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Laocoén (c. 1610-1614) by El Greco

AOCOON, A MYTHICAL PRIEST OF TROY, IS

depicted above after incurring the wrath of the goddess
Athena. His crime? Hurling a spear at the Trojan horse
to prove it was hollow. Unfortunately for Laocoon, the
horse had been dedicated to Athena and she took offense
at his desecration of the object. Consequently, vipers
were sent to dispatch Laocodn and his sons.

Because Laocoon’s warnings were dismissed, Troy
fell and its denizens disappeared into the collective
melting pot of time. However, one only has to look
skyward (along with the reclining Laocoon) to find Tro-
jans in our modern world. Learn how the ancients’
spheres of influence continue to interact by reading
“When Trojans and Greeks Collide” on page 16.
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Positive outlook. Do six different positive numbers exist such that their
sum equals their product?
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Ultimate trio. Find the last three digits of the sum 625! + 376,
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Radical pattern. Find 12345678987654321 .
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Choice cuts. A 7 x 8 rectangle is cut from a sheet of graph paper. Cut
this rectangle into polygons consisting of no more than 5 squares each in
such a way that the total length of the cuts is minimized (the cuts must
follow the lines on the paper).
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Dry the hay. To dry freshly mown hay, one must stir and turn it over
frequently. Why? :
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Electric multipoles

ATYPICAL SYSTEMS

How a little order can weaken your potential

by A. Dozorov

HE ELECTRIC POTENTIAL GENERATED BY A
point charge at some point in space is inversely pro-
portional to the distance between the point and the
charge. At first glance, it seems that any arbitrary
set of electric charges located in some region would
create a potential that is also inversely proportional to
the distance to this cluster of charges. However, in gen-
eral this is not true. If we arrange the charges in a cer-
tain order, we can obtain a potential that is inversely
proportional to any integer power of the distance.

To prove this curious feature of the electric potential,
we need only one mathematical fact: if the absolute
value of Ix!| is less than one, the following formula is
valid:

S S e (1)
l-x '

This is the well-known formula for the sum of an infi-
nite descending geometric progression.

Now we consider various systems of electrical
charges. The potential ¢ generated by a point charge g
at some distance r is inversely proportional to the dis-
tance ¢ = kq/er, where the proportionality coefficient k
depends on the accepted system of units. In SI (Interna-
tional System of Units), k = 1/4ne,. However, theoreti-

mgq

Figure 1
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cians prefer to use CGSE (centimeter-gram-second elec-
trostatic system), because in this system k = 1. To fur-
ther simplify our problem, we assume all charges to be
located in vacuum (e = 1).

For example, consider three point charges located on
the same line at some distance from each other (fig. 1).
Let AB = a, AC = b, and the charges be g, ng, and mq,
where n and m are integers. Now we calculate the elec-
tric potential at a point D located on the extension of
segment AC at a distance r from point A that is suffi-
ciently far from all three charges. The latter condition
can be written as r >> a + b. According to the superpo-
sition principle, the potential ¢ at point D equals the al-
gebraic sum of the potentials generated by each charge:

m

q n
= 1+ :
-4 b

T I

Since we consider the case when r >> a + b, we can ap-
ply formula (1). Thus, we have

2 3 2 3
q):2{1+11[1+£+a—7+%+.,.J+m[1+é+b—+b—

oot -

7 1,2 1,3

na+mb na® + mb? na® + mb?3 2)
+ + +

q q
r ZZ 13 1‘4

l+n+m
+q

This equation shows that at large distances the ab-
solute value of each subsequent term is much smaller
than that of the previous one, provided the numerator
of the previous item is not zero. For example, if the sum
of the charges is not zero (g + nqg + mq # 0), the major

rt by Sergey Ivanov
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role in equation (2] is played by the first term, so the to-
tal potential of the system of charges will be inversely
proportional to the first power of distance. By contrast,
if the sum of the charges is zero (the system is neutral
as a whole), the key role will be played by the second
term: the potential will be inversely proportional to the
square of the distance between the charges and the test
point. However, we can place the charges in such a way
that the first and second terms are both zero. Equation
(2) shows that the two requisite conditions are

g+ng+mq=0 (3a)

and
qlna + mb) = 0. (3b)

Condition (3a) specifies that the total charge of the sys-
tem must be zero, so the charges cannot all have the same
sign. Eliminating the arbitrary charge g from equations
(3a) and (3b), we get two equations with four parameters
n, m, a, and b. This means that there is an infinite num-
ber of variants of arrangements and values of the charges
that satisfy the set of equations (3). We can arbitrarily
choose any two parameters. Let b = 24 (that is, AB = BC).
In this case equations (3a) and (3b) yieldn = 2 and m = 1.

QUANTUM/FEATURE 0




Therefore, charge ¢ must be placed at point A, charge
—0.q at point B, and charge ¢ at point C (figure 1). The dis-
tances between the neighbors must be equal: AB = BC =a.

Such a system of charges generates a potential de-
scribed (at large distances) by the following formula (see
formula (2)):

2qa2 6qa3
= + +...
(1) 1’3 1’4

Here the major role is given to the first term, so the
potential is inversely proportional to the third degree of
the distance.

When the following requirement is met in addition
to (3a) and (3b):

(3¢)

formula (2) yields a potential proportional to r~*. How-
ever, the system of equations (3a-3c) has no solutions.
Indeed, let’s multiply equation (3b) by a and compare
the result with (3c). In this way we obtain a = b, and (3b)
reduces to the equation n + m = 0, while (3a) leads to
the contradiction 1 = 0 (provided g #0, but the case g =0
is of no physical interest). We obtain a similar result for
all other terms in formula (2).

Thus, depending on their values and relative loca-
tions, the three charges shown in figure 1 can generate
only potentials that at large distances are proportional
to 1/r, 1/1%, or 1/7°.

A field generated by an arbitrary system of electric
charges can be considered in a similar way. In addition,
there exists an elegant method of constructing a system
of charges that at large distances generates a field with
the potential

na? + mb* =0,

Cn \
q)n = rn+1 ’ (4

where n is an integer and C_ is a constant determined
by the values of the charges and their arrangement. The
charge system that generates a field with potential (4)
is called an n-order electric multipole or 2%-pole. The
simplest case n = 0 (Oth order multipole) corresponds to
a single point charge. In the general case the n-th order
multipole is formed by 27 charges. It turns out that if
we have an n-th order multipole (22-pole), it is easy to
construct the (n + 1)-th order multipole. To this end we
supply the initial n-th multipole (22-pole) with the same

//,’ac

Figure 2
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n-th order multipole (27-pole) but shifted symmetrically
to some distance and composed of the opposite charges.
In this way we obtain a system composed of two oppo-
site 22-poles. The resulting system forms a multipole of
the (n + 1)-th order with 2(n + 1) charges (27*!-pole).

Let’s consider some examples. A point charge —gis a
multipole of the Oth order. As a first step, we use it to
construct a multipole of the first order (2-pole), called a
dipole. To this end, we shift the charge —g a distance I
to the right and change its sign. As a result, we obtain
the dipole shown in figure 2. It is characterized by the
so-called dipole moment d = gl (vector 1is directed from
the negative to the positive charge, its value being equal
to the distance between the charges).

Let’s calculate the potential ¢, generated by the di-
pole at a distant point D lying on the extension of the
line segment connecting the charges (AD =1 >> I):

Using formula (1) we get the major term of potential
generated by a dipole:
gl _d

q)lzr_zzrz’ {5)

If the observation point does not lie on the extension
of the line connecting the charges, two coordinates de-
termine its position. The first coordinate is the distance
to one of the charges (for a distant observation point
where r >> | it doesn’t matter which of the two charges
is used to this end). The second coordinate may be the
angle between the dipole moment and the radius-vec-
tor drawn from a charge (again for r >> [ it doesn’t mat-
ter which charge is chosen) to the observation point. So,
point C (fig. 2) is characterized by the distance p = BC
and angle 6. In this case calculating the potential is more
difficult. The result is

, dcosB
=" 5a)
p

To make the next step and construct a second-order
multipole (22-pole or quadrupole), we must add to our
dipole a similar dipole with opposite charges and shift
it some distance (note, we do not rotate the original
dipole: both its charges are shifted identically). Let’s
shift the dipole a distance / along the extension of the
line connecting its charges (figure 3a). We could make
a smaller shift, but the calculations are lengthier.

When the charges are situated on the same line, the
multipole is called axial. Figure 3b shows such an axial
quadrupole originated from the charge system given in
figure 3a. In the general case (figure 3c) a quadrupole is
composed of unlike charges of equal value located at the



C

Figure 3

vertices of a parallelogram. According to formula (4), the
potential of a quadrupole ¢, must be proportional to 1/
3. Therefore, in series (1) we must take into account
only the numbers up to x2.

Now let’s calculate the coefficient C, for the axial
quadrupole shown in figure 3b. For a distant point D on
the axis of the quadrupole we have

(29) ¢

¢2=? r—1 +r—ZZ

2 2 2
==[1-2 1+£+L + 1+2—]+4] :qu .
" r 2 r 2 73

The next step is to form a third-order multipole usu-
ally called an octupole, because in general it has 8 equal-
magnitude charges. To this end we supply the axial
quadrupole (figure 3b) with the symmetrical axial qua-
drupole as shown in figure 4a. As a result, we get an

Q

e

C q

Figure 4

axial octupole (figure 4b). In the general case a quadru-
pole (figure 3¢c) produces an octupole (figure 4c¢) with the
charges located at the vertices of a parallelepiped. Ac-
cording to (4), the potential ¢, of the electrostatic field
generated by an octupole must be proportional to 1/r%.
Let’s find the potential generated by the axial octupole
at point D:

o8, (39, 3a ()

r r-1 r-21 r-3I

2 13 2 3
1-3 1+£+L+L +3 1+—2£+i+-8-1—
r g i r # £

( 3l 912 2713”
—[1+—+—F+—
¥ ia 1

~

6ql®

1,4

The fields and potentials of the higher order multipoles
are calculated in a similar way.

The field of any system of electric charges can be
represented at large distances as a sum of the fields gen-
erated by multipoles of different orders. The higher the
order of the multipole approximating the analyzed sys-
tem, the more “neutral” this system is and the more
rapidly its field decreases with distance.

We have considered the electric potentials generated
by axial multipoles along their axes. For an arbitrary
point, the potential calculations are made in a similar
way, but they are rather cumbersome.

If the potential of a multipole is known (¢, = C_/r™**1),
it determines the values of the electrical field E and the
force F = gE affecting a probe charge g by the multipole.
Since n 2 0 for any multipole,

1
EErn+2 : (6)

Circumventing the mathematical details, let’s con-
sider the lines of force of a dipole and an axial quadru-
pole shown in figures 5a and 5b, respectively. For the
dipole (figure 5a) the electric field is obtained at each
point by computing the vector sum of the fields E,_and
E generated, respectively, by the positive and negative
charges: E = E_ + E_. Figure 5a shows these vectors for
one point in space. A similar plot is shown in figure 5b
for an axial quadrupole. At each point the total field E
is the sum of three vectors: two intensity vectors E_
produced by the positive charges, and one vector E_cor-
responding to a negative charge with a magnitude equal
to the sum of the positive charges. Three-dimensional
plots of the lines of force for the electric dipole and qua-
drupole are obtained by rotating figures 5a and 5b about
the corresponding axes of symmetry.

In addition to electrical systems, we can consider
magnetic multipoles—systems composed of magnets or

QUANTUM/FEATURE 1




a N b
Figure 5

closed currents. However, a magnetic system has an
important distinction: single magnetic charges (mono-
poles) have not been found in nature, so the elementary
unit of the magnetic system is a magnetic dipole. Fig-
ure 5¢c shows the lines of forces produced by a magnetic
dipole generated by a circular current I whose plane is
perpendicular to the plane of the page. At large distances
the field plots shown in figures 5a and 5c are identical.

The similarity between magnetic and electric dipoles
can be illustrated by another example. The needle of a
magnetic compass is a magnetic dipole oriented along
the lines of a magnetic field. In a similar way, an elec-
tric dipole turns in an electric field: it also assumes the
direction along the lines of forces, thereby playing the
role of an “electrical compass” (figure 6).

Examples of electric multipoles are atoms and m
ecules. If during the formation of a molecule, the el
trons are redistributed between the atoms in such a2 w

‘ f\' (e
,, r; *
'

E

Figure 6

d=10"cm x C.G.S.E.charge
—_—

d=1.8-10"cm x
l C.G.S.E.charge

Figure 7
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that the centers of “gravity” of the positive and nega-
tive charges do not coincide, the molecule acquires an
intrinsic dipole moment and is called polar. For ex-
ample, molecules of hydrochloric acid and water are
polar (figure 7). If the unlike charges in such a molecule
are spaced by a distance about the radius of a hydrogen
atom (I = 0.5 - 108 cm), the dipole moment of the mol-
ecule is on the order of d = el =2.4 - 1018 cm CGSE unit
charge. (In the CGSE system, the charge of an electron
is e = 4.8 - 1010 CGSE). The order of magnitude of this
value corresponds to the experimental data shown in
figure 7.

If a molecule is composed of similar atoms (O,, H,,
or Cl,), the electrons cannot “recognize” their “native”
atom and thus they are located homogeneously between
both atoms, which yields a dipole moment of zero. Such
molecules are called nonpolar. Figure 7 shows a linear
molecule of carbon dioxide, CO,, which is nonpolar.
The appear rance of thl\ molecule suggests that the re-

.'1 r[‘

e (compare it with figure 3b),
erated by a carbon dioxide
molecule ShOLla look like that shown in figure 5b (but
in the opposite direction).

More complicated distributions of 2
trons in molecules yield multipoles of |
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Systems engineering. Solve the
following system of equations:
X+ [y] + {z} =39
y+ [z] + {X} =35
z+[x]+{y}:2,
where [x] denotes the integer part of
x (that is, the maximum integer value

not exceeding x) and {x} = x — [x] de-
notes the fractional part.

M272

Looking for x. Solve the equation

X+\/fX2—9 = 2(X+3)
(x-3)

M273

Locus pocus. An isosceles tri-
angle ABC (AB = BC) is given in a
plane. Find the locus of points M in
the plane such that ABCM is a con-
vex quadrilateral and ZMAC
+ ZLCMB = 90°.

M274

Cubic edge. The distances from all
vertices of a cube and from the cen-
ters of its faces to a certain plane (14
quantities in all) take two different
values, and the lower value is 1. What
can the length of the cube’s edge be?

M275

What’s your angle! In a triangle
ABC, angle B is obtuse and its mea-
sure is o. The bisectors of angles A
and C intersect the opposite sides at

HOW DO YOU
FIGURE?

Ghallenges

points P and M, respectively. Points
K and L are taken on side AC such
that ZABK = ZCBL = 20,—180°. Find
the angle between lines KP and LM.

Physics

Pinocchio’s cap. Old Geppetto
made a cap out of thin tin for his
beloved creation Pinocchio . The cap
had a conical shape with height
H =20 cm and vertex angle o = 60°.
Will the cap be in stable equilibrium
sitting on Pinocchio’s head if his
head is a sphere of diameter D
=15 cm? (S. Krotov)

P272

De nihilo per astra. According to
one cosmological hypothesis, stars
are formed from interstellar gas and
dust due to compression produced
by gravitation. Evaluate the time
needed to make a star from a gigan-
tic spherical cloud with density
p=2-1020g/cm3. (We assume that
under compression the particles do
not pass one another. The gravita-
tional constant G = 6.67 - 107!
N-m?2/kg?.) (V. Skorovarov)

P273

Loop on a soap film. A loop of
thread of length I floats on a soap

Figure 1

film (figure 1). The part of the film
located inside the loop is carefully
pierced. What geometrical shape
will the loop assume? What is the
equilibrium tension in the thread if
the coefficient of surface tension for
the soap solution is 67 (A. Buzdin, S.
Krotov)

P274

Electron in a magnetic field. An
electron flies into a homogeneous
magnetic field. At point A its veloc-
ity is v, which makes an angle o
with the direction of the magnetic
field (figure 2). For what values of

B

Figure 2

the magnetic field will the electron
arrive at point C? The electron’s
charge is ¢, its mass m, and the dis-
tance AC is L.

P275

A lake in a desert. Travelers in
the desert sometimes observe what
appears to be a sea or lake. At what
distance from the observer does
such a mirage appear? Assume that
the speed of light near the ground
in the desert varies according to
the formula c(z)= c,(1 - az), where
c, is the speed of light at the
ground and z is the altitude above
the ground. (B. Klyachin)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 51
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EQUATIONS QUT CGF TIME

Thoroughly modern Diophantus

The arithmetic of elliptic curves

by Y. Solovyov

ODERN MATHEMATICS

has inherited from antiquity

several great writings. One of

them is the Arithmetica by
Diophantus of Alexandria. Written
in the third century a.p., it disap-
peared for more than 1000 years and
was believed to be lost. It was not
seen again until 1464, when the
German scientist Regiomontanus
(1436-1476) found 6 of the 13 vol-
umes of Arithmetica. The first
Latin translation of this book was
printed in 1575. When the edition
prepared by Claude-Gaspar Bachet
de Méziriac appeared in 1621, it be-
came the reference book for many
mathematicians, such as Pierre de
Fermat (1601-1665) and René
Descartes (1596-1650).

The book did not seem at all ob-
solete, despite the thousand years of
oblivion. In fact, it left the best
works on algebra of the sixteenth
century far behind. For example,
unlike European algebraists of that
time, Diophantus operated freely
with negative and rational numbers,
used letter notation for equations,
and most important, was able to find
integer and rational solutions of lin-
ear, quadratic, and cubic equations
and of systems of equations with in-
teger coefficients in two or more

10 SEPTEMBER/OCTOBER 1988

variables. The solution of such equa-
tions (now called diophantine) has
ever since remained an important
subject of mathematical investiga-
tions.

Now we are ready to consider the
solutions of several diophantine equa-
tions (I've tried to choose the most
beautiful of them|. To solve these
equations, one must not only read
Diophantus’ great book carefully, but
also get in touch with the latest
events in modern mathematics.

Diophantus’ method of Secants

Let’s illustrate this method using
a particular case of a problem solved
by Diophantus in his Arithmetica.
Consider the following equation:

(1)

x2—y*=1.

Figure 1

Suppose that we must find all its
rational solutions—that is, all the
ordered pairs

ac
(x,v) (b'd)' ab,c,deZ,
that satisfy equation (1).

We can consider equation (1) (or
any other equation in the variables
x and y) as a curve on the coordinate
plane. In the present case, it is a hy-
perbola (fig. 1). The solution (1, 0J,
corresponding to the point P in
which the hyperbola meets the
x-axis, strikes our eyes at once. Let’s
draw a secant line through this
point, with slope k. It’s equation
will be

y =k{x-1). (2)
Now let us find the second point
where this line intersects the curve
with equation (1). We just substitute
the right side of equation (2] for y in
equation (1) and solve the resulting
quadratic equation for x. We find
that

k2 +1
1—- k%

We already know one of the roots,
namely x, = 1 (it corresponds to the
point (1, 0)}, and the second root

Art by V. Ivanyuk
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gives us the desired second point of
intersection:
b

)= k*+1 2k
S VO
For all rational k (k # £1), this for-
mula determines a point on the
curve and thus a rational solution of
the given equation. (When k = 1,
the secant intersects the hyperbola
only at the point P (fig. 1).) And con-
versely, for any rational solution (for
any rational point M on the curve),
secant PM is determined by equa-
tion (2) with rational k (because the
legs of the right triangle PMH are ra-
tional in this case].

Thus, when k takes all possible
rational values (k #+1), equation (3)
gives all possible rational solutions
of the equation (1).

Diophantus did not introduce a
coordinate system, nor did he con-
sider the curve corresponding to the
given equation. In fact, the coordi-
nate approach in geometry first ap-
peared in the seventeenth century in
the work of Descartes. Diophantus
introduced the substitution from
equation (2) in a purely algebraic
way 3)
(in different notation, of course].
Moreover, he realized that the
method illustrated was applicable
not only to the polynomial
x? — y2 — 1 but also to a general sec-
ond degree polynomial in two vari-

ables:

plx, v)=ax*+ bxy + cy* +dx + ey +/,

where a, b, ..., f are integers or ratio-
nal numbers, if one has found at
least one rational root of the equa-
tion.

Not every curve defined by a
second-degree polynomial contains
rational points. For example, there are
no such points on the circle x* + y> = 3
or on the ellipse x? + 82y* = 3. Still,
there are rational points (a/c, b/c) on
the circle x* + y? = 1. A triple of inte-
gers (a, b, ¢) defined by such a point
is called a Pythagorean triple, because
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76 -y) = x3~ x
\ X*\\

= o

y = ?)(/M/‘/

1 P16/9, 79)

,,M’Wﬁ 1 X

Figure 2

it satisfies the relation a® + b? = ¢,

which appears in the statement of the
Pythagorean theorem. We can find all
Pythagorean triples using the method
of secants (as well as in other ways).

The problem of the existence of a
rational point on a second-degree
curve turned out to be very difficult.
The first nontrivial advances were
made by Indian mathematicians
Brahmagupta (598-c. 665) and
Bhaskara IT {1114—c. 1185), and the
complete answer was not found un-
til 1768 by the famous French math-
ematician Joseph-Louis Lagrange
(1736-1813).

Diophantus did not confine him-
self to second-degree equations. He
successfully coped with cubic equa-
tions and formulated a general ap-
proach to such equations, as we will
see in the following section.

Tangent to a curve

In one problem from Arith-
metica, one must find a rational so-
lution of the equation

yl6-y)=x3-x. (4)

Diophantus’ solution is brief and
brilliant. Let’s try, he wrote, the sub-
stitution x = 2y — 1. We obtain

6y — 6y% = 8y° — 1252 + 4y.

If the 6 were a 4, then the linear
terms would have nicely vanished!
But the 4 appeared from the 2 in the
substitution x = 2y — 1. So, let’s re-

¥

x3+x2-y2=0

place 2 with 3—that is, let x =3y - 1.
Then the linear terms disappear and
we obtain

y{9y-7) =0, (5)

and thus y = 7/9 and x = 16/9. We've
found the rational solution (16/9,
7/9) of cubic equation (4).

At first glance, there is nothing
special in this solution. We simply
guessed that we should use the sub-
stitution x = 3y — 1, which helped us
find the solution. What profound
idea is hidden here? To answer this
question, let’s look at the coordinate
plane once again and draw the graph
of equation (4) (see fig. 2. (Later in
the article we explain how to draw
such graphs.) The gray line in figure
2 is the line x -3y + 1 = 0. It is tan-
gent to our curve at the point P(-1, 0)
(in fact, equation (5] has, in addltlon
to the root v = 7/9, two “equal
roots” y* = 0).

We could continue this procedure
by drawing another tangent to curve
(4) thro: gh the rational point (16/9,
7/9). The reader can confirm that
this hne meets the curve in a third
rational point, and so on. But
Diophantus didn’t take this step,

and more than 1500 years passed
until mathematicians could use
Diophantus’ ideas in their full gen-
erality.

Gurves of UBQI‘BE 3

Continuing the geometric ap-
I e used thus far, let’s con-
t on the solution of the
e equations, but on the

wing equivalent question:
hat rational points are there on
me curve determined by the
third-degree equation

17+ TaAFinnal

fix,y)=ax®+bx%y+ ...+ hx+iy+j=0
with integer coefficients?

T x-y-2)x2 e y2-1) =0

1

SR

Figure 3
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Figure 4
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y=P(x)
=x3+ax?+bx+c

}7
y = P(x)
=x3+ax’+bx+c

/0 X

a
Figure 5

We can divide all curves of this
sort into two huge classes. The first
class is composed of all the curves
with cusps (the reader is invited to
check that the origin is such a point
on the curve y? = x3] or self-intersec-
tions (fig. 3) as well as all curves for
which there exists a decomposition
(factorization)

f(X/ y)=f1(X/ Y) 'fz{X/ Y)/

where f,(x, y) and f,(x, y) are polyno-
mials of smaller degrees (fig. 4]. Such
curves are called degenerate. The
second consists of all non-degener-
ate curves determined by third-de-
gree polynomials with integer coef-
ficients. Such curves are called
elliptic.! Tt is this, the most general
class, that attracts our attention. All
the elliptic curves that we will con-
sider will be given in the canonical
form

V2=x+ax+bx+c (6)

with integer coefficients a, b, and c,
such that the polynomial

Plx)=x®+ax>+bx + ¢

has no multiple roots.

The assumption that the equa-
tion of each of our curves can be
written in this canonical form does
not decrease the generality of our
reasoning: Each nondegenerate
curve f{x, y) = 0 can be rewritten in
the form of equation (6) using a suit-
able substitution. If the coefficients
of flx, y) are integers, then the prob-
lem of finding all rational points on
the curve flx, y) = 0 can be reduced
to the similar problem for a curve

INot that these curves are not
themselves ellipses. The connection
between ellipses and these curves,
which is preserved in their name,
might make a good subject for another
article.

/X1 XN)’/XS X
0

written in the form of equation (6)
with integers a, b, and c.

Graphs of elliptic curves

First, let’s find out what curve (6)
looks like. The easiest way to draw
it is as follows. Take the graph of the
function

/ b)
y=x2 +axt +bx+c

and reflect it with respect to the
x-axis. To draw the graph of this
function, we start with the graph
of y = x3 + ax?> + bx + c. It is well
known that every third-degree poly-
nomial (without multiple roots) has
either one or three real roots. There-

y =V Px]

fore, the graph of y = x3 + ax2 + bx + ¢
looks as it is shown in figures 5a and
5b. Now we easily obtain the graph
of the function

y=vx3+ax* +bx+c

(see fig. 6a) and thus the shape of the
elliptic curve y* = x> + ax®> + bx + ¢
(fig. 6b). Figure 6 illustrates the case
corresponding to figure 5a. We sug-
gest that the reader draw the curve
corresponding to figure 5b. It will
consist of two parts (see fig. 9).
Note that the graphs of the func-
tions y = /P(x) and y = -/P[x) join
smoothly, without forming corners,
at the points x|, x,, and x,. This hap-
pens because the tangent to the

graph y = |/P(x) is vertical at these
points.

Addition of points on an elliptic curve

When applied to elliptic curve C,
the method of secants gives an un-
expected result. It turns out that we
can “add” the points of C. That is,
we can define an operation, which
we will call “addition,” on the
points of C based on the graphical
representation of the curve (fig. 7).
Take two points P and Q on C and
draw a line through them. This line
will meet curve C at a third point.
Reflect this point with respect to the
x-axis. The result is called the sum
of P and Q. In figure 7 it is denoted
by P + Q. (However, not every line
through two points of C meets C at
a third point—for example, a verti-
cal line does not.)

Let’s study the properties of our
new operation and compare it with
the operation of addition of num-
bers. The latter operation is commu-
tative—thatis, a + b= b + a—and as-
sociative—that is, (a + b) + ¢ = a +
(b + c). Furthermore, this operation
has an identity element—a number
O such that a + O = g for all a. Fi-
nally, for each number a there is an
inverse number—a number (-a)
such that a + (-a) = O.

And what happens on an elliptic
curve? First of all, the addition of
points is commutative. In fact, to find
Q + P, we start with the same line as
for P+ Q. Therefore, Q + P=P + Q.
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The associativity of the addition
of points of an elliptic curve holds
too, but it is not easy to prove this.
We can see a geometric interpreta-
tion of this fact with the help of a
drawing.

Now let us take up the question
of the existence of an identity ele-
ment: a point E of the curve such
that P + E = P, for any other point P
of the curve. How can we find such
apoint? Look at figure 8. Take an ar-
bitrary point P on the curve. We
want to find something such that if
we draw a line through P and the
“something,” take the intersection
of this line with the curve, and re-
flect it with respect to the x-axis,
then we will come back to P. Let R
denote the point symmetric to P
with respect to the x-axis. It follows
that the line through P and the
“something” must pass through P
and R, which is to say it must be
vertical. Therefore, if a point E exists
such that P + E = P, it can’t lie on the
plane, because it must belong to the
curve and to the vertical line at the
same time.

Since there is no such point E in
the plane (and because we need it
badly), we will simply attach it to the
plane and call it the point at infinity.
What properties must it have? Every
vertical line tends to infinity in two
directions: up and down. Let’s require
that all these infinities correspond to
one and the same point E. In other
words, we will regard E as the point
where all vertical Iines meet. Point E,
the identity with respect to addition,
is correctly determined by this re-
quirement. By our definition of E, a
vertical line through P also passes
through E. Therefore, R, the second
point where this line meets the ellip-
tic curve, satisfies the relation
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/

Figure 9

P + R = E; thus, it is the inverse of P.
On the other hand, R is the point
symmetric to P with respect to the
x-axis. Therefore, every point P of
the curve has an inverse -P = R.
Thus, we've checked that the addi-
tion of points of an elliptic curve
satisfies all the properties of the
addition of numbers.

How does one compute P + P!
When points were different, we
drew a secant. And now that they
coincide, it’s clear that we must
draw a tangent (fig. 9).

And what about 3P? It is very
simple: we add 2P to P. Similarly,
4P =3P + P, 5P = 4P + P, and so on.

Searching for rational points

Now that we are armed with the
operation of addition of points, we
will look for the rational points. Let
P =(x,, y,) and Q = (x,, y,) be two
rational points on the elliptic curve
y2=x3+ax? + bx + ¢, where g, b, and
c are integers, and let the line
through P and Q meet the curve at
a third point R = (x,, y;). Then Ris a
rational point, also.

It is not at all difficult to prove
this statement. Indeed, if the line is
determined by the equation

y=kx+d, (7]

then k and d must be rational, be-
cause we can express them in terms
of the coordinates (x,, y,) and (x,, y,)
of the points P and Q by the formu-
las

kZYI_YZ,
X1~ Xy
d=)7l—kX1=X1yz~X2YI.
X1 =Xy

Substituting (7) into the equation of
the elliptic curve, we obtain the fol-

lowing third-degree equation in x
with rational coefficients:

(kx + d)? = x® + ax* + bx + ¢,
which can be rewritten as
X3+ (a-K)x2+ (b-2kd)x+c-d?
=0.

The relationship between the roots
and coefficients of a polynomial
equation implies that

— k2 _
X1+X2+X3—Z< a.

Since both x; and x, are rational, x,
is rational, too, and thus so is
v =kx; + d.

Using this reasoning, we can eas-
ily derive the formula for the coor-
dinates of the point P + Q. By defi-
nition, P + Q is the symmetric
image of R with respect to the x-
axis. Therefore, the coordinates (u,
v) of the point P + Q are given by the
formulas

u=k>-a-x,-x,
and
v =-ku-d=-klu-x)+y]

Substituting k and d for the expres-
sions we've found above, we finally
have

)
HZM_(Q_X —x),
(Xl_Xz)z 1 2
_ (8]
o= BT )

Clearly, when x, = x,, these formu-
las are meaningless. In this case we
must replace the equation of a se-
cant (7) with the equation of a tan-
gent and repeat our reasoning. At
last, we obtain

U=—2X1 +a_£

2 . 2
3xy +2ax) + b]
2 ’

Yl (9)

3X12+251X1+b(u %)
e e Sk 7 9

1

Thus, if we know at least one ra-
tional point P of an elliptic curve, we
can use the above formulas to com-
pute 2P, 3P, and so on. Supp
example, that the curve is given by




the equation y*> =x3—-2and P = (3, 5).
Then we can find the new rational
point

(129 383
100" 1000/

Now we can compute 3P, 4P, and so
on. Note that the numbers we have
to deal with grow rapidly. If u_ de-
notes the first coordinate of the
point nP, then

u =3,
129
Uy =7—,
100
164323
Ll3 :——,
29241
L - 2340922881
* 58675600 '
L. 307326105747363
> 160280942564521 "

Further coordinates grow even
faster. For instance, u,, has 71 dig-
its in its numerator.

At the present time, no general
procedure is known that would al-
low us to find all rational solutions
of the equation y? = x3 + ax? + bx + c.
In the example we've considered, we
just guessed the first solution (3, 5)
of the equation y2 = x3 — 2. In the
general case no universal method ex-
ists for finding such a first solution.
Finding an effective procedure of get-
ting an initial rational solution of an
elliptic equation is one of the greatest
problems of number theory. However,
if we know one solution, we can find
others by means of formulas (8) and (9).

Order of points on an elliptic curve

Consider the sequence of points
nP, “multiples” of the point P. We
must distinguish two essentially dif-
ferent cases. First of all, we might
obtain identity at some finite stage n.
In other words, there might exist a
number n such that nP=E. If mP#E
for all m < n, then we say that point
P has finite order n. For instance,
point P = (0, 2] on the curve y*>=x3 + 4
has order 3, point P = (2, 3] on the
curve y* = x* + 1 has order 6, and
point P = (3, 8) on the curve
y? = x> - 43x + 166 has order 7. The

question then arises: how many
points with finite order are there, and
what are their orders?

In 1976 an outstanding result in
this field was attained by the Ameri-
can mathematician B. Mazur,? who
showed that if P is a rational point
of the n' order, thenn<10orn=12;
on the other hand, there are at the
most 16 rational points of finite or-
der on an elliptic curve.

The second case we must con-
sider is that the points P, 2P, 3P, 4P,
and so on, are all different. In 1901
the famous French mathematician
Henri Poincaré (1854-1912) formu-
lated the hypothesis that for every
elliptic curve there is a finite num-
ber of points P, ..., P, such that any
rational point P of the curve is ex-
pressible in their terms—that is, we
can represent it in the form

P=n1P1+ e + P+ Q,

wheren,, ..., n are integers defined
in a unique way by P, and Q is a
point of finite order. And it is impos-
sible to express one of the points P},
..., P, as a combination of the others.
The number r is known as the rank
of the curve.

In 1922 the young English math-
ematician L. Mordell proved Poin-
caré’s conjecture, but his reasoning
suggests no constructive method for
calculating the rank. It isn’t even
known nowadays whether elliptic
curves of arbitrarily large rank exist.
Still, it was proved that the rank of
a curve can be estimated from the
coefficients a, b, and ¢ of the equa-
tion y? = x3 + ax? + bx + ¢, and there-
fore any curve of a large rank must
have large coefficients. For example,
one of the curves with rank r > 8§ has

a=-3%-1487 - 1873,
b=2°-32.5.15114551 - 33353,

c=28.3*.52.7.1512-193 273 - 156307.

Curves of artitrary tegrees

Here we’ve confined ourselves
to curves (and thus to diophantine

2See his article “Questioning
Answers” in the January/February
1997 issue of Quantum.—Ed.

equations) of degrees 2 and 3.
What happens for the degrees n >
4? In this case it is natural to point
out the class of non-degenerate
curves of the n' degree (one typi-
cal representative of such curves is
x™ + y = 1]. When n > 3 the picture
changes drastically. As early as
1931 Mordell conjectured that the
number of rational points on such
curves is always finite. For more
than half a century Mordell’s hy-
pothesis remained in the center of
mathematical studies all over the
world. The Russian mathemati-
cians I. R. Shafarevich, Y. L
Manin, S. Y. Arakelov, A. N.
Parshin, and Y. G. Zarhin contrib-
uted to its solution. But the honor
of giving the final solution of this
problem fell in 1983 to the young
German mathematician Gerd
Faltings. At the 1986 Interna-
tional Mathematical Congress in
Berkeley, California, he was
awarded the highest mathematical
prize, the Fields Medal, for this
achievement. O
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PROBLEMATIC PLANETS

When Trojans and Greeks collide

The challenge of multi-body systems

by |. Vorobyov

S IT POSSIBLE TO DESCRIBE

the trajectories of bodies that

interact according to the law of

universal gravitation? For ex-
ample, how do the planets move?
Assume that we know the precise
coordinates and velocities of n
planets at some moment of time.
In addition, we assume that the
planets are affected only by the
forces of gravitational attraction
of the other (n — 1] planets. We are
to find the subsequent positions
of the planets (that is, their trajec-
tories) using the initial condi-
tions.

The laws that describe planetary
motion are well known: these are
Newton’s second law and the law of
universal gravitation. No extra laws
are necessary to describe (and pre-
dict) the trajectories of moving plan-
ets. Is it an easy problem?

For a system composed of two
bodies, this problem was solved for
the first time in history by Sir Isaac
himself. In this very simple case,
knowing the initial conditions (po-
sitions and velocities of the planets),
one can determine the future state
of the system at any moment and
with any precision.

However, when scientists consid-
ered systems composed of more than
two bodies, they met with huge
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mathematical difficulties. One can-
not obtain the general solution even
for the case of three bodies (n = 3).
Even to the present this three-body
problem has not been strictly solved
with known mathematical methods,
notwithstanding 250 years of efforts
by mathematicians around the
world. For this reason, “the n-body
problem” (this is how specialists re-
fer to this problem in the general
case) continues to attract the atten-
tion of mathematicians.

Another stimulus is the immense
importance of the n-body problem
for celestial mechanics and astro-
nautics. No wonder that the total
number of papers devoted to this
venerable problem of mechanics
amounts to 2000, and every year an-
other 15-20 works are added.

At present there are a number of
methods for obtaining approximate
solutions to the n-body problem for
a limited period of time, and for plot-
ting the trajectories of any specific
system of bodies with sufficient ac-
curacy, provided the initial condi-
tions are specified. The effectiveness
and reliability of these methods has
been proved many times—for ex-
ample, in calculations of the trajec-
tories of spaceships and satellites.
Using such methods, John Adams
and Urbain Leverrier discovered the

planet Neptune “at the end of a writ-
ing pen.”

0O.K., but why are the Trojans
mentioned in the title of this article,
the reader may be wondering. The
point is that astronomers are de-
voted connoisseurs of mythology,
and there is a group of asteroids with
this name that relates to the theme
of this article very closely. However,
we will talk about the Trojans some-
what later, and now continue the
story of the n-body problem.

The problem of Lagrange

The exact solution of the n-body
problem doesn’t exist. However, 200
years ago, the outstanding French
mathematician Joseph Louis
Lagrange found the exact solutions
for a system of three bodies charac-
terized by some “specific” initial
conditions. His solutions (now
called “Lagrangean”) are the only
exact formulas for this problem
known up to now.

Consider three bodies not lo-
cated on the same line that rotate
with the same angular velocity
along concentric circles lying in
the same plane. These bodies can
be treated as the points of an
imaginary solid body that rotates
around the motionless axis (this
axis passes through the common

Art by Vera Khlebnikova



center of the concentric circles,
the “orbits” of the bodies).

For what locations of the masses
is such motion possible? What must
the angular velocity of the imagi-
nary solid body be in order to main-
tain its integrity and not fly to bits?
This was how the problem was
posed by Lagrange himself. Let’s try
to solve it, following the steps of this
great master of science.

Triangle of masses

Let three bodies with masses m,
m,, and m, revolve along concen-
tric circles with a common center
at point O (fig. 1). The radii of the
orbits 7, 7,, and r, and the distances
between the bodies are assumed to
be much greater than their sizes.
The acceleration of any body re-
sults from its attraction to the other

two bodies, and it is determined by
the vector sum of the respective
forces of gravitational attraction.
The equations of motion of three
bodies may be written in vector
form as

F, +F; =ma,,
E, +F; =m,a,,
F; +F;) = mja;.




Here

2

r;

F.

if

=G

is the attraction—that is, the force
with which body m; acts on body
m,. Since all the bodies revolve
with the same angular velocity (by
the statement of the problem), we
have a, = -0’ r}, a, = -0* r,, and
a, = -’ r,. Here 7, is the radius-vec-
tor of point m, drawn from the cen-
ter of revolution O. We call the bod-
ies “points” because the distances
between them are far greater than
their sizes. Qur further reasoning is
purely “mathematical,” and at first
glance does not seem related to the
problem. However, this is the way
that leads to the solution of the first
part of the problem and results in
determining the configuration of
the bodies.

Let’s add the equations of system

(1):

Fy+E3+E, +EB3+F + By

= mlal +mlal + Hlsag

According to Newton'’s third law,
the sum of all the internal forces in
a closed system is zero. More for-
mally, the top line can be rewritten
as

3 3
SE+ S -
1,j=1 1,j=1
because F;; = -F ;. Thus, we get
m ¥, + myt, + myr, =0,  (2)

because o # 0. Equation (2) de-

Figure 1
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scribes the position of the center
of revolution: it is located at a
point O such that the radius vec-
tors of the bodies m,, m,, and m,
drawn from this point must satisfy

equation (2).
Now let’s introduce vectors R,
and R, as shown in figure 2. We have
r

=1, + Ry,

I =1+ RZ' 3)

The next step is to express 1, in
terms of R, and R,. To do this, we
multiply the first equation of (3) by
m,, the second by m,, and add the
resulting equations:

myt + M1

Taking into account that m,r,
+ m,r, = —m,r; (which follows from
equation (2]}, we get

(my + m, + my)y = myR; + mR,,

from which we obtain

5 = mst +m3R2
1———‘—.

Thus, vector r, is the sum of two
Vectors

m
pr = —L—RZ
my +1my + 1y
and
m,
pS = = ] R}/

which are parallel to the sides R,
and R, of the triangle of masses.

Figure 2

Now we draw the vectors for
the forces that act on the body m,
on the plot of the triangle of
masses (fig. 3). Here F, is the
force acting on it from body m,,
and F,; from body m,. These
forces are directed along the sides
R, and R, of the mass triangle.
Thelr resultant force is directed
along vector r, to point O (that is,
the vector of acceleration of body
m, is directed to the center of
revolution). This means that the
parallelogram of forces and the
parallelogram constructed on the
vectors p, and p, are similar!
Therefore,

‘Fu‘:Ps =
and
my i, | my
G R m +m,+m Rs
3 1 2 3
mym ma
= 1425 3 Rl'

R} my+m,+my

Finally, cancellation yields R, = R..
In a similar way we can find the
expressions for r, and r, via the
sides of the mass trlangle (to this
end, vectors R, and R, R, and R,
should be 1ntr0duced w1th cmre—
sponding directions). By consider-
ing the forces affecting the body
m2 (or m,) we obtain the equalities

R, =R, and R,
Thus we have arnved at a won-
derful result &y = R, so the

configuration of all the bodles is an
equilateral triangle! The first prob-
lem is solved, and we invite the
reader to solve the second one (see
exercise 1). Now we are ready to
visit the Trojans.

Figure 3




Trojans in a gravitational trap

On February 2, 1906, the German
astronomer Maximilian Wolf dis-
covered the asteroid Achilles. Ac-
cording to preliminary data, it
moved with a speed of 13 km/s in a
nearly circular orbit. However, Jupi-
ter has a similar quasi-circular tra-
jectory—and with the very same
speed! Thus, two celestial bodies,
large and small, shared the same or-
bit around the Sun.

Indeed, if a planet of mass m re-
volves around the Sun along an or-
bit of radius z, it is attracted to the
Sun with the force

(M is the Sun’s mass), which gives
the planet a centripetal acceleration
a = v?/r, where v is the speed of the
planet. That is,

mM  mv?
G—2 = :
r r

Consequently, the orbital radius

M
r=G—
7

doesn’t depend on the planet’s mass
and is determined entirely by its
speed.

Perhaps the orbital planes of Jupi-
ter and Achilles are inclined to each
other? No, researchers quickly
found that the asteroid really moved
along Jupiter’s orbit and ahead of the
venerable planet by 55.5°. Of course,
the scientists immediately recalled
the work of Lagrange. The Sun, Ju-
piter, and Achilles formed a nearly
equilateral triangle, revolving
around one of its vertices, the Sun.

Later new asteroids were found at
the vertices of two equilateral tri-
angles with a common Sun-Jupiter
base. They were named after the
heroes of the ancient Trojan War.
Five of them (this family is called
the Trojans) are the rear-guard,
which lags behind Jupiter, while the
advance-guard is formed of 10 war-
riors (called the Greeks, fig. 4). These
asteroids are rather big, and the larg-

]upiterﬂ

Trojans 7*

Figure 4

est of them, Patroclus, is 216 km
across; the size of eight others is
smaller than 100 km.

In 1959 the Polish astronomer
Pan Kordylevsky found wvast
clouds of space dust in the vertices
of the equilateral triangles drawn
on the Earth-Moon axis. The role
of the Trojans was played by
myriad dust specks trapped by the
combined attraction of Earth and
the Moon.

Thus, the mathematical solu-
tions published by Lagrange in 1772
and considered by him to be purely
theoretical results were related to
later astronomical discoveries.

Stahility of motion

Did we consider all possible solu-
tions to the three-body problem?
No, there is a linear arrangement of
three bodies that can rotate as a
single body. However, such a con-
tiguration is unstable. If a body is
slightly shifted from the line, the
balance of forces will be disturbed
and deviation will increase.

Is the triangle configuration of
gravitating bodies stable? Not al-
ways. Gachot, in 1843, was the first
to formulate the conditions of stabil-
ity for the Lagrangean triangle. He
showed that the configuration is
stable provided the masses of the
two large bodies that form the base
of the triangle are such that m,/m,
is a sufficiently small ratio and

(my +m,)
—>27.

If the mass of a space particle is
much smaller than m, and m,, and
it enters the region of the vertex of

any equilateral triangle constructed
on an m,-m, base with a relatively
small speed, it will be “trapped.”
The particle can circumscribe quite
an intricate trajectory about the ver-
tex of the Lagrangean triangle, but
the whole configuration will rotate
as a single body.

The mass of Jupiter is 1000 times
smaller than that of the Sun. The
total mass of the Trojans is negli-
gible in comparison with the Sun or
Jupiter, so the requirements of sta-
bility are met with a high stability
margin. The inequality is true also
for the Earth-Moon system: their
masses differ by 81 times.

How could the conditions of sta-
bility be deduced? Perhaps there is a
simple deduction, but in general, the
problems of stability are rather com-
plicated and should be considered in
a special article.

Exercises

1. Prove that the angular velocity
of rotation of a Lagrangean triangle
is

my +my + my

2 _
o =G o

7

where R is the distance between the
bodies.

2. We considered the triangle of
masses as a rigid body. However, if
the values of the velocity vectors are
proportional to the distances to the
center of revolution and the vectors
are directed at the same angle to the
line segments connecting the bodies
with the center, then the configura-
tion will be congruent to the initial
arrangement at any time. Thus, the
equilateral triangle will expand or
contract during its revolution. Try
to prove this on your own. (e
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POLYNOMIAL FOTPOLRRI

A Chebyshev polyplayground

Recurrence relations applied to a famous set of formulas

by N. Vasilyev and A. Zelevinsky

NE POPULAR IMAGE OF THE MATHEMATICIAN

is a person who is constantly performing tedious

calculations, writing down and transforming cum-

bersome formulas. Although some elegant and im-
portant fields of mathematics exist that do without for-
mulas, this opinion does have certain foundations. The
ability to look at formulas from an original point of
view, transform them, find new formulas, and discover
various relations among them plays an important role
in the work of a mathematician. In this article, we con-
sider a series of formulas related to the so-called
Chebyshev polynomials and some powerful mathemati-
cal ideas that underlie them.

Two remarkable sequences of polynomials

The polynomials in question occur in many prob-
lems of mathematical analysis, computational math-
ematics, and algebra. These polynomials were first con-
sidered by the prominent Russian mathematician
Pafnuty Chebyshev in 1854 in connection with the fol-
lowing question.

n T, U,

0 1 1

1| x 2x

2] 2x2-1 4x? -1

3| 4x3-3x 8x3 — 4x

4| 8x*-8x*+1 16x*-12x% + 1

5| 16x°-20x%+5x 32x5 - 32x3 + 6x

6| 32x°%-48x*+18x*-1 64x° — 80x* + 24x% - 1
7| 64x7-112x°+ 56x%—7x

Table 1. Chebyshev polynomials of the first and second
kind. If we multiply each polynomial by 2x, then subtract the
one above it in the table, we obtain the next polynomial.

20 SEPTEMBER/OCTOBER 1899

Consider various polynomials of degree n with a
leading coefficient of 1. Which of them deviates least
from zero in the interval [-1, 1]? We will answer this
question in two ways, depending on how we interpret
it.! Suppose the polynomial is F (x] = x® + a, x"~! +

..+ a,x + a,. Then we can interpret the phrase “devi-
ate least from 0” to mean that the quantity

s = F_llaf](‘Fn (X)‘

takes on the minimum value.
It turns out that this polynomial is

That is, it is the polynomial shown in the left column
of table 1 divided by its leading coefficient. For example,
among quadratic trinomials, the one that deviates least
from zero, c,, is 1/2; and for any other trinomial
x2 + px + q, this deviation is greater. The cubic polyno-
mial with the least deviation from zero is x* — (3/4)x. Its
deviation from zero is c; = 1/4. In general, the polyno-
mial T, (x) deviates from zero by ¢, = 1/(22~1}, which is
less than for any other polynomial F [x) = x" + a, _x"~!
+ ...+ a,x + a, of degree n.

We can measure the deviation of a polynomial from
zero in a different way, by requiring that the area be-
tween the graph of the polynomial and the x-axis, and
between the lines x = 0 and x = 1, be minimal. If you
know calculus, you know that this is the quantity

1

L=]

-1

E, (X)‘dX

IHowever, we will not give proofs that these answers are
correct. An elementary proof can be found in reference 1 at
the end of the article.

Art by Vasily Vlasov
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forr=1:
v =Tylx),

forr=2:
y = Qylx)

forr=1:
y= Unfl(X)r

for =2
y= Pufl(X]

Fig. 1. Take a transparent sheet of paper (0 <x <2mr, —r <y <r) with the graph of the function y = r cos nx drawn on it. Roll up
this sheet into a cylinder (with diameter and height 2h); then, look at it from its side in such a way that the graphs on the front
and back parts of the cylinder coincide—you will see the graph of the nth Chebyshev polynomial of the first kind. Forn=2, 3, 4,
5, these graphs are shown in the upper row of the figure (for r = 1, we obtain the graphs of y = T, (x) and for r = 2, the graphs of

y = Q, (x)—see exercise 3). Under the graph of the nth polynomial, its derivative divided by n is graphed. This is the

(n — 1)th Chebyshev polynomial of the second kind—all figures painted blue have equal areas.

For this interpretation of “least deviation from zero,”
the polynomial

where U, (x) is shown in the right-hand column of
table 1, has the minimum deviation. For U _(x), the
quantity I_(the blue area in fig. 1) equals 2. Thus, it
is 1/27-1 for U, and is greater for any other polyno-
mial F (x) = x” + ... of degree n (this is the content of
the Korkin-Zolotarev theorem).

The facts mentioned are related to the following
properties of the Chebyshev polynomials:

(1) The values of T, are equal in absolute value for all
the turning points and for the endpoints of the inter-
val [-1, 1]. The area of each of the n + 1 regions bounded
by the graph of the polynomial

1
Uu (X) = Tz;#—l (X)/

n+l

the x-axis, and lines x = £1 is the same (see fig. 1).

As it turns out, the only polynomials that possess this
property are those obtained from the equations y = U, (x]
and y = T (x) by a linear change of the variables x and y.

Property (1) follows from the following basic rela-
tions:

(2) T (cos ¢) = cos no, sin ¢ - U, (cos ¢) = sin no.
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In addition to the trigonometric relations (2), which
determine the values of polynomials T, and U, for
x| <1, there exist quite different identities for x| > 1:

(3) (X+ y”;_(z - 1) +(X— \&2 —1)
T (x)= ,
U( ) 2
— n+l 5 -\ n+1
(X+\s’X2—1) —(X—V"X‘—l)
U”<X): )
Vx© -1

The roots of T, and U,, can be found from the follow-
ing identities:

4 , 2n-1
) T”(X)ZQHI(X—COSn][X—Cosg—n)...{X—COS(H—)TI],
2n 2n .

2n
U,(x)=2"| x—cos T )X—COS 21 j X - cos—% j
2n+1 2n+1 n+l

Thus, the roots and turning points of polynomial T,
are the projections of the vertices of a regular 4n-gon in-
scribed in a circle whose diameter has endpoints (-1, 0)
and (1, 0) onto this diameter (see fig. 1).

In the following, we will prove, among other rela-
tions, identities (2)-(4) and use them to demonstrate
some important methods of algebraic transformations.

Any of the above formulas can be taken for the defi-




nition of the Chebyshev polynomials. In this article, we
will take as our definition the simple recurrence rela-
tion presented in the caption to table 1. We will derive
all our other formulas from this relation.

It is more convenient for our purpose to deal with poly-
nomials obtained from T, and U, by scaling (see fig. 1):
P (x) = U,(x/2), Q,(x) = 2T (x/2). For these polynomials,
the interval [-2, 2] plays the same role that interval [-1,
1] plays for T and U . The convenience of the new poly-
nomials is that their coefficients are integers and the lead-
ing coefficients are 1. Naturally, using the inverse trans-
formations P (2x) = U, (x) and Q,l2x) = 2T (x], we can
return to the original polynomials T, and U, whenever
we like. As a rule, in this article, we will prove various
propositions for P_. We invite the reader to prove similar
propositions for Q . We recommend carrying out all cal-
culations in detail, using small values of n = 2, 3, 4 first
(until everything becomes clear).

Recurrence relations and induction

Set Py(x] =1, P,(x) = x, and

Polx]=x P|(x)-P (x). (1)

n+1
Write down the first several elements of this sequence:
Py(x)=x>-1,

P.(x) = x(x? - 1) - x = x} - 2x,

Px)=x(x?-2x) - (x> - 1) =x*-3x2 + 1,

Py(x) = x(x* - 3x% + 1) - (x° - 2x) = x5 — 4x3 + 3%,
and so on (you can check your results up to P,, using
table 2).

The polynomials P (x) occur in various situations. For
example, consider the fractions

1 1
R(x)=x, Ry(x)=x-—, Ry(x) = —
X L
x
1 1
Ry(x)=x~ i ,Rs(x)=x~ 7
X——X_i X— 1
X * 1
X——

These continued fractions provide a useful tool for
solving various problems involving the approximation
of numbers and functions (Chebyshev studied contin-
ued fractions as well).

Performing various manipulations, we obtain

gt =1 x3—2x
Ry(x)= (Ry(x) =",
x" -1
4 2 5 3
Ry(x)= X235 1 p () X 24X +3x

/ R R
x*-3x% +1

> 1 2 3 4 5 &
0

1

2

3

4

5

6

7 7
8 28
9 126 126 84
10 210 252 210
11 330 462 462
12 12 20 495 792 924

Table 2. pascal’s triangle. The numbers that appear in the
nth red-marked diagonal taken with alternate signs are
coefficients of polynomials P, (x). Exercises 6a and 6b concern
the sums of binomial coefficients.

(we invite the reader to check this). We notice that the
numerators and denominators of these fractions are just
polynomials P (x).

Here is another example. Consider the function
sin n¢ and try to represent it in terms of sin ¢ and a poly-
nomial in cos ¢:

sin 20 = sin ¢ - 2 cos ¢,
sin 3¢ = sin ¢ - (4 cos® ¢ — 1),
sin 4¢ = sing - (8 cos® ¢ — 4 cos ¢).

It turns out that sin n¢ = sin ¢ - P__,(2 cos ¢) for all
n > 1. In other words, for sin ¢ # 0,

sin(n+1)o
12(2C05¢)=“j§5};)‘ (2]

These relations can be readily obtained by induction
and formula (1). Indeed,

Therefore, if we assume that, for a certain n,

P,(x)
P, (x)’

R, (X> =

a similar relation for n + 1 can be easily obtained from (1):

Pufl(X) _ xP, (X) B Pnfl(X) _ Pzz+1(X)

Ry (x)=x- P, (x) P, (x) S P(x)

Similar manipulations can be carried out for sines. If
we assume thatfork=n-1andk=n

sin{k + 1)¢ = sin ¢ - P, (2 cos ¢),

it follows from (1) that
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sin¢- P, (2 cos¢)=2cos¢-sinod- P2 cos o)
-sin¢ - P, (2 cos ¢)
=2 cos ¢ sin (n + 1)d - sin n
= sin{n + 2)¢.

Here we used the identity 2 cos o - sin B = sin (o + B) +
sin (B - o).

Notice that we carried out the inductive step from
n-1andn ton + 1. In most proofs, the inductive step
is made from n to nn + 1. Because of our unusual “double
step,” we must in this case verify the first two identi-
ties (for n = 0 and n = 1) separately.

Exercises
1. Prove by induction using the recurrence relation
(1) that the following identity holds for Ix| > 2:

) n+l / n+l
(X+xs‘X —4) —(X—\J‘X —4)

Biz)=

n

2" x" -4

This identity will be also considered below.

2. Prove that (a) P,(2) = n + 1 and (b) (a] P,(-2) = (-1)"
(n + 1). (Prove it in three different ways: using (1), pass-
ing to the limit in equation (2) as ¢ — 0 and ¢ — &, and
passing to the limit in (3] as x — £2.)

3. Consider a sequence of polynomials Q,(x), Q,(x),
Q,(x), . . . satisfying equation (1) and the initial condi-
tions Q,(x) = 2 and Q,(x) = x. Write down the first six
polynomials Q_(x]. Prove the following identities:

(a) =x- (there are n —1 minus signs);

1

)
X

(b) 2 cos no = Q, (2 cos 0);
(c) for Ixl > 2,

2')

QH(X) _ (X-‘r'\j‘JXZ — 4)11 + (X —x? —4)11 3

211

4. Prove that any sequence of polynomials R(x],
R,(x), . . . satisfying equation (1) can be expressed in
terms of the sequence P (x] as follows:

R [x) = R|(x) - P ,(x) - Ry[x)- P, ,(x].

In particular, Q,(x) = xP, |[x) - 2P, ,(x) = P (x) - P,_,(x].

Derive all the identities in exercise 3 from this formula.

Roots of polynomials and products

Many interesting formulas that involve symmetric
expressions depending on n numbers (or variables) can be
easily explained if these numbers are considered as the
roots of a certain polynomial of degree n. For n numbers

Y = 2cos

n+l
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(where k= 1,2, ..., 1), P (x) serves as such a polynomial.
Indeed, substituting

n  2m nn
n+l'n+1"""" n+l1

for ¢ in (2), we see that

Yr =2cos

+1

are the roots of P (x). Now we recall the factor theorem
of elementary algebra:? if yis a root of a polynomial P(x),
then P(x) is divisible by x —y. The polynomial P (x) must
be divisible by each of the binomials x —,, and hence,
by their product. Since our polynomial is of degree n and
its leading coefficient is 1, it is just the product

H(X—’Yk).

1<k<n

k
H (X—Zcos};%j. (4)

1<k<n

Thus,

Exercise 5. (a) Prove the identity

II(X—ZMBQéi?E}

1€ks<n

Qu(x)= (4]

(b) Verify identities (4) and (4) forn =2, 3, 4, and 5.

Consider an interesting identity that can be derived
by comparing formulas (4) and (2).

For m > 0, calculate P, (0] in two different ways and
equate the expressions obtained. On the one hand, we
obtain from (2):

(2m+1)n

o) A i
«fi( 2cos— ] === sin(z + mn) =(-1)".

for each
kr

2m+1

Ccos

for m + 1 < k <2m, we obtain

2For many problems involving the factor theorem, see
Gradus ad Parnassum in Quantum: March/April 1998
May/June 1998, and July/August 1998. —Ed.




2.
[T cos;
CcOS s
2m+1

1<k<m

Py, (0)=(-1)" {2 :

The expression in brackets is positive, because it in-
volves cosines of acute angles only, and therefore, it
equals 1. Thus we obtain

kr 1
I I cos =—. (5)
2m+1 2™

1I<k<m

This relation has an elegant verbal formulation: for
m > 0, the geometric mean of the cosines of the acute
angles that are multiples of ©/(2m + 1) is 1/2.

Exercises
6. (a) Find P (1), P (-1}, Q(1), and Q,(-1).
Prove the following identities that are similar to (5):

I I sm‘
2m

m-1 (IH 2 1)
1<]<<m 2

o —
(c) H L +1:\“'2m+1 (m=1);

1<k<m

2k-Iin 2
(d) H COS( ) :;_n?(mzl].

1<k<m 4m

7. Find all values of m and n for which (a) P, is divis-
ible by P, ; (b) Q, is divisible by Q.

Generating functions, power series, and coefficients

In this section, we consider a very fruitful method
that is widely used in calculus, combinatorics, and prob-
ability theory: the method of generating functions. In
some cases, this method allows us to find the separate
elements of a sequence and construct it piece by piece,
just as a building is constructed of bricks.

Consider a sequence ag, a,, a,, . . . The following ex-
pression is called the generating function of this se-

quence:
n
E a,z".

n=0

fz)=ay+az+ayz* + - =

Expressions of this kind are called formal power
series. Such series may be added, subtracted, and
multiplied like ordinary polynomials. One series
may be divided by another, if the constant term of the
divisor is not zero. Such a series may also be differ-
entiated or integrated term by term.? All these opera-
tions can be used to obtain new sequences from those
already analyzed. It is often possible to find a simple
expression for the generating function from the re-

3See “Generating Functions,” by S. M. Voronin and A. G.
Kulagin in the May/June 1999 issue of Quantum.—Ed.

current relation that defines a sequence. Conversely,
sometimes it proves possible to find a general for-
mula for an element of the sequence or a relation
connecting several elements of the sequences given
its generating function.

For a finite sequence 4y, a,, a,, . . ., a,, the polyno-
mial fiz) = ay + a;z + . . . + a,z" serves as the generating
function. For example the polynomial f,(z) = (1 + z}" is
the gencratmg functlon for the sequence of binomial co-
efficients C°,CL,...,C2; these coefficients appear in the
nth row of Pascal’s triangle (see table 2):

D Gzt =(1+2)". 6l

0<ks<n

We differentiate this identity k times and set z = 0 to obtain

ok - n(n-1)...(n-k+1)
" 1-2-...-k ’
Let’s consider the identity (1 + z)(1 + z)? = (1 + zJ#+!
and write it as

Z Cm—lz

0<k<n+l

(1+z)[ Y Ckz k}

0<k<n

By removing the parentheses and collecting the terms

z", we obtain the important relation C* + C*™' = C™ |

Among infinite sequences, the geometric progression
by, b, = gb, , has an especially simple generating func-

tion. In the sum
=b+ b,2",

()= b,z"

n=0 nx1

replace each b, with gb,_, to obtain

f(z)=b+ qzz b,1z2" " =b+qzf(z).

n>1

We have f(z)(1 - gz) = b, from which we obtain

Ebnz_

n=0

(7)

This is the well-known formula for the sum of the
infinite geometric progression (for Igzl < 1). The same
method can be used to obtain the generating functions
for the sequence of polynomials P (x).

Define

O(z) = zPH (x)z" =1+xz+ ZPH (x)z".

n>0 nz2

(Here, x plays the role of a parameter, and we will write
P, P, ... instead of P (x), P, ,(x), ... for the sake of
brevity.) By relation (1), for n > 2, we replace each P, for
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xP_, - P, ,. Then,
D(z)=1+xz+ EXPH_IZH - an_Zzn
nz2 nz2
=1l+xz+xz- E:Pn_lzn_l ~z*. ZPH—ZZH_Z
nz22 n=2

=l+xz+ XZ(CD(Z) - 1) -2°0(z).

Therefore, ®(z) - (z - xz +1) = 1 and

1

d(z)= .
(Z) -xz+1

- 22 (8)

This simple formula hides the entire intricate se-
quence of polynomials P_. We can extract the individual
P_ from this sequence in two different ways.

(1) For Ix| > 2, the quadratic equation z2 - xz + | has
two roots:

v= : 9)

From the factorization z2-xz + 1 = (z—-u)(z- v, remem-
bering that uv = 1, we have

1 1 1 1
@(z)= = -
2) (u-z)(v-2z) (V—Z u—z)u—v

u v 1 7.111+1_Vn+1 Y
_(l—zu_l—zvju—v_2 u-v z

n=0

That is, P (x) = (u™! - v2*!)/(u — v). This is relation (3).
(2) The coefficients of any polynomial P (x) can be
found from (8) in the following way:

(D(Z) = —1—‘ = Z(XZ - zz)k = 2[ 2(_1)7C;(X1<Aizk+i]

1- (XZ - 22) k=0 k>0\ 0<j<k
= 22“[2(4)7@;7. X" J
n=0 ]

(here, we used the formulas for the sum of the infinite
geometric progression (7}, binomial coefficients (6), and
found the coefficient of z7, which is the required P (x]).
Therefore,

L (x)= Y (-1) € x" Y. (10)
For example,
Py(x)= C2x® - Clx* + Cix? - C3 = x® —5x* + 6x” -1,

Certainly, formulas (3) and (10) can be proved by in-
duction without using generating functions. However,
the way they have appeared almost by themselves from
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the short formula (8) is wonderful.

All our manipulations with infinite series need to
be vindicated. The justification can be performed in
two different ways. First, we notice that all series
considered are convergent for small absolute values
of z (for example, series (7) is convergent for Iz| < 1/
Igl). Therefore, they are well-defined functions of z.
The other way is to check that formally defined op-
erations on infinite series (addition, multiplication,
and so on| possess all usual properties (when these
operations are performed, every coefficient of the
resulting series is expressed in terms of a finite num-
ber of coefficients of the operands, with z considered
merely as a symbol).

Exercises
8. Consider a sequence of Fibonacci numbers

u,=0,u,=1u,,,=u,+u,,.

(a) Prove that the generating function of this sequence is

l1-z-2z

(b) Binet’s formula gives the value of the nth Fi-
bonacci number explicitly in terms of n:

1 |(1+45) (1=45Y
un—ﬁ 3 5 )

Derive this formula from the generating function of the
Fibonacci sequence.
(c) Prove the identity

- i
u, = 2 Chja-
i

9. (a) Find the generating function for the sequence
of polynomials Q_(x) defined in exercise 3 and prove
that, for Ixl > 2,

Q,[x] = u™ + v,

where u and v are defined by (9) (this formula was also
proved in exercise 3c).

(b) (for those who are acquainted with complex num-
bers| Verify that, for Ixl < 2, (3) and (3’) turn into (2) and
(2), respectively. (Hint: if x =2 cos ¢, u = cos ¢ + 1 sin ¢
and v = cos ¢ — 1 sin ¢.) O]
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NEW CONTEST, NEW FORMAT, NEW NAMES

"The American Mathematics Competitions is pleased to announce a new contest as well as new names ’
and a modified format for two of the current exams. The AJHSME is now the American Mathematics »
Contest 8 (AMC =8) and the AHSME is now the American Mathematics Contest =12 (AMC
=12). The new contest is the American Mathematics Contest =10 (AMC = 10), for students in grades
10 and below. This new contest will give more young students a chance to successtully participate in
a significant mathematical problem solving experience.

Why should my school sign up? Because the AMC =10 and AMC =12 provide an excellent
opportunity to challenge your students’ mathematical abilities. It is but a means for furthering
mathematical interest and development.

The AMC =10 and AMC =12 will each be 75 minutes long and will consist of 25 questions each.
Each correct answer is worth 6 points and a blank is worth 2 points. The AMC =10 and AMC =12
will have several questions in common and will be given at the same time, on the Tuesday before the
third Monday in February (the current AHSME date). The students should choose between AMC
=10and AMC=12. Studentsin 10" grade and under may take either the AMC =10 or AMC =12,
but 11%and 12* grade students may not take the AMC =10. The school team score will be determined
from the AMC =12. To qualify for the AIME a student must score at least 100 points on the AMC
=12 or be in the top 1% of the AMC =10 participants.

The registration fee for one or both contests is $30.00. One bundle of ten AMC =12 is $12.00 and
one bundle of ten AMC =10 is $10.00. The first bundle of the AMC =10 will be free for the year
2000 only.

Titu Andreescu, Director
American Mathematics Competitions
University of Nebraska, Lincoln
P.O. Box 81606
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phone: 800-527-3690
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2000 AMC exam dates:

AMC=8 - TUESDAY, November 14, 2000
AMC=10 - TUESDAY, February 15, 2000
AMC=12 - TUESDAY, February 15, 2000
AIME - TUESDAY, March 28, 2000
USAMO - TUESDAY, May 2, 2000

www: http://www.unl.edu/amc
A Program of the
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HE QUEST FOR THE TRUE
nature of time has occupied hu-
manity for thousands of years.
Today there is no shortage of
speculation about time. Looking
through the pages of popular science
books, we encounter the notions of
“four-dimensional space-time,”
“the arrow of time,” “waves of
time,” “irreversibility of time,”
“time-traveling machines,” “curva-
ture of space and time,” and the like.
Admittedly, T approached the
problem of time with con-
siderable trepidation, so
different and limitless it
seems. However, some
hints from scientific
treatises encouraged
me. For example, New-
ton differentiated be-
tween “granted from the
heavens” absolute time and “rela-
tive time,” which is “self-evident”
and “usual,” and can be measured
by a clock. Richard Feynman pro-
posed that instead of racking our
brains searching for a definition of
time we should simply learn how to
measure it properly.

To this end, people invented
clocks, and what marvelous devices
they are! And how many types have
been constructed! Water,
solar, sand, mechanical,
quartz-stabilized, atomic . .
To make these clocks, sci-
entists found suitable peri-
odic processes, chose time
standards, and got the hang
of measuring very small fragments
of time. So, are we equal to the prob-
lem of time, after all?

Let’s not jump to conclusions:
time still retains many of its mys-
teries. Solving them would mean
great progress in science. At present,
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being in the framework of our
“usual time,” let’s consider if time
is really so “commonplace,” even in
school physics problems. As Naum
Korzhavin said:

Time? It is a given essence

not to be discussed.

Should you think of the evanescence
of your life that quickly passed!

Problems and questions

1. How should a sundial be con-
structed to provide correct readings
at any time of year?

2. Will ink drops that fall from a
dropper attached to a uniformly
moving cart (fig.1) really mark equal

Figure 1

distances on the table (a well-known
high school physics experiment)?

3. Two boats traveled on a river
in the same direction with differ-
ent speeds. Simultaneously they

met a raft that was

floating down-

© stream. After half

an hour the boats

turned back and

traveled with the

: same (relative to

the water) speeds. Which boat met
the raft first?

4. Figure 2 shows the dependence
of velocity on time for two bodies
moving along the x-axis. What is the
physical meaning of the intersection
point of the figure? Is it possible to
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determine from the figure when the
bodies will meet?

Figure 3

5. Two balls rolling on the sur-
faces shown in figure 3 pass points
A simultaneously with the same
velocity. Will they arrive at points B
simultaneously? Neglect friction.

6. A body falls from the window
of a train. Will the time to free fall
from the same height be equal in the
following cases: (a) the train is at
rest, (b) the train moves with a con-
stant velocity, (c) the train is uni-
formly accelerated.

7. An object is hurled at an angle
to the horizon. What will take a
longer time, the rise or fall of the
object, provided air resistance is not
neglected?

8. A fly sits on the bot-
tom of a closed tube. The
tube falls freely, always
in the vertical position.




OSCOPE

/ know time?

’ How will the time of fall change if
\ the fly flies from the bottom to the
r top of the tube during the fall?

9. A long rope passes over a sta-
tionary pulley. Two gymnasts of the
same mass hang onto the ends of the
rope at the same height above the
ground. The first gymnast begins to
climb with a constant speed relative
to the rope, and the second gymnast
starts to descend at one-half this
speed. Who will reach the pulley
first?

10. Does the weight of an hout-
glass depend on whether the sand
flows in it?

11. Molly and Amy °
skated across a frozen river,
rushing from one shore to the
other after gaining some initial
speed. Molly stopped, and the ice
cracked under her. Why did this oc-
cur? The thickness of ice was iden-
tical everywhere.

12. Find the period of a math-
ematical pendulum in a spacecraft
after the engines are turned off.

13. A bob oscillates on a vertical
rubber cord. By how many times
will the period of oscillation of the
bob change if it is suspended on the
same cord folded in two?

14. Why do radars emit electro-

' magnetic waves in short wave pack-
ets and not continuously?

i 15. Why is lightning seen for a

; very short time, but its thunder lasts
for a much more longer period?

Microexperiment

Pass a rope through a hook on the
ceiling, attach a small bob to its end,
and start it swinging with a small
amplitude. Then gradually pull the
other end of the rope, thereby lifting
the bob. How will the period of os-
cillation of the bob change?

It is interesting that . . .

. in the second century B.c.
an ancient Greek astronomer
Hipparchus managed to calculate
the duration of the Earth’s year with
marvelous accuracy: his figure was
only 6 minutes too long.

. . . during the first millenium
A.D., the Chinese reformed their
calendar 70 times, and their sys-
tem of chronology was modified 13
times.

.. a sun-clock was constructed
that employed a gun and a lens.
The lens focused the rays of
the Sun on the gun’s primer
and fired the gun at a pre-
cise moment of time. In
this way the time
was announced all

through the neigh-
borhood.

. an ancient Greek water
clock (clepsydra) measured time ac-
cording to the water level in a ves-
sel, which had a small, leaky orifice.
To make the water leak out uni-
formly, the shape of the vessel must
satisfy a fourth-degree equation.

... In a watchmaker’s shop in
some Alpine country there was a
banner on the wall: “This clock
reads the precise time.” The watch-
malker corrected his clock daily ac-
cording to the chime of a bell in the
cloistral observatory. As it turned
out, the inhabitants of this cloister
determined time not from observa-
tions of the heavens, but from the
clock of the rural horologist.

.. in 1232 Emperor Friedrich II
got a present from an Egyptian Sul-
tan. It was a clock “with wheels and
weights.” In addition to time, it
showed the motions of the Sun,
Moon, planets, and stars.

. it was not till 1659, when

t==  Christiaan Huygens solved an
| important problem of con-
structing clocks. The clock
. was tuned by changing the
- pendulum’s length. However,
| there was no shortage of at-

tempts to dispute his priority;
| the Italians insisted that the
&

pendulum clock éf/‘”” /. fﬁ 7
was invented by FALAR0 Y
f

i

P Y
/ ;{@ f@
Galdsy
Galileo himself. = .o #
.in 1714

“=4 the Government of Her Maj-
i esty of Great Britain insti-
-

tuted a reward for the
construction of a ma-
rine clock suitable for
the precise measure-
ment of longitude.
The size of the re-
ward depended on the
accuracy of the device.
... in the seventeenth
century variational principles
played an important role in the de-
velopment of optics and mechan-
ics. The most well-known of these
are Pierre de Fermat’s principle,
which says that light always
chooses the path corresponding to
the minimum traveling time, and
Johann Bernoulli’s problem on the
brachistochrone, the curve of the
most rapid descent.

... the famous Russian self-edu-
cated inventor Ivan Kulibin spent
two years constructing a unique egg-
shaped clock. It consisted of 427
parts discernible only with a magni-

CONTINUED ON PAGE 34
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PHYSICS
CONTEST

Breaking up is hard to to

by Arthur Eisenkraft and Larry D. Kirkpatrick

HE FISSION OF THE URA-
nium nucleus can be consid-
ered a very interesting para-
graph (but only a paragraph)
in the story of physics.” So stated
George Gamow, a noted physicist of
this century, in 1961. The techno-
logical products of the discovery of
fission, notably the atomic bomb
and nuclear power, have greatly el-
evated its importance in our culture.

The entire development of the
bomb cannot be understood without
a comprehensive knowledge of the
events of World War II. The history
of the discovery of fission includes
many aspects of the politics prior to
the declaration of war. We recom-
mend that readers turn to Richard
Rhodes’s outstanding book, The
Making of the Atomic Bomb, for a
stirring account of the history of
physics in this era. We also recom-
mend trying to locate Moments of
Discovery, The Discovery of Fission.
This out-of-print audiotape history
published in 1984 by the American
Institute of Physics (AIP) includes
recordings of many of the principal
players including Einstein, J. J.
Thomson, Rutherford, Bohr, Hahn,
Frisch, Compton, Szilard, and
Fermi. It is quite a thrill to hear Ru-
therford state that “a nucleus is a
very small thing.”

Our chore is somewhat modest in
comparison to both the science his-
tory and the political history sur-
rounding nuclear fission. We wish to
explore the details of fission, includ-
ing when it occurs and how we can
explain the enormous amounts of

([
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O crucified Jove, do
you turn your just eyes
away from us or is there

here prepared a
purpose secret and
beyond our
comprehension?
—Dante

energy that are available.

Let’s begin with a recipe. The in-
gredients are 6 protons, 6 neutrons,
and 6 electrons; the product is a car-
bon-12 atom.

6 protons 6(1.007276 u)=6.043656 u
6 protons 6(1.008665 u)=6.051990 u
6 protons 6(0.000549 u)=0.003294 u

total mass =12.098940 u

where u = 1.66 - 10727 kg is the
atomic mass unit.

Surprise! The total mass of a neu-
tral carbon-12 atom is exactly 12 u
(by definition). So, where did the
mass go! The missing mass, the
mass defect, is actually released as
energy when the nucleus is formed.
From a different perspective, the
carbon nucleus has a binding energy
that holds the nucleus together. Re-
moving a proton or neutron or sepa-
rating all of the protons and neu-
trons requires an expenditure of
energy. We have here a direct appre-
ciation of Einstein’s startling discov-
ery in 1905 that mass and energy are
one and the same and that the con-
version factor for changing mass

units into energy units is the square
of the speed of light. This most cel-
ebrated equation of all of science is
E = mc?.

This equation shows us that amere
1 g (103 kg) of mass yields 9 - 1013 J of
energy. To put this in perspective, if
sold as electricity, this energy has a
value of more than 2 million dollars.
Applying Einstein’s equation, we find
that 1 u yields 931.5 MeV, where
1 MeV = 1.6 107137,

Returning to the carbon nucleus,
the mass defect is 0.098940 u. This
has a corresponding binding energy
of 92 MeV. If we repeat the analysis
for carbon-11, we find that the mass
of the atom is 11.011433 u and the
mass of the constituent parts is
11.090275 u. The mass defect of car-
bon-111s0.078842 u or 73 MeV. The
removal of this neutron must have
required an expenditure of 19 MeV.
Students of introductory physics are
probably more familiar with the en-
ergy required to ionize a hydrogen
atom, 13.6 eV. Thus, 13.6 eV of en-
ergy must be given to the electron to
free it. Most of chemistry deals with
the exchange of electrons and effec-
tively deals with energies on the or-
der of a few eV per atom. In'contrast,
changes in nuclear structure have
corresponding energies of millions
of eV.

It is informative to compare the av-
erage binding energy per nucleon of
the two isotopes of carbon. Carbon-12
has an average binding energy of
92/12 MeV or 7.7 MeV per nucleon.
Carbon-11 has an average binding en-
ergy of 73/11 MeV or 6.6 MeV per

rt by Tomas Bunk
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Figure 1. Average binding energy per nucleon vs. mass number, for naturally
occurring isotopes. The dots are based on measured binding energies; the smooth
curve is based on the liquid-drop model. The curve has a maximum at A = 56 for

iron-56.

nucleon. A similar calculation can be
done for isotopes of all elements, and
the curve that is generated is shown
in figure 1. The average binding en-
ergy for most nucleons is approxi-
mately 8 MeV/nucleon. The curve
has the interesting feature of having
a maximum at iron-56. Nuclei with
less mass and nuclei with more mass
have less binding energy per nucleon.
Thus, light nuclei combining to form
a heavier nucleus will release energy
in a process called fusion. A heavy
nucleus will release energy when it
splits into two lighter nuclei in a pro-
cess called fission.

The binding energy curve came
about after the discovery of fission.
When Hahn and Strassman first rec-
ognized the fission of uranium, it
startled them and the scientific
world. The discovery of the neutron
by Chadwick in 1932 had provided
anew research tool for nuclear phys-
ics. The neutron could enter the
nucleus without having to over-
come the Coulomb repulsive force
that a proton would experience.
Enrico Fermi, soon after the discov-
ery of the neutron, began bombard-
ing elements with neutrons and pro-
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duced many new isotopes. Since
many of the isotopes Fermi pro-
duced emitted beta particles, when
he bombarded uranium he thought
that he had discovered a transuranic
element.

Otto Hahn and his colleagues
Lise Meitner and Fritz Strassman
had been chemically analyzing ra-
dioactive elements for some time.
Unfortunately, Meitner was forced
by the Hitler regime to leave Ger-
many in July 1938. Hahn and
Strassman found that one of the el-
ements emerging from the uranium
nucleus was barium. Their first hy-
pothesis was that it was radium,
which would have required two al-
pha particles to leave the uranium
nucleus. Even this seemed un-
likely—a low energy neutron
knocking two alphas from the
nucleus was beyond expectation.
Barium was even more unlikely, but
barium it was. Meitner and her
nephew Otto R. Frisch were quick to
deduce that the addition of the neu-
tron caused instability and the ura-
nium nucleus broke into two parts.
If barium was one piece, the other
must be krypton. This element had

indeed also been detected. Frisch
mentioned fission to Niels Bohr,
who was on his way to America, and
en route Bohr and a colleague, Leon
Rosenfeld, mapped out the liquid
drop model of the atom that could
predict this surprising behavior.

The liquid drop model of the
nucleus treats the nucleus as a drop-
let of nuclear material. The nucle-
ons on the surface are held to the
drop by a surface tension. The model
is quantitative and leads to an equa-
tion that can accurately predict the
binding energy curve. Our explana-
tion of the relevant equation follows
that of Ohanian in his text Modern
Physics.

To begin, we must recognize that
the nuclear radius is proportional to
A3 where A is the atomic mass.
This relationship is the result of
many scattering experiments. That
being the case, the volume of a
nucleus (4/3nR3) is proportional to A
and the density of nuclear matter
(the ratio of mass to volume) must
be constant for all nuclei.

The most important term in the
derivation of a binding energy equa-
tion is associated with the number
of nucleons, since each nucleon at-
tracts every other one through the
short-ranged strong force. The bind-
ing energy must contain a term pro-
portional to A. Since the nucleons
on the surface do not have as many
neighbors as nucleons within the
interior, the second term must ac-
count for this decrease in the bind-
ing energy. Since R is proportional
to A2/3, the correction term is pro-
portional to A%3 and is negative.
The Coulomb repulsion force be-
tween all of the protons tends to
drive the nucleus apart. This term is
proportional to Z*/A'3, where Z is
the number of protons in the
nucleus.

Finally, there is a quantum-me-
chanical correction that takes into
account the exclusion principle. Just
as electrons cannot all be in the
same quantum state, but fill succes-
sive shells, the nucleons must also
fill shells. This leads to a term that
is related to the numbers of protons
and neutrons and the total number



present. The constants of propor-
tionality are found through numer-
ous experimental data. Weizsacker’s
semi-empirical formula for the bind-
ing energy is

2
B= {15.753A ~17.804A%° - o.7103ZT
Al
2
[3+-7)
~9477 MeV.

The smooth curve in figure 1 is
based on the liquid-drop model and
can be seen to fit the data exceed-
ingly well.

Assuming that a nucleus splits
into two equal parts (A/2, Z/2 for
each product), we can calculate the
difference in binding energies:

By =[15753A-17.8044%

Zl

2/3
Bapzp = {15.753? - 17.804(?)

2
—O.7103(Z/72)

A
2‘BA/Z,Z/Z - BA,Z
2
B 23 | 0262
= |-4.6A +W MeV.

We have ignored the quantum me-
chanical term, which is small in
comparison. If the nucleus were to
undergo fission, the electrostatic
force must be greater than the sur-
face tension.

2
23, 02672
—4.6A°° + e >0,
2
Z—>18.

A

In the case of 238U, we have Z = 92,
A =238, and Z%/A = (92)?/238 = 35.6,
which is certainly larger than 18.

Fission does not proceed directly but
requires an elongation of the nuclear
drop. This is more likely to occur
when the additional neutron is
added to the uranium nucleus.

Enrico Fermi and Emilio Segre did
not discover the fissioning of ura-
nium, although fission did indeed
occur during their 1934 experi-
ments. Segre is quoted as saying,
“The whole story of our failure is a
mystery to me. I keep thinking of a
passage from Dante: ‘O crucified
Jove, do you turn your just eyes
away from us or is there here pre-
pared a purpose secret and beyond
our comprehension?’” (from AIP’s
Moments of Discovery audiotape).
The discovery of fission in 1939 led
immediately to the development of
the atomic bomb effort, which in-
cluded Fermi, who was then living
in the United States. How might
world history have been altered if
the discovery of fission had occurred
before the emigration of physicists
to the United States and well before
the start of World War I1? What does
this suggest about the role of chance
in history?

The contest problem this month
includes analysis of a number of fea-
tures of the fission process.

A. Tt is not hard to follow the rea-
soning Frisch and Meitner used to
calculate the energy released in fis-
sion. Consider a typical fission reac-
tion:

935 Q
‘33U+ én—) 1ggXe+ f{éSr +25n.

The Xe rapidly decays into 10Ce
and the Srinto ;4 Zr, with the emis-
sion of electrons of negligible mass.
We now know the following masses:

U 235.004u
Pt 1.009 u
HiCe 139.905 u
P 93.906 u

Calculate the energy released in the
fission reaction.

B. The discovery and the exploi-
tation of fission did not require
knowledge of E = mc?. In fact, at the

time the masses of the radioactive
daughter nuclei were not known
well enough to make a good calcu-
lation. Frisch and Meitner calcu-
lated the energy release by a second
method (which was the only
method Joliot used).

Calculate the radii of the Ce and
Zr nuclei above using the approxi-
mate equation, R = KA!/3, where
K=1.0-10""m. Assume that at the
moment the uranium breaks into
these fragments, the distance be-
tween the centers of the two frag-
ments is equal to the sum of their
radii. Calculate the electrostatic re-
pulsion between them. Using the
electrostatic potential, calculate the
work done to separate these two fis-
sion products. Compare this total
energy with that found in part A.

C. Surprisingly, the uranium
rarely breaks into two equal prod-
ucts. Use the semi-empirical bind-
ing energy equation to show that the
energy released is greatest for the
symmetric rare fission.

Elevator physics

Sid Govindan and Japeck Tang,
two students of Art Hovey, physics
teacher at Amity Regional High
School in Woodbridge, Connecticut,
submitted correct solutions to the
contest problem in the March/April
1999 issue. They reported that they
particularly enjoyed the problem in
part C.

In part A our readers were asked
to show that a ball dropped in an
elevator accelerating in the upward
direction will return to its original
height relative to the elevator floor
if its collision with the floor is com-
pletely elastic. Let’s begin by writing
equations for the positions of the
ball and elevator after the collision
with the floor using the same nota-
tion we used in developing the prob-
lem:

Vb =ynt+(vp v, )t-58t
’ 1 2
Yf =¥Vn +Vht+§(lt P
where y’; and y’, are the positions of

the ball and floor, respectively, y, is
the position of the floor at the time
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t = 0 of the collision, v, is the veloc-
ity of the floor at t = 0, v, is the rela-
tive velocity of the ball and the floor
at t = 0, and a is the upward accel-
eration of the elevator.

The height of the ball i’ above the
elevator floor is given by the differ-
ence of the coordinates of the ball
and floor:

h' =y}, -y} =Vﬂf—%g't2,

where g’ = g + a is the effective ac-
celeration due to gravity in the el-
evator. Earlier we calculated v, =g’ ,
where t, is the time for the ball to
fall to the floor. Substituting this
expression and using our results that
the time t for the ball to rise to its
highest position above the floor
equals t; we have

h'=1g}.

Lastly, we use

[2h
td:

Vg

to show that h” = h. Once again, we
obtain the same result that we
would get on the ground: the ball
returns to its original height.

Part B asks about dropping a ball
in a train with a constant horizon-
tal acceleration a. The effective
gravity g’ is given by the vector dif-
ference of g and a and makes an
angle 6 with the vertical such that
tan 6 = a/g. The ball dropped in the
train falls along the direction of g’
just like a ball dropped while stand-
ing on the ground falls along the di-
rection of g.

We use the idea of an effective
gravity to solve a very interesting
problem in a simple way. The door
on a car is slightly ajar. If the car
accelerates uniformly from rest,
how far will the car travel before the
door slams shut? We model the car
door as a rectangle with a uniform
mass distribution and a length L
from front to back and treat the door
as being acted on by a gravitational
force in the backward direction. We
can ignore the real gravitational
force, because the hinges do not al-
low motion up and down.

The torque acting on the door is
given by

1=1Lmasin®,

where 0 is the angle between the
door and the side of the car. If we

assume that the door is thin, we can
think of the door as being con-
structed from a column of thin rods.
The moment of inertia of the door
about its hinges is then
_1 2
I'= 3 mlL”.
Newton’s second law for rota-
tional motion yields

t=Jlo=1Lmasin® = %mLzoc.

Therefore,

o= 3—asin 0.
2L

This is just the equation for a simple
harmonic oscillator if we make the
approximation that sin 6 = 6. The
period for this motion is

2L

T=2n .
\ 3a
The time for the door to close is just
one-fourth of this period.
Therefore, the distance traveled
by the car before the door slams shut
is

d=-

CONTINUED FROM PAGE 29

fying glass. The clock struck on ev-
ery quarter hour, and every hour it
showed a performance of a minia-
ture theatre with music.

... bubble chambers, which are
used to detect elementary particles,
made it possible even in the 1950s to
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determine the mean lifetime of a
particle with an accuracy of about
10 s.

. . one of the wonderful predic-
tions of the theory of relativity, the
dilation of time in a gravitational
field, was not experimentally proved
until 1960. To measure this effect, a
fantastic accuracy of 3 - 10712 percent
was achieved, which placed this ex-
periment into the record book of
modern physics.

.. . the shortest interval of time
that manifests itself in experiments
is less than 3 - 10?7 s. This is the
time needed for light to travel an
electron’s diameter, known to be
less than 10°'® m.

... until recently the most precise
atomic clock was made in the United
States: it could measure 3 million

years with an accuracy of 1 s. How-
ever, Germany is ready to beat the
record and to measure 1 billion years
with the same 1-second accuracy. (@)

—A. Leonovich

Quantum on clocks, time, eternity:
A. 1. Chernoutsan, “Time Ma-
chines and the Theory of Relativity,”
September/October 1992, pp. 50-51.
I. Lalayants and A. Milovanova,
“Physics Frights Frauds,” January/
February 1993, pp. 11-16.

V. M. Babovic, “Confession of a
Clock Lover,” September/October
1996, pp. 44-48.

A. A. Mikhailov, “The Long Road
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pp. 42-47.

V.1 Kuznetsov, “A Clock Wound for
All Time,” May/June 1997, pp. 26-30.
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Alexandrian astronomy {oday

HE APPROACH OF THE LU-

nar eclipse of April 1996

seemed an opportune time to

develop an exercise to calculate
the size of, and distance to, the
Moon as part of the South African
Astronomical Observatory’s Science
Education Initiative.

This project led me to rediscover
some aspects of early Greek as-
tronomy as practiced by astronomers
who worked in the Great Library of
Alexandria from about 300 B.C. to
about A.D. 150. Aristarchus used a lu-
nar eclipse to estimate the size of the
Moon; Hipparchus later improved on
this estimation. The same geometry
was used again much later by
Copernicus in “De Revolutionibus.”

If the size of Earth is calculated
using Eratosthenes’ method (which
is explained later in the article) and
an eclipse of the Moon is observed
and photographed, then the distance
to the Moon and the size of the
Moon can be found using some
simple equipment, straightforward
geometry, basic trigonometry, and a
little ingenuity.

Lunar eclipse geometry

Triangle FGC (fig. 1) represents
Earth’s shadow, and line KMO rep-
resents the Moon’s orbit. Assuming
that the Sun is n times farther from
Earth than the Moon is, we have

SE=n-EM,

and substituting variables as indi-
cated below the figure yields

_SE D

"CEMCd ]

by Case Rijsdijk

Moon’s orbit

Earth-Sun distance ES = D
Earth-Moon distance EM = d
Sun’s radius AS = R

Figure 1

As can be seen during an eclipse of
the Sun, the Sun and Moon appear to
be the same size, because they sub-
tend the same angle (approximately)
in the sky, so ZAES = ZMEN. There-
fore, triangles ASE and MNE are simi-
lar. (They don’t look similar, because
the diagram is not drawn to scale.)
Then, using equation (1], we have

AS=n-NM.
Substituting variables yields
__AS _R a5
MN a |

Triangles ATF and FPK are also
similar, and we obtain

TF _AT

PK  FP’

SE _ AS-TS

EM FE-PE’
Therefore,

SE _ AS—FE )

EM FE-MK'

Earth’s radius EF = r
Moon’s radius MN = a
Radius of Earth’s shadow MK = s

Using the assigned symbols and sub-
stituting equations (1) and (2] into
equation (3) gives us

D_s8 _ R-1
d d r-s’
or
Lopa-r )
r—s

We can rearrange equation (4) to obtain
nla+s)=rn+1).

Further manipulation yields

a(l+£)=r(l+i). (5)
a n

So to find the distance to the Moon
d, we must find values for r, n, and a
in terms of d and the ratio s/a. This
ratio can be found during an eclipse of
the Moon. The radius of the Moon a
can be found in terms of d by measur-
ing the angular diameter of the Moon.
Using Eratosthenes’ method, Earth’s

radius r can be found and n, well, that
can be overcome!
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Eanths Shatdow
and the Moon compared

The Moon.is photographed dur-
ing an eclipse to get an image that
looks similar to figure 2. This occurs
when the Moon is entering the um-

Figure 2

bra. It is best to take a series of pho-
tographs with a large telephoto lens
or telescope so that there is a selec-
tion to choose from. The photograph
is enlarged so that accurate mea-
surements can be made from it. If
there isn’t a convenient eclipse to
photograph, it is also possible to
copy a picture from a magazine or
book of a previous eclipse.

The photograph is needed to find
the ratio of the radius of the Moon
to that of Earth’s shadow, or how
many times the diameter of Earth’s
shadow is larger than the diameter
of the Moon. There are several ways
to do this, but the best way is to use
the geometry of the circle and a scale
drawing. By making as large a pho-
tocopy of the photograph as pos-
sible, points C and D are marked in
such a way that they are as far apart
as possible along an imaginary ra-
dius extended.

Points A and B are the points of
intersection of the circles. The per-
pendicular bisector of the chord of a

Figure 3
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circle passes through the center of
that circle. Referring to figure 3, we
can see that N is the midpoint of AD
and N’ is the midpoint of DB. The
perpendiculars from these points
meet at P. Segment DP would then
be the radius of the Moon. Similarly,
OC is the radius of Earth’s shadow
at the distance of the Moon’s orbit,
and we obtain the ratio

OC s

R (6)

Angular size of the Moon

We can measure the angular size of
the Moon directly or indirectly. To
measure it directly, a slider is made to
move smoothly along a meterstick. A
small ball bearing (about 6 mm in di-

small ball
bearing
diameter W

small disk
with hole

metre rule

Figure 4

ameter) is mounted on the slider. A
disk with a small hole in it is attached
to one end as shown in figure 4. The
meterstick is rested on something
firm, and the Moon is sighted through
the small hole in the fixed disk. The
slider is now moved so that the ball
bearing exactly covers the Moon. The
angle subtended by the ball bearing is
now the same as that subtended by
the Moon:

w
tano = —.
L

Therefore,

o=tan"’ % (7)

Great care must be exercised when
taking these measurements, as this
result is crucial to obtaining an ac-
curate result.

An indirect measurement of the
angular size of the Moon is possible
with the help of a pinhole camera.
Since the Sun and the Moon appear
to be the same size (subtend the
same angle), as shown during a solar
eclipse, it is possible to construct a
good size pinhole camera and get a
reasonable image of the Sun that can
then be marked. The ratio of image
size to image distance will yield the
required angle o.

Emulating Eratosthenes

Eratosthenes’ experiment can eas-
ily be repeated using some shadow
sticks. First another school is found
on a N-S line at least 500 km away.
Once contact has been established,
students at each location measure the
length of the shadow of a vertical
stick at the same time. Care must be
taken to ensure that the stick is ver-
tical by using a simple plumb line
made from a “bulldog” clip, some
string, and a lead sinker (fig. 5). For ex-

_ bulldog clip
plumb
line
H
L
Figure 5

ample, two places W and T have been
chosen (fig. 6], and at each place the
length L of the shadow and height H
of the stick is measured at, say, 12:00

B —

sunlight

Figure 6




noon. The angle ¢ can then be found:

L
tan¢ = —,
¢ H

or

Similarly, the angle B at T can be
calculated. We can then use geom-
etry to show that

0P -o.

The distance WT = S is found from
an atlas, and then by simple propoz-
tions we obtain

S 8 s

C 360 onr’

where C is Earth’s circumference and
rits radius. This is rearranged to get

S-360
= " 8
f 210 8]

There are two main sources of er-
ror in this experiment. The first is
that, due to diffraction, there is
some difficulty in seeing a clear
shadow and in determining exactly
where the shadow ends; it usually
covers about 2 cm or so. The second
source of error is the stick not being
vertical. With some care this prob-
lem can be minimized. The first
source of error is best confronted by
making the stick as long as possible
and securing a T piece to its top. Ac-
curacy will also be improved if
many different groups of students do
this part of the experiment and av-
erage the results.

Eartit-o-Moon distance

To find the distance from Earth to
the Moon, we begin by using equa-
tion (5) and substituting the follow-
ing values that have been found:

e from equation (7], the angle o
subtended by the Moon. This was
the angle subtended by the diam-
eter; for the radius half this value is
required. That is,

o a
tan—=—.
2 d

Therefore,

data collected school 1 school 2
ratio of Earth shadow/Moon, (s/a) 2.67 2.67
angular diameter of Moon 26’ 3l
Earth’s radius 6,383 km 6,384 km
calculated values
distance to Moon from Earth 457,731 km 386,161 km
diameter of Moon 3,461 km 3,476 km

Table 1

a:dtan%. (9]

e the ratio s/a that was obtained from
the eclipse and using equation (6).

e the value for r obtained using
the shadow sticks and equation (8).

This leaves n. Aristarchus real-
ized that the Sun was farther away
from Earth than the Moon was, but
he did not know how many times
farther. He tried to work it out using
geometry, but the value he got, 20,
was too small. However, if it is as-
sumed that n is very large, then the
ratio 1/n is very small and can be
neglected. This gives a minimum
value for the radius of the Moon of

a(1+§) =1,
a

from which we obtain

r
a=s

1+2
a
The value for a can now be found,
since all the other values are known.
Once a has been found, d can be
calculated using equation (9), from
which we get

o9

o
tan —

Alexandrian values

Hipparchus used the following
values:
sja =8/3,
o=31,

so 0/2 = 15’5, and thus
a = dj220.

He used Eratosthenes’ value for r of
6,500 km. Substituting into equa-
tion (5) gives the following result:

i(1 + §) = (6500 km)(l + ij.
2200 3 n

Therefore,

d = (390,000 km)(l + i).
n

Then if, as assumed, n is large:
d = 390,000 km.

Using the fact that o = 31, the diam-
eter of the Moon is

(390,000 km) tan o = 3,516 km.

This figure doesn’t compare too
badly with presently accepted fig-
ures:

diameter: 3,476 km
mean distance: 384,404 km (range
of 356,400 to 466,700 km).

Stuent astronomers

Several schools in South Africa
took part in the project, and the
two results in table 1 are fairly
typical.

While not accurate, these results
do give figures that are not too far
from the true values. It is fairly ob-
vious that the critical result in this
experiment is the angular size of the
Moon, and the statistical mean from
a large number of readings appears to
be the best way to obtain an accu-
rate result. (o]

Case Rijsdijk is responsible for science
and astronomy education at the South
African Astronomical Observatory in
Observatory, South Africa. He can be
reached at case@saao.ac.za.
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Art by Sergey Ivanov

GREAT CALAMITY OC-

curred in Great Britain in

1665 and 1666: the plague ran

its deadly course through the
population. Citizens of large
towns left their homes to save
themselves in the small villages.
This is why the young philosopher
and mathematician Isaac Newton
left London and returned to his na-
tive town of Woolsthorpe. In this
period he was interested in the
problem of why the Moon revolves
about the Earth. What force keeps
it in orbit? For if there were no
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LOOKING BACK

The great law

by V. Kuznetsov

force, he reasoned, the Moon
would have left Earth long ago.
We can imagine the course of
Newton’s reasoning. He thought of
an apple as an astronomical body.
An apple always falls downward.
Why? It seems as if Earth attracts it.
If one body attracts another body,
then the first body should have an
attractive force proportional to its
mass. If this is true, the attractive
force generated by Earth and applied
to the Moon must be formidable.
Thus, both the apple and the Moon
are attracted by Earth. Perhaps this

is how Newton conceived of the law
of universal gravitation.

Let’s make a calculation analo-
gous to that made by Newton. The
Moon'’s orbit is almost circular. Its
period of revolution T,, around
Earth is 27.3 days. The distance
between Earth and the Moon is
about 60 times greater than
Earth’s radius R;. If an object
moves along a circular trajectory
with a speed v, it has a centripetal
acceleration v?/R. The radius of
the lunar orbit is Ry, = 384,400 km
and the Moon’s orbital velocity



is v = 2nR, /Ty, = 3680 km/h, so
the centripetal acceleration is
a=v?*/R,, =0.0027 m/s>. We know
another value of centripetal accel-
eration: it is the acceleration of free
fall at Barth’s surface g = 9.81 m/s?,
which is larger by far than the
Moon’s centripetal acceleration.

Newton was not the only person
who thought about the attractive
ability of Earth. His colleague and
opponent Robert Hooke (1635-1703)
tried to measure how the force of
gravity changes with altitude. To
this end he used a spring scale (one
of his inventions) and carried it to
the top of a hill. However, on the
hilltop the load stretched the spring
the same amount as at sea level. Still
Newton felt that the Earth-gener-
ated attraction must decrease with
distance.

attraction decreases with di
the centers of two balls with homo-

the value of this force is directls

portional to the product of ti
masses m, and m,, and in
proportional to the square of the dis-
tance r:

m;m, .
7 1
1

F=G

This law contains the gravita-
tional constant G that must be de-
termined by experiment.

Now we return to the attractive
force acting on the Moon. The Moon
is situated at a distance from Earth
that is 60 times Earth’s radius.
Therefore, the force of attraction and
the acceleration due to Farth-gener-
ated gravity at the distance of the
Moon’s orbit are 602 times smaller
than at Earth’s surface:

b
3600’

a
o
S

or

a =0.0027 m/s>.

This value agrees with the previ-
ously calculated lunar centripetal
acceleration.

In this way Newton could test the
law of universal gravitation. How-
ever, his calculation did not demon-
strate an exact agreement between
the astronomical and theoretical
values for the lunar centripetal ac-
celeration: living in Woolsthorpe,
Newton did not know the precise
value of Earth’s radius. This value
was not measured with reasonable
accuracy until years later.

Notwithstanding the rough
agreement of both values, Newton
was not satisfied. There was the at-
traction of the apple to Earth to be
understood. Can one consider that
Earth attracts the apple with the
same force as if all of Earth’s matter
were concentrated in one point, at
the center of the planet? In reality,
the nearer parts of Earth attract the
apple much more strongly than the
more distant parts.

What to do? The creative genius
of Newton couldn’t rest, so he
switched his focus to optics. He
ground lenses, constructed an excel-
lent telescope, and devotedly stud-
ied optical spectra.

Still, his thoughts kept gravitat-
ing back to the problem of the apple.
He spent years inventing integral
calculus and with this powerful tool
proved a wonderful theorem: a
spherical shell with homogeneously
distributed mass attracts a body in
the same way as if the entire mass

Figure 1

of the shell were concentrated at its
center (figure 1a). Earth can be con-
sidered to be a set of concentric
spherical shells (figure 1b). The force
generated by each shell doesn’t de-
pend on the other shells, and the
gravitational force is not diminished
(screened) by intervening shells. If
we accept these two conditions (the
second condition is the most won-
derful feature of gravitation), then it
is clear that Earth attracts an apple
just as Newton supposed.

So, there is a common cause of an
apple’s fall and the attraction of the
orbiting Moon by Earth: the force of
gravity generated by our planet.
What forces control the motions of
the planets themselves? Since they
orbit the Sun, the gravitational force
must be generated by the Sun. Tak-
ing a small step further, we can gen-
eralize: any two bodies attract each
other with the force of gravity de-
scribed by equation (1.

Johannes Kepler discovered the
laws of planetary motion at the be-
ginning of the seventeenth century.
Kepler’s first law says that the plan-
ets move along ellipses, the Sun be-
ing at one of the foci. According to
his second law, the planets move
faster near the Sun and slower at
larger distances from it. Kepler
found a mathematical law to de-
scribe this feature of planetary mo-
tion: the line connecting the Sun
and a planet sweeps equal areas per
unit time. Kepler’s third law com-
pares the orbits of different planets:
the squares of the periods of revolu-
tion of the planets are proportional
to the cubes of their mean distances
from the Sun.

Kepler found these laws on the
basis of many years of astronomical
records. By contrast, Newton
showed that these laws could be
deduced from his laws of motion
and universal gravitation.

Once upon a time, three celebri-
ties of the Royal Society met in a
London tavern. They were the fa-
mous architect Sir Christopher
Wren (1632-1723) and the natural-
ists Robert Hooke and Edmond
Halley (1656-1742). Halley said that
he managed to obtain Kepler’s third
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law by combining the law of univer-
sal gravitation with Newton's laws
of motion—but only in the case of
circular orbits. Indeed, the circular
motion is caused by the centripetal
force Mv?/R that pulls a planet to-
ward the center of the circle. This
force is generated by the Sun, so

o MsM _ Mv? .
R? R

For circular motion, v = 2rR/T. Plug-
ging this into the formula, we im-
mediately obtain Kepler’s third law:

oMs _ 4n*R?
R T2
or
3
E"—? = const.

When Halley finished his story,
Sir Christopher raised his glass and
announced a prize to anyone who
could prove that the law of univer-
sal gravitation also agrees with the
elliptical orbits of the planets.

After a while, Halley asked
Newton about this problem. In
November 1684 Halley received
Newton’s manuscript with the
solution of the problem. Several
years were necessary to edit and
publish the manuscript. At last, in
September 1687, Newton's trea-
tise was published. It was the fa-
mous “Philosophiae Naturalis
Principia Mathematica.”

The laws applied to the motion of
the planets yielded some important
predictions. For example, Sir Isaac
“weighed” the Sun by expressing its

mass in units of Earth’s mass. In-
deed,

2 2p2
MMe _pp Vo 2K
RE RE RETE
_4n’R}
S GTEZ ’
9 2p2
GMEZZVIM:MM-V_: M4n RIZ\/[’
Ry Ry RyTy
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_ 4n* Ry
Toary

’

where R; and R, are the orbital ra-
dii of Earth and the Moon, respec-
tively. We get an interesting result.
The Moon is the satellite of Earth,
and Earth is a satellite of the Sun. In
every equation the mass of a satel-
lite is canceled out. In the first equa-
tion where the law of universal
gravitation is applied to the Sun and
Earth, it is the mass of Earth that is
canceled out, while in the second
equation the canceled term is the
mass of the Moon. Therefore, the
masses of Earth and the Sun are ex-
pressed in terms of values that are
readily measured by astronomers:
the orbital radii and the periods of
revolutions. Only one value re-
mained unknown—the gravita-
tional constant G. However, if we
take the mass ratio of the Sun and
Earth, the constant G is also can-
celed out, so we get the formula

My RTy (R (T_M
Mg RyTy \Ru)\Te

To calculate the Sun’s mass in
common units, we need to know the
mass of Earth. Newton knew only
its volume, because the mean den-
sity of Earth’s matter wasn’t known
in his time. Only one thing was
firmly established: the continents
were denser than the oceans. But by
what factor was the mean density of
Earth larger than that of the oceans?
Newton concluded that the average
density of Earth was somewhere
between 5 and 6 g/cm3. Eighty years
later Sir Henry Cavendish (1731-
1810) “weighed” Earth and obtained
the constant G using a torsion bal-
ance. It turned out that Earth’s den-
sity is 5.5 g/em?.

How can one determine the mass
of the Moon? Unfortunately, it can-
cels from all the equations. Still Sir
Isaac found a way to estimate this
value as well.

He turned his mind to the phe-
nomenon that had puzzled human-
kind for thousands of years. What

Figure 2 i

causes the tides in the oceans? The
Romans attributed the tides to the
position of the Moon in the sky. “It
was a full Moon and a great tide,”
wrote Julius Caesar himself. Still,
nobody guessed what a close con-
nection the Moon had with the
tides. Newton was the first to find
the correct answer.

Let’s consider the motion of three
plates of the same mass that lie freely
one upon another (figure 2). At some
time, three forces start to act on these
plates: F, > F, > F,. All the plates will
be set in motion. However, plate 3
will lag behind the central plate 2,
and plate 1 will move ahead of it. If
the outer plates are connected to the
central plate with some springs, the
stretching of the springs will coun-
terbalance the net forces F, - F, and
F,-F,.

Earth and its hydrosphere can be
imagined as three bodies falling to-
ward the Moon: the hard core and
two layers of water: one facing the
Moon and the other located on the
opposite side of Earth. The Moon
attracts these imaginary “bodies”
differently. Let’s first consider the
effect of lunar attraction upon a unit
of terrestrial mass (figure 3). At an

r=60R

Figure 3



arbitrary point A this force is
My
: : 2
R*cos® o +(r - Rsino)

= GZ\—/I&(1+ ZBsinocJ.

r? r

At point K, sin o = 1, and the attrac-
tion force is

F = Gﬁy[lﬁ'lgj.
T I,

Similarly, at point L, sin o. = -1, so

=cMa(12K)
T I

Thus, the various parts of Earth are
attracted to the Moon by different
forces.

The Earth’s solid mass and its wa-
tery covering are connected by
“springs” of gravity. In the center of
Earth, a unit mass is affected by the
force F, = GM, /7 of lunar gravitation.
This is the very force that determines
the motion of Earth’s core. At the
point L the ocean water “lags behind”
in the process of Earth “falling” to-
ward the Moon, because here a unit
mass is affected by a force smaller than
F:F, -F =-2GMR/r. By contrast,
at point K this force is larger than F,
so in the vicinity of this point, wa-
ter tries to run faster than Earth’s
core. However, the “springs” of ter-
restrial gravitation don’t allow it to
do so. The lunar gravitation slightly
“stretches” these springs with the
tidal force 2GM,;R/r3. Therefore,
tidal “humps” appear on opposite
sides of Earth. They try to maintain
the same position relative to the
Moon. If the Moon didn’t move rela-
tive to Earth, and Earth did not ro-
tate about its axis, the water shell
would maintain its shape elongated
toward the Moon. However, due to
Earth’s rotation, the tidal wave
moves relative to the continents at
1800 km/h and lags relative to the
Moon’s motion.

While solar attraction is much
stronger than lunar attraction, it is
more homogeneous due to the large
distance to the Sun relative to

Earth’s size. Thus, the solar tidal
force Fg = 2GMR/ 1 is smaller than
the lunar tidal force. Indeed, the
Sun’s mass is 27 million times
greater than the Moon'’s, but the dis-
tance between the Sun and Earth is
389 times the distance between
Earth and the Moon. Therefore,

27-10% My,

R =2G
’ (3897)°

R=045F,.

Thus, the solar tides are weaker
than lunar tides. Twice a month the
Sun, Earth, and Moon are situated
on the same line. In this case the
solar and lunar tidal forces interfere
constructively and generate a large
tide. When the Earth-Sun line is per-
pendicular to the Earth-Moon direc-
tion, the solar and lunar tidal forces
act destructively and produce a
small tide. Near small isolated is-
lands lost in an ocean where the
tides are not distorted by the conti-
nental shores, large tides raise the
water level 1.30 m, and small tides
lift it only 0.65 m. The correspond-
ing calculations make it possible to
evaluate the ratio of solar and lunar
masses using the parameters of the
tides.

Thus, the tides helped Newton
calculate the mass of the Moon. His
calculations were not particularly
precise. The problem is compli-
cated by the friction of huge water
masses with the oceanic bed, as
well as by other processes that can-
not easily be analyzed. The precise
value of the lunar mass was found
only with the help of artificial lunar
satellites. The trajectories and peri-
ods of revolution of the lunar orbit-
ers yielded data to determine a
mass of the Moon that was only
roughly estimated by Sir Isaac.
Moreover, the lunar orbiters
showed that the Moon’s mass is
distributed unevenly throughout its
volume, so the lunar satellites do
not strictly follow Kepler’s laws.

Before Newton’s time astrono-
mers thought comets paid only a
single visit to Earth. However, New-
ton showed that comets could move
along closed, elliptical orbits. The
specific feature of these orbits is a

pronounced elongation. This is why
the comets fly away to great dis-
tances from the Sun. Accordingly,
they have a long period of revolu-
tion. Edmond Halley calculated the
moment of return of a famous
comet, whose appearance could be
traced in the ancient chronicles. The
prediction was a striking success:
the comet returned periodically at
the calculated times. It can be seen
every 76 years. Only one astrono-
mer, Johann Gottfried Galle (1812~
1910), who lived almost 100 years,
saw this comet two times. The re-
currence of comets is a strong argu-
ment in favor of the law of univer-
sal gravitation. O]
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IN THE LAB

An unsinkale disk

by A. Luzin

OR THE EXPERIMENTS WE NEED A THIN
disk made of a material denser than water. We can
take a sheet of soft steel with a thickness of 0.2-0.3
mm, an aluminum sheet of 0.2-1.9 mm, or a sheet
of Plexiglas of 0.3-6.0 mm. The most suitable disk will
have a diameter of 90-150 mm. In the center of the disk
a depression should be made with a diameter of 12-15
mm and a depth of 1.5-3.0 mm.
If we place such a disk on the surface of water, it floats
because of the surface tension of the liquid. Splash some
water on it, and the disk will surely sink, because it is

plied to the upper and lower sides of the disk can be
quite enough to keep it afloat, even with a rather strong
water jet. This is an interesting manifestation of the re-
lationships given by Bernoulli’s law, which says that a
thin, fast jet of liquid flowing radially on a disk pushes
away a high water hump in which the velocity of the
flow is small.

In hydraulics, the observed water “hump” has a spe-
cial name, the hydraulic jump. It is a sharp, steplike rise
of the water level in an open waterway where the char-
acter of motion changes from rapid and turbulent into

more dense than water.
Now hold the disk in your ‘
hand and place it under a |
jet of water. Note that wa- 1
ter pushes down on the
disk rather strongly (this
is the hydrodynamic pres-
sure of the water jet).
There is nothing super-
natural in the results of
our experiments—physics
can explain them.

Place the disk on the
water’s surface and guide
a strong vertical jet into
the depression at its cen-
ter. You will see a para-
doxical phenomenon—
the jet pushes down on the disk but cannot sink it! A
spectacular experiment of this kind can be made with a
colored Plexiglas disk, through which the small objects
on the bottom of a vessel can be seen clearly. This ex-
periment can be easily demonstrated provided the wa-
ter jet is sufficiently even, smooth, and free of visible
vortices.

Why doesn’t the disk sink? Watch it for a few min-
utes and note that there is a circular hump of water on
the disk’s surface that is pushed by the diverging thin
layer of running water far from the center. As a result, a
region of decreased pressure appears between the disk’s
center and the hump, and the difference of the forces ap-
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 tranquil, laminar, and
steady flow. The hydrau-
lic jump can be clearly
seen on the downstream
wall of a dam, but in that
case its form is not circu-
lar but linear. A circular
hydraulic jump can be
seen even without a disk
by letting the vertical
water jet fall onto the
bottom of a sink, even if
the sink bottom is not
precisely flat.

The mathematical
description of a hydrau-
lic jump is based on
Bernoulli’s law, which in
the case of a fluid flowing in a horizontal channel with
vertical walls and an open water surface can be written
as

i, Q.
hy+L="2+h,,
g 2z
or
E1=E2,

where h is the depth of the flow, v is its velocity at some
cross-section of the channel, and E = h + v?/2g is the
value known in hydraulics as the specific cross-sec-



tional energy. If the liquid is non-ideal but has a rather
small internal friction, then the above equation is re-
placed by the inequality E; > E,. In the simplest case of
a rectilinear hydraulic jump, when the channel width
b is constant, the inequality can be rewritten as
E(h,) > E(h,), where

Q?
b =b+—
( ) +2b2ghl

and Q = vbh is the flow rate, which in the case of
steady flow is the same at any cross-section of the
channel.

The specific cross-sectional energy E can be consid-
ered to depend only on h, and this dependence is
nonmonotonic. At some critical depth of flow h_, the
specific cross-sectional energy is minimal, while as
h — =it grows due to the first term, and as h — 0 it also
grows due to the second term. The critical flow depth
can be obtained from the equation E(h_) = 0, which says
that the first derivative of E with respect to h must be
zero:

Q?

ho= |2
b’

We can see that two types of steady flow are possible,
corresponding to the cases when (a) the velocity of the
flow is rather high, but its depth is relatively small
(h < h ), the latter growing slowly along the channel,
while the specific cross-sectional energy slowly de-
creases, and (b) the velocity of the flow is rather small,
but the depth is sufficiently large (h > i) and slowly de-
creases along the channel together with the specific
cross-sectional energy. Experience shows that a “com-
posite” steady flow is possible that consists of the flows
of first and second types and a rather narrow region of
hydraulic jump between them.

It is not a simple problem of how such a complex
flow is formed and how the hydraulic jump in it is
generated. In this article we use only approximate
and qualitative conceptions. Clearly a hydraulic
jump forms in a channel with a flat horizontal bot-
tom, provided the kinetic energy of the fluid at some
cross-section is sufficiently high (h < h ). The energy
gradually decreases along the flow at larger distances
from this place due to viscosity, and the flow depth
gradually increases and reaches the critical value
h = h_. The flow depth cannot grow any more, be-
cause this would mean an increase in E, which con-
tradicts the inequality. Fluid is decelerated in the
place where h=h_, and it accumulates there until the
tlow becomes stable. This process leads to a drastic
increase in the flow depth.

A more detailed theoretical consideration of the de-
scribed experiments can be made using the so-called
“wave theory” of the hydraulic jump, which calculates

the height of the step, the abrupt change of pressure,
and the generated “lifting” force that supports the disk
on the surface of water. You can read about it in prob-
lem 4.58 in the wonderful book by Jearl Walker called
The Flying Circus of Physics (New York: John Wiley &
Sons, 1977). (@

Quantum on fluid mechanics:

L. Guryashkin and A. Stasenko, “The history of a
fall,” March/April 1995, pp. 10-15.

S. Kuzmin, “Spinning in a jet stream,” September/
October 1994, pp. 49-52.

L. Leonovich, “Fluids and gases on the move,” Janu-
ary/February 1996, pp. 28-29.

A. Mitrofanov, “Against the current,” May/June
1996, pp. 22-29.

J. Raskin, “Foiled by the Coanda effect,” January/
February 1994, pp. 5-11.

H. Schreiber, “A viscous river runs through it,” No-
vember/December 1995, pp. 43-46.

A. Stasenko, “Whirlwinds over the runway,” July/Au-
gust 1997, pp. 36-39.

I. Vorobyov, “Canopies and bottom-flowing
streams,” July/August 1995, pp. 45-47.

V. E. Belonuchkin, “Turning the tides,” May/June
1998, pp. 10-14.
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BLACKBOARD I

Physical optics and two camels

HAT IS THE FARTHEST
distance that you could be
from a camel and be able to
distinguish with unaided
eyes whether it has one or two
humps? What could be difficult in
answering a question of such vital
importance to used camel salesper-
sons? Well, it turns out that the laws
of physical optics impose a principal
limitation on the very possibility of
accomplishing this task.

Let’s start from the very begin-
ning. A broad parallel beam of light
with intensity I,—the energy flow-
ing through unit area per unit time,
J/(s - m?}—shines from the left on a
nontransparent screen that has an
infinitely long slit of width d (fig. 1).

Geometrical optics says that the
light behind the screen is also a par-
allel beam of width d. This width
doesn’t vary with distance, so if we
place a white screen perpendicular
to the beam at any distance from the
slit, we will see a light band of the
same width d and illumination I
(right side of fig. 1).

However, light has a spatial char-
acter, parameterized by its wave-
length A. At this point an experi-
enced Quantum reader may
conclude that in the case under con-
sideration, the dimensionless ratio
L/d must play an important role.
And our wise reader would be abso-
lutely correct.

Let’s divide the slit into two lu-
minous bands of width d/2. Then
we concentrate the energy of these
bands into two infinite luminous
threads separated by a distance d/2
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by A. Stasenko

(figure 2, left). Now the problem is
reduced to two-beam interference,
and it becomes similar to the fa-
mous two-slit experiment of Tho-
mas Young. Now let’s determine
what pattern will appear on a white
screen placed at a distance x to the
right of the slit.

First, we calculate the path differ-
ence A = r, — r; from threads A and
B to the point with coordinate y on
the screen. Since the slit is narrow
(AB << x), the two triangles in figure
2 yield

2

=1 +[%j +2r%sin6.

By subtracting the first equation
from the second, we get

5 _
1? — 1% = rdsin®.

Iy shadow
I _]0
— '
— |d d 1light
—_— v :
shadow
Figure 1

The left side can be rewritten as
(r, —1,)r, + r;), where the first factor
is the path difference and the second
factor (r, + r;) = 2r. Now we have

A= ésine.
2

The same result can be obtained
immediately by replacing the
“curved” triangle ABC by the rect-
angular triangle ABC’.

Recall the basic concept of inter-
ference: if the path difference from
two sources to the same point is
equal to an integer number of wave-
lengths A, these waves augment
each other (constructive interfer-
ence), but if the path difference is an
odd number of half-wavelengths, the
waves cancel each other (destructive
interference). Thus, instead of a
steplike luminosity function shown
on the screen in figure 1 by a lover
of geometrical optics, a far more
complicated interference pattern ap-

A=3W2

Figure 2

Art by Leonid Tishkov
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pears that consists of alternating
bright and dark bands (figure 2). The
brightest illumination will be in the
middle of the screen on the line lo-
cated just opposite the slit (y = 0).
The brightness of other bands will
decrease with distance from the
middle line, because they are situ-

ated farther from the luminous slit. .

The most interesting thing for
our problem concerns the locations
of the two dark bands that border the
central bright band. It follows from
our reasoning that at these places

—Sinel = i&,
2 2

or

+
sin@, =—‘$—=i%.

\W12 +x

This formula is a triumph for our ex-
perienced reader: indeed, the inter-
ference pattern generated by a slit
depends on that very important pa-
rameter, the dimensionless ratio of
the light’s wavelength to the width
of the slit that the light passes
through!

Now let’s return to our camels. In
this case the pupil of an eye plays
the role of the “slit,” although in
reality it is a round orifice, not an
infinite slit. The retina of the eye
plays the role of the screen on which
the interference pattern was ob-
served (figure 2). It turns out that a
similar interference pattern appears
on the retina! Of course, in this case
it is not composed of parallel bands,
but of concentric bright and dark
rings surrounding the central bright
spot. The radius of the first dark ring
corresponds to an angle (a little bit
larger than in the previous case)
given by

sing, =122,
d
where d is the diameter of the pupil.
Each “point” of the remote object
(a camel), which sends a nearly par-
allel beam of reflected solar light to
the eye, is projected onto the retina
as a bright spot surrounded by a set
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eye

Figure 3

of rings. (Doesn’t it look like the
wave pattern on a pond’s surface
produced by a pebble?) We must dis-
tinguish (physicists say “resolve”)
two points of the object.

The interference pattern pro-
duced by these points is qualita-
tively shown in figure 3. This figure
explains the condition of resolution:
if the maximum illumination from
the second point (B) coincides with
the minimum illumination pro-
duced by the first point (A) or is far-
ther from it, these points may be
considered as separate (that is, they
are resolved). Otherwise, these
points blur into a single spot.

Note that the clearest image is
produced on the retina when the
pupil’s diameter d = 3 mm. At this
diameter the angular resolving
power of the eye as determined by
the laws of physical optics is on the
order of

57
122:5107m _ .,
3-10° m
Here we have used the characteristic
wavelength A =5 - 107 m = 500 nm.
When people want to clearly scruti-
nize an object, they turn their eyes
in such a way that the image forms
on the so-called macula lutea (yel-
low spot) of the retina, which con-
tains about 15,000 cones (sensitive
cells) that occupy an area with an

angular size of about 1.5°. This is the
area of greatest concentration of
cones in the eye. In the macula
Tutea every cone subtends an angle
of about

~ 15°3600”/°

———=50".
~15000

1

It looks as if Mother Nature
knows interference theory perfectly
well, doesn't it?

In this respect it is interesting to
read from Jonathan Swift’s Gulliver’s
Travels:

Nature hath adapted the eyes of
the Lilliputians to all objects
proper for their view: they see
with great exactness, but at no
great distance. And to show the
sharpness of their sight towards
objects that are near, I have been
much pleased with observing a
cook pulling a lark, which was
not so large as a common fly; and
a young girl threading an invis-
ible needle with invisible silk.

At the same time, Gulliver ascer-
tained that he was a dozen times
larger than a Lilliputian, and that all
objects in Lilliput were smaller than
ours by the same factor. Thus, a
Lilliputian had eyes with pupils 1/12
the diameter of ours. Therefore, the
interference angle for Lilliputians is
12 times that of ours, which means
that the image of a point light source
on his retina is also bigger than ours
by the same factor. Why should Na-
ture produce retina cells smaller than
that in Gulliver? It would be a waste
of cells! Will the Lilliputians’ vision
really be better than ours even at
short distances?

So, to resolve two points, the (ap-
proximate) requirement

a A
$=6, or 721.225

must be met, from which we get

< 4 ;
1221

(*)

Now we are ready to make a nu-
merical estimation. Let the distance



between the camel’s humps be
a = 0.5 m, the pupil’s diameter be d
= 1 mm (remember that there is
bright sunlight in the desert!), and
the mean wavelength of the sunlight
be A = 0.5 um. This yields

05-107°

£———  m=800 m.
192 -05.10°%

Are the humps of a camel the
most interesting objects of observa-
tion? Perhaps not. It is no coinci-
dence that telescope makers try to
make a larger pupil (objective): in-
deed, the smallest angular distance
(0) between two stars must be no
less than 6,. It is also clear why an
eagle must have a large pupil to dis-
cern a mouse on the ground from
high in the sky.

What would happen if we put to-
gether a telescope and a microscope?
At first glance, each component of
this system magnifies the image by

a thousand times—so the entire
“supertelescope” will magnify it by
a million times! Would we see the
pebbles on the Martian soil?

Alas, the image will be helplessly
spoiled by interference even at the
objective of the telescope, so the
details of objects smaller than that
specified by Rayleigh’s condition (*)
will be lost forever. In addition,
there is interference at the objective
of a microscope, which prevents the
resolution of two points spaced at a
distance less than the wavelength of
the illuminating light (this is why
microbes cannot be observed in op-
tical microscopes).

So what have we learned? Were
optical devices invented simply to
observe interference patterns on
their “pupils”? Certainly not. Those
who invented the first microscopes
and telescopes knew nothing of light
interference, because the advent of
the wave theory of light was far over

the horizon. It seemed that the plots
of the light rays drawn according to
the laws of geometrical optics
opened an unlimited vista to in-
creased magnification by proper
choices of objectives and eyepieces,
as well as by their separations. How-
ever, as usually occurs in physics,
the new theory revealed the limits
of an older, simplified theory. The
camels have served to remind us of
this old truth. Q)

Quantum on light interference:

P. V. Bliokh, “Make yourself use-
ful, Diana,” March/April 1992, pp.
34-39.

A. Eisenkraft and L. D.
Kirkpatrick, “Rising Star,” March/
April 1995, pp. 37-38.

A. Eisenkraft and L. D.
Kirkpatrick, “Color Creation,” No-
vember/December 1997, pp. 32-33.

V. A. Fabrikant, “Vavilov’s Para-
dox,” July/August 1992, pp. 49-50.
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by David R. Martin

X G038

science

3 6 7 8
=2
(— 19 20
u 23 24

27 28
32 33 34

36 37
41 42 |43 44
47 48
51 52
57 58 59 60

61 62 63
64 |65 |66 67 68 69 170 |71
72 73 74 75
76 77 78 79
80 81 82 |83

86 87

90 91
97 98
100 102 103
105 107
109 111
A[:I‘IISS 23 Space-time math- 34 Filleted 44 Lane-___ equation 56 Cardinal number
1 Steals ematician 35 Sandstone (for stellar structure) 57 Long wavelength
5 Muscle pain 26 Ascent 36 Physics assoc. 45 Indian’s home radiation

10 Head skin

15 Mincingly cute

19 Oriental nurse

20 Perch

21 Prank

22 Jewish philosopher
__ Haam

48

2.7 Geologic time
period

28 Superman’s girl

29 Scottish island

30 Expert

32 Superconductivity
theorist

SEPTEMBER/OCTOBER 1988

37 A race of gods
(Scand. myth.)

38 Compounds with
element 7

41 __ metal (used in
flints)

46 Moist
47 Width times length
48 “To ___." |perfect)

49 Imitates

50 Protected

51 Type of gate: abbr.
52 Black hole theorist

59 Fossil resin

60 Stun with noise

61 Cavity: comb. form

62 French city

63 Gloom

64 National park in
Maine




67 Sick person

68 One dyne/cm?

72 Linearly indepen-
dent vector set

73 Heisenberg’s ___
principle

75 Silver iodide: abbr.

76 ___ Struve (1897-
1963)

77 Cleveland’s lake

78 Simple math
operator

79 64,459 (in base 16)

80 Mal de ___ (seasick-
ness)

81 Former

82 Glances at

84 Diving birds

85 ___ motion (of tiny
particles)

87 1972 Chem.
Nobelist Stanford

88 Element 5: comb.
form

89 Horse sound

90 Puerto ____ (Chilean
city)

91 Universe origin

95 “Athlete of the
Half-Century”

97 ___ Lama

98 City near Madras

99 Twelve grams of
carbon-12

100 Church song

101 X-ray star discov-
erer

105 To shelter

106 Happen

107 Weapon supplier

108 44,525 (in base 16)

109 1/760 atmosphere

110 Hammer’s partners

111 Like a shade tree

112 Apportion

Down

1 Harlot of Jericho
2 Psi follower
3 More naked
4 Sinusoidal motion:
abbr.
5 Slender, open boats
6 Kidney secretion
7 Appendages
8 1002
9 Carbohydrate with
5 carbon atoms
10 Point maker
11 Cried like a crow
12 Orbital point
13 Albanian money
14 Humans and
monkeys
15 Mathematician
Alfred ___
16 Type of star
17 No difficulty
18 German river
24 null
25 Blood peptide
31 Land measurement
33 56,010 (in base 16)
34 Make wet
35 Window cleaners
need
37 Fix
38 8.686 decibels
39 978,926 (in base 16)
40 Dutch painter
(1626-1679)
41 Long skirt
42 Element in steel
43 Vassal
44 Former hypothetical
medium of space
45 Stories
48 Major blood vessel
50 Military cap
52 Singer ___ Joplin
53 Ethiopian emperor
___ Selassie (1892—
1975)

54 Type of wheat

55 The late Siskel’s
partner

56 Football’s Bradshaw

58 Type of galaxy

60 Conduits

62 Kinder

63 78A’s partner

64 Nuclear weapon

65 Provide food

66 Star gazer

67 Negative particle

68 Kinematic
relativity’s Edward
__(1896-1950)

69 German chemist
Lambert __ (1818-
1899)

70 Silver cyanide

71 BBQ favorite

73 Bathsheba’s
husband

74 Separated

77 Fleabane and
horseweed oil

79 Nongrass herb

81 Type of transistor

82 Submarine finder

83 Having high water
coincidence

84 15D’s forte

86 Black hole theorist
_ Israel

87 Teeth

88 Like some stars

90 Spot: comb. form

91 Momentary

92 Form of ultrasonic
tomography

93 Musical group of
nine

94 Soar

95 “All’s well ___ends
well.”

96 Wood: comb. form

97 701

98 Latin consonant
sound

102 Resort in SW Peru

103 Mine output

104 Engine shaft

SOLUTION IN THE
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GIFTS for the taking

Applications for the 2000 Growth
Initiatives For Teachers (GIFT) Pro-
gram, a $12,000 grant for secondary
science and math teachers, are now
available. Through the GIFT Grant
Program, the GTE Foundation pro-
motes excellence in math and sci-
ence education. The GIFT program
is open to public and private school
math and science teachers, grades 7
to 12, in 35 eligible states and the
District of Columbia.

Each winning team shares a
$12,000 GIFT grant—$7,000 to
implement the school enrichment
project and $2,500 to each of the
participating teachers to help them
pursue professional development
activities.

To apply for a GIFT grant, team
members jointly submit a proposal
and budget for a school enrichment
project that must be based in the
team’s classrooms or school and di-
rectly involve both math and sci-
ence students for the 2000-2001
school year. Also, as part of the ap-
plication, team members submit
proposals and budgets for individual
professional development activities
that directly support implementa-
tion of the school enrichment
project and address their own needs
for professional growth, especially
regarding technology in education.

Gift Fellows participate in a year-
long program designed to inspire
their teaching efforts through oppor-
tunities for professional growth. The
year begins with the GIFT seminar,
held in June, for which the GIFT
Fellows travel to Boston and Wash-
ington, D.C. During the week-long
seminar, teachers attend presenta-
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tions by noted scientists and educa-
tors, tour GTE labs, and interact
with GTE employees and govern-
ment officials. All expenses are un-
derwritten by GTE.

To be eligible for the GIFT grant,
applicants must:

¢ hold a bachelor’s degree and
state certification (where appli-
cable),

¢ have completed at least one year
of full-time paid teaching in the
same school district by July 1, 1999,

e teach grades 7 to 12 (grade 6
only if in a middle or junior high
school) at a regionally or state-ac-
credited non-profit school (public or
private),

e carry a full teaching load, with
more than half of the teaching
schedule in math and/or science,
both in the current year and the year
in which the grant will be applied,

e teach in Alabama, Arizona, Ar-
kansas, California, Colorado, Con-
necticut, District of Columbia,
Florida, Georgia, Hawaii, Idaho, I1li-
nois, Indiana, Iowa, Kentucky,
Maine, Maryland, Massachusetts,
Michigan, Minnesota, Missouri,
Nebraska, New Hampshire, New
Mexico, North Carolina, Ohio,
Oklahoma, Pennsylvania, South
Carolina, Tennessee, Texas, Vir-
ginia, Washington, West Virginia, or
Wisconsin.

Teachers who would like to re-
ceive an application by mail are en-
couraged to call (800) 315-5010, or
send email to gift@gte.com. Applica-
tions are also available online at
www.gte.com/aboutegte/commu-
nity/gte_foundation/opportunities/
gift.html. Deadline for submissions
is January 4, 2000.

What a difference a word makes

Due to a clerical error on our
part, a crucial word was left out of
the initial posting of this month’s
CyberTeaser. The problem is cor-
rectly worded in this issue
(Brainteaser B271); on the web,
the word “different” made a be-
lated appearance. Luckily, some
of our ambitious readers assumed
the more difficult wording and we
received answers that satisfied
both conditions (denoted with an
asterisk below]. This month’s
winners are

Bruno Konder (Rio de Janeiro, Bra-
zil)*

Jorge G. Moya (Culiacan, Mexico)*
Jerold Lewandowski (Troy, New
York)*

Adam Cabrera (Billings, Montana)*
Theo Koupelis (Wausau, Wiscon-
sin)*

May Lim (Quezon City, Philippines)
Patrick Maxfield (Folsom, Califor-
nia)*

Vladimir Novakovski (Springfield,
Virginia)

Clarissa Lee (Petaling Jaya, Selangor,
Malaysia)

Manny Dekermenjiian (Sunnyvale,
California)

Congratulations to our winners,
who will receive a Quantum button
and a copy of this issue.

Everyone who submitted a cor-
rect answer before it was posted at
our Web site was eligible to win a
copy of our brainteaser collection
Quantum Quandaries. Visit http://
www.nsta.org/quantum to find out
who won the book, and while you're
there, try your hand at the new
CyberTeaser! (o)



Math
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Add all three equations. Since
[x] + {x} = x, we obtain

2x+y+2z) =94,

from which we get x + y + z = 4.7.
Now we add the first two equations
to obtain x + y + z + [v] + {x} = 7.4.
Therefore, [y] + {x} = 7.4 - 4.7 =2.7.
Thus, [y] = 2 and {x} = 0.7. Now, add-
ing the first equation to the third one
and the second equation to the third
one, we find that [x] = 1, {z} = 0.2,
[z] =0, and {y} = 0.8. Answer: x = 1.7,
y=2.8and z=0.2.

M272

Denote the left-hand side of the
given equation by y. Then, y - x
— =G, Therefore, y - x > 0.
Square the last equation and repre-
sent x in terms of y:

2
g7 t2
2y
(we can easily check that y #0). The
inequality y — x > 0 implies
2 2
+9 -9
P ¥y = ¥ =2

>0 )
2y 2y I

(a result that will be useful later). We
find that

7+ 3
+S=(5+ '
2y
and
_3)
P AL
2y

We then substitute these expres-
sions in the original equation to ob-
tain
2
_4y(y+3)

(v-3)'

ANSWERS,
HINTS &
SOLUTIONS

Now, our equation breaks into two
equations: (y — 3> = 2(y + 3) and (y -
3)2=-2(y+3)ory?—8y +3=0and
y*—4y + 15 = 0. The second equation
has no real roots, and the first one
has two roots: 4 +4/13. Only the
greater of these roots satisfies condi-
tion (1). Now we can return to the
original unknown and find that x
=8-+/13.

M273

Let O be the center of the circum-
circle of triangle AMC |(fig. 1). The
conditions of the problem imply that
ZMAC is acute. The choice of point
O implies that ZMOC = 2ZMAC,
and point O lies on the same side of
AM as points B and C. It is clear from
the equality MO = CO that

ZOMC = 90° - (1/2)2MOC
- 90° -~ ZMAC = ZBMC.

Therefore, the line MB contains point
O.If O does not coincide with B, then
BM is the perpendicular bisector of
AC |and segment BM must intersect
segment AC). If O coincides with B,
then point M lies on the correspond-
ing arc of the circle. The desired locus
is shown in figure 2.

M274

Consider three diagonals of the
cube’s faces incident to the same
vertex. At least one of them is not

B B

parallel to the given plane: let it be
diagonal AC, and let O be its center
(fig. 3). Then, the given plane must
intersect AC at the center of one of
the segments AO or OC. Otherwise,
the distances from A, O, and C to
this plane would differ from each
other (since the minimum of the
given distances is 1, the plane can-
not contain any of these points). In
general, any diagonal of any other
face of the cube either intersects the
given plane in the manner described
or is parallel to this plane.

Now, it is not difficult to conclude
that there are only two possibilities:
(1) the given plane is parallel to two
faces of the cube and divides the per-
pendicular edges in the proportion
1:3, or (2) the intersection of the given
plane with the cube is the regular
hexagon whose vertices are the mid-
points of certain of its edges. In the
first case, the cube’s edge is 4; in the
second case, it is 2+/3.

M275

Notice that
ZCBK = o.— (20, - 180°) = 180° — ¢,

which is to say that it is equal to the
exterior angle of triangle ABC at
vertex B. Thus, BC is the bisector of
the exterior angle of triangle ABK at
vertex B. By assumption, AP is the
bisector of angle BAK. Therefore,

Ko =

Figure 1 Figure 2

Figure 3
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A K L C
Figure 4

point P is equidistant from lines AB,
BK, and AC. Consequently, KP is
the bisector of angle BKC. Similarly,
LM is the bisector of angle BLA.

Consider the situation illustrated in
figure 4. In this case, o> 2(20. — 180°),
which means that o < 120°. There-
fore, ZKBL = 360° - 3a.. Suppose, for
some numbers § and vy, that Z/BKL =
2y, ZBLK = 2f. Then, from triangle
BKL, 2B + 2y + (360° — 30) = 180°.
Therefore, B + v = 30/2 — 90°. From
triangle KOL we find that £KOL =
180°—(B +v) =270° - 30/2. Now, the
angle between two lines is defined
as the smallest of the angles formed
at their intersection. Thus it cannot
be obtuse. In our case, ZKOL is not
acute. Therefore, if o < 120°, the
angle between lines KP and ML is
30,/2-90°, and if o > 120°, this angle
is 270° - 30,/2.

PhiysicS

As a first step, we must deter-
mine the position of the cap’s cen-
ter of gravity CG. To this end we
“cut” the cone into a set of thin
rings of the same width dH (fig. 5).
The mass of a ring grows linearly
from the vertex to the base of the
cap. The center of gravity of any ring
lies on the cone’s axis.

Now we “flatten” the cap in such
a way as to transform every ring into
an equilateral trapezoid and the entire
cone into an isosceles triangle. The
center of gravity of any composite
part of the cap will remain at the
same place (on the axis), so the CG of
the system will not change. It is
known that the CG of a triangular
plate is located at the point of inter-
section of its medians. Therefore, the
CG of the cap is located on its axis at
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Figure 5

Figure 6

the distance (2/3)H from the vertex.

The state of equilibrium will be
stable if a small displacement of the
cap from this position would raise
the CG (and increase the potential
energy of the system). In this case an
unconstrained system will return to
the initial equilibrium state.

In order to have stable equilib-
rium for Pinocchio’s cap on his
head, the cap’s CG (point M in fig-
ure 6) must be lower than the CG of
Pinocchio’s head (point OJ. Hence,
the inequality AM > AO must be
satisfied:

%H > R
3

oo’
sin —
2

or H > 3R =22.5 cm. We know from
the problem statement that
H = 20 cm. Therefore, the cap will
not be in stable equilibrium sitting
on Pinocchio’s head.

P272

Let’s consider a particle located at
a distance R from the spherical
cloud’s center. It is known that the
resulting force affecting the particle
can be determined by accounting
only for that part of the spherical
cloud located inside a sphere of ra-
dius R. (see A. Stasenko’s “The New
Earth” in the July/August 1999
Quantum).

From the problem statement, we
know that the compressing particles
do not pass each other, so the total
mass that attracts the probe particle
remains constant. We may propose
that this mass is concentrated in the
center of the cloud. Now the problem
simplifies to calculating the time for
a particle to fall to the central mass.

We will consider the trajectory of
the particle as a part of a very elon-
gated ellipse with semimajor axis
R/2. We compare the motion along

this trajectory with the revolution
along the circular orbit of radius R.
According to Kepler’s third law,

T R

2

where T, and T, are the periods of
revolution of the circular and ellip-
tic orbits, respectively. The period
T, can be easily found with the help
of Newton’s second law and the law
of universal gravitation:

4 -3
mv? mM mpgnR
=F =G =G ,
R ® B2 R*
from which we obtain
v \Gp
and
r L _[3
232 \8Gp

We see that the period T, doesn’t
depend on R. Therefore, the duration
of the fall of a particle to the gravitat-
ing center (the time of formation),
which is equal to half the period of
revolution along the elliptic orbit,
doesn’t depend on the size of the
cloud and is given by the formula

_£= | o1 =15-10"% g
2 \32Gp
= 10° years.

P273

The remaining film will mini-
mize its surface after being pierced.
Therefore, the hole will form the
geometric figure of maximum area
for the constant perimeter I. It is
known from geometry that a circle
fulfills these requirements (figure 7).
In our case, the radius R is

rR=_L.
2T
To find the tension in the thread,
let’s consider a small element with

length Al = RAG (figure 8). Tt is affected



by two tensions T, and T, (T, = T, =
T) that act tangentially on the ele-
ment from neighboring parts of the
thread and the force 2F , due to the
soap film. (F_ is the surface tension
acting on the element due to one sur-
face of the film.) From the equilib-
rium condition for the element along
the radial direction, we get

ZT%(D—ZFst =0.

Here we considered the small size of
the element, and used the approxi-
mation sin ¢ = ¢. To find the force F,
we allow the film to contract (virtu-
ally) even more, so the element Al
will be displaced by AR. The energy
of the film will decrease by AE
= 26AIAR due to the work performed
by the surface tension of the film AW
= 2F AR, from which we get

AE = AW,
2GAIAR = 2F, AR,
E; =oAL

Thus, the coefficient of surface ten-
sion, which in this case character-
izes one of the surfaces of the soap
film, may be thought of as the force
affecting a unit length of the bound-
ary in the direction normal to the
boundary:

o B
23

Since TAc = 2F_, the tension of the

Figure 7

Figure 8

thread will be

T:2£:20R:0i.
AO T
We have considered this problem
in detail because it demonstrates the
origin of surface tension. It turns out
that a useful notion for calculations
is that the surface energy is equiva-
lent to the stretching of the surface
of aliquid. The stretching forces can
be considered as being applied to a
linear boundary of the film. If we
subdivide (virtually) a film into two
parts, they affect each other through
forces normal to their common
boundary. At first glance, this looks
very similar to the stretching of a
rubber film. However, there is a key
distinction: when liquid film is
stretched, the forces of surface ten-
sion remain constant, while the
analogous forces in a rubber film in-
crease. Thus, there is an analogy be-
tween liquid and rubber film, but it
is not ideal, so we must use it care-
fully.

P274

An electron moving in a mag-
netic field is affected by the Lorentz
force. Since this force is always per-
pendicular to the magnetic field, its
projection onto the direction of the
field is always zero. Therefore, the
electron moves with constant veloc-
ity v cos o in the direction of the
magnetic field. The projection of its
trajectory onto the plane perpen-
dicular to the vector B yields a cir-
cular motion with speed v sin o,
which is described by the equation

mv?sin? «

R =eBvsina,

from which the radius R and period
of revolution T can be found:

R mvsinoc’
eB
T 2nR  2mm

vsina  eB

Thus, the electron moves along a
helix: in the direction of the mag-
netic field, its motion is a uniform
translation, while in the plane nor-

mal to the field, the electron’s trajec-
tory is a circle.

Assume that the electron arrives
at point C having performed n com-
plete revolutions. Denoting the cor-
responding magnetic field by B, we
obtain the time for the electron to
travel between points A and C:

L
vV CosoL

T=

On the other hand, the time nec-
essary to perform n complete revo-
lutions is

T=nT,
or
L 2mm
vV Cosa. eB, '
wheren=1,2,3,... Asaresult, we

have a set of quantized values for B,
which ensure that the electron hits
the target point C:

2mmv coso.
B, =————"n
el

P275

The dependence of the speed of
light in the air on altitude results in
the bending (refraction) of the light.
This phenomenon underlies the ob-
servation of “lakes” in deserts.

Consider an observer of height h
standing on the ground (figure 9.
Let’s trace the rays emitted from
point A. The beam that forms an
angle o, with the vertical curves in
such a way that its trajectory con-
tacts the ground tangentially and
then heads to the sky. Rays emitted
at the angles o > o, also go to the
sky. By contrast, rays emitted at the
angles o < o, hit the ground. Using
the principle of reversibility of rays,
we realize that the observer sees
sand up to the angle oy, but at larger
distances (and larger angles) the ob-
server sees blue sky. Paradoxically,
the “sky rays” arrived at the ob-
server from beneath, so it looks like
a blue lake is spreading in the dis-
tance (subconsciously, a human be-
ing is aware that light always propa-
gates along a straight line).

Now let’s calculate the distance
H. According to the generalized law
of refraction for stratified media,
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Figure 9

dh)

sinfy ¢

sino

’

where c(h) is the speed of light at
altitude h, B, is the angle between
the tangent to the beam and the ver-
tical. Since B, = 90° at the ground,
we get

, c
sinog =——==1-ah.
Co

We must also take into account
that the speed of light changes very
slowly with altitude, so the curva-
ture of the rays is very small. There-
fore, we can assume that the beam
travels to point H along a straight
line. Figure 9 shows that H = h tan
o, Using the law of refraction, we
get:

o h(1- ah)
- /ah(Z—ah)'

Brainteasers

B271

Yes. For example, consider the
numbers 1,2, 3, 4, 5, and x. Then, x
can be found from the equation

1+42+3+4+5+x=1:2-3-4-5-x.

B272

When 625 is raised to any power,
the result ends in 625. When 376 is
raised to any power, the result ends
in 376. To verify these facts, it is
sufficient to square each of these
numbers. Therefore, the last three
digits of the sum are 001.

B273

It is easy to verify that
1111111112 = 12345678987654321.
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B274

Each square of the graph paper
inside the rectangle either belongs
to a cutting line or not. We need the
total length of all segments that do
not belong to any cutting lines to be
the maximum. Consider all pos-
sible figures composed of no more
than 5 squares, and calculate the
ratio of the number of segments
inside a figure to the number of
squares in it. The maximum value
of this ratio is 1, and it is reached for
two figures: a square of size 2 x 2
and the same square with an addi-
tional grid square (see figure 10).
Therefore, if we cut the given rect-
angle into such figures, we obtain
the desired result. This is easy to
achieve by cutting the rectangle as
shown in figure 11.

B275

The surface area of the hay, from
which the water evaporates, is in-
creased by stirring it up. That’s why
it dries more quickly and uniformly.

Kaleidoscope

1. The rod that casts the shadow
must be directed toward the North
Pole (in the Northern Hemisphere,
of course).

2. No, because the time intervals
between drops will increase due to
the decreasing water level in the
dropper.

3. The boats met the raft simulta-
neously.

4. The point of intersection indi-
cates the time when the bodies have
equal velocities. The figure cannot
be used to determine when the bod-
ies meet.

5. The paths traveled by the balls
are identical. Since the mean veloc-
ity of the second ball is higher, it
will arrive at point B first.

6. The motion of the train doesn’t
affect the vertical motion of the ob-
ject. Therefore, in all three cases the
time will be the same.

7. Due to air resistance, the ver-
tical component of acceleration of
the body at any altitude will be

Figure 10 Figure 11

larger during the rise than during the
fall. Thus, the time of rise will be
smaller than the time of fall.

8. When the fly is moving up-
ward, the bottom of the tube sinks
relative to the center of mass of the
system, which falls with the accel-
eration due to gravity. Thus, the bot-
tom of the tube will hit the ground
earlier in comparison with the case
when the fly is motionless.

9. The force of gravity and the
tension of the rope are the same for
both gymnasts. Therefore, they will
arrive to the pulley simultaneously.

10. No, it doesn’t, because the
decrease in the weight of the sand
is counterbalanced by the force of
the falling sand hitting the bot-
tom.

11. A person at rest affects the ice
for a longer time, thus producing a
larger deformation.

12. The period of oscillation will
be infinitely large. In other words,
the oscillation stops in the state of
weightlessness.

13. The period of oscillation will
be half as large, because the spring
constant of the cord will increase by
a factor of 4.

14. To measure the period be-
tween the transmission and recep-
tion of the wave.

15. As the extent of a lightning is
rather great, sound generated from
the distant parts of it will arrive
later, so the thunder is protracted in
time. By contrast, the speed of light
is so large that the corresponding de-
lays are negligible, therefore we cb-
serve lightning as a single flash of

light.

Microexperiment

The period of oscillation de-
creases, because the length of the
pendulum decreases.



Art by Mark Brenneman

COWCULATIONS

Out to Pasture

by Dr. Mu

ELCOME BACK, FOR THE LAST TIME, TO
Cowculations, the column devoted to prob-
lems best solved with a computer algorithm.
Why the last time? Well, in October a wind-
storm blew through the farm and took out the sick
calf barn and one silo. The estimated replacement
costs came to over $30,000, which was enough to
trigger a life altering decision to end our single fam-
ily dairy farm in Wisconsin. As his father told
farmer Paul when passing the farm on to him, the
hardest decision he would have to make is when to
quit. The Nielsen farm has been in operation for
three generations, starting with Paul’s grandfather

who bought it in 1936 and began milking with 24
Guernseys. By the late 60’s, Paul had transformed
the herd into registered Holsteins that were sold all
over the world. Today, the rest of the world can
breed its own registered cows so that market is
gone. And there isn’t enough money in raising cows
for milk alone, so Paul, with Mother Nature’s help,
made the tough decision.

On March 22, a truck pulled into the driveway to
pick up the last of the herd. We were all being relo-
cated to other farms throughout the state. I was leav-
ing for the green hills of western Wisconsin along the
Mississippi and would be put out to pasture. Farmer
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Paul was taking a regular job at the Schmidt Farm
Implement Company in town. We parted as old
friends and promised to write often. I left a final trib-
ute to Paul on the barn door.

Dear Paul,

Into this barn we came each day

To eat our ration of grain and hay.

We made a pact and kept our word:

In exchange for milk, you fed the herd.
We worked together, taking and giving,
And created a life as well as a living.
Your milking chores are over now.
Good Luck Paul, from your last COW.

—Dr. Mu
GOW 18

Here is the last Challenge Outta Wisconsin. The
digital product of a positive integer N is defined as the
product of its nonzero digits. The digital product root
of a positive integer N is obtained by repeatedly tak-
ing digital products of each digital product until a
single digit is obtained. For example, the digital prod-
uct root of 123456789 is 8 by the following series of
products:

x—y means take the product of the nonzero digits in
x and create .

123456789—-362880—2304—24—8.

Find the digital product root of 12345¢7%°. In
Mathematica, a one-line program can be written that
finds the answer in less than one second.

cow 17

In COW 17 you were asked to write a program that
takes as input an integer n, n <9, and finds all ways to
insert pluses or minuses between the digits 12345...n,
so the resulting expression sums to zero. 1-2
—34+5+6+7+8+9 = 0 is one solution for n = 9. Find all of
them.

Solution

The solution, submitted by Eric Rimbey, is a good
example of how clean a solution can be if con-
structed functionally. Let’s see how it works. First,
notice that every possible expression to evaluate
must have either a +, a —, or a blank between two
consecutive digits. Thus the maximum number of
expressions that will need to be examined when n=9
is 3% or 6561. So, a brute force approach will easily
work. We need only to generate them all and check
out their total.

Begin by defining the list chars

chars = {“+7”, “-7, wrry

and a digit sequence from 1 to 9

digitsequence = ToString /@ Rangel[9]
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Next, generate all the possible sequences of chars
separated by commas and a comma at the end.

charsequences =
Distribute[Join[Table[chars,
{“7”}]1, Listl;

There are 6,561 such character sequences. Here are
a few of them:

{8}1,

short [charsequences, 6]

H+,+,+,+,+,+,+,+,},{+,+,+,+,+,+,+,—,},
A4, +, +, +, + +, + 3}, {+ + + + + + -+ 1,
{4, +, +, +, +, +, =, =}, {+, + + + + + = 1,
<«<65505>, {, + s v 00 == s}

_!}I{!IIIIIII}}

Now place the characters between the digits and
form the possible strings.

{I 1 I ’ 7 ’ ! +/ }I {I ’ ¥ & 7 I 4

digitchar =
Flatten[Transpose[{digitsequence,
#} ]1& /@charsequences;

Here are a few of them:
Short [digitchar, 6]

o1, + 2, + 3, + 4,
1, + 2, + 3, +, 4,
A, + 2, + 3, + 4, + 5+ 6,+ 7, +8 ,9 }, <<6556>>,
a ,2 ,3 ,4.,5 .6 ,7 ,8 -9 1
a ,2 ,3 ,4 .5 ,6,7,8-9}1

Next, join the digits and characters together to get all
possible expressions.

+ 5
+I 5/

possible = StringJoin /@ digitchar;

Short [possible, 4]

{142+3+4+5+6+7+8+9,
142+3+4+5+6+7+89,
14+2+3+4+5+6+7-8-9,
1+2+3+4+5+6+78+9, 1+2+3+4+5+6+78-9,
14+42+3+4+5+46+789, <<6544>>, 1234567+8-9,
1234567+89, 1234567-8+9, 1234567-8-9,
1234567-89, 12345678+9, 12345678-9,
123456789}

1+2+3+4+5+6+7+8-9,
1+2+3+4+5+6+7-8+9,
1+2+3+4+5+6+7-89,

Finally, select out the expressions that sum to zero.

Select [possible,
0&]

solutions =
ToExpression[#] ==

{1+2-34-56+78+9, 1-2-34+5+6+7+8+9,
1-23-4-56-7+89, 12+3+4-5-6-7+8-9,
12+3-4+5-6+7-8-9, 12+3-45+6+7+8+9,
12+34-56-7+8+9, 12-3+4+5+6-7-8-9,
12-3+4+56-78+9, 12-3-4-5+6-7-8+9,
12-3-4-5-6+7+8-9}

These steps can all be gathered together to create a
new function called ZeroSum.

Ry T



ZeroSum[k Integer? (0 < # < 10&)] :=

Module[ {chars = {“+7, “-7, wr},
digitsequence, charsequences},
digitsequence = ToString/@ Rangel[k];
charsequences =
Distribute[Join[Table[chars, {k - 1}1,
{“”}1, List];

Select[StringJoin /@
(Flatten[Transpose[{digitsequence,
#}11& /@ charsequences), ToExpression[#]
== 0&]]

All solutions for n = 9 can be found in about one second.

ZeroSum[9] // Timing

{1.15 Second, {1+2-34-56+78+9,
1-2-34+5+6+7+8+9, 1-23-4-56-7+89,
12+3+4-5-6-7+8-9, 12+3-4+5-6+7-8-9,
1243-45+6+7+8+9, 12+34-56-7+8+9,
12-3+4+5+6-7-8-9, 12-3+4+56-78+9,
12-3-4-5+6-7-8+9, 12-3-4 7

The problem was also solved by Joseph Post.

COW 18 solution

The one-line solution to the last COW is:

DigitalProductRoot[n ] :=
FixedPoint [Apply[Times,
Select[IntegerDigits[#], Positivell&, nl]

It works as follows: select the integer digits that
are positive, multiply them, and repeat this process
until the answer remains fixed. What could be more
natural! To get the answer to the last COW, the com-
mand DigitalProductRoot[12345°7%9] took .77 sec-
onds in Mathematica 4.0 to run. The output is equal
to farmer Paul’s lifetime ranking as a Wisconsin
dairy farmer—number 1.

Thank you, Mark Brenneman, for your inspired illus-
trations. Goodbye, it was a kick. (@
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This book begins with a description of one-
dimensional waves and their visualization
through computer-aided techniques. Next,
traveling waves are covered, such as solitary
waves for the Klein-Gordon and KdV equa-
tions. Finally, the author gives a lucid
discussion of waves arising from conservation
laws, including shock and rarefaction waves.
As an application, interesting models of traffic
flow are used to illustrate conservation laws
and wave phenomena.

This book is based on a course given by the
author at the 1AS/Park City Mathematics Insti-
tute. It is suitable for independent study by
undergraduate students in mathematics, engi-
neering, and science programs.

Student Mathematical Library; Volume 3; 2000;

196 pages; Softcover; ISBN 0-8218-2039-7; List $23;
All AMS members $18; Order code STML/3199

Gregory F. Lawler, Duke University,
Durham, NC, and Lester N. Coyle,
Loyola College, Baltimore, MD

Based on lectures and computer labs held at
the 1AS/Park City Mathematics Institute, this
book presents areas of current research in
modern probability that are accessible to
undergraduate students. The subjects include:
random walks, Brownian motion, card shuf-
fling, spanning trees, and Markov chain Monte
Carlo. There are computer simulations for
random walks, Markov chains, stochastic
differential equations as applied to finance,
and other topics.
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Charles Radin, University of Texas,
Austin

The common thread throughout this book is
aperiodic tilings, such as the “kite and dart”
tiling, which has been widely discussed, espe-
cially in connection with quasicrystals. Although
many people are aware of the existence of
aperiodic tilings, and maybe even their origin in
a question in logic, not everyone is familiar with
their subtleties and the underlying rich mathe-
matical theory. For the interested reader, this
book fills that gap.

Understanding these tilings requires an
unusual variety of specialties from mathe-
matics and physics. This interdisciplinary
approach also leads to new mathematics
seemingly unrelated to the tilings. Included

are many worked examples and a large
number of figures. The book's multidisciplinary
approach and extensive use of illustrations
make it useful for a broad mathematical audi-
ence.
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Gérald Tenenbaum, Université Henri
Poincaré, Nancy I, France, and Michel
Mendes France, Université Bordeaux |

One notable new direction this century in the
study of primes has been the influx of ideas
from probability. The goal of this book is to
provide insights into the prime numbers and to
describe how a sequence so tautly deter-
mined can incorporate such a striking amount
of randomness.

The book opens with some classic topics of
number theory. It ends with a discussion of
some of the outstanding conjectures in
number theory. In between are an excellent
chapter on the stochastic properties of primes
and a walk through an elementary proof of the
Prime Number Theorem.
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Alberto Candel, California Institute of
Technology, Pasadena, and Lawrence
Conlon, Washington University, St. Louis

This comprehensive volume has something to
offer a broad spectrum of readers: from begin-
ners to advanced students to professional
researchers. Packed with a wealth of illustra-
tions and copious examples at varying
degrees of difficulty, this highly-accessible text
offers the first full treatment in the literature of
the theory of levels for foliated manifolds of
codimension one. It would make an elegant
supplementary text for a topics course at the
advanced graduate level.
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John B. Conway, University of
Tennessee, Knoxville

This text covers the central themes of oper-
ator theory, presented with the excellent clarity
and style that readers have come to associate
with Conway's writing.

Early chapters introduce and review material
on C*-algebras, normal operators, compact
operators and non-normal operators. Later

AMERICAN MATHEMATICAL SOCIETY :
ENGAGING BOOKS FOR THE SERIOUS STUDENT

These books are designed to build on and expand the mathematical experience of the advanced
student. For undergraduates, we are proud to introduce our new series, The Student Mathematical
Library. For graduates, we offer these latest titles in Graduate Studies in Mathematics. For more
detailed on these and other AMS publications, visit the AMS Bookstore at www.ams.org/bookstore/.

chapters cover more advanced topics, such
as representations of C*-algebras, compact
perturbations and von Neumann algebras.
The last chapter gives an introduction to
reflexive subspaces, i.e., subspaces of opera-
tors that are determined by their invariant
subspaces. These more advanced topics are
at the heart of current research.

Professor Conway's authoritative treatment

makes this a compelling and rigorous course
text, suitable for graduate students who have
had a standard course in functional analysis.
Graduate Studies in Mathematics; 1999; approxi-
mately 387 pages; Hardcover; ISBN 0-8218-2065-6;
List $49 (tentative); Order code GSM-CONWAYI99

Robert E. Gompf, University of Texas,
Austin, and Andras |. Stipsicz, ELTE,
TTK, Budapest, Hungary

The past two decades have brought explosive
growth in 4-manifold theory. Many books are
currently appearing that approach the topic
from viewpoints such as gauge theory or alge-
braic geometry. This volume, however, offers
an exposition from a topological point of view.
It bridges the gap to other disciplines and
presents classical but important topological
techniques that have not previously appeared
in the literature. Numerous illustrations and
exercises are included.
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Giinter R. Krause, University of
Manitoba, Winnipeg, Canada and
Thomas H. Lenagan, University of
Edinburgh, Scotland

The Gelfand-Kirillov dimension has emerged
as a very useful and powerful tool for studying
non-commutative algebras. The first edition of
this book has become the standard reference
on the topic.

For this revised edition, items have been
rephrased, the layout has been made easier to
read, and any errors in the original text have
been corrected. The newly added Chapter 12
provides overviews of the developments of the
last few years, with references to the literature.
Graduate Studies in Mathematics; 2000; 212 pages;
Hardcover; ISBN 0-8218-0859-1; List $39; All AMS
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