NSTA AREA CONFERENCE ON SCIENCE EDUCATION

MAKING SCIENCE ACCESSIBLE

FULL SPEED AHEAD

BALTIMORE

OCTOBER 5-7

2017

#NSTA17
PASCO
Always your choice for lab equipment
Now your choice for curriculum

Booth #200

Core Curriculum and Much More
- LMS & Google Classroom integration
- Interactive simulations and equations
 - Award-winning lab equipment
 - Innovative assessment tools
- Lessons follow 5E Design
- Infinite Test Bank access

Essential Chemistry © 2018
Essential Physics © 2018

4 FREE Workshops • Friday, Oct 6th, 2017 • Room #337
(See program for more details.)
NSTA Book Club Membership

Save up to 50% on our bestselling titles...

When you sign up for or renew your NSTA membership, select the book club membership option, choose three books from any grade level and on topics readers love—NGSS, STEM, literacy, assessment, and more—then wait for your favorite books to arrive on your doorstep while enjoying all of your other NSTA member benefits.

See all membership options, including regular, new teacher, and institutional memberships, at www.nsta.org/membership

Become an NSTA Book Club Member at www.nsta.org/bookclub
eCYBERMISSION is a national web-based STEM competition for students in grades 6-9.

Teachers can apply for Mini-Grants to support the implementation of student projects.

www.ecybermission.com/AdvisorResources
Welcome to Baltimore: Making Science Accessible: Full Speed Ahead

Welcome to the NSTA Baltimore Area Conference. On behalf of the science education community in Maryland, we welcome you to Baltimore. Located right on the Chesapeake Bay, Baltimore is home to the world-famous Inner Harbor, historic neighborhoods, and outstanding museums.

The conference committee wants you to join us in the journey to support all students to engage in science by “Making Science Accessible: Full Speed Ahead.” We have organized a wide variety of experiences across all grade levels and disciplines that will challenge you and help you improve your practice as a science educator and leader.

Baltimore Conference Committee

We at NSTA wish to express our heartfelt thanks to the members of the Maryland Association of Science Teachers for the many hours of time they volunteered in planning this conference.

Conference Chairperson
Mary C.H. Weller
NSTA Director, District III
Secondary Science Coordinator
Howard County Public School System
10910 Clarksville Pike
Ellicott City, MD 21042
mary_weller@hcpss.org

Program Coordinator
Asli Sezen-Barrie
Assistant Professor
College of Education and Human Development
University of Maine
5766 Shibles Hall
Orono, ME 04469
asli.sezenbarrie@maine.edu

Local Arrangements Coordinator
Mary K. Stapleton
Director of Bioscience Education and Outreach
Center for STEM Excellence
Towson University
701 E. Pratt St., Suite 200
Baltimore, MD 21202
mkstapleton@towson.edu

The conference is organized around these three strands:

- Tying the Knot: Coherence in 3-D Science Learning
- Charting the Course for Innovation
- Anchoring Our Natural Treasures Through Environmental Literacy

From the exciting expert invited speakers, hands-on workshops, presentations, and short courses, you are sure to find innovative ideas and practices that will assist you in preparing students for the demands of the 21st century in STEM fields. We know that you will have a terrific learning experience while you are with us. We hope that you meet other like-minded educators who will become friends and colleagues. We are all in this together!

We look forward to meeting you as you engage in the wonderful adventure of learning and growing! We are so excited that you are here. Please stop by the MAST counter located at the Lower Pratt Street Lobby. We would love to meet you and share with you what your professional organization is doing to support you, including the 2018 NSTA Area Conference at National Harbor in November 2018.

2017 Baltimore Area Conference Committee Leaders
Mary C.H. Weller, Asli Sezen-Barrie, and Mary K. Stapleton

Strand Leader: Charting the Course for Innovation
Lauren Thompson Allen
Office of Teaching and Learning
District of Columbia Public Schools
Washington, DC

Program Representatives
Naté Hall
Howard County Public School System
Ellicott City, MD

Godfrey Rangasammy
Prince George’s County Public Schools
Capitol Heights, MD

Stephanie Wright
Delaware Aerospace Education Foundation
Smyrna, DE

Conference Advisory Board Liaison
Carolyn Hayes
2015–2016 NSTA President and Retired Educator
Greenwood, IN
Welcome to the NSTA Area Conference in Baltimore. If you have not explored the Inner Harbor area, you are in for a treat—great food, museums, and history await. You might even still catch an Orioles game at Camden Yards. What you will not want to miss are the great speakers and sessions that we have lined up for you. The conference theme is Making Science Accessible: Full Speed Ahead. Along with this theme, the conference committee has planned the conference around three strands that explore topics of current significance.

The first strand is Anchoring Our Natural Treasures Through Environmental Literacy. This strand focuses on how today’s students are tomorrow’s leaders. In this strand, participants will learn to elevate student experiences by partnering with informal educational providers, getting students outdoors, and participating in authentic research.

The second strand is Tying the Knot: Coherence in 3-D Science Learning. The Next Generation Science Standards emphasize three-dimensional learning to explain phenomena. Storylines and learning progressions are used within curriculum development and implementation to provide coherence within and across grade levels. In this strand, participants will learn to use storylines, find ways to adapt instruction using responsive strategies, and focus on learning progressions.

The final strand is Charting the Course for Innovation. To develop innovative scientific leaders for tomorrow, we must foster creativity, academic risk-taking, and perseverance within ALL students today. Participants will investigate effective classroom examples supporting preK–16 student learning that involves engineering design projects, use of technology, and computer science.

I encourage you to take full advantage of this area conference to improve your knowledge on making science accessible for all students, not only through these selected strands, but through the other featured speakers, sessions, professional learning opportunities, as well as the exhibit hall. Take time to find new colleagues and share ideas that you bring to this conference with others. I am sure that you will agree with me that NSTA provides a unique and exciting opportunity to hone your teaching craft and create new ideas to use with your students. I look forward to seeing you here in Baltimore!

David T. Crowther
2017–2018 NSTA President

Sponsors and Contributors to the Baltimore Conference

NSTA, MAST, and the Baltimore Planning Committee are extremely grateful to the following companies and associations for their generous contributions to the NSTA Baltimore Area Conference on Science Education.

Sponsors

- Maryland Association of Science Teachers
- National Geographic Learning | Cengage
- Southwest Airlines
- Texas Instruments
- Vernier Software & Technology

Contributors

- American Association of Physics Teachers (AAPT) and the Chesapeake Section of the AAPT
- American Chemical Society Education Division
- American Society for Engineering Education (ASEE)

The environment is important to science educators. These programs are recyclable and were printed on recycled paper.
The National Science Teachers Association is committed to meeting today’s environmental challenges by adopting eco-friendly practices both in our own day-to-day operations and at our conferences, workshops, and other events. In addition, we strongly encourage our contracted conference facilities to follow green practices as well. Here are some of the ways NSTA’s conference department has worked to minimize our impact on the environment:

Conference Previews
Gone are the days of bulky, newspaper-style advance programs. Our conference preview is a smaller size and includes highlights for our three area conferences. As an added bonus, this new preview is more environmentally friendly, as it dramatically reduces both our print and mailing requirements.

Online Conference Information and Personal Scheduler
Most of your conference arrangements can now be accomplished online (www.nsta.org/conferences). Register and make your housing reservations on the web. Program details are available to you on our website using the Session Browser/Personal Scheduler. Scheduling information on our website is up to date and more complete than that available through a printed piece.

Final Conference Programs by E-Mail/Conference App
All conference pre-registrants are sent an electronic version (PDF) of the final conference program by e-mail approximately one week prior to the conference, further reducing print and shipping requirements. Also, attendees are encouraged to use the NSTA Conference app, which provides all the tools necessary for a successful conference experience.

Recycled Paper and Sustainable Print Services
Conference previews and final conference programs are printed on recycled paper whenever possible. In addition, Walsworth Inc., the printer for our conference materials, is in strict compliance with all environmental laws and exceeds these standards in many areas. Wherever possible, Walsworth works to reduce and recycle waste, use reduced- or low-VOC chemicals, increase the recycled content of raw materials, and use soy- or vegetable-based inks. Walsworth has also obtained certifications with the Sustainable Forest Initiative (SFI) and the Forest Stewardship Council® (FSC) to ensure paper products are being harvested from environmentally responsible sources.

Environmentally Friendly Exhibition Practices
Our conference partner, Hargrove, Inc., offers many green product options and services in the production of our conference exhibitions, including 100% recyclable carpet and padding, recycled exhibit structures, a “reclaimer” that recycles 92% of all solvents the company uses in production of graphics, use of LP natural gas in 75–90% of show-site vehicles, and many biodegradable and recycled products such as trash bags and wastebaskets. Their green efforts are extended operationally with reductions in electricity, heating fuel, and water usage, as well as a move to 100% recyclable and biodegradable products.

Baltimore Convention Center’s Green Practices
The Baltimore Convention Center is committed to supporting “green initiatives” both at the center and throughout the community! In 2015, the center successfully completed the certification process and achieved level one of the APEX/ASTM Green Meetings for Venues Standard. This made Baltimore the first U.S. destination on the East Coast to achieve this certification.

Waste Reduction: The Diversion by Donation program partners with community-based not-for-profit groups to donate goods and food products that go unused by center events. In fiscal year 2016, the center’s waste diversion rate was 29%, a 5.75% increase over fiscal 2015. This equates to an additional 81 tons of waste diverted from the local landfill.

Energy Savings: Started in 2012, the Constellation Energy project involved major upgrades to HVAC equipment, plumbing systems, and a total replacement of the center’s lighting controls, including changing the entire exhibit hall lighting from halogen to induction technology.

West Side Cooling Renovation: In late 2016, the cooling tower on the west side of the center was replaced and upgraded to state-of-the-art equipment. This new tower reduces the amount of energy needed to provide conditioned air to the building significantly.

“Go Green” at the Baltimore Conference!
- Recycle your conference programs in the clearly marked recycle bins located throughout the Convention Center.
- Recycle or reuse your plastic badge holders—you can either turn them in at the NSTA Registration Counter or use them at future conferences.
- In advance of the conference, presenters are encouraged to post their presentations and handouts on the Session Browser/Personal Scheduler.
- If you prefer to bring handouts to your session, use doublesided printing and/or recycled paper.
- Walk or use public transportation when possible at the conference.
- Bring your own refillable water bottle to the conference.
- Evaluate sessions attended online.
Meeting Location and Times

The conference hotels are Hilton Baltimore (headquarters), Days Inn Baltimore Inner Harbor, Hampton Inn Baltimore–Downtown Convention Center, and Holiday Inn Baltimore–Inner Harbor (Downtown). Conference registration, exhibits, the NSTA Hub, the NSTA Science Store, exhibitor workshops, and many sessions will be located at the Baltimore Convention Center. Other sessions and events will be held at the Hilton Baltimore. The conference will begin on Thursday, October 5, at 8:00 AM, and end on Saturday, October 7, at 12 Noon.

Registration

Registration is required for participation in all conference activities and the exhibits. The lapel badge e-mailed to you with your confirmation, or issued to you at registration on-site, is your “ticket of admission” to the Exhibit Hall and all conference activities except those for which a separate fee is stated.

The Registration Area, located in Hall E of the Convention Center, will be open during the following hours:

- Wed., Oct. 4 5:00–7:00 PM
- Thu., Oct. 5 7:00 AM–5:00 PM
- Fri., Oct. 6 7:00 AM–5:00 PM
- Sat., Oct. 7 7:30 AM–12 Noon

If you misplace your badge or tickets, present your personal ID at the Badge Pick-Up/Replacement Counter in the Registration Area and you will be issued replacements. Only one replacement badge will be issued.

Purchasing Ticketed Events

The Baltimore Planning Committee has scheduled a variety of ticketed events. Each of these events requires a separate fee and ticket. You may purchase tickets for these events, space permitting, in the Registration Area. See the Conference Program section (starting on page 32) for details. Note that some events may have required advance registration.

Ground Transportation to/from Airport

A variety of ground transportation options are available to and from BWI Thurgood Marshall Airport. SuperShuttle to and from the Inner Harbor hotels is approximately $30 each way or $60 round-trip (for nonstop ride 1–3 passengers). Please proceed to one of the two BWI Shuttle ticket counters—both located on the lower level baggage claim area. Average taxi fare to downtown Baltimore is $30–35 (including 15% tip).

Getting Around Town

You’ll find that many of Baltimore’s hotels, attractions, restaurants, and nightlife are located within comfortable walking distance of each other. If you prefer not to walk, the Maryland Transit Administration (MTA) operates local bus routes, Metro Subway, and Light Rail. Call the MTA at 410-539-5000 or visit mta.maryland.gov for more information about MARC and other services.

Fast, frequent, and free...that’s the trademark of downtown Baltimore’s new shuttle bus system—the Charm City Circulator. The free shuttles run every 10 minutes from early morning to late night, seven days a week.

Parking

There are a number of parking lots at Camden Yards (across the street from the Convention Center). The closest lots are North and East Warehouse lots, followed by Lot A. Parking in these lots is $10 for the first hour, and $23 for the third hour (24-hour max.), $26 for a day. For more parking options, visit bit.ly/2uYVlna.
Registration, Travel, and Hotels

Airlines
NSTA has made arrangements with several major airlines to offer discounted fares to Baltimore conference attendees. Visit www.nsta.org/baltimoretravel for details.

Discounted Rental Cars
The toll-free number to contact an NSTA-designated car rental company is:
Enterprise 800-593-0505 16AH230
* go to www.enterprise.com and use "16AH230" in the "Optional: Coupon, Customer or Corporate Number" box, click on "search" and enter PIN "NST."

—Photo courtesy of Visit Baltimore

Conference App

Download our conference app for a social experience you don’t want to miss.

• Search sessions, exhibitors, and speakers to build a schedule of your favorites
• Access maps with pinpoint locations
• Take notes within app
• Bookmark an interesting speaker
• Share the play-by-play with social media channels
• Tweet a memorable quote from a session
• Access conference FAQs

Available for download on
iPhone + iPad
Android

Powered by: NSTA
National Science Teachers Association

www.nsta.org/conferenceapp

Your event is 20 days away.
Registration, Travel, and Hotels

If you have questions or concerns regarding your housing, please contact Orchid.Events (during business hours) Monday through Friday, 9:00 AM–8:00 PM ET at 877-352-6710 (toll-free) or 801-505-4611, or e-mail help@orchid.events. Available Monday–Friday, 9:00 AM–8:00 PM ET. After hours and on Saturday, call 801-243-4476.

1. Hilton Baltimore
 (Headquarters Hotel)
 401 W. Pratt St.

2. Days Inn Baltimore Inner Harbor
 100 Hopkins Place

3. Hampton Inn Baltimore–Downtown Convention Center
 550 Washington Blvd.

4. Holiday Inn Baltimore–Inner Harbor (Downtown)
 301 W. Lombard St.

Shuttle service will not be provided as all hotels are within walking distance to the Convention Center.
NSTA Exhibits

The NSTA Exhibit Hall is a must-see! NSTA brings you the leading science education companies and organizations to showcase products, services, curricula, and much more. You’ll discover something new and exciting in the world of science teaching.

The lapel badge e-mailed to you before the conference, or issued to you at registration on-site, is your “ticket of admission” to the Exhibit Hall and all conference activities. Maps of the Exhibit Hall and others meetings rooms will be accessible via our Conference app (see page 11). See page 111 for a complete list of exhibitors and contact information.

Exhibit Hall Hours. Located in Hall E, exhibits will be open for viewing during the following hours:

- Thu., Oct. 5 11:00 AM–5:00 PM
- Fri., Oct. 6 9:00 AM–4:00 PM
- Sat., Oct. 7 9:00 AM–12 Noon

Did you know that NSTA offers Exclusive Exhibits Hall and Exhibitor Workshop hours?

During the hours listed below, there are no teacher sessions scheduled and it’s a perfect time to visit the exhibits or engage in an exhibitor workshop and discover all the products and services companies and organizations have to offer.

- Thu., Oct. 5 11:00 AM–12:30 PM
- Fri., Oct. 6 3:00–4:00 PM

Lead Retrieval. NSTA exhibitors use lead retrieval, a paperless tracking system that allows them to receive fast, accurate information about conference attendees who have visited their booths. With the lead retrieval system, an exhibitor scans your badge as you visit the booth. This allows exhibitors to send information to you while the conference is still fresh in your mind.

Exhibitor Workshops. Exhibitor-sponsored workshops for science teachers are offered throughout the conference. These workshops give you an opportunity to use a variety of commercial instructional materials. Attendance is on a first-come, first-served basis. See page 123 for a complete listing of exhibitor workshops.

NSTA Science Store

Visit us at the NSTA Science Store to explore a wide selection of resources and gear you’ll love! You’ll find hundreds of books that uniquely blend accurate science content with sound teaching strategies for science educators of all grade ranges and disciplines. Not only do we have books covering a wide range of topics to help you sharpen your content knowledge and hone your teaching methods, but we also carry a complete line of NSTA gear you can’t find anywhere else—such as T-shirts, mugs, and classroom supplies. We offer convenient free shipping for book purchases to addresses within the United States when you place your order on-site at the conference. *Note: Free shipping is not offered to international addresses or for NSTA gear purchases. We’ve lined up a number of unique opportunities for conference-goers:

- Exclusive author signings and meet-and-greet opportunities
- Our latest books—including Argument-Driven Inquiry in Physics, Volume 1: Mechanics Lab Investigations for Grades 9–12; Beyond the Egg Drop: Infusing Engineering Into High School Physics; Eureka! Grade 3–5 Science Activities and Stories; Toward High School Biology; and Picture-Perfect STEM Lessons, K–2 and 3–5: Using Children’s Books to Inspire STEM Learning—and our newest children’s books from NSTA Kids, such as When the Sun Goes Dark, Next Time You See a Cloud, and Notable Notebooks: Scientists and Their Writings
- “I Love Science” and NSTA gear product lines to show your love of science and pride in teaching
- Member discounts of 20% on NSTA Press® items and 10% on books from other publishers
- Daily book and gear specials, product giveaways, and more.
Maryland Association of Science Teachers (MAST) Luncheon (M-1)

Date: Friday, October 6, 12:30–2:00 PM
Ticket Price: $35

Join the Maryland Association of Science Teachers (MAST) to learn, network, and celebrate STEM with educators and leaders from across Maryland. This ticketed event includes a plated lunch, followed by presentation of MAST awards and remarks from Heidi Schweingruber, director of the Board on Science Education at the National Research Council. She co-directed the study that resulted in the report *A Framework for K–12 Science Education* (2011), which was the first step toward the *Next Generation Science Standards*. Guests can learn about opportunities for becoming more involved in the MAST board or committees that support educators from our region. Sponsored in part by the Towson Center for STEM Excellence.

Stop by the registration counter to purchase any available tickets.

Wi-Fi in Convention Center
Complimentary Wi-Fi can be accessed in all of the lobby areas of the Convention Center. It’s called “Free BCC Wi-Fi” and can be used for checking e-mail and casual internet access. No code is required.

Presenters and Presidents Check-In
If you are presenting or presiding at a session, please check in at the Presenters/Presiders check-in counter in the Registration Area.

Welcome and Information Center
A Welcome and Information Center is located at the Pratt Street Lobby. Here you’ll find information on tourist attractions, transportation, restaurant recommendations/reservations, and more. The center will be staffed the following hours:
- Thursday–Friday, 10:00 AM–5:00 PM
- Saturday, 7:30 AM–12:30 PM

MAST Counter
The Maryland Association of Science Teachers (MAST) counter is located at the Lower Pratt Street Lobby. Stop by for information about Maryland and the benefits of becoming a member of MAST. Membership forms and information on association activities will be available, along with registration forms for graduate credit through Framingham State University. Stop by the booth to update your information, renew your membership, or become a member. Be a part of the professional community supporting science education across Maryland!

The NSTA Conference App
Navigate the conference from the palm of your hand! The NSTA Conference app provides all the tools necessary for a successful conference experience.

Features include the ability to view session and workshop listings by time and presenter; maps of the Convention Center, Hilton, and Exhibit Hall; social media plugins; and a note-taking tool. Visit www.nsta.org/conferenceapp to download the app. Please make sure to create a CrowdCompass account when logging in to be able to export any notes taken within the app. *Note:* The NSTA Conference app does not sync to our online Personal Scheduler.

First Aid Services/Mothers Room
The first aid office is right outside Hall E near the roll-up doors on the docks. For emergencies, contact Security at x7055 from an in-house phone or 410-649-7055.

In addition, a room for nursing mothers is located in the Pratt Street East Show Office of the Convention Center. See the NSTA Registration Desk for entry/key for mother’s room.

Lost and Found
All lost-and-found items will be turned in at the Exhibitor Registration counter at the Convention Center.
Audiovisual Needs
NSTA will fulfill AV needs originally requested on the program proposals as long as the request is within the limits of equipment that NSTA provides. For any last-minute AV needs, presenters must arrange and pay for their own equipment. Audio Visual Production Solutions, the designated AV company on-site, will be located in the following rooms:

• Room 350, Convention Center
• Pickersgill, Hilton

Business Services
Operated by ABC Imaging, the Business Center is located in the Pratt Street Lobby (300 Level) of the Convention Center. The Business Center (+1-649-7194) is available to serve your business needs. Hours are:

Thursday–Friday, 8:30 AM–4:30 PM
Saturday, 9:00 AM–2:00 PM

Services include photocopies and laser prints (color and black/white), faxes, PC rentals, network connections to both ABC printers and the internet, office supply sales (pens, tape, glue, batteries, etc.), and shipping services with DHL, UPS, and FedEx. ABC Imaging has a full-production print shop located at 400 East Pratt Street (three blocks down from the Convention Center). The shop is equipped to handle all of your large and small color graphic, binding, and mounting needs.

Online Session Evaluations and Tracking Professional Development
All attendees can evaluate sessions online while simultaneously tracking their professional development certification.

Help NSTA’s GREEN efforts by visiting the conference session browser to complete session evaluations online, October 5–18, 2017. During the conference, session evaluations can be completed on the computers at the Presenters/Presiders check-in counter in the Registration Area. And this year, we’re giving away an Apple iPad mini 4 Wi-Fi tablet to one lucky attendee who completes a session evaluation! Remember, the more sessions you attend and evaluate, the more chances you have to win!

To evaluate a session, attendees should follow these steps:

• Visit the conference session browser and search for part of the session title or presenter’s name using the Find Keyword search option. Note: Our session evaluation system is designed to work from a computer and while it may work on smartphones/tablets, it is not really designed for them.
• Once you find the session you wish to evaluate, simply click the Evaluate Session button.
• Enter badge number (if you don’t remember your badge number, click “help me find my badge number”).
• When finished evaluating the session, click the Submit Evaluation button.
• Repeat this process for each session attended.

Concurrent session presenters may also complete evaluations for their own sessions in order to track professional development credit. A Professional Development Documentation Form is included following page 32 to help attendees keep track of sessions/events attended that are NOT available for online session evaluation. This form can also be used to take notes on sessions attended that are available for online session evaluation.

Beginning October 30, 2017, an attendee can view his or her transcript at the NSTA Learning Center (learningcenter.nsta.org) by first logging on and then clicking “My Profile” under the Welcome. Here you’ll find a “Certificates” tab, which you can use to access your transcript. Attendees can also document credit for activities that are not being evaluated (e.g., Exhibit Hall visits, etc.). In addition, the NSTA Learning Center offers professional development experiences (online and face-to-face) for your long-term growth and professionalism.

Each attendee is responsible for tracking his or her own attendance at such events. The transcript can be printed here and presented to an administrator who requires documentation of participation in the conference. All information in these transcripts will be maintained (and can be accessed) indefinitely as part of an attendee’s individual profile.
The following venues have extended special offers for Baltimore Area Conference Registrants.

Baltimore Show Your Badge Program
Multiple venues, including restaurants

Courtesy of Visit Baltimore, just show your badge at the participating establishments to receive a special promotion or discounts. For complete details and a listing of special offers, visit bit.ly/2hLjoTN.

The National Aquarium
aqua.org

The National Aquarium located 501 East Pratt Street is offering a $5 discount off admission for Baltimore Area Conference registrants who show their badge at the ticket counter. With close to 20,000 animals from more than 700 species, National Aquarium is an amazing and informative journey through the wonders of our aquatic world.

Help us with your feedback...and get a chance for a free Apple iPad mini 4

We’re giving you one more reason to evaluate conference sessions.

When you log on to www.nsta.org/baltimorebrowser and fill out an evaluation by clicking on the “evaluate session” button below the session you attended, you get entered into a drawing for a chance to win an Apple iPad mini 4 Wi-Fi tablet *courtesy of the NSTA Conference Department*.

Your feedback helps us in creating the best conference experience for you and other attendees.

• WE’RE GIVING AWAY an APPLE iPAD MINI 4 Wi-Fi TABLET

• CONFERENCE APP

To access the app, visit www.nsta.org/conferenceapp
Conference Resources • Headquarters Staff

Executive Office
David Evans, Executive Director
Michelle Butler, Executive Administrator and Manager

Board Relations
Michelle Butler, Executive Administrator and Manager
Shawn Crowder, Administrative Coordinator

Data Analytics
Todd Wallace, Assistant Executive Director and CIO

Human Resources
Irene Dole, Assistant Executive Director
Janine Smith, HR Benefits Manager and Generalist

Nominations and Teacher Awards Programs
Amanda Upton, Manager

Office of Communications and Legislative and Public Affairs
Jodi Peterson, Assistant Executive Director, Legislative and Public Affairs
Cindy Workosky, Communications Specialist
Kate Falk, Senior Manager, Public Relations
Tim Weber, Assistant Executive Director, Web and News

Program Integration
Jennifer Horak, Assistant Executive Director
Shawn Crowder, Administrative Coordinator
Kim Stilwell, Manager, New Business Development

Learning Center
Flavio Mendez, Assistant Executive Director
Vacant, eLearning Engagement Specialist

NGSS@NSTA
Ted Willard, Program Director
Tricia Shelton, Standards Implementation Specialist

Professional Programs
John Putnam Assistant Executive Director
Wendy Binder, SPIR Project Director
Dayna Anderson, Program Manager
Sharlene Steward, Program Coordinator

Conferences Division
Delores Howard, Associate Executive Director

Conferences and Meetings
Dina Weiss, Associate Director
Linda Crossley, Assistant Director/Managing Editor
Donna Fletcher, Conference Coordinator
Beverly Shaw, Conference Administrator
Christina Diersen, Project Editor
Kimberlyn McDonald, Registration Supervisor/Administrative Assistant
Jasmine Dandridge, Database Coordinator
Marcelo Nunez, Exhibit Services Coordinator

Exhibits/Sales
Jason Sheldrake, Assistant Executive Director
Kimberly Hotz, Senior Manager, Exhibitor Operations
Jeffrey LeGrand-Douglass, Account Manager
Becky Shoemaker, Advertising Production Manager
Danielle McNeill, Project Manager, NSTA Mailing List

Content Division
David Beacom, Associate Executive Director and Chief Content Officer
Emily Brady, Executive Administrator/Editor, NSTA Recommends

Art and Design
Will Thomas, Director
Joseph Butera, Senior Graphic Designer
Hima Bichali, Graphic Designer

e-Products
Leisa Clark, Assistant Executive Director
Kara Pantalena, Senior Instructional Designer
Eleanore Dixon-Roche, e-Learning Multimedia Specialist

Journals
Ken Roberts, Assistant Executive Director
Kate Sedor, Associate Editor
Luke Towler, Editorial Assistant

Science & Children
Linda Froschauer, Field Editor
Valynda Mayes, Managing Editor

Science Scope
Patty McGinnis, Field Editor
Ken Roberts, Assistant Executive Director, Journals

The Science Teacher
Stephen C. Metz, Field Editor
Scott Stuckey, Managing Editor

Journal of College Science Teaching
Ann Cutler, Field Editor
Caroline Barnes, Managing Editor

Marketing, Social Media & eMessaging
Lauren Jonas, Assistant Executive Director
Jennifer Gulley, Marketing Manager
Korei Martin, Social Media Coordinator

New Products
Tyson Brown, Assistant Executive Director

NSTA Press
Claire Reinburg, Assistant Executive Director
Rachel Ledbetter, Managing Editor, Books (NSTA Press)
Vacant, Associate Editor
Donna Yulkin, Book Acquisitions Coordinator
Deborah Siegel, Associate Editor

NSTA Reports
Lynn Petrinjak, Editor
Debra Shapiro, Associate Editor

Printing and Production
Catherine Lorrain, Director
Jack Parker, Electronic Prepress

Strategic Initiatives
Rick Bounds, Assistant Executive Director
Alison Thalman, Senior Associate, Professional Development Relationships

Operations Division
Moira Fathy Baker, Deputy Executive Director, and CFO
Azi Ambrishami, Administrative Coordinator

Business & Finance
Brian Short, Assistant Executive Director
Diane Cash, Senior Manager, A/P and Internal Compliance
Elise Maka, Senior Manager, Inventory Control
Jodie Rozzell, Director of Grants and Contracts
Gaby Bathiche, Accountant
La’Keisha Hines, Accounting Associate
Shante Young, Accounts Receivable Specialist

Chapter Relations and Membership
Erik Schonher, Director of Membership and Chapter Relations
Azi Ambrishami, Administrative Coordinator

Customer Service
Nelly Guacheta, Director, Service Central
Cindy Thomas, Senior Manager
Russell Williams, Customer Service Representative, Data Entry
Kiara Singleton, Customer Service Representative, Data Entry, Publication Sales
LaToya Parks, Coordinator, CSR/Data Entry, Publication Sales
Kristen Reiss, Customer Service Representative, Coordinator

NSTA Baltimore Area Conference on Science Education
NSTA Officers, Board of Directors, Council, and Alliance of Affiliates

NSTA Mission Statement

The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.

Officers and Board of Directors

David T. Crowther, President
Christine Anne Royce, President-Elect
Mary S. Gromko, Retiring President
Jennifer S. Thompson, Preschool/Elementary
Kenneth L. Huff, Middle Level
Carrie Jones, High School Science Teaching
Elizabeth Allan, College Science Teaching
John Olson, Coordination and Supervision of Science Teaching
Dennis Schatz, Informal Science
Natalia Campbell, Multicultural/Equity
Eric J. Pyle, Preservice Teacher Preparation
Eric Brunsell, Professional Development
Emily Schrenning, Research in Science Education
David Evans, Executive Director
LeRoy Lee, Treasurer

Council

David T. Crowther, President
Carolyn Higgins, District I
Doug Hodum, District II
Mary C. H. Weller, District III
Mary L. Loesing, District IV
Zoe Evans, District V
Cindi Smith-Walters, District VI
Sheila Smith, District VII
Dennis Alan Casey, District VIII
Brenda Walsh, District IX
Shannon Hudson, District X
J. Carrie Launius, District XI
Nicole Vick, District XII
Deb Novak, District XIII
Jen Gutierrez, District XIV
Tom Cubbage, District XV
Camille T. Stegman, District XVI
Midge Yergen, District XVII
Gabe Kraljevic, District XVIII

Alliance of Affiliates

James McDonald, CESI Chairperson and Affiliate Representative
Patricia D. Morrell, ASTE Affiliate Representative
Sharon Delesbore, AMSE Affiliate Representative
Margaret Glass, ASTC Affiliate Representative
Tiffany Neil, CSSS Affiliate Representative
Deborah Hanuscin, NARST Affiliate Representative
Mary Lou Lipscomb, NMLSTA Affiliate Representative
Bob Sotak, NSELA Affiliate Representative
Brian Shmaefsky, SCST Affiliate Representative

Tinika Fails, eCYBERMISSION Manager, Volunteer Programming
Alexandra Wakely, eCYBERMISSION Outreach Specialist
Vacant, eCYBERMISSION Administrative Assistant
Elana McGovern, eCYBERMISSION Administrative Assistant
Deborah Murray, AEOP Budget and Project Manager
Vacant, AEOP Communications and Marketing Specialist
Marcia Akeung, AEOP Logistics Coordinator
Jarod Phillips, GEMS Project Manager
Renee Wells, GEMS Administrative Assistant
Conference Resources • Future Conferences

All cities are subject to change pending final negotiation.

National Conferences on Science Education

Atlanta, Georgia
March 15–18, 2018

St. Louis, Missouri
April 11–14, 2019

Boston, Massachusetts
April 2–5, 2020

Chicago, Illinois
April 8–11, 2021

Area Conferences on Science Education

2017 Area Conferences

Milwaukee, Wisconsin—November 9–11
New Orleans, Louisiana—November 30–December 2

2018 Area Conferences

Reno, Nevada—October 11–13
Gaylord National Harbor, Maryland—November 15–17
Charlotte, North Carolina—November 29–December 1

7th Annual STEM Forum & Expo, hosted by NSTA

Philadelphia, Pennsylvania—July 11–13, 2018

Share Your Ideas!

NSTA’s CONFERENCES ON SCIENCE EDUCATION

Have an idea for an inspiring presentation or workshop on science or STEM education? Submit a session proposal today for...

7th Annual STEM Forum & Expo, hosted by NSTA

Proposal Deadline: 12/4/2017

2018 Area Conferences

Reno,NVOctober 11–13
Gaylord Nat’l Harbor, MDNovember 15–17
Charlotte, NCNovember 29–December 1

Proposal Deadline: 1/16/2018

2019 National Conference

St. Louis, MOApril 11–14

Proposal Deadline: 4/16/2018

To submit a proposal, visit www.nsta.org/conferenceproposals
Science State of Mind

NSTA NATIONAL CONFERENCE

JOIN US

ATLANTA
MARCH 15–18 2018

Over 1,200 sessions
Network with more than 10,000 educators
350+ Exhibitors with cutting-edge resources
And much more!

REGISTER EARLY AND SAVE
EARLY BIRD DEADLINE
FEBRUARY 9, 2018

CONFERENCE STRANDS

Focusing On Evidence of 3-D Learning
Imagining Science as the Foundation for STEM
Reflecting on Access for All Students
Comprehending the Role of Literacy in Science

Learn more and register
www.nsta.org/atlanta
#NSTA18
Conference Program • Highlights

Thursday, October 5
- **8:00–9:00 AM** First-Timer Conference Attendees’ Orientation
- **9:15–10:30 AM** General Session: Freeman A. Hrabowski III
- **11:00 AM–5:00 PM** Exhibits (Exclusive exhibit/exhibitor workshop hours: 11:00 AM–12:30 PM)
- **2:00–3:00 PM** Featured Presentation: Gregg Treinish, sponsored by National Geographic Learning | Cengage

Friday, October 6
- **8:00 AM–1:30 PM** Middle School Chemistry Day
- **8:00 AM–2:30 PM** Chemistry Day (For Grades 9–12)
- **8:00 AM–3:00 PM** Engineering Day
- **8:00 AM–6:00 PM** Physics Day
- **9:00 AM–4:00 PM** Exhibits (Exclusive exhibit/exhibitor workshop hours: 3:00–4:00 PM)
- **9:30–10:30 AM** Featured Presentation: Jay McTighe
- **12:30–2:00 PM** MAST Luncheon (M-1, Ticket Required)
 - Speaker: Heidi Schweingruber
- **2:00–3:00 PM** Featured Presentation: Andrew Coy
- **2:45–3:30 PM** Meet the Presidents and Board/Council

Saturday, October 7
- **9:00 AM–12 Noon** Exhibits

Is This Your First NSTA Conference?

Yes, you say? Then you are invited to attend a special session on Thursday, 8:00–9:00 AM. Learn how you can gain the most from your conference experience and have fun doing it! See page 40 for details.

Win a round-trip Southwest ticket to the NSTA National Conference on Science Education in Atlanta.

Thanks to the generosity of Southwest Airlines we’re giving away three round-trip tickets on Southwest Airlines for educators to attend the NSTA National Conference in Atlanta, March 15–18, 2018!

The drawings will be held at:
- **4:00 PM**, Thursday
- **2:00 PM**, Friday
- **10:00 AM**, Saturday

Stop by the NSTA Hub for all the details! You need not be present to win.
Empower your students and unleash their curiosity for science and discovery.

Vernier introduces Go Direct™ sensors. Wireless or USB—the versatility is built into these affordable sensors, so you have the flexibility to choose. All Go Direct sensors connect directly to student computers, Chromebooks, or mobile devices, so there’s no interface needed. That’s freedom, versatility, and boundless opportunity.

Learn more at www.vernier.com/unbound
Anchoring Our Natural Treasures Through Environmental Literacy

Today’s students are tomorrow’s leaders. It is imperative that they be equipped to rise to challenges, including preservation of natural resources, mitigation of air and water pollution, and adaptation to climate change. They must think critically and understand how their actions impact the environment. Engaging students in local action, research, or citizen science projects today fosters the environmentally literate leaders of tomorrow, who are connected to the world around them, and informed enough about the environment to be decision makers. In this strand, teachers will learn to elevate student experiences by partnering with informal educational providers, getting students outdoors, and participating in authentic research.

Tying the Knot: Coherence in 3-D Science Learning

The Next Generation Science Standards emphasize three-dimensional learning to explain phenomena. Story lines and learning progressions are used within curriculum development and implementation to provide coherence within and across grade levels. Story lines help students connect activities, goals, and big ideas to make sense of the world. The three-dimensional learning view requires new assessment strategies and tools that provide feedback to support students’ sense-making. Assessment, both formative and summative, is instrumental in supporting responsive instruction. In this strand, participants will learn to use story lines, find ways to adapt instruction using responsive strategies, and focus on learning progressions.

Charting the Course for Innovation

To develop innovative scientific leaders for tomorrow, we must foster creativity, academic risk-taking, and perseverance within ALL students today. The next generation science learning environment must engage students in authentic problem solving that respects diverse thinking. A classroom culture that celebrates diverse ideas and solutions is essential for an effective STEM workforce. Presentations in this strand will focus on problem solving in STEM that involve all students. Participants will investigate effective classroom examples supporting preK–16 student learning that involves engineering design projects, use of technology, and computer science.
Anchoring Our Natural Treasures Through Environmental Literacy

Thursday, October 5

8:00–9:00 AM
Finding Funding…for Free! How to Secure External Funding for Classroom Projects and Research

12:30–1:30 PM
EANR (Environment, Agriculture, and Natural Resources): Preparing Students for Environmental Careers

2:00–3:00 PM
Featured Presentation: Rigorous Citizen Science for Lasting Change
(Speaker: Gregg Treinish)

Creating and Maintaining Kid-Friendly/Bird-Friendly Gardens

3:30–4:30 PM
Are Humans Causing Earthquakes? Teaching High School Earth Systems and Human Sustainability Using Authentic Earthquake Location Data

5:00–6:00 PM
Environmental Toxicology: Introduction to Toxicity Testing

Friday, October 6

8:00–9:00 AM
The Teacher Environmental Literacy Leadership (TELL) Program: Advancing Innovation in Teacher and Student Learning with the Chesapeake Bay Foundation

1:00–1:30 PM
Migrating into Citizen Science

2:00–3:00 PM
Developing Student Scientists Through the Watershed Report Card Program

Saturday, October 7

8:00–8:30 AM
Students as Citizen Scientists: Data Collection and Sharing Using Fieldscope

8:00–9:00 AM
Freshwater Stewardship: Equip Your Student-Scientists with Cutting-Edge Resources from NOAA

9:30–10:30 AM
Standards and Stewardship: A Natural Fit Carbon, Trees, and Climate

Tying the Knot: Coherence in 3-D Science Learning

Thursday, October 5

8:00–9:00 AM
Developing Curriculum for the NGSS: Navigating the Perfect Storm

12:30–1:30 PM
Bridging the Language Gap for ELLs in Science

2:00–3:00 PM
A Unique Ice Core Investigation That Integrates the Three Dimensions of NGSS and STEM

3:30–4:30 PM
Analysis of Supernova Remnants Using X-Ray Spectroscopy with NASA Data and STEM Tools

5:00–6:00 PM
STR2EAMing into LEARNing: The K–5 Convention

Friday, October 6

8:00–9:00 AM
Intersection of Understanding by Design Framework and NGSS

8:30–11:30 AM
NSTA Press® Short Course: Introducing a New NGSS-Focused Curriculum Unit—Toward High School Biology (SC-3, ticket required)

9:30–10:30 AM
Featured Presentation: Creating an Understanding-Based Curriculum for the Next Generation Science Standards
(Speaker: Jay McTighe)

9:30–10:30 AM
Practices in Action: Building Coherence Between NGSS and CCSS ELA

11:00 AM–12 Noon
BIG Data/BIG Skills: Improve Student Data Literacy Using Free Web Tools from NOAA

12:30–1:30 PM
Bundling Performance Expectations Around Phenomena
Conference Program • Conference Strands

Charting the Course for Innovation

Thursday, October 5

8:00–9:00 AM
Three Teachers…60 Students…One Genuine STEM Unit of Study

2:00–3:00 PM
Inventing Success for All Learners in STEM
Maximize Your Makerspace Through Design Thinking and the Wallingford 3-D Learning Program

3:30–4:30 PM
Straw Rockets Are Out of This World!

5:00–6:00 PM
Modeling Scientific Concepts with SCRATCH

Friday, October 6

8:00–11:00 AM
Short Course: Promoting Children’s Science Inquiry and Thinking About Living Things in Preschool and Kindergarten (SC-2, Ticket required)

9:30–10:30 AM
How to Create a Challenge-Infused STEM Program

11:30 AM–12 Noon
Building Boats: Creating and Executing an Interdisciplinary Project Using Design Thinking and the Engineering Process

12:30–1:30 PM
University STEM Faculty and K–8 Teachers: A Winning Partnership for STEM Education

2:00–3:00 PM
Featured Presentation: Building a Nation of Makers: Lessons Learned While Serving as a Senior Adviser in the Obama White House (Speaker: Andrew Coy)

Early Childhood Engineers

5:00–6:00 PM
Blended Learning in the Elementary Science Classroom: Transitioning to the NGSS Using Individualized Learning

Saturday, October 7

11:00 AM–12 Noon
iPad: Data Collection, Analysis, and Student Lab Reporting
NSTA Press Sessions

NSTA Press® books offer new classroom ideas and standards-based strategies, from Engineering to Solar Science and from preK to college. Join NSTA Press authors for these sessions linked to the topics of their books.

Thursday, October 5

- **8:00—9:00 AM**
 Argument-Driven Inquiry in Physics: Mechanics Lab Investigations for Grades 9–12

- **12:30–1:30 PM**
 Argument-Driven Inquiry in Physical Science: Lab Investigations for Grades 6–8
 Creating a STEM Culture for Teaching and Learning

- **2:00–3:00 PM**
 EUREKA! Grades 3–5 Science Activities and Stories

Friday, October 6

- **8:00—9:00 AM**
 Phenomenon-Based Learning: Fun, Hands-On, Cooperative Learning

- **8:30—11:30 AM**
 NSTA Press® Short Course: Introducing a New NGSS-Focused Curriculum Unit—Toward High School Biology (SC-3, Ticket Required)

- **9:30—10:30 AM**
 Uncovering Student (and Teacher) Ideas in Earth and Environmental Science

- **11:00 AM—12 Noon**
 Diving Into Teaching with the NGSS Science Practices

Saturday, October 7

- **8:00—9:00 AM**
 Teaching for Conceptual Understanding in Science

- **9:30—10:30 AM**
 Uncovering Students’ (and Teachers’) Ideas in Science, Engineering, and Mathematics with Formative Assessment Probes and Techniques

- **11:00 AM—12 Noon**
 Argument-Driven Inquiry in Biology: Lab Investigations for Grades 9–12

Meetings and Social Functions

Friday, October 6

Discover the NGSS Train-the-Trainer Workshop
(By Preregistration Only)
Key 12, Hilton
8:00 AM—5:00 PM

MAST Luncheon (Speaker: Heidi Schweingruber)
(M-1, ticket required)
Ruth, Hilton
12:30—2:00 PM

Saturday, October 7

Discover the NGSS Train-the-Trainer Workshop
(By Preregistration Only)
Key 12, Hilton
8:00 AM—5:00 PM
Chemistry Day at NSTA
Sponsored by the American Chemical Society
Education Division

Connecting Structure and Properties: Building and Applying Knowledge
For Grades 9–12
Friday, October 6, 8:00 AM–2:30 PM
Key 8, Hilton

Solutions to real-world problems involving chemistry are complex and explanations of relevant phenomena are multifaceted. A deep understanding of how the particle-level structures of substances affect their macroscopic properties is necessary if students are to develop explanations and design solutions to complex problems. Explore how to engage students in challenging problems and help them learn to collect and explore data in order to develop a scientific understanding of structure-property relationships. Demonstrate students’ learning through relevant-to-their-lives applications.

8:00–10:00 AM Relating Structure and Properties: Eliciting and Visualizing Student Initial Ideas
10:30 AM–12 Noon Relating Structure and Properties: Constructing Science Ideas Through Exploring Data
12:30–2:30 PM Relating Structure and Properties: Demonstrating Understanding Through Integration and Application of Knowledge

Middle School Chemistry Day
Sponsored by the American Chemical Society

Middle School Chemistry—Big Ideas About the Very Small
Friday, October 6, 8:00 AM–1:30 PM
Key 7, Hilton

Come to one, two, or as many sessions as you like during this day of activities and information for teaching and learning middle school chemistry. Staff from the American Chemical Society will introduce participants to the free online resource middleschoolchemistry.com. Each of the four sessions will include hands-on activities and explanations from the website that participants can easily incorporate into their teaching to support their current textbook and curriculum. Handouts of the session activities will be available for all participants.

8:00–9:00 AM Solids, Liquids, Gases, and Changes of State
9:30–10:30 AM The Water Molecule and Dissolving
11:00 AM–12 Noon Chemical Reactions—Breaking and Making Bonds
12:30–1:30 PM Chemical Reactions—Ocean Acidification
Conference Program • Special Programs

Engineering Day at NSTA
Sponsored by the American Society for Engineering Education
Friday, October 6, 8:00 AM–3:00 PM
Key 6, Hilton

The American Society for Engineering Education has put together a public/private partnership to develop ways of engaging elementary, middle school, and high school students and teachers in engineering. Participants will learn about innovative, hands-on, project-based engineering activities, courses, curriculum options, events, outreach programs, professional development, and competitions designed to increase the engineering and technological literacy of all students; encourage more and more diverse students to pursue engineering careers; and enable teachers to learn about and experience engineering. Presenters will share lessons learned and examples of inquiry and design activities that have been developed in partnership with K–12 science teachers for use in the classroom and in informal educational settings. The materials result from a collaboration of engineering educators and STEM professionals working with Teachengineering.org, Engineering is Elementary, and Colleges of Engineering across the nation who actively engage in K–12 engineering in collaboration with partner teachers and schools. All sessions will help teachers understand the new ETS Engineering Design portion of the Next Generation Science Standards (NGSS).

8:00–9:00 AM Kindergartners Trying and Trying Again to Engineer Solutions to Problems
9:30–10:30 AM Elementary Computer Science: Plugged vs. Unplugged Activities
11:00 AM–12 Noon Simple Electric Circuits
12:30–1:30 PM Using STEM in Action to Connect to DOE Resources
2:00–3:00 PM ASEE's K–12 Outreach—Engineering, Go For It (eGFI), Teach Engineering, Link Engineering, the National Science Digital Library, and UC Project STEP

Physics Day at NSTA
Sponsored by the American Association of Physics Teachers and the Chesapeake Section of the AAPT
Friday, October 6, 8:00 AM–6:00 PM
Key 9, Hilton

The American Association of Physics Teachers offers a full day of physics content. Physics Day consists of interactive hands-on workshops and sessions covering important physics topics for today’s world. Each of these workshops or sessions is organized by experienced science educators and designed to deal with innovative teaching methods or hard-to-express concepts that can be immediately applied in your classroom.

8:00–9:00 AM Investigating Electrostatics with an Inexpensive Electrophorus
9:30–10:30 AM Women and Minorities in the History of Physics: Role Models for Today
11:00 AM–12 Noon Physics Demonstration Show
12:30–1:30 PM Guesstimation—Solving the World’s Problems on the Back of a Cocktail Napkin
2:00–3:00 PM Student Ideas About Physics—Insights from Physics Education Research
5:00–6:00 PM Simple Lessons to Teach Confusing Physics Ideas (K–8)
Admission to NSTA short courses is by ticket only. Tickets, if still available, may be purchased at the Ticket Sales Counter in the NSTA Registration Area.

Data, Data Everywhere (SC-1)
Eliza Richardson (eur10@psu.edu), David Babb (dmb16@psu.edu), and Timothy White (tswhite@essc.psu.edu), Penn State, University Park
Science Focus: ESS, SEP4
Level: Grades K–12
Date: Thursday, October 5, 1:00–4:00 PM
Location: Key 12, Hilton
Ticket Price: $21

The internet houses vast arrays of environmental data that can be used to teach Earth science concepts in K–12 classrooms. In this short course, we will lead participants through data-rich exercises based on those found in online courses in Penn State’s Master of Education in Earth Science program. These exercises use different types of data but emphasize the same skills: creating and reading graphs, interpreting contour plots, and working with time series. Through these exercises, we will provide participants with ready-to-go ideas and easily adaptable lesson plans that will engage students in acquiring, manipulating, and presenting Earth science data. An internet-connected laptop will be useful, but is not required.

Promoting Science Inquiry and Thinking About Living Things in Preschool and Kindergarten (SC-2)
Cindy Hoisington (@CAHoisy; choisington@edc.org), Education Development Center, Inc., Waltham, Mass.
Peggy Ashbrook (@PeggyAshbrook; scienceissimple@yahoo.com) Author/NSTA Early Years Columnist, Alexandria, Va.
Science Focus: LS
Level: PreK–1
Date: Friday, October 6, 8:00–11:00 AM
Location: Tubman, Hilton
Ticket Price: $23

In this short course, participants will experience life science inquiry and build their own knowledge of core ideas and concepts related to living things as they investigate a variety of plants and “mini-beasts” and construct explanations about their characteristics, needs, habitats, and life cycles. Participants will also learn strategies for propagating plants and maintaining “mini beasts” in the early childhood/elementary setting. Video vignettes of children’s life science explorations will spark discussions about the teacher’s role in supporting children’s scientific thinking, conceptual development, and engagement in the practices of science. Short course activities will incorporate the integration of STEM and strategies for creating documentation and using books to extend children’s science and language/literacy learning in context. For more information, visit www.edc.org and www.nsta.org/earlyyears.

—Photos courtesy of Education Development Center, Inc.

Investigate a variety of plants and “mini-beasts” and construct explanations about their characteristics, needs, habitats, and life cycles in SC-2.
All attendees can evaluate concurrent teacher and exhibitor sessions online while simultaneously tracking professional learning certification (based on clock hours). Use this form to keep track of all sessions/events attended during the Baltimore conference. Sessions/events such as exhibit hall visits may not be available for online evaluation. However, these events still qualify for professional learning.

Beginning October 30, 2017, Baltimore transcripts can be accessed at the NSTA Learning Center (learning center.nsta.org) by logging on with your Baltimore Badge ID# and first clicking on My Profile under the Welcome. Here you’ll find a Certificates tab to access your transcript. Keep this form and use it to add the following activities to your Baltimore transcript. Completed transcripts can be printed from this website and presented to an administrator who requires documentation of participation in the conference. All information in these transcripts will be maintained (and can be accessed) indefinitely as part of an attendee’s individual profile.

First Name: __________________ Last Name: __________________ Badge ID# _____________________

Evaluate sessions by accessing the conference session browser: www.nsta.org/Baltimorebrowser. You will need your badge number to evaluate sessions. See page 12 of the conference program for instructions. Note: Our session evaluation system is designed to work from a computer and while it may work on smartphones/tablets, it is not really designed for them. And don’t forget, the more sessions you attend and evaluate, the more chances you have to win an Apple iPad mini 4 Wi-Fi!

Sample Questions:
1. I selected this session:
 a. for immediate classroom use.
 b. based on the reputation of the speaker.
 c. to improve my personal pedagogical knowledge/skill.
 d. to improve my science content knowledge.
2. The session met my needs.
3. The information presented was clear and well organized.
4. Safe practices were employed.
5. The session avoided commercial solicitation (n/a for exhibitor workshops and NSTA Press® sessions).
6. The session should be repeated at another NSTA conference.

Sample Responses:
1=Strongly Agree 2=Agree 3=Neutral 4=Disagree 5=Strongly Disagree

Thursday, October 5, 8:00 AM–6:00 PM

<table>
<thead>
<tr>
<th>Start Time</th>
<th>End Time</th>
<th>Activity/Event Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We’re giving an Apple iPad mini 4 to one lucky attendee who evaluates sessions that he or she attends. The more sessions you attend and evaluate, the more chances you have to win!
Friday, October 6, 8:00 AM–6:00 PM

<table>
<thead>
<tr>
<th>Start Time</th>
<th>End Time</th>
<th>Activity/Event Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Saturday, October 7, 8:00 AM–5:00 PM

<table>
<thead>
<tr>
<th>Start Time</th>
<th>End Time</th>
<th>Activity/Event Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NSTA Press® Short Course: Introducing a New NGSS-Focused Curriculum Unit—Toward High School Biology (SC-3)

Jo Ellen Roseman (jroseman@aaas.org), and Cari Herrmann Abell, AAAS/Project 2061, Washington, D.C.
Sarah Quick Pappalardo, Dunloggin Middle School, Ellicott City, Md.
Meredith Long, Ellicott Mills Middle School, Ellicott City, Md.
Leah Donovan, Oakland Mills Middle School, Columbia, Md.
Damisha Drakes, Wilde Lake Middle School, Columbia, Md.

Level: Grades 6–9
Date: Friday, October 6, 8:30–11:30 AM
Location: Key 10, Hilton
Ticket Price: $50

Join us for this short course to explore a new middle school unit developed by Project 2061, the science literacy initiative of the American Association for the Advancement of Science (AAAS) and BSCS. Working with the new unit, which was developed with support from the U.S. Department of Education’s Institute of Education Sciences, participants will gain a deeper understanding of what it means to address the three dimensions of NGSS and have a chance to examine criteria for supporting claims of alignment specified in the Educators Evaluating the Quality of Instructional Products (EQuIP) Rubric for science. Take home copies of the Toward High School Biology unit, model kits, as well as teaching guides for special topics.

Using Your School as a Laboratory: Air Quality (SC-4)

Christina Gladmon (greenschools@maoe.org) and Laura Johnson Collard (director@maoe.org), Maryland Association for Environmental and Outdoor Education, Columbia
Rebecca Davis (cleanairpartners@gmail.com) Clean Air Partners, Washington, D.C.
Science Focus: GEN, SEP1
Level: Grades 4–12
Date: Friday, October 6, 12 Noon–3:00 PM
Location: Tubman, Hilton
Ticket Price: $20

This short course will provide classroom examples for understanding concepts of air quality that meet the NGSS and support student reflection and action. The student sustainable practices are a part of the Maryland Association for Environmental and Outdoor Education’s (MAEOE) Green School application. A case study from Garrett County Public Schools will be used to demonstrate how teachers can gain hands-on experience in collecting data on air quality and define ways to lead students on inquiry-based investigations in their schools and school grounds. Participants will engage in two activities and discuss how they might integrate similar lessons.
<table>
<thead>
<tr>
<th>Conference Program • Affiliate Sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Association for Multicultural Science Education (AMSE)</td>
</tr>
<tr>
<td>President: Sharon Delesbo</td>
</tr>
<tr>
<td>Friday, October 6</td>
</tr>
<tr>
<td>8:00–10:00 AM</td>
</tr>
<tr>
<td>Association for Science Teacher Education (ASTE)</td>
</tr>
<tr>
<td>President: Gillian Roehrig</td>
</tr>
<tr>
<td>Thursday, October 5</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
</tr>
<tr>
<td>Friday, October 6</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
</tr>
<tr>
<td>Council for Elementary Science International (CESI)</td>
</tr>
<tr>
<td>President: James McDonald</td>
</tr>
<tr>
<td>Thursday, October 5</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
</tr>
<tr>
<td>Friday, October 6</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
</tr>
<tr>
<td>Council of State Science Supervisors (CSSS)</td>
</tr>
<tr>
<td>President: Tiffany Neil</td>
</tr>
<tr>
<td>Friday, October 6</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
</tr>
<tr>
<td>National Association for Research in Science Teaching (NARST)</td>
</tr>
<tr>
<td>President: Barbara A. Crawford</td>
</tr>
<tr>
<td>Thursday, October 5</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
</tr>
<tr>
<td>Friday, October 6</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
</tr>
</tbody>
</table>
National Middle Level Science Teachers Association (NMLSTA)

Co-Presidents: Terri Hebert and Mary Lou Lipscomb

Thursday, October 5

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:30–1:00 PM</td>
<td>Meaningful Connections Through Professional Organizations</td>
<td>Key 1, Hilton</td>
</tr>
<tr>
<td>1:00–1:30 PM</td>
<td>Leveraging the Power of Place in Citizen Science Projects</td>
<td>Key 1, Hilton</td>
</tr>
</tbody>
</table>

National Science Education Leadership Association (NSELA)

President: Bob Sotak

Friday, October 6

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00 AM–12 Noon</td>
<td>Tools for Science Leaders, Part 2</td>
<td>Johnson A, Hilton</td>
</tr>
</tbody>
</table>
Three Dimensions of the Next Generation Science Standards (NGSS)

Science and Engineering Practices

<table>
<thead>
<tr>
<th>SEP</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEP1</td>
<td>Asking Questions and Defining Problems</td>
</tr>
<tr>
<td>SEP2</td>
<td>Developing and Using Models</td>
</tr>
<tr>
<td>SEP3</td>
<td>Planning and Carrying Out Investigations</td>
</tr>
<tr>
<td>SEP4</td>
<td>Analyzing and Interpreting Data</td>
</tr>
<tr>
<td>SEP5</td>
<td>Using Mathematics and Computational Thinking</td>
</tr>
<tr>
<td>SEP6</td>
<td>Constructing Explanations and Designing Solutions</td>
</tr>
<tr>
<td>SEP7</td>
<td>Engaging in Argument from Evidence</td>
</tr>
<tr>
<td>SEP8</td>
<td>Obtaining, Evaluating, and Communicating Information</td>
</tr>
</tbody>
</table>

Crosscutting Concepts

<table>
<thead>
<tr>
<th>CCC</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCC1</td>
<td>Patterns</td>
</tr>
<tr>
<td>CCC2</td>
<td>Cause and Effect: Mechanism and Explanation</td>
</tr>
<tr>
<td>CCC3</td>
<td>Scale, Proportion, and Quantity</td>
</tr>
<tr>
<td>CCC4</td>
<td>Systems and System Models</td>
</tr>
<tr>
<td>CCC5</td>
<td>Energy and Matter: Flows, Cycles, and Conservation</td>
</tr>
<tr>
<td>CCC6</td>
<td>Structure and Function</td>
</tr>
<tr>
<td>CCC7</td>
<td>Stability and Change</td>
</tr>
</tbody>
</table>

Disciplinary Core Ideas

Disciplinary Core Ideas in Physical Science

<table>
<thead>
<tr>
<th>PS1: Matter and Its Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS1.B: Chemical Reactions</td>
</tr>
<tr>
<td>PS1.C: Nuclear Processes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PS2: Motion and Stability: Forces and Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS2.A: Forces and Motion</td>
</tr>
<tr>
<td>PS2.B: Types of Interactions</td>
</tr>
<tr>
<td>PS2.C: Stability and Instability in Physical Systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PS3: Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS3.A: Definitions of Energy</td>
</tr>
<tr>
<td>PS3.B: Conservation of Energy and Energy Transfer</td>
</tr>
<tr>
<td>PS3.C: Relationship Between Energy and Forces</td>
</tr>
<tr>
<td>PS3.D: Energy in Chemical Processes and Everyday Life</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PS4: Waves and Their Applications in Technologies for Information Transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS4.A: Wave Properties</td>
</tr>
<tr>
<td>PS4.B: Electromagnetic Radiation</td>
</tr>
<tr>
<td>PS4.C: Information Technologies and Instrumentation</td>
</tr>
</tbody>
</table>

Disciplinary Core Ideas in Life Science

<table>
<thead>
<tr>
<th>LS1: From Molecules to Organisms: Structures and Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS1.A: Structure and Function</td>
</tr>
<tr>
<td>LS1.B: Growth and Development of Organisms</td>
</tr>
<tr>
<td>LS1.D: Information Processing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LS2: Ecosystems: Interactions, Energy, and Dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS2.A: Interdependent Relationships in Ecosystems</td>
</tr>
<tr>
<td>LS2.B: Cycles of Matter and Energy Transfer in Ecosystems</td>
</tr>
<tr>
<td>LS2.C: Ecosystem Dynamics, Functioning, and Resilience</td>
</tr>
<tr>
<td>LS2.D: Social Interactions and Group Behavior</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LS3: Heredity: Inheritance and Variation of Traits</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS3.A: Inheritance of Traits</td>
</tr>
<tr>
<td>LS3.B: Variation of Traits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LS4: Biological Evolution: Unity and Diversity</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS4.A: Evidence of Common Ancestry and Diversity</td>
</tr>
<tr>
<td>LS4.B: Natural Selection</td>
</tr>
<tr>
<td>LS4.C: Adaptation</td>
</tr>
<tr>
<td>LS4.D: Biodiversity and Humans</td>
</tr>
</tbody>
</table>

Disciplinary Core Ideas in Earth and Space Science

<table>
<thead>
<tr>
<th>ESS1: Earth’s Place in the Universe</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESS1.A: The Universe and Its Stars</td>
</tr>
<tr>
<td>ESS1.B: Earth and the Solar System</td>
</tr>
<tr>
<td>ESS1.C: The History of Planet Earth</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ESS2: Earth’s Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESS2.A: Earth Materials and Systems</td>
</tr>
<tr>
<td>ESS2.B: Plate Tectonics and Large-Scale System Interactions</td>
</tr>
<tr>
<td>ESS2.C: The Roles of Water in Earth’s Surface Processes</td>
</tr>
<tr>
<td>ESS2.D: Weather and Climate</td>
</tr>
<tr>
<td>ESS2.E: Biogeology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ESS3: Earth and Human Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESS3.A: Natural Resources</td>
</tr>
<tr>
<td>ESS3.B: Natural Hazards</td>
</tr>
<tr>
<td>ESS3.C: Human Impacts on Earth Systems</td>
</tr>
<tr>
<td>ESS3.D: Global Climate Change</td>
</tr>
</tbody>
</table>

Disciplinary Core Ideas in Engineering, Technology, and the Application of Science

<table>
<thead>
<tr>
<th>ETS1: Engineering Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETS1.A: Defining and Delimiting an Engineering Problem</td>
</tr>
<tr>
<td>ETS1.B: Developing Possible Solutions</td>
</tr>
<tr>
<td>ETS1.C: Optimizing the Design Solution</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ETS2: Links Among Engineering, Technology, Science, and Society</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETS2.A: Interdependence of Science, Engineering, and Technology</td>
</tr>
<tr>
<td>ETS2.B: Influence of Engineering, Technology, and Science on Society and the Natural World</td>
</tr>
</tbody>
</table>

NSTA Baltimore Area Conference on Science Education
Visit NSTA’s SCIENCE STORE
Hall E

STORE HOURS
- Wednesday, Oct. 4: 4:00 PM – 7:00 PM
- Thursday, Oct. 5: 7:30 AM – 5:30 PM
- Friday, Oct. 6: 7:30 AM – 5:00 PM
- Saturday, Oct. 7: 8:00 AM – 12:30 PM

Travel light with FREE Shipping for in-store orders!

We have the latest resources for science teachers, including new releases and bestsellers!

- Purchase fun NSTA-branded gear—unique hats, shirts, mugs, and more.
- Join NSTA to get member pricing: 20% off bestseller NSTA Press® titles.
- Ask about our NSTA gift cards—great gift idea!

Download the conference app or follow #NSTA17 for special giveaways, contests, and more throughout the conference!

Visit www.nsta.org/store to make a purchase today, or call 800-277-5300.
8:00–8:30 AM Presentation
Analysis and Interpretation of Ocean Data
(Grades 9–11) Johnson A. Hilton
Science Focus: ESS
Paul Orbe (porbe@ucboe.us), Academy for Enrichment and Advancement, Union City, N.J.
Come learn how to understand ocean acidification using technology and real data. Join me for an overview of the learning activity and some interesting results.

8:00–9:00 AM Presentations
Stellaluna: A Lesson on Appreciating Diversity Through Science and Literacy
(Grades P–5) 323, Convention Center
Science Focus: GEN, CCC
Eva Ogens (eogens@ramapo.edu), Ramapo College of New Jersey, Mahwah
The book *Stellaluna* provides a rich springboard through which to teach crosscutting concepts, address science and literacy standards, integrate many disciplines, and foster appreciation of diversity.

(Grades 9–12) 325, Convention Center
Science Focus: PS, CCC, SEP
Victor Sampson (@drvictorsampson; victor.sampson@gmail.com), The University of Texas at Austin
Jonathon Grooms (@drjongrooms; jgrooms@gwu.edu), The George Washington University, Washington, D.C.
Learn about Argument-Driven Inquiry and how it can help students use disciplinary core ideas, crosscutting concepts, and science and engineering practices to explain natural phenomena.

Oysters as Teachers: An NGSS Story
(Grades 1–12) 333, Convention Center
Science Focus: ESS3, LS2.A, CCC2, CCC6, CCC7, SEP
Bart Merrick (bart.merrick@noaa.gov), NOAA Chesapeake Bay Office, Annapolis, Md.
Peg Steffen (peg.steffen@noaa.gov), NOAA National Ocean Service, Silver Spring, Md.
Molly Harrison (molly.harrison@noaa.gov), NOAA Fisheries, Silver Spring, Md.
Hear about a regional partnership resulting in the development of K–12 science materials, reflective of the NGSS, on a locally relevant species, the Eastern oyster. We will cover the process, the product, an overview of best practices, and sample activities.

The ideas and opinions expressed in the conference sessions, and in any handout materials provided, are those of the presenter. They are not those of the National Science Teachers Association nor can any endorsement by NSTA be claimed.

Science Area
A science area category is associated with each session. These categories are abbreviated on the Science Focus line for each session listing. On page 128, you will find the conference sessions grouped according to their assigned science area category.

The science areas and their abbreviations are:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS</td>
<td>Life Science</td>
</tr>
<tr>
<td>PS</td>
<td>Physical Science</td>
</tr>
<tr>
<td>ESS</td>
<td>Earth and Space Science</td>
</tr>
<tr>
<td>ETS</td>
<td>Engineering, Technology, and the Application of Science</td>
</tr>
<tr>
<td>GEN</td>
<td>General Science Education</td>
</tr>
<tr>
<td>INF</td>
<td>Informal Science Education</td>
</tr>
</tbody>
</table>

NGSS
See page 36 for a complete list of the NGSS codes used in this program.

Strands
The Baltimore Conference Committee has planned the conference around the following three strands, enabling you to focus on a specific area of interest or need. Strand events are identified by icons throughout the daily program. For strand descriptions, see page 26.

- **Anchoring Our Natural Treasures Through Environmental Literacy**
- **3D** Tying the Knot: Coherence in 3-D Science Learning
- **Charting the Course for Innovation**

The following icons will be used throughout this program.

- **NSTA Press® Sessions**
- **NGSS® @NSTA Forum Sessions**

Sessions highlighting STEM learning experiences that occur in out-of-school environments.
Thursday, 8:00–9:00 AM

3D

Developing Curriculum for the NGSS: Navigating the Perfect Storm
(Grades 9–College)
Holiday 3, Hilton
Science Focus: GEN, NGSS
Julie Damico (@BCPSSci; @dwnntwnjnh73; jdamico@bcps.org) and Tiffany Wendland (@BCPSSci; twendland@bcps.org), Baltimore County Public Schools Office of Science, Towson, Md.
Hear how Baltimore County developed high school NGSS-focused courses and curricula and engage in a discussion about the process. Examples of curriculum resources will be shared.

Is This Your First NSTA Conference? First-Timer Conference Attendees’ Orientation
(General)
Holiday 6, Hilton
Science Focus: GEN
NSTA Board and Council
Feeling overwhelmed by all there is to see and do at an NSTA conference on science education? Join us for an interactive exploration through the program, the conference app, and NSTA’s social media. By the end of the session, you will know just how to get the most from your conference experience in addition to building new networks with science colleagues.

Finding Funding…for Free! How to Secure External Funding for Classroom Projects and Research
(General)
Key 1, Hilton
Science Focus: GEN
Shelby Lake (@SciClassroom; slake@aaas.org), AAAS, Washington, D.C.
A collection of annotated Science papers, designed to help high school to undergraduate students understand the structure and workings of scientific research, will be presented.

Tattoo Ink in Chemistry
(Grades 10–12)
Key 10, Hilton
Science Focus: PS, SEP3, SEP4
Stephanie Harry (sdharry@hampton.k12.va.us), Kecoughtan High School, Hampton, Va.
Learn about the research and experiments conducted by students to help make a connection between chemistry and tattoo ink.

BioBlitz—From Field to Classroom
(Grades K–8)
Key 4, Hilton
Science Focus: LS2.B
Christie Davis (@BCPSOutdoorSci; cdavis9@bcps.org), Tom Melito (@BCPSOutdoorSci; tmelito@bcps.org), and Dawn Dawson (ddawson@bcps.org), Baltimore County Public Schools Office of Science, Towson, Md.
Find out how Baltimore County’s 8,500 grade 5 students conduct field explorations comparing the biodiversity of a local park to their school yard ecosystems using geospatial technologies.

Teaching with Primary Literature
(Grades 9–College)
Key 11, Hilton
Science Focus: GEN, SEP
Shelby Lake (slake@aaas.org), AAAS, Washington, D.C.
A collection of annotated Science papers, designed to help high school to undergraduate students understand the structure and workings of scientific research, will be presented.

Using Genetic Lines to Restore the American Chestnut Tree
(Grades 6–10)
Peale A, Hilton
Science Focus: LS
Gary Hedges (@gehedges), Maryland State Dept. of Education, Frederick
Brad Yohe (brad.yohe@gmail.com), Retired Educator, Gettysburg, Pa.
Vince Hall (hallv@cvcolonials.org), New Oxford High School, New Oxford, Pa.
Provide roots for new learning as you hear how educators use the tenets of NGSS within the context of the restoration of the American chestnut to motivate students and increase their achievement.

Three Teachers…60 Students…One Genuine STEM Unit of Study
(Grades 9–12)
Key 2, Hilton
Science Focus: ESS3.C, ETS1
Rebecca Sarno (@becky_sarno; rsarno@hpregional.org), Alexander Gonzalez (@algonza30; agonzalez@hpregional.org), Ann Yaccarino (ayaccarino@hpregional.org), and Brian Drelick (@HighPointSTEM; bdrelick@hpregional.org), High Point Regional High School, Sussex, N.J.
Hear a firsthand account of how one math, one science, and one technology teacher created an authentic STEM unit of study.
8:00–9:00 AM Hands-On Workshops
Integrating Technology for Greater Engagement in the NGSS
(Grades 4–8) 322, Convention Center
Science Focus: GEN, NGSS
Cheryl McDonough (cmcdonough@maldenps.org), Beebe School, Malden, Mass.
Discussion centers on helpful strategies and ways to integrate technology to increase student engagement and achievements of NGSS curriculum, as well as creating meaningful projects and connections in collaboration.

Energy Efficiency: Making a Difference Can Start Early
(Grades 4–8) 324, Convention Center
Science Focus: ETS, PS, INF, CCC1, CCC2, CCC4, CCC5, SEP1, SEP6
Kimberly Swan (@NEED_Project; kswan@need.org), The NEED Project, Manassas, Va.
Introduce students to energy consumption and conservation using the school as a learning laboratory. Come learn how! Use tools like a Kill-a-Watt meter, Flicker Checker, and light meter.

Need help navigating?

Feeling overwhelmed by all there is to see and do at an NSTA conference on science education? Join other first-time attendees for an interactive exploration through the conference program, the conference app, and NSTA’s social media. By the end of the session, you will know just how to get the most from your conference experience in addition to building new networks with science colleagues.
Music to My Ears! 3-D Learning in Baltimore City Elementary Schools
(Grades 3–5)
326, Convention Center
Amanda Laurier (alaurier@bcps.k12.md.us) and Katya Denisova (kdenisova@gmail.com), Baltimore (Md.) City Public Schools
Megan Healy (mkhealy@bcps.k12.md.us), Highlandtown Elementary/Middle School No. 237, Baltimore, Md.
Tap into the power of music. Participants will complete NGSS-focused investigations from a unit on the properties of sound from the STEM Achievement in Baltimore Elementary Schools (SABES) curriculum.

Carbon and Climate: E-Unit for Grades 6–8
(Grades 6–8)
349, Convention Center
Science Focus: ESS3.C, ESS3.D, CCC2, CCC5
Sarah Haines (shaines@towson.edu), Towson University, Towson, Md.
Katie Dell (@kdellsci), Arbutus Middle School, Halethorpe, Md.
Explore and receive access to a new carbon-and-climate-centric electronic unit (e-unit) for middle schoolers that contains a familiar investigation-based lesson. Organized around science education’s 5E instructional model and tied to current education standards (including NGSS), join us to explore this new and innovative digital platform.

Integrating Technology into Middle School NGSS Engineering Design Performance Expectations
(Grades 5–12)
Holiday 4, Hilton
Science Focus: ETS1, INF
Ruben Rosario (rrosario@lsc.org) and Sophie Wakita (swakita@lsc.org), Liberty Science Center, Jersey City, N.J.
Learn how to integrate technology into the NGSS’ engineering design performance expectations. Explore hands-on examples using 3D-printed materials and electronic components.

Producing STEM Equity Through the CCSS Math Practices
(Grades P–12)
Holiday 5, Hilton
Science Focus: GEN, NGSS
Christopher Duvall (@apoduvall; apoduvall@gmail.com), Montclair State University, Montclair, N.J.
Join me for this interactive, hands-on K–12 session and learn how to achieve a more equitable STEM classroom through activities that flatten access to CCSS Math practices.

CESI-Sponsored Session: Integrating Science and Literacy: Proven Strategies Developed from Evidence-Based Practices
(Grades K–6)
Key 5, Hilton
Science Focus: GEN, NGSS
Jim McDonald (@jimscienceguy; jim.mcdonald@cmich.edu), Central Michigan University, Mount Pleasant
Find out how to integrate science with literacy and walk away with 33 proven instructional strategies to use in your classroom right away.

Enhancing Your Pedagogical Tool Kit in the Science Classroom
(Grades 9–12)
Key 7, Hilton
Science Focus: GEN
Amy Chilinguerian (@achiliteach), Loch Raven High School, Towson, Md.
Ever feel like you are stuck in a pedagogical rut? Try mixing it up with a variety of engaging yet simple-to-implement activities.

Learn How READING LIKE A SCIENTIST Can Make Science Content Jump Off the Page for Your Students
(Grades 3—College)
Key 8, Hilton
Science Focus: LS4
William Piercy (piercys@aol.com) and Thomasina Piercy (piercys@aol.com), Piercy Consulting Group, Harpers Ferry, W.Va.
Find out how science literacy practices can be taught for understanding through professional learning communities. We will identify why and how to develop a PLC as a vehicle for monitoring and improving science literacy by using American chestnut tree restoration as a context.

Threading 3-D Science Learning Through the Solar System: It’s Not the Tholian Web
(Grades 4–12)
Key 9, Hilton
Science Focus: ESS, ETS, CCC4, SEP1, SEP2, SEP7, SEP8
Barry Fried (bfriedfab4@gmail.com), Independent Consultant, East Meadow, N.Y.
Honora Dash (hdash@schools.nyc.gov), Edward R. Murrow High School, Brooklyn, N.Y.
Beam up new learning by using Earth and space sciences as a unifying theme in writing and oral argumentation of science and engineering. Explore how to incorporate problem-based and three-dimensional activities involving transdisciplinary models to enhance literacy skills through applied science learning experiences that make real-world connections.
8:00–9:00 AM Exhibitor Workshops

NGSS Waves: Protect Your Eyes!
(Grades 6–8) 327, Convention Center
Sponsor: Lab-Aids, Inc.
Cindy Lilly, Ocean Bay Middle School, Myrtle Beach, S.C.
Investigate wave properties before gathering evidence that energy varies with different colors of light. Start with tubes to investigate sound and then use a light station to explore light. Finally, experiment with colors and energy levels using a phosphorescent material.

CPO Science Biology Energy QUEST: Teaching Cell Energy Pathways
(Grades 5–12) 336, Convention Center
Science Focus: LS
Sponsor: CPO Science/School Specialty Science
Kat Mills, School Specialty Science, Rosharon, Tex.
Erik Benton, CPO Science/School Specialty Science, Nashua, N.H.
Get ENERGIZED about teaching energy pathways with our latest LINK supplementary learning module, amplified by cutting-edge Augmented Reality. Through collaborative gameboard play, a content-rich digital curriculum, and by manipulating smartphone-ready 3D imagery with a swipe of a finger, students will be clamoring to earn 32 ATP and synthesize C6H12O6 molecules.

Ten Minutes to Improving Science Achievement
(Grades K–8) 337, Convention Center
Science Focus: GEN
Sponsor: Delta Education/School Specialty Science–FOSS
Kathy Long, The Lawrence Hall of Science, University of California, Berkeley
“Assessment” can strike fear and trepidation into the hearts of teachers and students. Join FOSS developers to learn how assessment can be transformed into an integrated teaching tool that grades 3–8 teachers and students can embrace to create a classroom culture that motivates effort and growth to improve achievement.

How to Argue in a Middle School Science Class
(Grades 5–8) 338, Convention Center
Science Focus: GEN, SEP7
Sponsor: Delta Education/School Specialty Science
Kathy Armstrong, Northside Elementary School, Midway, Ky.
Darrick Wood, Distance Learning Coordinator, Louisville, Ky.
Help students develop scientific argumentation skills by making claims based on observable evidence. Put these skills into practice with lessons from Delta Science Modules, as we prove (or disprove) fundamental science concepts. Leave with readers, equipment, and a lesson you can try with your students next week.

Martian Genetics: An Electrophoresis Exploration
(Grades 6–College) 339, Convention Center
Science Focus: ETS, LS
Sponsor: Edvotek, Inc.
Brian Ell (info@edvotek.com), **Tom Cynkar** (info@edvotek.com), and **Maria Dayton** (info@edvotek.com), Edvotek Inc., Washington, D.C.
Explore genetics with our “out of this world” workshop! Imagine being the first scientist to explore Mars and discovering extraterrestrials. How would you use biotechnology to learn about the Martians? Discover how DNA technology can be used to explore the relationship between genotype and phenotype. Fluorescent dyes simulate DNA fragments, eliminating post-electrophoresis staining and saving classroom time!

Project-Based Inquiry Science™ (PBIS): Creating “Coherence and Science Storylines” for Middle School
(Grades 6–8) 348, Convention Center
Science Focus: GEN, NGSS
Sponsor: Activate Learning
Mary Starr, Michigan Mathematics and Science Centers Network, Plymouth
STEM learning requires integration! Powerful questions and coherent storylines help solve the integration challenge. PBIS is built around interesting and meaningful Big Questions and Big Challenges, supporting the integration of science and engineering, engaging ALL students in high-quality STEM learning, and embracing the vision of the Framework and NGSS.
Thursday, 9:15–10:30 AM

9:15–10:30 AM General Session
Holding Fast to Dreams: Creating a Culture of STEM Success
(General) Ballroom III/IV, Convention Center
Science Focus: GEN

Freeman A. Hrabowski III, Consultant, and President, University of Maryland, Baltimore County, Baltimore Springs, Colo.; Christine Anne Royce, NSTA President-Elect, and Shippensburg University, Shippensburg, Pa.; Jaclyn Austin, President, Maryland Association of Science Teachers (MAST), and Howard County Public School System, Ellicott City, Md.; Mary C.H. Weller, Chairperson, NSTA Baltimore Area Conference Chair, NSTA Director, District III, and Howard County Public School System, Ellicott City, Md.; Asli Sezen-Barrie, Program Coordinator, NSTA Baltimore Area Conference, and University of Maine, Orono; Mary Stapleton, Past President, Maryland Association of Science Teachers (MAST), Local Arrangements Coordinator, NSTA Baltimore Area Conference, and Towson University, Towson, Md.; David L. Evans, NSTA Executive Director, Arlington, Va.

Rapid and dramatic technological and demographic changes in the new century present our nation’s schools and colleges and universities with enormous challenges for educating students from all backgrounds in STEM fields. Among the most critical questions we face are what will students need to know in order to succeed academically in science, and what skills and values must they possess? Additionally, what strategies can educators—working with parents and business and community leaders—use to support and ensure the success of all students in STEM areas? Join Freeman as he addresses these questions and shares innovative approaches to STEM teaching and learning, STEM teacher preparation, support for the growing population of diverse students who must participate and succeed in these fields, and the importance of partnerships between schools, universities, philanthropy, government agencies, and business.

Freeman A. Hrabowski III, president of UMBC since 1992, is a consultant on science and math education to national agencies, universities, and school systems. He was named by President Obama to chair the newly created President’s Advisory Commission on Educational Excellence for African Americans. He also chaired the National Academies’ committee that produced the recent report, Expanding Underrepresented Minority Participation: America’s Science and Technology Talent at the Crossroads.

9:30–10:30 AM Exhibitor Workshops
NGSS Ecology: Modeling the Introduction of a New Species
(Grades 6—8) 327, Convention Center
Science Focus: LS2.B, LS2.C, CCC4, CCC5, SEP2
Sponsor: Lab-Aids, Inc.
Cindy Lilly, Ocean Bay Middle School, Myrtle Beach, S.C.
How does a new species affect the flow of matter and energy in an ecosystem? This card sort–style activity models the introduction of a new species with special attention to the effect on existing predators and producers. This activity is from the new SEPIUP middle level Ecology unit, revised and updated for the NGSS and published by Lab-Aids. Take home free samples of the activity.

DNA Structure and Function with a Twist of Dynamic DNA
(Grades 8–College) 330, Convention Center
Science Focus: ETS, LS, CCC1, CCC2, CCC6, CCC7, SEP3, SEP6
Sponsor: 3D Molecular Designs
Tim Herman (herman@msoe.edu), MSOE Center for Bio-Molecular Modeling, Milwaukee, Wis.
Support three-dimensional learning with engaging instructional materials that introduce DNA as a double-stranded helical molecule and as information that encodes proteins. Physical models allow students to explore DNA structure and function. A paper bioinformatics exercise focuses on the beta subunit of hemoglobin and the sickle cell disease mutation.

Engineer Physical Science Excitement in Your Classroom with a Carolina STEM Challenge®
(Grades 6–12) 331/332, Convention Center
Science Focus: PS, SEP
Sponsor: Carolina Biological Supply Co.
Carolina Teaching Partner
Bounce and race into hands-on activities that engage middle school and high school students. Apply creative problem-solving skills and engineering practices to chemistry and physical science challenges. Experience how Carolina makes it easy to bring STEM to your classroom.
CPO’s Wind Turbine: A STEM Approach to Engineering and Design
(Grades 5–12) 336, Convention Center
Science Focus: ETS, SEP
Sponsor: CPO Science/School Specialty Science
Kat Mills, School Specialty Science, Rosharon, Tex.
Erik Benton, CPO Science/School Specialty Science, Nashua, N.H.
CPO’s Link Wind Turbine learning module lets students learn in a real-time digital platform and engineer a wind turbine. Students build, test, and revise their designs. LINK uses STEM activities and an NGSS approach, giving students an understanding of how to apply the Engineering Cycle and demonstrate understanding.

What Does Argumentation Look Like in an Elementary Classroom?
(Grades K–5) 337, Convention Center
Science Focus: GEN, SEP7
Sponsor: Delta Education/School Specialty Science–FOSS
Brian Campbell, The Lawrence Hall of Science, University of California, Berkeley
Join FOSS Next Generation Program developers to learn about science practices within the context of active investigations. Experience analyzing and interpreting data, constructing explanations, and engaging in argumentation from evidence as tools to deepen student learning within a FOSS lesson. Find out about transitioning to FOSS Next Generation.

Makerspaces with Options for All Students
(Grades 4–8) 338, Convention Center
Science Focus: ETS
Sponsor: Delta Education and Frey Scientific
Kathy Armstrong, Northside Elementary School, Midway, Ky.
Darrick Wood, Distance Learning Coordinator, Louisville, Ky.
For students to develop the proper range of skills required of “makers”, a makerspace should provide tools and resources to help them grow as scientists. Many makerspaces now include supplemental curriculum options that give students who are curious about science the resources designed for exploring classroom concepts in a maker setting.

Exploring the Genetics of Taste: SNP Analysis of the PTC Gene Using PCR
(Grades 9–College) 339, Convention Center
Science Focus: LS
Sponsor: Edvotek, Inc.
Maria Dayton (info@edvotek.com), Tom Cynkar (info@edvotek.com), and Brian Ell (info@edvotek.com), Edvotek Inc., Washington, D.C.
Explore the relationship between genotype and phenotype using Phenylthiocarbamide (PTC). Some think PTC tastes bitter, while others find it tasteless. The ability to taste PTC has been linked to variations in a taste receptor gene. Join us to learn how to use PCR to distinguish between PTC alleles. Free gift for attendees!

The Power of Modeling in K–8 Classrooms
(Grades K–8) 342, Convention Center
Science Focus: GEN, NGSS
Sponsor: Amplify
Sophia Lambertsen and Rebecca Abbott, The Lawrence Hall of Science, University of California, Berkeley
How can students create and use models to enhance, explain, and expand their thinking? Experience a variety of ways students deepen and demonstrate their understanding of scientific phenomena through the use of models. Engage with K–8 exemplars from Amplify Science, the new NGSS-designed curriculum from The Lawrence Hall of Science.

Year-Round Solutions for Success in AP Chemistry from Flinn Scientific
(Grades 9–12) 343/344, Convention Center
Science Focus: PS
Sponsor: Flinn Scientific, Inc.
Mike Marvel (mmarvel@flinnsci.com) and Joan Berry (jberry@flinnsci.com), Flinn Scientific, Inc., Batavia, Ill.
Join Flinn as we share AP Chemistry demonstrations, labs, inquiry activities, and more! Come learn about new ways to engage your advanced students. Our activities are aligned to the learning objectives and skills your students need to be successful. Prepare your students for the first day of class with FlinnPREP™, a new online review of foundational chemistry concepts. Handouts and door prizes. AP is a trademark of the College Board.
Hurricanes, Earthquakes, and Volcanoes Are Now Online!
(Grades 5–12) 345/346, Convention Center
Science Focus: ESS2.B, ESS2.D
Sponsor: Simulation Curriculum Corp.
Herb Koller, Simulation Curriculum Corp., Minnetonka, Minn.
Join us as we use the acclaimed Layered Earth Geology and Meteorology with interactive lessons to learn about hurricanes, earthquakes, and volcanoes. And best of all, you can now access these complete curricula online using your Chromebooks and tablets, as well as using regular Windows and Mac computers.

Analyzing and Interpreting Data Using TCI's Bring Science Alive!
(Grades K–5) 347, Convention Center
Science Focus: GEN, NGSS
Sponsor: TCI
Dawn Smith, TCI, Murray, Ky.
Get your students to do more than just read a graph, chart, or statement. Participants will be immersed in a Bring Science Alive! classroom where students analyze and interpret data and construct an argument based on research.

Science Storylines and the Driving Question Board: Keeping NGSS Curricula Student Driven
(Grades K–12) 348, Convention Center
Science Focus: GEN, CCC6, SEP2
Sponsor: Activate Learning
Heather Milo (hmilo@activatelearning.com), Activate Learning, Greenwich, Conn.
What if K–12 lessons could both meet the standards and leverage student curiosity about the natural world? Join us for an engaging workshop on storyline coherence as a means to not only have pedagogy meet the NGSS, but also build on students’ wonderment questions using the Driving Question Board. We will use the IQWST unit, How Can I Smell Things from a Distance?

11:00 AM–12 Noon Exhibitor Workshops

NGSS Reproduction: Breeding Critters—More Traits
(Grades 6–8) 327, Convention Center
Sponsor: Lab-Aids, Inc.
Cindy Lilly, Ocean Bay Middle School, Myrtle Beach, S.C.
Students model and explain additional patterns of inheritance as they explore cause-and-effect relationships for additional traits of the critters. These patterns help model and explain the wide variation that can result from sexual reproduction. This activity provides an opportunity to assess student work related to MS-LS3-2.

5 E’sy Ways to Investigate Enzymes!
(Grades 8–College) 330, Convention Center
Science Focus: LS1, LS3, LS4, PS1, PS2, CCC1, CCC2, CCC4, CCC6, CCC7, SEP1, SEP2, SEP6
Sponsor: 3D Molecular Designs
Gina Vogt (gina.vogt@3dmoleculardesigns.com), MSOE Center for BioMolecular Modeling, Milwaukee, Wis.
ENGAGE students in investigating enzyme structure/function using multiple modeling strategies. EXPLORE and EXPLAIN catabolism, anabolism, and competitive/noncompetitive inhibition with hands-on/minds-on instructional materials. ELABORATE on insecticide inhibition at an enzyme active site resulting in unintended consequences. EVALUATE student learning with an enzyme molecular story. Handouts!

Coding with First Graders? The Smithsonian Says YES!
(Grades K–5) 331/332, Convention Center
Science Focus: GEN, NGSS
Sponsor: Carolina Biological Supply Co.
Carolina Teaching Partner
Join us for an engaging hands-on workshop with investigations for teaching coding to young children. From the new Smithsonian Science for the Classroom™ series, the “How Can We Send a Message Using Sound?” module is designed to use the NGSS practices that make the standards come alive.
CPO’s LINK Genetics Learning Modules: Crazy Traits and Crazy Chromosomes
(Grades 5–12) \(336, \text{Convention Center}\)
Science Focus: LS
Sponsor: CPO Science/School Specialty Science
Kat Mills, School Specialty Science, Rosharon, Tex.
Erik Benton, CPO Science/School Specialty Science, Nashua, N.H.

CPO Science’s LINK learning modules for genetics use NGSS strategies in a real-time digital learning environment. Students can study the relationship between DNA, genes and mitosis, meiosis, traits, alleles, phenotypes, and genotypes. Heredity will come alive as you use hands-on models to create crazy creatures in a unique, collaborative program.

What Does Conceptual Modeling Look Like in Grades K–5 Classrooms?
(Grades K–5) \(337, \text{Convention Center}\)
Science Focus: GEN, CCC
Sponsor: Delta Education/School Specialty Science—FOSS
Brian Campbell, The Lawrence Hall of Science, University of California, Berkeley

Join FOSS Next Generation Program developers to explore how students construct models about phenomena. Experience active investigations from two grade levels and create models about physical science concepts. Find out how student models can be used to guide future instruction within the FOSS program.

OK, Class, Please Open Your Science Notebooks…
(Grades K–8) \(338, \text{Convention Center}\)
Science Focus: GEN
Sponsor: Delta Education/School Specialty Science
Kathy Armstrong, Northside Elementary School, Midway, Ky.
Darrick Wood, Distance Learning Coordinator, Louisville, Ky.

Experience the feeling of starting with a blank notebook and filling it with new ideas to make sense of the world around you. Leave with ideas and strategies to improve student notebooking in your own classroom.

Left at the Scene of the Crime: Introduction to Forensic Science
(Grades 6–College) \(339, \text{Convention Center}\)
Science Focus: ETS, LS
Sponsor: Edvotek, Inc.
Brian Ell (info@edvotek.com), Maria Dayton (info@edvotek.com), and Tom Cynkar (info@edvotek.com), Edvotek Inc., Washington, D.C.

Explore genetic diversity using forensic science! Your students become crime scene investigators as they analyze biological evidence using DNA fingerprinting, a technique that identifies people via genetic differences. Gel electrophoresis is used to create DNA fingerprints from crime scene and suspect samples. A match between samples suggests which suspect committed the crime. Free gift for attendees!

Space Docking Failure: Phenomena and 3-D Instruction for Grades 6–8
(Grades 6–8) \(342, \text{Convention Center}\)
Science Focus: PS2
Sponsor: Amplify
Sophia Lambertsen and Rebecca Abbott, The Lawrence Hall of Science, University of California, Berkeley

Experience how students investigate a failed spacecraft docking while figuring out principles of force and motion and engaging in three-dimensional learning. Participants will get a hands-on dive into Amplify Science for grades 6–8, engaging with this new NGSS-designed curriculum from The Lawrence Hall of Science.

Community-Based Problems: Using Middle School Science and Engineering to Help Your Community
(Grades 6–9) \(343/344, \text{Convention Center}\)
Science Focus: GEN, SEP3
Sponsor: AEOP

Real-world connections help strengthen the lessons students learn. Find out how to help students identify community problems that are important to them and how the practical application of science and engineering can lead to solutions for those problems. In addition, we will discuss how eCYBERMISSION, an online competition for grades 6–9 students, encourages them to solve a problem in their community using science and engineering practices.
Are You Moody?
(Grades 6–12) 345/346, Convention Center
Science Focus: ETS, PS, INF, CCC2, SEP5, SEP6
Sponsor: Texas Instruments
Stacy Thibodeaux, David Thibodaux STEM Magnet Academy, Lafayette, La.
Fred Fotsch, Texas Instruments, Dallas
We will bring science and coding together as participants learn to do some basic coding (no experience necessary) while developing their own mood ring! The science of color mixing is explored while determining the right body temperature thresholds. Is fuchsia flirty? Should green be groovy? It’s up to you!

Engineering Design in the NGSS
(Grades 6–8) 347, Convention Center
Science Focus: ETS1
Sponsor: TCI
Dawn Smith, TCI, Murray, Ky.
Become immersed in a Bring Science Alive! investigation designed to reach all learners and make engineering design fun and engaging. Experience this lesson from the student perspective as you take on the roles of engineers defining problems, developing solutions, and testing to best solve the problem.

Structuring Discussion to Be Equitable and Rigorous
(Grades K–12) 348, Convention Center
Science Focus: PS2, SEP2, SEP6, SEP7, SEP8
Sponsor: Activate Learning
Heather Milo (hmilo@activatelearning.com), Activate Learning, Greenwich, Conn.
The Framework promotes learning as a fundamentally social endeavor supported by collaborative and communicative norms. Yet, sustaining these norms requires teachers to examine and support K–12 students’ ways of talking so they all are able to articulate, make sense of, and evaluate each other’s ideas. Walk away with ready-to-use tools that foster and assess productive talk. We’ll use the IQWST unit, How Will It Move?

11:00 AM–5:00 PM Exhibits
Hall E, Convention Center
Did you know that NSTA offers exclusive exhibit hall and exhibitor workshop hours today from 11:00 AM to 12:30 PM? During these hours there are no teacher sessions scheduled and it’s a perfect time to visit the exhibits and discover all the products and services companies and organizations have to offer. Some exhibitors will offer materials for sale throughout the conference.

12:30–1:00 PM Presentation
NMLSTA-Sponsored Session: Meaningful Connections Through Professional Organizations
(Grades 4–8) Key 1, Hilton
Science Focus: GEN
Terri Hebert (thebert@iusb.edu), Indiana University South Bend
Find out more about what the professional organization of National Middle Level Science Teachers Association has to offer and the connections that can be made.
Inspired by the Inductees of the National Inventors Hall of Fame, our preschool through 9th grade programs are designed to impact young minds through fun, hands-on activities infused with the spirit of innovation!

Come visit us at Booth #612!

800.968.4332 | NIHATmyschool@invent.org | invent.org/inspire

In partnership with the United States Patent and Trademark Office
Thursday, 12:30–1:30 PM

Presentations

NSTA Press® Session: Argument-Driven Inquiry in Physical Science: Lab Investigations for Grades 6–8

(Grades 6–8) 321, Convention Center

Science Focus: PS

Victor Sampson (@drvictorsampson; victor.sampson@gmail.com), The University of Texas at Austin

Jonathon Grooms (@drjongrooms; jgrooms@gwu.edu), The George Washington University, Washington, D.C.

Learn about Argument-Driven Inquiry and how it can help students use disciplinary core ideas, crosscutting concepts, and science and engineering practices to explain natural phenomena.

Scrolling and SciFriday

(Grades P–2) 323, Convention Center

Science Focus: GEN

Joanne Clapp (jlclapp@smcps.org), Chesapeake Public Charter School, Lexington Park, Md.

See how Scrolling and SciFriday can be used in an early childhood classroom to engage students in scientific learning and ensure that academic standards are met.

NSTA Press® Session: Creating a STEM Culture for Teaching and Learning

(General) 325, Convention Center

Science Focus: GEN, NGSS

Jeffrey Weld (jeff.weld@uni.edu), Iowa Governor's STEM Advisory Council, Cedar Falls

Hot off the NSTA Press, this book is for teachers, administrators, business partners, community members, parents, scholars, and policymakers who seek to be up-to-speed on the many elements of STEM, from curriculum to professional development to assessment to partnerships to licensing and more.

Take the Edison Challenge!

(Grades K–12) 333, Convention Center

Science Focus: GEN, NGSS

Cheri Garner (@cherigarner; cheri.garner@adelsoncampus.org), The Dr. Miriam and Sheldon G. Adelson Educational Campus, Las Vegas, Nev.

Get the tools to design an “Edison Challenge” for your students to complete. Points are earned as students use technology tools to explore science, engineering, and math connections.

Teach Engineering Practices on the Cheap with Concrete

(Grades 6–12) Holiday 3, Hilton

Science Focus: ETS1, INF, SEP

Debbie Goodwin (nywin@hotmail.com), Retired High School Science Teacher, Chillicothe, Mo.

Teach engineering using concrete and other composite materials. Discover inexpensive STEM projects that engage students using the #1 building material in the world. NGSS correlations shared.

The Perfect Match: Environmental Education and Project-Based Learning!

(Grades 9–12) Johnson A, Hilton

Science Focus: LS

Alicia Pressel, Creekside High School, St Augustine, Fla.

Come see how easy it is to integrate project-based learning into your environmental science curriculum! The Academy of Engineering and Environmental Sciences is a STEM academy teaching students how to easily integrate engineering skills and new technologies into the fields of environmental science. Students have opportunities to earn industry certifications, gain real-world experience, and have internships through community partnerships.

Stories in the Secondary Classroom

(Grades 10–12) Johnson B, Hilton

Science Focus: GEN, CCC

Cynthia Cykert (christecykert@cox.net), Rogers High School, Newport, R.I.

Discussion centers on 15 fiction and nonfiction books to use in secondary science classrooms. Daily activities and long-term project ideas will be shared.

EANR (Environment, Agriculture, and Natural Resources): Preparing Students for Environmental Careers

(Grades 9–12) Key 2, Hilton

Science Focus: LS, CCC4

Sarah Haines (shaines@towson.edu), Towson University, Towson, Md.

Elena Takaki (etakaki@fishwildlife.org), Association of Fish & Wildlife Agencies, Washington, D.C.

Come learn about a high school program in natural resources that includes a four-course sequence that prepares students to pursue postsecondary education in environmental fields.
Equity in Science Education Roundtable
(General) Key 3, Hilton
Science Focus: GEN
Natacia Campbell (@NataciaCampbell; ncampbell@joliet86.org), Joliet (Ill.) Public Schools District 86
Join me in sharing equity concerns and resources for enhancing equity and access in science education programs. Find out what NSTA is doing to support equity nationwide.

NGSS@NSTA Forum Session: Designing and Using Classroom Assessments to Support Meaningful NGSS Investigations
(Grades K–12) Key 8, Hilton
Science Focus: GEN, NGSS
Philip Bell (@philipbell; pbell@uw.edu), University of Washington, Seattle
Embedding formative assessment sequences into instruction helps gauge progress in student understanding and reveals learning assets that students bring to the classroom. Through an examination of assessment examples and sample student responses, we’ll explore how to design and interpret cognitive assessments of three-dimensional learning, as well as cultural formative assessments of student and community interests and funds of knowledge. STEM teaching tools will also be shared.

Using a Role-Playing Activity in the Teaching of Chemistry
(Grades 10–11) Key 10, Hilton
Science Focus: PS, CCC, SEP
Paul Orbe (porbe@ucboe.us), Academy for Enrichment and Advancement, Union City, N.J.
Explore assessing writing, collaboration, and debate skills of students through a role-playing activity. Join me for an overview of the activity and some interesting results.

Epidemiology in Your Classroom
(Grades 9–12) Peale A, Hilton
Science Focus: LS
Emilie Tekely, Dauphin County Technical School, Harrisburg, Pa.
Meet standards while allowing students to do authentic research about health-related events and behaviors in your school.

NSTA District Support
(Grades K–12) Peale B, Hilton
Science Focus: GEN
John Putnam (jputnam@nsta.org), Assistant Executive Director, Professional Programs, NSTA, Arlington, Va. Kim Stilwell (@kstilwellNSTA; kstilwell@nsta.org), Manager, New Business Development, NSTA, Arlington, Va.
Find out how NSTA can support your district with science PD opportunities that combine access to national thought leaders with high-quality NSTA products.
Thursday, 12:30–1:30 PM

Hands-On Workshops

Bridging the Gap: Collaboration in the “Next Generation Science Learning Environment”
(Grades 5–8)
322, Convention Center
Science Focus: GEN, INF, SEP
Emma Banay (ebanay@expandedschools.org) and Sabrina Gomez (@expand_school; sgomez@expandedschools.org), ExpandED Schools, New York City, N.Y.
Jasmine Maldonado (jmaldonado@nyscience.org), New York Hall of Science, Corona
Chezare Martinez (chezare1981@hotmail.com), Kingsbridge Heights Community Center, Bronx, N.Y.
Diego Rodriguez (drodriguez@ticharter.org), Tech International Charter, Bronx, N.Y.

Educators can achieve the “next generation science learning environment” through collaboration with community partners. Come learn how to bridge formal and informal science environments.

Exploring Discrepant Events with Silly Putty®
(Grades 1–5)
324, Convention Center
Science Focus: PS1.A, CCC2, SEP7
Mike Mangiaracina (mike.mangiaracina@gmail.com), Brent Elementary School, Washington, D.C.

By engaging with the discrepant event of the “Melting Snowman” toy, students immerse themselves in a world of inquiry. Is it a solid or a liquid?

Connecting Content, Critical Thinking, and Creativity Through Trade Books
(Grades 3–6)
326, Convention Center
Science Focus: GEN, CCC1, CCC3, CCC6
Christine Anne Royce (@caroyce; caroyce@aol.com), NSTA President-Elect, and Shippensburg University, Shippensburg, Pa.
Steve Rich (@bflyguy; bflywriter@comcast.net), University of West Georgia, Carrollton

Investigate a series of activities that help to integrate science and literacy skills that use trade books focused on critical thinking, creativity, and developmentally appropriate content.

Let It Rain: A Hands-On Rain Garden Design Lab
(Grades 4–8)
349, Convention Center
Science Focus: ESS3.C, ETS1.A, ETS1.B, INF, CCC2, CCC4, CCC6, SEP1, SEP2, SEP3, SEP4, SEP6, SEP8
Kerri Younkin (kyounkin@towson.edu), Towson University Center for STEM Excellence, Baltimore, Md.

Get dirty! Join us for an engineering challenge where you will create and test a model rain garden to absorb the most water (grades 4–8).

How to Read Like Scientists!
(Grades 4–10)
Holiday 4, Hilton
Science Focus: GEN
Ann Berg (aberg@c-ischools.org), Cambridge Middle School, Cambridge, Minn.

Explore strategies through interactive activities and discussion that support success in reading science nonfiction and, most importantly, scientific inquiry.

Bridging the Language Gap for ELLs in Science
(Grades 3–10)
Holiday 5, Hilton
Science Focus: GEN, NGSS
Emily Perry, Thomas Viaduct Middle School, Hanover, Md.
Deborah Puhak, Howard County Public School System, Ellicott City, Md.

Explore learning activities focusing on equitable access for English language learners using the dimensions of the NGSS and the Framework. Personalized supports for students will be modeled and shared.
Pursuing the Red Planet
(Grades 3–5)
Science Focus: ESS
Susie Cohen (susa600@aol.com), Florida International University, Miami
Launch new learning as you engage in hands-on activities and discuss how to stimulate student interest in space travel and issues related to survival on Mars.

How to Invent the Wheel: Designing a STEM Program from Scratch
(Grades 9–12)
Science Focus: ETS2, CCC, SEP
David Brock (brockda@rpcs.org) and Amy Popp (poppa@rpcs.org), Roland Park Country School, Baltimore, Md.
Join faculty of The STEM Institute at Roland Park to learn how to identify and develop your STEM needs into a working curriculum for your students. Engage in guided planning to build a model framework for constructing your STEM program(s).

Describing Data Using Central Tendencies, Graphs, and Statistics in AP and IB
(Grades 9–College)
Science Focus: LS, SEP
Kristen Daniels Dotti (kristen.dotti@catalystlearningcurricula.com), Verde Valley School, Sedona, Ariz.
Collect data on groups of “mice” and use these sample sets to guide students in making good choices in the use of statistical parameters.

12:30–1:30 PM
Exhibitor Workshops
NGSS Biomedical Engineering: Get a Grip
(Grades 6–8)
Science Focus: ETS, LS1.A, CCC6, SEP1, SEP2, SEP5, SEP6
Sponsor: Lab-Aids, Inc.
Cindy Lilly, Ocean Bay Middle School, Myrtle Beach, S.C.
Use the approach of biomimicry to design, test, evaluate, and redesign a mechanical gripping device to meet criteria. An interactive process is used to optimize the device by investigating the relationship between structure and function and applicable technology.

Getting Students Through the Cellular Membrane
(Grades 6–College)
Science Focus: LS1, PS1, PS2, CCC1, CCC2, CCC4, CCC6, CCC7, SEP1, SEP2, SEP6
Sponsor: 3D Molecular Designs
Gina Vogt (gina.vogt@3dmoleculardesigns.com), MSOE Center for BioMolecular Modeling, Milwaukee, Wis.
Support three-dimensional learning with materials that engage your students in an exploration of rare chemical and physical properties of water and the membranes that separate cells from their surrounding environment. Construct a model to explain diffusion, osmosis, and active and passive transport of molecules across the cell membrane.

Hands-On Science with Classroom Critters
(Grades K–12)
Science Focus: LS
Sponsor: Carolina Biological Supply Co.
Carolina Teaching Partner
Add action and excitement to your science class with live organisms! Discover fun hands-on activities with pill/sow bugs, termites, bessbugs, and butterflies that you can use in your labs. Learn about care and handling, as well as easy ways to introduce inquiry. Additional resources available online.

Modular Robotics for Elementary and Middle School: CUBELETS!
(Grades 3–8)
Science Focus: ETS
Sponsor: Frey Scientific/School Specialty Science
Kat Mills, School Specialty Science, Rossharon, Tex.
Erik Benton, CPO Science/School Specialty Science, Nashua, N.H.
Encourage students to be inquisitive and unlock their inner inventor! Learn about types of robotic operations: THINK, SENSE, and ACT in a hands-on hour using Cubelets, blocks that can instantly connect and perform robot functions. What sensory input is needed? What output is generated? How many classroom applications are there?
Wave Properties and Information Transfer
(Grades 6–8) 337, Convention Center
Science Focus: PS4, CCC, SEP
Sponsor: Delta Education/School Specialty Science–FOSS
Jessica Penchos, The Lawrence Hall of Science, University of California, Berkeley
Engage in activities using lasers and optical fibers in the new FOSS Next Generation Waves Course for middle school. Explore properties of refraction and reflection that allow information transfer by fiber-optic technology, and identify connections to the three dimensions of NGSS.

What in the World Are Crosscutting Concepts?
(Grades K–8) 338, Convention Center
Science Focus: GEN, CCC
Sponsor: Delta Education/School Specialty Science
Kathy Armstrong, Northside Elementary School, Midway, Ky.
Darrick Wood, Distance Learning Coordinator, Louisville, Ky.
Crosscutting concepts may be the most misunderstood dimension of the NGSS. Come be a student and experience Delta Science Module lessons that unleash the power of the crosscutting concepts and give them the attention they deserve. Leave with materials and strategies that you can use in your classroom next week.

Cancer Investigators: Medical Diagnostics in Your Classroom
(Grades 9–College) 339, Convention Center
Science Focus: LS
Sponsor: Edvotek, Inc.
Brian Ell (info@edvotek.com), Tom Cynkar (info@edvotek.com), and Maria Dayton (info@edvotek.com), Edvotek Inc., Washington, D.C.
Cancer contributes to almost one in every four deaths in the United States. Fortunately, innovations in biomedical research have improved our understanding of the differences between normal and cancer cells. In this hands-on workshop, participants use microscopy and electrophoresis to explore the hallmarks of cancer. Free gift for attendees!

Puppet Theater Engineering: Phenomena and 3-D Instruction for Grades K and 1
(Grades K–1) 342, Convention Center
Science Focus: PS
Sponsor: Amplify
Sophia Lamberten and Rebecca Abbott, The Lawrence Hall of Science, University of California, Berkeley
Experience how students design shadow scenery and sound effects while figuring out principles of light and sound and engaging in three-dimensional learning. Get a hands-on dive into Amplify Science for grades K–1, engaging with this new K–8 NGSS-designed curriculum from The Lawrence Hall of Science.

Zombie Apocalypse!
(Grades 6–12) 345/346, Convention Center
Science Focus: GEN
Sponsor: Texas Instruments
Jeffrey Lukens, Sioux Falls (S.Dak.) School District
Be part of a zombie apocalypse! Learn about disease-spread modeling using simulations and fun storylines about a zombie outbreak. Applicable for middle school and high school, this workshop is sure to scare you and your little zombies with its exciting Hollywood themes used to engage students in learning science!

Literacy in the Context of Science in the Elementary Classroom
(Grades K–5) 348, Convention Center
Science Focus: GEN, NGSS
Sponsor: Activate Learning
Ellen Mintz (emintz621@gmail.com), Charleston County School District, Charleston, S.C.
Experience a lesson that demonstrates the integration of literacy strategies in the context of science. This includes the incorporation of academic language in written responses in science notebooks and oral discourse in conjunction with investigations using an interactive word wall.

Evaluate Your Sessions Online!
This year, we’re giving away a Apple iPad mini 4 Wi-Fi tablet to one lucky attendee who completes a session evaluation!
Remember, the more sessions you attend and evaluate, the more chances you have to win! (See page 12 for details.)
1:00–1:30 PM Presentation
NMLSTA-Sponsored Session: Leveraging the Power of Place in Citizen Science Projects
(Grades 4–8)
Key 1, Hilton
Science Focus: LS2, INF, SEP1, SEP4, SEP8
Terri Hebert (thebert@iusb.edu), Indiana University South Bend
Find out more about how middle level students and teachers can experience powerful learning as they seek to engage the local landscape through citizen science projects.

1:00–4:00 PM Short Course
Data, Data Everywhere (SC-1)
(Grades K–12) Tickets Required; $21 Key 12, Hilton
Science Focus: ESS, SEP4
Eliza Richardson (eurl0@psu.edu), David Babb (dmb16@psu.edu), and Timothy White (tswhite@esc.psu.edu), Penn State, University Park, PA
For description, see page 32.

2:00–2:30 PM Presentation
Leaving the “Wright” Footprint
(Grades 5–8) 321, Convention Center
Science Focus: ESS
Rachel Askew (@MsRDAskew; rdking1@memphis.edu), The University of Memphis, Tenn.
Are students invested in their school? How can we encourage students to care about their schools and the surrounding community through a lens of science? By leaving “The ‘Wright’ Footprint” students will learn how their school impacts the surrounding community and create a plan to improve their environmental footprint.

2:00–3:00 PM Featured Presentation
Rigorous Citizen Science for Lasting Change
(General) 328/329, Convention Center
Science Focus: GEN, INF
Sponsored by National Geographic Learning | Cengage
Gregg Treinish (@Adventur-Science), Adventurer and Conservationist, Adventure Scientists, Bozeman, Mont.
Presider: Olukayode Banmeke, NSTA Baltimore Area Conference Strand Leader and DuVal High School, Lanham, Md.
Gregg Treinish will speak about his journey from adventurer to nonprofit CEO and how he has mobilized thousands to make a difference while they explore the outdoors. Through his organization, Adventure Scientists, some of the world’s most challenging environmental issues are gaining new hope from solutions at scale. Gregg will focus on these solutions and share tales of data collection from expeditions around the world.

Gregg Treinish founded Adventurers and Scientists for Conservation (ASC), a nonprofit organization connecting outdoor adventurers with scientists in need of data from the field. He also organizes his own expeditions, contributing to research on wildlife–human interaction, fragmented habitats, and threatened species. Gregg has worked with students, teachers, military veterans, and families on vacation to collect samples, photographs, data, and observations in an effort to use “citizen science” as a main way that scientific data can be collected and shared.

Gregg Treinish navigates in a Mokoro, a type of canoe used in the shallow waters of the Okavango Delta in Botswana.
2:00–3:00 PM Presentations

Enabling K–6 Students to Understand the Impact of STEM and Integration of All Its Disciplines: Explorations and Problem Solving with Physical Structures and Everyday Household Objects
(Grades K–6) 323, Convention Center
Science Focus: GEN, NGSS
Donna Knoell (dknoell@sbcglobal.net), Educational Consultant, Overland Park, Kans.
Join me as I model the integration of STEM disciplines in classroom explorations by analyzing and constructing physical structures and everyday household objects to advance learning and ignite engagement and creativity. Handouts!

Advancing Awareness of Clean Energy Technologies and Careers Through an Educational Design Contest
(Grades 10–College) 333, Convention Center
Science Focus: ETS2.B, SEP8
Phyllis King (@phylking22; @INL; phyllis.king@inl.gov), Idaho National Laboratory, Idaho Falls
Gain details about the 2016 Geothermal Design Challenge, diverse demographics of the participants, outreach methodologies and metrics, and the quantified impact the contest had on driving awareness of clean energy technologies and potential careers among the participants, the geothermal community, educational community, and the general public.

A Unique Ice Core Investigation That Integrates the Three Dimensions of NGSS and STEM
(Grades 7–12) Holiday 3, Hilton
Donna Young (dlyoung.nso@gmail.com), NASA NSO STEM Coordinator, Bullhead City, Ariz.
Hear about a multidisciplinary open-ended investigation that incorporates absolute and relative dating, anomalies, historical context, volcanoes, solar proton events, energy cycles, Earth systems, terrestrial events, and supernovas.

Authentic LEARN-ing and Teaching
(Grades 3–12) Johnson A, Hilton
Science Focus: GEN, SEP
Alexandra Stroukoff (astroukoff@ou.edu) and Danny Mattox (@demattox; dannyemattox@gmail.com), The University of Oklahoma, Norman
We will share an investigation of an authentic learning lesson database, LEARN (Lessons and Engaging Activities Repository Network), that connects research-based strategies with the dimensions of the NGSS.

STEM: Incorporating Career Connections
(Grades 6–12) Johnson B, Hilton
Science Focus: GEN, NGSS
Ashley Pereira (@ashleypereiraCT; pereiral@easternct.edu), Eastern Connecticut State University, Willimantic
Same content, new focus. Come learn how to incorporate STEM career exploration into your existing curriculum using examples from two high school courses. Participants are encouraged to bring a unit or lesson plan to work with in this workshop-style presentation.

ASTE-Sponsored Session: Beyond Evolution: Addressing Interactions Between Science and Religion in Classrooms and Communities
(Grades 6–College) Key 1, Hilton
Science Focus: GEN
Joseph Shane (jwshan@ship.edu), Shippensburg University, Shippensburg, Pa.
Ronald Hermann (rhermann@towson.edu), Towson University, Towson, Md.
We will discuss historical, legal, and practical aspects of addressing science topics with frequent religious implications such as evolution, geochronology, and climate change.

Creating and Maintaining Kid-Friendly/Bird-Friendly Gardens
(Grades 1–12) Key 2, Hilton
Science Focus: GEN, INF, SEP
Lindsay Glasner (@BirdSleuth; lig27@cornell.edu), The Cornell Lab of Ornithology, Ithaca, N.Y.
Melanie Kane (melanie.kane@hcps.org), Harford Glen Environmental Education Center, Bel Air, Md.
School gardens inspire students to explore the characteristics that create good habitats for birds and wildlife. Discover grants, resources, and get your free bird feeder!

Spark Students’ Curiosity with Chemistry!
(Grades K–12) Key 3, Hilton
Science Focus: PS1, PS3
Karen Kaleuati (k_kaleuati@acs.org), American Chemical Society, Washington, D.C.
Learn about the various free resources—games, lesson plans, grants, and more—available from the American Chemical Society (ACS) without being a member. Attendees will walk away with copies of the resources.
Thursday, 2:00–3:00 PM

Inventing Success for All Learners in STEM
(Grades 1–12) Key 4, Hilton
Science Focus: ETS1
Joann Blumenfeld (jblumenfeld@wcpss.net), Broughton Magnet High School and Science House, North Carolina State University, Raleigh
Sheryl Sotelo (@SherylSotelo; sherylsotelo@gmail.com), STEMovations, Homer, Alaska
Walk away with many hands-on low-cost ideas, resources, and competitions that engage all kinds of learners in high-quality STEM learning while inventing.

Cars: A Fundamental Look at How Cars Work and the Science Involved
(Grades 8–12) Key 10, Hilton
Science Focus: ETS, PS3, INF, CCC, SEP
Andrew Nydam (andrewnydam@hotmail.com), Polymer Ambassador, Olympia, Wash.
Students love cars and tolerate school. Complex science concepts can be introduced and explored using the automobile as the focus (energy transformations, chemical reactions, gas laws, and solutions).

2:00–3:00 PM Hands-On Workshops

Diving into the Chemistry of the “Toward High School Biology” Curriculum
(Grade 8) 324, Convention Center
Sarah Pappalardo (@PappyScience; squick08@gmail.com), Dunloggin Middle School, Ellicott City, Md.
Meredith Long (@LongEMMScience; meredith_long@hcpss.org), Ellicott Mills Middle School, Ellicott City, Md.
Damisha Drakes (damisha_drakes@hcpss.org), Wilde Lake Middle School, Columbia, Md.
Leah Donovan (@leahrdonovan; leahrdonovan@hotmail.com), Oakland Mills Middle School, Columbia, Md.
How do you teach the conservation of matter AND have it “stick”? We will share our classroom experiences with the Toward High School Biology unit.

NSTA Press® Session: Solar Science: 3-D Learning Applied to the Study of the Sun’s Daily and Annual Motion
(Grades 6–9) 325, Convention Center
Science Focus: ESS, CCC, SEP
Dennis Schatz (@DinoManSchatz; dschatz@pacsci.org), Pacific Science Center, Seattle, Wash.
Solar Science provides various examples of using three-dimensional learning. Come explore activities associated with the daily and annual motion of the Sun.

Let’s Get Wet: Water and Weather
(Grades P–3) 326, Convention Center
Science Focus: ESS
Ruth Ruud (ruudruth61@gmail.com), Cleveland State University, Cleveland, Ohio
Don’t look now, but the CCSS asks that you teach Earth science as early as kindergarten, and the NGSS have specific goals for early primary. No more procrastinating! The good news is that you have your equipment. Come get easy activities, lit basics, and basic teacher background so that you can start right away!

Science—A Family Event!
(Grades 6–8) 349, Convention Center
Science Focus: PS, SEP2, SEP6, SEP8
Dawn Cronauer (dawn.cronauer@hcps.org), North Harford Middle School, Pylesville, Md.
Get parents involved and students excited about homework! Walk away with a set of home demonstrations to go with each physical science unit.
Thursday, 2:00–3:00 PM

Inventing Is Just Plain Fun (for All)!
(Grades 4–College) Holiday 4, Hilton
Science Focus: ETS, SEP6
Anthony Perry (@tonyperry; aperry@mit.edu), The
John Stansbury (@stansburyj; john_w_stansbury@mcpsmd. org), Poolesville High School, Poolesville, Md.
Gain experience leading a design challenge and incorporat-
ing invention into your curriculum to provide authentic and integrated problem-solving opportunities for all students.

Evolution: DNA and the Unity of Life
(Grades 9–12) Holiday 5, Hilton
Science Focus: LS4, CCC1, CCC2, SEP2, SEP4, SEP7
Louisa Stark (louisa.stark@utah.edu), The University of
Utah, Salt Lake City
Explore a curriculum unit integrating three-dimensional
learning with published scientific data to address core ideas
in biochemistry, common ancestry, heredity, natural selection,
and speciation. Visit learn.genetics.utah.edu for more
information.

Maximize Your Makerspace Through Design Thinking
and the Wallingford 3-D Learning Program
(Grades K–12) Key 6, Hilton
Science Focus: ETS
Kate O’Donnell (@WPS_Science; kodonnell@wallingford-
schools.org) and Robert Kovi (@robkovi; rkovi@wallingford-
schools.org), Wallingford (Conn.) Public Schools
Presider: Salvatore Menzo (smenzo@wallingfordschools.org),
Wallingford (Conn.) Public Schools
Hear how students from kindergarten through high school
can apply design thinking and Wallingford three-dimensional
learning in a makerspace to provide an authentic application
of engineering, technology, and the application of science.

Teaching Cosmology
(Grades 9–College) Key 7, Hilton
Science Focus: ESS
Katrina Brown (kwb@pitt.edu) and Todd Brown (ltbrown@
pitt.edu), University of Pittsburgh at Greensburg, Pa.
We will discuss methods for teaching cosmology, work
through an activity that demonstrates the expanding universe,
and explore the History of the Universe chart.

NGSS@NSTA Forum Session: Better Science for All
(Grades K–12) Key 8, Hilton
Science Focus: GEN, NGSS
Matt Krehbiel (@ksscienceseguy; mkrehbiel@achieve.org), Achieve, Inc., Washington, D.C.
Implementation of the NGSS should focus on advancing sci-
ence education for all students and doing this successfully
means more than changing one or two classrooms, it means
catalyzing strategic change within your school and district.
Come explore how to leverage existing Achieve tools to
address concrete needs (selecting instructional materials,
evaluating classroom assessments, etc.) while simultane-
ously building long-term capacity to advance science instruction.
This session is designed for classroom, building, and district
leaders who are (or who want to be) thinking strategically
about NGSS implementation and are looking for more ideas
of how to move forward.

Engineering Underway: A Closer Look at the Engineering
Design Process Through Naval-Relevant Project-
Based Learning
(Grades 6–College) Key 9, Hilton
Science Focus: ETS1
Angela Moran (amoran@usna.edu), U.S. Naval Academy,
Annapolis, Md.
The goal of this workshop is to develop participants’ pedagogical
knowledge on the methodology of engineering design through hands-on, project-based, and
Naval-relevant experiences. Note: Hands-on activities are available to the first 30 participants.
2:00–3:00 PM Exhibitor Workshops

Chemical Batteries
(Grades 6–8) 327, Convention Center
Sponsor: Lab-Aids, Inc.
Cindy Lilly, Ocean Bay Middle School, Myrtle Beach, S.C.
Although we live a battery-powered lifestyle, most of us (students included) have no idea how batteries actually work. In this hands-on workshop, we will engage in an activity from Issues and Physical Science from Lab-Aids. Make a wet cell battery, explore the effect of using different metal electrodes on battery output, and consider ways to reduce the number of discarded batteries in the waste stream.

Collecting Evidence: How Does an Owl Get All That Energy?
(Grades K–5) 331/332, Convention Center
Science Focus: LS, CCC, SEP
Sponsor: Carolina Biological Supply Co.
Carolina Teaching Partner
Join us to experience a lesson from Carolina’s Building Blocks of Science® elementary curriculum. The lesson uses modeling to solve the problem, “Which animals provide energy for owls?” Leave with a set of ideas for using modeling with your students.

Solving the Mystery of STEM Using Forensic Science
(Grades 5–12) 336, Convention Center
Science Focus: GEN
Sponsor: Frey Scientific/School Specialty Science
Kat Mills, School Specialty Science, Rosharon, Tex.
Erik Benton, CPO Science/School Specialty Science, Nashua, N.H.
Conduct STEM-focused beginner forensic activities that connect the scientific investigations to analysis and investigative skills. Solve “cases” involving fingerprinting, blood spatter, and document or fabric analysis. Using a digital learning environment with simple supplies, we will apply basic mathematical principles, plus integrate reading and writing strategies with Frey Scientific’s Forensics Kit.

Identifying Energy Transfers in Motors and Generators
(Grades 6–8) 337, Convention Center
Science Focus: PS3, CCC, SEP
Sponsor: Delta Education/School Specialty Science–FOSS
Jessica Penchos, The Lawrence Hall of Science, University of California, Berkeley
Dissect a motor to identify its components and make claims about energy transfers in the new FOSS Next Generation Electromagnetic Force Course for middle school. Compare the motor components to those of a generator and consider sustainability of energy sources. Identify connections to the three dimensions of NGSS.

Boosting the Makerspace Experience for Young Scientists!
(Grades K–3) 338, Convention Center
Science Focus: ETS
Sponsor: Delta Education and Frey Scientific
Kathy Armstrong, Northside Elementary School, Midway, Ky.
Darrick Wood, Distance Learning Coordinator, Louisville, Ky.
Makerspaces are popping up everywhere, providing a creative space to explore questions and solve problems. But for younger students, tackling STEM-related challenges requires a foundation in science investigation. Help young scientists build the skills needed for independent exploration in their makerspaces with programs like SCIENCE IN A NUTSHELL.

Detecting the Silent Killer: Clinical Detection of Diabetes
(Grades 9–College) 339, Convention Center
Science Focus: LS
Sponsor: Edvotek, Inc.
Maria Dayton (info@edvotek.com), Brian Ell (info@edvotek.com), and Tom Cynkar (info@edvotek.com), Edvotek Inc., Washington, D.C.
Over 380 million people worldwide are afflicted by diabetes, a disease that causes high blood sugar. Due to genetic predisposition and high-calorie, low-activity lifestyles, that number continues to grow. Without early treatment, diabetes causes severe medical complications. In this exploration, you will diagnose diabetes using simulated urinalysis and ELISA tests. Free gift for attendees!

Communicating Science Through Lab Notebooking
(Grades 9–College) 341, Convention Center
Science Focus: GEN
Sponsor: Bio-Rad Laboratories
Cassy Granieri, Bio-Rad Laboratories, Hercules, Calif.
Maintaining a proper lab notebook is key to communicating processes and findings to build on your results. It can also be the difference between winning a patent or not. Learn about critical elements for good documentation and rubrics for assessment of student notebooks.
Green Chemistry Experiments for General and AP Chemistry from Flinn
(Grades 9–College) 343/344, Convention Center
Science Focus: PS
Sponsor: Flinn Scientific, Inc.
Mike Marvel (mmarvel@flinnsci.com), Flinn Scientific, Inc., Batavia, Ill.
The Green Chemistry Program was initiated by the EPA with the goal of applying chemical principles to prevent pollution. Join us as we present unique experiments demonstrating the 12 principles of green chemistry. You’ll learn how to build a solar cell using fruit, make a household surface cleaner, use leftover wood ash from a pizza oven to run an acid-base titration, and use lettuce seeds to study the ecotoxicity of road deicers. Handouts!

Literacy in the Context of Science in the Middle School Classroom
(Grades 5–8) 348, Convention Center
Science Focus: GEN, NGSS
Sponsor: Activate Learning
Ellen Mintz (emintz621@gmail.com), Charleston County School District, Charleston, S.C.
Experience a lesson that demonstrates the integration of literacy strategies in the context of science. This includes the incorporation of academic language in written responses in science notebooks and oral discourse in conjunction with investigations using an interactive word wall.

3:30–4:00 PM Presentations
Using Seminars as a Form of Alternative Assessment
(Grades 9–12) 333, Convention Center
Science Focus: GEN
Mary Chuboff (@mchuboff; mchuboff@athensacademy.org), Athens Academy, Athens, Ga.
Socratic seminars continue the tradition of Socrates, the classical Greek philosopher who taught his followers by asking questions. Today, Socratic dialogue can transform students’ learning experience in classrooms through high school and beyond. When facilitated by a teacher, the Socratic method can lead to improved student achievement, increased motivation, and a more respectful classroom culture.

Blended Learning in the Lab Sciences
(Grades 4–College) Peale B, Hilton
Science Focus: GEN
Teresa Dobler (tedobler@gmail.com), Washington Latin Public Charter School, Washington, D.C.
Transform your classroom using free web-based tools. Learn to incorporate collaboration, critical argumentation, and inquiry while allowing students to work at their own level and pace.
3:30–4:30 PM Presentations

(Grades K–5) 321, Convention Center
Science Focus: ESS
Eileen Biegel (eileen.biegel@kps.org), Algonkian Elementary School, Sterling, Va.
Go in-depth into how to integrate the NGSS, state standards, and the principles of ocean literacy while using the National Marine Sanctuaries as a foundation for scientific understanding.

Redwood of the East
(Grades 6–8) 323, Convention Center
Gary Hedges (@gehedges), Maryland State Dept. of Education, Frederick
Brad Yohe (brad.yohe@gmail.com), Retired Educator, Gettysburg, Pa.
Justin Klingler (jklingler@gettysburg.k12.pa.us) and Lisa Deaneer (ldeaner@gettysburg.k12.pa.us), Gettysburg Area Middle School, Gettysburg, Pa.
Examine strategies for student research and data analysis within the context of restoration efforts of the American chestnut tree.

College Science Teaching and Student Success
(College) Holiday 3, Hilton
Science Focus: GEN, NGSS
Elizabeth Allan (eallan@uco.edu), University of Central Oklahoma, Edmond
Come join members of the College Science Teaching Committee to learn how to get involved with NSTA as we discuss the challenges of teaching science at the college level. Bring your strategies for student success and join us!

Comp Hydro Baltimore: Solving the Issues of Flooding in Baltimore
(Grades 9–12) Johnson A, Hilton
Bess Caplan (@BESlter; caplanb@caryinstitute.org), Cary Institute of Ecosystem Studies, Millbrook, N.Y.
Comp Hydro Baltimore integrates science and computational knowledge and practices into water systems instruction to enhance development of scientific reasoning among Baltimore City high school students.

Presentation 101: Learning About Presenting at Professional Conferences
(General) Johnson B, Hilton
Science Focus: GEN
Mary Stapleton (@SciTechTU; mkstapleton@towson.edu) and Ronald Hermann (@SciTechTU; thermann@towson.edu), Towson University, Towson, Md.
Julie Damico (@dwntwnjb73; jdamico@bcps.org), Baltimore County Public Schools Office of Science, Towson, Md.
Find out what it takes to present at a conference, from choosing a topic, to crafting an abstract and designing an engaging, effective session.

NARST-Sponsored Session: Designing and Implementing Middle School Project-Based Watershed Investigations
(Grades 4–9) Key 1, Hilton
Science Focus: ESS2.C, LS2.C
Rebecca Krall, University of Kentucky, Lexington
Come explore project-based watershed units that a group of middle school teachers created for their students! Examples of units and activities will be shared.

Do You Need a New Science Lab?
(Grades 6–12) Key 2, Hilton
Science Focus: GEN
Ruth Ruud (ruudruth61@gmail.com), Cleveland State University, Cleveland, Ohio
Win a Shell Science Lab Makeover ($20,000 value) for your school! Are you a middle school or high school science teacher in need of a science lab makeover? Attend this session and learn how you can apply to win the Shell Science Lab Makeover! You will have an opportunity to actually begin to complete the application and have your questions answered.

Implementing 3-D Learning with NASA/GLOBE Earth System Learning Progressions
(Grades P–12) Key 3, Hilton
Science Focus: ESS, CCC, SEP
Tina Harte (tina.r.harte@nasa.gov), NASA Langley Research Center, Hampton, Va.
Janet Struble (janet.struble2@utoledo.edu), The University of Toledo, Ohio
Interact with an Earth science three-dimensional learning experience that incorporates GLOBE Program investigations, data collection, and NASA resources in a series of Mission Earth preK–12 learning progressions.
A Five-Step Path to Student-Generated Environmental Sustainability Projects

Grades 9–12

Key 10, Hilton

Science Focus: ESS3, ETS, CCC1, CCC4, SEP1, SEP3, SEP4, SEP6, SEP7, SEP8

Stephanie Purington (sbpurington@gmail.com), UMass Amherst, Mass.

Find out about a curriculum developed to take students from interest in sustainability, through research, and on to the creation of materials and projects aimed at increasing sustainability.

Saturday Academy: Strengthening the K–16 STEM Pipeline

General

Key 11, Hilton

Science Focus: ESS, LS, PS, SEP1, SEP2, SEP3, SEP4, SEP5, SEP8

Jonathan Wilson (jonathan.wilson@morgan.edu) and **Tia Keels** (tia.keelsfields@morgan.edu), Morgan State University, Baltimore, Md.

Prince Hunter (princehunter@verizon.net), STEM Consultant, Silver Spring, Md.

Hear how engaging students, teachers, and family members, as well as using curriculum enhancement activities and integrating emerging technologies in a Saturday Academy strengthens the K–16 STEM Pipeline.

High-Paying STEM Careers in the Medical Field That Use the NGSS Life Science Performance Expectations

Grades 9–12

Peale A, Hilton

Science Focus: LS3.A

Molly Wilson (mwilson@ls.org), Liberty Science Center, Jersey City, N.J.

Presider: Ruben Rosario, Liberty Science Center, Jersey City, N.J.

Experience an opportunity that integrates STEM and career pathways while observing a surgical procedure!
Selecting Phenomena to Motivate Student Sense-making
(Grades K–12) Holiday 4, Hilton
Science Focus: GEN, NGSS
Ted Willard (@Ted_NSTA; twillard@nsta.org), Program Director, NGSS@NSTA, NSTA, Arlington, Va.
The right phenomena are a key ingredient in successful three-dimensional teaching and learning. Emphasis will be placed on what makes some phenomena better than others and how to use them successfully in the classroom.

Analysis of Supernova Remnants Using X-Ray Spectroscopy with NASA Data and STEM Tools
(Grades 9–12) Holiday 5, Hilton
Pamela Perry (pperry@lewistonpublicschools.org), Lewiston High School, Lewiston, Maine
Donna Young (dlyoung.nso@gmail.com), NASA NSO STEM Coordinator, Bullhead City, Ariz.
Identify elements in the spectra of supernova remnants to determine the properties of collapsed and exploded stars using NASA X-ray data and image analysis tools.

You Can Build It
(Grades 1–12) Key 4, Hilton
Science Focus: ETS1, CCC, SEP
Rima Garg (@rimagarg1; rima.garg@pgcps.org), Prince George’s County Public Schools, Oxon Hill, Md.
Shobha NarayanaSundaram (shobha.rani@pgcps.org), Eleanor Roosevelt High School, Greenbelt, Md.
We will use the Engineering Design Process to build, reflect, analyze, and redesign structures while using a storyline and addressing the NGSS.

Are Humans Causing Earthquakes? Teaching High School Earth Systems and Human Sustainability Using Authentic Earthquake Location Data
(Grades 6–College) Key 5, Hilton
Science Focus: ESS2.B, ESS3
Lauren Morse, Liberty Science Center, Jersey City, N.J.
Enhance plate tectonics, natural hazards, and human impact lessons using real earthquake data. A free online global earthquake database will be explored using NGSS-focused lessons.

Straw Rockets Are Out of This World!
(Grades 3–8) Key 6, Hilton
Science Focus: PS, CCC2, SEP3, SEP4
Joan Gillman (joan.gillman@calhoun.org), The Calhoun School, New York, N.Y.
For this workshop, STEM skills will be emphasized. We will design, build, and test straw rockets using a special launcher. Propel new learning as you aim to create a rocket that can fly the farthest.

Zombies Are Knocking on Your Classroom Door
(Grades 7–12) Key 7, Hilton
Science Focus: GEN, SEP2, SEP4, SEP5
Jeffrey Lukens (jeffreylukens0613@gmail.com), Sioux Falls (S.Dak.) School District
When zombies knock, let them into your classroom and then battle them with STEM strategies! The zombies don’t stand a chance.

NGSS@NSTA Forum Session: KLEWS to Language and Literacy Development Through 3-D Science Instruction in Early Grades
(Grades K–12) Key 8, Hilton
Science Focus: GEN, NGSS
Carla Zembal-Saul (@czem; czemsaul@gmail.com), Penn State, University Park, Pa.
Mary Starr (@starrscience; mary@starrscience.com), Michigan Mathematics and Science Centers Network, Plymouth
We will share practices, resources, and tools for leveraging three-dimensional science instruction and formative assessment to enhance language and literacy development among young learners. Co-designed, classroom-based examples that bridge research and practice will be highlighted.
3:30–4:30 PM Exhibitor Workshops

Investigating a Cliff Model
(Grades 6–8)
327, Convention Center

Science Focus: ESS2.C, ETS2.B, CCC4, SEP2, SEP3, SEP4, SEP6

Sponsor: Lab-Aids, Inc.

Cindy Lilly*, Ocean Bay Middle School, Myrtle Beach, S.C.

Engineer a coastal breakwater (from the *Issues and Earth Science* “Erosion and Deposition” unit from Lab-Aids) and analyze the trade-offs of the design. Explore how the natural world is influenced by our engineered world, creating more societal issues that must be solved through science and engineering. See how SEPUP embeds the practices and uses real issues to powerfully deliver content learning.

Comparative Vertebrate Anatomy with Carolina’s Perfect Solution® Specimens
(Grades 6–12)
331/332, Convention Center

Science Focus: LS

Sponsor: Carolina Biological Supply Co.

Carolina Teaching Partner

Explore animal diversity by comparing anatomical adaptations of four popular vertebrates. Dissect a preserved pig, rat, dogfish, or frog, and then discuss similarities and differences in the observed structures of the different specimens. This is an excellent comparative dissection activity featuring Carolina’s Perfect Solution specimens.

CPO Science LINK Learning Module: Chemistry and the Periodic Table
(Grades 5–12)
336, Convention Center

Science Focus: PS

Sponsor: CPO Science/School Specialty Science

Cat Mills, School Specialty Science, Rosharon, Tex.

Erik Benton, CPO Science/School Specialty Science, Nashua, N.H.

CPO Science’s new LINK Chemistry learning module is an NGSS approach that lets students experience innovative activities to learn about atomic structure and the periodic table. Use a digital learning environment with hands-on equipment to study bonding, isotopes, subatomic particles, ions, balancing equations, energy levels, and periodicity. Door prizes.

Evolutionary Evidence in the Fossil Record
(Grades 6–8)
337, Convention Center

Science Focus: LS4, CCC, SEP

Sponsor: Delta Education/School Specialty Science—FOSS

Ann Moriarty, The Lawrence Hall of Science, University of California, Berkeley

What does the fossil record tell us about how life has changed over time? Explore evolutionary history through hands-on activities from the new FOSS Next Generation Heredity and Adaptation Course for middle school, and identify connections to the three dimensions of NGSS.

How to Argue in the Elementary Science Class
(Grades K–4)
338, Convention Center

Science Focus: GEN, SEP7

Sponsor: Delta Education/School Specialty Science

Kathy Armstrong, Northside Elementary School, Midway, Ky.

Darrick Wood, Distance Learning Coordinator, Louisville, Ky.

Help students develop scientific argumentation skills by making claims based on observable evidence. Put these skills into practice with lessons from Delta Science Modules, as we prove (or disprove) fundamental science concepts. Leave with readers, equipment, and a lesson you can try with your students next week.

Environmental Toxicology Using Edvotek’s New EZ-elegans
(Grades 9–College)
339, Convention Center

Science Focus: LS

Sponsor: Edvotek, Inc.

Maria Dayton (info@edvotek.com), _Brian Ell_ (info@edvotek.com), and _Tom Cynkar_ (info@edvotek.com), Edvotek Inc., Washington, D.C.

Model organisms allow scientists to investigate biological questions that cannot be studied in humans. Learn how Edvotek’s EZ-elegans simplifies culturing *C. elegans* in your classroom. Then, explore effects of environmental factors on *C. elegans* using a simple locomotion assay. Integrate STEM concepts with data collection and statistics. Free gift for attendees!
Enzymes: Technology Inspired by Nature
(Grades 9–College) 341, Convention Center
Science Focus: LS
Sponsor: Bio-Rad Laboratories
Cassy Granieri, Bio-Rad Laboratories, Hercules, Calif.
With rising greenhouse gases, scientists look to nature for a biofuel solution. Cellobiase enzyme, an engine for cellulosic biofuel production, takes center stage. Use an inquiry-based approach to extract enzyme, test activity, and design experiments to study how pH, temperature, and concentrations affect reaction rates.

Reconceptualizing Chemistry Through Play: Ionic Bonding
(Grades 7–12) 347, Convention Center
Science Focus: PS1
Sponsor: PlayMada Games
Lindsay Plavchak (lindsayp@playmaqames.com), PlayMada Games, New York, N.Y.
Discover a new way to teach fundamental chemistry ideas in a fun and engaging way! Explore Collisions™, a digital chemistry game and experience gameplay that provides students with a deepened understanding of key concepts, including cation-anion attraction, neutrality, and ionic ratios. Bring your laptop/tablet and experience student-centered, classroom-ready activities!

4:00–4:30 PM Presentation
Making the Leap to a Digital Course
(Grades 9–12) 333, Convention Center
Science Focus: GEN
Mary Chuboff (@mchuboff; mchuboff@athensacademy.org), Athens Academy, Athens, Ga.
Join me for a demonstration on how to gather resources into a single, easily updated electronic space that can make students, teachers, and parents willing to toss the textbook!

5:00–5:30 PM Presentation
Green City Design Challenge
(Grades 6–College) Peale B, Hilton
Science Focus: ESS, ETS, SEP1, SEP2, SEP4, SEP5, SEP6, SEP7, SEP8
Tim Dodds (@tdodds03; tdodds@sssas.org) and Alexandra Mooskin (@msmooskin; amooskin@sssas.org), St. Stephen’s & St. Agnes School, Alexandria, Va.
Hear about St. Stephen’s & St. Agnes School’s “Green City Design Challenge” that has middle school students building sustainable cities of the future. Come learn about this five-month immersive learning experience!
Thursday, 5:00–6:00 PM

5:00–6:00 PM Presentations

Bookworms in Science Class
(Grades 6–8) 323, Convention Center
Science Focus: GEN
Kelly Anthony (anthonkj@pwcs.edu), Marsteller Middle School, Bristow, Va.
Do you have bookworms who think science isn’t for them? Come learn how to use literature to teach a variety of science concepts and increase student interest.

Assessing Students’ Progress on the Energy Concept
(Grades 4–11) 333, Convention Center
Science Focus: PS3
Cari Herrmann Abell (cabell@aaas.org), AAAS/Project 2061, Washington, D.C.
Join me as I present a set of instruments that can be used to monitor students’ progress on understanding energy from late elementary school through high school.

STR2EAMing into LEARNing: The K–5 Convention
(Grades K–5) Holiday 3, Hilton
Science Focus: GEN, NGSS
Elizabeth Barrett-Zahn (ezahn@nredlearn.org), Columbus Elementary School, New Rochelle, N.Y.
Find out how to bring an entire school community together to celebrate collaborative thinking and learning by highlighting learning progressions and three-dimensional teaching and learning.

Making Redox Practical, Relevant, Engaging, and Fun Corrosion Chemistry!
(Grades 7–12) Johnson A, Hilton
Science Focus: PS, INF
Andrew Nydam (andrewnydam@hotmail.com), Polymer Ambassador, Olympia, Wash.
Discover real-world examples using labs, demonstrations, and examples that make reactivity, oxidation/reduction, and corrosion exciting, practical, and easy to teach and learn. I’ll share STEM connections and a CD of information.

Math, Science, and History: Connecting Curricula Through Historical Documents
(Grades 6–12) Key 1, Hilton
Science Focus: GEN, SEP4
Lee Pruett (leepruett@gmail.com) and Beverly Heigre (@MathTeacherMS; bheigre@ndsj.org), Notre Dame High School, San Jose, Calif.
We use historical records and drawings from Thomas Jefferson as a springboard into our interdisciplinary curriculum that combines environmental science, geometry, and U.S. history.

Modeling Scientific Concepts with SCRATCH
(Grades 6–8) Key 2, Hilton
Science Focus: GEN, SEP
Hector Telford (hector@hu-m52.org), Howard University Middle School of Mathematics and Science, Washington, D.C.
Explore the use of the computer program SCRATCH to model concepts such as atomic structure and bonding, the solar system, cell division, and germination in plants. Come with your computer.

Using STEM to Cultivate Youth Environmental Literacy and Foster Community Resilience
(Grades 9–12) Key 10, Hilton
Science Focus: ESS3, ETS2
Dana Haine (dhaine@unc.edu), The University of North Carolina at Chapel Hill
Emphasis will be placed on strategies for engaging high school students in interactive environmental investigations, evaluation of climate adaptation, and design of local action projects.

Discipline…the Final Frontier!
(Grades K–12) Key 11, Hilton
Science Focus: GEN
Rusty May (@rustymayinc; rustymayinc@gmail.com), Bullying & School Safety Foundation, Bear, Del.
You know your subject but discipline is stealing your time. Do you feel effective discipline is where no teacher has gone before? There’s a solution.
5:00–6:00 PM Hands-On Workshops

NSTA Press® Session: Picture Science in Early Childhood: Deepen Those Fun Explorations by Connecting with the Practices of Science and Engineering
(Grades P–2) 325, Convention Center
Science Focus: LS1, LS2, SEP
Peggy Ashbrook (@PeggyAshbrook; scienceissimple@yahoo.com), NSTA Early Years Columnist, Alexandria, Va.
Increase your understanding of the practices of science and engineering while seeing how young children joyfully engage in explorations using those practices.

Environmental Toxicology: Introduction to Toxicity Testing
(Grades 6–College) Key 5, Hilton
Science Focus: LS2, SEP1, SEP2, SEP3, SEP5, SEP6
Jonathan Wilson (jonathan.wilson@morgan.edu), Morgan State University, Baltimore, Md.
Using hands-on activities and simulations, participants will design an acute toxicity test. Join in as we collect raw data, complete basic data analysis, and then interpret and present results to promote environmental literacy.

Elementary and Middle School Chemistry: Demonstrations and Lab Activities on a Shoestring Budget
(Grades K–6) Key 6, Hilton
Science Focus: PS, CCC, SEP
Kimberly Duncan (k_duncan@acs.org), American Association of Chemistry Teachers, Washington, D.C.
Come learn how you can implement budget-friendly classroom demonstrations, labs, and activities to teach fundamental chemistry topics in your elementary or middle school classroom.

Developing Coherent Storylines: Performance Tasks as a Tool for 3-D Learning
(Grades 8–12) Key 7, Hilton
Science Focus: LS, CCC6, SEP8
Elizabeth Chatham (@echathamnvps; libbychat@gmail.com), New Visions for Public Schools, New York, N.Y.
We will explore how to effectively integrate a performance task throughout a unit in order to build a coherent storyline in a way that engages diverse learners.

Engaging in Argument from Evidence in Secondary Urban Science Classrooms
(Grades 7–12) Key 9, Hilton
Science Focus: ETS2, CCC5, SEP1, SEP2, SEP7, SEP8
Jeremy Sabatini (kasabatini@live.com), Robichaud High School, Dearborn Heights, Mich.
Tyler Cederlind (ltitemichigan@gmail.com), Wayne RESA, Wayne, Mich.
Use real-life phenomena and academically productive talk in the secondary science classroom to allow students to engage with language that represents real-world dialogue and allows student expression.

Thursday, 5:00–6:00 PM
8:00–9:00 AM Presentations

Turning the Tide in Middle School Science
(Grades 6–8) 321, Convention Center
Science Focus: GEN, INF, NGSS
Tiffany Wendland (@BCPSSci; twendland@bcps.org) and Amy Hughes (@BCPSSci; ahughes@bcps.org), Baltimore County Public Schools Office of Science, Towson, Md. Find out how Baltimore County Public Schools has developed a phenomena-based spiraled curriculum. We will showcase the phenomena, discuss examples, and share how teachers have been architects of their students’ learning.

Standards Make Strange Instructional Bedfellows: Science and Social Studies—Inquiry and Problem Solving
(Grades K–5) 323, Convention Center
Science Focus: GEN, NGSS
David Allen (@dallenbio; david.r.allen@rps205.com) and Cory Nilsen (@rps205_ss; cory.nilsen@rps205.com), Rockford (Ill.) Public Schools
We will share how to use the NGSS as the backbone to a curriculum and instruction model that integrates science, social studies, and literacy in elementary classrooms.

The Teacher Environmental Literacy Leadership (TELL) Program: Advancing Innovation in Teacher and Student Learning with the Chesapeake Bay Foundation
(Grades P–12) Holiday 3, Hilton
Science Focus: ESS2, INF, SEP8
Amy Green (@CBFedu; agreen@cbf.org) and Norah Carlos (@CBFedu; ncarlos@cbf.org), Chesapeake Bay Foundation, Annapolis, Md.
Delve into how TELL supports a network of teacher leaders advancing Meaningful Watershed Education Experiences (MWEEs) for student achievement while exploring ways innovation is used to enhance 21st-century teacher professional learning.

NESTA Session: Earth-Space Science in Biology, Chemistry, and Physics
(Grades 9–12) Holiday 6, Hilton
Science Focus: ESS, LS, PS
Martin Schmidt, Jr., McDonogh School, Owings Mills, Md.
Examine content examples and NGSS performance expectations that weave Earth science into biology, chemistry, and physics to broaden understanding and applications of all four disciplines.

Solids: The Neglected “State” of Chemistry
(Grades 9–12) Johnson B, Hilton
Science Focus: PS1
Debbie Goodwin (nywin@hotmail.com), Retired High School Science Teacher, Chillicothe, Mo.
Use solids to make chemistry more relevant for students. Hands-on STEM activities using solid materials (metals/polymers/ceramics) make concepts easier to teach/learn. I’ll share NGSS correlations and a CD of information.

PolyWhat? Application of STEM Using Polymers
(Grades 5–12) Key 3, Hilton
Science Focus: ETS, PS, CCC, SEP
Sherri Rukes, Libertyville High School, Libertyville, Ill.
Deepen your students’ STEM experience by adding various polymer inquiry/engineering design challenges. Take “traditionally fun” polymer activities and turn them into NGSS investigations to create more critical thinkers in the classroom. Take home a CD of information.

High School Teachers: Birds of a Feather
(Grades 9–12) Key 11, Hilton
Science Focus: GEN, NGSS
Shannon Hudson, Crawfordsville Middle School, Crawfordsville, Ind.
Facilitated by NSTA’s High School Committee, join in to discover NSTA resources, participate in discussions, as well as share high school needs/concerns in your state. How can we help?

NSTA’s Online Resources and Communities
(General) Peale B, Hilton
Science Focus: GEN, NGSS
Flavio Mendez (@fljmendez; flavio_m@nsta.org), Assistant Executive Director, Learning Center, NSTA, Arlington, Va.
Ted Willard (@Ted_NSTA; twillard@nsta.org), Program Director, NGSS@NSTA, NSTA, Arlington, Va.
The NSTA Learning Center and the NGSS@NSTA Hub provide educators with a professional peer community and thousands of free resources and opportunities that support professional learning and classroom instruction. Get free resources.
8:00–9:00 AM Hands-On Workshops

Mars Here We Come
(Grades 4–8) 322, Convention Center
Science Focus: ESS, SEP
Joan Gillman (joan.gillman@calhoun.org), The Calhoun School, New York, N.Y.
NASA’s MAVEN Satellite has made some amazing discoveries about the “red planet.” In this workshop, engage in an activity that identifies similarities found in both the landscapes of Earth and Mars.

Engaging Elementary Students in a 3-D Science Literacy Learning Experience
(Grades P–5) 324, Convention Center
Science Focus: GEN, NGSS
Tina Harte (tina.r.harte@nasa.gov), NASA Langley Research Center, Hampton, Va.
Sarah McCrea (sdepo@lists.nasa.gov), SSAI/NASA Langley Research Center, Hampton, Va.
By implementing Elementary GLOBE in the classroom, teachers can open up a world of science literacy opportunities for their students in a diverse set of three-dimensional learning experiences.

NSTA Press® Session: Phenomenon-Based Learning: Fun, Hands-On, Cooperative Learning
(Grades 3–12) 325, Convention Center
Matt Bobrowsky, Delaware State University, Dover
Experience the kind of learning that propelled Finland to international leadership in education—not by memorizing facts, but by using scientific exploration and discovery.

Infusing, Scaffolding, STEM/STEAM, 5E Model, and Crosscutting the Curriculum...What More Could You Ask?
(Grades K–5) 326, Convention Center
Science Focus: GEN, NGSS
Ava Pugh (apugh@ulm.edu), Rhonda Mann (mann@ulm.edu), and Teresa Hibbets (thibbets01@yahoo.com), University of Louisiana at Monroe
This hands-on STEM/STEAM workshop features Science inferencing, Technology implementation, Engineering synectics, and Mathematical patterns by infusing and crosscutting the curriculum with the book, Somewhere Today.

Infusing, Scaffolding, STEM/STEAM, 5E Model, and Crosscutting the Curriculum...What More Could You Ask?
(Grades K–5) 326, Convention Center
Science Focus: GEN, NGSS
Ava Pugh (apugh@ulm.edu), Rhonda Mann (mann@ulm.edu), and Teresa Hibbets (thibbets01@yahoo.com), University of Louisiana at Monroe
This hands-on STEM/STEAM workshop features Science inferencing, Technology implementation, Engineering synectics, and Mathematical patterns by infusing and crosscutting the curriculum with the book, Somewhere Today.

20 in 20: The Next Generation
(Grades 7–12) Holiday 2, Hilton
Science Focus: LS, CCC, SEP
Whitney Hagins, Massachusetts Biotechnology Education Foundation, Cambridge
Come try numerous 20-minute inquiry-based activities that are sure to engage and excite your students. You and your students will be glad you did! Topics include genetics, electrophoresis, PCR, photosynthesis, and respiration (algae and yeast balls).

ASTE-Sponsored Session: Visibility in STEM: Charting the Course for Making Minorities Visible in the STEM Curriculum
(Grades 3–12) Holiday 4, Hilton
Science Focus: ETS, SEP
Catherine Quinlan (catherine.quinlan@howard.edu), Francies Stephenson (@ms_stephenson_, francies.stephenson@gmail.com), and Jessica Onuzo (jessica.onuzo@bison.howard.edu), Howard University, Washington, D.C.
Willa Banks (wbanks@baltimorecountymd.gov), Benjamin Banneker Historical Park and Museum, Catonsville, Md.
We will provide a historical perspective of the work and contributions of Benjamin Banneker followed by a hands-on exploration into the use of reverse engineering to understand science content and practices. Brief presentations on the scientific contributions of two African Americans will ensue.

Intersection of Understanding by Design Framework and NGSS
(Grades 6–12) Holiday 5, Hilton
Science Focus: GEN, NGSS
Jessica Mulhern (@JMulhernBiology; jessica_mulhern@hcpss.org) and Jaclyn Austin (@jaclyn_austin; jaclyn_austin@hcpss.org), Howard County Public School System, Ellicott City, Md.
Explore intersections between the Understanding by Design framework and NGSS instruction. Investigate essential questions and performance tasks that promote understanding and transfer of content knowledge.
Man vs. Wild: Lessons on Earth and Human Impacts
(Grades 6–12)
Key 4, Hilton

Eva El-Khatib (@PopulationEd; elkhatibeva@gmail.com), Optimal Health Physicians, Washington, D.C.

Engage in small-group problem solving, data analysis, online tools, and discussion that cover human population and consumption trends, impacts on land use and natural resources, as well as possible paths toward sustainability.

NARST-Sponsored Session: How to Promote Successful Teacher Enactment of Spatial Thinking and Technology-Enhanced Inquiry: PD Research and Its Implications for Teachers and Administrators
(Grades 4–12)
Key 5, Hilton

Bridget Mulvey (bkmulvey@gmail.com), Kent State University, Kent, Ohio

Discussion centers on examples and suggestions to support teachers’ spatial thinking and technology-enhanced inquiry instruction in Earth and environmental science contexts informed by research.

ASEE Session: Kindergartners Trying and Trying Again to Engineer Solutions to Problems
(Grades P–I)
Key 6, Hilton

Pamela Lottero-Perdue (plattero@towson.edu), Towson University, Towson, Md.

Michelle Bowditch (michelle.bowditch@hcpss.org), Michelle Kagan (michelle.kagan@hcpss.org), and Tedra Webb (twebb00@hotmail.com), Hall’s Cross Roads Elementary School, Aberdeen, Md.

We will guide participants through engineering design challenges appropriate for kindergarten, and provide tips and strategies for implementing engineering challenges in their classrooms.

ACS Middle Level Session One: Solids, Liquids, Gases, and Changes of State
(Grades 6–8)
Key 7, Hilton

James Kessler (jhkessler@acs.org), American Chemical Society, Washington, D.C.

Explore solids, liquids, gases, and changes of state through hands-on activities and molecular animations from the free 5E (Engage, Explore, Explain, Elaborate, and Evaluate) lesson plans at middleschoolchemistry.com.

AAPT Session: Investigating Electrostatics with an Inexpensive Electrophorus
(Grades 7–College)
Key 9, Hilton

Robert Morse (ramorse@rcn.com), Physics Master Emeritus, St. Albans School, Washington, D.C.

Find out how to build an “instrumented” version of Volta’s Electrophorus. A classroom set can be readily assembled from common household/grocery store materials at very low cost.

Thoughtful Discourse in the Middle School Science Classroom
(Grades 6–8)
Ruth, Hilton

Joanne McGarry (@mcgarryscience; joanne_mcgarry@hcpss.org) and Danielle Stephenson (@stephenson6sci; danielle_stephenson@hcpss.org), Howard County Public School System, Ellicott City, Md.

Socratic seminars encourage students to communicate explanations through thoughtful discourse. Find out how to run a successful seminar and how to prepare students with the skills and knowledge to actively participate.
Untangling Electric Circuits: STEM Activities from Essential Physics
(Grades 7–12) 337, Convention Center
Sponsor: PASCO scientific
Frank Zakutansky, Retired Educator, Montvale, N.J.

Students are often confused when learning the basics of circuits because they cannot directly observe the phenomenon, or they become lost in tangled wires. There is a simpler way for students to learn the basics of circuits and have the freedom to easily explore their circuit designs to gain a deeper understanding of electrical concepts. Get hands on with new technology to discover a better way to teach circuits!

Integrating Chromebook with Vernier Data-Collection Technology
(Grades 3–College) 339, Convention Center
Science Focus: ETS, PS, SEP
Sponsor: Vernier Software & Technology
David Carter (info@vernier.com), Vernier Software & Technology, Beaverton, Ore.

Collecting and analyzing data help students learn critical science concepts that increase test scores and promote science inquiry. In this hands-on workshop, learn how Vernier supports teachers who use Chromebook devices in their classrooms. Experiments, such as “Boyle’s Law,” “Grip Strength Comparison,” and “Ball Toss,” will be conducted.

Bringing the Wild to Life with WildCam Gorongosa
(Grades 9–College) 340, Convention Center
Sponsor: HHMI BioInteractive
Amanda Briody (ambriody@bcps.k12.md.us), Frederick Douglass High School, Croom, Md.
Sarah Sechrist (ssechrist@bcps.k12.md.us), Carver Vocational-Technical High School, Baltimore, Md.

Explore the complexity of the African savanna with a suite of free classroom-ready materials from HHMI BioInteractive centered around Gorongosa National Park in Mozambique. Learn how to use citizen science trail camera photos and data to teach scientific inquiry skills in biology and environmental science classes.
How to Use Pop Culture in Your Life Science Class
(Grades 9–College) 341, Convention Center
Science Focus: LS
Sponsor: Bio-Rad Laboratories
Cassy Granieri, Bio-Rad Laboratories, Hercules, Calif.
Use popular science to engage high school and college students in your classroom. See how popular TV and movies connect to real-world science discoveries and issues. Learn to use examples like DNA fingerprinting to make gel electrophoresis the foundation of a fun hands-on lab that increases student involvement and understanding.

Research and Inquiry-Based STEM Program from Flinn Scientific
(Grades 6–College) 343/344, Convention Center
Science Focus: GEN
Sponsor: Flinn Scientific, Inc.
Meg Griffith (mgriffith@flinnsci.com) and Matt Anderson (manderson@flinnsci.com), Flinn Scientific, Inc., Batavia, Ill.
Flinn presents interactive activities that showcase the features and benefits of the FlinnSTEM powered by IMSA Fusion curriculum modules! Created by educators from the internationally recognized Illinois Mathematics and Science Academy, IMSA Fusion is a teacher professional development and research-based inquiry program that ignites student interest.

Using Maggots, Flies, and Flesh to Solve a Mystery!
(Grades 6–12) 345/346, Convention Center
Science Focus: GEN
Sponsor: Texas Instruments
Stacy Thibodeaux, David Thibodaux STEM Magnet Academy, Lafayette, La.
Jeffrey Lukens, Sioux Falls (S.Dak.) School District
A decomposing corpse is found in a field. Four possible missing persons fit the description. But who is it? Using clues near the scene will help determine identity. Forensic anthropologist Diane France helped to develop this free middle school and high school forensic science lesson.

PTC Taster Lab—From Genotype to Phenotype
(Grades 6–College) 347, Convention Center
Science Focus: LS1, LS3, LS4, CCC6, CCC7, SEP1, SEP2, SEP3, SEP4, SEP6, SEP7, SEP8
Sponsor: miniPCR
Robert Dennison (robert@minipcr.com) and Sebastian Kraves (seb@minipcr.com), miniPCR, Cambridge, Mass.
A single nucleotide change in your DNA can make you a supertaster. Come explore the molecular genetics of taste using PCR and gel electrophoresis. Learn how to amplify and analyze your own genes, linking your PTC taste receptor DNA sequence to your own taster phenotype.

Implementing the NGSS and Infusing STEM in Your School District
(Grades K–8) 348, Convention Center
Science Focus: ETS
Sponsor: STEMscopes
Terry Talley, Accelerate Learning, Inc., Houston, Tex.
Brian Raygor, Wicomico Country Public Schools, Salisbury, Md.
Kevin Hill, Pemberton Elementary School, Salisbury, Md.
Find out how one school district has systematically written, implemented, and continues to support a K–8 NGSS-focused science curriculum that includes a countywide STEM competition. Experience several of the STEM challenges and learn how you can use engineering to excite your students about science. Brian Raygor and Kevin Hill from Wicomico County, Maryland, will be co-presenters.
8:00–10:00 AM Hands-On Workshops
AMSE-Sponsored Session: George W. Carver Conversation Series on Diversity and Equity
(General) Holiday 1, Hilton
Science Focus: GEN
Sharon Delesbore (@amsek16; sjdelesbore@gmail.com), Fort Bend ISD, Rosharon, Tex.
Marion Reeves, Science Education Consultant, Avondale Estates, Ga.
The life of George Washington Carver exemplifies excellence in spite of circumstances. Dialogue and plan for equitable actions to create opportunities for ALL students.

ACS High School Session One: Relating Structure and Properties: Eliciting and Visualizing Student Initial Ideas
(Grades 9–12) Key 8, Hilton
Science Focus: PS, SEp4, SEp8
Chad Bridle (chbridle1@gpsbulldogs.org), Grandville High School, Grandville, Mich.
Jennifer Keil (jennifer.keil@colorado.edu), Master Teacher, Boulder, Colo.
Rebecca Stober (beckystober@gmail.com), Mapleton Expeditionary School of the Arts, Denver, Colo.
Marta Gmurczyk (m_gmurczyk@acs.org), American Chemical Society, Washington, D.C.
Kimberly Duncan (k_duncan@acs.org), American Association of Chemistry Teachers, Washington, D.C.
Saul Trevino (strevino@hbu.edu), Houston Baptist University, Houston, Tex.
Discover how to elicit and explore students’ initial ideas and models of chemical compounds by using engaging phenomena in relevant contexts. Learn also how to engage students in data analysis to allow them to build an understanding of the structure and properties of ionic and covalent compounds.

8:00 AM–5:00 PM Meeting
Discover the NGSS Train-the-Trainer Workshop
(By Preregistration Only) Key 12, Hilton
This workshop gives teacher leaders a solid understanding of the NGSS, tools for conducting teacher training, and the confidence they need to be leaders.

8:30–11:30 AM Short Course
3D NSTA Press® Short Course: Introducing a New NGSS-Focused Curriculum Unit—Toward High School Biology (SC-3)
(Grades 6–9) Tickets Required; $50 Key 10, Hilton
Jo Ellen Roseman (jroseman@aaas.org) and Cari Herrmann Abell, AAAS/Project 2061, Washington, D.C.
Sarah Quick Pappalardo, Dunloggin Middle School, Ellicott City, Md.
Meredith Long, Ellicott Mills Middle School, Ellicott City, Md.
Leah Donovan, Oakland Mills Middle School, Columbia, Md.
Damisha Drakes, Wilde Lake Middle School, Columbia, Md.
For description, see page 33.

9:00 AM–3:00 PM Exhibits
Hall E, Convention Center
Did you know that NSTA offers exclusive exhibit hall and exhibitor workshop hours today from 3:00 to 4:00 PM? During these hours there are no teacher sessions scheduled and it’s a perfect time to visit the exhibits and discover all the products and services companies and organizations have to offer. Some exhibitors will offer materials for sale throughout the conference.

8:00–11:00 AM Short Course
Promoting Children’s Science Inquiry and Thinking About Living Things in Preschool and Kindergarten (SC-2)
(Grades P–I) Tickets Required; $23 Tabman, Hilton
Science Focus: LS
Cindy Hoisington (@CAHoisy; choisinton@edc.org), Education Development Center, Inc., Waltham, Mass.
Peggy Ashbrook (@PeggyAshbrook; scienceissimple@yahoo.com), Author/NSTA Early Years Columnist, Alexandria, Va.
For description, see page 32.

9:30–10:00 AM Presentation
Using Data to Make Evidence-Based Claims
(Grades 9–12) Key 2, Hilton
Science Focus: GEN, SEp
Amy Chilinguerian (@achiliteach; achilinguerian@bcps.org), Loch Raven High School, Towson, Md.
Using data in the classroom can enhance your lesson and provide your students with opportunities to engage in argument from evidence.
9:30–10:30 AM Featured Presentation
Creating an Understanding-Based Curriculum for the Next Generation Science Standards
(General) 328/329, Convention Center
Science Focus: GEN, NGSS

Jay McTighe (@jaymctighe; jay@mctighe-associates.com), Educational Author and Consultant, Columbia, Md.

Presider: Asli Sezen-Barrie, Program Coordinator, NSTA Baltimore Area Conference, and University of Maine, Orono

The NGSS provide a clear set of worthy educational outcomes for science education. However, these standards are not curriculum. Educators must use the NGSS as a basis for designing high-quality curricula and assessments to support impactful teaching for effective learning. Jay McTighe will present a “blueprint” for transforming the NGSS into a coherent K–12 science curriculum that emphasizes conceptual understanding of content and transfer of the practices. The recommended framework uses a “backward design” approach addressing essential questions that spiral across the grades, as well as recurring performance tasks that integrate science content with the practices to involve students in “doing” science.

An accomplished author, Jay McTighe has co-authored 14 books, including the award-winning Understanding by Design series with Grant Wiggins. He has also served as director of the Maryland Assessment Consortium, a state collaboration of school districts working together to develop and share formative performance assessments. Prior to this position, Jay was involved with school improvement projects at the Maryland State Department of Education where he helped lead Maryland’s standards-based reforms, including the development of performance-based statewide assessments. He also directed the development of the Instructional Framework, a multimedia database on teaching.

Jay has experience as a Prince George’s County classroom teacher, resource specialist, and program coordinator. He holds a master’s degree from the University of Maryland, and completed postgraduate studies at Johns Hopkins University.

Since education is a “learning” profession, Jay set a learning goal when he was 57 years of age to be surfing by 60. He did it!
Updating Science Fairs
(Grades 6–8) 333, Convention Center
Science Focus: GEN, SEP3, SEP8
Kelly Anthony (anthonkj@pwcs.edu), Marsteller Middle School, Bristow, Va.
Do you and your students dread science fairs? Discover ways you can update traditional science fairs to increase student interest and enthusiasm.

Marine Ecology: Using Local Resources to Engage Learners
(Grades 4–8) Holiday 3, Hilton
Science Focus: ESS
Amanda Fabian (afabian3@jhu.edu) and Jessica Stephen-son Reaves (jsteph12@jhu.edu), Johns Hopkins Center for Talented Youth, Baltimore, Md.
Centered around CTY’s Marine Ecology course, we will discuss the development of this inquiry-based field course and partnerships with marine advocacy groups to create a unique learning experience.

NESTA and NOAA Share: NOAA Climate Stewards—Affecting Change Through Education, Collaboration, and Action
(Grades 1–12) Holiday 6, Hilton
Bruce Moravchik (bruce.moravchik@noaa.gov), NOAA National Ocean Service, Silver Spring, Md.
Molly Harrison (molly.harrison@noaa.gov), NOAA Fisheries, Silver Spring, Md.
Hear success stories from teachers participating in a national community impacting climate change through sustained professional development, collaborative online tools, and active stewardship. Take part in hands-on activities and receive free education resources.

NSELA-Sponsored Session: Tools for Leaders Session 1
(Grades K–12) Johnson A, Hilton
Science Focus: GEN
Larry Plank (@nselascience), Hillsborough County Public Schools, Tampa, Fla.
Bob Sotak (@nselascience; bobosotak@gmail.com), Science/STEM Education Consultant, Edmonds, Wash.
The National Science Education Leadership Association welcomes you to join science leaders from around the nation who will share successful tools and best practices for leaders in science education. These tools can be curricular, instructional, or managerial in nature.

CSSS-Sponsored Session: Using Science, Technology, Engineering, Agriculture, and Math (STEAM) as a Context to Teach High School Biology
(Grades 6–12) Key 1, Hilton
Science Focus: ETS1, LS2
Peter Mecca (meccap@fccps.org), Falls Church (Va.) City Public Schools
Dig deeper to understand living systems. Hear how middle school and high school students are using hydroponics and aquaculture to supply fresh lettuce and tilapia to serve in the school cafeteria.

Bring All the Dimensions of Clouds into Your Classroom with NASA’s Atmospheric Learning Progression (General)
(Grades 1–12) Key 3, Hilton
Science Focus: ESS
Sarah McCrea (sdepo@lists.nasa.gov), SSAI/NASA Langley Research Center, Hampton, Va.
Tina Harte (tina.r.harte@nasa.gov), NASA Langley Research Center, Hampton, Va.
Explore a new learning progression developed by NASA Langley’s Science Education Team. Use cloud observations and satellite interpretation as a foundation for three-dimensional learning.

Diffusion, the Cell Membrane, and Ourselves: Biology Comes Alive Through the Aesthetic Realism Method
(Grades 7–11) Key 11, Hilton
Science Focus: LS1.A, LS1.C
Rosemary Plumstead (aldersgate@msn.com), Retired Educator, Waretown, N.J.
Sarah Ross (@S_Ross3; s.ross3@gmail.com), Retired Educator, New York, N.Y.
Demos on diffusion vividly show its logical, beautiful structure of opposites, enabling students to eagerly learn and feel science is exciting and related to themselves!

Assistance from the Retiree Committee
(General) Peale A, Hilton
Science Focus: GEN
Lloyd Barrow (barrowl@missouri.edu), Professor Emeritus, University of Missouri, Columbia
Join in for suggestions from the NSTA Retiree Committee as you plan for your retirement.
Eureka! Science Trade Books—Good as Gold!
(General) Peale B, Hilton
Science Focus: GEN
Emily Brady (ebrady@nsta.org), Editor, NSTA Recommends, NSTA, Arlington, Va.
Need great books for student learning? Explore and use NSTA Recommends and the Children’s Book Council Outstanding Science Trade Books. Door prizes...books, of course!

9:30–10:30 AM Hands-On Workshops
A Two-Part Maglev Challenge
(Grades 4–8)
324, Convention Center
Science Focus: ETS
David Lisnitzer (dlisnitzer@gmail.com), P.S. 124 Osmond A. Church, South Ozone Park, N.Y.
Maglev cars are cars that float on magnets. Design, build, and test your own maglev car. Take home the entire unit, which includes rubrics, writing prompts, and templates.

Creating NGSS Storylines for Earth/Space Science
(Grades 6–12)
326, Convention Center
Science Focus: ESS1.A
Jason Hayes (@JHScience1; jwhayes@smcps.org), St. Mary’s County Public Schools, Leonardtown, Md.
Amanda Myatt (ammyatt@gmail.com) and Patricia Sullivan Gronert (pgronert@smcps.org), Chopticon High School, Morganza, Md.
Find out how to create storylines that are sequential lessons based on real-world phenomena in which students engage in the three dimensions of the NGSS. Note: This session is limited to the first 45 participants.

Climate Change and Argumentation: Using Pollen Proxy Data to Engage Students in 3-D Learning
(Grades 6–8)
349, Convention Center
Mary Stapleton (@SciTechTU; mkstapleton@towson.edu), Towson University, Towson, Md.
Asli Sezen-Barrie (asilezen@gmail.com), University of Maine, Orono
Learn about an activity where students assume roles as paleoclimatologists and engage in argument from evidence using fossilized pollen from sediment cores to infer past climate.

Using Mitotic Division to Introduce Statistics in AP and IB Biology
(Grades 9–College)
Holiday 2, Hilton
Science Focus: LS, SEP
Kristen Daniels Dotti (kristen.dotti@catalystlearningcurriculum.com), Verde Valley School, Sedona, Ariz.
Turn the root tip mitosis lab into an opportunity to teach the test of correlation and chi-squared so students are prepared to analyze more complex data.

Practices in Action: Building Coherence Between NGSS and CCSS ELA
(Grades K–5)
Holiday 5, Hilton
Science Focus: GEN, SEP
Jennifer Brown-Whale (@HCPSSElemSci; @Elem-Sci_JenBW; jennifer_brown-whale@hcpss.org) and Amy Reese (@HCPSSElemSci; amy_reese@hcpss.org), Howard County Public School System, Ellicott City, Md.
Identify how the authentic application of CCSS ELA through journaling in elementary science instruction supports science literacy and the transfer of ELA skills.

Connecting Chemistry to Your World Through ChemClub
(Grades 9–12)
Key 4, Hilton
Science Focus: PS, INF
Karen Kaleuati (@ACSChemClubs; k_kaleuati@acs.org), American Chemical Society, Washington, D.C.
The ACS ChemClub program provides fun and educational resources—all for free! Learn about the program, try out some of the activities, and take home a copy of the resources.
How to Create a Challenge-Infused STEM Program
(Grades 3–8)
Key 5, Hilton
Science Focus: GEN
Jennifer LaBombard-Daniels (jcdaniels175@gmail.com), John Kerr Elementary School, Winchester, Va.
Jennifer Dunn (jennifer.dunn@d51schools.org), Chatfield Elementary School, Grand Junction, Colo.
Alison Bukacek (abukacek@gmail.com) and Colleen Edwards (colleenedwards0@icloud.com), Colorado Mesa University, Grand Junction
Creating a challenging and critical-thinking STEM program that solves real-world problems is the key to developing the elementary and middle school concept for future understandings. We will identify the problem you wish to challenge your students with, connect it to standards, and create an outline for the program.

ASEE Session: Elementary Computer Science: Plugged vs. Unplugged Activities
(Grades K–5)
Key 6, Hilton
Science Focus: ETS, CCC, SEP1, SEP5, SEP8
Jamie Gurganus (@UMBC; jgurganus@umbc.edu) and Karen Parisi (kparisi@umbc.edu), University of Maryland, Baltimore County, Baltimore
Engage in computer science concepts with both plugged and unplugged learning activities. Activities introduce computational thinking through binary numbers and algorithms without using computers.

ACS Middle Level Session Two: The Water Molecule and Dissolving
(Grades 6–8)
Key 7, Hilton
Science Focus: PS
James Kessler (jhkessler@acs.org), American Chemical Society, Washington, D.C.
Explore the polarity of the water molecule and identify substances based on their solubility using hands-on activities and molecular animations from the free website middleschool-chemistry.com.

AAPT Session: Women and Minorities in the History of Physics: Role Models for Today
(Grades 9–College)
Key 9, Hilton
Science Focus: ESS, ETS, PS
Gregory Good (@HistoryPhysics; ggood@aip.org), American Institute of Physics, College Park, Md.
Get hands on with stories about women and minorities in STEM and find out how the American Institute of Physics’ online materials can help students to see themselves in STEM.

California Science Project Session: Cultivating Literacy Integration in Science
(Grades 3–5)
Ruth, Hilton
Science Focus: GEN, CCC1, CCC2, SEP6, SEP7, SEP8
Joanna Totino (jtotino@berkeley.edu), California Science Project, Berkeley
Kate Gallagher (@Cat5Kate; kate.gal56@gmail.com), Rise Community School, Oakland, Calif.
Engage in a three-dimensional NGSS science lesson that builds academic language development through oral discourse, writing, and reading that connects to ELA and ELD standards.

9:30–10:30 AM Exhibitor Workshops
What Is a Species?
(Grades 9–12)
327, Convention Center
Science Focus: LS4.A, CCC1, CCC2, SEP6, SEP7, SEP8
Sponsor: Lab-Aids, Inc.
Brian Gross, Delcastle Technical High School, Wilmington, Del.
In this activity from the SEPUP high school biology program, learn about conditions that lead to speciation, including isolation due to temporal, geographical, and behavioral factors, and more. Then determine whether selected animal or plant pairs are in the early, mid, or late stages of speciation.
Keep Your Head Above Water with Magnetic Water Molecule Models

(Grades 4–College) 330, Convention Center

Science Focus: ESS2, ESS3, ETS1, ETS2, LS1, LS4, PS1, PS2, CCC, SEP

Sponsor: 3D Molecular Designs

Gina Vogt (gina.vogt@3dmoleculardesigns.com), 3D Molecular Designs, Milwaukee, Wis.

Tim Herman (herman@msoe.edu), MSOE Center for Bio-Molecular Modeling, Milwaukee, Wis.

ENGAGE students by modeling chemical and physical properties of water using hands-on/minds-on magnetic water molecules. EXPLORE common water phenomena such as density, erosion, and weathering. EXPLAIN the phases of water, density, and solubility. ELABORATE on the water cycle and its impact on the ecosystem. EVALUATE student learning with models.

Autopsy: Forensic Dissection Featuring Carolina’s Perfect Solution® Pigs

(Grades 9–12) 331/332, Convention Center

Science Focus: LS

Sponsor: Carolina Biological Supply Co.

Carolina Teaching Partner

Ready for a forensic dissection that is on the cutting edge? Engage students and revitalize your mammalian structure and function lessons with a real classroom autopsy. Participants dissect a Carolina’s Perfect Solution pig by modeling the protocols of a professional forensic pathologist. Come experience our exclusive Perfect Solution preserved specimens.

From CRISPR to Three-Parent Babies and Back Again: What to Tell Our Students About the Coming Revolution in Human Biology

(Grades 9–12) 336, Convention Center

Sponsor: Pearson Learning Services

Kenneth Miller (kenneth_miller@brown.edu), Brown University, Providence, R.I.

The past several years have seen the introduction of new techniques in genetic engineering and molecular biology that dramatically alter the landscape of human biology. I will describe how these powerful techniques work, suggest ways to incorporate them into the curriculum, and explore the promise and peril that awaits the brave new world of human genetic modification.

Understanding Photosynthesis: A Lab-Based Approach

(Grades 6–12) 337, Convention Center

Sponsor: PASCO scientific

Fran Zakutansky, Retired Educator, Montvale, N.J.

How can you clear up student misconceptions about respiration only occurring in the dark, or that only green light is used for photosynthesis? With data! Collect data on plant pigments, light reactions, and carbon cycling to create a better conceptual model that students can synthesize for complete understanding of photosynthesis.

Science and Storytelling: An Interdisciplinary Approach to Environmental Literacy

(Grades K–12) 338, Convention Center

Sponsor: Boyer Sudduth Environmental Consultants

Kristin Kaye (kristin@treedream.net) and Mary Ann Boyer (info@boyersudduth.com), Boyer Sudduth Environmental Consultants, LLC, Philadelphia, Pa.

Experience how scientific observation and storytelling open students’ eyes to the world around them. Use Tree Dreams: A Field Guide and three-dimensional graphic organizers (foldables) to observe, record, and make connections between imagination and the natural world. Enter to win a Tree Dreams classroom kit and ready-to-use lesson plans.

Chemistry with Vernier

(Grades 9–12) 339, Convention Center

Science Focus: ETS, PS, SEP

Sponsor: Vernier Software & Technology

David Carter (info@vernier.com), Vernier Software & Technology, Beaverton, Ore.

In this hands-on workshop, learn how Vernier supports chemistry teachers who want their students to use probe-ware. A variety of experiments from our popular chemistry lab books will be conducted. Learn how our innovative data-collection technology works across multiple platforms such as LabQuest 2, computer, Chromebook, and iPad.
Leapin’ Lizards! That Was Fast! Selection by Predation
(Grades 9–12)
340, Convention Center
Sponsor: HHMI BioInteractive
Amanda Briody (ambriody@bcps.k12.md.us), Frederick Douglass High School, Croom, Md.
Sarah Sechrist (slsechrist@bcps.k12.md.us), Carver Vocational-Technical High School, Baltimore, Md.
Analyze how quickly natural selection occurs in the presence of strong selective pressures using free resources from HHMI BioInteractive. This case study asks students to hypothesize, collect, and analyze data, and draw conclusions about the effects of natural selection on specific traits of an isolated anole lizard population.

Get That Grant Money!
(Grades 9–College)
341, Convention Center
Science Focus: GEN
Sponsor: Bio-Rad Laboratories
Cassy Granieri, Bio-Rad Laboratories, Hercules, Calif.
Successful grant writing isn’t rocket science, but it can take your teaching to new heights. We will show you how to get organized and find resources. Experienced grant writers will share their powerful tips to get you to the next level.

Integrate Instruction and Assessment in Three Dimensions Using Learning Progressions
(Grades K–8)
342, Convention Center
Science Focus: GEN, NGSS
Sponsor: Amplify
Rebecca Abbott and Sophia Lambertsen, The Lawrence Hall of Science, University of California, Berkeley
Explore how learning progressions may be used to organize a coherent sequence of instruction for a unit, define the focus and timing of assessments, and enable actionable inferences about students’ progress. Engage with K–8 exemplars from Amplify Science, the new NGSS-designed curriculum from The Lawrence Hall of Science.

Out-of-School STEM Enrichment: AEOP Program Design Collaboration
(Grades K–12)
343/344, Convention Center
Science Focus: GEN, NGSS
Sponsor: AEOP
Come learn about what AEOP can do for your students’ STEM enrichment outside of school time! This workshop is hosted by the Army Educational Outreach Program (AEOP), sponsors of out-of-school programs across the nation for K–12 students. Join in to get a chance to work with colleagues in developing your ideal (fictional) program and seeing how it stacks up to the programs offered by AEOP!

Cool! Can We Do That Again?!
(Grades 2–9)
345/346, Convention Center
Sponsor: Educational Innovations, Inc.
Jeffrey Feidler, Consultant, Wilmington, Del.
Tired of hearing “Do we have to do that!” from your students? Come check out some of the coolest activities involving polymers, color, and light. Your students will be asking if they can do that again—and again! Door prizes, freebies, and fun!

Bringing the World into Your Classroom with National Geographic Explorers
(Grades K–5)
347, Convention Center
Science Focus: GEN
Sponsor: National Geographic Learning | Cengage
Pam Caffery (pam.caffery@cengage.com), National Geographic Learning | Cengage, Boston, Mass.
Your students will be inspired when they connect with National Geographic Explorers and National Geographic Learning! Discover great ideas on how to use National Geographic Learning’s program and the Explorers to bring real-world exploration to the classroom.

Science Teacher/STEM Teacher: What’s the Difference?
(Grades K–12)
348, Convention Center
Science Focus: GEN, SEP
Sponsor: STEMscopes
Judy Zimny (jzimny@NLSE.institute), Accelerate Learning, Inc., Houston, Tex.
Distinguishing between science and STEM is important as teachers integrate STEM into their practice. Join us to discuss the unique nature of STEM, the research-based instructional strategies necessary to support its outcomes, and a STEM certification pathway that encourages self-reflection and growth in STEM teaching.
10:30 AM–12 Noon **Hands-On Workshop**
ACS High School Session Two: Relating Structure and Properties: Constructing Science Ideas Through Exploring Data
(Grades 9–12)
Key 8, Hilton
Science Focus: PS, CCC, SEP4, SEP8
Chad Bridle (@sciencebridle; cbridle1@gpsbulldogs.org), Grandville High School, Grandville, Mich.
Jennifer Keil (jennifer.keil@colorado.edu), Master Teacher, Boulder, Colo.
Rebecca Stober (beckystober@gmail.com), Mapleton Expeditionary School of the Arts, Denver, Colo.
Marta Gmurczyk (m_gmurczyk@acs.org), American Chemical Society, Washington, D.C.
Kimberly Duncan (k_duncan@acs.org), American Association of Chemistry Teachers, Washington, D.C.
Saul Trevino (strevino@hbu.edu), Houston Baptist University, Houston, Tex.
Experience strategies for engaging students in analyzing and interpreting data to discover the structural factors that affect the solubility of ionic compounds. Explore how to help students use their findings to revise their original models and create solutions to relevant problems in the surrounding world.

11:00 AM–12 Noon **Presentations**
Building Creative Scientists
(Grades 6–8)
321, Convention Center
Science Focus: GEN, SEP1
Kelly Anthony (anthonkj@pwcs.edu), Marsteller Middle School, Bristow, Va.
Creativity is essential to innovative science but is often left to art and music. Problem solving is a creative endeavor and a necessary part of any scientist’s tool box. Come learn how to build creative scientists!

Evolving the Physics Mind-Set: Changing Perceptions and Attitudes Toward the Teaching and Learning of Physical Science
(Grades K–5/College)
323, Convention Center
Science Focus: PS
Katya Denisova (kdenisova@gmail.com), Baltimore (Md.) City Public Schools
Christine Bell (cmbell@bcps.k12.md.us), Hamilton Elementary/Middle School, Baltimore, Md.
Kristin Covaleskie, Northwood Elementary School, Baltimore, Md.
Attention will be paid to the “instructional evolution” of a NSF-funded K–6 NGSS physical science professional development course over the first four years of its implementation in Baltimore City Public Schools.

NSTA Press® Session: Diving Into Teaching with the NGSS Science Practices
(Grades 5–12)
325, Convention Center
Science Focus: GEN, SEP
Lara Gengarelly (lara.gengarelly@unh.edu) and **Karen Graham** (karen.graham@unh.edu), University of New Hampshire, Durham
Barbara Hopkins (barbara.hopkins@doe.nh.gov), New Hampshire Dept. of Education, Concord
The goal of this workshop is to explore the successes, challenges, and strategies of making the instructional shift to science practice integration (SPI). We will feature vignettes and field-tested learning activities that offer authentic teacher perspectives about conducting student investigations and integrating science practices that support the NGSS.
STEM and Trade Books: Strange Bedfellows
(Grades P–8/College) 333, Convention Center
Science Focus: GEN
J. Carrie Launius (@janetcarrie; janetcarrie@gmail.com), NSTA Director, District XI, Saint Louis, Mo.
Emily Brady (ebrady@nsta.org), Editor, NSTA Recommends, NSTA, Arlington, Va.
Pamela Lottero-Perdue (plottero@towson.edu), Towson University, Towson, Md.
Wondering how to add literacy to STEM? Learn about NSTA's best STEM book initiative and how to identify a great STEM book.

BIG Data/BIG Skills: Improve Student Data Literacy Using Free Web Tools from NOAA
(Grades 5–8) Holiday 3, Hilton
Science Focus: ESS, SEP1, SEP3, SEP4, SEP5, SEP7, SEP8
Dan Pisut (@danpisut; dan.pisut@noaa.gov), NOAA Environmental Visualization Laboratory, Silver Spring, Md.
“Data in the Classroom” is a free online learning platform from the National Oceanic and Atmospheric Administration. Find out how to access these digital lessons and data exploration tools, and learn more about the curriculum’s unique scaffolding that can help your middle school students navigate BIG data about dynamic Earth processes and the impact of environmental events on regional and global scales.

NESTA and IRIS Session: Record and Analyze Earthquake Data (With or Without a Seismometer!) in the Classroom with Free Software
(Grades 6–12) Holiday 6, Hilton
Science Focus: ESS2.B, CCC1, CCC6, SEP4, SEP5
John Taber (taber@iris.edu), IRIS, Washington, D.C.
Monitor Earth from your classroom! Display real-time data from school seismographs or nearby professional seismometers. Students can determine earthquake locations, magnitudes, and more.

AAPT Session: Physics Demonstration Show
(General) Key 9, Hilton
Science Focus: PS
David Wright (dwright@tcc.edu), Tidewater Community College, Virginia Beach Campus, Virginia Beach, Va.
This “Phun with Physics” demo show will include classroom activities, YouTube videos, and a kit with some materials to take home.

Meet the Standards and Enhance Your Chemistry Classroom with Other People's Money
(Grades 9–12) Key 11, Hilton
Science Focus: PS, INF, CCC, SEP
Kenetia Thompson and Karen Kaleuati (k_kaleuati@acs.org), American Chemical Society, Washington, D.C.
We will share grant opportunities available to high school chemistry teachers (including those from the American Chemical Society) and the process for writing a fundable proposal.
Designing STEM Career Pathways for Student Success: A Step-by-Step Approach
(Grades 9–College)
Jennifer Cusmano (jcusmanoking@gmail.com) and David Janosz (@TeachIngenuity; janosz@nvnet.org), Northern Valley Regional High School at Demarest, Demarest, N.J.
April Vella (@NVmathsuper; vella@nvnet.org), Northern Valley Regional High School District, Demarest, N.J.

Integrate science and engineering practices with mathematics into a STEM career pathways program, using industry and community partnerships, to meet the needs of all students.

Safer Makerspaces and STEM Labs
(General)
Tyler Love (@UMES_Tech_Dept; tslove@umes.edu), University of Maryland Eastern Shore, Princess Anne

Safer design guidelines and teaching strategies for makerspaces and STEM labs will be discussed from Ken Roy and Tyler Love’s (NSTA Safety Board) book.

Friday, 11:00 AM–12 Noon

11:00 AM–12 Noon Hands-On Workshops

S.T.E.A.M.y Excel and Google Sheets
(Grades 9–12) 322, Convention Center
Science Focus: GEN, CCC4
Muhammad Ali Yousuf (@M_Ali_Yousuf; mali@jhu.edu), Johns Hopkins at Mt. Washington, Baltimore, Md.

Laura Saxton (lsaxton@jhu.edu), Johns Hopkins Center for Talented Youth, Baltimore, Md.

Learn how to generate Fractals, how two seemingly similar equations give completely different and chaotic graphs, and discover some of the number theory results.

Exploring the Arctic: Young Students and Climate Change
(Grades K–6) 324, Convention Center
Rebecca Haynes, Montshire Museum of Science, Norwich, Vt.

Use maps, globes, models, and satellite apps to explore the changing Arctic in this hands-on workshop that introduces climate change to elementary students.

Make Time for Science
(Grades P–5) 326, Convention Center
Science Focus: GEN, NGSS
Eva Ogens (eogens@ramapo.edu), Ramapo College of New Jersey, Mahwah

Teach smarter! Using children’s books, learn how to engage students in NGSS-focused lessons while addressing language arts standards and using time wisely.

Beyond Spaceship Earth
(Grades 3–7) 349, Convention Center
Science Focus: ESS, LS, INF, SEP1, SEP3, SEP6
Becky Wolfe (beckyw@childrensmuseum.org), The Children’s Museum of Indianapolis, Ind.

Explore classroom STEM investigations related to the International Space Station. Human exploration of space integrates STEM disciplines from science research in microgravity to engineering life support systems for space travel.

Launching an Elementary STEM Program
(Grades P–5) Holiday 1, Hilton
Science Focus: GEN, NGSS
Kim Stilwell (@kimstilwellNSTA; kstilwell@nsta.org), Manager, New Business Development, NSTA, Arlington, Va

Need ideas of where to start with building an elementary STEM program or enhancing your current program? The initial steps in building an elementary STEM program can be an overwhelming thought. I’ll share success stories and how using Picture-Perfect Science resources became part of the foundation to a successful implementation. Leave with links to helpful resources and ideas on how to start an elementary STEM program.

Decoding Starlight: From Photons to Pixels to Images—Using Science and Art
(Grades 7–12) Holiday 2, Hilton
Pamela Perry (pperry@lewistonpublicschools.org), Lewiston High School, Lewiston, Maine

Donna Young (dlyoung.nso@gmail.com), NASA NSO STEM Coordinator, Bullhead City, Ariz.

Produce a photon intensity image of a supernova remnant using NASA X-ray data and convert the image into a public release image with this STEAM activity.
Evaluating School Yard Heat Islands and Thermal Mitigation
(Grades 9–10)
Science Focus: ESS3.C
Susan Simonson (@Hood_Biology; simonson@hood.edu), Drew Ferrier (@Hood_Biology; dferrier@hood.edu), and Claire Hudson (@Hood_Biology; hudson@hood.edu), Hood College, Frederick, Md.
Susan Faibisch (susan.faibisch@fcps.org), Walkersville High School, Walkersville, Md.
Students evaluate their school yard’s thermal impact on local waters using IR thermometers, ready-to-build temperature loggers, and lessons on urban heat island effects.

NGSS in Action: Building a Coherent 3-D Science Lesson
(Grades 6–12)
Science Focus: PS3, CCC, SEP
Deepika Menon (dmenon@towson.edu), Mary Sajini Devadas (@Devadas_GroupTU; mdevadas@towson.edu), Landon Bechdel (lbechdl1@students.towson.edu), Angela Meola (ameola3@students.towson.edu), and Madeleine Taylor (mtaylo36@students.towson.edu), Towson University, Towson, Md.
Engage in a model energy-nanoscience lesson through hands-on explorations and discussions. Learn about how the three dimensions of the NGSS are tied together in a science lesson.

ASEE Session: Simple Electric Circuits
(Grades 6–8)
Science Focus: ETS, PS3.B, CCC5
LaDawn Partlow (ladawn.biddle@morgan.edu) and Jumoke Ladeji-Osias (@KemiLadejiOsias; jumoke.ladeji-osias@morgan.edu), Morgan State University, Baltimore, Md.
We will introduce simple electric circuits using an online circuit design tool. Participants will build simple circuits on a prototyping board.

ACS Middle Level Session Three: Chemical Reactions—Breaking and Making Bonds
(Grades 6–8)
Science Focus: PS1
James Kessler (jkessler@acs.org), American Chemical Society, Washington, D.C.
Explore the production of a gas, a precipitate, and changes in temperature through hands-on activities and molecular model animations from the free online resource middle-schoolchemistry.com. Participants will receive a handout of the lessons.

11:00 AM–12 Noon
Cell Differentiation and Gene Expression
(Grades 9–12)
Sponsor: Lab-Aids, Inc.
Brian Gross, Delcastle Technical High School, Wilmington, Del.
Students often have trouble conceptualizing how selective gene expression works. We will use manipulatives to teach this concept and explain how it is connected to genetic engineering. Innovative activities are selected from the new Science and Global Issues: Biology program from SEPUP and Lab-Aids. Activities focus on ways to integrate selective gene expression as a relevant and engaging sustainability issue.

Of All the Nerve: Exploring Neuronal Communication Through Three-Dimensional Learning
(Grades 9–College)
Science Focus: ETS, LS1, CCC1, CCC2, CCC4, CCC6, CCC7, SEP1, SEP2, SEP6
Sponsor: MSOE Center for BioMolecular Modeling
Gina Vogt (gina.vogt@3dmoleculardesigns.com), 3D Molecular Designs, Milwaukee, Wis.
Engage students by exploring response to neuronal stimuli by incorporating three-dimensional learning and hands-on/minds-on models. Construct a neuronal synapse model with sodium-potassium pump and calcium, sodium, and potassium channels. Model resting and action potentials and neurotransmitter release. Develop explanations of ways drugs and toxins disturb neuronal communication. Handouts!

Keep Calm and Chemistry On: Successful Lab Activities for the New Chemistry Teacher
(Grades 9–12)
Science Focus: PS
Sponsor: Carolina Biological Supply Co.
Carolina Teaching Partner
Looking for lab activities that work every time, not just periodically? Explore easy, engaging, and safe chemistry activities that will produce a reaction from your students. Whether you’re new to chemistry or feeling out of your element, learn ways to create excitement with hands-on labs, digital content, and demonstrations.
Science Denial: Why It Continues and What Science Educators Can Do About It
(Grades 9–12) 336, Convention Center
Sponsor: Pearson Learning Services
Kenneth Miller (kenneth_miller@brown.edu), Brown University, Providence, R.I.
U.S. public opinion continues to demonstrate a surprising unwillingness to embrace the scientific consensus on issues affecting our well-being and prosperity. While it might seem logical to attribute the prevalence of anti-science attitudes to religious dogma or factual unawareness, the roots of this problem go far deeper, and relate to popular perceptions of science and scientists. I will suggest how scientific enterprise and science education need to change to reclaim the cultural high ground in American society.

Evaporative Cooling: Visualizing Matter so It Makes Sense!
(Grades 6–12) 337, Convention Center
Science Focus: PS1
Sponsor: PASCO scientific
Fran Zakutansky, Retired Educator, Montvale, N.J.
Why does perspiration make you feel cooler? How is cooling related to molecular properties? Help your students understand the process of evaporation by measuring the temperature difference when a substance changes from liquid to gas. Look at the process from a molecular perspective to understand how bonding and shape affect cooling.

Biology with Vernier
(Grades 9–12) 339, Convention Center
Science Focus: ETS, LS, SEP
Sponsor: Vernier Software & Technology
David Carter (info@vernier.com), Vernier Software & Technology, Beaverton, Ore.
In this hands-on workshop, learn how Vernier supports biology teachers who want their students to use probeware. A variety of experiments from our popular biology lab books will be conducted. Learn how our innovative data-collection technology works across multiple platforms such as LabQuest 2, computer, Chromebook, and iPad.

Exploring the Biology of Skin Color with HHMI BioInteractive
(Grades 9–12) 340, Convention Center
Sponsor: HHMI BioInteractive
Joseph Evans (jevans@kent.k12.md.us), Kent County High School, Worton, Md.
Takisha Reece (takisha.reece@sffs.org), Sandy Spring Friends School, Sandy Spring, Md.
Variation in human skin color is a fascinating topic for students. Using a variety of free resources from HHMI BioInteractive, explore the complex connections between evolution, biogeography, and genetics. Lessons are adaptable for a range of grade levels from middle school through college.

Become a GMO Investigator
(Grades 9–College) 341, Convention Center
Science Focus: LS
Sponsor: Bio-Rad Laboratories
Cassy Granieri, Bio-Rad Laboratories, Hercules, Calif.
Regardless of where you stand in the GM debate, wouldn’t it be interesting to know which foods you eat are GM foods? This hands-on workshop teaches basics of DNA extraction, PCR, and electrophoresis and how they are used to test grocery store food products for the presence of GM foods.

Implementing Argumentation: Evidence, Claims, Reasoning, and Science Seminars in Grades 6–8
(Grades 6–8) 342, Convention Center
Science Focus: GEN, NGSS
Sponsor: Amplify
Sophia Lambertsen and Rebecca Abbott, The Lawrence Hall of Science, University of California, Berkeley
Participate in The Lawrence Hall of Science’s argumentation-rich curricular approach that supports students as they gain expertise using evidence and reasoning to support claims. Engage in a science seminar, getting a glimpse of what the authentic and robust use of argumentation can look like in your classroom.
Middle Schoolers Solving Problems: Grant Opportunity to Bring STEM to Life!
(Grades 6–9) 343/344, Convention Center
Science Focus: GEN
Sponsor: AEOP
Alexandra Wakely, eCYBERMISSION Outreach Specialist, NSTA, Arlington, Va.
Middle school students are full of creative solutions for problems in their community. Give your grades 6–9 students the opportunity to explore these solutions with a STEM-based program called eCYBERMISSION. Find out how our Mini-Grant opportunity can support the work that students are yearning to do. Hear how grant money can support the online STEM competition eCYBERMISSION in your school or district.

Should Pluto Be a Planet Again?
(Grades 5–College) 345/346, Convention Center
Science Focus: ESS1.B
Sponsor: Simulation Curriculum Corp.
Herb Koller, Simulation Curriculum Corp., Minnetonka, Minn.
Some scientists want to make Pluto a planet again. Let’s use the interactive lessons in Simulation Curriculum’s award-winning Starry Night to help us decide. And best of all, Starry Night can now be accessed online using your Chromebooks and tablets, as well as regular Windows and Mac computers.

STEM Leaders in Action: The Albert Einstein Distinguished Educator Fellowship (AEF) Program
(Grades 3–12) 347, Convention Center
Science Focus: GEN
Sponsor: Albert Einstein Distinguished Educator Fellowship
Jill Latchana (einsteinfellows@orise.orau.gov), Oak Ridge Associated Universities, Arlington, Va.
Learn how Einstein Fellows bring their insights and experience as K–12 STEM educators to Federal STEM education programs, initiatives, and policy efforts by serving in U.S. Congressional Offices, or the U.S. Department of Energy (DOE), National Science Foundation (NSF), and the National Aeronautics and Space Administration (NASA). Find out from the panel of current Fellows about their day-to-day experiences, the substantial contributions to Federal-level education efforts, the unique professional and career development opportunities available to Fellows, and how to apply to the program.

STEMrangers: Making Science Night Meaningful
(Grades 3–8) 348, Convention Center
Science Focus: ESS, INF
Sponsor: STEMscopes
Terry Talley (ttalley@acceleratelearning.com), Accelerate Learning Inc., Houston, Tex.
STEMscopes has partnered with EarthEcho International to develop Science Nights for schools that turn learning into action. Come see how you can both learn new science content and help save Earth’s most valuable resource. Leave with the tools to make your campus science night an unforgettable event for students and families.

11:30 AM–12 Noon Presentation
Building Boats: Creating and Executing an Interdisciplinary Project Using Design Thinking and the Engineering Process
(Grades 6–9) Key 2, Hilton
Science Focus: ETS1, PS1, PS2, CCC3, CCC6, SEP
Jonathan Olivera (jolivera@cgps.org) and Sara Moldofsky, Columbia Grammar and Preparatory School, New York, N.Y.
Launch new learning with a process of designing and executing a STEAM challenge using design thinking and the engineering process to create full-sized boats.

12 Noon–3:00 PM Short Course
Using Your School as a Laboratory: Air Quality (SC–4)
(Grades 4–12) Tickets Required; $20 Tubman, Hilton
Science Focus: GEN, SEP1
Christina Gladmon (greenschools@maeoe.org) and Laura Johnson Collard (director@maeoe.org), Maryland Association for Environmental and Outdoor Education, Columbia
Rebecca Davis (cleanairpartners@gmail.com), Clean Air Partners, Washington, D.C.
For description, see page 33.
Taking STEM Outside
(Grades 4–8)
321, Convention Center
Science Focus: LS
Sarah Haines (shaines@towson.edu), Towson University, Towson, Md.
Katie Dell (@kdellsci), Arbutus Middle School, Halethorpe, Md.
In addition to hitting STEM benchmarks, learn how outdoor and placed-based science lessons can enhance students’ knowledge of trees, forests, and the environment around them.

Advancing Science Literacy While Meeting CCSS and Making Science More Accessible and Understandable
(Grades K–6)
323, Convention Center
Science Focus: GEN
Donna Knoell (dknoell@sbcglobal.net), Educational Consultant, Overland Park, Kans.
Join me as I share strategies to enable elementary students to read and comprehend informational science text, organize and communicate science concepts orally and in writing, develop their science vocabularies, increase achievement, and meet the CCSS. Handouts!

Lessons Learned: Writing Curricula and Assessments in Three Dimensions
(Grades 6–12)
Johnson B, Hilton
Science Focus: GEN, NGSS
Joshua Gabrielse (jmgabrielse@bcps.k12.md.us), Baltimore (Md.) City Public Schools
Learn what Baltimore City Public Schools is doing for the secondary science curriculum to meet the NGSS and get an in-depth look at another district’s NGSS-focused curriculum writing process.

Creating the I-Lab: Development and Implementation of the Eastern Tech Makerspace
(Grades 6–12)
Key 1, Hilton
Science Focus: GEN
Thomas Michocki (@TMichocki; tmichocki@bcps.org) and Kimberly Burton-Regulski (@kburton; @ETHS_Makerspace; kburton@bcps.org), Eastern Technical High School, Essex, Md.
Get an in-depth look at the design, construction, and implementation of a high school makerspace.

University STEM Faculty and K–8 Teachers: A Winning Partnership for STEM Education
(Grades K–8)
Key 2, Hilton
Science Focus: GEN
Jonathan Wilson (jonathan.wilson@morgan.edu) and Tia Keels (tia.keelsfields@morgan.edu), Morgan State University, Baltimore, Md.
Keisha Matthews (dtraynhamm@comcast.net), Curriculum Coordinator, Baltimore, Md.
Come gain successful strategies for providing content and resources that develop confidence to effectively teach integrated science and math at the elementary—middle school level.

AAPT Session: Guesstimation—Solving the World’s Problems on the Back of a Cocktail Napkin
(Grades 9–College)
Key 9, Hilton
Laurence Weinstein (weinstein@odu.edu), Old Dominion University, Norfolk, Va.
Hear how to estimate the answer to any quantitative question with simple tools plus common sense.

Materials Matter! Looking at Materials Science to Help Teach Chemistry
(Grades 6–12)
Key 11, Hilton
Science Focus: ESS, ETS, PS, CCC, SEP
Sherri Rukes (sherri.rukes@d128.org), Libertyville High School, Libertyville, Ill.
Use the concepts of materials science to make the connections to all the areas of science. Instead of teaching in “silos,” make connections that students can relate to in all areas of science. Take home a CD of information.

Using the NSTA Learning Center as an Online Textbook
(Grades 9–College)
Peale A, Hilton
Science Focus: GEN
Flavio Mendez (@fljmendez; flavio_m@nsta.org), Assistant Executive Director, Learning Center, NSTA, Arlington, Va.
Ted Willard (@Ted_NSTA; twillard@nsta.org), Program Director, NGSS@NSTA, NSTA, Arlington, Va.
Professors are invited to come learn how to use the NSTA Learning Center as an online textbook when teaching science preservice teachers.
How to Implement STEM and NGSS into Your Classroom Through the Use of NSTA Competitions
(Grades K–12) Peale B, Hilton
Science Focus: GEN, NGSS
Acacia McKenna (amckenna@nsta.org), Director, Competitions, NSTA, Arlington, Va.
Sue Whitsett (swhitsett@nsta.org), AEOP Project Director, NSTA, Arlington, Va.
Hear about various NSTA competitions and how they can bring STEM and the NGSS into the classroom, as well as give students and teachers a chance to earn recognition and prizes. Free food and a gift bag will be distributed to each participant.

12:30–1:30 PM Hands-On Workshops
Getting Over Graphs in the Science Classroom
(Grades 9–12) 322, Convention Center
Science Focus: GEN, SEP4, SEP5
Jessica Kohout (@MrsKohout; jessica_kohout@hcpss.org), Reservoir High School, Fulton, Md.
Many students have trouble finding meaning from the data they have collected in the lab. Learn ways to make graphing accessible and fun!

Sounds Like Fun
(Grades 3–7) 324, Convention Center
Science Focus: PS
Katrina Brown (kwb@pitt.edu), University of Pittsburgh at Greensburg, Pa.
Tune in to investigate fun, easy, and inexpensive ways to teach sound.

NSTA Press® Session: EUREKA! Grades 3–5 Science Activities and Stories
(Grades 3–5) 325, Convention Center
Science Focus: GEN, NGSS
Julie Thomas (julie.thomas@unl.edu), University of Nebraska-Lincoln
Donna Farland-Smith (farlandsmith@aol.com), The Ohio State University at Mansfield
Take part in some of the 27 lessons linking nonfiction historical trade books and science content for grades 3–5.

Evolving Practice: An NGSS-Inspired Approach to Teaching with Fossils
(Grades 6–8) 349, Convention Center
Science Focus: ESS, LS4, SEP
Jennifer Cross Peterson (jennifer_peterson@harvard.edu), Harvard Museum of Natural History, Cambridge, Mass.
Engage in a hands-on fossils activity as we delve into Earth science and evolution content and critical-thinking skills as outlined in the NGSS.

So You Want to Be an Environmentalist!
(Grades 6–10) Holiday 2, Hilton
Science Focus: ETS1, LS
Judith Lucas-Odom (@Judith_Odom; judyp23@yahoo.com), Chester High School, Chester, Pa.
Get involved in environmental stress reactions. Using what stresses a plant and the engineering design model help your students do authentic research!
Soil Ecology in the Classroom
(Grades 5–12)
Science Focus: ESS, LS1, LS2, INF, CCC, SEP
David Brock (brockda@rpcs.org), Roland Park Country School, Baltimore, Md.
Unearth new learning with a nationally recognized ecology project, “The ‘Little Things’ That Run the World,” and discover ways to engage your students in hands-on field studies.

Becoming Banneker: Find Place with Objects in Space
(Grades 4–8)
Science Focus: ESS1, CCC1, SEP5
Eric Cromwell (@GIS_Cromwell; ecromwell@bcps.org), Baltimore County Public Schools Office of Science, Towson, Md.
Use the motion of objects in space to find your location and learn about the extraordinary life of an 18th-century Renaissance man from Baltimore.

NESTA Earth System Science Share-a-Thon
(Grades K–12)
Science Focus: ESS
Michael Passow (michael@earth2class.org), Dwight Morrow High School, Englewood, N.J.
Join more than 20 NESTA members and other education specialists as they share their favorite NGSS-congruent classroom activities. Lots of free handouts!

Learn Ways to Connect the Life Sciences with Climate Change
(Grades 6–12)
Science Focus: ESS3, LS2, PS1, CCC4, CCC5
Lolita Kiorpes (ldc1388@gmail.com), North Point High School, Waldorf, Md.
Incorporate climate change models, lessons, and activities into your life science curriculum. Use environment-based projects that integrate watershed and ocean health. Make climate change relevant to today’s students.

ASEE Session: Using STEM in Action to Connect to DOE Resources
(General)
Melinda Higgins (@energy; melinda.m.higgins@gmail.com), U.S. Dept. of Energy, Washington, D.C.
The Department of Energy’s Girls of Energy engages students with cutting-edge research, incredible stories of our Women @ Energy, and activities and lessons that support our energy challenges.

ACS Middle Level Session Four: Chemical Reactions—Ocean Acidification
(Grades 6–8)
Science Focus: PS1.A
James Kessler (jkhessler@acs.org), American Chemical Society, Washington, D.C.
Explore how excess carbon dioxide in the atmosphere makes water more acidic through hands-on activities from the free website middleschoolchemistry.com. Participate in simple and inexpensive experiments that show how excess carbon dioxide can contribute to ocean acidification and receive a handout of the lesson.
12:30–1:30 PM Exhibitor Workshops

pH Scale
(Grades 9–12) 327, Convention Center
Science Focus: PS, SEP4, SEP5
Sponsor: Lab-Aids, Inc.
Brandon Watters, Vernon Hills High School, Vernon Hills, Ill.
What does pH actually measure? In this investigation, you will measure pH indirectly using indicators and absorption using the Lab-Master. Using their data, participants generate a graph of absorbance versus pH. This graph can be used to determine the pH of solutions, within the measured pH range. Join us for this activity from The Natural Approach to Chemistry program.

Take a Walk Through the Molecular World with Watercolor Landscapes
(Grades 9–College) 330, Convention Center
Science Focus: LS1, LS3, PS1, CCC3, CCC4, CCC7, SEP1, SEP2
Sponsor: MSOE Center for BioMolecular Modeling
Tim Herman (herman@msoe.edu), MSOE Center for BioMolecular Modeling, Milwaukee, Wis.
Use vibrant watercolor landscapes to explore the molecular world in the cellular context within which proteins function. David Goodsell’s Tour of the Human Cell Panorama traces the production and secretion of antibodies. His new Flu Fight: Immunity & Infection Panorama illustrates how antibodies work to block the influenza infection cycle.

Introduction to Wisconsin Fast Plants®
(Grades K–12) 331/332, Convention Center
Science Focus: LS
Sponsor: Carolina Biological Supply Co.
Carolina Teaching Partner
Experience the versatility of Wisconsin Fast Plants. These small, quick-growing plants engage students, suit all learning levels, and let you integrate plant development, life cycle, environmental effects, genetics, and evolution into your instruction. Learn the basics for successful planting, flower dissection, and pollination.

Incorporating the NGSS Crosscutting Concepts into Your Teaching
(Grades K–12) 336, Convention Center
Science Focus: GEN, CCC
Sponsor: Pearson Learning Services
Michael Wysession, Washington University in St. Louis, Mo.
Join professor and NGSS writing team leader Michael Wyses-
Got Lactase? Exploring Genetics with HHMI Bio-Interactive Resources
(Grades 9–12) 340, Convention Center
Sponsor: HHMI BioInteractive
Sydney Bergman (bergmans@hhmi.org), Howard Hughes Medical Institute, Chevy Chase, Md.
Why can some people digest milk and others can’t? Trace the genetics and evolution of lactose tolerance using free HHMI BioInteractive resources. This exploration, which links classical and molecular genetics, is NGSS focused and appropriate for all levels of biology learners.

Disappearing Jaguars and Sloths: Phenomena and 3-D Instruction for Grades 2–5
(Grades 2–5) 342, Convention Center
Science Focus: LS
Sponsor: Amplify
Rebecca Abbott and Sophia Lambertsen, The Lawrence Hall of Science, University of California, Berkeley
Experience how students investigate declining jaguar and sloth populations while figuring out principles of ecosystems and engaging in three-dimensional learning. Get a hands-on dive into Amplify Science for grades 2–5, engaging with this new NGSS-designed program from The Lawrence Hall of Science.

When Zombies Attack!
(Grades 6–12) 345/346, Convention Center
Science Focus: ETS, LS, PS, SEP5, SEP6
Sponsor: Texas Instruments
Jeffrey Lukens, Sioux Falls (S.Dak.) School District
Fred Fotsch, Texas Instruments, Dallas
After the apocalypse, you must use any resources available to survive. In this session, survivors will use a little coding (no experience necessary), a simple speaker, and a flashlight to construct a zombie repulsion device. Using the science of sound and hearing, you may just find a way to stop the ZOMBIE ATTACK!

Science and Engineering Practices in the NGSS
(Grades K–8) 347, Convention Center
Science Focus: GEN, NGSS
Sponsor: TCI
Dawn Smith, TCI, Murray, Ky.
Join TCI and take part in an engaging Bring Science Alive! investigation that has your students developing solutions and making sense of the natural and designed world. Experience this lesson from the student perspective as you carry out investigations, build models, and learn skills to analyze and interpret data, develop solutions, and communicate their methods just like professional scientists and engineers!

Using Argumentation for Discussing Phenomena and Increasing Student Voice About STEM
(Grades K–12) 348, Convention Center
Science Focus: GEN, SEP7
Sponsor: STEMscopes
Sharry Whitney (swhitney@acceleratelearning.com), Accelerate Learning, Inc., Houston, Tex.
Reduce teacher talk and increase purposeful student talk as we model consensus building through argumentation around intriguing science phenomena that matter. ELA skills and the 21st-century skills of communication and collaboration are a must in the STEM classroom!
12:30–2:00 PM Networking Opportunity
Maryland Association of Science Teachers (MAST) Luncheon
(Tickets Required; $35)
#M-1
Ruth, Hilton
Heidi Schweingruber (hschweingruber@nas.edu), The National Academies of Sciences, Engineering, and Medicine, Washington, D.C.

Join the Maryland Association of Science Teachers (MAST) to learn, network, and celebrate STEM with educators and leaders from across Maryland. This ticketed event includes a plated lunch, followed by presentation of MAST awards and remarks from Heidi Schweingruber, director of the Board on Science Education at the National Research Council. Heidi co-directed the study that resulted in the report *A Framework for K–12 Science Education* (2011), which was the first step toward the Next Generation Science Standards.

Guests can learn about opportunities for becoming more involved in the MAST board or committees that support educators from our region. Sponsored in part by the Towson Center for STEM Excellence.

12:30–2:30 PM Hands-On Workshop
ACS High School Session Three: Relating Structure and Properties: Demonstrating Understanding Through Integration and Application of Knowledge (Grades 9–12)
Key 8, Hilton
Science Focus: PS, CCC, SEP4, SEP8
Chad Bridle (@sciencebridle; cbridle1@gpsbulldogs.org), Grandville High School, Grandville, Mich.
Jennifer Keil (jennifer.keil@colorado.edu), Master Teacher, Boulder, Colo.
Rebecca Stober (beckystober@gmail.com), Mapleton Expeditionary School of the Arts, Denver, Colo.
Marta Gmurczyk (m_gmurczyk@acs.org), American Chemical Society, Washington, D.C.
Kimberly Duncan, American Association of Chemistry Teachers, Washington, D.C.
Saul Trevino (strevino@hbu.edu), Houston Baptist University, Houston, Tex.

Learn how to help students integrate results and ideas from multiple explorations to build explanations and construct arguments based on structure-property relationships of covalent compounds. Learn how students can demonstrate a rich understanding of core chemical concepts and ideas by proposing solutions to complex problems.

1:00–1:30 PM Presentation
Migrating into Citizen Science (Grades 3–12)
Holiday 3, Hilton
Joseph Evans (@JosephEvans6; jevans@kent.k12.md.us), Kent County High School, Worton, Md.

Engage students in citizen science using butterflies as a model organism at little to no cost.
2:00–3:00 PM Featured Presentation
Building a Nation of Makers: Lessons Learned While Serving as a Senior Adviser in the Obama White House
(General) 328/329, Convention Center
Science Focus: GEN

Andrew Coy (@andrewcoy), Consultant and Founder, Initial Velocity, Baltimore, Md.

The difference between experience and wisdom is reflection. Join Andrew Coy as he shares some amazing experiences from his tenure at the White House but also spends the majority of the time reflecting on how to apply elsewhere the dozens of lessons learned. Regardless of your role in your organization or school, you will be sure to walk away with ideas and insights you can apply.

Andrew Coy is a driven problem-solver with experience at the intersection of nonprofit, education, government, and technology. Most recently, he served in President Obama’s White House, Office of Science and Technology Policy as a senior adviser on the Tech and Innovation team. In this capacity, he led initiatives including the National Week of Making, Nation of Makers, and the Kid Science Advisors Campaign, as well as supported the Computer Science for All initiative. He was on the organizing team for numerous other efforts, including the White House Science Fair, Water Summit, Frontiers Conference, and South by South Lawn.

Prior to serving President Obama in the White House, he was the executive director of the Digital Harbor Foundation, where he led efforts to save the closed-down South Baltimore Rec Center by reopening it as the Digital Harbor Foundation Tech Center, a youth-centered makerspace located in Baltimore, Maryland, that provides after-school programs, summer camps, field trips, family make nights, educator training workshops, and other community-making opportunities. In 2017, he launched Initial Velocity (initialvelocity.co) to help others launch their ideas with his added insight, skill set, understanding, and passion.
Transgenic American Chestnuts—Pathway to Restoration?
(Grades 10–12)
Science Focus: LS, CCC2, CCC6, CCC7, SEP1, SEP3, SEP4, SEP6, SEP7, SEP8
Gary Hedges (@gehedges), Maryland State Dept. of Education, Frederick
Brad Yohe (brad.yohe@gmail.com), Retired Educator, Gettysburg, Pa.
Uncover how applications of molecular biotechnology are impacting the restoration of the American chestnut tree. Lessons tracing restoration projects will be shared for classroom use.

Engaging Students in a Blended and Online Environment
(Grades 6–12)
Science Focus: GEN
John Wilson (@jwilson21CCCS; jlcwilson@verizon.net), 21st Century Cyber Charter School, Downingtown, Pa.
The presenter has many years at a highly performing online school and holds roles as a math/physics teacher and learning coach. Receive tips on creating, engaging, and maintaining a partnership with students and parents/families to maximize their student’s academic success in the cyber world.

Early Childhood Engineers
(Grades P–3)
Science Focus: ETS1, SEP1, SEP3, SEP6
Valerie Patel (@valpatel; valerie_m_patel@mcpmsd.org) and Amy Kanapesky (amy_k_kanapesky@mcpmsd.org), William B. Gibbs, Jr. Elementary School, Germantown, Md.
Hear how to successfully engage students in the engineering design process in early childhood classrooms! We will discuss how to seamlessly integrate it into daily instruction.

Instructional Alignment Around a Phenomena-Driven Approach
(Grades K–12)
Science Focus: GEN, CCC
Kenneth Huff (huffkennethlee@gmail.com), Mill Middle School, Williamsville, N.Y.
Join a member of the NGSS writing team to learn how you can implement an instructional sequence for making sense of phenomena.

Follow the Road to a Successful STEM Career!
(Grades 9–College)
Science Focus: ETS
Kareem Burney (ksburney@hotmail.com), U.S. Food and Drug Administration, Silver Spring, Md.
Hear and apply lessons from a young minority mid-career level engineer on what post high school students should be doing in order to obtain a successful STEM career. The presenter has been to graduate school and works in industry so he will speak on how to obtain a STEM career in both fields.
2:00–3:00 PM Hands-On Workshops

Developing Student Scientists Through the Watershed Report Card Program
(Grades 9–12) 322, Convention Center
Science Focus: ESS2, ESS3, LS2
Jessica Kohout (@MrsKohout; jessica_kohout@hcpss.org), Reservoir High School, Fulton, Md.
Ann Strozyk (@AnnStrozyk; ann_strozyk@hcpss.org), Howard County Public School System, Ellicott City, Md.
Go in-depth into how Howard County biology teachers in cooperation with the Howard County Conservancy have implemented the NGSS through the “Watershed Report Card” program.

Testing Look-Alike Liquids
(Grades 3–6) 324, Convention Center
Science Focus: PS1.A, CCC1, CCC6, SEP2, SEP3, SEP6
Patricia Galvan (p_galvan@acs.org), American Chemical Society, Washington, D.C.
Conduct simple tests on four identical-looking clear, colorless household liquids. Testing reveals interesting differences elementary students will discover! Complete instructions will be provided and are available at www.inquiryinaction.org.

NSTA Press® Session: From Flower to Fruit
(Grades K–4) 325, Convention Center
Science Focus: LS
Richard Konicek-Moran (rkonicek@gmail.com), Professor Emeritus, UMass Amherst, Mass.
Kathleen Konicek-Moran (kathleen.konmor@gmail.com), Botanical Illustrator and Nature Artist, Palmetto, Fla.
Put botany back in your curriculum using From Flower to Fruit. Learn about pollination, bees, fertilization, and how to teach for understanding.

A Picture-Perfect Approach to Connecting Literacy and Science
(Grades P–5) 326, Convention Center
Science Focus: GEN, NGSS
Kim Stilwell (@kimstilwellNSTA; kstilwell@nsta.org), Manager, New Business Development, NSTA, Arlington, Va.
Need ideas to connect literacy and science? Never before has it been so easy to interest students in reading and science. Picture-Perfect Science Lessons combine the appeal of children’s picture books with standards-based science content. Leave with ideas on how to begin the integration in your classroom.

INF Get WISE: Growing a Systemic Women In Science & Engineering Club
(Grades 9–12) Holiday 1, Hilton
Science Focus: INF
Colleen Beall (@ColleenScience; colleen.beall@fcps.org) and Linda Mosser (@LJMOSSER; linda.mosser@fcps.org), Frederick County Public Schools, Frederick, Md.
Lisa Bruck (@LisaBruck; Lisa.bruck@fcps.org), Earth and Space Science Lab, Frederick, Md.
Women In Science & Engineering (WISE) encourages females to consider STEM careers through meetings featuring speakers and hands-on activities. Learn about our success and structure.

Fully Engaged
(Grades 6–12) Holiday 2, Hilton
Science Focus: GEN, CCC1, CCC4, SEP
Tyler Cederlind (ltitemichigan@gmail.com), Wayne RESA, Wayne, Mich.
Jeremy Sabatini, Robichaud High School, Dearborn Heights, Mich.
Engage your students through inquiry-based student-led learning centers.

What Affects Populations? A Hands-On Storylining Experience
(Grades 6–8) Holiday 5, Hilton
Science Focus: LS2.C, CCC7, SEP7
Nicole Rhoades (@nlrhoades; nicole.rhoades@fcps.org) and Gena Hlavinka (@mshlavinka; hlavinkag@gmail.com), Windsor Knolls Middle School, Ijamsville, Md.
Walk through a storylined learning progression. Experience hands-on student activities, review student exemplars, discuss the storylining process, and gain access to presented activities.

NESTA and IRIS Session: Yes, Humans Really Do Cause Earthquakes—Hydraulic Fracturing, Waste-water Injection, and Earthquakes
(Grades 7–College) Holiday 6, Hilton
Science Focus: ESS2.A, CCC1, CCC2, CCC5, CCC7, SEP1, SEP3, SEP4, SEP6, SEP7, SEP8
John Taber (taber@iris.edu), IRIS, Washington, D.C.
Explore the “hot topic” of induced earthquakes with your students through an activity built on the Argument-Driven Inquiry framework that supports three-dimensional learning.
CESI-Sponsored Session: Using Toys to Teach Physics
(Grades K–8) Key 5, Hilton
Science Focus: PS, SEP
Jim McDonald (@jimscienceguy; jim.mcdonald@cmich.edu), Central Michigan University, Mount Pleasant
Karen Ostlund (@karen_ostlund; klostlund@utexas.edu), 2012–2013 NSTA President, and The University of Texas at Austin
Betty Crocker (betty.crocker@unt.edu), Retired Educator, Denton, Tex.
Tinker with how toys can be used to teach physics to increase student motivation, excitement, and interest. Handouts!

AAPT Session: Student Ideas About Physics—Insights from Physics Education Research
(Grades 9–College) Key 9, Hilton
Science Focus: PS2, PS3
Benjamin Dreyfus (bdreyfu2@gmu.edu), George Mason University, Fairfax, Va.
What ideas do students bring into physics? What does research tell us about the nature of these ideas? How does this apply to our teaching?

2:00–3:00 PM Exhibitor Workshops
Chemical Formula and Amino Acids
(Grades 9–12) 327, Convention Center
Science Focus: ETS1, PS1, PS2
Sponsor: Lab-Aids, Inc.
Brandon Watters, Vernon Hills High School, Vernon Hills, Ill.
What is the difference between subscripts and coefficients? What does “balancing” a chemical equation mean? Many students have trouble with these fundamental concepts in chemistry. If a student does not fully understand the chemical formula, then moles, reactions, and stoichiometry are hopelessly confusing. Join us for some elegant, intuitive, and well-differentiated lessons that allow students of all levels to master the chemical formula and thereby move confidently into a deeper understanding of chemistry.

The Science and Ethics of Genome Editing with CRISPR/Cas9
(Grades 9–College) 330, Convention Center
Science Focus: ETS, LS1, LS3, LS4, CCC4, CCC6, CCC7, SEP1, SEP2, SEP3
Sponsor: MSOE Center for BioMolecular Modeling
Tim Herman (herman@msoe.edu), MSOE Center for Bio-Molecular Modeling, Milwaukee, Wis.
The development of CRISPR/Cas9 gene editing technology promises to revolutionize the biological sciences the same way that restriction endonucleases led to genetic engineering in the 1970s. Explore physical models of the Cas9 endonuclease and contrast the structure/function of this protein with restriction enzymes, zinc finger nucleases, and TALEN proteins.
Shifting to the Five Innovations: How Do We Transform Instruction?
(Grades 6–8) 331/332, Convention Center
Science Focus: PS1, CCC, SEP
Sponsor: Carolina Biological Supply Co.
Carolina Teaching Partner
Experience the NGSS five innovations with the Smithsonian's new STC-Middle School “Matter and Its Interactions” module. This thought-provoking hands-on workshop will demonstrate three-dimensional learning using phenomena. Leave with a better understanding of how the five innovations enhance science instruction.

Ideas for Teaching About Earthquakes and Earth Structure
(Grades K–12) 336, Convention Center
Science Focus: ESS2.B
Sponsor: Pearson Learning Services
Michael Wysession, Washington University in St. Louis, Mo.
Join geophysics professor Michael Wysession as he discusses exciting new discoveries about earthquakes and the structure of Earth and provides examples of activities that can be directly incorporated into NGSS-focused curricula. Also, receive an overview of the educational tools developed at IRIS (Incorporated Research Institutions for Seismology).

Viral Amplification: From One to a Billion Copies in 20 Minutes
(Grades 10–College) 338, Convention Center
Science Focus: LS
Sponsor: MiniOne Systems
Richard Chan (info@theminionesystems.com), MiniOne Systems, San Diego, Calif.
Experience how engaging and accessible classroom biotechnology can be! Amplify sections of the Lambda phage genome using fast and robust PCR. You will set up the reaction, program and monitor the MiniOne PCR System from a tablet app, then separate and analyze your PCR products on the MiniOne Electrophoresis System.

Integrating iPad with Vernier Data-Collection Technology
(Grades 3–College) 339, Convention Center
Science Focus: ETS, PS, SEP
Sponsor: Vernier Software & Technology
David Carter (info@vernier.com), Vernier Software & Technology, Beaverton, Ore.
Collecting and analyzing data help students learn critical science concepts that increase test scores and promote science inquiry. In this hands-on workshop, you will learn how Vernier supports teachers who use iPads in their classrooms. Experiments, such as “Boyle’s Law,” “Grip Strength Comparison,” and “Ball Toss,” will be conducted.

Free Apps That Put the World in Your Students’ Hands
(Grades 6–College) 340, Convention Center
Sponsor: HHMI BioInteractive
Sarah Sechrist (sechrist@bcps.k12.md.us), Carver Vocational-Technical High School, Baltimore, Md.
Laura Dinerman (laura_dinerman@mcpsmd.org), Sherwood High School, Sandy Spring, Md.
Discover free classroom-ready resources with two HHMI BioInteractive apps. Explore the new BiomeViewer app, which features detailed ecosystem descriptions, beautiful photos, and climate and biodiversity data. Then buckle up for a ride back in time with the EarthViewer app and explore atmospheric changes, mass extinctions, and natural cycles.

Conserving Panda Population…One Hormone Test Design at a Time!
(Grades 9–College) 341, Convention Center
Science Focus: LS
Sponsor: Bio-Rad Laboratories
Cassy Granieri, Bio-Rad Laboratories, Hercules, Calif.
Come put your immunology and reproductive endocrinology systems knowledge basics to the test as you engineer a hormone detection system that can be used for Giant Panda Population Conservation efforts.

Drought in Africa Inspires Students to Invent a Smart Irrigation System
(Grades 6–12) 345/346, Convention Center
Science Focus: ESS, ETS, CCC1, CCC2, CCC5, CCC7, SEP1, SEP2, SEP3, SEP4, SEP5, SEP6
Sponsor: Texas Instruments
Jeffrey Lukens, Sioux Falls (S.Dak.) School District
Fred Fotsch, Texas Instruments, Dallas
Come learn how to create a project-based camp or classroom lesson that enables students to apply concepts, such as photosynthesis and the water cycle, to design a smart irrigation system. Inspired by real-world events, students are motivated to apply problem-solving skills and learn some basic programming to come up with innovative solutions to the drought situation in southern Africa.
The Chemistry of Glow Sticks
(Grades 6–10) 347, Convention Center
Science Focus: PS
Sponsor: Fisher Science Education
April Fischione (april.fischione@thermofisher.com), Fisher Science Education, Pittsburgh, Pa.
Relive your childhood by making your own glow stick. You may have wondered what happens when you snap a glow stick that causes it to glow. Join us for a fun chemistry experiment where you will create a glowing chemical reaction.

2:45–3:30 PM Special Session
Meet the Presidents and Board/Council
(General) Exhibit Hall Entrance, Convention Center
Science Focus: GEN
Be sure to stop by for this special session. Come “meet and greet” with your elected NSTA officers on your way to the exhibits. The President, President-Elect, and Retiring President along with your Board and Council members are looking forward to talking with you at the conference! One lucky person who attends this event will be eligible to win a $100 gift certificate to the NSTA Science Store. Must be present to win. Drawing will take place at 3:20 PM.

3:30–4:30 PM Exhibitor Workshops
Distilling Aromatic Hydrocarbons
(Grades 9–12) 327, Convention Center
Science Focus: PS2
Sponsor: Lab-Aids, Inc.
Brandon Watters, Vernon Hills High School, Vernon Hills, Ill
We distill water to purify it, or so we think. So why does the clear distillate from apple cider smell like apples? Join us and find out! Using a clever test-tube distillation apparatus, distill the essence of vanilla and the scent of mint...and even learn how to make brandy from wine! Distillation is a crucial process in chemical engineering and technology, yet few students ever get to explore the process.

Cultivating a Culture of Argumentation in Your Classroom
(Grades K–8) 336, Convention Center
Science Focus: GEN, SEP7
Sponsor: Pearson Learning Services
Zipporah Miller, NSTA Professional Learning Communities Institute, Arlington, Va.
Critical thinking, communication, collaboration, creativity, and innovation are skills that allow students to compete in today’s global economy. Cultivating a culture of argumentation in the classroom affords students with opportunities to develop these skills. We will model techniques that help encourage students to formulate explanations based on evidence, in an effort to defend their ideas or challenge a classmate’s ideas, as well as challenge the status quo based on evidence.

Physics and Physical Science with Vernier
(Grades 9–12) 339, Convention Center
Science Focus: ETS, PS, SEP
Sponsor: Vernier Software & Technology
David Carter (info@vernier.com), Vernier Software & Technology, Beaverton, Ore.
In this hands-on workshop, learn how Vernier supports physics and physical science teachers who want their students to use probeware. A variety of experiments from our popular lab books will be conducted. Learn how our innovative data-collection technology works across multiple platforms such as LabQuest 2, computer, Chromebook, and iPad.

Trophic Cascades: A Force of Nature
(Grades 9–College) 340, Convention Center
Sponsor: HHMI BioInteractive
Joseph Evans (jevans@kent.k12.md.us), Kent County High School, Worton, Md.
Takisha Reece (takisha.reece@sfs.org), Sandy Spring Friends School, Sandy Spring, Md.
A big question in ecology is understanding which organisms and processes determine the organization of natural ecosystems. Discover the new HHMI BioInteractive film and supporting activities on trophic cascades. This workshop highlights free NGSS-focused materials that translate the elegant, revolutionary work of scientists into classroom-ready resources.
Investigate Photosynthesis and Cellular Respiration with Algae Beads
(Grades 9–College) 341, Convention Center
Science Focus: LS
Sponsor: Bio-Rad Laboratories
Cassy Granieri, Bio-Rad Laboratories, Hercules, Calif.
Use algae beads in a colorimetric assay to study both photosynthesis and cellular respiration through authentic inquiry investigations in formats to support both AP and NGSS biology. Learn how to extend this lab to study the effects of light intensity, light color, temperature, and other organisms on these processes.

Mission KT: Teacher Authoring Science Game
(Grades 3–8) 347, Convention Center
Science Focus: GEN, INF, NGSS
Sponsor: TheBeamer LLC
Peter Solomon (prsolomon@TheBeamer.com), TheBeamer LLC, East Hartford, Conn.
TheBeamer LLC is creating, with support from the National Science Foundation, a science game with teacher authoring. The theme is "You are made of STARDUST that was once in the body of Albert Einstein and the Last T-Rex." We want your input on what you would like in the authoring function.

5:00–5:30 PM Presentations

Save the Bay! A Grade 5 Meaningful Watershed Educational Experience in Baltimore City
(Grades 3–5) 323, Convention Center
Science Focus: ESS3, LS2.C
Amanda Laurier (alaaurier@bcps.k12.md.us), Baltimore (Md.) City Public Schools
Blakely Glotfelty (bdglotfelty@bcps.k12.md.us), John Ruhrah Elementary/Middle School, Baltimore, Md.
Hear how Baltimore City grade 5 students take part in a Meaningful Watershed Educational Experience to investigate and improve the impacts of their local community on the Chesapeake Bay ecosystem.

Linking Science Fiction and Physics Courses
(Grades 9–College) Key 11, Hilton
Science Focus: PS, SEP8
Krista McBride (krista.mcbride@belmont.edu), Belmont University, Nashville, Tenn.
A learning community was created between two general education courses: a physics course entitled Intro to Physics and a literature course entitled Science Fiction, Science Fact at Belmont University. I’ll share a paper concerning this linked learning community published in *The Physics Teacher* journal May 2016.

5:00–6:00 PM Presentations

Why Should I Care?
(Grades 4–10)
Science Focus: GEN, SEP
Bridget Raburn, Loudoun County Public Schools, Ashburn, Va.
Jennifer Simons (simonsj@pwcs.edu), Benton Middle School, Manassas, Va.
We can all teach the standards, but making the material relevant is a whole separate story. We will discuss numerous ways to make science far more real-world applicable. Handouts!

Using Pop Culture and Polymers to Create Inquisitive Minds
(Grades 6–12) Johnson B, Hilton
Science Focus: GEN, SEP1, SEP2, SEP6, SEP8
Sherri Rukes, Libertyville High School, Libertyville, Ill.
Ever wonder how to get more students interested in what you teach? Add some pop culture and a pop culture project to make the connection with the students. Take home a CD.

Polymers: Teaching “Hard” Concepts with Gooey Labs
(Grades 5–12) Key 1, Hilton
Science Focus: ETS, PS1, CCC, SEP2, SEP3, SEP4, SEP6
Andrew Nydam (andrewnydam@hotmail.com), Polymer Ambassador, Olympia, Wash.
Enhance and deepen science and math concepts taught in traditionally “fun” polymer labs. Add more scientific processes to make them inquiry-based. Take home a CD of information.

What Do You See? Unlock Curiosity with Digital Microscopy Images
(Grades K–12) Key 2, Hilton
Science Focus: LS, PS, CCC
Cheryl Lindeman (clindeman@randolphcollege.edu) and Jasmine Fowler (jafowler@randolphcollege.edu), Randolph College, Lynchburg, Va.
Using a scanning electron microscopy image gallery of living and nonliving specimens, 5E instructional design lessons focusing on crosscutting themes will be shared.
Salamanders: Indicators of Our Changing Climate
(Grades 6—College)
Peale A, Hilton
Science Focus: ESS3, LS, CCC, SEP
Adam Frederick (frederic@mdsg.umd.edu), Maryland Sea Grant, College Park
Jennifer Peglow (@peglowj; j.peglow@upperadams.org), Biglerville High School, Gardners, Pa.
Salamander species in the United States have long been considered harbingers of good water quality in the environment. Discover how these indicator species are also indicative of climate changes.

5:00–6:00 PM Hands-On Workshops

Blended Learning in the Elementary Science Classroom: Transitioning to the NGSS Using Individualized Learning
(Grades 3–5)
322, Convention Center
Science Focus: GEN, NGSS
Kendra Hinson (kendra.hinson@fcps.org), Christopher Horne (@moxiemath; chris.horne@fcps.org), and Jeffrey Longenberger (@FCPSScienceTech; jeffrey.longenberger@fcps.org), Frederick County Public Schools, Frederick, Md.
Kimberly Brandenburg (@kimberlybrande2; kimberly.brandenburg@fcps.org), Oakdale Elementary School, Ijamsville, Md.
Kimberly Martin (kimberly.martin@fcps.org), Lincoln Elementary School, Frederick, Md.
Experience a blended professional learning environment. Hear from teachers on how they use blending learning models to focus on NGSS instruction. Devices available.

Science and the Arts: A Natural Fit
(Grades K–5)
326, Convention Center
Science Focus: GEN, NGSS
Dawn Getzandanner (@dawngetzandanne; dawn.getzandanner@fcps.org), Spring Ridge Elementary School, Frederick, Md.
Engage in hands-on lessons that illustrate the connection between visual performing arts standards and the three dimensions of the NGSS. Explicit examples will be shared to show how using the arts can benefit all learners.

Authentic Assessment in Action: Using Personal Meaning Maps to Determine the Impact of an Enrichment Activity in the Secondary Classroom
(Grades 9–College)
Peale B, Hilton
Science Focus: GEN, NGSS
Paul Orbe (porbe@ucboe.us), Academy for Enrichment and Advancement, Union City, N.J.
Measure student changes in understanding through Personal Meaning Maps (PMMs). Join me for an overview of the activity and some interesting results.

Greenhouse in a Beaker: Understand Climate Change
(Grades 8–12)
Holiday 2, Hilton
Science Focus: ESS3, PS, CCC1, CCC2, CCC3, CCC4, CCC5, CCC7, SEP
Kimberly Swan (@NEED_Project; kswan@need.org), The NEED Project, Manassas, Va.
Engage in a hands-on activity addressing climate change and the science behind the carbon cycle. Students will understand why we use the sources we do, and how they impact the world.

Data, Data, Data: Tips and Tricks for Integrating Data and NGSS Science Practices into Any Classroom
(Grades 5–College)
Holiday 4, Hilton
Science Focus: GEN, INF, SEP
Kristin Hunter-Thomson (@ru_dataspire; kristin.hunter-thomson@gmail.com), Rutgers Institute of Marine and Coastal Sciences, New Brunswick, N.J.
Explore the world of data, reflect on how people interact with data, and learn tips and tricks to integrate data successfully into your classroom.

AAPT Session: Simple Lessons to Teach Confusing Physics Ideas (K–8)
(Grades P–8)
Key 9, Hilton
Science Focus: PS
Katya Denisova (kdenisova@gmail.com), Baltimore (Md.) City Public Schools
Join us as we demonstrate simple and low-budget ideas for engaging students in inquiry-driven argumentation of their own models of physics phenomena.
8:00–8:30 AM Presentation

Students as Citizen Scientists: Data Collection and Sharing Using FieldScope

(Grades 6–College) 322, Convention Center

Science Focus: LS2, INF

Olukayode Banmeke, DuVal High School, Lanham, Md.

Discover how to navigate and effectively use the Maryland FieldScope website with students to share their stream studies/action projects.

8:00–9:00 AM Presentations

Journaling as a Key to Unlocking Science and Engineering for All Elementary Learners

(Grades K–5) 323, Convention Center

Science Focus: GEN, SEP

Elizabeth Htwar (@techehtwar; ehtwar@hcpss.org), Waverly Elementary School, Ellicott City, Md.

Jennifer Silbaugh (jennifer_silbaugh@hcpss.org), Manor Woods Elementary School, Ellicott City, Md.

Join elementary special education and general educators to learn about leveraging journals to make science and engineering education accessible to all students.

NSTA Press® Session: Teaching for Conceptual Understanding in Science

(General) 325, Convention Center

Science Focus: GEN

Richard Konicek-Moran (rkonicek@gmail.com), Professor Emeritus, UMass Amherst, Mass.

Page Keeley (@CTSKeeley; pagekeeley@gmail.com), 2008–2009 NSTA President, and The Keeley Group, Fort Myers, Fla

Explore what it really means to teach science for conceptual understanding and leave with new strategies and ways of thinking about teaching and learning.

Student-Centered Field Research Program Development

(Grades 2–8) 333, Convention Center

Science Focus: GEN, INF, CCC, SEP1, SEP4

Christine Zito (christine.zito@thesummitschool.org) and Clinton Kittrell (clinton.kittrell@gmail.com), The Summit School, Edgewater, Md.

Discover how a field experience at a local farm promoted hands-on learning and cross-curricular collaboration. We will cover curriculum development, grant writing, and what we’ve learned thus far.

Beyond Written Assessment: Suggestions for Alternative Summative Assessments

(Grades 6–12) Key 1, Hilton

Science Focus: GEN

Debra Glassman (dglassman@bcps.org), Baltimore County Public Schools, Towson, Md.

Tired of grading reports? Leave with a list of project alternatives suitable for most secondary science classrooms.

Freshwater Stewardship: Equip Your Student-Scientists with Cutting-Edge Resources from NOAA

(Grades 5–12) Key 2, Hilton

Science Focus: ESS

June Teisan (june.teisan@noaa.gov), NOAA Office of Education, Washington, D.C.

Flooding. Water pollution. Freshwater is the lifeblood of our planet, and our future depends on the next generation of environmental stewards to preserve the health of watersheds. The National Oceanic and Atmospheric Administration (NOAA) has a wealth of online lesson plans, videos, data sets, webinars, and more to help inform and inspire students to action in research, stewardship, and resource management for vital freshwater ecosystems.

Discover the NGSS: NSTA’s Interactive E-Book

(General) Key 3, Hilton

Science Focus: GEN, NGSS

Leisa Clark, Assistant Executive Director, e-Products, NSTA, Arlington, Va.

Learn how to put the pieces of the NGSS together with NSTA’s interactive e-book on the standards—Discover the NGSS: Primer and Unit Planner.
Federal Resources for Cybersecurity Education and Talent Development
(Grades 9–College) Key 10, Hilton
Join me as I introduce new tools and methods to educators who can identify and cultivate cybersecurity talent in their classrooms.

8:00–9:00 AM Hands-On Workshops
Teaching Core Ideas of Biology with Models of Operons
(Grades 10–College) 324, Convention Center
Robert Cooper (bcooper721@gmail.com), Pennsbury High School, West Campus, Fairless Hills, Pa.
Add rigor to your lessons with an activity that requires students to reason with trp and lac operon models while using disciplinary core ideas of biology to construct explanations.

Meteoroids, Asteroids, and Moons, Oh My!
(Grades 3–8) 349, Convention Center
Science Focus: PS, CCC2, SEP3, SEP4
Joan Gillman (joan.gillman@calhoun.org), The Calhoun School, New York, N.Y.
For this workshop, STEM skills will be emphasized. We will design, build, and test moon landing devices that allow two “marshmallow” people to land softly on the moon.

Polar ICE: Bringing Polar Research to Your Classroom
(Grades 7–12) Holiday 4, Hilton
Science Focus: ESS, CCC, SEP
Liesl Hotaling, Eidos Education, Highlands, N.J.
Learn about polar research and the impact of climate change. Leave with data-focused activities and visualization tools to connect your students to the poles.

“Robot Challenge” Makes Students Think Like Engineers
(Grades 9–12) Key 5, Hilton
Science Focus: ETS, SEP6
Neville Jacobs (nevilleeid@aol.com), Director for Student Activities, IEEE Baltimore Section, Baltimore, Md.
Vince Bonina (vbonina@btfiloh.org), Beth Tfiloh Dahan High School, Pikesville, Md.
Let your students experience building a product; making it attractive, functional, and marketable; challenging it competitively; and presenting it to a team of engineers for evaluation.
Your School Can Start a Forensic Class, Too!
(Grades 6–12) Key 7, Hilton
Science Focus: GEN, SEP
Aaron Coleman (@colemanbio414; aaron.coleman@nordoniaschools.org), Nordonia Hills City School District, Northfield, Ohio
Plan and implement a forensics course in your school. Obtain a course outline connected to NGSS and digital/editable resources. Participate in a crime scene case study.

8:00–9:00 AM Exhibitor Workshop
Calling All Carbons
(Grades 9–12) 327, Convention Center
Sponsor: Lab-Aids, Inc.
Eric Pyle, James Madison University, Harrisonburg, Va.
The element of carbon is critical to life on Earth. All living organisms contain different and essential carbon-based molecules. Several Earth processes work together to cycle carbon from one carbon reservoir to another and to keep the amount in each reservoir stable. Join in to learn about and model different carbon transfer processes.

8:00 AM–5:00 PM Meeting
Discover the NGSS Train-the-Trainer Workshop
(By Preregistration Only) Key 12, Hilton
This workshop gives teacher leaders a solid understanding of the NGSS, tools for conducting teacher training, and the confidence they need to be leaders.

8:30–9:00 AM Presentation
Using Case Studies in the High School Science Classroom
(Grades 9–12) 322, Convention Center
Science Focus: GEN
Mary Chuboff (@mchuboff; mchuboff@athensacademy.org), Athens Academy, Athens, Ga.
Case studies are a great tool for teaching science. Cases can be used to teach scientific concepts and content, process skills, and critical thinking.

9:00 AM–12 Noon Exhibits
Hall E, Convention Center
The NSTA Exhibit Hall is a must-see! NSTA brings you the leading science education companies and organizations to showcase products, services, curricula, and much more. You’ll discover something new and exciting in the world of science teaching. Some exhibitors will offer materials for sale.

9:30–10:00 AM Presentation
Creating 21st-Century Science Students
(Grades 6–12) Key 10, Hilton
Bryan Dunn (@bryldunn; bdunn@xbhs.com) and Ryan Howard (rhoward@xbhs.com), Xaverian Brothers High School, Westwood, Mass.
Find out how inquiry, resilience, and problem solving can be incorporated into an engaging and rigorous science curriculum.

9:30–10:30 AM Presentations
Using Games to Develop and Refine Scientific Writing
(Grades 6–9) 333, Convention Center
Science Focus: GEN
Carolyn Balch (EngagingScienceLabs@gmail.com), Author of Engaging Science Labs, Great Falls, Va.
Writing lab reports isn’t a beloved activity for most students. Make this process more engaging by learning three games that develop and refine students’ writing.

Polymers: Basics for the Science Classroom
(Grades 7–12) Holiday 3, Hilton
Science Focus: PS, INF
Debbie Goodwin (nywin@hotmail.com), Retired High School Science Teacher, Chillicothe, Mo.
Simple demonstrations, labs, and activities bring STEM-relevant polymers into your curriculum. Concepts include formation, classification, structure, and properties. I’ll share NGSS correlations and you’ll receive a CD of activities/information.

Getting Students to Read in Science
(Grades 7–College) Key 3, Hilton
Science Focus: LS2
Jonte’ Lee (jonte.lee@dc.gov), Woodrow Wilson High School, Washington, D.C.
Reading should not be limited to English courses. Leave with strategies on how to motivate students to explore science through scientific novels. Review three years of qualitative data on how novels increased literacy, scientific fluency, scientific connectivity, and college preparation in a marine biology course.
Exposing Underrepresented Groups to Climate Change and Atmospheric Science Through Service Learning and Community-Based Participatory Research
(Grades 8–College) Key 11, Hilton
Science Focus: ESS2.D, ESS3, SEP1, SEP3, SEP4, SEP8
David Padgett (@TSUGIScLab; dpadgett@tnstate.edu),
Tennessee State University, Nashville
Attention will be paid to a model for collaborative science learning among high school learners, preservice teachers, and inservice teachers from urban populations underrepresented in the STEM disciplines.

9:30–10:30 AM Hands-On Workshops
Standards and Stewardship: A Natural Fit
(Grades 9–12) 322, Convention Center
Science Focus: ESS2.C, ESS3.C, ETS1, LS2.C
Joe Davis (@joebird1000; jdavis3@bcps.org), Baltimore County Public Schools Office of Science, Towson, Md.
Baltimore County high school students are investigating and improving local tributary health with local partners while meeting NGSS performance expectations and Maryland Environmental Literacy Standards.

NSTA Press® Session: Uncovering Students’ (and Teachers’) Ideas in Science, Engineering, and Mathematics with Formative Assessment Probes and Techniques
(Grades 1–12) 325, Convention Center
Science Focus: GEN, SEP
Page Keeley (@CTSKeeley; pagekeeley@gmail.com), 2008–2009 NSTA President, and The Keeley Group, Fort Myers, Fla.
Experience examples of how the Uncovering Student Ideas assessment probes and Formative Assessment Classroom Techniques (FACTs) can be used to elicit students’ STEM-related ideas and inform instruction.

Starting STEM Early
(Grades P–2) 326, Convention Center
Science Focus: PS1, PS3
Ruben Rosario (rosario@js.org) and Kengo Yamada (@MisterKengo; kyamada@js.org), Liberty Science Center, Jersey City, N.J.
Discover some hands-on activities to appropriately introduce topics of matter, energy, and engineering into early childhood education.

Beyond Rockets: Using the History of Spaceflight in a STEM Classroom
(Grades 4–8) 349, Convention Center
Becky Wolfe (beckyw@childrensmuseum.org), The Children’s Museum of Indianapolis, Ind.
The history of spaceflight includes examples of human innovation and problem solving. Explore ways to merge literacy, engineering, and science using the lens of human spaceflight.

Exploring the Science and Engineering Practices
(Grades K–12) Holiday 4, Hilton
Science Focus: GEN, SEP
Ted Willard (@Ted_NSTA; twillard@nsta.org), Program Director, NGSS@NSTA, NSTA, Arlington, Va.
Come explore science and engineering practices (such as constructing explanations and developing models) that are central to the vision of education described in the Framework and the NGSS.

From Science to Engineering
(Grades 6–12) Holiday 5, Hilton
Science Focus: ETS, CCC, SEP
Anthony Williams (@beaconhouseinc; williambiology2015@gmail.com), Dr. Martin Luther King, Jr. Middle School, Germantown, Md.
Encounter small ways to effectively infuse a lesson with all three dimensions of learning. This is an active analysis and exploration to create a three-dimensional lesson from a pre-existing lesson.
Carbon, Trees, and Climate
(Grades 6–12)
Key 5, Hilton
Pat Harcourt (pharcourt@umces.edu), MADE-CLEAR, Annapolis, Md.
Do saplings have superpowers? We will use evidence, models, and investigations to study carbon in trees and highlight their role in slowing climate change.

Transforming Students to Investigators: Sparking Their Curiosity Using Data Analysis and Interpretation
(Grades 9–12)
Key 6, Hilton
Science Focus: GEN, SEP
Dionysius Gnanakkan (dgnanakk@hawk.iit.edu), Judith Lederman (ledermanj@iit.edu), and Norman Lederman (ledermann@iit.edu), Illinois Institute of Technology, Chicago
Selina Bartels (selina.bartels@cuchicago.edu), Concordia University Chicago, River Forest, Ill.
This e-mail activity is ideal to start the school year and teach Nature of Science and science practices by engaging students in a nonscientific context.

Memory, Attention, and Distraction
(Grades 9–12)
Key 7, Hilton
Science Focus: LS1.D, SEP2
Louisa Stark (louisa.stark@utah.edu), The University of Utah, Salt Lake City
What can games, a murder mystery, and a driving test demonstrate about neurophysiology? Explore brain anatomy, memory, and attention for free at learn.genetics.utah.edu.

Sing, Dance, and Celebrate Science
(General)
Key 8, Hilton
Science Focus: GEN, NGSS
Sing with Pete Seeger, dance, enjoy poetry, and celebrate with the Innovation Collaborative. Join in for some effective practices research and free lessons for all ages.

9:30–10:30 AM Exhibitor Workshops

Prospecting for Mineral Ore
(Grades 9–12)
327, Convention Center
Science Focus: ESS3, ETS1
Sponsor: Lab-Aids, Inc.
Eric Pyle, James Madison University, Harrisonburg, Va.
How do geologists look for mineral ore? In this activity from EDC Earth Science, participants search for a layer of rock containing a valuable mineral called molybdenum by testing sediments collected in strategic spots along river systems—gathering data to decide where the deposit is located. This is no “cookie mining” activity!

Cells as Protein Engineers
(Grades 8–College)
330, Convention Center
Science Focus: ETS1, LS1, LS3, CCC1, CCC2, CCC3, CCC4, CCC6, CCC7, SEP1, SEP2, SEP4, SEP5, SEP6
Sponsor: MSOE Center for BioMolecular Modeling
Tim Herman (herman@msoe.edu), MSOE Center for BioMolecular Modeling, Milwaukee, Wis.
Gina Vogt (gina.vogt@3dmoleculardesigns.com), 3D Molecular Designs, Milwaukee, Wis.
Explore the cellular processes of DNA replication, transcription, and translation using hands-on instructional materials that support the three dimensions of NGSS, most notably the science and engineering practice of developing and using models. Handouts and information on borrowing instructional materials from a university model lending library program will be provided.

11:00–11:30 AM Presentation

Bundling Performance Expectations Around Phenomena
(Grades 9–12)
Holiday 3, Hilton
Science Focus: GEN, NGSS
Amy Chilinguerian (@achiliteach), Loch Raven High School, Towson, Md.
We will explore how a group of educators worked together to bundle performance expectations into units based on phenomena.
11:00 AM–12 Noon Presentations

Enabling All Students to Investigate, Explore, Inquire, Participate, and Achieve Success
(Grades K–6) 323, Convention Center

Science Focus: GEN, NGSS
Donna Knoell (dknoell@sbcglobal.net), Educational Consultant, Overland Park, Kans.

Join me as I share the fundamentals of differentiation in the K–6 science classroom. Discussion centers on strategies for differentiating effectively, making science accessible to ALL, and maximizing participation and learning. Handouts!

NSTA Press® Session: Argument-Driven Inquiry in Biology: Lab Investigations for Grades 9–12
(Grades 9–12) 325, Convention Center

Science Focus: LS, CCC, SEP
Victor Sampson (@drvictorsampson; victor.sampson@gmail.com), The University of Texas at Austin
Jonathon Grooms (@drjongrooms; jgrooms@gwu.edu), The George Washington University, Washington, D.C.

Learn about Argument-Driven Inquiry and how it can help students learn to use disciplinary core ideas, crosscutting concepts, and science and engineering practices to explain natural phenomena.

The Commotion-Free Classroom: Developing a Self-Directed Classroom
(Grades 6–9) 333, Convention Center

Science Focus: GEN, SEP2, SEP3
Carolyn Balch (cesbalch@gmail.com), Author of Engaging Science Labs, Great Falls, Va.

Imagine doing daily labs without going crazy. We will discuss the highlights of setting up a self-directed middle school science classroom.

Learning to Teach About Climate Change: Options for Professional Development
(Grades 6–12) 327, Convention Center

Science Focus: ESS2, ESS3, ETS1
Pat Harcourt (pharcourt@umces.edu) and Melissa Rogers (mrogers@umces.edu), MADE-CLEAR, Annapolis, Md.

We will describe three models for professional development in climate change and discuss advantages, challenges, and how to keep online sessions interactive.

How to Create Comic Strips for Classroom Instruction
(Grades 9–12) Key 2, Hilton

Science Focus: ETS
Thomas Windsor (scott.windsor@sussexvt.k12.de.us), Sussex Technical High School, Georgetown, Del.

Learn how to use an iPad app and PowerPoint to create comic strips to reinforce science concepts in the classroom. To fully take advantage of this session, participants are encouraged to bring an iPad or laptop computer with PowerPoint and iMovie already installed.

How to “MWEE”: An Inside Look at a New Teacher’s Guide to Planning and Implementing a MWEE
(Grades P–12) Key 3, Hilton

Science Focus: GEN, SEP1, SEP3, SEP4
Presenter to be announced

We will demonstrate the new Meaningful Watershed Educational Experience (MWEE) how-to guide and show how it helps science teachers create and implement MWEE projects.

Using Apps in Your Forensic Science Classroom Lessons
(Grades 9–College) Key 11, Hilton

Science Focus: GEN, SEP3, SEP4, SEP8
Anthony Bertino (abertino@nycap.rr.com), Retired Educator, Schenectady, N.Y.
Patricia Nolan Bertino (nolanp@nycap.rr.com), Retired Educator, Schenectady, N.Y.

Enhance your classroom presentations by integrating the use of inexpensive or free phone (iPhone and Android) and iPad apps in your crime scene and evidence analysis.

11:00 AM–12 Noon Exhibitor Workshop

Using Climate Proxies to Learn About Earth’s Climate History
(Grades 9–12) 327, Convention Center

Science Focus: ESS2, ESS3, ETS1
Sponsor: Lab-Aids, Inc.
Eric Pyle, James Madison University, Harrisonburg, Va.
How can scientists tell what Earth’s climate was like thousands of years before human measurements? This activity simulates the use of fossil ocean foraminifera, tiny organisms whose growth patterns are different in warm or cold water. Analyze and graph samples of replicas of these organisms to determine relative warm and cold periods in the past 200,000 years. This activity is from EDC Earth Science, a new NSF-supported high school program from Lab-Aids.
11:00 AM–12 Noon Hands-On Workshops

Modeling Magnetic Systems
(Grades 6–8) 322, Convention Center
Science Focus: PS, CCC4, SEP2
Nicole Rhoades (@nlrhoades; nicole.rhoades@fcps.org) and Gena Hlavinka (@mshlavinka; hlavinkag@gmail.com), Windsor Knolls Middle School, Ijamsville, Md.
Come experience hands-on and virtual activities that build toward a mastery of physical science performance expectations. Emphasis will be placed on developing/revising student-generated models of magnetic systems.

Understanding the Chesapeake Watershed Through Investigations and Literature
(Grades 3–5) 324, Convention Center
Science Focus: LS2
Christine Anne Royce (@caroyce; caroyce@aol.com), NSTA President-Elect, and Shippensburg University, Shippensburg, Pa.
Dive into intermediate-grade investigations that help explore the Chesapeake Watershed and water quality. Activities are paired with literature-based connections for integrated learning opportunities.

Understanding Complex Concepts for Diverse Learners
(Grades 6–8) 349, Convention Center
Science Focus: LS, PS, CCC1, CCC2, CCC6, SEP1, SEP8
Christine Zito (christine.zito@thesummitschool.org) and Clinton Kittrell (clinton.kittrell@gmail.com), The Summit School, Edgewater, Md.
Learn ways to modify science instruction for students with language-based learning differences. Experienced teachers will highlight ways to modify vocabulary instruction and incorporate kinesthetic activities.

High Five: Five Ways to Make Teaching Biotechnology Faster, Easier, and Cheaper
(Grades 7–College) Holiday 4, Hilton
Science Focus: LS, CCC
Whitney Hagins, Massachusetts Biotechnology Education Foundation, Cambridge
Make biotechnology more hands on, manageable, and meaningful. From reagent prep to running gels and PCR, you and your students will love these innovative ideas.

Bringing the “Bookends” of STEM Together
(Grades 7–12) Holiday 5, Hilton
Science Focus: GEN
Jeffrey Lukens, Sioux Falls (S.Dak.) School District
Integrating science and math can be seamless, natural, and painless. Come join the fun as we collect and analyze data!

iPad: Data Collection, Analysis, and Student Lab Reporting
(Grades 7–College) Key 6, Hilton
Science Focus: GEN, SEP
Gregory Dodd (gbdodd@gmail.com), Retired Educator, Pennsboro, W.Va.
Join this “hands on” workshop demonstrating the enormous potential of iPads for data collection, analysis, and student lab reporting in your science laboratory. Handouts!

(Grades K–12) Key 7, Hilton
Science Focus: ETS2, SEP
Michael Apfeldorf (@TeachingLC; mapf@loc.gov), Library of Congress, Washington, D.C.
I’ll share hands-on strategies to engage students with scientific notebooks, letters, photos, and drawings, highlighting scientific practices, nature of science, and connections between science and society.

Teachers Helping Teachers: Teaching Controversial Topics
(Grades 6–College) Key 8, Hilton
Science Focus: ESS, LS4
Claire Adrian-Tucci (@NCSEteach; adrian-tucci@ncse.com), National Center for Science Education, Oakland, Calif.
NCSE has spent decades defending the teaching of scientifically settled but socially controversial topics. In this session, we’ll discuss teaching these topics.
JOIN US

7TH ANNUAL

STEM

Forum & Expo

HOSTED BY NSTA
Philadelphia, Pennsylvania
July 11–13, 2018

This dynamic event brings together educators and organizations who are actively implementing STEM programs in their schools or districts.

Come prepared to learn tactics that work, build your professional learning network, connect with effective outreach programs and partnerships, discover new resources, and build a strong curriculum.

For information and to register, visit
www.nsta.org/stemforum

#STEMforum
Some exhibitors have classified their products by grade level and subject area. Subject areas are abbreviated here as follows:

- Biology/Life Science (B)
- Chemistry/Physical Science (C)
- Earth/Space Science (EA)
- Environmental Science (EN)
- Integrated/General Science (G)
- Physics/Physical Science (PH)
- Professional Development (PD)
- Technology Education (T)

Exhibitors

3D Molecular Designs #508

1050 N. Market St., CC130A B, C, E, A, Milwaukee, WI 53202 EN, G, PD

Phone: 414-774-6562 K–12, College

E-mail: contactus@3dmoleculardesigns.com
Website: www.3dmoleculardesigns.com

Hands-on and minds-on! Our kits and models focus on core ideas and crosscutting concepts in biology, chemistry, physical, and life sciences. We involve teachers in developing products and field testing. Kits support STEM and the NGSS. Ask about our Dynamic DNA Kit and new Synapse Construction Kit.

Activate Learning #317

44 Amogerone Crossway, Suite 7862 B, C, Greenwich, CT 06836 EA, EN, G, PD, T

Phone: 646-502-5231 K–12

E-mail: info@activatelearning.com
Website: www.activatelearning.com

Activate Learning is a leader in research-based K–12 STEM curricula, including IQWST® and Project-Based Inquiry Science: PBIST™ for middle school science and several leading high school math, science, and engineering curricula. Our project-based, investigation-centered, and literacy-rich programs immerse students in rigorous learning environments, in which their original questions and everyday experiences are central to standards-based 3-D learning.

AEOP eCYBERMISSION and GEMS #424

Arlington, VA 22201

Phone: 703-312-9360 PreK–12, College

E-mail: swhitsett@nsta.org
Website: www.usaep.com

The National Science Teachers Association administers and provides support to U.S. Army Educational Outreach Programs that engage students in real-world STEM experiences. Learn about eCYBERMISSION, an online competition free to grades 6–9 students, as well as GEMS and Camp Invention, summer STEM enrichment programs for grades K–12 teachers and students.

Albert Einstein Distinguished Fellowship #605

4301 Wilson Blvd. 6–12

Arlington, VA 22203

E-mail: Einsteinfellows@orise.orau.gov
Website: http://science.energy.gov/wdts/einstein

The Albert Einstein Distinguished Educator Fellowship (AEF) Program provides a unique opportunity for accomplished K–12 educators in the fields of science, technology, engineering, and mathematics (STEM) to serve in the national education arena. Fellows spend 11 months working in federal agencies or in U.S. congressional offices, applying their extensive knowledge and classroom experiences to national education program and STEM education policy efforts.

American Chemical Society #604

1155 16th St. NW C, PD

Washington, DC 20036 PreK–12, College

Phone: 800-333-9511 E-mail: education@acs.org
Website: www.acs.org/education

The ACS Education Division serves learners and educators by building communities and providing effective chemistry education resources, grants, communities, professional development opportunities, standards, and guidelines. Stop by our booth to find information that can support your efforts to provide innovative, relevant, and effective chemistry education from kindergarten through professional education.

American Lab Design #502

PO Box 2351 B, C, EA, EN, PH

Daytona Beach, FL 32115 9–12, College

Phone: 800-494-3237 E-mail: mikelee@americanlabdesign.com
Website: www.americanlabdesign.com

American Lab Design is an American-owned designer and manufacturer of science labs for over 24 years. Based in Florida, we are the sole manufacturer of the four-student endeavor workstation and the A-frame lab stool.
Amplify Science, written and developed by The Lawrence Hall of Science, is a brand new K–8 science curriculum designed to address the NGSS. Students learn to investigate, talk, read, write, think, and argue like real scientists and engineers through investigations of real-world problems and scientific phenomena.

Appleseed Expeditions #517
39 Logan Lane B, EA, EN, G, PD
8th Floor K–8
Santa Rosa Beach, FL 32459
Phone: 850-419-7703
E-mail: jmoores@appleseedexpeditions.com
Website: www.appleseedexpeditions.com

We offer educational trips that inspire a passion to serve. Appleseed Expeditions’ vision is to inspire students to create positive change in the world around them by using their education, talents, and passions. This fosters a healthy, purposeful life as proven in many studies.

Arbor Scientific #315
1556 Woodland Dr. B, EA, EN, G, PH
Saline, MI 48176 6–12, College
Phone: 734-477-9373
E-mail: sebastian@arborsci.com
Website: www.arborsci.com

Arbor Scientific is your source for high-quality and innovative classroom products where a dedicated team works tirelessly to provide the highest quality of customer service. We are proud that tens of thousands of teachers rely on Arbor Scientific for our wide selection of physics and physical science teaching equipment.

AstroCamp Virginia #104
8144 Mount Laurel Rd. B, EA, EN, G, PH
Clover, VA 24534 8–12
Phone: 434-454-4059
E-mail: britt@astrocampva.org
Website: www.astrocamp.org

AstroCamp Virginia is a residential outdoor science school that provides overnight field trips focusing on physics, engineering, and astronomy.

Bio-Rad Laboratories #101
6000 James Watson Dr. B, EA, EN, G, PH
Hercules, CA 94547 9–12, College
Phone: 800-424-6723
E-mail: bio-rad_explorer@bio-rad.com
Website: www.bio-rad.com

From DNA extraction techniques to sequencing a gene and protein analysis, Bio-Rad synergistically brings about change in science learning and provides educators with research quality kits, equipment, reagents, and curricula allowing educators to stay on the leading edge of science education.

Carney, Sandoe & Associates #700
200 High St. B, C, EA, EN, G, PH
Suite 610 9–12
Boston, MA 02110
Phone: 617-542-0260
E-mail: todd.gochman@carneysandoe.com
Website: www.carneysandoe.com

Carney, Sandoe & Associates is an educational recruitment firm that places teachers and administrators in jobs at K–12 independent, charter, and like-kind schools worldwide. We have a team dedicated to helping match science educators with opportunities at client schools. Our personal, professional job-search services are free to CS&A candidates. Apply today at www.carneysandoe.com. Please stop by our booth to meet the Science Associates at CS&A, Todd Gochman and LeeAnn Parker.

Carolina Biological Supply Co. #300
2700 York Rd. All Burlington, NC 27215 K–12
Phone: 800-334-5551
E-mail: nadege@biozone.co.nz
Website: www.carolina.com

Carolina is your source for thousands of quality K–16 science products—from living and preserved organisms to equipment, kits, and supplies. Turn to us for technical expertise, customer support, and our 100% satisfaction guarantee. You’ll find the products you need plus a wealth of free teacher resources at www.carolina.com.

CAP Saucier #103
41 Montview Court B, EA
Cockeysville, MD 21030 5–8
Phone: 410-666-9430
E-mail: capsaucier@verizon.net
Website: www.capsaucier.com

I write science education materials for middle school students and up. Specifically, I write about scientists who search for fossils showing our human origins, as well as scientists who explore space.

BIOZONE Corp. #710
18801 E. Main St. B, EA, EN
Suite 240 9–12
Parker, CO 80134–3445
Phone: 855-246-4555
E-mail: nadege@biozone.co.nz
Website: www.thebiozone.com

See BIOZONE’s award-winning instructional materials for high school biology (NGSS, AP, IB, A&P), Earth and space science, and environmental science—in print and for online courses. Our unique 3-in-1 products: textbook lite/activities/study guide are available in print or digital format.

Boyer Sudduth Environmental Consultants #702
9101 Green Tree Rl. 1–12
Philadelphia, PA 19118
Phone: 610-666-9430
E-mail: britt@astrocampva.org
Website: www.astrocamp.org

Boyer Sudduth Environmental Consultants and our writer-in-residence Kristin Kaye are available to discuss an interdisciplinary approach to environmental literacy using 3-D learning tools. Visit our booth for your classroom-ready Tree Dreams kits that include Tree Dreams: A Field Guide, tags, twine, and lesson plans for grades 1 through 12.
Carolina Curriculum #301
Burlington, NC 27215 K–8
Phone: 800-334-5551
E-mail: carolinacurriculum@carolina.com
Website: www.carolinacurriculum.com

Prepare students for STEM careers with Carolina’s results-driven science/engineering curricula and informational resources for K–8. We offer programs designed to meet the new standards, including the Smithsonian’s STC elementary and middle school curricula. To learn more, stop by our booth and request a Carolina Curriculum catalog. www.carolinacurriculum.com

Catalyst Learning Curricula #416
59 Clemmons St. B, EN, G, Asheville, NC 28801 8–12, College
Phone: 828-687-0807
E-mail: kristen.dotti@catalystlearningcurricula.com
Website: www.catalystlearningcurricula.com

Catalyst Learning Curricula supplies day-by-day lesson plans for student-centered, activity-based AP, IB, Pre-AP, Pre-IB, and NGSS courses in biology, environmental science, Earth and space science, anatomy, and physiology. Critical thinking, student-designed labs, debates, games, and simulations allow students to take charge of their learning in the flipped classroom with math- and writing-infused pre-planned structures, each linked to seamlessly cover all skills and content required by state and national standards.

CCIS Travel #110
PO Box 1877 B, C, EA, EN, G, PH
Butler, PA 16003 6-12, College
Phone: 800-432-5095
E-mail: info@ccistravel.com
Websites: www.ccistravel.com; www.discoverstudenttravel.com

CCIS, Inc. offers two distinct educational travel experiences, both providing first-class customer service and attention to detail. CCIS Travel delivers a boutique experience, with concierge level service, focusing on customized, all-inclusive trips. Discover Student Travel provides “Budget-Friendly Adventures” for groups who may not otherwise have the opportunity to travel.

CPO Science/School #505
Specialty Science B, EN, G
80 Northwest Blvd. K–12
Nashua, NH 03063
Phone: 800-282-9560
E-mail: customerservice.cpo@schoolspecialty.com
Website: www.cposcience.com

CPO Science provides all the essential components for a hands-on, inquiry-based science program for grades 6–12. Students are truly engaged through hands-on learning, STEM projects, collaborative social learning, and real-world activities. CPO Science core and supplemental programs are ideal for differentiated instruction, helping students of all abilities succeed in science class and the world beyond.

The Dana Foundation #519
505 5th Ave., 6th Floor B
New York, NY 10017 K–12
Phone: 212-401-1657
E-mail: awhitman@dana.org
Website: www.dana.org

The Dana Foundation is a private philanthropic organization that supports neuroscience through grants, publications, and educational programs. On dana.org, you will find free booklets, fact sheets, and puzzles about the brain, divided by age group. Visit our booth for free materials and to learn about our annual Brain Awareness Week campaign!

Delta Education/School #501
Specialty Science
80 Northwest Blvd.
Nashua, NH 03063
Phone: 800-258-1302
E-mail: customerservice.delta@schoolspecialty.com
Website: www.deltaeducation.com

Delta Education is your leading educational partner in providing hands-on, inquiry-based K–8 curriculum and instructional resources. With programs like FOSS® and DSM®, informational texts (Delta Science Content Readers), and NGSS and STEM resources, we help you develop students who set a world-class standard for college and workforce readiness.

Disney Youth Programs #102
PO Box 10,111 B, EA, EN, PH
Lake Buena Vista, FL 32830 K–12, College
Phone: 407-566-6430
E-mail: lorraine.christiano@disney.com
Website: www.disneyyouth.com

Disney Youth Education Series offers educational field trip programs and academic journeys year-round. Participants find enrichment, inspiration, and pure fun as they see how principles they’re learning in the classroom are making exciting things happen around the Disney parks.
At Educational Innovations, “Teachers Serving Teachers” isn’t just our slogan—it’s our mission! We’re committed to offering SUPER! WOW! NEAT! science materials that bring out the scientist in everyone—colleagues, students, grandkids. We make science sizzle! NGSS correlations available online for many products.

Edvotek Inc.
1121 5th St. NW
Washington, DC 20001
Phone: 202-370-1500
E-mail: info@edvotek.com
Website: www.edvotek.com

Edvotek was the world’s first company dedicated to demystifying biotechnology for young people. In 1987, we envisioned how the emerging area of biotechnology could inspire students to choose a career in science. Since then, Edvotek has expanded to become the world’s leading supplier of safe, affordable, and easy-to-use biotechnology kits and equipment designed specifically for education.

Engineering is Elementary
1 Science Park
Boston, MA 02114
Phone: 617-589-3121
E-mail: eie@mos.org
Website: www.eie.org

Engineering is Elementary® offers 20 integrated STEM units for grades 1–5 that are flexible, research based, teacher tested, and meet the NGSS. Through hands-on design challenges, students apply science and math to design, create, and improve possible solutions. Through this constructivist project-based experience, students realize—everyone can engineer!

Enovative Technologies
11935 Worcester Hwy.
Bishopville, MD 21813
Phone: 443-863-6645
E-mail: chelsea.nichols@enovativetech.org
Website: www.enovativetech.com

We sell TENS machines.

ePlanetarium
PO Box 271344
Houston, TX 77277
Phone: 855-347-2366
E-mail: service@eplanetarium.com
Website: www.discoverydome.com

Discovery Dome is a fully portable digital theater presenting full dome planetarium shows and digital star fields. With a strong partnership with museums and universities, we bring the excitement of museum-quality shows, presenting a wide range of educational topics, in a state-of-the-art mobile digital theater system, to you!

ETA hand2mind
500 Greenview Court
Vernon Hills, IL 60061
Phone: 800-445-5985
E-mail: info@hand2mind.com
Website: www.hand2mind.com

ETA hand2mind offers hands-on solutions for grades preK–8, with educational and supplemental materials that enrich teaching and engage students in math, science, STEM, and literacy. Our offerings include both traditional manipulatives and interactive digital versions. In addition, save time and money with our custom solutions designed for your specific needs.

ExploreLearning
110 Avon St., Suite 300
Charlotteville, VA 22902
Phone: 866-882-4141
E-mail: sales@explorelearning.com
Website: www.explorelearning.com

ExploreLearning develops online solutions to improve student learning in math and science. ExploreLearning Gizmos are the world’s largest library of interactive, online simulations for math and science in grades 3–12. ExploreLearning Reflex (www.reflexmath.com) is the most powerful solution available for math fact fluency.

Fisher Science Education
300 Industry Dr.
Pittsburgh, PA 15275
Phone: 412-329-2904
E-mail: april.fischione@thermofisher.com

Fisher Science Education provides today’s teachers with the cutting-edge products they need to prepare their students for STEM careers. From anatomy to zoology and everything in between, Fisher Science Education can supply you with all the necessities for your educational laboratory setting.

Flinn Scientific, Inc.
PO Box 219
Batavia, IL 60510
Phone: 800-452-1261
E-mail: flinn@flinnsci.com
Website: www.flinnsci.com

Flinn Scientific is the leader in science and laboratory chemical safety. Publisher of the world-renowned Flinn Science Catalog Reference Manual, Flinn develops and offers a full line of chemistry, biology, physics, life science, Earth science, physical science, and safety products for middle school, high school, and higher education.

Forestry Suppliers, Inc.
205 W. Rankin St.
Jackson, MS 39201
Phone: 601-354-3565
E-mail: stinsond@forestry-suppliers.com
Website: www.forestry-suppliers.com

We offer products for teaching Earth, life, environmental, and physical sciences. Products include orienteering, environmental monitoring and sampling, forest and agriculture/horticulture equipment; geological/surveying and meteorological instruments; laboratory supplies; and reference and field guidebooks.
Frey Scientific/School Specialty Science #503
80 Northwest Blvd.
Nashua, NH 03063
Phone: 800-225-3739
E-mail: customercare.frey@schoolspecialty.com
Website: www.freyscientific.com

Frey Scientific offers a complete line of supplies, equipment, technology, and lab design services for grades K–12. Frey also offers the CPO Science learning systems that are ideal for differentiated instruction. Secondary-level supplemental science curriculum offerings are Inquiry Investigations® and iNeo/SCI®.

Grand Classroom #516
PO Box 7166 B, EA, EN, G, PH
Charlottesville, VA 22906 5–12, College
Phone: 434-975-2629
E-mail: maryannchapman@grandclassroom.com
Website: www.grandclassroom.com

Grand Classroom is a student travel organization, emphasizing outdoor educational experiences in national parks, major U.S. cities, and international destinations.

HHMI BioInteractive #405
4000 Jones Bridge Rd. B, EN
Chevy Chase, MD 20815 6–12, College
Website: www.biointeractive.org

HHMI's BioInteractive team develops free resources based on real data, highlighting research practices. Our short films, virtual labs, apps, and print materials combine important science with engaging presentation. These multimedia resources are developed, vetted, and field-tested by educators and scientists—and are all tied to national curriculum standards.

Houghton Mifflin Harcourt #309
125 High St. B, C, EA, EN,
Boston, MA 02110 G, PH, PD, T
Phone: 240-608-5252 K–12
E-mail: james.stevenson@hmhco.com
Website: www.hmhco.com

Houghton Mifflin Harcourt is a global learning company dedicated to changing people’s lives by fostering passionate, curious learners. As a leading provider of preK–12 education content, services, and cutting-edge technology solutions across a variety of media, HMH enables learning in a changing landscape. For more information, visit www.hmhco.com.

International Youth Neuroscience Association/Brain Bee #707
9395 Carrie Way B
Ellicott City, MD 21042 7–12, College
Phone: 410-274-4998
E-mail: nmyslinski@umaryland.edu
Website: www.youthneuro.org

IYNA increases the presence of neuroscience in high schools. International Brain Bee (IBB) helps treat and find cures for brain disorders by inspiring young men and women to seek careers in brain-related fields. Neuroscience fulfills state standards and is relevant for everybody and every career and job. Brain! Research! AP-Classes! Integration! Now!

Johns Hopkins University Center for Talented Youth #109
2–12, College
5801 Smith Ave., Suite 400
Baltimore, MD 21209
Phone: 410-735-6185
E-mail: rosa.villatrigo@jhu.edu
Website: http://cty.jhu.edu

The world leader in gifted education, Johns Hopkins Center for Talented Youth is a nonprofit dedicated to identifying and developing the talents of academically advanced precollege students. We serve bright learners through summer, online, and family programs, and seek to hire qualified staff to work with our students.
Kendall Hunt publishes a variety of inquiry and research-based science curriculum. Our hands-on programs are available in print and digital formats and focus on biology; Earth, life, and physical sciences; integrated science; chemistry; forensic science; integrated science; chemistry; and our newest offering state-of-the-art virtual reality science curriculum.

K’NEX Education develops curriculum supported STEM sets designed to maximize student engagement. They are used in preK–12 classrooms, as well as makerspaces and afterschool programs. They teach today’s young scientists and engineers key science, technology, engineering, and math concepts by constructing real-world models that encourage scientific inquiry.

For over 53 years, our company has been providing schools and educational programs with innovative products, training, and customized materials that span the curriculum. Designed to meet state and national standards in early childhood and elementary education, our top-quality products reflect the latest research in teaching and child development.

Labscape designs, builds, and installs commercial laboratory casework, fume hoods, and extraction enclosure systems. With a number of industry labs and fume hood installations completed, Labscape’s products are used in analytical, as well as production environments and are designed with flexibility, value, and above all, compliance and safety in mind.

Since 1954, Lakeshore Learning Materials has been providing schools and educational programs with innovative products, training, and customized materials that span the curriculum. Designed to meet state and national standards in early childhood and elementary education, our top-quality products reflect the latest research in teaching and child development.

LaMotte manufactures water, soil and analysis test kits, curriculum packages, instruments, and sampling equipment for use in the classroom, lab, and field. Come see our teacher favorites and new product additions.

Legends of Learning creates standards-focused digital games that increase subject mastery and engagement. Teachers use our platform as a tool to supplement and enhance their lessons. In our study with Vanderbilt University, students had higher levels of engagement, increased test scores, and faster comprehension of the given content.

LEGO® Education combines the unique excitement of LEGO bricks with hands-on classroom solutions for science, technology, engineering, and math that engages all types of learners. Learn how our products can bring curriculum to easily access developmentally appropriate content.

Science A–Z® is an award-winning K–6 science resource that blends core ideas and practices of science with language arts to allow seamless integration of science and literacy into daily instruction. With resources available in printable, projectable, online, and mobile formats, Science A–Z allows students to easily access developmentally appropriate content.

Learn Engines provides the “Case History” series of forensic science lab activities for middle school and high school students. These include the breakthrough web-based Murder at Old Fields and now the latest—Diablo Highway—based on the unsolved double-murder in Texas 1938. Come meet John Stevens, creator of Case History.
The Lemelson–MIT Program inspires young people to pursue creative lives and careers through invention. We encourage youth to invent and develop their hands-on skills in science, technology, engineering, and math through two national grants initiatives for grades 7–12, PD offerings, and other resources for educators to integrate invention into their practice.

Liberty Science Center

Liberty Science Center brings the power, promise, and pure fun of science and technology to people of all ages. LSC features 12 exhibition halls, 110 species of live animals, giant aquariums, a 3D theater, live simulcast surgeries, working labs, and teacher-development programs—attracting more than 650,000 visitors each year.

The Markerboard People, Inc.

The Markerboard People, Inc. offers student dry-erase markerboards and response boards in class sets at unbeatable prices! They’re great for instant response and instant assessment Single- and double-sided available—perfect for science, math, language arts, graphing, handwriting, and more. Long-lasting, nontoxic, ultra-low-odor markers, and durable student erasers, too!

McGraw-Hill Education

Our vision is to unlock the full potential of each learner. Educators have been and always will be at the core of the learning experience. The solutions we develop help educators impart their knowledge to students more efficiently. We believe that harnessing technology can enhance learning inside and outside of the classroom and deepen the connections between students and teachers to empower greater success.

MiniOne Systems

MiniOne Systems designs and manufactures electrophoresis systems and PCR systems specifically for hands-on teaching in classroom settings. Our systems are designed to be safe, reliable, robust, fast, and affordable. MiniLabs simplify classroom management and engage students with real-world experiments. Teach and do electrophoresis or PCR in 45 minutes.
Exhibitors

miniPCR

1770 Massachusetts Ave.
Cambridge, MA 02140
Phone: 781-990-8727
E-mail: team@minipcr.com
Website: www.minipcr.com

The complete biotech lab for your classroom. The DNA Discovery System™ includes a miniPCR™ thermal cycler, blueGel™ electrophoresis system, and a micropipette at prices schools can afford. Teach biotech, AP bio, forensics, and more DNA science hands on. Come learn about our tools, curriculum, and national Genes in Space™ STEM competition.

Mosa Mack Science

Phone: 202-253-7610
E-mail: info@mosamack.com
Website: www.mosamack.com

Check out our award-winning NGSS lessons that incorporate mysteries, hands-on labs, and engineering challenges for grades 4–8.

MSOE Center for BioMolecular Modeling

1025 N. Broadway St.
Milwaukee, WI 53202
Phone: 414-277-7529
E-mail: herman@mosc.edu
Website: www.chb.msoe.edu

As an instructional materials development laboratory, we create student-centered, hands-on kits and models for the molecular biosciences.

Nasco

901 Janesville Ave.
Fort Atkinson, WI 53538
Phone: 800-558-9595
E-mail: khart@enasco.com
Website: www.enasco.com

Our comprehensive collection of classroom supplies and equipment encourages hands-on exploration in middle school, secondary, and post-high school science programs. Our products include visual aids, interactive whiteboard materials, kits, and teacher resources for generations.

National Academies Press

500 5th St. NW
Washington, DC 20001
Phone: 800-624-6242
E-mail: hkenton@nas.edu
Website: www.nap.edu

The National Academies Press (NAP) publishes the reports of the National Academies of Sciences, Engineering, and Medicine. The NAP publishes more than 200 books a year, providing authoritative information on important matters in science and health policy.

National Energy Education Development Project

8408 Kao Circle
Manassas, VA 20110
Phone: 703-257-1117
E-mail: kswan@need.org
Website: www.need.org

National Energy Education Development (NEED) Project’s philosophy is “Kids Teaching Kids,” encouraging students to explore, experiment, and engage in energy education! NEED has 100+ free K–12 curriculum guides that meet state standards, encompassing hands-on inquiry-based energy activities. NEED also provides free energy education workshops to educators across the country.

National Geographic Learning

20 Channel Center St.
Boston, MA 02210
Phone: 888-915-3276
E-mail: schoolcustomerservice@cengage.com
Website: www.ngl.cengage.com

National Geographic Learning, a part of Cengage, provides quality preK–12, academic, and adult education instructional solutions for reading, science, social studies, mathematics, ESL/ELD, Spanish/dual language, advanced and electives, career and technical education, and professional development.
The National Institute for STEM Education (NISE) certifies teachers, campuses, and districts in STEM teaching using a competency-based, academic coach-led online learning platform in which educators produce a portfolio of work that demonstrates proficiency across 15 STEM teacher actions.

WHERE BIG IDEAS BECOME THE NEXT BIG THING™. Camp Invention is the only nationally recognized nonprofit summer enrichment program for kindergartners through sixth-graders that is inspired by the greatest innovators around—the Inductees of the National Inventors Hall of Fame®. At Camp Invention, children are empowered to question, brainstorm, collaborate, and invent!

NatureBridge provides hands-on environmental science programs to school groups since 1971. Our programs complement classroom curriculum and support state and federal education standards, including CCSS and NGSS. With six national park locations, NatureBridge fosters environmental literacy to sustain our planet.

NOAA is a federal science agency providing free information about weather, climate, oceans, coasts, fisheries, satellite data, and solar weather. NOAA’s science touches the lives of every American—protecting life and property and conserving and protecting natural resources. Our collaboration with NSTA also fosters our mission to educate and inspire the nation and prepare a future workforce.
Exhibitors

Pearson Learning Services #204
3075 W. Ray Rd. B, C, EA, EN, PH, PD, T
Chandler, AZ 85226 PreK–12
Phone: 888-827-0772
Website: www.pearsonschool.com

Pearson is the world’s learning company. We’re inspired by the way education transforms lives. We help K–12 educators create better learning across all disciplines with our products and services. We’re dedicated to improving student outcomes and helping learners prepare for college and careers. Because where learning flourishes, so do people.

Penn State World Campus #610
of The Pennsylvania State University
Suite 408, the 329 Bldg. PD
University Park, PA 16802 College
Phone: 814-865-7600
E-mail: eah29@psu.edu
Website: worldcampus.psu.edu

Penn State World Campus, backed by over a century of distance education and 15+ years of outstanding online instruction, offers more than 125 programs, awarding degrees and transcripts identical to those earned by on-campus students. Our mission is to ensure your access to a quality academic experience, anywhere, anytime.

PlayMada Games #414
261 Madison Ave., 9th Floor C
New York, NY 10016 7–12
Phone: 844-222-2320
E-mail: edwardw@playmadagames.com
Website: www.collisionschemistry.com

Collisions is a digital game designed to give middle school and high school students a deepened understanding of fundamental chemistry concepts. Students see and touch the building blocks of matter within an exploratory, easy-to-navigate environment built for web and tablets. Immersive play converges with meaningful feedback to engage all students.

Project Learning Tree #717
2121 K St. NW EN, PD
Suite 750 PreK–12
Washington, DC 20037
Phone: 202-765-3641
E-mail: information@plt.org
Website: www.plt.org

Project Learning Tree advances environmental literacy and promotes stewardship through excellence in environmental education, professional development, and curriculum resources that use trees and forests as windows on the world.

School Specialty Science #507
80 Northwest Blvd. B, C, EA, EN, G, PH
Nashua NH 03063 PreK–12
Website: www.schoolspecialty.com

School Specialty Science brings together the very best curriculum with FOSS® and CPO Science, classroom resources, equipment, and furniture with Delta Education and Frey Scientific. Together, these effective teaching and learning solutions serve all the needs of preK–12 science teachers, curriculum specialists, and administrators.

Shell Science Lab Challenge #426
1840 Wilson Blvd. PD
Arlington, VA 22201 K–12
Phone: 703-312-9217
E-mail: aupton@nsta.org
Website: www.nsta.org/shellsciencelab

Learn how to win $20,000 for your school science lab, up to $10,000 for your outstanding efforts as a science educator, and $1,800 as an urban science educator.

Shift Learning #223
Maples Business Centre All
144 Liverpool Rd. 3–9
London, N1 1LA
UK
Phone: 020 72538959
E-mail: rebecca.berry@shift-learning.co.uk
Website: www.shift-learning.co.uk

Shift Learning is a UK-based research agency specializing in education. We are at the NSTA Baltimore Area Conference conducting interviews with elementary and middle school teachers.

Simulation Curriculum Corp. #518
11900 Wayzata Blvd. EA, EN, G, PH, PD, T
Suite 126 K–12, College
Minnetonka, MN 55305
Phone: 952-653-0493
E-mail: mgoodman@simcur.com
Website: www.simulationcurriculum.com

Simulation Curriculum is a leading provider of interactive Earth and space science curriculum for kindergarten through college. Designed for use on Chromebooks, iPads, Android tablets, and conventional computers, Starry Night and Layered Earth lead the industry in flexible and effective standards-based learning.
Society for Science & the Public #627
1719 N St. NW All
Washington, DC 20036 5–12, College
Phone: 202-785-2255
E-mail: snyder@societyforscience.org
Website: www.societyforscience.org

Society for Science & the Public (SSP) is a champion for science, dedicated to expanding scientific literacy, effective STEM education, and scientific research. We are a nonprofit 501(c)(3) membership organization focused on promoting the understanding and appreciation of science and the vital role it plays in human advancement: to inform, educate, and inspire.

Southern Science Supply #404
2914 Oakleaf Dr. B, C, EN, G, PH, PD, T
San Antonio, TX 78209 PreK–12, College
Phone: 877-968-7522
E-mail: carol@southernsciencesupply.com
Website: www.southernsciencesupply.com

Magnify what you do with the MicroSight, MicroZoom, and ProScope Microscopes. These magnificent microscopes are available in USB, Wi-Fi, and portable models and allow you to see the world in brilliant detail. Accessories are available, as well as unique specimen kits and activity booklets. Come scope us out!

Springbay Studio #712
600 The East Mall B, EN, T
PO Box 11574
Toronto, ON M9B 4B1
Canada
E-mail: support@springbaystudio.com
Website: https://schools.springbaystudio.com

Springbay Studio is an award-winning game developer specializing in inquiry-based learning. We are committed to making educational games to help children appreciate and understand the beauty of the natural world. Our game “iBiome-Wetland” has won five awards, including “Best Learning and Teaching App” from the American Association of School Librarians.

STARLAB #314
Yulee, FL 32097 PreK–12, College
Phone: 800-875-3214
E-mail: starlab@starlab.com
Website: www.starlab.com; www.cynmar.com

Starlab brings the planetarium to you! With Digital Starlab®, using Starry Night™, captivate students in astronomy or use The Layered Earth™ to dig into the center of Earth science. Explore everywhere. Learn anywhere! Cynmar, a division of Emerson Learning, supplies science materials, supplies, and experiments focused on learning in all areas of science!

STEMscopes #409
5177 Richmond Ave., Suite 1025 All
Houston, TX 77057 PreK–12
Phone: 800-831-0864
E-mail: david@acceleratelearning.com
Website: www.stemscopes.com

STEMscopes™, created by Accelerate Learning Inc., is an award-winning, research-based national leader in preK–12 STEM curriculum. Used by over 3.5 million students across 45 states, STEMscopes provides comprehensive digital resources, supplemental print materials, and hands-on exploration kits that drive engagement and academic growth.

Swift Optical Instruments, Inc. #211
6508 Tri-County Pkwy. B
Schertz, TX 78154 6–12, College
Phone: 877-967-9438
Website: www.swiftoptical.com

A leader in the manufacturing of microscopes, Swift Optical is excited to introduce you to our new Wi-Fi and tablet microscopes. Visit our booth to learn how easy, affordable, and fun it is to go digital and Wi-Fi in your classroom. Or stop by for a chance to win cool prizes!

TCI #504
2440 W. El Camino Real All
Suite 400 K–8
Mountain View, CA 94040
Phone: 650-390-6600
E-mail: ttran@teachtci.com
Website: www.teachtci.com

TCI is a K–12 publishing company that creates science and social studies curriculum that enables educators to engage all students in a diverse classroom.

Texas Instruments #400
13532 N. Central Expressway, MS 3817 All
Dallas, TX 75265 5–12, College
Phone: 1-800-TI-CARES
E-mail: ti-cares@ti.com
Website: https://education.ti.com

Texas Instruments (TI) provides free classroom activities that enhance math, science, and STEM curricula; technology that encourages students to develop a deeper understanding of concepts; and professional development that maximizes your investment in TI technology. Visit education.ti.com.

TheBeamer LLC #722
87 Church St. C, EA, G, PH
East Hartford, CT 06108 4–8
Phone: 860-212-5071
E-mail: info@thebeamer.com
Website: http://thebeamer.com

The company is producing The Stardust Mystery, a scientifically accurate 10-episode game in which a four-member crew of the Cosmic Egg (a time, space, and dimensional travel machine) track their Stardust (atoms) back along the Stardust Trail to former owners of those atoms, and to the atom’s formation in star supernovas several hundred million years after the big bang.

Ti-Cares #400
13532 N. Central Expressway, MS 3817 All
Dallas, TX 75265 5–12, College
Phone: 1-800-TI-CARES
E-mail: ti-cares@ti.com
Website: https://education.ti.com

The ExploraVision competition for K–12 students engages the next generation in real-world problem solving with a strong emphasis on STEM. ExploraVision challenges students to envision and communicate new technology 20 years in the future through collaborative brainstorming and research of current science and technology.
Exhibitors

Towson University #106
Fisher College of Science & Mathematics G
8000 York Rd. PreK–12
Towson, MD 21252
Phone: 410-704-4598
E-mail: plottero@towson.edu
Website: www.towson.edu/fcsm/outreach/index.html

We will feature multiple STEM professional learning experiences (PLEs) and resources for preK–12 teachers and students. PLEs include a post-baccalaureate certificate in Integrated STEM Instructional Leadership for preK–6 teachers. The Towson University Center for STEM Excellence offers field trip experiences, curricula, and materials for Maryland students and teachers.

Vernier Software & Technology #401
13979 SW Millikan Way B, C, EN, G, PH, Beaverton, OR 97005 3–12, College
Phone: 888-837-6437
E-mail: info@vernier.com
Website: www.vernier.com

Vernier Software & Technology is a leading innovator of scientific data-collection technology. Focused on STEM, Vernier is dedicated to developing creative ways to teach and learn using hands-on science. Vernier creates easy-to-use science interfaces, sensors, and graphing/analysis software. Vernier’s technology-based solutions enhance STEM education, increase learning, and build students’ critical-thinking skills.

UL #427
333 Pfingsten Rd. G, T
Northbrook, IL 60062 5–9
Phone: 847-272-8800
E-mail: ulxplorlabs@ul.com
Website: www.ulxplorlabs.org

With UL XplorLabs, we push, pull, smash, and set fire to every limit in order to solve real-world safety science problems and set safety standards that will change tomorrow—all while adhering to the standards of today. Every research-based, teacher-tested UL XplorLabs element meets key Next Generation Science Standards.

Water Environment Federation #625
601 Wythe St. C, EN, G, T
Alexandria, VA 22314-1994 1–12
Phone: 703-684-2400
E-mail: shunt-cottrell@wef.org
Website: www.wef.org

The Water Environment Federation is a not-for-profit technical and educational organization of 33,000 members and 75 affiliated member associations representing water quality professionals around the world. Since 1928, WEF and its members have protected public health and the environment, and increased the awareness of the impact and value of water.

Wilmington University #214
320 N. DuPont Hwy. EN
New Castle, DE 19720 College
Phone: 877-967-5464
Website: www.wilmu.edu

At Wilmington University, students have the opportunity to pursue a career and become a leader. It’s not just about meeting your potential, it’s about exceeding it. Our programs emphasize in-demand knowledge and skills that employers need, taught by faculty who are practitioners in their career fields.

WorldStrides #105
218 W. Water St., Suite 400 B, EA, EN,
Charlottesville, VA 22902 G, PH, PD
Phone: 800-999-7676 5–12
E-mail: requestinfo@worldstrides.org
Website: www.worldstrides.org

The industry leader, WorldStrides takes students of all ages and interests on worldwide journeys built to have lifelong impact. They focus on educational excellence by building interactivity into their travel programs to encourage more genuine and memorable experiences. WorldStrides earns top ratings for customer focus, plus operational and safety expertise.

—courtesy of Mike Weiss
Index of Exhibitor Workshops

3D Molecular Designs (Booth #508)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, Oct 5</td>
<td>9:30–10:30 AM</td>
<td>330, Conv. Center</td>
<td>DNA Structure and Function with a Twist of Dynamic DNA (p. 44)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>11:00 AM–12 Noon</td>
<td>330, Conv. Center</td>
<td>5 E’sy Ways to Investigate Enzymes! (p. 46)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>12:30–1:30 PM</td>
<td>330, Conv. Center</td>
<td>Getting Students Through the Cellular Membrane (p. 53)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>9:30–10:30 AM</td>
<td>330, Conv. Center</td>
<td>Keep Your Head Above Water with Magnetic Water Molecule Models (p. 79)</td>
</tr>
</tbody>
</table>

Activate Learning (Booth #317)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, Oct 5</td>
<td>8:00–9:00 AM</td>
<td>348, Conv. Center</td>
<td>Project-Based Inquiry Science™ (PBIS): Creating “Coherence and Science Storylines” for Middle School (p. 43)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>9:30–10:30 AM</td>
<td>348, Conv. Center</td>
<td>Science Storylines and the Driving Question Board: Keeping NGSS Curricula Student Driven (p. 46)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>11:00 AM–12 Noon</td>
<td>348, Conv. Center</td>
<td>Structuring Discussion to Be Equitable and Rigorous (p. 48)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>12:30–1:30 PM</td>
<td>348, Conv. Center</td>
<td>Literacy in the Context of Science in the Elementary Classroom (p. 54)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>2:00–3:00 PM</td>
<td>348, Conv. Center</td>
<td>Literacy in the Context of Science in the Middle School Classroom (p. 60)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>3:30–4:30 PM</td>
<td>348, Conv. Center</td>
<td>Incorporating STEM into the Classroom (High School Science) (p. 65)</td>
</tr>
</tbody>
</table>

AEOP (Booth #424)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, Oct 5</td>
<td>11:00 AM–12 Noon</td>
<td>343/344, Conv. Center</td>
<td>Community-Based Problems: Using Middle School Science and Engineering to Help Your Community (p. 47)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>9:30–10:30 AM</td>
<td>343/344, Conv. Center</td>
<td>Out-of-School STEM Enrichment: AEOP Program Design Collaboration (p. 80)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>11:00 AM–12 Noon</td>
<td>343/344, Conv. Center</td>
<td>Middle Schoolers Solving Problems: Grant Opportunity to Bring STEM to Life! (p. 86)</td>
</tr>
</tbody>
</table>

Albert Einstein Distinguished Educator Fellowship (Booth #605)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Oct 6</td>
<td>11:00 AM–12 Noon</td>
<td>347, Conv. Center</td>
<td>STEM Leaders in Action: The Albert Einstein Distinguished Educator Fellowship (AEF) Program (p. 86)</td>
</tr>
</tbody>
</table>

Amplify (Booth #511)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, Oct 5</td>
<td>9:30–10:30 AM</td>
<td>342, Conv. Center</td>
<td>The Power of Modeling in K–8 Classrooms (p. 45)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>11:00 AM–12 Noon</td>
<td>342, Conv. Center</td>
<td>Space Docking Failure: Phenomena and 3-D Instruction for Grades 6–8 (p. 47)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>12:30–1:30 PM</td>
<td>342, Conv. Center</td>
<td>Puppet Theater Engineering: Phenomena and 3-D Instruction for Grades K and 1 (p. 54)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>9:30–10:30 AM</td>
<td>342, Conv. Center</td>
<td>Integrate Instruction and Assessment in Three Dimensions Using Learning Progressions (p. 80)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>11:00 AM–12 Noon</td>
<td>342, Conv. Center</td>
<td>Implementing Argumentation: Evidence, Claims, Reasoning, and Science Seminars in Grades 6–8 (p. 85)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>12:30–1:30 PM</td>
<td>342, Conv. Center</td>
<td>Disappearing Jaguars and Sloths: Phenomena and 3-D Instruction for Grades 2–5 (p. 91)</td>
</tr>
</tbody>
</table>

Bio-Rad Laboratories (Booth #101)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, Oct 5</td>
<td>2:00–3:00 PM</td>
<td>341, Conv. Center</td>
<td>Communicating Science Through Lab Notebooking (p. 59)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>3:30–4:30 PM</td>
<td>341, Conv. Center</td>
<td>Enzymes: Technology Inspired by Nature (p. 65)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>8:00–9:00 AM</td>
<td>341, Conv. Center</td>
<td>How to Use Pop Culture in Your Life Science Class (p. 73)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>9:30–10:30 AM</td>
<td>341, Conv. Center</td>
<td>Get That Grant Money! (p. 80)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>11:00 AM–12 Noon</td>
<td>341, Conv. Center</td>
<td>Become a GMO Investigator (p. 85)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>2:00–3:00 PM</td>
<td>341, Conv. Center</td>
<td>Conserving Panda Population: One Hormone Test Design at a Time! (p. 97)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>3:30–4:30 PM</td>
<td>341, Conv. Center</td>
<td>Investigate Photosynthesis and Cellular Respiration with Algae Beads (p. 100)</td>
</tr>
</tbody>
</table>
Index of Exhibitor Workshops

Boyer Sudduth Environmental Consultants (Booth #702)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Oct 6</td>
<td>9:30–10:30 AM</td>
<td>338, Conv. Center</td>
<td>Science and Storytelling: An Interdisciplinary Approach to Environmental Literacy (p. 79)</td>
</tr>
</tbody>
</table>

Carolina Biological Supply Co. (Booth #300)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, Oct 5</td>
<td>9:30–10:30 AM</td>
<td>331/332, Conv. Center</td>
<td>Engineer Physical Science Excitement in Your Classroom with a Carolina STEM Challenge® (p. 44)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>11:00 AM–12 Noon</td>
<td>331/332, Conv. Center</td>
<td>Coding with First Graders? The Smithsonian Says YES! (p. 46)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>12:30–1:30 PM</td>
<td>331/332, Conv. Center</td>
<td>Hands-On Science with Classroom Critters (p. 53)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>2:00–3:00 PM</td>
<td>331/332, Conv. Center</td>
<td>Collecting Evidence: How Does an Owl Get All That Energy? (p. 59)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>3:30–4:30 PM</td>
<td>331/332, Conv. Center</td>
<td>Comparative Vertebrate Anatomy with Carolina’s Perfect Solution® Specimens (p. 64)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>8:00–9:00 AM</td>
<td>331/332, Conv. Center</td>
<td>Disorder Detectives: Karyotyping, Bioethics, and Beyond (p. 72)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>9:30–10:30 AM</td>
<td>331/332, Conv. Center</td>
<td>Autopsy: Forensic Dissection Featuring Carolina’s Perfect Solution® Pigs (p. 79)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>11:00 AM–12 Noon</td>
<td>331/332, Conv. Center</td>
<td>Keep Calm and Chemistry On: Successful Lab Activities for the New Chemistry Teacher (p. 84)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>12:30–1:30 PM</td>
<td>331/332, Conv. Center</td>
<td>Introduction to Wisconsin Fast Plants® (p. 90)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>2:00–3:00 PM</td>
<td>331/332, Conv. Center</td>
<td>Shifting to the Five Innovations: How Do We Transform Instruction? (p. 97)</td>
</tr>
</tbody>
</table>

CPO Science/School Specialty Science (Booth #505)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, Oct 5</td>
<td>8:00–9:00 AM</td>
<td>336, Conv. Center</td>
<td>CPO Science Biology Energy QUEST: Teaching Cell Energy Pathways (p. 43)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>9:30–10:30 AM</td>
<td>336, Conv. Center</td>
<td>CPO’s Wind Turbine: A STEM Approach to Engineering and Design (p. 45)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>11:00 AM–12 Noon</td>
<td>336, Conv. Center</td>
<td>CPO’S LINK Genetics Learning Modules: Crazy Traits and Crazy Chromosomes (p. 47)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>3:30–4:30 PM</td>
<td>336, Conv. Center</td>
<td>CPO Science LINK Learning Module: Chemistry and the Periodic Table (p. 64)</td>
</tr>
</tbody>
</table>

Delta Education (Booth #501) and Frey Scientific (Booth #503)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, Oct 5</td>
<td>9:30–10:30 AM</td>
<td>338, Conv. Center</td>
<td>Makerspaces with Options for All Students (p. 45)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>2:00–3:00 PM</td>
<td>338, Conv. Center</td>
<td>Boosting the Makerspace Experience for Young Scientists! (p. 59)</td>
</tr>
</tbody>
</table>

Delta Education/School Specialty Science (Booth #501)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, Oct 5</td>
<td>8:00–9:00 AM</td>
<td>338, Conv. Center</td>
<td>How to Argue in a Middle School Science Class (p. 43)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>11:00 AM–12 Noon</td>
<td>338, Conv. Center</td>
<td>OK, Class, Please Open Your Science Notebooks… (p. 47)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>3:30–4:30 PM</td>
<td>338, Conv. Center</td>
<td>How to Argue in the Elementary Science Class (p. 64)</td>
</tr>
</tbody>
</table>

Delta Education/School Specialty Science-FOSS (Booth #501)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, Oct 5</td>
<td>8:00–9:00 AM</td>
<td>337, Conv. Center</td>
<td>Ten Minutes to Improving Science Achievement (p. 43)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>9:30–10:30 AM</td>
<td>337, Conv. Center</td>
<td>What Does Argumentation Look Like in an Elementary Classroom? (p. 45)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>11:00 AM–12 Noon</td>
<td>337, Conv. Center</td>
<td>What Does Conceptual Modeling Look Like in Grades K–5 Classrooms? (p. 47)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>12:30–1:30 PM</td>
<td>337, Conv. Center</td>
<td>Wave Properties and Information Transfer (p. 54)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>2:00–3:00 PM</td>
<td>337, Conv. Center</td>
<td>Identifying Energy Transfers in Motors and Generators (p. 59)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>3:30–4:30 PM</td>
<td>337, Conv. Center</td>
<td>Evolutionary Evidence in the Fossil Record (p. 64)</td>
</tr>
</tbody>
</table>

Educational Innovations, Inc. (Booth #208)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Oct 6</td>
<td>9:30–10:30 AM</td>
<td>345/346, Conv. Center</td>
<td>Cool! Can We Do That Again?! (p. 80)</td>
</tr>
</tbody>
</table>
Index of Exhibitor Workshops

Edvotek, Inc. (Booth #500)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, Oct 5</td>
<td>8:00–9:00 AM</td>
<td>339, Conv. Center</td>
<td>Martian Genetics: An Electrophoresis Exploration (p. 43)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>9:30–10:30 AM</td>
<td>339, Conv. Center</td>
<td>Exploring the Genetics of Taste: SNP Analysis of the PTC Gene Using PCR (p. 45)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>11:00 AM–12 Noon</td>
<td>339, Conv. Center</td>
<td>Left at the Scene of the Crime: Introduction to Forensic Science (p. 47)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>12:30–1:30 PM</td>
<td>339, Conv. Center</td>
<td>Cancer Investigators: Medical Diagnostics in Your Classroom (p. 54)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>2:00–3:00 PM</td>
<td>339, Conv. Center</td>
<td>Detecting the Silent Killer: Clinical Detection of Diabetes (p. 59)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>3:30–4:30 PM</td>
<td>339, Conv. Center</td>
<td>Environmental Toxicology Using Edvotek’s New EZ-elegans (p. 64)</td>
</tr>
</tbody>
</table>

Fisher Science Education (Booth #602)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Oct 6</td>
<td>2:00–3:00 PM</td>
<td>347, Conv. Center</td>
<td>The Chemistry of Glow Sticks (p. 98)</td>
</tr>
</tbody>
</table>

Flinn Scientific, Inc. (Booth #415)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, Oct 5</td>
<td>9:30–10:30 AM</td>
<td>343/344, Conv. Center</td>
<td>Year-Round Solutions for Success in AP Chemistry from Flinn Scientific (p. 45)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>2:00–3:00 PM</td>
<td>343/344, Conv. Center</td>
<td>Green Chemistry Experiments for General and AP Chemistry from Flinn (p. 60)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>8:00–9:00 AM</td>
<td>343/344, Conv. Center</td>
<td>Research and Inquiry-Based STEM Program from Flinn Scientific (p. 73)</td>
</tr>
</tbody>
</table>

Frey Scientific/School Specialty Science (Booth #503)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, Oct 5</td>
<td>12:30–1:30 PM</td>
<td>336, Conv. Center</td>
<td>Modular Robotics for Elementary and Middle School: CUBELETS! (p. 53)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>2:00–3:00 PM</td>
<td>336, Conv. Center</td>
<td>Solving the Mystery of STEM Using Forensic Science (p. 59)</td>
</tr>
</tbody>
</table>

HHMI BioInteractive (Booth #405)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Oct 6</td>
<td>8:00–9:00 AM</td>
<td>340, Conv. Center</td>
<td>Bringing the Wild to Life with WildCam Gorongosa (p. 72)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>9:30–10:30 AM</td>
<td>340, Conv. Center</td>
<td>Leapin’ Lizards! That Was Fast! Selection by Predation (p. 80)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>11:00 AM–12 Noon</td>
<td>340, Conv. Center</td>
<td>Exploring the Biology of Skin Color with HHMI BioInteractive (p. 85)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>12:30–1:30 PM</td>
<td>340, Conv. Center</td>
<td>Got Lactase? Exploring Genetics with HHMI BioInteractive Resources (p. 91)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>2:00–3:00 PM</td>
<td>340, Conv. Center</td>
<td>Free Apps That Put the World in Your Students’ Hands (p. 97)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>3:30–4:30 PM</td>
<td>340, Conv. Center</td>
<td>Trophic Cascades: A Force of Nature (p. 98)</td>
</tr>
</tbody>
</table>

Lab-Aids, Inc. (Booth #601)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, Oct 5</td>
<td>8:00–9:00 AM</td>
<td>327, Conv. Center</td>
<td>NGSS Waves: Protect Your Eyes! (p. 43)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>9:30–10:30 AM</td>
<td>327, Conv. Center</td>
<td>NGSS Ecology: Modeling the Introduction of a New Species (p. 44)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>11:00 AM–12 Noon</td>
<td>327, Conv. Center</td>
<td>NGSS Reproductions: Breeding Critters—More Traits (p. 46)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>12:30–1:30 PM</td>
<td>327, Conv. Center</td>
<td>NGSS Biomedical Engineering: Get a Grip (p. 53)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>2:00–3:00 PM</td>
<td>327, Conv. Center</td>
<td>Chemical Batteries (p. 59)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>3:30–4:30 PM</td>
<td>327, Conv. Center</td>
<td>Investigating a Cliff Model (p. 64)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>8:00–9:00 AM</td>
<td>327, Conv. Center</td>
<td>Photosynthesis and Respiration Shuffle (p. 72)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>9:30–10:30 AM</td>
<td>327, Conv. Center</td>
<td>What Is a Species? (p. 78)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>11:00 AM–12 Noon</td>
<td>327, Conv. Center</td>
<td>Cell Differentiation and Gene Expression (p. 84)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>12:30–1:30 PM</td>
<td>327, Conv. Center</td>
<td>pH Scale (p. 90)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>2:00–3:00 PM</td>
<td>327, Conv. Center</td>
<td>Chemical Formula and Amino Acids (p. 96)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>3:30–4:30 PM</td>
<td>327, Conv. Center</td>
<td>Distilling Aromatic Hydrocarbons (p. 98)</td>
</tr>
<tr>
<td>Saturday, Oct 7</td>
<td>8:00–9:00 AM</td>
<td>327, Conv. Center</td>
<td>Calling All Carbons (p. 105)</td>
</tr>
<tr>
<td>Saturday, Oct 7</td>
<td>9:30–10:30 AM</td>
<td>327, Conv. Center</td>
<td>Prospecting for Mineral Ore (p. 107)</td>
</tr>
<tr>
<td>Saturday, Oct 7</td>
<td>11:00 AM–12 Noon</td>
<td>327, Conv. Center</td>
<td>Using Climate Proxies to Learn About Earth’s Climate History (p. 108)</td>
</tr>
</tbody>
</table>
Index of Exhibitor Workshops

MiniOne Systems (Booth #310)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Oct 6</td>
<td>12:30–1:30 PM</td>
<td>338, Conv. Center</td>
<td>Who Is Baby Whale’s Father? DNA Fingerprinting Solves the Mystery! (p. 90)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>2:00–3:00 PM</td>
<td>338, Conv. Center</td>
<td>Viral Amplification: From One to a Billion Copies in 20 Minutes (p. 97)</td>
</tr>
</tbody>
</table>

miniPCR (Booth #600)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Oct 6</td>
<td>8:00–9:00 AM</td>
<td>347, Conv. Center</td>
<td>PTC Taster Lab—From Genotype to Phenotype (p. 73)</td>
</tr>
</tbody>
</table>

MSOE Center for BioMolecular Modeling (Booth #510)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Oct 6</td>
<td>11:00 AM–12 Noon</td>
<td>330, Conv. Center</td>
<td>Of All the Nerve: Exploring Neuronal Communication Through Three-Dimensional Learning (p. 84)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>12:30–1:30 PM</td>
<td>330, Conv. Center</td>
<td>Take a Walk Through the Molecular World with Watercolor Landscapes (p. 90)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>2:00–3:00 PM</td>
<td>330, Conv. Center</td>
<td>The Science and Ethics of Genome Editing with CRISPR/Cas9 (p. 96)</td>
</tr>
<tr>
<td>Saturday, Oct 7</td>
<td>9:30–10:30 AM</td>
<td>330, Conv. Center</td>
<td>Cells as Protein Engineers (p. 107)</td>
</tr>
</tbody>
</table>

National Geographic Learning | Cengage (Booth #611)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Oct 6</td>
<td>9:30–10:30 AM</td>
<td>347, Conv. Center</td>
<td>Bringing the World into Your Classroom with National Geographic Explorers (p. 80)</td>
</tr>
</tbody>
</table>

PASCO scientific (Booth #200)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Oct 6</td>
<td>8:00–9:00 AM</td>
<td>337, Conv. Center</td>
<td>Untangling Electric Circuits: STEM Activities from Essential Physics (p. 72)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>9:30–10:30 AM</td>
<td>337, Conv. Center</td>
<td>Understanding Photosynthesis: A Lab-Based Approach (p. 79)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>11:00 AM–12 Noon</td>
<td>337, Conv. Center</td>
<td>Evaporative Cooling: Visualizing Matter so It Makes Sense! (p. 85)</td>
</tr>
</tbody>
</table>

Pearson Learning Services (Booth #204)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Oct 6</td>
<td>8:00–9:00 AM</td>
<td>336, Conv. Center</td>
<td>Take Your Students On a Quest! A Real-World Problem-Based Learning Project that Incorporates All Three Dimensions of NGSS (p. 72)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>9:30–10:30 AM</td>
<td>336, Conv. Center</td>
<td>From CRISPR to Three-Parent Babies and Back Again: What to Tell Our Students About the Coming Revolution in Human Biology (p. 79)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>11:00 AM–12 Noon</td>
<td>336, Conv. Center</td>
<td>Science Denial: Why It Continues and What Science Educators Can Do About It (p. 85)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>12:30–1:30 PM</td>
<td>336, Conv. Center</td>
<td>Incorporating the NGSS Crosscutting Concepts into Your Teaching (p. 90)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>2:00–3:00 PM</td>
<td>336, Conv. Center</td>
<td>Ideas for Teaching About Earthquakes and Earth Structure (p. 97)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>3:30–4:30 PM</td>
<td>336, Conv. Center</td>
<td>Cultivating a Culture of Argumentation in Your Classroom (p. 98)</td>
</tr>
</tbody>
</table>

PlayMada Games (Booth #414)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, Oct 5</td>
<td>3:30–4:30 PM</td>
<td>347, Conv. Center</td>
<td>Reconceptualizing Chemistry Through Play: Ionic Bonding (p. 65)</td>
</tr>
</tbody>
</table>

Simulation Curriculum Corp (Booth #518)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, Oct 5</td>
<td>9:30–10:30 AM</td>
<td>345/346, Conv. Center</td>
<td>Hurricanes, Earthquakes, and Volcanoes Are Now Online! (p. 46)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>11:00 AM–12 Noon</td>
<td>345/346, Conv. Center</td>
<td>Should Pluto Be a Planet Again? (p. 86)</td>
</tr>
</tbody>
</table>
Index of Exhibitor Workshops

STEMscopes (Booth #409)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Oct 6</td>
<td>8:00–9:00 AM</td>
<td>348, Conv. Center</td>
<td>Implementing the NGSS and Infusing STEM in Your School District (p. 73)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>9:30–10:30 AM</td>
<td>348, Conv. Center</td>
<td>Science Teacher/STEM Teacher: What's the Difference? (p. 80)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>11:00 AM–12 Noon</td>
<td>348, Conv. Center</td>
<td>STEMrangers: Making Science Night Meaningful (p. 86)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>12:30–1:30 PM</td>
<td>348, Conv. Center</td>
<td>Using Argumentation for Discussing Phenomena and Increasing Student Voice About STEM (p. 91)</td>
</tr>
</tbody>
</table>

TCI (Booth #504)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, Oct 5</td>
<td>11:00 AM–12 Noon</td>
<td>347, Conv. Center</td>
<td>Engineering Design in the NGSS (p. 48)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>12:30–1:30 PM</td>
<td>347, Conv. Center</td>
<td>Science and Engineering Practices in the NGSS (p. 91)</td>
</tr>
</tbody>
</table>

Texas Instruments (Booth #400)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, Oct 5</td>
<td>11:00 AM–12 Noon</td>
<td>345/346, Conv. Center</td>
<td>Are You Moody? (p. 48)</td>
</tr>
<tr>
<td>Thursday, Oct 5</td>
<td>12:30–1:30 PM</td>
<td>345/346, Conv. Center</td>
<td>Zombie Apocalypse! (p. 54)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>8:00–9:00 AM</td>
<td>345/346, Conv. Center</td>
<td>Using Maggots, Flies, and Flesh to Solve a Mystery! (p. 73)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>12:30–1:30 PM</td>
<td>345/346, Conv. Center</td>
<td>When Zombies Attack! (p. 91)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>2:00–3:00 PM</td>
<td>345/346, Conv. Center</td>
<td>Drought in Africa Inspires Students to Invent a Smart Irrigation System (p. 97)</td>
</tr>
</tbody>
</table>

TheBeamer LLC (Booth #722)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Oct 6</td>
<td>3:30–4:30 PM</td>
<td>347, Conv. Center</td>
<td>Mission KT: Teacher Authoring Science Game (p. 100)</td>
</tr>
</tbody>
</table>

Vernier Software & Technology (Booth #401)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Oct 6</td>
<td>8:00–9:00 AM</td>
<td>339, Conv. Center</td>
<td>Integrating Chromebook with Vernier Data-Collection Technology (p. 72)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>9:30–10:30 AM</td>
<td>339, Conv. Center</td>
<td>Chemistry with Vernier (p. 79)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>11:00 AM–12 Noon</td>
<td>339, Conv. Center</td>
<td>Biology with Vernier (p. 85)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>12:30–1:30 PM</td>
<td>339, Conv. Center</td>
<td>Integrating Chromebook with Vernier Data-Collection Technology (p. 90)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>2:00–3:00 PM</td>
<td>339, Conv. Center</td>
<td>Integrating iPad with Vernier Data-Collection Technology (p. 97)</td>
</tr>
<tr>
<td>Friday, Oct 6</td>
<td>3:30–4:30 PM</td>
<td>339, Conv. Center</td>
<td>Physics and Physical Science with Vernier (p. 98)</td>
</tr>
</tbody>
</table>
Earth and Space Science

Thursday

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–8:30 AM</td>
<td>9–11</td>
<td>Johnson A, Hilton</td>
<td>Analysis and Interpretation of Ocean Data (p. 39)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>9–12</td>
<td>Key 2, Hilton</td>
<td>Three Teachers…60 Students…One Genuine STEM Unit of Study (p. 40)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>4–12</td>
<td>Key 9, Hilton</td>
<td>Threading 3-D Science Learning Through the Solar System: It’s Not the Tholian Web (p. 42)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>1–12</td>
<td>333, Conv. Center</td>
<td>Oysters as Teachers: An NGSS Story (p. 39)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>6–8</td>
<td>349, Conv. Center</td>
<td>Carbon and Climate: E-Unit for Grades 6–8 (p. 42)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>5–12</td>
<td>345/346, Conv. Center</td>
<td>Hurricanes, Earthquakes, and Volcanoes Are Now Online! (p. 46)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>K–12</td>
<td>338, Conv. Center</td>
<td>Science and Storytelling: An Interdisciplinary Approach to Environmental Literacy (p. 79)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>3–5</td>
<td>Key 4, Hilton</td>
<td>Pursuing the Red Planet (p. 53)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>4–8</td>
<td>349, Conv. Center</td>
<td>Let It Rain: A Hands-On Rain Garden Design Lab (p. 52)</td>
</tr>
<tr>
<td>1:00–4:00 PM</td>
<td>K–12</td>
<td>Key 12, Hilton</td>
<td>SC-1: Data, Data Everywhere (p. 55)</td>
</tr>
<tr>
<td>2:00–2:30 PM</td>
<td>5–8</td>
<td>321, Conv. Center</td>
<td>Leaving the “Wright” Footprint (p. 55)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>P–3</td>
<td>326, Conv. Center</td>
<td>Let’s Get Wet: Water and Weather (p. 57)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>9–C</td>
<td>Key 7, Hilton</td>
<td>Teaching Cosmology (p. 58)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>7–12</td>
<td>Holiday 3, Hilton</td>
<td>A Unique Ice Core Investigation That Integrates the Three Dimensions of NGSS and STEM (p. 56)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>6–9</td>
<td>325, Conv. Center</td>
<td>NSTA Press® Session: Solar Science: 3-D Learning Applied to the Study of the Sun’s Daily and Annual Motion (p. 57)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>P–12</td>
<td>Key 3, Hilton</td>
<td>Implementing 3-D Learning with NASA/GLOBE Earth System Learning Progressions (p. 61)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>9–12</td>
<td>348, Conv. Center</td>
<td>Incorporating STEM into the Classroom (High School Science) (p. 65)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>6–C</td>
<td>Key 5, Hilton</td>
<td>Are Humans Causing Earthquakes? Teaching High School Earth Systems and Human Sustainability Using Authentic Earthquake Location Data (p. 63)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>6–8</td>
<td>327, Conv. Center</td>
<td>Investigating a Cliff Model (p. 64)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>K–C</td>
<td>Key 11, Hilton</td>
<td>Saturday Academy: Strengthening the K–16 STEM Pipeline (p. 62)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>9–12</td>
<td>Johnson A, Hilton</td>
<td>Comp Hydro Baltimore: Solving the Issues of Flooding in Baltimore (p. 61)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>9–12</td>
<td>Key 10, Hilton</td>
<td>A Five-Step Path to Student-Generated Environmental Sustainability Projects (p. 62)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>9–12</td>
<td>Holiday 5, Hilton</td>
<td>Analysis of Supernova Remnants Using X-Ray Spectroscopy with NASA Data and STEM Tools (p. 63)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>6–8</td>
<td>323, Conv. Center</td>
<td>Redwood of the East (p. 61)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>4–9</td>
<td>Key 1, Hilton</td>
<td>NARST-Sponsored Session: Designing and Implementing Middle School Project-Based Watershed Investigations (p. 61)</td>
</tr>
<tr>
<td>5:00–5:30 PM</td>
<td>6–C</td>
<td>Peale B, Hilton</td>
<td>Green City Design Challenge (p. 65)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>9–12</td>
<td>Key 10, Hilton</td>
<td>Using STEM to Cultivate Youth Environmental Literacy and Foster Community Resilience (p. 66)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>6–10</td>
<td>Holiday 4, Hilton</td>
<td>Environmentally Speaking, Thinking, and Doing! (p. 67)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>K–12</td>
<td>Holiday 5, Hilton</td>
<td>Mapping Our Way to Climate Change Solutions (p. 67)</td>
</tr>
</tbody>
</table>

Friday

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00 AM</td>
<td>4–12</td>
<td>Key 5, Hilton</td>
<td>NARST-Sponsored Session: How to Promote Successful Teacher Enactment of Spatial Thinking and Technology-Enhanced Inquiry: PD Research and Its Implications for Teachers and Administrators (p. 71)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>P–12</td>
<td>349, Conv. Center</td>
<td>Engaging Our Communities for a Sustainable Future (p. 70)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>P–12</td>
<td>Holiday 3, Hilton</td>
<td>The Teacher Environmental Literacy Leadership Program: Advancing Innovation in Teacher and Student Learning with the Chesapeake Bay Foundation (p. 69)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>6–12</td>
<td>Key 4, Hilton</td>
<td>Man vs. Wild: Lessons on Earth and Human Impacts (p. 71)</td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
<td>Location</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>Mars Here We Come</td>
<td>Holiday 6</td>
<td>NESTA Session: Earth-Space Science in Biology, Chemistry, and Physics (p. 69)</td>
</tr>
<tr>
<td>9:30–10:00 AM</td>
<td>Creating 21st-Century Science Students</td>
<td>Key 10</td>
<td>p. 105</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>Great Falls Summer STEAM: A Design Thinking Approach to Community Improvement (p. 75)</td>
<td>321, Conv. Center</td>
<td></td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>Exposing Underrepresented Groups to Climate Change and Atmospheric Science Through Service Learning and Community-Based Participatory Research (p. 106)</td>
<td>8–C, Key 11, Hilton</td>
<td></td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>Creating NGSS Storylines for Earth/Space Science (p. 77)</td>
<td>K–C, Conv. Center</td>
<td></td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>Bringing All the Dimensions of Clouds into Your Classroom with NASA’s Atmospheric Learning Progression (p. 76)</td>
<td>6–C, 349, Conv. Center</td>
<td></td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>Climate Change and Argumentation: Using Pollen Proxy Data to Engage Students in 3-D Learning (p. 77)</td>
<td>6–C, 349, Conv. Center</td>
<td></td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>AAPT Session: Women and Minorities in the History of Physics: Role Models for Today (p. 78)</td>
<td>6–C, 349, Conv. Center</td>
<td></td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>NSTA Press® Session: Uncovering Student (and Teacher) Ideas in Earth and Environmental Science (p. 75)</td>
<td>6–C, 349, Conv. Center</td>
<td></td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>Marine Ecology: Using Local Resources to Engage Learners (p. 76)</td>
<td>Holiday 3</td>
<td></td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>Keep Your Head Above Water with Magnetic Water Molecule Models (p. 79)</td>
<td>4–C, 330, Conv. Center</td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>Exploring the Arctic: Young Students and Climate Change (p. 83)</td>
<td>Holiday 5</td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>Should Pluto Be a Planet Again? (p. 86)</td>
<td>Holiday 5</td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>NSTA and IRIS Session: Record and Analyze Earthquake Data (With or Without a Seismometer!) in the Classroom with Free Software (p. 82)</td>
<td>Holiday 6</td>
<td></td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Becoming Banneker: Find Place with Objects in Space (p. 89)</td>
<td>Holiday 5</td>
<td></td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>fault System Science Share-a-Thon (p. 89)</td>
<td>Holiday 6</td>
<td></td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Soil Ecology in the Classroom (p. 89)</td>
<td>Holiday 4</td>
<td></td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Evolving Practice: An NGSS-Inspired Approach to Teaching with Fossils (p. 88)</td>
<td>Holiday 6</td>
<td></td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Materials Matter! Looking at Materials Science to Help Teach Chemistry (p. 87)</td>
<td>Holiday 4</td>
<td></td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Learn Ways to Connect the Life Sciences with Climate Change (p. 89)</td>
<td>Holiday 4</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>Free Apps That Put the World in Your Students’ Hands (p. 97)</td>
<td>Holiday 4</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>Drought in Africa Inspires Students to Invent a Smart Irrigation System (p. 97)</td>
<td>Holiday 4</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>Ideas for Teaching About Earthquakes and Earth Structure (p. 97)</td>
<td>Holiday 4</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>Developing Student Scientists Through the Watershed Report Card Program (p. 95)</td>
<td>Holiday 4</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>Drought in Africa Inspires Students to Invent a Smart Irrigation System (p. 97)</td>
<td>Holiday 4</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>NESTA and IRIS Session: Yes, Humans Really Do Cause Earthquakes—Hydraulic Fracturing, Wastewater Injection, and Earthquakes (p. 95)</td>
<td>Holiday 4</td>
<td></td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>Save the Bay! A Grade 5 Meaningful Watershed Educational Experience in Baltimore City (p. 100)</td>
<td>Holiday 2</td>
<td></td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>Greenhouse in a Beaker: Understand Climate Change (p. 101)</td>
<td>Holiday 2</td>
<td></td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>Salamanders: Indicators of Our Changing Climate (p. 101)</td>
<td>Holiday 2</td>
<td></td>
</tr>
</tbody>
</table>

Saturday

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00 AM</td>
<td>Freshwater Stewardship: Equip Your Student-Scientists with Cutting-Edge Resources from NOAA (p. 103)</td>
<td>Key 2, Hilton</td>
<td></td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>Calling All Carbons (p. 105)</td>
<td>327, Conv. Center</td>
<td></td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>Polar ICE: Bringing Polar Research to Your Classroom (p. 104)</td>
<td>Holiday 4</td>
<td></td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>Standards and Stewardship: A Natural Fit (p. 106)</td>
<td>322, Conv. Center</td>
<td></td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>Carbon, Trees, and Climate (p. 107)</td>
<td>Key 5, Hilton</td>
<td></td>
</tr>
</tbody>
</table>
Schedule at a Glance Earth and Space Science

<table>
<thead>
<tr>
<th>Time</th>
<th>Audience</th>
<th>Location</th>
<th>Presentation Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:30–10:30 AM</td>
<td>9–12</td>
<td>327, Conv. Center</td>
<td>Prospecting for Mineral Ore (p. 107)</td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–12</td>
<td>Key 1, Hilton</td>
<td>Learning to Teach About Climate Change: Options for Professional Development (p. 108)</td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>9–12</td>
<td>327, Conv. Center</td>
<td>Using Climate Proxies to Learn About Earth's Climate History (p. 108)</td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–C</td>
<td>Key 8, Hilton</td>
<td>Teachers Helping Teachers: Teaching Controversial Topics (p. 109)</td>
<td></td>
</tr>
</tbody>
</table>

Engineering, Technology, and the Application of Science

Thursday

<table>
<thead>
<tr>
<th>Time</th>
<th>Audience</th>
<th>Location</th>
<th>Presentation Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00 AM</td>
<td>4–12</td>
<td>Key 9, Hilton</td>
<td>Threading 3-D Science Learning Through the Solar System: It's Not the Tholian Web (p. 42)</td>
<td></td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>6–8</td>
<td>327, Conv. Center</td>
<td>NGSS Waves: Protect Your Eyes! (p. 43)</td>
<td></td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>9–12</td>
<td>Key 2, Hilton</td>
<td>Three Teachers...60 Students...One Genuine STEM Unit of Study (p. 40)</td>
<td></td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>5–12</td>
<td>Holiday 4, Hilton</td>
<td>Integrating Technology into Middle School NGSS Engineering Design Performance Expectations (p. 42)</td>
<td></td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>4–8</td>
<td>324, Conv. Center</td>
<td>Energy Efficiency: Making a Difference Can Start Early (p. 41)</td>
<td></td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>6–C</td>
<td>339, Conv. Center</td>
<td>Martian Genetics: An Electrophoresis Exploration (p. 43)</td>
<td></td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>8–C</td>
<td>330, Conv. Center</td>
<td>DNA Structure and Function with a Twist of Dynamic DNA (p. 44)</td>
<td></td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>K–12</td>
<td>338, Conv. Center</td>
<td>Science and Storytelling: An Interdisciplinary Approach to Environmental Literacy (p. 79)</td>
<td></td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>4–8</td>
<td>338, Conv. Center</td>
<td>Makerspaces with Options for All Students (p. 45)</td>
<td></td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>5–12</td>
<td>336, Conv. Center</td>
<td>CPO’s Wind Turbine: A STEM Approach to Engineering and Design (p. 45)</td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–8</td>
<td>347, Conv. Center</td>
<td>Engineering Design in the NGSS (p. 48)</td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–12</td>
<td>345/346, Conv. Center</td>
<td>Are You Moody? (p. 48)</td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–C</td>
<td>339, Conv. Center</td>
<td>Left at the Scene of the Crime: Introduction to Forensic Science (p. 47)</td>
<td></td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>6–12</td>
<td>Holiday 3, Hilton</td>
<td>Teach Engineering Practices on the Cheap with Concrete (p. 50)</td>
<td></td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>6–8</td>
<td>327, Conv. Center</td>
<td>NGSS Biomedical Engineering: Get a Grip (p. 53)</td>
<td></td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>3–8</td>
<td>336, Conv. Center</td>
<td>Modular Robotics for Elementary and Middle School: CUBELETS! (p. 53)</td>
<td></td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>3–8</td>
<td>349, Conv. Center</td>
<td>Let It Rain: A Hands-On Rain Garden Design Lab (p. 52)</td>
<td></td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>9–12</td>
<td>Key 7, Hilton</td>
<td>How to Invent the Wheel: Designing a STEM Program from Scratch (p. 53)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>10–C</td>
<td>333, Conv. Center</td>
<td>Advancing Awareness of Clean Energy Technologies and Careers Through an Educational Design Contest (p. 56)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>4–C</td>
<td>Holiday 4, Hilton</td>
<td>Inventing Is Just Plain Fun (for All)! (p. 58)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>1–12</td>
<td>Key 4, Hilton</td>
<td>Inventing Success for All Learners in STEM (p. 57)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>8–12</td>
<td>Key 10, Hilton</td>
<td>Cars: A Fundamental Look at How Cars Work and the Science Involved (p. 57)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>6–C</td>
<td>Key 9, Hilton</td>
<td>Engineering Underway: A Closer Look at the Engineering Design Process Through Naval-Relevant Project-Based Learning (p. 58)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>K–12</td>
<td>Key 6, Hilton</td>
<td>Maximize Your Makerspace Through Design Thinking and the Wallingford 3-D Learning Program (p. 58)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>K–3</td>
<td>338, Conv. Center</td>
<td>Boosting the Makerspace Experience for Young Scientists! (p. 59)</td>
<td></td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>6–8</td>
<td>327, Conv. Center</td>
<td>Investigating a Cliff Model (p. 64)</td>
<td></td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>1–12</td>
<td>Key 4, Hilton</td>
<td>You Can Build It (p. 63)</td>
<td></td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>9–12</td>
<td>Holiday 5, Hilton</td>
<td>Analysis of Supernova Remnants Using X-Ray Spectroscopy with NASA Data and STEM Tools (p. 63)</td>
<td></td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>4–7</td>
<td>322, Conv. Center</td>
<td>Invention and Innovation in Upper Elementary/Middle School (p. 62)</td>
<td></td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>9–12</td>
<td>Johnson A, Hilton</td>
<td>Comp Hydro Baltimore: Solving the Issues of Flooding in Baltimore (p. 61)</td>
<td></td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>6–8</td>
<td>323, Conv. Center</td>
<td>Redwood of the East (p. 61)</td>
<td></td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>3–8</td>
<td>324, Conv. Center</td>
<td>Evidence and Explanations: Energy Changes and Transformations in a Bouncing, Flashing Ball (p. 62)</td>
<td></td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>9–12</td>
<td>Key 10, Hilton</td>
<td>A Five-Step Path to Student-Generated Environmental Sustainability Projects (p. 62)</td>
<td></td>
</tr>
<tr>
<td>5:00–5:30 PM</td>
<td>6–C</td>
<td>Peale B, Hilton</td>
<td>Green City Design Challenge (p. 65)</td>
<td></td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>9–12</td>
<td>Key 10, Hilton</td>
<td>Using STEM to Cultivate Youth Environmental Literacy and Foster Community Resilience (p. 66)</td>
<td></td>
</tr>
</tbody>
</table>
Schedule at a Glance Engineering, Technology, and the Application of Science

Friday

8:00–9:00 AM 3–12 Holiday 4, Hilton ASTE-Sponsored Session: Visibility in STEM: Charting the Course for Making Minorities Visible in the STEM Curriculum (p. 70)
8:00–9:00 AM P–1 Key 6, Hilton ASEE Session: Kindergartners Trying and Trying Again to Engineer Solutions to Problems (p. 71)
8:00–9:00 AM 5–12 Key 3, Hilton PolyWhat? Application of STEM Using Polymers (p. 69)
8:00–9:00 AM 3–C 339, Conv. Center Integrating Chromebook with Vernier Data-Collection Technology (p. 72)
8:00–9:00 AM K–8 348, Conv. Center Implementing the NGSS and Infusing STEM in Your School District (p. 73)
9:30–10:30 AM 6–12 Key 1, Hilton CSSS-Sponsored Session: Using Science, Technology, Engineering, Agriculture, and Math (STEAM) as a Context to Teach High School Biology (p. 76)
9:30–10:30 AM 9–12 339, Conv. Center A Two-Part Maglev Challenge (p. 77)
9:30–10:30 AM 9–C Key 9, Hilton AAPT Session: Women and Minorities in the History of Physics: Role Models for Today (p. 78)
9:30–10:30 AM 4–C 330, Conv. Center Keep Your Head Above Water with Magnetic Water Molecule Models (p. 79)
9:30–10:30 AM K–5 Key 6, Hilton ASEE Session: Elementary Computer Science: Plugged vs. Unplugged Activities (p. 78)
11:00 AM–12 Noon 9–12 339, Conv. Center Biology with Vernier (p. 85)
11:00 AM–12 Noon 6–8 Key 6, Hilton SEE Session: Simple Electric Circuits (p. 84)
11:00 AM–12 Noon 9–C 330, Conv. Center Of All the Nerve: Exploring Neuronal Communication Through Three-Dimensional Learning (p. 84)
11:30 AM–12 Noon 6–9 Key 2, Hilton Building Boats: Creating and Executing an Interdisciplinary Project Using Design Thinking and the Engineering Process (p. 86)
12:30–1:30 PM 6–10 Holiday 2, Hilton So You Want to Be an Environmentalist! (p. 88)
12:30–1:30 PM G Key 6, Hilton ASEE Session: Using STEM in Action to Connect to DOE Resources (p. 89)
12:30–1:30 PM 3–C 339, Conv. Center Integrating Chromebook with Vernier Data-Collection Technology (p. 90)
12:30–1:30 PM 6–12 Key 11, Hilton Materials Matter! Looking at Materials Science to Help Teach Chemistry (p. 87)
12:30–1:30 PM 6–12 345/346, Conv. Center When Zombies Attack! (p. 91)
2:00–3:00 PM K–12 Key 6, Hilton ASEE Session: ASEE’s K–12 Outreach: Engineering, Go For It (eGFI), Teach Engineering, Link Engineering, the National Science Digital Library, and UC Project STEP (p. 96)
2:00–3:00 PM 9–C 330, Conv. Center The Science and Ethics of Genome Editing with CRISPR/Cas9 (p. 96)
2:00–3:00 PM 6–12 345/346, Conv. Center Drought in Africa Inspires Students to Invent a Smart Irrigation System (p. 97)
2:00–3:00 PM P–3 Key 2, Hilton Early Childhood Engineers (p. 94)
2:00–3:00 PM 6–12 345/346, Conv. Center Drought in Africa Inspires Students to Invent a Smart Irrigation System (p. 97)
2:00–3:00 PM 9–C Peale A, Hilton Follow the Road to a Successful STEM Career! (p. 94)
2:00–3:00 PM 3–C 339, Conv. Center Integrating iPad with Vernier Data-Collection Technology (p. 97)
2:00–3:00 PM 9–12 327, Conv. Center Chemical Formula and Amino Acids (p. 96)
3:30–4:30 PM 9–12 339, Conv. Center Physics and Physical Science with Vernier (p. 98)
5:00–6:00 PM 5–12 Key 1, Hilton Polymers: Teaching “Hard” Concepts with Goopy Labs (p. 100)

Saturday

8:00–9:00 AM 9–12 Key 5, Hilton “Robot Challenge” Makes Students Think Like Engineers (p. 104)
9:30–10:00 AM 6–12 Key 10, Hilton Creating 21st-Century Science Students (p. 105)
9:30–10:30 AM 9–12 322, Conv. Center Standards and Stewardship: A Natural Fit (p. 106)
9:30–10:30 AM 6–12 Holiday 3, Hilton From Science to Engineering (p. 106)
Schedule at a Glance
Engineering, Technology, and the Application of Science

9:30–10:30 AM 9–12 327, Conv. Center Prospecting for Mineral Ore (p. 107)
9:30–10:30 AM 8–C 330, Conv. Center Cells as Protein Engineers (p. 107)
11:00 AM–12 Noon 6–12 Key 1, Hilton Learning to Teach About Climate Change: Options for Professional Development (p. 108)
11:00 AM–12 Noon 9–12 327, Conv. Center Using Climate Proxies to Learn About Earth’s Climate History (p. 108)
11:00 AM–12 Noon 9–12 Key 2, Hilton How to Create Comic Strips for Classroom Instruction (p. 108)

Life Science

Thursday

8:00–9:00 AM K–8 Key 4, Hilton BioBlitz—From Field to Classroom (p. 40)
8:00–9:00 AM 1–12 333, Conv. Center Oysters as Teachers: An NGSS Story (p. 39)
8:00–9:00 AM 6–10 Peale A, Hilton Using Genetic Lines to Restore the American Chestnut Tree (p. 40)
8:00–9:00 AM 3–C Key 8, Hilton Learn How READING LIKE A SCIENTIST Can Make Science Content Jump Off the Page for Your Students (p. 42)
8:00–9:00 AM 5–12 336, Conv. Center CPO Science Biology Energy QUEST: Teaching Cell Energy Pathways (p. 43)
8:00–9:00 AM 6–C 339, Conv. Center Martian Genetics: An Electrophoresis Exploration (p. 43)
9:30–10:30 AM 6–8 327, Conv. Center NGSS Ecology: Modeling the Introduction of a New Species (p. 44)
9:30–10:30 AM 9–C 339, Conv. Center Exploring the Genetics of Taste: SNP Analysis of the PTC Gene Using PCR (p. 45)
9:30–10:30 AM 8–C 330, Conv. Center DNA Structure and Function with a Twist of Dynamic DNA (p. 44)
11:00 AM–12 Noon 6–8 327, Conv. Center NGSS Reproductions: Breeding Critters—More Traits (p. 46)
11:00 AM–12 Noon 6–C 339, Conv. Center Left at the Scene of the Crime: Introduction to Forensic Science (p. 47)
11:00 AM–12 Noon 5–12 336, Conv. Center CPO’s LINK Genetics Learning Modules: Crazy Traits and Crazy Chromosomes (p. 47)
11:00 AM–12 Noon 8–C 330, Conv. Center 5 E’sy Ways to Investigate Enzymes! (p. 46)
12:30–1:30 PM 6–C 330, Conv. Center Getting Students Through the Cellular Membrane (p. 53)
12:30–1:30 PM K–12 331/332, Conv. Center Hands-On Science with Classroom Critters (p. 53)
12:30–1:30 PM 9–12 Johnson A, Hilton The Perfect Match: Environmental Education and Project-Based Learning! (p. 50)
12:30–1:30 PM 9–12 Peale A, Hilton Epidemiology in Your Classroom (p. 51)
12:30–1:30 PM 9–12 Key 2, Hilton EANR (Environment, Agriculture, and Natural Resources): Preparing Students for Environmental Careers (p. 50)
12:30–1:30 PM 6–8 327, Conv. Center NGSS Biomedical Engineering: Get a Grip (p. 53)
12:30–1:30 PM 9–C Key 9, Hilton Describing Data Using Central Tendencies, Graphs, and Statistics in AP and IB (p. 53)
12:30–1:30 PM 9–C 339, Conv. Center Cancer Investigators: Medical Diagnostics in Your Classroom (p. 54)
1:00–1:30 PM 4–8 Key 1, Hilton NMLSTA-Sponsored Session: Leveraging the Power of Place in Citizen Science Projects (p. 55)
2:00–3:00 PM 9–12 Holiday 5, Hilton Evolution: DNA and the Unity of Life (p. 58)
2:00–3:00 PM 8 324, Conv. Center Diving into the Chemistry of the “Toward High School Biology” Curriculum (p. 57)
2:00–3:00 PM K–5 331/332, Conv. Center Collecting Evidence: How Does an Owl Get All That Energy? (p. 59)
2:00–3:00 PM 9–C 339, Conv. Center Detecting the Silent Killer: Clinical Detection of Diabetes (p. 59)
3:30–4:30 PM 9–12 Johnson A, Hilton Comp Hydro Baltimore: Solving the Issues of Flooding in Baltimore (p. 61)
3:30–4:30 PM 4–9 Key 1, Hilton NARST-Sponsored Session: Designing and Implementing Middle School Project-Based Watershed Investigations (p. 61)
3:30–4:30 PM 9–C 339, Conv. Center Environmental Toxicology Using Edvotek’s New EZ-elegans (p. 64)
3:30–4:30 PM 6–12 331/332, Conv. Center Comparative Vertebrate Anatomy with Carolina’s Perfect Solution® Specimens (p. 64)
3:30–4:30 PM 9–C 341, Conv. Center Enzymes: Technology Inspired by Nature (p. 65)
3:30–4:30 PM 6–8 337, Conv. Center Evolutionary Evidence in the Fossil Record (p. 64)
3:30–4:30 PM K–C Key 11, Hilton Saturday Academy: Strengthening the K–16 STEM Pipeline (p. 62)
3:30–4:30 PM 6–8 323, Conv. Center Redwood of the East (p. 61)
3:30–4:30 PM 9–12 Peale A, Hilton High-Paying STEM Careers in the Medical Field That Use the NGSS Life Science Performance Expectations (p. 62)
3:30–4:30 PM 2–5 325, Conv. Center NSTA Press® Session: Finding Science in the Outdoors and Through a Good Book (p. 62)
NSTA Baltimore Area Conference on Science Education

Schedule at a Glance

Life Science

<table>
<thead>
<tr>
<th>Time</th>
<th>Room</th>
<th>Session Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:00–6:00 PM</td>
<td>P–2</td>
<td>NSTA Press® Session: Picture Science in Early Childhood: Deepen Those Fun Explorations by Connecting with the Practices of Science and Engineering (p. 67)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>8–12</td>
<td>Developing Coherent Storylines: Performance Tasks as a Tool for 3-D Learning (p. 67)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>6–C</td>
<td>Environmental Toxicology: Introduction to Toxicity Testing (p. 67)</td>
</tr>
</tbody>
</table>

Friday

8:00–9:00 AM | 9–C | 341, Conv. Center | How to Use Pop Culture in Your Life Science Class (p. 73) |
8:00–9:00 AM | 9–C | 340, Conv. Center | Bringing the Wild to Life with WildCam Gorongosa (p. 72) |
8:00–9:00 AM | 9–12 | Holiday 6, Hilton | NESTA Session: Earth-Space Science in Biology, Chemistry, and Physics (p. 69) |
8:00–9:00 AM | 9–12 | 331/332, Conv. Center | Disorder Detectives: Karyotyping, Bioethics, and Beyond (p. 72) |
8:00–9:00 AM | 7–12 | Holiday 2, Hilton | 20 in 20: The Next Generation (p. 70) |
8:00–9:00 AM | 6–12 | Key 4, Hilton | Man vs. Wild: Lessons on Earth and Human Impacts (p. 71) |
8:00–9:00 AM | 6–C | 347, Conv. Center | PTC Taster Lab—From Genotype to Phenotype (p. 73) |
8:00–11:00 AM | P–1 | Tubman, Hilton | SC-2: Promoting Children’s Science Inquiry and Thinking About Living Things in Preschool and Kindergarten (p. 74) |
8:30–11:30 AM | 6–9 | Key 10, Hilton | SC-3: NSTA Press® Short Course: Introducing a New NGSS-Focused Curriculum Unit— Toward High School Biology (p. 74) |
9:30–11:00 AM | 7–11 | Key 11, Hilton | Diffusion, the Cell Membrane, and Ourselves: Biology Comes Alive Through the Aesthetic Realism Method (p. 76) |
9:30–11:00 AM | 9–12 | 336, Conv. Center | From CRISPR to Three-Parent Babies and Back Again: What to Tell Our Students About the Coming Revolution in Human Biology (p. 79) |
11:00 AM–12 Noon | 9–C | 330, Conv. Center | Of All the Nerve: Exploring Neuronal Communication Through Three-Dimensional Learning (p. 84) |
11:00 AM–12 Noon | 9–12 | 331/332, Conv. Center | Autopsy: Forensic Dissection Featuring Carolina’s Perfect Solution® Pigs (p. 79) |
11:00 AM–12 Noon | 9–C | 341, Conv. Center | Exploring the Biology of Skin Color with HHMI BioInteractive (p. 85) |
11:00 AM–12 Noon | 9–C | 340, Conv. Center | Become a GMO Investigator (p. 85) |
11:00 AM–12 Noon | 9–12 | 327, Conv. Center | Cell Differentiation and Gene Expression (p. 84) |
11:00 AM–12 Noon | 9–12 | 339, Conv. Center | Biology with Vernier (p. 85) |
11:00 AM–12 Noon | 9–12 | 336, Conv. Center | Beyond Spaceship Earth (p. 83) |
12:30–1:30 PM | 9–12 | 336, Conv. Center | Evolving Practice: An NGSS-Inspired Approach to Teaching with Fossils (p. 88) |
12:30–1:30 PM | 9–12 | 336, Conv. Center | Soil Ecology in the Classroom (p. 89) |
12:30–1:30 PM | 9–12 | 331/332, Conv. Center | Introduction to Wisconsin Fast Plants® (p. 90) |
12:30–1:30 PM | 9–12 | 330, Conv. Center | Take a Walk Through the Molecular World with Watercolor Landscapes (p. 90) |
12:30–1:30 PM | 9–12 | 345/346, Conv. Center | When Zombies Attack! (p. 91) |
12:30–1:30 PM | 8–C | 338, Conv. Center | Who Is Baby Whale’s Father? DNA Fingerprinting Solves the Mystery! (p. 90) |
Schedule at a Glance Life Science

<table>
<thead>
<tr>
<th>Time</th>
<th>Space</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:30–1:30 PM</td>
<td>Key 4, Hilton</td>
<td>Learn Ways to Connect the Life Sciences with Climate Change (p. 89)</td>
</tr>
<tr>
<td>1:00–1:30 PM</td>
<td>Holiday 3, Hilton</td>
<td>Migrating into Citizen Science (p. 92)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>6–C Conv. Center</td>
<td>Free Apps That Put the World in Your Students’ Hands (p. 97)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>Holiday 5, Hilton</td>
<td>What Affects Populations? A Hands-On Storylining Experience (p. 95)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>10–12 Holiday 3, Hilton</td>
<td>Transgenic American Chestnuts—Pathway to Restoration? (p. 94)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>9–C Conv. Center</td>
<td>Conserving Panda Population: One Hormone Test Design at a Time! (p. 97)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>K–4 Conv. Center</td>
<td>NSTA Press® Session: From Flower to Fruit (p. 95)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>6–12 Holiday 3, Hilton</td>
<td>Developing Student Scientists Through the Watershed Report Card Program (p. 95)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>10–C Conv. Center</td>
<td>Viral Amplification: From One to a Billion Copies in 20 Minutes (p. 97)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>9–C Conv. Center</td>
<td>The Science and Ethics of Genome Editing with CRISPR/Cas9 (p. 96)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>9–C Conv. Center</td>
<td>Trophic Cascades: A Force of Nature (p. 98)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>9–C Conv. Center</td>
<td>Investigate Photosynthesis and Cellular Respiration with Algae Beads (p. 100)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>9–C Conv. Center</td>
<td>Trophic Cascades: A Force of Nature (p. 98)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>9–C Conv. Center</td>
<td>Investigate Photosynthesis and Cellular Respiration with Algae Beads (p. 100)</td>
</tr>
<tr>
<td>5:00–5:30 PM</td>
<td>3–5 Conv. Center</td>
<td>Save the Bay! A Grade 5 Meaningful Watershed Educational Experience in Baltimore City (p. 100)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>5–12 Key Hilton</td>
<td>Polymers: Teaching “Hard” Concepts with Gooey Labs (p. 100)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>K–12 Key Hilton</td>
<td>What Do You See? Unlock Curiosity with Digital Microscopy Images (p. 100)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>6–C Peale A Hilton</td>
<td>Salamanders: Indicators of Our Changing Climate (p. 101)</td>
</tr>
</tbody>
</table>

Saturday

<table>
<thead>
<tr>
<th>Time</th>
<th>Space</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–8:30 AM</td>
<td>6–C Conv. Center</td>
<td>Students as Citizen Scientists: Data Collection and Sharing Using Fieldscope (p. 103)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>10–C Conv. Center</td>
<td>Teaching Core Ideas of Biology with Models of Operons (p. 104)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>Key 7, Hilton</td>
<td>Memory, Attention, and Distraction (p. 107)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>7–C Key Hilton</td>
<td>Getting Students to Read in Science (p. 105)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>6–12 Key Hilton</td>
<td>Carbon, Trees, and Climate (p. 107)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>9–12 Conv. Center</td>
<td>Standards and Stewardship: A Natural Fit (p. 106)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>8–C Conv. Center</td>
<td>Cells as Protein Engineers (p. 107)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–8 Conv. Center</td>
<td>Understanding Complex Concepts for Diverse Learners (p. 109)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>3–5 Conv. Center</td>
<td>Understanding the Chesapeake Watershed Through Investigations and Literature (p. 109)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>7–C Key Hilton</td>
<td>High Five: Five Ways to Make Teaching Biotechnology Faster, Easier, and Cheaper (p. 109)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–C Key Hilton</td>
<td>Teachers Helping Teachers: Teaching Controversial Topics (p. 109)</td>
</tr>
</tbody>
</table>

Physical Science

Thursday

<table>
<thead>
<tr>
<th>Time</th>
<th>Space</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00 AM</td>
<td>6–8 Conv. Center</td>
<td>NGSS Waves: Protect Your Eyes! (p. 43)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>3–5 Conv. Center</td>
<td>Music to My Ears! 3-D Learning in Baltimore City Elementary Schools (p. 42)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>10–12 Key Hilton</td>
<td>Tattoo Ink in Chemistry (p. 40)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>4–8 Conv. Center</td>
<td>Energy Efficiency: Making a Difference Can Start Early (p. 41)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>9–12 Conv. Center</td>
<td>NSTA Press® Session: Argument-Driven Inquiry in Physics: Mechanics Lab Investigations for Grades 9–12 (p. 39)</td>
</tr>
<tr>
<td>8:30–11:30 AM</td>
<td>6–9 Key Hilton</td>
<td>SC-3: NSTA Press® Short Course: Introducing a New NGSS-Focused Curriculum Unit—Toward High School Biology (p. 74)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>6–12 331/332, Conv. Center</td>
<td>Engineer Physical Science Excitement in Your Classroom with a Carolina STEM Challenge® (p. 44)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>9–12 343/344, Conv. Center</td>
<td>Year-Round Solutions for Success in AP Chemistry from Flinn Scientific (p. 45)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–8 342, Conv. Center</td>
<td>Space Docking Failure: Phenomena and 3-D Instruction for Grades 6–8 (p. 47)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>9–12 348, Conv. Center</td>
<td>Structuring Discussion to Be Equitable and Rigorous (p. 48)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–12 345/346, Conv. Center</td>
<td>Are You Moody? (p. 48)</td>
</tr>
</tbody>
</table>
Schedule at a Glance

Physical Science

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00 AM–12 Noon</td>
<td>8–C 330, Conv. Center</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>6–8 337, Conv. Center</td>
</tr>
<tr>
<td></td>
<td>1–5 324, Conv. Center</td>
</tr>
<tr>
<td></td>
<td>12:30–1:30 PM K–1 342, Conv. Center</td>
</tr>
<tr>
<td></td>
<td>12:30–1:30 PM 6–8 321, Conv. Center</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>10–11 Key 10, Hilton</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>6–C 330, Conv. Center</td>
</tr>
<tr>
<td></td>
<td>2:00–3:00 PM 6–8 349, Conv. Center</td>
</tr>
<tr>
<td></td>
<td>12:30–1:30 PM 6–8 321, Conv. Center</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>7–12 Holiday 3, Hilton</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>7–12 347, Conv. Center</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>9–12 Holiday 5, Hilton</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>K–C Key 11, Hilton</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>7–12 Johnson A, Hilton</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>K–6 Key 6, Hilton</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>4–11 333, Conv. Center</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>3–6 Key 4, Hilton</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>K–12 Holiday 5, Hilton</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>7–C Key 9, Hilton</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>P–1 Key 6, Hilton</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>9–12 Johnson B, Hilton</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>9–12 Holiday 6, Hilton</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>6–8 Key 7, Hilton</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>9–12 327, Conv. Center</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>7–12 337, Conv. Center</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>3–C 339, Conv. Center</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>3–12 325, Conv. Center</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>5–12 Key 3, Hilton</td>
</tr>
<tr>
<td>8:00–10:00 AM</td>
<td>9–12 Key 8, Hilton</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>6–8 Key 7, Hilton</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>9–C Key 9, Hilton</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>9–12 Key 4, Hilton</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>2–9 345/346, Conv. Center</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>9–12 339, Conv. Center</td>
</tr>
</tbody>
</table>

Friday

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00 AM</td>
<td>7–C Key 9, Hilton</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>AAPT Session: Investigating Electrostatics with an Inexpensive Electrophorus (p. 71)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>ASEE Session: Kindergartners Trying and Trying Again to Engineer Solutions to Problems (p. 71)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>9–12 Johnson B, Hilton</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>Solids: The Neglected “State” of Chemistry (p. 69)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>9–12 Holiday 6, Hilton</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>NESTA Session: Earth-Space Science in Biology, Chemistry, and Physics (p. 69)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>6–8 Key 7, Hilton</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>ACS Middle Level Session One: Solids, Liquids, Gases, and Changes of State (p. 71)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>9–12 327, Conv. Center</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>Photosynthesis and Respiration Shuffle (p. 72)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>7–12 337, Conv. Center</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>Untangling Electric Circuits: STEM Activities from Essential Physics (p. 72)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>3–C 339, Conv. Center</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>Integrating Chromebook with Vernier Data-Collection Technology (p. 72)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>3–12 325, Conv. Center</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>NSTA Press® Session: Phenomenon-Based Learning: Fun, Hands-On, Cooperative Learning (p. 70)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>5–12 Key 3, Hilton</td>
</tr>
<tr>
<td>8:00–10:00 AM</td>
<td>ACS High School Session One: Relating Structure and Properties: and Visualizing Student Initial Ideas (p. 74)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>6–8 Key 7, Hilton</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>ACS Middle Level Session Two: The Water Molecule and Dissolving (p. 78)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>9–C Key 9, Hilton</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>AAPT Session: Women and Minorities in the History of Physics: Role Models for Today (p. 78)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>9–12 Key 4, Hilton</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>Connecting Chemistry to Your World Through ChemClub (p. 77)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>2–9 345/346, Conv. Center</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>Cool! Can We Do That Again?! (p. 80)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>9–12 339, Conv. Center</td>
</tr>
<tr>
<td></td>
<td>Chemistry with Vernier (p. 79)</td>
</tr>
<tr>
<td>Time</td>
<td>Session ID</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>4–C</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–8</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–12</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>P–C</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–12</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–8</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>9–12</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>K–5,C</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>9–12</td>
</tr>
<tr>
<td>11:30 AM–12 Noon</td>
<td>6–9</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>G</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>9–C</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>6–8</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>3–7</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>6–12</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>9–12</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>3–C</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>9–C</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>6–12</td>
</tr>
<tr>
<td>12:30–2:30 PM</td>
<td>9–12</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>9–C</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>6–8</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>3–6</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>K–8</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>3–C</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>9–12</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>6–10</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>9–12</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>9–12</td>
</tr>
<tr>
<td>5:00–5:30 PM</td>
<td>9–C</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>5–12</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>3–6</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>K–12</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>8–12</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>P–8</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>3–8</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>7–12</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>6–12</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>P–2</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–8</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–8</td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>General Science Education</td>
</tr>
<tr>
<td></td>
<td>Thursday</td>
</tr>
</tbody>
</table>
| 8:00–9:00 AM | P–5 323, Conv. Center
Stellaluna: A Lesson on Appreciating Diversity Through Science and Literacy (p. 39) | |
| 8:00–9:00 AM | 9–C Key 11, Hilton
Teaching with Primary Literature (p. 40) | |
| 8:00–9:00 AM | P–12 Holiday 5, Hilton
Producing STEM Equity through the CCSS Math Practices (p. 42) | |
| 8:00–9:00 AM | 9–12 Key 7, Hilton
Enhancing Your Pedagogical Tool Kit in the Science Classroom (p. 42) | |
| 8:00–9:00 AM | 4–8 322, Conv. Center
Integrating Technology for Greater Engagement in the NGSS (p. 41) | |
| 8:00–9:00 AM | 9–C Holiday 3, Hilton
Developing Curriculum for the NGSS: Navigating the Perfect Storm (p. 40) | |
| 8:00–9:00 AM | P–C Key 1, Hilton
Finding Funding...for Free! How to Secure External Funding for Classroom Projects and Research (p. 40) | |
| 8:00–9:00 AM | K–6 Key 5, Hilton
CESI-Sponsored Session: Integrating Science and Literacy: Proven Strategies Developed from Evidence-Based Practices (p. 42) | |
| 8:00–9:00 AM | P–C Holiday 6, Hilton
Is This Your First NSTA Conference? First-Timer Conference Attendees’ Orientation (p. 40) | |
| 8:00–9:00 AM | 5–8 338, Conv. Center
How to Argue in a Middle School Science Class (p. 43) | |
| 8:00–9:00 AM | K–8 337, Conv. Center
Ten Minutes to Improving Science Achievement (p. 43) | |
| 8:00–9:00 AM | 6–8 348, Conv. Center
Project-Based Inquiry Science™ (PBIS): Creating “Coherence and Science Storylines” for Middle School (p. 43) | |
| 9:15–10:30 AM | P–C Blrm. III/IV, Conv. Center
General Session: Holding Fast to Dreams: Creating a Culture of STEM Success (p. 44) | |
| 9:30–10:30 AM | K–8 342, Conv. Center
The Power of Modeling in K–8 Classrooms (p. 45) | |
| 9:30–10:30 AM | K–5 337, Conv. Center
What Does Conceptual Modeling Look Like in an Elementary Classroom? (p. 45) | |
| 9:30–10:30 AM | K–12 348, Conv. Center
Science Storylines and the Driving Question Board: Keeping NGSS Curricula Student Driven (p. 46) | |
| 9:30–10:30 AM | K–5 347, Conv. Center
Analyzing and Interpreting Data Using TCI’s Bring Science Alive! (p. 46) | |
| 11:00 AM–12 Noon | 6–9 343/344, Conv. Center
Community-Based Problems: Using Middle School Science and Engineering to Help Your Community (p. 47) | |
| 11:00 AM–12 Noon | K–5 331/332, Conv. Center
Coping with First Graders? The Smithsonian Says YES! (p. 46) | |
| 11:00 AM–12 Noon | K–5 337, Conv. Center
What Does Conceptual Modeling Look Like in Grades K–5 Classrooms? (p. 47) | |
| 11:00 AM–12 Noon | K–8 338, Conv. Center
OK, Class, Please Open Your Science Notebooks… (p. 47) | |
| 12:30–1:00 PM | 4–8 Key 1, Hilton
NMLSTA-Sponsored Session: Meaningful Connections Through Professional Organizations (p. 48) | |
| 12:30–1:30 PM | K–12 333, Conv. Center
Take the Edison Challenge! (p. 50) | |
| 12:30–1:30 PM | K–C 325, Conv. Center
NSTA Press® Session: Creating a STEM Culture for Teaching and Learning (p. 50) | |
| 12:30–1:30 PM | K–12 Key 8, Hilton
NGSS@NSTA Forum Session: Designing and Using Classroom Assessments to Support Meaningful NGSS Investigations (p. 51) | |
| 12:30–1:30 PM | 4–10 Holiday 4, Hilton
How to Read Like Scientists! (p. 52) | |
| 12:30–1:30 PM | 5–8 322, Conv. Center
Bridging the Gap: Collaboration in the “Next Generation Science Learning Environment” (p. 52) | |
| 12:30–1:30 PM | 3–6 326, Conv. Center
Connecting Content, Critical Thinking, and Creativity Through Trade Books (p. 52) | |
| 12:30–1:30 PM | 3-10 Holiday 5, Hilton
Bridging the Language Gap for ELLs in Science (p. 52) | |
| 12:30–1:30 PM | K–C Key 3, Hilton
Equity in Science Education Roundtable (p. 51) | |
| 12:30–1:30 PM | K–12 Peale B, Hilton
NSTA District Support (p. 51) | |
| 12:30–1:30 PM | 10–12 Johnson B, Hilton
Stories in the Secondary Classroom (p. 50) | |
| 12:30–1:30 PM | P–2 323, Conv. Center
Scrolling and SciFriday (p. 50) | |
| 12:30–1:30 PM | K–8 338, Conv. Center
What in the World Are Crosscutting Concepts? (p. 54) | |
| 12:30–1:30 PM | 6–12 345/346, Conv. Center
Zombie Apocalypse! (p. 54) | |
| 12:30–1:30 PM | K–5 348, Conv. Center
Literacy in the Context of Science in the Elementary Classroom (p. 54) | |
| 2:00–3:00 PM | 3–12 Johnson A, Hilton
Authentic LEARN-ing and Teaching (p. 56) | |
| 2:00–3:00 PM | 6–12 Johnson B, Hilton
STEM: Incorporating Career Connections (p. 56) | |
| 2:00–3:00 PM | 1–12 Key 2, Hilton
Creating and Maintaining Kid-Friendly/Bird-Friendly Gardens (p. 56) | |
| 2:00–3:00 PM | K–6 323, Conv. Center
Enabling K–6 Students to Understand the Impact of STEM and Integration of All Its Disciplines: Explorations and Problem Solving with Physical Structures and Everyday Household Objects (p. 56) | |
| 2:00–3:00 PM | K–12 Key 11, Hilton
Countless Connections: Preservice Outreach Opportunities (p. 57) | |
Schedule at a Glance General Science Education

<table>
<thead>
<tr>
<th>Time</th>
<th>Location</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:00–3:00 PM</td>
<td>6–C Key 1, Hilton</td>
<td>ASTE-Sponsored Session: Beyond Evolution: Addressing Interactions Between Science and Religion in Classrooms and Communities (p. 56)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>K–12 Key 8, Hilton</td>
<td>NGSS@NSTA Forum Session: Better Science for All (p. 58)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>9–C 341, Conv. Center</td>
<td>Communicating Science Through Lab Notebooking (p. 59)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>5–12 336, Conv. Center</td>
<td>Solving the Mystery of STEM Using Forensic Science (p. 59)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>5–8 348, Conv. Center</td>
<td>Literacy in the Context of Science in the Middle School Classroom (p. 60)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>P–C 328/329, Conv. Center</td>
<td>Featured Presentation: Rigorous Citizen Science for Lasting Change (p. 55)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>6–C Peale B, Hilton</td>
<td>Blended Learning in the Lab Sciences (p. 60)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>9–12 333, Conv. Center</td>
<td>Using Seminars as a Form of Alternative Assessment (p. 60)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>K–12 Holiday 4, Hilton</td>
<td>Selecting Phenomena to Motivate Student Sensemaking (p. 63)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>K–12 Key 8, Hilton</td>
<td>NGSS@NSTA Forum Session: KLEWS to Language and Literacy Development Through 3-D Science Instruction in Early Grades (p. 63)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>6–12 Key 2, Hilton</td>
<td>Do You Need a New Science Lab? (p. 61)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>K–12 Key 7, Hilton</td>
<td>Zombies Are Knocking on Your Classroom Door (p. 63)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>K–5 326, Conv. Center</td>
<td>STEAM It UP: Are You Learning to Read or Reading to Learn Using Literacy with Science? (p. 62)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>P–C Johnson B, Hilton</td>
<td>Presentation 101: Learning About Presenting at Professional Conferences (p. 61)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>9–12 336, Conv. Center</td>
<td>CPO Science LINK Learning Module: Chemistry and the Periodic Table (p.)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>K–4 338, Conv. Center</td>
<td>How to Argue in the Elementary Science Class (p. 64)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>C Holiday 3, Hilton</td>
<td>College Science Teaching and Student Success (p. 61)</td>
</tr>
<tr>
<td>4:00–4:30 PM</td>
<td>9–12 333, Conv. Center</td>
<td>Making the Leap to a Digital Course (p. 65)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>7–12 Key 9, Hilton</td>
<td>Engaging in Argument from Evidence in Secondary Urban Science Classrooms (p. 67)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>K–12 Key 11, Hilton</td>
<td>Discipline…the Final Frontier! (p. 66)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>6–8 323, Conv. Center</td>
<td>Bookworms in Science Class (p. 66)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>6–12 Key 1, Hilton</td>
<td>Math, Science, and History: Connecting Curricula Through Historical Documents (p. 66)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>6–8 Key 2, Hilton</td>
<td>Modeling Scientific Concepts with SCRATCH (p. 66)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>K–5 Holiday 3, Hilton</td>
<td>STR2EAMing into LEARNing: The K–5 Convention (p. 66)</td>
</tr>
</tbody>
</table>

Friday

<table>
<thead>
<tr>
<th>Time</th>
<th>Location</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00 AM</td>
<td>K–5 326, Conv. Center</td>
<td>Infusing, Scaffolding, STEM/STEAM, 5E Model, and Crosscutting the Curriculum… What More Could You Ask? (p. 70)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>9–12 Key 11, Hilton</td>
<td>High School Teachers: Birds of a Feather (p. 69)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>P–C Peale B, Hilton</td>
<td>NSTA’s Online Resources and Communities (p. 69)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>P–5 324, Conv. Center</td>
<td>Engaging Elementary Students in a 3-D Science Literacy Learning Experience (p. 70)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>6–12 Holiday 5, Hilton</td>
<td>Intersection of Understanding by Design Framework and NGSS (p. 70)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>6–8 Ruth, Hilton</td>
<td>Thoughtful Discourse in the Middle School Science Classroom (p. 71)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>K–5 323, Conv. Center</td>
<td>Standards Make Strange Instructional Bedfellows: Science and Social Studies—Inquiry and Problem Solving (p. 69)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>6–8 321, Conv. Center</td>
<td>Turning the Tide in Middle School Science (p. 69)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>6–12 345/346, Conv. Center</td>
<td>Using Maggots, Flies, and Flesh to Solve a Mystery! (p. 73)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>6–C 343/344, Conv. Center</td>
<td>Research and Inquiry-Based STEM Program from Flinn Scientific (p. 73)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>K–8 336, Conv. Center</td>
<td>Take Your Students On a Quest! A Real-World Problem-Based Learning Project that Incorporates All Three Dimensions of NGSS (p. 72)</td>
</tr>
<tr>
<td>8:00–10:00 AM</td>
<td>P–C Holiday 1, Hilton</td>
<td>AMSE-Sponsored Session: Conversation Series on Diversity and Equity (p. 74)</td>
</tr>
<tr>
<td>9:30–10:00 AM</td>
<td>9–12 Key 2, Hilton</td>
<td>Using Data to Make Evidence-Based Claims (p. 74)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>6–8 333, Conv. Center</td>
<td>Updating Science Fairs (p. 76)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>P–C Peale A, Hilton</td>
<td>Assistance from Retiree Committee (p. 76)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>P–5 323, Conv. Center</td>
<td>Blending Science and Language Arts (p. 75)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>P–C Peale B, Hilton</td>
<td>Eureka! Science Trade Books—Good as Gold! (p. 77)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>K–8 342, Conv. Center</td>
<td>Integrate Instruction and Assessment in Three Dimensions Using Learning Progressions (p. 80)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>9–C 341, Conv. Center</td>
<td>Get That Grant Money! (p. 80)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>K–12 Johnson A, Hilton</td>
<td>NSELA-Sponsored Session: Tools for Leaders Session 1 (p. 76)</td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
<td>Location</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>P–C</td>
<td>328/329, Conv. Center</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>3–8</td>
<td>322, Conv. Center</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>3–5</td>
<td>Ruth, Hilton</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>K–5</td>
<td>Holiday 5, Hilton</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>K–12</td>
<td>348, Conv. Center</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>K–5</td>
<td>347, Conv. Center</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>K–12</td>
<td>343/344, Conv. Center</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>K–12</td>
<td>Key 3, Hilton</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>P–8,C</td>
<td>333, Conv. Center</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>P–C</td>
<td>Peale B, Hilton</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>9–C</td>
<td>Peale A, Hilton</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>P–5</td>
<td>326, Conv. Center</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–8</td>
<td>321, Conv. Center</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>9–12</td>
<td>322, Conv. Center</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>K–12</td>
<td>Johnson A, Hilton</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–8</td>
<td>342, Conv. Center</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>P–5</td>
<td>Holiday 1, Hilton</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>5–12</td>
<td>325, Conv. Center</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–9</td>
<td>343/344, Conv. Center</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>K–12</td>
<td>Johnson B, Hilton</td>
</tr>
<tr>
<td>12 Noon–3:00 PM</td>
<td>4–12</td>
<td>Tubman, Hilton</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>6–12</td>
<td>Key 1, Hilton</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>K–6</td>
<td>323, Conv. Center</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>6–12</td>
<td>Johnson B, Hilton</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>K–12</td>
<td>Key 3, Hilton</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Peale B, Hilton</td>
<td>STEM and NGSS into Your Classroom Through the Use of NSTA Competitions</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>9–C</td>
<td>Peale A, Hilton</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>K–8</td>
<td>Key 2, Hilton</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>9–12</td>
<td>322, Conv. Center</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>3–5</td>
<td>325, Conv. Center</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>9–12</td>
<td>340, Conv. Center</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>K–12</td>
<td>347, Conv. Center</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>K–12</td>
<td>348, Conv. Center</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>K–12</td>
<td>336, Conv. Center</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>P–C</td>
<td>333, Conv. Center</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>P–5</td>
<td>326, Conv. Center</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>6–8</td>
<td>321, Conv. Center</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>6–12</td>
<td>Holiday 2, Hilton</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>6–12</td>
<td>Johnson B, Hilton</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>P–C</td>
<td>328/329, Conv. Center</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>K–C</td>
<td>333, Conv. Center</td>
</tr>
</tbody>
</table>
General Science Education

Schedule at a Glance

<table>
<thead>
<tr>
<th>Time</th>
<th>Room</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:00–3:00 PM</td>
<td>K–12</td>
<td>Key 3, Hilton Instrucional Alignment Around a Phenomena-Driven Approach (p. 94)</td>
</tr>
<tr>
<td>2:45–3:30 PM</td>
<td>P–C</td>
<td>Exhibit Hall Entrance Meet the Presidents and Board/Council (p. 98)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>3–8</td>
<td>347, Conv. Center Mission KT: Teacher Authoring Science Game (p. 100)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>K–8</td>
<td>336, Conv. Center Cultivating a Culture of Argumentation in Your Classroom (p. 98)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>9–C</td>
<td>Peale B, Hilton Authentic Assessment in Action: Using Personal Meaning Maps to Determine the Impact of an Enrichment Activity in the Secondary Classroom (p. 101)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>4–10</td>
<td>Holiday 5, Hilton Why Should I Care? (p. 100)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>K–5</td>
<td>326, Conv. Center Science and the Arts: A Natural Fit (p. 101)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>6–12</td>
<td>Johnson B, Hilton Using Pop Culture and Polymers to Create Inquisitive Minds (p. 100)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>5–C</td>
<td>Holiday 4, Hilton Data, Data, Data: Tips and Tricks for Integrating Data and NGSS Science Practices into Any Classroom (p. 101)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>3–5</td>
<td>322, Conv. Center Blended Learning in the Elementary Science Classroom: Transitioning to the NGSS Using Individualized Learning (p. 101)</td>
</tr>
</tbody>
</table>

Saturday

<table>
<thead>
<tr>
<th>Time</th>
<th>Room</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00 AM</td>
<td>1–C</td>
<td>325, Conv. Center NSTA Press® Session: Teaching for Conceptual Understanding in Science (p. 103)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>6–12</td>
<td>Key 7, Hilton Your School Can Start a Forensic Class, Too! (p. 105)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>K–C</td>
<td>Key 3, Hilton Discover the NGSS: NSTA’s Interactive E-Book (p. 103)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>6–12</td>
<td>Key 1, Hilton Beyond Written Assessment: Suggestions for Alternative Summative Assessments (p. 103)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>K–5</td>
<td>323, Conv. Center Journaling as a Key to Unlocking Science and Engineering for All Elementary Learners (p. 103)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>9–C</td>
<td>Key 10, Hilton Federal Resources for Cybersecurity Education and Talent Development (p. 104)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>2–8</td>
<td>333, Conv. Center Student-Centered Field Research Program Development (p. 103)</td>
</tr>
<tr>
<td>8:30–9:00 AM</td>
<td>9–12</td>
<td>322, Conv. Center Using Case Studies in the High School Science Classroom (p. 105)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>P–C</td>
<td>Key 8, Hilton Sing, Dance, and Celebrate Science (p. 107)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>9–12</td>
<td>Key 6, Hilton Transforming Students to Investigators: Sparking Their Curiosity Using Data Analysis and Interpretation (p. 107)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>1–12</td>
<td>325, Conv. Center NSTA Press® Session: Uncovering Students’ (and Teachers’) Ideas in Science, Engineering, and Mathematics with Formative Assessment Probes and Techniques (p. 106)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>6–9</td>
<td>333, Conv. Center Using Games to Develop and Refine Scientific Writing (p. 105)</td>
</tr>
<tr>
<td>11:00–11:30 AM</td>
<td>9–12</td>
<td>Holiday 3, Hilton Bundling Performance Expectations Around Phenomena (p. 107)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>7–C</td>
<td>Key 6, Hilton iPad: Data Collection, Analysis, and Student Lab Reporting (p. 109)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–9</td>
<td>333, Conv. Center The Commotion-Free Classroom: Developing a Self-Directed Classroom (p. 108)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>9–C</td>
<td>Key 11, Hilton Using Apps in Your Forensic Science Classroom Lessons (p. 108)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>P–12</td>
<td>Key 3, Hilton How to “MWEE”: An Inside Look at a New Teacher’s Guide to Planning and Implementing a MWEE (p. 108)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>K–6</td>
<td>323, Conv. Center Enabling All Students to Investigate, Explore, Inquire, Participate, and Achieve Success (p. 108)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>7–12</td>
<td>Holiday 5, Hilton Bringing the “Bookends” of STEM Together (p. 109)</td>
</tr>
</tbody>
</table>
Informal Science Education

Thursday

<table>
<thead>
<tr>
<th>Time</th>
<th>Group</th>
<th>Room</th>
<th>Session Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00 AM</td>
<td>5–12</td>
<td>Holiday 4, Hilton</td>
<td>Integrating Technology into Middle School NGSS Engineering Design Performance Expectations (p. 42)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>4–8</td>
<td>324, Conv. Center</td>
<td>Energy Efficiency: Making a Difference Can Start Early (p. 41)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–12</td>
<td>345/346, Conv. Center</td>
<td>Are You Moody? (p. 48)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>5–8</td>
<td>322, Conv. Center</td>
<td>Bridging the Gap: Collaboration in the “Next Generation Science Learning Environment” (p. 52)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>6–12</td>
<td>Holiday 3, Hilton</td>
<td>Teach Engineering Practices on the Cheap with Concrete (p. 50)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>4–8</td>
<td>349, Conv. Center</td>
<td>Let It Rain: A Hands-On Rain Garden Design Lab (p. 52)</td>
</tr>
<tr>
<td>1:00–1:30 PM</td>
<td>4–8</td>
<td>Key 1, Hilton</td>
<td>NMLSTA-Sponsored Session: Leveraging the Power of Place in Citizen Science Projects (p. 55)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>1–12</td>
<td>Key 2, Hilton</td>
<td>Creating and Maintaining Kid-Friendly/Bird-Friendly Gardens (p. 56)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>8–12</td>
<td>Key 10, Hilton</td>
<td>Cars: A Fundamental Look at How Cars Work and the Science Involved (p. 57)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>P–C</td>
<td>328/329, Conv. Center</td>
<td>Featured Presentation: Rigorous Citizen Science for Lasting Change (p. 55)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>7–12</td>
<td>Johnson A, Hilton</td>
<td>Making Redox Practical, Relevant, Engaging, and Fun Corrosion Chemistry! (p. 66)</td>
</tr>
</tbody>
</table>

Friday

<table>
<thead>
<tr>
<th>Time</th>
<th>Group</th>
<th>Room</th>
<th>Session Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00 AM</td>
<td>6–8</td>
<td>321, Conv. Center</td>
<td>Turning the Tide in Middle School Science (p. 69)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>P–12</td>
<td>349, Conv. Center</td>
<td>Engaging Our Communities for a Sustainable Future (p. 70)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>P–12</td>
<td>Holiday 3, Hilton</td>
<td>The Teacher Environmental Literacy Leadership Program: Advancing Innovation in Teacher and Student Learning with the Chesapeake Bay Foundation (p. 69)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>9–12</td>
<td>Key 4, Hilton</td>
<td>Connecting Chemistry to Your World Through ChemClub (p. 77)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>1–12</td>
<td>Holiday 6, Hilton</td>
<td>NESTA and NOAA Share: NOAA Climate Stewards—Affecting Change Through Education, Collaboration, and Action (p. 76)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>4–8</td>
<td>321, Conv. Center</td>
<td>Great Falls Summer STEAM: A Design Thinking Approach to Community Improvement (p. 75)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>K–12</td>
<td>Key 3, Hilton</td>
<td>NOAA in Your Backyard: Free Professional Development and Local Educator Resources Are Closer Than You Think! (p. 82)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>3–7</td>
<td>349, Conv. Center</td>
<td>Beyond Spaceship Earth (p. 83)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>9–12</td>
<td>Key 11, Hilton</td>
<td>Meet the Standards and Enhance Your Chemistry Classroom with Other People’s Money (p. 82)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>3–8</td>
<td>348, Conv. Center</td>
<td>STEMrangers: Making Science Night Meaningful (p. 86)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>5–12</td>
<td>Holiday 4, Hilton</td>
<td>Soil Ecology in the Classroom (p. 89)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>6–8</td>
<td>321, Conv. Center</td>
<td>Camp FOCUS: Teachers Advocating for Inquiry-Centered Teaching (p. 93)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>9–12</td>
<td>Key 1, Hilton</td>
<td>Get WISE: Growing a Systemic Women In Science and Engineering Club (p. 95)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>3–8</td>
<td>347, Conv. Center</td>
<td>Mission KT: Teacher Authoring Science Game (p. 100)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>5–C</td>
<td>Holiday 4, Hilton</td>
<td>Data, Data, Data: Tips and Tricks for Integrating Data and NGSS Science Practices into Any Classroom (p. 101)</td>
</tr>
</tbody>
</table>

Saturday

<table>
<thead>
<tr>
<th>Time</th>
<th>Group</th>
<th>Room</th>
<th>Session Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–8:30 AM</td>
<td>6–C</td>
<td>322, Conv. Center</td>
<td>Students as Citizen Scientists: Data Collection and Sharing Using Fieldscope (p. 103)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>2–8</td>
<td>333, Conv. Center</td>
<td>Student-Centered Field Research Program Development (p. 103)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>7–12</td>
<td>Holiday 3, Hilton</td>
<td>Polymers: Basics for the Science Classroom (p. 105)</td>
</tr>
<tr>
<td>Name</td>
<td>Pages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abbott, Rebecca</td>
<td>45, 47, 54, 80, 85, 91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abell, Cari</td>
<td>66, 74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adrian-Tucci, Claire</td>
<td>109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allan, Elizabeth</td>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allen, David</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allen, Lauren Thompson</td>
<td>93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anderson, Matt</td>
<td>73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthony, Kelly</td>
<td>66, 76, 81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apfeldorf, Michael</td>
<td>109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armstrong, Kathy</td>
<td>43, 45, 47, 54, 59, 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ashbrook, Peggy</td>
<td>67, 74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Askew, Rachel</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austin, Jaclyn</td>
<td>44, 70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Babb, David</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balch, Carolyn</td>
<td>105, 108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banay, Emma</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banks, Willa</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banmeke, Olukayode</td>
<td>55, 103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barrett-Zahn, Elizabeth</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barrow, Lloyd</td>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bartels, Selina</td>
<td>107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beall, Colleen</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bechdel, Landon</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bell, Christine</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bell, Philip</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benton, Erik</td>
<td>43, 45, 47, 53, 59, 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berg, Ann</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bergman, Sydney</td>
<td>91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berry, Joan</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bertino, Anthony</td>
<td>108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bertino, Patricia</td>
<td>108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biegel, Eileen</td>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blumenfeld, Joann</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bobrowsky, Matt</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bonina, Vince</td>
<td>104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bowditch, Michelle</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boyer, Mary Ann</td>
<td>79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brady, Emily</td>
<td>77, 82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brandenburg, Kimberly</td>
<td>101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bridle, Chad</td>
<td>74, 81, 92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Briody, Amanda</td>
<td>72, 80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brock, David</td>
<td>53, 89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown, Katrina</td>
<td>58, 88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown, Todd</td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown-Whale, Jennifer</td>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruck, Lisa</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bukacek, Alison</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burney, Kareem</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burton-Regulski</td>
<td>Kimberly 87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caffery, Pam</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campbell, Brian</td>
<td>45, 47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campbell, Natacia</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caplan, Bess</td>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carlos, Norah</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carter, David</td>
<td>72, 79, 85, 90, 97, 98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cederlind, Tyler</td>
<td>67, 95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chan, Richard</td>
<td>90, 97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chatham, Elizabeth</td>
<td>67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chilinguerian, Amy</td>
<td>42, 74, 107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chizek, Lisa</td>
<td>62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chuboff, Mary</td>
<td>60, 65, 105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clapp, Joanne</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clark, Leisa</td>
<td>103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohen, Susie</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleman, Aaron</td>
<td>105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collard, Laura</td>
<td>Johnson 86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooper, Robert</td>
<td>104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covaleskie, Kristin</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coy, Andrew</td>
<td>93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crocker, Betty</td>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cromwell, Eric</td>
<td>89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cronauer, Dawn</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crowther, David</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curts, Gary</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cusmano, Jennifer</td>
<td>83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cutler, Ann</td>
<td>93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cykert, Cynthia</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cynkar, Tom</td>
<td>43, 45, 47, 54, 59, 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Damico, Julie</td>
<td>40, 61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dash, Honora</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Davis, Christie</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Davis, Joe</td>
<td>106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Davis, Rebecca</td>
<td>86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dawson, Dawn</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day, Kim</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dayton, Maria</td>
<td>43, 45, 47, 54, 59, 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deane, Lisa</td>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delesbore, Sharon</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dell, Katie</td>
<td>42, 87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denisova, Katya</td>
<td>42, 81, 101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dennison, Robert</td>
<td>73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Devadas, Mary</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dinerman, Laura</td>
<td>97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dobler, Teresa</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dodd, Gregory</td>
<td>109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dodds, Tim</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Donovan, Leah</td>
<td>57, 74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dotti, Kristen</td>
<td>53, 77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drakes, Damisha</td>
<td>57, 74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drelick, Brian</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dreyfus, Benjamin</td>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duncan, Kimberly</td>
<td>67, 74, 81, 92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dunn, Bryan</td>
<td>105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dunn, Jennifer</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edwards, Colleen</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El-Khatib, Eva</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ell, Brian</td>
<td>43, 45, 47, 54, 59, 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evans, David L.</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evans, Joseph</td>
<td>85, 92, 98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabian, Amanda</td>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faibisch, Susan</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farland-Smith, Donna</td>
<td>88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feidler, Jeffrey</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrier, Drew</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fischione, April</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fotsch, Fred</td>
<td>48, 91, 97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fowler, Jasmine</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frederick, Adam</td>
<td>101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fried, Barry</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Froschauer, Linda</td>
<td>93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabrielse, Joshua</td>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gallagher, Kate</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galvan, Patricia</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garg, Rima</td>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garner, Cheri</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gengarely, Lara</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Getzandanner, Dawn</td>
<td>101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gillman, Joan</td>
<td>63, 70, 104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gladmon, Christina</td>
<td>86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glasner, Lindsay</td>
<td>56, 75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glassman, Debra</td>
<td>103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glotfelty, Blakely</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gmurczyk, Marta</td>
<td>74, 81, 92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gnanakkan, Dionysius</td>
<td>107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gomez, Sabrina</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gonzalez, Alexander</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good, Gregory</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goodwin, Debbie</td>
<td>50, 69, 105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graham, Karen</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Granieri, Cassy</td>
<td>59, 65, 73, 80, 85, 97, 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green, Amy</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greenhalgh, Scott</td>
<td>62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Griffith, Meg</td>
<td>73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gromko, Mary</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gronert, Patricia</td>
<td>Sullivan 77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grooms, Jonathian</td>
<td>39, 50, 108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross, Brian</td>
<td>72, 78, 84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gurganus, Jamie</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hagens, Whitney</td>
<td>70, 109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haine, Dana</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haines, Sarah</td>
<td>42, 50, 87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hall, Vince</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harcourt, Pat</td>
<td>107, 108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harrison, Molly</td>
<td>39, 76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harry, Stephanie</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harte, Tina</td>
<td>61, 70, 76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hartman, Matthew</td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hayes, Jason</td>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haynes, Rebecca</td>
<td>83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Healey, Kate</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Healy, Megan</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hebert, Terri</td>
<td>48, 55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hedges, Gary</td>
<td>40, 61, 94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heigre, Beverly</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heinze-Fry, Jane</td>
<td>67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heiss, Susan</td>
<td>67, 95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hermann, Ronald</td>
<td>56, 61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herman, Tim</td>
<td>44, 79, 90, 96, 107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hibbets, Teresa</td>
<td>62, 70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higdon, Robbie</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higgins, Melinda</td>
<td>89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hill, Kevin</td>
<td>73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hinson, Kendra</td>
<td>101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hlavinka, Gena</td>
<td>95, 109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoisington, Cindy</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hopkins, Barbara</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horne, Christopher</td>
<td>101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hotaling, Liesl</td>
<td>104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Howard, Ryan</td>
<td>105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hrabowski III, Freeman A.</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Htwar, Elizabeth</td>
<td>103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hudson, Claire</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hudson, Shannon</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huff, Kenneth</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hughes, Amy</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hunter, Prince</td>
<td>62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hunter-Thomson, Kristin</td>
<td>101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jacobs, Neville</td>
<td>104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Janosz, David</td>
<td>83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaleuati, Karen</td>
<td>56, 77, 82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kanapesky, Amy</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kane, Melanie</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaye, Kristin</td>
<td>79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keeley, Page</td>
<td>75, 93, 103, 106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keil, Jennifer</td>
<td>74, 81, 92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kessler, James</td>
<td>71, 78, 84, 89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>King, Phyllis</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kiorpes, Lolita</td>
<td>89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kittrell, Clinton</td>
<td>103, 109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klingler, Justin</td>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knoell, Donna</td>
<td>56, 87, 108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kohout, Jessica</td>
<td>88, 95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koller, Herb</td>
<td>46, 86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Konicek-Moran, Kathleen</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Konicek-Moran, Richard</td>
<td>95, 103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kovi, Robert</td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krall, Rebecca</td>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kraves, Sebastian</td>
<td>73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krebbiel, Matt</td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kyle, Noel</td>
<td>104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LaBombard-Daniels, Jennifer</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ladeji-Osia, Jumoke</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lake, Shelby</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lambertsen, Sophia</td>
<td>45, 47, 54, 80, 85, 91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landsman, Erin</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latchana, Jill</td>
<td>86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Launius, J. Carrie</td>
<td>82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laurier, Amanda</td>
<td>42, 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lederman, Judith</td>
<td>107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lederman, Norman</td>
<td>107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Jonte`</td>
<td>105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lilly, Cindy</td>
<td>43, 44, 46, 53, 59, 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lindeman, Cheryl</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linsziter, David</td>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long, Kathy</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long, Meredith</td>
<td>57, 74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longenberger, Jeffrey</td>
<td>101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lottero-Perdue, Pamela</td>
<td>71, 82, 96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Love, Tyler</td>
<td>83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lucas-Odom, Judith</td>
<td>67, 88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lukens, Jeffrey</td>
<td>54, 63, 73, 91, 97, 109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MacDonald, Rita</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maldonado, Jasmine</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mangiaracina, Mike</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mann, Rhonda</td>
<td>62, 70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Martin, Kimberly</td>
<td>101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Martinez, Chezare</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marvel, Mike</td>
<td>45, 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matthews, Keisha</td>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mattox, Danny</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May, Rusty</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>McBride, Krista</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>McCrea, Sarah</td>
<td>70, 76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>McDonald, Jim</td>
<td>42, 96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>McDonough, Cheryl</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>McGarry, Joanne</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>McGinnis, Patty</td>
<td>93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>McKenna, Acacia</td>
<td>88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>McMillan, Chuck</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>McTighe, Jay</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mecca, Peter</td>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melito, Tom</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mendez, Flavio</td>
<td>69, 87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menon, Deepika</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menzo, Salvatore</td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meola, Angela</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merrick, Bart</td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metz, Steve</td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Michocki, Thomas</td>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miller, Kenneth</td>
<td>79, 85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miller, Zipporah</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mills, Kat</td>
<td>43, 45, 47, 53, 59, 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milo, Heathier</td>
<td>46, 48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mintz, Ellen</td>
<td>54, 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moldofsky, Sara</td>
<td>86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mooskin, Alexandra</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moran, Angela</td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moravchik, Bruce</td>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moriarty, Ann</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morse, Lauren</td>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morse, Robert</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mosser, Linda</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mulhern, Jessica</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mulvey, Bridget</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myatt, Amanda</td>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Narayana Sundaram, Shobha</td>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilsen, Cory</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nunez, Elizabeth</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nydam, Andrew</td>
<td>57, 66, 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O’Donnell, Kate</td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ogens, Eva</td>
<td>39, 83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olivera, Jonathan</td>
<td>86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onuozu, Jessica</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orbe, Paul</td>
<td>39, 51, 101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ostlund, Karen</td>
<td>62, 96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Padgett, David</td>
<td>106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pappalardo, Sarah</td>
<td>57, 74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parisi, Karen</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partlow, LaDawn</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passow, Michael</td>
<td>89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patel, Valerie</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peglow, Jennifer</td>
<td>101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penchons, Jessica</td>
<td>54, 59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pereira, Ashley</td>
<td>40, 56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perry, Anthony</td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perry, Emily</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perry, Pamela</td>
<td>63, 83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petersen, Jennifer Cross</td>
<td>88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phillips, Jarod</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piercy, Thomasina</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piercy, William</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pisut, Dan</td>
<td>82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plank, Larry</td>
<td>76, 82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plavchak, Lindsay</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plumstead, Rosemary</td>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Popp, Amy</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressel, Alicia</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price-Humphrey, Anna</td>
<td>93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pruett, Lee</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pugh, Ava</td>
<td>62, 70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puhak, Deborah</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purington, Stephanie</td>
<td>62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Putnam, John</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyle, Eric</td>
<td>57, 105, 107, 108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinlan, Catherine</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raburn, Bridget</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raygor, Brian</td>
<td>73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reaves, Jessica Stephenson</td>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reece, Tashka</td>
<td>85, 98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reeves, Marion</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhoades, Nicole</td>
<td>95, 109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rich, Steve</td>
<td>52, 62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Richardson, Eliza</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roberts, Ken</td>
<td>93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rodriguez, Diego</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rogers, Melissa</td>
<td>108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosario, Ruben</td>
<td>42, 62, 106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roseman, Jo Ellen</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ross, Sarah</td>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Royce, Christine Anne</td>
<td>44, 52, 62, 109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rukes, Sherri</td>
<td>69, 87, 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruud, Ruth</td>
<td>57, 61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sabatini, Jeremy</td>
<td>67, 95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sagen, Erron</td>
<td>67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampson, Victor</td>
<td>39, 50, 108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sarno, Rebecca</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saxton, Laura</td>
<td>83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schatz, Dennis</td>
<td>57, 93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schmidt, Jr., Martin</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schweingruber, Heidi</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sechrist, Sarah</td>
<td>72, 80, 97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sezen-Barrie, Asli</td>
<td>44, 75, 77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shane, Joseph</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheikh, Fatema</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silbaugh, Jennifer</td>
<td>103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simons, Jennifer</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simonson, Susan</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siudzinski, Lee</td>
<td>67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smith, Dawn</td>
<td>46, 48, 91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solomon, Peter</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sotak, Bob</td>
<td>76, 82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sotelo, Sheryl</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stalls, Jennifer</td>
<td>93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stansbury, John</td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Pages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stapleton, Mary</td>
<td>44, 61, 77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stark, Louisa</td>
<td>58, 107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starr, Mary</td>
<td>43, 63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steffen, Peg</td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stephenson, Danielle</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stephenson, Francies</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sterling-Laldee, Sarah</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stilwell, Kim</td>
<td>51, 83, 95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stober, Rebecca</td>
<td>74, 81, 92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stroukoff, Alexandra</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strozyk, Ann</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Struble, Janet</td>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swan, Kimberly</td>
<td>41, 101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tekely, Emilie</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telford, Hector</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texley, Juliana</td>
<td>57, 107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thibodeaux, Stacy</td>
<td>48, 73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thomas, Julie</td>
<td>88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson, Kenetia</td>
<td>82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totino, Joanna</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treinish, Gregg</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trevino, Saul</td>
<td>74, 81, 92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taber, John</td>
<td>82, 95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Takaki, Elena</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Talley, Terry</td>
<td>73, 86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taylor, Madeleine</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teisan, June</td>
<td>82, 103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telford, Hector</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texley, Juliana</td>
<td>57, 107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thibodeaux, Stacy</td>
<td>48, 73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thomas, Julie</td>
<td>88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson, Kenetia</td>
<td>82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totino, Joanna</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treinish, Gregg</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trevino, Saul</td>
<td>74, 81, 92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vella, April</td>
<td>83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vogt, Gina</td>
<td>46, 53, 79, 84, 107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vella, April</td>
<td>83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vogt, Gina</td>
<td>46, 53, 79, 84, 107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wakely, Alexandra</td>
<td>86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wakita, Sophie</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watters, Brandon</td>
<td>90, 96, 98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Webb, Tedra</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weinstein, Laurence</td>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weld, Jeffrey</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weller, Mary C.H.</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wendland, Tiffany</td>
<td>40, 69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White, Timothy</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitney, Sharry</td>
<td>91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitsett, Sue</td>
<td>88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Willard, Ted</td>
<td>63, 69, 87, 106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Williams, Anthony</td>
<td>106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilson, John</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilson, Jonathan</td>
<td>62, 67, 87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilson, Molly</td>
<td>62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wimberly, Nakeia</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Windsor, Thomas</td>
<td>108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wolfe, Becky</td>
<td>83, 106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood, Darrick</td>
<td>43, 45, 47, 54, 59, 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wysession, Michael</td>
<td>90, 97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yaccarino, Ann</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yamada, Kengo</td>
<td>106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yohe, Brad</td>
<td>40, 61, 94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young, Donna</td>
<td>56, 63, 83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Younkin, Kerri</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yousuf, Muhammad Ali</td>
<td>83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zakutansky, Fran</td>
<td>72, 79, 85, 90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zembal-Saul, Carla</td>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zimny, Judy</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zito, Christine</td>
<td>103, 109</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Advertisers

AEOP eCYBERMISSION and GEMS (Booth #424), www.usacep.com, 866-462-9237 2
National Inventors Hall of Fame/Camp Invention (Booth #612), invent.org/inspire, 800-968-4332 49
OHAUS Corp. (Booth #209), www.ohaus.com, 800-672-7722 ... Cover 4
PASCO scientific (Booth #200), www.pasco.com, 800-772-8700 ... Cover 2
Vernier Software & Technology (Booth #401), www.vernier.com, 888-837-6437 25, Cover 3

NSTA Ads

NSTA Conferences, www.nsta.org/conferences ... 8, 13, 22, 23, 24, 41, 110
NSTA Member Services (NSTA Hub, located in Pratt St. Lobby), www.nsta.org/membership, 800-722-6782 1
<table>
<thead>
<tr>
<th>Time</th>
<th>Room Number</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00 a.m.</td>
<td>339</td>
<td>Integrating Chromebook™ with Vernier Data-Collection Technology</td>
</tr>
<tr>
<td>9:30–10:30</td>
<td></td>
<td>Chemistry with Vernier</td>
</tr>
<tr>
<td>11:00 a.m.–12:00 p.m.</td>
<td></td>
<td>Biology with Vernier</td>
</tr>
<tr>
<td>12:30–1:30</td>
<td></td>
<td>Integrating Chromebook™ with Vernier Data-Collection Technology</td>
</tr>
<tr>
<td>2:00–3:00</td>
<td></td>
<td>Integrating iPad® with Vernier Data-Collection Technology</td>
</tr>
<tr>
<td>3:30–4:30</td>
<td></td>
<td>Physics and Physical Science with Vernier</td>
</tr>
</tbody>
</table>

FRIDAY 10/6

FREE Hands-On Workshops

No pre-registration required

Enter to win 1 of 8 Go Direct™ Temperature Probes at Booth 401!
First, OHAUS revolutionized the weighing industry by offering the Best Balances for Education; then, we brought you Beyond Weighing with our extensive lineup of centrifuges and water quality meters. Now, we’re giving you the ability to Do More With OHAUS, offering essential laboratory equipment designed to fit every corner of the lab. From stirrers and shakers to lifts and clamps, the newly expanded OHAUS portfolio gives you countless opportunities to go further with your lessons.

Whether you want to Stir It, Shake It, Mix It, Spin It, Hold It, Heat It, Test It, or Weigh It, OHAUS has what you need to Do More in your classroom!

Visit OHAUS In Booth 209 To Learn More