabatic change in pressure from
Ptto Po. We know that PVY is con-
stant for an adiabatic expansion,
where

coR
^t----L-lr _IT-,

cv cv

This gives us

V,o, ( Pr \'lt
T=\%)

Because both the volume and the
pressure change, we find the tem-
perature after rotation by

(v-t)/ v

This gives a temperature oi 321
drop of only one l<clvin.

The Dealh ol a Stal'
(Part 2)

by David Arns

Ill o*, I hope that you remember what I talked about before,
When I spoke at length of dying stars and such.
Well, here I am agarn; I'm back to give you an encore/
'Bout what happens to a star
When its behavior gets bizarre
As it dies, because it weighs so very much.

I'm talking here about those supermassive types of stars:
A dozen solar masses at the least.
What happens to them as they say their final au revoirs?
Well, they often do go nova,
But the story's not yet " {)va,"
There is much to do before they are deceased.

Now these novas are exploding stars; this happens at the end,
When a massive star exhausts it nuclear {uel.
It collapses, making temperatures too high to comprehend,
Then the shell becomes so dense
It stops neutrinos cold, and hence,
It just explodes, and then its "ashes" spread and cool.

But what happens to the core that such a nova'd leave behind,
Having thrown most of its mass out into space?
Well, assuming that its mass i's large enough, then you will find
That there is truth more strange than fiction
Hid in physics' judsdiction:
The core would vanish, leaving not a trace!

Okay, that part I said about its "leaving not a ttacet'
Is not entirely true, I'11 tell you why.

Although by merely looking you'd see nothing in its place,
If you measured gravitation,
You would see a demonstration
Where you'd swear that something's badly gone awry.

There'd be a gravitational well that simply would not quit,
Consuming everything that happened by;
And nothing could come out that went into this bottomless pit-
Even photons can't get out/
But in steep'ning downward route,
They would vanish with a tiny, tortured cry.

See, a "black hole," as they call these things, is just exactly that:
Its escape velocity is more than c.
And, of course, this means that nothing can go past the line whereat
Even light is bound securely;
And if light is bound, then surely,
Nothing else could hope to e'er again be {ree.

CONTINUED ON PAGE 35
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HE SIGHT OF A GOOSE
waddling awkwardly on land
gives the impression that its
weight is a burderr to caty

around. But once in water the goose
moves quickly and freely: even a
light puff of wind can change its
speed. How does such a dramatic
change occur?

To see this effect more clearly, set
a cork upright on a table and blow on
it lightly from one side-it will not
move. Once placed in water, how-
eYert a breath of air moves the cork
easily. Evidently, the force of fric-
tion between a solid body and water
is much less than that between two
solid bodies.

The biggest mammal on Earth,
the blue whale, is perfectly designed
for an aquatic 1ife. It may weigh up
to 130 metric tons, but in water it
can reach speeds up to 20 knots, or
37 km/h. In comparison, motor
boats cruise at up to 30 km/h, or
about 16 knots. Sixty-ton sperm

IN THE OPEN AIR

$inkor sttuiln

by N. Rodina

whales have been seen leaping sev-
eral meters out of the water. How do
such behemoths move with such
grace and ease?

"The wha1e... doesn't merely in-
spire superlatives-it is a living su-
perlative," writes |acques Cousteau
in Whales, the Lord of Seas. The
length of a blue whale may be as

much as 33 m, almost 10 m longer
than a railway car. The largest
caught whale weighed 150 metric
tons, while the largest terrestrial
animal, the elephant, weighs in at
only 3 to 6 metric tons (merely the
tongue of some whalesl).

If an elephant's mass were
doubled, it would need legs two
times as thick to support itself. The
cross-sectional area of each leg is 4
dm2. Can you explain why terres-
trial giants need such thick legs?

A body is neutrally buoyant (nei-
ther floats nor sinks) if the forces of
buoyancy and gravity acting upon it
are equal. Let's evaluate and com-

pare these two forces. The force of
buoyancy equals the weight of liq-
uid displaced by a body, or

Fr: 8p1V,

where g is about 10 N/kg, p7 is the
density of the liquid, and V is the
volume o{ the body. How can we
determine the volume of a whale? If
we use a cylinder to appronmate the
shape of a whale, its volume is V:
xdzhf 4, where d is the diameter of
the cylinder and h its height, or in
our case/ the length of the whale.
Let's assume the diameter of our
whale-cylinder is the aver^ge diam-
eter of the whale's body, which is
about one tenth of its length.

Make the calculations yourself
and you'll discover that the force of
buoyancy that keeps the whale neu-
trally buoyant amounts to millions
of newtons. (Of course these are
rough figures, but the force is some-
where between one and ten million
newtons.) Such a huge force easily
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supports a body weighing a hundred
metric tons or so. So we see that in
water a whale is actually weightless,
because tle force of gravity acting
upon it is counterbalanced by buoy-
ancy. No wonder whales seem to
swim effortlessly.

On 1and, however, these giants
face unsurmountable problems.
Whale strandings are well known, if
not entirely understood, phenom-
ena. Out of water, the skeleton of a
whale cannot bear the weight of the
muscles and blubber that serve the
whale perfectly in the dense me-
dium of water. |ust breathing re-
quires enormous effort on land.

Once during an expedition
Cousteau and his friends tried to
save a stranded calt that weighed
"or'ly" two metric tons. To lift it
onboard their ship they had to use a
special hammock, because even a
newborn whale can "bteak" under
gravity if the underlying support is
uneven.

If you were to watch a whale sleep-
ing you'd notice that it sticks partly
out of the water. This means that its
buoyancy is less than if it were com-
pletely submerged (because it equals
the weight of the liquid displaced by
the whale). However, the force of
gravity (weight) remains the same.
Has the equilibrium of neutral buoy-
ancy been broken? Not at all: the
whale sleeps serenely and doesn't
sink. Therefore, the force of buoy-
ancy equals that of gravity, just as
before. How can this apparent contra-
diction be explained?

This is a good time to explain
how a whale dives and resurfaces.
The horizontal blades of a whale's
tail help generate about 500 horse-
power (1 horsepower is a unit of
power equal to 736 wattsl. So to an
underwater swimmer, a brush with
a whale more closely resembles an
encounter with an oncoming truck
than a friendly puppy.

By a mighty moyement of its tail
a whale dives to the depths of the
sea. Whales regularly drve to depths
of dozens of meters, and sperm
whales can reach depths of 1,000-
1,200 meters. At such depths the
water pressure is very high (ca1cu-

late it yourself using the fact that the
density of seawater is 1,030 kS/-3).
Under this pressure the lungs of a
whale shrink to a residual volume.
As its lungs shrink the whale's total
volume decreases, and therefore its
buoyancy drops.

As a whale rises, its buoyancy
gradually increases (Why?). At the
surface the whale takes a deep
breath, further increasing its vol-
ume. Whether a whale swims at the
surface or down below, it's sup-
ported by the same force of buoy-
ancy needed to counterbalance its
constant weight. However, to gener-
ate this force at the surface the
whale need not be completely sub-
merged to attain neutral buoyancy.

Here are a few more questions for
you to ponder:

If we divide a whale's mass by its
volume, we get its average density.
Can you confirm that wherever a
whale swims-in the depths of the
ocean/ at middle depths, or on the
surface-its density is always equal
to that of water? What mechanism
is used to change the average density
of a whale?

Sometimes whales visit brackish,
coastal lagoons. How would a whale
have to adjust its buoyancy to the
different water composition in these
areas?

Hot-air balloons are sometimes
used to observe and photograph

whales in shallow lagoons. Explain
how such balloons ascend.

The flame of one hot-air balloon
was adjusted so that the balloon was
perfectly balanced: In windless
weather it could hang at a set height
above the water as long as necessary.
What can be said about the relation-
ship between the mass of air dis-
placed by the balloon and the mass
of the balloon?

Consider a phenomenon observed
by Cousteau, in which he saw sea-
water bubble as if it were cham-
pagne. "It was a school of sma1l fry
going down, then up to the surface,
forcing bursts of air from their swim
bladders." Why did the fish force air
from their swim bladders, and when
did they do it-when diving or when
coming up to the surface? O

Quantum on buoyancy:
V. Nevgod, "The Adventures of

Hans Pfaal and Fatty Pyecraft,"
larutary 1990, pp. 14-15.

A. Buzdin and S. Krotov, "Boy-
Oh-Buoyancyl, " September/October
1990, pp.27-31.

A. Eisenkraft and L. D. Kirk-
patrick, "The Tip of the Iceberg,"
September/October 1992, pp. 24-26 j
March/April 1993, p. 41.

A. Eisenkraft and L. D. Kirk-
patrick, "Up, lIp and Away," Sep-
tember/October 1998 , pp. 34-35;
March/April 1999, p. 32.

CONTINUED FROM PAGE 33

This line beneath which light is trapped is the "event horizon,,
Because whatever happens underneath
Can never be perceived, because (and this is not surprisin')
Since no signals can get out/
You can see, without a doubt,
The event horizon's just a one-way sheath.

So what happens to the star-stuff that's inside this sphere o{ black?
It shdnks and shrinks, 'til it's completely gone.
But hol,r' can a singularity-this spatial cul-de-sac-
Exhibit gravity like that?
Such a cosmic Cheshire cat
Goes away, but leaves a "smile" of gravitons.

WeIl, we're not exactly sure what astrophysics are required
To give answer to these questions; this we know.
And indeed, the more we learn, we find the more we get inspired
To learn more, for every answer, while an intellect enhancer,
Helps us see how terribly {ar we've got to go.
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AT THE
BLACKBOARD I

The quadra[c finomial
by A. Bolibruch, V. Uroev, and M. Shabunin

HE EXPRESSION

a*+bx+c,
where a, b, and c are given

numbers and a + 0, is called a qua-
dratic trinomial in x. The values of
x for which the quadratic trinomial
vanishes (becomes zero) are ca1led
its roots.

Problems that require a knowl-
edge of the properties of quadratic
trinomials are often encountered in
examinations. Many students can
easily write various formulas, plot
the function y = o* + bx + c, and are
familiar with its basic properties.
This knowledge, however, is often
superficial, and students don't know
how to use it to solve problems.

In this article we show through
examples the importance of com-
bining algebraic and geometric rea-
soning to solve problems that in-
volve quadratic trinomials.

L. Find the maximum value of
the cluadratic trinomial y : -2* +

4x-5.
A person familiar with the calcu-

lus can use the derivative to solve
this problem. However, we can eas-
ily do without the calculus. Let us
complete the square:

y=-2P+4x-5
= -21o - 2x + ,:, 

!r?;_trf _,
We see that the maximum value

of this quadratic trinomial is -3, and
it is attained for x: 1.

The method of completing the
square is used to derive the formula
for the roots of a quadratic equation.
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It can also be used to plot the graph
of the general quadratic function y:
a* + bx + c. Indeed, if we complete
the square, we have

( b \z 4ac-b2

'=['"**) 
* 

2,

Thus, we see that the graph of the
cluadratic function is obtained by
translating the parabola y : a* by
the vector

( u +ac-bz\
| _l

lro' za I
2. Figure 1 shows fou parabolas.

Each can be described by an equa-

tion of the"t'orm y : a* + bx + c. In
each case, determine the sign of the
numberc a, b, and c.

We consider case (i) in detail. The
coefficient a is less than 0, since the
branches of the parabola are directed
downwards. The abscissa of para-
bola's vertex rs -blZa. Since this is
negative, we know thatb < 0. The or-
dinate of the point where the pa-
rabola intersects the y-axis is equal to
the value of flx) : a* + bx + c {or x =

0. Therefore, c = f(0) is positive. Thus,
we have a < 0, b < 0, and c > 0.

The same result can be obtained
by considering the sum and the
product of the roots of the equation
ax2 + bx + c:0. However, this

iii

Figure 1



method cannot be used in case (ii),
when the roots are complex.

We invite the reader to analyze
cases (ii), (iii), and (iv).

3, Suppo'se that the roots x, and
xrof the quadratic ecluation * -2rx
- 7P = O satisfy the condition xl +
x] = lB. Find the value of r.

First, we represent xr2 + x] in
terms of the sum and the product of
the roots. We have

xl + x] : lxr+ x2)2 - Zrf,
: (2rl' - 2' (-7r2) : t8r2.

Thus, the problem reduces to
solving the ecluatiott 12 : 1, from
which we find zr = I and rz = -1. We
now need to check only that the
roots exist for both values of z.

4. Find necessary and sufficient
conditions for the roots xr and xrof
the equation f(x) = * + px + q : O to
have different slgns and be greater
than I in absolute value.

A solution based on the discrimi-
nant and the quadratic formula is
rather tedious. The problem, how-
ever, can be easily solved by using
geometrical considerations.

First, we find a necessary condi-
tion. Let Xr < xz (here the roots are
different). We are given that rr . -1
andxr> 1; i.e., the interval [-1, 1]be-
longs to the interval lxr, x2) (see fig-

I

Figure 4

we}l. This condition is equivalent to
the following system of ineclualities:

[i1-r;' o', (1)
U(1)< o'

Substituting I and -l into the ex-
pression for f(x), we obtain the nec-
essary conditions

l-p+q.-1,
1o * ,. -r. (2)

The relationship between p and q
can be illustrated graphically by a set
of points (p, q), whose coordinates
satisfy inequalities (2) (see figure 3).

Let us prove that the necessary
conditions (2) are also sufficient.
That is, if inequalities (2) are satis-
fied, the roots of the quadratic trino-
mralf(xl = a* + px + q satisfy the in-
equalities xr . -1 andx, > 1. Since
conditions (2) are equivalent to.con-
ditions (1), the function y : flxl takes
negative values at two different
points (x = 1 and x = *1). Since the
coefficient of x2 is positive, the
branches of the parabola y = flx) are
directed upwards. Thus, the pa-
rabola intersects the x axis at two
different points x, and x, {x, . x2l,
and the points -1 and 1 belong to the
interval [x' x2l.Therefore, xr . -I
andx, > 1.

5. Find all values of r for which
the roots of the equation (, - 4)P -
2(r - 3)x + r = 0 are greatu than _1.

Consider the case r : 4 separately.
Then the equation becomes -2x + 4
= 0, so x = 2. Since 2 , -1, the value
r : 4 satisfies the condition of the
problem. II r * 4, we have a quadratic
equation.

We will solve a more general
problem: we will find necessary and
sufficient conditions for the roots of
the quadratic trinomial f(x) = a* +

v: f(x)

bx + c to be real and greater than a
given real number d.

Here is a geometric solution. The
roots x1 andxrmust exist. Therefore,

D:b2-4ac3O. (3)

Letus sketchthegraph ofy =f(xl.
Figure 4 shows the two possible situ-
ations. Since both roots are greater
than d, the abscissa of the parabola's
vertex is greater than d. That is, xo
= (x, * xrllZ, d. Using the formulas
for the sum and product of the roots,
we find:

b- Zo, 
d. (4)

The point x = d does not belong to
the interval [xr, x2). This means that
parabola's branches are directed up-
wards in the case a > 0 and fldl , 0
(figure 4i) or downwards in the case
a < 0 and f(d) . O (figure 4ii). The
numbers a and f(d) are therefore
identical in sign. That is,

a f(dl > 0. (s)

We invite the reader to check that
conditions (3)-(5) are not only neces-
sary but also su{ficient.

Here is an algebraic solution to
the same problem. Two real num-
bers x, - d and rz- d are both posi-
tive if and only if their sum and
product are both positive. Therefore,
the condition given in the problem
is equivalent to the following three
conditions:

D=b2-4ac>0,
(rr- dl + kz- d), O,

(xr- dl(xr- dl, o.

Using the sum and product of the
roots/ we can rewrite the second
condition as

xt+x2-2d>0,

OUAIIITU[I/AT IIII BI.ICI($OABI I 3t
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a72' a 
'2

7D.__>d.'2a
The third condition can be written as

XtXz- \x, + xr)d + d2 > 0,

a(adz+bd+cl>0,

Solving these ineclualities, we
obtain r < 5f2, 4 < r < 912. We also

must add r : 4 to these solutions.
Answet:

l--';L "l^ Z)

Problems.
6.Letxrandxrbe the roots of the

equation i2 + px + q : 0. Find P and
q if it is given that x, + I and x, + 1

are the roots of the equation * - P',
+ pq: o.

7. The graph of the quadratic
function y = a* + bx + c cuts off seg-

ments AB and CD along two paral-
lel lines. Prove that the line passing
through the midpoints of these seg-

ments is parallel to the y-axis.
8.If the quadratic trinomial l(x) =

a* + bx + c has no real roots, and if
its coefficients satisfy the inequality
a - b +c < 0, find the sign of c.

9. Let the roots x, and x, of the
cluadratic trinomial a* + bx + c be

different. Prove that the number xo

lies between x, and xrlf and onlY if
alaxl+bxo+c)<0.

10. Let ihe ecluation a* + bx + c

= 0 have no nonnegative roots, and

suppose a < 0. Find the sign of c.

11. Let the coefficients of the
equations * + prx + Qt:0 and x2 +
pzx + ez= 0 satisfY the equation PrP,
:Zlqr+ qr).Prove that at least one
of these equations has real roots.

12. Is it possible that the equation
* + px + e:0, where p and q are
rational numbers, has the following
roots:

(a) x, = ^[i , ,, = ):l
^rE

{b) xr = ^13 +2, xr=2- fi2.

13. Prove that any rational root of
the ecluatiort xz + px + q = 0 with
integer coefficients p and q is an in-
teger.

14. Letthe equations * + p rx + c1,

: 0 and * + prx + ez:0 with inte-
ger coefficients pi and q, (i = 1,2)
have a common noninteger root.
Prove that p, = p, ar'd Qt = Qz.

15. Let x, and x, be the roots of
the quadratic equation a* + bx + c
: 0 and S*: xf + xr- (where m is a
positive integer). Prove the formula
aS*+bS*-, + cS- -z=0. O

afld) > 0.

Thus, we have again proved that the
combination of conditions (1)-(3) is
equivalent to the given conditions of
the more general problem.

Returning to problem 5, we write
conditions (1)-(3) in this case. We
have the following system of in-
equalities:

(.
l(, - a)' - r(, - 4) = 9 - 2r > o,

l" 2.

i- > -1.lr-4

It, - 
o)to,- 1o) > o
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BLACKBOARD II

Who needs a lofty louuel'?

by A Stasenko

ALILEO, WHO CARRiED
out an intriguing experiment,
needed one. He took a cannon
ball and a musket bullet, and

dropped them from a height of 60
meters. The two objects fe11 to the
ground simultaneously, thus shat-
tering Aristotle's theory. According
to a legend, Galileo carried out the
celebrated experiment from the top
of the leaning tower of Pisa. The
tower was clearly the best site for
this type of experiment.

Towers of course were not built
solely for physics experiments.
Standing on top of a tower/ one could
see far into the distance-a very im-
portant feature when radios, tele-
phones, and televisions did not ex-
ist.

Figure I shows that the visible
range can be calculated from

ea=lta+h)2-R2,

where R : 6400 km is the radius of
Earth. The Pythagorean theorem is
applied to the rectangular triangle
OBA.The angle B is a right angle be-

West
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Figure 2

cause the line of sight is tangent to
the surface of Earth, which is as-
sumed to be a perfect sphere. Since
the height of a tower is much less
than the Earth's radius, we can sim-
plify this ecluation by dropping the
small quantity h2:

4s = "{zah.

As an example, the visual range of
the leaning tower of Pisa (ft = 60 m)
is approximately 28 km, not bad for
that time. (As an exercise, estimate
the visible range of the Ostankino
television tower in Moscow, whose
height is h - 300 m.)

History and legend say that the
first jumps with gliders and para-
chutes were made from high bell
towers and watch towers/ some-
times unsuccessfully. Today televi-
sion antennas are built as high as

possible (even on satellites), because
unobstructed visibility is important
in this range of wavelengths.

Let's consider a tower that is
built progressively higher such that
its top rises from point A to point D
(figure 2). We reca11 that the Earth
rotates around its north-south axis.
This means that the builder of this
tower (and hence his professionally
inseparable plumb bob) are situated
on a gigantic merry-go-round.

We know that a person standing
on a rotating platform feels a force
acting rudrally away from the axis of
rotation. However, an observer on
the ground observes the person trav-
eling in a circle and therefore/ must
experience a centripetal (that is, to-
ward the axis of rotation) force. The
force experienced by the person on
the rotating platform is an attribute

Figure 3

of any rotating system. Rotating sys-
tems belong to a large group of non-
inertial reference systems. Life in
the non-inertial systems is much
more enigmatic thanin the ordinary
(Galilean) inertial reference systems.
The appearance of "strange" forces
generated "from nothing" is a com-
mon feature of such systems. Here
we consider some of these forces.

The force generated on a rotating
platform is calied the centrifugal
inertial force. This {orce is always
directed away from the axis of rota-
tion. The centrifugal force increases
with distance from the axis. As we
climb the tower, this force increases
as the force of gravity decreases.
While the force of gravity is directed
to the Earth's center, the centripetal
force is directed to the axis of rota-
tion. Therefore, as the height of the
tower increases, the vector sum of
these forces deviates progressively
more from the direction toward the
Earth's center. Since the builder
carefully follows the reading of his
plumb bob, he constructs not a

straight (vertical) tower CAD, which
is directed strictly along the radius,
but a curved tower CA'D' , which is
the straightest possible tower from

the viewpoint of the art of building
towers. Strictly speaking, the walls
of very tal1 buildings are not fiat for
the same reason.

Towers have a straight vertical
axis only at the Earth's poles and at
the equator. There is simply no cen-
trifugal force in the first case, while
in the second case it is directed
strictly along the vertical axis. How-
ever, what do we mean by the word
" strictly"? If, say, Mt. Kilimanjaro is
on one side of the equatorial tower
and there is no mountain on the
other side, the tower's axis will bend
slightly toward the mountain. A
highly precise science calied gravim-
etry studies such deviations of the
gravitational field. It detects not
only the effect of mountains (they
can be seen) but also that of dense
materials (such as ore-bearing strata,
which is of greater practical impor-
tance) inside the Earth's crust.

Where, in fact, does the body fall
if it is dropped from the top of the
tower? Let's look at the falling body
from above along the axis of rotation
(figure 3). We plot at several points
the linear velocities [with the sub-
script Q, which represents the angle
of rotation around the axis of rotation
(the north-south axis)]. Clearly, the
linear velocity increases with in-
creasing distance from the axis of
rotation. Accorfing to Newton's first
law, afalling body conserves the ve-
locity V^o, at the point at which it is
dropped (if the air resistance is disre-
garded). Since the velocity at the foot
of the tower V." is smaller than Vrr,,
during its fall the body travels far-
ther east than the foot of the tower
and therefore misses it, falling in the
direction of sunrise.

Sottth
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This simple reasoning can heip to
explain many interesting phenom-
ena. Why, for example, do rivers in
the northem hemisphere, which flow
in the nordh-south direction, have
steep right banks, while the rivers in
the southem hemisphere have steep
left banks? With the help of physics,
this phenomenon can be explained
without visiting these rivers.

Can the falling body perhaps be
also deflected to the south by the
centrifugal inertial force? This
would be the case if the builder con-
structed a strictly vertical (radial)
tower. The builder's plumb bob,
however, would take this force into
account as a component of the re-
sultant force.

Imagine that the straightest pos-
sible tower of height fr is built on the
Earth's pole so that a pendulum of
length h could be attached to its top.
The period of the pendulum's oscil-
lation, as we know , is 2r^fif g , and
its angular frequency is 6 = ,g/ft . If
the Earth did not totatet the defiec-
tion of the pendulum from the pole

would always be in a particular me-
ridian plane and would change with
time consistent with the law

r(t) = tosin cot ,

wherezo is the deflection amplitude.
However, since the Earth rotates
with an angular velocity fl under the
swinging pendulum, the motion of
the pendulum with respect to the
Earth is complicated. The angle Q of
the meridian plane in which the os-
cillations begin increases linearly
with time in the Earth's reference
frame:0: Ot.

Therefore,

/rrl . )r(0) = 16 sinl :d l'
1f2)

The plot of this function is shown in
the Cartesian coordinate system in
figure 4. This is an ordinary sine
curve, but the interval 0 < O < 2n con-
tains not just a single oscillation, as

in a sine function, but ro/O oscilla-
tions. This number is not necessar-
ily an integer. The dependence of z

on Q is shown in polar coordinates in
figure 5 (this is only a qualitative
plot-a more exact plot can be
drawn by using various values of h).

Build high towers for physics'
sake, but please don't drop heavy
objects from theml O

Quantum on rotation and non-in-
ertial reference frames:

V. Surdin, "A Venusian Mystery,"
|uly/August 1996, pp. 4-8.

A. Leonovich, "Are You Rela-
tively Sure? ", September/October
1996, pp.32-33.

A. Stasenko, "Merry-Go-Round
Kinematics, " September/October
1996, pp.48-49.

M. Emelyanov, A. Zharkov,Y.
Zagainov, and V. Matochkin, "In
Foucault's Footsteps," November/
December 1996, pp. 26-27.

L. Kirkpatrick and A. Eisenkraft,
"Around and Around She Goes,"
March/April 1998, pp. 30-33.

A. Stasenko, "Rivers, Typhoons,
and Molecules," |uly/August 1998,
pp. 38-40.
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The Game's Afoot! Game Theory in
Myth and Paradox
Alexander Mehlmann, Vienna Universittl of Technology, Austria

Reviews of the German edition:

The author, well known for various imaginative, entertaining and instruc-

tive writings in the area of game theory, and for his game-theoretic

excursions into classtcal literature, has now brought out kis delightlul ltttle

book on the basics of noncooperative games ... [The book is] rewarding
I reading for a rather wide varieU of reasonably well-educated persons.

The reader will gain an appreciation for the mathematical nodelling of
conflict in economics, the ncial sciences and biology, and get a glinpse of
gameiheoretic analysis of conflict in some of the classical literature.

-Zentralhlatt f ii r M athem ati k

Through the amusing exposition of the nateriaL ovellowing with jokes and
general culture, the new book by Alexander Mehlnann has become

bedtime reading for me ... lt is a pleasure to see such things as ke
Dilenna of the Arms Race, Goethe's Mephisto, the Chain-Store Paradox,

and the Madness of odysseus brousht unril::;lril::::t{;::r;:il* 

""What I am reading" in Die Presse

It all started with von Neumann and Morgenstern half a century ago. Their

Theory of Games and Economic Behaylor gave birth to a whole new area

of mathematics concerned with the formal problems of rational decision as

experienced by multiple agents. Now, game theory is all around us,

making iis way even into regular conversations. ln the present book,

Mehlmann presents mathematical foundations and concepts illusirated via

social quandaries, mock political battles, evolutionary confrontations,

economic struggles, and literary conflict. Most of the standard models-the
prisoners'dilemma, the arms race, evolution, duels, the game of chicken,

etc.-are here. Many non-standard examples are also here: the Legend ol

Faust, shootouts in the movies, the Madness of odysseus, to name a few.

The author uses familiar lormulas, fables, and paradoxes to guide readers

through what he calls the "hall of mirrors of strategic decision-making".

His light-hearted excursion into the world of strategic calculation shows

that even deep insights into the nature of strategic thought can be eluci-

dated by games. puzzles and diversions.

Originally written in German and published by Vieweg-Verlag, this A[/S
edition is a translation tailored for the English-speaking reader. lt offers an

intriguing look at myths and paradoxes through the lens of game theory,

bringlng the mathematics into sharper focus at the same time. This book

is a must for those who wish to consider game theory from a diflerent
perspective: one that embraces science, literature, and real-life conllict.

The Gane's Afoot! would make an excellent book for an uhdergraduate

course in game theory. lt can also be used for independent study or as

supplementary course reading. The connections to literature, films and

everyday life also make it highly suitable as a text for a challenging

course for non-majors. lts refreshing style and amusing combination of
game theoretic analysis and cultural issues even make it appealing as

recreational reading.

Student Mathematical Library, Volume 5;2000; 159 pages; Softcover; ISBN

0-8218-2121-0; List $26; All AMS members $21; Order code STMU5Q05

All pr ces subject to change. Charges ior delivery are $3.00 per order. For optiona air delivery outside of the continental U. S., please inc ude $6.S0
pet tlem. Prepaynent requued. Otdet fton: American Mathematical Society, P 0. Box 5904, Boston, I\,1A 02206-5904, USA. For cred t card orders,
fax 1 -40'1 -455-4046 or call toll iree 1 -800-321 -4AMS (4267) n the U. S. and Canada. 1 -401 -455-4000 worldwide. Or p ace you r order through the
Al\,4S bookstore at www.ams.org/bookstore/. Res dents of Canada, please nclude 7% GST.
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ORNADO, CYCLONE, WA-
ter-spout/ and sand-storm be-
long to the most spectacular
and enigmatic natural phenom-

ena. Their energy is so high that
nothing can withstand them.

How can a tornado carry heavy
objects over large distances? How is
a tornado generated? Modern sci-
ence cannot provide comprehensive
answers to these and many other
questions.

Can a tornado be produced in a
laboratory? We will describe two
experimental setups in which aque-
ous models of a tornado can be eas-

i1y produced even with a crude
setup.

1 Solder a disk made of brass or
tin plate with a diameter of 40 mm
and a thickness of 0.5-1 mm to the
shaft of a small electric motor (such
as a motor used in toys). The disk
must be fixed exactly perpendicular
to the sha{t in order to prevent wob-
bling of the rotor. To seal the mo-
tor, oil the bearings with a lubricant
or vaseline and cover the electric
contacts where the wires are at-
tached with a layer of modeling

IN THE LAB

IUlodelinU illol'nado

by V. Mayer

clay. Take a glass or a glass jar with
a diameter of about 9 cm and height
of 18 cm and place a piece of mod-
eling clay on its bottom. Attach the
motor to the clay without letting
the lower end of the shaft touch the
c1,ay. Attach the electric wires to
the sides of the glass with tape. Fig-
ure 1 shows such a setup ready for
experiments.

Pour water into the glass and a I
to 2 cm layer of sunflower seed oil
on top. Connect the motor's leads
to a flashlight battery. The disk will
start to rotate and spin the water
above it. After a while, the bound-
ary between the water and the oi1

will begin to bend downward, cre-
ating an oil-filled cratert which will
grow until it comes into contact
with the disk. At this time, the disk
will break up the oil into droplets
and the'water in the glass will be-
come turbid. After the electric mo-
tor is shut off, the oil droplets will
float to the surface and form alayer
of oil on the surface of the water.
The experiment can then be re-

der a brass or tin -;;;;;. ;l;; aii; Fisure 4

following exper-
iments.

Solder a cop-
per wire with a

length of 25 cm
and a diameter
of 2 mm (a knit-
ting needle will
work) to the
shaft of an elec-
tric motor. Sol-

peated.
Figures 2 and 3 are photographs

demonstrating
the process of for-
mation of an air
crater ina slightly
different experi-
ment, in which
the glass is filled
with oil-free wa-
ter.

2. A closer ap-
proximation of a
real tornado can
be observed in the

x 25 x 0.5 mm) to the other end of
the wire at right angles to it (figure
4). Turn on the motor to check the
rotation of the propeller. If neces-
sary, straighten the wire to mini-
mize wobbling.

Now immerse the propeller ver-
tically into a water-filled jar (diam-
eter 15-20 cm, height 25-30 cm) and
turn on the motor. You will see a
gradual formation of a crater at the
surface of the water and growth of a
tornado in the direction of the rotat-
ing propeller (figures 5-7). When the
bottom end of the vortex comes into
contact with the propeller, many air
bubbles, which trace the vortex sur-
rounding the propeller, are pro-
duced.

Holding the motor in your hand,
it is fascinating to watch the "preda-
tory" movements of the tornado's
cone.

Let's continue the experiment.
Place a wooden block on the sur-
face of the water-it will be swal-
lowed by the vortexl By changing
speed of the motor, make the block
whirl in the crater at a constant
depth under the surface of the wa-Figure'1
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ter. In a similar wayt a tornado will
pull in objects that are denser than

water (in contrast to the wooden
block) lying on the bottom of the

jar before the appearance of the
vortex.

Now hold the electric motor so
that its shaft is aligned with the
jar's axis. You will see that the cra-
ter descends along the shaft and
that under the propeller its path is
traced by the air bubbles (figure 8).
Put some well-washed river sand at
the bottom of the jar andwatch the
structure of the vortex under the
propeller.

These experiments show that the
key process producing a tornado in
a fluid is always a vortex. O

Figure 7Figure 5 Figure 8

Bulletin Board

The following were the first ten
correct entries in this month's
CyberTeaser contest, The Hose
Knows:
)erold Lewandowski
(Troy, New York)
Theo Koupelis
(Wausau, Wisconsin)
Nick Fonarev
(Staten Island, New York)
Christopher Franck
(Redondo Beach, California)
Bruno Konder
(Rio de |aneiro, Brazll)
Maxim Bachmutsky
(Kfar-Saba, Israel)

|ohn E. Beam
(Bellaire, Texas)
Chds Resmondo
(Pensacola, Florida)
Lue Chen
(New York, New York)
Anastasia Nikitina
(Pasadena, California)

Our congratulations to this
month's winner, who will receive a
copy of this issue o{ Quantum and
the coveted Quantum button. Ev-
eryone who submitted a correct an-
swer (up to the time the answer is
posted on the Web) is entered into a
drawing for a copy of Quantum
Quandaries, a collection of 100
Quantum brainteasers. Our thanks
to everyone who submitted an an-
swer-right or wrong. The new
CyberTeaser is waiting for you at
http : //www.nsta. org/quantum.

A High-Performance,
Hand-Held Microsope for Under $30?

(ltt About lime!)
We borrowed a brilliant idea from 

'l7th-centrlry 
microscope pionee;

Antony van Leeuwenhoek, perfeded it with 21st-cntrlry technology, and created...

A\--* rMMffiffiffiffiffiWs(tr((,PE
A rodicol new person0l nicrosapethot outperforms troditionol nicroxopes costing 20 times as much!

We used advanced computer-aided opiical design to create the highest quality single lens microscope optical

sysiem ever manufactured, then rn0u nted it i n a pocketsized body designed for safety, d urability, and ease of use.

The P5-150 PocketScope is a superb 21st century microscope available at a 17th century pricel

The PS I 50 PocketScope delrrrers cxtra0rd nary p0wer and valle
.5uper or 150X ens sholr,s detail n0mfa y requ r nq 300X.

'Bright imaqe uses amb ent liqht No electric power requ red

. Desiqnedforstudentsafety:thes de s hed nsdethe P5 l50l

. Uses standard m croscope slides and prep methods.

. Upr qht imaqe moves n the same d rectron as the s del

. L qhtweight, crash proof, ma ntenance free, and tlirtua y ndestructib e

. foeases student hands on science tlmeL

Avarlable Nlay I I st, \,vith pr c ng as ol,v as S29.50 per un t (mirlmum 1 0).

Exploing NewWorlds From the hlm of Your Hand'r

PocketScope.com LLC,1246-A Old Alpharetta Road, Alpharetta, GA 30005
To I I -f ree 877.7 1 8.63 57 . 7 7 0.7 7 2.63 57 . F ax 7 7 O.663.47 26

www.PocketScope.com
(Leeuwenhoek would be proud!) Potent Pending
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AT THE
BLACKBOARD III

Equalion ol the 0aseotl$ Stale

HE EQUATION OF STATE
of an ideal gas (or simply the
ideal gas law) describes the re-
lationship between the pres-

sure/ temperature, and volume of
one of the simplest physical sys-
tems. Because the system is so
simple, its equation of state is very
simple, too:

PV =!arpt

where P is the pressure of the gas, V
is its volume, m is its mass, p is its
molar mass/ 7 is the temperature/
and R is the universal gas constant.

According to this law, the pres-
sure of an ideal gas is proportional to
its temperature. What does this
mean? Will the pressure always fol-
low the ups and downs of the tem-
perature? Of course not. The propor-
tionality is valid only when the
other parameters/ namely, the vol-
ume/ mass, and molar mass/ are
fixed. The pressure can falI instead
of rising as the temperature in-
creases even for a constant mass of
the gas if the gas expands rapidly
enough. There are other possibili-
ties, as well. We shall discuss them
in detail while solving some prob-
lems taken from the entrance exams
for a physics and engineering insti-
tute.

Problem l, The temperature and
pressure of a fixed mass of an ideal
gas vary as shovm in figure L Will
its volume v ary, and if yes, how will
it change!

Solution. Figure 1 shows that the
pressure grows linearly with the

by V. Belonuchkin

temperature. Will the volume re-
main constant? ll no, how can we
recognize the diagram of a process
that takes place at constant volume?

At constant volume the pressure
rises in direct proportion to the tem-
perature. The corresponding plot
differs from other linear diagrams in
that it passes through the origin.
Thus, in P-Tcoordinates the isochor
(line of constant volume) passes
through the origin.

Let's plot the isochores which
pass through points I and 2 (figure
2). These isochores are different, so

the volumes corresponding to states
1 and 2 are also difierent. Which
volume is greater? A simple way to
answer this question is to use the
plot again. Let's connect two iso-
choresby, say, anisobar 1-3 (orbyan
isotherm l-4, or by any other isobar
or isotherm). We see that tempera-
ture rises along path 1-3 at constant
pressure. Clearly the gas expands.
Therefore, point 2 belongs to the
isochor with greatet volume, so the
volume of the gas increases in going
from state 1 to state 2.

Can the plot in figure 1 still rep-
resent a process taking place at a
constant volume? Such a situation
is considered in the next problem.

Problem 2. Helium is put into a

vessel of constant volume. The ves-
sel is connected to a manometer
and a thetmometar, the readings of
which vary according to figure l.
What canbe said about the state of
the gas! Specifically, is the pressure
inside the vessel highu or lower
than atmospheric pr es sur e!

Solution. In this case the volume
of the gas is constant, but its pres-
sure is not proportional to the tem-
perature. How can this be possible?

Let's look at the ideal gas eclua-

tion once again.In addition to the
parameters P, V, and T, it also con-
tains m and p. The molar mass p of
helium cannot change, because he-
lium is a monatomic gas and so can-
not dissociate. Condensation can
also be ruled out because the tem-
perature is rising. Thus only one
possibility is left: the mass m of he-
lium gas in the vessel must be
changing.

Since the pressure grows more
slowly than in the isochoric process
for a constant mass/ the mass o{ gas

must be decreasing. In other words,
the vessel is leaky, and helium is
flowing into the surroundings. This
means that the pressure in the ves-
sel is higher than the atmospheric

0

Figure 1
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pressure-otherwise there would be
a reverse flow of air into the vessel.

The ideal gas equation of state is
a tool that can be used to compare
not only th'e states of the sa*" gas
but also the states of different gases.
Here is another example.

Problem 3. Ball lightning is a
dimly glowing gaseous ball that
floats freely in the atu. According to
Stakhanov's model of ball kghtning
(one of the models constructed to
explain the nature and behavior of
this phenomenon), the gas inside
this ball is made up of complex mo-
lecular aggregates: each particle
consists of a nitrogen atom bound
to a number of water molecules.
The electrons losf by the niftogen
atoms are accepted by the water
molecules, so every complex mol-
ecule is elecftically neuftal. Deter-
mine how many molecules of water
are bound to each niftogen atom if
the temperature inside the ball is T
: 600"C and the temperature of the
surrounding air is To: 20"C.

Solution. Since the ball lightning
floats in the air, its density is equal
to that of the air. Probably the pres-
sure inside the ball is equal to atmo-
spheric pressure/ as wel1. These two
conditions yield

!-Po
PPo

or

PV _ PoVo

mmo
Here all the variables with sub-

scripts pertain to the air and those
without subscripts pertain to the gas
of molecular aggregates. The ideal
gas equation yields

T 
=Top lro'

from which the molar mass of the
molecular aggregate can be deter-
mined using the molar mass of air
[ro: Zl . 10-3 kg/mol):

T
U = Fo * =Be 10 ' kg/-o1.l0

The molar mass of atomic nitrogen
is 14 . 10-a kg/mol, and that of wa-

ter is 18 . 10-3 kg/mol; therefore,
each nitrogen atom binds with four
molecules of water.

The external conditions around a
gas can be changed in many ways/
but in every case the state of the gas
can be described by the ideal gas
equation of state.

Problem 4. A gas-filled cylinder
with a cross-sectional area S = 10
cm2 is closed by a massive piston.
The cylindet begins to ascend with
an acceleration of 2g. When the
temperature of the gas becomes
equal to the initial temperuture, the
volume under the piston has de-
ueased by L.5 times. Find the mass
m of the piston. The external pres-
sure is 10s Pa.

Solution. In the motionless state
(at rest) the piston's weight was
counterbalanced by a pressure differ-
ence between the inside and outside
of the cylinder:

ms=(p -po)s
In the accelerating cylinder the

total force applied to the piston im-
parts an upward acceleration of 29.
The volume of the gas decreases 1.5-
fold at a constant temperature, so
the pressure of the gas must have
risen by the same factor. Therefore,

2mg=(1.5P- Po)S- nS,
OI

Bmg= (r.sr - ro)s.

Solving both equations simulta-
neously, we get

* = 
Pos 

= 3.4 1,o
3s'

We have considered some ex-
amples of problems for which the
ideal gas equation applies (of course
these do not cover the full range of
problems that can be solved with
the help of this equation). However,
it is also important to know the con-
ditions for which this famous equa-
tion cannot be used (in other words,
to find its domain of applicability).

The model of an ideal gas is based
on the assumption that the energy of
molecular interaction is negligible
in comparison with the average ki-
netic energy of the molecules. This

approach envisages molecules as
smal1 elastic balls, which interact
only during the trme of a collision.
The diameter of the bal1s is much
smaller than the mean free path.

Certainly, such a model is over-
simplified. Indeed, what is the
"size" of a molecule? The effective
molecular diameter is reasonably
assumed to be the distance at which
the motion of a molecule is altered
by another. Clearly, within the.
framework of this definition, the
molecular size should depend on
many physical conditions; in par-
ticular, the size should be tempera-
ture-dependent. This is confirmed
by experimental evidence: the effec-
tive molecular diameter does indeed
decrease as the temperature rises.
This is not unexpected: the kinetic
energy grows with temperature/ so
the molecules must approach each
other more closely in order for the
potential energy of their interaction
to become comparable to the kinetic
energy of their motion (otherwise
the molecular trajectories will not
change significantly). However, this
dependence is very weak, so it
makes sense to treat the molecular
diameter as having a definite con-
stant value.

The properties of real gases begin
to deviate noticeably from the ideal
gas model under conditions such
that the molecules collide with each
other frequently (so that the as-
sumption that most of the time they
are not interacting is wrong). Under
such conditions the mean free path
(the average distance between two
successive collisions) becomes com-
parable with the size of a molecule.
Since the majority of the time the
molecules of such a gas are found
close to one another, thgir interac-
tion cannot be neglected.

Under what conditions does this
occur? Before answering this ques-
tion, let's solve the following prob-
lem.

Problem 5. Evaluate the mean fu ee
path of air molecules under standard
conditions. Assume the molecular
diametu to be d = 3.7 .10-10 m.

Solution. Two molecules collide
when the distance between their
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centers becomes less than the mo-
lecular diameter d. Suppose that a
molecule travels a distance / during
some period gf time. Along the way
it collides with molecules whose
centers are located inside a broken
lzig-zag) cylinder, where the break
points (zigs and zags) correspond to
collisions.

The total length (height) of the
cylinder is J and the area of its base
is nd2. The number of molecules in
this volume is nlnd2 (n is the num-
ber of molecules per unit volume)
and is equal to the total number of
collisions. Let's calculate the dis-
tance between successive collisions,
that is, the mean free path in the gas:

0

Figure 3

tally, the densities of condensed
phases (liquids or solids) are about
1000 times greater than the densi-
ties of gases. A gas with a density
which is only afactor of S-tO times
smaller than that of a licluid is no
longer ideal. However, if the tem-
perature is high enough, a gas can in
many cases be considered ideal
even at high pressures because the
key role is played by density and
not by pressure.

Problems
1. Figure 3 shows a plot which

represents changes of state of some
mass of an ideal gas. Find the frag-
ments of the plot which correspond
to increasing and decreasing pres-
sure.

2. An electrical discharge is pro-
duced in a vessel containing oxygen.
As a result, all the oxygen is trans-
formed into ozorte, and the tempera-
ture is doubled. How has the pres-
sure in the vessel changed? Assume
the volume of the vessel to be con-
stant.

3. A piston of mass m = 5 kg and
cross-sectional arca S : 10 crn2 catt
move inside a gas-fiiied cylinder.
When the cylinder is moved down-
wards with an acceleration of 49, the
volume of gas under the piston
doubles. Find the external pressure
if temperature of the gas does not
Yaty.

4. A satellite with cross-sectional
area S : 1 m2 moves near the Earth
with orbital velocity v : 7.8 km/s.
Atmospheric pressure at the orbital
altitude of 2OO km is P : 1.37 ' 70-4
Pa, and the temperature 7 : 1226K.
Find the number of collisions of the
satellite with air molecules during
one second.

ANSWERS, HINTS & SOLUTIONS
ON PAGE 53

1

1 1)nlftA' nndz NoPnd2

= 8.75' 10-8m.

Here the pressure P = 10s Pa, the tem-
perature T : 273 K, and Avogadro's
number NA = 6.02 . 1023 mol 1.

The experimental value for these
conditions is 6.20. 10 8 m. The dif-
ference between the experimental
and theoretical values is explained
mainly by the fact that we consid-
ered all the molecules (except the
chosen one) to be motionless. A de-
tailed analysis (which is beyond the
elementary physics course) shows
that the relative molecular motion
changes the theoretical value of the
mean free path by a factor ol tl",li .

Muitiplying our theoretical value by
this factor, we get 6.19 . 10-8 m.

Right now we are more inter-
ested in a di{ferent matter. Under
normal conditions the mean free
path is about 200 times greater than
the molecular diameter, so the ideal
gas approximation works rather
well. In contrast, when the pressure
rises by alactor of 100-200 at con-
stant temperature, the mean free
path becomes comparable to the
molecular size. This means that
under such high pressure (or,
strictly speaking, at high density)
the molecules are hardly ever far
apartt so one cannot neglect their
interaction. In this case the ideal
gas model does not work. Inciden-
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Move with Science:
Energy, Force & Motion
Roy Q. Beven

This resource uses methods of
transportation that are most familiar
to high school students to connect
basic concepts of physics and human
bioLogy to the concrete sights,
sounds, and physicaI sensations that
students experience near[y everyday.
Move with Science brings real trans-
portation situations-representi n g

such concepts as inerLia, stability,
and the relationships between mass,

energy, and motion-into the
classroom through hands-on activi-
ties. (Grades 9-1.2, 1998, 160 pp.)

Teach with Databases:
Toxics Release Inventory
Jay Barracato

This package offers Ioxics Release

Inventory as a tool for student
investigation, with a range of labs
covering sampting and anatysis
methods, computer-based
exptorations, and guidance for
using this real data to investigate
the chemical history of your [oca[
watershed. Includes: Getting
Started, Teacher's Guide, EPA

Guide, CD-R0M, and Database
Basics. (Grades 9-1.2, 1,998)

#P8143X01 $3s.00

#PB744X $27.95

Science Educator's Guide
to Assessment
R. Doran, F. Chan, and P. Tamir
Give students regular and accurate
feedback, reinforce productive
learning habits, and help students
reflect on their own learning.
Incorporate ready-to-use assessment
activities keyed directly to the
N ati on a L Sci ence Ed u coti o n Sta n dards.
(Grades 7-1.2, 1,998, 220 pp.)

NSTA Pathways to the
Science Standards
This practicaI guidebook demon-
strates how you can carry the
vision of the Standards-for
teaching, professionaI devetop-
ment, assessment, content,
program, and system-into the
real world of the classroom and
schoot. FiLl"ed with specific sug-
gestions and c[ear examptes on
how to imptement each of the
Standards, Pathways is a valuable
resource for everyone invo[ved in
science education. (Grades 9-12,
1,ee6, 1,e6 pp.) #PB126X $34.9s

$27.9s
Ps00Q2
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xcr0s$$cr8llc8 by David R. Martln

vl,.2
-C5

ACRO$

I Refrain syllables
5 Degrade

10 Archaeologist 

-Kathleen Kenyon
14 60 coulombs: abbr.

15 Dissident
16 Nucleotide

sequence

17 Fruit's skin
18 Mountain ridge

19 Bend

20 Computer language

21 _ group

(chem. group)

22 Duplicates
24 Dewey 

- 
System

26 Ukrainian river
27 Choose

28 Element 24

32 Mesons

35 Move fast

36 Southern constella-
tion

37 Mistral, in France

38 Lime-bearing
silicate

39 Prayer ending
40 Basketball org.

41 Practitioner: su{{.

42 Force a boat to
shelter

43 Salt derived from
sio2

45 _rata
46 City west of

Charieroi
47 Angle units
51 Relax
54 Gram-force

55 Cesium iodide

56 Element 82

57 Like Argon
59 Metallurgy fuel
60 Compacted snow

61 Prior to
62 Smelting product

53 God of war
64 Chaotic
65 Waxed {abric

DOlllltll

I Capacitance unit
2 Organic compound
3 Linear accelerator
4 

- 
gate (logic circuit

element)
5 Site of Noah's Ark
6 A gemstone

English chemist
Frederick
Augustus 

-111827-19021

Collection
Fermion
Distort
Nerve cell arm
Chemical measure

Odd's partner

Current units
French astronomer
Bernard 

-111897-t9s2l
Plasma particles

Shaven

838,318 (in base 15)

Verse segment

Carbamide
Various
Potassium thiocy-

anate

Phosphatase unit
Type of exam

Short comic
sketches
Element 21

' Certain asteroid
Computer screen

image

42 Energy units
4zl Chen-rical com-

1-rouncls
:15 Boldly
zl7 Actress Day
,1E Intcstinal bacteria
49 Gravcl ridge

Ia1t. sp.)

50 Surround a castle

51 Arm bone

52 Poet's never

53 Periodic distur-
bance

54 Circuit elements:
abbr.

58 Compass direction
59 Trig. function
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M291
Assume that no more than ten

new errors were made at each stage.
On the first day the total number of
errors will then be no greater than
ten, on the second day it will be no
greater thanZ. 10 + 10, on the third
day no greater than2l2. i0 + 10) +

l0 :22 . lO + 2. 10 + 10, and so on.
On the nth day, the number of errors
will be no greater than l2-r * 2n-2
+...+2 + 1)10:12-lll0.

However, we know that there
was a day when each paper con-
tained at least 10 errors. If this was
on the nth day, then the total num-
ber of errors on that day will be no
less than 2 . lO (since the number
of students who sent their solutions
that day was 2), which contradicts
the estimate obtained above.

M292
Denote by P the midpoint o{ BC

(figure 1). The triangles BMP and
BPAhave a pair of congruent angles:
IMBP : ZBAP (both of them are
measured by the half of arc BMl, and
ZBPM: IBPA. Therefore, thesetri-
angles are similar and

BP AP
PA,I= BP'

However, BP = PC. Thus,

Since triangles CMP and CPA con-
tain these proportional line seg-
ments/ and since the angles they
include in each triangle are equal,
these triangles are also similar, and
we obtain the equality ZMCP --

ZCAP. Thus, ZBMC : 180' - IMBC
- IMCB: 1BO" _ IMBP _ ZMCP :

ANSWERS,
HINTS &

SOLUTIONS

I8O" _ IBAP _ ICAP = 1BO'_ IBAC
= 180'- cx.

M293
Let us rewrite the left inecluality

AS

^ - t) - rl Ll -,1 - Ltxr- px,(t < L

-2t+1t "r 2t+P

_ rl * 2tx, - xrr, + (r, + x.)x,
Zt+p

a^)t'-Ztxl+xi ,](r-x,)
1r r ,.LLttt2t+p

(We use here the formulas for the
sum and product of the roots of qua-
dratic equation. ) Similar transforma-
tion of the right inequality yields the
system of inequalities

,,2,,2lf-x, I {f-x" I\ r/ >! t ., .!
1+Ln ' .l+-,+p

If t is not equal to x, ot x2t then we
obtain Zt + p > O and}t + p < O,which
is impossible. Thus the assertion is
proved.

M294
A trigonometric solution to this

problem is not difficult to find. We
give here a more geometric solution.

The segment CM (figure 2) must
intersect either side CA or CB of tri-

angle ABC. Suppose, without loss of
generality, that it intersects side AB.
Consider a point P on AB such that
CM bisects angle BCP. Now in tri-
angle BCP, point M is the intersec-
tion of the bisector of the interior
angle at C and of the exterior angles
at B. Hence M is equidistant from
lines CB and CP, and also from lines
CB and PB. Hence M is equidistant
from the lines CP and PB, and must
be on the bisector of angle CPA.
(Point M is the center o{ an escribed
circle for triangl.e BCP.)

Let Z.BCP = 2x and ZBPC = 2y, so
that 2x + 2y + 2a: 1 80'. Then ZMCP
: x. What is the measure of ZMPC?
Well, the argument of the previous
paragraph shows that IMPB : (l I
zlzAPC : (1/2)(180' - 2v) : 90o - y,
and zMPC : LMPB + zBPC: {90" -
y) + 2y: 90" + y. Frnally, ICMP =

180' - x - (90' + y) : 90' - x - y : a.
Thus, ICMP: ICAB. This conclu-
sion, together with the fact that CM
= CA, shows, in particular, that
point P lies inside segment AB
rather than on its extension.

Now triangles CAP and CMP
have a common side CP, CM: CA,
and the angles at M andA are eclual.
Thus either these triangles are con-
gruent/ or the angles opposite sides
CM and CA addup to 180".

Consider the triangles CAP ar'd

APCP

CPPM

49
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CMP. They have side CP in com-
mon, the pair of sides CM and CA
are equal, and the angles at the ver-
tices M and A are equal. Must they
be congruent? Well, if two triangles
agree in two sides and a non-in-
cluded angle, they may or may not
be congruent. But if we use law of
sines to find sin ZCPM and siq
LCPA, we will see that the expres-
sions for these two sines are equal.
Hence either ZCPM = ICPA, and
the two triangles are congruent/ or
ICPM + ZCPA = 180'. ff the latter
were true/ then point M would lie
on line AB, which is not the case.
Hence triangles CAP, CMP are in
fact congruent.

It follows that CP bisects angle
ACM, which means that CM arl
CP divide angle ACB into three
equal parts. Since IACB = 180'-
ZBAC - ZCBA = 180" - 3q each of
these parts measures 50" - s. We
have ZCPM = ZCPA: 180'- (60'-
u)- cr: 120", ZCMB: 180" - ZBCM
- ZCBM:180'-x- (90'+ u) :90'-
X - u,: y = lllzlzcPB :30", and
Z.MCN :120". Point C is the center
of the circle circumscribed about
triangle AMN. Therefore, ZMNA :
lllzlZMCA:60'- cx, and IMAN :
(llzlZMCN:50'. Finally, ZAMN =

60o + cr.

The alert reader will note that
this solution is purely geometric, ex-
cept for the observation about tri-
angles CPM and CPA.The reader is
invited to rephrase this part of the
proof to eliminate its dependence on
results from trigonometry.

M295
We give a solution for the corre-

sponding problem with arbitrary n
(in our c^se, n: 100). It is clear how
the condition of the problem is writ-
ten for the general case: fl positive
numbers are considered, the left-
hand side of the inequality in the
assumption is the sum of n frac-
tions, and we must prove that the
product of the given numbers is not
less than l, - ll". Notice that the in-
equality in the assumption becomes
an equality when all given numbers
are equal to n - 1.

We will use the foilowing nota-

ti.on: f = {arar...a, So is the sum of
all possible products of the given
numbers by k numbers in each prod-
uct (all numbers in each product are
di{ferent), and Go is the geometric
mean of all possible products of the
given numbers by k factors in each
product (ail numbers in each prod-
uct are different). The well-known
theorem on the geometric and arith-
metic means gives

s1> Nk G7., (1)

where No is the number of al1pos-
sible products of the given numbers
by k factors in each product (in fact,
this is the number of combinations
of n items k at a time, but, for our
solution, we need not know how to
find this number). It is easy to see
that

Gt -- tk. l2l

This follows from the fact that all
terms in Go have the power of k.
Therefore, Go also has the same
power. Since all a, are equivalent,
Go can be written as Go = ,r. How-
ever, the power of t is 1; therefore,
),=k.

Let us now transform the inequal-
ity in the assumption (tor arbitrary
nl; i.e., we drop the fractions and
collect similar terms/ putting on the
left side all the terms except the
highest-power term Sn= tn. We thus
obtain the inequality

Ao + ArS, + ... + An ,So ,
+ An_tSn_, S S,. (3)

The coefficients A, can be easily
represented in terms of n, in particu-
lar, An_ r : 0, although there is no
need to do so. It is important, how-
ever, that all of them should be non-
negative. Using inequality (1) and
equation l2l,we obtain the following

inequality from (3):

Bo + Brt + ... + Bn_rtn-' . tn. (41

A11 the coefficients on the left-
hand side of (4) are nonnegative.
Therefore, for a positive value of t
the solution of inequality (4) is t> ts,
where to is the only number that
turns inequality ll into an equality.
This number has aheady been ob-
tained: to : n - 1. With it, the in-
equality in the assumption of the
problem becomes an equality, as
does inequality (3) and all inequali-
ties (1). Thus, we have proved that
7 = (ara.r...a, 2 n - I ; i.e., arar... an
> (n - l)".

Physics

P291
While the velocity of the boat is

always directed along the surface
(figure 3), the projection of this ve-
locity onto the rope is constant and
equal to the speed at which the rope
is reeled onto the drum:

vo: v cos o('

After a small time interval At, the
rope turns through a smal1 angle

vAf sin uas=_.
L

Thus, the angular velocity of "rota-
tion" of the rope is

40. ysincr
uJ=-=-LtL

The velocity of the knot is the vec-
tor sum of the translational velocity
along the rope (v6) and the linear ve-
locity of rotation, which is deter-
mined by the location of the knot:

,rrtY'
(a3

vl
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v!+vl

))
v, =1L(gJ =aysincr.laa o.l

The total vetrocity of the knot is

= 
Y 

./Ekos2 cr + 4sil12 cr
a'o

To find the acceleration, we must
introduce another value, which was
not speci{ied in the conditions of the
problem.

Let's designate the height of the
motor above the surface of the wa-
ter as H. The total acceleration of
the knot is the sum of three compo-
nents: the first and second compo-
nents are determined by the rotation
of vectors vo and vr, respectively,
while the third component results
from the change in the magnitude of
v].

The first component, which is
normal to vo/ is

vsinu _ v62 sin2 cx
A. =V^A=Vn- " L Hcosc

The second component is normal
to the linear velocity of rotation,
that is, it is directed along the rope:

2 ysin cra2=v|r.J)=5vs1n0 
L

-o2
_'2 v6 srn- 0,

3 H cos2 a'
The third component is directed

along the velocity :

vu tan(u + au)- votana.

_ 2 vosinAcx =? ,0,
3 cos2 cr Af 3 cos2 cr

^.))2 vri sln- cx

3 Hcos3 rx 
'

Finally, we obtain the vector surn

lr,vith allowance for the signs of the
componentsl and calculate the mag-
nitude oi this sum:

2 y2 sin2 cx (t.s.orr a - t)'

P292
At a temperature of +100 oC the

pressure of saturated water vapor is
1 atm = 10s Pa. This pressure is the
pressure developed by a 10-meter-
high water column. In contrast, the
pressure of saturated vapor at the
initial temperature of 10oC is much
lower than 1 atm. We may assume/
therefore, that a pressure of 1 atm on
the hot oceanic planet is produced
by water molecules evaporated due
to heating. Before heating, these
molecules occupied the "upper" 10-
meter layer of the ocean (since the
thickness of the atmosphere is
much less than the radius of the
planet, the weight of the water layer
does not change after its evapora-
tion).

The remaining layer of water
with the thickness of 22O m expands
and compensates for the volume of
water evaporated. The coefficient of
thermal expansion is defined as the
fractional change in the volume per
degree change in temperature. The
ayerage thermal expansion coeffi-
cient of water in the specified tem-
perature range is

LV 10(r,=-=-K-I =5.10-4 K-lvLT 230.90

P293
Let's consider how the electric

force affecting the spear depends on
the position of the spearhead (figure
4). Since there is no field outside
the layers, the force is zero when x
> 2h or x < 0. As the spear pen-
etrates the layers, the braking force
grows linearly with distancet at-
taining a maximum when the
spearhead exits the first layer. As
the spearhead penetrates the second

lay er, the braking f orce continually
decreases. The braking force be-
comes zero when the spearhead
exits the second layer. The force
remains zero until the tail of the
spear enters the first layer. At this
time the electric force causes the
spear to speed up. If the speed of the
spear has not dropped to zero before
this time, the spear will pass com-
pletely through both layers.

The minimum value for the ini-
tial speed required to pass through
both layers can be determined from
energy conservation by ecluating the
initial kinetic energy to the work
performed by the braking force. The
latter can be easily calculated for
such a simple dependence of force
on distance:

Mvl 
= F^^^^.zh

2 
-me^n

1 EQh ^, EQh2

2L L

Therefore

, lzrevo=n\ ML'

P294
The basic law of radioactive de-

cay is

N(r) : No. 2r',
where N(r) is the number of parent
nuclei at a time t atter at arbitrary
starting point, No ir the initial
number of parent nuclei, and t is
the half-life of these nuclei. In our
case we start counting time from
the moment of the Earth's birth. If
No is the number of nuclei of each
isotope in natural uranium at the
moment of the Earth's birth, the
number of these nuglei at the
present time t is

Nl(r) : No' z-tl"'
and

&(t) = No'2 tt"''

Dividing one equation by the other,
we obtain

rv,(r) _ rr _,'[+-+J
rur(r) - \, "

a

.)

_EQh
L

Iaa+oo
v- cos- a + - v' stn- o(,

3H 1
cos- g

+ sin2 g.
Figure 4
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Taking the logarithm of both terms
of this equation gives the age of the
Earth:

,_ 
I"(l,ln;) rtrz 

=6.10e years.LnZ rt - xz

P295
A part of the luminous flux will

be lost due to multiple reflections,
but this loss may be compensated
by refraction, which "shifts" the
source toward the photosensitive
detector.

Let's consider the reflections. At
the air-glass boundary, only 1- (n -
l)2 l@ + l)2 = 819 of the incident light
enters the plate. Since the same re-
flection occurs at the glass-air
boundary, (819)(Bl9l : 54lBr of the
luminous flux leaves the plate.
There are, however/ other portions
of light, which contribute to the fi-
nal flux. Some of the light, which is
reflected many times into the glass
at each boundary, leaks from the
plate. Initially B19 of the light enrers
the plate and(ll9)(819) is reflected
backward from the glass-air bound-
ary, and after the next reflection at
the opposite boundary onLy (ll9)2(Bl
9) stays within the glass, while (1/
9)2(819)21eaks out. As a result, we
have the sum

rs\2 | 4
-t_t_-_-[q./ t-1/8r 5'

Thus, 4/5 of the incident light passes
through the plate.

Let's now consider the refractive
effects of the p1ate, which "shifts"
the source toward the detector. Con-
sider the beam that leaves point A at
a small angle u to the horizontal (fig-
ure 5). After refraction, the angle

will be uf n. Thebeam will leave the
plate at the same angle, but it ap-
pears to originate from point B. The
image of the source is therefore
nearer to the detector by LL : AB.
Simple geometry and simplifica-
tions due to the small value of the
angle o yield

where d is the thickness of the plate.
Thus, we may write

14I
l:-:tr 5 (L_dl3),

where 1is the intensity of the lumi-
nous f1ux. This equation yields

3.2 crn.

This solution, in fact, is only an
approximation, because we disre-
garded the fact that multiple reflec-
tions produce slightiy different
"shifts" of the light source to the
detector. The correction, however,
is very sma1l.

Bl'ainlea$ers

8291
The first number can be repre-

sented as a sum of two numbers con-
sisting of 14 digits I and7 digits 1,

respectively. We can then write the
difference in the form

1014_t,1oz_1 a(ror-r)
999

1014 - z.lo7 +l
, .l
(ro' - r)-

99

= (z,eee,zzz)z

8292
Let O be the center of the circle

inscribed in triangle ABC (frg:ure 51.

We note that triangles POM, QOC
are congruent/ so that OM : OC.
Similarly ON: OC. Hence O is
also the center of the circle circum-

AMNB
Figure 6

scribed about the triangle MCN. It
is not hard to see that triangles
POM, RON are congruent isosceles
right triangles, and it follows that
ZMON: 90". Therefore, ZMCN :
45", since an inscribed angle is half
as large as a central angie with the
same arc.

8293
There are two possible cases: (a)

the smaller tank is filled first from
the less powerful hose, or (b) it is
filled first from the more powerful
hose. Let us work with case (a) first.
In this case, it will take 5.312.9 min-
utes to fill the first half of the small
container, during which the larger
container receives (6.3 I 2.9)(8.7) liters
of water. Then it will take 6.318.7
minutes to fill the second half of
the small container, and the same
amount to top off the larger one (be-

cause the jobs are completed at the
same time). So the larger container,
during this time, receives (6.3/
8.7\2.9lrliters of water. Since this
fills the larger container, it must
contain

(5.312.9)18.7) + 16.318.71(2.e) = 21 liters.

Case (b) is left for the reader, who
may notice that it requires exactly
the same arithmetic as case (a).

8294
Let us number the caves from 1 to

16 consecutively. We will outline a
strategy allowing the sheri{f to catch
Elusive |oe.

The sheriff must search the caves
in order, starting with the first cave.
Each day, he searches some cave/
and |oe is hiding in some cave. Let
us prove that the parity of the sum
of the numbers of these two caves
doesn't change (so long as the sher-
iff searches them in order).

m= a(r-+)=1

a=er(r-#)=

(;)' . (;)"(;)' . (;)'(+)- .

A

Figure 5

52 l|1lAY/JUlllI 2OOO



Indeed, suppose foe starts in an
odd cave. The sheriff also starts in
an odd cavc (it's nurnber 1), and the
sum of thesc two numbers is even.
Each day, both numbers change by
1, so the parity of thcir sum re-
mains evcn. Sirnilarly, il |oe starts
in an cven cave, the parity rcmains
odd.

Supposc the parity is even. Can
Ioe slip through the sheriif 's
scarchi This can happen onl1, if |oe
{inds hrrnseli in a cave adjacent to
the one being searched, and moves
that night to the one that has just
been searchcd. But then the sheriff
and foe would have found them-
selves in adjacent caves/ and the par-
ity of the sum would not be even.
Hence, if the parity is even, |oe must
be.caught.

This will happen when the sher-
ii{ searches the cave Joe is in, so
that the sum of their car.e numbers
is simply double the nr-rmber oi one
cave. Holr, long rr.i11 this takel If
foe lives up to his namei the sherifi
will be forced to search up to ca\-e
14. If he finds it empty, then |oe
must be in cave 16 (he must be in
an even cave, and cannot have
slipped through). On the next day,
the l5th, he will move to cave
number 15 and wil1be caught. This
is the largest number of days the
search can take in this case. Note
that this happens i{ foe chooses an
odd cave initially.

Things are more cornplicated if
Joe has chosen an even cavc ini-
tially. Then the parity, during the
sheriff's sequential search, is odd,
ancl foe can slip past the Sheriff. By
the above argument, the Sheriff
(who reasons as wcll as we do) will
know this has happened when he
reaches thc 15th cave and finds it
empty. On the day this happens, |oe
rlust be hiding in a dif{crent even-
nur-r-rbercd cave. That night, he must
mLlve trr an odd-numbercd cave.
T1-r.- .l:rrti can cofite back and
search car c i r inti.-r \\ hich foc might
havc ttt, r ,* .,:... :.r. -.1111 or Jog'5
cave and th. .-:.:-:: ) a-.-. . 1ri11 aqain
become ever.

Now thc Sit-:.:: -. - .. . ---.. .r1

we noted earlter, during such a se-
quential search |oe can only slip
through if the parity of the sum of
the cave numbers is odd. Again,
since it is even, he will be caught.
The sheriff has essentially changed
the parity of the sum by searching
cave 15 twice.

How long will this take? The ini-
tial search, and the double search of
cave 15, can take 16 days. If the sher-
i{f reaches cave 3 without finding }oe,
then |oe must be hiding in cave 1

That night he will move to caye 2l
and be caught the next day. This
will be the 29th day of searching,
and May has 31 days. So the Sheriff
could even catch |oe if he had started
on February 1, 2000. (Solution by
|onathan Raasch.)

8295
The water in the small pan will

not boil.

l(aleido$cops
Problems

1. No, because the astronaut is a{-
iected by the Earth's gravitation,
rrhich confines the spaceship to its
orbrt.

2. Negative.
3. The rocker orbiting the planet

has receir,ed suiiicie nt energy to lift
it {rom the planet's surface. There-
fore, in comparison r,r.ith a rocket
on the ground, rt has rrrore cncrgy
and requires less additional energl.
to reach the outskirrs oi rhe uni-
YCISC.

4. Only the moiecules x,hosc ki-
netic energy is larger than the u.ork
required to escape the suriace of the
liquid can enter the vapor phase.
Thercfore, the mean value of the ki-
netic energy of the remaining mol-
eculcs decreases durr ng evaporatron,
as does the temperature.

5. A wet film covers the grains of
sand, and surface tension draws the
grains together.

6. It occurs as a result of the de-
crease in the kinetic energy of ther-
mai rnotion of the molecules, that
rs a de crease in temperature.

- Hcatrnq the semiconductor

andf or shining light on it.
8. The plate whose work function

is larger will be negatively charged.
9. Like the molecules in an evapo-

rating liquid, only the fastest elec-
trons, whose energy is greater than
the work function, can escape the
heated metal.

10. By changing the temperature
of the cathode filament.

11. The electrons that arc gener-
ated by intensive thermionic emis-
sion from the hot cathode produce
an impact ionization of gas mol-
ecules, which decreases the electric
resistance of the gaseous gap.

12. The lighter the incident par-
ticle, the smaller is the energy
needed to ionize an atom.

13. Yes, it can. This process in-
volves the ionization of the hydro-
gen atom.

14. More energy is needed to re-
move the second electron, because
the binding energy of this electron is
larger since it no longer feels the re-
pulsion of the {irst electron.

15. No, because the energy that is
equal to the binding energy of the
hydrogen atom is released in this
plocess.

16. The energy of the B-particles
is so large that no transitions in the
electron shell could generate it.

17. The photons are attracted to
the star. Attempting to escape the
potential well of the star's gravita-
tional field, they lose energy.
Microscopic experiment

The oil molecules are bound into
circles by the surface tension.

AI fiEllackhnardlll
1. Transitions from rising to fal1-

ing pressure occur at those points of
the plot (figure 3, p. 461where the
isobar is tangent to the p1ot.

2. The pressure has increased by
a factor of 413.

3.P=7mgls=3.5.105Pa.
4. z= PvSNl'l(ar)=6.101e s-I.

Hint: Since the mean velocity of
thermal molecular motion is far less
than the orbital velocity of the sat-
ellite, the molecules may be consid-
ered to be motionless.
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INFORMATICS

$hmlostpath

by Don Piele

HILE THE ALGORITHMS OF MATHEMAT-
ics go back thousands of years, those of Infor-
matics are relatively new. The basic Infor-
matics algorithms were not even considered by

the mathematical masters and consequently are not
part of our school training. Perhaps we need to update
what we believe is fundamental in light of the ever in-
creasing contributions that Informatics algorithms are
making to our understanding of the world. As surely
as e-commerce is reshaping the way companies are
doing business, so to are the new Informatics algo-
rithms reshaping the way scientists are going about
their work.

So it is fitting to focus the column this month on one
of the pioneers in Informatics algorithms, Edsger
Dijkstra. Dijkstra is still actle, holding the Schlum-
berger Centennial Chair in Computer Sciences at the
University of Texas, Austin. Dijkstra discovered his
famous shortest path algorithm in 1956 atthe age of 26.
At the time, programming was not officially recognized
as a profession. In fact, when he applied for a marriage
license in 1957 , he put down "theoretical physicist" as

his profession, believing that "programmer" would not
be understood.

After he was assigned the task of showing off the
power of the ARMAC computer housed in the Math-
ematical Center in Amsterdam, he came up with a pro-
gram for constructing the shortest distance between two
vertices on a graph. He used simiiar ideas to find an al-
gorithm for finding away to convey electricity to all es-

sential circuits while using as little expensive copper
wire as possible. This he called his "shortest subspan-
ning tree algorithm."

Simply Rr[
For a problem to be considered fundamental, it

should be abie to be simply put. Here is the shortest
path problem simply put. Suppose you have a large
map of a1l the cities in the United States connected by
a vast network of roads. Along each road, denoted by
a blue line, is a number that represents the distance be-
tween the two adjacent cities. Your task is to start from

New York and find a path of minimal distance to Los
Angeles. How would you do it?

What you have is a huge weighted graph where the
vertices are the cities and the edges are the roads be-
tween cities. The edges are weighted by the distance
between adjacent cities. Two cities arc adjacent if there
is a road directly between them. It turns out that find-
ing a minimal length path from NY to LA can be done
only after you know the shortest distance from NY to
tA. So our first task is to examine Dijkstra's shortest
distance algorithm.

Shorle$l distarce
The basic idea is simple to explain. Start with AIY

and add the number of cities to which you know the
shortest distance/ one at a time, until lA joins the list.
But how do you do this? First, look at all cities that are
adjacent to NY. The current shortest distance from
each city to Afy is assigned to each adjacent city. But
only the closest city, say A, is added to the list of cit-
ies whose shortest distance is known. Clearly none can
be closer. Now scan a1l the cities adjacentto A. Update
the current shortest distance value for each of these
cities by comparing the current value with the distance
you would get by going through A. In other words, if
going to A and then to AII is better/ use the short cut.
Now select the closest city, say B, from the list of cit-
ies whose current shortest distance to NY is known.
Add it to the list {NY, A} to make lNY, A, B} and con-
tinue looking for the next shortest distance city to NY.
Once LAjoins the list, you know the shortest distance
tO LA.

Pseudo code
Here is the pseudo code for (inding the shortest dis-

tance.
G = (V, E) or (Cities, Roads);
S = Set of cities whose shortest distance to NY is

known;
V-S : Set of cities whose shortest distance is not yet

known for sure;
d = an a:lray o{ best estimates of shortest distance
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{rom each city on the map to NY;
adjM = distance between adjacent city matrix:

adjMlu, v] = distance along road directly connecting u
to v.

l. lnitialize d: d = lO, -, -, ..., -).
2.SetS:{f.
3. While IA is not in S.

i. Find u, the closest city in V-S to S and move it
frorn V-S to S.

ii. Update all cities v to see if going through u is
better (i.e. a shortcut).

d[v] : min[dfvl, dlu)+ adjMlu, v]),

]vlathematica imffi mentalion
Now 1et's bring this algorithm to life by creating a

Mathemtttica animation that will grow the set S from
one vertrce to all r-ertices. Our demonstration is built
with seven cities starting in NY and going to lA. We
begin by drawing a sunple weighted graph with seven
vertices on the circumference of a circle, drawing roads
between certain cities, and assigning a distance to each
road. Thc assignment oi drstance is stored in the array
BetweenCityDistances. Here each triplet li, i, kl means
there is a road from city r to clt\- I rvith length k.

tt = 7i

BetweenCityDistances = ({L, 2, 5}, {1, 3,
21 , {1, 5,71, t2,3, 1}, 12, 4, 5l , t3, 4,
g), {3, 5, 10}, t4, 5, 21, {4, 6, 10}, {5,
6, 21, {2, 5, 51, lL, 4, L2l, t6, 7, 5},
{5, 7, 20ll:,

We will use letters of the alphabet to label the cities
when the pictures are drawn. Our substitution rule r,vill
tre as follows:

alpha = (1 -+ "NYu, 2 --) "A", 3 -) "B",
4 -) "c", 5 -) "D", 5 s nfi,tt , 'l ) ,LAtt);

The distances and the road were easily picked off from
the B etwe enC ityD tstctnce s array.

distances = BetweencityDistances ./. {i_,
j , k ) :> k

roads = BetweenCityDistances /. {i_, )_,
k_) :> {i, )lt

roads /. aLpha

{5, 2, 7, L, 5, B, 10, 2, L0, 2, 6, 12, 5, 20}

i ilrv, A), {\rY, B}, {}x1, D}, {A, B}, {A, C},
.: l. , "B, D], {C, D}, tC, E}, {D, E}, {A, E},
._l _ .- 

--lJ , {D, LA} }

U. :::. i:r ; -r., . .-. .':r Cr IID ist (tnces arr ay / an adjacency
matr:i. ,.: -".i -. , :rr:,ri:tl br plactng - between cities
that ar; :: : : --.t - -.:,- ': j :.i:tirlbertng that you can
travel irir-:r '. ," : : : :* S :l; Jrsrancc irom ver-
tex i to \-.::-'. - . - :. t.- -: ::-- .l->rlnJ( rrur1l
Vertex f to ','-::. ,-

cities = { rtNYtr, rArr, rBr, rCrr, rrDrr , .8 .
ilIJAtr ) '

adjMli-, j-l != oi
adjMli-, j-l := adjMlj, il li i > j;

adjtuli_, j_l r= O li L == j.
Betrr'reenCityDistances /. {i_, j_, k_} 3>

(adjtvt[i, j] = k)i
TableFormlArrayladjM, {n, n} ]

TableHeadings t {cities, cities},
TableSpacing + 1l

A graphical representation for the cities and roads

llksFat algu,ilhln in ttllatfiematica

Using the pseudo code given above, the following
program graphically illustrates the ever-expanding list
of cities whose shortest distance to AIY is known. Each
city that is added to the list is colored red. Notice that
cities are added to the list in order of increasing dis,
tance from ArY. The current best estimate of the dis-
tance from a city to AIY is indicated next to the city.
This does not change once the city is colored red. The
small numbers between cities is the distance between
adjacent cities.

(* 1. Initialize d and vertices v *)
d = iloin[{0}, Ta]c1e[-, tn - 1]ll;

NYABCDELA
NYO521-2Ja6
A5015-$*
B 2 1- 0 B 10 € 6
CL25802106
DJa1020220
f, * S * 10 2 0 5
LA@&€-2050

is
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v = Range [n] ;

tA = ni (* le is the
(* define the update

updatelv-l := d[[v]l
adjMlu, vl,dI tv] I I;

S = {};
currentBest = d;

Last city *)
function *)

= Mintdt tul I

while [ ! MemberQ [S, LA],
u = V[ [PositionlcurrentBest,

MinlcurentsBestlI [[1, 1lIII;
S = iloinlS, tu)l;
V = Complement [V, tu] ] ;

drawl{ap;
curentBest = update /G V
1;

A6

A5

"7
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Division problem. They were: David Arthur, Reid
Barton, |ohn Danaher, and Vladimir Novakovski.

Three Internet competitions are held each year in
November, lanuary, and March. The USACO National
competition was held at high schools in the United
States on April 12,2OOO. To view the results, Iog on to
our website at www.usaco.org.

tinally
CarlaLaftra of Pace University has created anicelava

Applet that animates the solution to Dijkstra's shortest
path algorithm. It is available on the Internet athttp,ll
www.mcs. csuhayward. edu/-morgan/notes_C 5459 0 I
Di j kstra_SPF_Applet/.

A11 solutions to the problems presented in this co1-
umn are available at the Informatics website: http:ll
www.uwp . edu f academic/mathematics/usaco/
informatics/.

Notice that the Mathematica code for drawing the
map (drawMap) is not included in this column. It can
be seen by going to the Informatics website. If you
would 1ike, send me an email at piele@uwp.edu. O

lhun lut'n
We know the shortest distance from AIY to all cities

as far away as LA, but we do not have a path that actu-
ally has this distance. This problem has been le{t for you
the reader. How would you modify the algorithm above
so that apath-a list of cities from AIYto LA-actually
has a length equal to this shortest distance?

2000 USA Computing 0lympiad
159 students from 34 countries took part in the

USACO Winter Internet competition. In this program-
ming competition, the problems are sent out rzia email
to students who subscribe to the USACO mailing list
at majordomo@delos.com. Participants were given one
week to solve the problems and submit their solutions
by email.

Four students from the United States were among the
list of 13 students that had a perfect score on Senior
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American Mathematical Society 4l
PocketScope 43
National Heart, Lung, and Blood Institute 46
Metrologic Instruments Cover 3
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Think thermo-
dynamics is beyond
your students'grasp?
Engage student interest
in heat transfer and
insutation with this
vo[ume. A cha[[enging,
hands-on opportunity for
students to compare the
function and design of
many types of handwear
and to design and test a

glove to their own
specifi cations. Students
learn the basic principtes of product design whiLe

exp[oring principles of physics and technology
necessary to construct
and test an insulated
glove. #P8152X1

t.l ' : :,':l:-:-: 1',,,,, :,:;,;:,::,!,:.:;.

How can physics
help your garden
grow?
Engage your students
in a probLem-solving
cha[Lenge to design and
buiLd a physical system
that provides an optimal environment for ptant
growth. This volume hetps you cuttivate student
interest in optics, energy
transfer, and photosynthe-
sis. In addition to [earning
and applying concepts in
thermodynamics, tight
absorption, and p[ant
biotogy, students must
make a range of decisions
as they encounter cost
constrai nts, construction
alternatives, and environ-
mental changes white
buitding a greenhouse
mode[. #P8152X3

How do boats work?
Why do they float?
Explore principLes of
buoyancy, hu[[ design,
scale modeting, and
seaworthiness. In this
voLume, students
investigate the physics

of boat performance and
work with systems and
modeting. Through
research, design, testing,
and evatuation of a

model boat, students
experience the practical application of mass, speed,
and acceleration while apptyrng the math and science

necessary to buitd a

scale model of a boat.
#P8752X2

How much can you
launch? How far
witL it go?
CatapuLt into physics
and technotogy with
the heavy weaponry of
lhe MjddLe Ages. This

physics, mathematics.
and technology in its
chaLLenge to students to
design and buitd a

working catapu[t system.
Students investigate
eLasticity, projectite
Launching, and learn
about frequency distri-
butjon white working
through the process of
product design.
#P8752X4

votume integrates history,


