Copyright © 2009 by the National Science Teachers Association. All rights reserved. Printed in the United States of America.

11 10 09 4 3 2 1

Library of Congress Cataloging-in-Publication Data
Johnson, A. Daniel.
40 inquiry exercises for the college biology lab / by A. Daniel Johnson. p. cm.
Includes bibliographical references and index.
1. Biology--Examinations, questions, etc. 2. Biology--Examinations--Study guides. I. Title. II. Title: Forty inquiry exercises for the college biology lab.
QH316.J64 2009
570.78--dc22
2008051246

NSTA is committed to publishing material that promotes the best in inquiry-based science education. However, conditions of actual use may vary, and the safety procedures and practices described in this book are intended to serve only as a guide. Additional precautionary measures may be required. NSTA and the authors do not warrant or represent that the procedures and practices in this book meet any safety code or standard of federal, state, or local regulations. NSTA and the authors disclaim any liability for personal injury or damage to property arising out of or relating to the use of this book, including any of the recommendations, instructions, or materials contained therein.

Permissions
You may photocopy, print, or e-mail up to five copies of an NSTA book chapter for personal use only; this does not include display or promotional use. Elementary, middle, and high school teachers only may reproduce a single NSTA book chapter for classroom or noncommercial, professional-development use only. For permission to photocopy or use material electronically from this NSTA Press book, please contact the Copyright Clearance Center (CCC) (www.copyright.com; 978-750-8400). Please access www.nsta.org/permissions for further information about NSTA’s rights and permissions policies.

Copyright © 2009 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
# CONTENTS

Acknowledgments .......................................................................................................................... vii
Preface ........................................................................................................................................... viii
About the Author ............................................................................................................................ xiv

## PART I

Chapter 1. A Brief Introduction to Inquiry .................................................................................. 3
Chapter 2. An Outcomes-Oriented Approach to Implementing Inquiry ....................................... 19
Chapter 3. Assessing Inquiry-Based Instruction ............................................................................. 39
Chapter 4. Teaching Techniques for Inquiry Labs ........................................................................ 63

## PART II

Introduction to Part II: Tested, Inquiry-Based Laboratory Exercises .......................... 81
Summary of Units .......................................................................................................................... 86

**Unit 1: Designing Scientific Experiments** ............................................................................. 93
  Student Pages .......................................................................................................................... 93
  Teacher Pages ......................................................................................................................... 103

**Unit 2: Mendelian Genetics** ................................................................................................ 107
  Student Pages ........................................................................................................................ 107
  Teacher Pages ......................................................................................................................... 123

**Unit 3: DNA Isolation and Analysis** .................................................................................... 131
  Student Pages ........................................................................................................................ 131
  Teacher Pages ......................................................................................................................... 179

**Unit 4: Properties of Enzymes** .......................................................................................... 193
  Student Pages ........................................................................................................................ 193
  Teacher Pages ......................................................................................................................... 207

**Unit 5: Applied Enzymology** .............................................................................................. 215
  Student Pages ........................................................................................................................ 215
  Teacher Pages ......................................................................................................................... 233

**Unit 6: Energetics and Photosynthesis** ................................................................................. 243
  Student Pages ........................................................................................................................ 243
  Teacher Pages ......................................................................................................................... 255

**Unit 7: Signal Transduction** ............................................................................................... 265
  Student Pages ........................................................................................................................ 265
  Teacher Pages ......................................................................................................................... 281
In writing this book, I drew heavily from my own work as a lab developer, coordinator, and instructor. However, one person cannot accomplish a project this complex alone. It requires help and support from many others. I would like to thank the 70-plus graduate teaching assistants who led introductory laboratory courses in the Department of Biology at Wake Forest University from 1998 to 2008. They have provided an enormous amount of feedback about the organization and flow of units and individual exercises. Many of them made suggestions for revisions and improvements, and provided ideas for new exercises or novel ways to use existing ones that ultimately made it into this book. I also would like to thank the undergraduate students of Wake Forest University for putting these units to the ultimate test.

I also wish to thank several faculty members of the Department of Biology at Wake Forest University for their significant contributions to specific lab units and for their support of inquiry-based lab instruction overall: Pat Lord, Brian Tague, Carole Browne, and Pete Weigl. I am especially indebted to Herman Eure, former chair of biology and currently dean for faculty development, for his continuous support and encouragement during our program’s transition to inquiry–based laboratories. My thanks also go to our preparatory staffers—Allen Emory, Gant Hewitt, Shannon Mallison, and Mary Tietjen—all of whom helped develop the preparatory notes that accompany each unit and provided insights for the instructors’ notes.

In preparing and sharing parts of this book I have received innumerable helpful comments from reviewers and from instructors at other institutions who have adapted these exercises to their own classes. Their insights made this a better book, and I sincerely thank them for their contribution. I would also like to thank Judy Cusick, Claire Reinburg, and the rest of the editorial staff at NSTA Press for their insight and suggestions for improvements and especially for their support of an atypical book such as this.

Most of all, I want to thank my long-suffering wife, Bev Nesbit, who has patiently endured the many late nights and working weekends needed to make this book a reality.
In 1998, the Howard Hughes Medical Institute (HHMI) issued Beyond Bio101: The Transformation of Undergraduate Education. The report outlined several strategies used by faculty at various institutions that are changing the way undergraduate science is taught. The section on laboratory experiences begins with a snapshot of the current situation on many campuses:

Biology students approach teaching laboratories with mixed emotions. For some, laboratory courses are windows on the world of science, allowing them to gain experience with the techniques, concepts, and emotions that go with real research. For others, laboratories are exercises in preordination, a tedious derivation of answers that are already known to questions that do not seem important.

Often the best laboratory experience is one in which students pursue their own research under faculty guidance. In fact, given the success of undergraduate research, more and more faculty members have begun asking: Why not make teaching laboratories more like research projects? Instead of just showing students what it is like to do science, why not confront them with real problems and ask them to come up with their own solutions? (Olson et al. 1998, p. 30; © Howard Hughes Memorial Institute. Used with permission.)

HHMI, the Carnegie Foundation for the Advancement of Teaching, the National Research Council (NRC), and numerous other groups have repeatedly called for fundamental changes in how undergraduate biology is taught (Kenny et al. 1998; NRC 2003). Each set of recommendations is based on the same theme: Students learn more, retain knowledge longer, and are better able to apply it if they are taught using active, inquiry-based strategies that let them participate in the discovery of knowledge. The advantages of inquiry-based instructional methods are not just a matter of expert opinion; numerous studies have shown they lead to significantly greater gains in student learning outcomes (for reviews and examples, see Arce and Betancourt 1997; Bain 2004; Chickering and Gamson 1987; Coppola, Ege, and Lawton 1997; Gardiner 1994; Hofstein and Lunetta 1982; National Institute of Education 1984; NRC 2003; National Survey of Student Engagement 2000).
Unfortunately, most undergraduates continue to be taught by traditional didactic exposition. They listen passively to lectures, and then in lab perform exercises that re-iterate principles they supposedly just learned. Given the evidence that active, inquiry-based instructional practices increase learning gains, why do faculty continue to lecture? Why do demonstration-oriented exercises hang on as the dominant style of lab instruction? Some insight can be gained by looking at high school teachers, who have experienced similar calls for reform.

Efforts to incorporate more inquiry into high school science curricula go back more than a century. In 1892 the National Education Association (NEA) asked a panel of education leaders to examine the structure, content, and organization of the high school curriculum. The “Committee of Ten” (as it came to be called) made numerous recommendations in its final report. The following excerpt from the report shows that many of its recommendations reflect an inquiry-based approach to teaching science (emphases are this author’s):

*The Conference on Natural History unanimously agreed that the study of botany and zoology ought to be introduced into the primary schools at the very beginning of the school course, and be pursued steadily…. In the next place they agreed that in these early lessons in natural science no textbook should be used; but that the study should constantly be associated with the study of literature, language, and drawing…. Like the report on Physics, Chemistry, and Astronomy, the report on Natural History emphasizes the absolute necessity of laboratory work by the pupils on plants and animals, and would have careful drawing insisted on from the beginning of the instruction…. [T]he Conference on Natural History recommends that the pupils should be made to express themselves clearly and exactly in words, or by drawings, in describing the objects which they observe…. (NEA 1893)*

Efforts to incorporate more inquiry-based instruction continued through the following century. John Dewey (author of *Democracy and Education*) called for more inquiry-based instruction in a 1916 speech to the National Education Association (Dewey 1916). By the 1950s and 1960s, the National Science Foundation had made progress toward actually implementing some changes; it sponsored several inquiry-based K–12 curriculum improvement projects, including the Biological Sciences Curriculum Study (BSCS), Chemical Education Materials (CHEM) Study, and the Science Curriculum Improvement Study (SCIS). Unfortunately the changes were short-lived and fairly localized. By 1980, exposition had returned as the dominant mode of instruction at all grade levels (Hurd et al. 1980).

During the 1980s, concerns grew that K–12 students in the United States lagged behind students in the rest of the world in science and math proficiency (NCEE 1982), and from 1989 to 2003, the American Association for the Advancement of Science and National Research Council repeatedly challenged science educators
from kindergarten through college to integrate active, inquiry-based instructional methods into their classrooms (AAAS 1989, 1993; NRC 1996, 1999, 2003). Yet in 2005, a survey of state science curriculum standards found that most of the standards still emphasized content coverage; few integrated inquiry-based teaching in any systematic way (Gross et al. 2005). In short, after more than a century of work by education leaders, passive exposition remains the dominant method of instruction for most K–12 programs.

Why is there so much resistance to inquiry-based methods? In Science Teaching and Development of Thinking, Lawson (2002) lists 10 reasons precollege instructors commonly gave for not using inquiry-based teaching methods; most could easily apply to undergraduate instructors as well.

- Development and implementation take too much time (the most-cited reason).
- There is insufficient content coverage.
- The reading level required is too high/difficult for my students.
- The risk is too high; I do not know how the instructional units will turn out, and administration will not understand what I am doing and will penalize me.
- There are no strong students in the regular biology class (or in the nonmajors course for undergraduates).
- Students are too immature and waste too much time to use it successfully.
- I have been teaching this way for too long to change now.
- The textbook/manual/ancillary materials restrict the order in which we cover topics.
- The students and I are too uncomfortable with it.
- It is too expensive. My teaching lab is not equipped properly, and there is no budget to buy necessary materials.

It has been further suggested that undergraduate instructors are less likely than high school teachers to adopt inquiry-based instruction because there is less central oversight of the curriculum on the college level (NRC 2003 [especially see references]; Tanner and Allen 2006). A central administrative directive for K–12 reforms can help ensure that inquiry-based methods will be used systematically in several courses or across an entire curriculum. The college-level instructor, on the other hand, must make changes with minimal guidance or support.

Because there is no central source for materials and resources that meet these various needs, college instructors must cobble together solutions from a variety of sources. Simply modifying materials originally designed for high schools is not a solution because the two audiences are fundamentally different. Students’ maturity, intellectual skills, and attention span differ, as do instructional goals.
The number of students served also is a factor. College instructors routinely have dozens to hundreds of students enrolled in a single large introductory course. The amount of time available for lab-related work also differs greatly.

The relative scarcity of resources designed specifically for college instructors is another source of resistance. There is an immense body of validated curricula, lesson plans, instructional resource guides, textbooks, and lab exercises available to K–12 instructors. The amount of material developed specifically for college instructors is orders of magnitude smaller.

PURPOSE AND STRUCTURE OF THIS BOOK

To incorporate more inquiry at the undergraduate level, faculty need a practical introduction to the general theory and best practices of inquiry-based teaching; tools to help them create, administer, and evaluate new inquiry-based courses and update existing courses so they can follow a more inquiry-based approach; instructional supporting materials designed specifically for their audience; and laboratory exercises that can be adapted to a variety of inquiry-based teaching and learning strategies.

This book was designed to be a general resource guide for college faculty who want to add inquiry-based methods to their biology laboratory courses. It focuses mostly on the laboratory setting, but many of the principles and methods described in Chapters 1–4 can be applied to a variety of course situations. For those who are new to this topic, Chapters 1, 2, and 4 provide a basic introduction to inquiry as an instructional practice and offer guidelines for developing an inquiry-based course using an outcomes-oriented approach. Chapter 3 reviews assessment methods and provides guidance in how to teach novice instructors (such as teaching assistants, for example) to use inquiry. Those who are already familiar with these topic areas can skip the early chapters with little loss of continuity.

Some readers may want to supplement an existing lab course with just one or two of these lab units. Others may decide (as the author’s department did) to reorganize their entire lab program around inquiry. Chapter 2 discusses strategies for making this transition. Again, I have only provided an overview; details are in references at the end of each chapter and unit.

The main body of this book consists of 16 modular lab units; some are inquiry-oriented adaptations of well-established exercises, while others are entirely new. An introduction preceding the units (p. 81) summarizes the differences between them and explains the conventions used. The units are self-contained as much as possible, so they may be arranged in any order. Each unit was developed for students in either a nonmajor or introductory majors biology course. They span a range of topics and vary in length, overall structure, and difficulty. The Summary of Units on page 86 provides information on each unit’s intended audience, model and questions, major concepts, prior skills and knowledge needed, and degree of difficulty.
The units have undergone extensive testing with undergraduates and been revised repeatedly, so they are very robust. It is important to remember, though, that every student group is unique; what one particular audience finds difficult, another may find straightforward. Inquiry requires instructors to be flexible and responsive to students’ needs. Readers should not be afraid to experiment and modify exercises to fit their particular instructional goals.

Each unit contains classroom-ready student exercises, plus Instructors’ Notes and Preparatory Notes. The student exercises are at the level at which they are used at the author’s institution. They range in complexity from exercises that are best suited for nonmajors just starting in biology, to exercises designed for majors in sophomore-level courses. However, most can be revised to fit a different target audience. The background material that precedes the student exercises has been written so it can be revised, rearranged, or stripped down as needed to fit the target audience and the level of inquiry and difficulty desired by the instructor.

The Instructors’ Notes provide supplemental background information and instructional goals and typical outcomes. They indicate where students may struggle with a unit and suggest how the instructor can guide them. Suggestions for modifying units to fit a range of course formats and audiences are included, as are suggested modifications if a small lab section (fewer than 12 students) would have difficulty completing a unit.

The Preparatory Notes for each unit list specific equipment and quantities of supplies needed for a single lab section of 20 students. Quantities are simply scaled up for larger or multiple lab sections. Detailed instructions are provided for obtaining and maintaining model organisms (if any) and for preparing and storing reagents.

Key terms and concepts appear in **boldface type**.

**References**


About the Author

Daniel (Dan) Johnson is a North Carolina native who obtained his BS in biology from the University of North Carolina at Charlotte. After three years in the pharmaceutical industry he entered Wake Forest University School of Medicine where he earned a PhD in cell biology in 1992. He subsequently completed postdoctoral fellowships at the Texas Heart Institute in Houston and the University of Virginia in Charlottesville.

In 1998 he returned to Wake Forest University, this time to the Department of Biology as core curriculum coordinator, where he currently holds the rank of senior lecturer. He teaches general biology for nonmajors; introductory cell biology and physiology courses for premajors; and graduate courses in instructional methods, professional skills development, and bioethics on both the undergraduate and medical school campuses. He leads faculty development workshops through the campus Teaching and Learning Center and has served as an instructional methods consultant on several awarded national grants. Dr. Johnson is an active member and regular workshop leader for the Association of Biology Laboratory Education (ABLE), and in 2008 he was voted to its governing board.

Dr. Johnson and his wife volunteer their free time to Historic Bethabara Park in Winston–Salem, North Carolina. They are the principal caretakers for the Hortus Medicus, the park's historically accurate restoration of its circa 1761 Moravian medical garden.
When the term *inquiry* comes up in conversations about science curriculum reform and improvement, it usually is shorthand for *inquiry-based learning (IBL)* and, by extension, inquiry-based instruction. But what exactly is meant by inquiry-based learning? How does it differ from “traditional” learning? What is the difference between the way most of us teach (and were taught) and inquiry-based instruction?

First and foremost, inquiry is more than a collection of teaching techniques and classroom principles; it is a mind-set. The instructor focuses on developing the abilities and skills of the learner to use knowledge effectively. In contrast, traditional, didactic instruction focuses mainly on accumulation of content knowledge; it is highly fact- and content-oriented. Halonen, Brown-Anderson, and McKeachie (2002) describe the two philosophies this way:

*Content-centered teachers tend to define their primary objective as sharing important facts and concepts with students, with limited attention to the process of learning itself and the thinking that learning requires. Many content-centered teachers believe that merely providing exposure to the ideas of the discipline will...*
cause students’ thinking to evolve naturally over time. Some believe that the capacity to think is innate, and that spending valuable class time promoting changes in thinking seems unnecessary or even misguided.

In contrast, learner-centered teaching elevates the process of learning by requiring students to grapple with ideas, not just passively receive them. Teachers with this pedagogical philosophy accept and relish their responsibility for fostering changes in how students think by emphasizing active learning strategies. Cognitive scientists report that underlying brain structures change to support enduring learning when students think about the course material in more meaningful ways…. Knowledge about how memory functions bolsters the viewpoint that students can improve their thinking skills through well-designed college courses." (2002, pp. 284–285. Copyright 2002 Cengage Learning, Inc. Reproduced with permission.)

The central objectives of inquiry are to (a) encourage students to be active participants in discovering knowledge for themselves and (b) provide them with legitimate opportunities to do so. The following scenarios illustrate these objectives. Two different teaching assistants are leading two general biology laboratory sections. The topic of the day is enzyme function in both classes, but the teaching assistants proceed very differently. One follows a more traditional approach, while the other uses inquiry-centered instructional methods.

**Scenario 1:** The instructor starts the lab with a 30-minute lecture on biological functions of enzymes and reviews some ideas covered in lecture the previous day. At the end of the lecture, the instructor tells students that their goal for the day is to demonstrate the correlation between enzyme activity of purified beta-galactosidase and temperature. Students have a detailed assay protocol to follow and so are turned loose to complete the exercise. The worksheet that summarizes students’ results for the exercise is due next week. Two hours after lab began, the last student leaves for the day.

**Scenario 2:** The instructor starts class with a question: “What are some common methods we use to prevent food spoilage, and why do you think each one works?” Students are given one minute to come up with their own answers, then they turn to a lab partner and share their answers. After another two minutes, the instructor asks pairs to share their explanations with the class while he or she collates the explanations on a whiteboard. From time to time, the instructor asks quieter students for their ideas and probes others with follow-up questions. For example, when one pair suggests that refrigeration slows microbial growth, the instructor asks, “How specifically does the cold slow growth? What is cold doing to the organisms?” The class fumbles with this question for a few minutes until the quiet pair at the back table suggests that cold somehow inhibits enzymes that microbes use for metabolism and energy production.
After the class has compiled a list of ideas to test, the instructor points out that they cannot test them all but that the lab does have materials available to measure the speed at which bacterial enzymes break down sugar. Then—about 45 minutes after lab started—the instructor gives the class its challenge for the day: Working in groups of three to four, students are to find out whether cold could slow down enzyme activity enough to prevent spoilage. The instructor gives the students some purified beta-galactosidase (one of several enzymes that bacteria use to hydrolyze sugar for energy), a substrate solution and a one-page handout outlining the general steps for measuring enzyme activity. Students must devise the specific procedures they will use and include proper controls. A two-page written summary of their methods and observations is due next week. Three days after the lab has ended, this instructor still is answering questions by e-mail.

These two scenarios are at different points on the continuum that runs between traditional, purely didactic methods at one extreme and purely open-ended, inquiry-based learning and instruction at the other. Scenario 1 exemplifies a demonstration-type lab, in which most of the time students assume a passive role in learning. Note the following elements of Scenario 1:

1. Lab begins with a review of basic course content that many students likely understand already from the earlier lecture and that all students are personally responsible for knowing.
2. The goal of the lab is to demonstrate/confirm (yet again) a well-established piece of general knowledge (hence the pejorative label, “cookbook lab”). Students know what to expect from the exercise and have well-defined procedures to follow. Little thought is necessary to finish the exercise, so students never become cognitively engaged in it.
3. Students work in isolation. They are not required to demonstrate their thinking processes openly to peers or to defend their thinking against challenges. They have no opportunity to test and revise their ideas against the thinking of others.
4. The lab provides no applicable context for the content knowledge. Why should students care that enzyme activity changes with temperature?
5. The worksheet eliminates the need for students to think about how to communicate their results effectively.
6. There is no in-progress assessment of learning. Students receive no feedback regarding their knowledge and skills before the final graded assignment is handed in.

The lab structure in Scenario 2 requires students to actively participate in their learning processes. It begins with an obvious intellectual challenge that builds continuously. To succeed, each student must be deeply engaged with the topic at hand. Some other features worth noting are the following:
1. The instructor asks follow-up questions that uncover students’ ongoing thinking processes. This strategy keeps thinking processes out in the open, so students see and learn to model successful patterns. The strategy also helps students move forward when their thought processes have stalled or branched off in unproductive directions.
2. The instructor encourages students to stay actively engaged anytime interest wanes and to think beyond their initial responses.
3. Multiple testable hypotheses are shared and discussed with peers. The “right” ideas are not the only ones considered.
4. Students are required to devise their own procedures and to communicate their rationales. This forces students to think about how their new knowledge will be obtained.
5. There are no predetermined results that students must come to; making their own observations and interpreting them is the priority. Moreover, students will not be able to completely answer the challenge question. There is room for interpreting experimental data as well as for further experimentation.
6. Students’ understanding is assessed informally several times before the final grade is given.

Neither of these two approaches (didacticism versus inquiry) is fundamentally better than the other. Used properly, both have their place in the classroom. However, they are not interchangeable; at certain times one approach meets instructional goals and students’ needs better than the other. To understand why requires looking at how humans learn.

CONSTRUCTIVISM PREDICTS MANY STUDENT LEARNING PATTERNS

Constructivism is a model of human learning that emerged from the work of John Dewey in the early 1900s, Jean Piaget in the 1950s, and David Ausubel in the 1960s and 1970s. Recent research in the fields of cognitive neuroscience and human behavior has confirmed most of the basic tenets of constructivism. According to the constructivist model, thinking patterns and knowledge cannot be transferred unchanged from one person to another because a learner is not a blank slate. As information (in the form of content knowledge or thinking-process skills) is transmitted, the receiving individuals construct their own mental models with it; the models reflect their unique life experiences and past learning. An individual’s constructed knowledge exists as two major elements:
• A series of compartmentalized mental models that consist of both content knowledge (i.e., factual information) and related thinking process skills
• A larger-scale mental scaffold that links together the various mental models and determines which models are used most often

When individuals are challenged with learning new content knowledge or process skills, they will attempt to do so by using one of their preexisting mental models. Learners strongly resist developing new mental models as long as an existing model can solve the challenge. If an extant model is used successfully, any new knowledge or skills gained become closely associated with that particular mental model only. In the future, learners will tend to use their newly acquired content information only in the context of that particular mental model, using just the cognitive processing skills associated with it. This process of associating new content and basic process skills with existing mental models occurs routinely and is a necessary component of learning. However, new knowledge and process skills gained this way tend not to be applied to other situations, leading to what is often called “shallow learning.”

Deeper learning occurs when a learner faces a question, problem, or situation that his or her current mental models fail completely to resolve. Once all prior mental models fail, the individual begins (usually unconsciously) to assemble one or more new “provisional” mental models and to test them against the current unsolved problem. While provisional models are in play, the person is particularly receptive to learning new content knowledge and process skills. In addition, links to potentially relevant content knowledge and process skills from the person’s other preexisting mental models are established as part of the new provisional mental models. Once a new mental model has been constructed that appears to solve the current problem satisfactorily, it is reinforced and becomes stronger. The new mental model is placed within the larger mental scaffold, and other provisional models are abandoned. If the new mental model is not used regularly after it is created, it fades and is lost. Conversely, a new model that is used subsequently becomes even more stable and grows as additional content knowledge and skills become associated with it. Formation of these new but highly stable mental models is referred to as “deep learning.”

Within the constructivist model, the mental scaffold is a manifestation of the underlying principles that guide a person’s thinking processes in toto. This scaffold largely determines which mental models will be used first and how frequently. It is also the mechanism by which connections between mental models are made and by which multiple mental models are brought to bear on a problem simultaneously. Thinking patterns that make up the scaffold include learned priorities, early developmental and educational experiences, and habitual behavior; the remainder of the scaffold is linked to basic personality traits, fundamental belief systems, and one’s sense of self. Because it is so deeply ingrained, the mental scaffold is the component of learning that is most resistant to change and requires the most concentrated effort to do so.
When traditional didacticism and inquiry are compared from the constructivist perspective, the inherent advantages and disadvantages of each approach to teaching become more apparent. Certain student behaviors that regularly frustrate instructors also begin to make more sense. For example, many general education courses are disciplinary surveys that are taught in a strictly didactic, content-centered style. The emphasis is almost entirely on acquisition, memorization, and direct recall of the central facts and content knowledge that underlie the discipline.

To an instructor, this task may seem to be simple and straightforward. After all, many students have already developed several mental models and process skills with which to place that mass of factual information in proper context. However, some percentage of students at the college level will not yet have developed a mental model that allows them to accomplish this apparently simple task. The instructor is unlikely to ever model the thinking-process skills that students should use to accomplish the required task. These students never have an opportunity to learn the necessary skills or to develop a successful mental model that can accomplish the goals of the course. As a result these students take required general education courses two, three, or more times without ever receiving a passing grade.

Even when students pass their required survey courses successfully, they often do not develop the process skills that are intended. Try this experiment: Ask a large group of students to explain a moderately complex concept from a lecture in a didactic survey course taken the preceding semester (or even material covered by a prior exam); then have the students apply it to a novel situation. For the majority, the relevant content knowledge remains highly compartmentalized and is unavailable for recall. Others may recall the information erroneously but have significant misunderstanding of the details or misapply it. A few students will be able to apply their prior knowledge to the novel problem, but reluctantly or with great difficulty.

These outcomes are disheartening, but should not be surprising. A typical general education class is structured to ensure they will occur. Remember that according to the constructivist model, an individual challenged with learning new knowledge or skills will try to accomplish the task using a preexisting mental model. Unlike the students who cannot complete their general education requirements, a majority of traditional-aged college students have a robust mental model that they use to identify relevant facts and retain them for a short time, then recognize correct and incorrect statements relating to those facts on a multiple-choice test. Most are drawing on the same mental models they used in high school to get into college initially. These students were never challenged, so now their existing mental models fail to accomplish the required tasks at the college level.

The outcome would not be different if the same application challenge were issued to students in a typical teaching laboratory instead of a lecture hall. As stated in the Preface, the laboratory experience of most undergraduates is highly scripted and content-centered. Despite claims that the teaching lab is where students get
to “learn by doing,” in reality most students do not gain as much as they could from laboratory experiences because their preexisting mental models are not challenged in a way that fosters deep, meaningful learning. In short, they are not being taught using inquiry methods.

**INQUIRY ENCOURAGES DEEPER, MORE FUNCTIONAL LEARNING**

In the constructivist view, the ultimate responsibility for learning rests with the learner. The responsibility of the instructor is to serve as a facilitator of the process of learning, not as the final source of authority or information. This includes providing learners with achievable challenges, that is, challenges that are beyond their current mental abilities and skill sets but that the learner still has a reasonable chance of accomplishing. When learners succeed in meeting challenges, it builds their confidence and increases their motivation to take on more advanced challenges.

Let’s return to Scenario 2, where the instructor used an inquiry-based approach in a general biology lab, and see how learning is being facilitated. Scenario 2 depicts an idealized situation and not every student will respond equally well. Compared to the traditional demonstration lab in Scenario 1, however, even highly resistant students are likely to show significantly greater learning gains.

Students were asked several leading questions:

- What are some common methods we use to prevent food spoilage?
- How does cold slow growth? What is cold doing to microbes?
- Will cold slow down enzyme activity enough to prevent spoilage?

Most students in a general biology course already know that enzyme activity usually rises with temperature; this fact is part of an existing mental model. Using their existing mental models, students also can make reasonable predictions about how cold will affect enzyme activity. However, the final answer to the last question cannot be determined with certainty. From the constructivist viewpoint, students are faced with a challenge that (for most of them) their current mental models cannot solve. These are a few questions students might raise in response to this challenge, for which they cannot provide answers:

- How cold does it have to be to stop enzyme activity entirely?
- Does cold affect all enzymes exactly the same way?
- If just one metabolic enzyme is inhibited by cold, is that enough to stop microbial metabolism completely?
At this point, students will begin unconsciously assembling provisional mental models that might allow them to answer this question. Normally this activity happens within each individual, but because learners are particularly receptive to new content knowledge and process skills at this stage, the instructor requires them to share their thinking processes with peers, then the class, rather than allowing them to work alone. Multiple ideas are considered, and students are asked to look beyond their initial responses and evaluate their provisional mental models more carefully. Students see multiple thinking processes modeled and learn which ones are most successful. There also is the opportunity to build links to potentially relevant content knowledge and process skills that their peers discovered, but they themselves did not.

As they conduct their experiments, students must cooperate in designing an enzyme assay that includes the proper experimental variables and controls. They also must discuss how to interpret their results and present their data. Each of these behaviors reinforces new content and knowledge-processing skills within students’ new provisional mental models. As a result, the new provisional model becomes more stable and is linked through the mental scaffold to other existing models.

Inquiry-based instruction does much more than just promote formation of new mental models though. If well executed, inquiry encourages students to revisit and test connections among their preexisting mental models, thus strengthening and consolidating prior knowledge as well. Advanced students can be encouraged to engage in metacognition, that is, thinking consciously about how they are thinking and learning. For most students, what happens during learning occurs at an unconscious level. If an instructor poses the appropriate questions, receptive students can be trained to follow their own learning process on a conscious level. Once students become aware of their own learning processes, they can be introduced to formal metacognitive strategies that give them direct access to their mental scaffolds and that heighten the ability to deploy their mental models more flexibly. In the general population, this level of cognitive self-regulation is uncommon and develops well after the undergraduate years. Using inquiry, though, it can be developed much earlier. Metacognitive teaching methods are beyond the scope of this discussion. Those who are interested in knowing more should consult Pintrich, Brown, and Weinstein (1994) and Weinstein (2000, 2002) as starting points for further information.
A FEW WORDS IN DEFENSE OF DIDACTICISM

The preceding discussion may leave readers with the mistaken idea that content-centered instruction should be abandoned. That is not the case; neither didacticism nor inquiry is fundamentally better. They represent two different sets of teaching tools, and each set can achieve certain instructional goals very effectively. The key is to employ each one at the appropriate time. A validated strategy for choosing instructional methods is discussed in Chapter 2.

A traditional lecture remains a good choice if an instructor’s goal is content dissemination only. For instance, a lecture is probably the better approach when teaching students the phylogenetic relationships among classes of invertebrates. The amount of time needed for students to develop their own mental models would be considerable, and it is unlikely they would complete the challenge successfully. Similarly, many programs provide undergraduates with straightforward lab safety training. There simply is no need to use inquiry to explain the established procedures for chemical waste disposal, handling and disposing of sharps, use of safety glasses, or similar routine procedures. In the same vein, demonstration laboratories are the best way to train students to perform technically difficult operations or assays. One good example would be teaching students sterile technique in a microbiology laboratory. On the other hand, a more inquiry-oriented approach is likely to be better for introducing students to the concept and goals of phylogenetics and for exploring how that information could be applied.

In the author’s experience, didacticism and inquiry can be mixed in a single course (or even a single lab session) very effectively. Imagine that a new two-semester introductory biology course is being developed for training undergraduates to be K–12 teachers. State licensing regulations mandate that these students know a predefined set of content, but the faculty know from experience that these teacher trainees need assistance in building thinking-process skills. The new course might start by laying out the conflict as a constructivist-style challenge to the students:

- Why is the content mandated by the state considered vital for all students?
- How can that content be presented to K–12 students using an inquiry-based approach?

The challenge to the student teachers would be to develop a general strategy and specific methods for providing state-mandated content to K–12 students while using inquiry-based methods appropriate for each age group. As the teacher trainees identify areas where their current content knowledge of biology is below that mandated by the state standards, faculty instructors would provide didactic minilectures that review the relevant content.
WHY IS DIDACTIC TEACHING SO PREDOMINANT?

Very few instructors operate entirely at either of the two extremes shown in the earlier scenarios. Most use both didactic and inquiry-based instructional methods in their classrooms. That said, college science instructors overwhelmingly rely on didactic methods. Most faculty claim that they encourage deep learning and critical thinking in their classroom. Yet data provided by an observation protocol or other objective evaluation tool usually show otherwise. When pressed to explain why, faculty give reasons that tend to fall into three categories: personal history, predictability, and ease of development and assessment.

**Personal History.** Biology as a discipline has long emphasized breadth of content knowledge, with the assumption that thinking skills develop naturally. Most current faculty learned successfully in this environment, so they tend to assume others do as well. Moreover, novice teachers tend to emulate techniques and methods they experienced personally.

**Predictability.** In a content-centered classroom the instructor is the central figure. One individual controls the pace, so the quantity of content delivered can be predicted accurately. Frequently an instructor has been teaching long enough to predict which topics will be most difficult for students and what questions will be asked. Contrast this with inquiry, where the instructor must change and adapt to students’ needs and questions. Instructional outcomes are less predictable than they are with didacticism. Inquiry-based teaching requires instructors to be more flexible in their expectations of students. Furthermore, students are already comfortable with their passive role in learning; active learning makes them uncomfortable (especially when it is first introduced), and they are more likely to complain.

**Ease of Development and Assessment.** Most textbooks and laboratory manuals for undergraduate biology are designed for a content-centered curriculum. Question banks (either from publishers or from the faculty member’s old exams) make the process of assessing student learning fairly straightforward. In contrast, inquiry-based teaching often means an instructor must develop new lab exercises, find alternative textbooks, and write new homework assignments. Assessment becomes a more significant problem as well: If the course emphasis is not on gain in content knowledge, how can students be assessed for grades?

Collectively, these elements produce a sort of pedagogical “natural selection” that strongly favors continued use of traditional didactic teaching methods.
WHAT METHODS AND PRACTICES QUALIFY AS INQUIRY?

Fortunately, building an inquiry-based teaching practice is not as arduous as it first looks. Remember that inquiry is defined as any teaching method that encourages students to construct or discover knowledge for themselves, as practicing scientists do. Any teaching practice or exercise that mimics or models the behavior of a scientist in the process of discovery qualifies as inquiry. Most instructors already use some inquiry methods and can learn to incorporate additional techniques quite easily.

General approaches to laboratory instruction can be categorized based on (1) the extent of instructor involvement and (2) the level of challenge students face. Terminology varies among authors; for clarity, the subsequent discussion will use the categories summarized in Table 1, which is adapted from Herron (1971).

Table 1

Features of each category of class exercise

<table>
<thead>
<tr>
<th>Type of Exercise</th>
<th>Instructor Provides Problem</th>
<th>Instructor Provides Procedure</th>
<th>Solution or Outcome Is Known</th>
<th>Instructor’s Involvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstration</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Varies</td>
</tr>
<tr>
<td>Structured</td>
<td>Yes</td>
<td>Yes</td>
<td>Instructor only</td>
<td>High</td>
</tr>
<tr>
<td>Guided</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Moderate</td>
</tr>
<tr>
<td>Collaborative</td>
<td>Yes</td>
<td>Shared</td>
<td>No</td>
<td>As peer</td>
</tr>
<tr>
<td>Open</td>
<td>Part or none</td>
<td>No</td>
<td>No</td>
<td>Minimal</td>
</tr>
</tbody>
</table>

*Structured Inquiry.* The instructor guides students through an investigation or project, asking them focused questions, giving them suggestions and ideas, and acting as a supervisor of students’ work. In labs, the instructor provides a general procedure, but the expected outcome is unknown. This method is particularly suited for large-enrollment courses and for introducing groups of scientifically naive students to inquiry.

*Guided Inquiry.* The organization is the same as a structured inquiry. However, the procedure for conducting the investigation is developed by the students. Lab courses in which students design and conduct their own experiments usually fall into this category.

*Collaborative Inquiry.* Students and the instructor work side by side in an authentic investigation of a novel question. Neither party knows the precise outcome of the project. Procedures are developed in collaboration. This form of inquiry is best suited to advanced lab courses and is difficult to use in a nonlab setting.
Open Inquiry. Students investigate questions they themselves have formulated; use procedures of their own design; and conduct, modify, and report on their own experiments. The instructor facilitates this approach by providing physical resources, but for the most part students work on their own. This style of inquiry is, for all intents, the same work pattern that graduate students are expected to follow.

To illustrate the differences between types of inquiry, let’s return to the scenarios at the beginning of this chapter. Scenario 1 clearly is a demonstration exercise (alternatively called a confirmation exercise). Students know they should find a linear correlation between temperature and enzyme activity for beta-galactosidase. As a stand-alone lab, this demonstration exercise has little pedagogical value. Suppose though that students are conducting a lengthy inquiry exercise that requires them to measure enzyme activity in extracts of *E. coli* grown under different metabolic stresses. If students cannot perform the basic assay accurately, it is a waste of reagents and their time to conduct the bacterial metabolic stress trials. So the basic assay might be presented as a mastery test; students cannot proceed with experiments until they achieve a predetermined level of competence. This creates a greater incentive to master the procedure quickly and perform it accurately.

In Scenario 1, students were given a worksheet on which to summarize their results. The worksheet can be amended to include a short informal assessment of students’ thinking processes. The worksheet also could include one or more application scenarios. Here is a possible scenario:

Suppose your results for the enzyme assay show there is no enzyme activity in a sample collected from stressed bacteria. What are three reasonable explanations for why there is no activity? If you observe this outcome, how will you distinguish between these three possibilities?

This simple informal assessment gives the instructor insight into students’ overall ability to interpret their results before they conduct the actual trials. If students cannot interpret their results properly, they may need additional instruction before proceeding.

Scenario 2 is inquiry-based, but what type of inquiry is it? The instructor asks several questions that lead students to their challenge for the day: Can cold slow down enzyme activity enough to prevent spoilage? Students are given tubes of enzyme and substrate and a one-page handout outlining the general steps for measuring enzyme activity. They work with their peers to devise the specific procedures they will follow. This scenario potentially could be classified as either structured or guided inquiry, because, in both types, the problem or challenge originates with the instructor, not the students. Moreover, the final outcome is (likely) known to the instructor but not the students. The major difference is how much procedural guidance the instructor provides and how involved he or she is with students’ actual work. Since the instructor provided students with a basic protocol for the
enzyme assay, this scenario seems to fit most closely the description of a structured inquiry. However it can be argued that, since the instructor gave no further guidance beyond that, it fits the description of a guided inquiry instead.

In practice, it is not essential to know exactly what category of inquiry is being used. However, thinking about what type of inquiry is being employed can help instructors know how much written and oral guidance to give students. These categories can be useful for planning and discussing exercises under development or for communicating their approximate level of difficulty. Finally, the categories help guide developers in sequencing labs. Students with no prior experience with structured inquiry are going to struggle with guided or collaborative inquiry. They may succeed in meeting the challenges posed, but they are likely to be so demoralized by the experience that they actively resist subsequent inquiry-based efforts. It is vital to introduce students to inquiry in measured steps, rather than simply throwing them into it without considering their current abilities.

Going back to Scenario 2, how could it be modified to provide the more advanced types of inquiry-based instruction? In a true guided inquiry, the procedures should be devised almost entirely by the student. Rather than providing even a skeleton of a protocol, students would be required to find their beta-galactosidase enzyme assay protocol in the primary literature. Alternatively, students could be given just the enzyme assay, but have to devise their own method for extracting the active enzyme from the live *E. coli*. Both strategies leave an essential piece of the procedure up to the students to develop.

In general, collaborative and open inquiries are not practical in large enrollment labs. However, it is helpful to understand how they fit into the overall scheme. For a collaborative inquiry, a group of two to three students working with a faculty member might be challenged to adapt a standard beta-galactosidase assay to measure metabolic activity of marine archaeabacteria from thermal vents. In an open inquiry, one or two undergraduates who have learned about the beta-galactosidase assay in lecture may want to determine whether human lactose intolerance can be diagnosed by measuring beta-galactosidase enzyme levels in human saliva. They are provided space to work and access to reagents but mostly work alone to answer the question they have posed. Students who reach this stage are functioning essentially as independent investigators.

**BENEFITS OF MIXING INQUIRY STYLES**

It should be no surprise that teaching with inquiry requires the instructor to be more flexible and responsive to individual students’ needs compared with didactic methods. This seems to be a fundamental obstacle to using inquiry in large-enrollment laboratory courses with multiple sections and instructors. However, in developing the units presented in this book, the author has learned two very important lessons about inquiry-based teaching. First, inquiry is not only possible
in such a setting; it actually makes it easier to manage and maintain consistency between instructors and sections. As later chapters will explain, developing a good inquiry-based course starts with establishing clear content and performance goals for each stage and for the course overall. These goals provide each instructor with a clear road map to the course and benchmarks for assessing how well students are meeting those goals. Second, mixing inquiry styles makes it possible to engage and challenge a large number of students across a broad range of ability levels.

To understand how mixed inquiry works, the reader should look at the organizational structure of one of the lab units. Every unit contains one or more exercises organized as structured inquiries. Most units also have an option for students to design and conduct their own experiments, that is, to engage in a guided inquiry. Unless otherwise noted, the units are designed so that students complete the structured inquiry as a class in one week, then work in smaller groups to design and conduct their own experiment during the following week.

The structured phase of each unit has been designed so that students discover basic content knowledge for themselves. To do so, students must apply certain process skills that the instructor is seeking to build. (For convenience, the primary and secondary learning goals, and the process skills being developed, are outlined in the Instructors’ Notes for each unit.) Since each unit is designed to lead students fairly autonomously through the discovery process, differences in group facilitation skills of instructors is not a major issue in the structured phase. Thus the lab coordinator or faculty supervisor does not need to spend as much time ensuring that every instructor is conducting the lab in exactly the same way.

For the guided phase of each unit, student groups of two to four outline their experiment in advance on an experimental outline form (see Sample Form for Students’ Experimental Outline in Appendix B) that they submit to their instructor for approval; experiments that have been proposed frequently are listed in the Instructors’ Notes. Often small groups will devise experiments that are simple extensions of the procedures given in the first part of the unit (such as testing a higher temperature or a broader pH range than was used the first week). For many students—particularly nonmajors and students new to inquiry—this will be sufficiently challenging. As students gain confidence, they design more complex experiments that depart more from the procedures of the first week. Since small groups work independently to conduct experiments, each is free to design an experiment that interests and challenges its group members but still is within their ability to accomplish. The instructor can encourage students to push a little beyond their current abilities and knowledge each time they design and execute a new experiment. As students’ skills improve, they frequently ask novel questions that are well outside the experience of the instructor. With a little creativity, though, it is still usually possible to accommodate their experimental designs.

Combining structured and guided phases offers other advantages. Small groups often evolve into informal learning teams. Individuals begin to share
knowledge (peer instruction) and test each other’s thinking and understanding in much the same way that the structured inquiry is designed to do. More advanced students also serve as peer and near-peer role models for students whose thinking skills have not progressed as far yet. Instructors gain more time during lab to work with students individually or in small groups. There are fewer model systems that students must master each semester, so the instructor can conduct more in-depth explorations of key principles and help students refine their thinking-process skills. For lab coordinators, structured and guided inquiry reduce the number of model organisms and equipment that must be obtained and maintained. Time once spent managing materials becomes available to assist and coach novice instructors in inquiry-based instruction.

GOING BEYOND THE BASICS

This chapter provided only a very brief outline of the fundamental differences between inquiry and traditional didactic teaching and the key features of the major inquiry-based instructional styles. Those wanting to know more about the general theory and practice of inquiry should consult Bell, Smetna, and Binns (2005), Eick, Meadows, and Balkcom (2005), Gardiner (1994), Lawson (2002), and Mintzes and Leonard (2006). For a discussion of constructivism as it relates to teaching and learning, readers should consult Gardiner (1994) and Taylor, Gilmer, and Tobin (2002).

References


BACKGROUND

In 1866, Gregor Mendel published a model that explained how seven characteristics are inherited in pea plants. His model established three laws: (1) the law of discrete inheritance, (2) the law of segregation, and (3) the law of independent assortment. According to Mendel, the seven physical features of pea plants are each controlled by two units of inheritance, which are passed from parental plants to offspring. One unit comes from each parent, and these units can be either dominant or recessive to each other. His law of segregation states that the two units of inheritance separate from one another when a pea plant produces offspring (seed). Each offspring inherits one of each parental plant’s two possible units of inheritance. Finally, Mendel stated that the units of inheritance for the traits he studied assort independently. For example, a trait like seed shape passes to offspring independently of another trait like flower color. Using his simple rules, he could predict both what types of offspring would develop when he crossed any two pea plants and the relative numbers of each type. What made Mendel’s rules so exciting to the scientific community was that they predicted inheritance patterns for many other eukaryotic organisms as well.

*Teacher Pages begin on page 123.
More than 30 years later, Walter Sutton finally described a physical mechanism that explained Mendel’s observations. Sutton demonstrated that most cells are diploid, that is, they have two homologous chromosomes. Homologous chromosomes have the same overall shape and size, and genetic information is usually arranged in about the same order along the DNA strands. Sutton found that prior to mitosis (normal cell division), cells duplicate every chromosome. As part of mitosis, a copy of every chromosome passes to each of the two diploid daughter cells. The daughter cells still have one copy of each chromosome in the homologous pair. In preparation for reproduction, plant or animal cells undergo a distinctive form of cell division called meiosis. In the first stage of meiosis, the two homologous chromosomes separate, and only one goes into each of two daughter cells. The maternally and paternally derived member of a pair of homologous chromosomes can go randomly to either of the two daughter cells during meiosis. Sutton had uncovered a physical process that explained Mendel’s law of segregation and independent assortment.

Chromosome Structure and Inheritance

Eukaryotic organisms have two types of chromosomes: (1) autosomes, which are inherited independently of the sex of the parent or offspring, and (2) sex chromosomes, which are inherited in a specific pattern from each parent and determine the sex of the offspring. Genetic information is not scattered randomly along the strands of DNA that make up chromosomes. The DNA code for a specific enzyme, structural protein, or RNA is found at a discrete physical location on the strand, called a locus (plural is loci). Figure 2.1 shows the double-ended arrow pointing to a specific locus.
Figure 2.1

Basic genetic terminology

The left side of each panel shows the chromosomes before DNA replication in S-phase, the right side, after replication.

Panel A shows two different, non-homologous chromosomes. They have different physical structure and banding patterns, and do not encode the same information.

Panel B shows two homologous chromosomes. They have the same general structure, and encode the same general information. The specific version of information (i.e., allele) at each position (locus) may be different, but the loci will be in the same positions on the two chromosomes.

A  Two different autosomes: G1 phase

![Image A](image1.png)

B  Homologous autosomes: G1 phase

![Image B](image2.png)

Locus - a physical location on a chromosome

Copyright © 2009 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
In a normal homologous pair of autosomes, a particular locus will be at the same physical location on both of the chromosomes, regardless of which parent contributed the autosome. Yet the autosomes in a homologous pair may not be exactly alike. At any particular locus, there can be slightly different versions of the DNA code, called alleles. Each allele encodes the same general protein. However, the protein produced when each allele is translated may be slightly different.

Going back to the earlier example, imagine the locus shown in Figure 2.1 codes for the enzyme “greenase,” which catalyzes production of a green eye pigment. The most common allele (version) of that locus codes for a very active form of greenase. An organism that is homozygous for this most common allele makes lots of pigment and so has dark green eyes. A second, less common allele for that locus codes for a version of greenase that makes half as much pigment. As a result, an organism that is homozygous for the second allele probably will have light green instead of dark green eyes. A third allele may contain an early stop codon, so that no greenase is produced and no green eye pigment is made. The result: Organisms that are homozygous for this third allele have pale eyes that are not green at all.

Any given locus can have two, three, or dozens of alleles. However, an individual organism can only have two alleles for each locus: the one on the chromosome inherited from the female parent and the one inherited from the male parent. Which two alleles were inherited from the parents at that locus is what determines the eye color of the offspring.

**Alleles Behave Differently on Sex Chromosomes**

In diploid organisms, the sex chromosomes do not always form a homologous pair. If an organism has two copies of the X chromosome (which is the larger sex chromosome), it is usually a female. However, if it has one X chromosome and one smaller, Y chromosome, the organism is usually male. In some cases (like bees), there is no Y chromosome, and the male organisms carry just one X chromosome.

Like autosomes, X and Y sex chromosomes have loci that control certain functions, and there may be two or more alleles at each locus. However, the rules for expression of dominant/recessive phenotypes are different for sex chromosomes. Imagine there is a recessive allele for a locus on an X chromosome. A female organism (which has two X chromosomes) must inherit two copies of that recessive allele before it will express the trait. A male organism does not have a second X chromosome to compensate for any recessive alleles. Therefore, male organisms express nearly all recessive alleles they inherit that are on the X chromosome.

**Goals for This Unit**

Mendel, Sutton, and many others relied on experimental crosses between organisms to uncover the principles of inheritance. Today, experimental crosses still are an essential tool for genetics research. In the clinic, physicians and genetic counselors must understand the principles of inheritance before they can accurately advise patients who have a family history of genetic disease.
To begin this unit, you will complete two exercises that teach you how to handle and sort fruit flies (Drosophila) and how to recognize wild-type and mutant strains. Once you master these core skills you will be given two sets of vials containing separate stocks of wild-type and mutant strains of flies. The mutant strains are homozygous for one or more alleles and are true-breeding. However, not everyone in the lab will be assigned flies of the same genotype.

Over the next several weeks, you must accumulate sufficient data to answer these questions about your assigned mutant:

- What is the mutant phenotype of my assigned strain of flies?
- Is this mutant phenotype caused by a dominant or by a recessive gene? An autosomal or a sex-linked gene?
- Is this mutant phenotype caused by one gene or by interactions among two or more genes?
- If more than one gene is involved, does the inheritance pattern suggest they are on the same chromosome or on separate chromosomes?

Answering these questions will require you to perform several test crosses and tabulate the phenotypes of offspring through at least the F2 generation. It is your responsibility to decide on crosses, set them up, and monitor their progress. To assist you, the General Procedures section on page 116 describes all the methods you will need to complete this project.

**General Safety Precautions**

Drosophila, their media, and the carbon dioxide tablets used for anesthesia are harmless. Escaped flies can become a nuisance if they are not kept under control. Make sure all vials and containers are plugged well to prevent escapes, especially before disposal. Destroy any vials of flies that you will not use again. To eliminate food sources for escapees, clean your workbench and the shared areas thoroughly each time you finish working with flies.
UNIT EXERCISES

Exercise 1: Sorting Flies by Sex

Background
The major differences between male and female flies are shown in Figure 2.2.

Figure 2.2
Sexually dimorphic features used to distinguish male and female Drosophila

- Males have a dark sex comb on each of their front legs. This is the most reliable marker to use.
- On the posterior, ventral side of the abdomen the male has two claspers; females lack claspers.
- The male’s abdomen tends to be more rounded and blunt with darker markings at the tip, especially on the ventral surface.

If you are not certain if you see sex combs, the other features should allow you to consistently separate males from females. If you are ever in doubt though, you should kill a fly of indeterminate sex and place it into the fly morgue, rather than risking adding a male to a vial of virgins you plan to use for test crosses.
**Procedure**

1. Take a vial of flies labeled “Practice: Wild Type” back to your desk. These flies are still awake, so you will need to anesthetize them. Instructions are given in General Procedures (p. 116) and your instructor will demonstrate this procedure for you.

2. Empty the vial of flies onto a white index card attached to a cold block, then place the block on the stage of a dissecting microscope equipped with an overhead light. Using a soft brush, gently push and turn flies on the card.

3. Look at several flies until you are certain that you can identify each of the three dimorphic features previously listed. Sort out six flies that you are certain are male and six more that are female. Then ask your instructor to see whether you have sorted them accurately. If you made a mistake, go back and double-check the features on each one.

4. After you have successfully sexed your first group of 12 flies, sort the remainder of the flies in the practice vial into three groups: males, females, and undetermined. Record your counts in Table 2.1.

5. Have your partner double-check your sorted flies. If your partner doesn’t agree with you the way you have sorted the flies, ask your instructor to check your work.

6. When you are finished, return all of the wild-type flies to the practice vial so others may use them.

**Table 2.1**

<table>
<thead>
<tr>
<th></th>
<th># Males</th>
<th># Females</th>
<th># Undetermined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Your count</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partner’s count</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Exercise 2: Identifying Mutant Phenotypes**

**Procedure**

1. Take one of the vials labeled “Practice: Mutants” back to your bench. This vial contains flies with several different mutant phenotypes. Anesthetize them as before.

2. Using the microscope, look for differences between the mutants and wild-type flies in any of the following features: eye shape, eye color, body color, wing size or shape, or body bristles.
3. Each time you think you have identified a distinct mutant phenotype, give it a descriptive name and write it down in Table 2.2.
4. As you work, you will find other flies with the same mutant phenotype. Sort your flies into phenotypes, then tally up the number and sex for each phenotype you find, and write them down in Table 2.2.
5. When you are finished, have your instructor double-check that you have sorted the flies correctly.

Table 2.2
Summary of the fly mutations in your mixed stock

<table>
<thead>
<tr>
<th>Description of Mutant Phenotype</th>
<th># Males</th>
<th># Females</th>
<th># Undetermined</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exercise 3: Determining the Inheritance Patterns of a Drosophila Mutant

Procedure

1. Your instructor will give you four vials of flies.
   - Two vials are marked “+” and contain normal, wild-type flies. You can assume that their genotype is “+/+” at every locus.
   - Two vials will be marked “Mutant” and have some other designation letter or number. All the flies in your mutant vials should have the same phenotype; flies with different phenotypes were not mixed.
2. Identify the mutant phenotype of your assigned flies. Choose a descriptive term for any mutation you see (e.g., eyeless or purple-striped).
3. Record which mutant you were assigned and your description of it in your lab notebook. Check with the instructor to confirm that you have correctly identified its mutant phenotype.

From here on, you must care for your own flies. Written procedures for setting up cultures, anesthetizing flies, collecting virgins, and other procedures are provided. However, more specific instructions are not possible. Your instructor can guide you, but it is your responsibility to decide which test crosses you need to identify the inheritance pattern of the mutation(s) in your flies.

**Hints for Planning Out Test Crosses**

Your instructor will show you how to use a Punnet square and the known genotypes of two parents to predict the genotypes (and phenotype ratios) of their offspring. If you need additional assistance, there is a tutorial at the end of the General Procedures section.

In a test cross, virgin flies of an unknown genotype are mated with flies of a known genotype. The first and second generation of offspring are counted and sorted, and the phenotype ratios calculated. Given the known genotype of one parent and phenotype ratios observed in the offspring, you can determine the genotype of the unknown parent.

1. Start by drawing a Punnet square for one possible cross and inheritance pattern (e.g., flies that are homozygous for a single autosomal recessive mutant crossed to wild-type flies). Calculate and record the expected normal and mutant phenotype ratios for the F1 and F2 generations.
2. Do the same for other possible patterns of inheritance.
3. Based on your Punnet squares, determine which crosses you can use to differentiate between various patterns of inheritance. Record them in your notebook, along with your rationale. If you will need to perform more than one test cross, explain why.
4. When you have determined which test crosses allow you to distinguish the various inheritance patterns, you and your partner should set up those test crosses using your assigned mutant flies. Set them up as soon as possible.

- Determine the number of males and virgin females you will need of your wild-type and assigned mutant flies.
- Look for pupae in your vials, and try to estimate when you can begin to collect virgins (it should be within five to seven days).
- Once flies begin to emerge, you will need to come to the lab every six to eight hours. Make up a schedule of the times outside of the normal lab meetings when you or your partner will come in to collect virgins.
Keep Up With Your Notebook Entries
Your notebook is a running record of everything you do for lab. It should contain every bit of the data you collect. When your instructor looks through your notebook, there should be entries for every time you came to the lab to work. Your notebook should contain all of your daily observations, a copy of any data your partner(s) collected, detailed descriptions and rationale for all experimental crosses you do, the Punnet squares you used to calculate genotype and phenotype ratios, the raw numbers from when you count flies, and other data you collect. In short, based on what you write, the instructor should be able to reconstruct every last thing you did, why you did it, and what the outcome was.

General Procedures
Routine Care
Once you receive your vials of flies, you must maintain your own working stocks. Working stocks are essential; if your first test crosses fail, you can start again using your working stocks.

1. Every week, transfer 10–15 flies of each type to new vials with fresh food. You do not even need to anesthetize flies to transfer them to new vials.
2. Keep older working stocks until adults start emerging from newer working stock vials, then dispose of the older stocks.

Anesthetizing Flies
1. Transfer flies to be anesthetized into an empty plastic vial. It requires some skill to transfer flies between vials, then plug both vials. Your instructor will demonstrate the proper technique. Some flies may escape initially, but you will become better at doing this with practice.
2. Place the vial of flies to be anesthetized into a vial holder or tube rack.
3. Get a cold pack from the freezer. Secure a white index card onto the cold pack with rubber bands.
4. Take an anesthetizer, and add 10 mL of water to the vial. Place the vial next to your vial of flies in the holder.
5. Carefully slide the end of the anesthetizer tube between the foam plug and the wall of the vial containing your flies. Do not remove the foam plug!
6. When you are ready to anesthetize flies, add half of one CO$_2$ tablet to the water in the anesthetizer vial. Immediately plug it with the stopper, so the gas produced is directed into the vial of flies. Do not allow liquid to bubble up and push through the tubing into the vial of flies; they will drown.
7. As the CO$_2$ is being administered, gently tap the vial of flies on the counter so they drop to the bottom of the vial. As soon as flies are immobile, pour them onto the white index card attached to the cold pack.
8. Place a paper towel on the viewing stage of a stereomicroscope to catch condensation. Place the cold pack on top, then use a benchtop lamp to illuminate the flies from above.
9. Once chilled, you can work with the flies for up to one hour. Use a soft brush to move them around.
10. If you need to keep flies after observing or sorting them, carefully brush them from the card into a fresh vial containing food. Immediately plug the vial, and lay it on its side to keep the flies from getting stuck to the food. You can stand the vials upright when the flies revive after one to two minutes. Dump unneeded flies into the “fly morgue” on your bench.

Preparing Food Vials
1. Determine the number of vials you need for the day. Do not make up a large number of extra vials of media. Without flies present, they become overrun with bacteria.
2. Label each plastic vial with your initials, lab section, date, and contents.
3. Working at the sink, put 10 mL of dehydrated fly media in the bottom of each tube. Add 10 mL of spring water or distilled water to each vial, and immediately swirl it gently to mix the media and water.
4. Once the media solidifies (less than five minutes), add one grain of dry yeast to each vial. WARNING: If you add too much yeast to a vial, your flies can die of carbon dioxide poisoning.
5. Place a plug in the top of each tube, with about half of the plug sticking out of the vial.
6. Clean up all media or yeast you spilled and sanitize the counter with ethanol.

Disposing of Used Fly Vials
Flies are grown in inexpensive plastic shell vials. The vials cannot be adequately cleaned for reuse, so do not try to recycle them.
1. To destroy a culture, push the foam plug down so that it is flush with the top of the vial. DO NOT push plugs all the way down into the food!
2. Place vials in the box marked “Discarded Vials.” They will be frozen to kill the flies prior to disposal.

Controlling Bacteria
If there are not enough larvae present, bacteria can overrun the media. Heavy infections usually kill the flies. To control bacterial growth:
1. Do NOT open any fly vials you find containing a large amount of bacteria, which appear as a pale to tan slimy film on the surface of the food. Push the stopper down in the vial and place the vial into the waste box for disposal.
2. Do not keep old stocks around. Once you are finished with a cross or a stock, put it in the waste box.
3. When you are making up vials of fly food, make sure to use clean vials and stoppers. Do not reuse vials and stoppers.
4. Do not put more than one or two grains of yeast into a vial of media. Excess yeast provides nutrients that encourage bacterial growth.
5. If a vial has only a small amount of bacteria, it can be treated with antibiotics. Using a disposable transfer pipet, add three drops of 100x antibiotic solution to the surface of the culture media. After three days, add another three drops. It is not necessary to unplug a vial to add antibiotics. Simply slide the transfer pipet between the vial wall and foam plug.
6. If the bacteria continue to spread, do not try to rescue the flies. Instead, destroy the vial and reset the cross or stock.

Collecting Female Virgin Flies
The general life cycle of fruit flies is shown in Figure 2.3.

Figure 2.3
Life cycle of Drosophila
Female flies mate for the first time 10–12 hours after emerging from their pupal cases. They mate with more than one male, and store sperm for fertilization later. The only way you can ensure that you know which male they mate with is to use virgin females for test crosses.

You obtain virgin female flies by removing all of the adult flies from a culture, waiting six to eight hours, then collecting and separating the newly emerged females from the males. To collect virgins for crosses, you will need one or more vials of flies that are 9–11 days old. Look for dark pupae on the sides of the vial; these are flies getting ready to emerge.

It can take several days to collect enough virgins for crosses, and you will need to return to the lab every six hours or so. Divide the workload equally between you and your partner, decide in advance who is collecting when, and exchange e-mail addresses and telephone numbers, in case you must get in touch quickly.

1. Remove all adults from the vials from which you plan to collect virgins. If live flies are stuck to the food, push them down into the food with a probe or pencil.
2. Return the vials to the incubator for six to eight hours.
3. After six to eight hours (no longer), collect all the newly emerged adult flies. Anesthetize them with carbon dioxide, and separate the sexes into two different vials. The females will be virgins that can be used for crosses. The males can be used in an appropriate cross or discarded in the fly morgue.
4. If you did not obtain enough virgins during the first collection, put the stock vials back in the incubator. Return every six to eight hours; each time, collect and sort the adults by sex.

Setting Up a Test Cross Vial

Usually you will need two to three vials for each test cross to produce sufficient offspring for counting. If you do not have enough offspring, your phenotype ratios may be skewed.

1. Collect five to seven female flies (use virgins if necessary), and three to five males of the appropriate phenotype. These will be the parental, or P1, generation. Label the vial with the genotypes and sexes of the parents, your initials, and the date.
2. Add the flies, and plug the vial. When the flies wake up, place the vial in your rack in the incubator.
3. After four to five days, place the entire vial on its side under a stereomicroscope. Focus on the food near the wall of the vial. You should see small larvae crawling around within the food.
4. Once larvae are present, remove the P1 parents from the vial. Transfer them to a fresh vial of food (you do not need to anesthetize them), and label it carefully. This is a backup vial for the P1 mating. After four to five
days in the second vial, larvae should be present in the backup vial too. At this point, discard the adult flies in the morgue.

5. Twelve to fourteen days after you first added adults, the first generation of offspring (the F1 generation) will begin emerging from pupal cases along the side of the vial. Anesthetize them and separate them by phenotypes under the stereomicroscope. Record the phenotypes and sexes of all the flies. Keeping counting flies in the F1 generation until you have scored 100–200 flies. Frequently you will need to cross siblings from the F1 generation to produce an F2 generation. This is known as an inter-se cross (brother-sister mating). For inter-se crosses, the females need not be virgins.

6. After sorting, and while they are still anesthetized, transfer five to seven female and three to five male F1 flies to a fresh, labeled vial of food. Some of the females will already have mated and will begin laying eggs shortly after being transferred to the new vial.

7. After four to five days, transfer the F1 flies to a fresh vial of food, to make a backup of the F1 cross. After another four to five days, remove the adults and discard them.

8. About 12–14 days after you added the F1 adults, F2 progeny will begin to emerge from pupal cases. Anesthetize them, separate the flies by sex and phenotypes, and count them. Record the phenotypes and numbers in your lab notebook.

9. Continue to sort and count emerging F2 flies for several more days. You should count as many flies as you can (ideally, 200 or more). Do not count vials beyond six days, because early F3 flies may begin to emerge that will confound your results. If necessary, count the adults that emerge in your backup vials.

10. Once you have counted your F2 flies, dispose of them in the fly morgue. Do not put flies that have already been counted back into their vial.

11. Use a chi-square test to determine whether your observed results are significantly different from the expected phenotype ratios for a particular pattern of inheritance.

Using Punnet Squares to Determine Expected Genotype and Phenotype Ratios
To determine whether the mutation(s) in your unknown flies follow a particular inheritance pattern, you first must know what the potential patterns could be. You should already know that when wild-type flies and flies with a recessive mutation are crossed, the mutation may disappear from the F1 generation. If F1 siblings are mated though, the mutation usually reappears in some of their offspring. The precise ratio of normal and mutant phenotypes can tell you if the mutation is dominant or recessive, sex-linked or autosomal, single or double, or some other type of inheritance pattern.
For example, wild-type Drosophila have brick red eyes and flat wings that extend beyond the tip of the abdomen. There is a recessive mutation in a locus on Chromosome #2 called *apterous*; homozygous recessive flies never develop wings. Another recessive mutation called *eyeless* is found on Chromosome #4; homozygous mutants never develop compound eyes.

Suppose an apterous fly was crossed with an eyeless fly and, after two weeks, their F1 offspring were crossed. What would be the predicted outcome? Using a Punnet square (see Table 2.3 and Table 2.4), the crosses break down as follows:

First cross: EEaa (normal eye, apterous) × eeAA (eyeless, normal wing)

### Table 2.3

Punnet square for the first cross

<table>
<thead>
<tr>
<th>Potential alleles from Apterous</th>
<th>Ea</th>
<th>Ea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential alleles from Eyeless</td>
<td>eA</td>
<td>EeAa</td>
</tr>
<tr>
<td>eA</td>
<td>EeAa</td>
<td>EeAa</td>
</tr>
</tbody>
</table>

F1 inter-se cross: EaAa (normal eye and wing) × EeAa

### Table 2.4

Punnet square for the F1 inter-se cross

<table>
<thead>
<tr>
<th>Potential alleles from second parent</th>
<th>Potential Alleles From First Parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>EA</td>
<td>EEAA</td>
</tr>
<tr>
<td>Ea</td>
<td>EEAa</td>
</tr>
<tr>
<td>eA</td>
<td>EeAA</td>
</tr>
<tr>
<td>ea</td>
<td>EeAa</td>
</tr>
</tbody>
</table>

Now assuming that the alleles E and A are fully dominant to the recessive e and a alleles, there are 16 flies with nine possible genotypes, that lead to four possible phenotypes (Table 2.5, p. 122).
**Table 2.5**
Genotypes and phenotypes of the F2 generation

<table>
<thead>
<tr>
<th>Genotype</th>
<th># Flies w/ Genotype</th>
<th>Description of Phenotype</th>
<th># Flies w/ Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEAA</td>
<td>1</td>
<td>Normal eyes, normal wings</td>
<td></td>
</tr>
<tr>
<td>EEa</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EeAA</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EeAa</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEaa</td>
<td>1</td>
<td>Normal eyes, wings absent</td>
<td>3</td>
</tr>
<tr>
<td>Eeaa</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eeAA</td>
<td>1</td>
<td>Eyes absent, wings normal</td>
<td>3</td>
</tr>
<tr>
<td>eeAa</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eea</td>
<td>1</td>
<td>Both eyes and wings absent</td>
<td>1</td>
</tr>
</tbody>
</table>

The expected **phenotypic ratio** would be 9:3:3:1. This means that, on average, for every 16 flies in the F2 generation there should be 9 normal flies, 3 flies without eyes, 3 flies without wings, and 1 fly with both eyes and wings missing.

You can use phenotype ratios to work backwards as well. For example, if you count flies in a test cross and find there are four phenotypes that occur in a 9:3:3:1 ratio, it is very likely that the phenotypes are the result of two mutations on two different autosomes. If you generate Punnet squares for each of the other possible mutations (such as autosomal, sex-linked, and so on) that can occur, you can calculate phenotype ratios for each of them as well. If you subsequently see a particular ratio of phenotypes in a test cross, you will know the most likely mutation(s) to have caused that phenotype ratio.

Frequently the observed phenotype ratios in a test cross do not exactly match the expected phenotype ratios. For a detailed explanation of how to perform a chi-square analysis that compares observed and expected phenotype ratios, consult a statistics textbook or online source.
**INSTRUCTORS' NOTES**

**Background and Key Concepts**

In a typical Mendelian genetics lab, students cross flies or other organisms of known genotypes, score phenotypes of the offspring, and determine if their results are significantly different from expected phenotype ratios. For this unit, the traditional dihybrid cross lab has been reformatted into an inquiry-based exercise. Students receive two vials of wild-type (Canton S or Oregon R) flies and two vials of mutant flies, but they are not told the genotype of assigned mutants. During the first week they must identify the mutation(s) present by comparing the adults in the two vials. Subsequently students must cross mutant flies to wild-type flies and, based on phenotype ratios in the F1 and F2 generations, determine the pattern of inheritance and most likely genotype of the original mutants. Students decide for themselves what crosses must be done to uncover the pattern of inheritance.

Other skills that students learn during this unit are:

- Drosophila culture and care,
- how to sort flies by sex and identify mutant phenotypes, and
- how to use Punnet squares to predict genotype and phenotype ratios.

For unknowns, there are four different strains of white-eyed flies. Eye color in Drosophila depends on two pigments—one bright orange and the other dark brown. In wild-type flies, these two pigments are present in about equal concentrations, making the eyes brick red. There also is a central point where ommatidia are much darker than the surrounding ones. A mutation that inactivates any enzyme in
the brown pigment pathway causes flies to have bright orange or scarlet eyes. Usually they also lack the dark central spot, a feature that helps in distinguishing older orange-eyed flies from young wild-type flies. Conversely, a mutation that inactivates any enzyme in the orange pigment pathway causes the eyes to be dark brown.

A white-eyed phenotype can occur for several reasons. There is an X-linked, single allele mutation that inactivates the ABC transporter that carries both pigments to their final destination in the ommatidia; as a result, the eyes are white. White-eyed flies also may be homozygous recessive for inactivating autosomal mutations in both pigment paths. Other fly strains have an autosomal mutation in one pigment pathway and the X-linked mutation in the ABC transporter. When students cross their particular strain of white-eyed mutants to wild-type flies, different ratios of orange-, brown-, white-, and brick red-eyed progeny will emerge in the F1 and F2 generations. Based on the phenotypic ratios, students can deduce the pattern of inheritance and, from this, the most likely genotype of their original parental strain of white-eyed mutant flies.

General Teaching Strategy and Common Problems

The author’s program uses this unit as a self-paced, half-semester lab project in a genetics course for sophomore majors. The open format works best because collecting virgins, transferring adults, setting crosses, and backing up stocks invariably needs to be done at times other than when lab meetings are normally scheduled. At the first lab regular meeting students complete Exercises 1 and 2, then are given their stock vials of white-eyed mutant and wild-type flies. Subsequently students work mostly on their own. They are responsible for completing Exercise 3 and maintaining their stocks. Students are required to come to lab weekly for 30 minutes so the instructor can check their progress and notebooks. Students who are on track to solve the problem may leave or work independently, while those who are not making progress spend additional time with the instructor to get back on track. Alternatively, the students and instructor can use part of the lab meeting time to solve and discuss genetics word problems.

All of the eye color mutants can be identified using the same two crosses. In the parental generation, students should mate wild-type males to virgin mutant females, and mutant males to wild-type virgin females. If students score the phenotypes of the F1 progeny, then cross siblings to each other, they should have sufficient information to determine the inheritance patterns for any mutant strain. However, the instructor should NOT tell students what crosses to do. The ultimate success of this unit depends on the students selecting the required crosses themselves.

Students respond in two very different ways to this unit. One group will claim that “we did this in high school,” decide the phenotype is the result of a single, sex-linked mutation, and plan their crosses accordingly. When these students count offspring, there will be two entirely new phenotypes, which is inconsistent with
In their starting idea that the phenotype was the result of a single mutant locus, use their confusion as an opportunity to explain how a single phenotype can result from many alternative mechanisms. Their task is to determine which of all these options is actually operational in their mutant line.

The unknowns overwhelm other students because they think there are endless possibilities. Tell students to assume for a moment that eye color is due to a single autosomal mutation. Ask them, What phenotypic ratios would you expect in the F1 generation if you crossed wild-type and homozygous mutant white-eyed flies (i.e., a monohybrid cross)? Now what about in the F2 generation? Once they can answer these basic questions, ask them to repeat the thought process for dihybrid autosomal crosses, then sex-linked monohybrid crosses. Most students soon realize there are a limited number of discrete possibilities.

**Recommended Prelab Skills**

Students should be able to generate a Punnett square for a monohybrid cross. They will learn to generate Punnett squares for dihybrid and X-linked crosses as the unit progresses. It is useful if students have a basic working knowledge of a dissecting microscope, but the skill can be learned quickly if not done previously.

**Assessment**

If pre- and postlab quizzes are used as part of formal assessment, both the prelab and postlab quiz should focus on problem-solving skills. Since students work primarily on their own, class participation is difficult to evaluate directly in this unit. Fortunately, students should be keeping notebooks, which provide an indirect measure of the relative effort put in by the students in each pair. If both students put forth the same amount of effort, their data will be evenly distributed or the same between notebooks; if one student is not participating, most of the data analyses will be found in only one student’s notebook.

On postlab quizzes, students should be able to use basic genetic terminology correctly. To test this, they could be asked to differentiate between an allele and a locus or genotype and phenotype. Students should be able to calculate phenotypic ratios from raw counts, and know which ratios to expect from monohybrid, dihybrid, and other crosses. If the instructor includes chi-square analyses as part of the unit, students should be able to calculate and interpret the statistic.

Students’ lab reports (if assigned) should state which type of inheritance pattern (monohybrid, dihybrid, sex-linked) their particular eye color mutation follows; the lab reports should also contain both summary data and a detailed explanation of how the data led the student to that conclusion.
Safety and Housekeeping
Old vials of flies should be plugged tightly, collected, and frozen overnight to kill the flies before disposal in general trash.

Other Tips
- The same mutant strains may be used more than once within a single lab section, as long as they are given different name or number designations.
- This unit describes how to anesthetize Drosophila using carbon dioxide plus cold. An alternative anesthesia method is FlyNap (triethylamine), used as described in Unit 8: Animal Hormones. Both work well, but each has disadvantages. Flies wake up more quickly from carbon dioxide/cold, and may escape, while FlyNap is effective for longer periods of time; however, stale material can sterilize or kill flies. Ultimately the choice comes down to instructor preference.
- Students may try to use other groups’ phenotypic ratios to explain their own results. Remind them that each group may be working with a different strain or mutation. Students who worked with the X-linked white-eyed mutant in high school may assume their flies have the same genotype again. Remind them that different genotypes can lead to the same phenotype.
- This project requires considerable out-of-class work by students. Do not schedule a second inquiry unit so it runs concurrently with this one.

Supplemental References
These references explain the biochemical pathways underlying eye color in Drosophila.

PREPARATORY NOTES

Quantities listed are for a lab section of 20 students working in pairs.

Week 1: Shared Materials
- 12 vials of live, wild-type flies, labeled “Practice: Wild Type”
- 12 vials of live mutant flies (equal mix of white, brown, orange, and wild-type eye colors), labeled “Practice: Mutants”
- 22 stock vials of flies labeled “Wild Type,” seven to eight days old
- 22 stock vials of flies labeled “Mutant #N,” seven to eight days old
- White or clear labeling tape
- Seltzer tablets (1 box of 36 tablets)
- 100x penicillin-streptomycin solution (store 10 mL aliquots in refrigerator)
- Plastic-coated ice blocks (used for shipping; store in refrigerator freezer)

Week 1: Materials at Each Work Station
- Resealable box or bag of dry food
- 2 measuring scoops (10 mL)
- 25 plastic shell vials (2–3 cm diameter)
- 25 foam plugs for shell vials
- Microtube with 0.2 mL of granulated dry bread yeast
- Soft paintbrush
- Permanent marker
- Dissecting microscope
- White index cards
- Anesthesia apparatus
- Fly morgue (jar one-quarter full of mineral oil, with a funnel taped in the top)

Weeks 2 to 7: Shared Materials
(keep stocked)
- Shell vials
- Foam plugs
- Fly culture media (powder)
- White or clear labeling tape
- Seltzer tablets
- Penicillin-streptomycin solution (stored in 10 mL aliquots in refrigerator)
- Ice blocks (stored in refrigerator freezer)
Sources of Materials
Flies can be purchased from the Bloomington Stock Center or an education supplier. It is more economical to order stock vials to arrive eight weeks in advance of the lab and amplify them locally than to purchase all the required vials. Although not essential, it is best to maintain stocks locally between semesters, as some strains are only intermittently available. The mutant strains, eye color, and chromosomal locations are summarized in Tables 2.6 and 2.7.

Table 2.6
Features of single mutant fly lines

<table>
<thead>
<tr>
<th>Strain</th>
<th>Location of Mutation on Chromosome</th>
<th>Eye Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type</td>
<td>NA</td>
<td>Brick red</td>
</tr>
<tr>
<td>Vermilion</td>
<td>Chr. 1 (X)</td>
<td>Orange</td>
</tr>
<tr>
<td>White</td>
<td>Chr. 1 (X)</td>
<td>White</td>
</tr>
<tr>
<td>Brown</td>
<td>Chr. 2</td>
<td>Brown</td>
</tr>
<tr>
<td>Cinnabar</td>
<td>Chr. 2</td>
<td>Orange</td>
</tr>
<tr>
<td>Scarlet</td>
<td>Chr. 3</td>
<td>Orange</td>
</tr>
<tr>
<td>Sepia</td>
<td>Chr. 3</td>
<td>Brown to black</td>
</tr>
</tbody>
</table>

Table 2.7
Features of double mutant fly lines

<table>
<thead>
<tr>
<th>Strain</th>
<th>Mutation</th>
<th>Chromosomes</th>
<th>Eye Color</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutant #1</td>
<td>Vermilion X Brown</td>
<td>Chr. 1, Chr. 2</td>
<td>White to pale apricot</td>
<td>Can be confused with orange single mutant.</td>
</tr>
<tr>
<td>Mutant #2</td>
<td>White X Sepia</td>
<td>Chr. 1, Chr. 3</td>
<td>White</td>
<td></td>
</tr>
<tr>
<td>Mutant #3</td>
<td>Brown X Scarlet</td>
<td>Chr. 2, Chr. 3</td>
<td>White</td>
<td></td>
</tr>
<tr>
<td>Mutant #4</td>
<td>Cinnabar X Brown</td>
<td>Chr. 2, Chr. 2</td>
<td>White</td>
<td>Loci are far enough apart to assort independently.</td>
</tr>
<tr>
<td>Mutant #5</td>
<td>Vermilion X Sepia (optional)</td>
<td>Chr. 1, Chr. 3</td>
<td>Light at eclosion; darken w/ age</td>
<td>Can be hard to score if students do not check flies when young.</td>
</tr>
</tbody>
</table>
Instructors are encouraged to experiment with other strains carrying mutations that affect body color or eye, wing, or bristle morphology.

**Solutions, Reagents, Equipment**

**100x Penicillin-Streptomycin Solution**

Purchase premixed antibiotic solution designed for tissue culture; do not use formulations that contain glutamine or anti-fungal agents (amphotericin or ketoconazole) Break the solution into 10 mL aliquots and store refrigerated.

Students should regularly inspect stock and cross vials using a dissecting microscope. They should see numerous larvae feeding near the surface of the media. The fly larvae churn the surface of the medium enough to limit bacterial growth. When there are not enough larvae, a slimy tan or pale yellow scum forms on the surface of the medium. Severe infections will kill the entire vial of flies.

The best strategy is prevention. If only one or two adults are available to set up a cross or new vial, students should add more of the same types as soon as possible to increase the number of eggs and larvae. In the early stages of an infection, cultures can be salvaged by adding antibiotics. As soon as bacterial slime appears, prepare a new vial of media, then add three drops (~150µL) of 100x antibiotic solution directly to the media. Transfer adults from the contaminated vial to the new vial. Treat the old vial with another three drops of antibiotic solution to try and save existing larvae. Treat both tubes again two days later. Note that the antibiotic treatment can delay eclosion up to two days.

**Anesthesia Apparatus**

Obtain a one-hole black rubber stopper that fits the brand of shell vials used. Wet the narrow end of a 1 or 2 mL disposable polystyrene serological pipet and insert it in the hole of the stopper so that the narrow end of the pipet projects 1 in. beyond the larger, outer side of the stopper. Cut off the pipet flush with the inner face of the stopper. Attach an 8 in. piece of plastic aquarium air tubing to the narrow end of the pipet. Add 10 mL of water to the shell vial, and mark point of the meniscus with a permanent marker.

**Wine Traps**

Fill empty wine or beer bottles one-quarter full of red wine. Add a pinch of dry yeast. Place a funnel into the top of the bottle, and tape the funnel into place. Flies that escape are attracted by the smell of the wine and yeast. They will fly or crawl down the funnel, and drown. Three to four traps are sufficient for one large lab for an entire semester. At the end of the semester, flush dead flies and wine down the sink with copious water.
Appendix A: The Instructional Methods Inventory

Note: Boldface page numbers indicate tables and figures.

A23187, 280, 283, 290, 334, 337
Abiotic factors, 431, 432–33, 445, 457
Abscisic acid, 374, 375
Absorbance, calculating enzyme activity from, 199
Acetylcholine (ACh)
in homeostasis unit, 343, 354
in neuromuscular control unit, 314, 327, 334, 337
Acetylcholinesterase inhibitors, 334
AcqKnowledge data acquisition program, 320–21, 320, 335
Actin, 314, 329
Action potential, 314, 321–22, 329–30
Activation energy (Ea), 193
Active listening, 64–65
ACUC. See Animal Care and Use Committee
Administration of courses, 35–36
Aeromonas hydrophila, 335
Aflatoxins, 448
Agarose gel electrophoresis. See Gel electrophoresis
Alfalfa, 422
Algae, 265–66, 266
dichotomous key for, 467
Alleles, 110
Allergic reactions (to molds), 434, 449
Allocation of resources. See Resource allocation in plants
Ambry Bryce College, curriculum example, 21–23
Amides, 261
Ammonium, nutrient solution, 430
Ampicillin
beta lactamase and, 152–53
in selecting E. coli mutants, 136, 188
solution, 188
Amylase, 203
Analytic memo, 46
Animal behavior (Unit 13), 395–411
agonistic behavior, 397
anthropomorphism and, 398
background, 395–99, 405–6
bettas
aggressive (agonistic) behaviors, 397
basic behaviors, 397
interspecific behaviors, 401
intraspecific behaviors, 397, 399–401
maintaining, 409
natural history, 396
observations tanks, 409–11, 410
ethology, 395–96
goals for unit, 398
instructors’ notes, 405–8
assessment/quizzes, 406–7
background and key concepts, 405–6
other tips, 407
safety and housekeeping, 407
teaching strategy and common problems, 406
intraspecific behavior, 397, 399–401
preparatory notes, 408–11
equipment (observations tanks), 409–11, 410
maintaining organisms, 409
safety precautions, 398–99
student pages, 395–404
teacher pages, 405–40
unit exercises, 399–404
interspecific interactions (EX. 2), 401
intraspecific interactions among bettas (EX. 1), 399–401
stimulus filtering (EX. 3), 401–3
student-designed experiment, 404
unit summary, 90
unit summary questions, 403
Animal Care and Use Committee (ACUC), 332, 335
Animal hormones (Unit 8), 293–312
background, 293–95, 304, 307
dose response curve, 297–98
goals for unit, 295
hormone antagonists, safety, 295
hormone solutions, 312
hormones available for student experiment, 304–5
insect hormones, 294–95, 294
ecdyson, 294–95, 294
juvenile hormone, 294–95, 294, 297–303
instructors’ notes, 307–9
assessment/quizzes, 309
background and key concepts, 307
other tips, 309
prelab skills, 308
safety and housekeeping, 309
teaching strategy and common problems, 308
preparatory notes, 310–12
maintaining organisms, 311–12
solutions, reagents, equipment, 312
safety precautions, 295, 309
student pages, 293–306
teacher pages, 307–12
unit exercises, 296–306
anatomy and development of 
D. melanogaster (EX. 1), 296–97
dose response curve for juvenile hormone (EX. 2), 297–303
student-designed experiment, 304–6
unit summary, 88
unit summary questions, 303
Animals, water and ion regulation in, 373–74
Annelids, 468, 478
ANOVA, 447
Anthropomorphism, 398
Applied enzymology. See Enzymology, applied
Arachnids, 469
Arthropods, 468–69, 478
Aspergillus
A. flavus, 435, 446–47, 448
A. niger, 435, 446, 451
A. oryzae, bGAL from, 196, 208, 211
aflatoxins from, 448
life cycle, 434
sources of, 453
Assessment of course or curriculum, 57–60
goal of, 57
group-level gains, 59–60
ongoing nature of, 68
overall course structure, 57–58
reviews and literature on, 60
Student Assessment of Learning Gains (SALG), 58
Teaching and Learning Goals Inventories, 58
Assessment of instructors, 71–78
in-progress evaluation, 72–73
classroom assessment techniques (CATs), 72
classroom observations, 72–73
grade comparisons, 72
Instructional Methods Inventory (IMI), 76, 481–85
postcourse evaluation, 73–78
focus groups with feedback, 76
instructor self-assessment, 76
standardized tests, 77–78
student surveys/questionnaires, 73–75, 74–75
self-assessment, 76
Assessment of students, 39–57. See also specific unit exercises
classroom assessment techniques
content knowledge vs. progress/thinking-process skills, 40–43
continuum of, 44, 44
developing plan for, 45–60
formal methods, 45–57
collaborative assessments, 57
course projects, 56
directed writing format, 51
homework assignments, 48
learning portfolios, 56–57
oral presentations, 55–56
practical, skill, and mastery tests, 54–57
technical writing, 50–54
written quizzes and exams, 48–50
idealized assessment plan, 42–43
improving, 41–43
informal methods, 43, 45–47
analytic memo, 46
correct maps, 46–47
multiple methods in, 41, 43
in outcomes-oriented approach, 21,
27, 29, 39
principles of, 40–41
realism in, 43–44
reviews and literature on, 60
techniques, 45–47
analytic memo, 46
concept maps, 46–47
one-minute paper, 46
rubrics, 51–53, 52–53
Atlantic codfish, 431–32
ATP
as “energy currency”, 357
synthesis
anaerobic conditions and, 365–66
ATP synthase complex, 248, 248
electron transport and, 244, 248
from glycolysis, 365–66
oxygen consumption and, 358, 365
Atrazine, 261
Ausubel, David, 6
Autoclaving, for mold safety/
housekeeping, 448
Autosomes, 109, 110
Autotrophs, 357
Auxin, 307
Axolotls, 371
Azadirachtin, 304

“Backward design” approach, 20–21
Bacterial infection, phosphatases and, 230, 242
BAMHI, 156, 157
Bean plants. See Mung beans;
Transpirational control
Behavior, animal. See Animal behavior
Berg-Parker Index, 464
Beta lactamase, 152–53
β-galactosidase (βGAL), 194–96, 195,
207–8
activity measurement with ONPG,
197–202
checking activity of, 212
dilutions, 213
lac operon and, 132, 133–34, 134, 179
as model enzyme, 194–95, 207–8
reaction with ONPG, 195–96, 196
sources of, 211
Stock solutions, 211–12
Bettas (Betta splendens). See also Animal
behavior
behaviors of, 397
interspecific, 401
intraspecific, 397, 399–401
maintaining, 409
natural history of, 396
observations tanks for, 409–11, 410
Biodiversity. See Diversity, biological
Biogenic amines, 304, 305, 312
Biological diversity. See Diversity,
biological
Biology Concept Framework (BCF), 24
Biology Concepts Inventory, 59
Biotic factors, 431, 432–33, 457
Blackboard courseware, 75
Blackworms, aquatic (Lumbriculus
variegatus), 340–42, 341. See also
Homeostasis and heart rate
maintaining, 353
sources of, 353
Blunt ends, 156, 157
Bobcats, 432
Body temperature, metabolic rate and,
359–64
Boron, nutrient solution, 430
Boundary layer, 390
Bromacil, 261
Brown University, Sheridan Center for
Teaching at, 71
Budget considerations, 34
CAAP (Collegiate Assessment of
Academic Proficiency), 59
Caffeine
in homeostasis unit, 354
in neuromuscular control unit, 334,
337
in signal transduction unit, 280, 283,
291
INDEX

Calcium
  nutrient solution, 430
  release in muscle contraction, 314, 334
Calcium channels, 280
  blockers of, 334
Calibrated Peer Review (CPR), 54
Calmodulin, 280
Calvin cycle, 244
CAMP activator protein (CAP), 133–34, 134
CAP (cAMP activator protein), 133–34, 134
Carbaryl, 334
Carbon dioxide, anesthetizing fruit flies with, 116–17, 312
Case-based learning, 28
Catalysts, enzymes as, 193–94
Categories of lab exercises, 13–15, 13
Cell counting grid (hemacytometer) in energetics unit, 246, 258, 261–63
  in signal transduction unit, 271, 274
  use instructions, 261–63, 262
Cell division, 108
Cellulase, 194
Cellulose, break down of, 193–94
Center for Teaching and Learning at the University of Georgia, 71
Centrifugation, chloroplast enrichment by, 246–47, 256
Channels, 280
  blockers, 326, 327
Chemical signals, 350
Chemotaxis, 267
Chlamydomonas reinhardtii, 265–66, 282
  cellular structures, 266
  chemotaxis and, 267
  eyespot, 268
  flagellar excision and regeneration, 268, 275–78
  gametes, 268–70, 269
  “green yeast”, 282
  life history/cycle, 267–70, 269
  mating types, 268–70, 269
  motility and phototaxis, 267–68
  nitrogen source for, 267
  nutritional requirements, 267
  pamelloid form, 268
  reproduction, 268–70, 269
  sources of, 286
  vegetative cells, 269
  preparing, 287
  vegetative spores, 268
  zygospore, 270
  zygote, 269, 270
Chlorophyll, 244, 248
Chloroplasts, 244, 245
  enriching through centrifugation, 246–47, 256
  Hill reaction and, 247–52, 248, 249
  stroma, 245, 248, 248
Chlorpromazine HCl, 305
Choosing instructional methods and models, 27–28
Chromosomes
  sex (X and Y), 110
  structure of, 108, 109
Cirrhosis, phosphatases in, 229, 230
Clams, 468–69
Classroom Assessment Techniques (Angelo and Cross), 45
Classroom assessment techniques (CATs)
  for student assessment, 45–47
  for teacher evaluation, 72–73
Classroom observations, 72–73
Cnidaria, 468
Codfish, 431–32
Coenzymes, 194
Cofactors, 225, 230
Cohesive ends, 156, 157
Collaborative formal assessments, 57
Collaborative inquiry, 14, 15
Collaborative learning, student assessment through, 43
Collegiate Assessment of Academic Proficiency (CAAP), 59
Comments list, 53
“Committee of Ten”, ix
Conflict management, 69
Constructivism, 6–9, 17

National Science Teachers Association
Copyright © 2009 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
Content goals
  flexibility in, 26–27
  setting, 24–26
Contextual responses, 64–65
Contraction period/phase, 318, 318
Control group, 96
Convergent questions, 65
Cooperative learning, 10
Copper, nutrient solution, 430
Cortisol, 304
Course administration, 35–36
Course assessment. See Assessment of course or curriculum
Course process skills, 64–68. See also Teaching techniques for laboratories
Course projects, 56
Crabs, 469
Crayfish (Orconectes sp.), 359. See also Metabolism and oxygen consumption
  body temperature and metabolic rate exercise, 359–64
  cannibalism among, 370
  exercise chamber, 371
  maintaining, 370
  pinching by, 359, 368
  sources of, 370
Creosote bush, 415
Crustacea, 469
Curcumin, 280, 290
Curriculum assessment. See Assessment of course or curriculum
Curriculum planning, 19–37. See also Outcomes-oriented approach
Cycloheximide, 290
Daphnia magna (water fleas), 352
Day length, 432
DCIP (6-dichlorophenol indophenol)
  as alternative electron acceptor, 249, 250, 256
  color change, 245, 249–50, 250, 256
  demonstration of speed of, 258
  pH and, 258
  safety precautions, 246, 257
solution recipe, 260
Dependent variable, 96
Designing scientific experiments (Unit 1), 93–105
  background, 93–97, 103–4
  control vs. experimental group, 96
  data, quantifiable, 99
  data, raw, summarizing, 97
  designing experiments to test a hypothesis, 96–97
  formulating a testable hypothesis, 95–96
  goals for unit, 97
  independent vs. dependent variables, 96
  instructors’ notes, 103–5
  assessment/quizzes, 104
  background and key concepts, 103–4
  other tips, 104
  safety and housekeeping, 104
  teaching strategy and common problems, 104
  making observations, 95
  preparatory notes, 105
  sources of materials, 105
  replication/number of samples, 97, 101
  safety precautions, 97, 104
  scientific method, 94–95, 94
  student pages, 93–102
  teacher pages, 103–5
  termites
    safety and, 97, 104
    sources of, 105
  unit exercises, 97–102
    designing your experiment (EX. 3), 99–102, 100–102
    do termites follow trails? (EX. 1), 97–98
    generating a hypothesis (EX. 2), 98–99
  unit summary, 86
  unit summary questions, 102
Dewey, John, ix, 6
Diamond, Robert M., 20, 34
INDEX

Diazinon, 348
Dibutyl-cAMP, 280, 290
6-dichlorophenol indophenol (DCIP). See DCIP
Dichotomous key to invertebrate phyla, 458, 467–69, 477
Didactic instruction
alternatives to, 28
defense of, 11
mixed with inquiry, 11
reasons for predominance of, 12
vs. inquiry-based learning, 3–6, 8
Dimefuron, 261
2, 4-dinitrophenol (DNP), 209–10
Dinitrophenol, 261, 280, 291, 291
Dinoseb, 261
Diploid, 108
Directed discussion, 28
Directed questioning, 65–68
directed writing, 28
Directed writing format (DWF), 51
Disaccharides, 194
Disruptive students, 69
Diuron, 260
Divergent questions, 65
Diversity, biological (Unit 16), 455–79
assessing human impact, 457
background, 455–58, 464, 471–73
Berg-Parker Index, 464
curriculum development example, 30–31
debate on, 471
dichotomous key to invertebrate phyla, 458, 467–69, 477
dominance, 464–65
ecosystem collapse, 457
geographic scales and, 472–73
goals for unit, 457–58, 472
high biodiversity, 456
downside of, 473
instructors’ notes, 471–77
assessment/quizzes, 474–75
background and key concepts, 471–73
other tips, 475–77
prelab skills, 474
safety and housekeeping, 475
teaching strategy and common problems, 473–74
low biodiversity, 457
mathematical models, 457
phyla of invertebrates, 459–60, 467–69
preparatory notes, 477–79
sources of materials, 478–79
quality of ecosystems, 456, 472–73
reasons for measuring, 457
relative biodiversity, estimating, 464–65
single method, errors with, 473
richness, 464–65
safety precautions, 458
stability of ecosystems, 456, 472–73
student pages, 455–69
teacher pages, 471–79
timescale and, 472
unit exercises, 458–69
calculating diversity estimates (EX. 3), 464–65
field collection (EX. 1), 458–59
identifying invertebrates (EX. 2), 459–63
unit summary, 91
unit summary questions, 466
“voucher specimens”, 476–77
DNA. See also Mendelian genetics
blunt and cohesive ends, 156, 157
chromosome structure, 108, 109
restriction enzymes, 155–59, 157, 191
DNA isolation and analysis (Unit 3), 131–91
background, 131–36, 179–80
restriction mapping, 155–59
sequence analysis, 143–45
BL2SEQ program, 150–52, 150–51
chain termination sequencing, 143–45, 144
dideoxynucleotides (dideoxyNTPs), 143–45, 144
DNA concentration, checking, 140–43, 142
gel electrophoresis, 140–43, 142, 169–77, 173
  basic principles, 169–71, 170
  estimating DNA fragment sizes, 172–76
  procedure, 171–72
  safety, 171
goals for unit, 137, 145, 159, 180
instructors' notes, 179–84
  assessment/quizzes, 182
  background and key concepts, 179–80
  other tips, 183–84
  prelab skills, 181
  safety and housekeeping, 182
  teaching strategy and common problems, 180–81
lac operon, 132
  inserted in plasmid (pLac/WT), 135–37, 136
  mutations, effects on, 135
  normal regulation of, 133–34, 134
  sequence of promoter region, 133
supplemental reference, 184
lambda phage DNA markers, 141–43, 142, 191
mutant plasmids, characteristics of, 187
normal deoxynucleotides (dNTPs), 143–45, 144
pLac/m#, 137, 153–55, 179–80, 187
plasmids, 135–37, 179–80, 187
preparatory notes, 184–91
  maintaining organisms, 188
  solutions, reagents, equipment, 188–91
  sources of materials, 186–88
restriction mapping, 155–77
  background, 155–59
  importance of, 157–59
  linear map of DNA sequence, 163
  mini-maps, 164–65, 166
safety precautions, 182
E. coli use, 138
  gel electrophoresis, 171, 182
  UV light source, 141, 171, 182
  sequence analysis, 143–55
  storing bacterial plates and purified plasmid DNAs, 143
student pages, 131–77
teacher pages, 179–91
unit exercises, 137–43
  assembling full-length sequences for pLac/WT and pLac/m# (EX. 4), 159–60
  basic sequence manipulation (EX. 2), 145–53
gel electrophoresis of DNA (EX. 7), 169–77, 170, 173
  identifying differences in DNA inserts in pLac/WT and pLac/m# (EX. 3), 153–55
  isolating plasmid DNAs (EX. 1), 137–43
  locating restriction sites (EX. 5), 160–67, 160, 161
restriction digestion of DNA (EX. 6), 167–69, 168
unit summary, 86
WorkBench program, 145–48, 146–48
  checking accuracy of spliced sequences, 152–53
  entering sequences, 149–50, 149
  splicing sequences, 150–52, 150–51
  TACG search, 160–62, 160, 161
DNA restriction mapping, 155–77
  background, 155–59
  importance of, 157–59
  linear restriction map of DNA sequence, 163
  restriction enzyme and buffer preparation, 191
  restriction mini-maps, 164–65, 166
DNOC, 261
DNP (dinitrophenol), 209–10, 261, 280, 291, 291
Dominance (biodiversity measurement), 464–65
L-DOPA, 305
Dopamine, 304
Dragonfly, 478, 479
Drosophila, 111. See also Mendelian genetics
  anatomy and development, 296–97
  anesthesia apparatus, 129
  anesthetizing with CO2/cold, 116–17, 312
  anesthetizing with FlyNap, 126, 312
  apterous and eyeless mutants, 121–22, 121–22
  eye color in, 123–24, 126
  life cycle, 118, 296
  hormones and, 295
  instars, 296
  maintaining, 311–12
  mutant strains of, 11, 114–22, 128
  sexually dimorphic features, 112, 296
  sorting by sex, 112–14, 112, 309
  source for, 128
  virgin flies, 115–16, 118–19
  wine traps for, 129, 309

E. coli
  enzyme exercise example, 14–15
  lac operon in, 132
  maintaining, 188
  plasmids, 135–43

Earthworms, 468
Ecdysone, 294–95, 294
Ecological communities/succession,
  413–14, 473. See also Resource allocation in plants
Ecology. See also Ecosystems
  biological diversity. See Diversity, biological population. See Population ecology
EcoRI, 156, 157, 157, 158
Ecosystems, 455–56. See also Diversity, biological
  collapse of, 457
  quality and stability of, 456, 472–73
Ectotherms, 203, 359, 366
EDTA, 337
phosphatase inhibition by, 230, 240 and strontium chloride, 280, 291
Electron transport chain/reaction, 244, 248–50, 248, 249, 256, 358
  inhibition by herbicides, 245, 250, 252, 253
Electrophoresis. See Gel electrophoresis
Endotherms, 359, 366
Energetics and photosynthesis (Unit 6), 243–63
  ATP synthase complex, 244, 248
  background, 243–46, 255
  cell counting grid (hemacytometer), 246, 258, 261–63
  use instructions, 261–63, 262
  chloroplasts, 244, 245
  stroma, 245, 248, 248
DCIP
  as alternative electron acceptor, 249, 250, 256
  color change, 245, 249–50, 250, 256
  color change, demonstration of speed of, 258
  pH and, 258
  safety precautions, 246, 257
  solution recipe, 260
  electron transport, 244, 248–50, 248, 249, 256
glycolysis and respiration, 243–44
  goals for unit, 245
herbicides
  inhibition of electron transport, 245, 250, 252, 256
  50% inhibitory dose (ID50), 253
  solution instructions, 260–61
  specific, 252, 260, 261
Hill reaction, 247–52, 248, 249, 253
  instructors’ notes, 255–58
  assessment/quizzes, 257
  background and key concepts, 255
  other tips, 258
  prelab skills, 257
  safety and housekeeping, 257
  teaching strategy and common problems, 256
NADPH, 244, 245, 248
oxidation-reduction (redox) potential, 243
photosynthesis, 243–44
light-dependent reactions, 244, 245, 248
light-independent reactions, 244, 245
as multistep process, 244–45
Photosystems I and II, 245, 248
stages of, 244, 245
summary equation, 244
preparatory notes, 258–63
cell counting grid, 261–63, 262
solutions, reagents, equipment, 259–61, 260
sources of materials, 259
redox reactions, 248–49, 248, 249, 255
safety precautions, 246, 257
spinach in, 245–46, 259
student pages, 243–54
teacher pages, 244–63
unit exercises, 246–54
enriching chloroplasts by differential centrifugation (EX. 1), 246–47
quantifying photoreduction with Hill reaction (EX. 2), 247–52, 249, 250
student-designed experiment, 252–54
unit summary, 87
Environmental cell biology (primary productivity experiment), 252–54
Enzymes(s)
action of, 193–94
activation energy ($E_a$), 193
as catalysts, 193–94
coenzymes/cofactors, 194, 225, 230
inhibitors of, 224–26, 240
teaching scenarios, example/comparison, 4–6, 9–10, 14–15
Enzyme activity, 193–94
background and key concepts, 207–8
enzyme concentration and, 200–201
factors affecting, 194
importance of, 204
lab exercises on, 197–205
substrate concentration and, 197–200
temperature and, 201–3
Enzymes, properties of (Unit 4), 193–214
background, 193–97, 207–8
enzyme action/activity, 193–94
general procedure, 197
goals for unit, 196
instructors’ notes, 207–10
assessment/quizzes, 209
background and key concepts, 207–8
other tips, 210
prelab skills, 209
safety and housekeeping, 209
teaching strategy and common problems, 208–9
model enzyme (β-galactosidase, bGAL), 194–96, 195–96
ONPG, 195–96, 196
preparatory notes, 210–14
solutions, reagents, equipment, 212–14, 213
sources of materials, 211–12
safety precautions, 197, 209
spectrophotometer use in, 195, 197–98, 208–9
student pages, 193–205
teacher pages, 207–14
unit exercises, 197–205
enzyme concentration (EX. 2), 200–201, 213
student-designed experiment, 203–5
substrate concentration (EX. 1), 197–200, 213
temperature (EX. 3), 201–3
unit summary, 87
unit summary questions, 203
Enzymology, applied (Unit 5), 215–42
background, 215–17, 233–34
enzyme inhibitors, 224–26, 225
phosphatase assay, 218–19, 218
enzyme inhibitors, 224–26, 225, 234
Formal assessment, 45–57. See also Assessment of students, formal methods
Frogs (Rana sp.), 315. See also Neuromuscular control
enough, 335
harvesting legs of, 335–36 maintaining, 335 “redleg” infection, 335
Fruit flies. See Drosophila; Mendelian genetics
Fungal infection, phosphatases and, 229, 242
Fungi. See Molds
G-protein coupled receptors, 281
G3P. See Glyceraldehyde-3-phosphate
Galactose, 194
Galactosidase. See β-galactosidase (bGAL)
Gametes, 268–70, 269
Gastrocnemius muscle, 316, 316
Gause, G. F., 445
Gel electrophoresis, 140–43, 142. See also DNA isolation and analysis agarose solution for, 190 basic principles, 169–71, 170 procedure, 171–72 safety precautions, 171
General learning outcomes (GLOs), 21–23
Genetic disorders, inherited, 131
Genetics, 107–29 DNA sequencing. See DNA isolation and analysis
Human Genome Project, 145 Mendelian. See Mendelian genetics
Genotype ratios, 120–22, 121, 122
Gibberelic acid, 307
Gloves, 267, 284, 315
Glucose, 194
Glyceraldehyde-3-phosphate (G3P), 244, 245 Glycolysis, 215, 243–44, 358
Goals. See also Outcomes-oriented approach
flexibility of, 26–27 general learning, 21–23 performance, 20–21, 21
matrix table of, 32
setting specific (content and performance), 24–26
Teaching Goals Inventory, 22–23
Goldfish, 371
Grade comparisons, 72
Graduate Record Exam (GRE), 59, 77
Graphs or figures, interpreting (in assessment), 50
GRE (Graduate Record Exam), 59, 77
Group-level gains, assessment of, 59–60 Growth rates, population, 431, 432–33, 445. See also Population ecology
Guided inquiry, 13, 15, 16
H+ channels, 280
Hazardous chemicals, 280, 284, 290–91, 332
iodine/Lugol’s solution, 290 nitrophenol, 217
Hazardous waste, 209, 236, 257
Heart rate. See Homeostasis and heart rate
Hemacytometer in energetics unit, 246, 258, 261–63 in signal transduction unit, 271, 274 use instructions, 261–63, 262
Hepatic phosphatases, 229, 230, 242
Herbicides inhibiting electron transport, 245, 250, 252, 256
50% inhibitory dose (ID50), 253 safety precautions, 257
solution instructions, 260–61 specific, 252, 257, 260, 261
Herbivores, 433
Heredity. See also Mendelian genetics chromosome structure and, 108, 109 inherited genetic disorders, 131
Heterotrophs, 357
Hexapoda, 468–69
Hill reaction, 247–52, 248, 249, 253
Hind III, 157
Homeostasis and heart rate (Unit 10), 339–55 background, 339–42, 349–50
blackworms (*Lumbriculus variegatus*),
340–42, 352
dorsal aorta, 341–42, 341, 352
fragility of, 342
internal anatomy, 341
maintaining, 353
sources of, 353
coordinated inputs and responses in,
240, 342
goals for unit, 342
heart rate as model, 340
homeostasis definition, 339
instructors’ notes, 349–52
alternative organisms, 352
assessment/quizzes, 351
background and key concepts,
349–52
other tips, 352
prelab skills, 351
safety and housekeeping, 352
teaching strategy and common
problems, 350–51
preparatory notes, 352–55
maintaining organisms, 353
solutions, reagents, equipment,
354–55
safety precautions, 342
set points, 339–40, 349
student pages, 339–48
teacher pages, 349–55
unit exercise, 343–48
effects of neurotransmitters and
hormones on heart rate
(EXERCISE), 343–48
normalizing heart rates, 345–46,
346, 351
student-designed experiment,
347–48
unit summary, 89
unit summary questions, 347
Homework assignments, 48
Homologous (chromosomes), 108
Honeysuckle, 415
Hormones
animal. See Animal hormones
insect development and, 294–95, 294
nervous system and, 293–94
pituitary gland, 293–94
plant, 307
Human Genome Project, 145
Hutner’s trace minerals solution, 288–89,
288
Hydras, 468
Hydrogen ion channels, 280
Hypothesis, testable, 95–96
IBM (isobutylmethyl xanthine), 280, 283,
291
If/then statement, 95
IMI. See Instructional Methods Inventory
Independent variable, 96
Informal assessment, 43, 45–47
Inheritance. See also Mendelian genetics
chromosome structure and, 108, 109
geneic disorders and, 131
Inquiry, 3–18
collaborative, 13
constructivism and, 6–9
deeper/functional learning and, 9–10
guided, 13, 15, 16
introduction to, 3–18
in large-enrollment/multiple section
or instructor courses, 15–16
methods and practices, 13–15, 13
mixing styles of, 15–17
objectives of, 4–6
open, 14
references on, 17
structured, 13
types/styles of, 13–15
Inquiry-based instruction, viii-xi, 3–18.
See also Outcomes-oriented
approach; Teaching techniques for
laboratories
as alternative approach, 70
assessment of, 39–62
curriculum planning for, 19–37
introduction into curriculum, 29, 70
methods and practices of, 13–15, 13
mixed with didacticism, 11
outcomes-oriented approach, 19–37,
teaching techniques for laboratories, 63–79
vs. didactic instruction, 3–6, 8
Inquiry-based learning (IBL), 3–18
constructivism and, 6–9
Insect hormones, 294–95, 294. See also Animal hormones
Insecticides, 348, 354
Insects, dichotomous key to, 468–69
Instars, 296
Instruction and pedagogy issues, 34–35.
See also Teaching
Instructional methods, choosing, 27–28
Instructional Methods Inventory (IMI), 76, 481–85, 482–83
calculations, 484–85
Instructor assessment. See Assessment of instructors
Instructors’ notes, general format of, 84–85
Interspecific interactions
animal, 401
plant, 413
population ecology and, 432, 447
Intestinal phosphatase, 230
Intraspecific interactions
animal, 397, 399–401
plant, 413
population ecology and, 432, 445
Intrinsic rate of growth, 431
Invertebrates. See also Diversity, biological
dichotomous key of, 458, 467–69, 477
identifying (EXERCISE), 459–63
Ion channel coupled receptors, 281
IP₃, 280
Irrigation, soil salinization and, 377
Isobutylmethyl xanthine. See IBMX
Jellyfish, 468
Juvenile hormone, 294–95, 294
dose response curve for, 297–303
K-12 education, 11
K⁺ channels, 280
blockers of, 334
Knowledge transmission, constructivism and, 6–9
Kudzu, 415
“Lab-first” approach, 33
Laboratory exercises
categories of, 13–15, 13
choosing, 30–32
general format of, 82–85
instructors’ note, 84–85
student pages, 83
“lab-first” vs. “lecture-first” approaches, 33
matrix analysis of, 31, 32
refining, 34–37
sequencing of, 33
structured vs. guided phases of, 16–17
summary of, 86–91
testing of, 81
what is not included, 85
Laboratory exercises, specific, 86–91. See also specific units
animal behavior (UNIT 13), 395–411
animal hormones (UNIT 8), 293–312
designing scientific experiments (UNIT 1), 93–105
diversity, biological (UNIT 16), 455–79
DNA isolation and analysis (UNIT 3), 131–91
energetics and photosynthesis (UNIT 6), 243–63
enzymes, properties of (UNIT 4), 193–214
enzymology, applied (UNIT 5), 215–42
homeostasis and heart rate (UNIT 10), 339–55
Mendelian genetics (UNIT 2), 107–29
metabolism and oxygen consumption (UNIT 11), 357–71
neuromuscular control (UNIT 9), 313–37
population ecology (UNIT 15), 431–54
resource allocation in plants (UNIT 14), 413–30

Copyright © 2009 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
signal transduction (UNIT 7), 265–92
student-designed. See specific units
transpirational control (UNIT 12), 373–94
Lac operon
β-galactosidase (bGAL) and, 132, 133–34, 134, 179
insertion into plasmid, 135–37, 136
as model system, 132
mutations and, 135
normal regulation of, 133–34, 134
sequence of promoter region, 133
Lactose, 194
β-galactosidase and, 195
Lactose intolerance, 195, 207
Lambda phage DNA markers, 141–43, 142, 191
Lanthanum chloride, 337
Lanthanum trichloride, 280, 283, 291
Latent period, 318, 318
Lawson, A. E., x
LB broth/agar, 188
Learner-centered teaching, 4
Learning
deeper, 7, 9–10
responsibility for, 9
shallow, 7
Learning Goals Inventory, 58
Learning outcomes. See Outcomes-oriented approach
Learning patterns, constructivism and, 6–9
Learning portfolios, 56–57
Lecture, traditional, 11. See also Didactic instruction
Legumes, 422
Levamisole, 228, 230, 240
Lidocaine
in homeostasis unit, 354
in neuromuscular control unit, 327, 334, 337
in signal conduction unit, 280, 291
Light-dependent reactions, 244, 245, 248
Light-independent reactions, 244, 245
Listening, active, 64–65
Locus (pl. loci), 108, 109
Lugol's iodine solution, 271, 289–90
Luria-Bertani (LB) broth/agar, 188
Magnesium, nutrient solution, 430
Major Field Tests (MFT), 59
Malathion, 348
Manganese, nutrient solution, 430
Marmots, 433
Mastery tests, 54–57
Matching questions (on exams), 49
Matrix analysis of lab units, 31, 32
Mean, 416
Measuring biological diversity. See Diversity, biological
Meiosis, 108
Melatonin, 304, 305
Mendel, Gregor, 107
Mendelian genetics (Unit 2), 82, 107–29
alleles on sex chromosomes, 110
background, 107–11, 123–24
chromosome structure and inheritance, 108, 109
fruit flies (Drosophila), 111, 112–22
anesthetizing, 116–17, 126, 129
apterous and eyeless mutants, 121–22, 121–22
collecting virgin flies, 118–19
controlling bacteria, 117–18
disposing of used vials, 117
eye color in, 123–24, 126
food vials for, 117
life cycle of, 118
mutant strains of, 111, 128
routine care, 116
source for, 128
wine traps for, 129
genetic terminology, 109
goals for unit, 110–11
instructors' notes, 123–26
assessment/quizzes, 125
background and key concepts, 123–24
other tips, 126
prelab skills, 125
safety and housekeeping, 126
teaching strategy and common problems, 124–25
index

505

Inquiry exercises

for the

college Biology lab

preparatory notes, 126–29

food vials for flies, 117

solutions, reagents, equipment, 129

sources of materials, 128–29, 128

Punnet Squares, 120–22, 121, 122

safety precautions, 111, 126

student pages, 107–22

teacher pages, 123–29

unit exercises, 112–22

anesthetizing flies, 116–12, 126, 129

determining inheritance patterns of mutants (EX. 3), 114–22

genotype and phenotype ratios, 120–22, 121, 122

identifying mutant phenotypes (EX. 2), 113–14

notebook entries, 116

planning test crosses, 115–16

setting up test crosses, 119–20

sorting flies by sex (EX. 1), 112–14, 112

unit summary, 86

Mental models, 6–9, 10

Metabolic reactions. See Reactions

Metabolism and oxygen consumption

(Unit 11), 357–71

crystals vs. heterotrophs, 357

crystallites, 357–60, 365–66

crayfish (Orconectes sp.), 359

cannibalism among, 370

exercise chamber, 371

maintaining, 370

pinching by, 359, 368

sources of, 370

ectotherms vs. endotherms, 359, 366

goals for unit, 359

instructors’ notes, 365–68

alternative organisms, 364, 371

assessments/quizizzes, 367

background and key concepts, 365–66

other tips, 368

prelab skills, 367

safety and housekeeping, 368

solutions, reagents, equipment, 370–71

teaching strategy and common problems, 366–67

metabolic reactions in mitochondria, 358, 358

oxygen consumption as indirect indicator, 357

preparatory notes, 368–71

maintaining organisms, 370

safety precautions, 359

specific metabolic rate, 359

equation for, 361

in terrestrial mammals and birds, 363

of two organisms of same species, 368

student pages, 357–64

teacher pages, 365–71

unit exercise, 359–64

body temperature and metabolic rate of crayfish

(exercise), 359–64

calculating oxygen uptake, 361–62

student-designed experiment, 363–64

unit summary, 89

unit summary questions, 362, 363

Metacognition, 10

Metacognitive teaching methods, 10

Methoprene, 304, 312

MFT (Major Field Tests), 59

Michaelis constant (Km), 207

Milk pasteurization, 233

Milk sugar (lactose), 194

Mites, 469

Mitochondria, 243

metabolic reactions in, 358, 358

Modeling actions and behaviors, 69

Molds, 433–34, 446–47. See also Population ecology

allergic reactions to, 434, 449

Aspergillus, 434, 435, 446–47, 448, 451

competition among (exercise), 434–41
INDEX

disinfectant/antimycotic sprays, 454
disposal/housekeeping, 448
life cycle, 434
opportunistic local, 443, 451
Penicillium, 435, 446–47, 449
safety precautions, 433–34, 448–49
sources of, 453
specific species, 435, 446–47, 448, 449, 451
spores, 433, 434, 446
Mollusks, 468–69, 478
Molybdenum, nutrient solution, 430
Molybdate acid, 225, 234, 240
Monensin, 280, 290
Monosaccharides, 194
Motor units, 322, 329
MS-222 (tricaine methane sulfonate), 335
Multiple-choice questions, 49
Mung beans, 376, 377, 390. See also
Transpirational control
growth and maintenance, 393–94
lab exercise on transpiration, 376–84
Muscle, skeletal, 313–14, 314, 329
Myofibers, 313–14, 314, 329
Myogram, 318–21, 318, 319
Myosin, 314, 329
Na+ channels, 280
blockers of, 334
NADPH, 244, 245, 248
National Education Association (NEA), ix
Needle stick, 315
Nematodes, 468
Neomycin, 280, 290
Neuromuscular control (Unit 9), 313–37
action potential, 314, 314, 321–22, 329–30
background, 313–15, 321–22
contraction phase, 318, 318
fatigue, 322, 323
force, range of, 329
frogs (Rana sp.), 315
goals for unit, 315
instructors’ notes, 329–33
assessment/quizzes, 332
background and key concepts, 329–30
other tips, 332–33
prelab skills, 332
safety and housekeeping, 332
teaching strategy and common
problems, 330–31
latent period, 318, 318
motor neurons, 313, 314
motor units, 322, 329
myofibers, 313–14, 314, 329
myogram, 318–21, 318
phases of, 318, 318
neuromuscular junctions, 313–14, 314
preparatory notes, 333–37
agonists and antagonists, 334, 337
harvesting the legs, 335–36
maintaining organisms, 335
solutions, reagents, equipment,
336–37
sources of materials, 334–35
relaxation phase, 318, 318
safety precautions, 315
skeletal muscle, 313–14, 314, 329
student pages, 313–28
summation, spatial and temporal,
321–25, 323, 331
synaptic terminal, 314, 314
syringes, 315
teacher pages, 329–37
testable hypothesis example, 95, 96
tetanus/tetany, 322, 323
twitch, 314–15
threshold voltage for, 317, 331
unit exercises, 316–28
AcqKnowledge program,
320–21, 320, 335
fluid loading effects on
contraction, 321
force transducer, 318–19, 319, 335
Copyright © 2009 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.

506 National Science Teachers Association
gastrocnemius muscle and sciatic nerve, dissecting, 316
measuring nerve and muscle activity (EX. 1), 316–21, 318–20
myogram, 318–21, 318, 319
square wave stimulator, 317, 334
student-designed experiment, 326–27, 331
summation, temporal and spatial (EX. 2), 321–25, 323

unit summary, 88
unit summary questions, 325–26

Neuromuscular junctions, 313–14, 314
New course
refining, 34–37
roll-out strategies, 36
sequencing, 33

Nicotine, 334, 337
Nigericin, 280, 291, 334, 337
Nitrate, nutrient solution, 430
Nitrogen-fixation, 422
Nitrophenol, 217, 218–19, 218, 236
Normalizing data, 345–46, 346, 351

Observation, classroom (in teacher evaluation), 72–73
Observations, making (in scientific method), 95
Octopamine, 304, 305
One-minute paper, 46
ONP, 196, 197
stock solutions, 212–14, 213
ONPG, 195–96, 197–202
cleavage by β-galactosidase, 195–96, 196
safety precautions, 197

Open inquiry, 14
Operons, 132
Optical density, calculating enzyme activity from, 199
Oral presentations, 55–56
Outcomes-oriented approach, 19–37, 21
assessment of, 27, 29, 39–62

choosing instructional methods and models, 27–28
choosing lab units, 30–32, 32
clarifying questions, 34–37
content and performance goals flexibility of, 26–27
setting, 24–26
course administration, 35–36
cycle of development and assessment, 26–27
deciding general learning outcomes, 21–23
instruction and pedagogy issues, 34–35
introduction of inquiry-based instruction (all at once vs. gradual), 29
matrix table of unit and goals, 32
new course
refining, 34–37
roll-out strategies, 36
sequencing, 33
revisions, 37
“scientific” teaching, 20–21
Teaching Goals Inventory, 22–23
technical issues, 35

Oxidation-reduction potential, 243
Oxygen consumption. See Metabolism and oxygen consumption

Pamellloid colonies (Chlamydomonas), 268
Paraquat, 257, 260
Parasites, 433
Pasteurization, 233
PDA. See Potato dextrose agar
Peer Review, Calibrated (CPR), 54
Penicillin-streptomycin solution, 129
Penicillium camemberti, 435, 446–47, 449, 453
Peptide hormones, 304
Performance goals, 20–21, 21
flexibility in, 26–27
matrix table of, 31, 32
setting, 24–26
Permanent wilt point, 374
Personal behaviors, 69–70
INDEX

pH, phosphatase activity and, 222–24, 233
Phenotype ratios, 120–22, 121, 122, 126
Phenotypes, 110
Phenotypic plasticity, 414, 416–19, 424
Phenylephrine, 354
Phorbol ester, 280, 290, 291
Phosphatases, 216–17
  acid, 216, 229–30
  alkaline, 216, 228, 230
  checking pasteurization with, 233
  as diagnostic tools, 216–17
  enzyme concentration and reaction rate, 218–22
  generalized phosphatase reaction, 216
  inhibitors of, 224–30, 241–42
  isoforms, 229–30
  pH effect on, 222–24, 233
  placental alkaline, 228
Phosphate, nutrient solution, 430
Phospholipase C, 280
Phosphonoacetic acid, 226, 234, 240
Photosynthesis, 243–44. See also Energetics and photosynthesis
  lab exercise on (UNIT 6), 243–63
  as multistep process, 244–45
  Photosystems I and II, 245, 248, 248, 256
  stages of, 244, 245
  summary equation for, 244
  vs. respiration, 244
Phototaxis, 267–68
  chambers, 272
  lab exercise on, 271–75
Phototaxis chambers, 272
Phylum (pl. phyla) of invertebrates, 459–60, 467–69
Physiological processes, 349–50
Physiology, 339
Piaget, Jean, 6
Pipets, use of, 209
Pituitary gland, 293–94
PLac/m# (mutant), 137, 153–55, 179–80, 187
PLac/WT (wild type), 136–37, 136, 153–55, 170–80, 186
Placental alkaline phosphatase, 228
Plagiarism, 69
Plant hormones, 307
Plants
  as autotrophs, 357
  leaves, 414
  photosynthesis in, 243–63, 357
  population ecology. See Population ecology
  primary productivity in, 252–53
  resource allocation in. See Resource allocation in plants
  roots, 374, 387, 415
  self-pollination, 432
  stems, 414–15
  transpiration of. See Transpirational control
  water and ion regulation in, 373–74
  water effects on physiological processes in, 375
Plasmids, 135–37, 179–80
  inserting DNA into, 156
  isolating plasmid DNAs, 137–43
  lac operon insertion into, 135–37, 136
  mutant, characteristics of, 187
  sources of, 186
Platyhelminthes, 468
Point-counting, 436–41, 437
Pollination (self-pollination), 432
Polysaccharides, 194
Ponasterone A, 304
Population ecology (Unit 15), 431–54
  abiotic and biotic factors, 431, 432–33, 445
  background, 431–34, 445–46
  competition, 432, 447
  competitive exclusion, 432–33
  consumer types (herbivore, predator, parasite, and mutualist), 433
  goals for unit, 433
  growth rates, 431, 432–33, 445
  instructors’ notes, 445–52
  assessment/quizzes, 448
  background and key concepts, 445–46
  other tips, 449–51
  prelab skills, 448
safety and housekeeping, 448–49
  teaching strategy and common problems, 446–47
  intra- and interspecific interactions, 432, 445, 447
  intrinsic rate of growth, 431
  logistic growth model, 445
  molds, 433–34, 446–47
  aflatoxins from, 448
  allergic reactions to, 434, 449
  Aspergillus, 434
  competition among, 434–41
  disinfectant/antimycotic sprays and, 454
  life cycle, 434
  opportunistic local, 443, 451
  Penicillium, 433, 446–47, 449
  safety precautions, 433–34, 448–49
  sources of, 453
  populations, defined, 431
  potato dextrose agar (PDA), 435–36, 446, 451, 453
  preparatory notes, 452–54
  disinfectant/antimycotic sprays, 454
  potato dextrose agar (PDA) plates, 453
  solutions, reagents, equipment, 453–54
  sources of materials, 453
  safety precautions, 433–34, 448–49
  statistics and, 416, 447
  student pages, 431–44
  teacher pages, 445–54
  unit exercise, 434–44
  competition among molds (EXERCISE), 434–41
  quantifying mycelial growth (point-counting), 436–41, 437
  sample data, 450–51
  student-designed experiment, 443–44, 447
  unit summary, 90

unit summary questions, 442–43
Porifera, 468
Portfolios, learning, 56–57
Postcourse evaluation (of teachers), 73–78
Potassium channels, 280
  blockers of, 334
Potassium, nutrient solution, 430
Potassium phosphate, 225, 234
Potato dextrose agar (PDA), 435–36, 446, 451, 453
Potometry, 375–76
Practical tests (in writing assessment), 54–57
Predators, 433
Predictability, didactic teaching and, 12
Preparing Future Faculty Program (PFF), 71
Pressure chamber potometer, 375
Primary productivity, 252–53
Problem-based learning, 28
Prococenes, 304
Productivity, primary, 252–53
Prostate-specific phosphatase, 229, 242
Protein kinases A and C, 280
Protozoa, 467
Pseudoephedrine, 343, 354
Punnet Squares, 120–22, 121–22
Quality of ecosystems, 456, 472–73
Questionnaires, in teacher evaluation, 73–75, 74–75
Questions
  clarifying, in curriculum development, 34–37
  directed questioning, 65–68
  Socratic method, 65
  types of
    concept mapping, 49
    convergent, 65
    divergent, 65
    evaluative, 65
    interpreting graphs or figures, 50
    matching, 49
    multiple-choice, 49
    short-answer and essay, 50
    true/false, 49
INDEX

two-tier multiple-choice, 49
word problems, 49–50
unit summary, general format of, 83
on written quizzes and exams, 49–50
Quizzes. See Assessment; Exams

Radish plants, 423
Reactions
enzymatic, 193–214
exothermic, 193
rates, controlling, 207
redox, 243, 248–49, 248, 249, 255, 358
“Redleg” infection, 335
Redox reactions, 243, 248–49, 248, 249, 255, 358
Relaxation period/phase, 318, 318
Renal phosphatases, 229, 230, 242
Replicates, 101
Replication of experiments, 97, 101
Resource allocation in plants (Unit 14), 413–30
background, 413–16, 421–22
goals for unit, 415
instructors’ notes, 421–25
assessment/quizzes, 423
background and key concepts, 421–22
other tips, 424
prelab skills, 423
safety and housekeeping, 423
teaching strategy and common problems, 422–23
model organisms, 422–23
phenotypic plasticity, 414, 416–19, 424
preparatory notes, 425–30
growing plants for week 1, 427
liquid fertilizer solutions, 428–29
materials for students’ experiments, 428–29
single nutrient solutions, 429, 430
solutions, reagents, equipment, 428–29, 430
sources of materials, 426
vermiculite, 416, 428
resource allocation in leaves, stems, and roots, 414–15
resource limitation, 414
Root:Shoot (R:S) ratio, 415, 422–23
safety precautions, 416
statistics and, 416
student pages, 413–20
teacher pages, 421–30
unit exercise, 416–20
phenotypic plasticity and allocation (EXERCISE), 416–19
student-designed experiment, 419–20
unit summary, 90
unit summary questions, 419
Resource limitation, 414
Resources, institutional, 34
Respiration, 243–44
Responsibility for learning, 9
Restriction endonucleases (enzymes), 155–59, 157
BAMHI, 156, 157
EcoRI, 156, 157, 158
solutions of, 191
Restriction mapping. See DNA restriction mapping
Revision of course material, 37
Rhodopsin, 268
Richness (biodiversity measurement), 464–65
Root:Shoot (R:S) ratio, 415, 422–23
Roots
functions of, 415
water and nutrient transport through, 374, 387
Rotifers, 467
Roundup, 261
Roundworms, 468
RUBICSO enzyme complex, 215, 244
Rubrics, 51–53, 52–53
Safety considerations and precautions, 84.
See also specific laboratory exercises
universal precautions, 236
SALG (Student Assessment of Learning Gains), 58, 77
Salinization of soil, 377. See also Transpirational control
Samples, number of, 97
Sampling bias, 466
Sarcoplasmic reticulum, 314
Sciatic nerve, 316, 316
splitting of, 331
Science Teaching and Development of Thinking (Lawson), x
“Scientific” approach to teaching, 20–21
Scientific experiments, designing. See Designing scientific experiments
Scientific method, 94–95, 94
Seeds, sources for, 426
Self-assessment by instructors, 76
Sequencing topics, 33
Serotonin, 304, 305
Set points, 339–40, 349
Sevin, 348
Sex chromosomes, 110
Sexual harassment, 69
Sharps container, 315
Sheridan Center for Teaching at Brown University, 71
Short-answer questions, 50
Shrimp, 469
Siamese fighting fish. See Bettas
Siduron/tupersan, 261
Signal transduction (Unit 7), 265–92
background, 265–70, 281–82
Chlamydomonas reinhardtii, 265–66, 282
cellular structures, 266
flagellar excision and regeneration, 268, 275–78
flagellum, 266
gametes, 268–70, 269
“green yeast”, 282
life history/cycle, 267–70, 269
mating types, 268–70, 269
motility and phototaxis, 267–68
nitrogen source for, 267
nutritional requirements, 267–68
pamelloid form, 268
reproduction, 268–70, 269
sources of, 286
vegetative cells, 269, 287
vegetative spores, 268
zygospore, 270
zygote, 269, 270
goals for unit, 267
hemacytometer use, 271, 274
Hutner’s trace minerals solution, 288–89, 288
instructors’ notes, 281–84
assessment/quizzes, 284
background and key concepts, 281–82
prelab skills, 284
safety and housekeeping, 284
teaching strategy and common problems, 282–83
Lugol’s iodine solution, 271, 289–90
phototaxis, 267–68
phototaxis chambers, 272, 291–92
preparatory notes, 284–92
agonists and antagonists, 290–91
liquid stock and agar slant cultures, 287–88
making phototaxis chambers, 291–92
preparing Chlamydomonas vegetative cells, 287
sources of materials, 286
safety and housekeeping, 267, 284
student pages, 265–80
TAP (tris-acetate-phosphate) media, 270, 275, 285, 287–88
medium recipe, 289
stock solution recipe, 288
student-designed experiment, 280–91
unit exercises, 278–79, 280
unit summary, 88
Skeletal muscle. See Muscle, skeletal; Neuromuscular control
Skills tests, 54–57
Slugs, 469
Snails, 371, 468–69
Socratic method, 65
Sodium butyrate, 280, 291
Sodium channels, 280
  blockers of, 334
Sodium fluoride, 225, 234, 240
Sodium hydroxide, safety precautions, 217, 236
Sodium, nutrient solution, 430
Sodium phosphate, 240
Soil
  conditions, resource allocation and, 413–15, 422–23
  salinity, transpiration and, 376–84
Spatial summation, 321–25, 323, 331
  definition of, 322
Specific metabolic rate, 359, 361, 363
Spectrophotometer, 195, 197–98, 208–9, 218
Spiders, 469
Spinach, 245–46, 259
Sponges, 468
Spores, mold, 433, 434, 446
Spores, vegetative (Chlamydomonas), 268
Square wave stimulator, 317, 334
Stability of ecosystems, 456, 472–73
Standard curve, 218
Standard deviation, 416
Standardized tests, for teacher evaluation, 77–78
State-mandated requirements, 11
Statistics, 85, 416
Stomata, 374
Strontium chloride, 334, 337
Structured inquiry, 14
Student assessment. See Assessment of students
Student Assessment of Learning Gains (SALG), 58, 77
Student-designed experiments, viii, 83. See also specific unit exercises
design exercise, 99–102, 100–102
sample form for, 487–89
Student pages, general format of, 83
Substrate concentration, 197–200, 213
Succession of ecological communities, 413–14, 473
Sucrose, 194
Sugars, 194
  stock solutions, 212
Sulfate, nutrient solution, 430
Summation, 321–25, 323
  definition of, 322
Surveys
  in course assessment, 57–58
  in teacher evaluation, 73–75, 74–75
Sutton, Walter, 108
Synaptic terminal, 314, 314
Tadpoles, 371
Tamoxifen citrate, 280, 290
TAP (tris-acetate-phosphate) media, 270, 275, 285, 287–88
  medium recipe, 289
  stock solution recipe, 288
Tartrate, 229, 230, 240
Teacher preparation, time for, 70
Teacher training, 71, 78
Teaching. See also assessment entries
  alternative methods, 28
  choosing instructional methods, 27–28
  evaluation of, 71–78
  inquiry-based methods, viii-xi, 3–18
  inquiry-based vs. didactic, 3–6, 8, 11
  “lab-first” vs. “lecture-first” approach, 33
  metacognitive methods, 10
  “scientific” approach, 20–21
Teaching Goals Inventory, 22–23, 58
Teaching techniques for laboratories, 63–79. See also Assessment of instructors
  behaviors and practices, 64–71
course process skills, 64–68
  active listening, 64–65
  contextual responses, 64–65
directed questioning, 65–68
  other skills, 68
evaluating teaching, 71–78
  in-progress evaluation, 72–73
  postcourse evaluation, 73–78, 74–75
  references on, 78
  personal behaviors, 69–70
    courtesy and respect, 69
    potential pitfalls, 70
  teaching to the learner, 71
  training new instructors, 71, 78
Teaching to the learner, 71
Team-based learning, 28
Technical issues, 35
Technical writing, student assessment with, 50–54, 52–53
Temperature
  endotherms vs. ectotherms, 203, 359, 366
  enzyme activity and, 201–3
  metabolic rate and, 359–64, 366–67
  Temporal summation, 321–25, 323
    definition of, 322
Terbacil, 261
Termites
  laboratory exercises with, 97–102
  safety considerations, 97, 104
  sources of, 105
Testable hypothesis, 95–96
Tests, 47–57. See also Assessment of students
Tetanus/tetany, 322, 323
Tetrathylammonium chloride, 280, 291, 334, 337
Threshold voltage, 317, 331
Toxic chemicals, 342
Training new instructors, 71, 78
Transpiration, 374
Transpirational control (Unit 12), 373–94
  abscisic acid, 374, 375
  background, 373–77, 387
  bean plants (mung beans), 376, 377
    growth and maintenance, 393–94
    handling, 390
    boundary layer, 390
    goals for unit, 376
    instructors’ notes, 387–90
  assessment/quizzes, 388–89
    background and key concepts, 387–88
    other tips, 390
    prelab skills, 388
    safety and housekeeping, 390
    teaching strategy and common problems, 388
  internal and external factors affecting, 374, 375
  permanent wilt point, 374
  potometry, 375–76
  preparatory notes, 391–94
    growing bean plants, 393–94
    vermiculite pH, 394
  pressure chamber potometer, 375
  safety precautions, 376
  soil salinity, 376–77
  stomata, 374
  student pages, 373–85
  teacher pages, 387–94
  transpiration, process of, 374
  transpiration rate, measurement of, 375–76
  unit exercise, 376–85
    effects of soil salinity on transpiration (EXERCISE), 376–84
    equation for calculating leaf area, 381
    equation for calculating transpiration rate, 383
    estimating leaf area, 380–81, 381
    student-designed experiment, 385
      typical data graph, 389
      unit summary, 89
      unit summary questions, 384–85
    water, effects on physiological processes in plants, 375
    weight potometry, 375–76
Tree species, communities and growth of, 413–14
Triazines, 252, 261
Tricaine methane sulfonate (MS-222), 335
Triethylamine (FlyNap), 126
Trifluoperazine, 280, 291
INDEX

True/false questions, 49
Tryptamine, 305
Tubocurarine, 334, 337
Twitch, 314–15
  threshold voltage for, 317, 331
2, 4-D, 260
Tyramine, 304

Uncertainty, as teaching tool, 68
Unit exercises. See Laboratory exercises, specific
Universal precautions, 236
University of Georgia, Center for Teaching and Learning, 71
University of Kansas, Center for Teaching Excellence, 71
University of Washington, instructional assessment forms, 75
Uracils, 261
Ureas, 261
UV light, safety precautions, 141, 171, 182

Vermiculite, 394, 416, 428
Vertebrates, 469
Views on Science-Technology-Society (VOSTS), 60, 77
Volterra, Vito, 445
von Haller, Albrecht, 95, 96
VOSTS (Views on Science-Technology-Society), 60, 77

Water and ion regulation, 373–74. See also Transpirational control
Water availability, 432
Water fleas (Daphnia magna), 352
Weight potometry, 375–76
Wine traps (for Drosophila), 129, 309
Wisconsin Program for Scientific Teaching, 71
Wisteria, 415
Wood rats, 432, 433
Word problems, 49–50
WorkBench computer program, 145–53, 146–48

TACG search, 160–62, 160, 161
Worms, 468
  blackworms (Lumbriculus variegatus), 340–42, 341, 353
Writing, technical, 50–54
  Calibrated Peer Review (CPR), 54
  commenting on/comments list, 53
  directed writing format, 51
  grading, 51–53, 52–53
  student assessment with, 50–54
Written exams and quizzes, 48–50
X chromosome, 110
Xylene, 355
Y chromosome, 110
Zinc, nutrient solution, 430
Zygospore, 270
Zygote, 269, 270