5TH ANNUAL

STEM

Forum & Expo

HOSTED BY NSTA

Denver, CO

#STEMforum
Inspiring Generation STEM

We share your commitment to the success of your students. After all, the next generation of Texas Instruments engineers and technicians are in today’s math and science classrooms. So we deliver the interactive technology, engaging activities and world-class professional development that teachers need to help their students succeed — now, in post-secondary STEM programs tomorrow and as the inventors and innovators of the future.

There’s a scienTIst in every student. Learn more at education.ti.com/stem.
5th Annual STEM Forum & Expo, *hosted by NSTA*
Denver, Colorado • July 27–29, 2016

Wednesday Kickoff: First-Timers Session and Student Panel Discussion followed by Evening Exhibit Preview and Welcome Reception, as well as STEM Leaders’ Panel

Sponsors and Contributors .. 2
Program Partners .. 2
President and Committee Welcome 3
STEM Forum & Expo Steering Committee 3
NSTA Conferences and STEM Forum & Expo Go Green! 4

Registration, Travel, and Hotels
Meeting Location and Times 5
Registration .. 5
Ground Transportation to/from Airport 5
Getting Around Town .. 5
Parking ... 5
Discounted Rental Cars ... 5
Forum Hotels ... 6
Map of Downtown Denver .. 6
Housing Questions .. 6

STEM Forum & Expo Resources
Exhibits ... 7
Presenters and Presiders Check-In 7
Wi-Fi at the Convention Center 7
NSTA Science Store ... 7
Graduate Credit Opportunity 7
VISIT DENVER Colorado Convention Center Tourist
 Information Center .. 8
NSTA Conference App .. 8
Audiovisual Needs .. 8
Business Services .. 8
First Aid/Emergency Services 8
Lost and Found ... 8
NSTA Membership .. 8
Online Session Evaluations/
 Tracking Professional Development 8

STEM Forum & Expo Resources, cont.
Special Offers ... 9
Floor Plans .. 10
NSTA Headquarters Staff .. 14
NSTA Officers, Board of Directors, Council, and
 Alliance of Affiliates ... 15
Future NSTA Conferences and STEM Forum 16
Professional Development Documentation
 Form ... following p. 16

STEM Forum & Expo Program
Highlights ... 17
Evening Animal Encounters at Denver Zoo (T-1) 17
Strands .. 19
Opening Session: Student Panel Discussion 20
STEM Leaders’ Panel ... 20
Closing Session .. 21

Thursday Daily Program 27
Friday Daily Program .. 59

Indexes
Exhibitor List .. 88
Index of Exhibitor Workshops 101
Index of Strand Sessions 104
Index of Participants .. 116
Index of Advertisers .. 120

National Science Teachers Association
1840 Wilson Blvd.
Arlington, VA 22201-3000
703-243-7100
E-mail: conferences@nsta.org
www.nsta.org

NSTA Affiliates
Association for Multicultural Science Education (AMSE)
Association for Science Teacher Education (ASTE)
Association of Science-Technology Centers (ASTC)
Council for Elementary Science International (CESI)
Council of State Science Supervisors (CSSS)
National Association for Research in Science Teaching (NARST)
National Middle Level Science Teachers Association (NMLSTA)
National Science Education Leadership Association (NSELA)
Society for College Science Teachers (SCST)
The 5th Annual STEM Forum & Expo, hosted by NSTA

NSTA and the STEM Forum Steering Committee are extremely grateful to the following companies and organizations for their generous support and contributions to the 5th Annual STEM Forum & Expo, hosted by NSTA.

Sponsors

FIRST® (For Inspiration and Recognition of Science and Technology)
GOOGLE, Making & Science
Pitsco Education
TeacherGeek

Contributors

Denver Museum of Nature & Science
Denver Zoological Foundation

Program Partners

American Association of Chemistry Teachers (AACT)
American Association of Physics Teachers (AAPT)
American Society for Engineering Education (ASEE)
International Technology and Engineering Educators Association (ITEEA)
National Association of Biology Teachers (NABT)
National Council of Teachers of Mathematics (NCTM)
Welcome to the 5th Annual STEM Forum & Expo, hosted by NSTA

Welcome to the Mile High City—Denver, Colorado, the Queen City of the Plains. This summer, NSTA is proud to host the 5th Annual STEM Forum & Expo. Because STEM permeates every aspect of our daily lives and work, the teaching of science, technology, engineering, and mathematics must be a priority in today’s classrooms. We are excited to bring you this highly specialized professional development event that enables us, as educators, to help our students stay globally competitive in terms of innovation, while demonstrating real-life applications to concepts we are teaching.

NSTA, the Steering Committee, and all our partners have worked diligently to bring you an excellent program that includes a dynamic keynote speaker, sessions, and invited panels providing you with strategies to stimulate your students’ interests in STEM, begin or enhance STEM initiatives in your school or district, as well as offer models and more strategies to enhance the skills and knowledge of current and future STEM leaders at prekindergarten through university levels. We also hope to provide opportunities to network with colleagues around the world through face-to-face and digital interactions, as well as through social events.

We are extremely excited to introduce a few new features to this year’s STEM Forum & Expo. These include:

- Elementary STEM Showcase: A flea market–style sharing featuring 20+ STEM leaders in preK–6 education
- STEM Leaders’ Panel
- More Than What’s Made: Stories of Making Possibilities Panel (Organized by MakerEd)
- Design Thinking and Experiential Learning Panel

We encourage you to invigorate your classrooms and schools by using the tools, knowledge, and resources shared by our presenters and exhibitors. Thank you for attending and we hope that you will have an exciting and rewarding time exploring the STEM experiences at the 5th Annual STEM Forum & Expo, hosted by NSTA.

Jennifer C. Williams, 2016 STEM Forum Steering Committee Chairperson
Mary Gromko, 2016–2017 NSTA President
The National Science Teachers Association is committed to meeting today’s environmental challenges by adopting eco-friendly practices both in our own day-to-day operations and at our 5th Annual STEM Forum & Expo, conferences, workshops, and other events. In addition, we strongly encourage our contracted conference facilities to follow green practices as well. Here are some of the ways NSTA’s conference department has worked to minimize our impact on the environment:

Online Forum Information and Personal Scheduler

Most of your STEM Forum & Expo arrangements can now be accomplished online (www.nsta.org/stemforum). Register and make your housing reservations on the web. Program details are available to you on our website using the Session Browser/Personal Scheduler. Scheduling information on our website is up to date and more complete than that available through a printed piece.

Final Forum Programs by E-Mail

Forum registrants are now given the option of receiving an electronic version (PDF) of the final program by e-mail approximately one week prior to the forum, further reducing printing and shipping requirements. Also, attendees are encouraged to use the NSTA Conference app, which provides all the tools necessary for a successful STEM Forum experience.

Recycled Paper and Sustainable Print Services

Forum programs are printed on recycled paper whenever possible. In addition, Walsworth Inc., the printer for our conference materials, is in strict compliance with all environmental laws and exceeds these standards in many areas. Wherever possible, Walsworth works to reduce and recycle waste, use reduced- or low-VOC chemicals, increase the recycled content of raw materials, and use soy- or vegetable-based inks. Walsworth has also obtained certifications with the Sustainable Forest Initiative (SFI) and the Forest Stewardship Council® (FSC) to ensure paper products are being harvested from environmentally responsible sources.

Eco-Friendly Exhibition Practices

Our forum partner, Hargrove, Inc., offers many green product options and services in the production of our forum and conference exhibitions, including 100% recyclable carpet and padding, recycled exhibit structures, a “reclaimer” that recycles 92% of all solvents the company uses in production of graphics, use of LP natural gas in 75–90% of show-site vehicles, and many biodegradable and recycled products such as trash bags and waste baskets. Their green efforts are extended operationally with reductions in electricity, heating fuel, and water usage, as well as a move to 100% recyclable and biodegradable products.

Colorado Convention Center’s Green Efforts

In October 2015, the Colorado Convention Center (CCC) received the CDPHE Environmental Gold Leader Recognition. The Colorado Environmental Leadership Program (ELP) is a voluntary program, within the Colorado Department of Public Health and Environment (CDPHE), designed to recognize and reward organizations and businesses that demonstrate superior environmental/sustainability performance and, as a result, consistently operate at a level that goes beyond compliance with environmental regulations and are working toward the goal of sustainability. The following are some of their innovative eco-friendly practices:

- Reduced emissions of CO₂ by 4,117,826 lbs. with its rooftop Solar Array that generates approximately 350,000 kwh per year.
- Has single-stream recycling throughout the facility and a back-of-house compost collection program to help minimize the amount of materials hauled to landfills. In 2015, 373.2 tons of materials were recycled via single-stream recycling.
- In a continued partnership with RAFT Colorado (Resource Area for Teachers), the CCC donates leftover conference materials to the organization. In 2015, the CCC donated a total of 4,500 lbs. to RAFT.
- More than 90% of the housecleaning materials are either certified by Green Seal or the equivalent.
- Has sponsorship of two Denver Bike Share Stations located on the property.

“Go Green” at the 5th Annual STEM Forum & Expo!

- Recycle your forum programs in the clearly marked recycle bins located throughout the Convention Center.
- Recycle or reuse your plastic badge holders—you can either turn them in at the NSTA Registration Counter or use them at future conferences.
- If you prefer to bring handouts to your session, use double-sided printing and/or recycled paper.
- Walk or use public transportation when possible at the conference.
- Bring your own refillable water bottle to the forum. Water refill stations are located at every water fountain.
- In advance of the forum, presenters are encouraged to post their presentations and handouts online on the Session Browser/Personal Scheduler.
- Evaluate sessions attended online.
Registration, Travel, and Hotels

Meeting Location and Times
STEM Forum & Expo hotels are the Hyatt Regency Denver at Colorado Convention Center (headquarters), Hilton Garden Inn Denver Downtown, Sheraton Denver Downtown, and Hyatt Place/Hyatt House. STEM Forum registration, the exhibits, the NSTA Science Store, and sessions will be located at the Colorado Convention Center. The STEM Forum & Expo will begin on Wednesday, July 27, with a First-Timers Session from 2:00 to 2:45 PM, followed by an Opening Session (Student Panel), an Evening Exhibit Preview and Welcome Reception, and a STEM Leaders’ Panel. The Thursday keynote address will be given by Derek Muller, science communicator, filmmaker, and television presenter, 4:30–5:30 PM. The STEM Forum & Expo will end on Friday with a Closing Session from strand leaders, 4:30–5:30 PM.

Registration
Registration is required for participation in all forum activities and the exhibits. The lapel badge mailed to you with your confirmation, or issued to you at registration on-site, is your “ticket of admission” to the Exhibit Hall and all non-ticketed forum activities.

NSTA Registration and the NSTA Science Store are both located in Exhibit Hall A of the Convention Center. NSTA Registration will be open the following hours:
- Wed., July 27: 1:00–7:00 PM
- Thu., July 28: 7:00 AM–5:30 PM
- Fri., July 29: 7:00 AM–5:30 PM

The NSTA Science Store will be open the following hours:
- Wed., July 27: 1:00–7:00 PM
- Thu., July 28: 7:30 AM–5:30 PM
- Fri., July 29: 7:30 AM–5:30 PM

If you misplace your badge or tickets, present your personal ID at the Badge Reprint Counter in the Registration Area and you will be issued replacements. Only one replacement badge will be issued.

Ground Transportation to/from Airport
Denver International Airport (DEN), the fifth busiest airport in the U.S., is a major airline hub. Taxi fare from the airport to the Central Business District in the area of the Convention Center runs around $65–$70. The new light rail from Denver International Airport goes directly to Downtown Denver (Union Station). Trains leave every 15 minutes during most parts of the day. Purchase your train ticket at the ticket vending machines or at the RTD Customer Care counter, both located in the middle of Denver Airport Station. Airport fare is $9 one way. For details, visit www.rtd-denver.com/a-line.shtml.

Denver STEM Forum & Expo attendees may also use SuperShuttle, which operates daily from 4:30 AM until 12 Midnight, serving all downtown and Denver Tech Center hotels to/from the airport. Travel time is 45–60 minutes, depending on hotel location and number of stops. Shuttles will stop at the Convention Center with advance reservation (two-hour minimum notice). To book a shuttle, visit www.supershuttle.com/locations/DenverDEN.

Getting Around Town
Public bus service is scheduled and provided within the local metro area by the Regional Transportation District (RTD). One highlight is RTD’s FREE 16th Street MallRide. This is your ride to great restaurants, shops, tourist attractions, and businesses up and down 16th Street Mall. The FREE 16th Street MallRide runs seven days a week and stops on every block between Civic Center and Union Station. Service begins at 5:00 AM on weekdays, 5:30 AM on Saturdays, and 6:30 AM on Sundays/holidays and ends every night at 1:06 AM. For more information, visit bit.ly/1X8R3n3.

Parking
The Convention Center has a 1,000-space covered parking garage, including three reserved parking stalls for hybrid and electric vehicles for up to eight hours of free parking. For directions to the Convention Center as well as parking rates and maps, visit bit.ly/133TUEV.

Discounted Rental Cars
The toll-free number to contact an NSTA-designated car rental company is:
Enterprise 800-593-0505 16AH230
* go to www.enterprise.com and use “16AH230” in the “Optional: Coupon, Customer, or Corporate Number” box. Click on “search” and enter PIN “NST.”
Registration, Travel, and Hotels

1. **Hilton Garden Inn Denver Downtown**
 1400 Welton St.

2. **Hyatt Place/Hyatt House**
 440 14th St.

3. **Hyatt Regency Denver at Colorado Conv. Center (Headquarters Hotel)**
 650 15th St.

4. **Sheraton Denver Downtown Hotel**
 1550 Court Place

Housing Questions or Concerns?
If you have any questions or concerns about your housing, please contact Ashley Garrett, Orchid Event Solutions, toll-free at 877-352-6710 or on-site at the Housing Booth located in Hall A, during registration hours.
NSTA Exhibits

The NSTA Exhibit Hall is a must-see! NSTA brings you the leading STEM education companies and organizations to showcase products, services, curricula, and much more. You’ll discover something new and exciting in the world of STEM education.

The lapel badge mailed to you with your confirmation, or issued to you at registration on-site, is your “ticket of admission” to the Exhibit Hall and all forum activities.

A map display of the Exhibit Hall will be on-site and accessible via our Conference app. A complete list of exhibitors and contact information starts on page 88.

Exhibit Hall Hours. Located in Hall A of the Convention Center, exhibits will be open for viewing during the following hours:

Evening Exhibit Preview and Welcome Reception
- Wed., July 27 4:30–6:30 PM

Exhibits
- Thu., July 28 9:15 AM–3:00 PM
- Fri., July 29 9:15 AM–3:00 PM

Lead Retrieval. NSTA exhibitors use lead retrieval, a paperless tracking system to allow them to receive fast, accurate information about forum attendees who have visited their booths. With the lead retrieval system, an exhibitor scans your badge as you visit the booth. This allows exhibitors to send information to you while the STEM Forum & Expo is still fresh in your mind.

Exhibitor Workshops. Exhibitor-sponsored workshops for STEM teachers are offered throughout the forum. These workshops give you an opportunity to use a variety of commercial instructional materials. Attendance is on a first-come, first served basis. See page 101 for a complete listing of exhibitor workshops.

Presenters and Presiders Check-In

If you are presenting or presiding at a session, please check in and pick up your ribbon at the Presenters/Presiders booth in the Registration Area after you have registered for the forum and received your name badge.

Wi-Fi at the Convention Center

Free wireless internet is available in the street-level public spaces and meeting rooms. The name of the network is “Complimentary WIFI.”

NSTA Science Store

You are invited to browse the NSTA Science Store, where you’re sure to find hundreds of the very best teaching resources for STEM educators. NSTA Press® books uniquely blend accurate scientific content with sound teaching strategies, and they appeal to STEM educators of all grade bands and disciplines. Examine some of our latest books—including *More Everyday Engineering: Bringing STEM to the Elementary Classroom; Uncovering Student Ideas in Earth and Environmental Science; Science Learning in the Early Years; Once Upon an Earth Science Book; Creative Writing in Science; The Feedback Loop: Be a Winner!;* and *Problem-Based Learning in the Life Science Classroom, K–12*. Our best-selling Argument-Driven Inquiry series now has a book for middle school, *Argument-Driven Inquiry in Life Science*, as well as student lab manuals to go along with all of the books in the series. You can also check out our growing line of children’s books from NSTA Kids, including recent award-winner *Next Time You See a Spider web*.

In addition, we carry dozens of wonderful NSTA Gear items—such as T-shirts, mugs, and pencils—as reminders of your forum experience or as gifts for your family, colleagues, and students. Show your love of science and pride in teaching with items from our “I Love Science” product lines.

The NSTA Science Store is located in Exhibit Hall A of the Convention Center. All members receive discounts of 20% on NSTA Press and Gear items and 10% on books from other publishers. Perhaps best of all—enjoy free shipping when you order online during your visit to the on-site store.

Graduate Credit Opportunity

STEM Forum & Expo attendees can earn one graduate-level credit in professional development through Framingham State University. For details on the assignment requirements, visit www.framingham.edu/nsta.

Questions? E-mail Paula Hogard at phogard@framingham.edu or call 508-626-4034.

Note: Grading will be pass/fail.
VISIT DENVER Colorado Convention Center Tourist Information Center
Located inside the 14th and California Street entrance of the Convention Center, the staff here is available to assist with city questions and dining reservations—they know all the best restaurants in the city! Stop by for brochures, maps, and general visitor information. Hours will be July 28 and 29 from 9:30 AM to 6:30 PM.

NSTA Conference App
Navigate the STEM Forum & Expo from the palm of your hand! The NSTA Conference app provides all the tools necessary for a successful STEM Forum & Expo experience. Features include the ability to view session and workshop listings by time and presenter; maps of the Convention Center and Exhibit Hall; social media plugins; and a note-taking tool. Scan QR code above or visit www.nsta.org/conference to download the app. Note: Make sure to create a CrowdCompass account when logging in to be able to export any notes taken with the app.

Audiovisual Needs
NSTA will fulfill AV needs originally requested on the program proposals as long as the request is within the limits of equipment that NSTA provides (an LCD projector and screen). For any last-minute AV needs, presenters must arrange and pay for their own equipment. Image Audiovisuals, Inc., the designated AV company on-site, will be located in Hall A (exhibitor service area) of the Convention Center.

Business Services
Located on Concourse A of the Convention Center, the UPS Business Center offers a variety of services, including photocopying, scanning, faxing, use of computer workstations, office supplies, and same-day shipping. During the week of the forum, hours will be Monday–Friday 8:00 AM–5:00 PM Saturday 9:00 AM–3:00 PM For more information, please call 720-904-2300 or e-mail store6611@theupsstore.com.

First Aid/Emergency Services
First Aid is located in Lobby E, across from Room 507, in the Convention Center (a First Aid sign is displayed outside the door). Attendees in need of first aid may simply walk into the room, or call 303-228-8030. Located throughout the Convention Center, beige phones can be used to reach Security by dialing extension 200 who will dispatch assistance.

Lost and Found
All lost-and-found items will be turned in at the NSTA Exhibitor Registration counter at the Convention Center.

Interested in Joining NSTA?
The NSTA Membership Booth (#424) is located in the Exhibit Hall of the Convention Center. Stop by to learn more about the benefits of becoming an NSTA member, including all the best professional development and resources a STEM educator needs. If you received a six-month free membership coupon at registration, please redeem it here.

Online Session Evaluations and Tracking Professional Development
All attendees can evaluate sessions online while simultaneously tracking their professional development certification (based on clock hours).

Help NSTA’s GREEN efforts by completing session evaluations online July 27–August 11, 2016, while the session is fresh in your mind!

To evaluate a session, attendees should follow these steps:

- Visit the STEM Forum session browser and search for part of the session title or presenter’s name using the Find Keyword search option. Note: Our session evaluation system is designed to work from a computer and while it may work on smartphones/tablets, it is not really designed for them.
- Once you find the session you wish to evaluate, simply click the Evaluate Session button.
- Enter badge number (if you don’t remember your badge number, click “help me find my badge number”).
- When finished evaluating the session, click the Submit Evaluation button.
- Repeat this process for each session attended.

Concurrent session presenters may also complete evaluations for their own sessions in order to track professional development credit. A Professional Development Documentation Form is included following page 16 to help attendees keep track of sessions/events attended that are NOT available for online session evaluation. This form can also be used to take notes on sessions attended that are available for online session evaluation.

Beginning August 23, 2016, an attendee can view his or her transcript at the NSTA Learning Center (learningcenter.nsta.org) by clicking on “My PD Record and Certificates.” Attendees can also document credit for activities that are not being evaluated (e.g., Exhibit Hall visits). Each attendee is responsible for tracking his or her own attendance at such events. The transcript can be printed here and presented to an administrator who requires documentation of participation in the forum. All information in these transcripts will be maintained (and can be accessed) indefinitely as part of an attendee’s individual profile.
The following venues have extended special offers for STEM Forum & Expo attendees.

Denver Museum of Nature & Science
www.dmns.org

Present your NSTA STEM Forum & Expo badge and receive free general admission from July 27 to 29. Please note that this special offer does not include additional exhibit or attraction fees. Explore one of the world’s great museums, right in the heart of Denver! Huge dinosaurs transport you back in time, interactive space exhibits make your mind wonder, and personalized health science fun puts your body to the test. Plus our Phipps IMAX 3D Theater and Gates Planetarium are not to be missed. Visit www.dmns.org to learn more.

Denver Zoo
www.denverzoo.org

Come visit Denver Zoo and see 4,000 different animals, representing more than 600 species. From Wednesday, July 27, to Friday, July 29, you can receive free general admission when you present your NSTA STEM Forum & Expo badge at the ticket counter. Please note that this special offer does not include additional exhibit or attraction fees. The zoo serves more than 1,000 schools through facilitated on-site and off-campus informal education programs. Denver Zoo is a vibrant, living venue where education comes alive! Visit www.denverzoo.org for details.
Colorado Convention Center

Meeting Room Level

5th Annual STEM Forum & Expo, hosted by NSTA
Visit NSTA’s SCIENCE STORE

Offering the latest resources for STEM teachers, including new releases and best sellers!

- Fun NSTA-branded gear—unique hats, shirts, mugs, collectible pins, and more
- Everyone enjoys member pricing: 20% off all NSTA Press® titles

Check in often for special giveaways, contests, and more throughout the Forum!

Visit www.nsta.org/store to make a purchase today, or call 800-277-5300.
Executive Office
David Evans, Executive Director
Michelle Butler, Executive Administrator and Manager
Shawn Crowder, Administrative Coordinator

Board Relations
Michelle Butler, Executive Administrator and Manager

Chapter Relations and Membership
Teshia Birts, Senior Director of Membership Development and Chapter Relations
Shawn Crowder, Administrative Coordinator

Development Office
Vacant, Assistant Executive Director, Development
Azi Ambrishami, Development Coordinator

Next Generation Science Standards (NGSS@NSTA)
Ted Willard, Program Director
Jennifer Horak, Project Director

Nominations and Teacher Awards Programs
Amanda Upton, Manager

Office of Communications and Legislative and Public Affairs
Jodi Peterson, Assistant Executive Director, Legislative and Public Affairs
Lauren Jonas, Assistant Executive Director, Marketing, Social Media, and e-Messaging
Tim Weber, Assistant Executive Director, Web and News
Kate Falk, Senior Manager, Public Relations
Jennifer Gulley, Marketing Manager
Korei Martin, Social Media Coordinator
Cindy Workosky, Communications Specialist

Operations Division
Moira Fathy Baker, Associate Executive Director, COO, and CFO
Shantee Young, Accounts Receivable Specialist

Business & Finance
Brian Short, Controller
Diane Cash, Senior Manager, A/P and Internal Compliance
Jodie Rozzell, Director of Grants and Contracts
Gaby Bathiche, Accountant
La’Keisha Hines, Accounting Associate

Customer Service
Michelle Chauncey, Director of Customer Care and Quality Control
Nelly Guacheta, Senior Manager, Service Central
Sharkene Steward, Customer Service Representative, Data Entry/Pub Sales
Kiara Pate, Customer Service Representative
Cindy Thomas, Fulfillment Coordinator/Claims Correspondent
LaToya Parks, Coordinator, CSR/Data Entry, Publication Sales
Kristen Reiss, Customer Service Representative, Publication Sales

Facilities and Operations
Christine Gregory, Director
Rodney Palmer, Building Engineer
Donovan Parker, Assistant Manager, Mailing Services
Joe Harpe, Mailing Services Assistant

Human Resources
Irene Doley, Assistant Executive Director
Janine Smith, HR Benefits Manager and Generalist

Information Technology
Todd Wallace, Assistant Executive Director and CIO
Ryan Foley, Assistant Executive Director, Systems Development
Mike Sullivan, Director, IT
Edwin Pearce, Manager, IT Support
Edward Hausknecht, Web and Database Developer
Martin Lopong, Manager, Web Development

Publications Orders/Inventory Control
Elsie Maka, Manager, Inventory and Distribution Sales

Jason Sheldrake, Assistant Executive Director
Kimberly Hotz, Senior Manager, Exhibitor Operations
Jeffrey LeGrand-Douglass, Account Manager
Becky Shoemaker, Advertising Production Manager
Danielle McNeill, Project Manager, NSTA Mailing List

Products Division
David Beacom, Associate Executive Director and Publisher
Rick Bounds, Assistant Executive Director, Strategic Initiatives
Emily Brady, Executive Administrator and Manager, NSTA Recommends

Art and Design
Will Thomas, Director
Joseph Butera, Senior Graphic Designer
Hima Bichali, Graphic Designer

E-products
Leisa Clark, Director/Producer
Kara Pantalena, Course Developer
Eleanore Dixon-Roche, e-Learning Multimedia Specialist

Journals
Ken Roberts, Assistant Executive Director
Kate Lu, Associate Editor
Luke Towler, Editorial Assistant

Science & Children
Linda Froschner, Field Editor
Valynda Mayes, Managing Editor

Science Scope
Inez Fugate Liftig, Field Editor
Ken Roberts, Assistant Executive Director, Journals

The Science Teacher
Stephen C. Metz, Field Editor
Scott Stuckey, Managing Editor

Journal of College Science Teaching
Ann Cutler, Field Editor
Caroline Barnes, Managing Editor

New Products
Tyson Brown, Director

NSTA Press
Claire Reinburg, Assistant Executive Director
Wendy Rubin, Managing Editor, Books (NSTA Press)
Vacant, Associate Editor
Donna Yulkin, Book Acquisitions Coordinator
Rachel Ledbetter, Associate Editor

NSTA Reports
Lynn Petrinjak, Editor
Debra Shapiro, Associate Editor

Printing and Production
Catherine Lorrain, Director
Jack Parker, Electronic Prepress Technician

Services Division
Al Byers, Associate Executive Director
Rick Bounds, Assistant Executive Director, Strategic Initiatives
Caroline Nichols, Executive Administrator and International Program Coordinator

Conferences and Meetings
Delores Howard, Assistant Executive Director
Dina Weiss, Associate Director
Linda Crossley, Assistant Director/Managing Editor
Donna Fletcher, Conference Coordinator
Beaverly Shaw, Conference Administrator
Christina Dierssen, Project Editor
Kimberlyn McDonald, Registration Supervisor/Administrative Assistant
Jasmine McCall, Database Coordinator
Marcelo Nunez, Exhibit Services Coordinator

5th Annual STEM Forum & Expo, hosted by NSTA
NSTA Officers, Board of Directors, Council, and Alliance of Affiliates

NSTA Mission Statement

The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.

Officers and Board of Directors

David Evans, Executive Director
Mary Gromko, President
David T. Crowther, President-Elect
Carolyn Hayes, Retiring President
Harold Pratt, Parliamentarian
LeRoy Lee, Treasurer
Jennifer S. Thompson, Preschool/Elementary
Kenneth L. Huff, Middle Level
Carrie Jones, High School Science Teaching
Elizabeth Allan, College Science Teaching
John Olson, Coordination and Supervision of Science Teaching
Dennis Schatz, Informal Science
Jerry D. Valadez, Multicultural/Equity
Eric J. Pyle, Preservice Teacher Preparation
Eric Brunsell, Professional Development
John Tillotson, Research in Science Education

Council

Mary Gromko, President
Harold Pratt, Parliamentarian
Jeanelle Day, District I
Doug Hodum, District II
Mary C. H. Weller, District III
Mary L. Loesing, District IV
Zoe Evans, District V
Manley Midgett, District VI
John F. Ammons, District VII
Dennis Alan Casey, District VIII
Brenda Walsh, District IX
Shannon Hudson, District X
Joe Myers, District XI
Natacia Campbell, District XII
Norma Necly, District XIII
Jennifer Gutierrez, District XIV
Tom Cubbage, District XV
Camille T. Stegman, District XVI
Midge Yergen, District XVII
Michael Bowen, District XVIII

Alliance of Affiliates

Lisa Martin-Hansen, Chairperson and ASTE Affiliate Representative
Sharon Deleshore, AMSE Affiliate Representative
Margaret Glass, ASTC Affiliate Representative
James McDonald, CESI Affiliate Representative
Juan-Carlos Aguilar, CSSS Affiliate Representative
Deborah Hanuscin, NARST Affiliate Representative
Mary Lou Lipscomb, NMLSTA Affiliate Representative
Bob Sotak, NSELA Affiliate Representative
Brian Shmaefsky, SCST Affiliate Representative

Conference Resources • Headquarters Staff

Learning Center/SciLinks

Flavio Mendez, Senior Director
Amanda Wolfe, eLearning Engagement Specialist
Edward Hausknecht, Web and Database Developer

Professional Programs

John Putnam Assistant Executive Director, Services
Wendy Binder, SPIR Project Director
Dayna Anderson, Program Manager
Alexandra Wakely, Administrative Coordinator, Services

Science Education Competitions

Acacia McKenna, Director, Competitions
Sarah Beistel, Program Manager, Science Education Competitions
Tom Chinick, Assistant Manager, Science Education Competitions
Tonya Hunt, Administrative Assistant, Competitions
Jarod Phillips, Project Manager/GEMS
Sue Whitsett, AEOP Project Director
Kathleen Kelly, eCYBERMISSION Project Manager
Frank Curcio, eCYBERMISSION Outreach Specialist
Cheryl Long, eCYBERMISSION Outreach Specialist
Matt Hartman, eCYBERMISSION Content Manager
Erin Lester, eCYBERMISSION Volunteer Manager
Alexis Mundis, eCYBERMISSION Volunteer Coordinator
Jasmine Culver, eCYBERMISSION Administrative Assistant
Keisha Jeffries, eCYBERMISSION Administrative Assistant
Dimetrias Simon, eCYBERMISSION Communications Coordinator
Deborah Murray, AEOP Budget and Project Manager
Marcia Washburn, AEOP Logistics Coordinator
Renee Wells, AEOP Administrative Assistant

Officers and Board of Directors

David Evans, Executive Director
Mary Gromko, President
David T. Crowther, President-Elect
Carolyn Hayes, Retiring President
Harold Pratt, Parliamentarian
LeRoy Lee, Treasurer
Jennifer S. Thompson, Preschool/Elementary
Kenneth L. Huff, Middle Level
Carrie Jones, High School Science Teaching
Elizabeth Allan, College Science Teaching
John Olson, Coordination and Supervision of Science Teaching
Dennis Schatz, Informal Science
Jerry D. Valadez, Multicultural/Equity
Eric J. Pyle, Preservice Teacher Preparation
Eric Brunsell, Professional Development
John Tillotson, Research in Science Education

Council

Mary Gromko, President
Harold Pratt, Parliamentarian
Jeanelle Day, District I
Doug Hodum, District II
Mary C. H. Weller, District III
Mary L. Loesing, District IV
Zoe Evans, District V
Manley Midgett, District VI
John F. Ammons, District VII
Dennis Alan Casey, District VIII
Brenda Walsh, District IX
Shannon Hudson, District X
Joe Myers, District XI
Natacia Campbell, District XII
Norma Necly, District XIII
Jennifer Gutierrez, District XIV
Tom Cubbage, District XV
Camille T. Stegman, District XVI
Midge Yergen, District XVII
Michael Bowen, District XVIII

Alliance of Affiliates

Lisa Martin-Hansen, Chairperson and ASTE Affiliate Representative
Sharon Deleshore, AMSE Affiliate Representative
Margaret Glass, ASTC Affiliate Representative
James McDonald, CESI Affiliate Representative
Juan-Carlos Aguilar, CSSS Affiliate Representative
Deborah Hanuscin, NARST Affiliate Representative
Mary Lou Lipscomb, NMLSTA Affiliate Representative
Bob Sotak, NSELA Affiliate Representative
Brian Shmaefsky, SCST Affiliate Representative
Conference Resources • Future Conferences

All cities are subject to change pending final negotiation.

National Conferences on Science Education

Los Angeles, California
March 30–April 2, 2017

Atlanta, Georgia
March 15–18, 2018

St. Louis, Missouri
April 11–14, 2019

Boston, Massachusetts
March 26–29, 2020

Chicago, Illinois
April 8–11, 2021

6th Annual STEM Forum & Expo, hosted by NSTA

Gaylord Palm Resort/Kissimmee, Orlando, Florida
July 12–14, 2017

Area Conferences on Science Education

2016 Area Conferences

Minneapolis, Minnesota—October 27–29
Portland, Oregon—November 10–12
Columbus, Ohio—December 1–3

2017 Area Conferences

Baltimore, Maryland—October 5–7
Milwaukee, Wisconsin—November 9–11
New Orleans, Louisiana—November 30–December 2
All attendees can evaluate concurrent teacher and exhibitor sessions online while simultaneously tracking professional development certification (based on clock hours). Use this form to keep track of all sessions/events attended during the 5th Annual STEM Forum & Expo, hosted by NSTA. Sessions/events such as exhibit hall visits are not available for online evaluation. However, these events still qualify for professional development.

Beginning August 23, 2016, STEM Forum transcripts can be accessed at the NSTA Learning Center (learning-center.nsta.org) by logging on with your STEM Forum Badge ID# and first clicking on “My Profile” under the “Welcome.” Here you’ll find a “Certificates” tab to access your transcript. Keep this form and use it to add the following activities to your STEM Forum transcript. Completed transcripts can be printed from this website and presented to an administrator who requires documentation of participation in the conference. All information in these transcripts will be maintained (and can be accessed) indefinitely as part of an attendee’s individual profile.

| First Name: _____________________ | Last Name: ________________________ | Badge ID# ____________________ |

Evaluate sessions by accessing the STEM Forum & Expo session browser: www.nsta.org/stemforum. You will need your badge number to evaluate sessions. See page 8 of the program for instructions. Note: Our session evaluation system is designed to work from a computer and while it may work on smartphones/tablets, it is not really designed for them.

Sample Questions:
1. I selected this session:
 a. for immediate classroom use.
 b. based on the reputation of the speaker.
 c. to improve my personal pedagogical knowledge/skill.
 d. to improve my STEM content knowledge.
2. The session met my needs.
3. The information presented was clear and well organized.
4. Safe practices were employed.
5. The session avoided commercial solicitation (n/a for exhibitor workshops and NSTA Press® sessions).
6. The session should be repeated at another NSTA conference.

Sample Responses:
1=Strongly Agree 2=Agree 3=Neutral 4=Disagree 5=Strongly Disagree

| Wednesday, July 27 2:00–8:00 PM |
Start Time	End Time	Activity/Event Title
__________	__________	______________________
__________	__________	______________________
__________	__________	______________________

<p>| Thursday, July 28 8:00 AM–9:30 PM |
| Start Time | End Time | Activity/Event Title |
| __________ | __________ | ______________________ |
| __________ | __________ | ______________________ |
| __________ | __________ | ______________________ |
| __________ | __________ | ______________________ |
| __________ | __________ | ______________________ |
| __________ | __________ | ______________________ |
| __________ | __________ | ______________________ |
| __________ | __________ | ______________________ |
| __________ | __________ | ______________________ |</p>
<table>
<thead>
<tr>
<th>Start Time</th>
<th>End Time</th>
<th>Activity/Event Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Keynote Address

Thursday, July 28, 4:30—5:30 PM

Derek Muller
Science Communicator, Filmmaker, Television Presenter, and Creator of YouTube Channel Veritasium

This Will Revolutionize Education

Over the past century, the world has changed dramatically and at a pace that is only accelerating. Smart Boards, smartphones, and smart devices are now poised to disrupt life in the home, at work, and many predict at school. But a number of historical precedents suggest the changes in education will be less dramatic than expected. Understanding why sheds light on the nature of education and on the role of teachers.

(See page 56 for details.)

Wednesday, July 27

2:00—2:45 PM First-Timers Orientation
3:00—4:15 PM Opening Session: Student Panel Discussion
4:30—6:30 PM Evening Exhibit Preview and Welcome Reception
6:45—8:00 PM STEM Leaders’ Panel

Thursday, July 28

8:00—9:00 AM Educators’ Invited Panels
9:15 AM–3:00 PM Exhibits
9:30–10:30 AM Administrators’ Invited Panel
10:30 AM–12 Noon Elementary STEM Showcase!
4:30–5:30 PM Keynote Address: Derek Muller
6:30–9:30 PM Evening Animal Encounters at the Denver Zoo (Ticket: T-1)

Friday, July 29

8:00—9:00 AM Educators’ Invited Panels
9:15 AM–3:00 PM Exhibits
9:30–10:30 AM Educators’ Invited Panel
4:30–5:30 PM Closing Session

Keynote Address
Thursday, July 28, 4:30–5:30 PM

Derek Muller
Science Communicator, Filmmaker, Television Presenter, and Creator of YouTube Channel Veritasium

This Will Revolutionize Education

Over the past century, the world has changed dramatically and at a pace that is only accelerating. Smart Boards, smartphones, and smart devices are now poised to disrupt life in the home, at work, and many predict at school. But a number of historical precedents suggest the changes in education will be less dramatic than expected. Understanding why sheds light on the nature of education and on the role of teachers.

(See page 56 for details.)
NSSTA NATIONAL CONFERENCE ON SCIENCE EDUCATION

Over 1,200 sessions
Network with more than 10,000 educators
375+ exhibitors with cutting-edge resources
And much more!

"The conference provides a wealth of information from lesson plans to the latest science news. I leave each conference renewed and recharged!"

- Sharon Ruggieri, past conference attendee

Stay up-to-date with conference information at www.nsta.org/losangeles

NSSTA NATIONAL CONFERENCE ON SCIENCE EDUCATION

Over 1,200 sessions
Network with more than 10,000 educators
375+ exhibitors with cutting-edge resources
And much more!

NGSS
The Next Generation of Science Teaching

2017
A STEM Odyssey

Science & Literacy Reloaded

Mission Possible
Equity for Universal Access

Stay up-to-date with conference information at www.nsta.org/losangeles
An index of all strand sessions starts on page 104.

Lower Elementary/Early Childhood

Students in the lower elementary grades are beginning to understand the world around them and the role they play in it. They are curious and want to make sense of their surroundings. By providing students with inquiry-based experiences in Science, Technology, Engineering, and Mathematics, we can unlock each student’s natural curiosity and help them understand the world in an engaging way. The foundational skills learned and mastered through the integration of STEM during the early years, if done right, will help these students be critical thinkers and makers that can innovate the future they will be a part of. Sessions in this strand will emphasize open-ended and active exploration, play, and investigation of the real world through the lens of NGSS.

Upper Elementary

How do we respond to research that indicates that by the time our students reach the fourth grade, a third of them will lose interest in science? How do we ensure that our students develop a solid foundation in the STEM areas so that they are prepared to both work and live in the 21st century? To reverse this trend and ignite their interest in future STEM careers, elementary students need quality learning activities and experiences that spark curiosity, promote confidence, align to the rigor of current standards, and develop competence in STEM subjects. The sessions in this strand showcase programs and instructional strategies that support STEM and have been successfully integrated into the elementary core curriculum.

Middle Level

Equipping students with the opportunities to explore STEM fields of study that support the NRC Framework and the Next Generation Science Standards is a top priority at the middle school level. A successful middle school STEM program allows students to create, innovate, communicate, and collaborate on projects that are driven by their own interests. The sessions in this strand showcase learning environments where Science, Technology, Engineering, and Mathematics interconnect to serve as a vehicle for discovery, innovation, and independent problem solving while also meeting rigorous content standards.

High School

As we move forward in the 21st century and begin preparing high school students to enter the workforce and college, STEM careers should be optimal goals for all students. Traditionally, high school content would be taught in isolation of other areas of study. Now, Science, Technology, Engineering, and Mathematics must be effectively integrated and delivered in impactful and meaningful ways. Using an integrated approach that includes real-world connections and hands-on experiences will establish a solid STEM education for students in grades 9–12. The sessions in this strand will highlight strategies and curriculum design both for formal and informal learning environments that best facilitate effective STEM integration and STEM Career Awareness.

Partnerships

As the Nation recognizes the importance of STEM education to our economic future, we are beginning to see collaborations in STEM education between preK–middle schools, high schools, higher education, and business and cultural communities, with varying degrees of success and impact. The sessions in this strand highlight select initiatives that have demonstrated an impact and have been successfully implemented.

Administrators

U.S. schools are working to ensure that all American students receive the skills and knowledge required for success in the 21st-century workforce. The STEM fields are collectively considered the core technological underpinnings of an advanced society, and the strength of the STEM workforce is viewed as an indicator of a nation’s ability to sustain itself. Maintaining a citizenry that is well versed in the STEM fields is a key segment of the U.S. public education agenda.

Successful STEM programs at the primary and secondary levels align the interrelated nature of science and mathematics education with an emphasis on technology and engineering through hands-on and real-life applications for elementary, middle school, and high school students. The new standards in mathematics and ELA and, specifically, the Standards for Mathematical Practice and the Next Generation Science Standards help to connect all areas of STEM. The integration of STEM content to answer complex questions, to investigate global issues, and to develop solutions for challenges and real-world problems requires the use of practices such as making sense of problems and persevering in solving them; reasoning abstractly and quantitatively; constructing viable arguments and critiquing the work of others; modeling with mathematics; using appropriate tools strategically; attending to precision; looking for and making use of structure; and looking for and expressing regularity in repeated reasoning. The sessions in this strand are intended to highlight exemplary efforts that are being made by schools to create a STEM culture.
Because STEM opportunities are important to the future of our students and workforce, it is critical that we ground our conversations in students’ perspectives. A diverse panel of Colorado students will describe why STEM is a critical component of their futures, how it has affected their school experiences, and the most effective ways they have engaged with STEM. They will also discuss their aspirations and interests related to STEM opportunities and careers, and the impact that STEM educational experiences have on their aspirations.

Introductions and Moderator:
Tera Jones, STEM Coordinator/Recruitment Specialist, Denver (Colo.) Public Schools

Student Panelists:
- Patricia Todd, Fairview High School, Boulder, Colo.
- Gabriela Dulanto, Colorado State University, Fort Collins
- Moses Ramirez-Tapia, Indian Peaks Elementary School, Longmont, Colo.
- Mary Katherine Howard, STEM School and Academy, Highlands Ranch, Colo.

STEM Leaders’ Panel

Wednesday, July 27, 6:45–8:00 PM

Mile High Ballroom 2 A/B and 3 A/B, Convention Center

Leaders from participating STEM organizations will talk about issues related to STEM education, including definitions, certifications, and recommendations for the newly elected U.S. President.

Moderator: David Evans, NSTA Executive Director

Panelists:
- Carolyn Hayes, NSTA Retiring President, Greenwood, Ind.

Program Partner Representatives:
- *American Association of Chemistry Teachers (AACT)*
 Sally Mitchell, AACT Past President, and Einstein Fellow, U.S. Dept. of Energy, Washington, D.C.
- *American Association of Physics Teachers (AAPT)*
 Steven Iona, 2014 AAPT President, and Lecturer, University of Denver, Colo.
- *American Society for Engineering Education (ASEE)*
 Elizabeth Parry, Chair of ASEE’s Committee on P–12 Education, and North Carolina State University, Raleigh
- *International Technology and Engineering Educators Association (ITEEA)*
 John Wells, Associate Professor of Education, Virginia Tech, Blacksburg
- *National Association of Biology Teachers (NABT)*
 Bob Melton, NABT President, and Assessment Coordinator/STEM Facilitator, Putnam City Schools, Oklahoma City, Okla.
- *National Council of Teachers of Mathematics (NCTM)*
 Cathy Martin, K–12 Mathematics Director, Denver (Colo.) Public Schools
Closing Session
Wrap Up/Strand Leaders’ Reports

Friday, July 29, 4:30–5:30 PM
Mile High Ballroom 4 A–D, Convention Center

The closing session (page 87) will provide an opportunity to hear highlights from the Forum experience. Jennifer Williams, chairperson of the STEM Steering Committee, will lead strand leaders through brief reports and summaries. This is an opportunity to hear some of the highlights you may have missed.

Steering Committee:

- **Jennifer Williams**, Steering Committee Chairperson, and Department Chair, Lower School Science, Isidore Newman School, New Orleans, La.
- **Dedric McGhee**, Upper Elementary Strand Leader, and STEM Manager (Science, Mathematics, Health, Physical Education, Lifetime Wellness), Shelby County Schools, Memphis, Tenn.
- **Kenneth William**, Middle Level Strand Leader, and STEM Teacher, Oxon Hill Middle School, Fort Washington, Md.
- **Garrett Mason**, High School Strand Leader, and Director of Innovation and Design, St. Martin’s Episcopal School, Metairie, La.
- **Brenda Nixon**, Partnerships Strand Leader, and Co-Director, Gordon A. Cain Center for Scientific, Technological, Engineering, and Mathematical Literacy, Louisiana State University, Baton Rouge
- **Susan Evans**, Administrators Strand Leader, and Retired Principal, Cockeysville, Md.
- **Tera Jones**, Honorary Steering Committee Member, and STEM Coordinator/Recruitment Specialist, Denver (Colo.) Public Schools

Photo of 2015 STEM Forum & Expo
Get Your Hands On Science

DO YOU KNOW All the ways you can use your member discount?

Use your member discount in the NSTA Science Store to stock up on classroom resources from NSTA Press; plus, get substantial member discounts on our Fall Area Conferences on Science Education, coming to a city near you!

(www.nsta.org/conferences)

www.nsta.org/membership
2:00–2:45 PM Presentation
First-Timers Orientation
(General) Mile High Ballroom 1 A–C, Conv. Center
NSTA Board and Council
Come learn about the STEM Forum program and networking opportunities for registrants who are first-time attendees. Join us for tips on navigating the forum and learn how to make the most of the amazing opportunities available over the next few days.

Strands
The STEM Forum Steering Committee has planned the forum around six strands, enabling you to focus on a specific area of interest or need. Strand events are identified by icons throughout the daily program. For strand descriptions, see page 19. On page 104, you will find the sessions grouped according to their strand.

LE Lower Elementary/Early Childhood
UE Upper Elementary
M Middle Level
H High School
Pa Partnerships
A Administrators

The ideas and opinions expressed in the forum sessions, and in any handout materials provided, are those of the presenter. They are not those of the National Science Teachers Association nor can any endorsement by NSTA be claimed.

FIRST TIMER?
NEED SOME HELP NAVIGATING YOUR FIRST STEM FORUM & EXPO?
JOIN US AND WE’LL SHOW YOU THE ROPES.

- First-Timers Orientation
Wednesday, July 27, 2:00–2:45 PM
Mile High Ballroom 1 A–C, Colorado Convention Center
3:00–4:15 PM Opening Session
Student Panel Discussion: The Power of STEM Education

(General) Mile High Bldg. 2 A/B and 3 A/B, Conv. Center

Introductions and Moderator: Tera Jones, STEM Coordinator/Recruitment Specialist, Denver (Colo.) Public Schools

Student Panelists:
Patricia Todd, Fairview High School, Boulder, Colo.
Gabriela Dulanto, Colorado State University, Fort Collins
Moses Ramírez-Tapia, Indian Peaks Elementary School, Longmont, Colo.
Mary Katherine Howard, STEM School and Academy, Highlands Ranch, Colo.

Introduction: Mary Gromko, NSTA President, Colorado Springs, Colo.

Platform Guests: Tera Jones; Patricia Todd; Gabriela Dulanto; Moses Ramírez-Tapia; Mary Katherine Howard

Long-term economic prosperity in the United States is going to be based on innovation and entrepreneurship. According to the Brookings Institute, more than 20% of U.S. jobs in 2011 required specialized knowledge in STEM fields, and STEM jobs pay, on average, nearly double the wage of non-STEM jobs. STEM education is critical to prepare students for success in college, career, and life in a 21st-century economy.

Because STEM opportunities are important to the future of our students and workforce, it is critical that we ground our conversations in students’ perspectives. How and why is STEM an important component to students’ school experience and their future aspirations? How can educators, in and out of traditional schools, ensure they are engaging all students in STEM experiences effectively?

A diverse panel of Colorado students, representing many different ages and a variety of school models, will discuss these questions and more to help educators understand the power of STEM educational experiences.

4:30–6:30 PM Evening Exhibit Preview and Welcome Reception

Exhibit Hall A, Conv. Center

Please join us for this exclusive sneak preview of the Exhibit Hall and reception. Be among the first to take in the sights and sounds of the Expo as you enjoy complimentary refreshments throughout the exhibit hall. Exhibitors will have hands-on activities, free resources, giveaways, best practices, and more—all tailored specifically to teachers’ needs. Brand-new and soon-to-be-released STEM resources will be featured by industry leaders. Don’t forget to come back for our regular exhibit hours on Thursday and Friday.

Support for the Welcome Reception is generously provided by Google, Making & Science.

For a complete list of exhibitors, see page 88.
Mark Your Calendars for Next Year’s STEM Forum & Expo

We’re excited to announce the following site/dates for the 6th Annual STEM Forum & Expo, hosted by NSTA:

Gaylord Palms Resort/Kissimmee Orlando, Florida, July 12–14, 2017

More details to come at www.nsta.org/conferences

6:45–8:00 PM Invited Panel
STEM Leaders’ Panel
(General) Mile High Blrm. 2 A/B and 3 A/B, Conv. Center

Moderator: David Evans (devans@nsta.org), NSTA Executive Director, Arlington, Va.

Panelists:
Carolyn Hayes (caahayes@comcast.net), NSTA Retiring President, Greenwood, Ind.
Sally Mitchell (sbmitchell2@gmail.com), AACT Past President, and Einstein Fellow, U.S. Dept. of Energy, Washington, D.C.
Steven Iona (steve.iona@earthlink.net), 2014 AAPT President, and Lecturer, University of Denver, Colo.
Bob Melton (bmelton@putnamcityschools.org), NABT President, and Assessment Coordinator/STEM Facilitator, Putnam City Schools, Oklahoma City, Okla.
Cathy Martin (cathy_martin@dpsk12.org), K–12 Mathematics Director, Denver (Colo.) Public Schools
Elizabeth Parry (eaparry@ncsu.edu), Chair of ASEE’s Committee on P–12 Education, and North Carolina State University, Raleigh
John Wells (jgwells@vt.edu), Associate Professor of Education, Virginia Tech, Blacksburg

Leaders from participating STEM organizations will talk about issues related to STEM education, including definitions, certifications, and recommendations for the newly elected U.S. President.

Panelists are members of our program partners:
• American Association of Chemistry Teachers (AACT)
• American Association of Physics Teachers (AAPT)
• American Society for Engineering Education (ASEE)
• International Technology and Engineering Educators Association (ITEEA)
• National Association of Biology Teachers (NABT)
• National Council of Teachers of Mathematics (NCTM)
Originally called the “Garden of the Angels,” the site for the current Red Rocks Amphitheatre was likely used by the Ute tribe in earlier times. Only 10 miles west of Denver, the amphitheatre is owned by the city of Denver.
8:00–9:00 AM Invited Panels

More Than What’s Made: Stories of Making Possibilities (Organized by Maker Ed)

(General) Mile High B1rm. 2 A/B and 3 A/B, Conv. Center

Moderator: Steve Davee (steve@makered.org), Chief Maker Educator, Maker Education Initiative, Emeryville, Calif.

Panelists:

Meghan Reilly Michaud (meghan@visualidentitystudio.com), RISD Museum Board, Past RISD Trustee/Alumni President, and Art Teacher, Andover, Mass.

Robert Munsey (rmunsey@k12albemarle.org), Science/Engineering Teacher, Sutherland Middle School, Charlottesville, Va.

Janella Watson (jwatson@nysci.org), Director of Early Childhood Education, New York Hall of Science, Corona

Maker education is represented by a wide diversity of approaches nurturing curiosity, agency, empathy, and a love of learning. What are some of the processes and forms of making that empower exploration, discovery, and construction of knowledge? How might making connect STEM with student interests and all areas of learning? In this panel, we’ll hear powerful stories from teachers integrating making in early childhood through college settings. Together, with your questions and continued discussions, we’ll build on the vast possibilities of making in education, for every child.

Forming Partnerships

(General) Mile High Ballroom 4 A–D, Conv. Center

Moderator: Brenda Nixon, Partnerships Strand Leader, and Co-Director, Gordon A. Cain Center for Scientific, Technological, Engineering, and Mathematical Literacy, Baton Rouge, La.

Panelists:

Jennifer Bacon (jennifer.bacon@educationalequality.org), Leadership for Educational Equity, Denver, Colo.

William Katzman (wkatzman@ligo-la.caltech.edu), LIGO’s Science Education Center, Livingston, La.

Louis Lopez (louis.r.lopez.civ@mail.mil), Education/STEM Outreach at U.S. Army Research, Development Engineering Command, Aberdeen Proving Ground, Md.

The Partnership Panelists represent formal and informal education institutions from a number of areas. Join them as they share strategies they have implemented to leverage their resources and increase their impact by developing strong long-term partnerships with museums, governmental agencies, and business and industry, as well as other formal and informal education entities across the spectrum. Come find out how their initiatives have created unique, successful partnerships where everyone benefits.
9:15 AM–3:00 PM Exhibits

Come stroll through the exposition picking up tips, product samples, and ideas to spark your imagination. Please note that no sessions are scheduled from 12 Noon to 1:30 PM during our exclusive exhibit hall hours.

9:30–10:30 AM Invited Panel

Success Stories from Administrators

(General)
Mile High Ballroom 4 E/F, Conv. Center

Moderator: **Susan Evans**, Administrators Strand Leader, and Retired Principal, Cockeysville, Md.

Panelists:

- **Adrienne Gifford**, Director of Innovation and Technology, Open Window School, Bellevue, Wash.
- **Michael Grubbs**, Supervisor, Technology and Engineering Education, Office of Career & Technology Education, Baltimore County Public Schools, Towson, Md.
- **Doug Paulson** (doug.paulson@state.mn.us), STEM Specialist, MSP Grant State Coordinator, Div. of Academic Standards and Instructional Effectiveness, Minnesota Dept. of Education, Roseville

Join us as the panel constructs new connections and conversations among K–12 STEM administrators. Ideas will be shared from the perspective of both large and small districts, independent schools, and state. We will learn from each other how to communicate the need for STEM education, select and implement best practices for a successful STEM program, provide teacher development, and address the needs of our diverse schools to create a future workforce ready to solve current problems as well as ones not yet identified.

9:30–10:30 AM Presentations

3D Printing in the K–12 Classroom

(Grades 1–12)
107, Conv. Center

Jack Samuelson (jacksamuelson@icloud.com), Dr. STEM Express, Milwaukee, Wis.

Hear about the opportunities and challenges of 3D printing in the classroom, and the considerations involved when choosing a printer for your school.

Creating an Elementary School STEM Lab and Curriculum

(Grades K–6)
109, Conv. Center

Marcia Gauvin (mgauvin@wcsu.net), Woodstock Elementary School, Woodstock, Vt.

Woodstock Elementary School has taken the bold initiative of establishing one of the first full time dedicated K–6 STEM Lab and instructor. We are in the process of creating a model program that can be followed by any school! For our blog, visit wesstem-K-6.blogspot.com.

Kids Can Code: Introducing the Logo Programming Language to Develop Conceptual Thinking

(Grades 2–10)
112, Conv. Center

Brian Schack (schackb@umail.iu.edu), Indiana University Bloomington

Logo is a programming language to help children think logically and mathematically. This presentation demonstrates a free version that runs in your web browser. It is recommended that you bring a web-enabled device (iPhone, iPad, laptop, etc.) to try writing simple code for creating interesting graphics.

Using Data to Inform Professional Development on Hands-On, Inquiry-Based Science Instruction: A Curriculum, University, and District Partnership Funded by a Math-Science Partnership Grant

(Grades 3–8)
202, Conv. Center

Pam Caffery (pcaffery0217@gmail.com), Accelerate Learning, Inc., Brandon, Fla.

Mindy Pearson (@ScienceMindy; mindy.pearson@sdhc.k12.fl.us), Hillsborough County Public Schools, Tampa, Fla.

Katie McCurdy (mccurks@bay.k12.fl.us), Bay District Schools, Panama City, Fla.

We will examine how data informed PD with elementary and middle science teachers to improve their content knowledge, lesson design, and delivery skills.
Engineers in the Block Area: How Building with Blocks Fosters the Growth of a Child's Scientific Mind
(Grades P–2) 504, Conv. Center
Erica Green (egreen@fwsu.org), Bellows Free Academy, Fairfax, Vt.
Learn how to analyze block play as a global tool that can be used to develop a child’s scientific, mathematical, and engineering frame of mind.

Buddy Up! Full STEAM Ahead!
(Grades K–4) 506, Conv. Center
Jessica Priem (teachingfullsteamahead@gmail.com), Pine Ridge Elementary School, Grand Rapids, Mich.
Turn buddy time into meaningful STEM learning with little cost and planning. Leave with a year of buddy lessons with optional standards-connected recording sheets.

John C. Dunham STEM Partnership School: The Building of True Collaboration
(General) 507, Conv. Center
Allison Kapitanoff (@Thinking_Kap1; akapitanoff@aurora.edu) and **Arin Carter** (acarter@aurora.edu), John C. Dunham STEM Partnership School, Aurora, Ill.
It took collaboration between teachers, university faculty, legislators, and corporate and not-for-profit professionals to build this school. Those partnerships maintain an innovative STEM learning environment.

Undergraduate STEM Education Scholar Program
(College) 602, Conv. Center
Julie Cunningham (cunni2ja@cmich.edu) and **Shane Cavanaugh** (cavan1s@cmich.edu), Central Michigan University, Mount Pleasant
Hear about the STEM Education Scholar Program, a partnership between the College of Science and Technology and the College of Education and Human Services to support undergraduate students as they pursue a teacher education degree at Central Michigan University.

Extending the Learning Experience via STEAM Learning Partnerships
(Grades 2–12) 604, Conv. Center
Cordell Carter, TechTown, Chattanooga, Tenn.
Receive an overview of TechTown Foundation’s STEAM education partnerships with persistently failing Title 1 schools in Hamilton County, Tennessee.

The High Tide Lifts All Boats: Value of PreK–20 Partnerships for Teaching and Learning
(General) 606, Conv. Center
Dewayne Morgan (@USMAsker; dmorgan@usmd.edu), University System of Maryland, Adelphi
Join me for this interactive session that explores the best practices for effective STEM PreK–20 partnership development and sustainability.

STEM Projects for the Science Classroom
(Grades 4–12) 706, Conv. Center
DJ West (@djwest78; djwest78@gmail.com), Schoolcraft College, Livonia, Mich.
Find out what makes a good STEM project. Get resources and projects to teach all areas of STEM.

NGSS EdTech: What’s Good and How to Find It
(Grades 6–8) 707, Conv. Center
Emily Pohlonski (@epohlonski; epohlonski@novischools.net), Novi High School, Novi, Mich.
Lissa Johnson (@mosamack; lissamjohnson@gmail.com), **Maafi Gueye,** and **Lauren Stoll** (@MosaMack; lauren@mosamack.com), Mosa Mack Science, Brooklyn, N.Y.
Keith Schacht (@mysterysci), Mystery Science, Walnut, Calif.
Danny Wagner (@dannywag80; dwagner@commonsense.org), Common Sense Education, San Francisco, Calif.
Hear how to find great NGSS edtech and explore two trailblazing, student-centered middle school websites built with NGSS in mind.

Chemistry Concepts STEAM-ified
(Grades 5–12) 708, Conv. Center
Julie Smith (juliettapresident@gmail.com), Lennox Middle School, Lennox, Calif.
Hear how animations, online resources, and a paper chemistry set are used to teach NGSS chemistry disciplinary core ideas: modeling atomic structure, periodic table organization, and chemical bonding.
Engaging Teens in Climate Change

(Grades 9–12) 709, Conv. Center

Betsy Payne (payne@ansp.org), The Academy of Natural Sciences of Drexel University, Philadelphia, Pa.

Kathryn Woof (kew84@drexel.edu), Drexel University, Philadelphia, Pa.

Climate change is one of the most critical issues we face today, yet teens are not fully engaged with the issue. Explore a model to empower girls to be ambassadors for climate change education.

What’s My Next? Exposing Students to Exciting Career Opportunities in Laboratory Medicine

(Grades 10–College) 710, Conv. Center

Miriam Post (www.whatsmynext.org 2nd link: www.ascp.org), University of Colorado Anschutz Medical Campus, Aurora

Whitney Smith (www.whatsmynext.org 2nd link: www.ascp.org), Children’s Hospital Colorado, Aurora

Many students are unsure of what comes after high school. What’s My Next exposes students to exciting career opportunities in laboratory medicine and pathology.

How Skyline STEM Academy Stays Current in an Evolving STEM District

(Grades 9–12) 711, Conv. Center

Rebecca Peters (@beckyepeters; peters_rebecca@svvsd.org), The Innovation Center, Longmont, Colo.

Heidi Ringer (@SHS_Principal; ringer_heidi@svvsd.org), Skyline High School, Longmont, Colo.

We will share how Skyline High School’s STEM Academy, which began in 2007, has been successful in many ways, but must continuously redefine its goals and strategies to stay current.

Effective Food Safety Curriculum for STEM Teachers—Motivating Students to Practice Safe Food Handling

(Grades 9–12) 712, Conv. Center

Yaohua Feng (yhfeng@ucdavis.edu) and Christine Bruhn, University of California, Davis

Hear about a novel educational approach designed to deliver safe food handling best practices through vivid and participatory discussions and activities.

NESTA Shares: STEM Games and Simulations for Earth and Space Science

(Grades 5–College) Mile High Ballroom 1A, Conv. Center

Randy Russell (russell@ucar.edu), UCAR Center for Science Education, Boulder, Colo.

Presider: Cheryl Manning (clbmanning@mac.com), Evergreen High School, Evergreen, Colo.

Join us for a quick survey of games, simulations, and virtual labs for Earth science education from various sources. We will share both computer-based and hands-on (card, board, etc.) games.

NASA Astrobiology: The Search for Life Beyond Earth

(Grades 9–College) Mile High Ballroom 1B, Conv. Center

Rachel Zimmerman Brachman (rachel.zimmerman-brachman@jpl.nasa.gov), NASA Jet Propulsion Laboratory, Pasadena, Calif.

Learn how astrobiologists at NASA’s Jet Propulsion Laboratory are searching for signs of life on the icy moons of our solar system.

What Does English Have to Do with STEM?

(Grades 9–College) Mile High Blrm. 1C, Conv. Center

Tressie Norton (@TressieNorton; tressie.norton@knoxschools.org), Darryl Fannon (@DarrylFannon; darryl.fannon@knoxschools.org), Sean Blevins (@JURORZEROIGHT; sean.blevins@knoxschools.org), and Misty Brown (@MrsMSBrown; misty.brown@knoxschools.org), L&N STEM Academy, Knoxville, Tenn.

Come hear from the English department of a STEM magnet school on how they have used constant innovation and advocacy—both on the part of students and themselves as professionals—to develop a unique program that inspires students by tapping into collective strengths; resulting in high achievement across subjects for all students.
9:30–10:30 AM Hands-On Workshops

The Marvelous, Miraculous Circus Machine!
(Grades 5–6) 102, Conv. Center
Karen Bell (karen@circusarts.org) and Robin Eurich (robin@circusarts.org), The Circus Arts Conservatory, Sarasota, Fla.
Rebekka Stasny (@ascienceteacher; stasny2r@manateeschools.net), Electa Arcott Lee Magnet Middle School, Bradenton, Fla.
The Circus Arts Conservatory addresses Newton’s Laws of Motion through the creation of a fanciful contraption.

The Movement of the Ocean
(Grades 3–5) 105, Conv. Center
Julie Vowell (jevowell@txwes.edu), Texas Wesleyan University, Fort Worth
Marianne Phillips (mariannephillips@tamusa.edu), Texas A&M University—San Antonio
Designed for elementary science teachers who desire to use an integrated, hands-on approach to learning science in the classroom, this workshop shares “Movement in the Ocean,” an ocean current unit developed for grades 3–5 science teachers. Take part in cooperative learning groups while engaging in STEM activities designed to help your students understand the processes involved in ocean currents.

Digital “Show and Tell”: Student Use of Whiteboard Apps as a Formative Assessment
(Grades K–8) 110, Conv. Center
Deborah Kozdraz (@USFStavros; dkozdraz@usf.edu), University of South Florida, Tampa
Christine Joseph (josephc15@ecu.edu), East Carolina University, Greenville, N.C.
Students’ use of free whiteboard apps provides a formative assessment tool for teachers to evaluate understanding of STEM concepts and processes.

Using iPads and 21st-Century Skills to Demonstrate Understanding of NGSS Performance Expectations
(Grades 1–7) 203, Conv. Center
Shelley Lee (leeshe@uwstout.edu), 1995–1996 NSTA President, and University of Wisconsin—Stout, Menomonie
Loretta Wilbur (lorettawlbur@gmail.com), St. Bridget Parish School, River Falls, Wis.
Learn about apps that demonstrate learning while employing 21st-century skills. Experience these apps that are used to ignite excitement about science in elementary classrooms.

STEM Across the Curriculum (It’s eleSTEMary!)
(Grades K–5) 205, Conv. Center
DeLene Hoffner (delene.hoffner@asd20.org), School in the Woods, Colorado Springs, Colo.
Inspire your students to read, write, experiment, and learn history while experiencing It’s eleSTEMary! Cross-curricular connections to infuse STEM into every area of your curriculum.

Technology and Engineering Literacy: An Interactive Exploration
(Grades 4–8) 206, Conv. Center
Cary Sneider (carysneider@gmail.com), Portland State University, Portland, Ore.
Shannon Garrison, Solano Avenue Elementary School, Los Angeles, Calif.
Using their own devices, attendees will explore the tasks and findings of the groundbreaking NAEP Technology and Engineering Literacy assessment to enhance instruction and learning.

It’s Never Too Early for Authentic STEM Experiences
(Grades P–3) 210/212, Conv. Center
Joel Villegas (jvillegas@pinalesa.org), Pinal County School Office Education Service Agency, Florence, Ariz.
Jo Anne Vasquez (jvasquez@stemlessonessentials.com), 1996–1997 NSTA President, and Rocks to Rainbows, LLC, Gilbert, Ariz.
Join us as we demonstrate and engage in a research-based authentic STEM unit driven by early childhood content standards.
Thursday, 9:30–10:30 AM

AACT Session: Building a Unit Plan Using American Association of Chemistry Teachers Resources (Grades 9–12) 501, Conv. Center
Kimberly Duncan (@chemduncan; k_duncan@acs.org) and Jenn Parsons (@ParsonsChem; j_parsons2@acs.org), American Association of Chemistry Teachers, Washington, D.C.
Join two former high school chemistry teachers as they show you how to put together a successful unit plan using resources available on the AACT website.

Kids Code: A University/K–12/Community Partnership to Engage Underrepresented Youth in Computer Science and Technology (Grades 2–8) 502, Conv. Center
Stacey Forsyth (@CUSciDisc; stacey.forsyth@colorado.edu) and Eliana Colunga (colunga@colorado.edu), University of Colorado Boulder
Strengthen computer science education through partnerships! University computer science faculty and students + STEM outreach educators + IT professionals = powerful technology experiences for underrepresented youth.

Creating Scientific and Mathematical Thinkers Through Hands-On Experiences and Open-Ended Questioning (Grades P–K) 503, Conv. Center
Mariko Whelan (whelan@scottsdaleaz.gov), Scottsdale Public Library, Scottsdale, Ariz.
Come explore math and science concepts in an interactive, playful way by sharing a program we’ve designed called “Fun with Math & Science”—which is a parent/child interactive learning opportunity.

NCTM Session: NCTM Principles to Action Toolkit: Resources for Supporting the Effective Mathematics Teaching Practices in High School (Grades 7–College) 601, Conv. Center
Melissa Boston (bostonm@duq.edu), Duquesne University, Pittsburgh, Pa.
Engage in resources from NCTM’s Principles to Action Toolkit, created to support implementation of the Effective Mathematics Teaching Practices in high school classrooms.

Games for Engineering Code: Learning by Design (Grades 3–9) 605, Conv. Center
David DeMuth (david.demuth@vcsu.edu), Valley City State University, Valley City, N.Dak.
Explore a model for using gaming principles for practicing coding alongside engineering design. This model was developed in North Dakota for students and adjacently as educator workshops.

Engineering Soil: It’s Not Dirt (Grades 5–8) 607, Conv. Center
Julie Keniry, Eastern Oregon University, La Grande
Cheri Clausen (cclausen@ontario.k12.or.us), May Roberts Elementary School, Ontario, Ore.
Go deep into a unit that opens soils to the world of engineering and applies STEM concepts to a science discipline not typically integrated with math and engineering.

NASA Design Challenges to Develop Critical Thinking (Grades 4–12) 610/612, Conv. Center
Kathleen Fredette (@kathdette; kathleen.fredette@ilead-schools.org), Maker School Network, Castaic, Calif.
Exploration by doing, participants will experience a simple and inexpensive design challenge, with discussion on how to move from easy to complex challenges as the facilitators’ and learners’ develop as practitioners.

Engaging ELLs Through STEM Activity (Grades 3–12) 702, Conv. Center
Christopher Carson (@eCALLMS; christopher.carson@ucdenver.edu), University of Colorado Denver
Joy Barnes-Johnson (@drjoybjo; drjoybjohnson@gmail.com), Princeton High School, Princeton, N.J.
NGSS science and engineering practices provide both opportunities and challenges for English language learners. Find out how teachers are making STEM activities more culturally and linguistically responsive.
Looking at Light: Analyzing Reflectance Spectra
(Grades 6–8) 703, Conv. Center
Christine Shupla (shupla@lpi.usra.edu), Lunar and Planetary Institute, Houston, Tex.
Carol Waters (@MrsH20sScience; cwaters@pasadenaisd.org), Pasadena (Tex.) ISD
Devalyn Rogers (devrog5@gmail.com), Hoffman Middle School, Houston, Tex.
Carrie Stokes (clacystokes@comcast.net), Houston Community College, Houston, Tex.
Jan Grout (pjgrout@gmail.com), Retired Educator, Seabrook, Tex.
Use reflectance spectrometers to graph spectra, creating and comparing rock spectra to determine the Moon’s composition. Note: Spectrometers available on loan for cost of shipping.

Are You Ready to Be R.E.D.?
(Grades 8–12) Mile High Ballroom 1D, Conv. Center
Joanne Aronson (aronsonj@miamicountryday.org), Miami Country Day School, Miami, Fla.
Participate in this hands-on workshop to explore how to engage and challenge students to use engineering principles to design and construct solutions to complex problems.

Art and the Cosmic Connection: STEAM in Action
(Grades 4–8) 704, Conv. Center
Whitney Cobb (@STEM_McREL; weobb@mcrel.org), McREL International, Denver, Colo.
Monica Aiello (@EurekaSTEAM; monica@eurekaus.org), Eureka!, Denver, Colo.
Pluto! Ceres! Mars! Stunning images arrive from NASA missions to planets, asteroids, and moons. The elements of art help you hone observation skills and inspire questions.

STEM Chem: Bringing Engineering into the Chemistry Classroom
(Grades 9–12) Mile High Ballroom 1E, Conv. Center
Mauree Haage (@MAHaage; mauree.haage@gmail.com), Twin Cedars High School, Bussey, Iowa
Learn ways of incorporating engineering activities into your chemistry classroom and how this applies to NGSS and STEM.

Using Recreational UAVs (Drones) for STEM Activities and Science Fair Projects
(Grades 6–12) Mile High Ballroom 1F, Conv. Center
Shelley Olds (shelley.e.olds@gmail.com), UNAVCO, Boulder, Colo.
Engage students in STEM using the “it” toy of the year: Unmanned Aerial Vehicles (UAVs or drones)! Try free teacher-developed activities for STEM learning.

STEM Behind Forensics
(Grades 7–12) Mile High Ballroom 3C, Conv. Center
Jeffrey Lukens (jeffreylukens0613@gmail.com), Sioux Falls (S.Dak.) School District
From helping to determine the time of a victim’s death to analyzing DNA samples from crime suspects, this workshop has it all! Come get your hands wrapped around the STEM of crime solving!
Thursday, 9:30–10:30 AM

Exhibitor Workshops

What Does Conceptual Modeling Look Like in Grades 5–7 Classrooms?

(Grades 5–7)

Sponsor: Delta Education/School Specialty Science

Kathleen Mills, West Seattle Elementary School, Seattle, Wash.

Join a FOSS Next Generation Program consultant to explore how students construct models within the context of physical science. Experience active investigations from two different grade levels and create models about how matter interacts. Find out how student models can be used to guide future instruction within the FOSS program.

Investigating a Cliff Model

(Grades 6–8)

Sponsor: LAB-AIDS®, Inc.

Hethyr Tregerman, LAB-AIDS, Inc., Ronkonkoma, N.Y.

Here’s your chance to engineer a coastal breakwater (from the *Issues and Earth Science* “Erosion and Deposition” unit from LAB-AIDS) and analyze the trade-offs of the design. Explore how the natural world is influenced by our engineered world, which in turn creates more societal issues that must be solved. Activities exemplify NGSS and show how SEPUP embeds the engineering practices and uses real issues to powerfully deliver content learning.

Martian Genetics: An Electrophoresis Exploration

(Grades 6–College)

Sponsor: Edvotek, Inc.

Danielle Snowflack *(info@edvotek.com)*, Edvotek Inc., Washington, D.C.

Explore genetics with our “out of this world” workshop! Imagine being the first scientist to explore Mars and discovering extraterrestrials. How would you use biotechnology to learn about the Martians? Discover how DNA technology can be used to explore the relationship between genotype and phenotype. Fluorescent dyes simulate DNA fragments, eliminating post-electrophoresis staining and saving classroom time! Take home a free gift and entry in a LabStation™ giveaway.

Integrating Chromebook™ with Vernier Technology

(Grades 4–12)

Sponsor: Vernier Software & Technology

David Carter *(info@vernier.com)*, Vernier Software & Technology, Beaverton, Ore.

Learn how to use Chromebooks with Vernier technology in this workshop featuring experiments from Vernier lab books. See how engaging experiments like “Boyle’s Law” or “Grip Strength Comparison” teach students about data collection and analysis—practices that promote science inquiry and boost test scores.

The Biology of Skin Color

(Grades 9–12)

Sponsor: HHMI BioInteractive

Megan Stine, Howard Hughes Medical Institute, Chevy Chase, Md.

Explore the evidence that the variation in human skin color is an evolutionary adaptation to the varying intensity of ultraviolet radiation in different parts of the world. HHMI BioInteractive’s engaging, free classroom-ready resources weave together key concepts in biology, human biogeography, genetics, and anatomy/physiology.

Go Small to Go Big: Molecular Models in Ecology

(Grades 9–College)

Sponsor: 3D Molecular Designs

Kim Parfitt, Central High School, Cheyenne, Wyo.

Learn how AP biology classes used detailed magnetic DNA models to amplify their field and lab research in aspen genetics. This landscape-level project was a partnership with the University of Wyoming’s Berry Conservation Center.

Flinn Scientific’s STEM Design Challenge™ “Build-It-Yourself” Lab Project

(Grades 7–12)

Sponsor: Flinn Scientific, Inc.

Janet Hoekenga, Flinn Scientific, Inc., Batavia, Ill.

Integrate STEM scientific inquiry and engineering design principles into your science curriculum. Join Flinn Scientific in a “build-it-yourself” lab project that can actively engage your students and increase their understanding of concepts that cut across scientific disciplines. Interactive demonstrations highlight science and engineering practices such as reasoning based on the evidence. Handouts for all activities!
Ten80 Education: Innovation Through Computer Science, Racing, and Robotics Challenge
(Grades 7–12) 405, Conv. Center
Sponsor: Ten80 Education Inc.
Bebette Ryan (bdryan@ten80education.com), Ten80 Education Inc., Schuylerville, N.Y.
Ten80 Education Project-Based Learning STEM programs combine engineering and enterprise processes with the content required to turn ideas into reality. Whether for course credit or as an extracurricular program, students investigate and innovate in race engineering, design, robotics, computer science, and more. Participants will receive a sample investigation.

Imaginative Thinking, Teamwork, AND Robots, OH MY! FIRST® LEGO® League Builds More than Robots...
(Grades K–8) 406, Conv. Center
Sponsor: FIRST
Betsy Daniels (bdaniels@firstinspires.org), FIRST, Manchester, N.H.
FIRST is developing tomorrow’s innovators today. Discover how the popular FIRST LEGO League program challenges students to research and develop a solution to a real-world problem and design/build/program a robot using LEGO MINDSTORMS®. Then channel your inner child, remember what you’ve learned, and DRIVE THAT ROBOT!

DIY Data Logging for Authentic Citizen Science Using Arduino
(Grades 7–College) 407, Conv. Center
Sponsor: SparkFun Electronics
Brian Huang, Derek Runberg, and Jeff Branson, SparkFun Electronics, Longmont, Colo.
Authentic data collection is always a tricky thing to accomplish within a class period. Come learn to use an Arduino and programmable electronics to build your own instrumentation to log data over longer periods of time that you can bring back to your classroom. Let’s collect data together!

10:30 AM–12 Noon
Special Session
Elementary STEM Showcase!
(Grades P–6) Four Seasons Ballroom 1/2, Conv. Center
Sponsored by FIRST® (For Inspiration and Recognition of Science and Technology), Pitsco Education, and TeacherGeek, Inc.
Organized by Linda Froschauer (fro2@me.com), 2006–2007 NSTA President, Pasadena, Calif.
Visit bit.ly/29yJSkx for a complete list of Extravaganza participants or please pick up a program at the door.
The Elementary STEM Showcase brings together more than 30 leaders in STEM education that will provide a variety of preK–6 STEM teaching strategies and resources from the new NSTA Press® publication, Bringing STEM to the Elementary Classroom. NGSS connections to student experiences will be highlighted during this flea market–style sharing experience where participants will engage in hands-on activities and interact with presenters about STEM investigations conducted in their classrooms.
Free book to the first 15 participants PLUS door prizes!
11:00 AM–12 Noon Presentations

Reimagine CODE: Computational Opportunities Delivered in Elementary
(Grades 3–5) 106, Conv. Center
Yune Tran (ytran@georgefox.edu), George Fox University, Newberg, Ore.
Explore how more than 400 elementary-aged students received interdisciplinary computational thinking lessons embedded as part of their regular school day.

Teach STEM Content and Spark Science Career Interest with Free Online Games
(Grades 6–12) 108, Conv. Center
Lynn Lauterbach (lynnlauterbach@gmail.com), Retired Teacher, Loveland, Colo.
See how free online games get students involved in science career simulations by solving real-world science problems using the authentic tools and practices of scientists.

Problem-Based Learning Start to Finish
(Grades 6–12) 109, Conv. Center
Jessica Noffsinger (jessica.noffsinger@adams12.org), STEM Magnet Lab School, Northglenn, Colo.
Find out how to plan a successful Problem-Based Learning unit to provide students with opportunities to work collaboratively to solve 21st-century problems.

ITEEA Session: Integrative STEM Education: Intentional Teaching Through Engineering Design
(General) 111, Conv. Center
John Wells (jpwells@vt.edu), Virginia Tech, Blacksburg
Integrative STEM education serves as the theoretical and pedagogical premise for technological/engineering (T/E) design-based teaching and learning practices. This session will characterize the unique aspects of integrative STEM education that parallel but are not covered by other disciplines.

A Mobile and Global Classroom
(General) 112, Conv. Center
John Clark (@jpgclark; jpgclark@gmail.com), Owensboro High School, Owensboro, Ky.
Various mobile devices can reach outside classroom walls to collaborate with professionals in other classes, schools, and scientific facilities to enrich any STEM learning experience.

3D Printing Waves: Creating Physical Models of Sound and Light
(Grades 6–8) 113, Conv. Center
Sharon Miller (sjmiller@aurora.edu), Jennifer Bentley (jbentley01@aurora.edu), and Ashley Johnson (ashley-ann9535@gmail.com), Aurora University, Aurora, Ill.
Several new, interdisciplinary curricular ideas will be presented connecting 3D printing and the physical science content of energy and waves.

Green STEM in Guam: A District-Wide Initiative That Works
(Grades K–12) 202, Conv. Center
Anne Tweed (atweed@mcrel.org), 2004–2005 NSTA President, and McREL International, Denver, Colo.
Leah Beth Noholowaa (@LeahBeth; lonaholowaa@gdoe.net), Guam School District, Barrigada
Hear about the district development and implement of a district-wide STEM Strategic Plan that is effectively building and supporting STEM programs across the district. Find out how Guam has connected to island resources supporting green STEM initiatives that allow students to work on real place-based issues. Sample K–12 projects will be highlighted.

AACT/AAPT/NABT-Sponsored Session: Using the NGSS and the Framework to Implement Crosscutting Concepts in Discipline-Specific Courses
(Grades 9–12) 501, Conv. Center
Kimberly Duncan (@chemduncan; k_duncan@acs.org), American Association of Chemistry Teachers, Washington, D.C.
Hear from representatives of the AACT, AAPT, and NABT on how to effectively help students make interdisciplinary connections in chemistry, biology, and physics courses.

Teachers Bridging School and Workplace: Summer in Industry
(Grades 6–College) 507, Conv. Center
Jeff Weld (@IowaSTEM; jeff.weld@uni.edu), Iowa Governor’s STEM Advisory Council, Cedar Falls
Business and education benefit from cross-pollinating educators on the job site through summer, extracting meaningful lessons for the classroom while adding value to worksite operations.
The Colorado STEM Model: A Public-Private Partnership
(General) 602, Conv. Center
Elizabeth Kuehl (@ColoradoSTEM; kkuhl@coloradoeducationinitiative.org), The Colorado Education Initiative, Denver
A unique public-private partnership to advance STEM education, the Colorado STEM Model includes representatives from state government, K–12, higher education, community partners, and is led by our industry champions.

STEM Innovation in Independent and Charter Schools Roundtable Discussion
(Grades K–12) 603, Conv. Center
Adrienne Gifford (@adriennegifford; adrienneg@ows.org), Open Window School, Bellevue, Wash.
Join me for an interactive roundtable to share and discuss best practices for fostering STEM innovation in charter and independent schools.

NICERC, Cyber Innovations, the University of Louisiana at Monroe, and Robots
(Grades 7–12) 604, Conv. Center
Edyce Stone, Ascension Christian High School, Gonzales, La.
By working with several businesses and a university, a cyber literacy and cyber science curriculum has been incorporated for STEM learning, exposing middle school and high school students to themes in cyber science.

Enhancing Student Engagement Through Real-World Relevance
(Grades 7–College) 606, Conv. Center
Jan Sikorsky, Envision EMI, Vienna, Va.
Seeking partnerships with organizations external to the classroom adds real-world relevance to designed curriculum. Let’s discuss the process of partnering with subject-matter experts.

Identifying the Right Mentoring Model for Your Program
(Grades 5–College) 608, Conv. Center
Kristian Breton (@kristianbreton; kbreton@nyas.org), Tiffany Kapler (tiffany.kapler@gmail.com), and Ernest “Trey” Greene III (@NYASCIENTIST; tgreene@nyas.org), The New York Academy of Sciences, New York, N.Y.
There are many types of STEM mentoring models available, but what fits for your school/program?

NGSS Instruction That Makes Thinking Visible
(Grades 5–8) 705, Conv. Center
Kenneth Huff (kenneth.huff@roadrunner.com), Williamsville (N.Y.) Central School District
Join a member of the NGSS writing team to actively engage in the modeling of an innovative approach to science teaching and learning.

CCERS Partnership Model Teacher Fellowship: An Interdisciplinary Approach to STEM Education
(Grades 6–8) 706, Conv. Center
Michelle Molina (@evalconnection; molinamichelle91@gmail.com) and Erica Watson (designphd@yahoo.com), Smart-Start Evaluation and Research, Irvine, Calif.
Lauren Birney (@LBIRNEY; lbirney@pace.edu), Pace University, New York, N.Y.
The Curriculum + Community Enterprise for Restoration Science (CCERS) model fellowship trains middle school teachers to engage and support their students’ exploration of STEM concepts.

Many Approaches, Many Answers: Life Science STEM Challenges for Grades 4–10
(Grades 4–10) 707, Conv. Center
Lisa Pike (@pikelisa; lpike@fmarion.edu), Francis Marion University, Florence, S.C.
STEM challenges for biology are hard to find (it’s not rocket science)! Hear how to incorporate EDC with easy, inexpensive, content-based, standards-focused STEM challenges for grades 4–10 life science.

Follow the Road to a Successful STEM Career
(Grades 9–College) 710, Conv. Center
Kareem Burney (ksburney@hotmail.com), U.S. Food and Drug Administration, Silver Spring, Md.
Hear and apply lessons from a young minority mid-career-level engineer on what post high school students should be doing in order to obtain a successful STEM career. In order to obtain a STEM career, students need to understand math and science; improve writing, interpersonal skills, and public speaking; and obtain internships. I’ll share my path and lessons learned.
Thursday, 11:00 AM–12 Noon

Making Data Analysis and Statistics Meaningful… and Understandable
(Grades 7–College) 712, Conv. Center
Karlheinz Haas (khaas@thepineschool.org), The Pine School, Hobe Sound, Fla.
Have you been asking whether you should trust loud claims of advertising or what some of the inherent dangers of false positives in testing are? Come explore how to assess the quality behind all those statistics.

Using the National Science Olympiad and STEM to Address NGSS Crosscutting Concepts and Content
(Grades 6–12) Mile High Ballroom 1A, Conv. Center
Donna Young (dlyoung.nso@gmail.com), Chandra X-Ray Center, Bullhead City, Ariz.
National Science Olympiad regional, state, and national competitions include STEM events and supporting resources that are easily incorporated into existing curricula to actively engage students.

The Rise of STEAM: Elevating STEM Curriculum Through the Art of Storytelling
(Grades 6–12) Mile High Ballroom 1B, Conv. Center
Aaron Willey (willeya@unca.edu), University of North Carolina School of the Arts, Winston-Salem
Find out how the artistic qualities of storytelling can help students construct their own knowledge to create authentic learning environments in any STEM classroom.

Cybersecurity Curriculum Training for Teachers
(Grades 6–12) Mile High Ballroom 1C, Conv. Center
Discussion centers on the Cybersecurity Education and Training Assistance Program (CETAP) grant and how it provides free cyber curricula and workshops for grades 6–12 teachers. NICERC provides hands-on professional development, curricula, programs, and competitions to engage students in STEM disciplines. Project-driven curricula creates a context for the content at every level of learning.

Energy: A Multidisciplinary Approach for Teachers (EMAT)
(Grades 9–College) Mile High Ballroom 1F, Conv. Center
Susan Kowalski (skowalski@bscs.org), BSCS, Colorado Springs, Colo.
Get your hands on free online materials to enhance your energy content background. The resources are appropriate for teacher PD or high school students in STEM-related classes.

11:00 AM–12 Noon Hands-On Workshops

Don’t Let It Rub You the Wrong Way: Developing Friction Concepts in Early Childhood
(Grades P–1) 102, Conv. Center
Donna Johnson (djohnson11@schools.nyc.gov), P.S. 021 Crispus Attucks, Brooklyn, N.Y.
Travis Sloane (tsloane@schools.nyc.gov), East Side Elementary School, PS 267, New York, N.Y.
What determines if a sled will go down a hill? Explore how common surface textures can affect sliding down a ramp.

NGSS: It’s All About Inquiry
(Grades K–6) 103, Conv. Center
Barry Kluger-Bell (klugerbell@yahoo.com), Inquiry Science Educator, Boulder, Colo.
By engaging in and analyzing an inquiry activity on dissolving Life Savers®, we will see how doing inquiry is exactly what the NGSS is about.

Zombies, Space, and Connecting Creativity to STEM
(Grades 5–8) 203, Conv. Center
Kait Steele (@826national; kait@826national.org), 826 NATIONAL, San Francisco, Calif.
Julius Panoriñgan (julius@826la.org), 826LA, Los Angeles, Calif.
Attention will be paid to best practices in pairing creative writing with STEM. We’ll explore accessible lessons designed to boost engagement, confidence, and competency across disciplines.

Investigating Data Variation in 60 Minutes
(Grades 9–12) 206, Conv. Center
Aaron Osowiecki (aosowiecki@bostonpublicschools.org), Boston Latin School, Boston, Mass.
Quickly investigate data variation using Google Forms and Sheets. We will run through this lesson collecting and analyzing your own data.
STEAMology: The Power of Artful Learning
(General) 502, Conv. Center
Michelle Shedro (michelle@think360arts.org), Think 360 Arts for Learning, Denver, Colo.
Monica Aiello (@EurekusSTEAM; monica@eurekus.org) and Tyler Aiello (@EurekusSTEAM; tpaiello@gmail.com), Eurekus!, Denver, Colo.
Eurekus! and Think 360 Arts will present how their partnership provides opportunities for the arts in the STEM movement through artist residencies. This workshop will provide STEAM implementation strategies, best practices, helpful tips, and concrete examples of great student work of STEAM in action. Find out about lesson plans created by Eurekus! in conjunction with NASA, focused on content standards. Engage with STEAM hands on during the Aiello’s NASA program Art & the Cosmic Connection.

NCTM Session: Model with Mathematics, Working Across Science and Math in the Middle Grades
(Grades 6–8) 601, Conv. Center
John Pelesko (@pelesko; pelesko@udel.edu), University of Delaware, Newark
Experience mathematical modeling as a crosscutting approach connecting the NGSS and CCSS Mathematics. Learn about the types of modeling and how the modeling process supports and is integral to all aspects of STEM.

Reverse Engineering for Middle School
(Grades 6–8) 607, Conv. Center
Elizabeth Kirner (@lbkirner; lbkirner@gmail.com), Parish Episcopal School, Midway Campus, Dallas, Tex.
Reverse engineering or disassembly is a useful way to introduce the engineering design process and practice basic engineering skills in a measured and structured setting.

Adding Art to STEM with Origami
(Grades 5–8) 610/612, Conv. Center
Helen Hixon (@HelenHixon9; helenhixon9@gmail.com), Horace Mann School, Beverly Hills, Calif.
Unfold new learning in your classroom as you have fun folding paper into useful objects. Explore the relevance of origami to engineering and how it can be used to teach the NGSS.

Pedagogical Practices in Literacy to Enhance Inquiry-Based Instruction
(Grades 5–8) 702, Conv. Center
Sondra LoRe (sondra@utk.edu), The University of Tennessee, Knoxville
Scientific inquiry intrinsically supports literacy skills and concepts. Discover creative ways to integrate strong pedagogical practice enhancing science instructional quality and student learning.

Planning and Designing Safe and Sustainable Facilities for STEM-Based Science (Science Facilities 101)
(Grades P–12) 704, Conv. Center
LaMoine Motz (lmotz@comcast.net), 1988–1989 NSTA President, and Motz Consultant Group, White Lake, Mich.
Juliana Texley (@juliana.texley; jtexley@att.net), 2014–2015 NSTA President, Boca Raton, Fla.
So you want new science facilities? Does your curriculum define your science teaching facility? With more than 15 years of conducting visits and presentations of new/renovated school science facilities, the author team of NSTA Guide to Planning School Science Facilities (2nd. Ed.) will present the basics of science facility planning for safe, ergonomically designed, and sustainable facilities.

STEM21: Defining Curriculum in an Age of Information
(Grades 8–12) Mile High Ballroom 1D, Conv. Center
Joy Barnes-Johnson (@drjoybjo; drjoybjohnson@gmail.com), Princeton High School, Princeton, N.J.
The NGSS have created new opportunities for interdisciplinary learning in the classroom. Resources for differentiated instruction and assessment in a 3-D science context will be shared.

High Five: Five Ways to Make Teaching Biotechnology Easier and Cheaper
(Grades 7–College) Mile High Ballroom 1E, Conv. Center
Valerie Lahteine, Barnstable High School, Hyannis, Mass.
Make biotechnology more hands on and manageable. From reagent prep to running gels and PCR, you and your students will love these innovative ideas and solutions.
11:00 AM–12 Noon Exhibitor Workshops

How to Incorporate Robotics into Any Learning Environment
(Grades 6–12)
301, Conv. Center

Dahlton Grover, PCSEdventures!.com, Inc., Boise, Idaho

Robotics can seem like an intimidating topic to jump into, let alone start teaching! That’s no longer the case with easy-to-build bots and drag-and-drop computer programming apps that make robotics approachable and fun. Join PCS Edventures, leaders in STEM education, for an eye-opening workshop on how to incorporate robotics into any learning environment!

Reclaiming the Metal
(Grades 6–8)
302, Conv. Center

*Sponsor: LAB-AIDS®, Inc.

Hethyr Tregerman, LAB-AIDS, Inc., Ronkonkoma, N.Y.

In this activity from the SEPUP middle level physical science program, participants role-play a scenario involving pretreatment of copper containing liquid wastes from a computer circuit board manufacturer. They examine trade-offs of metal replacement and chemical precipitation, techniques actually used in industrial applications, and in so doing, come to understand the science behind complex environmental issues.

Engineering Design Challenges in the STEM Classroom
(Grades K–12)
303, Conv. Center

*Sponsor: Accelerate Learning

Sharry Whitney, Accelerate Learning, Houston, Tex.

The E in STEM is about using the Engineering Design Process (EDP) to solve problems. Use the EDP to innovate a solution using consensus and collaboration. Join us for this interactive, engaging, and hands-on workshop investigating EDP for your classroom.

Investigating Renewable Energy with KidWind and Vernier
(Grades 7–12)
304, Conv. Center

*Sponsor: Vernier Software & Technology

David Carter (info@vernier.com), Vernier Software & Technology, Beaverton, Ore.

Teach engineering design principles with a focus on renewable energy using KidWind Wind and Solar Experiment kits. Collect and analyze data using a Vernier Energy Sensor with a LabQuest 2 interface or on a computer with Logger Pro software. Explore real-world renewable energy design problems with activities from our Renewable Energy with Vernier lab book.
Birds: Living Dinosaurs
(Grades 6–12)
Sponsor: HHMI BioInteractive
Kathryn Fisher Hedeen and Chris Hedeen, Oregon City High School, Oregon City, Ore.
Did dinosaurs really go extinct? Learn about the evolutionary history of modern birds and excite your students with the idea that they see relatives of dinosaurs every day. Use HHMI BioInteractive’s free short films, interactives, and other classroom resources to teach this chapter of the evolution of life on Earth.

3D Printing for the Bioscience Classroom
(Grades 8–College)
Sponsor: MSOE Center for BioMolecular Modeling
Tim Herman (herman@msoe.edu), MSOE Center for BioMolecular Modeling, Milwaukee, Wis.
Recent advances in 3D printing technology make these amazing machines affordable for many schools. Learn how 3D printing technology can be used to integrate NGSS science and engineering practices with crosscutting concepts and disciplinary core ideas, by creating physical models of molecular structures in your biology or chemistry classroom.

Online Active Learning in Biology with Draw it to Know it!
(Grades 4–College)
Sponsor: Draw it to Know it—Biological Sciences
Adam Fisch (fisch@drawittoknowit.com), Draw it to Know it, Creations, LLC, Indianapolis, Ind.
Draw it to Know it—Biological Sciences is a suite of online educational materials that promotes active learning through drawing and is used in K–12 and postsecondary education. In this workshop, we will show you how our website (www.drawittoknowit.com) and iPhone/iPad app can bring active learning to your biology, anatomy, or physiology class.

How Can Entering Sin (π/2) on My Calculator Turn on a Hot Plate?
(Grades 6–12)
Sponsor: Texas Instruments
Fred Fotsch, Texas Instruments, Dallas
Come to this hands-on workshop and learn about building STEM projects and science through engineering activities using a TI-Nspire CX handheld and the TI-Innovator™ system. Learn coding, as well as building math and science by bringing engineering into the classroom, after-school clubs, or summer camps. We will build and program a basic feedback control system using a TI-Innovator and a TI-Nspire CX graphing calculator.

More Than Robots…FIRST® Tech Challenge “Drives” STEM Learning Beyond the Classroom
(Grades 7–12)
Sponsor: FIRST
Thomas Eng (teng@firstinspires.org), FIRST, Manchester, N.H.
Your robot driver’s license awaits! This hands-on robot activity and intro to the popular FIRST Tech Challenge program will leave you wanting more. Understand why middle school/high school students worldwide call this hands-on, project-based robotics program a Sport for the Mind™. This session is a building block to the “You CAN Program a Robot” workshop.

Think Fast! Build Your Own Reaction Timer with Arduino
(Grades 6–College)
Sponsor: SparkFun Electronics
Derek Runberg, Jeff Branson, and Brian Huang, SparkFun Electronics, Longmont, Colo.
It takes a few hundred milliseconds for the signal to get from your eyes, to your brain, and out to your limbs. Learn a little about building electronics and programming with Arduino. Come find out how to build a reaction timer for your classroom and excite curiosity in your students.
Thursday, 1:30–2:30 PM

1:30–2:30 PM Presentations

The Restoration of New York Harbor: Reconnecting Students to the Water (Grades 6–8) 102, Conv. Center
Denise McNamara (dmcnama@schools.nyc.gov), Retired Director of Science, Staten Island, N.Y.
Delve into the work of the Billion Oyster Project involving New York City middle school science classes in conjunction with hands-on components taking place in New York Harbor.

Enhancing STEM Education Through Partnerships to Prepare Students for NGSS (Grades 6–College) 104, Conv. Center
Andrea Hajek (@AndreaHajek; ahajek@nbpts.org), National Board for Professional Teaching Standards, Arlington, Va.
Join me as I highlight a partnership between a university and a district to prepare student teachers to integrate the NGSS into their instruction.

Getting Started with STEM (Grades 3–5) 106, Conv. Center
Melissa Parks, Stetson University, Deland, Fla.
Attention all new teachers—explore specific hands-on activities that check all the STEM boxes, have a bit of fun, and take away some ready-to-go STEM activities.

STEM Discovery Boxes (Grades 3–7) 108, Conv. Center
Sherri Cianca, Niagara University, Niagara University, N.Y.
Classroom teachers and teacher educators will be inspired to develop low-cost, high-quality, project-based STEM discovery boxes that engage students in solving standards-based, community-specific problems.

Hearts and Minds: A Case for Elementary Robotics (Grades P–6) 109, Conv. Center
Axel Reitzig (@areitzig; reitzig_axel@svvsd.org), Alpine Elementary School, Longmont, Colo.
Robotics is an amazing way to capture students’ hearts and minds and to effectively integrate STEM across the curriculum.

ITEEA Session: Integrative STEM Focal Points—Connecting the I-STEM Dots (General) 111, Conv. Center
Barry Burke (bburke@iteea.org), Jennifer Buelin (jkbuelin@iteea.org), and Steven Barbato (sbarbato@iteea.org), ITEEA, Reston, Va.
Wondering how to get a team of teachers to teach Integrative STEM? This session will highlight how educators from around the country created a framework for I-STEM Education.

Beyond the Basics: Intentional Integration of STEM (Grades P–8) 112, Conv. Center
Kristen Brohm, Alpine Elementary School, Longmont, Colo.
Eric Woodland (woodland_eric@svvsd.org), Northridge Elementary School, Longmont, Colo.
Josh Lemon (@lemon2476; lemon_joshua@svvsd.org), Rocky Mountain Elementary School, Longmont, Colo.
Carolyn Clifford (@CCliffordSTEM) and Alexandra Downing, Timberline PK–8, Longmont, Colo.
Lindsey Cheney, Columbine Elementary School, Longmont, Colo.
Looking to move beyond the STEM basics? Be purposeful in integrating STEM practices and philosophies within all content areas in a meaningful and authentic way.
Reading and Writing in the STEM Classroom
(Grades 3–6) 113, Conv. Center
Jen Gutierrez (@jengutierrez18; jengutierrez@cox.net), Arizona Dept. of Education, Phoenix
Let’s explore strategies for helping all students read and write like a scientist, technologist, engineer, or mathematician for deeper conceptual understanding.

Preschoolers Explore Change Over Time and Living/Nonliving
(Grades P–K) 202, Conv. Center
Betty Zan (betty.zan@uni.edu), University of Northern Iowa, Cedar Falls
Daryl Greenfield (dgreenfield@miami.edu), University of Miami, Fla.
Christine McWayne (christine.mcwayne@tufts.edu), Tufts University, Medford, Mass.
Kimberly Brenneman, Heising-Simons Foundation, Los Altos, Calif.
Discover science, technology, and engineering experiences with living and nonliving objects. Explore the concept of change over time through the eyes of preschool dual language learners.

Gains in the Education of Mathematics and Science—What GEMS Can Do for You!
(Grades 5–12) 506, Conv. Center
Sue Whitsett, AEOP Project Director, NSTA, Arlington, Va.
Receive an overview of the AEOP GEMS programs and discover how you can incorporate similar ideas and practices into your science classroom.

STEM P3: A Statewide Programs/Policy Partnership to Advance PreK–12 STEM Education
(General) 507, Conv. Center
Jeff Weld (@IowaSTEM; jeff.weld@uni.edu), Iowa Governor’s STEM Advisory Council, Cedar Falls
Building a STEM culture across the state calls for systemic rather than piecemeal solutions—integrating classroom, community, and Capitol activities. Get details on a case study of Iowa STEM.

Bringing Imaginations to Reality
(Grades P–12) 602, Conv. Center
Amy Fleurry (@2ndgrteachamy; amy.fleurry@beaufort.k12.sc.us), Michael C. Riley Elementary School, Beaufort, S.C.
Hear about a worldwide network of educators who have established partnerships with the Imagination Foundation to find, foster, and fund creativity and entrepreneurship in children.

Ballistic Missile Defense = Math + Science + You
(Grades 3–College) 603, Conv. Center
Denise Walker, Doug Deason, LaRonda Conley, Missile Defense Agency, Redstone Arsenal, Ala.
At the U.S. Department of Defense Missile Defense Agency, we aim to create productive, long-term, and mutually beneficial partnerships to pursue innovative research; continuously improve the skills of our existing workforce; nurture and shape the development of our future workforce; and strengthen partner institutions. Moreover, our individual and collaborative efforts further increase the STEM workforce pipeline with U.S. citizens. Join us to learn more.

A STEM Guide: Inspiring, Motivating, and Preparing Girls in STEM
(General) 604, Conv. Center
Violeta Garcia (@DrVioletaGarcia; violeta@stemlearningbydesign.com), STEM Learning By Design, Denver, Colo.
Emphasis will be placed on the contents of The STEM Guide for Girls, a free resource to be released in Summer 2016 by the Women’s Foundation of Colorado. This guide is a compilation of research-based strategies and resources for parents/caregivers, educators, and community organizations striving for equitable representation of women and women of color in STEM professions.

12 for Life: A Model Partnership Between Schools and Business
(Grades 10–12) 606, Conv. Center
Rachel Sayer (@rachelsayer1; rachel.sayer@carrollcountyschools.com), Carroll County Schools, Carrollton, Ga.
Discover how Carroll County Schools has improved graduation rate and promoted STEM education in underrepresented groups through a partnership with Southwire Company.
eesmarts™: A Partnership in Energy Education
(Grades 1–12) 608, Conv. Center
Gio Koch (@Gio_Koch; gkoch@crec.), Capitol Region Education Council, Hartford, Conn.
Lisa Sarubbi (lisa.sarubbi@uinet.com), The United Illuminating Co., New Haven, Conn.
A free K–12 comprehensive energy program, eesmarts is administered by Connecticut’s investor-owned utilities in partnership with the Capital Region Education Council (CREC).

Authors Needed! Share Your Teaching Ideas in an NSTA Journal
(General) 706, Conv. Center
Patty McGinnis (pattymcginnis1@gmail.com), Arcola Intermediate School, Eagleville, Pa.
Linda Froschauer (fro2@me.com), 2006–2007 NSTA President, Pasadena, Calif.
Meet with an NSTA journal editor to learn how to successfully prepare and submit an article in one of our award-winning journals.

Inviting “Failure” to the Classroom
(Grades 6–8) 707, Conv. Center
Elizabeth Kirner (@lbkirner; lbkirner@gmail.com), Parish Episcopal School, Midway Campus, Dallas, Tex.
We will focus on failure as a powerful STEM learning tool for students and how to create a culture of productive failure in the classroom.

PolyWhat? Understanding What a Polymer Is: Polymer 101
(Grades 5–12) 709, Conv. Center
Sherri Rukes (sheri.rukes@d128.org), Libertyville High School, Libertyville, Ill.
Discover different strategies for introducing what a polymer is in ways you and your students can understand. Many examples and a CD of materials will be shared.

Using Issues-Based Culminating Projects to Bring STEM to Introductory Chemistry
(Grades 8–12) 710, Conv. Center
Angela Powers, Colorado State University–Pueblo
Carolyn Schwennsen (c.schwenn@yahoo.com), Cate School, Carpinteria, Calif.
Learn how culminating projects can integrate knowledge from STEM disciplines, broaden perspectives on global issues, and sharpen 21st-century skills within the chemistry curriculum.

Moving Toward the Practices with Problem-Based Learning
(Grades 4–12) 712, Conv. Center
DJ West (@djwest78; djwest78@gmail.com), Schoolcraft College, Livonia, Mich.
Explore how Problem-Based Learning can support the science and engineering practices of the NGSS by involving students in both hands-on and thought-based use of these practices. Leave with sample PBLs and links to free resources.

Open-Source Robotics
(Grades 7–12) Mile High Ballroom 1A, Conv. Center
Marcus Catchpole (marcuscatchpole@gmail.com), Robot Aficionado, Colorado Springs, Colo.
Hear from an engineer on “how-to” outfit a high-value engineering classroom on a budget using free and open-source material.

A Unique Ice Core Investigation That Integrates the Three Dimensions of NGSS and STEM
(Grades 8–College) Mile High Ballroom 1B, Conv. Center
Donna Young (dlyoung.nso@gmail.com), Chandra X-Ray Center, Bullhead City, Ariz.
This open-ended investigation uses absolute and relative dating techniques and anomalies to date Icelandic and mid-latitude volcanoes, solar proton events, terrestrial events, and possibly supernovas.

The Evolution of Bigfoot: Analyzing Evidence of an Alleged Species to Guide Students Through the 10 Big Questions in Evolution
(Grades 9–12) Mile High Ballroom 1C, Conv. Center
Aaron Willey (willeya@uncsa.edu), University of North Carolina School of the Arts, Winston-Salem
Walk students through the 10 big questions of evolution while using current evidence in the field of Bigfoot research to provoke inquiry and critical thinking.
1:30–2:30 PM Hands-On Workshops

One Bag of Materials = Three Hands-On Activities = Integrating Science and Engineering in a Fun Way!
(Grades 3–5) 103, Conv. Center
Katelyn Wamsted (@girlstart), Girlstart, Austin, Tex.
Discover three standards-focused hands-on activities to incorporate science and engineering in a fun and engaging way.

Curriculum with Catapults: Upcycled Science
(Grades 2–5) 105, Conv. Center
Chris DeKay (chrish@raficolorado.org), RAFT Colorado, Denver
Catapults are fantastic for teaching experimental design and giving relevance to valuable skills. Come make things fly and discover using mundane materials for great learning.

STEM Lesson Guideposts™: Mapping STEM Lessons into Your Curriculum
(Grades 3–8) 107, Conv. Center
Joel Villegas (jvillegas@pinalesa.org), Pinal County School Office Education Service Agency, Florence, Ariz.
Michael Comer (michael.comer@victoryprd.com), Victory Productions, Worcester, Mass.
Jo Anne Vasquez (jvasquez@stemlessonessentials.com), 1996–1997 NSTA President, and Rocks to Rainbows, LLC, Gilbert, Ariz.
Craft STEM-focused activities through a culminating transdisciplinary experience. This interactive workshop will introduce a newly developed, research-based process for developing practical integrated STEM lessons and units using existing standards and curriculum.

Moon Gardens
(Grades 3–8) 110, Conv. Center
Melissa Lau (melissa.lau@piedmontschools.org), Piedmont Intermediate School, Piedmont, Okla.
We will probe how hydroponics may be the way to sustain life on a lunar or Mars station. Join me for a learning experience that will take kids to the moon and back again.

Integrative STEM for Middle School/High School Administrators and Educators
(Grades 6–College) 201, Conv. Center
Patricia Simmons (patricia_simmons@ncsu.edu), 2011–2012 NSTA President, and National Science Foundation Fellow, Arlington, Va.
Our cross-disciplinary team will highlight the challenges and successes of designing and implementing integrative STEM for middle school and high school teachers, and how administrators can support innovative teaching and learning. Join me for discussions and NGSS-based signature activities featuring local resources for integrative STEM.

Engineers Play, Too!
(Grades P–3) 205, Conv. Center
Shelley Lee (leehe@uwstout.edu), 1995–1996 NSTA President, and University of Wisconsin–Stout, Menomonie
Heidi Usgaard (husgaard@scc.k12.wi.us), St. Croix Central School District, Roberts, Wis.
Learn how to incorporate literacy and “engineering play” into early elementary classrooms and how to use “read alouds” to spark engineering thinking in play!

Nothing but Hot Air? Developing Concepts of Energy, Force, and Friction Through Balloon Cars
(Grades 1–3) 207, Conv. Center
Jody Hilton, Christopher Avenue Community School, Brooklyn, N.Y.
Travis Sloane (tsloane@schools.nyc.gov), East Side Elementary School, PS 267, New York, N.Y.
Test-drive these STEM activities as you design and make a balloon car, troubleshoot it, and redesign it to make it better!

Teacher and Child—Co-Explorers, Co-Learners
(Grades P–2) 210/212, Conv. Center
Barry Kluger-Bell (klugerbell@yahoo.com), Inquiry Science Educator, Boulder, Colo.
Alexandra Cruickshank (@acruick; alex.cruickshank@boulderjourneyschool.com), Boulder Journey School, Boulder, Colo.
Through hands-on activity, discussion, and video, we explore how teachers’ own exploratory learning can guide children’s learning of core ideas and engagement in science practices.
NABT and BSCS Present: The AP Biology Academy—Professional Development with an Impact, Part 1
(Grades 10–College) 501, Conv. Center
Jaclyn Reeves-Pepin (@jreevespepin; jreevespepin@nabt.org), National Association of Biology Teachers (NABT), Warrenton, Va.
Cindy Gay (@cindygay; cindyjgay@gmail.com), Steamboat Springs High School, Steamboat Springs, Colo.
Experience components of a successful professional development program that fosters participants’ content knowledge and leadership skills to allow them to effectively lead PD.

AAPT Session: Balloon Science Lab—Inviting Chemistry and Physics to the Party
(Grades 9–College) 502, Conv. Center
Rebecca Vieyra (@AAPTHQ; @RVieyraAEF; rvieyra@aapt.org), American Association of Physics Teachers, College Park, Md.
Integrate and apply chemistry and physics concepts by measuring the volume of helium in an irregular balloon using gas laws and force diagrams.

Primary STEM Integration K–6
(Grades P–6) 503, Conv. Center
David Lockett (@DavidJLockett; david.lockett@cityschools.net), Mitchell-Neilson Elementary School, Murfreesboro, Tenn.
How do we effectively integrate research-based STEM activities into a K–6 curriculum? Join in and find out.

STEM in Life Science: Connecting to Your Local Zoo
(Grades 4–12) 601, Conv. Center
Alicia Lamfers (alamfers@denverzoo.org), Denver Zoo, Denver, Colo.
Learn how to scaffold a zoo adventure from guided lessons to investigations inspired by student interests. Leave with STEM activities to implement in your classroom.

Middle School Engineering Challenge: Gliders
(Grades 6–8) 605, Conv. Center
Grace Andrews (gandrews@nysscience.org), New York Hall of Science, Queens
Christopher Hernandez (chernandez13@schools.nyc.gov), Robert F. Wagner Middle School, New York, N.Y.
Explore an iterative engineering process that encourages students to modify the design of a simple glider, document changes in flight distance, and optimize performance.

Engineering from Every Angle: Engineers as Proficient in Emotional Intelligence as Well as Analytical Skills
(Grades 5–8) 607, Conv. Center
Haley Holt (@STEMSpark; @KCS_STEM; haley.holt@knoxschools.org), L&N STEM Academy, Knoxville, Tenn.
Successful engineers are proficient in engineering and human relationship skills. I’ll present creative ways to include emotional intelligence in engineering to enhance student learning.

Rocket Building Is Out of This World
(Grades 4–8) 610/612, Conv. Center
Joan Gillman (joan.gillman@calhoun.org), The Calhoun School, New York, N.Y.
For this workshop, STEM skills will be emphasized. We will design, build, and test straw rockets using a special launcher. Propel new learning as you aim to create a rocket that can fly the farthest.

UODs (Unidentified Old Devices): Using Old-Time Inventions and Oddities to Stimulate Inventiveness
(Grades 4–9) 702, Conv. Center
Alan McCormack (amccorma@mail.sdsu.edu), 2010–2011 NSTA President, and San Diego State University, San Diego, Calif.
A collection of bizarre old-time household implements is used to promote inference skills, motivation, and scientific/engineering inventiveness of grades 4–9 children.
Student Investigations of Metallic Elements: A Set of STEM-Based Lessons That Explore Costs Related to Mining, Manufacturing, and Recycling of Metals (Grades 5–8) 703, Conv. Center
William Sumrall (sumrall@olemiss.edu), The University of Mississippi, University
Kelle Sumrall (@sciencherocksims; kelle.sumrall@go Commodores.org), Lafayette Middle School, Oxford, Miss.
Emphasis will be placed on middle grade STEM-based lessons that explore historical aspects and mining, manufacturing, and recycling costs of metallic elements. Handouts!

Science Facilities 102: The Architects Have Started Without Me—What Do I Do Now? (Grades K–12) 704, Conv. Center
LaMoine Motz (llmotz@comcast.net), 1988–1989 NSTA President, and Motz Consultant Group, White Lake, Mich.
Juliana Texley (jtexley@att.net), 2014–2015 NSTA President, Boca Raton, Fla.
Sandra West (sw04@txstate.edu), Texas State University, San Marcos
Is your district planning for new science facilities? Are you involved? If not, you need to get involved before it is too late. In an advanced course (an extension of Science Facilities 101) the NSTA author team for NSTA Guide to Planning School Science Facilities (2nd Ed.) will present more detailed information and examples of safe, ergonomically correct, and functional science facilities for STEM-based science. Budgeting, working with the architect, technology, and special adjacencies will also be presented. Packet will be distributed.

Infect Your Science Classroom with Math (Grades 6–12) Mile High Ballroom 1D, Conv. Center
Jeffrey Lukens (jeffreylukens0613@gmail.com), Sioux Falls (S.Dak.) School District
Integrating science and mathematics shouldn’t just be a good idea, it should be the law! Come learn how easy, important, and fun it is to collect and analyze data as a part of good, solid, and responsible science education.

Teaching Genetics and Evolution Through Context-Based Learning Involving Food Security Issues in Africa (Grades 8–12) Mile High Ballroom 1E, Conv. Center
Timothy Goodale (tagoodal@ncsu.edu), North Carolina State University, Raleigh
Using methods from an NSF-funded international study, this workshop will demonstrate the first of four units involving the teaching and learning of genetics and evolution through context-based methods surrounding food security issues in Africa.

Framing an Integrated STEM Lesson (Grades 8–12) Mile High Ballroom 1F, Conv. Center
Lori Reinsvold (lori.reinsvold@unco.edu), University of Northern Colorado, Greeley
STEM teachers will discuss the attributes of a framework to design integrated STEM lessons, participate in lessons, and develop a lesson.

Explore Building Mousetrap Vehicles to Integrate Science, Technology, Engineering, and Mathematics (STEM) (Grades 9–College) Mile High Ballroom 2C, Conv. Center
Karen Ostlund (@karen_ostlund; klosthund@utexas.edu), 2012–2013 NSTA President, and The University of Texas at Austin
Alden Balmer (alden_balmer@roundrockisd.org), McNeil High School, Austin, Tex.
Build a mousetrap vehicle and discover how to integrate science, technology, engineering, and mathematics by modifying variables to increase speed or distance traveled.

Lesson Plan on Teaching Chemistry by Implementing Metaphorical Thinking (Grade 9) Mile High Ballroom 3C, Conv. Center
Cittoor Girija Navaneedhan (girija.navaneedhan@gmail.com), Indian Institute of Technology Madras, Tamil Nadu
Find out how to prepare lesson plans implementing metaphorical thinking—a soft thinking technique that builds higher order thinking skills. Metaphorical thinking initiates synaptic activity in the axons, which in turn enhances coordination between right and left hemispheres of the brain… bringing activation in the cerebral cortex, enabling quick understanding of the information.
1:30–2:30 PM Exhibitor Workshops

<table>
<thead>
<tr>
<th>Workshop Title</th>
<th>Grades</th>
<th>Room</th>
<th>Sponsor</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Science of Speed: Fusion of Competition, Creativity, and STEM Learning</td>
<td>6–12</td>
<td>302, Conv. Center</td>
<td>Pitsco Education, Brad Blue, Design & Innovation Lab, Minneapolis, Minn.</td>
</tr>
<tr>
<td>Project-Based STEM/Engineering</td>
<td>5–College</td>
<td>303, Conv. Center</td>
<td>WhiteBox Learning, Graham Baughman (graham@whiteboxlearning.com), WhiteBox Learning, Louisville, Ky.</td>
</tr>
<tr>
<td>Analyzing Authentic Biological Data to Practice STEM Skills</td>
<td>9–College</td>
<td>401, Conv. Center</td>
<td>HHMI BioInteractive, Natalie Dutrow, Judge Memorial Catholic High School, Salt Lake City, Utah</td>
</tr>
<tr>
<td>Connecting the Dots in Science and Math Using Salt and Water Models</td>
<td>4–9</td>
<td>402, Conv. Center</td>
<td>3D Molecular Designs, Tim Herman (herman@msoe.edu), MSOE Center for Bio-Molecular Modeling, Milwaukee, Wis.</td>
</tr>
<tr>
<td>Finding the Needle in the Haystack: Selecting High-Quality STEM Material</td>
<td>3–5</td>
<td>405, Conv. Center</td>
<td>ETA hand2mind, Olivia Hua (liv.hua@mail.mcgill.ca), McGill University, Montreal, Que., Canada, Johannes Strobel (strobelj@missouri.edu), University of Missouri, Columbia</td>
</tr>
</tbody>
</table>

Experience CPO’s Optics with Light and Color kit with LED flashlights, laser, lenses, a mirror, and more. Try color mixing, relate it to human vision, and examine different spectra. We make studying light exciting! Take away applications of the concept of light and other electromagnetic waves in technology (STEM and NGSS).

The Science of Speed: Fusion of Competition, Creativity, and STEM Learning

Brad Blue, Design & Innovation Lab, Minneapolis, Minn.

The Science of Speed takes STEM education and fires it down a track as fast as your students can make it go. Students design, build, test, and race CO₂ cars...and along the way, they learn physical science and engineering skills at lightning speed. Learn about it in this hour-long workshop.

Project-Based STEM/Engineering

Graham Baughman (graham@whiteboxlearning.com), WhiteBox Learning, Louisville, Ky.

WhiteBox Learning is a standards- and project-based STEM/engineering learning system. WhiteBox’s world-class STEM curriculum and web-based software applications allow students to research, design, analyze, and SIMULATE their designs (then build), and compete “virtually”, 24/7, all around the world, from any browser. How cool is that?!! This system includes an integrated LMS/teacher dashboard.

Building STEM Foundations in the Primary Classroom

Looking for new ways to incorporate STEM in your classroom? Look no further than this hands-on workshop where SAE’s A World In Motion staff will show you how to use literature as a springboard to introduce STEM topics such as gravity, potential and kinetic energy, friction, momentum, velocity, and acceleration.

Analyzing Authentic Biological Data to Practice STEM Skills

Natalie Dutrow, Judge Memorial Catholic High School, Salt Lake City, Utah

Make scientific research accessible to your students using HHMI BioInteractive’s Data Points. Hear research stories from evolution, genetics, and ecology fields highlighting important topics like climate change and autism genetics. Learn techniques and tools to analyze data, and explore free associated materials, including short films, interactives, and classroom activities.

Connecting the Dots in Science and Math Using Salt and Water Models

Tim Herman (herman@msoe.edu), MSOE Center for Bio-Molecular Modeling, Milwaukee, Wis.

Explore states of matter using magnetic water and salt models while reinforcing math concepts of shape recognition and multiple methods of calculating volume. A simple activity demonstrates pattern recognition followed by development and testing of a hypothesis. Students will “feel” the differences in solid, liquid, and gas states of water.

Finding the Needle in the Haystack: Selecting High-Quality STEM Material

Olivia Hua (liv.hua@mail.mcgill.ca), McGill University, Montreal, Que., Canada

Join us for an interactive session in which we introduce tools for picking high-quality STEM material. We will share a rubric and work through an example of designing, building, testing, and redesigning a code transmission system.
FIRST® Tech Challenge Proves You CAN Program a Robot
(Grades 7–12) 406, Conv. Center
Sponsor: FIRST
Thomas Eng (teng@firstinspires.org), FIRST, Manchester, N.H.
Using off-the-shelf Android technology in a popular Blockly programming language, be ready to “dive in” using go-at-your-own-pace instructional materials to program a robot as used in the FIRST Tech Challenge program. Once you’ve built your program, take the robot for a test-drive based on what you’ve learned. Game on!

ST[EMpower] Kits: Empower Your Students with STEM
(Grades K–2) 407, Conv. Center
Sponsor: Colorado State University Extension
Barbara Shaw (barbara.shaw@colostate.edu) and Annette Haas (annette.haas@colostate.edu), Colorado State University, Fort Collins
Our grades K–2 kits completely meet the underlying concepts of the Colorado Science Standards through a holistic approach to knowledge. Not only is the specific science standard thoroughly addressed, but lessons also meet many mathematics, RWC, social studies, and arts standards through this fun and engrossing way to teach science.

3:00–4:00 PM Presentations

Connecting and Integrating the NGSS with CCSS ELA
(Grades 3–10) 106, Conv. Center
Kevin Niemi (kjniemi@wisc.edu), University of Wisconsin–Madison
Debra Kneser (@debkneser; dmkneser65@marianuniversity.edu), Marian University–Wisconsin, Fond du Lac
Explore how science and engineering practices and disciplinary literacy skills are incorporated into the NGSS.

Engineering Design Failures in Elementary Classrooms: What Can You Expect and How Can You Respond?
(Grades 3–5) 108, Conv. Center
Pamela Lottero-Perdue (plottero@towson.edu), Towson University, Towson, Md.
Elizabeth Parry (@ELIZPARRY; elizabeth.parry.consulting@gmail.com), North Carolina State University, Raleigh
We will draw from research and practice to explore how students experience and teachers respond to design failure, and how “fail” words are used in the classroom.

Cross-Curricular Learning with a Science Focus: Optimizing Student Learning and Maximizing Efficiency of Instruction While Integrating All Aspects of STEM
(Grades 3–6) 109, Conv. Center
Donna Knoell (dknoell@sbcglobal.net), Educational Consultant, Overland Park, Kans.
Hear about effective ways to integrate cross-curricular learning with science instruction to optimize student learning and maximize opportunities to deepen understanding, yielding added time for integrated STEM exploration.

Structuring an Interdisciplinary STEM Unit to Support Students’ Data Analysis and Interpretation Skills
(Grades 3–5) 112, Conv. Center
Sarah Bush (@sarahbbush; sbush@bellarmine.edu), Bellarmine University, Louisville, Ky.
This integrated unit for elementary educators showcases, by means of a math-science partnership, one way teachers can support their students’ understanding of analyzing and interpreting data.
Real-World STEM Lessons: Model Eliciting Activities for Elementary Students
(Grades 1–5) 113, Conv. Center
Deborah Kozdras (@USFStavros; dkozdras@usf.edu), University of South Florida, Tampa
Christine Angel Danger (christine.danger@sdhc.k12.fl.us), Hillsborough County Public Schools, Tampa, Fla.
Discover how educators use Model Eliciting Activities (MEAs) to teach STEM concepts, infuse literacy, and engage students in higher order discussions and processes.

A Systematic Model to Fuel the STEM Pipeline
(Grades 9–12) 202, Conv. Center
Nicolle Karantinos (@STEMedAZ; nkarantinos@gmail.com) and Nicki Derryberry (@STEMedAZ; nicki.derryberry@gmail.com), Red Mountain High School, Mesa, Ariz.
The advanced STEM program models an innovative approach to address the national STEM crisis. Be inspired to change education through this simplistic approach to build and support a STEM model to prepare future generations.

Bridging the Gap Between Students, Science, and the Future
(Grades 9–12) 503, Conv. Center
Amanda Hyde-Berger, Conant High School, Jaffrey, N.H.
Hear how a summer experience led to an exploration on closing the chasm between students, cutting-edge science, and their futures.

Increasing English Language Learner Vocabulary Through STEM
(Grades K–2) 506, Conv. Center
Adriana Guerra (adriana.guerra@venturausd.org), Rebecca Haystead (rebecca.haystead@venturausd.org), Guadalupe Gomez (guadalupe.gomez@venturausd.org), and Jena Branstetter (@mrsbranstetter; jena.branstetter@venturausd.org), E.P. Foster STEM Academy, Ventura, Calif.
Presider: Nancy Escamilla, E.P. Foster STEM Academy, Ventura, Calif.
Receive an overview of how kindergarten uses the NGSS and a rigorous curriculum that includes English language learner strategies to engage ELLs, and also GATE and Special Education.

Bridges to Education: A Partnership Model for Municipalities to Engage Students Through Real-World Problems
(Grades 9–College) 507, Conv. Center
Jennifer Kearns (jnkearns@sandiego.gov), The City of San Diego Council District 1, San Diego, Calif.
The City of San Diego’s “Bridges to Education” Partnership Program provides high school students with an opportunity to create solutions for real-world civil engineering or architecture projects.

Harnessing the Power of Partnerships in Out-of-School-Time STEM Programs
(Grades 7–College) 602, Conv. Center
John Ristvey (jristvey@ucar.edu), UCAR Center for Science Education, Boulder, Colo.
Whitney Cobb (@STEM_McREL; wcobb@mcrel.org), McREL International, Denver, Colo.
Find out how partnerships can be established and nurtured to enrich student experiences for your STEM program through examples from two out-of-school-time programs.

STEMification! How Do You Do That?
(Grades K–8) 603, Conv. Center
Edward Moyer and Christelle Harding (@ChristelleH87; charding@dps61.org), Decatur (Ill.) Public Schools
Learn how to transform your school into a STEM laboratory.

Building a Regional Culture of STEM
(General) 604, Conv. Center
Adrienne Cole (aceole@svsu.edu) and Anne Tapp (tapp_anne; artapp@svsu.edu), Saginaw Valley State University, University Center, Mich.
In order to build a culture of STEM, preK–12 teachers and students engage in real-world research at Saginaw Valley State University, as well as connect with outreach programs at The Dow Chemical Company.

Providing Schools with Real-World Connections
(Grades 7–12) 606, Conv. Center
Meg John, Colorado BioScience Association, Denver
The Colorado BioScience Institute is connecting teachers and companies in the Denver metro area through summer teacher externships, research experience for teachers, and providing relevant PD. Come discuss how to engage both districts and companies, bringing both to the table to improve STEM education.
Building a Community in K–12 Outreach: Fostering Collaboration and Career Connections for STEM Events and Partnerships
(General) 608, Conv. Center
Matthew Maurer (maurerm@rmu.edu) and Sarah Mac-Donald (macdonald@rmu.edu), Robert Morris University, Coraopolis, Pa.
Discussions will be held about the importance of including community stakeholders in K–12 STEM outreach events. Examples will be given of programs and community involvement.

How STEAM Helps STEM Students Become Problem Solvers
(Grades 5–9) 705, Conv. Center
Abigail James (ajames@anj-online.com), University of Virginia, Charlottesville.
Including the arts into STEM courses helps students develop new strategies to problem solving by developing novel approaches.

STEM Ahead
(Grades 4–8) 706, Conv. Center
Stephanie Sassetti (ssassetti@oda.edu), The Out-of-Door Academy, Middle & Upper School, Sarasota, Fla.
Using the NGSS and STEM in your school on a daily basis without making an extra class is easy. Find out how to incorporate both every day with every unit by rethinking how science teachers teach science. Hear how to take simple (yet complex) units and turn them into a richer deeper unit involving STEM and core science concepts.

3-D Modeling with Middle School Girls
(Grades 5–9) 707, Conv. Center
Christi Whitworth (@astronomy_PARI; cwhitworth@pari.edu), Pisgah Astronomical Research Institute, Rosman, N.C.
Hear how teams of girls design Braille materials for museum education programs using NASA altimeter data.

Modeling Scientific Concepts with SCRATCH
(Grades 5–9) 708, Conv. Center
Hector Telford (hector@hu-ms2.org), Howard University Middle School of Mathematics and Science, Washington, D.C.
Explore the use of SCRATCH (developed by MIT) to model atomic structure and bonding, the solar system, cell division, and germination in plants.

Building Our Nation’s Future Engineers
(Grades 8–College) 709, Conv. Center
Scott Prosuch (sprosuch@earthlink.net), Tetra Tech, Inc., Colorado Springs, Colo.
Each year, the Society of American Military Engineers (SAME) holds three camps, giving high school juniors and seniors the opportunity to spend a week immersed in engineering. Hear from one of the volunteer instructors who oversaw a group of campers from around the world as they worked on engineering and construction challenges.

Bioplastic—Going from Synthetic to Natural Polymers
(Grades 6–12) 710, Conv. Center
Sherri Rukes (sherr.ruks@d128.org), Libertyville High School, Libertyville, Ill.
Many of the items that we use today are becoming more Earth friendly. Find out how a bioplastic is made and what plant materials are used. CD with information and activities will be provided.

Science for EVERYONE
(Grades P–12) 711, Conv. Center
Amanda Oberski (@aoberski; amandaoberski@gmail.com), Brightworks, San Francisco, Calif.
Explore a new style of teaching and learning that facilitates deep interest and connection to science, technology, and design for ALL students. Can be adapted for all grade levels.

Survive the Zombie Apocalypse
(Grades 9–College) 712, Conv. Center
Becky McKinney (@NGSSMadeMeDoIt; rmckinney@euhsd.org), San Pasqual High School, Escondido, Calif.
Incorporating the NGSS and STEM into your physics class has never been more fun. Use this project to see if your students can survive the zombie apocalypse.

Practical Tips in 3D Printing for STEM Classes
(Grades 6–College) Mile High Ballroom 1A, Conv. Center
David Black (elementsunearthed@gmail.com), American Academy of Innovation, South Jordan, Utah.
3D printers are all the rage in STEM classrooms, but they can be expensive paperweights if teachers don’t have a purpose and a plan for using them. We will explore ways to effectively use 3D printers in STEM classes and share tips for improving your print jobs.
This Is Science, What Do You Mean I Have to Write? Literacy and Writing in Science (LAWS) (Grades 6–12) Mile High Ballroom 1B, Conv. Center Rachel Murillo (rmurillo@lbschools.net) and Heather Valdespino (hvaldespino@lbschools.net), Ernest S. McBride High School, Long Beach, Calif.
Hear about LAWS, a supplemental writing curriculum developed for teachers, designed to engage and stimulate student inquiry and analyze scientific problems, while supporting NGSS and CCSS ELA.

Add STEAM to Your Chemistry Classroom with Native Plant Extractions (Grades 9–College) Mile High Ballroom 1C, Conv. Center Bev DeVore-Wedding (@bdevore; bdevorewedding@gmail.com), University of Nebraska–Lincoln
Using native plant extractions, students can identify the family of compounds responsible for the colors and use the extractions to dye a variety of fabrics, integrating art into chemistry—using both to design colorful artwork.

3:00–4:00 PM Hands-On Workshops

Propel Energy Concepts by Designing and Making a Propeller-Powered Car (Grades 4–6) 102, Conv. Center Gary Benenson (benenson@ccny.cuny.edu), The City College of New York, N.Y.
Help drive instruction as you design and make a rubber band–powered propeller car that illustrates concepts of force, motion, friction, energy transformation, and air flow.

Design Build (Grades 3–12) 103, Conv. Center Chris DeKay (chris@raftcolorado.org), RAFT Colorado, Denver
Quality challenges encourage creative and contextual thinking. Come rise to challenges and see their use in guiding students through the design process while reinforcing content.

Park It! Making the STEM Connection Through a Parking Garage Challenge (Grades 3–6) 104, Conv. Center Melisa Fowler (mfowler@bamaed.ua.edu), The University of Alabama, Tuscaloosa
Engage in a challenge to use everyday items in order to build the most efficient parking garage. Using STEM in the real world is emphasized.

Simple Machines Made Simpler Through Mechanical Puppets and Masks (Grades 1–3) 105, Conv. Center Donna Johnson (djohnson11@schools.nyc.gov), P.S. 021 Crispus Attucks, Brooklyn, N.Y.
These creations will surprise you by rolling their eyes, wiggling their ears, and sticking out their tongues, vividly illustrating concepts of levers and linkages.

Effective Questioning Strategies in Engineering Activities (Grades 1–5) 107, Conv. Center Chantal Balesdent (@EiE_org; cbalesdent@mos.org), Museum of Science, Boston, Mass.
How can we delve deeper into elementary students’ thinking around engineering? Participants will use examples of students’ work to generate questions that probe students’ thinking and encourage perseverance through failure.
Partner Up! STEM, STARBASE, Schools, and Preservice Teacher Education Yields a Winning Combination
(Grades 3–6/College) 110, Conv. Center
Mary Stein (stein@oakland.edu), Oakland University, Rochester, Mich.
Mark Muzzin (mmuzzin@starbaseone.org), STARBASE One, Selfridge Air National Guard Base, Mich.
Engage in the STARBASE curriculum that awakens grade 5 students’ passion for learning as it inspires teachers and preservice teachers to learn some “fun”damentals of teaching STEM.

Planning a STEAM Night for Your School and Community
(Grades P–12) 201, Conv. Center
Melissa Estremera (estremeram@ehsbr.org) and Elizabeth Minton (mintonb@ehsbr.org), Episcopal School of Baton Rouge, La.
Create your own STEAM Night, a fun night of exciting hands-on science, technology, engineering, arts, and math activities.

It’s Not Rocket Science; Oh Wait, Actually It Is! Engage, Empower, and Excel with Aerospace Engineering!
(Grades 3–5) 203, Conv. Center
Alana Davis (@alanadavis1233; alana.davis@cobbk12.org), Mableton Elementary School, Mableton, Ga.
Janice Belcher (@jbelcher75; janice.belcher@cobbk12.org), Dowell Elementary School, Marietta, Ga.
Looking for ways to engage your grades 3–5 students? Empower your students with integrated STEM while teaching the basics of aerospace engineering.

Using Synthetic Biology to Bring STEM into the Biology Classroom
(Grades 6–College) 206, Conv. Center
Lynne Williams, Coronado High School, Colorado Springs, Colo.
The interdisciplinary nature of synthetic biology offers an innovated approach to STEM education through the use of ready-to-use classroom and lab activities housed at www.BioBuilder.org.

NABT and BSCS Present: The AP Biology Academy—Professional Development with an Impact, Part 2
(Grades 10–College) 501, Conv. Center
Jaclyn Reeves-Pepin (@jreevespepin; jreevespepin@nabt.org), National Association of Biology Teachers (NABT), Warrenton, Va.
Cindy Gay (@cindygay; cindyngay@gmail.com), Steamboat Springs High School, Steamboat Springs, Colo.
Jody Bintz (@JBintzBSCS; jbitset@bscs.org), BSCS, Colorado Springs, Colo.
Experience components of a successful professional development program that fosters participants’ content knowledge and leadership skills to allow them to effectively lead PD.

AAPT Session: Smartphone STEM Lab—Turn Your Smartphone into a STEM Laboratory
(Grades 7–College) 502, Conv. Center
Rebecca Vieyra (@AAPTHQ; @RVieyraAEF; rvieyra@aapt.org), American Association of Physics Teachers, College Park, Md.
Do science with free smartphone and tablet apps. Engage in activities presented in The Science Teacher’s “Turn Your Smartphone into a Science Laboratory” (December 2015), and more! BYOD.

Engaging Youth in Agriculture Through STEM Activities
(Grades K–12) 601, Conv. Center
Yilin Zhuang (yilinz@ufl.edu), Norma Samuel (nsamuel@ufl.edu), Margaret Carden, Jack LeCroy (@MarionFFL; jlecroy@ufl.edu), and Ashley Stewart (ashleyhkstewart@ufl.edu), UF/IFAS Extension Marion County, Ocala, Fla.
Jonael Bosques-Mendez (jonael@ufl.edu), UF/IFAS Extension Hardee County, Wauchula, Fla.
William Lester (wlester@ufl.edu), UF/IFAS Extension Hernando County, Brooksville, Fla.
The University of Florida Institute of Food and Agricultural Sciences Extension developed a one-day program to engage grade 4 students in agriculture through hands-on STEM activities. Experience this extension-based program to teach STEM disciplines in an integrative and applied approach.
Integrating the STEM Disciplines Through Everyday Engineering
(Grades 4–9) 607, Conv. Center
Susan Everett (everetts@umich.edu), University of Michigan–Dearborn
Engage in hands-on activities that focus on three different aspects of engineering—designing and building, reverse engineering to learn how something operates, and the building and testing of models.

NASA Is with You When You Fly: Principles of Flight and Four Forces
(Grades K–12) 610/612, Conv. Center
Barbara Buckner (@bbuckner; barbie.buckner@nasa.gov), NASA Armstrong Flight Research Center, Palmdale, Calif.
Suzanne Nichols (nicholss@ohio.edu), Ohio University Southern, Ironton
Come explore aeronautics, parts of an airplane, and four forces as you engage in hands-on, standards-focused STEM activities. Make real-world connections with NASA research.

Are Three Trials Enough? Analyzing Investigation Data with Large Variation: How Sample Size Can Actually Change “Conclusions”
(Grades 6–12) 701, Conv. Center
Matthew Mirabello (mmirabello@amnh.org), American Museum of Natural History, New York, N.Y.
Account for sample size and variation in the data analysis and conclusion of your science investigation. Reduce “false positives” and support richer data interpretation conversations.

Tinkering with STEM
(Grades 3–12) 702, Conv. Center
Kate Degner (degnerkatherinem@sau.edu), St. Ambrose University, Davenport, Iowa
Use tinker labs and maker spaces to address the goals of STEM education in middle school classrooms. Examples from career technical education, art, and upper elementary school classrooms will be presented. The maker challenges will range from challenges to be completed in a class period to challenges lasting the entire school year and beyond.

Green STEM: A Vehicle to Engage Students in STEM Through Their Natural Curiosity for the Environment
(Grades 6–8) 703, Conv. Center
Jennifer Hammonds (@EcoSchoolsUSA; hammondsj@nwf.org), National Wildlife Federation, Reston, Va.
Take this opportunity to engage in green STEM activities and use tools to better understand and plan project-based green STEM learning experiences for your students.

Sneaky Math: Make Math Memorable with Projects Using Everyday Things
(Grades 4–12) 704, Conv. Center
Cy Tymony (@Sneakyuser; cy.tymony@yahoo.com), Technical Writer, Torrance, Calif.
Ace the basics of fractions, algebra, and geometry (and even a little calculus) while staging fun activities and making math gizmos to use and share.

The Burning Question: How Can STEM Be Integrated into a Traditional Secondary Math Classroom?
(Grades 9–12) Mile High Ballroom 1D, Conv. Center
Erica Jossi (ejossi@ontario.k12.or.us), Ontario Middle School, Ontario, Ore.
Karen Patton, Wallowa County ESD Region 18, Enterprise, Ore.
Explore real-world connections of weather and wildfire to contextualize learning, engage high school students, and meet standards in a traditional secondary math classroom.

Use Ice Core Record Data to Plot and Date Volcanoes, Solar Activity, and Possible Supernova Events
(Grades 7–College) Mile High Ballroom 1E, Conv. Center
Donna Young (dlyoung.nso@gmail.com), Chandra X-Ray Center, Bullhead City, Ariz.
Connect the three dimensions of the NGSS using absolute and relative dating techniques with ice core data anomalies—including volcanic eruptions, solar flares, and supernovas.
Teaching Environmental Sustainability Using a Place-Based Watershed Modeling Application
(Grades 8–12) Mile High Ballroom 1F, Conv. Center
Melinda Daniels, Stroud Water Research Center, Avondale, Pa.
Nanette Marcum-Dietrich (ndietrich@millersville.edu), Millersville University, Millersville, Pa.
Melissa Hess (melissa_hess@conestogavalley.org), Conestoga Valley Middle School, Lancaster, Pa.
Model My Watershed is a free web-based application that invites students to explore the condition of their local watershed with a scientifically valid watershed model.

The STEAM Behind a NASA Mission, as Seen by a Teacher Who “Flew”
(Grades 6–12) Mile High Ballroom 3C, Conv. Center
Kathleen Fredette (kathleen.fredette@ileadschools.org), Maker School Network, Castaic, Calif.
Examine the collaborative STEAM professions required to make a NASA mission successful, such as NASA’s Stratospheric Observatory for Infrared Astronomy, and how you can fly!

3:00–4:00 PM Exhibitor Workshops
Capitalizing the “E” in STEM: Engineering Engaging Experiences
(Grades 4–12) 304, Conv. Center
Sponsor: ProjectEngin
Ann Kaiser (akaiser@projectengin.com), ProjectEngin, Barrington, R.I.
Spend some time engaging your “inner” engineer! Obtain hands-on experience of some of the approaches ProjectEngin uses to make engineering a natural part of your K–12 classroom. Learn about simple activities, engineering projects, and creative curricula designed to help you innovate to educate 21st-century problem solvers.

Patterns and Processes in Ecology
(Grades 6–12) 401, Conv. Center
Sponsor: HHMI BioInteractive
Kim Parfitt, Central High School, Cheyenne, Wyo.
Explore free resources to integrate math and writing into your ecology unit while learning about the restoration of Gorongosa National Park in Mozambique. Mini-documentaries of scientists in the field, lecture clips, animations, and classroom activities show connections between science, math, and ecological restoration projects. Participants receive free HHMI BioInteractive materials.

Constructing and Crossing Cell Membranes
(Grades 8–College) 402, Conv. Center
Sponsor: 3D Molecular Designs
Tim Herman (herman@msoe.edu), MSOE Center for Bio-Molecular Modeling, Milwaukee, Wis.
Hook biology and chemistry students with models that demonstrate the chemical and physical properties of water and the membranes that separate cells from the surrounding environment. Use hands-on teaching tools to explore diffusion, osmosis, and the transmembrane proteins that facilitate the transport of polar molecules across the cell membrane.

Science Through Engineering Design
(Grades 6–12) 405, Conv. Center
Sponsor: Texas Instruments
Jeffrey Lukens, Sioux Falls (S.Dak.) School District
Fred Fotsch, Texas Instruments, Dallas
Survey a story-based science lesson that can get your students excited about project-based learning using REAL-WORLD technology. Applying science knowledge while solving design challenges through a story-based approach is a fun way to get students thinking about science (and engineering) concepts. Appropriate for middle school and high school teachers.

Roll Up Your Sleeves—We’re Programming a LEGO® Robot!
(Grades K–8) 406, Conv. Center
Sponsor: FIRST®
Betsy Daniels (bdaniels@firstinspires.org), FIRST, Manchester, N.H.
Hands on, you’ll experience programming and then driving a LEGO MINDSTORMS® EV3 robot! If you have an interest in science and technology and in helping kids discover and learn—bring your “CAN DO” attitude and learn firsthand how the FIRST LEGO League makes learning science and math fun.
Thursday, 4:30–5:30 PM

4:30–5:30 PM Keynote Address
This Will Revolutionize Education
(General) Four Seasons Ballroom 1/2, Conv. Center

Derek Muller (@Veritasium), Science Communicator, Filmmaker, Television Presenter, and Creator of YouTube Channel Veritasium, Los Angeles, Calif.

Welcome: Mary Gromko, NSTA President, Colorado Springs, Colo.
Presider: Jennifer Williams, Steering Committee Chairperson, 2016 STEM Forum & Expo, and Department Chair Lower School Science, Isidore Newman School, New Orleans, La.

Over the past century, the world has changed dramatically and at a pace that is only accelerating. Smart Boards, smartphones, and smart devices are now poised to disrupt life in the home, at work, and many predict at school. But a number of historical precedents suggest the changes in education will be less dramatic than expected. Understanding why sheds light on the nature of education and on the role of teachers.

Derek Muller is an Australian-Canadian science communicator, filmmaker, and television presenter. He is best known for creating the leading science YouTube channel, Veritasium. Started in 2011, Veritasium is a science video blog featuring experiments, expert interviews, cool demos, and discussions with the public about “everything science.” The channel has over 141 million video views and 2.3 million subscribers. Derek has also appeared as a television presenter on the Australian television program Catalyst, reporting scientific stories from around the globe.

6:30–9:30 PM Educational Trip
Evening Animal Encounters at the Denver Zoo (T-1)
(Ticket Required; $18) Denver Zoo (Off-site)

Join your NSTA friends and colleagues for an adventurous evening after hours at Denver Zoo, where education comes alive! Experience majestic elephants in Toyota Elephant Passage and explore the wonders of aquatic life, including marine mammals, in Northern Shores. The evening will be filled with up close animal encounters and shows with some of Denver Zoo’s wild inhabitants. Enjoy dinner or snacks at Northern Shores and Kamala Café. Don’t forget to pick up a souvenir at the gift shop to remember your visit.

Ticket cost includes **round-trip bus transportation, admission for a private evening event, and associated activities.**

Cash bar and restaurants open for purchases. (Note: This is NOT included in ticket cost.)

There will be continuous shuttles running between the Convention Center and the Denver Zoo. The first bus departs the Convention Center at 6:00 PM; the last bus leaves the zoo at 9:45 PM promptly.

If tickets are still available, please purchase them at the NSTA Registration Area.

— Photo courtesy of Denver Zoo
Huge dinosaurs transport you back in time at the Denver Museum of Nature & Science. See page 9 for details about a special offer for STEM Forum & Expo attendees.
8:00–9:00 AM Invited Panels
More Than What’s Made: Stories of Making Possibilities (Organized by Maker Ed)
(General) Mile High Bldrm. 2 A/B and 3 A/B, Conv. Center

Moderator: Steve Davee (steve@makered.org), Chief Maker Educator, Maker Education Initiative, Emeryville, Calif.

Panelists:
Meghan Reilly Michaud (meghan@visualidentitystudio.com), RISD Museum Board, Past RISD Trustee/Alumni President, and Art Teacher, Andover, Mass.
Robert Munsey (rmunsey@k12albemarle.org), Science/Engineering Teacher, Sutherland Middle School, Charlottesville, Va.
Janella Watson (jwatson@nysci.org), Director of Early Childhood Education, New York Hall of Science, Corona

Maker education is represented by a wide diversity of approaches nurturing curiosity, agency, empathy, and a love of learning. What are some of the processes and forms of making that empower exploration, discovery, and construction of knowledge? How might making connect STEM with student interests and all areas of learning? In this panel, we’ll hear powerful stories from teachers integrating making in early childhood through college settings. Together, with your questions and continued discussions, we’ll build on the vast possibilities of making in education, for every child.

9:15 AM–3:00 PM Exhibits
Exhibit Hall A, Conv. Center

Come stroll through the exposition picking up tips, product samples, and ideas to spark your imagination. Please note that no sessions are scheduled from 12 Noon to 1:30 PM during our exclusive exhibit hall hours.
9:30–10:30 AM Invited Panel
Design Thinking and Experiential Learning
(General) Mile High Ballroom 4 E/F, Conv. Center

Moderator: Garrett Mason (garrett.mason@stmsaints.com), Director of Innovation and Design, St. Martin’s Episcopal School, Metairie, La.

Panelists:
Ela Ben-Ur (ela.ben-ur@olin.edu), Adjunct Professor of Design, Olin College of Engineering, Needham, Mass.
Matthew Green (@stematthewgreen; matt.green@mead354.org), Teacher and Makerspace Coordinator, Riverpoint Academy, Spokane, Wash.
Jessica Lura (@msjlura; jlura@bullischarterschool.com), Director of Strategic Initiatives and Partnerships, Bullis Charter School, Los Altos, Calif.
Lindsey Own (lown@evergreenschool.org), BIG Lab Makerspace Coordinator, The Evergreen School, Shoreline, Wash.

Design thinking is the buzzword in education. How does design thinking apply to teaching STEM? Is this a fad or will it be around to stay? How can teachers and schools leverage this framework to engage students in deep experiential learning to develop their knowledge of material, their mastery of skills, and their mind-set approach to learning? This diverse panel of educators representing both public and private schools as well as the spectrum of grade levels will discuss these and many other questions regarding design thinking and experiential learning in STEM education. Please bring your mobile devices if you would like to participate through a back channel discussion via TodaysMeet.

9:30–10:30 AM Presentations
Life Changing: Seeing the Impacts on Students and Teachers When We STEMify Our Schools
(Grades 3–8) 106, Conv. Center
Thomas Meagher (@meagher3dan; meagher3dan@gmail.com; tmeagher@owatonna.k12.mn.us), Owatonna (Minn.) Public Schools
Explore the academic and affective impacts three schools in rural Minnesota experienced as they transitioned from traditional instruction to STEM teaching and learning over the past four years. Hear about the research data, teaching strategies, and curriculum changes that not only improved academic performance but also changed how students and teachers lived and learned through STEM education.

Designing a 3-D NGSS Digital High School Biology Curriculum
(Grades 9–12) 107, Conv. Center
Katie Van Horne (@dizzvh; katie.vanhorne@colorado.edu), University of Colorado Boulder
We will share a research-based open-access NGSS unit, including how to design new NGSS units with a storyline approach focused on coherence and scientific phenomena.

Integrating Science and Engineering Practices: Embedding Engineering Tasks into a Science Content Storyline
(Grades 3–5) 108, Conv. Center
LeeAnna Hooper (lahooper412@gmail.com), Penn State, University Park, Pa.
Discover exciting ways in which teachers are engaging their students in STEM by naturally integrating NGSS science and engineering practices into one coherent content storyline.

Helping Children Understand the Impact of STEM and the Essential Integration of All STEM Disciplines: Explorations with Physical Structures, Plants, and Everyday Household Tools
(Grades 3–6) 109, Conv. Center
Donna Knoell (dknoell@sbcglobal.net), Educational Consultant, Overland Park, Kans.
Attention will be paid to strategies and activities to engage elementary students actively in STEM applications by constructing physical structures (bridges, ramps, etc.), by growing plants, and by exploring how everyday objects use simple machines for mechanical advantage.
Integrating Technology in the Inquiry-Based Classroom
(Grades K–8) 112, Conv. Center
Ryan Mahn (@JTSDNixa; ryanmahn@nixaschools.net), John Thomas School of Discovery, Nixa, Mo.
Learn applicable strategies and take home sample plans for integrating instructional technology into your science instruction. You don’t have to be 1:1 to love technology.

Integrating Authentic STEM Learning into the Elementary Curriculum Through Local Field-Based Investigation
(Grades K–6) 206, Conv. Center
Ingrid Carter, Mary Heuwinkel, Sarah Schliemann (sschliem@msudenver.edu), and Randi Brazeau (rbrazeau@msudenver.edu), Metropolitan State University of Denver, Colo.
Lisa Jackson (lisa_jackson@engschools.net), Cherrelyn Elementary School, Englewood, Colo.
Hear about a project that facilitated students’ learning through participation in various local water investigations, providing students with authentic applications and connections that focused on STEM concepts.

Engaging Young Scientists in the Engineering Design Process to Create a PBL That Explores the Properties and Behavior of Matter
(Grades P–3) 503, Conv. Center
Jan Lanting (janlanting30@hotmail.com), Thompson School District, Loveland, Colo.
Barbara Randall, Laurene Edmondson Elementary School, Loveland, Colo.
Enhance conceptual understanding of the properties and behaviors of solids and liquids in a real-world STEM application to repurpose recycled solids.

Equipping General Education Teachers to Be STEM Professionals
(Grades 3–6) 504, Conv. Center
Dewayne Morgan (dmorgan@usmd.edu), University System of Maryland, Adelphi
Hear how scientific inquiry is an approach to STEM teaching and learning that can be realized in elementary and middle grade classrooms taught by general education teachers.

Bridging the Attraction Gap: An Event-Based STEM Partnership That Gets Results
(General) 506, Conv. Center
Cynthia Drake (cynthiadrake@delta.edu), Delta College, University Center, Mich.
Cody Kangas (ckangas@mtu.edu), Michigan Technological University, Houghton
Discover how to provide an engaging, collaborative, hands-on STEM exploration event that measurably excites and impacts youth, families, and educators in your community.

Leveraging Partnerships to Become a Regional STEAM Leader
(General) 507, Conv. Center
Brian Stamford (brian.stamford@aiu3.net) and Rosanne Javorsky (@AlleghenyIU3; rosanne.javorsky@aiu3.net), Allegheny Intermediate Unit 3, Homestead, Pa.
Pennsylvania’s Allegheny Intermediate Unit has partnered with regional foundations and businesses to provide more than $4 million in grants and innovative professional development to educators.

High School Students Become Environmental Educators
(Grades P–2/9–12) 604, Conv. Center
Gina Smearsoll (gina.smearsoll@cincinnatichristian.org), Cincinnati Christian School, Junior/Senior High Campus, Hamilton, Ohio
Working with Keep Cincinnati Beautiful, high school students became environmental educators to teach preschoolers about how water pollution affects the wildlife in the Mill Creek.

Rising Star Educator Program
(College) 606, Conv. Center
Marie Stockelberg (marie@stockelbergconsulting.com), Stockelberg Consulting, LLC, Yankton, S.Dak.
Heather Allen and Bridget Dupris (bridget.dupris@bie.ed), Discovery Center, Pierre, S.Dak.
Partnerships among informal and formal education and universities strengthen preservice educators’ STEM content and pedagogy and bring STEM to youth with little STEM exposure.
Biome Challenges That Will Blow Your Mind! (Grades 1–12) 706, Conv. Center

Gina Tesoriero (@stemsuccessedu; ginatesoriero@gmail.com), Simon Baruch MS104, New York, N.Y.

Explore three middle school design challenges with a different twist for each grade: simple machines, biomimicry, and astronomy.

Engaging “At-Promise” Students in STEM Through Competitions (Grades 5–8) 707, Conv. Center

Julie Hasfjord (@TPSSTEM; hasfju@tulsaschools.org), Tulsa (Okla.) Public Schools

Learn practical skills for managing STEM competitions in a classroom setting and how to access your STEM Ecosystem assets while experiencing the inspiring story of a group of middle school students who transformed their school through STEM.

Yes! You Can Teach Computer Science with Scalable Game Design! (Grades 4–8) 708, Conv. Center

Ryan Rasar (@RLRasar; rrasar@nvacademy.org), Nevada Virtual Academy, Las Vegas

In scalable game design, students learn computational thinking patterns and 21st-century skills while coding video games and scientific simulations. NSF grant funded.

Simulate STEM Online Through Virtual Clinical Trials Web Simulation (Grades 9–12) 709, Conv. Center

Lynn Lauterbach (lynnlauterbach@gmail.com), Retired Teacher, Loveland, Colo.

Exposé high school students to scientific and biomedical engineering practices and careers using free online simulations that engage students in technology while designing authentic neuroscience-based clinical trials. Built-in assessment notebook.

Engineering vs. Science (Grades 6–12) 710, Conv. Center

Becky McKinney (@NGSSMadeMeDoIt; rmckinney@euhsd.org), San Pasqual High School, Escondido, Calif.

Take a journey to discover how engineering can be incorporated into ANY science classroom.

Denver Public Schools CareerConnect—Equity in STEM (Grades 9–12) 711, Conv. Center

Kate Berger, Denver (Colo.) Public Schools

Hear how Denver Public Schools CareerConnect dramatically increased participation in STEM CTE programming for our students of color, students with special needs, and girls.

NESTA Shares: Using the CLEAN Collection of Resources to Inspire Climate and Energy Solutions (Grades 5–College) Mile High Ballroom 1A, Conv. Center

Cheryl Manning (@clbmanning; clbmanning@mac.com), Evergreen High School, Evergreen, Colo.

Climate change challenges students to think creatively, looking beyond the immediate problems. The CLEAN collection provides numerous resources that develop skills in engineering solutions.

STEM Literacy: An Innovative Way to Collaborate with Language Arts (Grades 9–12) Mile High Ballroom 1C, Conv. Center

Rebecca Mortensen (rwmortensen@gmail.com), Gwinnett School of Mathematics, Science, and Technology, Lawrenceville, Ga.

Curious about ways to increase students’ scientific literacy? Come learn about this approach that uses a unique collaboration between science and language arts at the Gwinnett School of Mathematics, Science, and Technology.
9:30–10:30 AM Hands-On Workshops

It’s a Wrap
(Grades 4–5) 102, Conv. Center
Catherine Beasley, Washington-Rose Elementary School, Roosevelt, N.Y.
This hands-on workshop will focus on package engineering. Participants will make soap and then design a package for their soap. This activity integrates English language arts, mathematics, social studies, as well as art.

Using the Ice Age to Teach About Energy Flow and Climate Change
(Grades 3–12) 103, Conv. Center
Patricia Higby (@FREEatUNI; patricia.higby@uni.edu), University of Northern Iowa, Cedar Falls
Engage students with activities demonstrating energy flows using the water cycle and cyclic changes in the amount of solar energy received and emitted by Earth.

Constructing Explanations from Activities and Text
(Grades 2–8) 104, Conv. Center
Eileen Patrick (eileenpatrickco@gmail.com), North Mor Elementary School, Denver, Colo.
Constructing explanations is a key practice of the NGSS. Using evidence to support your claim or thinking is critical in science and literacy. At the intersection of literacy and content, participate in a short science lesson and then learn and practice some strategies to support students in constructing claims and evidence.

Beyond Spaceship Earth
(Grades 3–5) 105, Conv. Center
Becky Wolfe (beckyw@childrensmuseum.org), The Children’s Museum of Indianapolis, Ind.
Explore classroom STEM investigations related to the International Space Station. Human exploration of space integrates STEM disciplines from science research in microgravity to engineering life support systems for space travel.

Illuminate Students’ Mathematical Thinking in the Science Classroom
(Grades 3–6) 201, Conv. Center
Teresa Eliopoulos (@T_Eliopoulos; teliopoulos@achieve.org), Achieve, Inc., Washington, D.C.
Engage in learning experiences that highlight how to integrate the CCSS for Mathematics into science classrooms to reinforce scientific concepts and ideas.

Teaching for Invention and Creativity
(Grades 2–8/College) 203, Conv. Center
Kenneth Wesson (ken.wesson@schoolspecialty.com), National Science Consultant, San Jose, Calif.
We have exited the “Information Age” and entered the “Innovation Age,” where inventive minds are at a premium. Our contemporary challenges, as well as the problems yet to surface, will all be solved by innovative thinkers deploying the STEM fields (the new educational model), not by those with the greatest capacity for memorization (the old educational model).

Simple Machine: It’s That Simple
(Grades P–K) 205, Conv. Center
Jason Petula (jpetula@millersville.edu), Millersville University, Millersville, Pa.
Explore a STEM unit tested on kindergartners. Lesson plans will be provided for each of the five-day units. Join us and engage in one of the lessons.

From Apps to ABCs: Great Technology for Early Childhood
(Grades P–1) 207, Conv. Center
Juliana Texley (jtexley@att.net), 2014–2015 NSTA President, Boca Raton, Fla.
Carolyn Staudt (@cjstaudt; cstaudt@concord.org), The Concord Consortium, Concord, Mass.
Can preK and K children learn great practices of science and engineering through technology? Absolutely! We’ll share free and highly rated inexpensive apps from many sources for basic skills and even coding! Bring your smart device, too!
Blocks and Beyond: Strengthening STEM Through Spatial Understandings
(Grades P–1) 210/212, Conv. Center
Mary Jo Pollman (pollmann@msudenver.edu), Professor Emerita, Metropolitan State University of Denver, Colo.
Receive research on spatial literacy, a high predictor of STEM participation, as well as new hands-on inquiry-based approaches in promoting STEM through spatial development.

NABT and BSCS Present: Identify and Interpret—A Strategy to Help Students Make Sense of Difficult Information
(Grades 8–12) 501, Conv. Center
Tamara Pennington (tamara.pennington@weldre4.k12.co.us), Windsor High School, Windsor, Colo.
Get the steps to engage in the powerful Identify and Interpret (I2) strategy in your classroom to help your students make sense of information presented in graphs, complex figures, and data tables.

AAPT Session: Brain Science Lab—Using Gelatin Circuits to Understand How Neurons Work Through Physics and Biology
(Grades 7–College) 502, Conv. Center
Rebecca Vieyra (@AAPTHQ; @RVieyraAEF; rvieyra@aapt.org), American Association of Physics Teachers, College Park, Md.
Model signal transmission along a model “neuron” by sending a small electric current through a vinyl tube filled with salted gelatin.

CosmoQuest: Astronomical Learner Community
(Grades 6–12) 505, Conv. Center
Whitney Cobb (@STEM_McREL; wcobb@mcrel.org), McREL International, Denver, Colo.
CosmoQuest—citizen scientists (you, me) traveling through our universe and contributing to real research while exploring cool activities that unpack underlying concepts. Join us!

ECSTEAM
(Grades P–1) 601, Conv. Center
Chris DeKay (chris@raftcolorado.org), RAFT Colorado, Denver
To early learners, STEAM is everywhere. Come learn how to scaffold “play” into powerful learning experiences. Participants will play as students but think like educators.

Engineered Paper Bridges: Integrating Math and Science in STEM: A Model Lesson
(Grades 6–9) 605, Conv. Center
Sherri Dennstedt (@sdennstedt; @CCSDSTEM; sdennstedt@cherrycreekschools.org) and Denise Goldin-Dubois (@CCSDSTEM; dgoldin-dubois2@cherrycreekschools.org), Cherry Creek School District #5, Centennial, Colo.
In this two-part workshop, engage in an integrated math and science STEM lesson and then discuss integration of the NGSS with the CCSS math practices.

Demystifying NGSS Through Storytelling and Drawing
(Grades 4–10) 607, Conv. Center
Christine Chopyak (@chrischopyak; @PICTUrstrategy; @arlosoul; chrischopyak2@gmail.com), Arlosoul, Denver, Colo.
Illuminate content and practice in your classroom. Experience effective and proven strategies for using the NGSS crosscutting concepts and practices in a science investigation through storytelling and drawing.

NASA’s Journey to Mars: Build a Mars Rover Using NASA’s Beginning Engineering Science and Technology (BEST) Curriculum
(Grades K–8) 610/612, Conv. Center
Barbara Buckner (@bbuckner; barbie.buckner@nasa.gov), NASA Armstrong Flight Research Center, Palmdale, Calif.
Suzanne Nichols (nicholss@ohio.edu), Ohio University Southern, Ironton
Use the Engineering Design Process to build and test a Mars Rover that will carry equipment and astronauts while learning about current NASA missions.

It’s All in the Genes
(Grades 6–9) 703, Conv. Center
Patricia Wahlsten (patriciawahlsten@mersnj.us), Manalapan-Englishtown Middle School, Manalapan, N.J.
We will incorporate the engineering design process and argumentation in connection with GMOs. Materials and modeling of lessons will be shared.

Building Bridges in Earthquake Country—From the Past to the Present
(Grades 1–8) 704, Conv. Center
Lisa Ernst (ernstl@sfsud.edu), Alice Fong Yu Alternative School, San Francisco, Calif.
This STEAM unit, which meets the NGSS as well as the CCSS, brings a hands-on approach through creativity, critical thinking, collaboration, curiosity, communication, and collaboration.
Range of Motion: Motivating Students with STEM Careers
(Grades 5–12) Mile High Ballroom 1D, Conv. Center
Andrea Burrows (@SciEdBurrows; aburrow1@uwyo.edu), University of Wyoming, Laramie
Mike Borowczak (@mborowczak; mike@erebuslabs.com), Erebus Labs, Laramie, Wyo.
Participants will use their personal pictures to determine their range of motion. This hands-on engineering lesson highlights biomedical careers and the three dimensions of the NGSS.

Science and Math: Data Analysis Made Easy
(Grades 7–College) Mile High Ballroom 1E, Conv. Center
Karlheinz Haas (khaas@thepineschool.org), The Pine School, Hobe Sound, Fla.
Increase student engagement in analysis and evaluation of real data. Engage students of different ability levels in mathematical modeling with measurements not previously accessible in the classroom.

Teach an Old Dog New Tricks: Engaging Older Students in STEM
(Grades 9–12) Mile High Ballroom 1F, Conv. Center
Karen McDonough (mcdonough_k@bataviaschools.org), Batavia High School, Batavia, Ohio
Older students with limited science background may be resistant to STEM. Explore how to engage them and lead them to successfully completing an engineering project.

NASA Earth Science: Real-World Connections to Data and Tools for Science Fairs
(Grades 8–12) Mile High Ballroom 3C, Conv. Center
Russanne Low (rusty_low@strategies.org), Institute for Global Environmental Strategies, Denver, Colo.
Join me as I share NASA Earth system science resources that can be used to support educators and students as they prepare for science fair research projects. NASA develops new ways to observe and study Earth’s interconnected natural systems with long-term data records, as well as provides STEM internship experiences through Intel ISEF and Odyssey of the Mind competitions. Bring a laptop/iPad/tablet.

9:30–10:30 AM Exhibitor Workshops
The STEM Design Challenge
(Grades 4–8) 301, Conv. Center
Sponsor: Fisher Science Education
Learn how to create and develop questions about force, energy, and motion for an interactive lab. Then, solve an engineering problem using creative and realistic world processes. Finally, support your understanding with fun and exciting team competition.

Chemical Batteries
(Grades 6–8) 302, Conv. Center
Sponsor: LAB-AIDS®, Inc.
Hethyr Tregeman, LAB-AIDS, Inc., Ronkonkoma, N.Y.
Although we live a battery-powered lifestyle, most of us (students included) have no idea how batteries actually work. In this hands-on workshop, we will engage in an activity from Issues and Physical Science from LAB-AIDS. Make a wet cell battery, explore the effect of using different metal electrodes on battery output, and consider ways to reduce the number of discarded batteries in the waste stream.

The Value of Inquiry and Scientific Explanations in STEM
(Grades K–12) 303, Conv. Center
Sponsor: Accelerate Learning
Sharry Whitney, Accelerate Learning, Houston, Tex.
Engaging in inquiry with real-world phenomena followed by discourse leads to scientific explanations, which make science meaningful. Analyzing evidence to make a claim and using scientific reasoning to explain how the claim is connected—are practices of scientists.

Hands-On STEM Fun for Older Students
(Grades 4–8) 304, Conv. Center
Sponsor: SAE International—A World In Motion Program
Looking for a hands-on way to keep upper elementary students engaged with STEM concepts? Look no further than the award-winning A World In Motion Program. This workshop will show you how to breathe new life into your classroom by challenging students to build gravity-powered vehicles.
Extinctions Past and Present
(Grades 6–12)
Sponsor: HHMI BioInteractive
Kathryn Fisher Hedeen and Chris Hedeen, Oregon City High School, Oregon City, Ore.
Has the sixth mass extinction already begun? Are we losing species faster than in Earth’s past? The history of Earth shows that many extinction events occurred and now we are getting a sense for how extinction rates vary. Use HHMI BioInteractive’s free classroom resources to teach the science of extinction.

The Many Jobs of Proteins: Enzymes in the Spotlight
(Grades 8–College)
Sponsor: 3D Molecular Designs
Tim Herman (herman@msoe.edu), MSOE Center for Bio-Molecular Modeling, Milwaukee, Wis.
Using 3-D physical representations, students discover that proteins are linear sequences of amino acids that spontaneously fold into complex shapes following basic principles of chemistry. This hands-on workshop explores a specific class of proteins—enzymes—to introduce the concepts of substrate, active site, specificity, and competitive/noncompetitive inhibition.

The Road to AdvancED STEM Certification
(Grades K–12)
Sponsor: AdvancED
Geri Fitzgerald (gfitzgerald@advanc-ed.org), AdvancED Colorado, Alpharetta, Ga.
Lynn Seifert (lynn.seifert@pueblocityschools.us), Drew Hirshon (drew.hirshon@pueblocityschools.us), Melissa Waller (melissa.waller@pueblocityschools.us), and Morganlee Kempf (morganlee.kempf@pueblocityschools.us), Central High School, Pueblo, Colo.
Hear one school’s journey to achieve AdvancED STEM certification. Central High School from Pueblo City Schools is the FIRST AdvancED STEM–certified school west of the Mississippi! Central High School staff will describe the process, the value of the journey, the importance of ongoing program improvement, as well as share how you can achieve AdvancED STEM certification, too!

Real-World Biotech: Hands-On DNA Applications in Forensics
(Grades 6–College)
Sponsor: miniPCR
Sebastian Kraves (team@minipcr.com), miniPCR, Cambridge, Mass.
Looking for a real-world biotech learning experience? This hands-on crime scene investigation uses classroom-friendly PCR (polymerase chain reaction) and DNA gel electrophoresis to solve a crime mystery. You will match forensic DNA samples to a missing person’s genetic material, analyze data, and leave ready to apply real-world biotech in your classroom.

National Geographic Explorers—Ideal Role Models of STEM
(Grades 3–12)
Sponsor: National Geographic Learning
Tom Hinojosa (tom.hinojosa@cengage.com), National Geographic Learning/Cengage Learning, Littleton, Colo.
See how National Geographic provides your students with exciting examples of an integration of disciplines that removes the traditional barriers between science, technology, engineering, and mathematics, and instead focuses on innovation and the applied process of addressing questions and designing solutions to complex contextual problems using current tools and technologies.

Internet of Things 101: Connecting Electronic “Things” and the “Internet”
(Grades 9–College)
Sponsor: SparkFun Electronics
Derek Runberg, Brian Huang, and Jeff Branson, SparkFun Electronics, Longmont, Colo.
As the Internet of Things (IoT) becomes more common technology, where do you begin in the classroom? This workshop will use the SparkFun Blynk Board and the Blynk app to build an internet-controlled gadget and a custom app for your phone.
11:00 AM–12 Noon Presentations

Designing and Making Your Personal Wooden Ruler Through STEAM
(Grades 4–7)
106, Conv. Center
Elizabeth Rosenberger (erosenberger@avenues.org) and Katy Garnier (kgarnier@avenues.org), Avenues: The World School, New York, N.Y.
Presider: Sally Kent (skent@avenues.org), Avenues: The World School, New York, N.Y.
Students integrate the disciplines of STEAM when designing, prototyping, certifying (for accuracy), and using their personal wooden rulers for science, math, and art.

Growing STEM Leaders Through Integrated Engineering
(Grades K–5)
108, Conv. Center
Brooke Mendenhall (brooke.mendenhall@beaufort.k12.sc.us) and Amy Fleury (@2ndgrteachamy; amy.fleury@beaufort.k12.sc.us), Michael C. Riley Elementary School, Beaufort, S.C.
Hear how our school has integrated the habits of leadership with the engineering design process in order to help students simultaneously develop collaboration, critical thinking, and character skills through hands-on challenges.

STEM Trade Books: What Makes Them Different
(General)
109, Conv. Center
J. Carrie Launius (@janetcarrie; janetcarrie@gmail.com), Retiring STOM President, Saint Louis, Mo.
Juliana Texley (jtexley@att.net), 2014–2015 NSTA President, Boca Raton, Fla.
Give input on NSTA’s new initiative on identification and selection of STEM trade books. Participants’ ideas will be considered as part of NSTA’s selection guidelines. Examples will be shared.

ITEEA Session: TEAMS—Engineering the Tools of Innovation
(Grades 6–College)
111, Conv. Center
Sandy Honour (shonour@tsaweb.org), Technology Student Association, Reston, Va.
Tests of Engineering Aptitude, Mathematics, and Science (TEAMS) is an annual competition for middle school and high school students designed to help them discover their potential for engineering.

It’s eleSTEMary! Professional Development Model: Teachers Teaching Teachers!
(Grades P–5)
112, Conv. Center
DeLene Hoffner (delene.hoffner@asd20.org), School in the Woods, Colorado Springs, Colo.
Emily Heinrich (@EleSTEMary; emily.heinrich@asd20.org), Academy School District 20, Colorado Springs, Colo.
Sandy Lamb (sandy79lamb@gmail.com), Retired Educator, Monument, Colo.
Bringing more STEM to preK–5 students isn’t hard...“It’s eleSTEMary, my Dear Watson!”

A Model for Building a STEM Ecosystem Across a District
(General)
113, Conv. Center
Becky Ashe (@BeckyAshe; becky.ashe@knoxschools.org), L&N STEM Academy, Knoxville, Tenn.
Get the outline of a school district’s journey to create a STEM brand across 92 schools. Leave with useful research links, tools used to create your models, and assessments to find need in your own systems.

Developing and Integrating Computer Coding: One School’s Exploration and Development
(Grades 1–6)
202, Conv. Center
Alexis Soffler, Charles E. Smith Jewish Day School, Rockville, Md.
Coding is new to the elementary environment. How can schools develop programs that are effective with limited resources?

Broader Impact Partnerships with LIGO
(Grades 4–College)
204, Conv. Center
William Katzman (wkatzman@ligo-la.caltech.edu), LIGO’s Science Education Center, Livingston, La.
LIGO, a research facility, engages in multiple partnerships to achieve its broader impact goals. These partnerships and resources for finding nearby potential partners are explored.

Learning Experiences Afforded by Makerspaces
(General)
206, Conv. Center
Lindsey Own (@LindseyOwn; lown@evergreenschool.org), The Evergreen School, Shoreline, Wash.
Following the Design Thinking and Experiential Learning panel, join panelist Lindsey Own to discuss the learning that can be afforded to students with the support of a dedicated makerspace.
Pint-Sized Programming
(Grades P–3)
Sarah Allen
(sallen@indiancreekschool.org), Indian Creek School, Crownsville, Md.
Come learn how easy it can be to teach programming to our youngest students so they develop critical-thinking skills that can be used across STEM disciplines.

STEMming Away from Stereotypes: Broadening Student Views on STEM Careers
(Grades P–3)
Anne Tapp
(@tapp_anne; artapp@svsu.edu) and Adrienne Cole
(acle@svsu.edu), Saginaw Valley State University, University Center, Mich.
Since 1957, educators and social scientists have documented students’ stereotypical images of STEM professionals. Despite efforts to depict them accurately, most students do not perceive STEM professionals correctly. Strategies must be developed to change this misconception.

Building Teachers’ STEM Practices
(Grades 6–12)
Sharon Bowers
(swbowes@gmail.com), National Institute of Aerospace, Hampton, Va.
Daniel Kelly
(@DanielKellyedu; dpkelly@ncsu.edu), North Carolina State University, Raleigh
Aaron Clark
(aaron_clark@ncsu.edu), Durham (N.C.) Public Schools
Developing standards-based inquiry and design lessons is a challenge. Learn about flexible and practical job-embedded professional development experiences that build teachers’ STEM practices.

A K–5 STEM Partnership Between Dalton Elementary and Azusa Pacific University
(Grades K–5)
Kathleen Tallman
(ktallman@apu.edu), Azusa Pacific University, Azusa, Calif.
Erin Kremer
(ekremer@azusa.edu), Dalton Elementary School, Azusa, Calif.
Azusa Pacific University and Dalton Elementary developed three projects to engage K–5 students in hands-on STEM activities at the elementary school and at APU.

Colorado STEMworks: Quality STEM Programming
(General)
Elizabeth Kuehl
(@ColoradoSTEM; lkuehl@coloradoeducationinitiative.org), The Colorado Education Initiative, Denver
Rebecca Peters
(@BeckyEPeters; peters_rebecca@svsd.org), The Innovation Center, Longmont, Colo.
The Colorado STEMworks database is a powerful resource for Colorado educators. The programs admitted into the database met a high bar of quality and were evaluated through a process validated by WestEd. Learn why and how Colorado was the third state to replicate this process.

How to Implement STEM and NGSS into Your Classroom Through the Use of NSTA Competitions
(Grades K–12)
Sue Whitsett
(swhitsett@nsta.org), AEOP Project Director, NSTA, Arlington, Va.
Hear about various NSTA competitions and how they can bring STEM and the NGSS into the classroom, as well as give teachers and students a chance to earn recognition and prizes.

WGU-AMNH Partnership Pilot Program: Year 1 Results, Year 2 Progress
(College)
Suzanne Metlay
(suzanne.metlay@wgu.edu), Western Governors University, Salt Lake City, Utah
Learn how Western Governors University and the American Museum of Natural History are partnering successfully with Seminars on Science as required coursework for WGU Teachers College students.

Aquatic Cave Ecology with Student-Built Submersible Drones
(Grades 9–12)
Eric Wong
(ewong@mercyjaguars.com), Mercy Academy, Louisville, Ky.
Deepen your students’ STEM knowledge as they build and pilot underwater drones to perform cave pool surveys in collaboration with National Park Service researchers.
Facilitating High School Students’ Interest in STEM Careers via Problem-Based Learning
(Grades 9–12) 608, Conv. Center
Melanie LaForce (@melanielaforce; laforce@uchicago.edu) and Elizabeth Noble (enoble@uchicago.edu), Outlier Research & Evaluation, Chicago, Ill.
Join us as we discuss how our research is pointing to high-quality PBL as an effective strategy for increasing students’ interest in STEM college majors and careers.

Investigational Design Tool Helps Students Put STEM in Action
(Grades 6–9) 701, Conv. Center
Lynn Lauterbach (lynnlauterbach@gmail.com), Retired Teacher, Loveland, Colo.
Find out how to use a graphic organizer tool to help guide student design of their own investigations AND match it to a free online web adventure that models scientists connecting STEM to real-world science.

Evolution for Educators
(Grades 6–8) 705, Conv. Center
Bertha Vazquez (@rdfrsTIES; bertha@richarddawkins.net), Richard Dawkins Foundation for Reason and Science, Coral Gables, Fla.
Attention will be paid to the NGSS middle school disciplinary core ideas in evolution and natural selection along with sharing activities to effectively cover these ideas.

Science “STEMIFICATION”: Bringing Science Instruction into the 21st Century with STEM Infusions
(Grades K–12) 706, Conv. Center
Amanda Solarsh (@stemsuccessedu; amandasolarsh@gmail.com), Simon Baruch MS104, New York, N.Y.
Explore ways to successfully teach science content through STEM and NGSS infusions into the middle school science curriculum.

Engaging Middle School Students with STEM and the Engineering Design Process
(Grades 5–8) 707, Conv. Center
Kristi Raymond (raymonkr@spsd.org), Mahoney Middle School, South Portland, Maine
Chris Hughes (hughesch@spsd.org), Memorial Middle School, South Portland, Maine
Discover how to get students to successfully complete a variety of design challenges using an Engineering Design Process that develops 21st-century skills.

Measuring and Mapping Air Quality by Using Mobile Devices: An After-School STEM Program
(Grades 7–College) 708, Conv. Center
Ismail Marulcu (imarulcu@gmail.com), Erciyes University, Melikgazi Kayseri, Turkey
I’ll introduce an after-school STEM program: Air Quality Measuring and Mapping by Using Mobile Devices. This project is funded by TUBITAK, The Scientific and Technological Research Council of Turkey.

Sim City in the Real World: Using STEM Practices to Model YOUR Environment
(Grades 6–12) 709, Conv. Center
Nanette Marcum-Dietrich (ndietrich@millersville.edu), Millersville University, Millersville, Pa.
Carolyn Staudt (@cjstaudt; cstaudt@concord.org), The Concord Consortium, Concord, Mass.
Melinda Daniels, Stroud Water Research Center, Avondale, Pa.
Melissa Hess (melissa_hess@conestogavalley.org), Conestoga Valley Middle School, Lancaster, Pa.
Come learn about an exciting, free online modeling application that gives anyone (age 8+) the ability to use STEM practices to explore their local watershed.

Using the 5E Learning Cycle Model to Facilitate an Inquiry-Oriented Lesson on Mass Transfer, Osmosis, and Diffusion
(Grades 6–12) 710, Conv. Center
Thomas Owen (tom_owen@brewsteracademy.org), Brewster Academy, Wolfeboro, N.H.
Emphasis will be placed on a series of biology lessons on mass transport, osmosis, and diffusion, using the 5E (Engage, Explore, Explain, Elaborate, and Evaluate) learning cycle model as a lesson design framework.
A Systematic Model to Fuel the STEM Pipeline
(Grades 9–12)
711, Conv. Center
Nicolle Karantinos (@STEMedAZ; nkarantinos@gmail.com) and Nicki Derryberry (@STEMedAZ; nicki.derryberry@gmail.com), Red Mountain High School, Mesa, Ariz.
This advanced STEM program models an innovative approach to address the national STEM crisis. Be inspired to change education through this simplistic approach to prepare future generations.

Experimental Design for Students
(Grades 6–12)
712, Conv. Center
Becky McKinney (@NGSSMadeMeDoIt; rmckinney@euhsd.org), San Pasqual High School, Escondido, Calif.
Allowing your students to design experiments can be a challenging and scary task. Use this amazing graphic organizer that works like a charm!

Using Models to Teach How Crime Scene Blood Spatter Evidence Tells a Story
(Grades 9–12)
Mile High Ballroom 1A, Conv. Center
Anthony Bertino (abertino@nycap.rr.com) and Patricia Nolan Bertino (nolanp@nycap.rr.com), Retired Educators, Schenectady, N.Y.
Using easy-to-understand, inexpensive models, participants apply math and physics to determine blood’s direction, impact angle, area of convergence and origin, and if the evidence is consistent with eyewitness accounts. Handouts!

Making Meaning Makers in the Sciences
(Grades 9–12)
Mile High Ballroom 4 E/F, Conv. Center
Matthew Green (@stematthewgreen; matt.green@mead354.org) and Rick Biggerstaff (rick.biggerstaff@mead354.org), Riverpoint Academy, Spokane, Wash.
We will share Riverpoint Academy student work samples, followed by a discussion focused on how to make innovative learning a reality in public high schools.

Incorporating the CCSS for Literacy in Science and Technical Subjects into Science Investigations
(Grades 9–12)
Mile High Ballroom 1C, Conv. Center
Angela Powers, Colorado State University–Pueblo
Carolyn Schwennsen (cschwenn@yahoo.com), Cate School, Carpinteria, Calif.
We will highlight key STEM-related CCSS components as well as model an approach based upon the Science Writing Heuristic for incorporating literacy skills into investigations.

Making and Accountability in the Classroom
(Grades K–12)
Mile High Ballroom 4 A–D, Conv. Center
Robert Munsey (@munseyclass; rmunsey@k12albemarle.org), Sutherland Middle School, Charlottesville, Va.
In maker education, it is the teacher’s job to facilitate learning and keep students accountable. Discussion centers on creating maker lessons and assessing student success.
11:00 AM–12 Noon Hands-On Workshops

Animals Inside & Out: Interactive Animal Science Education Activities
(Grades 3–5) 102, Conv. Center
Elizabeth Janning (elizabeth.janning@unl.edu), Raising Nebraska: Your Food & the Families Who Grow It, Grand Island
Rhonda Herrick (rherrick1@unl.edu), Nebraska Extension in Franklin County, Franklin
Ashley Benes (@ashbenes; ashley.benes@unl.edu), Nebraska Extension in Cass County, Weeping Water
Darci Pesek (darci.pesek@unl.edu), Nebraska Extension in Jefferson County, Fairbury
Melinda Vlieger (mvlieger2@unl.edu), Nebraska Extension in Hall County, Grand Island

“Mooove” your students with activities about animal science. Animals Inside & Out is a hands-on lesson series designed for grades 3–5 youth to help them gain knowledge and understanding of the livestock industry.

Archeogeology: Engaging Students in Connecting the History and Science of Place
(Grades 2–5) 103, Conv. Center
Lisa Brose (@Lisa.Brose; lbrose@psdschools.org), Dunn Elementary School, Fort Collins, Colo.

Tap your students’ natural curiosity by connecting the archaeology and geology of a place. The model is based on Rocky Mountain National Park, but applies to anywhere.

May the Force Be with You: A Portable Force Indicator
(Grades 4–9) 105, Conv. Center
Tim Young (tim.young@und.edu), University of North Dakota, Grand Forks
David DeMuth (david.demuth@vcsu.edu), Valley City State University, Valley City, N.Dak.

The “Findi” device turns linear and circular motion into a visual demonstration of forces and acceleration. We connect to 5 Es (Engage, Explore, Explain, Elaborate, and Evaluate), STEM, and the NGSS.

Engaging Elementary Students with Engineering Design Challenges
(Grades 3–5) 107, Conv. Center
Kim Haines (@KimHaines10), Dawson School, Lafayette, Colo.

Experience a hands-on engineering design challenge and explore ideas for collaboration, communication, critical thinking, and creativity that are present in classroom engineering opportunities.

Design Thinking and the Everyday Classroom
(Grades P–8) 110, Conv. Center
Lindsey Cheney, Columbine Elementary School, Longmont, Colo.
Alexandra Downing and Carolyn Clifford (@CClifford-STEM), Timberline PK–8, Longmont, Colo.
Eric Woodland (woodland_eric@svvsd.org), Northridge Elementary School, Longmont, Colo.
Josh Lemon (lemon_joshua@svvsd.org), Rocky Mountain Elementary School, Longmont, Colo.
Kristen Brohm, Alpine Elementary School, Longmont, Colo.

Using the Design Thinking Process is an important tool to advancing STEM instruction and engagement. Learn the process, see examples of preK–8 application, and plan.

Global STEM Expeditions: Discovering Real-World STEM Challenges While Circumnavigating the Globe
(Grades 3–6) 201, Conv. Center
Barrington Irving, Jr., Experience Aviation and the Flying Classroom, Opa Locka, Fla.

Engage in an interactive STEM activity using pilot Barrington Irving’s global STEM expeditions as a catalyst to expose students to innovative design challenges.

Connecting Families Through Science, Technology, Engineering and Math (STEM) Nights
(Grades 3–5) 203, Conv. Center
Katelyn Wamsted (@girlstart), Girlstart, Austin, Tex.

Receive hands-on activities to provide a positive and fun environment that encourages girls (and boys) and their families.
Can You Build It? Engineering Design Challenge in the Early Elementary Classroom
(Grades P–2) 205, Conv. Center
Erica Green (egreen@fwsu.org), Bellows Free Academy Fairfax, Vt.
Learn how an engineering design challenge combines STEM practices with collaborative problem solving and group skills to foster the natural development of young children.

Will It Sink or Float? Why?
(Grades P–3) 207, Conv. Center
Judith McDonald (judithmcdonald@bac.edu), Belmont Abbey College, Belmont, N.C.
This engaging activity provides you with a 5E (Engage, Explore, Explain, Elaborate, and Evaluate) lesson that will delight your students while exploring properties of matter—sink and float—using everyday objects.

Early Childhood Fab Labs: Integration of Digital Fabrication into PreK–3 STEM Learning
(Grades P–3) 210/212, Conv. Center
Presenter to be announced
We will cover examples of early implementation of early childhood fab labs and provides hands-on experience on how digital fabrication enhances learners' understanding of STEM.

NABT and BSCS Present: Scaffolding the Practices of Science to Facilitate Student Learning
(Grades 9–12) 501, Conv. Center
Traci Richardson, Stillwater High School, Stillwater, Okla.
Join us to learn how to scaffold the practices of science to effectively help all students learn to do science.

Exploring the TeachEngineering Digital Library: Engineering Resources for the K–12 Community
(Grades K–12) 502, Conv. Center
Janet Yowell (janet.yowell@colorado.edu) and Malinda Zarske (@TeachNgineering; malinda.zarske@colorado.edu), University of Colorado Boulder
We will share activities from TeachEngineering, a free resource for practitioners and an easily accessible publishing venue for teachers and engineering professionals who have developed curricular content. The collection houses more than 1,400 classroom-tested K–12 engineering lessons and activities that explore science and math in an age-appropriate, design-focused fashion that meets current standards.

Successful STEM-Rich Making Practices That Benefit Underserved Students
(Grades K–9) 601, Conv. Center
Jerry Valadez (@samacademymaker; jdvscience@yahoo.com), California State University, Fresno
Engage with integrated STEM activities and learn how the Community Science Workshops successful practices create STEM-rich learning environments accessible to all kids.

Innovators’ Compass
(General) 605, Conv. Center
Ela Ben-Ur (@elabenur; ela.ben-ur@olin.edu), Olin College of Engineering, Needham, Mass.
Join in to use the Innovators’ Compass (www.innovatorscompass.org) to visually apply four fundamental questions of science and innovation throughout your curriculum and culture. Come try it!
Using a Web-Based Graphing Tool to Analyze and Interpret Local and National Weather and Climate Data for Patterns and Change (Grades 6–8) 607, Conv. Center
Matthew Mirabello (mmirabello@amnh.org), American Museum of Natural History, New York, N.Y.
Explore weather and climate data through an online graphing tool that simplifies data visualization so students can focus on analysis and interpretation.

3-2-1 Liftoff! Build and Launch a Satellite Using NASA’s Beginning Engineering Science and Technology (BEST) Curriculum (Grades K–8) 610/612, Conv. Center
Barbara Buckner (@bbuckner; barbie.buckner@nasa.gov), NASA Armstrong Flight Research Center, Palmdale, Calif.
Suzanne Nichols (nicholss@ohio.edu), Ohio University Southern, Ironton
Use each stage of the Engineering Design Process to complete a team challenge of building and launching a satellite while making connections to NASA missions.

Menacing Microbe or Just a Bad Rap? Bacteria, the Real Story (Grades 6–9) 702, Conv. Center
Patricia Wahlsten (patriciawahlsten@mersnj.us), Manalapan-Englishtown Middle School, Manalapan, N.J.
Integrate technology, argumentation, and hands-on labs for student exploration of microbiomes. Labs, project ideas with handouts, and free technology tools to take away.

Using the Local Environment to Engage Youth: How Adapting the Billion Oyster Project Can Work for Your Site (Grades 5–8) 703, Conv. Center
Kristian Breton (@kristianbreton; kbreton@nyas.org) and Tiffany Kapler (tiffany.kapler@gmail.com), The New York Academy of Sciences, New York, N.Y.
See how locales in your area can use their natural environment to engage youth in authentic research. The Academy has partnered with schools to implement a program examining how oyster habitats in the New York City harbor have been impacted in the past 100 years.

Build, Ignite, and Launch (Grades 5–12) 704, Conv. Center
Brad Blue (bradblue@gmail.com), Design & InnoVation Lab, Minneapolis, Minn.
Based on the scaffolded rockets and launch systems—from simple to complex—in the movie October Sky, students build rockets as well as ignition systems to launch their rockets.

Integrating Career Awareness into STEM Classes (Grades 5–12) Mile High Ballroom 1D, Conv. Center
Laura Farrelly (@laurafarrelly; laura@couragion.com), Couragion, Denver, Colo.
Learn about three NGSS-based lesson plans that combine hands-on experiments, multiple STEM competencies, and STEM career exploration into a cohesive unit of study.

Using Problem-Based Learning to Bring Upper-Level Research to High School STEM Science Students (Grades 9–12) Mile High Ballroom 1E, Conv. Center
Kent Hups (kent.m.hups@adams12.org), Northglenn STEM High School, Denver, Colo.
Assist the Denver Museum of Nature & Science in hands-on sorting, morphotyping, and cataloging Ice Age microfossils and exploring Problem-Based Learning concepts.

Technology Tools for Visualizing Scientific Data: A Hands-On Workshop (Grades 6–College) Mile High Ballroom 1F, Conv. Center
David Black (elementsunearthed@gmail.com), American Academy of Innovation, South Jordan, Utah
Use open-source and free software to visualize authentic online scientific data. You’ll convert altitude data of Mars and the Moon into 3-D terrains using ImageJ and Daz3D Bryce, and use the Gimp and DS9 to turn infrared data into enhanced RGB images.

The Best Interactive Physics Demonstrations You and Your Students AREN’T Doing (Grades 8–College) Mile High Ballroom 2C, Conv. Center
James Lincoln (@JamesPhysics; james@physicsvideos.net), Tarbut V’Torah Community Day School, Irvine, Calif.
How can physics demonstrations be hands on, interactive, and engaging for the next generation? Come find out more.
Kids Love Rocks: Using Children’s Natural Interest to Explore Earth Materials
(Grades P–1)
Mile High Ballroom 3C, Conv. Center
Bob Williams, Consultant, Belmont, Tex.
Mary Hobbs *(maryhobbs@utexas.edu)*, The University of Texas at Austin
Jenny Ingber *(@jingber; jingber@amnh.org)*, American Museum of Natural History, New York, N.Y.
Unearth activities that will keep your students busy with rocks and soils. These STEM activities can be used with kids—next week.

11:00 AM–12 Noon Exhibitor Workshops

Putting the STEM in Astronomy
(Grades 6–College)
301, Conv. Center
Sponsor: Fisher Science Education
Walk away with astronomy-focused STEM activities and learning tools you can implement in your classroom. Then, become familiar with how modern technology helps navigate the sky so you can focus on coordinating star parties and observing projects.

Interpreting Motion Graphs
(Grades 6–8)
302, Conv. Center
Sponsor: LAB-AIDS®, Inc.
Hethyr Tregerman, LAB-AIDS, Inc., Ronkonkoma, N.Y.
In this activity from the SEPUP middle level physical science series exploring Newton’s laws in a context of motor vehicle safety, participants are challenged to design an investigation to measure the speed of a moving cart as a function of its release point from a curved ramp. They carry out their experiment, discuss the role of speed in automobile collisions, and conclude by examining distance vs. motion graphs.

Project-Based STEM/Engineering
(Grades 5–College)
303, Conv. Center
Sponsor: WhiteBox Learning
Graham Baughman *(graham@whiteboxlearning.com)*, WhiteBox Learning, Louisville, Ky.
WhiteBox Learning is a standards- and project-based, STEM/ engineering learning system. WhiteBox’s world-class STEM curriculum and web-based software applications allow students to research, design, analyze, and SIMULATE their designs (then build), and compete “virtually”, 24/7, all around the world, from any browser. How cool is that?! This grades 6–12 system includes an integrated LMS/teacher dashboard.

Ignite Your Science Classroom with 3D Bioprinting
(Grades 9–College)
304, Conv. Center
Sponsor: SE3D Education
Mayasari Lim *(mlim@se3d.com)*, SE3D Education, Redwood City, Calif.
3D bioprinting is a rapidly expanding field in bio and medical industries. With SE3D’s classroom 3D bioprinter, students can gain firsthand experiences using this cutting-edge tool. This workshop showcases classroom examples that can illustrate different industry applications in bioprinting.

Student Collaboration in the Science Classroom
(Grades 6–9)
401, Conv. Center
Sponsor: AEOP eCYBERMISSION
Cheryl Long, eCYBERMISSION Outreach Specialist, NSTA, Arlington, Va.
This workshop will guide participants through aspects of the NGSS and highlight how group work can be beneficial to the science class through the use of hands-on activities.

Let’s Get Helical: Exploring DNA Structure/Function with Physical Models
(Grades 8–College)
402, Conv. Center
Sponsor: 3D Molecular Designs
Tim Herman *(herman@msoe.edu)*, MSOE Center for Bio-Molecular Modeling, Milwaukee, Wis.
DNA can be viewed as a macromolecule or a source of genetic information. Explore both features with interactive DNA models and a paper bioinformatics exercise focusing on the beta subunit of hemoglobin. Examine the mutation that leads to sickle cell disease and the regulation of fetal and adult hemoglobin expression.
Hands On with SumBlox, a New STEM Toy
(Grades P–5) 403/404, Conv. Center
Sponsor: SumBlox
David Skaggs, SumBlox, Paradise, Utah
Join us and take part in learning SumBlox games that are used to teach math in the classroom. SumBlox are wooden number-shaped blocks with the value of each number represented by its height. A free set will be given to the winner of the final competition.

Zombie Apocalypse!
(Grades 6–12) 405, Conv. Center
Sponsor: Texas Instruments
Jeffrey Lukens, Sioux Falls (S.Dak.) School District
Become part of a zombie apocalypse! Learn about disease spread modeling using simulations and fun storylines about a zombie outbreak. Applicable for middle school and high school, this workshop is sure to scare you and your little zombies into learning how exciting Hollywood themes can be used to teach science concepts.

Integrating 360° Video Technology to Engage Students
(Grades 6–College) 406, Conv. Center
Sponsor: Ocean First Education
Caine Delacy (caine@oceanfirsteducation.com), Ocean First Education, Denver, Colo.
Explore highly engaging 360° videos to engage students in a meaningful three-dimensional way. Ocean First Education will demonstrate use of 360° videos as a means to stimulate understanding and exploration of marine science. Learn about this new technology and how it can work effectively in your classroom!

Physical Computing, Computer Science, and Making with Arduino
(Grades 7–College) 407, Conv. Center
Sponsor: SparkFun Electronics
Jeff Branson, Derek Runberg, and Brian Huang, SparkFun Electronics, Longmont, Colo.
Using the SparkFun Inventors Kit as an introduction to electronics, programming, and physical computing allows artists, makers, educators, and students to easily control LEDs, read sensors, and move motors. Come see the possibilities of physical computing in your STEM classroom to create the next generation of innovators with Arduino.

1:30–2:30 PM Presentations
Investigation or Model: Two Argument-Based Inquiry Approaches to the NGSS
(Grades 2–6) 106, Conv. Center
Mason Kuhn (mason.kuhn@uni.edu), University of Northern Iowa, Cedar Falls
Learn about two ways to use an ABI approach to have your students engaging in argument based on evidence.

Design Thinking and Young Engineers
(Grades K–2) 107, Conv. Center
Jessica Lura (@msjlura; jlura@bullischarterschool.com), Bullis Charter School, Los Altos, Calif.
Learn how the design thinking process and mind-sets can support the development of our early learners as engineers.

Biomimicry: A Natural Approach to Arts Integration in STEM
(Grades 3–8) 108, Conv. Center
Jennifer Jenkin (jjenkin@dbg.org), Desert Botanical Garden, Phoenix, Ariz.
Biomimicry, using nature to solve human challenges, goes beyond STEM by incorporating art and design. Discover why and how to implement hands-on biomimicry curriculum in the classroom.

Integrating Science, Mathematics, and Literacy: How Can We Do This Well?
(Grades 3–8) 109, Conv. Center
Carmen Woodhall (cmw52755@aol.com), Science Education Specialist, Winter Park, Fla.
Kay Middleton (middletonc14@ecu.edu), East Carolina University, Greenville, N.C.
We will explore the integration of literacy in science/mathematics content areas to support the building of solid conceptual frameworks on which later learning can be built.

NASA’s “Eyes on the Solar System”: Bringing the Planets to Your Classroom
(Grades 5–12) 111, Conv. Center
Rachel Zimmerman Brachman (rachel.zimmerman-brachman@jpl.nasa.gov) and Kevin Hussey (@nasa_eyes; khussey@jpl.nasa.gov), NASA Jet Propulsion Laboratory, Pasadena, Calif.
Bring the solar system to your classroom using this free online tool from NASA. Explore planets, spacecraft, and more!
Shifting to a STEM Culture

(Grades P–8) 113, Conv. Center
Stephanie Miller (smiller@congressdistrict.org), Congress (Ariz.) Elementary School District
In three years, Congress School District in Arizona has shifted to a STEM culture. Find out the “nuts and bolts” of how this was accomplished.

Leadership Strategies for Ensuring Each Student Has a STEM Future

(Grades P–12) 202, Conv. Center
Bob Sotak (@Scienceinquiry; bsotak@mac.com), Science/STEM Education Consultant, Edmonds, Wash.
Discover strategies and tools to implement a districtwide K–12 STEM program impacting each student—identifying resources, developing a vision, and measuring progress toward that vision.

Science Notebooks: An Interdisciplinary Approach

(Grades 1–2) 206, Conv. Center
Belle Akers (belle.akers@sacredsf.org), Convent of the Sacred Heart, San Francisco, Calif.
Take a closer look at STEM and NGSS in action! Discover how to enrich your students’ science and engineering practices through notebooks and hands-on investigations.

Getting It All In

(Grades K–2) 504, Conv. Center
Adriana Guerra (adriana.guerra@venturausd.org), Rebecca Haystead (rebecca.haystead@venturausd.org), Guadalupe Gomez (guadalupe.gomez@venturausd.org), and Jena Branstetter (jena.branstetter@venturausd.org), E.P. Foster STEM Academy, Ventura, Calif.
Maximize student achievement across CCSS and NGSS—covering a range of standards during the regular school day.

Redefining Student Teaching Experiences: Collaboration Between University Education/Computer Science Students and K–12 Districts

(Grades K–5/College) 604, Conv. Center
Yune Tran (ytran@georgefox.edu) and Donna Webb (webbdonna18@gmail.com), George Fox University, Newberg, Ore.
Learn the process in leveraging coding opportunities for elementary-aged students taught during the school day through a university and district partnership model.

STEMifying Your School

(Grades K–12) 602, Conv. Center
Terry Contant (@TerryContant; tcontant@learn.k12.ct.us), LEARN, Old Lyme, Conn.
Anne Tweed (atweed@mcrel.org), 2004–2005 NSTA President, and McREL International, Denver, Colo.
Learn about an asynchronous adaptive online course designed to introduce educators to STEM and NGSS to help them STEM-ify their schools.

STEM Mix It Up: Correlated Science and Math Principals Panel

(Grades 4–College) 603, Conv. Center
Sandra West (sw04@txstate.edu), Texas State University, San Marcos
Denise Kern (denisekern@me.com), Consultant, Spring Branch, Tex.
Sandra Browning (browning@uhcl.edu), University of Houston–Clear Lake, Houston, Tex.
Anna Buentello (anna.buentello@lockhart.txed.net), Navarro Elementary School, Lockhart, Tex.
Continued focus on STEM education requires paying attention to leadership roles of administrators who can either enhance or impede effective STEM education, including the integration of STEM. Our Mix It Up–trained principals provide insight as a result of STEM administrators PD.

Developing Successful Capstone STEM Learning Experiences Through Partnerships and Integration of Digital Fabrication

(General) 606, Conv. Center
Presenter to be announced
We will cover the experiences of educators and their partners collaborating to design and implement transdisciplinary STEM Capstone experiences in schools around the world.
Engaging Students in Successful and Novel Science Projects: Materials, Strategies, and Challenges (Grades 5–8) 701, Conv. Center

Ari Leventhal (@whistlingpirate; ari_leventhal@denver-greenschool.org), Denver Green School, Denver, Colo.

Improve the quality of your students’ science fair projects by building on their interests and connecting to the NGSS science and engineering practices.

Living Through an Avatar (Grades 2–8) 705, Conv. Center

Juliana Texley (jtexley@att.net), 2014–2015 NSTA President, Boca Raton, Fla.

Most of today’s “iGeneration” spend many hours each day in front of a screen. Often they are living within game worlds. Join their world and learn to use it for STEM.

Gardening for Success: Integrating Subjects and Teaching Your Standards Through Gardening (Grades K–12) 706, Conv. Center

Ryan Mahn (@JTSDNixa; ryanmahn@nixaschools.net), Tracy Harris (@tharris1214; tracyharris31973@gmail.com), and Chris Holmes (chrisholmes@nixaschools.net), John Thomas School of Discovery, Nixa, Mo.

Give your students a real-world education, integrating all content areas, through the production and sale of plants, flowers, and health care products.

If They Make It, They Will Learn: The Maker Movement and K–12 STEM (Grades P–12) 708, Conv. Center

Jack Samuelson (jacksamuelson@icloud.com), Dr. STEM Express, Milwaukee, Wis.

“Making” is more than tinkering, and the Maker Movement offers powerful project-based lessons for learning STEM in K–12 classrooms.

Modeling Is Cool! Lessons from an Antarctic Scientist (Grades 6–12) 709, Conv. Center

Joel Singley (@SingleyScience; joel.singley@colorado.edu), University of Colorado Boulder

Learn strategies to incorporate Earth system modeling and public data from the world’s coldest continent into effective NGSS-based three-dimensional learning activities.

Shop Locally: STEM in a Rural Colorado School (Grades 6–College) 710, Conv. Center

Laura Stuemky (stuemky@hotmail.com), Kevin Hintz (khintz@del-norte.k12.co.us), and Natalie Horrocks (nhorrocks@del-norte.k12.co.us), Del Norte High School, Del Norte, Colo.

Hear how results of a community survey were the impetus for our rural STEM program. We will share how teamwork helped our dreams become reality.

Guiding High School Students in an Independent Scientific Research Course (Grades 11–12) 711, Conv. Center

Shawndra Fordham (shawndra.fordham@dcsdk12.org), Rock Canyon High School, Highlands Ranch, Colo.

Find out about a new course offered at Rock Canyon High School where students design and conduct their own scientific research in the field of biotechnology. You will hear from students and the instructor about this exciting course as well as gain valuable tips for facilitating a course like this at your school.

Investigating PBL at Inclusive STEM High Schools: An In-Depth Look at PBL in Practice (Grades 9–12) 712, Conv. Center

Elizabeth Noble (enoble@uchicago.edu), Courtney Blackwell (ckblackwell@uchicago.edu), and Melanie LaForce (@melanielaforce; laforce@uchicago.edu), Outlier Research & Evaluation, Chicago, Ill.

Explore the variety of approaches taken by inclusive STEM high schools in implementing three common characteristics of Problem-Based Learning.

Forensic Science: The Ideal STEM Course! (Grades 9–12) Mile High Ballroom 1A, Conv. Center

Anthony Bertino (abertino@nycap.rr.com) and Patricia Nolan Bertino (nolanp@nycap.rr.com), Retired Educators, Schenectady, N.Y.

Motivate and improve student skills using hands-on activities, problem solving, and critical thinking that apply STEM to solving crime. Forensic activities overview and handouts provided.
Friday, 1:30–2:30 PM

Engineer Your World: Integrating Engineering Design, Computational Thinking, and 21st-Century Skills
(Grades 9–12) Mile High Ballroom 1B, Conv. Center
Cheryl Farmer (cheryl.farmer@mail.utexas.edu), The University of Texas at Austin
Learn about an innovative research-based engineering curriculum that meets the NGSS, fosters computational thinking and 21st-century skill development, and builds engineering career awareness.

Can Lemonade Be Used as a Buffer? Collaboration Between AP Calculus and Chemistry
(Grades 10–12) Mile High Ballroom 1C, Conv. Center
Thomas Michocki (@TMichocki; tmichocki@bcps.org) and Kimberly Burton-Regulski (kbarton@bcps.org), Eastern Technical High School, Essex, Md.
Hear how AP chemistry students determine whether lemonade from a mix meets the criteria for a buffer, and apply graph analysis from AP calculus to determine the equivalence point.

Local Ecosystem Survey to Understand Resilience and Biodiversity
(Grades 9–12) Mile High Ballroom 2C, Conv. Center
David Quigley (david.quigley@colorado.edu), University of Colorado Boulder
Find out about EcoSurvey, a tool used to support students in collecting, annotating, and mapping information about their local ecosystem.

Dazzling Deceptions: Discrepant Events That Delight and Mystify!
(Grades 4–9) Mile High Ballroom 4 E/F, Conv. Center
Alan McCormack (amccorma@mail.sdsu.edu), 2010–2011 NSTA President, and San Diego State University, San Diego, Calif.
Science experiences that seem contrary to “common sense” are great motivators for kids! Discrepant events build scientific understanding and stimulate creativity.

1:30–2:30 PM Hands-On Workshops

Food Waste, Aviation, and Gaming: Real-World STEM Units with Applied Student Solutions
(Grades 3–6) 102, Conv. Center
Engage in a learning discovery and work through portions of a STEM unit that demonstrates a comprehensive, integrated, and interactive STEM approach.

Adapting STEM Lessons to Engage Students and Meet Grade-Level Standards
(Grades 4–6) 105, Conv. Center
Donna Rainboth (drainbot@eou.edu), Eastern Oregon University, La Grande
Explore how a wind energy STEM unit can be adapted to engage upper elementary students while meeting rigorous grade-level science and math standards.

ASEE Session: The TeachEngineering Digital Library: Hundreds of Free, Searchable, NGSS-Focused Hands-On Engineering Lessons for K–12
(Grades K–12) 110, Conv. Center
Malinda Zarske (@TeachEngineering; malinda.zarske@colorado.edu), University of Colorado Boulder
Inspire your students to explore real-world applications of STEM topics through hands-on/minds-on engineering design. TeachEngineering.org’s more than 1,400 classroom-tested K–12 engineering lessons and activities integrate current research in engineering and technology to enhance the learning of science and mathematics fundamentals. Engage in an engineering design activity and find out how to publish your original work in this dynamic and ever-growing curricular collection and community of K–12 engineering educators.
The Shadow Knows: Explore Primary and Secondary Colors by Making and Using Colored Shadows (Grades 4–6) 201, Conv. Center
Gary Benenson (benenson@ccny.cuny.edu), The City College of New York, N.Y.
Mix colors with LEDs and then block some light to create colored shadows, to explore additive primary and subtractive secondary colors.

Uniting Engineering and Science: Engineering Design Challenges That Inspire Inquiry (Grades 1–5) 203, Conv. Center
Kathryn Hutchinson (@cie_org), Museum of Science, Boston, Mass.
Engineer a solution to a design challenge and reflect on how integrating science with engineering promotes authentic inquiry with your elementary students.

Teaching Engineering, Motion, and Energy Through Rube Goldberg (Grades 1–5) 205, Conv. Center
Elaine Sevin (elainesevin@newmanschool.org), Isidore Newman School, New Orleans, La.
This introduction to STEM for elementary classrooms will allow participants to explore motion and energy while creating their own Rube Goldberg machine using found objects.

AACT/AAPT/NABT Session: One Lab Three Ways: Determining the Percent of Body Fat of a Sausage “Cadaver” (Grades 9–12) 501, Conv. Center
Rebecca Vieyra (@AAPTHQ; @RVieyraAEF; rvieyra@aapt.org), American Association of Physics Teachers, College Park, Md.
Determine the percent of fat of a sausage, and analyze how this lab can be done in the context of a biology, chemistry, or physics course. Discover links to the NGSS, too.

Using Partnerships to Bring Upper-Level Research to High School STEM Science Classrooms (Grades 9–12) 502, Conv. Center
Kent Hups (kent.m.hups@adams12.org), Northglenn STEM High School, Denver, Colo.
Dig in and assist the Denver Museum of Nature & Science in hands-on sorting, collecting, and cataloging Ice Age microfossils and exploring partnership ideas. See what Colorado looked like 100,000 years ago.

Connecting Careers to the Classroom: Bring STEM Professions to Life (Grades 4–12) 503, Conv. Center
Danielle Stollak (@firsthandphilly; dstollak@sciencecenter.org) and Maya Heiland (@firsthandphilly; mheiland@sciencecenter.org), University City Science Center, Philadelphia, Pa.
Connect your students to real-world STEM skills by exploring innovative solutions that will engage STEM professionals in the classroom.

NCTM Session: Model with Mathematics, Working Across Science and Math in High School (Grades 9–College) 601, Conv. Center
John Pelesko (@peleskoj; pelesko@udel.edu), University of Delaware, Newark
Experience mathematical modeling as a crosscutting approach connecting the NGSS and CCSS Mathematics for high school students. Learn about the types of modeling and how the modeling process supports and is integral to all aspects of STEM.

Modeling in STEM Education with Examples from Climate Modeling (Grades 6–College) 605, Conv. Center
Randy Russell (rrussell@ucar.edu), UCAR Center for Science Education, Boulder, Colo.
Engage in activities for teaching scientific modeling as it relates to various scientific disciplines, with specific examples drawn from climate modeling.

Swipe Right; It’s a Match! Scientific Investigations and Engineering Design (Grades 1–12) 607, Conv. Center
Jeannie Gargiulo (jeanniegargiulo@gmail.com), Simon Baruch MS104, New York, N.Y.
How do you teach design when students are unfamiliar with scientific investigations? Explore ways to fuse these two processes to support students’ understanding.
NASA’s Beginning Engineering, Science, and Technology (BEST)
(Grades 5–9) 610/612, Conv. Center
Kat Balch (katrine.a.balch@nasa.gov) and Maria Chambers (maria.a.chambers@nasa.gov), NASA Marshall Space Flight Center, Huntsville, Ala.
Let’s use the engineering design process to solve a simulated real-world issue of designing an environmentally friendly green propellant. This activity is from the NASA’s BEST (Beginning Engineering, Science, and Technology) Next Generation educational guide. Note: Hands-on activities available to the first 80 participants.

Can You Design the Most Efficient Wind Turbine?
(Grades 6–12) 702, Conv. Center
Tim Blesse (tim.blesse@dmns.org), Denver Museum of Nature & Science, Denver, Colo.
Jessie Herman (jessica.herman@schoolspecialty.com), CPO Science/School Specialty Science, Kansas City, Mo.
Design, construct, and test wind turbines using the engineering cycle and an experimental design teaching strategy called the Post-It Note tool. Help your students to design more systematically.

Digging Deep with Concepts to Integrate for STEM
(Grades 6–12) 703, Conv. Center
Karol Stephens (krhstephens@yahoo.com), Consultant, Fayetteville, Ga.
Use concepts and practices of mathematics and science and include technology and engineering to deepen understanding and engagement for students. Try a productive strategy!

Transitioning to a Greener Society: Building STEM Skills Through Interdisciplinary Activities
(Grades 9–12) Mile High Ballroom 1D, Conv. Center
Sarah Pidgeon (sarah@solar1.org), Solar One, New York, N.Y.
Take part in inquiry-based, easy-to-replicate activities that inspire curiosity and develop foundational knowledge of climate change and careers in the emerging green technology sector.

STEM Challenge! Getting Students Thinking!
(Grades 9–11) Mile High Ballroom 1E, Conv. Center
Judith Lucas-Odom, Chester High School, Chester, Pa.
Complete activities that will help your students engage in designing models to help them understand how engineers build bridges, cars, and roads that are more efficient.

Friday, 1:30–2:30 PM

1:30–2:30 PM Exhibitor Workshops

Going Digital in Elementary STEM Education
(Grades 1–5) 301, Conv. Center
Sponsor: Fisher Science Education
Learning how and why scientists gather data can be a terrific introduction to core ideas and scientific practices but presents challenges for young learners. Revisit the basics of capturing data, go digital, and then investigate STEM resources paired with hands-on activities you can implement to make your classroom productive, fun, and exciting.

We’re All Engineers in the Science Classroom
(Grades 6–12) 302, Conv. Center
Sponsor: Ardusat
Ben Neiswender (ben.n@ardusat.com), Ardusat, Salt Lake City, Utah
We want to help teachers of all abilities confidently bring coding and new technology to life in their classrooms. This workshop will navigate you through the new science and engineering practices of the NGSS using the Ardusat Space Board. This board includes nine sensors and learning resources to guide you.

FUNdamentals of Wind Energy Education
(General) 303, Conv. Center
Sponsor: University of Northern Iowa FREE
Birgitta Meade, Luther College, Decorah, Iowa
Patricia Higby (patricia.higby@uni.edu), University of Northern Iowa, Cedar Falls
We will read Kamkwamba’s picture book The Boy Who Harnessed the Wind and then light an LED lamp by blowing on a model wind turbine. We’ll also use a solar panel to make the turbine a fan, discover what’s inside the motor, and explore what factors make the best turbine blades. These materials were developed and tested by the Fabulous Resources for Energy Education program at the University of Northern Iowa.

CANCELLED
Finding the Needle in the Haystack: Selecting High-Quality STEM Material
(Grades 3–5) 304, Conv. Center
Sponsor: ETA hand2mind
Olivia Hua (liv.hua@mail.mcgill.ca), McGill University, Montreal, Que., Canada
Johannes Strobel (strobelj@missouri.edu), University of Missouri, Columbia
Join us for an interactive session in which we introduce tools for picking high-quality STEM material. We will share a rubric and work through an example of designing, building, testing, and redesigning a code transmission system.

Telling Stories with David Goodsell’s Watercolor Molecular Landscapes
(Grades 9–College) 402, Conv. Center
Sponsor: MSOE Center for BioMolecular Modeling
Tim Herman (herman@msoe.edu), MSOE Center for Bio-Molecular Modeling, Milwaukee, Wis.
Use these amazing landscapes to explore cell structure and illustrate where in the cell protein synthesis and other important processes occur. You can also tell molecular stories such as “Your Flu Shot in Action,” tracing the production of an antibody protein all the way to its release into the circulation.

The BEST Approach to Inspiring Interest in STEM Through Robotics
(Grades 5–12) 403/404, Conv. Center
Sponsor: BEST Robotics, Inc.
Nikki Baird, STEM School and Academy, Highlands Ranch, Colo.
Thomas Roell, DSST Byers, Denver, Colo.
Carolyn Bauer, Rocky Mountain BEST, Highlands Ranch, Colo.
Rosemary Mendel (rosemary.mendel@bestinc.org), BEST Robotics, Inc., Allen, Tex.
BEST is inspiring students to pursue STEM through an annual robotics competition that is free to schools. Join us to hear about the BEST Award that teaches business skills in conjunction with STEM. Also, find out how teachers and mentors get trained to coach teams as you meet students and drive a BEST robot on a real game field segment.

An Easier Path to Coding and STEM Projects
(Grades 6–12) 405, Conv. Center
Sponsor: Texas Instruments
Jeffrey Lukens, Sioux Falls (S.Dak.) School District
Fred Fotsch, Texas Instruments, Dallas
Blinking an LED or building your own sound system starts with a basic understanding of programming. This session will have you coding in a short time using familiar classroom technology while experiencing the applications of input and output control. Middle school and high school appropriate; no coding experience necessary.
3:00–4:00 PM Presentations

NASA eClips™ Address Middle School Students’ Misconceptions
(Grades 6–9) 107, Conv. Center
Tami Byron (tami.byron@nn.k12.va.us), Newport News (Va.) Public Schools
Hear how short student-produced video segments are paired with interactive whiteboard learning experiences to target and address common middle school student misconceptions building foundational NGSS content and practices.

STEM and Outdoor Learning
(Grades 3–5) 108, Conv. Center
Karen Stanfield (karen.stanfield@gscs.org), Cowan Road Elementary School, Griffin, Ga.
Students remain highly engaged when their interest levels are piqued using an outdoor learning environment. We will discuss strategies for integrating all STEM components and a deeper understanding of NGSS disciplinary core ideas as well as making real-world sustainable partnerships via your local community.

Making STEM a Mind-Set: A Road Map for Change
(Grades P–5) 109, Conv. Center
Ellen Darensbourg (edarensbourg@schools.nyc.gov), Rebecca Lugo (@rlodegaard; rlugo10@schools.nyc.gov), and Tashawna Praddy (tpraddy@ps354.org), The Jermaine L. Green STEM Institute of Queens, Jamaica, N.Y.
We will share the journey of our transformation into a STEM-themed magnet school, and detail the shifts in curriculum, partnerships, fund-raising, and more that we made to ensure that we earned the right to wear the STEM name on our school. For as we like to say at the STEM Institute of Queens, STEM is who we are, not just what we do.

The Effects on Students’ Learning Concentration in Connecting Picture Books with Nature and Science Technology Curriculum in Elementary Schools in Taiwan
(Grades 5–6) 112, Conv. Center
Ruei-Ping Chang, Texas A&M University, College Station
Review findings from a Taiwanese study designed to explore the effects of using picture books on grades 5–6 students’ learning concentration in science classrooms.

Reimagining the Secondary Science Sequence—Physics First!
(Grades 7–College) 113, Conv. Center
Edward Moyer, Decatur (Ill.) Public Schools
How do we move our science instruction into the modern era? Reimagining the order of the sciences is one place to start. So, let’s start.

Triumphs and Deltas: Our Ongoing Journey Toward an Integrated STEM Curriculum at a K–8 Magnet School
(Grades K–8) 202, Conv. Center
Heather Harkins, Nicole Vitello, Nicole Bay (@nbay_chbsa; nbay@windham.k12.ct.us), and Jennifer Geragotelis (jgeragotelis@windham.k12.ct.us), Charles H. Barrows STEM Academy, North Windham, Conn.
We’ll discuss our STEM school profile. Several teachers will present highlights of their NGSS- and CCSS-based curriculum at their grade level.

AACT Session: American Association of Chemistry Teachers—Supporting New Teachers of Chemistry
(Grades 9–12) 501, Conv. Center
Kimberly Duncan (@chemduncan; k_duncan@acs.org) and Jenn Parsons (j_parsons2@acs.org), American Association of Chemistry Teachers, Washington, D.C.
Join us for a tour of the large and growing collection of resources available from AACT, including classroom materials, professional learning, multimedia, and a periodical.
Hooking Students on STEM Learning by Using Practical Case Studies
(Grades 9–College) 503, Conv. Center
Carmelle Rogers (carmelle.rogers@wgu.edu), Western Governors University, Salt Lake City, Utah

Having a hard time piquing and maintaining the interest of your students? Make science practical by using case studies that integrate STEM concepts.

STEM in the Primary Classroom
(Grades K–2) 506, Conv. Center
Jen Gutierrez (@jengutierrez18; jengutierrez@cox.net), Arizona Dept. of Education, Phoenix

Supporting young children's instinctive desire to explore STEM ideas and phenomena has lasting benefits. Come investigate how interdisciplinary STEM teaching and learning supports all students.

Full STEAM Ahead: Designing and Implementing a STEAM-Based Initiative with All Constituents
(Grades P–8) 507, Conv. Center
Holli Joyal (hollijoyal1701@gmail.com), Irvine, Calif.
Teri Bock (teriebock@ologn.org), Elizabeth Ahlgren (@Ahlgren_gr5_OLG; bobandelizabethahlgirm@gmail.com), and Tisha Jackson (tishajackson03@gmail.com), Our Lady of Grace Catholic School, Noblesville, Ind.

Journey to a small Catholic school in Indiana—that through the generosity of donors opened a woodshop, robotics lab, and maker space—and share our successes, failures, and dreams as our whole community has embraced STEAM for our students.

Becoming a STEM-Focus School: STEM by Design
(Grades P–12) 603, Conv. Center
Rebecca Peters (@beckypeters; peteras_rebecca@svsvd.org), The Innovation Center, Longmont, Colo.

Kristen Brohm (brohm_kristen@svsvd.org), Alpine Elementary School, Longmont, Colo.

Carolyn Clifford (@CCliffordSTEM) and Alexandra Downing, Timberline PK–8, Longmont, Colo.

Eric Woodland (woodland_eric@svsvd.org), Northridge Elementary School, Longmont, Colo.

Josh Lemon (@lemon2476; lemon_joshua@svsvd.org), Rocky Mountain Elementary School, Longmont, Colo.

Lindsey Cheney, Columbine Elementary School, Longmont, Colo.

Join us for a panel discussion on becoming a STEM-focus school. Hear about our model; strategic plan; the evolution, challenges and successes; and involvement of staff during transition.

Equity in STEM Education Roundtable
(General) 604, Conv. Center
Jerry Valadez (@samacademymaker; jdscience@yahoo.com), California State University, Fresno
Lisa Ernst (ernstl@sfdps.edu), Alice Fong Yu Alternative School, San Francisco, Calif.

The Equity in STEM Education Roundtable includes conference participants in the development of a framework that NSTA will use in developing strategies for equity and inclusion.

Building Partnerships to Connect Classroom to Career
(Grades 6–College) 606, Conv. Center
John Sepich (colosciinfo@yahoo.com), Community Liaison, Denver, Colo.
Glen Zollman (@STEM_Jobs; glen.zollman@stemjobs.com), STEM Jobs, Moon Township, Pa.

This interactive panel discussion focuses on partnerships between K–12 educators, colleges, and employers so students can better connect their classroom experience to STEM careers.

Engineering Deeper Understanding of Science
(Grade 8) 701, Conv. Center
Jessica Noffsinger (jessica.noffsinger@adams12.org), STEM Magnet Lab School, Northglenn, Colo.

Discover how integrating engineering and science can deepen student understanding of the NGSS. Take away project ideas ranging from lava lamps to Martian Landers.

Trellis Education: A New Model for Exceptional Secondary STEM Teacher Recruitment, Preparation, and Growth
(Grades 9–College) 706, Conv. Center
Sadie Skiles (@TrellisEdu; sadie.skiles@ousd.org), Oakland Technical High School, Oakland, Calif.

Trellis is a six-year model to recruit, prepare, and grow exceptional secondary STEM teachers—a positive feedback loop that includes a cycle of mentorship, graduate degree, and national board certification.
Innovating with Infographics
(Grades 7–College) 710, Conv. Center
Rosemary Davidson (rosemcbdavidson@gmail.com), St. Joseph’s Academy, Saint Louis, Mo.
Rob Lamb (@lambchop1198; rob.lamb@psdr3.org), Pattonville High School, Maryland Heights, Mo.
Joseph Polman (@joepolman; joseph.polman@colorado.edu), University of Colorado Boulder

Discover how infographics can be incorporated into the learning environment, increasing the 21st-century STEM literacy of students and deepening understanding of visuals, graphics, mathematical relationships, data, and information.

Empowering East Africans to Confront Challenges in Food Security and Health Through Innovative Extension and Education Models
(Grades 8–College) 711, Conv. Center
Timothy Goodale (tagoodal@ncsu.edu), North Carolina State University, Raleigh
Dwight Allen, Emeritus Eminent Scholar, Old Dominion University, Aurora, Colo.

Receive an overview of the cutting-edge research ongoing in Africa and the United States that will provide context for potential STEM careers as well as current and future teacher professional development and student competitions/challenges.

Corrosion: Chemistry Made Simple, Relevant, and Fun
(Grades 6–12) Mile High Ballroom 1B, Conv. Center
Sherri Rukes (@sherrirukes; sherrirukes@d128.org), Libertyville High School, Libertyville, Ill.

Join me for labs, demonstrations, and examples that make reactivity, oxidation/reduction, and corrosion engineering exciting, practical, and easy to teach and learn. STEM connections and a CD of information.

Put Some STEAMpunk in Your STEM!
(Grades 6–College) Mile High Ballroom 1C, Conv. Center
David Black (elementsunearthed@gmail.com), American Academy of Innovation, South Jordan, Utah

Incorporating art and history into your STEM programs can enrich and engage students. We will explore combining inquiry science with writing, sculpture, fine art, and digital media technologies. Examples will include student projects to build steampunk costumes and junk sculptures, design tie-dyed shirts with natural dyes, and make homemade iron-gall ink.

The Apple/Start-Up/Studio Model
(Grades 9–College) Mile High Ballroom 3C, Conv. Center
Thom Ingram (@icsvvsd; ingram_thom@svvsd.org), The Innovation Center, Longmont, Colo.

The Innovation Center of St. Vrain Valley School District models its teaching after tech start-ups. While these companies look like product firms, they are actually artist studios, with master craftspeople and apprentices. Find out how to bring this innovation into your classroom.

3:00–4:00 PM Hands-On Workshops

Tinkering in the Classroom: Design Thinking in Science
(Grades 1–6) 102, Conv. Center
Jamie Long (jlong@villagetechschools.org), Village Tech Schools, Cedar Hill, Tex.

“Design thinking,” common building materials, and a few household tools bring authentic STEM challenges into your classroom. A kid who tinkers is a great thinker!

Exploring CCSS ELA Goals and EEI with Globe Earth Sciences Through Musical Arts
(Grades K–4) 103, Conv. Center

Find out how NEO uses the arts with STEM (waterbuddy.org) to build comprehension in ELA through STEM and STEAM. This is a three-part workshop whose goal is to explore the application of effective research-supported strategies for CCSS ELA and California Education and the Environment Initiative (EEI) goals. Warning! We may write, observe, sing, or share…and make up a way to stay in touch.
NGSS: What Are They All About?
(Grades K–8)
104, Conv. Center
Eileen Patrick (eileenpatrickco@gmail.com), North Mor Elementary School, Denver, Colo.
Come construct a visual to better understand NGSS with their three dimensions and how to read some of the documents. Building supplies for the first 40 attendees.

Seed Bombs: Changing the World One Fragrant Explosion at a Time
(Grades 4–College)
105, Conv. Center
Kimberly Rickards, Conservation Biologist, Denver, Colo.
Hear the latest buzz on pollinators. Join me for a practical activity and learn about the plight of pollinators, the importance of their role, and a way we can contribute to their survival.

ASEE Session: Using Our Heads to Protect Our Brains—Contextualized Middle School Engineering Challenges
(Grades 5–8)
110, Conv. Center
Chantal Balesdent (@EiE.org) and Kathryn Hutchinson (@eie_org), Museum of Science, Boston, Mass.
Come join this hands-on/minds-on workshop exploring innovative approaches that use engineering challenges to build confidence, enthusiasm, and engagement in middle school learners.

Kindergarten STEM Labs
(Kindergarten)
207, Conv. Center
Adriana Guerra (adriana.guerra@venturausd.org), Rebecca Haystead (rebecca.haystead@venturausd.org), Guadalupe Gomez (guadalupe.gomez@venturausd.org), and Jena Branstetter (@mrsbranstetter; jena.branstetter@venturausd.org), E.P. Foster STEM Academy, Ventura, Calif.
Presider: Nancy Escamilla, E.P. Foster STEM Academy, Ventura, Calif.
Acquire hands-on experience of a partial investigation and walk away with an integrated CCSS and NGSS lesson.

Exploring Children’s (PreK–2) Physical Science Knowledge and Understanding
(Grades P–2)
210/212, Conv. Center
Jenny Ingber (@jingber; jingber@amnh.org), American Museum of Natural History, New York, N.Y.
Mary Hobbs (maryhobbs@utexas.edu), The University of Texas at Austin
Bob Williams, Consultant, Belmont, Tex.
Engage in performance assessment activities developed to explore what preK–2 children know and can do in physical science.

Rigorous Citizen Science and Environment-Based Learning Makes for a Partnership of Global Proportions
(Grades 6–12)
502, Conv. Center
Jennifer Hammonds (@EcoSchoolsUSA; hammondsj@nwf.org), National Wildlife Federation, Reston, Va.
Richard Wagner (wagnerri@msudenver.edu) and Janelle Johnson (jjohn428@msudenver.edu), Metropolitan State University of Denver, Colo.
This is an opportunity for educators to integrate The GLOBE Program’s rigorous science-based citizen science with the National Wildlife Federation’s Eco-Schools USA student-led actions for sustainability.

NCTM Session: Common Ground in Mathematics and Science Teaching: Effective STEM Teaching Practices
(Grades 6–12)
601, Conv. Center
Michael Steele (steelem@uwm.edu), University of Wisconsin—Milwaukee
I’ll introduce the eight research-based Effective Mathematics Teaching Practices introduced in the National Council of Teachers of Mathematics’ Principles to Actions: Ensuring Mathematical Success for All. We will examine narrative and video cases from mathematics and science classrooms and identify evidence of the eight teaching practices and how they can be adapted for both mathematics and science. Finally, I’ll share preliminary work on a math and science professional development project that brings together high school math and science teachers around these practices.
Dropsonde Wind Tunnel Activity and Engineering in the Atmospheric Sciences
(Grades 4–College) 605, Conv. Center
Randy Russell and Marc Mueller (marcm@ucar.edu), UCAR Center for Science Education, Boulder, Colo.
Eileen Carpenter (@AtmosNews), Mesa Laboratory, Boulder, Colo.
Explore engineering education activities related to atmospheric science, featuring the dropsonde wind tunnel activity. Dropsondes are instrument packages dropped by parachutes from aircraft.

PBL Workshops On Deck
(Grades 6—8) 607, Conv. Center
Kenya Wilson (@kenya_wilson31; kenyawilson@lancasterisd.org), Lancaster (Tex.) ISD
Join me for engaging Problem-Based Learning and STEM lesson-planning solutions. Participants receive planning decks to implement student-driven instruction with integrated content, critical thinking, and authentic learning.

Mars, Here We Come!
(Grades 4–9) 610/612, Conv. Center
Joan Gillman (joan.gillman@calhoun.org), The Calhoun School, New York, N.Y.
NASA's MAVEN Satellite has made some amazing discoveries about the “Red Planet.” Come participate in an activity that identifies similarities found in both the landscapes of Earth and Mars.

Heating Things Up: Using CER with Seasonal Data
(Grades 6—8) 702, Conv. Center
Christine Shupla (shupla@lpi.usra.edu), Lunar and Planetary Institute, Houston, Tex.
Carol Waters (@MrsH20sScience; cwaters@pasadenaisd.org), Pasadena (Tex.) ISD
Devalyn Rogers (devrog5@gmail.com), Hoffman Middle School, Houston, Tex.
Carrie Stokes (clacystokes@comcast.net), Houston Community College, Houston, Tex.
Jan Grout (pjgrout@gmail.com), Retired Educator, Seabrook, Tex.
Students collaborate to analyze seasonal data, graphing temperatures for different cities, and then use a Claims, Evidence, Reasoning (CER) strategy to propose a hypothesis for the patterns.

Talking Points
(Grades 6–College) Mile High Ballroom 1D, Conv. Center
Erica Johnson, Ross N. Robinson Middle School, Kingsport, Tenn.
Walk away with “paired passages” after participating in a fast-paced interactive workshop that shares an ELA strategy to engage students in CCSS-focused scientific argument.

How to Engage Students in the Scientific Adventure
(Grades 7–College) Mile High Ballroom 1E, Conv. Center
Marita Beard (@ms_beard; mbeard@cuhsd.org), Leigh High School, San Jose, Calif.
Join me for engaging hands-on NGSS-focused guided inquiry labs in which students design an investigation and analyze meaningful data to answer an open-ended question.

Build a Mini Van de Graaff Generator
(Grades 10–12) Mile High Ballroom 1F, Conv. Center
Joseph Sencen (sencenj@norwalkps.org), Norwalk High School, Norwalk, Conn.
Spark new learning in your classroom by building a mini Van de Graaff generator.

CSI: Roadkill: Rider University’s Summer STEM Academy
(Grades 8–College) Mile High Ballroom 2C, Conv. Center
Peter Hester (phester@rider.edu), Rider University, Lawrenceville, N.J.
Experience a slice of a two-week summer STEM Academy immersion program for high school students through a hands-on skull ID lab and infrared camera activity.
3:00–4:00 PM Exhibitor Workshops

Is Cancer in My DNA?
(Grades 10–College) 301, Conv. Center
Sponsor: Fisher Science Education
Through a complete hands-on session, help Jane determine if she has a genetic predisposition to colon cancer. Learn how genetic mutations can cause cancer and the role genes have in cancer risk by examining family history, comparing DNA sequencing and lab analysis in this real-life STEM career-focused case study.

Genes, Genomes, and Personalized Medicine
(Grades 8–College) 402, Conv. Center
Sponsor: MSOE Center for BioMolecular Modeling
Tim Herman (herman@msoe.edu), MSOE Center for Bio-Molecular Modeling, Milwaukee, Wis.
Introduce students to the science of genomics and personalized medicine with interactive DNA models and gene maps. We will tell a “genomic story” of how whole genome sequencing has been used to reach a molecular diagnosis of a disease.

4:30–5:30 PM Closing Session

Wrap Up/Strand Leaders’ Reports
(General) Mile High Ballroom 4 A–D, Conv. Center

Strand Leaders’ Reports
Jennifer Williams, chairperson of the STEM Steering Committee, will lead strand leaders through brief reports and summaries of the two-day experience. This is an opportunity to hear some of the highlights you may have missed.

Steering Committee:
Jennifer Williams, Steering Committee Chairperson, and Department Chair, Lower School Science, Isidore Newman School, New Orleans, La.
Mariano Lizano Alpizar, Lower Elementary/Early Childhood Strand Leader and Spanish Dual-Language Kindergarten Teacher, Sherwood Forest Elementary School, Bellevue, Wash.
Dedric McGhee, Upper Elementary Strand Leader, and STEM Manager (Science, Mathematics, Health, Physical Education, Lifetime Wellness), Shelby County Schools, Memphis, Tenn.
Kenneth Williams, Middle Level Strand Leader, and STEM Teacher, Oxon Hill Middle School: Fort Washington, Md.
Garrett Mason, High School Strand Leader, and Director of Innovation and Design, St. Martin’s Episcopal School, Metairie, La.
Brenda Nixon, Partnerships Strand Leader, and Co-Director, Gordon A. Cain Center for Scientific, Technological, Engineering, and Mathematical Literacy, Louisiana State University, Baton Rouge
Susan Evans, Administrators Strand Leader, and Retired Principal, Cockeysville, Md.
Tera Jones, Honorary Steering Committee Member, and STEM Coordinator/Recruitment Specialist, Denver (Colo.) Public Schools
Exhibitors

Some exhibitors have classified their products by grade level.

Elementary E
Middle School M
High School HS
College C

Scan the QR code for a map display of the Exhibit Hall on our conference app.

3D Molecular Designs, LLC #633
1050 N. Market, CC130A E, M, HS, C
Milwaukee, WI 53202
Phone: 414-774-6562
E-mail: contactus@3dmoleculardesigns.com
Website: www.3dmoleculardesigns.com

Our innovative, hands-on kits and models focus on core ideas and crosscutting concepts in biology, chemistry, physical, and life sciences. We involve teachers in developing kits, writing materials, and field testing. Kits support STEM and the NGSS. Ask about our new Enzymes In Action Kit and ATP Model.

3D Proshare #327
1115 W. 2640 S E, M, HS
Logan, UT 84321
Phone: 435-232-4986
E-mail: sales@3dproshare.com
Website: www.3dproshare.com

Stop by and see the latest in 3D printers.

Accelerate Learning–STEMscopes #541
5177 Richmond Ave., Suite 1025 E, M, HS
Houston, TX 77056
Phone: 281-833-4512
Website: www.acceleratelearning.com

Built on a digital platform, enhanced by print, and brought to life in hands-on kits, STEMscopes PreK–12 is an all-in-one STEM solution for NGSS and non-NGSS states. Developed in the lab by teachers for teachers, STEMscopes is rooted in unique instructional models that emphasize hands-on, inquiry-based exploration of STEM topics alongside videos, games, PBLs, and literacy development activities.

AdvancED #740
9115 Westside Pkwy. E, M, HS, C
Alpharetta, GA 30009-8000
Phone: 888-413-6996, x5646
Website: www.advanc-ed.org

AdvancED provides institutions, as well as programs within institutions, with a research-based framework; their awareness for continuous improvements; and assessment of the quality, rigor, and substance of their STEM educational programs. The standards and indicators clearly define the qualities and components vital to creating and sustaining superior student-centered K–12 STEM teaching and learning programs.

AEOP eCYBERMISSION and GEMS #533
1840 Wilson Blvd. E, M, HS, C
Arlington, VA 22201
Phone: 703-312-9365
Website: www.usaeop.com

The National Science Teachers Association administers and provides support to U.S. Army STEM programs/partnerships to engage students in real-world experiences. Come learn about eCYBERMISSION, a STEM competition free to grades 6–9 students, as well as GEMS, a summer STEM enrichment program held at specific U.S. sites for grades 3–12 teachers.

American Association of Chemistry Teachers #428
1155 16th St., NW
Washington, DC 20036
AACT provides classroom resources, professional development, and networking opportunities for K–12 teachers of chemistry.

American Association of Physics Teachers #426
1 Physics Ellipse
College Park, MD 20740
Phone: 301-209-3311
Website: www.aapt.org

The American Association of Physics Teachers (AAPT) is a professional membership association dedicated to enhancing the understanding and appreciation of physics through teaching. AAPT offers numerous physics-based resources and events for high school science teachers and their students. We’re dedicated to help physics teachers reach success in their classroom.
Exhibitors

American Society for Engineering Education (ASEE) #432
1818 N St. NW, Suite 600
Washington DC 20036
Phone: 202-331-3500
Website: www.asee.org

The American Society for Engineering Education is committed to furthering education in engineering and engineering technology. This mission is accomplished by promoting excellence in instruction, research, public service, and practice; exercising worldwide leadership; fostering the technological education of society; and providing quality products and services to members.

Bricks 4 Kidz® #743
341 S. Main St., Suite 111
Salt Lake City, UT 84111
Phone: 801-510-9432
E-mail: jessica@ardusat.com
Website: www.ardusat.com

Bricks 4 Kidz is an innovative program that offers STEM-based after-school enrichment classes, workshops, in-school field trips, camps, and birthday parties where kids build, learn, and play with LEGO® bricks.

Bright Schools Competition #532
1840 Wilson Blvd.
Arlington, VA 22201
Phone: 703-312-9282
E-mail: brightschool@nsta.org
Website: brightschoolcompetition.org

The goal of the Bright Schools program is to create a STEM learning experience that will help students, parents, and teachers better understand the link between light and sleep. Through the Bright Schools Competition, students in grades 6–8 will select a sleep science topic and select one of three exploration options to create an original project.

BEST Robotics, Inc. #634
PO Box 1024
Georgetown, TX 78627
Phone: 469-630-2525
E-mail: rosemary.mendel@bestinc.org
Website: www.bestinc.org

BEST is a national nonprofit whose mission is to inspire students to pursue careers in engineering, science, and technology through participation in a sports-like science and engineering-based robotics program. Organized in hubs in 21 states, with a corps of volunteers at each hub, BEST charges no fees to schools or students for participation in our annual competition.

Camp Invention #529
3701 Highland Park NW
North Canton, OH 44720
Phone: 800-968-4332
E-mail: berickson@invent.org
Website: www.campinvention.org

Become a part of something big... join us on our mission to recognize inventors and invention, promote creativity, and advance the spirit of innovation and entrepreneurship. By hosting Camp Invention or Invention Project, you are partnering with the only nationally recognized nonprofit enrichment program backed by The National Inventors Hall of Fame.

Capstone Classroom #629
1710 Roe Crest Dr.
North Mankato, MN 56003
Phone: 888-262-6135
E-mail: customer.service@capstoneclassroom.com
Website: www.capstoneclassroom.com

Capstone Classroom has a new supplemental program for teaching the NGSS while supporting middle school students in developing their literacy skills. Our Graphic Science program is cutting edge and sure to engage your students and your teachers. Visit us to learn more about this program and our other science readers.

Carney, Sandoe & Associates #238
44 Bromfield St., Floor 8
Boston, MA 02108
Phone: 617-542-0260
E-mail: alex.mclean@carneysandoe.com
Website: www.carneysandoe.com

Carney, Sandoe & Associates is an educational recruitment firm that places teachers and administrators in K–12, private, independent, international, and like-kind (charter, magnet, pilot, and merit) schools across the nation and worldwide. Since 1977, we have placed over 31,500 teachers and administrators in exciting and rewarding positions.

Big Picture Science #326
PO Box 829
Corvallis, OR 97339
Phone: 541-759-2994
E-mail: p.speare@comcast.net
Website: www.biggpicturescience.biz

Stop by for teacher guides to life sciences, extensive botany materials, photo cards for botany, and Montessori-style card materials. In addition, we offer Tree of Life charts, materials for introducing children to matter and atoms, and animal and plant kingdom charts with phylogenetic organization, plus Biosphere-to-Atoms posters and books.

BEST is a national nonprofit whose mission is to inspire students to pursue careers in engineering, science, and technology through participation in a sports-like science and engineering-based robotics program. Organized in hubs in 21 states, with a corps of volunteers at each hub, BEST charges no fees to schools or students for participation in our annual competition.

Bricks 4 Kidz® is an innovative program that offers STEM-based after-school enrichment classes, workshops, in-school field trips, camps, and birthday parties where kids build, learn, and play with LEGO® bricks.

Bright Schools Competition is a part of something big... join us on our mission to recognize inventors and invention, promote creativity, and advance the spirit of innovation and entrepreneurship. By hosting Camp Invention or Invention Project, you are partnering with the only nationally recognized nonprofit enrichment program backed by The National Inventors Hall of Fame.

Capstone Classroom has a new supplemental program for teaching the NGSS while supporting middle school students in developing their literacy skills. Our Graphic Science program is cutting edge and sure to engage your students and your teachers. Visit us to learn more about this program and our other science readers.

Carney, Sandoe & Associates is an educational recruitment firm that places teachers and administrators in K–12, private, independent, international, and like-kind (charter, magnet, pilot, and merit) schools across the nation and worldwide. Since 1977, we have placed over 31,500 teachers and administrators in exciting and rewarding positions.
Circuit Scribe offers simple, safe, and fun educational kits for home or school centered around our proprietary conductive ink pen. The conductive pen performs at a high level, and our modules are durable with our workbooks providing hours of engaging education.

Colorado University, Boulder

CIRES
449 UCB
Boulder, CO 80309
Phone: 303-492-5670
E-mail: outreach@cires.colorado.edu
Website: cires.colorado.edu/education-outreach/

The Cooperative Institute for Research in Environmental Sciences (CIRES) is a partnership between the CU Boulder and NOAA. We offer free teacher professional development, hands-on learning projects for K–12 students, research opportunities for community college students, and virtual learning opportunities for the public.

Common Sense Education

650 Townsend, Suite 435
San Francisco, CA 94103
Phone: 415-863-0600
E-mail: randalll@commonssense.org
Website: www.commonsense.org/education

Common Sense Graphite has 2,500+ apps, games, and websites rated and reviewed by teachers and experts for learning potential. Educators can search by subject, grade, and standard. The site also has ready-made lesson plans and teacher tips on how to integrate technology to help you transform your classroom.

Couragion

Denver, CO 80218
Phone: 720-460-1744
E-mail: info@couragion.com
Website: www.couragion.com

Couragion’s mission is to inspire kids to pursue skills, degrees, and careers in STEM. The Couragion app provides career exploration and readiness using diverse role models, videos, and self-reflection. Couragion enables kids to see STEM careers firsthand and to assess how such careers fit their own interests and values.

Creative Discovery Museum

321 Chestnut St.
Chattanooga, TN 37402
Phone: 423-290-4641
E-mail: jwr@cdmfun.org
Website: www.cdmfun.org

Creative Discovery Museum (Chattanooga, Tennessee) is working with the BioEnergy Science Center (BESC) in Oak Ridge, Tennessee, on a biofuels/alternative energies project called Farming For Fuels. FREE materials, including curriculum, hands-on activities, “Road Trip Challenge” software app, website (www.learnbiofuels.org), and distance learning lesson information are available to educators! Come by our booth and see what free STEM materials might work well in your classroom!

Delights Earthly Delights

PO Box 2013
Benson, AZ 85602
Phone: 520-490-6634
E-mail: delightsearthlydelights@hotmail.com
Website: www.delightsearthlydelights.com

We make jewelry inspired by the beauty of science—constellations, solar system, DNA, photosynthesis, monsoon, the Earth in space, volcanoes, copper atom, silver atom, meteorites, snakes, emission spectra, and the moons of Mars.

Delta Education/School

Specialty Science
80 Northwest Blvd.
Nashua, NH 03063
Phone: 800-258-1302
E-mail: customerservice.delta@schoolspecialty.com
Website: www.deltaeeducation.com

Delta Education has been the leader in classroom-tested, hands-on science solutions for over 30 years. From engaging core and supplemental curriculum like Full Option Science System (FOSS) and Delta Science Modules to informational texts and reliable science and math classroom supplies, we have the selection and expertise that teachers trust.
Denver Zoo #746
2300 Steele St. E, M, HS
Denver, CO 80205
Phone: 720-337-1482
E-mail: tpadula@denverzoo.org
Website: www.denverzoo.org

As Colorado’s premier cultural destination, attracting more than 2 million visitors a year, the Denver Zoo provides exceptional guest experiences. The zoo serves more than 1,000 schools through facilitated on-site and off-campus informal education programs. Denver Zoo is a vibrant, living venue where education comes alive!

Draw it to Know it #542
Biological Sciences E, M, HS
6507 Ferguson St., Suite 102
Indianapolis, IN 46220
Phone: 317-446-3006
E-mail: fisch@drawittoknowit.com
Website: www.drawittoknowit.com

Draw it to Know it: Biological Sciences is a suite of online educational materials that promotes active learning through drawing. It has been used across the globe in K–12 and postsecondary education and is the ultimate active learning approach to biology and the anatomy and physiology of the human body.

Edvotek Inc. #525
1121 5th St. NW M, HS
Washington, DC 20001
Phone: 202-370-1500
E-mail: mariap@edvotek.com
Website: www.edvotek.com

Edvotek manufactures robust research-grade biotechnology education experiments, biology, reagents, and equipment for high schools and colleges. Experiments include DNA fingerprinting, electrophoresis, forensics, PCR, molecular cloning, immunology, environmental science, and AP biology. Products offer hands-on investigations with options for student participation in inquiry-based extensions that merge science and education.

Engineer Your World #742
The University of Texas HS
10100 Burnet Rd., Bldg. #133, MC R7100
Austin, TX 78758
Phone: 512-471-3099
E-mail: marie.girardot@austin.utexas.edu
Website: engineeringyourworld.org

Engineer Your World is an innovative, student-centered high school curriculum that engages learners in authentic engineering experiences and inspires them to embrace an engineer’s habits of mind. Collaborative, student-directed projects build resilient problem-solving skills and empower students to think like engineers.

Engineering is Elementary® (EiE) #527
1 Science Park E
Boston, MA 02114
Phone: 617-589-0230
E-mail: iburnette@mos.org
Website: www.eie.org

Engineering is Elementary® offers 20 integrated STEM units to be used flexibly (grades 1–5). It is research-based, teacher-tested, and meets the NGSS. Through hands-on design challenges, students apply science and math, to design, create, and improve possible solutions. Through this constructivist, project-based experience, students realize—everyone can engineer!
Ennovative Technologies #833
11935 Worcester Hwy.
Bishopville, MD 21813
Phone: 800-742-5129
E-mail: colin.rock@enovativetech.com
Website: epulsemassage.com

We sell Tens units.

Estes-Cox Corp. #438
1295 H St.
Penrose, CO 81240
Phone: 719-372-6565, x257
E-mail: dtalbot@centurims.com
Website: www.esteseducator.com

Estes rocketry is ideal for hands-on STEM activities. Estes rockets are used in formal and informal science learning environments worldwide for physics, math, chemistry, astronomy and technology. Estes has 45 free lesson plans for science, technology, math, social studies, and language arts, all meeting national and Next Generation Science Standards.

ETA hand2mind #534
500 Greenview Court
Vernon Hills, IL 60061
Phone: 800-445-5985
E-mail: info@hand2mind.com
Website: www.hand2mind.com

ETA hand2mind® offers a fully integrated STEM program that harnesses the power of hands-on learning to inspire curiosity and nurture critical thinking and problem-solving skills. Developed in partnership with Purdue University, the modular lessons are teacher friendly and the activities are fun and engaging for students.

FIRST® (For Inspiration & Recognition of Science & Technology) #325
200 Bedford St.
Manchester, NH 03101
Phone: 800-871-8326
E-mail: cproulx@firstinspires.org
Website: www.firstinspires.org

FIRST® is more than robots. K–12 programs engage students in exciting, mentor-based, research and robotics programs that help them become science and technology leaders, as well as well-rounded contributors to society. Participation is proven to encourage STEM education and careers, inspire tomorrow’s innovators and enhance 21st-century worklife skills.

Fisher Science Education #632
300 Industry Dr.
Pittsburgh, PA 15275
Phone: 724-517-1845
E-mail: robert.marshall@thermofisher.com
Website: www.fishersci.com

Got STEM? We totally do! Fisher Science Education provides today’s teachers with the cutting-edge products they need to prepare their students for STEM careers.

Flinn Scientific, Inc. #725
PO Box 219
Batavia, IL 60510
Phone: 800-452-1261
E-mail: jvargas@flinnsci.com
Website: www.flinnsci.com

Flinn Scientific is the leader in science and laboratory chemical safety. Publisher of the world-renowned Flinn Science Catalog Reference Manual, Flinn develops and offers a full line of chemistry, biology, physics, life science, Earth science, physical science, and safety products for middle school and high school.

GO3 Project #329
2100 Central Ave., Suite 105
Boulder, CO 80301
Phone: 303-468-9123
E-mail: jessae@go3project.com
Website: www.go3project.com

Are your students curious about air pollution levels in their communities? Wonder how much that power plant down the road pollutes? Try GO3 Treks to find out! Use the GO3 Personal Air Monitor to measure pollutants, view data on your smartphone, and take our online curriculum to learn more.

Grand Canyon University #231
3300 W. Camelback Rd.
Phoenix, AZ 85017
Phone: 202-615-1823
E-mail: delecia.elleer@gcu.edu
Website: www.gcu.edu/college-of-doctoral-studies.php

Founded in 1949, Grand Canyon University is a private, Christian University with innovative doctoral programs designed to prepare learners for leadership in their professions, communities, and society. Our dynamic online learning, community integrated dissertation process, and collaborative environment support a successful and meaningful doctoral journey.

Gibberish #647
27322 Arriola Ave
Santa Clarita, CA 91350
E-mail: shopgibberish@hotmail.com
Website: www.shopgibberish.com

Handmade science jewelry and clothing gifts for yourself or your favorite science fanatic! We have a unique selection of periodic table of elements and solar system-related items, including baby clothes, planet jewelry, T-shirts, personalized chemistry jewelry, pillows, periodic table cuff links, and much more!

Frey Scientific/CPO Science #627
School Specialty Science
80 Northwest Blvd.
Nashua, NH 03063
Phone: 800-225-3739
E-mail: customercare.frey@schoolspecialty.com
Website: www.freyscientific.schoolspecialty.com

Over the years, we’ve brought you breakthrough educational products created specifically with the needs of students and teachers in mind. Look to Frey Scientific for the best in STEM resources, hands-on kits, and other investigation-based programs that we have developed to engage your students and enhance your instruction.
Grove
28 Dane St.
Somerville, MA 02143
Phone: 703-608-8178
E-mail: jamie@grovelabs.io
Website: www.grovelabs.io

Grove gives parents and educators the tools and knowledge to teach kids about the science of food, farming, and nature. Grove’s first product, the Ecosystem, is an intelligent indoor aquaponic system designed for the home or classroom and supported by an educational app called Grove OS.

Howard Hughes Medical Institute (HHMI)
4000 Jones Bridge Rd.
Chevy Chase, MD 20815
Phone: 301-215-8619
E-mail: octavainij@hhmi.org
Website: www.hhmi.org/biointeractive

HHMI’s BioInteractive team develops free resources based on real data, highlighting research practices. Our short films, virtual labs, apps, and print materials combine important science with engaging presentation. These multimedia resources developed, vetted, and field-tested by educators and scientists—are all free and tied to national curriculum standards.

International Technology and Engineering Educators Association (ITEEA)
1914 Association Dr.
Reston, VA 20191-1538
Phone: 703-860-4738
E-mail: sbarbato@iteea.org
Website: www.iteea.org

ITEEA’s mission is to advance technological and engineering capabilities for all people and to nurture and promote the professionalism of those engaged in these pursuits. ITEEA seeks to improve public understanding of technology and engineering through Integrative STEM Education and its contributions to the world in which we live.

KaBOOM!
4301 Connecticut Ave.
Suite ML-1
Washington, DC 20008
Phone: 202-464-6185
E-mail: GoOutandPlay@kaboom.org
Website: www.kaboom.org/rigamajig

KaBOOM! is the national nonprofit dedicated to bringing balanced and active play into the daily lives of all kids, particularly those growing up in poverty in America.

KitHub
PO Box 39873
Los Angeles, CA 90039
Phone: 213-514-7482
E-mail: tara@kithub.com
Website: www.kithub.cc

At KitHub, we whole-heartedly believe that kids are capable and interested in learning about STEM subjects, but may be limited by a lack of access and mentorship. KitHub empowers educators and parents to help kids dive into hands-on, fun, and creative STEM projects in the classroom and at home by providing theme-based kits and easy-to-follow lesson plans and instructions.

Kodo Kids
155 Alter St., Unit A
Broomfield, CO 80020
Phone: 844-563-6543
E-mail: info@kodokids.com
Website: www.kodokids.com

Kodo Kids designs and creates investigation-based materials for childhood education environments. Kodo’s products are grounded in play and promote creativity, critical thinking, and problem solving. Kodo also provides professional development opportunities that support the intentional use of open-ended materials and strategies for educators and children.

LAB-AIDS®, Inc.
17 Colt Court
Ronkonkoma, NY 11779
Phone: 804-325-1241
E-mail: metheridge@lab-aids.com
Website: www.lab-aids.com

We believe students should experience science and be encouraged to question how it relates to them and the world around them. We do this by providing students with hands-on activities that excite them in science, integrate math, and are relevant to their own lives.
Exhibitors

lectrify #225
1890 Bryant St., Suite 411 E
San Francisco, CA 94110
Phone: 650-504-6254
E-mail: lectrifyit@gmail.com
Website: www.lectrify.it

We offer standards-based engineering toolkits for K–6 classrooms! Our hands-on circuit kits make it easy for educators to introduce science and engineering concepts through open-ended creative projects that are easy to use for beginners while flexible for experts. Curriculum and classroom sets available.

LEGO Education #442
501 Boylston St. E, M
Boston, MA 02116
Phone: 417-825-6467
E-mail: layne.rainey@lego.com
Website: education.lego.com/en-us

LEGO®, Education combines the unique excitement of LEGO bricks with hands-on classroom solutions for science, technology, engineering, math, and literacy. Learn how our products can bring innovation to your classroom.

Liberty Science Center #829
222 Jersey City Blvd. E, M, HS
Jersey City, NJ 07305
Phone: 201-253-1343

Liberty Science Center’s mission is to bring the power, promise, and pure fun of science and technology to people of all ages. From the award-winning Live From Surgery program to an extensive catalog of Electronic Field Trips and more, LSC can partner with you to incorporate the Next Generation Science Standards into your curriculum.

M Folz #343
PO Box 2273 E, M
Tijeras, NM 87059
Phone: 505-286-5300
E-mail: mfolz@q.com
Website: www.mfolz.com

We sell the world’s most wonderful science and math T-shirts.

Makey Makey #324
PO Box 1831 E, M, HS, C
Asheville, NC 28802
Phone: 828-665-0303
E-mail: tom@joylabz.com
Website: www.makeymakey.com

“Makey Makey” is a STEM education electronic device used to teach invention literacy, design thinking, and innovation to middle school and high school students. Easy to use, inexpensive, as well as incredibly versatile and durable, Makey Makey’s award-winning design is praised by leaders in the field and featured in TED talks!

The Markerboard People, Inc. #738
1611 N. Grand River Ave. E, M, HS, C
Lansing, MI 48906
Phone: 800-379-3727
E-mail: feedback@dryerase.com
Website: www.dryerase.com

We offer student dry-erase markerboards and response boards in class sets at unbeatable prices! They’re great for instant response and instant assessment Single- and double-sided available—perfect for science, math, language arts, graphing, handwriting, and more. Long lasting, nontoxic, ultra-low-odor markers, and durable student erasers, too!

McREL International #547
4601 DTC Blvd., Suite 500 E, M, HS
Denver, CO 80237
Phone: 800-858-6830
E-mail: info@mcrel.org
Website: www.mcrel.org

Mid-continent Research for Education and Learning (McREL) is a nonprofit organization that helps students, teachers, and leaders flourish by providing research-based PD and coaching, strategic consulting, and systemic improvement services.
Finish an Electrophoresis Lab in a 45 minute class period with The MiniOne™ Electrophoresis System! Teaching electrophoresis? This affordable real-time electrophoresis system complete with a power supply, safe blue illuminator, and even a free pipette. The MiniOne streamlines multiple processes in electrophoresis to simplify classroom management and increase student engagement.

miniPCR #733
1770 Massachusetts Ave. M, HS, C Cambridge, MA 02140 Phone: 781-990-8727 E-mail: team@minipcr.com Website: www.minipcr.com

Engage your students in hands-on, real-world DNA inquiry! The miniPCR DNA Discovery System™ is the complete biotechnology lab for K–12 and college educators. Our miniPCR thermal cycler, blueGel™ electrophoresis with built-in illuminator, and a micropipette are all for $990. Also available as separate components. Engage your students in authentic and integrative research.

Modular Robotics #233
1860 38th St. E, M, HS Boulder, CO 80301 Phone: 720-275-6025 E-mail: info@modrobotics.com Website: www.modrobotics.com

Cubelets are a fast and easy way to inspire kids to become better thinkers. These innovative robot blocks are a classroom-tested teaching tool that enhances lessons with hands-on activities and coding exercises.

Mosa Mack Science #440
985 Ocean Ave. 2B E, M Brooklyn, NY 11226 E-mail: lissa@mosamack.com Website: www.mosamack.com

Check out our NGSS inquiry-based units incorporating animated mysteries, hands-on labs, and engineering challenges.

MSOE Center for BioMolecular Modeling #635
1025 N. Broadway St. Milwaukee, WI 53202 Phone: 414-277-2824 E-mail: herman@msoe.edu Website: cbm.msoe.edu

As an instructional materials development laboratory, we create student-centered, hands-on kits and models for the molecular biosciences. Through our professional development experiences, teachers learn active teaching skills and are involved in developing and field testing new kits. Ask about our outreach programs—SMART Teams and Science Olympiad Protein Modeling Event.

MyStemKits.com #441
10 10th St. NW, Suite 275 E, M, HS Atlanta, GA 30309 Phone: 404-478-2050 E-mail: engage@mystemkits.com Website: www.mystemkits.com

We’re developing the leading digital library of 3D-printable manipulatives for K–12 STEM education backed with vetted, standards-focused curriculum. Our library of over 100 kits covers all STEM subjects and grades to provide hands-on learning solutions for all levels.

National Association of Biology Teachers (NABT) #427
PO Box 3363 Warrenton, VA 20188 Phone: 202-962-3939 E-mail: office@nabt.org Website: www.nabt.org

Established in 1938, the National Association of Biology Teachers (NABT) continues to be recognized as a leader in life science education. Thousands of educators have joined NABT to share experiences and expertise with colleagues from around the world, keep up with trends and developments in the field, and grow professionally.

National Council of Teachers of Mathematics (NCTM) #429
1906 Association Dr. Reston, VA 20191 Phone: 703-620-9840 x2197 E-mail: ctrus@nctm.org Website: www.nctm.org

NCTM is the global leader and foremost authority in mathematics education, ensuring that all students have access to the highest quality mathematics teaching and learning. We envision a world where everyone is enthused about mathematics, sees the value and beauty of mathematics, and is empowered by the opportunities mathematics affords.

National Flight Academy #333
1 Fetterman Way M, HS NAS Pensacola, FL 32508 Phone: 850-308-8935 E-mail: kcastro@navalaviationmuseum.org Website: www.nationalaviationmuseum.org

The National Flight Academy (NFA) is a fully-immersive, aviation-themed learning adventure for grades 7–12 students that focuses on inspiring youth to take a greater interest in science, technology, engineering, and mathematics. The NFA’s capstone program is a six-day, five-night deployment aboard AMBITION, a state-of-the-art 100,000+ square-foot virtual aircraft carrier.
National Geographic Learning #338
20 Channel Center St. E, M, HS
Boston, MA 02210
Phone: 888-915-3276
E-mail: schoolcustomerservice@cengage.com
Website: www.ngl.cengage.com/school

National Geographic Learning, a part of Cengage Learning, provides quality preK–12, academic, and adult education instructional solutions for reading, science, social studies, ESL/ELD, advanced, honors, electives, career and technical education, and professional development. See our new catalog at NGL.Cengage.com/catalogs.

National Institute of Biomedical Imaging and Bioengineering, NIH #734
31 Center Dr., Room 1C14 HS, C
Bethesda, MD 20892
Phone: 301-496-8859
E-mail: info@nibib.nih.gov
Website: www.nibib.nih.gov

The National Institute of Biomedical Imaging and Bioengineering (NIBIB) supports research to create biomedical technologies to improve health. Stop by our booth to play our bioengineering game, watch cool videos, and learn about other free science education resources.

The NEED Project #641
8408 Kao Circle E, M, HS
Manassas, VA 20110
Phone: 703-257-1117
E-mail: tkamb@need.org
Website: www.need.org

The NEED Project, an energy education nonprofit, partners with Shell to provide free energy education and curriculum to K–12 teachers.

Nomad Press #538
2456 Christian St. E, M
White River Junction, VT 05001
Phone: 802-649-1995
E-mail: rachel@nomadpress.net
Website: www.nomadpress.net

Ever met a kid who isn’t curious? Kids are natural scientists. They want to know about the physical and natural worlds around them. Nomad Press titles engage young scientists in the scientific process as they find themselves thinking critically, making predictions, conducting experiments, documenting observations, and making discoveries about the real world.

Novagrade #832
25589 SW Canyon Creek Rd. M, HS, C
Suite 700
Wilsonville, OR 97070
Phone: 303-847-3081
E-mail: chip@novagrade.com
Website: www.novagrade.com
Novagrade® produces the world’s highest quality digiscoping adapters that convert conventional microscopes into digital imaging systems by utilizing the cameras and displays in student mobile phones. Simultaneous viewing on the screen and ability to capture time lapse and slow motion video all contribute to a greatly enhanced level of engagement.

NSTA Membership #424
1840 Wilson Blvd.
Arlington, VA 22201
Phone: 703-243-7100
E-mail: membership@nsta.org
Website: www.nsta.org/membership

Stop by to learn more about the benefits of becoming an NSTA member, including all the best professional development and resources a STEM educator needs. If you received a six-month free membership coupon at registration, please redeem it here.

Ocean First Education #735
3015 Bluff St. M, HS
Boulder, CO 80301
Phone: 303-996-7575
E-mail: jim@oceanfirsteducation.com
Website: www.oceanfirsteducation.com

Ocean First Education provides innovative online marine science courses for middle school through adult learners. Our team of educators, scientists, and researchers are committed to increasing awareness of marine environments and engaging students through interactive experiences. We aim to inspire students, teachers, and the community to become stewards of the sea.

PASCO scientific #524
10101 Foothills Blvd. M, HS, C
Roseville, CA 95747
Phone: 916-462-8208
E-mail: tstout@pasco.com
Website: www.pasco.com

PASCO scientific transforms science education and student learning with innovative wireless probeware and software, promoting science inquiry and 21st-century readiness skills for the global marketplace. Today teachers and students in more than 100 countries use PASCO solutions for physics, biology, chemistry, and Earth/environmental science classes.

PhET Interactive Simulations #332
University of Colorado Boulder E, M, HS, C
390 UCB
Boulder, CO 80309
Phone: 303-492-6963
E-mail: oliver nisi@colorado.edu
Website: phet.colorado.edu

PhET simulations actively engage students in science and math, impacting millions of students today and pioneering innovations in teaching, learning, and assessment. Our new HTML5 simulations run in any modern web browser and are translated into many languages.

Pitsco Education #739
915 E. Jefferson St. E, M, HS
Pittsburg, KS 66762
Phone: 800-358-4983
E-mail: orders@pitsco.com
Website: www.pitsco.com

Pitsco is your STEM resource. Every product we engineer, every activity we write, every curriculum we develop, and every solution we design is provided for the purpose of helping students around the world use their hands to engage their minds to learn and succeed—in the classroom and in life!
PlayMada Games
261 Madison Ave., 9th Floor
New York, NY 10016
Phone: 212-574-6194
E-mail: info@playmadagames.com
Website: www.playmadagames.com

PlayMada Games is a devoted team of educators, designers, and developers on a mission to bring game-based learning experiences into high school science classrooms. We create digital games that give students a deepened understanding of fundamental scientific concepts while exploring systems of science through play.

Play-Well TEKnologies
224 Greenfield Ave. Suite B
San Anselmo, CA 94960
Phone: 508-246-3852
E-mail: jessi@play-well.org
Website: www.play-well.org

Play-Well provides LEGO®-inspired engineering classes for kids ages K–8. We teach over 100,000 kids each year all across the nation. Our programs illustrate STEAM concepts through hands-on-learning.

Project Learning Tree
2000 M St. NW
Washington, DC 20036
Phone: 202-765-3641
E-mail: ebackman@plt.org
Website: www.plt.org

Project Learning Tree is an award-winning environmental education program designed for teachers and other educators, parents, and community leaders working with youth from preschool through grade 12.

Project Paradigm
1015 El Medio Ave.
Pacific Palisades, CA 90272
E-mail: jeff@projectparadigm.org
Website: www.projectparadigm.org

The Paradigm Challenge is a competition that inspires students ages 4–18 to use STEM skills plus kindness, creativity, and collaboration to create new ideas to help solve real-world problems. Over 50,000 students participated in 2016. We provide video/print lessons, $50,000 in teacher grants, and 100 student prizes up to $100,000.

ProjectEngin
22 Anchorage Way
Barrington, RI 02806
Phone: 401-578-8281
E-mail: akaiser@projectengin.com
Website: www.projectengin.com

ProjectEngin provides professional development and curriculum designed to support the inclusion of engineering in K–12 education. We work with teachers and schools to make engineering a natural part of your STEM courses. Our services include workshops and embedded coaching, along with project and full course design.

Regent University
1000 Regent University Dr.
Virginia Beach, VA 23464
E-mail: edadmission@regent.edu
Website: www.regent.edu

The School of Education, through its commitment to excellence in teaching, research, and service, provides a biblically based Christian education to equip men and women in mind, heart, and character for lives of educational and transformational leadership. Includes online programming, Ed.D., M.Ed. STEM, and others.

Regis University
3333 Regis Blvd., P-28
Denver, CO 80221-1099
Phone: 303-964-5762
E-mail: mderti@regis.edu
Website: www.regis.edu

Regis University is proud to stand among the 28 Jesuit colleges and universities in the United States, which share the Jesuit vision of a values-centered education that shapes intelligent decision-making and strengthens commitment to community service.

Roller Skating Association International
6905 Corporate Dr.
Indianapolis, IN 46278
Phone: 317-347-2626
E-mail: editor@rollerskating.com
Website: www.rollerskating.com

As the voice of the roller skating industry, we strive to promote the success of our member roller skating centers by providing educational and professional resource tools, as well as fostering the advancement of roller skating.
SAE International #831
400 Commonwealth Dr. E, M
Warrendale, PA 15096
Phone: 724-772-7180
E-mail: meghan.stoyanoff@sae.org
Website: www.sae.org

SAE International’s A World In Motion (AWIM) program is a hands-on STEM program that brings science, technology, engineering, and math to life in the classroom for students in K–8. We have children’s literature to introduce students to STEM as well as project-based units where students work in design teams.

SE3D Education #339
PO Box 2833 HS, C
Redwood City, CA 94064
Phone: 650-288-6635
E-mail: mlim@se3d.com
Website: www.se3d.com

SE3D Education builds 3D bioprinters and NGSS-focused curriculum for the education market. Our classroom 3D bioprinter is an excellent addition to any science laboratory and makerspace to bring exciting bioscience exploration into a student project.

School Specialty Science #625/#627
80 Northwest Blvd.
Nashua NH 03063

School Specialty Science brings together the very best curriculum with FOSS® and CPO Science, classroom resources, equipment, and furniture with Delta Education and Frey Scientific. Together, these effective teaching and learning solutions serve all the needs of preK–12 science teachers, curriculum specialists, and administrators.

SmartSchool Systems #439
1701 Northpark Dr., Suite 12 E, M, HS
Kingwood, TX 77339
Phone: 866-722-2051
E-mail: david@smartschoolsystems.com
Website: www.smartschoolsystems.com

SmartSchool Systems provides easy-to-use technology for the science classroom. We offer a wide variety of robotics as well as data loggers and the award-winning SmartMicroScope handheld digital microscopes.

Solar One #826
37 W. 26th St. M, HS
New York, NY 10010
Phone: 212-505-6050
E-mail: fiscal@solar1.org
Website: www.solar1.org

Solar One’s Green Design Lab (GDL) is a curriculum and program that uses the school building as a teaching tool to explore sustainability. Hands-on and project-based, the GDL program engages students in inquiry-based learning and inspires them to take action through school greening initiatives.

South Dakota State University #241
Avera Health Science 351 E, M, HS, C
Brookings, SD 57007
Phone: 605-688-6274
E-mail: matt.miller@sdstate.edu
Website: www.sdstate.edu/chem

South Dakota State University offers a Master’s program in chemistry and hosts the ChemEd 2017 conference at SD State. This online program focuses on topics covered in secondary chemistry curriculum. We will show a variety of safe demonstrations to engage students in the classroom. Stop by and learn about our programs, ChemEd 2017, and our curriculum.

Southern Science Supply #728
2914 Oakleaf Dr. E, M, HS, C
San Antonio, TX 78209
Phone: 210-887-0479
E-mail: carol@southernciencesupply.com
Website: www.southernciencesupply.com

Southern Science Supply offers the Dlite and ProScope Digital microscopes for all your educational needs. Come see the newest models—USB, Wi-Fi, and portable microscopes. We also offer general supplies for biology, physical science, chemistry, Earth science, and life science. We look forward to seeing you!

SparkFun Electronics #825
6333 Dry Creek Pkwy. E, M, HS, C
Niwot, CO 80503
Phone: 303-284-0979
E-mail: education@sparkfun.com
Website: www.sparkfun.com

We view electronics as more than just a hobby. Electronics are a creative medium for changing the face of education. Our curriculum, resources, and products are designed to help students develop skills like critical thinking, collaboration, and communication. We want to help make current education models stronger and more effective.

STEAM Education© #838
PO Box 1122 E, M, HS, C
Marion, VA 24354
E-mail: bookings@steamedu.com
Website: www.steamedu.com

STEAM Education offers the most globally-recognized PD and consulting to create educator-network lessons. This interdisciplinary framework links all subjects together with businesses to thematic reality-based projects (RBLs). Trademarked connecting definition: We offer Science and Technology, interpreted through Engineering, plus all of the liberal social and fine Arts, based in the elements of Mathematics.

STEM Jobs™ #729
420 Rouser Rd. M, HS
Building #3, Suite 101
Coraopolis, PA 15108
Phone: 412-329-7828
E-mail: ellen.pomerantz@stemjobs.com
Website: www.stemjobs.com

STEM Jobs connects “Classrooms-to-Careers” in an engaging and dynamic format. Our industry-leading platform includes a print magazine, website, and educational tools designed to aid teachers and inspire students to pursue STEM education and careers.
Steve Spangler Science #342
4400 S. Federal Blvd.
Englewood, CO 80110
Phone: 800-223-9080
E-mail: orders@stevespanglerscience.com
Website: www.stevespanglerscience.com

Steve Spangler Science is your place for eye-catching, hands-on science toys and classroom kits that make science even more fun. For a full catalog, visit stevespanglerscience.com.

StoneOak Media, LLC #747
26434 Cuyahoga Circle
San Antonio, TX 78260
Phone: 818-276-6795
E-mail: d.mckee@stoneoakmedia.com
Website: www.stoneoakmedia.com

StoneOak Media develops affordable STEM-focused, curriculum-aligned, augmented reality enabled educational products. Makers of The Rockwell Adventures activity books: Solar System Expedition, Water Cycle Engineer, and more, StoneOak Media has a singular focus on delivering educational solutions that make learning immersive, engaging, and fun.

SumBlox #824
10970 South 800 East
Paradise, UT 84328
Phone: 888-368-1211
E-mail: info@sumblox.com
Website: www.sumblox.com

SumBlox is a company dedicated to the development of premier math learning products. SumBlox teaches numeracy in a new and fun way. These hands-on manipulatives have a unique design that allows children to grasp concepts earlier and retain them longer through engaging activities and meaningful play.

TeacherGeek Inc. #643
16551 Ridge Rd.
Holley, NY 14470
Phone: 888-433-5345
E-mail: sales@teachergeek.com
Website: www.teachergeek.com

Enable kids to create projects with gears, pulleys, hydraulics, and motors. Allow them to learn by experimenting and easily changing their designs. Let them incorporate wood as well as recycled and other materials. Build fantastic working projects in technology, science or elementary classrooms. Do it at a price allowing kids to take projects home. Learn more at TeacherGeek.com.

Ten80 Education Inc. #230
12 Spring St., Suite 101
Schuylerville, NY 12871
Phone: 855-836-8033
E-mail: kdoescher@ten80education.com
Website: www.ten80education.com

Ten80 develops and publishes K–12 science, technology, engineering, and mathematics (STEM) curriculum, trains educators in the art of STEM and organizes events that motivate students to engage and learn over time. Ten80 is a team of education and STEM professionals who saw the need for a more integrated, interactive way of teaching science and mathematics back in the 1990s.

Tests of Engineering Aptitude #226
Mathematics and Science (TEAMS)
1914 Association Dr,
Reston, VA 20191
Phone: 703-860-9000
E-mail: schonour@tsaweb.org
Website: teams.tsaweb.org

TEAMS is an annual STEM competition challenging students to work collaboratively and apply their math and science knowledge in practical, creative ways to solve real everyday engineering challenges.
Texas Instruments provides free classroom activities that enhance math, science, and STEM curricula; technology that encourages students to develop a deeper understanding of concepts; and professional development that maximizes your investment in TI technology. Visit education.ti.com.

Texas State University

The NASA STEM Educator Professional Development Collaborative is a project led in collaboration with Texas State University. We aim to maintain and build upon the best of the existing NASA professional development offerings and to work closely with NASA to pilot and subsequently implement other innovative, high-impact approaches to new audiences of formal and informal educators.

Transforming Teaching Through Inquiry

STEM Teacher Learning provides professional development for technology education teachers. It began as a National Science Foundation (NSF) funded four-year full research and development project. STEM Teacher Learning uses cyber infrastructure and the worldwide web to significantly enhance the delivery and quality of professional development (PD) for grades 6–12 engineering, technology, and design educators.

Texas Instruments

501 20th St.
Greeley, CO 80639
Phone: 970-539-6154
E-mail: wendy.adams@unco.edu
Website: www.extended.unco.edu

University of Northern Colorado

Through UNC Extended Campus, you have access to continuing education opportunities and more than 50 undergraduate and graduate academic programs, offered online or face-to-face in Loveland, Denver, and Colorado Springs.

University of Northern Colorado FREE

Fabulous Resources for Energy Education (FREE) from the University of Northern Iowa assists K–12 educators with online STEM activities, economical renewable energy kits, and online and face-to-face professional development. Our mission is to help teachers empower their students to build a better, safer, healthier world using renewable energy sources.

U.S. Navy Recruiting

You’re looking for a job or career that maximizes your talents, challenges you to take on a leadership role, and gives you an adrenaline rush in the process. YOU’VE JUST FOUND IT! The U.S. Navy puts you in command of cutting-edge technology, advanced systems, billions of dollars in aviation, submarine, and surface ship equipment. More information at www.navy.com or 1-800-USA-Navy.

Vernier Software & Technology

Vernier Software & Technology is a leading innovator of scientific data-collection technology. Focused on STEM, Vernier is dedicated to developing creative ways to teach and learn using hands-on science. Vernier creates easy-to-use and affordable science interfaces, sensors, and graphing/analysis software. Vernier’s technology-based solutions enhance STEM education, increase learning, and build students’ critical-thinking skills.

WhiteBox Learning

Engage your students in the complete engineering design process. WhiteBox Learning provides a standards-based, web-based, activity-based, STEM learning system. Gliders 2.0, Rover 2.0, Structures 2.0, Prosthetics 2.0, Mousetrap Car 2.0, GreenCar 2.0, Rockets 2.0, Dragster 2.0, and SurvivalShelter 2.0 allow students to build, analyze, and simulate their designs—and compete “virtually,” 24/7 all around the world... how cool is that?!
3D Molecular Designs, LLC (Booth #633)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Workshop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, July 28</td>
<td>9:30–10:30 AM</td>
<td>402, Conv. Center</td>
<td>Go Small to Go Big: Molecular Models in Ecology (p. 34)</td>
</tr>
<tr>
<td>Thursday, July 28</td>
<td>1:30–2:30 PM</td>
<td>402, Conv. Center</td>
<td>Connecting the Dots in Science/Math Using Salt and Water Models (p. 48)</td>
</tr>
<tr>
<td>Thursday, July 28</td>
<td>3:00–4:00 PM</td>
<td>402, Conv. Center</td>
<td>Constructing and Crossing Cell Membranes (p. 55)</td>
</tr>
<tr>
<td>Friday, July 29</td>
<td>9:30–10:30 AM</td>
<td>402, Conv. Center</td>
<td>The Many Jobs of Proteins: Enzymes in the Spotlight (p. 66)</td>
</tr>
<tr>
<td>Friday, July 29</td>
<td>11:00 AM–12 Noon</td>
<td>402, Conv. Center</td>
<td>Let’s Get Helical: Exploring DNA Structure/Function with Physical Models (p. 74)</td>
</tr>
</tbody>
</table>

Accelerate Learning–STEMscopes (Booth #541)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Workshop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, July 28</td>
<td>11:00 AM–12 Noon</td>
<td>303, Conv. Center</td>
<td>Engineering Design Challenges in the STEM Classroom (p. 40)</td>
</tr>
<tr>
<td>Friday, July 29</td>
<td>9:30–10:30 AM</td>
<td>303, Conv. Center</td>
<td>The Value of Inquiry and Scientific Explanations in STEM (p. 65)</td>
</tr>
</tbody>
</table>

AdvancED (Booth #740)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Workshop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, July 29</td>
<td>9:30–10:30 AM</td>
<td>403/404, Conv. Center</td>
<td>The Road to AdvancED STEM Certification (p. 66)</td>
</tr>
</tbody>
</table>

AEOP eCYBERMISSION (Booth #533)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Workshop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, July 29</td>
<td>11:00 AM–12 Noon</td>
<td>401, Conv. Center</td>
<td>Student Collaboration in the Science Classroom (p. 74)</td>
</tr>
</tbody>
</table>

ArduSat (Booth #546)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Workshop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, July 29</td>
<td>1:30–2:30 PM</td>
<td>302, Conv. Center</td>
<td>We’re All Engineers in the Science Classroom (p. 80)</td>
</tr>
</tbody>
</table>

BEST Robotics, Inc. (Booth #634)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Workshop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, July 29</td>
<td>1:30–2:30 PM</td>
<td>403/404, Conv. Center</td>
<td>The BEST Approach to Inspiring Interest in STEM Through Robotics (p. 81)</td>
</tr>
</tbody>
</table>

Colorado State University Extension (Booth #229)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Workshop</th>
</tr>
</thead>
</table>

CPO Science/School Specialty Science (Booth #627)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Workshop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, July 28</td>
<td>1:30–2:30 PM</td>
<td>301, Conv. Center</td>
<td>CPO Science’s Optics with Light and Color: Use Light to Learn About Light with Our Link™ Learning Module (p. 48)</td>
</tr>
</tbody>
</table>

Delta Education/School Specialty Science (Booth #625)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Workshop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, July 28</td>
<td>9:30–10:30 AM</td>
<td>301, Conv. Center</td>
<td>What Does Conceptual Modeling Look Like in Grades 5–7 Classrooms? (p. 34)</td>
</tr>
</tbody>
</table>

Draw it to Know it Biological Sciences (Booth #542)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Workshop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, July 28</td>
<td>11:00 AM–12 Noon</td>
<td>403/404, Conv. Center</td>
<td>Online Active Learning in Biology with Draw It to Know It! (p. 41)</td>
</tr>
</tbody>
</table>

Edvotek, Inc. (Booth #525)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Workshop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, July 28</td>
<td>9:30–10:30 AM</td>
<td>303, Conv. Center</td>
<td>Martian Genetics: An Electrophoresis Exploration (p. 34)</td>
</tr>
</tbody>
</table>

ETA hand2mind (Booth #534)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Workshop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, July 28</td>
<td>1:30–2:30 PM</td>
<td>405, Conv. Center</td>
<td>Finding the Needle in the Haystack: Selecting High-Quality STEM Material (p. 48)</td>
</tr>
<tr>
<td>Friday, July 29</td>
<td>1:30–2:30 PM</td>
<td>304, Conv. Center</td>
<td>Finding the Needle in the Haystack: Selecting High-Quality STEM Material (p. 81)</td>
</tr>
</tbody>
</table>
Index of Exhibitor Workshops

FIRST® (Booth #325)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, July 28</td>
<td>9:30–10:30 AM</td>
<td>406, Conv. Center</td>
<td>Imaginative Thinking, Teamwork, AND Robots—OH MY!—FIRST® LEGO® League Builds More than Robots… (p. 35)</td>
</tr>
<tr>
<td>Thursday, July 28</td>
<td>11:00 AM–12 Noon</td>
<td>406, Conv. Center</td>
<td>More Than Robots…FIRST® Tech Challenge “Drives” STEM Learning Beyond the Classroom (p. 41)</td>
</tr>
<tr>
<td>Thursday, July 28</td>
<td>1:30–2:30 PM</td>
<td>406, Conv. Center</td>
<td>FIRST® Tech Challenge Proves You CAN Program a Robot (p. 49)</td>
</tr>
<tr>
<td>Thursday, July 28</td>
<td>3:00–4:00 PM</td>
<td>406, Conv. Center</td>
<td>Roll Up Your Sleeves—We’re Programming a LEGO® Robot! (p. 55)</td>
</tr>
</tbody>
</table>

Fisher Science Education (Booth #632)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, July 29</td>
<td>9:30–10:30 AM</td>
<td>301, Conv. Center</td>
<td>The STEM Design Challenge (p. 65)</td>
</tr>
<tr>
<td>Friday, July 29</td>
<td>11:00 AM–12 Noon</td>
<td>301, Conv. Center</td>
<td>Putting the STEM in Astronomy (p. 74)</td>
</tr>
<tr>
<td>Friday, July 29</td>
<td>1:30–2:30 PM</td>
<td>301, Conv. Center</td>
<td>Going Digital in Elementary STEM Education (p. 80)</td>
</tr>
<tr>
<td>Friday, July 29</td>
<td>3:00–4:00 PM</td>
<td>301, Conv. Center</td>
<td>Is Cancer in My DNA? (p. 87)</td>
</tr>
</tbody>
</table>

Flinn Scientific, Inc. (Booth #725)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, July 28</td>
<td>9:30–10:30 AM</td>
<td>403/404, Conv. Center</td>
<td>Flinn Scientific’s STEM Design Challenge™ “Build-It-Yourself” Lab Project (p. 34)</td>
</tr>
</tbody>
</table>

Frey Scientific/School Specialty Science (Booth #627)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, July 28</td>
<td>11:00 AM–12 Noon</td>
<td>301, Conv. Center</td>
<td>How to Incorporate Robotics into Any Learning Environment (p. 40)</td>
</tr>
</tbody>
</table>

Howard Hughes Medical Institute (HHMI) BioInteractive (Booth #628)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, July 28</td>
<td>9:30–10:30 AM</td>
<td>401, Conv. Center</td>
<td>The Biology of Skin Color (p. 34)</td>
</tr>
<tr>
<td>Thursday, July 28</td>
<td>11:00 AM–12 Noon</td>
<td>401, Conv. Center</td>
<td>Birds: Living Dinosaurs (p. 41)</td>
</tr>
<tr>
<td>Thursday, July 28</td>
<td>1:30–2:30 PM</td>
<td>401, Conv. Center</td>
<td>Analyzing Authentic Biological Data to Practice STEM Skills (p. 48)</td>
</tr>
<tr>
<td>Thursday, July 28</td>
<td>3:00–4:00 PM</td>
<td>401, Conv. Center</td>
<td>Patterns and Processes in Ecology (p. 55)</td>
</tr>
<tr>
<td>Friday, July 29</td>
<td>9:30–10:30 AM</td>
<td>401, Conv. Center</td>
<td>Extinctions Past and Present (p. 66)</td>
</tr>
</tbody>
</table>

LAB-AIDS®, Inc. (Booth #724)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, July 28</td>
<td>9:30–10:30 AM</td>
<td>302, Conv. Center</td>
<td>Investigating a Cliff Model (p. 34)</td>
</tr>
<tr>
<td>Thursday, July 28</td>
<td>11:00 AM–12 Noon</td>
<td>302, Conv. Center</td>
<td>Reclaiming the Metal (p. 40)</td>
</tr>
<tr>
<td>Friday, July 29</td>
<td>9:30–10:30 AM</td>
<td>302, Conv. Center</td>
<td>Chemical Batteries (p. 65)</td>
</tr>
<tr>
<td>Friday, July 29</td>
<td>11:00 AM–12 Noon</td>
<td>302, Conv. Center</td>
<td>Interpreting Motion Graphs (p. 74)</td>
</tr>
</tbody>
</table>

miniPCR (Booth #733)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, July 29</td>
<td>9:30–10:30 AM</td>
<td>405, Conv. Center</td>
<td>Real-World Biotech: Hands-On DNA Applications in Forensics (p. 66)</td>
</tr>
</tbody>
</table>

MSOE Center for BioMolecular Modeling (Booth #635)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, July 28</td>
<td>11:00 AM–12 Noon</td>
<td>402, Conv. Center</td>
<td>3D Printing for the Bioscience Classroom (p. 41)</td>
</tr>
<tr>
<td>Friday, July 29</td>
<td>1:30–2:30 PM</td>
<td>402, Conv. Center</td>
<td>Telling Stories with David Goodsell’s Watercolor Molecular Landscapes (p. 81)</td>
</tr>
<tr>
<td>Friday, July 29</td>
<td>3:00–4:00 PM</td>
<td>402, Conv. Center</td>
<td>Genes, Genomes, and Personalized Medicine (p. 87)</td>
</tr>
</tbody>
</table>

National Geographic Learning (Booth #338)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, July 29</td>
<td>9:30–10:30 AM</td>
<td>406, Conv. Center</td>
<td>National Geographic Explorers—Ideal Role Models of STEM (p. 66)</td>
</tr>
</tbody>
</table>

Ocean First Education (Booth #735)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, July 29</td>
<td>11:00 AM–12 Noon</td>
<td>406, Conv. Center</td>
<td>Integrating 360° Video Technology to Engage Students (p. 75)</td>
</tr>
</tbody>
</table>
Index of Exhibitor Workshops

<table>
<thead>
<tr>
<th>Exhibitor</th>
<th>Booth</th>
<th>Date/Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pitsco Education (Booth #739)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thursday, July 28</td>
<td>1:30–2:30 PM</td>
<td>302, Conv. Center</td>
<td>The Science of Speed: Fusion of Competition, Creativity, and STEM Learning (p. 48)</td>
<td></td>
</tr>
<tr>
<td>ProjectEngin (Booth #446)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thursday, July 28</td>
<td>3:00–4:00 PM</td>
<td>304, Conv. Center</td>
<td>Capitalizing the “E” in STEM: Engineering Engaging Experiences (p. 55)</td>
<td></td>
</tr>
<tr>
<td>SAE International – A World In Motion Program (Booth #831)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thursday, July 28</td>
<td>1:30–2:30 PM</td>
<td>304, Conv. Center</td>
<td>Building STEM Foundations in the Primary Classroom (p. 48)</td>
<td></td>
</tr>
<tr>
<td>Friday, July 29</td>
<td>9:30–10:30 AM</td>
<td>304, Conv. Center</td>
<td>Hands-On STEM Fun for Older Students (p. 65)</td>
<td></td>
</tr>
<tr>
<td>SE3D Education (Booth #339)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friday, July 29</td>
<td>11:00 AM–12 Noon</td>
<td>304, Conv. Center</td>
<td>Ignite Your Science Classroom with 3D Bioprinting (p. 74)</td>
<td></td>
</tr>
<tr>
<td>SparkFun Electronics (Booth #825)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thursday, July 28</td>
<td>9:30–10:30 AM</td>
<td>407, Conv. Center</td>
<td>DIY Data Logging for Authentic Citizen Science Using Arduino (p. 35)</td>
<td></td>
</tr>
<tr>
<td>Thursday, July 28</td>
<td>11:00 AM–12 Noon</td>
<td>407, Conv. Center</td>
<td>Think Fast! Build Your Own Reaction Timer with Arduino (p. 41)</td>
<td></td>
</tr>
<tr>
<td>Friday, July 29</td>
<td>9:30–10:30 AM</td>
<td>407, Conv. Center</td>
<td>Internet of Things 101: Connecting Electronic “Things” and the “Internet” (p. 66)</td>
<td></td>
</tr>
<tr>
<td>Friday, July 29</td>
<td>11:00 AM–12 Noon</td>
<td>407, Conv. Center</td>
<td>Physical Computing, Computer Science, and Making with Arduino (p. 75)</td>
<td></td>
</tr>
<tr>
<td>SumBlox (Booth #824)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friday, July 29</td>
<td>11:00 AM–12 Noon</td>
<td>403/404, Conv. Center</td>
<td>Hands-On with SumBlox, a New STEM Toy (p. 75)</td>
<td></td>
</tr>
<tr>
<td>Ten80 Education Inc. (Booth #230)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas Instruments (Booth #443)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thursday, July 28</td>
<td>11:00 AM–12 Noon</td>
<td>405, Conv. Center</td>
<td>How Can Entering Sin (π/2) on My Calculator Turn on a Hot Plate? (p. 41)</td>
<td></td>
</tr>
<tr>
<td>Thursday, July 28</td>
<td>3:00–4:00 PM</td>
<td>405, Conv. Center</td>
<td>Science Through Engineering Design (p. 55)</td>
<td></td>
</tr>
<tr>
<td>Friday, July 29</td>
<td>11:00 AM–12 Noon</td>
<td>405, Conv. Center</td>
<td>Zombie Apocalypse! (p. 75)</td>
<td></td>
</tr>
<tr>
<td>Friday, July 29</td>
<td>1:30–2:30 PM</td>
<td>405, Conv. Center</td>
<td>An Easier Path to Coding and STEM Projects (p. 81)</td>
<td></td>
</tr>
<tr>
<td>University of Northern Iowa FREE (Booth #528)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friday, July 29</td>
<td>1:30–2:30 PM</td>
<td>303, Conv. Center</td>
<td>FUNdamentals of Wind Energy Education (p. 80)</td>
<td></td>
</tr>
<tr>
<td>Vernier Software & Technology (Booth #624)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thursday, July 28</td>
<td>9:30–10:30 AM</td>
<td>304, Conv. Center</td>
<td>Integrating Chromebook™ with Vernier Technology (p. 34)</td>
<td></td>
</tr>
<tr>
<td>Thursday, July 28</td>
<td>11:00 AM–12 Noon</td>
<td>304, Conv. Center</td>
<td>Investigating Renewable Energy with KidWind and Vernier (p. 40)</td>
<td></td>
</tr>
<tr>
<td>WhiteBox Learning (Booth #433)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thursday, July 28</td>
<td>1:30–2:30 PM</td>
<td>303, Conv. Center</td>
<td>Project-Based STEM/Engineering (p. 48)</td>
<td></td>
</tr>
<tr>
<td>Friday, July 29</td>
<td>11:00 AM–12 Noon</td>
<td>303, Conv. Center</td>
<td>Project-Based STEM/Engineering (p. 74)</td>
<td></td>
</tr>
</tbody>
</table>
Schedule at a Glance

Lower Elementary/Early Childhood Strand

Thursday

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:30–10:30 AM</td>
<td>P–2</td>
<td>107, Conv. Center</td>
<td>Engineers in the Block Area: How Building with Blocks Fosters the Growth of a Child’s Scientific Mind (p. 29)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>K–4</td>
<td>107, Conv. Center</td>
<td>Buddy Up! Full STEAM Ahead! (p. 29)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>P–3</td>
<td>210/212, Conv. Center</td>
<td>It’s Never Too Early for Authentic STEM Experiences (p. 31)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>P–K</td>
<td>503, Conv. Center</td>
<td>Creating Scientific and Mathematical Thinkers Through Hands-On Experiences and Open-Ended Questioning (p. 32)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>K–5</td>
<td>205, Conv. Center</td>
<td>STEM Across the Curriculum (It’s eleSTEMary!) (p. 31)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>P–1</td>
<td>102, Conv. Center</td>
<td>Don’t Let It Rub You the Wrong Way: Developing Friction Concepts in Early Childhood (p. 38)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>P–K</td>
<td>202, Conv. Center</td>
<td>Preschoolers Explore Change Over Time and Living/Nonliving (p. 43)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>P–3</td>
<td>205, Conv. Center</td>
<td>Engineers Play, Too! (p. 45)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>1–3</td>
<td>207, Conv. Center</td>
<td>Nothing but Hot Air? Developing Concepts of Energy, Force, and Friction Through Balloon Cars (p. 45)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>P–2</td>
<td>210/212, Conv. Center</td>
<td>Teacher and Child—Co-Explorers, Co-Learners (p. 45)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>P–6</td>
<td>503, Conv. Center</td>
<td>Primary STEM Integration K–6 (p. 46)</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>1–3</td>
<td>105, Conv. Center</td>
<td>Simple Machines Made Simpler Through Mechanical Puppets and Masks (p. 52)</td>
</tr>
</tbody>
</table>

Friday

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:30–10:30 AM</td>
<td>P–3</td>
<td>503, Conv. Center</td>
<td>Engaging Young Scientists in the Engineering Design Process to Create a PBL That Explores the Properties and Behavior of Matter (p. 61)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>3–6</td>
<td>504, Conv. Center</td>
<td>Equipping General Education Teachers to Be STEM Professionals (p. 61)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>P–K</td>
<td>205, Conv. Center</td>
<td>Simple Machine: It’s That Simple (p. 63)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>P–1</td>
<td>207, Conv. Center</td>
<td>From Apps to ABCs: Great Technology for Early Childhood (p. 63)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>P–1</td>
<td>210/212, Conv. Center</td>
<td>Blocks and Beyond: Strengthening STEM Through Spatial Understandings (p. 64)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>P–1</td>
<td>601, Conv. Center</td>
<td>ECSTEAM (p. 64)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>P–3</td>
<td>503, Conv. Center</td>
<td>Pint-Sized Programming (p. 68)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>P–3</td>
<td>504, Conv. Center</td>
<td>STEMming Away from Stereotypes: Broadening Student Views on STEM Careers (p. 68)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>P–2</td>
<td>205, Conv. Center</td>
<td>Can You Build It? Engineering Design Challenge in the Early Elementary Classroom (p. 72)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>P–3</td>
<td>207, Conv. Center</td>
<td>Will It Sink or Float? Why? (p. 72)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>P–3</td>
<td>210/212, Conv. Center</td>
<td>Early Childhood Fab Labs: Integration of Digital Fabrication into PreK–3 STEM Learning (p. 72)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>P–1</td>
<td>Mile High Blrm. 3C, Conv. Center</td>
<td>Kids Love Rocks: Using Children’s Natural Interest to Explore Earth Materials (p. 74)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>K–2</td>
<td>107, Conv. Center</td>
<td>Design Thinking and Young Engineers (p. 75)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>1–2</td>
<td>206, Conv. Center</td>
<td>Science Notebooks: An Interdisciplinary Approach (p. 76)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>K–2</td>
<td>504, Conv. Center</td>
<td>Getting It All In (p. 76)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>1–5</td>
<td>205, Conv. Center</td>
<td>Teaching Engineering, Motion, and Energy Through Rube Goldberg (p. 79)</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>K–2</td>
<td>506, Conv. Center</td>
<td>STEM in the Primary Classroom (p. 83)</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>K</td>
<td>207, Conv. Center</td>
<td>Kindergarten STEM Labs (p. 85)</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>P–2</td>
<td>210/212, Conv. Center</td>
<td>Exploring Children’s (PreK–2) Physical Science Knowledge and Understanding (p. 85)</td>
</tr>
</tbody>
</table>
Upper Elementary Strand

Thursday

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:30–10:30 AM</td>
<td>K–6</td>
<td>109, Conv. Center</td>
<td>Creating an Elementary School STEM Lab and Curriculum (p. 28)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>2–10</td>
<td>112, Conv. Center</td>
<td>Kids Can Code: Introducing the Logo Programming Language to Develop Conceptual Thinking (p. 28)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>3–8</td>
<td>202, Conv. Center</td>
<td>Using Data to Inform Professional Development on Hands-On, Inquiry-Based Science Instruction: A Curriculum, University, and District Partnership Funded by a Math-Science Partnership Grant (p. 28)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>5–6</td>
<td>102, Conv. Center</td>
<td>The Marvelous, Miraculous Circus Machine! (p. 31)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>3–5</td>
<td>105, Conv. Center</td>
<td>The Movement of the Ocean (p. 31)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>K–8</td>
<td>110, Conv. Center</td>
<td>Digital “Show and Tell”: Student Use of Whiteboard Apps as a Formative Assessment (p. 31)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>1–7</td>
<td>203, Conv. Center</td>
<td>Using iPads and 21st-Century Skills to Demonstrate Understanding of NGSS Performance Expectations (p. 31)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>3–5</td>
<td>106, Conv. Center</td>
<td>Reimagine CODE: Computational Opportunities Delivered in Elementary (p. 36)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>K–6</td>
<td>103, Conv. Center</td>
<td>NGSS: It’s All About Inquiry (p. 38)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>3–6</td>
<td>113, Conv. Center</td>
<td>Reading and Writing in the STEM Classroom (p. 43)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>3–5</td>
<td>103, Conv. Center</td>
<td>One Bag of Materials = Three Hands-On Activities = Integrating Science and Engineering in a Fun Way! (p. 45)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>3–8</td>
<td>107, Conv. Center</td>
<td>STEM Lesson Guideposts™: Mapping STEM Lessons into Your Curriculum (p. 45)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>3–8</td>
<td>110, Conv. Center</td>
<td>Moon Gardens (p. 45)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>3–10</td>
<td>106, Conv. Center</td>
<td>Connecting and Integrating the NGSS with CCSS ELA (p. 49)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>3–6</td>
<td>109, Conv. Center</td>
<td>Cross-Curricular Learning with a Science Focus: Optimizing Student Learning and Maximizing Efficiency of Instruction While Integrating All Aspects of STEM (p. 49)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>3–5</td>
<td>112, Conv. Center</td>
<td>Structuring an Interdisciplinary STEM Unit to Support Students’ Data Analysis and Interpretation Skills (p. 49)</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>1–5</td>
<td>113, Conv. Center</td>
<td>Real-World STEM Lessons: Model Eliciting Activities for Elementary Students (p. 50)</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>4–6</td>
<td>102, Conv. Center</td>
<td>Propel Energy Concepts by Designing and Making a Propeller-Powered Car (p. 52)</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>3–12</td>
<td>103, Conv. Center</td>
<td>Design Build (p. 52)</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>3–6</td>
<td>104, Conv. Center</td>
<td>Park It! Making the STEM Connection Through a Parking Garage Challenge (p. 52)</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>1–5</td>
<td>107, Conv. Center</td>
<td>Effective Questioning Strategies in Engineering Activities (p. 52)</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>3–6/C</td>
<td>110, Conv. Center</td>
<td>Partner Up! STEM, STARBASE, Schools, and Preservice Teacher Education Yields a Winning Combination (p. 53)</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>3–5</td>
<td>203, Conv. Center</td>
<td>It’s Not Rocket Science; Oh Wait, Actually It Is! Engage, Empower, and Excel with Aerospace Engineering! (p. 53)</td>
</tr>
</tbody>
</table>

Friday

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:30–10:30 AM</td>
<td>3–8</td>
<td>106, Conv. Center</td>
<td>Life Changing: Seeing the Impacts on Students and Teachers When We STEMify Our Schools (p. 60)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>3–5</td>
<td>108, Conv. Center</td>
<td>Integrating Science and Engineering Practices: Embedding Engineering Tasks into a Science Content Storyline (p. 60)</td>
</tr>
</tbody>
</table>
Schedule at a Glance Upper Elementary Strand

<table>
<thead>
<tr>
<th>Time</th>
<th>Strand</th>
<th>Location</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:30–10:30 AM</td>
<td>3–6</td>
<td>109, Conv. Center</td>
<td>Helping Children Understand the Impact of STEM and the Essential Integration of All STEM Disciplines: Explorations with Physical Structures, Plants, and Everyday Household Tools (p. 60)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>K–8</td>
<td>112, Conv. Center</td>
<td>Integrating Technology in the Inquiry-Based Classroom (p. 60)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>K–8</td>
<td>112, Conv. Center</td>
<td>Integrating Technology in the Inquiry-Based Classroom (p. 61)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>K–6</td>
<td>202, Conv. Center</td>
<td>Integrating Authentic STEM Learning into the Elementary Curriculum Through Local Field-Based Investigation (p. 61)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>4–5</td>
<td>102, Conv. Center</td>
<td>It’s a Wrap (p. 63)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>3–12</td>
<td>103, Conv. Center</td>
<td>Using the Ice Age to Teach About Energy Flow and Climate Change (p. 63)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>2–8</td>
<td>104, Conv. Center</td>
<td>Constructing Explanations from Activities and Text (p. 63)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>3–5</td>
<td>105, Conv. Center</td>
<td>Beyond Spaceship Earth (p. 63)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>1–8</td>
<td>110, Conv. Center</td>
<td>ASEE Session: Infusing Engineering Throughout the Elementary Day (p. 63)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>3–6</td>
<td>201, Conv. Center</td>
<td>Illuminate Students’ Mathematical Thinking in the Science Classroom (p. 63)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>4–7</td>
<td>106, Conv. Center</td>
<td>Designing and Making Your Personal Wooden Ruler Through STEAM (p. 67)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>K–5</td>
<td>108, Conv. Center</td>
<td>Growing STEM Leaders Through Integrated Engineering (p. 67)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>G</td>
<td>109, Conv. Center</td>
<td>STEM Trade Books: What Makes Them Different (p. 67)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>P–5</td>
<td>112, Conv. Center</td>
<td>It’s eleSTEMary! Professional Development Model: Teachers Teaching Teachers! (p. 67)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>3–5</td>
<td>102, Conv. Center</td>
<td>Animals Inside & Out: Interactive Animal Science Education Activities (p. 71)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>2–5</td>
<td>103, Conv. Center</td>
<td>Archeogeology: Engaging Students in Connecting the History and Science of Place (p. 71)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>4–9</td>
<td>105, Conv. Center</td>
<td>May the Force Be with You: A Portable Force Indicator (p. 71)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>3–5</td>
<td>107, Conv. Center</td>
<td>Engaging Elementary Students with Engineering Design Challenges (p. 71)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>P–8</td>
<td>110, Conv. Center</td>
<td>Design Thinking and the Everyday Classroom (p. 71)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>3–6</td>
<td>201, Conv. Center</td>
<td>Global STEM Expeditions: Discovering Real-World STEM Challenges While Circumnavigating the Globe (p. 71)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>3–5</td>
<td>203, Conv. Center</td>
<td>Connecting Families Through Science, Technology, Engineering and Math (STEM) Nights (p. 71)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>G</td>
<td>605, Conv. Center</td>
<td>Innovators’ Compass (p. 72)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>2–6</td>
<td>106, Conv. Center</td>
<td>Investigation or Model: Two Argument-Based Inquiry Approaches to the NGSS (p. 75)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>3–8</td>
<td>108, Conv. Center</td>
<td>Biomimicry: A Natural Approach to Arts Integration in STEM (p. 75)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>3–8</td>
<td>109, Conv. Center</td>
<td>Integrating Science, Mathematics, and Literacy: How Can We Do This Well? (p. 75)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>3–6</td>
<td>102, Conv. Center</td>
<td>Food Waste, Aviation, and Gaming: Real-World STEM Units with Applied Student Solutions (p. 78)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>K–8</td>
<td>103, Conv. Center</td>
<td>Engagement: The Essential “E” (p. 78)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>4–9</td>
<td>104, Conv. Center</td>
<td>Nature Thought of It First: Biomimcry (p. 78)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>4–6</td>
<td>105, Conv. Center</td>
<td>Adapting STEM Lessons to Engage Students and Meet Grade-Level Standards (p. 78)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>4–6</td>
<td>201, Conv. Center</td>
<td>The Shadow Knows: Explore Primary and Secondary Colors by Making and Using Colored Shadows (p. 79)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>1–5</td>
<td>203, Conv. Center</td>
<td>Uniting Engineering and Science: Engineering Design Challenges That Inspire Inquiry (p. 79)</td>
</tr>
</tbody>
</table>
Schedule at a Glance

Upper Elementary Strand

<table>
<thead>
<tr>
<th>Time</th>
<th>Strand</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:00–4:00 PM</td>
<td>3–5</td>
<td>108, Conv. Center</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>P–5</td>
<td>109, Conv. Center</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>5–6</td>
<td>112, Conv. Center</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>1–6</td>
<td>102, Conv. Center</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>K–4</td>
<td>103, Conv. Center</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>K–8</td>
<td>104, Conv. Center</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>4–C</td>
<td>105, Conv. Center</td>
</tr>
</tbody>
</table>

Middle Level Strand

Thursday

<table>
<thead>
<tr>
<th>Time</th>
<th>Strand</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:30–10:30 AM</td>
<td>1–12</td>
<td>107, Conv. Center</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>4–12</td>
<td>706, Conv. Center</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>6–8</td>
<td>707, Conv. Center</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>5–12</td>
<td>708, Conv. Center</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>4–8</td>
<td>206, Conv. Center</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>3–9</td>
<td>605, Conv. Center</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>5–8</td>
<td>607, Conv. Center</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>4–12</td>
<td>610/612, Conv. Center</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>3–12</td>
<td>702, Conv. Center</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>6–8</td>
<td>703, Conv. Center</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>4–8</td>
<td>704, Conv. Center</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–12</td>
<td>108, Conv. Center</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–12</td>
<td>109, Conv. Center</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–8</td>
<td>113, Conv. Center</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>5–8</td>
<td>705, Conv. Center</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–8</td>
<td>706, Conv. Center</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>4–10</td>
<td>707, Conv. Center</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–8</td>
<td>601, Conv. Center</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–8</td>
<td>607, Conv. Center</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>5–8</td>
<td>610/612, Conv. Center</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>5–8</td>
<td>702, Conv. Center</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>P–12</td>
<td>704, Conv. Center</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>6–8</td>
<td>102, Conv. Center</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>P–8</td>
<td>112, Conv. Center</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>6–8</td>
<td>605, Conv. Center</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>5–8</td>
<td>607, Conv. Center</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>4–8</td>
<td>610/612, Conv. Center</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>4–9</td>
<td>702, Conv. Center</td>
</tr>
</tbody>
</table>
Schedule at a Glance
Middle Level Strand

<table>
<thead>
<tr>
<th>Time</th>
<th>Strand</th>
<th>Room</th>
<th>Session Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:30–2:30 PM</td>
<td>5–8</td>
<td>703, Conv. Center</td>
<td>Student Investigations of Metallic Elements: A Set of STEM-Based Lessons That Explore Costs Related to Mining, Manufacturing, and Recycling of Metals</td>
<td>47</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>K–12</td>
<td>704, Conv. Center</td>
<td>Science Facilities 102: The Architects Have Started Without Me — What Do I Do Now?</td>
<td>47</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>5–9</td>
<td>705, Conv. Center</td>
<td>How STEAM Helps STEM Students Become Problem Solvers</td>
<td>51</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>4–8</td>
<td>706, Conv. Center</td>
<td>STEM Ahead</td>
<td>51</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>5–9</td>
<td>707, Conv. Center</td>
<td>3-D Modeling with Middle School Girls</td>
<td>51</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>5–9</td>
<td>708, Conv. Center</td>
<td>Modeling Scientific Concepts with SCRATCH</td>
<td>51</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>P–12</td>
<td>711, Conv. Center</td>
<td>Science for EVERYONE</td>
<td>51</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>4–9</td>
<td>607, Conv. Center</td>
<td>Integrating the STEM Disciplines Through Everyday Engineering</td>
<td>54</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>K–12</td>
<td>610/612, Conv. Center</td>
<td>NASA Is with You When You Fly: Principles of Flight and Four Forces</td>
<td>54</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>6–12</td>
<td>701, Conv. Center</td>
<td>Are Three Trials Enough? Analyzing Investigation Data with Large Variation: How Sample Size Can Actually Change “Conclusions”</td>
<td>54</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>3–12</td>
<td>702, Conv. Center</td>
<td>Tinkering with STEM</td>
<td>54</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>6–8</td>
<td>703, Conv. Center</td>
<td>Green STEM: A Vehicle to Engage Students in STEM Through Their Natural Curiosity for the Environment</td>
<td>54</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>4–12</td>
<td>107, Conv. Center</td>
<td>Sneaky Math: Make Math Memorable with Projects Using Everyday Things</td>
<td>54</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>1–12</td>
<td>706, Conv. Center</td>
<td>Biome Challenges That Will Blow Your Mind!</td>
<td>62</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>5–8</td>
<td>707, Conv. Center</td>
<td>Engaging “At-Promise” Students in STEM Through Competitions</td>
<td>62</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>4–8</td>
<td>708, Conv. Center</td>
<td>Yes! You Can Teach Computer Science with Scalable Game Design!</td>
<td>62</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>6–9</td>
<td>605, Conv. Center</td>
<td>Engineering Paper Bridges: Integrating Math and Science in STEM: A Model Lesson</td>
<td>64</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>4–10</td>
<td>607, Conv. Center</td>
<td>Demystifying NGSS Through Storytelling and Drawing</td>
<td>64</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>K–8</td>
<td>610/612, Conv. Center</td>
<td>NASA’s Journey to Mars: Build a Mars Rover Using NASA’s Beginning Engineering Science and Technology (BEST) Curriculum</td>
<td>64</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>6–9</td>
<td>703, Conv. Center</td>
<td>It’s All in the Genes</td>
<td>64</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>1–8</td>
<td>704, Conv. Center</td>
<td>Building Bridges in Earthquake Country—From the Past to the Present</td>
<td>64</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–9</td>
<td>701, Conv. Center</td>
<td>Investigational Design Tool Helps Students Put STEM in Action</td>
<td>69</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–8</td>
<td>705, Conv. Center</td>
<td>Evolution for Educators</td>
<td>69</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>K–12</td>
<td>706, Conv. Center</td>
<td>Science “STEMIFICATION”: Bringing Science Instruction into the 21st Century with STEM Infusions</td>
<td>69</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>5–8</td>
<td>707, Conv. Center</td>
<td>Engaging Middle School Students with STEM and the Engineering Design Process</td>
<td>69</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>7–C</td>
<td>708, Conv. Center</td>
<td>Measuring and Mapping Air Quality by Using Mobile Devices: An After-School STEM Program</td>
<td>69</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>K–12</td>
<td>Mile High Blrm. 4 A–D, Conv. Center</td>
<td>Making Accountability in the Classroom</td>
<td>70</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–8</td>
<td>607, Conv. Center</td>
<td>Using a Web-Based Graphing Tool to Analyze and Interpret Local and National Weather and Climate Data for Patterns and Change</td>
<td>73</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>K–8</td>
<td>610/612, Conv. Center</td>
<td>3-2-1 Liftoff! Build and Launch a Satellite Using NASA’s Beginning Engineering Science and Technology (BEST) Curriculum</td>
<td>73</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–9</td>
<td>702, Conv. Center</td>
<td>Menacing Microbe or Just a Bad Rap? Bacteria, the Real Story</td>
<td>73</td>
</tr>
</tbody>
</table>
Schedule at a Glance Middle Level Strand

<table>
<thead>
<tr>
<th>Time</th>
<th>Grade Range</th>
<th>Location</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00 AM–12 Noon</td>
<td>5–8</td>
<td>703, Conv. Center</td>
<td>Using the Local Environment to Engage Youth: How Adapting the Billion Oyster Project Can Work for Your Site (p. 73)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>5–12</td>
<td>704, Conv. Center</td>
<td>Build, Ignite, and Launch (p. 73)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>5–12</td>
<td>111, Conv. Center</td>
<td>NASA's "Eyes on the Solar System": Bringing the Planets to Your Classroom (p. 75)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>5–8</td>
<td>701, Conv. Center</td>
<td>Engaging Students in Successful and Novel Science Projects: Materials, Strategies, and Challenges (p. 77)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>2–8</td>
<td>705, Conv. Center</td>
<td>Living Through an Avatar (p. 77)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>K–12</td>
<td>706, Conv. Center</td>
<td>Gardening for Success: Integrating Subjects and Teaching Your Standards Through Gardening (p. 77)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>4–9</td>
<td>Mile High Blrm. 4 E/F, Conv. Center</td>
<td>Dazzling Deceptions: Discrepant Events That Delight and Mystify! (p. 78)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>6–C</td>
<td>605, Conv. Center</td>
<td>Modeling in STEM Education with Examples from Climate Modeling (p. 79)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>1–12</td>
<td>607, Conv. Center</td>
<td>Swipe Right; It’s a Match! Scientific Investigations and Engineering Design (p. 79)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>5–9</td>
<td>610/612, Conv. Center</td>
<td>NASA's Beginning Engineering, Science, and Technology (BEST) (p. 80)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>6–12</td>
<td>702, Conv. Center</td>
<td>Can You Design the Most Efficient Wind Turbine? (p. 80)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>6–12</td>
<td>703, Conv. Center</td>
<td>Digging Deep with Concepts to Integrate for STEM (p. 80)</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>6–9</td>
<td>107, Conv. Center</td>
<td>NASA eClips™ Address Middle School Students’ Misconceptions (p. 82)</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>8</td>
<td>701, Conv. Center</td>
<td>Engineering Deeper Understanding of Science (p. 83)</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>5–8</td>
<td>110, Conv. Center</td>
<td>ASEE Session: Using Our Heads to Protect Our Brains—Contextualized Middle School Engineering Challenges (p. 85)</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>4–C</td>
<td>605, Conv. Center</td>
<td>Dropsonde Wind Tunnel Activity and Engineering in the Atmospheric Sciences (p. 86)</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>6–8</td>
<td>607, Conv. Center</td>
<td>PBL Workshops On Deck (p. 86)</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>4–9</td>
<td>610/612, Conv. Center</td>
<td>Mars, Here We Come! (p. 86)</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>6–8</td>
<td>702, Conv. Center</td>
<td>Heating Things Up: Using CER with Seasonal Data (p. 86)</td>
</tr>
</tbody>
</table>

High School Strand

Thursday

<table>
<thead>
<tr>
<th>Time</th>
<th>Grade Range</th>
<th>Location</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:30–10:30 AM</td>
<td>9–12</td>
<td>709, Conv. Center</td>
<td>Engaging Teens in Climate Change (p. 30)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>10–C</td>
<td>710, Conv. Center</td>
<td>What’s My Next? Exposing Students to Exciting Career Opportunities in Laboratory Medicine (p. 30)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>9–12</td>
<td>711, Conv. Center</td>
<td>How Skyline STEM Academy Stays Current in an Evolving STEM District (p. 30)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>9–12</td>
<td>712, Conv. Center</td>
<td>Effective Food Safety Curriculum for STEM Teachers—Motivating Students to Practice Safe Food Handling (p. 30)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>5–C</td>
<td>Mile High Blrm. 1A, Conv. Center</td>
<td>NESTA Shares: STEM Games and Simulations for Earth and Space Science (p. 30)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>9–C</td>
<td>Mile High Blrm. 1B, Conv. Center</td>
<td>NASA Astrobiology: The Search for Life Beyond Earth (p. 30)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>9–C</td>
<td>Mile High Blrm. 1C, Conv. Center</td>
<td>What Does English Have to Do with STEM? (p. 30)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>9–12</td>
<td>501, Conv. Center</td>
<td>AACT Session: Building a Unit Plan Using American Association of Chemistry Teachers Resources (p. 32)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>8–12</td>
<td>Mile High Blrm. 1D, Conv. Center</td>
<td>Are You Ready to Be R.E.D.? (p. 33)</td>
</tr>
</tbody>
</table>
High School Strand

9:30–10:30 AM
- **9–12** Mile High Blrm. 1E, Conv. Center
 - STEM Chem: Bringing Engineering into the Chemistry Classroom
 - Using Recreational UAVs (Drones) for STEM Activities and Science Fair Projects
- **6–12** Mile High Blrm. 1F, Conv. Center
 - STEM Behind Forensics
- **7–12** Mile High Blrm. 3C, Conv. Center
 - A Mobile and Global Classroom
 - AACT/AAPT/NABT-Sponsored Session: Using the NGSS and the Framework to Implement Crosscutting Concepts in Discipline-Specific Courses

10:30 AM–11:00 AM
- **G** 112, Conv. Center
 - Follow the Road to a Successful STEM Career
- **9–12** 501, Conv. Center
 - Making Data Analysis and Statistics Meaningful…and Understandable
- **9–12** Mile High Blrm. 1A, Conv. Center
 - Using the National Science Olympiad and STEM to Address NGSS Crosscutting Concepts and Content
- **9–12** Mile High Blrm. 1B, Conv. Center
 - The Rise of STEAM: Elevating STEM Curriculum Through the Art of Storytelling
- **9–12** Mile High Blrm. 1C, Conv. Center
 - Cybersecurity Curriculum Training for Teachers
- **8–12** Mile High Blrm. 1D, Conv. Center
 - Energy: A Multidisciplinary Approach for Teachers (EMAT)
 - Investigating Data Variation in 60 Minutes
 - STEM21: Defining Curriculum in an Age of Information
 - High Five: Five Ways to Make Teaching Biotechnology Easier and Cheaper
- **9–12** Mile High Blrm. 1F, Conv. Center
 - Energy: A Multidisciplinary Approach for Teachers (EMAT)
 - Investigating Data Variation in 60 Minutes
 - STEM21: Defining Curriculum in an Age of Information
 - High Five: Five Ways to Make Teaching Biotechnology Easier and Cheaper

11:00 AM–12 Noon
- **9–12** 710, Conv. Center
 - A Mobile and Global Classroom
 - AACT/AAPT/NABT-Sponsored Session: Using the NGSS and the Framework to Implement Crosscutting Concepts in Discipline-Specific Courses
- **9–12** Mile High Blrm. 1A, Conv. Center
 - The Rise of STEAM: Elevating STEM Curriculum Through the Art of Storytelling
 - Cybersecurity Curriculum Training for Teachers
 - Energy: A Multidisciplinary Approach for Teachers (EMAT)
 - Investigating Data Variation in 60 Minutes
 - STEM21: Defining Curriculum in an Age of Information
 - High Five: Five Ways to Make Teaching Biotechnology Easier and Cheaper
- **9–12** Mile High Blrm. 1B, Conv. Center
 - A Mobile and Global Classroom
 - AACT/AAPT/NABT-Sponsored Session: Using the NGSS and the Framework to Implement Crosscutting Concepts in Discipline-Specific Courses
- **9–12** Mile High Blrm. 1C, Conv. Center
 - Follow the Road to a Successful STEM Career
 - Making Data Analysis and Statistics Meaningful…and Understandable
- **9–12** Mile High Blrm. 1D, Conv. Center
 - Using the National Science Olympiad and STEM to Address NGSS Crosscutting Concepts and Content
 - The Rise of STEAM: Elevating STEM Curriculum Through the Art of Storytelling
 - Cybersecurity Curriculum Training for Teachers
 - Energy: A Multidisciplinary Approach for Teachers (EMAT)
 - Investigating Data Variation in 60 Minutes
 - STEM21: Defining Curriculum in an Age of Information
 - High Five: Five Ways to Make Teaching Biotechnology Easier and Cheaper
- **9–12** Mile High Blrm. 1E, Conv. Center
 - A Mobile and Global Classroom
 - AACT/AAPT/NABT-Sponsored Session: Using the NGSS and the Framework to Implement Crosscutting Concepts in Discipline-Specific Courses
- **9–12** Mile High Blrm. 1F, Conv. Center
 - Follow the Road to a Successful STEM Career
 - Making Data Analysis and Statistics Meaningful…and Understandable
 - Using the National Science Olympiad and STEM to Address NGSS Crosscutting Concepts and Content
 - The Rise of STEAM: Elevating STEM Curriculum Through the Art of Storytelling
 - Cybersecurity Curriculum Training for Teachers
 - Energy: A Multidisciplinary Approach for Teachers (EMAT)
 - Investigating Data Variation in 60 Minutes
 - STEM21: Defining Curriculum in an Age of Information
 - High Five: Five Ways to Make Teaching Biotechnology Easier and Cheaper
- **9–12** Mile High Blrm. 2C, Conv. Center
 - The Evolution of Bigfoot: Analyzing Evidence of an Alleged Species to Guide Students Through the 10 Big Questions in Evolution
 - AAPT Session: Balloon Science Lab—Inviting Chemistry and Physics to the Party
 - Open-Source Robotics
 - A Unique Ice Core Investigation That Integrates the Three Dimensions of NGSS and STEM
 - The Evolution of Bigfoot: Analyzing Evidence of an Alleged Species to Guide Students Through the 10 Big Questions in Evolution
 - AAPT Session: Balloon Science Lab—Inviting Chemistry and Physics to the Party
 - Open-Source Robotics
 - A Unique Ice Core Investigation That Integrates the Three Dimensions of NGSS and STEM

1:30–2:30 PM
- **6–8** 707, Conv. Center
 - Inviting “Failure” to the Classroom
- **5–12** 709, Conv. Center
 - PolyWhat? Understanding What a Polymer Is: Polymer 101
 - Using Issues-Based Culminating Projects to Bring STEM to Introductory Chemistry
 - Moving Toward the Practices with Problem-Based Learning
 - Open-Source Robotics
 - A Unique Ice Core Investigation That Integrates the Three Dimensions of NGSS and STEM
 - The Evolution of Bigfoot: Analyzing Evidence of an Alleged Species to Guide Students Through the 10 Big Questions in Evolution
 - AAPT Session: Balloon Science Lab—Inviting Chemistry and Physics to the Party
 - Open-Source Robotics
 - A Unique Ice Core Investigation That Integrates the Three Dimensions of NGSS and STEM
- **6–12** 710, Conv. Center
 - Using Issues-Based Culminating Projects to Bring STEM to Introductory Chemistry
 - Open-Source Robotics
 - A Unique Ice Core Investigation That Integrates the Three Dimensions of NGSS and STEM
- **8–12** 712, Conv. Center
 - A Unique Ice Core Investigation That Integrates the Three Dimensions of NGSS and STEM
- **8–12** Mile High Blrm. 1D, Conv. Center
 - Using Issues-Based Culminating Projects to Bring STEM to Introductory Chemistry
 - Open-Source Robotics
 - A Unique Ice Core Investigation That Integrates the Three Dimensions of NGSS and STEM
- **8–12** Mile High Blrm. 1E, Conv. Center
 - Using Issues-Based Culminating Projects to Bring STEM to Introductory Chemistry
 - Open-Source Robotics
 - A Unique Ice Core Investigation That Integrates the Three Dimensions of NGSS and STEM
- **8–12** Mile High Blrm. 1F, Conv. Center
 - Using Issues-Based Culminating Projects to Bring STEM to Introductory Chemistry
 - Open-Source Robotics
 - A Unique Ice Core Investigation That Integrates the Three Dimensions of NGSS and STEM
- **9–12** Mile High Blrm. 1C, Conv. Center
 - The Evolution of Bigfoot: Analyzing Evidence of an Alleged Species to Guide Students Through the 10 Big Questions in Evolution
 - AAPT Session: Balloon Science Lab—Inviting Chemistry and Physics to the Party
 - Open-Source Robotics
 - A Unique Ice Core Investigation That Integrates the Three Dimensions of NGSS and STEM
- **9–12** Mile High Blrm. 1D, Conv. Center
 - The Evolution of Bigfoot: Analyzing Evidence of an Alleged Species to Guide Students Through the 10 Big Questions in Evolution
 - AAPT Session: Balloon Science Lab—Inviting Chemistry and Physics to the Party
 - Open-Source Robotics
 - A Unique Ice Core Investigation That Integrates the Three Dimensions of NGSS and STEM
- **9–12** Mile High Blrm. 1E, Conv. Center
 - The Evolution of Bigfoot: Analyzing Evidence of an Alleged Species to Guide Students Through the 10 Big Questions in Evolution
 - AAPT Session: Balloon Science Lab—Inviting Chemistry and Physics to the Party
 - Open-Source Robotics
 - A Unique Ice Core Investigation That Integrates the Three Dimensions of NGSS and STEM

3:00–4:00 PM
- **9–12** 503, Conv. Center
 - Bridging the Gap Between Students, Science, and the Future
 - Building Our Nation's Future Engineers
 - Bioplastic—Going from Synthetic to Natural Polymers
 - Survive the Zombie Apocalypse
 - Add STEAM to Your Chemistry Classroom with Native Plant Extractions
- **8–12** 709, Conv. Center
 - Bridging the Gap Between Students, Science, and the Future
 - Building Our Nation's Future Engineers
 - Bioplastic—Going from Synthetic to Natural Polymers
 - Survive the Zombie Apocalypse
 - Add STEAM to Your Chemistry Classroom with Native Plant Extractions
- **6–12** 710, Conv. Center
 - Bridging the Gap Between Students, Science, and the Future
 - Building Our Nation's Future Engineers
 - Bioplastic—Going from Synthetic to Natural Polymers
 - Survive the Zombie Apocalypse
 - Add STEAM to Your Chemistry Classroom with Native Plant Extractions
- **9–12** 712, Conv. Center
 - Bridging the Gap Between Students, Science, and the Future
 - Building Our Nation's Future Engineers
 - Bioplastic—Going from Synthetic to Natural Polymers
 - Survive the Zombie Apocalypse
 - Add STEAM to Your Chemistry Classroom with Native Plant Extractions
- **6–12** Mile High Blrm. 1A, Conv. Center
 - Bridging the Gap Between Students, Science, and the Future
 - Building Our Nation's Future Engineers
 - Bioplastic—Going from Synthetic to Natural Polymers
 - Survive the Zombie Apocalypse
 - Add STEAM to Your Chemistry Classroom with Native Plant Extractions
- **6–12** Mile High Blrm. 1B, Conv. Center
 - Bridging the Gap Between Students, Science, and the Future
 - Building Our Nation's Future Engineers
 - Bioplastic—Going from Synthetic to Natural Polymers
 - Survive the Zombie Apocalypse
 - Add STEAM to Your Chemistry Classroom with Native Plant Extractions
- **9–12** Mile High Blrm. 1C, Conv. Center
 - Bridging the Gap Between Students, Science, and the Future
 - Building Our Nation's Future Engineers
 - Bioplastic—Going from Synthetic to Natural Polymers
 - Survive the Zombie Apocalypse
 - Add STEAM to Your Chemistry Classroom with Native Plant Extractions
- **9–12** Mile High Blrm. 1D, Conv. Center
 - Bridging the Gap Between Students, Science, and the Future
 - Building Our Nation's Future Engineers
 - Bioplastic—Going from Synthetic to Natural Polymers
 - Survive the Zombie Apocalypse
 - Add STEAM to Your Chemistry Classroom with Native Plant Extractions
- **9–12** Mile High Blrm. 1E, Conv. Center
 - Bridging the Gap Between Students, Science, and the Future
 - Building Our Nation's Future Engineers
 - Bioplastic—Going from Synthetic to Natural Polymers
 - Survive the Zombie Apocalypse
 - Add STEAM to Your Chemistry Classroom with Native Plant Extractions
- **9–12** Mile High Blrm. 1F, Conv. Center
 - Bridging the Gap Between Students, Science, and the Future
 - Building Our Nation's Future Engineers
 - Bioplastic—Going from Synthetic to Natural Polymers
 - Survive the Zombie Apocalypse
 - Add STEAM to Your Chemistry Classroom with Native Plant Extractions
3:00–4:00 PM 6–C 206, Conv. Center
Using Synthetic Biology to Bring STEM into the Biology Classroom (p. 53)

3:00–4:00 PM 7–C 502, Conv. Center
AAPT Session: Smartphone STEM Lab—Turn Your Smartphone into a STEM Laboratory (p. 53)

3:00–4:00 PM 9–12 Mile High Blrm. 1D, Conv. Center
The Burning Question: How Can STEM Be Integrated into a Traditional Secondary Math Classroom? (p. 54)

3:00–4:00 PM 7–C Mile High Blrm. 1E, Conv. Center
Use Ice Core Record Data to Plot and Date Volcanoes, Solar Activity, and Possible Supernova Events (p. 54)

3:00–4:00 PM 8–12 Mile High Blrm. 1F, Conv. Center
Teaching Environmental Sustainability Using a Place-Based Watershed Modeling Application (p. 55)

3:00–4:00 PM 6–12 Mile High Blrm. 3C, Conv. Center
The STEAM Behind a NASA Mission, as Seen by a Teacher Who “Flew” (p. 55)

9:30–10:30 AM 9–12 709, Conv. Center
Simulate STEM Online Through Virtual Clinical Trials Web Simulation (p. 62)

9:30–10:30 AM 6–12 710, Conv. Center
Engineering vs. Science (p. 62)

9:30–10:30 AM 9–12 711, Conv. Center
Denver Public Schools CareerConnect—Equity in STEM (p. 62)

9:30–10:30 AM 5–C Mile High Blrm. 1A, Conv. Center
NESTAA Shares: Using the CLEAN Collection of Resources to Inspire Climate and Energy Solutions (p. 62)

9:30–10:30 AM 9–12 Mile High Blrm. 1C, Conv. Center
STEM Literacy: An Innovative Way to Collaborate with Language Arts (p. 62)

9:30–10:30 AM 8–12 501, Conv. Center
NABT and BSCS Present: Identify and Interpret—a Strategy to Help Students Make Sense of Difficult Information (p. 64)

9:30–10:30 AM 7–C 502, Conv. Center
AAPT Session: Brain Science Lab—Using Gelatin Circuits to Understand How Neurons Work Through Physics and Biology (p. 64)

9:30–10:30 AM 5–12 Mile High Blrm. 1D, Conv. Center
Range of Motion: Motivating Students with STEM Careers (p. 65)

9:30–10:30 AM 7–C Mile High Blrm. 1E, Conv. Center
Science and Math: Data Analysis Made Easy (p. 65)

9:30–10:30 AM 9–12 Mile High Blrm. 1F, Conv. Center
Teach an Old Dog New Tricks: Engaging Older Students in STEM (p. 65)

9:30–10:30 AM 8–12 Mile High Blrm. 3C, Conv. Center
NASA Earth Science: Real-World Connections to Data and Tools for Science Fairs (p. 65)

11:00 AM–12 Noon 6–12 505, Conv. Center
Building Teachers’ STEM Practices (p. 68)

11:00 AM–12 Noon 9–12 608, Conv. Center
Facilitating High School Students’ Interest in STEM Careers via Problem-Based Learning (p. 69)

11:00 AM–12 Noon 6–12 709, Conv. Center
Sim City in the Real World: Using STEM Practices to Model YOUR Environment (p. 69)

11:00 AM–12 Noon 6–12 710, Conv. Center
Using the 5E Learning Cycle Model to Facilitate an Inquiry-Oriented Lesson on Mass Transfer, Osmosis, and Diffusion (p. 69)

11:00 AM–12 Noon 9–12 711, Conv. Center
A Systematic Model to Fuel the STEM Pipeline (p. 70)

11:00 AM–12 Noon 9–12 712, Conv. Center
Experimental Design for Students (p. 70)

11:00 AM–12 Noon 9–12 Mile High Blrm. 1A, Conv. Center
Using Models to Teach How Crime Scene Blood Spatter Evidence Tells a Story (p. 70)

11:00 AM–12 Noon 9–12 Mile High Blrm. 1C, Conv. Center
Incorporating the CCSS for Literacy in Science and Technical Subjects into Science Investigations (p. 70)

11:00 AM–12 Noon 9–12 Mile High Blrm. 4 E/F, Conv. Center
Making Meaning Makers in the Sciences (p. 70)

11:00 AM–12 Noon 9–12 501, Conv. Center
NABT and BSCS Present: Scaffolding the Practices of Science to Facilitate Student Learning (p. 72)

11:00 AM–12 Noon 5–12 Mile High Blrm. 1D, Conv. Center
Integrating Career Awareness into STEM Classes (p. 73)

11:00 AM–12 Noon 9–12 Mile High Blrm. 1E, Conv. Center
Using Problem-Based Learning to Bring Upper-Level Research to High School STEM Science Students (p. 73)

11:00 AM–12 Noon 6–C Mile High Blrm. 1F, Conv. Center
Technology Tools for Visualizing Scientific Data: A Hands-On Workshop (p. 73)

11:00 AM–12 Noon 8–C Mile High Blrm. 2C, Conv. Center
The Best Interactive Physics Demonstrations You and Your Students AREN’T Doing (p. 73)
Schedule at a Glance
High School Strand

<table>
<thead>
<tr>
<th>Time</th>
<th>Strand</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:30–2:30 PM</td>
<td>Upper Elementary Strand</td>
<td>6–12 709, Conv. Center</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>Upper Elementary Strand</td>
<td>6–C 710, Conv. Center</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>Upper Elementary Strand</td>
<td>11–12 711, Conv. Center</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>Upper Elementary Strand</td>
<td>9–12 712, Conv. Center</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>Upper Elementary Strand</td>
<td>9–12 Mile High Blrm. 1A, Conv. Center</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>Upper Elementary Strand</td>
<td>9–12 Mile High Blrm. 1B, Conv. Center</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>Upper Elementary Strand</td>
<td>10–12 Mile High Blrm. 1C, Conv. Center</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>Upper Elementary Strand</td>
<td>9–12 Mile High Blrm. 2C, Conv. Center</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>Upper Elementary Strand</td>
<td>9–12 501, Conv. Center</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>Upper Elementary Strand</td>
<td>9–C 601, Conv. Center</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>Upper Elementary Strand</td>
<td>9–12 Mile High Blrm. 1D, Conv. Center</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>Upper Elementary Strand</td>
<td>9–11 Mile High Blrm. 1E, Conv. Center</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>Upper Elementary Strand</td>
<td>9–12 501, Conv. Center</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>Upper Elementary Strand</td>
<td>9–C 503, Conv. Center</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>Upper Elementary Strand</td>
<td>9–C 706, Conv. Center</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>Upper Elementary Strand</td>
<td>7–C 710, Conv. Center</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>Upper Elementary Strand</td>
<td>8–C 711, Conv. Center</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>Upper Elementary Strand</td>
<td>6–12 Mile High Blrm. 1B, Conv. Center</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>Upper Elementary Strand</td>
<td>6–C Mile High Blrm. 1C, Conv. Center</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>Upper Elementary Strand</td>
<td>9–C Mile High Blrm. 3C, Conv. Center</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>Upper Elementary Strand</td>
<td>6–C Mile High Blrm. 1D, Conv. Center</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>Upper Elementary Strand</td>
<td>7–C Mile High Blrm. 1E, Conv. Center</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>Upper Elementary Strand</td>
<td>10–12 Mile High Blrm. 1F, Conv. Center</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>Upper Elementary Strand</td>
<td>8–C Mile High Blrm. 2C, Conv. Center</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>Upper Elementary Strand</td>
<td>Mile High Blrm. 4 A–D, Conv. Center</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>Partnerships Strand</td>
<td>G 507, Conv. Center</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>Partnerships Strand</td>
<td>G Mile High Blrm. 4 A–D, Conv. Center</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>Partnerships Strand</td>
<td>G 507, Conv. Center</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>Partnerships Strand</td>
<td>G Mile High Blrm. 4 A–D, Conv. Center</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>Partnerships Strand</td>
<td>C 602, Conv. Center</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>Partnerships Strand</td>
<td>2–12 604, Conv. Center</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>Partnerships Strand</td>
<td>G 606, Conv. Center</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>Partnerships Strand</td>
<td>2–8 602, Conv. Center</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>Partnerships Strand</td>
<td>6–C 507, Conv. Center</td>
</tr>
</tbody>
</table>

Partnerships Strand
Thursday

- **8:00–9:00 AM**
 - G Mile High Blrm. 4 A–D, Conv. Center
 - Forming Partnerships (p. 27)
 - John C. Dunham STEM Partnership School: The Building of True Collaboration (p. 29)
 - Undergraduate STEM Education Scholar Program (p. 29)
 - Extending the Learning Experience via STEAM Learning Partnerships (p. 29)
 - The High Tide Lifts All Boats: Value of PreK–20 Partnerships for Teaching and Learning (p. 29)
 - Kids Code: A University/K–12/Community Partnership to Engage Underrepresented Youth in Computer Science and Technology (p. 32)
 - Teachers Bridging School and Workplace: Summer in Industry (p. 36)

- **9:30–10:30 AM**
 - G 606, Conv. Center
 - The High Tide Lifts All Boats: Value of PreK–20 Partnerships for Teaching and Learning (p. 29)
 - Kids Code: A University/K–12/Community Partnership to Engage Underrepresented Youth in Computer Science and Technology (p. 32)
 - Teachers Bridging School and Workplace: Summer in Industry (p. 36)
Partnerships Strand

Upper Elementary Strand

11:00 AM–12 Noon
G 602, Conv. Center
The Colorado STEM Model: A Public-Private Partnership (p. 37)

11:00 AM–12 Noon
7–12 604, Conv. Center
NICERC, Cyber Innovations, the University of Louisiana at Monroe, and Robots (p. 37)

11:00 AM–12 Noon
7–C 606, Conv. Center
Enhancing Student Engagement Through Real-World Relevance (p. 37)

11:00 AM–12 Noon
5–C 608, Conv. Center
Identifying the Right Mentoring Model for Your Program (p. 37)

11:00 AM–12 Noon
5–8 203, Conv. Center
Zombies, Space, and Connecting Creativity to STEM (p. 38)

11:00 AM–12 Noon
G 502, Conv. Center
STEAMology: The Power of Artful Learning (p. 39)

1:30–2:30 PM
6–C 104, Conv. Center
Getting Started with STEM (p. 42)

1:30–2:30 PM
3–5 106, Conv. Center
STEM Discovery Boxes (p. 42)

1:30–2:30 PM
3–7 108, Conv. Center
Hearts and Minds: A Case for Elementary Robotics (p. 42)

1:30–2:30 PM
P–6 109, Conv. Center
Gains in the Education of Mathematics and Science—What GEMS Can Do for You! (p. 43)

1:30–2:30 PM
5–12 506, Conv. Center
STEM P3: A Statewide Programs/Policy Partnership to Advance PreK–12 STEM Education (p. 43)

1:30–2:30 PM
P–12 602, Conv. Center
Bringing Imagination to Reality (p. 43)

1:30–2:30 PM
G 507, Conv. Center
A STEM Guide: Inspiring, Motivating, and Preparing Girls in STEM (p. 43)

1:30–2:30 PM
10–12 606, Conv. Center
12 for Life: A Model Partnership Between Schools and Business (p. 43)

1:30–2:30 PM
1–12 608, Conv. Center
cesmarts™: A Partnership in Energy Education (p. 44)

1:30–2:30 PM
10–C 501, Conv. Center
NABT and BSCS Present: The AP Biology Academy—Professional Development with an Impact, Part 1 (p. 46)

1:30–2:30 PM
4–12 601, Conv. Center
STEM in Life Science: Connecting to Your Local Zoo (p. 46)

1:30–2:30 PM
9–C 507, Conv. Center
Bridges to Education: A Partnership Model for Municipalities to Engage Students Through Real-World Problems (p. 50)

3:00–4:00 PM
7–C 602, Conv. Center
Harnessing the Power of Partnerships in Out-of-School-Time STEM Programs (p. 50)

3:00–4:00 PM
G 506, Conv. Center
Building a Regional Culture of STEM (p. 50)

3:00–4:00 PM
7–12 606, Conv. Center
Providing Schools with Real-World Connections (p. 50)

3:00–4:00 PM
G 608, Conv. Center
Building a Community in K–12 Outreach: Fostering Collaboration and Career Connections for STEM Events and Partnerships (p. 51)

3:00–4:00 PM
P–12 604, Conv. Center
NABT and BSCS Present: The AP Biology Academy—Professional Development with an Impact, Part 2 (p. 53)

3:00–4:00 PM
K–12 601, Conv. Center
Engaging Youth in Agriculture Through STEM Activities (p. 53)

Friday

<table>
<thead>
<tr>
<th>Time</th>
<th>Location</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00 AM</td>
<td>G Mile High Blrm. 4 A–D, Conv. Center</td>
<td>Forming Partnerships (p. 59)</td>
<td></td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>G 506, Conv. Center</td>
<td>Bridging the Attraction Gap: An Event-Based STEM Partnership That Gets Results (p. 61)</td>
<td></td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>G 507, Conv. Center</td>
<td>Leveraging Partnerships to Become a Regional STEAM Leader (p. 61)</td>
<td></td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>P–2/9–12 604, Conv. Center</td>
<td>High School Students Become Environmental Educators (p. 61)</td>
<td></td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>C 606, Conv. Center</td>
<td>Rising Star Educator Program (p. 61)</td>
<td></td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>6–12 505, Conv. Center</td>
<td>CosmoQuest: Astronomical Learner Community (p. 64)</td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>4–C 204, Conv. Center</td>
<td>Broader Impact Partnerships with LIGO (p. 67)</td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>K–12 506, Conv. Center</td>
<td>How to Implement STEM and NGSS into Your Classroom Through the Use of NSTA Competitions (p. 68)</td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>K–5 602, Conv. Center</td>
<td>A K–5 STEM Partnership Between Dalton Elementary and Azusa Pacific University (p. 68)</td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>C 604, Conv. Center</td>
<td>WGU-AMNH Partnership Pilot Program: Year 1 Results, Year 2 Progress (p. 68)</td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>9–12 606, Conv. Center</td>
<td>Aquatic Cave Ecology with Student-Built Submersible Drones (p. 68)</td>
<td></td>
</tr>
</tbody>
</table>
Partnerships Strand

<table>
<thead>
<tr>
<th>Time</th>
<th>Grade</th>
<th>Location</th>
<th>Session Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00 AM–12 Noon</td>
<td>K–12</td>
<td>502, Conv. Center</td>
<td>Exploring the TeachEngineering Digital Library: Engineering Resources for the K–12 Community (p. 72)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>K–9</td>
<td>601, Conv. Center</td>
<td>Successful STEM-Rich Making Practices That Benefit Underserved Students (p. 72)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>3–12</td>
<td>507, Conv. Center</td>
<td>Essential Elements of a Successful STEM Program (p. 76)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>K–5/C</td>
<td>604, Conv. Center</td>
<td>Redefining Student Teaching Experiences: Collaboration Between University Education/Computer Science Students and K–12 Districts (p. 76)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>G</td>
<td>606, Conv. Center</td>
<td>Developing Successful Capstone STEM Learning Experiences Through Partnerships and Integration of Digital Fabrication (p. 76)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>9–12</td>
<td>502, Conv. Center</td>
<td>Using Partnerships to Bring Upper-Level Research to High School STEM Science Classrooms (p. 79)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>4–12</td>
<td>503, Conv. Center</td>
<td>Connecting Careers to the Classroom: Bringing STEM Professions to Life (p. 79)</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>P–8</td>
<td>507, Conv. Center</td>
<td>Full STEAM Ahead: Designing and Implementing a STEAM-Based Initiative with All Constituents (p. 83)</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>G</td>
<td>604, Conv. Center</td>
<td>Equity in STEM Education Roundtable (p. 83)</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>6–C</td>
<td>606, Conv. Center</td>
<td>Building Partnerships to Connect Classroom to Career (p. 83)</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>6–12</td>
<td>502, Conv. Center</td>
<td>Rigorous Citizen Science and Environment-Based Learning Makes for a Partnership of Global Proportions (p. 85)</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>6–12</td>
<td>601, Conv. Center</td>
<td>NCTM Session: Common Ground in Mathematics and Science Teaching: Effective STEM Teaching Practices (p. 85)</td>
</tr>
</tbody>
</table>

Administrators Strand

Thursday

<table>
<thead>
<tr>
<th>Time</th>
<th>Grade</th>
<th>Location</th>
<th>Session Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:30–10:30 AM</td>
<td>G</td>
<td>Mile High Blrm. 4 E/F, Conv. Center</td>
<td>Success Stories from Administrators (p. 28)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>G</td>
<td>111, Conv. Center</td>
<td>ITEEA Session: Integrative STEM Education: Intentional Teaching Through Engineering Design (p. 36)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>K–12</td>
<td>202, Conv. Center</td>
<td>Green STEM in Guam: A District-Wide Initiative That Works (p. 36)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>K–12</td>
<td>603, Conv. Center</td>
<td>STEM Innovation in Independent and Charter Schools Roundtable Discussion (p. 37)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>G</td>
<td>201, Conv. Center</td>
<td>Engaging School Principals in Professional Development (p. 38)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>G</td>
<td>111, Conv. Center</td>
<td>ITEEA Session: Integrative STEM Focal Points—Connecting the I-STEM Dots (p. 42)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>3–C</td>
<td>603, Conv. Center</td>
<td>Ballistic Missile Defense = Math + Science + You (p. 43)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>6–C</td>
<td>201, Conv. Center</td>
<td>Integrative STEM for Middle School/High School Administrators and Educators (p. 45)</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>9–12</td>
<td>202, Conv. Center</td>
<td>A Systematic Model to Fuel the STEM Pipeline(p. 50)</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>K–8</td>
<td>603, Conv. Center</td>
<td>STEMification! How Do You Do That?(p. 50)</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>P–12</td>
<td>201, Conv. Center</td>
<td>Planning a STEAM Night for Your School and Community (p. 53)</td>
</tr>
</tbody>
</table>

Friday

<table>
<thead>
<tr>
<th>Time</th>
<th>Grade</th>
<th>Location</th>
<th>Session Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–C</td>
<td>111, Conv. Center</td>
<td>ITEEA Session: TEAMS—Engineering the Tools of Innovation (p. 67)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>G</td>
<td>113, Conv. Center</td>
<td>A Model for Building a STEM Ecosystem Across a District (p. 67)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>1–6</td>
<td>202, Conv. Center</td>
<td>Developing and Integrating Computer Coding: One School’s Exploration and Development (p. 67)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>G</td>
<td>206, Conv. Center</td>
<td>Learning Experiences Afforded by Makerspaces (p. 67)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>G</td>
<td>603, Conv. Center</td>
<td>Colorado STEMworks: Quality STEM Programming (p. 68)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>P–8</td>
<td>113, Conv. Center</td>
<td>Shifting to a STEM Culture (p. 76)</td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>P–12</td>
<td>202, Conv. Center</td>
<td>Leadership Strategies for Ensuring Each Student Has a STEM Future (p. 76)</td>
</tr>
</tbody>
</table>
Schedule at a Glance
Administrators Strand

<table>
<thead>
<tr>
<th>Time</th>
<th>Strand</th>
<th>Room</th>
<th>Session Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:30–2:30 PM</td>
<td>4–C</td>
<td>603, Conv. Center</td>
<td>STEM Mix It Up: Correlated Science and Math Principals Panel (p. 76)</td>
<td></td>
</tr>
<tr>
<td>1:30–2:30 PM</td>
<td>P–12</td>
<td>708, Conv. Center</td>
<td>If They Make It, They Will Learn: The Maker Movement and K–12 STEM (p. 77)</td>
<td></td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>G</td>
<td>111, Conv. Center</td>
<td>ITEEA Session: Integrative STEM Education—Engaging in I-STEM Professional Learning Communities (p. 82)</td>
<td></td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>7–C</td>
<td>113, Conv. Center</td>
<td>Reimagining the Secondary Science Sequence—Physics First! (p. 82)</td>
<td></td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>K–8</td>
<td>202, Conv. Center</td>
<td>Triumphs and Deltas: Our Ongoing Journey Toward an Integrated STEM Curriculum at a K–8 Magnet School (p. 82)</td>
<td></td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>P–12</td>
<td>603, Conv. Center</td>
<td>Becoming a STEM-Focus School: STEM by Design (p. 83)</td>
<td></td>
</tr>
</tbody>
</table>
Index of Participants

<table>
<thead>
<tr>
<th>A</th>
<th>Ahlgrim, Elizabeth 83</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aielo, Monica</td>
<td>33, 39</td>
</tr>
<tr>
<td>Aielo, Tyler</td>
<td>39</td>
</tr>
<tr>
<td>Akers, Belle</td>
<td>76</td>
</tr>
<tr>
<td>Allen, Dwight</td>
<td>84</td>
</tr>
<tr>
<td>Allen, Heather</td>
<td>61</td>
</tr>
<tr>
<td>Allen, Sarah</td>
<td>68</td>
</tr>
<tr>
<td>Alouf, James</td>
<td>38</td>
</tr>
<tr>
<td>Alpizar, Mariano Lzano</td>
<td>87</td>
</tr>
<tr>
<td>Andrews, Grace</td>
<td>46</td>
</tr>
<tr>
<td>Aronson, Joanne</td>
<td>33</td>
</tr>
<tr>
<td>Ashe, Becky</td>
<td>67</td>
</tr>
<tr>
<td>B</td>
<td>Bacon, Jennifer 27, 59</td>
</tr>
<tr>
<td>Baire, Nikki</td>
<td>81</td>
</tr>
<tr>
<td>Balch, Kat</td>
<td>80</td>
</tr>
<tr>
<td>Balesdent, Chantal</td>
<td>52, 85</td>
</tr>
<tr>
<td>Balmer, Alden</td>
<td>47</td>
</tr>
<tr>
<td>Barlow, Matthew</td>
<td>42</td>
</tr>
<tr>
<td>Barnes-Johnson, Joy</td>
<td>32, 39</td>
</tr>
<tr>
<td>Bauer, Carolyn</td>
<td>81</td>
</tr>
<tr>
<td>Baughman, Graham</td>
<td>48, 74</td>
</tr>
<tr>
<td>Bay, Nicole</td>
<td>82</td>
</tr>
<tr>
<td>Beard, Marita</td>
<td>86</td>
</tr>
<tr>
<td>Beasley, Catherine</td>
<td>63</td>
</tr>
<tr>
<td>Belcher, Janice</td>
<td>53</td>
</tr>
<tr>
<td>Bell, Karen</td>
<td>31</td>
</tr>
<tr>
<td>Bell, Luke</td>
<td>30</td>
</tr>
<tr>
<td>Benenson, Gary</td>
<td>52, 79</td>
</tr>
<tr>
<td>Benes, Ashley</td>
<td>71</td>
</tr>
<tr>
<td>Bentley, Jennifer</td>
<td>36</td>
</tr>
<tr>
<td>Ben-Ur, Ela</td>
<td>60, 72</td>
</tr>
<tr>
<td>Bertino, Anthony</td>
<td>70, 77</td>
</tr>
<tr>
<td>Bertino, Patricia Nolan</td>
<td>70, 77</td>
</tr>
<tr>
<td>Biggerstaff, Rick</td>
<td>70</td>
</tr>
<tr>
<td>Bintz, Jody</td>
<td>53</td>
</tr>
<tr>
<td>Birney, Lauren</td>
<td>37</td>
</tr>
<tr>
<td>Black, David</td>
<td>51, 73, 84</td>
</tr>
<tr>
<td>Blackwell, Courtney</td>
<td>77</td>
</tr>
<tr>
<td>Blesse, Tim</td>
<td>80</td>
</tr>
<tr>
<td>Blevins, Sean</td>
<td>30</td>
</tr>
<tr>
<td>Blue, Brad</td>
<td>48, 73</td>
</tr>
<tr>
<td>Bock, Teri</td>
<td>83</td>
</tr>
<tr>
<td>Bond, Jennifer</td>
<td>75</td>
</tr>
<tr>
<td>Borowczak, Mike</td>
<td>65</td>
</tr>
<tr>
<td>Bosques-Mendez, Jonael</td>
<td>53</td>
</tr>
<tr>
<td>Boston, Melissa</td>
<td>32</td>
</tr>
<tr>
<td>Bowers, Sharon</td>
<td>68</td>
</tr>
<tr>
<td>Brachman, Rachel Zimmerman</td>
<td>30, 75</td>
</tr>
<tr>
<td>Branson, Jeff</td>
<td>35, 41, 66, 75</td>
</tr>
<tr>
<td>Branstetter, Jen</td>
<td>50, 76, 85</td>
</tr>
<tr>
<td>Brazeau, Randi</td>
<td>61</td>
</tr>
<tr>
<td>Brees, Lisa</td>
<td>71</td>
</tr>
<tr>
<td>Brown, Misty</td>
<td>30</td>
</tr>
<tr>
<td>Browning, Sandra</td>
<td>76</td>
</tr>
<tr>
<td>Bruhn, Christine</td>
<td>30</td>
</tr>
<tr>
<td>Bruck, Barbara</td>
<td>54, 64, 73</td>
</tr>
<tr>
<td>Bruehl, Jennifer</td>
<td>42, 82</td>
</tr>
<tr>
<td>Buentello, Anna</td>
<td>76</td>
</tr>
<tr>
<td>Burke, Barry</td>
<td>42, 82</td>
</tr>
<tr>
<td>Burney, Kareem</td>
<td>37</td>
</tr>
<tr>
<td>Burrows, Andrea</td>
<td>65</td>
</tr>
<tr>
<td>Burton-Regulski, Kimberly</td>
<td>78</td>
</tr>
<tr>
<td>Bush, Sarah</td>
<td>49</td>
</tr>
<tr>
<td>Butler, Tami</td>
<td>82</td>
</tr>
<tr>
<td>C</td>
<td>Caffery, Pam 28</td>
</tr>
<tr>
<td>Carden, Margaret</td>
<td>53</td>
</tr>
<tr>
<td>Carpenter, Eileen</td>
<td>86</td>
</tr>
<tr>
<td>Carson, Christopher</td>
<td>32</td>
</tr>
<tr>
<td>Carter, Arin</td>
<td>29</td>
</tr>
<tr>
<td>Carter, David</td>
<td>34, 40</td>
</tr>
<tr>
<td>Carter, Diane</td>
<td>40</td>
</tr>
<tr>
<td>Carter, Ingrid 61</td>
<td></td>
</tr>
<tr>
<td>Catchpole, Marcus</td>
<td>44</td>
</tr>
<tr>
<td>Cavanaugh, Shane</td>
<td>29</td>
</tr>
<tr>
<td>Chambers, Maria</td>
<td>80</td>
</tr>
<tr>
<td>Chang, Ruei-Ping</td>
<td>82</td>
</tr>
<tr>
<td>Cheney, Lindsay</td>
<td>42, 71, 81</td>
</tr>
<tr>
<td>Chopik, Christine</td>
<td>64</td>
</tr>
<tr>
<td>Clark, Aaron</td>
<td>68</td>
</tr>
<tr>
<td>Clark, John</td>
<td>36</td>
</tr>
<tr>
<td>Clausen, Cheri</td>
<td>32</td>
</tr>
<tr>
<td>Clifford, Carolyn</td>
<td>42, 71, 83</td>
</tr>
<tr>
<td>Cobb, Whitney</td>
<td>33, 50, 64</td>
</tr>
<tr>
<td>Cole, Adrianne</td>
<td>50, 68</td>
</tr>
<tr>
<td>Colunga, Eliana</td>
<td>32</td>
</tr>
<tr>
<td>Comer, Michael</td>
<td>45</td>
</tr>
<tr>
<td>Conley, LaRonda</td>
<td>43</td>
</tr>
<tr>
<td>Contant, Terry</td>
<td>76</td>
</tr>
<tr>
<td>Cruickshank, Alexandra</td>
<td>45</td>
</tr>
<tr>
<td>Cunningham, Julie</td>
<td>29</td>
</tr>
<tr>
<td>D</td>
<td>Danger, Christine Angel</td>
</tr>
<tr>
<td>Daniels, Betsy</td>
<td>35, 55</td>
</tr>
<tr>
<td>Daniels, Melinda</td>
<td>55, 69</td>
</tr>
<tr>
<td>Darenbourg, Ellen</td>
<td>82</td>
</tr>
<tr>
<td>Davee, Steve</td>
<td>27, 59</td>
</tr>
<tr>
<td>Davidson, Rosemary</td>
<td>84</td>
</tr>
<tr>
<td>Davis, Alana</td>
<td>53</td>
</tr>
<tr>
<td>Deason, Doug</td>
<td>43</td>
</tr>
<tr>
<td>Degner, Kate</td>
<td>54</td>
</tr>
<tr>
<td>DeKay, Chris</td>
<td>45, 52, 64</td>
</tr>
<tr>
<td>Delacy, Caine</td>
<td>75</td>
</tr>
<tr>
<td>DeMuth, David</td>
<td>32, 71</td>
</tr>
<tr>
<td>Dennstedt, Sherri</td>
<td>64</td>
</tr>
<tr>
<td>Derryberry, Nicky</td>
<td>70</td>
</tr>
<tr>
<td>DeVore-Wedding, Beverly</td>
<td>52</td>
</tr>
<tr>
<td>Downing, Alexandra</td>
<td>42, 71, 83</td>
</tr>
<tr>
<td>Drake, Cynthia</td>
<td>61</td>
</tr>
<tr>
<td>Dulanto, Gabriela</td>
<td>24</td>
</tr>
<tr>
<td>Duncan, Kimberly</td>
<td>32, 36, 82</td>
</tr>
<tr>
<td>Dupris, Bridget</td>
<td>61</td>
</tr>
<tr>
<td>Dutrow, Natalie</td>
<td>48</td>
</tr>
<tr>
<td>E</td>
<td>Elioopoulos, Teresa 63</td>
</tr>
<tr>
<td>Eng, Thomas</td>
<td>41, 49</td>
</tr>
<tr>
<td>Ernst, Lisa</td>
<td>64, 83</td>
</tr>
<tr>
<td>Escamilla, Nancy</td>
<td>50, 76, 85</td>
</tr>
<tr>
<td>Estremera, Melissa</td>
<td>53</td>
</tr>
<tr>
<td>Evans, David</td>
<td>25</td>
</tr>
<tr>
<td>Evans, Susan</td>
<td>28, 87</td>
</tr>
<tr>
<td>Everett, Susan</td>
<td>54</td>
</tr>
<tr>
<td>F</td>
<td>Fannon, Darryl 30</td>
</tr>
<tr>
<td>Farmer, Cheryl</td>
<td>78</td>
</tr>
<tr>
<td>Farrell, Laura</td>
<td>73</td>
</tr>
<tr>
<td>Feng, Yaohua</td>
<td>30</td>
</tr>
<tr>
<td>Fisch, Adam</td>
<td>41</td>
</tr>
<tr>
<td>Fitzgerald, Geri</td>
<td>66</td>
</tr>
<tr>
<td>Fleury, Amy 43, 67</td>
<td></td>
</tr>
<tr>
<td>Fontenot, Brian</td>
<td>76</td>
</tr>
<tr>
<td>Fordham, Shawndra</td>
<td>77</td>
</tr>
<tr>
<td>Forsyth, Stacey</td>
<td>32</td>
</tr>
<tr>
<td>Fotsch, Fred</td>
<td>41, 55, 81</td>
</tr>
<tr>
<td>Fowler, Melissa</td>
<td>52</td>
</tr>
<tr>
<td>Francis, Kenneth</td>
<td>65</td>
</tr>
<tr>
<td>Fredette, Kathleen</td>
<td>32, 55</td>
</tr>
<tr>
<td>Froeschauer, Linda</td>
<td>35, 44</td>
</tr>
<tr>
<td>G</td>
<td>Garcia, Violeta 43</td>
</tr>
<tr>
<td>Gargiulo, Jeannine</td>
<td>79</td>
</tr>
<tr>
<td>Garnier, Katy</td>
<td>67</td>
</tr>
<tr>
<td>Garrison, Shannon</td>
<td>31</td>
</tr>
<tr>
<td>Gauvin, Marcia</td>
<td>28</td>
</tr>
<tr>
<td>Gay, Cindy</td>
<td>46, 53</td>
</tr>
<tr>
<td>Geragotelis, Jennifer</td>
<td>82</td>
</tr>
<tr>
<td>Gifford, Adrienne</td>
<td>28, 37</td>
</tr>
<tr>
<td>Gillman, Joan</td>
<td>46, 86</td>
</tr>
<tr>
<td>Goldin-Dubois, Denise</td>
<td>64</td>
</tr>
<tr>
<td>Gomez, Guadalupe</td>
<td>50, 76, 85</td>
</tr>
<tr>
<td>Gonzalez, Harleen</td>
<td>30</td>
</tr>
<tr>
<td>Goodale, Timothy</td>
<td>47, 84</td>
</tr>
<tr>
<td>Green, Erica</td>
<td>29, 72</td>
</tr>
<tr>
<td>Green, Matthew</td>
<td>60, 70</td>
</tr>
<tr>
<td>Greene, Ernest “Trey” III</td>
<td>37</td>
</tr>
<tr>
<td>Greenfield, Daryl</td>
<td>43</td>
</tr>
<tr>
<td>Gromko, Mary</td>
<td>24, 56</td>
</tr>
<tr>
<td>Grout, Jan</td>
<td>33, 86</td>
</tr>
<tr>
<td>Grover, Dalton</td>
<td>40</td>
</tr>
<tr>
<td>Grubbs, Michael</td>
<td>28</td>
</tr>
<tr>
<td>Guerra, Adriana</td>
<td>50, 76, 85</td>
</tr>
<tr>
<td>Guaye, Maafi</td>
<td>29</td>
</tr>
<tr>
<td>Gutierrez, Jen 43, 83</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Haage, Maureen 33</td>
</tr>
<tr>
<td>Haas, Annette</td>
<td>49</td>
</tr>
<tr>
<td>Haas, Karlheinz</td>
<td>38, 65</td>
</tr>
<tr>
<td>Haines, Kim</td>
<td>71</td>
</tr>
<tr>
<td>Hajek, Andrea</td>
<td>42</td>
</tr>
<tr>
<td>Hammonds, Jennifer</td>
<td>54, 85</td>
</tr>
<tr>
<td>Harding, Christelle</td>
<td>50</td>
</tr>
<tr>
<td>Harkins, Heather</td>
<td>82</td>
</tr>
<tr>
<td>Harris, Tracy</td>
<td>77</td>
</tr>
<tr>
<td>Hasfjord, Julie</td>
<td>62</td>
</tr>
<tr>
<td>Hayes, Carolyn</td>
<td>25</td>
</tr>
<tr>
<td>Haystead, Rebecca</td>
<td>50, 76, 85</td>
</tr>
<tr>
<td>Hedeen, Chris</td>
<td>41, 66</td>
</tr>
<tr>
<td>Hedeen, Kathryn Fisher</td>
<td>41, 66</td>
</tr>
<tr>
<td>Heiland, Maya</td>
<td>79</td>
</tr>
<tr>
<td>Heinrich, Emily</td>
<td>67</td>
</tr>
<tr>
<td>Herman, Jessie</td>
<td>80</td>
</tr>
<tr>
<td>Herman, Tim 41, 48, 55, 66, 74, 81, 87</td>
<td></td>
</tr>
<tr>
<td>Hernandez, Christopher</td>
<td>46</td>
</tr>
<tr>
<td>Herrick, Rhonda</td>
<td>71</td>
</tr>
<tr>
<td>Hess, Melissa</td>
<td>55, 69</td>
</tr>
<tr>
<td>Hester, Peter</td>
<td>86</td>
</tr>
<tr>
<td>Heuwinkel, Mary</td>
<td>61</td>
</tr>
<tr>
<td>Highy, Patricia</td>
<td>63, 80</td>
</tr>
<tr>
<td>Hilton, Jody</td>
<td>45</td>
</tr>
<tr>
<td>Hinojosa, Tom</td>
<td>66</td>
</tr>
<tr>
<td>Hintz, Kevin</td>
<td>77</td>
</tr>
<tr>
<td>Hirshon, Drew</td>
<td>66</td>
</tr>
<tr>
<td>Hixon, Helen</td>
<td>39</td>
</tr>
<tr>
<td>Hobbs, Mary</td>
<td>74, 85</td>
</tr>
<tr>
<td>Hockenga, Janet</td>
<td>34</td>
</tr>
<tr>
<td>Hoffner, DeLene</td>
<td>31, 67, 78</td>
</tr>
<tr>
<td>Holmes, Chris</td>
<td>77</td>
</tr>
<tr>
<td>Holt, Haley</td>
<td>46</td>
</tr>
<tr>
<td>Honour, Sandy</td>
<td>67</td>
</tr>
<tr>
<td>Hooper, Lee Anna</td>
<td>60</td>
</tr>
<tr>
<td>Horrocks, Natalie</td>
<td>77</td>
</tr>
<tr>
<td>Howard, Mary Katherine</td>
<td>24</td>
</tr>
<tr>
<td>Hua, Olivia</td>
<td>48, 81</td>
</tr>
<tr>
<td>Hup, Brian</td>
<td>35, 41, 66, 75</td>
</tr>
<tr>
<td>Huff, Kenneth</td>
<td>37</td>
</tr>
<tr>
<td>Hughes, Chris</td>
<td>69</td>
</tr>
<tr>
<td>Hups, Kent</td>
<td>73, 79</td>
</tr>
<tr>
<td>Hussey, Kevin</td>
<td>75</td>
</tr>
<tr>
<td>Hutchinson, Kathryn</td>
<td>79, 85</td>
</tr>
<tr>
<td>Hyde-Berger, Amanda</td>
<td>50</td>
</tr>
</tbody>
</table>
Index of Participants

<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inger, Jenny</td>
<td>74, 85</td>
</tr>
<tr>
<td>Ingram, Thom</td>
<td>84</td>
</tr>
<tr>
<td>Iona, Steven</td>
<td>25</td>
</tr>
<tr>
<td>Irving, Barrington, Jr.</td>
<td>71</td>
</tr>
<tr>
<td>Jackson, Lisa</td>
<td>61</td>
</tr>
<tr>
<td>Jackson, Tisha</td>
<td>83</td>
</tr>
<tr>
<td>James, Abigail</td>
<td>51</td>
</tr>
<tr>
<td>Janning, Elizabeth</td>
<td>71</td>
</tr>
<tr>
<td>Javorsky, Rosanne</td>
<td>61</td>
</tr>
<tr>
<td>Jenkin, Jennifer</td>
<td>75</td>
</tr>
<tr>
<td>John, Meg</td>
<td>50</td>
</tr>
<tr>
<td>Johnson, Ashley</td>
<td>36</td>
</tr>
<tr>
<td>Johnson, Donna</td>
<td>38, 52</td>
</tr>
<tr>
<td>Johnson, Janelle</td>
<td>85</td>
</tr>
<tr>
<td>Johnson, Lissa</td>
<td>29</td>
</tr>
<tr>
<td>Jones, Tara</td>
<td>24, 87</td>
</tr>
<tr>
<td>Joseph, Christine</td>
<td>31</td>
</tr>
<tr>
<td>Jossi, Erica</td>
<td>54</td>
</tr>
<tr>
<td>Joyal, Holli</td>
<td>83</td>
</tr>
<tr>
<td>Kaiser, Ann</td>
<td>55</td>
</tr>
<tr>
<td>Kangas, Cody</td>
<td>61</td>
</tr>
<tr>
<td>Kapitanoff, Allison</td>
<td>29</td>
</tr>
<tr>
<td>Kapler, Tiffany</td>
<td>37, 73</td>
</tr>
<tr>
<td>Karantinos, Nicole</td>
<td>70</td>
</tr>
<tr>
<td>Katzman, William</td>
<td>27, 59, 67</td>
</tr>
<tr>
<td>Kearns, Jennifer</td>
<td>50</td>
</tr>
<tr>
<td>Kelly, Daniel</td>
<td>68</td>
</tr>
<tr>
<td>Kempf, Morganlee</td>
<td>66</td>
</tr>
<tr>
<td>Keniry, Julie</td>
<td>32</td>
</tr>
<tr>
<td>Kent, Sally</td>
<td>67</td>
</tr>
<tr>
<td>Kern, Denise</td>
<td>76</td>
</tr>
<tr>
<td>Kirner, Elizabeth</td>
<td>39, 44</td>
</tr>
<tr>
<td>Kluger-Bell, Barry</td>
<td>38, 45</td>
</tr>
<tr>
<td>Kneser, Debra</td>
<td>49</td>
</tr>
<tr>
<td>Knoell, Donna</td>
<td>49, 60</td>
</tr>
<tr>
<td>Koch, Gio</td>
<td>44</td>
</tr>
<tr>
<td>Kowalski, Susan</td>
<td>38</td>
</tr>
<tr>
<td>Kozdraz, Deborah</td>
<td>31, 50</td>
</tr>
<tr>
<td>Kraves, Sebastian</td>
<td>66</td>
</tr>
<tr>
<td>Kremer, Erin</td>
<td>68</td>
</tr>
<tr>
<td>Kuchl, Elizabeth</td>
<td>37, 68</td>
</tr>
<tr>
<td>Kuhn, Mason</td>
<td>75</td>
</tr>
<tr>
<td>LaForce, Melanie</td>
<td>69, 77</td>
</tr>
<tr>
<td>Lahteine, Valerie</td>
<td>39</td>
</tr>
<tr>
<td>Lamb, Rob</td>
<td>84</td>
</tr>
<tr>
<td>Lamb, Sandy</td>
<td>67, 78</td>
</tr>
<tr>
<td>Lamfers, Alicia</td>
<td>46</td>
</tr>
<tr>
<td>Lanting, Jan</td>
<td>61</td>
</tr>
<tr>
<td>Lau, Melissa</td>
<td>45</td>
</tr>
<tr>
<td>Launius, J. Carrie</td>
<td>67</td>
</tr>
<tr>
<td>Lauterbach, Lynn</td>
<td>36, 62, 69</td>
</tr>
<tr>
<td>Lebo, Bo</td>
<td>84</td>
</tr>
<tr>
<td>LeCroy, Jack</td>
<td>53</td>
</tr>
<tr>
<td>Lee, Shelley</td>
<td>31, 45</td>
</tr>
<tr>
<td>Lemon, Josh</td>
<td>42, 71, 83</td>
</tr>
<tr>
<td>Lester, William</td>
<td>53</td>
</tr>
<tr>
<td>Leventhal, Ari</td>
<td>77</td>
</tr>
<tr>
<td>Lim, Mayasari</td>
<td>74</td>
</tr>
<tr>
<td>Lincoln, James</td>
<td>73</td>
</tr>
<tr>
<td>Lockett, David</td>
<td>46</td>
</tr>
<tr>
<td>Long, Cheryl</td>
<td>74</td>
</tr>
<tr>
<td>Long, Jamie</td>
<td>84</td>
</tr>
<tr>
<td>Lopez, Louis</td>
<td>27, 59</td>
</tr>
<tr>
<td>Lottero-Perdue, Pamela</td>
<td>49, 63</td>
</tr>
<tr>
<td>Low, Russanne</td>
<td>65</td>
</tr>
<tr>
<td>Lugo, Rebecca</td>
<td>82</td>
</tr>
<tr>
<td>Lukens, Jeffrey</td>
<td>33, 47, 55, 75, 81</td>
</tr>
<tr>
<td>Lura, Jessica</td>
<td>60, 75</td>
</tr>
<tr>
<td>MacDonald, Sarah</td>
<td>51</td>
</tr>
<tr>
<td>Maharaj, Hannah</td>
<td>78</td>
</tr>
<tr>
<td>Mahn, Ryan</td>
<td>61, 77</td>
</tr>
<tr>
<td>Manning, Cheryl</td>
<td>30, 62</td>
</tr>
<tr>
<td>Marcum-Dietrich, Nanette</td>
<td>55, 69</td>
</tr>
<tr>
<td>Marshall, Robert</td>
<td>65, 74, 80, 87</td>
</tr>
<tr>
<td>Martin, Cathy</td>
<td>25</td>
</tr>
<tr>
<td>Marulcu, Ismail</td>
<td>69</td>
</tr>
<tr>
<td>Mason, Garrett</td>
<td>60, 87</td>
</tr>
<tr>
<td>Maurer, Matthew</td>
<td>51</td>
</tr>
<tr>
<td>McCormack, Alan</td>
<td>46, 78</td>
</tr>
<tr>
<td>McCurdy, Katie</td>
<td>28</td>
</tr>
<tr>
<td>McDaniel, Darrell</td>
<td>76</td>
</tr>
<tr>
<td>McDonald, Judith</td>
<td>72</td>
</tr>
<tr>
<td>McDonough, Karen</td>
<td>65</td>
</tr>
<tr>
<td>McGhee, Dedric</td>
<td>87</td>
</tr>
<tr>
<td>McGinnis, Patty</td>
<td>44</td>
</tr>
<tr>
<td>McKinney, Becky</td>
<td>51, 62, 70</td>
</tr>
<tr>
<td>McNamara, Denise</td>
<td>42</td>
</tr>
<tr>
<td>McWayne, Christine</td>
<td>43</td>
</tr>
<tr>
<td>Meade, Birgitta</td>
<td>80</td>
</tr>
<tr>
<td>Meagher, Thomas</td>
<td>60</td>
</tr>
<tr>
<td>Melton, Bob</td>
<td>25</td>
</tr>
<tr>
<td>Mendel, Rosemary</td>
<td>81</td>
</tr>
<tr>
<td>Mendenhall, Brooke</td>
<td>67</td>
</tr>
<tr>
<td>Metlay, Suzanne</td>
<td>68</td>
</tr>
<tr>
<td>Michaud, Meghan Reilly</td>
<td>27, 59</td>
</tr>
<tr>
<td>Michocki, Thomas</td>
<td>78</td>
</tr>
<tr>
<td>Middleton, Kay</td>
<td>75</td>
</tr>
<tr>
<td>Miller, Sharon</td>
<td>36</td>
</tr>
<tr>
<td>Miller, Stephanie</td>
<td>76</td>
</tr>
<tr>
<td>Mills, Kathleen</td>
<td>34, 48</td>
</tr>
<tr>
<td>Minton, Elizabeth</td>
<td>53</td>
</tr>
<tr>
<td>Mirabello, Matthew</td>
<td>54, 73</td>
</tr>
<tr>
<td>Mitchell, Sally</td>
<td>25</td>
</tr>
<tr>
<td>Molina, Michelle</td>
<td>37</td>
</tr>
<tr>
<td>Morgan, Dewayne</td>
<td>29, 61</td>
</tr>
<tr>
<td>Mortensen, Rebecca</td>
<td>62</td>
</tr>
<tr>
<td>Motz, LaMoine</td>
<td>39, 47</td>
</tr>
<tr>
<td>Moyer, Edward</td>
<td>50, 82</td>
</tr>
<tr>
<td>Mueller, Marc</td>
<td>86</td>
</tr>
<tr>
<td>Muller, Derek</td>
<td>56</td>
</tr>
<tr>
<td>Munsey, Robert</td>
<td>27, 59, 70</td>
</tr>
<tr>
<td>Murillo, Rachel</td>
<td>52</td>
</tr>
<tr>
<td>Muzzin, Mark</td>
<td>53</td>
</tr>
<tr>
<td>Navanneedhan, Cittoor Girija</td>
<td>47</td>
</tr>
<tr>
<td>Neiswender, Ben</td>
<td>80</td>
</tr>
<tr>
<td>Nichols, Suzanne</td>
<td>54, 64, 73</td>
</tr>
<tr>
<td>Niemi, Kevin</td>
<td>49</td>
</tr>
<tr>
<td>Nixon, Brenda</td>
<td>27, 59, 87</td>
</tr>
<tr>
<td>Noble, Elizabeth</td>
<td>69, 77</td>
</tr>
<tr>
<td>Noffsinger, Jessica</td>
<td>36, 83</td>
</tr>
<tr>
<td>Noholowaa, Leah Beth</td>
<td>36</td>
</tr>
<tr>
<td>Norton, Tressie</td>
<td>30</td>
</tr>
<tr>
<td>Oberski, Amanda</td>
<td>51</td>
</tr>
<tr>
<td>Olds, Shelley</td>
<td>33</td>
</tr>
<tr>
<td>Osowiecki, Aaron</td>
<td>38</td>
</tr>
<tr>
<td>Ostlund, Karen</td>
<td>47</td>
</tr>
<tr>
<td>Owen, Thomas</td>
<td>69</td>
</tr>
<tr>
<td>Own, Lindsey</td>
<td>60, 67</td>
</tr>
<tr>
<td>Panorniigan, Julius</td>
<td>38</td>
</tr>
<tr>
<td>Parfitt, Kim</td>
<td>34, 55</td>
</tr>
<tr>
<td>Parks, Melissa</td>
<td>42</td>
</tr>
<tr>
<td>Parry, Elizabeth</td>
<td>25, 49, 63</td>
</tr>
<tr>
<td>Parsons, Jenn</td>
<td>32, 82</td>
</tr>
<tr>
<td>Patrick, Eileen</td>
<td>63, 85</td>
</tr>
<tr>
<td>Patton, Karen</td>
<td>54</td>
</tr>
<tr>
<td>Paulson, Doug</td>
<td>28, 63</td>
</tr>
<tr>
<td>Payne, Betsy</td>
<td>30</td>
</tr>
<tr>
<td>Pearson, Mindy</td>
<td>28</td>
</tr>
<tr>
<td>Pelesko, John</td>
<td>39, 79</td>
</tr>
<tr>
<td>Pennington, Tamara</td>
<td>64</td>
</tr>
<tr>
<td>Pesek, Darcy</td>
<td>71</td>
</tr>
<tr>
<td>Peters, Rebecca</td>
<td>30, 68, 83</td>
</tr>
<tr>
<td>Petula, Jason</td>
<td>63</td>
</tr>
<tr>
<td>Phillips, Marianne</td>
<td>31</td>
</tr>
<tr>
<td>Pidgeon, Sarah</td>
<td>80</td>
</tr>
<tr>
<td>Pike, Lisa</td>
<td>37</td>
</tr>
<tr>
<td>Pohlonski, Emily</td>
<td>29</td>
</tr>
<tr>
<td>Pollman, Mary</td>
<td>70</td>
</tr>
<tr>
<td>Polman, Joseph</td>
<td>84</td>
</tr>
<tr>
<td>Post, Miriam</td>
<td>30</td>
</tr>
<tr>
<td>Powers, Angela</td>
<td>44, 70</td>
</tr>
<tr>
<td>Praddy, Tashawna</td>
<td>82</td>
</tr>
<tr>
<td>Priem, Jessica</td>
<td>29</td>
</tr>
<tr>
<td>Prosuch, Scott</td>
<td>51</td>
</tr>
<tr>
<td>Quigley, David</td>
<td>78</td>
</tr>
<tr>
<td>Rainboth, Donna</td>
<td>78</td>
</tr>
<tr>
<td>Ramierz-Tapia, Moses</td>
<td>24</td>
</tr>
<tr>
<td>Randall, Barbara</td>
<td>61</td>
</tr>
<tr>
<td>Rasar, Ryan</td>
<td>62</td>
</tr>
<tr>
<td>Raymond, Kristi</td>
<td>69</td>
</tr>
<tr>
<td>Reeves-Pepin, Jaclyn</td>
<td>46, 53</td>
</tr>
<tr>
<td>Reinsvold, Lori</td>
<td>47</td>
</tr>
<tr>
<td>Reitzig, Axel</td>
<td>42</td>
</tr>
<tr>
<td>Richardson, Traci</td>
<td>72</td>
</tr>
<tr>
<td>Rickards, Kimberly</td>
<td>85</td>
</tr>
<tr>
<td>Ringer, Heidi</td>
<td>30</td>
</tr>
<tr>
<td>Ristvey, John</td>
<td>50</td>
</tr>
<tr>
<td>Roell, Thomas</td>
<td>81</td>
</tr>
<tr>
<td>Rogers, Carmelle</td>
<td>83</td>
</tr>
<tr>
<td>Rogers, Devalyn</td>
<td>33, 86</td>
</tr>
<tr>
<td>Rosenberger, Elizabeth</td>
<td>67</td>
</tr>
<tr>
<td>Rukes, Sherri</td>
<td>44, 51, 84</td>
</tr>
<tr>
<td>Runberg, Derek</td>
<td>35, 41, 66, 75</td>
</tr>
<tr>
<td>Russell, Randy</td>
<td>30, 79, 86</td>
</tr>
<tr>
<td>Ryan, Bettebe</td>
<td>35</td>
</tr>
<tr>
<td>Samuel, Norma</td>
<td>53</td>
</tr>
<tr>
<td>Samuelson, Jack</td>
<td>28, 77</td>
</tr>
<tr>
<td>Saruhbi, Lisa</td>
<td>44</td>
</tr>
<tr>
<td>Sassetti, Stephanie</td>
<td>51</td>
</tr>
<tr>
<td>Saur, Karen</td>
<td>46</td>
</tr>
<tr>
<td>Sayer, Rachel</td>
<td>43</td>
</tr>
<tr>
<td>Schacht, Keith</td>
<td>29</td>
</tr>
<tr>
<td>Schack, Brian</td>
<td>28</td>
</tr>
<tr>
<td>Schlemann, Sarah</td>
<td>61</td>
</tr>
<tr>
<td>Schwennens, Carolyn</td>
<td>44, 70</td>
</tr>
<tr>
<td>Seifert, Lynn</td>
<td>66</td>
</tr>
<tr>
<td>Sencen, Joseph</td>
<td>86</td>
</tr>
<tr>
<td>Sepich, John</td>
<td>83</td>
</tr>
<tr>
<td>Sevin, Elaine</td>
<td>79</td>
</tr>
<tr>
<td>Shaw, Barbara</td>
<td>49</td>
</tr>
<tr>
<td>Shedro, Michelle</td>
<td>39</td>
</tr>
<tr>
<td>Shupla, Christine</td>
<td>33, 86</td>
</tr>
<tr>
<td>Simmons, Patricia</td>
<td>45</td>
</tr>
<tr>
<td>Singley, Joel</td>
<td>77</td>
</tr>
<tr>
<td>Skaggs, David</td>
<td>75</td>
</tr>
<tr>
<td>Skiles, Sadie</td>
<td>83</td>
</tr>
<tr>
<td>Sloane, Travis</td>
<td>38, 45</td>
</tr>
<tr>
<td>Smearsoll, Gina</td>
<td>61</td>
</tr>
<tr>
<td>Smith, Julie</td>
<td>29</td>
</tr>
<tr>
<td>Smith, Whitney</td>
<td>30</td>
</tr>
</tbody>
</table>
Index of Participants

Sneider, Cary 31
Snowflack, Danielle 34
Soffler, Alexis 67
Solarsh, Amanda 69
Sotak, Bob 76
Stamford, Brian 61
Stanfield, Karen 82
Stasny, Rebekka 31
Staudt, Carolyn 63, 69
Steckelberg, Marie 61
Steele, Kait 38
Steele, Michael 85
Stehlik, Eric 71
Stein, Daniel 38
Stein, Mary 53
Stephens, Karol 80
Stewart, Ashley 53
Stine, Megan 34
Stokes, Carrie 33, 86
Stollak, Danielle 79
Stoll, Lauren 29
Stoyanoff, Meghan 48
Strobel, Johannes 48, 81
Stuemkky, Laura 77

Sumrall, Kelle 47
Sumrall, William 47
T
Tallman, Kathleen 68
Tapp, Anne 50, 68
Telford, Hector 51
Tesoriero, Gina 62
Texley, Juliana 39, 47, 63, 67, 77
Todd, Patricia 24
Tran, Yune 36, 76
Tregerman, Hethyr 34, 40, 65, 74
Tweed, Anne 36, 76
Tymony, Cy 54
U
Usgaard, Heidi 45
V
Valadez, Jerry 72, 83
Valdespino, Heather 52
Van Horne, Katie 60
Varnell, Curtis 78
Vasquez, Jo Anne 31, 45
Vazquez, Bertha 69
Vieyra, Rebecca 46, 53, 64, 79
Villegas, Joel 31, 45
Vinion-Dubiel, Arlene 38
Vitello, Nicole 82
Vlieger, Melinda 71
Vowell, Julie 31
W
Wagner, Danny 29
Wagner, Richard 85
Wahlsten, Patricia 64, 73
Walker, Denise 43
Waller, Melissa 66
Wamsted, Katelyn 45, 71
Waters, Carol 33, 86
Watson, Erica 37
Watson, Janella 27, 59
Webb, Donna 76
Weld, Jeff 36, 43
Wells, John 25, 36
Wesson, Kenneth 63
West, DJ 29, 44
West, Sandra 47, 76
Whelan, Mariko 32
Whitney, Sharry 40, 65
Whitsett, Sue 43, 68
Whitworth, Christi 51
Wilbur, Loretta 31
Willey, Aaron 38, 44
William, Kenneth 87
Williams, Bob 74, 85
Williams, Jennifer C. 56, 87
Williams, Lynne 53
Wilson, Kenya 86
Wolfe, Becky 63
Wong, Eric 68
Woodhall, Carmen 75
Woodland, Eric 42, 71, 83
Woolf, Kathryn 30
Y
Young, Donna 38, 44, 54
Young, Tim 71
Yowell, Janet 72
Z
Zan, Betty 43
Zarske, Malinda 72, 78
Zhuang, Yilin 53
Zollman, Glen 83
Index of Advertisers

Texas Instruments (Booth #443), www.education.ti.com, 800-842-2737 ... Cover 2
Vernier Software & Technology (Booth #624), www.vernier.com, 888-837-6437 Cover 4

NSTA Ads

NSTA Conferences, www.nsta.org/conferences .. 17, 18, 23, 27, 57
NSTA Member Services, www.nsta.org/membership, 800-722-6782 ... 22
NSTA Press®, store.nsta.org, 800-277-5300 ... 13
“The Martian should be required reading for all middle and high school students, and it should serve as a call to action for improving science education.”

—Jacqueline Miller, Ph.D., senior research scientist at Education Development Center (EDC) and Thomas Max Roberts, Ph.D., postdoctoral fellow in plasma physics at Dartmouth College

THE MARTIAN: A Novel
by ANDY WEIR

Set in the not-so-distant future, The Martian tells the story of astronaut Mark Watney, who is stranded on Mars after a mission failure leads his crew and NASA to assume he is dead. Using his background in botany and engineering, Watney must find a way to survive until he can contact NASA and they can arrange a rescue mission. Once NASA realizes that Watney is, in fact, alive, a race begins to save his life.

This new edition has:
• Classroom-appropriate language
• Discussion questions and activities
• Q&A with Andy Weir.

ANDY WEIR was first hired as a programmer for a national laboratory at age fifteen and has been working as a software engineer ever since. He is also a lifelong space nerd and a devoted hobbyist of subjects like relativistic physics, orbital mechanics, and the history of manned spaceflight. The Martian is his first novel.

To request a FREE CCSS Teacher’s Guide, email highschool@penguinrandomhouse.com
To read an author message to educators, go to: tiny.cc/weiressay
To read Andy Weir’s interview with Education Week, go to: tiny.cc/eduweek
To order an examination copy, go to: www.randomhouse.com/highschool/exam

Broadway Books • TR
978-0-804-18935-4 • 400 pp.
$15.00 • Exam Copy: $3.00

Winner of the ALA Alex Award • A School Library Journal “Best Adult Book 4 Teens”
Now a major motion picture starring Matt Damon

To order an examination copy, go to: www.randomhouse.com/highschool/exam

Available in Audio and e-Book formats.
Science They Can Get Their Hands On

Download FREE experiments and find out more at
www.vernier.com/elb-solar