Destination: Success® is a unique educational platform that assists students with discovering their “perfect fit” career in the sciences or health professions. USciences is uniquely positioned with the academic programs, faculty, and resources to support students as they follow their path.

Extensive, intensive, and customized, Destination: Success® enhances the USciences journey through:

- **Expanded advising:** Students are guided by multiple advisors who help them discover their options and available resources to confirm that they are on the right path.

- **Flexible curricula:** Transition is smooth, as students take the opportunity to discover majors and programs that fit their goals and strengths with the ability to typically graduate on schedule.

- **Hands-on experiential learning:** Students can begin research as early as the first year and participate in internships and professional shadowing opportunities to reinforce and strengthen their experience.

- **“Early Assurance” seats:** Through USciences’ articulation relationships, students have access to reserved seats in health profession programs at USciences and 8 other partner institutions, leading to degrees in medicine, dentistry, veterinary medicine, optometry, physical therapy, occupational therapy, and more.

To learn more, visit usciences.edu/DestinationSuccess/NSTA
It’s an exciting time in education—technology has the potential to help improve outcomes and inspire student success. Our programs are purposefully designed to meet your digital, print, or blended instructional needs so you can provide customized learning experiences for every student. Get inspired by:

- Live demos of our NEW programs.
- Presenters including Dinah Zike, science experts and thought leaders.
- Workshops on NGSS*, literacy integration, gamification, and more.
- Exciting giveaways

Learn more at mheonline.com/nsta2016

*Next Generation Science Standards is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards was involved in the production of, and does not endorse, this product.
Get Your Hands On Science

DID YOU KNOW?
STEM is Everywhere at NSTA

STEM is designing our future and opening doors to strategic thinking and lucrative careers. NSTA has an abundance of STEM resources from award-winning NSTA Press books, virtual conferences, resources in the NSTA Learning Center, journal articles, STEM-specific sessions at our conferences, and a STEM Forum & Expo held this July in Denver, plus much more! Also, on most all of these resources, you can use your member discount on purchases!

www.nsta.org/membership
The environment is important to science educators. These programs are recyclable and were printed on recycled paper.

The environment is important to science educators. These programs are recyclable and were printed on recycled paper.

The environment is important to science educators. These programs are recyclable and were printed on recycled paper.

The environment is important to science educators. These programs are recyclable and were printed on recycled paper.

The environment is important to science educators. These programs are recyclable and were printed on recycled paper.

The environment is important to science educators. These programs are recyclable and were printed on recycled paper.

The environment is important to science educators. These programs are recyclable and were printed on recycled paper.

The environment is important to science educators. These programs are recyclable and were printed on recycled paper.

The environment is important to science educators. These programs are recyclable and were printed on recycled paper.
THE BEST PLACE TO EXPLORE THREE-DIMENSIONAL TEACHING AND LEARNING

Take a deep dive into the Next Generation Science Standards (NGSS) with two special events FREE to all conference attendees!

NGSS@NSTA FORUM
FRIDAY, APRIL 1, 2016
Music City Center
Grand Ballroom C1

The NGSS@NSTA Forum explores resources you can use to implement three-dimensional instruction. Participate in one or more:

8:00–9:00 AM
How Should Districts and Schools Focus Professional Development When Starting to Implement NGSS?

9:30–10:30 AM
Using Three-Dimensional Standards to Plan Instruction and Assessment

11:00 AM–12 NOON
Supporting Ongoing Changes in Students’ Thinking: The Primer

12:30–1:30 PM
Assessing Three-Dimensional Learning

2:00–3:30 PM
Designing or Adapting Curriculum and Instruction to Make It Three Dimensional

NGSS@NSTA SHARE-A-THON
SATURDAY, APRIL 2, 2016
Music City Center
Grand Ballroom C1

9:30–10:30 AM
Get even more tips and tools to implement three-dimensional standards from NSTA’s NGSS Curators, NGSS writers, and other education experts. Leave with plenty of handouts and ideas you can use in your classroom right away!

www.nsta.org/ngss
Mission Statement
The mission of NSTA is to promote excellence and innovation in science teaching and learning for all. The ideas and opinions expressed in the conference sessions, and in any handout materials provided, are those of the presenter. They are not those of the National Science Teachers Association nor can any endorsement by NSTA be claimed.

Conference Program • Highlights

Friday, April 1
7:30–8:00 AM Science in the Community Breakfast (M-2): 15
8:00–9:00 AM Science in the Community Featured Presentation
(Speaker: Andrew Fraknoi) (open to all conference attendees)... 16
8:00–9:30 AM High School Hands-On Hodge-Podge Share-a-Thon 23
8:00–10:00 AM Elementary Extravaganza .. 28
8:00 AM–3:30 PM NGSS@NSTA Forum ... 10
8:30–9:30 AM Featured Presentation: Stanley B. Prusiner 31
9:00 AM–5:00 PM Exhibits ... 33
9:15–11:15 AM Science in the Community Share-a-Thon 34
9:30–10:30 AM Featured Presentation: Jean Kaneko, sponsored by Shell 35
12:30–1:30 PM SCST Marjorie Gardner Lecture: Marcy Towns 63
12:45–1:30 PM “Meet and Greet” the Presidents and Board/Council .. 72
1:30–2:30 PM NSTA District Director and Chapter/Associated Group
Social in Honor of Wendell Mohling .. 73
2:00–4:00 PM Science in the Community Interactive Forum on Science
and Art .. 87
3:30–4:30 PM Robert H. Carleton Lecture: Herb Brunkhorst 88
6:00–8:45 PM NSTA Teacher Awards Gala (M-3) 108
9:00 PM–12 Mid President’s Mixer with DJ and cash bar 108

NSTA Teacher Awards Gala
Friday, April 1, 6:00–8:45 PM
By ticket only: #M-3
Cost: $80

Enjoy a fabulous evening celebrating with this year’s teacher award recipients! ALL of the teacher awards will be presented in one grand evening. Join your colleagues in recognition of this year’s winners.

All Conference Attendees are invited to the President’s Mixer—
Friday, April 1, 9:00 PM–12 Midnight
West Ballroom, Renaissance Nashville Hotel
(DJ and cash bar)
The Nashville Conference Committee has planned the conference around these four strands, enabling you to focus on a specific area of interest or need. Strand events are identified by icons throughout the daily program.

See the following pages for a list of sessions and events for each strand.

Setting the Stage: Scientific Literacy
To reach the goal of a scientifically literate population, it is imperative to build an understanding of the nature of science, history of science, inquiry, and the practices of science and engineering. Students need opportunities to learn how scientists “know what they know” and what sound science looks like. In this strand, participants will develop understanding of the nature of science for all learners and explore how science and scientific tools have progressed over time.

Building the Band: Involving Community Stakeholders
To build authentic science experiences, it is necessary to reach outside a school’s walls to form strategic partnerships with informal science education (museums, community resources), Economic and Community Development (ECD), chambers of commerce, institutes of post-secondary education, after-school program providers, and national and local extracurricular groups (e.g., scouts, boys and girls clubs, and environmental education groups). Together, educators and stakeholder organizations can leverage opportunities for grants, outreach, and real-world collaboration for students. Participants in this strand will gain ideas for locating external resources and developing partnerships to strategically support instruction for real-life learning experiences.

Harmonizing Concepts: Integrating Instruction
High-quality instruction demands integration of STEM content with leading initiatives such as the Common Core State Standards, in English language arts and mathematics; CTE (Career and Technical Education); and subject areas, including social studies and the arts in trans-disciplinary approaches to teaching and learning. Authentic science learning requires concepts and skills from across multiple content areas. This strand will allow participants to explore how integrating targeted skills and concepts from other content areas can enhance science instruction and engage learners. Also emphasized will be the power of science to reinforce other content through authentic application tasks.

Stringing It All Together: Three-Dimensional Learning
The NRC Framework and the Next Generation Science Standards identified best practices from research for today’s learners. Good instruction must incorporate the NGSS three dimensions of crosscutting concepts, disciplinary core ideas, and science and engineering practices. Three-dimensional science learning produces scientifically literate and competent students. This strand will exemplify the intertwining nature of the three dimensions necessary for the highest quality science instruction. This strand will be tied together by accessing the latest research findings regarding science education.
Setting the Stage: Scientific Literacy

Friday, April 1

8:00–8:30 AM
Data Is Not a Four-Letter Word! Use NOAA Resources to Build Student Proficiency in Data Analysis

8:30–9:00 AM
Open-Ended Inquiry-Based Instruction in Ecology

9:30–10:30 AM
Exploring Engineering Practices

11:00 AM–12 Noon
Teach STEM Content and Spark Science Career Interest with Free Online Games

12:30–1:30 PM
Engaging the Natural Curiosities of Children in the Early Years

2:00–3:00 PM
Let’s Go Outside…to the Schoolyard and Beyond

3:30–4:30 PM
Regurgitation and Argumentation: Teaching Science Practices Using Owl Pellets

5:00–6:00 PM
Newton’s Nightmare: A Magnetic Mystery!

Online M.A. in Science Education

When did you fall in love with science? The online M.A. in Science Education at Western Michigan University is designed for any teacher with a passion for science. Program highlights:

• 30 credits
• Average program completion time is 18 months
• Same tuition rate for in-state and out-of-state students
• Offers an array of elective courses

Learn more about what you love.

wmich.edu/online/nsta
Conference Program • Conference Strands

Building the Band: Involving Community Stakeholders

Friday, April 1

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00 AM</td>
<td>Bring New Life to the Geosciences: Opportunities for Connecting Student Learning to Real-World Applications</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>Working in Concert: Successful Collaboration with Informal Centers</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Outbreak! Partnering CDC Scientists with Science Teachers</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>How to Master Scientists Inside Your Classroom with High Results</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>Developing STEM Partnerships You Can’t Live Without</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>The Smithsonian, STEM, and Your Classroom</td>
</tr>
</tbody>
</table>

Stringing It All Together: Three-Dimensional Learning

Friday, April 1

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30–9:30 AM</td>
<td>Featured Presentation: Prions: Discovering a Unifying Etiology for Neurodegenerative Disorders, Including Alzheimer’s and Parkinson’s Diseases (Stanley Prusiner)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>Sound Through the Ages—From Cluckers to Pluckers</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>Cellular Respiration: Reducing Confusion Through Collaboration</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Bioengineering Challenges and Middle School Life Science</td>
</tr>
<tr>
<td>2:00–2:30 PM</td>
<td>A Different Type of PPT: Phenomena, Practices, and Teaching</td>
</tr>
<tr>
<td>2:30–3:00 PM</td>
<td>Creating and Sharing Three-Dimensional NGSS-Focused High School Chemistry Lessons in a Virtual Professional Learning Community</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>Using NGSS Tools and Resources in Your Classroom</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>Linking Lessons into a Storyline—Making It Happen</td>
</tr>
</tbody>
</table>

Harmonizing Concepts: Integrating Instruction

Friday, April 1

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00 AM</td>
<td>Filters Aren't Only for Coffee! How to Blend Multiple Curricular Materials Together into a Seamless STEM Unit on Water Quality and Filtration</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>Featured Presentation: The Tinker.Make.Innovate. Program (Speaker: Jean Kaneko)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>Constructing Science Explanations Using Reading and Writing Strategies to Support Grades 6–8 Students</td>
</tr>
<tr>
<td>12:30–1:00 PM</td>
<td>Developing 21st-Century Reasoning Skills Through an Authentic Interdisciplinary STEM Research Experience</td>
</tr>
<tr>
<td>1:00–1:30 PM</td>
<td>Integrating Global STEM Education into All Aspects of the Curriculum</td>
</tr>
<tr>
<td>1:30–4:30 PM</td>
<td>Short Course: Geospatial Technology in the STEM Classroom: Integrating Place and Projects for Meaningful Learning Across Content Areas (SC-9: By Ticket Only)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>Authentic Interdisciplinary Learning Through Simulation</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>Forces and Motion: An Integrated K–8 Hands-On Approach Supporting the NGSS and CCSS ELA</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>Photosynthesis and Cellular Respiration: A Hands-On Approach for Grades 6–12</td>
</tr>
</tbody>
</table>
Referred to as "LEGOs for Electronics Projects", 5eBoard’s Affordable Learning Kits Make Interdisciplinary STEM Education Easy and Fun

www.5eboard.com

The Differences
- No soldering is involved
- Reusable for different groups or grades
- Apply real-world electronic components
- Reconfigurable for advanced topics
- Damaged parts can be individually replaced
- Knowledge extendable to college and beyond

We Provide
- Cross-disciplinary STEM curriculum
- Interactive lab sets
- Hands-on DIY kits
- Makerspace materials

Ask for Our
- Education discount
- Training programs for educators
- After school program initiation

Booth 1014

Engagement Exploration Explanation Elaboration Evaluation
The NGSS@NSTA Forum explores resources you can use to implement three-dimensional instruction. Participate in one or more presentations. See page 4 for details.

8:00–9:00 AM How Should Districts and Schools Focus Professional Development When Starting to Implement NGSS?
9:30–10:30 AM Using Three-Dimensional Standards to Plan Instruction and Assessment
11:00 AM–12 Noon Supporting Ongoing Changes in Students’ Thinking: The Primer
12:30–1:30 PM Assessing Three-Dimensional Learning
2:00–3:30 PM Designing or Adapting Curriculum and Instruction to Make It Three Dimensional

Science in the Community
Friday Events

The Science in the Community Forums and events build awareness of the abundance of existing high-quality out-of-school (informal) science education methods, resources, and opportunities available to enhance science teaching and learning. Both out-of-school and in-school science educators meet and interact to share best practices in informal science, learn about exciting collaborations happening among informal and formal science organizations, network with colleagues, and dialogue around ideas and innovations. Informal organizations participating in the Science in the Community Forums include zoos, museums, media, after-school programs, universities outreach, and others that provide or support out-of-school science education. The Science in the Community events are sponsored by Google Inc. (“GOOGLE”).

7:30–8:00 AM Science in the Community Breakfast (M-2 ticket)
8:00–9:00 AM Science in the Community Featured Presentation (Speaker: Andrew Fraknoi) (open to all conference attendees)
9:15–11:15 AM Science in the Community Share-a-Thon Interactive Forum in Science and Art
2:00–4:00 PM Interactive Forum in Science and Art
THERE HAS NEVER BEEN A BETTER TIME FOR SCIENCE TEACHERS TO JOIN NAEYC!

VISIT NAEYC.ORG/MEMBERSHIP AND JOIN TODAY!

The National Association for the Education of Young Children is a professional membership association actively working to ensure that children have equitable access to developmentally appropriate, high-quality early learning, including new STEM resources and curricula!

All NAEYC members enjoy a constantly-expanding suite of benefits, including a standard 20 percent discount on all resources in our store, as well as frequent member-only sales offering discounts of 50 percent or more!

Check out some of our best STEM resources:

BEST SELLER!
Exploring Math and Science in Preschool
Item #7226 List: $18
Member Price $14.40

BEST SELLER!
Spotlight on Young Children: Exploring Science
Item #373 List: $20
Member Price: $16

NEW! Engaging Young Engineers: Teaching Problem-Solving Skills through STEM
Item #7237 List: $37
Member Price: $29.60

BONUS: NSTA Conference attendees receive an extra 10 percent discount at NAEYC.ORG/STORE with code NSTA2016 through April 30, 2016!
NSTA Press Sessions
NSTA Press® books offer new classroom ideas and standards-based strategies. Join NSTA Press authors for these sessions linked to the topics of their books.

Friday, April 1
8:00–9:00 AM
Engaging Students in Predict, Observe, Explain Sequences in Your Science Classroom

9:30–10:30 AM
It’s Debatable: Using Socioscientific Issues to Develop Scientific Literacy, K–12

11:00 AM–12 Noon
Linking the Uncovering Student Ideas in Science Series and Everyday Science Mysteries to K–5 Language Literacy

12:30–1:30 PM
Doing Good Science in Middle School

2:00–3:00 PM
Models and Approaches to STEM Professional Development

The Power of Questioning: Guiding Student Investigations

3:30–4:00 PM
Beyond the Numbers: Making Sense of Statistics

5:00–6:00 PM
Using Everyday Mysteries to Promote Literacy

WIN
A SUBSCRIPTION TO FROGUTS
A $299 VALUE

WORKSHOP

Friday, April 1, 2016
4:00 - 5:30pm
Music City Center Room 212

LEAP INTO THE FUTURE WITH HANDS-ON SCIENCE TEACHING
Why use animals to teach anatomy? Try the latest alternatives including iPad apps, anatomy and clay, and more! Two participants will win a subscription to Froguts—an immersive experience into the world of science!
Three Dimensions of the Next Generation Science Standards (NGSS)

Science and Engineering Practices

<table>
<thead>
<tr>
<th>SEP1</th>
<th>Asking Questions and Defining Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEP2</td>
<td>Developing and Using Models</td>
</tr>
<tr>
<td>SEP3</td>
<td>Planning and Carrying Out Investigations</td>
</tr>
<tr>
<td>SEP4</td>
<td>Analyzing and Interpreting Data</td>
</tr>
<tr>
<td>SEP5</td>
<td>Using Mathematics and Computational Thinking</td>
</tr>
<tr>
<td>SEP6</td>
<td>Constructing Explanations and Designing Solutions</td>
</tr>
<tr>
<td>SEP7</td>
<td>Engaging in Argument from Evidence</td>
</tr>
<tr>
<td>SEP8</td>
<td>Obtaining, Evaluating, and Communicating Information</td>
</tr>
</tbody>
</table>

Crosscutting Concepts

<table>
<thead>
<tr>
<th>CCC1</th>
<th>Patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCC2</td>
<td>Cause and Effect: Mechanism and Explanation</td>
</tr>
<tr>
<td>CCC3</td>
<td>Scale, Proportion, and Quantity</td>
</tr>
<tr>
<td>CCC4</td>
<td>Systems and System Models</td>
</tr>
<tr>
<td>CCC5</td>
<td>Energy and Matter: Flows, Cycles, and Conservation</td>
</tr>
<tr>
<td>CCC6</td>
<td>Structure and Function</td>
</tr>
<tr>
<td>CCC7</td>
<td>Stability and Change</td>
</tr>
</tbody>
</table>

Disciplinary Core Ideas

Disciplinary Core Ideas in Physical Science

<table>
<thead>
<tr>
<th>PS1: Matter and Its Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS1.B: Chemical Reactions</td>
</tr>
<tr>
<td>PS1.C: Nuclear Processes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PS2: Motion and Stability: Forces and Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS2.A: Forces and Motion</td>
</tr>
<tr>
<td>PS2.B: Types of Interactions</td>
</tr>
<tr>
<td>PS2.C: Stability and Instability in Physical Systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PS3: Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS3.A: Definitions of Energy</td>
</tr>
<tr>
<td>PS3.B: Conservation of Energy and Energy Transfer</td>
</tr>
<tr>
<td>PS3.C: Relationship Between Energy and Forces</td>
</tr>
<tr>
<td>PS3.D: Energy in Chemical Processes and Everyday Life</td>
</tr>
</tbody>
</table>

Disciplinary Core Ideas in Life Science

<table>
<thead>
<tr>
<th>LS1: From Molecules to Organisms: Structures and Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS1.A: Structure and Function</td>
</tr>
<tr>
<td>LS1.B: Growth and Development of Organisms</td>
</tr>
<tr>
<td>LS1.D: Information Processing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LS2: Ecosystems: Interactions, Energy, and Dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS2.A: Interdependent Relationships in Ecosystems</td>
</tr>
<tr>
<td>LS2.B: Cycles of Matter and Energy Transfer in Ecosystems</td>
</tr>
<tr>
<td>LS2.C: Ecosystem Dynamics, Functioning, and Resilience</td>
</tr>
<tr>
<td>LS2.D: Social Interactions and Group Behavior</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LS3: Heredity: Inheritance and Variation of Traits</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS3.A: Inheritance of Traits</td>
</tr>
<tr>
<td>LS3.B: Variation of Traits</td>
</tr>
</tbody>
</table>

Disciplinary Core Ideas in Earth and Space Science

<table>
<thead>
<tr>
<th>ESS1: Earth’s Place in the Universe</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESS1.A: The Universe and Its Stars</td>
</tr>
<tr>
<td>ESS1.B: Earth and the Solar System</td>
</tr>
<tr>
<td>ESS1.C: The History of Planet Earth</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ESS2: Earth’s Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESS2.A: Earth Materials and Systems</td>
</tr>
<tr>
<td>ESS2.B: Plate Tectonics and Large-Scale System Interactions</td>
</tr>
<tr>
<td>ESS2.C: The Roles of Water in Earth’s Surface Processes</td>
</tr>
<tr>
<td>ESS2.D: Weather and Climate</td>
</tr>
<tr>
<td>ESS2.E: Biogeology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ESS3: Earth and Human Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESS3.A: Natural Resources</td>
</tr>
<tr>
<td>ESS3.B: Natural Hazards</td>
</tr>
<tr>
<td>ESS3.C: Human Impacts on Earth Systems</td>
</tr>
<tr>
<td>ESS3.D: Global Climate Change</td>
</tr>
</tbody>
</table>

Disciplinary Core Ideas in Engineering, Technology, and the Application of Science

<table>
<thead>
<tr>
<th>ETS1: Engineering Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETS1.A: Defining and Delimiting an Engineering Problem</td>
</tr>
<tr>
<td>ETS1.B: Developing Possible Solutions</td>
</tr>
<tr>
<td>ETS1.C: Optimizing the Design Solution</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ETS2: Links Among Engineering, Technology, Science, and Society</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETS2.A: Interdependence of Science, Engineering, and Technology</td>
</tr>
<tr>
<td>ETS2.B: Influence of Engineering, Technology, and Science on Society and the Natural World</td>
</tr>
</tbody>
</table>
Nashville is located beside the Cumberland River where the grass is soft and sweet.
7:30–8:00 AM Networking Event
INF Science in the Community Breakfast
(Tickets Required; $18) M-2 Broadway E, Omni
Science Focus: INF
Come join your colleagues who are interested in building connections between in-school and out-of school educators and resources. Then stay for the Featured Presentation about the public science event of the decade—the August 2017 Total Eclipse of the Sun, which will be visible only in the United States.

7:30–9:30 AM Networking Event
AMSE Annual Alice J. Moses Breakfast
(By Invitation Only) Legends F, Omni
Sponsored by Pearson. For details, please visit www.amsek16.org.

8:00–8:20 AM Presentation
SCST Session: Completing the Circle: Using Innovative Co-Teaching Collaborations to Unite University Scientists, Science Teachers, and Their Middle School Students
(Grades 6–College) Ryman One, Renaissance
Science Focus: ETS, CCC1, CCC2
Renee Clary (rclary@geosci.msstate.edu) and Anastasia Elder (aelder@colled.msstate.edu), Mississippi State University, Mississippi State, Miss.
Teachers participating in professional development engaged in co-teaching with university scientists within their middle school classrooms. Collaboration broadened everyone’s perspective and yielded positive student outcomes.

8:00–8:30 AM Presentations
Data Is Not a Four-Letter Word! Use NOAA Resources to Build Student Proficiency in Data Analysis
(Grades 6–College) 101E, Music City Center
Science Focus: GEN, NGSS
June Teisan (@jlteisan; june.teisan@noaa.gov), NOAA Office of Education, Washington, D.C.
Scientists at the National Oceanic and Atmospheric Administration collect a stunning array of data in their work. Learn how to access this treasure trove of archived and real-time data, and explore NOAA’s data-rich resources, lesson plans, and visualization tools help you build student proficiency in scientific data analysis.
The Pitfalls and Successes of Teaching Biotechnology and Statistics
(Grades 9–College) Broadway D, Omni
Taryn Surabian (@thestudyoflife) and Lisa Collins (lcollins@ursulineacademy.net), Ursuline Academy, Dedham, Mass.
Come learn about the hurdles, failures, and victories experienced in our first year co-teaching a laboratory-based biotechnology and statistics class.

Engaging Generation Z in Inquiry-Based Physics Using Media Technologies
(Grades 9–12) Cumberland 5, Omni
Science Focus: PS, SEP
Natalia Chabebe (n.chabebe@gmail.com), Columbia Grammar and Preparatory School, New York, N.Y.
John Craven III (jcraven@fordham.edu), Fordham University, New York, N.Y.
We will share multiple inquiry-based activities in which students use cell phone cameras to derive physics equations and collect/analyze data to test predictions and hypotheses. Please note that participants must bring laptops to this session.

8:00–9:00 AM Science in the Community
8:00–9:00 AM Featured Presentation
When the Sky Goes Dark: The All-American Total Eclipse of the Sun
(Open to All Participants) Broadway E, Omni
Science Focus: ESS, INF
Andrew Fraknoi (fraknoiandrew@fhda.edu), Chair, Astronomy Department, Foothill College, Los Altos Hills, Calif.
Presider: Dennis Schatz, Field Editor Connected Science Learning; NSTA Director, Informal Science; and Pacific Science Center, Seattle, Wash.

On August 21, 2017, everyone in the United States (and North America) will be treated to an eclipse of the Sun. Interest will be high because the total phase of this “All-American” eclipse will only be visible on a track that crosses the U.S. (and no other country)! A partial eclipse will be seen by 500 million people in the U.S., Canada, and Mexico—assuming their weather is clear that Monday. Attendees at the presentation will get lots of practical information and guidance, including when and where to see the total eclipse; what the eclipse will look like in major cities across the country; and how to watch safely with your family, or with classes and other groups. We will discuss ways to make this a community-wide event and how to use the eclipse as a “hook” to excite people about motions in the sky and science in general. Everyone will receive a resource guide to the 2017 eclipse and the science of eclipses overall.

Andrew Fraknoi is the winner of the 2012 Faraday Prize for Science Communication from NSTA, as well as a regular guest on Science Friday and other radio shows where he explains astronomical developments in everyday language. He is co-author of the new NSTA Press® astronomy curriculum resource, Solar Science: Exploring Sunspots, Seasons, Eclipses, and More.
Chair of the Astronomy Department at Foothill College, Andrew edited the popular set of K–12 astronomy activities, The Universe at Your Fingertips. Fraknoi was the cofounder and coeditor of Astronomy Education Review, the online journal and magazine published by the American Astronomical Society. The International Astronomical Union has named Asteroid 4859 Asteroid Fraknoi to recognize his contributions to astronomy education and outreach (but he wants us to mention that it’s a very boring asteroid, and no threat to Earth!).
<table>
<thead>
<tr>
<th>Time</th>
<th>Featured Speakers/Special Events</th>
<th>Featured Speakers/Special Events</th>
<th>Special Sessions/Events</th>
<th>Special Sessions/Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00 AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:00 AM</td>
<td>Featured Presentation 8:30–9:30 AM Davidson A1, Music City Center Speaker: Stanley B. Prusiner</td>
<td>Science in the Community Featured Presentation 8:00–9:00 AM Broadway E, Omni Speaker: Andrew Fraknoi</td>
<td>Elementary Extravaganza 8:00–10:00 AM Grand Blrm. A, Music City Center</td>
<td>High School Hands-On Hodge-Podge Share-a-Thon 8:00–9:10 AM Broadway F, Omni</td>
</tr>
<tr>
<td>9:00 AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00 AM</td>
<td>Featured Presentation 9:30–10:30 AM 102 A/B, Music City Center Speaker: Jean Kaneko</td>
<td>Science in the Community Featured Presentation 8:00–9:00 AM Broadway E, Omni Speaker: Andrew Fraknoi</td>
<td>SCST Marjorie Gardner Lecture 12:30–1:30 PM Ryman One, Renaissance Speaker: Marcy Towns</td>
<td>“Meet and Greet” the Presidents and Board/Council 12:45-1:30 PM Hall B, Music City Center</td>
</tr>
<tr>
<td>11:00 AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Noon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:00 PM</td>
<td>SCST Marjorie Gardner Lecture 12:30–1:30 PM Ryman One, Renaissance Speaker: Marcy Towns</td>
<td>Robert H. Carleton Lecture 3:30–4:30 PM Davidson A2/3, Music City Center Speaker: Herb Brunkhorst</td>
<td>National Geographic Channel Film Screening: Breakthrough: More Than Human Directed by Paul Giamatti 4:30–6:30 PM Grand Blrm. C2, Music City Center</td>
<td>NSTA District Director and Chapter/Associated Group Social in Honor of Wendell Mohling 1:30–2:30 PM Hall B, Music City Center</td>
</tr>
<tr>
<td>2:00 PM</td>
<td></td>
<td>Science in the Community Interactive Forum on Science and Art 2:00–4:00 PM 101 A/B, Music City Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:00 PM</td>
<td>National Geographic Channel Film Screening: Breakthrough: More Than Human Directed by Paul Giamatti 4:30–6:30 PM Grand Blrm. C2, Music City Center</td>
<td>Robert H. Carleton Lecture 3:30–4:30 PM Davidson A2/3, Music City Center Speaker: Herb Brunkhorst</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:00 PM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:00 PM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:00 PM</td>
<td>NSTA Teacher Awards Gala 6:00–8:45 PM East/Center Ballroom Renaissance Ticket Required (M-3)</td>
<td></td>
<td>President’s Mixer 9:00 PM–12 Midnight West Ballroom, Renaissance</td>
<td></td>
</tr>
<tr>
<td>7:00 PM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:00 PM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:00 PM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00 PM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8:00–9:00 AM Presentations

Abstract Concepts for the Concrete Mind: Techniques and Lessons to Engage Middle School Students and Provide a Valuable Purpose for Learning
(Grades 5–10)
Science Focus: LS, PS, SEP
Nicole McRee (mcree.nicole@d46.org) and Tracy Bratzke (clownfish39@yahoo.com), Grayslake Middle School, Grayslake, Ill.
Inquiry-based, ready-to-use activities in chemistry and life science will be shared that incorporate cross-curricular and multimodal learning. This promotes experiential authentic engagement in which students are encouraged to think critically and analytically.

Evidence-Based Reasoning and the Big Bang Theory in the Classroom
(Grades 7–12)
Science Focus: ESS1.A, CCC5, SEP6, SEP7
Brian Kruse (@astroteacherm8; bkruse@astrosociety.org), Astronomical Society of the Pacific, San Francisco, Calif.
Minda Berbeco (@MindaBerbeco; berbeco@ncse.com), National Center for Science Education, Oakland, Calif.
Explore the evidence for the Big Bang Theory, its place in the NGSS, as well as how to respond to objections and dispel misconceptions.

ELEMENTARY EXTRAVAGANZA

Friday, April 1, 2016
8:00–10:00 AM • Grand Ballroom A • Music City Center

- Hands-on activities
- Preview science trade books
- Learn about award and grant programs
- Walk away full of ideas and arms filled with materials
- Door prizes and refreshments—Win an iPad!
- 100+ presenters

Sponsored by:

Using NGSS in a non-NGSS State
(Grades K–8) Davidson A2/3, Music City Center
Science Focus: GEN, NGSS
Susan Disch, ETHOS Science Center, Elkhart, Ind.
Douglas Hunnings (@Ethos_Douglas; dhunnings@elkhart.k12.in.us), Riverview Elementary School, Elkhart, Ind.
Hear how one regional professional development organization uses three-dimensional learning and NGSS even though their state did not adopt the NGSS.

NGSS@NSTA Forum: How Should Districts and Schools Focus Professional Development When Starting to Implement NGSS?
(Grades K–12) Grand Ballroom C1, Music City Center
Science Focus: GEN, NGSS
Philip Bell (@philipbell; phbell@uw.edu) and Shelley Stromholt (@sshellery; stromhos@uw.edu), University of Washington, Seattle
Carrie Tzou (@tzouct; tzouct@uw.edu), University of Washington Bothell
Presider: Ted Willard (twillard@nsta.org), Program Director, NGSS@NSTA, NSTA, Arlington, Va.
NGSS calls for engaging ALL students in meaningful science learning. We’ll highlight equity-focused tools and approaches for implementing this new vision with students and teachers, and across districts.

K–12 Science Resources and Programs from University STEM Centers
(General) Broadway J, Omni
Science Focus: ETS2, INF
Julius Su (jsu@caltech.edu), California Institute of Technology, Pasadena
James Maloney (maloney@caltech.edu), Community Science Academy, Pasadena, Calif.
Tomas Yan (tom00907@gmail.com), Stratford High School, Nashville, Tenn.
Find out about K–12 outreach programs at Caltech and Vanderbilt STEM Centers, and access freely available lessons, activities, software, and plans for build-it-yourself instruments.

NSELA Session: Building School and District Capacity for Understanding Student Thinking Through Formative Assessment
(General) Cumberland 1, Omni
Science Focus: GEN, NGSS
Page Keeley (@CTSKeeley; pagekeely@gmail.com), 2008–2009 NSTA President, and The Keeley Group, Fort Myers, Fla.
Joyce Tugel (jtugel@gmail.com), Maine Mathematics and Science Alliance, Augusta
Learn about tools and strategies leaders can use to build school- and district-wide capacity to gather and use evidence of students’ thinking about core ideas, crosscutting concepts, and science practices.

Modeling-Infused Instruction to Prepare Students for Physics, Chemistry, and Biology
(Grades 7–10) Cumberland 3, Omni
Science Focus: LS, PS, SEP2
Daniel Damelin (ddamelin@concord.org), The Concord Consortium, Concord, Mass.
Mason Converse (conversem@apps.harpercreek.net), Harper Creek High School, Battle Creek, Mich.
Presider: Joseph Krajcik (krajcik@msu.edu), CREATE for STEM Institute, Michigan State University, East Lansing
Join us to explore an innovative NGSS-focused curriculum that uses modeling of atomic interactions to tie together phenomena across physics, chemistry, and biology.

Ignite Science Writers
(Grades 6–8) Cumberland 4, Omni
Science Focus: GEN, SEP7
Charlotte Frazier-Cantkier (charlotte.cantkier@gmsdk12.org) and Andrea Starks (andrea.starks@gmsdk12.org), Houston Middle School, Germantown, Tenn.
Emphasis will be placed on strategies for integrating writing in the science classroom. Engage in reading scientific informational text, responding creatively to a given prompt, and constructing science writing assignments.

Out with the Old, In with the New
(Grades 6–12) Cumberland 6, Omni
Science Focus: GEN, NGSS
Tiffany Cohen (@tiffanytcohen; cohen@northernhighlands.org), Northern Highlands Regional High School Board of Education, Allendale, N.J.
Aarti Mallya (aartimallya@gmail.com), Pascack Hills High School, Montvale, N.J.
See how instructional activities and assessments can be evaluated and revised to integrate the three dimensions of the NGSS.
The World of Google in Science
(Grades 3—College)
Legends D, Omni
Science Focus: GEN, SEP
Ben Smith, Red Lion Area Senior High School, Red Lion, Pa.
Just when you thought you knew everything about Google! Come learn the hidden gems that are found using Google to improve science education.

Professional Development Models: Showcasing and Sustaining Meaningful Practices and Collaborative Approaches Focusing on STEM and the NGSS for Teacher Leaders and PD Providers
(General)
Music Row 1, Omni
Science Focus: GEN, NGSS
Jack Rhoton (rhotonj@etsu.edu), East Tennessee State University, Kingsport
Gerry Madrazo, Jr. (gerrymadrazo@gmail.com), 1993–1994 NSTA President, and Science Education Consultant, Gibsonville, N.C.
LaMoine Motz (lmoetz@comcast.net), 1988–1989 NSTA President, and Motz Consultant Group, White Lake, Mich.
Join our group of science education leaders as we focus on STEM education and the NGSS in our delivery of professional development. Our panel will share trends, best practices, current research, teaching and learning models, projects, and collaborative approaches toward strengthening science teaching and learning. Handouts!

Using Relevance (Hawaiian and Modern Culture) to Teach College Prep Chemistry
(Grades 9—College)
Music Row 2, Omni
Science Focus: PS
Joel Truesdell (jotruesdl@ksbe.edu), Kamehameha Schools Hawaii, Keaau
Join me as I highlight a method using Hawaiian or modern culture to establish relevance and engagement in an inquiry and project-based curriculum. Come taste a Hawaiian snack, too. Data and resource material will also be given.

CSSS Session: How Do I Demonstrate That My Students Are Showing Growth?
(Grades 1—12)
Music Row 4, Omni
Science Focus: GEN, NGSS
Joanna Bruno, Colorado Dept. of Education, Denver
Hear about the work being done in Colorado to engage educators in establishing unit-based student learning objectives to drive instruction and evaluate growth.

NARST Session: Engaging in the Formative Assessment Design Cycle for the NGSS
(Grades 6—12)
Fisk One, Renaissance
Science Focus: GEN, NGSS
Erin Furtak (@furtak; erin.furtak@colorado.edu), University of Colorado Boulder
Learn about a research-based process for engaging with your colleagues to design, enact, and reflect upon formative assessment activities linked to the NGSS.

Teaching Science Through a Public Health Lens
(Grades 7—College)
Music City Ballroom, Renaissance
Science Focus: GEN, CCC, SEP
Kelly Cordeira (kcordeira@cdc.gov), Centers for Disease Control and Prevention, Atlanta, Ga.
Public health is a vehicle for teaching math and science. Hear how to engage students in solving real-world outbreaks from the classroom alongside the Centers for Disease Control and Prevention.

Evaluating Resources for Lessons That Fit the NGSS
(Grades K—12)
West Ballroom, Renaissance
Science Focus: GEN, NGSS
Karen Mesmer (klmesmer@gmail.com), Mesmer Science Education Consulting, Baraboo, Wis.
Carolyn Higgins (@mrshigginsri; carolyn.higgins@warwickschools.org), Winman Junior High School, Warwick, R.I.
Erica Motamed (emotamed@llcsd.net), Lake Center Middle School, Santa Fe Springs, Calif.
Mary Koga (mkoga@bousd.us), Brea Junior High School, Brea, Calif.
Join curators of NGSS resources for NSTA as they share how to use the EQuIP (Educators Evaluating the Quality of Instructional Products) rubric to determine what shifts are needed in existing lessons to align with the NGSS.
Hands-On Workshops

NSTA Press® Session: Engaging Students in Predict, Observe, Explain Sequences in Your Science Classroom
(Grades 6–12) 101C, Music City Center
Science Focus: GEN, CCC1, CCC2
Michael Bowen (gmbowen@yahoo.com), NSTA Director, District XVIII, and Mount Saint Vincent University, Halifax, N.S., Canada
Tony Bartley, Lakehead University, Thunder Bay, Ont., Canada
Using examples from our NSTA Press book, we will demonstrate how to engage middle school and high school students in POE activities to develop their understanding of science concepts. Resources will be provided.

Bring New Life to the Geosciences: Opportunities for Connecting Student Learning to Real-World Applications
(Grades 5–10) 103B, Music City Center
Science Focus: ESS2, ESS3, CCC2, CCC4, CCC7, SEP2, SEP3, SEP6
Rachel Ruggirello (ruggirello@wustl.edu), Washington University in St. Louis, Mo.
Megan Eberle (eberle.megan@gmail.com), KIPP St. Louis, Mo.
A team of middle school teachers and scientists share how they brought cutting-edge research to life, connecting geology, fossil fuels, and technological innovation.

Filters Aren’t Only for Coffee! How to Blend Multiple Curricular Materials Together into a Seamless STEM Unit on Water Quality and Filtration
(Grades 5–12) 103C, Music City Center
Jennifer Cody (jkc36@scasd.org), Park Forest Elementary School, State College, Pa.
Mandy Biggers (@drmandybiggers; mb33@psu.edu) and Erin Glocke (eeg5095@psu.edu), Pennsylvania State University, University Park
Leigh Haefner (@LeighAnHaef; lab194@psu.edu), Penn State Altoona, Pennsylvania
Presider: Carla Zembal-Saul, Pennsylvania State University, University Park
Learn to integrate Problem-Based Learning and STEM as you ignite a passion in your students through content with a storyline and engineering tasks that solve real-life problems.

Engaging Families in STEM
(Grades 1–8) 104D, Music City Center
Science Focus: ETS, INF, SEP1, SEP3, SEP6, SEP8
Joan Schumaker Chadde (jchadde@mtu.edu), Michigan Technological University, Houghton
Joy Reynolds (reynolds.joy@gmail.com), Detroit (Mich.) Public Schools
Teneshia Moore (teneshia.moore@detroitk12.org), Detroit (Mich.) Board of Education
Actively engage parents and elementary-aged children in hands-on engineering activities in order to create the next generation of problem solvers.

NASA: Putting the EM Spectrum Together
(Grades 5–10) 104E, Music City Center
Science Focus: ESS, PS
David Beier, The Barstow School, Kansas City, Mo.
Come experience this NASA-designed workshop that can help you facilitate a deeper understanding of the EM spectrum. Free NASA resources at the end of the workshop. All materials will be available electronically.

Na…No Seams: Methods for Seamless Integration of Nanoscience into State-Standard Curriculum
(Grades P–6) 105A, Music City Center
Science Focus: GEN, CCC
Krista Adams, University of Nebraska–Lincoln
Nanoscience is not just a special topic! Learn how to integrate nanoscale exploration at a billionth of a meter into current K–6 curriculum.

Climate Change: Extremes or Norms?
(Grades 6–12) 106B, Music City Center
Science Focus: ESS2.D, ESS3.D, CCC1, CCC2, CCC4, CCC5, CCC7, SEP
Lynne Hehr (lhehr@uark.edu), University of Arkansas, Fayetteville
Studying the norm leads to understanding the extreme! In climate, that is. Learn how the Köppen Climate Classification System and precipitation/temperature data can differentiate between evidence-based science and pseudoscience.
Using Issues as a Context to Enhance Students’ Three-Dimensional Learning
(Grades 6–9)
106C, Music City Center
Maia Willcox (mwillcox@berkeley.edu), The Lawrence Hall of Science, University of California, Berkeley
Dora Kastel (@Dora_AMNH; dkastel@amnh.org), American Museum of Natural History, New York, N.Y.
Participate in hands-on ecology activities that use biotic and abiotic ecological disruptions to engage middle school students in the three dimensions of the NGSS.

Get Connected! Promoting Collaboration During Hands-On Science Lessons with Free Online Tools
(Grades 7–College)
Broadway C, Omni
Science Focus: GEN, SEP4
Dorothy Nguyen-Graff (dng@csun.edu), California State University, Northridge
Learn how to use free cloud-based collaborative online documents (Google) to pool data in real time, identify trends, and exchange ideas about data interpretation.

Bumpers Save Lives
(Grades 6–8)
Broadway H, Omni
Science Focus: ETS, PS2, CCC4, SEP6
Reeda Hart (hartr@nku.edu) and Bonnie Embry (bce3209@twc.com), Northern Kentucky University, Highland Heights
In this hands-on and very active session, experience the science behind the materials selected for car bumpers. Apply those concepts to engineer a car bumper. Bumpers will be tested and analyzed to determine the best design solution. Take home a CD of lesson plans and resources.

Take The Ward’s Pure Challenge
Introducing Ward’s Pure Preserved, the Best Dissection Experience from Start to Finish!

Stop by Booth #142 to see our latest products and enter to win science prizes!
Integrative 3-D Learning Through Investigating Bird Species Richness with Web-Based Maps (Grades 7–12) Legends E, Omni
Nancy Trautmann (nancy.trautmann@cornell.edu), The Cornell Lab of Ornithology, Ithaca, N.Y.
James MaKinster (makinster@hws.edu), Hobart and William Smith College, Geneva, N.Y.
Michelle Watkins (michellewatkins@frontiernet.net), Beaver River Central School, Beaver Falls, N.Y.
Carol Burch (cburch129@gmail.com), Hannibal High School, Hannibal, N.Y.

Experience and take home a lesson in which students use free online maps to learn ecological concepts while exploring bird biodiversity across the Americas.

Moving Peer Instruction (PI) and Process-Oriented Guided Inquiry Learning (POGIL) from College to High School Biology Classrooms (Grades 9–College) Legends G, Omni
Science Focus: LS
Jennifer Parrish (jp4k@mtmail.mtsu.edu) and Grant Gardner (grant.gardner@mtsu.edu), Middle Tennessee State University, Murfreesboro

POGIL and PI are instructional strategies used in higher education. We will share tools to help implement these strategies in the high school biology classroom. Curriculum materials provided.

DuPont Presents: The Science of Packaging (Grades 9–12) Music Row 5, Omni
Science Focus: ETS, CCC1, CCC2
Timothy Dalby (@tdalby; tdalby@wilmingtonfriends.org), Wilmington Friends School, Wilmington, Del.

Get introduced to a brief history of polymers and how they are used in the packaging industry. Experience a hands-on activity that illustrates the variables that must be considered and get your students excited about how science plays a role in food packaging.

Success on a Global Scale (Grades 1–12) Center Ballroom, Renaissance
Science Focus: GEN
Laura Schisler, Crowder College, Neosho, Mo.
Shannon Sahabi (@shannon.sahabi; shannon.sahabi@nisd.net), Clark High School, San Antonio, Tex.

Learn from our experiences what to do (and not do!) in Global Collaborative Science while creating your own collaboration plan. Leave with classroom-ready learning resources.

Empowering Communities by Engaging Caregivers: Developing Partnerships in Informal Learning Settings (Grades P–K) East Ballroom, Renaissance
Science Focus: INF
Kristen Olson (kkolson@amnh.org), Natalie Tahsler (ntahsler@amnh.org), and Donna Spadoni (dspadoni@amnh.org), American Museum of Natural History, New York, N.Y.

Expand your outreach programs! Experienced educators from the American Museum of Natural History will model the logistics and techniques from a successful caregiver-child program.

ASTE Session: Are You Smarter Than a Rocket Scientist? Design a Spaceship (Grades 5–9) Fisk Two, Renaissance
Science Focus: ESS, ETS, PS, CCC2, CCC4, SEP
John Pecore, University of West Florida, Pensacola

Let’s build marshmallow astronauts and experimentally design rocket housing in order to explore the effect of a vacuum on astronauts during inter-space travel.
8:00–9:00 AM Exhibitor Workshop
Engineering Bumpers and NGSS: Hands-On Physics with PASCO’s New Wireless Smart Cart!
(Grades K–12) 206 A/B, Music City Center
Science Focus: ETS1, PS
Sponsor: PASCO scientific
Dan Burns (dburns@lgsuhsd.org), Los Gatos High School, Los Gatos, Calif.
Use PASCO’s Smart Cart to explore the relationship between momentum and impact forces in collisions, using engineering design to create a solution to a problem. You will design your own bumper for the Smart Cart to minimize the collision force. Six attendees will win a free Smart Cart!

8:00–9:30 AM Presentation
High School Hands-On Hodge-Podge Share-a-Thon
(Grades 8–College) Broadway F, Omni
Science Focus: GEN, CCC1, CCC2
Bev DeVore-Wedding (@bdevore; bdevorewedding@gmail.com), NSTA Director, High School Science Teaching, and University of Nebraska–Lincoln
Lauren Case (sciencecase@gmail.com), South Fork High School, Stuart, Fla.
Cliff Cockerham (cc149@cornell.edu) and Gisele Giorgi, Merritt College, Oakland, Calif.
Summer Cortinas (scortinas@ncbionetwork.org), BioNetwork, Candler, N.C.
Harvey Gendreau (hgendreau@alumni.umass.edu), The Laboratory Safety Institute, Natick, Mass.
Sally Harms (saharms1@wsc.edu), NSTA Director, College Science Teaching, and Wayne State College, Wayne, Neb.
Caroline Humes (chumes@d125.org), Adlai E. Stevenson High School, Lincolnshire, Ill.
Mary Maddox (mary.maddox@stjohns.k12.fl.us), St. Johns Virtual School, Saint Augustine, Fla.
Bertha Martinez (martinezber@asf.edu.mx), The American School Foundation, A.C., Mexico City, Mexico
Ellie Williamson (ellie.williamson@uasdc.org), Urban Assembly School of Design and Construction, New York, N.Y.
Join us for a variety of ideas for different STEM subjects. Come see what you can learn!

8:00–9:30 AM Exhibitor Workshops
Science Is NOT a Spectator Sport!
(Grades K–12) 107A, Music City Center
Science Focus: GEN, SEP
Sponsor: McGraw-Hill Education
Carol Baker, Community High School District 218, Oak Lawn, Ill.
Through NGSS’s three-dimensional learning, students should be doing science not just hearing lectures about science. Learn about using the NGSS science and engineering practices to transform your classroom into a busy working/thinking environment where students are engaging in hands-on activities that meet the NGSS performance expectations.

Amplify Science for Grades K–5: Experience Three-Dimensional Teaching and Learning with the Newest Curriculum from The Lawrence Hall of Science
(Grades K–5) 107B, Music City Center
Science Focus: GEN, CCC
Sponsor: Amplify
Rebecca Abbott and Traci Wierman, The Lawrence Hall of Science, University of California, Berkeley
Experience our field-tested, technology-enhanced, 100% NGSS-designed K–8 curriculum. Built around digital tools, hands-on investigations, and explicit instruction in disciplinary literacy, Amplify Science engages students with deep dives into understanding the natural and designed worlds. Focusing on elementary grades, this workshop provides a sneak peek.

One Small Step…to Mars!
(Grades 6–12) 110A, Music City Center
Science Focus: ESS
Sponsor: Texas Instruments
Jeffrey Lukens, Sioux Falls (S.Dak.) School District
Erick Archer, Texas Instruments, Dallas
NASA and TI have teamed up to bring you challenges for your students to solve related to getting a manned mission to Mars and back! Making sure astronauts stay healthy on the long journey is crucial. This session is for middle level and high school students. Check out the program at www.mISSionimaginaTIon.com.
Take Your Students on a Quest! A Real-World Problem-Based Learning Project That Incorporates All Three Dimensions of NGSS
Grades K–8
110B, Music City Center
Science Focus: GEN, NGSS
Sponsor: Pearson Education
Take your students on a Quest! These real-world Problem-Based Learning projects incorporate all three dimensions of NGSS. A Quest! brings classroom concepts to life as students are immersed in a world of discovery to help solve real-world problems through a combination of hands-on digital simulations.

CPO’s Link™ Learning Module Optics with Light and Color: Use Light to Learn About Light
Grades 6–12
201A, Music City Center
Science Focus: PS
Sponsor: CPO Science/School Specialty Science
Erik Benton, CPO Science/School Specialty Science, Nashua, N.H.
Experience CPO’s Optics with Light and Color kit with LED flashlights, a laser, lenses, a mirror, and more. Try color mixing, relate it to human vision, and examine different spectra. We make studying light exciting! Take away applications of the concept of light and other electromagnetic waves in technology (STEM and NGSS).

What Does Argumentation Look Like in an Elementary Classroom?
Grades K–5
201B, Music City Center
Science Focus: GEN, SEP7
Sponsor: Delta Education/School Specialty Science—FOSS
Brian Campbell, The Lawrence Hall of Science, University of California, Berkeley
Join FOSS Next Generation program developers to learn about science practices within the context of active investigations. Experience analyzing and interpreting data, constructing explanations, and engaging in argumentation from evidence as tools to deepen student learning within a FOSS lesson. Find out about transitioning to FOSS Next Generation.

What the Heck Happened?!?
Grades 2–9
202A, Music City Center
Sponsor: Educational Innovations, Inc.
Discrepant events seize students’ attention, and Educational Innovations has real jaw-droppers. Come explore our favorite student confusers, including The Chinese Spouting Bowl, “anti-gravity,” and much more! Door prizes and freebies!

Observing and Inferring in the Science Classroom: New Tips, Tools, and a Twist from Dinah Zike’s Notebooking Central
Grades 3–12
202B, Music City Center
Science Focus: GEN, SEP1, SEP4, SEP7, SEP8
Sponsor: Dinah.com
Dinah Zike (sara@dinah.com), Dinah.com, San Antonio, Tex.
This workshop features new Notebooking Central templates for classroom (and real-world) observations and inference to help students learn to see and think like scientists. Build a mini-notebook of ideas and applications ready to use on Monday. Brain-engaging, research-based interactive activities for observation and inference.

Cool Tools for Light and Color
Grades 6–College
202C, Music City Center
Science Focus: PS
Sponsor: Arbor Scientific
Dwight “Buzz” Putnam (buzzputnam@gmail.com), Whitesboro High School, Marcy, N.Y.
Strap in for amazing light and color demos presented by award-winning physics teacher Buzz Putnam. These classroom-ready activities include mixing primary colors to cast shadows in cyan and magenta, graphing emission lines of gas tubes with the RSpec-Explorer, and answering his famous “mirror challenge” question! Door prizes!

Comparative Vertebrate Anatomy with Carolina’s Perfect Solution® Specimens
Grades 9–12
204, Music City Center
Science Focus: LS
Sponsor: Carolina Biological Supply Co.
Carolina Teaching Partner
Explore animal diversity by comparing and contrasting anatomical adaptations of the pig, rat, dogfish, and frog. Participants use hands-on dissection to identify characteristics of these popular vertebrates. This is an excellent comparative dissection activity featuring our very best Carolina’s Perfect Solution specimens.
FLINN
Morning of Chemistry

Taking Over the Music City with Science
Over a Dozen Demonstrations that Educate and Entertain

Presented by:
Paul Price
Trinity Valley School
Fort Worth, TX

Jesse Bernstein
Miami Country Day School
Miami, FL

Where:
Music City Convention Center
Davidson Ballroom C

When:
Friday, April 1, 2016
10:00 – 11:45 am

Come to the “Must See” event of the conference! Watch two of the most talented and innovative chemistry educators in the country present 18 exciting demonstrations.
Pushing and Pulling Your Teachers to NGSS
(Grades K–2) 205A, Music City Center
Science Focus: GEN, NGSS
Sponsor: Carolina Biological Supply Co.
Carolina Teaching Partner
The NGSS are presented as performance expectations of what students should know and be able to do from K to 12. Each PE includes the components of the three dimensions: disciplinary core ideas, crosscutting concepts, and science and engineering practices. Experience a set of lessons for grades K–2 that help students meet the performance expectations of the NGSS through three-dimensional learning.

Partners in Crime: Forensic Fingerprinting with the Professionals
(Grades 6–College) 205B, Music City Center
Science Focus: GEN
Sponsor: Carolina Biological Supply Co.
Carolina Teaching Partner
Thinking about incorporating forensic science into your classroom? The professionals from Sirchie can help! Expose your students to the fascinating world of forensics by using real-world techniques practiced by law enforcement agencies. Ink, analyze, and classify your own fingerprints, and then get hands on and learn how to dust and lift fingerprints.

Photosynthesis and Respiration Shuffle
(Grades 9–12) 205C, Music City Center
Science Focus: LS1.C
Sponsor: LAB-AIDS® , Inc.
Mark Koker, LAB-AIDS, Inc., Ronkonkoma, N.Y.
Students have major misconceptions about photosynthesis and cellular respiration, but this content is essential for understanding how matter and energy flows, both at the micro (cellular) and macro (ecosystem) levels. Using a computer simulation, a hands-on activity, and notebooking and discussion strategies expose student thinking—all from SEPUP’s new *Science & Global Issues: Biology* program from LAB-AIDS.

Outbreaking Bad!
(Grades 7–12) 207A, Music City Center
Science Focus: LS
Sponsor: Ward’s Science
Michelle Pagani and Liam Casey, VWR Science Education, Rochester, N.Y.
An Arizona school has had a dramatic increase in student illness. Could it be drug or disease related? Use biotechnology to identify if this is due to a pathogen, discuss possible causes for the re-emergence of certain infectious diseases, and simulate a disease outbreak with and without vaccination of participants. Data can be collected and analyzed to demonstrate the concept of herd immunity.

Welcome to the Anthropocene: Free Teaching Resources for a New Era
(Grades 6–12) 207B, Music City Center
Sponsor: HHMI BioInteractive
Mark Nielsen, Howard Hughes Medical Institute, Chevy Chase, Md.
David Hong, Monrovia High School, Monrovia, Calif.
James Serach, Greens Farms Academy, Westport, Conn.
Humans are having a profound and lasting effect on Earth’s systems. In recognition of this, we are now living in a new geologic epoch called the Anthropocene. This workshop will highlight the latest research and demonstrate free ready-to-use classroom resources for teaching about human impact on planet Earth.

Renewable Energy with KidWind and Vernier
(Grades 7–College) 207C, Music City Center
Science Focus: ETS, SEP
Sponsor: Vernier Software & Technology
Colleen McDaniel (info@vernier.com), Vernier Software & Technology, Beaverton, Ore.
Explore renewable energy and engineering design using KidWind Experiment Kits with Vernier data-collection technology. In this hands-on workshop, design, test, and refine a wind turbine to maximize its energy output. These activities from our book, *Renewable Energy with Vernier*, embody the spirit of STEM education through this highly relevant topic.

Advanced Physics with Vernier
(Grades 9–College) 207D, Music City Center
Science Focus: PS, SEP
Sponsor: Vernier Software & Technology
Frances Poodry (info@vernier.com), Vernier Software & Technology, Beaverton, Ore.
Already experienced using basic physics sensors from Vernier? This hands-on workshop will introduce additional Vernier sensors and lab equipment that can enhance your AP, IB, or college physics laboratory in mechanics and beyond. Plus, you will learn to employ advanced data-analysis techniques to explore quantitative relationships.
How to Use Pop Culture in Your Life Science Class
(Grades 9–College) 208A, Music City Center
Science Focus: LS3, SEP
Sponsor: Bio-Rad Laboratories
Leigh Brown (leigh_brown@bio-rad.com), Bio-Rad Laboratories, Hercules, Calif.
Use popular science to engage high school and college students and increase science literacy in your classroom. See how popular TV and movies can be connected to real-world discoveries and issues. Then learn how to use a fun hands-on lab to increase student involvement and understanding.

Preparing Tomorrow’s Scientists: Issues in Inquiry-Based Life Science Education
(Grades 9–College) 208B, Music City Center
Science Focus: LS
Sponsor: Bio-Rad Laboratories
Sherri Andrews (sherri_andrews@bio-rad.com), Bio-Rad Laboratories, Hercules, Calif.
Join curriculum development experts in a panel-style discussion on inquiry-based teaching experiences in life sciences. Audience members are encouraged to participate in discussions and ask questions relevant to inquiry teaching strategies for high school and college-level learners, development of inquiry based curricula, and challenges associated with inquiry lessons.

Fantastic Physical Science Demonstrations from Flinn Scientific
(Grades 9–12) 209A, Music City Center
Science Focus: PS
Sponsor: Flinn Scientific, Inc.
Gus Alvarez and Janet Hoekenga, Flinn Scientific, Inc., Batavia, Ill.
Amaze your students with quick demonstrations that teach common physical science topics, including density, motion, force and equilibrium, rotation, waves, light and color, energy, pressure, and scientific inquiry. More than a dozen effective demonstrations will be performed. Handouts for all activities.

Engage with NGSS Using STEM Gauge™
(Grades 6–8) 209B, Music City Center
Science Focus: GEN, NGSS
Sponsor: Measured Progress
Susan Tierney and Janet Dykstra, Measured Progress, Dover, N.H.
Learn strategies for transitioning to NGSS and gathering evidence of three-dimensional learning using STEM Gauge formative assessment tools. This interactive workshop highlights a variety of classroom strategies to engage students with assessment questions, rubrics, and self-reflection templates. Participants will get a free Middle School STEM Gauge tool set!

Project-Based Inquiry Science™ (PBIS): Creating “Coherence and Science Storylines” for Middle School Science—Grades 6–8
(Grades 6–8) 209C, Music City Center
Science Focus: GEN, NGSS
Sponsor: It’s About Time
Mary Starr (mary@starrscience.com), Michigan Mathematics and Science Centers Network, Plymouth
Join us to learn about “Coherent Storylines” and explore the power of clearly articulated middle school science content storylines developed around answering a Big Question and addressing a Big Challenge. Investigate the storyline for a PBIS ecology/water quality unit, Living Together, and discuss the nature of scaffolded, carefully ordered investigations that help students actively engage in answering questions and addressing a challenge. Formative and summative assessments included.

Is Cancer in My DNA?
(Grades 9–College) 210, Music City Center
Science Focus: LS3, CCC1
Sponsor: Fisher Science Education
Through a complete hands-on session, help Jane determine if she has a genetic predisposition to colon cancer. Learn how genetic mutations can cause cancer and the role genes have in cancer risk by examining family history and comparing DNA sequencing and lab analysis in this real-life case study.

Human Anatomy Lab: Building from the Inside Out
(Grades 8–College) 212, Music City Center
Science Focus: LS
Sponsor: ANATOMY IN CLAY® Learning System
Chuck Roney, Retired High School Teacher, Haddonfield, N.J.
Get introduced to a new method of learning anatomy and physiology. We will discuss how to teach skeletal, muscular, and other body systems in a powerful, kinesthetic way using clay. This approach is a perfect fit to help integrate NGSS and STEM practices into your classroom. Come build your muscles in clay!
Living By Chemistry: What Shape Is That Smell?
(Grades 9–12) 214, Music City Center
Science Focus: PS
Sponsor: Bedford, Freeman, & Worth High School Publishers
Teach rigorous chemistry with guided inquiry! Let’s explore activities that help students understand molecular structure and other core chemistry concepts using the context of smell. Take home free sample lessons and materials from the Living By Chemistry (2nd ed.) curriculum.

10 Creative Ways to Read, Write, and Think Like a Scientist
(Grades K–12) 401 A/B, Music City Center
Science Focus: GEN
Sponsor: Discovery Education
Patti Duncan, Discovery Education, Silver Spring, Md.
Is literacy all you talk about in your school? Prepare to leave with 10 practical research-based literacy strategies that you can implement throughout your science classrooms. Ensure that all of your students are reading, writing, and thinking like scientists.

8:00–10:00 AM Hands-On Workshop
Elementary Extravaganza
(Grades P–6) Grand Ballroom A, Music City Center
Science Focus: GEN
Sponsored by Carolina Biological Supply, College of Education and Human Services at Central Michigan University, Delta Education, and Educational Innovations.
Organized by Linda Froschauer (fro2@me.com), 2006–2007 NSTA President, Pasadena, Calif.
Visit bit.ly/1pz9aES for a complete list of Extravaganza participants or please pick up a program at the door.
This Extravaganza is not to be missed! Join elementary groups of professionals for an exceptional opportunity. Gather resources for use in your classroom immediately. Engaging hands-on activities, strategies to excite and encourage your students, a preview of the best trade books available, information about award opportunities, contacts with elementary science organizations, sharing with colleagues, door prizes, and much more will be available to participants. Walk away with a head full of ideas and arms filled with materials.

8:00–11:00 AM Hands-On Workshop
NGSS Toolkit Pathway Session: Learning About the BSCS 5E Instructional Model to Design NGSS Learning Sequences
(Grades 6–College) Legends B, Omni
Science Focus: GEN, NGSS
Jody Bintz (@JBintzBSCS; jbintz@bscs.org), BSCS, Colorado Springs, Colo.
Kathy DiRanna (kdirann@wested.org), K–12 Alliance/WestEd, Huntington Beach, Calif.
Come compare classroom scenarios to learn the different phases of the BSCS 5E (Engage, Explore, Explain, Elaborate, and Evaluate) Instructional Model to plan for NGSS learning sequences.
BRING AEROSPACE INTO YOUR SPACE

LAUNCH INTO science, technology, engineering, and math with the National Air and Space Museum’s webcast series, STEM in 30. Each fast-paced, 30 minute episode is broadcast LIVE from the floor of the museum.

STEM in 30 webcasts are perfect for students in the sixth to eighth grades and feature interviews with experts, demonstrations, animations, student experiments, challenges, audience polls, and viewer questions.

A dynamic teaching tool, the STEM in 30 website is designed to allow classrooms to get directly involved with the live broadcast. Viewers can participate online by sending in questions and answering polls, connecting students directly to museum experts from anywhere in the world.

2016 Schedule

April 20 Kites
May 11 Helicopters
May 25 Moon Rocks
June 15 Milestones of Flight: Lunar Module
September 14 Science on the Station
September 28 Star Trek 50th Anniversary
October 19 Hot Air Balloons
November 16 Landing on Other Planets
December 14 Wright Brothers

Smithsonian National Air and Space Museum
Watch online at airandspace.si.edu/stemin30
facebook.com/stemin30 @stemin30
8:00 AM–12 Noon Short Courses

What Lies Beneath Our Feet? Using Remote-Sensing Technologies to Better Understand the World (and the Ice Sheets) Beneath Us! (SC-5)

(Grades 6–12)
Tickets Required; $45
Capitol 1, Sheraton
Science Focus: ESS2, ESS3.B, SEP1, SEP2, SEP3, SEP4, SEP7, SEP8
Susan Bromley Kelly (sbkelly2@illinois.edu), University of Illinois at Urbana–Champaign
Sridhar Anandakrishnan (sak@esc.psu.edu), Pennsylvania State University, University Park
Susan Schwartz (sschwartz@ucsc.edu), University of California, Santa Cruz
For description, see Volume 1, page 55.

Project-Based Learning Using Case Studies to Teach AP or IB Biology (SC-6)

(Grades 9–12)
Tickets Required; $75
Capitol 2/3, Sheraton
Science Focus: LS, SEP2, SEP7
Kristen Daniels Dotti (kdotti@vvsaz.org), Verde Valley School, Sedona, Ariz.
For description, see Volume 1, page 55.

Garrett A. Morgan Technology and Transportation Education Program (GAMTTEP): STEM in Motion (SC-7)

(Grades K–8)
Tickets Required; $35
Capitol 4, Sheraton
Science Focus: ESS3.C, ETS, CCC, SEP
Meiko Thompson (@journee97; meiko.thompson@knox-county-schools.org), Knox County Schools, Knoxville, Tenn.
Sondra LoRe (sondra@utk.edu), Karena Ruggiero, Jerry Everett (jeverett@utk.edu), and Jennifer Richards (jennifer.richards@utk.edu), The University of Tennessee, Knoxville
Rebecca Sneed (rebecca.sneed@blountk12.org), Blount County Schools, Maryville, Tenn.
Becky Ashe (becky.ashe@knoxschools.org), Chairperson, NSTA Nashville National Conference, and L&N STEM Academy and Knox County Schools, Knoxville, Tenn.
For description, see Volume 1, page 55.

8:20–8:40 AM Presentation

SCST Session: STEM Research Experiences for Pre-service Science Teachers

(College)
Ryman One, Renaissance
Science Focus: GEN, CCC1, CCC2
Julie Angle (@sciedu4us; julie.angle@okstate.edu), Oklahoma State University, Stillwater
Hear how STEM and science education faculty joined forces to provide preservice science teachers with a STEM research experience.

8:30–9:00 AM Presentations

Open-Ended Inquiry-Based Instruction in Ecology *(Grades 9–College)*
101E, Music City Center
Science Focus: LS2.A, CCC1, SEP3, SEP4
Kristin Bliss (kbliss@randolphinscol.edu), Randolph College, Lynchburg, Va.
Have your students grow in their appreciation of ecology as they engage in novel lab experiments on global warming and plant growth.

Integrating Literacy Techniques Without Sacrificing Content *(Grades 7–12)*
Acoustic, Omni
Science Focus: GEN, CCC, SEP4, SEP7
Kelly Ramey (@kellyramey; kramey@tnstate.edu), Tennessee Tech University, Cookeville
With limited class time, it is important to use high-leverage practices that both address content and increase student skill in the literacy standards. We will explore some activities and related ways of assessing student learning that will meet both content and literacy requirements.

Using Active Learning Strategies to Impact Non-Science Majors’ Critical-Thinking Skills *(College)*
Broadway D, Omni
Science Focus: LS
Megan Litster (mlitster@uw-lax.edu) and Teresa Mika (tmika@uw-lax.edu), University of Wisconsin–La Crosse
Hear how active learning strategies can be employed to create more scientifically minded students in a biology course for nonmajors.

From Novice to Expert—Supporting Student Independence and Metacognition in Problem Solving *(Grades 9–12)*
Cumberland 5, Omni
Science Focus: PS, SEP5
Laura Wang (laura.wang@kstf.org), School of the Future, Moorestown, N.J.
Join me as I cover the nature of solving problems and present classroom-ready scaffolds that support teaching mathematical problem-solving skills in physical science.

CANCELED
What will it take to cure Alzheimer’s, Parkinson’s, Lou Gehrig’s, and other devastating diseases of the brain? Join Nobel Prize winner Stanley Prusiner as he shares his groundbreaking research and discovery of prions—infected proteins that replicate and cause disease but surprisingly contain no genetic material. Mounting evidence argues that prions feature in the pathogenesis of many, if not all, neurodegenerative diseases. Such disorders include Alzheimer’s, Parkinson’s, Lou Gehrig’s, and Creutzfeldt-Jakob diseases as well as the frontotemporal dementias. To date, there is not a single drug that halts or even slows one neurodegenerative disease, but his research stands at the forefront for the development of eventual cures.

Stanley B. Prusiner is director of the Institute for Neurodegenerative Diseases and professor of Neurology and Biochemistry at the University of California San Francisco (UCSF). He was awarded the Nobel Prize in Physiology or Medicine in 1997 for his discovery of prions—proteins that acquire an alternative shape that becomes self-propagating—as an explanation for the cause of bovine spongiform encephalopathy (“mad cow disease”) and its human equivalent, Creutzfeldt-Jakob disease. Much of his current research focuses on developing therapeutics that reduce the levels of the specific prions responsible for Alzheimer’s, Parkinson’s, MSA, and other neurodegenerative diseases.

Dr. Prusiner’s recently published book Madness and Memory chronicles his discovery of prions. He holds 50 United States patents. In 2009, President Obama awarded him with the National Medal of Science.
8:30–10:30 AM Roundtable
Exemplary Science Programs (ESP) Meeting Current Reform Efforts
(General) Broadway A/B, Omni

Science Focus: GEN, CCC
Kim Sadler (kim.sadler@mtsu.edu), Middle Tennessee State University, Murfreesboro
Pradeep Dass (@PradeepMDass; pradeep.dass@nau.edu), Northern Arizona University, Flagstaff
Stephen Pompea (spompea@noao.edu), National Optical Astronomy Observatory, Tucson, Ariz.
Jyoti Gopal (jgopal@riverdale.edu) and Ella Pastor (epastor@riverdale.edu), Riverdale Country School, Bronx, N.Y.
Jeff Weld (@IowaSTEM), Iowa Governor’s STEM Advisory Council, Cedar Falls
Kristy Kidd (@kristyakidd), University of Arkansas at Little Rock

Renee Clary (rcary@geosci.msstate.edu), Mississippi State University, Mississippi State, Miss.

Presider: Jeff Weld

The Four Goals/Justifications for Science were used by the National Science Education Standards (NSES)—first offered by Project Synthesis in 1981 in K–16 settings. The NSES, in turn, was used as a guide in the development of the recent Next Generation Science Standards (NGSS). The goals indicate what students should experience while: 1) Doing Science; 2) Solving Personal Problems; 3) Solving Societal Problems; and 4) Making Career Choices.

The former NSTA book series Exemplary Science Programs, ESP identified people and places where the reforms recommended have been achieved. The exemplars include: 1) Exemplary Science in Grades PreK–4; 2) Exemplary Science in Grades 5–8; 3) Exemplary Science in Grades 9–12; 4) Exemplary Science: Best Practices in Professional Development; 5) Inquiry: The Key to Exemplary Science; 6) Exemplary Science in Informal Education Settings; 7) Exemplary Science for Resolving Societal Challenges; 8) Exemplary Programs for Building Interest in STEM Careers; and 9) Exemplary College Science Teaching; and 10) Exemplary STEM Programs: Designs for Success.

The series was conceived by Robert E. Yager (1982–1983 NSTA President), who continues ESP searches and ways of recognizing classroom successes while also encouraging more to try!

8:30–10:30 AM Meeting
Aerospace Programs Advisory Board Meeting
Gibson Boardroom, Omni

8:40–9:00 AM Presentation
SCST Session: Creating an Authentic Research Experience in a General Biology Lab Using the Experience of Publishing
(College) Ryman One, Renaissance
Science Focus: LS, CCC1, CCC2
Donald French (dfrench@okstate.edu) and Lance Forshee (lance.forshee@okstate.edu), Oklahoma State University, Stillwater

Come see how we used publishing to create an authentic research experience for biology undergraduates, and how this experience changed their perception of lab.

8:40 AM–3:30 PM Short Course
Retaining Excellent Science Teachers: Finding and Sustaining Teachers’ Voices in Science Education (SC-8)
(General) Tickets Required; $70 Shelby Bottoms Nature Center
Science Focus: GEN
Vicki H. Metzgar (@midtnstem; vicki.metzgar@gmail.com), Middle Tennessee STEM Innovation Hub, Belmont University, Nashville
Sandra Merriam (merriam@sc.rr.com), Center for Courage & Renewal, North Myrtle Beach, S.C.

For description, see Volume 1, page 56.

9:00–10:30 AM Hands-On Workshop
McREL Pathway Session: GreenSTEM: Transforming Your Existing Lessons to Be Community Relevant and Project Based
(General) Legends A, Omni
Science Focus: GEN, CCC
Laura Arndt (laura.arndt1@gmail.com), McREL International, Denver, Colo.

Work with the GreenSTEM model and tools to make a lesson relevant and empowering to your students. Let them apply their STEM knowledge and strategies to design and implement solutions for a local sustainable problem.
9:00–10:30 AM Exhibitor Workshop
Beyond the Flipped Classroom: A Pedagogical Pilgrimage
(Grades 6–12)
Grand Ballroom C2, Music City Center
Science Focus: GEN, INF
Sponsor: Carolina Biological Supply Co.
Aaron Sams (aaron@flippedclass.com), Sams Learning Designs, LLC, Pittsburg, Pa.
Don’t flip your class...at least don’t flip just for the sake of flipping. Join us to ask the hard questions and probe beyond the latest trends in pedagogy to the heart of a teacher’s high calling—engaging each student to learn and grow to their fullest potential. Learn from one of the pioneers of flipped learning on how to launch from a flipped classroom to an active one.

9:00 AM–5:00 PM Exhibits
Hall B, Music City Center
The NSTA Exhibit Hall is a must-see! NSTA brings you the leading science education companies and organizations to showcase products, services, curricula, and much more. You’ll discover something new and exciting in the world of science teaching. Some exhibitors will offer materials for sale.

9:00 AM–5:00 PM Networking Opportunity
NSTA International Lounge
Mockingbird 1, Omni
Please stop by the NSTA International Lounge to relax or meet colleagues while you’re at the conference. The lounge is open Thursday through Saturday, 9:00 AM–5:00 PM.

Help us with your feedback...and get a chance for a free Apple iPad mini 2

We’re giving you one more reason to evaluate conference sessions.

When you log on to www.nsta.org/nashvillebrowser and fill out an evaluation by clicking on the “evaluate session” button below the session you attended, you get entered into a drawing for a chance to win an Apple iPad mini 2 Wi-Fi tablet courtesy of the NSTA Conference Department.

Your feedback helps us in creating the best conference experience for you and other attendees.

• WE’RE GIVING AWAY
Two APPLE iPAD MINI 2 Wi-Fi TABLETS
Friday, 9:15–11:15 AM

9:15–11:15 AM Hands-On Workshop

Science in the Community Share-a-Thon

INF (General) Broadway E, Omni

Science Focus: INF, CCC, SEP

Tanya Breeling (tbreeling@dmns.org), Denver Museum of Nature & Science, Denver, Colo.

Cary Busby (cary@themuseknoxville.org), The Muse Knoxville, Tenn.

Sarah Carter (scarter@tpt.org), Twin Cities Public Television, St. Paul, Minn.

Alex Eilers (alex.eilers@memphistn.gov), The Pink Palace Museum, Memphis, Tenn.

Tiffany Ellis Farmer (tfarmer@adventuresci.org), Adventure Science Center, Nashville, Tenn.

Josie Fox (teacherworkshops@sandiegozoo.org) and **Kimberly Kutina** (teacherworkshops@sandiegozoo.org), San Diego Zoo Institute for Conservation Research, Escondido, Calif.

Alex Hamilton (alex.hamilton@cityofpaloalto.org), Palo Alto Junior Museum & Zoo, Palo Alto, Calif.

Eric Hamilton (ehamilton@amnh.org), American Museum of Natural History, New York, N.Y.

Janice Harvey (jharvey@gemini.edu), Gemini Observatory, Hilo, Hawaii

Brian Kruse (bkruse@astrosociety.org), Astronomical Society of the Pacific, San Francisco, Calif.

Tina Lanese (tina@sciencebuddies.org), Science Buddies, Milpitas, Calif.

Eric Muller (emuller@exploratorium.edu), Exploratorium, San Francisco, Calif.

Carolyn Ng (carolyn.y.ng@nasa.gov), NASA Goddard Space Flight Center, Greenbelt, Md.

Deb Novak (deb.novak@state.nm.us), New Mexico Museum of Natural History and Science, Albuquerque

Chris Schaben (chris.schaben@ops.org), Omaha (Neb.) Public Schools

Dennis Schatz (schatz@pasci.org), NSTA Director, Informal Science, and Pacific Science Center, Seattle, Wash.

Brad Tanner, Mote Marine Laboratory & Aquarium, Sarasota, Fla.

Allison Taylor, National Geographic Education, Washington, D.C.

Come meet and engage with folks that bring exciting resources, programs, and opportunities available to you from museums, after-school programs, media, and other science providers!

9:30–9:50 AM Presentation

SCST Session: How Prepared Are First-Year College Students to Learn About Cellular Respiration in Introductory Biology?

(Grades 9–College) Ryman One, Renaissance

Science Focus: LS, CCC1, CCC2

Chelsea Fortenberry (chelsea.fortenberry@okstate.edu), **Lance Forshee** (lance.forshee@okstate.edu), and **Donald French** (dfrench@okstate.edu), Oklahoma State University, Stillwater

Come listen to our progress determining how prepared incoming biology students are for cellular respiration. Our results will help attendees plan their approach in teaching this topic!
9:30–10:30 AM Featured Presentation
The Tinker.Make.Innovate. Program
(General) 102 A/B, Music City Center
Science Focus: GEN

Sponsored by Shell

Jean Kaneko, Founder and Chief Tinkerer, The Exploratory, Culver City, Calif.

Presider: Margie Hawkins, Program Coordinator, NSTA Nashville National Conference, and Winfree Bryant Middle School, Lebanon, Tenn.

The Tinker.Make.Innovate. Program brings together design thinking, systems thinking, making, and standards to create Project-Based Learning opportunities for students—preschool to high school. Join the Exploratory’s founder and “Chief Tinkerer” as she shares case stories from the Los Angeles schools’ THE STEAM program, as well as Genius Hour/20% Time programs, which provide connected learning that is challenging, engaging, and inspiring.

Jean Kaneko has decades of experience in creating artistic and education applications using new technologies like computer graphics, special effects, HDTV programming, stereo IMAX films, theme park attractions, and online content. Her obsession with creative uses of technologies led her to establish The Exploratory, which creates Maker programs for schools—preschool to high school. In addition to creating Tinker.Make.Innovate., a multidisciplined learning system, Jean was also the chief architect of the Tinkering and Making toolkit for Pearson Foundation’s Project Mash and she has provided professional development to educators on the development of innovative thinking programs that incorporate STEAM, design thinking, and systems thinking to prepare students of all ages for a rapidly changing, unknown future. Jean and her team at The Exploratory teach STEAM and design thinking classes at schools all over Los Angeles, California.

9:30–10:30 AM Meeting
Development Advisory Board Meeting
Executive Boardroom, Music City Center

9:30–10:30 AM Presentations
See How an NSTA Student Chapter Is Impacting K–6 Science Learning Through an Informal Education Program
(Grades K–6/College) 103B, Music City Center
Science Focus: INF, NGSS

Stephanie Coy (sscuy@iupuc.edu), Inglewood Elementary School, Nashville, Tenn.
Kate Baird (kabaird@iupuc.edu), Indiana University–Purdue University Columbus

Join us to see how one NSTA student chapter is delivering inquiry-based lessons not received by K–6 learners in local classrooms.

Using Technology to Engage Parents and Differentiated Instruction
(Grades 1–12) 104A, Music City Center
Science Focus: ETS2

Joy Burton (@drdoolittle10; drdoolittle10@gmail.com), Sutter Middle School, Winnetka, Calif.
Ashley Burton (@beautifulrefuge; beautifulrefuge@gmail.com), Calabasas High School, Calabasas, Calif.

Who are the key players missing in your school community? Grab your parents’ attention with teacher websites that engage and increase student achievement in science!

Adapting Chemistry Lessons to Fulfill the Spirit of the NGSS
(Grades 6–College) 104B, Music City Center
Science Focus: PS1, PS4.D, CCC, SEP

Patti Schaefer (@PattiSchaefer), Madison (Wis.) Metropolitan School District
Meaghan Cells (@MsCellsChem), Brookline High School, Brookline, Mass.

Join NGSS@NSTA Curators in learning how to adapt lessons to support the three-dimensional learning that meets the NGSS.

Use Art to Increase Scientific Literacy in Elementary Students with Special Needs
(Grades K–6) 106A, Music City Center
Science Focus: GEN

Juan Catalan (jcvinxela@aol.com), 75th Street Elementary School, Los Angeles, Calif.

Come learn best practices that use basic art skills to build background and academic science content in students who are intellectually delayed.
Friday, 9:30–10:30 AM

INF Teachers’ Voices in Building STEM Education Ecosystems and in STEM Leadership
(General) Davidson A2/3, Music City Center
Science Focus: GEN, INF, NGSS
Mike Town (mtown01@msn.com), Tesla STEM High School, Redmond, Wash.
Marguerite Murphy (margo.murphy@fivetowns.net), Camden Hills Regional High School, Rockport, Maine
K. Renae Pullen (@krenaep; renaepullen@hotmail.com), Caddo Parish Public Schools, Shreveport, La.
Steve Long (stevelong@gmail.com), Rogers High School, Rogers, Ark.
Presider: Jay Labov (jlabov@nas.edu), National Academy of Sciences, Washington, D.C.
Discussion centers on the implications of two reports from the National Academies’ Teacher Advisory Council that focus on teacher leadership and teacher roles in evolving STEM education ecosystems.

NGSS@NSTA Forum: Using Three-Dimensional Standards to Plan Instruction and Assessment
(Grades K–12) Grand Ballroom C1, Music City Center
Science Focus: GEN, NGSS
James Short (jshort@amnh.org) and Dora Kastel (@Dora_AMNH; dkastel@amnh.org), American Museum of Natural History, New York, N.Y.
Presider: Ted Willard (twillard@nsta.org), Program Director, NGSS@NSTA, NSTA, Arlington, Va.
This session will provide an overview of five NGSS tools and professional learning processes for helping teachers translate standards into three-dimensional instruction and classroom assessment.

How to Implement STEM and the NGSS into Your Classroom Through the Use of NSTA Competitions
(Grades K–12) Broadway D, Omni
Science Focus: GEN, NGSS
Sue Whitsett, AEOP Project Director, NSTA, Arlington, Va.
Amanda Upton (aupton@nsta.org), Manager, Nominations and Teacher Awards Programs, NSTA, Arlington, Va.
Acacia McKenna (amckenna@nsta.org), Director, Competitions, NSTA, Arlington Va.
Sarah Beistel (@Bright_Schools; sbeistel@nsta.org), Program Manager, Science Education Competitions, NSTA, Arlington, Va.
Hear about various NSTA competitions and how they can bring STEM and the NGSS into the classroom, as well as give students and teachers a chance to earn prizes. Enjoy free food and take home a gift bag.

Differentiation with Explain Everything™
(General) Broadway G, Omni
Science Focus: GEN, CCC, SEP1
Alicia Johal (@ALICIAJOHAL; aliciajohal@gmail.com) and Marielle Venturino (@msventurino; mari.venturino@gmail.com), Mar Vista Academy, San Diego, Calif.
Use iPad video-creation apps as scaffolds to write amazing lab reports—support literacy for all, especially for long-term English language learners.

Pi in the Sky
(Grades 6–College) Broadway J, Omni
Science Focus: ESS2.E, PS1.A, ETS1, ETS2.A, SEP3, SEP4, SEP6, SEP8
Michael Davis (@MDScience; mdavis@ccc.edu), Wilbur Wright College, Chicago, Ill.
Learn how open-source electronics like the Raspberry Pi and Arduino are used in high-altitude ballooning projects.

ASTC Session: Carnegie STEM Excellence Pathway: Journey to STEM Success
(Grades P–12) Cumberland 1, Omni
Science Focus: INF
Jason Brown (@CSCDSE; brownj@carnegiesciencecenter.org), Carnegie Science Center, Pittsburgh, Pa.
Learn about an initiative built upon the belief that schools and educators can improve their STEM education practices through a positive collaborative approach.

Using Student-Created Digital Products in a Technology-Rich Science Learning Environment
(Grades 6–8) Cumberland 4, Omni
Science Focus: GEN, SEP8
R. Thomas Layfield (@LayfieldSCI; rlayfield@jackson.k12.ga.us) and Tiffany Barnett (tpbarnett@jackson.k12.ga.us), East Jackson Middle School, Commerce, Ga.
Come see examples of technology-based science classroom experiences in which student learning is enhanced through digital product creation.

Forensics on the Fly
(Grades 6–12) Cumberland 5, Omni
Science Focus: GEN
Kristie Cannon (kcannon@hoover.k12.al.us), Spain Park High School, Birmingham, Ala.
Hear about budget-friendly, easy setup labs and activities for your forensic science program.
Science Performance Tasks as the Application of Math and Language Arts
(Grades 6–8) Legends C, Omni
Science Focus: LS4.B, PS4, CCC3, CCC7, SEP4, SEP5, SEP8

Nancy Kenyon (nkenyon@etsd.org) and Andrew Kasprisin, Essex Middle School, Essex Junction, Vt.
We will present two performances tasks that incorporate the CCSS as well as physical science from the NGSS.

Hollywood BAD Science
(Grades 6–College) Legends D, Omni
Science Focus: GEN, SEP2, SEP4, SEP7

Daryl Taylor (@DarylScience; dary1261@gmail.com), Retired Educator, Naugatuck, Conn.
Learn how to use popular media to either crush misconceptions or reinforce class topics. All videos used will be shared with participants and freebies to all.

Effective Professional Development Approach for Teachers and Districts
(General) Music Row 1, Omni
Science Focus: GEN, SEP

Arthur Eisenkraft (arthur.eisenkraft@umb.edu), 2000–2001 NSTA President, and UMass Boston, Dorchester, Mass.
What are the necessary elements for teachers engaging in professional development to assist them and their school districts while creating communities of learners and leaders? Join me and find out.

Authors Needed! Share Your Teaching Ideas in an NSTA Journal
(General) Music Row 2, Omni
Science Focus: GEN

Ken Roberts, Assistant Executive Director, Journals, NSTA, Arlington, Va.
Meet with NSTA journal editors to learn how to prepare and submit an article for publication.

Inspiring Generation STEM
There is a mathemaTician and scienTist in every student.
education.ti.com

©2016 Texas Instruments AD7192 Images courtesy of Thinkstock.
Safer STEM Activities Through Collaboration! (Grades 1–12)
Music Row 3, Omni
Science Focus: ETS, SEP
Kenneth Roy (@drroysaferscience; royk@glastonburyus.org), Glastonbury (Conn.) Public Schools
Tyler Love (@UMES_Tech_Dept; tlove@umes.edu), University of Maryland Eastern Shore, Princess Anne
Trading in beakers for power tools in doing STEM activities? Hear how collaboration is critical to address potential hazards and make it safer before they become liability issues!

NSELA Session: Bring the Practice into Your Science Classrooms! (Grades 6–8)
Music Row 4, Omni
Science Focus: GEN, SEP
Pamela Caffery, Hillsborough County Public Schools, Tampa, Fla.
Let’s examine how to motivate teachers to practice literacy skills as part of guided inquiry units of instruction. Sample units are available.

NARST Session: Implementing STEM Design Challenges at the Middle School Level (Grades 5–9)
Fisk One, Renaissance
Science Focus: GEN, SEP
Tamara Nelson (@tbuddhiker; tnelson1@vancouver.wsu.edu), Kristin Lesseig (kristin.lesseig@vancouver.wsu.edu), and David Slavit (dslavit@vancouver.wsu.edu), Washington State University Vancouver
We describe how teachers addressed the challenges of implementing STEM design challenges with diverse students in a traditional middle school context.

Developing Teachers into Master Educators and Leaders: National Board Certification (Grades P–11)
West Ballroom, Renaissance
Science Focus: GEN
Lisa Swenson (lisaswenson@newmanschool.org), Isidore Newman School, New Orleans, La.
Examine the process of National Board Certification and discover how this rigorous professional development process can deepen content and pedagogical knowledge.

Exploring Engineering Practices (Grades 9–12)
101E, Music City Center
Science Focus: ESS, ETS, LS, PS, SEP
Brooke Whitworth (@bawhit41; brooke.whitworth@nau.edu), Northern Arizona University, Flagstaff
Lindsay Wheeler (lkb4u@virginia.edu) and Jennifer Maeng (jlc7d@virginia.edu), University of Virginia, Charlottesville
We will illustrate engineering design practices and provide a hands-on experience with an engineering design format that can be used in high school biology, chemistry, Earth science, and physics classrooms. Handouts!

Sound Through the Ages—From Cluckers to Pluckers (Grades K–5)
103A, Music City Center
Science Focus: ETS1, PS4, CCC, SEP
Patricia Maze (@AMSTI-Athens; patricia.maze@athens.edu) and Dennis Engle (dennis.engage@athens.edu), AMSTI-Athens, Ala.
Emily McGahee (@AMSTI-Athens; emily.megahee@athens.edu), Athens State University, Athens, Ala.
Travel through the ages as we explore sound waves through inquiry learning with the implementation of the engineering design process and integration of technology.

Constructing Science Explanations Using Reading and Writing Strategies to Support Grades 6–8 Students (Grades 5–9)
103C, Music City Center
Science Focus: GEN, SEPD
Allyson Nusser (amusser@amnh.org), American Museum of Natural History, New York, N.Y.
Andrea Bonosoro (abonosoro@schools.nyc.gov), J.H.S. 185 Edward Bleeker, Flushing, N.Y.
We will use AMNH-developed resources to help middle school students use reading strategies and writing tasks to construct science explanations.
Daytime Astronomy: Elementary Celestial Navigation
(Grades 5–8) 104C, Music City Center
Science Focus: ESS, CCC1, SEP3, SEP4, SEP5
Philip Sadler (psadler@cfa.harvard.edu), Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass.
Figure out one’s latitude and longitude from measurements of the Sun’s height using simple quadrants, which we will construct. Leave with all materials to conduct this activity in your grades 5–8 classroom.

Using Density to Teach Earth Science Concepts
(Grades 6–12) 104D, Music City Center
Science Focus: ESS2.A, ESS2.B
Joshua Roberts (robertsjo@watauga.k12.nc.us), Watauga High School, Boone, N.C.
Sam Fuerst (suequard@dpsnc.net), Northern High School, Durham, N.C.
Help your students understand plate tectonics and isostasy by using water displacement to measure the density of continental (granite) and oceanic (basalt) crust to explain plate interactions.

Stellar Evolution—From Star Formation to Catastrophic Destruction
(Grades 6–12) 104E, Music City Center
Donna Young (dlyoung.nso@gmail.com), Chandra X-Ray Center, Bullhead City, Ariz.
Model star and planet formation and destruction using images from NASA missions, including stellar nurseries, protostars, supernovas, white dwarfs, neutron stars, pulsars, and black holes.

STEM Learning: An Integrated Teaching Model
(Grades 6–College) 105A, Music City Center
Science Focus: GEN, SEP
Patricia Simmons (patricia_simmons@ncsu.edu), 2011–2012 NSTA President, and North Carolina State University, Raleigh
Come join this interactive session on how teachers can translate and implement science and engineering practices featuring selected STEM concepts for middle school and high school students.

Using Web-Based GIS to Investigate Rain Forest Conservation Issues in the Brazilian Amazon
(Grades 9–12) 105B, Music City Center
Carol Burch (cburch129@gmail.com), Hannibal High School, Hannibal, N.Y.
Nancy Trautmann (nancy.trautmann@cornell.edu), The Cornell Lab of Ornithology, Ithaca, N.Y.
James MaKinster (makinster@hws.edu), Hobart and William Smith College, Geneva, N.Y.
Michelle Watkins (michellewatkins@frontiernet.net), Beaver River Central School, Beaver Falls, N.Y.
Join us to investigate real environmental questions and address important concepts from the NGSS and CCSS using online interactive mapping in this Problem-Based Learning activity.

Model My Watershed: Using Local Data to Make Local Decisions
(Grades 6–12) 106B, Music City Center
Science Focus: GEN, SEP
Nanette Marcum-Dietrich (@TESMMW; ndietrich@millersville.edu), Millersville University, Millersville, Pa.
Melissa Hess (@hess_missy; melissa_hess@conestogavalley.org), Conestoga Valley Middle School, Lancaster, Pa.
Carolyn Staudt (@cjstaudt; cstaudt@concord.org), The Concord Consortium, Concord, Mass.
Tara Muenz (tmuenz@stroudcenter.org), Stroud Water Research Center, Avondale, Pa.
Find out about a free online application that uses national scientific databases and an online hydrological model to let users make accurate decisions about local watershed issues.

An Integration Plan for NGSS and CCSS: Science, Social Studies, and Math
(Grades K–8) 106C, Music City Center
Science Focus: GEN, SEP
Jim McDonald (@jimscienceguy; jim.mcdonald@cmich.edu), CESI President, and Central Michigan University, Mount Pleasant
Scott Roberts, Samantha Burko, and Jason Artero, Central Michigan University, Mount Pleasant
We’ll examine the opportunities to integrate science, math, and social studies together and propose a format for an integrated unit and provide examples. Handouts!
National Earth Science Teachers Association (NESTA) Shares: Earth System Science Share-a-Thon
(General) Davidson B, Music City Center
Science Focus: ESS
Michael Passow (michael@earth2class.org), Dwight Morrow High School, Englewood, N.J.
Carla McAuliffe (carla_mcauliffe@terc.edu), TERC, Cambridge, Mass.
Join more than 20 NESTA members and other education specialists as they share their favorite Earth system science classroom activities. Many free handouts!

Manipulative Mania: An Engaging, Student-Centered Approach to Biology
(Grades 8—College) Broadway C, Omni
Science Focus: LS, SEP2, SEP8
Megan York (kate.york@utdallas.edu) and Katherine Donaldson (katie.donaldson@utdallas.edu), The University of Texas at Dallas, Richardson
Finding direct instruction a drag? Come explore all types of teacher-created, NGSS-focused biology manipulatives. See how to turn “student centered” into “student success.” Leave with sample materials.

Are Three Trials Enough? Analyzing Investigation Data with Large Variation: How Sample Size Can Actually Change “Conclusions”
(Grades 6—8) Broadway H, Omni
Science Focus: GEN, SEP4, SEP5, SEP7
Matthew Mirabello (mmirabello@amnh.org) and Jay Holmes (jholmes@amnh.org), American Museum of Natural History, New York, N.Y.
Account for sample size and variation in the data analysis and conclusion of your science investigation. Reduce “false positives” and support richer data interpretation conversations.

Developing Critical Thinking, Reasoning, Inquiry, and Problem Solving Through Literacy
(Grades 6—12) Broadway K, Omni
Science Focus: GEN, CCC1, SEP1, SEP4, SEP5, SEP7, SEP8
Ana Cingel (@AnaCingel), Virginia Beach (Va.) City Public Schools
Gain literacy strategies for incorporating scientific reasoning, problem solving, communicating, and decision-making into your daily instruction while meeting the CCSS. Examples and literacy integration best practices from one school district’s literacy initiative will be shared.

Using Systems Modeling to Facilitate Student Conceptual Development
(Grades 6—12) Cumberland 3, Omni
Science Focus: GEN, CCC4
Daniel Damelin (ddamelin@concord.org), The Concord Consortium, Concord, Mass.
Presider: Joseph Krajcik (krajcik@msu.edu), CREATE for STEM Institute, Michigan State University, East Lansing
Learn about and use a new student-focused tool that supports students in constructing, testing, and revising dynamic system models to make sense of phenomena.

Create a Hot Air Balloon in Your Physics Class
(Grades 9—12) Cumberland 6, Omni
Science Focus: ETS1, PS, SEP1, SEP2, SEP5
Jeff Pet terra (jpett@clschools.org), Christian Life High School, Rockford, Ill.
Presider: Steve Swed, Christian Life High School, Rockford, Ill.
Using Archimedes’ principle of buoyancy and density, explore how to incorporate STEM principles into making hot air balloons.

Waves in Three Dimensions
(Grades 6—8) Legends E, Omni
Science Focus: PS4, CCC1, CCC6, SEP2, SEP5, SEP8
Roy Beven (rbeven@fidalgo.net), WSTA President, Bellingham, Wash.
Presider: Jenna Porter (jmporter@csus.edu), California State University, Sacramento
Waves have been added as an NGSS disciplinary core idea for the physical sciences as well their applications in technologies for information transfer. Explore how sound can be modeled with middle school mathematics focusing on wave amplitude and energy (MS-PS4-1).

Wake Up Students with Activities on the Genetics of Sleep Cycles
(Grades 9—College) Legends G, Omni
Science Focus: LS, CCC4, SEP2, SEP4, SEP6
Hillary Lauren (@ImpactSciEd) and Barbara Hug (bhu g@illinois.edu), University of Illinois at Urbana-Champaign
Explore free interactive Project NEURON activities on genetics and health, including a game about cutting-edge research on epigenetics and a student-driven investigative case study.
DuPont Presents: Driving Science
(Grades 9–12) Music Row 5, Omni
Science Focus: ETS1, CCC1, CCC2
Glenda Pepin (gpepin@clemson.edu), Clemson University, Clemson, S.C.
Pamela King (pamelak@clemson.edu), Clemson University, Greenville, S.C.
Come learn how to connect science content and engineering design. Join us for this hands-on workshop and investigate standards related to Newton’s laws of motion in the context of real-world applications and connections to motorsports. We’ll examine design processes and teaching strategies that build connections across STEM disciplines.

Science as Human Endeavor: Analyzing Historical Primary Sources from the Library of Congress
(Grades K–12) Center Ballroom, Renaissance
Science Focus: ETS2.B, SEP
Michael Apfeldorf (@TeachingLC; mapf@loc.gov) and John Smith (@jftrey; jf.trey.smith@gmail.com), Library of Congress, Washington, D.C.
Bring to life the practices of scientists, as well as the connections between science and society, with hands-on strategies that engage students with scientific notebooks, letters, photos, and drawings.

CALLING ALL MIDDLE SCHOOL EDUCATORS

SUNDAY, APRIL 2, 2016 | 10:00 AM–4:00 PM | OMNI NASHVILLE

Must be registered for the conference to attend

Join us for a special “Meet Me in the Middle Day,” designed just for middle school educators, at NSTA’s 2016 National Conference in Nashville!

The day’s events will include a networking session, more than a dozen presentations specifically for middle school educators, and an afternoon share-a-thon featuring more than 100 presenters. You’ll walk away with ideas you can put to use in your classroom next week!

Organized by the National Middle Level Science Teachers Association (NMLSTA)

Attend for a chance to win an iPad mini and other door prizes!

#NSTA16
www.nsta.org/nashville
Focused Field Trips: A Three-Pronged Approach to Planning Meaningful Out-of-School Learning Experiences
(Grades P–12) East Ballroom, Renaissance
Science Focus: INF
Kyla Cook (kcook@fieldmuseum.org), The Field Museum, Chicago, Ill.
Discover how to enhance and extend classroom learning by planning meaningful focused field trip experiences to integrate and connect learning beyond the classroom walls.

ASTE Session: The 50 Cent Microscope/Foldscope
(General) Fisk Two, Renaissance
Science Focus: GEN
Judith Bazler, Letitia Graybill (@graybill@monmouth.edu), and Carleigh Engstrom (@MissEngstrom; st0822221@monmouth.edu), Monmouth University, West Long Branch, N.J.
Two years ago, Manu Prakash, a professor at Stanford University, invented the foldscope. We are one of 10,000 researchers in more than 130 countries that are exploring the use of these microscopes. We’ll share our research on how foldscopes can be used in a classroom and in the field, and how they can be used to satisfy the NGSS.

Close Reading in Science: Applying CCSS ELA
(Grades 3–12) Music City Ballroom, Renaissance
Science Focus: GEN
David Vernot (dvernot@gmail.com), Butler County Educational Service Center, Hamilton, Ohio
Experience Close Reading strategies as you help students dissect passages from a variety of complex texts, read like a detective, identify tiered vocabulary, and use text-dependent questions.
10:00–11:30 AM Exhibitor Workshops

AP Environmental: Using Your Stream to Teach STEM-Based Skills
(Grade 12) 107A, Music City Center
Sponsor: LaMotte Co.
Tim Trumbauer, Chester River Association, Chestertown, Md.
Is the stream behind our school healthy? Don’t miss this informative workshop with an actual watershed manager that covers field techniques for collecting and analyzing samples, use of public data, common surface water pollutants, and ways to research potential pollution sources. Upon completion, you will be able to use the Water Quality Index to teach STEM-based skills and successfully implement a water quality component to your AP Environmental curriculum.

Amplify Science for Grades 6–8: Experience Three-Dimensional Teaching and Learning with the Newest Curriculum from The Lawrence Hall of Science
(Grades 6–8) 107B, Music City Center
Science Focus: GEN, CCC
Sponsor: Amplify
Rebecca Abbott and Traci Wierman, The Lawrence Hall of Science, University of California, Berkeley
Experience our field-tested, technology-enhanced, 100% NGSS-designed K–8 curriculum. Built around argumentation, digital simulations, modeling tools, hands-on investigations, and explicit disciplinary literacy instruction, Amplify Science engages students with deep dives into understanding the natural and designed worlds. Focusing on middle school, this workshop provides a sneak peek.

Zombie Apocalypse!
(Grades 6–12) 110A, Music City Center
Science Focus: LS
Sponsor: Texas Instruments
Jeffrey Lukens, Sioux Falls (S.Dak.) School District
Become part of a zombie apocalypse as brains will be served (while supplies last). Learn about disease-spread modeling using simulations and fun storylines about a zombie outbreak. Applicable for middle school and high school, this workshop is sure to scare you and your little zombies into learning how exciting Hollywood themes can be used to teach science concepts.

New and Emerging Infectious Diseases: Host-Pathogen Relationships Highlight NGSS Core Concepts and the Value of Vaccination
(Grades 9–12) 110B, Music City Center
Science Focus: LS
Sponsor: Pearson Education
Joseph Levine, Author, Boston, Mass.
Bird flu and other diseases seem to appear out of nowhere. What’s going on? Narratives about the science behind these phenomena fascinate students and demonstrate the dynamic and constantly changing relationships between hosts and pathogens. Learn to use these narratives to teach in ways that demonstrate the importance of the NGSS…and the value of evolutionary and ecological concepts in medical practice, public health, and students’ lives.

Solving the Mystery of STEM Using Forensic Science
(Grades 5–12) 201A, Music City Center
Science Focus: GEN
Sponsor: Frey Scientific/School Specialty Science
Kathleen Mills, Waterloo High School, Waterloo, N.Y.
Conduct a number of STEM-focused forensic activities that LINK scientific investigations with analysis and investigative skills to solve multifaceted “cases” involving fingerprint, blood spatter, and document analysis. Apply basic mathematical principles and integrate reading and writing strategies. See how the program uses hands-on strategies to meet the NGSS and state standards.

What to Look for in Physical Science Learning Progressions—Experience FOSS K–5
(Grades K–5) 201B, Music City Center
Science Focus: PS
Sponsor: Delta Education/School Specialty Science–FOSS
Kathy Long and Brian Campbell, The Lawrence Hall of Science, University of California, Berkeley
Are you looking for coherent curricular direction in your elementary science program? Join FOSS curriculum developers to investigate learning progressions in grades K–5 using physical science modules from the new FOSS Next Generation program. Find out about transitioning to the newly released FOSS program modules.
Fantastical Chemistry Demos for All Classrooms
(*Grades 3–12*) 202A, Music City Center
Sponsor: Educational Innovations, Inc.
William Richey, Xenia High School, Xenia, Ohio
These super fun and exciting chemistry demonstrations can be used by all teachers at any level to get a classroom of students excited about the amazing world of chemistry. These easy and practical demonstrations can truly show your students what we already know—that science is fun!

Biology for NGSS: A New Approach for a New Program (*Grades 9–12*)
(*Grades 9–12*) 202B, Music City Center
Science Focus: LS
Sponsor: BIOZONE International Ltd.
Richard Allan (richard@biozone.co.nz), BIOZONE International Ltd., Hamilton, New Zealand
Find the tools you need to successfully implement the high school life science component of the NGSS program in BIOZONE’s newest student workbook. This carefully constructed resource is strongly focused on student inquiry and written from first principles to address all aspects of the NGSS system architecture. Attendees receive free books that support the NGSS.

Genes in Space: Send Your DNA Experiment to the International Space Station (ISS)
(*Grades 7–College*) 202C, Music City Center
Science Focus: ESS, LS, CCC, SEP
Sponsor: miniPCR
Join Genes in Space, a STEM competition inviting students in grades 7–12 to launch DNA experiments to space. Students design their own space DNA experiments to solve real-world problems. Ten finalists receive mentoring from Harvard/MIT scientists and donations of miniPCR equipment for their schools…and they get to present at the ISS R&D Conference (San Diego). Winners have their experiment performed in the International Space Station using miniPCR!

Hands-On Activities to Model Habitat Preference and Population Sampling
(*Grades K–12*) 204, Music City Center
Science Focus: LS
Sponsor: Carolina Biological Supply Co.
Carolina Teaching Partner
Watch and learn! Create a terrestrial model to observe how pill bugs respond to habitat change. Use inquiry to develop experiments to observe the habitat preference of bess beetles and millipedes. Then investigate the advantages and disadvantages of different sampling methods to estimate population size in habitats. Nurture students’ curiosity!

Early Elementary Engineering with Smithsonian: What’s New with STC3?
(*Grades K–2*) 205A, Music City Center
Science Focus: ETS
Sponsor: Carolina Biological Supply Co.
Carolina Teaching Partner
The engineering element of NGSS poses challenges to already time-pressed elementary teachers. The Smithsonian Science Education Center has developed two curriculum units to help teachers develop engineering and science practices through an engaging storyline made available through our publishing partner, Carolina. Experience a grade 1 unit on sound and a grade 2 unit on erosion. Find out how lower elementary students can use scientific knowledge to solve engineering problems. Yes, you CAN teach lower elementary science and engineering in an integrated way!

Engineer Hands-On Chemistry Fun with a Carolina STEM Challenge®!
(*Grades 6–12*) 205B, Music City Center
Science Focus: PS
Sponsor: Carolina Biological Supply Co.
Carolina Teaching Partner
Bounce and blast your way into hands-on chemistry activities that challenge your middle level and high school students to use their critical-thinking skills. Apply the engineering process while exploring the chemistry of rockets and polymers. See how Carolina makes it easy to incorporate STEM into your classroom.

Gas Exchange
(*Grades 6–8*) 205C, Music City Center
Science Focus: LS1.A
Sponsor: LAB-AIDS®, Inc.
Mark Koker, LAB-AIDS, Inc., Ronkonkoma, N.Y.
Students have many misconceptions about respiration. In this activity from the SEPUP middle level life science program, participants use an acid-base indicator to determine the relative amount of CO₂ gas in a sample of their exhaled breath. They consider differences in individual response, explore qualitative vs. quantitative measures, and examine the structure of the lungs and their role in the process of respiration.
National Earth Science Teachers Association
Events at 2016 Nashville NSTA Conference

All NESTA sessions are in Music City Center, Davidson B, unless otherwise indicated

Friday, April 1
- 9:30 – 10:30 am Earth System Science Share-a-Thon
- 11:00 am – noon NESTA and HHMI Share: Multimedia Tools and Resources for Teaching Earth Science
- 12:30 – 1:30 pm NESTA and TERC Share: EarthScope Chronicles: The Newberry Volcano
- 2:00 – 3:00 pm Geology Share-a-Thon
- 3:30 – 4:30 pm Rock, Mineral, and Fossil Raffle
- 6:30 – 8:00 pm NESTA Friends of Earth Science Reception, Hilton Garden Inn, Skyline Junior Ballroom

Saturday, April 2
- 9:30 – 10:30 am Astronomy Science Share-a-Thon
- 11:00 am – noon American Geophysical Union Lecture, Dr. Linda Kah, Kenneth Walker Professor at UT-Knoxville, Music City Center, Grand Ballroom C2
- 12:30 – 1:30 pm NESTA and CIESIN Share: Exploring a Compendium of Online Resources for Teaching Earth Science
- 2:00 – 3:00 pm Atmosphere and Ocean Share-a-Thon
- 3:30 – 4:30 pm Innovative Ways to Teach about Weather Observation and Weather Hazards
- 5:00 – 6:00 pm NESTA Annual Membership Meeting

NESTA gratefully acknowledges the following organizations as sponsors:
Apply the Science of Energy, Motion, and Friction
(Grades 8–12) 207A, Music City Center
Science Focus: PS
Sponsor: Ward’s Science
Samantha Bonelli, VWR Science Education, Rochester, N.Y.

Students design and build cutting-edge vehicles to investigate stored energy from sources such as a rubber bands or mousetraps. The kit components—wood chassis, mousetraps, braking systems, and several types of wheels and gears—allow students to develop a greater number of solutions and apply real-world problem-solving skills to create innovative designs.

Patterns and Processes in Ecology
(Grades 6–12) 207B, Music City Center
Science Focus: LS2, CCC1, CCC4, CCC5, CCC7, SEP2, SEP5
Sponsor: HHMI BioInteractive
Mark Nielsen, Howard Hughes Medical Institute, Chevy Chase, Md.
Ben Smith, Palos Verdes Peninsula High School, Rolling Hills Estates, Calif.
Kim Parfitt, Central High School, Cheyenne, Wyo.

What controls the numbers and distributions of animals in their environment? How do animals interact with other species? How do natural patterns arise in nature? These are some questions that generations of ecologists have been studying. This workshop will feature some of our newest media offerings and ready-to-use classroom resources.

Biology with Vernier
(Grades 9–College) 207C, Music City Center
Science Focus: LS, SEP
Sponsor: Vernier Software & Technology
Rick Rutland (info@vernier.com), Five Star Education Solutions, Stockdale, Tex.

Use Vernier sensors to conduct a variety of biology experiments from our popular lab books in this engaging hands-on workshop. Collect and analyze data using LabQuest 2, Logger Pro computer software, and mobile devices. Explore the wide range of tools from Vernier that promotes understanding of biology concepts.

Physics with Vernier
(Grades 9–College) 207D, Music City Center
Science Focus: PS, SEP
Sponsor: Vernier Software & Technology
David Carter (info@vernier.com), Vernier Software & Technology, Beaverton, Ore.

Use Vernier sensors to conduct a variety of physics experiments from our popular lab books in this engaging hands-on workshop. Collect and analyze data using LabQuest 2 and Logger Pro computer software. Explore the wide range of tools that promotes understanding of physics concepts.

Project-Based Learning for High School: Sequencing a Plant Species
(Grades 9–College) 208A, Music City Center
Science Focus: LS3, SEP
Sponsor: Bio-Rad Laboratories
Angela Eeds, Vanderbilt Center for Science Outreach, Nashville, Tenn.

A plant sequencing laboratory project was a great addition to our high school biology program. We adapted a commercial plant-based cloning and sequencing kit to engage our students in Project-Based Learning. With the right scaffolding and support, our students gained valuable biotechnology research skills and experience.

Investigate Photosynthesis and Cellular Respiration with Algae Beads
(Grades 6–College) 208B, Music City Center
Science Focus: LS, SEP
Sponsor: Bio-Rad Laboratories
Sherri Andrews (sherri_andrews@bio-rad.com), Bio-Rad Laboratories, Hercules, Calif.

Use algae beads in a colorimetric assay to study both photosynthesis and cellular respiration in authentic inquiry investigations (AP Biology Big Idea 2: Labs 5 and 6). Extend this lab to study the effects of light intensity, light color, temperature, and other organisms on these processes.

Infusing Inquiry and Demonstrations into AP Biology
(Grades 9–12) 209A, Music City Center
Science Focus: LS
Sponsor: Flinn Scientific, Inc.
Meg Griffith, Flinn Scientific, Inc., Batavia, Ill.

Join biologists from Flinn Scientific as we share inquiry strategies and techniques for AP, IB, and advanced-level biology courses. Get tips for managing the inquiry process and see demonstrations to help engage your students with the content. Discover the benefits of FlinnPREP™, an
online supplemental curriculum and assessment resource with engaging video content, animations, and text. Handouts!

Pluto: New Horizons and Beyond
Grades 6–12
209B, Music City Center
Science Focus: ESS1.B
Sponsor: Simulation Curriculum Corp.
Herb Koller, Simulation Curriculum Corp., Minnetonka, Minn.
Using Simulation Curriculum’s award-winning interactive *Starry Night* and its NGSS-ready lessons, we will learn about Pluto’s history and examine the spectacular results of the New Horizons mission. As we explore Pluto’s relationship to other denizens of the Kuiper Belt, we’ll speculate about New Horizon’s next target.

Debunking the Myths of Project-Based Learning: Yes, We CAN!
Grades 6–8
209C, Music City Center
Science Focus: GEN, NGSS
Sponsor: It’s About Time
Amanda Wilson (wilsona36@coe.ufl.edu), It’s About Time, Mount Kisco, N.Y.
Skeptical of Project-Based Learning? Concerned about the time and resources required for Project-Based Learning? Join us in debunking the myths of PBL. We will explore how common concerns are just myths and how PBL can be the teaching style that works for you and your students.

The STEM Design Challenge
Grades 4–8
210, Music City Center
Science Focus: INF, PS2, PS3, SEP1, SEP2, SEP3, SEP4
Sponsor: Fisher Science Education
Learn how to create and develop questions about force, energy, and motion for an interactive lab. Then, solve an engineering problem using creative and realistic world processes. Finally, support your understanding with fun and exciting team competition.

Make Science Come to Life
Grades 1–5
211, Music City Center
Science Focus: GEN, NGSS
Sponsor: LEGO Education
Laura Jackson, Anderson (S.C.) School District Five
Did you know LEGO® bricks can provide an engaging platform for making science come to life? Using LEGO Education solutions, elementary students can explore, create, and share discoveries as they build solutions to real-world, standards-based projects and deeply engage with science practices and the engineering design process. Come experience a resource that develops students’ confidence to ask questions, find answers, and solve problems by putting discovery in their hands.

Using Science Magazines to Engage Your Students
Grades 3–10
212, Music City Center
Science Focus: GEN, INF, CCC1, CCC2, SEP
Sponsor: Scholastic, Inc.
Mara Grunbaum and **Amy Barth,** Scholastic Inc., New York, N.Y.
Scholastic® classroom magazine editors team up with teachers to show you how you can use science magazines to engage your students while meeting NGSS and English language arts standards. We’ll show you easy ways to integrate science and engineering practices, informational text skills, and exciting current science discoveries that are too new for textbooks.

Making Critical Thinking More Than Just a Cliché Using Three-Dimensional Learning
Grades 6–8
214, Music City Center
Science Focus: GEN, NGSS
Sponsor: Activate Learning
Heather Milo (hmilo@activatelearning.com), Activate Learning, Greenwich, Conn.
Come engage in a sequence of investigations where middle school students experience phenomena, construct explanations, and argue from evidence. Teach students to think like scientists as they apply a claim, evidence, reasoning framework to make sense of investigations.

What Works? Science Techbook and Effective Professional Development
Grades K–12
401 A/B, Music City Center
Science Focus: GEN
Sponsor: Discovery Education
Renee Cartier, Discovery Education, Silver Spring, Md.
Experience Discovery Education’s Science Techbook and learn the secrets to its successful implementation—professional development, of course. Engage in immersive experiences that define effective professional development in science to transform teaching and learning throughout your school.
Flinn Scientific’s Morning of Chemistry: Taking Over the Music City with Science
(Grades 9–12) Davidson C, Music City Center
Science Focus: PS
Sponsor: Flinn Scientific, Inc.
Jesse Bernstein, Miami Country Day School, Miami Shores, Fla.
Paul Price, Trinity Valley School, Fort Worth, Tex.
Great demonstrations can heighten interest, make abstract concepts concrete, and provide “aha” moments that replace confusion with understanding. Join Jesse Bernstein and Paul Price as they illustrate some of their favorite chemistry demos. Whether you are a physical science teacher looking for a demo to increase engagement or an AP Chemistry instructor needing a demo to nail a vexing concept, Flinn Scientific’s Morning of Chemistry is a must-see. Handouts!

10:00 AM–12 Noon Meeting
Polar Educators International Open Meeting
Mockingbird 3, Omni
Interested in bringing polar science and climate change education to your audience? Polar Educators International invites you to join in professional networking. For more information, please visit www.polareducator.org.

10:10–10:30 AM Presentation
SCST Session: Building an Extended Inquiry Laboratory to Create a More Authentic Research Experience for First-Year Students
(College) Ryman One, Renaissance
Science Focus: GEN, CCC1, CCC2
Donald French (dfrench@okstate.edu), Oklahoma State University, Stillwater
First-year students as scientists and journal authors? Instructors as mentors, not graders? How does it work? Come learn about the laboratory experience we created.

10:30 AM–12 Noon Meeting
Urban Science Education Advisory Board Meeting
Gibson Boardroom, Omni

10:30 AM–1:00 PM Meeting
Association of Science Materials Centers (ASMC) Advisors Meeting
Mockingbird 2, Omni

11:00–11:20 AM Presentation
SCST Session: Undergraduate Biology Students’ Conceptions of Extreme Spatial Scales
(College) Ryman One, Renaissance
Science Focus: LS, CCC1, CCC2
Grant Gardner (grant.gardner@mtsu.edu) and Martina Ramos, Middle Tennessee State University, Murfreesboro
We will share data on undergraduate biology students’ absolute and relative spatial scale conceptions as well as their conceptual boundaries.
11:00–11:30 AM Presentations
NGSS for Early Childhood Learners
(Grades P–2) 104B, Music City Center
Science Focus: PS
Abha Singh (a-singh@wiu.edu) and Lisa Ortmann (lortmann@wiu.edu), Western Illinois University, Macomb
Science lessons in early childhood can produce powerful outcomes in children as they become at ease with science. Examples will be shared on how to use NGSS three-dimensional learning for K–2 students.

Hybrid PLCs: Building Collaboration Among Teachers in Different Schools
(Grades 6–8) Broadway J, Omni
Science Focus: GEN
Laura Robertson (robertle@etsu.edu), East Tennessee State University, Johnson City
Lindsay Lester (lesterl@etsu.edu), University School, Johnson City, Tenn.
Jennifer Hill (hillj@wcde.org), Ridgeview Elementary School, Johnson City, Tenn.
Diana O’Neal (oneald@wcde.org), Sulphur Springs Elementary School, Jonesborough, Tenn.
How do highly motivated teachers from different schools collaborate? We formed a hybrid PLC that included face-to-face meetings and online interactions to improve student learning.

Crime Scene Reconstruction: A Culminating Project for Forensic Science
(Grades 9–12) Cumberland 5, Omni
Science Focus: GEN, CCC2, SEP4, SEP6, SEP7, SEP8
Jordan Tidrick (@JordieMcT; jordantidrick@hotmail.com), North Cobb High School, Kennesaw, Ga.
Use crime scene analysis and reconstruction to end your forensic science class and apply many NGSS science practices. Discussion centers on ideas, examples, and resources.

11:00 AM–12 Noon Presentations
Teach STEM Content and Spark Science Career Interest with Free Online Games
(Grades 6–College) 101E, Music City Center
Science Focus: GEN, NGSS
Kristi Bowling, Rice University Center for Technology in Teaching and Learning, Houston, Tex.
Lynn Lauterbach (lynnlauterbach@gmail.com), Retired Teacher, Loveland, Colo.
See how free online games get students involved in science career simulations by solving real-world science problems using the authentic tools and practices of scientists.

CESI Session: Calling All K–5 STEM Competitors
(Grades K–5) 105A, Music City Center
Science Focus: GEN, CCC
Kelly Price-Colley (@kpricega; kellyprice@comcast.net), NSTA Director, Coordination and Supervision of Science Teaching, and Forsyth County Schools, Cumming, Ga.
Science Olympiad, ExploraVision, the Dupont Essay Challenge, and many more state and national STEM competitions have K–5 divisions. Attend to learn more about how your students can take on the challenge.

Rain Garden Design
(Grades 3–8) Davidson A2/3, Music City Center
Science Focus: ESS3, ETS, LS2, CCC2, CCC5, SEP
Melissa Lau (@saintswife0; melissa.lau@piedmontschools.org), Piedmont Intermediate School, Piedmont, Okla.
Students engage in creating a rain garden for their school and providing low-maintenance ecologically sound landscaping for the district, as well as encouraging community involvement.

NGSS@NSTA Forum: Supporting Ongoing Changes in Students’ Thinking: The Primer
(Grades K–12) Grand Ballroom C1, Music City Center
Science Focus: GEN, SEP2, SEP6, SEP7
Mark Windschitl (mwinds@u.washington.edu), University of Washington, Seattle
Presider: Ted Willard (twillard@nsta.org), Program Director, NGSS@NSTA, NSTA, Arlington, Va.
A new role for ambitious teachers—empowering students to change how they think about core science ideas through the use of scientific modeling and discourse.

Evaluate Your Sessions Online!
This year, we’re giving away an Apple iPad mini 2 Wi-Fi tablet to two lucky attendees who complete a session evaluation! Remember, the more sessions you attend and evaluate, the more chances you have to win! (See Volume 1, page 17 for details.)

NSTA Nashville National Conference on Science Education
Engaging Students Through Digital Assessment
(Grades 9–12)
Acoustic, Omni
Science Focus: GEN, SEP1, SEP2, SEP4, SEP6, SEP7, SEP8
Caroline Milne (@MrsMilneBiology; cmilne@barrington220.org), Vanessa Fennig (@MrsFennig; vfennig@barrington220.org), and Laura Turngren (lturngen@barrington220.org), Barrington High School, Barrington, Ill.
This dynamic and interactive session provides a range of digital assessments that are easy to implement and adaptable for the specific needs of your students.

The NSTA Learning Center: A Tool to Develop Pre-service Teachers
(General)
Broadway D, Omni
Science Focus: GEN
Flavio Mendez (flavio_m@nsta.org), Senior Director, Learning Center/SciLinks, NSTA, Arlington, Va.
Al Byers (abyers@nsta.org), Associate Executive Director, Services Division, NSTA, Arlington, Va.
Come learn how to use the NSTA Learning Center as an online textbook when teaching science preservice teachers.

Engaging Students with Literacy Strategies
(Grades 9–12)
Broadway G, Omni
Science Focus: GEN, SEP8
Kellie Dean (kdean@d125.org) and Caroline Humes (chumes@d125.org), Adlai E. Stevenson High School, Lincolnshire, Ill.
Science literacy can be a challenge for students. Find out how to create engaging literacy activities that meet the NGSS.

CSSS Session: Panel Discussion: Going Ahead with the NGSS
(Grades P–12)
Cumberland 1, Omni
Science Focus: GEN, CCC1, CCC2, SEP
James Blake (@lpssci; jblake@lps.org), Lincoln (Neb.) Public Schools
Katie Ramsey (@RamseyKatie; kramsey@gips.org), Grand Island (Neb.) Public Schools
Sara Cooper (@NDE_Science; sara.cooper@nebraska.gov), Nebraska Dept. of Education, Lincoln
Crystal McDowell (@RSDSciRocks; mcdowellcrystal@rsmo.org) and Susanne Moar (moarsusanne@rsmo.org), Rockwood School District, Eureka, Mo.
Hear the story of NGSS in two different states in a similar situation—state standards are not yet up for revision or NGSS adoption is not a likely outcome. In order to take advantage of the pedagogy and curriculum support associated with the K–12 Framework and NGSS, some districts have adopted while others have adapted. District and state science supervisors share how they are working through this process together.

Creating an Inquiry-Based Classroom Through the Use of Technology
(Grades 9–12)
Cumberland 6, Omni
Science Focus: LS, CCC1, CCC5, SEP1, SEP3, SEP4, SEP6, SEP8
Barbara Sopiarz (bsopiarz@d230.org) and Tracy Sukalo (tsukalo@d230.org), Victor J. Andrew High School, Tinley Park, Ill.
Natacia Campbell (@nataciacampbell; ncampbell@d230.org), NSTA Director, District XII, and Victor J. Andrew High School, Tinley Park, Ill.
Calling all biology teachers needing help incorporating NGSS life science core ideas and technology into their classrooms! Walk away with activities to use in your classroom that address the NGSS and Framework, while creating a student-led environment!

CSI: Chemistry
(Grades 6–10)
Legends D, Omni
Science Focus: PS1, PS3.A, PS3.B, CCC1, CCC2, CCC4, CCC5, SEP1, SEP3, SEP4, SEP5, SEP7, SEP8
Jeremy Siegel (jsiegel@bzaeds.org), Bernard Zell Anshe Emet Day School, Chicago, Ill.
Design engaging murder mysteries and other cases for your classroom while covering NGSS practices and disciplinary core ideas.

The Best In Science Literature—Choosing It, Using It
(General)
Music Row 1, Omni
Science Focus: GEN, SEP8
Suzanne Flynn, Lesley University and Cambridge College, Cambridge, Mass.
Stephanie Selznick (selznics@osceola.k12.fl.us), Bellalago Academy, Kissimmee, Fla.
Presider: Juliana Texley, NSTA Retiring President, and Science Writer/Instructor, Boca Raton, Fla.
NSTA Recommends has a searchable database of 5,000 materials. Outstanding Science Trade Books has “The Best of the Best” just waiting for you. Come win an OSTB!
The Shell Science Teaching Award: Fueling Success with Students
(Grades K–12) Music Row 2, Omni
Science Focus: GEN
Lori Lancaster, Oregon Science Teachers Association, Portland
Share your passion and practice by applying for this $10,000 award. Learn from Shell awardees, finalists, and judging panel members. Get tips for submitting an application and a video so that you can rise to the top of the pack.

The Top 10 Safety Issues in the Science Classroom/Lab You Need to Know!
(General) Music Row 3, Omni
Science Focus: GEN
Mary Loesing (mlloesing@yahoo.com), NSTA Director, District IV, and Connetquot Central School District, Bohemia, N.Y.
Kenneth Roy (@drroysafersci; royk@glastonburyus.org), Glastonbury (Conn.) Public Schools
Brian Wazlaw (briwazlaw@aol.com), Laboratory Safety Consultant, Portsmouth, N.H.
Edward McGrath (edward.mcgrath@redclay.k12.de.us), Red Clay Consolidated School District, Wilmington, Del.
Every science teacher wants their students to be engaged in a safer working/learning environment. Members of the NSTA Safety Advisory Board will discuss important issues in lab safety such as occupancy loads, chemical storage and disposal, field trip safety, and duty of care.

Visit Us Booth 515
BSCS Science for High School

BSCS Biology: A Human Approach

NEW EDITIONS
Forensic Science for High School

KendallHunt.com 1.800.542.6657
NARST Session: Does Your Professional Development Make a Difference? Teachers’ Retention of Discipline-Specific Science Content
(Grades 6–College) Fisk One, Renaissance
Science Focus: ESS, PS
Renee Clary (rclary@geosci.msstate.edu), Mississippi State University, Mississippi State, Miss.
Deborah Tucker (deboraht@aoa.com), Independent Science Education Consultant, Napa, Calif.
Do you want to maximize your science professional development? Learn how to retain and sustain your professional development gains! Interactive discussions and free resources provided.

Science Day Camp: Build Authentic Community Outreach in K–12 Schools
(Grades 4–12) Music City Ballroom, Renaissance
Science Focus: INF
Michael Towne, Citrus Hill High School, Perris, Calif.
Bring K–12 students together with families for a day of science at your school; reap the benefits of genuine outreach and cross-age collaboration.

Scaffolding for Success: Three-Dimensional Learning in Action
(General) West Ballroom, Renaissance
Science Focus: GEN, NGSS
Zoe Evans (@zoe Evans; zoeevans@charter.net), Villa Rica High School, Villa Rica, Ga.
Julie Olson (julie.olson@k12.sd.us), Mitchell High School, Mitchell, S.Dak.
Chris Embry Mohr (chrisembry.mohr@olympia.org), Olympia High School, Stanford, Ill.
Jeremy Peacock (@jeremy_peacock; peacock.jeremy@gmail.com), Northeast Georgia RESA, Winterville
Familiar with the NGSS but not sure what it looks like in the classroom? Then join NGSS writers and educators as they provide authentic examples of NGSS in practice.

11:00 AM–12 Noon Hands-On Workshops
NSTA Press® Session: Linking the Uncovering Student Ideas in Science Series and Everyday Science Mysteries to K–5 Language Literacy
(Grades K–5) 101C, Music City Center
Science Focus: GEN, NGSS
Page Keeley (@CTSKeeley; pagekeeley@gmail.com), 2008–2009 NSTA President, and The Keeley Group, Fort Myers, Fla.
Joyce Tugel (jtugel@gmail.com), Maine Mathematics and Science Alliance, Augusta
Richard Konicek-Moran (rkonicek@gmail.com), Professor Emeritus, UMass Amherst, Mass.
Learn about and experience ways K–5 teachers are using the Uncovering Student Ideas in Science series and the Everyday Mystery Stories to support science learning and the literacy capacities of reading, writing, speaking, and listening.

Cellular Respiration: Reducing Confusion Through Collaboration
(Grades 6–12) 103A, Music City Center
Science Focus: LS, CCC, SEP
Heather Barker (hbarker@lasierra.edu), La Sierra University, Riverside, Calif.
Cindi Smith-Walters (cindi.smith-walters@mtsu.edu), Middle Tennessee State University, Murfreesboro
Join us in a research-based lesson incorporating components of collaborative discourse and scientific argumentation to develop a model of the process of cellular respiration.

Working in Concert: Successful Collaboration with Informal Centers
(Grades P–12) 103B, Music City Center
Science Focus: INF, NGSS
James Ammons, The University of Georgia, Athens
Fine-tune your field trip collaboration skills working with local experts from informal science education centers. Opportunity for free treats from Nashville centers!
Professional Development to Support Integrated Inquiry-Based Teaching in the Outdoors
(Grades 2–5) 103C, Music City Center
Science Focus: ESS2.C, ESS2.D, LS2, CCC2, SEP1, SEP3, SEP6, SEP8
Kara Haas (@KaraHaaSciEd; karahaas@msu.edu), Michigan State University, Hickory Corners
Irene Bayer (rbayer@msu.edu) and Joseph Krajcik (krajcik@msu.edu), CREATE for STEM Institute, Michigan State University, East Lansing
Look into challenges and ways of using the outdoors to teach science integrated with math and ELA that meet the NGSS in a technology-rich environment.

Interdisciplinary Learning in a 21st-Century Classroom
(Grade 2) 104D, Music City Center
Science Focus: GEN, NGSS
Jennifer Troncale (jtroncal@jsu.edu), Jacksonville State University, Jacksonville, Ala.
Take your students on an Arctic Expedition with this interdisciplinary book study while fostering 21st-century skills. Engage in 5E (Engage, Explore, Explain, Elaborate, and Evaluate) lesson activities that integrate science, language arts, mathematics, and social studies.

Science Learning at Your Window
(Grades K–8) 104E, Music City Center
Science Focus: GEN
Lindsay Glasner (@BirdSleuth; lig27@cornell.edu), The Cornell Lab of Ornithology, Ithaca, N.Y.
Come get a free window bird feeder and discover how to attract birds and students’ interest! Take home activities and ideas to teach science through birds.

That’s a Good Question!
(Grades P–8) 105B, Music City Center
Science Focus: GEN, SEP
Jennifer Hope, McKendree University, Lebanon, Ill.
Science begins with questions! But how does questioning begin? Engage with intriguing phenomena and consider strategies for fostering a classroom culture of questioning.

Biomimicry: The “Natural” Intersection of Biology and Engineering
(Grades 4–8) 106B, Music City Center
Science Focus: ETS, LS, CCC, SEP
Celeste Nicholas (celeste.nicholas@gmail.com), University of Missouri-St. Louis
Jeff Peterson (@petersonjeffrey; petersonj@centergrov.k12.in.us), Center Grove Middle School North, Greenwood, Ind.
Learn about a middle school unit on biomimicry, in which student designers create products based on nature. Three NGSS dimensions combine “naturally” to deepen learning.

Under the Cover of Children's Storybooks
(Grades K–6) 106C, Music City Center
Science Focus: GEN, NGSS
Jennifer Trochez, Gates Street Elementary School, Los Angeles, Calif.
Juliet Kovach-Ham (hamjulie@hotmail.com), Ellen Ochoa Learning Center, Cudahy, Calif.
Learn how children’s literature is an inviting way, as well as a great starting point, for integrating science content with ELA standards and to teach engineering practices.

NESTA and HHMI Share: Multimedia Tools and Resources for Teaching Earth System Science
(Grades 7–College) Davidson B, Music City Center
Science Focus: ESS
Margaret Holzer (mholzer@monmouth.com), Chatham High School, Chatham, N.J.
Michael Passow (michael@earth2class.org), Dwight Morrow High School, Englewood, N.J.
Our dynamic planet has undergone vast changes over geologic history. The Howard Hughes Medical Institute (HHMI) BioInteractive program provides free online resources for science teachers and students, including animations, short films, and apps. This NESTA-HHMI workshop investigates our changing Earth while modeling Earth system science classroom practices.

Brick, Puzzles, and the Alphabet = Understanding Chemistry
(Grades 9–12) Broadway C, Omni
Science Focus: PS, SEP2
Suzanne Cunningham (scunning@purdue.edu), Purdue University, West Lafayette, Ind.
High school students become “Lunatics” as they use bricks, representing carbon, oxygen, and hydrogen to synthesize glucose—resulting in a better visualization of chemical bonds and enzyme specificity.
The Who, What, When, Where, and How of Waves
(Grades 6–8) Broadway H, Omni
Science Focus: PS
Amy Gilbert (amy.gilbert@douglas.k12.ga.us), Turner Middle School, Lithia Springs, Ga.
Experience an integrated learning cycle on the nature of waves that includes investigating like Newton, making foldables, and reading/writing short stories!

Differentiating Science Practices Through Inquiry-Based Instruction
(Grades 6–12) Broadway K, Omni
Science Focus: GEN, SEP
Jennifer Maeng (jlc7d@virginia.edu) and Lindsay Wheeler (lsb4u@virginia.edu), University of Virginia, Charlottesville
Brooke Whitworth (@bawhit41; brooke.whitworth@nau.edu), Northern Arizona University, Flagstaff
Come learn to structure and differentiate inquiry investigations to support development of students’ science practices. Examples of lessons from across content areas will be provided.

NSELA Session: Conductors of Change—How Science Leaders Can Facilitate Harmony Among the Three Components of the NGSS
(Grades 6–12) Cumberland 2, Omni
Science Focus: GEN, NGSS
Mindy Pearson (@ScienceMindy; mindy.pearson@sdhc.k12.fl.us) and Michele Detwiler (michele.detwiler@sdhc.k12.fl.us), Hillsborough County Public Schools, Tampa, Fla.
Science leaders will explore integrating disciplinary core ideas, crosscutting concepts, and science and engineering practices to provide high-quality science instruction and to produce scientifically literate students.

Interactive Notebooks, iPads, and the Flipped Classroom: Supporting Inquiry and Literacy
(Grades 6–12) Legends C, Omni
Science Focus: GEN
Maryellen Felter, Eastridge High School, Rochester, N.Y.
Build an interactive notebook and learn how to use it in a flipped classroom with iPads to support inquiry and literacy.

D.E.S.I.G.N. (Developing Engineering Solutions Inspired by Graphic Novels)
(Grades 4–12) Legends F, Omni
Science Focus: ETS
William Reitz (wreitz@neo.rr.com), Retired Educator, Stow, Ohio
Graphic novels are becoming increasingly popular. Fortunately, their story lines can provide design problems for your students to solve while making NGSS and CCSS connections.

Moving Genes
(Grades 9–College) Legends G, Omni
Science Focus: LS, CCC6, SEP2
Pamela Petzel Snyder (psnyder5396@gmail.com), Fort Hayes Career Center, Columbus, Ohio
Do you need strategies to make complicated biotechnology techniques more understandable to high school students? Engage in activities that help explain the concepts behind genetic engineering. These materials are part of a grant project funded by the Ohio Soybean Council. Free materials!

DuPont Presents: Tracking the Spread of Infectious Diseases—Human and Animal
(Grades 9–12) Music Row 5, Omni
Science Focus: LS, CCC1, CCC2
Krista Pontius (@krista_pontius; kpontius@greenwoodsd.org), Greenwood High School, Millerstown, Pa.
Help students understand the spread of diseases in a human or animal population by using this engaging hands-on lab. Model how health organizations trace a disease while teaching important concepts of disease transmission and exponential growth.

Using Socio-Scientific Issues in the Classroom
(Grades 4–12) Center Ballroom, Renaissance
Science Focus: GEN
Laura Schisler, Crowder College, Neosho, Mo.
Rhoda Goldberg (rhoda.goldberg@cfisd.net), Cypress-Fairbanks ISD, Houston, Tex.
Socio-scientific issues can increase engagement and understanding in your classroom! Write an evidenced-based perspective, participate in learning strategies, and leave with classroom-ready activities and rubrics.

Ready, Set, Read: Creatively Integrating True Reading into Your Science Lab
(Grades 1–12) East Ballroom, Renaissance
Science Focus: GEN
Gina Gattavara Peterson (ggatta@neisd.net), Nimitz Middle School, San Antonio, Tex.
Julie Stefanick (@JulieSDyess; juliesdyess@gmail.com), League City Intermediate School, League City, Tex.
Veronica Garcia Betancourt (veronica.betancourt@harlandale.net), Harlandale ISD, San Antonio, Tex.
Join us for a highly informative and interactive presentation in which content reading is seamlessly integrated into classroom-ready science labs to further enhance student engagement.
ASTE Session: Using Backwards Design to Identify Instructional Sequences That Prepare Students for NGSS Assessments
(Grades 7–College) Fisk Two, Renaissance

Science Focus: GEN, CCC1, CCC2
Comfort Ateh (cateh@providence.edu), Providence College, Providence, R.I.
Jay Fogleman (@fogleman; fogleman@uri.edu), The University of Rhode Island, Kingston
Rudolf Kraus (r kraus@ric.edu), Rhode Island College, Providence

Participants will be engaged in a series of activities that use NGSS assessment tasks to sequence instructional tasks and tools.

11:00 AM–12 Noon Exhibitor Workshop
Project-Based Activities with Wireless Sensors to Meet Gas Laws and Stoichiometry Chemistry Standards (General) 206 A/B, Music City Center
Science Focus: PS, SEP
Sponsor: PASCO scientific
Jason Lee (m r lee3@att.blackberry.net), East Georgia State College–Statesboro

Incorporate science and engineering practices as students develop an understanding of gases and stoichiometric calculations using SPARKvue and Wireless Temperature and Pressure sensors. Project-based STEM activities integrate chemistry concepts that can aid in designing, testing, and evaluating student-built airbags. Twenty-five attendees will win a free wireless sensor!

NSTA District Director and Chapter/Associated Group Social

In honor of Wendell Mohling, enjoy complimentary refreshments while meeting and networking with colleagues and representatives from all of NSTA's 18 districts. Learn more about events, initiatives, and happenings in your district, directly from your representatives, in an informal setting.

Friday, April 1
1:30–2:30 PM
Music City Center Exhibit Hall
11:00 AM–12:30 PM Hands-On Workshop
PLI
McREL Pathway Session: Curriculum Audit: Where Will You STEMify Your Curriculum?
(Grades K–12)
Legends A, Omni
Science Focus: GEN, CCC
Laura Arndt (laura.arndt1@gmail.com), McREL International, Denver, Colo.
What STEM are we already doing in our curriculum and community? How does this align to our STEM goals? Where are opportunities to integrate more STEM to meet these goals? We will walk through the steps to audit and STEMify your curriculum.

11:20–11:40 AM Presentation
SCST Session: Simple Mechanical Devices to Help Students Learn the Principles of Human Anatomy and Physiology
(Grades 9–College)
Ryman One, Renaissance
Science Focus: ETS, LS, CCC1, CCC2, SEP1, SEP3, SEP4
Murray Jensen (msjensen@umn.edu), SCST President, and University of Minnesota, Twin Cities, Minneapolis
We will show how simple mechanical devices can be used to teach core concepts in human physiology such as active transport and homeostasis.

11:30 AM–12 Noon Presentations
PLI
Cut the Cord: How to Become Mobile in Your Classroom
(General)
Cumberland 4, Omni
Science Focus: GEN
Kristen Sarcu (ksarcu@baldwinschool.org), The Baldwin School, Bryn Mawr, Pa.
Use an iPad or smartphone to break away from your whiteboard and become mobile around the classroom.

Who Did It? Inquiry-Based Forensic Serology and DNA Analysis in the Classroom
(Grades 10–College)
Cumberland 5, Omni
Science Focus: LS, SEP
Learn the basics of forensic serology and DNA analysis. Solve crime scene scenarios using blood typing, paternity testing, and DNA profiles.

11:30 AM–12:30 PM Exhibitor Workshop
Build, Program, and Control with K’NEX Education’s New Robotics Building System
(Grades 5–10)
108, Music City Center
Science Focus: ETS
Sponsor: K’NEX Education®
This dynamic hands-on building system teaches students how to apply programming skills to operate various built models. You’ll be the student in this workshop, as you write your own computer program to control a vehicle model built out of K’NEX! Space limited: 24 working, 20 observing. Arrive early!

11:40 AM–12 Noon Presentation
SCST Session: Spatial Ability and STEM Courses—Why Mental Manipulation Matters
(Grades 9–College)
Ryman One, Renaissance
Science Focus: ETS, LS, CCC1, CCC2
Thayne Sweeten, Utah State University Brigham City
Join me as I present original research conducted in engineering and biology courses and explore the relationship between students’ ability to visualize spatially and academic success.
12 Noon–1:30 PM Exhibitor Workshops

Analyzing and Interpreting Data Using TCI’s Bring Learning Alive!
(Grades K–5) 107A, Music City Center
Science Focus: GEN, NGSS
Sponsor: Teachers Curriculum Institute
TCI (info@teachtci.com)
Get your students to do more than just read a graph, chart, or statement. Participants will be immersed in a Bring Science Alive classroom where students analyze and interpret data and construct an argument based on research.

Black Holes for Everyone: How You Can Teach Black Holes in Grade 9 Science
(Grades 9–10) 107B, Music City Center
Science Focus: ESS
Sponsor: Perimeter Institute for Theoretical Physics
Damian Pope and Kevin Donkers, Perimeter Institute for Theoretical Physics, Waterloo, Ont., Canada
How can you incorporate black holes into your grade 9 general science class? We will explore black holes and their connections to stars and the properties of the universe via hands-on student activities.

The Differentiated Classroom in One Package: Teaching Science Inquiry to Modern Learners Using Microsoft Surface and Apps
(Grades 7–12) 110A, Music City Center
Science Focus: GEN
Sponsor: Microsoft
Helen Gooch (v-hegooc@microsoft.com), Microsoft Innovative Educator Fellow, Clarksville, Tenn.
This session will demonstrate examples of how students and teachers can use digital inking and Microsoft tools to differentiate learning in an inclusive science classroom. We will showcase how students are able to learn the five features of scientific inquiry and be engaged at a much deeper level.

The Best Test Prep Book Ever for AP Chemistry
(Grades 11–12) 110B, Music City Center
Science Focus: PS
Sponsor: Pearson Education
Ed Waterman, Retired Educator, Fort Collins, Colo.
This test prep book concisely summarizes all of the important content in the six Big Ideas and 117 learning objectives. It expands content to include photoelectron spectroscopy (PES), mass spectrometry, and chromatography. Contains hundreds of new and revised practice questions focusing on graphical and tabular data analysis and atomic-molecular representations.

Genetics: Crazy Traits and CPO’s New Link™ Learning Module
(Grades 6–12) 201A, Music City Center
Science Focus: LS
Sponsor: CPO Science/School Specialty Science
Erik Benton, CPO Science/School Specialty Science, Nashua, N.H.
CPO’s Crazy Traits Link learning module uses STEM and NGSS strategies in a real-time tablet-based learning environment to learn genetics. Concepts like traits, alleles, phenotypes, genotypes, and heredity will come alive as you create crazy creatures with a unique kit and study probability, adaptation, dominance, and recession.

Modeling Energy Flow in Ecosystems: Developing Models in Middle School Life Science
(Grades 5–8) 201B, Music City Center
Science Focus: LS
Sponsor: Delta Education/School Specialty Science–FOSS
Virginia Reid and Jessica Penchos, The Lawrence Hall of Science, University of California, Berkeley
How is matter conserved, and how does energy flow through an ecosystem? Develop these models through hands-on activities. Take home a set of student materials, overview instructional strategies for science practices, and preview online activities and NGSS connections in the newly revised FOSS Populations and Ecosystems Course for middle school.

Cool! Can We Do That Again?!?
(Grades 2–9) 202A, Music City Center
Sponsor: Educational Innovations, Inc.
Jeffrey Feidler, Consultant, Wilmington, Del.
Tired of hearing “Do we have to do that?!?” from your students? Come check out some of the coolest activities involving polymers, color, and light. Your students will be asking if they can do that again—and again! Door prizes, freebies, and fun!
Sparkling Interest with Chemistry
(Grades 9–12) 202B, Music City Center
Science Focus: PS
Sponsor: Houghton Mifflin Harcourt
Jerry Sarquis, Miami University, Oxford, Ohio
A. Mickey Sarquis, Professor Emeritus, Miami University—Middletown, Ohio
Join Mickey and Jerry Sarquis, the authors of Modern Chemistry and leaders in chemistry education, for their presentation of hands-on chemistry activities. This interactive workshop will feature classroom activities that you can use to spark your students’ interest in chemistry! Learn new tips and tricks using readily available and inexpensive materials. Take home free materials!

Bringing Real Neuroscience and Neural Engineering into Your Classroom
(Grades 6–College) 202C, Music City Center
Sponsor: Backyard Brains, Inc.
Timothy Marzullo (info@backyardbrains.com), Backyard Brains, Inc., Ann Arbor, Mich.
Would you like to show your students the electrical impulses of hearts, muscles, and neurons? Interested in controlling robots and humans with this same electrical activity? Want to teach comparative electrophysiology between insects, humans, and even plants? Learn and experience live demos of such wonderful science at our workshop.

Introduction to Wisconsin Fast Plants®
(Grades K–12) 204, Music City Center
Science Focus: LS
Sponsor: Carolina Biological Supply Co.
Carolina Teaching Partner
Experience the versatility of Wisconsin Fast Plants. These small, quick-growing plants engage students, are ideal classroom tools for all learning levels, and let you integrate plant development, life cycle, environmental effects, genetics, and evolution into your instruction. Learn the basics for successful planting, flower dissection, and pollination.

Modeling Beyond a Flashlight and Beach Ball
(Grades 6–8) 205A, Music City Center
Science Focus: GEN, NGSS
Sponsor: Carolina Biological Supply Co.
Carolina Teaching Partner
Modeling makes it easier to understand, define, quantify, and visualize the world, or simulate accepted knowledge. Diagrams, simulations, analogies, and mathematical and graphical representations are some of the many types of models used in the Smithsonian STC1 program. Experience a variety of modeling examples through hands-on lessons.

Top 10 for 2016: Genetics and Biotechnology Discoveries for Your Classroom
(Grades 9–College) 205B, Music City Center
Science Focus: ETS, LS
Sponsor: Carolina Biological Supply Co.
Carolina Teaching Partner
Ever wonder where new biotechnology fits into your curriculum? The current pace of discovery in genetics is so rapid, it’s difficult to keep instruction up to date. This presentation and discussion by Dr. Neil Lamb makes recent findings understandable, accessible, and applicable to your classroom. Presented in partnership with HudsonAlpha.

Gene Expression
(Grades 9–12) 205C, Music City Center
Science Focus: LS3
Sponsor: LAB-AIDS®, Inc.
Mark Koker, LAB-AIDS, Inc., Ronkonkoma, N.Y.
Students often have trouble conceptualizing how selective gene expression works. In this workshop, participants will use manipulatives to teach this concept and explain how it is connected to genetic engineering. Innovative activities are selected from the new Science & Global Issues: Biology program from SEPUP and LAB-AIDS. Activities focus on ways to integrate selective gene expression as a relevant and engaging sustainability issue.

Fracking the CASE
(Grades 8–12) 207A, Music City Center
Science Focus: PS
Sponsor: Ward’s Science
Michelle Pagani, VWR Science Education, Rochester, N.Y.
The Curriculum for Agricultural Science Education (CASE) uses an inquiry-based, scaffolding science curricula for environmental, agriculture, and technology concepts. Using a lab activity to model a newsworthy topic—fracking—students can understand the implications on the environment and link them to chemical properties of liquids.
A low-cost, award-winning, PreK-12 STEM curriculum, STEMscopes understands what it takes to engage your learners in rigorous STEM learning. Take a test drive today and discover what over 2 million students already love.
Inquiry-Based Ecology Using a Citizen Science Trail Camera Project
(Grades 7–College) 207B, Music City Center
Sponsor: HHMI BioInteractive
Bridget Conneely, Howard Hughes Medical Institute, Chevy Chase, Md,
Amy Fassler, Marshfield High School, Marshfield, Wis.
Amanda Briody, Frederick Douglass High School, Croom, Md.
HHMI BioInteractive presents an online citizen science platform where students identify animals in trail camera images to help scientists in Gorongosa National Park, Mozambique. Participants will use a new educator portal to access trail camera data used to investigate ecological questions and teach the process of observation, inquiry, and analysis.

Water Quality with Vernier
(Grades 7–College) 207C, Music City Center
Science Focus: ESS, LS, SEP
Sponsor: Vernier Software & Technology
Colleen McDaniel (info@vernier.com), Vernier Software & Technology, Beaverton, Ore.
Learn how to use sensors and LabQuest 2, with its Data Matrix Mode and built-in GPS, to study water quality in the field. Try the Optical DO Probe, designed to make dissolved oxygen measurements easy! See how to map your data on Google Maps and ArcGIS using Logger Pro software.

Integrating Chromebook with Vernier Technology
(Grades 3–College) 207D, Music City Center
Science Focus: GEN, NGSS
Sponsor: Vernier Software & Technology
Verle Walters (info@vernier.com), Vernier Software & Technology, Beaverton, Ore.
Learn how to use Chromebooks with Vernier technology in this workshop featuring experiments from Vernier lab books. See how engaging experiments like “Boyle’s Law” or “Grip Strength Comparison” teach students about data collection and analysis—practices that promote science inquiry and boost test scores.

Flinn Scientific’s STEM Design Challenge™ “Build-It-Yourself” Lab Project
(Grades 9–12) 209A, Music City Center
Science Focus: ETS, SEP
Sponsor: Flinn Scientific, Inc.
Integrate STEM scientific inquiry and engineering design principles into your science curriculum. Join Flinn Scientific in a “build-it-yourself” lab project that can actively engage your students and increase their understanding of concepts that cut across scientific disciplines. Interactive demonstrations highlight science and engineering practices such as reasoning based on the evidence. Handouts for all activities!

Feeding the World & Protecting the Environment
(Grades 9–12) 209B, Music City Center
Science Focus: ESS3.C
Sponsor: Nutrients for Life Foundation
Nancy Bridge (nancy.bridge@ocps.net), Olympia High School, Orlando, Fla.
How will we feed nine billion people in 2050 in a sustainable manner? Come learn about sustainable agriculture with fertilizer use and play the new Journey 2050 app. Participants will also receive Nutrients for Life Foundation’s new environmental science resource, Feeding the World & Protecting the Environment…and more!

STEM Fun in the Elementary Classroom
(Grades 2–5) 209C, Music City Center
Science Focus: GEN, SEP1, SEP2, SEP3, SEP4, SEP5
Sponsor: SAE International—A World In Motion Program
Looking for a way to engage your students with STEM but all out of ideas? Look no further than the award-winning A World In Motion Program. Join us to make a hands-on activity and be entered into a drawing for free classroom kits.

Make Science Come to Life
(Grades 1–5) 211, Music City Center
Science Focus: GEN, NGSS
Sponsor: LEGO Education
Laura Jackson, Anderson (S.C.) School District Five
Did you know LEGO® bricks can provide an engaging platform for making science come to life? Using LEGO Education solutions, elementary students can explore, create, and share discoveries as they build solutions to real-
world, standards-based projects and deeply engage with science practices and the engineering design process. Come experience a resource that develops students’ confidence to ask questions, find answers, and solve problems by putting discovery in their hands.

Interactive Case Studies for the Biology Classroom
(Grades 8–College)
212, Music City Center
Science Focus: LS1, LS2, LS3, CCC, SEP2, SEP3, SEP4, SEP5, SEP6, SEP7, SEP8
Sponsor: Cogent Education
Tom Robertson *(info@cogenteducation.com)* and David Ducrest, Cogent Education, Atlanta, Ga.
Hear from fellow teachers how the Interactive Case studies engage their students in critical thinking and problem solving, and then experience a Case on your device or one we provide. Developed by scientists in partnership with teachers, the cases are proven to increase learning in NIH and NSF research.

Telling Molecular Stories with David Goodsell’s Cellular Landscapes
(Grades 8–College)
214, Music City Center
Sponsor: MSOE Center for BioMolecular Modeling
Margaret Franzen *(franzen@msoe.edu)* and Gina Vogt *(vogt@msoe.edu)*, MSOE Center for BioMolecular Modeling, Milwaukee, Wis.
Use these amazing landscapes to explore cell structure and illustrate where in the cell protein synthesis and other important processes occur. You can also tell molecular stories such as “Your Flu Shot in Action,” tracing the production of an antibody protein all the way to its release into circulation.

Bringing NGSS to the Classroom with Discovery Education
(Grades K–12)
401 A/B, Music City Center
Science Focus: GEN, SEP
Sponsor: Discovery Education
Patti Duncan, Discovery Education, Silver Spring, Md.
One of the most important aspects of a quality NGSS curriculum is the opportunity for students to develop science and engineering practices. These types of skills are not explicitly taught, but must be developed by experience. Learn about how the Discovery Education Science Techbook brings these experiences to the forefront.

12 Noon–2:00 PM Networking Opportunity
NSELA-ASTE Celebration Luncheon
(By Ticket from NSELA)
Broadway A/B, Omni
The NSELA-ASTE Celebration Luncheon offers a presentation by an exemplary educator/researcher while networking with other national key leaders. The recognition of local science education heroes is the highlight of the luncheon. Visit www.nsela.org for more information and to purchase a ticket; first come, first served.

SEPA Luncheon
(By Invitation Only)
Legends E, Omni
For more information, please visit www.sepamembers.weebly.com.
12:30–1:00 PM Presentations

Developing 21st-Century Reasoning Skills Through an Authentic Interdisciplinary STEM Research Experience
(Grades 6–11)
I03C, Music City Center
Science Focus: GEN, NGSS
Robert Mayes (rmayes@georgiasouthern.edu), Georgia Southern University, Statesboro
Hear how teachers are using place-based education, Problem-Based Learning, and Understanding by Design to design authentic real-world experiences that develop 21st-century reasoning skills.

From the Gooey to the Digital: Multimodal Learning with Light and the Eye
(Grades 5–8)
I06A, Music City Center
Deanna McBeath (@edumcbeath; dmcbeath@hzaeds.org), Bernard Zell Anshe Emet Day School, Chicago, Ill.
Using multimodal learning engenders deeper understanding of complex concepts. Combine optics, dissection, and digital gaming to reach mastery of light and the eye.

Instagram, Insta Assessment! Social Media-Inspired Classroom Assessment
(Grades 5–9)
Broadway J, Omni
Science Focus: GEN, CCC1, CCC2, SEP4, SEP6, SEP8
Alexandra Owens (alexandra.owens14@gmail.com), Daniel Island, S.C.
Liven up your classroom and get valuable summative and formative assessment data using social media templates such as Instagram, Facebook, Twitter, Snapchat, Vine, and more!

Teaching Through the Lens of Nanotechnology
(Grades 8–12)
Cumberland 5, Omni
Science Focus: ETS1, LS1, PS1, CCC, SEP
Amy Lauer (alauer@fcsd.wnyric.org), Fredonia Middle School, Fredonia, N.Y.
Paula Ferneza (pferneza@frews.wnyric.org), Frewsburg Junior-Senior High School, Frewsburg, N.Y.
Hillary Weir (HWeir@depewschools.org), Depew Middle School, Depew, N.Y.
Molly Albano (malbano@swms.wnyric.org), Southwestern Central School District, Jamestown, N.Y.
Leave with resources for teaching middle level and high school science through the lens of nanoscience and nanotechnology.

50 Free Tech Tools for the Science Classroom
(General)
Music City Ballroom, Renaissance
Science Focus: GEN, SEP
Nick LaFave (@nflafave; nick.lafave@clover.k12.sc.us), Clover High School, Clover, S.C.
Check out the best free tools on the web to meet learning objectives while appealing to today's plugged-in learners!
SCST Marjorie Gardner Lecture

Assessment of Laboratory Skills Through Badging
(Grades 10–College)

Science Focus: GEN

Marcy Towns, Professor of Chemical Education, Purdue University, West Lafayette, Ind.

How can we assess our students’ ability to correctly carry out laboratory procedures when we do not have the time or ability to observe every student in real time? This presentation will highlight a method by which students can demonstrate their ability to perform a laboratory task and faculty can assess them using an online badging approach.

Trained as a physical chemist, Marcy Towns has had a long-standing interest in physical chemistry. Her research includes developing methods for analyzing online group work in physical chemistry, evaluating the efficacy of physical chemistry modules, and engaging in collaborative projects with mathematics education researchers to document student understanding of physical chemistry (especially the mathematics associated with physical chemistry).

From 1995 to 2006, Dr. Towns was on the faculty of Ball State University, and then joined the faculty at Purdue University in 2006 as part of the largest division of chemistry education in the U.S. In 2013, she received Purdue’s most prestigious honor for teaching, the Murphy Award, as well as the chemistry department’s the Arthur B. Kelly Award. She has taught general chemistry, physical chemistry, and instrumental analysis. In addition to being a professor of Chemistry, she is associate department head and director of General Chemistry at Purdue University.

NSTA Press® Session: Doing Good Science in Middle School
(Grades 6–9)

Science Focus: GEN

Vicki Massey (vickimassey@cox.net), Higley Unified School District #60, Gilbert, Ariz.

Find out what good science instruction looks like at the middle school level by taking a look at the NSTA Press book *Doing Good Science in Middle School*. NGSS and CCSS integration are part of this book and discussion.

After-School STEM Is in Demand!
(Genral)

Science Focus: INF

Anita Krishnamurthi (@ankrishn1; akrishnamurthi@afterschoolalliance.org), Afterschool Alliance, Washington, D.C.

Tiffany Ellis Farmer (tfarmer@adventuresci.org), Adventure Science Center, Nashville, Tenn.

Gerard Kovach (gjkovach@cps.edu), John T. McCutcheon Elementary School, Chicago, Ill.

Presider: Dennis Schatz (schatz@pacsci.org), NSTA Director, Informal Science, and Pacific Science Center, Seattle, Wash.

Parents want their kids in after-school programs, a space that’s become a key partner in STEM. Learn more from a recent study, and discover how you can be involved.

Outbreak! Partnering CDC Scientists with Science Teachers
(Grades 7–College)

Science Focus: GEN, CCC1, CCC2, SEP

Kelly Cordeira (scienceambassador@cdc.gov) and **Ralph Cordell** (scienceambassador@cdc.gov), Centers for Disease Control and Prevention, Atlanta, Ga.

After a short introduction to public health, don’t be surprised if some attendees “fall ill.” Explore CDC (Centers for Disease Control and Prevention) outbreak investigation strategies to identify the culprit and learn how to develop similar scenarios for your classroom.
Up, Up, and Away! An introduction to High-Altitude Ballooning
(General) 104A, Music City Center
Science Focus: ETS1
James Schreiner (@biologyteacher; jschreiner@bbchs.org), Bradley-Bourbonnais Community High School, Bradley, Ill.
Let me share my experience of our first high-altitude balloon launch so you and your classes can take part in this exciting adventure.

Engaging K–5 Students with a Schoolwide STEM Challenge: From Planning to Implementation to a Family STEM Night
(Grades K–5) 104B, Music City Center
Science Focus: GEN
Brenda Turgeon, Purdue University Calumet, Hammond, Ind.
Find out how to bring STEM to your school with a schoolwide STEM challenge. The culminating activity is a Family STEM night showcasing the yearlong student STEM projects.

CESI Session: Presenting the Best New Children’s Books to Use When Teaching Science in the Elementary Grades
(Grades 1–5) 105A, Music City Center
Science Focus: GEN, CCC1, CCC2
Jeff A. Thomas (jathomas@usi.edu), University of Southern Indiana, Evansville
Kristin Rearden (krearden@utk.edu) and Amy Broemmel (broemmel@utk.edu), The University of Tennessee, Knoxville
Learn about resources for identifying and integrating recently published award-winning elementary science trade books to support the Tennessee Science Curriculum Framework.

Poems, Texts, Hate Mail, and Other Ways to Incorporate Writing Standards into the Science Curriculum
(Grades 9–12) Acoustic, Omni
Science Focus: GEN, SEP8
Leslie Forbes (lforbes@doversd.org), Dover High School, Dover, Pa.
Emphasis will be placed on providing examples of successful strategies that allow students to demonstrate their understanding of scientific concepts through engaging writing activities.

NSELA Session: Equity, Leadership, and Change
(General) Broadway C, Omni
Science Focus: GEN
Gary Nakagiri (gnakagiri@gmail.com), SETI Institute, Hayward, Calif.
Jerry Valadez (@samacademymaker; jdvscience@yahoo.com), NSTA Director, Multicultural/Equity, and California State University, Fresno
Learn how NSTA and NSELA are supporting the development of new diverse leaders who are committed to equity through STEM. Contribute your ideas to their efforts.

No Child Left Behind—Past, Present, and Future
(General) Broadway D, Omni
Science Focus: GEN
Jodi Peterson (@stemedadvocate; jpeterson@nsta.org), Assistant Executive Director, Legislative and Public Affairs, NSTA, Arlington, Va.
Love it or hate it, No Child Left Behind has left its mark on K–12 education. Let’s take a look at the federal education law Congress first passed in 2002 and discuss its effect on science education and what’s ahead.

Using Crime Scenes to Get the Point Across the Curriculum
(Grades 6–10) Broadway G, Omni
Science Focus: ETS2
Christine Logan-Hollis (@Froggie249427; logan.christine@desoto.k12.mo.us) and Peggy Boerner-Kirk (@peggykirk1971; peggykirk1971@gmail.com), De Soto Junior High School, De Soto, Mo.
If you’re not using crime scenes to teach, then your students are missing out! Using forensic science motivates students not only in science, but in English, math, social studies, and art by using various types of technology.
Help Build Students’ Interest in STEM with eCYBERMISSION in Your Classroom

eCYBERMISSION is a web-based STEM competition, free to students in grades 6-9.

Compete for Awards up to $9,000 in U.S. Savings Bonds

For more information, visit us at Booth #1046

WWW.ECYBERMISSION.COM

Administered by NSTA National Science Teachers Association
The Role of a 21st-Century Zoo: How We Can Build Youth Environmental Literacy Together
(Grades 6–12)
Cumberland 1, Omni
Leslie Sadowski-Fugitt (lsadowski-fugitt@lpzoo.org), Lincoln Park Zoo, Chicago, Ill.
We will explore how Lincoln Park Zoo couples science inquiry with authentic zoo research tools to empower students to be zoo researchers and conservation leaders.

Applied Genetics: Fast Plant Genetics and Data Analysis for Introductory Life Science
(Grades 7–10)
Cumberland 3, Omni
Michael Ralph (@ralph0305; mralphoe@olatheschools.com), Olathe East High School, Olathe, Kans.
Shannon Ralph (@sralph81; ralph.shannon@usd443.org), Dodge City High School, Dodge City, Kans.
Go beyond Punnett squares! See a genetics experiment requiring minimal time that produces data for statistical analysis—without using a single mathematical formula.

Understanding Car Crashes: Saving Lives with STEM Lessons
(Grades 4–12)
Cumberland 4, Omni
Science Focus: GEN, SEP
Griff Jones (gjones@coe.ufl.edu), University of Florida, Gainesville
Use free web-based crash-testing videos, classroom STEM activities, and behind-the-scenes tours of a crash research center to integrate STEM practices and promote career awareness.

Tennessee Science Standards Review: K–5 Update and Feedback
(Grades K–5)
Mockingbird 4, Omni
Science Focus: GEN
Laura Encalade (@L.Encalade; laura.encalade@tn.gov), Tennessee Dept. of Education, Nashville
Join us for an update for K–5 teachers on Tennessee’s science standards review process as well as an opportunity for feedback on current drafts.

Science in Media: A Project-Based Learning Activity
(General)
Music Row 1, Omni
Science Focus: GEN
Kelly Devine (@MsKDevine) and Deanna Herman (@dherman62), Notre Dame College Prep, Niles, Ill.
Use a Project-Based Learning activity to increase student awareness of how science and scientists are portrayed in various forms of media content.

Do You Need a New Science Lab?
(Grades 6–12)
Music Row 2, Omni
Science Focus: GEN
Ruth Ruud (raudtruth61@gmail.com), Cleveland State University, Cleveland, Ohio
Come learn how to win a Shell Science Lab Makeover ($20,000 value) for your school. You will have an opportunity to actually begin to complete the application and have your questions answered. The Shell Science Lab Challenge invites middle school and high school science teachers (grades 6–12) in the U.S. and Canada (with special attention to urban and underrepresented groups) to illustrate replicable approaches to science lab instruction using limited school and laboratory resources.

AMSE Session: Rediscovering High-Yield, Underutilized Tools for Culturally Diverse Student Learning
(Grades 3–8)
Music Row 3, Omni
Science Focus: GEN
Veronica García Betancourt (veronica.betancourt@harlandale.net), Harlandale ISD, San Antonio, Tex.
Participants are invited to expand their thinking and experience culturally responsive activities designed to build students’ long-term memory retention of science concepts. Select samples will be provided.

ASTC Session: Engineering for Animals: A Powerful Way to Engage Students and Teachers in STEM Learning at the Zoo and in the Classroom
(Grades 3–8)
Music Row 4, Omni
Science Focus: ETS, INF, CCC1, CCC2
Kristi Berg (kristi.berg@state.mn.us) and Abby Moore (abby.mooe@state.mn.us), Minnesota Zoo, Apple Valley
Learn how the Minnesota Zoo partners with local schools to engage students in authentic STEM learning through our zoo-based engineering design challenges.
NARST Session: Supporting Students to Make Connections Using the Crosscutting Concepts
(Grades 4–9) Fisk One, Renaissance
Science Focus: GEN, CCC
Sarah Fick (@SarahFick30; ficksj@wfu.edu), Wake Forest University, Winston Salem, N.C.
Anna Arias (aarias588@gmail.com), Illinois State University, Normal
Jonathan Baek (jbaek@hc.wash.k12.mi.us), Honey Creek Community School, Ann Arbor, Mich.
Explore strategies for incorporating the crosscutting concepts into explanation-driven discussions and formative assessments in science classrooms.

Find the Fund$ for STEM: Grant Writing 101
(Grades P–12) West Ballroom, Renaissance
Science Focus: GEN
June Teisan (@jlteisan; june.teisan@noaa.gov), NOAA Office of Education, Washington, D.C.
Do you have Cartier dreams for your students but a dollar store budget? Get tips and tricks for grant writing that can help you craft proposals to fund robust science learning!

STAR 360™: comprehensive insight into student performance.
Valid and reliable interim assessments for early literacy, reading, and math. | A powerful dashboard for at-a-glance insights. | Formative assessment for any grade or subject with built-in item banks for reading, math, and science.

To learn more, see us at NSTA, booth 540, visit www.renaissance.com, or call (800) 338-4204.
12:30–1:30 PM Hands-On Workshops

Engaging the Natural Curiosities of Children in the Early Years
(Grades P–2/College) 101E, Music City Center
Science Focus: GEN
Frances Hamilton (franceshamilton87@gmail.com), The University of Alabama in Huntsville
Investigate ways to tap into students’ natural curiosities to be “little scientists,” even when working on reading and math.

Bioengineering Challenges and Middle School Life Science
(Grades 6–8) 103A, Music City Center
John Howarth (john_howarth@berkeley.edu) and Barbara Nagle (bnagle@berkeley.edu), The Lawrence Hall of Science, University of California, Berkeley
See examples and get ideas about how to integrate engineering practices into middle school life science through bioengineering activities.

Why/How We Do a Science Camp!
(Grades 2–6) 104C, Music City Center
Science Focus: GEN
Seth Miller (smiller@lcsonline.org) and Fred Wiechmann (fwiechmann@lcsonline.org), Lakeland Christian School, Lakeland, Fla.
Our hands-on approach to science provides children with the unique opportunity to conduct engaging experiments, be involved with entertaining activities, and take awe-inspiring field trips daily. Take away ideas, plans, and, resources for your future science camp. Door prizes!

Integrate NGSS and CCSS with a Practical Reading Strategy: Do It, Learn It, Use It!
(Grades K–5) 104D, Music City Center
Science Focus: GEN
Caroline Stabile (@gmsnet10; stokbridge@uri.edu), Kelly Shea (@kellyshea18; kellyshea@uri.edu), Sara Sweetman (@gmsnet10; sara_sweetman@uri.edu), and Stephanie Good (@gmsnet10; stephanie_good@uri.edu), GEMS-Net Project, The University of Rhode Island, Narragansett
Susan Sabella (@gmsnet10; ssabella@nssk12.org), Narragansett Elementary School, Narragansett, R.I.
Extend firsthand science knowledge by targeting a third of CCSS ELA using a practical reading strategy for informational text. Engage in the strategy, view classroom artifacts, and hear from teachers who use it!

INF Engage and Excite with Elementary Science Olympiad
(Grades K–6) 105B, Music City Center
Science Focus: INF
Kelly Price-Colley (@kpricega; kellyprice@comcast.net), NSTA Director, Coordination and Supervision of Science Teaching, and Forsyth County Schools, Cumming, Ga.
Science Olympiad can serve as a structure for family science nights, school science days, and after-school clubs as well as being a popular elementary STEM competition. Come learn more.

Helping Teachers and Students Learn Science Through Picture Books!
(Grades K–8) 106B, Music City Center
Science Focus: GEN, SEP
Douglas Hunnings (@ETHOS_Douglas; dhunnings@elkhart.k12.in.us), Riverview Elementary School, Elkhart, Ind.
Holly O’Connell (hoconnell@elkhart.k12.in.us), Pinewood Elementary School, Elkhart, Ind.
Explore ways to integrate science and ELA with picture books to help students master science concepts, while at the same time enforcing literacy standards!

Lights, Camera, Action! Introducing the Nature of Science and Scientific Inquiry Using Instructional Videos in Grades K–5
(Grades K–5) 106C, Music City Center
Science Focus: GEN, SEP
Catherine Koehler (@sissianne11; sissianne@aol.com), Southern Connecticut State University, New Haven
Come engage with strategies for teaching nature of science and scientific inquiry using films like Finding Nemo, Epic, and Frozen.

Constructing Coherent Content Storylines
(Grades K–6) Davidson A2/3, Music City Center
Science Focus: GEN, NGSS
Kimber Hershberger (kmbrhersh1109@gmail.com) and Carla Zembal-Saul (@czem; czem@psu.edu), Pennsylvania State University, University Park
Judith Kur (judikur@gmail.com), Retired Teacher, State College, Pa.
Find out how content storylines linking investigations deepen students’ understanding of science practices and content. Experience the steps for creating your own storylines to guide instruction.
National Earth Science Teachers Association (NESTA) Shares: EarthScope Chronicles—The Newberry Volcano: A Volcano Story
(Grades 7–College) Davidson B, Music City Center
Science Focus: ESS
Carla McAuliffe (carla_mmcauliffe@terc.edu) and Erin Bardar (erin_bardar@terc.edu), TERC, Cambridge, Mass.
Presider: Michael Passow (michael@earth2class.org), Dwight Morrow High School, Englewood, N.J.
Find out about EarthScope scientists’ stories and engage in data-based investigations. Bring a laptop and work along with the presenters exploring these resources.

Engaging in Close Reading of a Text: How to Meet the CCSS While Teaching NGSS Content and Skills
(Grades 6–12) Broadway K, Omni
Science Focus: GEN, SEP7, SEP8
Lesley Shapiro (lesley.shapiro@ppsd.org), Classical High School, Providence, R.I.
Audrey Miguel (alarmstrong35@gmail.com), St. Rocco School, Johnston, R.I.
NGSS and CCSS keeping you awake? Come learn strategies for integrating CCSS ELA into your instruction so that your students can meet the NGSS.

CSSS Session: Deep Curriculum Alignment—A Pathway to Results
(General) Cumberland 2, Omni
Science Focus: GEN, CCC1, CCC2
Debra Hall (debra.hall@dpi.nc.gov), Benita Tipton (tiptoes722@hotmail.com), and Jami Inman (jami.inman@dpi.nc.gov), North Carolina Dept. of Public Instruction, Raleigh
A key to student success is the alignment of standards, curriculum, and the associated assessments. Come explore how to get this daunting task accomplished.

Literacy and Science: Together Is Better
(Grades 6–9) Cumberland 6, Omni
Science Focus: GEN, CCC, SEP
Lionel Sandner (@LionelSandner; lionel.sandner@gmail.com), Edvantage Interactive, Victoria, B.C., Canada
Sandra Mirabelli (@scilitsandra), Dufferin Peel Catholic District School Board, Mississauga, Ont., Canada
This practical hands-on workshop will engage you in a variety of activities inspired by the cross-curricular integration of skills and habits of mind present in both literacy and science.

Integrating the “M” and the “S” in STEM: An Example Lesson
(Grades 6–10) Legends C, Omni
Science Focus: GEN, NGSS
Sherri Dennstedt (@dennstedtstem; sdennstedt@cherry-creekschools.org) and Denise Goldin-Dubois, Cherry Creek School District #5, Englewood, Colo.
Add this integrated STEM lesson featuring the three dimensions of NGSS, and Common Core State Standards, in English language arts and mathematics to your classroom. Design your own experiment and use mathematical models to present your findings as a scientific explanation.

Collaborate, Create, and Challenge: How a District and University Partnership Brought STEM to Elementary
(Grades P–5/College) Legends F, Omni
Science Focus: ETS, SEP3, SEP6
Michele Wiehagen (michele.wiehagen@sdhc.k12.fl.us) and Shana Tirado (shana.tirado@sdhc.k12.fl.us), Hillsborough County Public Schools, Tampa, Fla.
Jeni Davis (jenidavis@usf.edu), University of South Florida, Tampa
The Hillsborough County Public Schools and the University of South Florida partnership developed STEM lessons for the elementary classroom. This workshop will model one STEM lesson and offer many examples.

Teaching Environmental Sustainability with the Model My Watershed Application
(Grades 6–College) Legends G, Omni
Science Focus: ESS, CCC, SEP2
Susan Gill, Stroud Water Research Center, Avondale, Pa.
Model My Watershed is a web-based, interactive, GIS, hydrologic model that allows students and citizens to evaluate the impact of development in their watershed. Let’s explore this powerful tool that meets the NGSS.
DuPont Presents: Global Food Security—Creating Solvers for Challenges of the Future

(Grades 9–12) Music Row 5, Omni
Science Focus: GEN, CCC1, CCC2

David Black (@davidablack77; dblack3@murraystate.edu), Murray State University, Murray, Ky.
Troy Talford (@troytalford; troy.talford@saukprairieschools.org), Sauk Prairie High School, Prairie du Sac, Wis.

Let us introduce you to an inquiry activity to get students excited about sustainability and their role to feed the nine billion people that will need nourishment by 2050. Experience a fun activity to understand the difference between food that is insecure and food that is secure, which will keep your students active and thinking. A wonderful activity to include in any level of science class!

Fast Modes of Assessment

(General) Center Ballroom, Renaissance
Science Focus: GEN

Karen Henman (khenman@brenau.edu), Brenau University, Gainesville, Ga.

Do you spend hours on grading to determine if students are meeting learning goals? Now you can quickly pre or post assess student knowledge through new, easy-to-use online learning tools. It’s simple to incorporate these free tools into your lessons immediately. Also, view problem-solving apps showing a virtual world for BYOT in science.

Teaching Evolution Without Tears: Lessons from Darwin Day

(Grades 1–12) East Ballroom, Renaissance
Science Focus: LS4

Sarah Sheffield (@chuckdarwinUTK; sheffi2@vols.utk.edu) and Jennifer Bauer (@ChuckDarwinUTK; j Bauer5@vols.utk.edu), The University of Tennessee, Knoxville
Kelly Sturmer (@Soilgirl18; kmoran@nimbios.org), NIMBioS, Knoxville, Tenn.

This workshop highlights lesson plans created by Darwin Day UT focused on paleontological principles (community development, biodiversity, evolution, and geologic time) according to Tennessee State Standards. Note: Handouts and hands-on activities are available for the first 40 participants.

ASTE Session: Activities and Strategies for Teaching Difficult-to-Understand Plant Processes

(Grades 6–College) Fisk Two, Renaissance
Science Focus: LS, CCC1, CCC2, SEP6

Stephen Ludwig Thompson (thomp374@mailbox.sc.edu), University of South Carolina, Columbia

I’ll share recently published NSTA activities that make plant processes clear and help learners understand how we came to understand the origins of plant matter.

12:30–1:30 PM Exhibitor Workshop

Environmental Science Using Wireless Sensors

(General) 206 A/B, Music City Center
Science Focus: ESS
Sponsor: PASCO scientific
Ryan Reardon (rreardon71@gmail.com), Shades Valley High School, Birmingham, Ala.

PASCO’s new wireless sensors can enhance your environmental science labs! Get hands on with the Wireless Temperature and pH sensors that connect directly to your computer, tablet, or phone and can log data autonomously for environmental monitoring. Twenty-five attendees will win a free wireless sensor!

12:30–2:30 PM Hands-On Workshop

NGSS Toolkit Pathway Session: Using the BSCS Instructional Model to Design Learning Sequences

(Grades 6–College) Legends B, Omni
Science Focus: GEN, NGSS

Dora Kastel (@Dora_AMNH; dkastel@amnh.org), American Museum of Natural History, New York, N.Y.
Kathy DiRanna (kdirann@wested.org), K–12 Alliance/WestEd, Huntington Beach, Calif.

Using the BSCS 5E (Engage, Explore, Explain, Elaborate, and Evaluate) Instructional Model, participants will design an NGSS learning sequence that integrates the three dimensions: disciplinary core ideas, practices, and crosscutting concepts.
Visit NSTA’s SCIENCE STORE
Exhibit Hall B

Offering the latest resources for science teachers, including new releases and best sellers!

• Fun NSTA-branded gear—unique hats, shirts, mugs, collectible pins, and more

• Everyone enjoys member pricing: 20% off all NSTA Press® titles

Download the conference app or follow #NSTA16 for special giveaways, contests, and more throughout the conference!

Visit www.nsta.org/store to make a purchase today, or call 800-277-5300.

STORE HOURS

<table>
<thead>
<tr>
<th>Day</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wednesday</td>
<td>4:00 PM–7:00 PM</td>
</tr>
<tr>
<td>Thursday</td>
<td>7:30 AM–6:30 PM</td>
</tr>
<tr>
<td>Friday</td>
<td>7:30 AM–5:30 PM</td>
</tr>
<tr>
<td>Saturday</td>
<td>7:30 AM–5:30 PM</td>
</tr>
<tr>
<td>Sunday</td>
<td>8:00 AM–12:30 PM</td>
</tr>
</tbody>
</table>
12:45–1:30 PM Special Session
“Meet and Greet” the Presidents and Board/Council
(General) NSTA Exhibits Entrance, Music City Center
Science Focus: GEN
Be sure to stop by for this special session. Come “meet and
greet” with your elected NSTA officers on your way to
the exhibits. The President, President-Elect, and Retiring
President along with your Board and Council members are
looking forward to talking with you at the conference!

1:00–1:30 PM Presentations

* Integrating Global STEM Education into All Aspects
 of the Curriculum
 (Grades 4–12) I03C, Music City Center
 Science Focus: ESS3, LS2
 Courtney Gann, Texas Tech University, Lubbock
 Hear how a team of teachers integrated a collaborative global
 STEM project into multiple areas of the curriculum for a
 middle school classroom.

* A Scientist in the Classroom: A Framework for
 Learning Using Live Interactive Webcasts
 (Grades 5–9) I06A, Music City Center
 Science Focus: GEN, NGSS
 Colleen Marzec (marzec@si.edu) and Maggy Benson
 (bensonm@si.edu), Smithsonian National Museum of Natural
 History, Washington, D.C.
 Devin Reese (reesed@si.edu), Curriculum Developer, Alex-
 andria, Va.
 Using the web series “Smithsonian Science How” as a case
 study, we explore practices and barriers to using interactive
 webcasts and video in the classroom.

* Designing and Implementing Effective Interdisci-
 plinary Instructional Units
 (Grades 5–9) Broadway J, Omni
 Science Focus: LS1.B
 Jennifer Richards (@HandsOn_Class; jennifer.richards@utk.edu), The University of Tennessee Institute of Agricul-
 ture, Knoxville
 Sondra LoRe (sondra@utk.edu), The University of Tennes-
 see, Knoxville
 Integrating topics across disciplines develops higher-order
 thinking and encourages student engagement. Leave with
 tools and strategies that empower you to develop your own
 successful units.

* Filmmaking in the Classroom
 (Grades 6–12) Cumberland 5, Omni
 Science Focus: GEN, SEP8
 Stacia Hottle (@SPEHottle; shottle@tampaprep.org), Tampa
 Preparatory School, Tampa, Fla.
 Bring creativity and critical-thinking skills into the classroom
 with filmmaking projects. Collaborative thoughtful projects
 will take your students’ processing skills to the next level.

* Using the Science and Engineering Practices in
 Blended and Online Learning Environments: A
 Framework for Design
 (Grades 6–College) Music City Ballroom, Renaissance
 Science Focus: GEN, NGSS
 Cynthia Kern (@Cindy.L.Kern; cindy.l.kern@gmail.com),
 Quinnipiac University, Hamden, Conn.
 Kristoffer Carroll (@RPDPSci; kcarroll@interact.ccsd.
 net), Southern Nevada Regional Professional Development
 Program, North Las Vegas
 Come join us as we share a research-based lesson framework
designed to engage students in the three dimensions of the
NGSS in blended and online environments.
1:30–2:30 PM Networking Opportunity
NSTA District Director and Chapter/Associated Group Social in Honor of Wendell Mohling
NSTA Exhibits, Music City Center
Join us for fresh-baked cookies, brownies, rice krispies treats, and chocolate-dipped strawberries along with coffee and tea while meeting and networking with colleagues and representatives from all of NSTA’s 18 districts. Learn more about events, initiatives, and happenings in your district directly from your representatives in an informal setting.

1:30–2:30 PM Exhibitor Workshop
Off to the Races with K’NEX Education’s Forces, Energy, and Motion Set!
(Grades 5–9) 108, Music City Center
Science Focus: PS
Sponsor: K’NEX Education®
Start your engines! Join the K’NEX® building experience as you build gravity, rubber band, and spring power racers to test physical science concepts. Build models just like your students and investigate, experiment, collect data, graph, and analyze results. We will explore potential and kinetic energy, average speed, and much more.

1:30–4:30 PM Short Course
Geospatial Technology in the STEM Classroom: Integrating Place and Projects for Meaningful Learning Across Content Areas (SC-9)
(Grades 6–12) Tickets Required; $33 Suite 5A, Sheraton
Science Focus: GEN, CCC1, SEP4, SEP8
Patty Stinger-Barnes (@stingerbarnes; pstinger@utk.edu), The University of Tennessee, Knoxville
Brian Smith (bsmith@orhtn.edu), Jefferson Middle School, Oak Ridge, Tenn.
For description, see Volume 1, page 56.

1:30–5:00 PM Short Course
Using Games and Modeling to Teach Environmental Science (SC-10)
(Grades 9–12) Tickets Required; $65 Capitol 2/3, Sheraton
Science Focus: ESS, SEP2
Kristen Daniels Dotti (kdotti@vvsaz.org), Verde Valley School, Sedona, Ariz.
For description, see Volume 1, page 57.

2:00–2:30 PM Presentations
A Different Type of PPT: Phenomena, Practices, and Teaching
(Grades 10–12) 103A, Music City Center
Science Focus: PS, CCC, SEP
Thomas Shiland (tshi@nycap.rr.com), Saratoga Springs High School, Saratoga Springs, N.Y.
Examples of how the presentation of simple phenomena in the high school chemistry classroom allows students to develop NGSS science practices and crosscutting concepts.

Scientific Notebooks in a High School Classroom
(Grades 9–12) Acoustic, Omni
Science Focus: GEN, SEP2, SEP5, SEP8
Caroline Hadley (caroline.hadley@wsc.edu) and Lauren Angotti (lauren.e.angotti@live.com), Fred J. Page High School, Franklin, Tenn.
Learn how to establish, evaluate, and engage with scientific notebooks at the high school level to implement differentiation, modeling, and reflection.

Blended Learning in the Lab Sciences
(Grades 4–College) Broadway G, Omni
Science Focus: GEN, SEP
Teresa Dobler (tedobler@gmail.com), Washington Latin Public Charter School, Washington, D.C.
Transform your classroom using free web-based tools. Learn to incorporate collaboration, critical argumentation, and inquiry labs while allowing students to work at their own pace.

Learn to Use Real-Time Data from NOAA in Classroom and Inquiry-Based Learning Activities
(Grades 6–College) Music City Ballroom, Renaissance
Science Focus: GEN
Dan Pisut (@danpisut; dan.pisut@noaa.gov), NOAA Environmental Visualization Laboratory, Silver Spring, Md.
NOAA View provides teachers with an easy-to-use, free web-based application to access a wealth of Earth systems science data, both in real time, and from the agency’s vast archives.
2:00–2:30 PM Exhibitor Workshop
The Change of Seasons
(Grades 5–8) Booth #1114, Exhibit Hall
Science Focus: ESS
Sponsor: Science First®/STARLAB®
Summer Price (summer.price@sciencefirst.com), Science First/STARLAB, Yulee, Fla.
Using the immersive learning technology of the portable dome and one of the lessons of Starry Night, we will demonstrate that the seasons are not generated by the difference in the Earth–Sun distance but by the imaginary axis of Earth, which doesn’t stand straight.

2:00–3:00 PM Presentations

NSTA Press® Session: Models and Approaches to STEM Professional Development
(General) I01D, Music City Center
Science Focus: GEN, NGSS
Brenda Wojnowski (@BrendaWojnowski; brenda@waieducation.com), WAI Education Solutions, Dallas, Tex.
Celestine Pea, National Science Foundation, Arlington, Va.
Explore practices and strategies for making STEM professional development more effective through a focus on practical application of the PD research base in educational settings.

Let’s Go Outside…to the Schoolyard and Beyond
(Grades 6–8) I01E, Music City Center
Science Focus: GEN, SEP3, SEP8
Anne Farley Schoeffler (schoefflera@setoncatholicschool.org), Seton Catholic School, Hudson, Ohio
Explore outdoor education opportunities as well as assessment tools. Plan for a safe, fun science experience. Sample data collection instruments, literacy responses, and artistic responses included.

Inner City Greenhouses: Cross-Curricular Connections and Service Learning Projects
(Grades 10–College) I04A, Music City Center
Science Focus: ETS
Rabieh Hafza (@drhafza; jamalhafza@att.net), Atlanta (Ga.) Public Schools
Hear how an AP physics/AP environmental science teacher used large solar panels and some additional materials to build a solar-powered greenhouse.

Advancing Science Learning: Teaching Elementary Earth Science Concepts Through Engineering Problems
(Grades K–5) I04B, Music City Center
Science Focus: ESS2, ESS3, ETS, CCC, SEP
Kevin Mason (masonk@uwstout.edu) and Brian McAlister, University of Wisconsin–Stout, Menomonie
Discover how elementary teachers are using engineering problems to deepen their students’ understanding of Earth science concepts and science and engineering practices.

NGSS and Interdisciplinary Lesson Design in Elementary School
(Grades K–5) I06A, Music City Center
Science Focus: GEN, NGSS
Kitchka Petrova (dr.k.petrova@gmail.com), Florida State University, Tallahassee
Engage in activities to design interdisciplinary lessons on specific topics that meet the NGSS.

Going Deeper: Content Literacy Strategies and Instructional Techniques for the Science Educator
(Grades 1–8) Davidson A2/3, Music City Center
Science Focus: GEN, CCC1, SEP1, SEP8
Mark Weakland (@MarkWeakland; springwatermg@earthlink.net), Reading Specialist, Literacy Consultant, and Author, Hollspopple, Pa.
Help your students more deeply comprehend a variety of science material encountered in many texts. Leave with content literacy strategies and instructional techniques that you can use and integrate before, during, and after science lessons.
The Society for Science & the Public helps teachers educate and inspire students.

Science News for Students—our free website with news stories, features and ideas for hands-on activities that connect the latest in scientific research to in- and out-of-classroom learning.

Science News in High School—our award-winning magazine delivered to your classroom together with an online educator guide.

Acclaimed education competitions—Intel Science Talent Search (STS), the Intel International Science and Engineering Fair (ISEF), and the Broadcom MASTERS recognize young scientists and teach them how to conduct best-of-class, inquiry-based scientific research.

Advocate Grants—stipends and support for mentors who help under-represented students successfully enter their science or engineering research projects in scientific competitions.

Stop by booth 1057 to learn more and sign up for our free Science News e-mail newsletter.

www.societyforscience.org | www.sciencenews.org | www.sciencenewsforstudents.org
The NSTA Learning Center: Free Professional Learning Resources and Opportunities for Educators
(General) Broadway D, Omni
Science Focus: GEN

Flavio Mendez (flavio_m@nsta.org), Senior Director, Learning Center/SciLinks, NSTA, Arlington, Va.
Al Byers (albyers@nsta.org), Associate Executive Director, Services Division, NSTA, Arlington, Va.

Lost when it comes to finding online professional learning resources to enhance your content knowledge and skills? With more than 12,000 resources (25% of which are free) and quality PD opportunities to assist educators with core subject content, the Learning Center has the answers! Get free resources and ICE CREAM!

Award-Winning Share-a-Thon: Featuring NSTA Distinguished Teachers
(General) Broadway E, Omni
Science Focus: ESS1.B, PS

Tom Lough (tom.lough@gmail.com), Retired Educator, Round Rock, Tex.
Paul Adams (padams@fhsu.edu), NSTA Director, District XI, and Fort Hays State University, Hays, Kans.
Robert Adkins, SAVE High School, Anchorage, Alaska
James M. Brown (jmbrown@nycap.rr.com), Forest Park Elementary School, Albany, N.Y.
Susan German (@susan_german; susangermanscience-teacher@gmail.com), Hallsville Middle School, Hallsville, Mo.
Karen Ostlund (@karen_ostlund; klostlund@utexas.edu), 2012–2013 NSTA President, and The University of Texas at Austin

Robert Adkins, SAVE High School, Anchorage, Alaska
James M. Brown (jmbrown@nycap.rr.com), Forest Park Elementary School, Albany, N.Y.
Susan German (@susan_german; susangermanscience-teacher@gmail.com), Hallsville Middle School, Hallsville, Mo.
Karen Ostlund (@karen_ostlund; klostlund@utexas.edu), 2012–2013 NSTA President, and The University of Texas at Austin

Fostering a Schoolwide STEM Culture Among Staff and Students
(Grades 6–8) Broadway J, Omni
Science Focus: GEN

Laura Campion (lcampion@m322.org), Whitney Reizner (wreizner@gmail.com), and Erica Zigelman (ezigelman@m322.org), Middle School 322, New York, N.Y.

Emphasis will be placed on strategies for gaining true staff and student buy-in for establishing a cross-curricular environment that is conducive to real-world learning beyond the traditional disciplinary boundaries.

How to Talk About Darwin
(Grades 7–College) Cumberland 1, Omni
Science Focus: LS3, LS4, SEP4, SEP6, SEP7, SEP8

Gregory Macklem (gmacklem@nd.edu), University of Notre Dame, Ind.
Erik Peterson (elpeterson@ua.edu), The University of Alabama, Tuscaloosa

Join in a discussion about teaching Darwin and using insights from colleagues and from history of science to improve student understanding of evolution.

Developing Your Professional Learning Network: How Twitter Will Impact Your Science Teaching
(General) Cumberland 4, Omni
Science Focus: GEN

Jeremy Ervin (@drjervin; jervin@cedarville.edu), Cedarville University, Cedarville, Ohio

This interactive session guides the beginner/expert in Twitter—putting professional learning in your own hands, literally and figuratively. Will take >140 characters to do so.

Tennessee Science Standards Review: Middle School Update and Feedback
(Grades 6–8) Mockingbird 4, Omni
Science Focus: GEN

Laura Encalade (@LEncalade; laura.encalade@tn.gov), Tennessee Dept. of Education, Nashville

Join me for an update for middle school teachers on Tennessee’s science standards review process as well as an opportunity for feedback on current drafts.
Equity Through STEM
(General) Music Row 1, Omni
Science Focus: GEN
Juliana Texley (@juliana.texley; jtexley@att.net), NSTA Retiring President, and Science Writer/Instructor, Boca Raton, Fla.
Jerry Valadez (@samacademymaker; jdscience@yahoo.com), NSTA Director, Multicultural/Equity, and California State University, Fresno
Begin with a rich STEM environment and your underachievers will be empowered and enfranchised to soar. Evidence, ammunition, and resources will be shared.

AMSE Session: Creating Positive School/Home Partnerships with Diverse Families
(Grades 6–12) Music Row 2, Omni
Science Focus: INF
Veronica Garcia Betancourt (veronica.betancourt@harlandale.net), Harlandale ISD, San Antonio, Tex.
Take a reflective look at school/family relationships as we engage in conversation on how to build strong valuing partnerships with families.

2:00–3:00 PM Hands-On Workshops

NSTA Press® Session: The Power of Questioning: Guiding Student Investigations
(Grades P–6) 101C, Music City Center
Science Focus: GEN, NGSS
Lisa Nyberg (@docnyberg; lnyberg@csufresno.edu), California State University, Fresno
Julie McCough (mrmagojulie2@att.net), University of Nebraska–Lincoln
Let students’ questions guide the inquiry while integrating collaborative conversations, reading of informational text, and writing. Find out how to use engaging questioning strategies to foster powerful practices, depth of knowledge, and communication of science concepts that teach the CCSS and science standards!

How to Master Scientists Inside Your Classroom with High Results
(Grades 5–8) 103B, Music City Center
Science Focus: GEN
Karhonda Porter (@ItsDrKay; karhonda.porter@mnps.org), Rose Park Magnet Math & Science Middle School, Nashville, Tenn.
Come find out how to increase student test scores and student engagement by using partnerships with middle school teachers with local university scientists.

How Our District Uses the Instructional Design Process to Integrate Instruction
(Grades K–12) West Ballroom, Renaissance
Science Focus: GEN, CCC, SEP
Sarah Andrews (sandrews@dps61.org), Decatur (Ill.) Public Schools
Teacher groups collaborate on the development of a problem-based curriculum through a very specific straightforward process. We are excited to share this phenomenal process with you.

INF

AMSE Session: Creating Positive School/Home Partnerships with Diverse Families
(Grades 6–12) Music Row 2, Omni
Science Focus: INF
Veronica Garcia Betancourt (veronica.betancourt@harlandale.net), Harlandale ISD, San Antonio, Tex.
Take a reflective look at school/family relationships as we engage in conversation on how to build strong valuing partnerships with families.

2:00–3:00 PM Hands-On Workshops

NSTA Press® Session: The Power of Questioning: Guiding Student Investigations
(Grades P–6) 101C, Music City Center
Science Focus: GEN, NGSS
Lisa Nyberg (@docnyberg; lnyberg@csufresno.edu), California State University, Fresno
Julie McCough (mrmagojulie2@att.net), University of Nebraska–Lincoln
Let students’ questions guide the inquiry while integrating collaborative conversations, reading of informational text, and writing. Find out how to use engaging questioning strategies to foster powerful practices, depth of knowledge, and communication of science concepts that teach the CCSS and science standards!

How to Master Scientists Inside Your Classroom with High Results
(Grades 5–8) 103B, Music City Center
Science Focus: GEN
Karhonda Porter (@ItsDrKay; karhonda.porter@mnps.org), Rose Park Magnet Math & Science Middle School, Nashville, Tenn.
Come find out how to increase student test scores and student engagement by using partnerships with middle school teachers with local university scientists.

Authentic Interdisciplinary Learning Through Simulation
(Grades 6–12) 103C, Music City Center
Science Focus: GEN, NGSS
Jason Dupuis (jason.dupuis@msichicago.org) and Sophia Shrand (sophia.shrand@msichicago.org), Museum of Science and Industry, Chicago, Ill.
Learn how interdisciplinary simulation-based learning can increase student engagement, strengthen lesson authenticity, and foster collaboration.

Saving Our Island: Students Creating Change Over Time
(Grades P–5) 104C, Music City Center
Naomi Mayer (mayer_naomi@hotmail.com), Donna Rhodes (rhodesisland46@gmail.com), and Natalie Korodaj-Zellers (nake_o@cox.net), DoDEA Guam Schools
Let’s walk you through the steps to replicate and foster the excitement of learning about invasive species and controlling environmental impacts to promote stewardship!
Children’s Literature and the Nature of Science
(Grades P–6) 104D, Music City Center
Science Focus: GEN
Krista Adams (kadams12@unl.edu), University of Nebraska–Lincoln
Children’s literature is for more than fact and fiction! Learn how to leverage multi-genre texts to effectively engage students in learning the nature of science.

Probeware and Practices: Partners for Elementary Science
(Grades 4–5) 104E, Music City Center
Science Focus: PS1, PS3, SEP
John Pecore and Jennifer Mesa (jmesa@uwf.edu), University of West Florida, Pensacola
Engage in upper elementary lessons using science and engineering practices and probeware sensors to explore disciplinary core ideas in physical science.

CESI Session: Biographies: Trade Books That Conceptualize the Nature of Science
(Grades P–5) 105A, Music City Center
Science Focus: GEN, CCC1, CCC2
Julie Thomas (julie.thomas@unl.edu), University of Nebraska–Lincoln
Come get your hands on trade books and science activities that help young children understand the nature and work of a scientist.

Modeling and the Three Dimensions of the NGSS in Middle School Genetics
(Grades 6–10) 105B, Music City Center
Science Focus: LS1.B, LS3, CCC2, SEP2
Barbara Nagle (bnagle@berkeley.edu) and Maia Willcox (mwillcox@berkeley.edu), The Lawrence Hall of Science, University of California, Berkeley
Participate in hands-on genetics activities that integrate the science practice of modeling into a three-dimensional approach supporting the NGSS for heredity.

Idea Builders: Integrating Engineering and Literature
(Grades 3–8) 106B, Music City Center
Science Focus: GEN, SEP
J. Carrie Launius (@janetcarrie; janetcarrie@gmail.com), Retiring President, Science Teachers of Missouri, St. Louis
Celeste Nicholas (celeste.nicholas@gmail.com), University of Missouri–St. Louis
Students create a product using design methods from learning about engineering practices. High-quality trade books illustrate the design processes.

Story Starts with Science: Using Children’s Literature to Enhance Your Science Curriculum Content
(Grades P–6) 106C, Music City Center
Science Focus: GEN, SEP1
Jennifer Williams (@ScienceJennifer; @nolascience; jenniferwilliams@newmanschool.org), Isidore Newman School, New Orleans, La.
Promote understanding of scientific concepts by integrating children’s literature into project-based activities. Experience the seamless blend of “story time” and science as you engage in STEM activities and leave with a bibliography of titles.

National Earth Science Teachers Association (NESTA) Shares: Geology Share-a-Thon
(General) Davidson B, Music City Center
Science Focus: ESS
Michael Passow (michael@earth2class.org), Dwight Morrow High School, Englewood, NJ
Carla McAuliffe (carla_mcauliffe@terc.edu), TERC, Cambridge, Mass.
Join more than 20 NESTA members and other education specialists as they share their favorite classroom activities. Lots of free handouts!

Hollywood Physics
(Grades 9–12) Broadway C, Omni
Science Focus: PS2.A, PS2.B, CCC2
Aaron Osowiecki (aosowiecki@bostonpublicschools.org) and Jesse Southwick (jesse.southwick@gmail.com), Boston Latin School, Boston, Mass.
Come analyze a few action clips to see how you can use Hollywood Physics to assess your own students in a rich and different way. We will share how to use video analysis to assess students’ understanding of forces and motion.

Why Are We the Way We Are? Supporting Middle School Students in Three-Dimensional Learning to Make Sense of Gene and Environmental Interactions
(Grades 6–8) Broadway H, Omni
Science Focus: GEN, NGSS
Deborah Peek-Brown (alpbrown@msu.edu), Joseph Krajcik (krajcik@msu.edu), Irene Bayer (rbayer@msu.edu), and Jane Lee (leejane@msu.edu), CREATE for STEM Institute, Michigan State University, East Lansing
Louise Mead (lsmead@msu.edu), BEACON Center for the Study of Evolution in Action, East Lansing, Mich.
Explore Project-Based Learning environments that engage students in three-dimensional learning while investigating the gene and environment interactions that make us who we are.
Talking Points: The Role of Talk in the Science Classroom
(Grades 6–12) Broadway K, Omni
Science Focus: GEN, SEP4, SEP7, SEP8
Marsha Buck (@sciencediva00; mbuck@k12k.com) and Erica Johnson (@MrsEJohnson109; ejohnson@k12k.com), Ross N. Robinson Middle School, Kingsport, Tenn.
Walk away with paired passages after participating in this fast-paced interactive session that shares a new strategy to engage students in CCSS-focused scientific argument.

The “How Tos” of an X-STREAM Family Night
(Grades P–5) Cumberland 2, Omni
Science Focus: GEN
Susan Collins (scolli48@kennesaw.edu), Kennesaw State University, Kennesaw, Ga.
Plan an X-STREAM (Science, Technology, Reading, Engineering, Art, Math) Family Night from start to finish. Leave with strategies that will get all school stakeholders involved in a fun-filled science night for families.

Research Goes to School: Nanoscience-Based Activities Transferable from the Professional Development Workshop to the STEM Classroom
(Grades 9–12) Cumberland 6, Omni
Science Focus: GEN, NGSS
Alex Madsen (@RGSworkshop; madsena@purdue.edu), Purdue University, West Lafayette, Ind.
Alyce Myers (@RGSworkshop; amyers@nm.k12.in.us), North Montgomery High School, Crawfordsville, Ind.
John Gensic (@bioonthego; john.gensic@gmail.com), Penn High School, Mishawaka, Ind.
Join us for hands-on nanoscience-based activities based on the fundamental concepts of nanoscience and how to implement them in the classroom.
ABCs of 3D Printing: Applications, Builds, and Curriculum
(Grades 3–College)
Science Focus: GEN, SEP1, SEP2, SEP3, SEP4, SEP5, SEP6
Douglas Thompson (@dmthomp32; douglast@discovery-place.org), Discovery Place, Inc., Charlotte, N.C.
Curious about 3D printing? Examine the functionality of 3D printers and explore methods in which 3D printing can be used to support classroom instruction. Take home a 3D-printed object for classroom use.

Math as the Language of Science
(Grades 3–10)
Science Focus: GEN, SEP
Maryann Stimmer (mstimmer@fhi360.org) and Ben Dworken (bdworken@fhi360.org), Educational Equity Center at FHI 360, New York, N.Y.
Rachel Chase (rchas@hunter.cuny.edu), Hunter College, New York, N.Y.
Using real-world experiences, learn integrated strategies for science and math mastery. Leave with activities for the classroom that bring together the NGSS and CCSS.

FAB: Fusing Art and Biology to Enhance 21st-Century Skills
(Grades 6–College)
Science Focus: LS, CCC, SEP
Linda Jones (lcjones@coe.ufl.edu), University of Florida, Gainesville
Learn how to design and implement interactive, small group hands-on art and model design challenges to introduce, develop, and reinforce core biology concepts.

DuPont Presents: Photosynthesis and Respiration—It’s a Plant’s Life!
(Grades 8–12)
Science Focus: LS1, CCC1, CCC2
Rachel Sauvola (@MrsSauvola; rsauvola@newrichmond.k12.wi.us), New Richmond High School, New Richmond, Wis.
Seely Daniels (seely.daniels@pendleton.k12.or.us), Pendleton High School, Pendleton, Ore.
Help your students sprout and grow with a different approach to teaching photosynthesis and cellular respiration. Learn how to captivate students through inquiry activities that can challenge and excite them. Easily implement activities into your current biology or plant science class.

Creating Meaning Through the Crosscutting Concepts
(Grades K–12)
Science Focus: GEN, CCC
Jennifer Gottlieb (@jgottlieb2; jgottlieb@troy.k12.mi.us), Troy (Mich.) School District
Sarah Coleman (coleman@muskegonisd.org), MAISD Regional Mathematics & Science Center, Muskegon, Mich.
The crosscutting concepts are thinking tools that allow students to connect ideas and make sense of phenomena. Come explore ways to embed them into instruction.

What Does It Look Like When NGSS Are Being Implemented?
(Grades K–12)
Science Focus: GEN, SEP
Dawn O’Connor (dawno@acoe.org), Leena Bakshi (@Leena219; leena219@gmail.com), and Mena Parmar (@MenaParmar; mparmar@acoe.org), Alameda County Office of Education, Hayward, Calif.
Looking for a lens into an NGSS-focused classroom? We will examine a toolkit and classroom video followed by discussion on how to support implementation.

ASTE Session: Energize Your STEM Classroom!
(Grades K–8)
Science Focus: LS2.B, PS3
Jeffery Townsend (scott.townsend@eku.edu), Eastern Kentucky University, Richmond
Jeffrey Peake (jrpake@iu.edu), Indiana University Bloomington
Energy is a common thread among all levels of the NGSS. We will model how the concept of energy transfers throughout the STEM-based classroom.
2:00–3:00 PM Exhibitor Workshop
Using Wireless Sensors in Enzyme Activity and Cellular Respiration Labs
(General) 206 A/B, Music City Center
Science Focus: LS
Sponsor: PASCO scientific
Ryan Reardon (rreardon71@gmail.com), Shades Valley High School, Birmingham, Ala.
Conduct hands-on inquiry investigations on enzyme activity and cellular respiration using PASCO wireless sensors and SPARKvue software. See how sensors can transform tedious, qualitative labs into short data-driven learning experiences for standards-based labs for grades 9–12 general, AP®, and IB® courses. Twenty-five attendees will win a free wireless sensor!

2:00–3:00 PM Meeting
SEPA Board Meeting
(By Invitation Only) Mockingbird 3, Omni
For more information, please visit www.sepamembers.weebly.com.

2:00–3:30 PM Presentation
NGSS@NSTA Forum: Designing or Adapting Curriculum and Instruction to Make It Three Dimensional
(Grades K–12) Grand Ballroom C1, Music City Center
Science Focus: GEN, CCC1, CCC2, SEP2, SEP6, SEP7
Brian Reiser (@reiserbrian; reiser@northwestern.edu), Northwestern University, Evanston, Ill.
Michael Novak (@mnovakcc; mnovak@mgsd70.org), Park View School, Morton Grove, Ill.
Tricia Shelton (@tdishelton; tdshelton@gmail.com), Boone County High School, Florence, Ky.
Mike Fumagalli (@mfumagalliELHS; mfumagalli@leyden212.org), East Leyden High School, Franklin Park, Ill.
Presider: Ted Willard (twillard@nsta.org), Program Director, NGSS@NSTA, NSTA, Arlington, Va.
Come learn how to develop a coherent storyline for a unit where instead of students learning about science ideas, they figure them out in order to explain phenomena.

NewPath’s Science Curriculum Learning Modules
Complete Blended Learning Program for Life, Earth & Physical Science!!!
Each Curriculum Learning Module includes a complete set of hands-on and digital resources designed to support teacher instruction and student mastery of standards-based topics and skills. Used in combination or individually, the resources provide detailed instruction through a blend of technology-based lessons combined with hands-on and game-based learning.

Visit Booth 637 for FREE Samples & Online Learning Subscription!!!

Phone: 1-800-507-0966 www.newpathlearning.com
2:00–3:30 PM Hands-On Workshop

McREL Pathway Session: STEM Models: Where Do I Start and How Do I Decide?

(Grades K–12)

Legends A, Omni

Science Focus: GEN, CCC

Anne Tweed (atweed@mcrel.org), 2004–2005 NSTA President, and McREL International, Denver, Colo.

How do I start a STEM program or school? Every situation is unique. What are the features of different STEM models? What does the research say? How do I choose? I’ll start at the beginning and guide you through the process.

2:00–3:30 PM Exhibitor Workshops

MiniOne™ Electrophoresis: Revolutionizing Biotechnology in Real Time

(Grades 7—College)

Science Focus: LS

Sponsor: The MiniOne Electrophoresis

Richard Chan (info@theminione.com), The MiniOne Electrophoresis, San Diego, Calif.

Do an electrophoresis experiment in 30 minutes with the MiniOne! Watch DNA migrate and receive instant feedback to supplement lecture and facilitate learning. The MiniOne offers more hands-on experience for students and less prep time for you. Please bring your smartphone and be ready to take a picture of your results.

Black Holes for High School Physics

(Grades 11–12)

Science Focus: ESS, PS

Sponsor: Perimeter Institute for Theoretical Physics

Damian Pope and Glenn Wagner, Perimeter Institute for Theoretical Physics, Waterloo, Ont., Canada

Explore how to teach the fascinating topic of black holes via familiar concepts like forces, gravity, orbits, and potential energy.

Structure and (Fun)ction: Arthropod Body Parts and Evolution

(Grades 6–8)

Science Focus: LS1.A, SEP1, SEP7, SEP8

Sponsor: Celestron

Kristie Reddick (contactus@thebugchicks.com), The Bug Chicks, College Station, Tex.

Using digital microscopes and arthropods, entomologist and educator Kristie Reddick of The Bug Chicks teaches about the evolution of “bug” body parts. Classify, compare, and distinguish between analogous and homologous features. Perfect for novice teachers who want to seriously engage students, or the serious bugdork who wants to dig deeper!

New Tools, New Insights, and New Ways of Understanding Science with Miller and Levine Biology

(Grades 9–12)

Science Focus: LS

Sponsor: Pearson Education

Joseph Levine, Author, Boston, Mass.

Kenneth Miller, Brown University, Providence, R.I.

What does the NGSS really mean? Best-selling Biology authors Ken Miller and Joe Levine will walk you through the tools and insights in their new program that supports the NGSS. (Hint: You’re doing it already. It’s about good teaching.)

CPO Science’s New Physics AP1 Link™ Module: Rotational Motion Using the CPO Rollercoaster

(Grades 7–12)

Science Focus: PS

Sponsor: CPO Science/School Specialty Science

Erik Benton, CPO Science/School Specialty Science, Nashua, N.H.

Use CPO Science’s Roller Coaster and DataCollector to analyze how mass, radius, and shape affect the linear speed of objects on a ramp. Learn how to evaluate qualitative and quantitative investigations in rotational motion and when each type of investigation is best for your students in an AP1 Physics classroom.
Designing with FOSS: Engineering in Elementary Science
(Grades K–5) 201B, Music City Center
Science Focus: ETS, SEP
Sponsor: Delta Education/School Specialty Science–FOSS
Brian Campbell, The Lawrence Hall of Science, University of California, Berkeley
FOSS modules provide students with opportunities to engage in engineering experiences to develop solutions to problems using science knowledge and systems thinking. We’ll describe and display the opportunities to design with science using a new FOSS grade 3 module. Find out about transitioning to FOSS Next Generation.

Elementary Teacher Survival Kit
(Grades 1–8) 202A, Music City Center
Sponsor: Educational Innovations, Inc.
Cathy Byrne, Hamilton Avenue School, Greenwich, Conn.
Ken Byrne, Educational Innovations, Inc., Bethel, Conn.
This hand-on workshop—chock full of easy-to-do science inquiry lessons—enables new and veteran teachers to expand their bag of tricks. Using discrepant events, these activities give students a sense of mystery and awe. Topics include energy, air pressure, scientific method, data collection, and graphing. Door prizes and giveaways!

Science Vocabulary Has Kinetic Energy When It’s Moving
(Grades K–12) 202B, Music City Center
Science Focus: GEN
Sponsor: McGraw-Hill Education
Dinah Zike, Dinah.com, San Antonio, Tex.
Learn how to make science terms, phrases, formulas, and key concepts kinesthetic and memorable. In this fast-paced hands-on workshop, participants view and make multiple evidence-based and standards-focused Notebook Foldables and vocabulary manipulatives. Constructed materials can be implemented immediately to enhance daily instruction and organize notebooking activities while providing formative assessment study guides and evaluation tools.

Cool Tools for Sound and Waves
(Grades 6–College) 202C, Music City Center
Science Focus: PS
Sponsor: Arbor Scientific
Dwight “Buzz” Putnam (buzzputnam@gmail.com), Whitesboro High School, Marcy, N.Y.
You will be blown away by these demos by award-winning physics teacher Buzz Putnam. Watch an air wave lift a pile of confetti—without touching it! Hear a spot-on rendition of Twinkle Twinkle Little Star using Boomwhackers! Door prizes!

Hands-On Science with Classroom Critters
(Grades K–12) 204, Music City Center
Science Focus: LS
Sponsor: Carolina Biological Supply Co.
Carolina Teaching Partner
Add action and excitement to your science class with live organisms! Discover fun, simple hands-on activities with pill/sow bugs, termites, bess bugs, and butterflies that you can use in your labs. Learn about care and handling, as well as easy ways to introduce inquiry. Additional resources available online.

EQuIP Your District for NGSS
(Grades K–8) 205A, Music City Center
Science Focus: GEN, NGSS
Sponsor: Carolina Biological Supply Co.
Carolina Teaching Partner
Making the transition to the new science standards is not as simple as implementing a different curriculum. A process must be designed and implemented for a district to move to the new NGSS—whether they are traditional textbook, inquiry-based, or kit users. Carolina and content partners at the Smithsonian Science Education Center will share outlines of what districts should consider as they make the paradigm shift and of how to evaluate appropriate instructional materials using the EQuIP rubric. Join us for this “How to Get Started” guide, participate in NGSS model lessons, and practice evaluating.

Keep Calm and Chemistry On: Successful Lab Activities for the New Chemistry Teacher
(Grades 9–12) 205B, Music City Center
Science Focus: PS
Sponsor: Carolina Biological Supply Co.
Carolina Teaching Partner
Looking for lab activities that work every time, not just periodically? Explore easy, engaging, safe chemistry activities that are sure to produce a reaction from your students. Whether you’re new to chemistry or feeling out of your element, you’ll learn new ways to create excitement with hands-on labs and demonstrations.
What Is a Species?
(Grades 9–12) 205C, Music City Center
Science Focus: LS4.D
Sponsor: LAB-AIDS®, Inc.
Mark Koker, LAB-AIDS, Inc., Ronkonkoma, N.Y.
In this activity from the SEPUP high school biology program, participants learn about conditions that lead to speciation, including isolation due to temporal, geographical, and behavioral factors, and more. They then apply this knowledge to determine whether selected animal or plant pairs are in the early, mid, or late stages of speciation.

Grant Writing: Designing for Dollars
(General) 207A, Music City Center
Science Focus: GEN
Sponsor: Ward’s Science
Rusti Berent, Ward’s Science, West Henrietta, N.Y.
Expand your STEM ideas and turn them into well-designed projects that engage and excite funders. Practice identifying opportunities and matching them with standards-focused science activities. Come with ideas and leave with hands-on tools and sample project proposals to help plan, justify, budget, evaluate, and sustain your project.

Using Primary Literature to Teach Data Literacy
(Grades 9–College) 207B, Music City Center
Science Focus: LS, CCC2, CCC3, SEP4, SEP5, SEP6, SEP7, SEP8
Sponsor: HHMI BioInteractive
Bridget Conneely, Howard Hughes Medical Institute, Chevy Chase, Md.
Bob Kuhn, Centennial High School, Roswell, Ga.
Ann Brokaw, Rocky River High School, Rocky River, Ohio
HHMI BioInteractive presents a new monthly series called “Data Points” that features a figure from primary literature to engage students in the process of interpreting graphs. Participants will analyze graphs and interpret what the data show and what the results mean in the context of the scientific study.

Inquiry-Based Biology with Vernier
(Grades 9–College) 207C, Music City Center
Science Focus: LS, SEP
Sponsor: Vernier Software & Technology
Rick Rutland, Five Star Education Solutions, Stockdale, Tex.
Involving your students in inquiry-based biology can be fun and easy. Many investigations have been designed and tested in our lab book, Investigating Biology through Inquiry. In this engaging hands-on workshop, you will conduct an inquiry-based biology investigation using Vernier sensors with a LabQuest 2 or Logger Pro computer software.

iPad and Wireless Sensors with Vernier
(Grades 3–College) 207D, Music City Center
Science Focus: GEN, SEP
Sponsor: Vernier Software & Technology
Verle Walters (info@vernier.com), Vernier Software & Technology, Beaverton, Ore.
Collecting and analyzing data help students learn critical science concepts that increase test scores and promote science inquiry. This workshop will address data collection with iPads and Vernier technology, including our Go Wireless sensors. Experiments from Vernier lab books will be covered, including “Boyle’s Law” and “Grip Strength Comparison.”

Identify Patient Zero of a Zombie Apocalypse!
(Grades 9–College) 208A, Music City Center
Science Focus: LS2, CCC1, SEP
Sponsor: Bio-Rad Laboratories
Leigh Brown (leigh_brown@bio-rad.com), Bio-Rad Laboratories, Hercules, Calif.
Explore the spread of a zombie virus with this hands-on lab using the power of an ELISA assay. The specific nature of antibodies enables the testing of almost any biological molecule that elicits an immune response. Learn how an ELISA can monitor transmission and track the spread of disease!

Upgrade Your Chemotaxis Lab! (Focuses on AP Biology Big Ideas 1–4)
(Grades 9–College) 208B, Music City Center
Science Focus: LS1, LS2, LS3, LS4.C, CCC4, SEP
Sponsor: Bio-Rad Laboratories
Sherri Andrews (sherri_andrews@bio-rad.com), Bio-Rad Laboratories, Hercules, Calif.
Integrate genetics and neurobiology while infusing your chemotaxis lab with inquiry. Use C. elegans to compare normal and mutant behavior in a classical conditioned learning experiment (think Pavlov’s worms). Explore worm taste preferences in a simple chemotaxis assay, and examine the connection of our worm mutant to human diseases.
SAVE THE DATES | 2016

MINNEAPOLIS
MINNESOTA
OCTOBER 27-29
CELEBRATE SCIENCE:
10,000 CONNECTIONS

PORTLAND
OREGON
NOVEMBER 10-12
EXPLORING MOUNTAINS:
GUIDING SCIENCE
TEACHING AND LEARNING

COLUMBUS
OHIO
DECEMBER 1-3
CHAMPIONS OF SCIENCE:
A GAME PLAN FOR
THE FUTURE!

PROFESSIONAL DEVELOPMENT STRANDS

Teaching Science in a Connected World
STEMify Instruction Through Collaboration Across the Curriculum
Celebrating Elementary Science and Literacy Connections

Base Camp: Collaborating to Integrate Elementary Science Instruction with Math and ELA
The View from the Summit: Celebrating Science for All
The View from All Angles: Connecting Three-Dimensional Science Instruction

Training Camp: Strengthening Fundamentals in Elementary Education
Game Time: Tackling Scientific Problems and Pitching Engineering Solutions
Science Boosters: Taking It to the Next Level

For more information and to register, visit www.nsta.org/conferences
Flinn Scientific’s Exploring Chemistry™: Connecting Content Through Experiments
(Grades 9–12) 209A, Music City Center
Science Focus: PS
Sponsor: Flinn Scientific, Inc.
Jillian Saddler, Flinn Scientific, Inc., Batavia, Ill.
Join us as we present interactive activities and demonstrations that showcase the features and benefits of our Exploring Chemistry kits! We will highlight integrated lab and learning activities for some of the major topics in your chemistry curriculum! The experiments, demos, and Process-Oriented Guided Inquiry Learning (POGIL) activities ensure that students will really understand the concepts and get a glimpse of the underlying simplicity and beauty of chemistry!

Project-Based STEM/Engineering
(Grades 5–College) 209B, Music City Center
Science Focus: ETS
Sponsor: WhiteBox Learning
Graham Baughman, WhiteBox Learning, Louisville, Ky.
Engage your students in the STEM/Engineering Curriculum for grades 6–12, the complete engineering design process. WhiteBox Learning is a standards- and activity-based turnkey STEM Learning System. Students can research, design, analyze, and simulate their designs, and compete "virtually," 24/7, all around the world, from any browser. Integrated LMS included as well as hands-on activities.

Biotech Is STEM!
(Grades 9–College) 209C, Music City Center
Science Focus: LS
Sponsor: G-Biosciences
Ellyn Daugherty (ellyn@bioteched.com), Biotechnology Educator, Redwood City, Calif.
It is “The Age of Biotechnology.” Learn strategies to plan and implement an innovative STEM biotech curriculum for all students. Ellyn Daugherty, biotechnology educator/author of Biotechnology: Science for the New Millennium, shares tools and activities from her curriculum and G-Biosciences, bringing STEM experiences that lead students to do science in adult environments.

A Better Approach to Chemistry
(Grades 7–College) 210, Music City Center
Science Focus: PS
Sponsor: Fisher Science Education
Flip your chemistry lab with innovative STEM solutions that can put the power in your students’ hands and make your operations easier—from chemical inventory management to data logging. Sharpen your lab skills and safety knowledge along the way.

Make Science Come to Life
(Grades 1–5) 211, Music City Center
Science Focus: GEN, NGSS
Sponsor: LEGO Education
Laura Jackson, Anderson (S.C.) School District Five
Did you know LEGO® bricks can provide an engaging platform for making science come to life? Using LEGO Education solutions, elementary students can explore, create, and share discoveries as they build solutions to real-world, standards-based projects and deeply engage with science practices and the engineering design process. Come experience a resource that develops students’ confidence to ask questions, find answers, and solve problems by putting discovery in their hands.

A Peek Behind the Curtain: Disney Parks Approach to Physics and Energy
(Grades 6–12) 212, Music City Center
Science Focus: ETS, PS
Sponsor: Disney Youth Programs
Joseph Cardello, Disney Parks Education Facilitator, Anaheim, Calif.
Join us for a peek into how Disney conducts in-park field trips that teach kids how Disney uses mechanical physics and elements, such as light and sound, to create world-class attractions and entertain guests from around the world.

The Many Jobs of Proteins: Enzymes in the Spotlight
(Grades 8–College) 214, Music City Center
Science Focus: LS, CCC1, CCC2, CCC3, CCC4, CCC6, SEP1, SEP2
Sponsor: 3D Molecular Designs
Gina Vogt (vogt@msoe.edu) and Margaret Franzen (franzen@msoe.edu), MSOE Center for BioMolecular Modeling, Milwaukee, Wis.
Using 3-D physical representations, students discover that proteins are linear sequences of amino acids that spontaneously fold into complex shapes following basic principles of chemistry. This hands-on workshop explores a specific class of proteins—enzymes—to introduce the concepts of substrate, active site, specificity, and competitive/noncompetitive inhibition.
Personalizing Your Science Instruction
(Grades K–12)
401 A/B, Music City Center
Science Focus: GEN
Sponsor: Discovery Education
Renee Cartier, Discovery Education, Silver Spring, Md.
What is personalized learning and how can you implement it in the science classroom to meet the needs of all learners? In this workshop, participants will explore the different aspects of personalized learning and engage in practical ways to bring this learning to the science classroom.

2:00–4:00 PM Hands-On Workshop
INF
Science in the Community Session: Interactive Forum on Science and Art
(General)
101 A/B, Music City Center
Science Focus: INF, CCC1, CCC2, SEP1
Phyllis Katz (pkatz15@gmail.com), Retired Educator, Silver Spring, Md.
Robert Root-Bernstein (rootbern@msu.edu), Michigan State University, East Lansing
Laura Conner (lconner@alaska.edu), Geophysical Institute, University of Alaska, Fairbanks
Science through graphic arts, craft, drama, and music can stimulate minds in new and helpful ways. Come STEAM along with us and try these techniques.

2:30–3:00 PM Presentations
3D
Creating and Sharing Three-Dimensional NGSS-Focused High School Chemistry Lessons in a Virtual Professional Learning Community
(Grades 9–12)
103A, Music City Center
Science Focus: PS, CCC, SEP
Kristen Cacciatore (kcacciatore@boston.k12.ma.us), East Boston High School, Boston, Mass.
Raymond Stadt (@rstadt31; rstadt31@comcast.net), Eisenhower High School, Blue Island, Ill.
A team of six chemistry teachers from around the country collaborate virtually to create and revise NGSS-focused lesson plans and then share them with other teachers.

Turning Your Students into Citizen Scientists
(Grades 9–12)
Acoustic, Omni
Science Focus: GEN, SEP
Patrick Murphy, Downers Grove North High School, Downers Grove, Ill.
Emphasis will be placed on how teachers can use common technologies like phones, Google Docs/forms, and ImageJ to produce authentic lab experiences.

Creating Interactive Lessons for the Flipped Classroom
(General)
Broadway G, Omni
Science Focus: GEN, SEP7, SEP8
Nick LaFave (@nflafave; nick.lafave@clover.k12.sc.us), Clover High School, Clover, S.C.
Learn easy ways to create interactive instructional videos and online lectures for your students with tools you already know how to use.

3:00–4:00 PM Exhibitor Workshop
Build, Program, and Control with K’NEX Education’s New Robotics Building System
(Grades 5–10)
108, Music City Center
Science Focus: ETS
Sponsor: K’NEX Education®
This dynamic hands-on building system teaches students how to apply programming skills to operate various built models. You’ll be the student in this workshop, as you write your own computer program to control a vehicle model built out of K’NEX! Space limited: 24 working, 20 observing. Arrive early!
3:30–4:00 PM Presentations

NSTA Press® Session: Beyond the Numbers: Making Sense of Statistics
(Grades 6–College) 101C, Music City Center
Science Focus: GEN
Edwin Christmann (edwin.christmann@sru.edu), Slippery Rock University of Pennsylvania
Add new learning to your classroom. Let’s focus on the NSTA Press book, Beyond the Numbers: Making Sense of Statistics.

Little Learners, BIG Ideas: Learning on the Go, Community Partnerships for Early Childhood
(Grades P–3) 104B, Music City Center
Science Focus: INF
Allison Bemiss (@LittleInnovator; allison.bemiss@wku.edu), Western Kentucky University, Bowling Green
How do children become innovators? We will take a look at how we successfully partnered with local businesses, a university, the public library, and a regional education cooperative to plan STEAM-themed family nights for young children.

Don’t Be a Crash Test Dummy!
(General) Broadway G, Omni
Science Focus: GEN, NGSS
Charles Harmon (distantshores1776@yahoo.com), kNOw Crash Test Dummies, Inc., Whittier, Calif.
Students learn STEM by building safety cars engineered with seat belts, air bags, and roll bars to protect egg drivers in simulated crash experiments.

3:30–4:30 PM Robert H. Carleton Lecture
Moving Toward NSTA’s Vision to Be the Leader in Science Education
(General) Davidson A2/3, Music City Center
Science Focus: GEN
Herb Brunkhorst (hkbrunkh@csusb.edu), Professor Emeritus of Science Education and Biology, California State University, San Bernardino
Presider: Linda Gale Stanley, Building the Band: Involving Community Stakeholders Strand Leader; TSTA President; and STEM Coordinator, Campbell County Schools, Jacksboro, Tenn.
This “lecture” will be a discussion to explore how NSTA becomes the “go to” leader in science education. How does NSTA use its collective expertise, especially that of the classroom teacher of science, to advance science literacy for ALL?

For nearly 50 years, Herbert Brunkhorst has been a nationally recognized leader in science education. He is professor emeritus at California State University San Bernardino. During his many years as a classroom teacher and university faculty member, he has also devoted his time and expertise to a range of science and science education organizations, including serving as president of the Association for the Education of Teachers of Science, member of the Council of Scientific Society Presidents, elected Fellow of the American Association for the Advancement of Science, and Lifetime National Associate of the National Academy of Sciences, to name just a few.
While on the NSTA Board of Directors, he served as director of Preservice Science Teacher Preparation. His record of publishing in science education; presenting sessions at state, national, and international professional conferences; and successfully writing grants is truly exceptional. For his efforts, he has received countless awards, including being honored with the NSTA Robert H. Carleton Award, the Utah Governor’s Recognition Award in Science Education, and the California Science Teachers Association’s Margaret Nicholson Award for Distinguished Service in Science Education.
Uncovering Student and Teacher Ideas in Science Using Probes
(General) 101D, Music City Center
Science Focus: GEN
Douglas Hunnings (@ETHOS_Douglas; dhunnings@elkhart.k12.in.us), Riverview Elementary School, Elkhart, Ind.
Susan Disch, ETHOS Science Center, Elkhart, Ind.
Page Keeley (@CTSKeeley; pagekeeley@gmail.com), 2008–2009 NSTA President, and The Keeley Group, Fort Myers, Fla.

Hear how teachers and professional developers have used the Uncovering Student Ideas series to help improve instruction, in and out of the classroom.

Renewable Energy Dashboard for Student Education
(Grades 7–12) 104A, Music City Center
Science Focus: GEN
Christine Gleason (cgleason@greenhillsschool.org), Greenhills School, Ann Arbor, Mich.
The Greenhills School Renewable Energy Dashboard monitors, displays, and archives performance data from multiple renewable energy resources for use in middle school and high school student education.

Creativity, Curiosity, and Critical Thinking Combined: Using Nuggets of Science to Model Inquiry
(Grades 4–7) 106A, Music City Center
Science Focus: GEN, CCC
Dia Michels, Science, Naturally!, Washington, D.C.
Discover strategies to build confidence and encourage curiosity. We’ll use science questions and brainteasers to spur deductive reasoning and help kids make connections to real life.

CANCELED

BOOT SCOOTIN’ BOOGIE!
Saturday, April 2, 8:00–10:00 PM, at the Frontier Room
Frontier Room (located above the Whiskey Bent Saloon)
306 Broadway, Nashville, TN 37201 • 615-401-2580

Open to y’all!

Git yerself over to the Frontier Room (directions at left) for an opportunity to network and meet up with your colleagues on the last night of the NSTA conference.

This evening of entertainment will feature…
• Charity Byars, performing artist and band as well as line dance lessons and traditional bar foods for sale, including pulled pork sandwiches, sliders, tater tots, etc. (ranging from $5 to $15).
• Cash bar with the “Boot Scootin’ Bourbon” drink special!
INF

STEMSHOT: A Community-Sponsored Rocket Challenge
(Grades 4–College)
Acoustic, Omni
Science Focus: ETS1, INF, PS2, PS3, CCC1, CCC6, SEP1, SEP3, SEP4
Rico Tyler *(rico.tyler@wku.edu)* and Lee Ann Smith *(leeann.smith@wku.edu)*, Western Kentucky University, Bowling Green
Brian Womack *(brian.womack@grrec.org)*, Green River Regional Educational Cooperative, Bowling Green
Simone Parker *(simone.parker@trigg.kyschools.us)*, Trigg County High School, Cadiz, Ky.
Learn how a university and an educational cooperative partnered to design and host an annual team rocket challenge that teaches science and engineering practices.

Zoo Genetics: A Partnership Between Scientist and Teacher
(Grades 7–College)
Broadway D, Omni
Science Focus: GEN, SEP4, SEP7
Jason Crean *(jcrean@lths.net)*, Lyons Township High School South, Western Springs, Ill.
Check out this free genetics curriculum resulting from a partnership between a scientist and teacher with activities that look at real-world conservation issues through simulations.

3D Design and Printing: Basics for Teachers
(Grades 4–10)
Cumberland 1, Omni
Science Focus: ETS, SEP2
Cary Busby *(cary@themuseknoxville.org)*, The Muse Knoxville, Tenn.
Arm yourself with basic tools, skills, and tips for managing student-led 3D design and printing! Integrate science with technology, engineering, and art.

Demonstrations: Writing and Assessment in the Science Classroom
(Grades 6–12)
Cumberland 3, Omni
Science Focus: PS1, SEP1, SEP2, SEP4
Kyle Duhon *(kyleduhon@gmail.com)*, Prairieville Middle School, Prairieville, La.
Learn how to use demonstrations to assess student understanding of physical science/chemistry topics.

Connecting Content to the Grid
(Grades 6–8)
Cumberland 4, Omni
Science Focus: ETS
Jessica Minton *(mintonj04@gmail.com)*, Riverdale Elementary School (K–8), Germantown, Tenn.
Erin Wills *(ewills1@utk.edu)*, The University of Tennessee, Knoxville
Would you like to electrify your classroom? Discover how to energize the content using real-world applications.

CSSS Session: Outstanding Science Trade Books in the Classroom
(Grades K–5)
Legends G, Omni
Science Focus: GEN, CCC1, CCC2
Linda Schoen-Giddings *(lins326@aol.com)*, LSG Educational Consultants, Santa Fe, N.Mex.
Learn how to use Outstanding Science Trade Books in the classroom to teach grade-level standards and integrate CCSS ELA with the NGSS.

Tennessee Science Standards Review: High School Update and Feedback
(Grades 9–12)
Mockingbird 4, Omni
Science Focus: GEN
Laura Encalade *(laura.encalade@tn.gov)*, Tennessee Dept. of Education, Nashville
Join me for an update for high school teachers on Tennessee’s science standards review process as well as an opportunity for feedback on current drafts.

Integrating STEM, STEAM, and Culturally Relevant Teaching into Teacher Preparation Programs to ELLs and Those with Disabilities
(Grades 1–11)
Music Row 1, Omni
Science Focus: GEN
Steve Showalter and Patricia Peterson, Northern Arizona University, Flagstaff
Gerry Madrazo, Jr. *(gerrymadrazo@gmail.com)*, 1993–1994 NSTA President, and Science Education Consultant, Gibsonville, N.C.
Explore best practices in STEM/STEAM instruction for English language learners that are integrated into teacher education programs serving culturally/linguistically diverse ELLs and ELLs with disabilities.
Enhancing Student Learning in Science Using Literacy Strategies
(Grades 6–12) Music Row 2, Omni
Science Focus: GEN, SEP1, SEP7
Bev DeVore-Wedding (@bdevore; bdevorewedding@gmail.com), NSTA Director, High School Science Teaching, and University of Nebraska–Lincoln
Promoting reading and writing while learning science? Use proven literacy strategies to enhance your students’ science knowledge and science literacy for the 21st century.

ASTC Session: Catalyzing Energy Education
(Grades 5–12) Music Row 3, Omni
Science Focus: INF, CCC1, CCC2
Margaret Glass, Director, Professional Development, ASTC, Washington, D.C.
Sandra Ryack-Bell (sryackbell@mits.org), MITS, Inc. (Museum Institute for Teaching Science), Quincy, Mass.
Museum educators connect with teachers and community partners in a new energy education initiative to share effective strategies and resources.

NSELA Session: NGSS Engineering: How to Help Every Teacher Move from Panic to Plan
(Grades 6–College) Music Row 4, Omni
Science Focus: ETS1
Ann Hammersly (@ahammer9Ann; ahammersly@susd.org), Chaparral High School, Scottsdale, Ariz.
Encounter examples and strategies for teacher leaders to incorporate engineering ideas into every science classroom. Professional development ideas for all subject areas included.

3:30–4:30 PM Hands-On Workshops

Regurgitation and Argumentation: Teaching Science Practices Using Owl Pellets
(Grades K–5) 101E, Music City Center
Science Focus: LS, SEP1, SEP3, SEP4, SEP7, SEP8
José Rios (jrios@u.washington.edu), University of Washington Tacoma
According to the NGSS, claims and evidence are integral parts of the science practices. Come explore how you can use owl pellets to teach scientific argumentation.

Using NGSS Tools and Resources in Your Classroom
(Grades K–12) 103A, Music City Center
Science Focus: GEN, NGSS
Presenters to be announced
Join NGSS writers to discuss ways to use the newest tools and resources from nextgenscience.org to support your NGSS-focused instruction.

3D Forces and Motion: An Integrated K–8 Hands-On Approach Supporting the NGSS and CCSS ELA
(Grades K–8) 103C, Music City Center
Science Focus: PS
Laura Robertson (robertle@etsu.edu), LaShay Jennings (jenningsjl@etsu.edu), Huili Hong (hongh1@etsu.edu), Karin Keith (keithkj@etsu.edu), and Chihche Tai (ctai59@gmail.com), East Tennessee State University, Johnson City
Explore the benefits of merging experiential science and literacy instruction to deepen students’ understanding of force and motion.

Energize Your Elementary Students
(Grades K–5) 104C, Music City Center
Science Focus: GEN
Linda Fonner (lfonner@k12.wv.us), New Martinsville Elementary School, New Martinsville, W.Va.
Calling K–5 teachers, come engage in energy activities that may be taught across various subject areas. Experiments, skits, lap books, and the arts will be included.

Developing STEM Partnerships You Can’t Live Without
(General) 103B, Music City Center
Science Focus: INF
Eric Hall (@hallscience; eric.hall@dmschools.org) and Maureen Griffin (@HHSPoflearn; maureen.griffin@dmschools.org), Hoover High School, Des Moines, Iowa
Learn how the structure of your STEM outreach programming can better support quality school-partner interactions using our compelling partnership framework.

NSTA Nashville National Conference on Science Education 91
K–5 Science Literacy: How to Make It Work
(Grades K–5) 104D, Music City Center
Science Focus: GEN, NGSS
Eva Olafson (olafson_eva@salkeiz.k12.or.us) and Susan Luna (luna_susan@salkeiz.k12.or.us), Salem-Keizer School District, Salem, Ore.
Emphasis will be placed on strategies to integrate science content into literacy and math blocks. We will highlight NGSS connections to the CCSS.

Get Ready for the Great American Eclipse!
(Grades 4–9) 104E, Music City Center
Science Focus: ESS1.A, ESS1.B, CCC1, CCC3, SEP4
Brian Kruse (@astroteacherm8; bkruse@astrosociety.org) and Linda Shore, Astronomical Society of the Pacific, San Francisco, Calif.
Discover how to safely view the August 2017 total solar eclipse, and engage in a three-dimensional modeling and data analysis to understand the pattern of eclipses.

CESI Session: Web 2.0 Tools for Science Teaching
(Grades K–8) 105A, Music City Center
Science Focus: GEN, CCC1, CCC2
Jim McDonald (@jimscienceguy; jim.mcdonald@cmich.edu), CESI President, and Central Michigan University, Mount Pleasant
Scott Roberts (sroberts16@hotmail.com) and Jason Artero, Central Michigan University, Mount Pleasant
This workshop will demonstrate Web 2.0 technology tools to create projects for K–8 science teaching and learning. Participants will explore the tools with their laptops or smartphones.

Linking Science and Literacy for Improved Student Outcomes
(Grades K–6) 105B, Music City Center
Science Focus: GEN
Bill Badders (@baddersb; baddersb@roadrunner.com), 2013–2014 NSTA President, and Retired Educator, Cleveland Heights, Ohio
Come explore strategies for linking science and literacy that support students’ abilities to read, write, and discuss in the context of science and inquiry-based learning using fiction and nonfiction texts. Engage in hands-on examples of how science supports literacy and literacy supports science.

Understanding the Threads: A Three-Dimensional Approach to NGSS Using Hands-On Methods
(Grades 3–8) 106B, Music City Center
Science Focus: GEN, NGSS
Eric Welker (eric@raft.net), RAFT San Jose, Calif.
Learn how to teach three effective hands-on activities correlated to the NGSS performance expectations and explore how to teach them using a three-dimensional approach.

Astronomy Activities for Your Classroom
(Grades K–12) 106C, Music City Center
Science Focus: ESS1, ESS2, CCC1, CCC3, CCC4
Donald Powers (DT-Powers@wiu.edu), Western Illinois University, Macomb
Join me as I spotlight a variety of low-budget hands-on astronomy activities that you can immediately use in your classroom.

National Earth Science Teachers Association (NESTA) Shares: Rock, Mineral, and Fossil Raffle
(General) Davidson B, Music City Center
Science Focus: ESS
Michael Passow (michael@earth2class.org), Dwight Morrow High School, Englewood, N.J.
Presider: Parker Pennington IV (p.o.pennington@gmail.com), NESTA Board Member, Ann Arbor, Mich.
NESTA offers a chance to win one or more display- and classroom-quality rock, mineral, and fossil specimens, as well as other Earth science–related materials.

Project ReCharge: Designing Energy Detectives in Your School!
(Grades 6–12) Broadway C, Omni
Science Focus: GEN, NGSS
David Crowther (crowther@unr.edu), University of Nevada, Reno
Project ReCharge is an NSF-funded project for Energy Education through the University of Nevada, Reno and Envirolution. This PBL energy education program turns your students into energy detectives to save your school money on energy bills. Join me for one of the activities from the program. Handouts!
2016 Ward’s NSTA Workshop Schedule

Hands-On Training with the Ward’s Science Plus Us Team

All Workshops are Located in Ward’s Science Workshop Room #207A

Thursday, March 31
8:00 – 9:30 a.m. Artificial Selection, it’s unnatural!
10:00 – 11:30 a.m. Forces, Integrations and Energy, Oh My
12:00 – 1:30 p.m. Introduction to BioBuilder
2:00 – 3:30 p.m. Lift Weight and Produce Electricity with the Power of Wind
4:00 – 5:30 p.m. CTE: Real life Forensics Brought to the Classroom, Solving the Case

Friday, April 1
8:00 – 9:30 a.m. Outbreaking Bad!!
10:00 – 11:30 a.m. Apply the Science of Energy, Motion, and Friction
12:00 – 1:30 p.m. Fracking the CASE
2:00 – 3:30 p.m. Grant Writing: Designing for Dollars
4:00 – 5:30 p.m. Chemistry of Wine

Saturday, April 2
8:00 – 9:30 a.m. Vampire Chronicles: Sink Your Teeth into Genetics and Blood Typing
10:00 – 11:30 a.m. Grant Writing: Pipelines, Partnerships, and Finding Funding
12:00 – 1:30 p.m. Let physics show how cars may really drive themselves in the future with the ERGOBOT!
2:00 – 3:30 p.m. Elementary Science Activity Jamboree
4:00 – 5:30 p.m. Physics of Music

Stop by Booth #142 to see our latest products and enter to win science prizes!
Using Collaborative Web Tools to Support Three-Dimensional Learning in Earth Science

(Grades 6–8) Broadway H, Omni
Science Focus: ESS2.D, ETS2.A, CCC2, CCC5, CCC7, SEP6, SEP7, SEP8

Jeremy Peacock (@jeremy_peacock; peacock.jeremy@gmail.com), Northeast Georgia RESA, Winterville
Amy Peacock (@peacock_science; peacocka@clarke.k12.ga.us), Clarke County School District, Athens, Ga.
Joanna Beck (beckjoanna@clarke.k12.ga.us) and Kathleen Williams (williamskar@clarke.k12.ga.us), Burney-Harris-Lyons Middle School, Athens, Ga.

Experience a model lesson demonstrating how Google Apps and other online tools can support students as they gather, reason with, and communicate Earth science information.

Design That Matters: Meeting NGSS Through Community Engagement

(Grades 6–12) Broadway K, Omni
Science Focus: ETS, INF

Jean Trusedell (jtrusede@purdue.edu) and William Oakes (oakes@purdue.edu), Purdue University, West Lafayette, Ind.

Engaging middle school and high school students in engineering through service-learning is the focus of this hands-on interactive workshop that explains the Engineering Projects in Community Service (EPICS) engineering design process.

Paintballs, Catapults, Art, and Science: A Cross Curriculum STEAM Project-Based Learning Experience

(Grades 8–College) Cumberland 6, Omni
Science Focus: GEN, NGSS

John Sweeney (jlsweeney2002@gmail.com) and Bridget Botto (bridget.botto@sfawolves.org), St. Francis of Assisi Catholic School, Cordova, Tenn.

Use art as a hook to make an emotional connection to math and science. Launch cotton balls dipped in washable paint of different densities to create a work of art while exploring the relationship between mass, density, and projectile motion.

Decoding Starlight—From Photons to Pixels to Images: Using Science and Art

(Grades 6–12) Legends C, Omni
Science Focus: ESS1, ETS2, PS1, PS2, PS4, CCC4, CCC7, SEP2, SEP4, SEP5, SEP7, SEP8

Donna Young (dlyoung.nso@gmail.com), Chandra X-Ray Center, Bullhead City, Ariz.

Explore a STEAM activity using NASA data to produce a scientific photon intensity image of a supernova remnant and a separate artistic image for public release.

Exploring Perception and the Brain: Hands-On NGSS-Based Investigations from the Exploratorium

(Grades 6–12) Legends E, Omni

Eric Muller (emuller@exploratorium.edu), Exploratorium, San Francisco, Calif.

We will explore human perceptual systems and their connections to the brain with make-and-take, easy-to-do, content-rich “Snack” activities.

Sail with Maury into STEM and CCSS

(Grades 6–12) Legends F, Omni
Science Focus: ESS2.C

Karen Merritt (@karmerritt; karmerritt@aol.com), North Caddo Magnet High School, Vivian, La.
Cindy Birkner (cindy.birkner81@gmail.com), Webber Township High School, Bluford, Ill.

Looking to relate ocean concepts/activities to STEM and CCSS? These participants of the Maury Project have hands-on activities that will do just that.

DuPont Presents: The Science of Keeping Food Fresh

(Grades 9–12) Music Row 5, Omni
Science Focus: GEN, CCC1, CCC2

Farrah Johnson, Deltona High School, Deltona, Fla.
Joshua Dahlem (joshua.dahlem@desotopsb.com), Stanley High School, Logansport, La.

Discover the chemistry of how food additives make your food safe and preserved. Give your students firsthand experience in analyzing and determining the best method for food preservation. A great activity that mirrors a real-world challenge food scientists tackle.

ASTE Session: Using Hands-On Performance Assessment in K–12 Classrooms

(Grades 3–12) Fisk Two, Renaissance
Science Focus: GEN, NGSS

Deborah Tucker (deborahlh@aol.com), Independent Science Education Consultant, Napa, Calif.
Grant M. Gardner (@AssessmentServ; grantmgardner@msn.com), Assessment Services, Inc., Peppereill, Mass.

Engage in a hands-on performance task. Explore student mastery of disciplinary core ideas and practices. Use this protocol to develop tasks of your own.
3:30–4:30 PM Exhibitor Workshop
Sensor-Based Labs to Address NGSS Practices for Middle School Life, Earth, and Physical Science (Grades 6–8)
206 A/B, Music City Center
Science Focus: ESS, LS, PS, SEP
Sponsor: PASCO scientific
Dan Burns (dburns@lgsuhsd.org), Los Gatos High School, Los Gatos, Calif.
Get hands-on experience using SPARKvue software and wireless temperature, pH, pressure, and force acceleration sensors. Explore disciplinary core ideas in middle school science while facilitating science and engineering practices such as developing and using models and constructing explanations based on evidence. Twenty-five attendees will win a free wireless sensor!

3:30–5:00 PM Meeting
SCST Business Meeting
Ryman One, Renaissance

3:30–5:30 PM Hands-On Workshops
CSSS Session: Are Crosscutting Concepts Intentional in Your Classroom? Building CCC Progression K–12 (Grades K–12)
Cumberland 2, Omni
Science Focus: GEN, CCC1, CCC2, SEP
Doug Paulson, Minnesota Dept. of Education, Roseville
Learn how to intentionally use the learning progressions in the crosscutting concepts to strengthen students’ skills in the science and engineering practices. Explore the understanding of system at various age levels to see the progression in action.

NGSS Toolkit Pathway Session: Using a Tool and NGSS Performance Expectation Specifications to Develop Assessment Tasks (Grades 6—College)
Legends B, Omni
Science Focus: GEN, NGSS
James Short (jshort@amnh.org), American Museum of Natural History, New York, N.Y.
Use a tool to engage in a process to create assessments aligned to performance expectations based on task specifications.

4:00–4:30 PM Presentations
Living Museum: A Way to Integrate Subjects Across the Curriculum (Grades K–5)
104B, Music City Center
Science Focus: GEN, SEP1, SEP2, SEP8
Colleen McCracken (cmccracken@staples.com), Deana Washell (dmm11@scasd.org), Charlotte Searle (cs31@scasd.org), and Russell Lorring (rjl20@scasd.org), Easterly Parkway Elementary School, State College, Pa.
After conducting an integrated inquiry, students became docents sharing their knowledge with a wider audience.

Show Me What You Know! (Grades 6–12)
Cumberland 5, Omni
Science Focus: GEN
Kristin Bundren (@MrsBundren; kbundren@hoover.k12.al.us) and Pamela Harman (@pamelaharman; pharman@hoover.k12.al.us), Spain Park High School, Hoover, Ala.
Tammy Dunn (@HooverSTEM; tdunn@hoover.k12.al.us), Hoover City Schools, Birmingham, Ala.
Hear about web-based applications to use in your classroom for formative assessments. This will be an interactive session, so bring your device!

4:00–5:00 PM Meeting
NSTA Recommends Meeting
Mockingbird 3, Omni

4:00–5:30 PM Meeting
Tennessee Science Education Leadership Association (TSELA) Meeting
Mockingbird 2, Omni
Presider: Ruth Leonard, Sullivan County Schools, Blountville, Tenn.
The annual meeting of the Tennessee Science Education Leadership Association (TnSELA). For details, please contact Ruth Leonard at ruth.leonard@sullivank12.net.
4:00–5:30 PM Exhibitor Workshops

Build a Robot Using an Android App: FIRST® Tech Challenge Extends STEM Learning Beyond the Middle School and High School Classroom
(Grades 7–12) 107A, Music City Center
Science Focus: ETS, SEP
Sponsor: FIRST
Ken Johnson (kjohnson@firstinspires.org), Thomas Eng (teng@firstinspires.org), and Joshua Wierman (jwierman@firstinspires.org), FIRST, Manchester, N.H.
Learn how to implement robotics and extend STEM learning. In 90 minutes, you’ll build, program, and operate a robot using off-the-shelf Android devices. Engage students in hands-on learning while reinforcing 21st-century skills—all while making science, technology, engineering, and math fun and challenging for students and teachers alike.

“Hard” Doesn’t Mean “Bad”
(Grades 6–9) 107B, Music City Center
Science Focus: GEN
Sponsor: AEOP eCYBERMISSION
Help your students learn that challenges and even failure can be productive if handled properly. Also, hear about the free online STEM competition eCYBERMISSION and how you and your students can participate.

Getting to Know Creative Coding Through Games and Apps
(Grades 7–10) 110A, Music City Center
Science Focus: GEN
Sponsor: Microsoft
Todd Beard (v-tobear@microsoft.com), Microsoft Innovative Educator Fellow, Detroit, Mich.
This session is an overview of a first-semester course to introduce programming in early secondary grades in a manner that can engage students, no prior experience required! Come gain an understanding of the course through hands-on experience with the curriculum.

Teaching Evolution in a Climate of Controversy—Even with NGSS, the Battles Continue
(Grades 9–12) 110B, Music City Center
Science Focus: LS
Sponsor: Pearson Education
Kenneth Miller, Brown University, Providence, R.I.
Recent struggles over the content of science textbooks highlight the fact that 90 years after the Scopes Trial, evolution remains a controversial topic. Ken Miller will discuss how educators can deal with it successfully, as well as identify a series of resources that can be used to respond to challenges faced when teaching evolution.

CPO’s Link™ Wind Turbine Learning Module: A STEM Approach to Engineering and Design
(Grades 6–12) 201A, Music City Center
Science Focus: ETS
Sponsor: CPO Science/School Specialty Science
Erik Benton, CPO Science/School Specialty Science, Nashua, N.H.
CPO’s Link Wind Turbine learning module lets students learn in a tablet-based learning environment and engineer a wind turbine. Students build, test, and revise their designs. Link uses STEM activities and an NGSS approach, giving students an understanding of how to apply the engineering cycle in science class.

Archaea and the Three Domains: Classification of Life for Middle School
(Grades 5–8) 201B, Music City Center
Science Focus: LS
Sponsor: Delta Education/School Specialty Science–FOSS
Virginia Reid and Jessica Penchos, The Lawrence Hall of Science, University of California, Berkeley
Are you most like E. coli bacteria, Yellowstone extremophile archaea, or bread mold? Explore cell structures and current classification. Take home a set of student materials, overview instructional strategies for reading and science practices, and preview online activities and NGSS connections in the revised FOSS Diversity of Life Course.

Magnify Your Mind!…with The Private Eye®
(Grades K–12) 202A, Music City Center
Science Focus: GEN, INF
Sponsor: Educational Innovations, Inc.
Give your students a wallop of wonder and mystery—using a jeweler’s loupe, everyday objects, and a powerful inquiry process. Students investigate science topics with a fresh perspective and surprise themselves as they write, draw, and theorize at sophisticated levels. Habits of close observation bloom, critical thinking soars, and NGSS and CCSS come to life. Take away this easy hands-on method—and magnify minds! Free starter kit!
Engage Grades 6–8 Students in a Free STEM Competition Associated with Light and Sleep
(Grades 6–8) 202B, Music City Center
Science Focus: GEN
Sponsor: Bright Schools Competition
Sarah Beistel (sbeistel@nsta.org), Program Manager, Science Education Competitions, NSTA, Arlington, Va.
Patty McGinnis (pattymcginnis1@gmail.com), Arcola Intermediate School, Eagleville, Pa.
The goal of the Bright Schools program is to create a learning experience that can help students, parents, and teachers better understand the link between light and sleep. Through the competition, students in grades 6–8 select a topic and one of three exploration options to create an original project.

DNA Crime Lab with miniPCR Technology
(Grades 6–College) 202C, Music City Center
Science Focus: LS, SEP
Sponsor: miniPCR
Sebastian Kraves, miniPCR, Cambridge, Mass.
Curious about DNA? Learn how you can solve a crime mystery using PCR and gel electrophoresis in 90 minutes. The miniPCR DNA Discovery System is safe, affordable, and engaging. Document results with your phone and bring the evidence back home by the end of the workshop!

SHARE YOUR IDEAS!
Have an idea for an inspiring presentation or workshop on science education? Submit a session proposal today.

Proposal Deadline: 4/15/2016
To submit a proposal, visit www.nsta.org/conferenceproposals
Carolina's Young Scientist™ Dissections with Carolina’s Perfect Solution® Specimen
(Grades K–5) 204, Music City Center
Science Focus: LS
Sponsor: Carolina Biological Supply Co.
Carolina Teaching Partner
Transform your students into young scientists when you bring these simple hands-on dissections to your classroom! We will guide you through the dissections of a squid and a frog, promoting classroom discussions of easily observable adaptations and the relationship between structure and function.

Bring Visual Science into K–5 Classrooms—It’s a Game Changer!
(Grades K–5) 205A, Music City Center
Science Focus: GEN, INF
Sponsor: Carolina Biological Supply Co.
Carolina Teaching Partner
Spark student interest and improve outcomes! Master teacher Harvey Bagshaw demonstrates engaging science instruction using Tigtag Science real-world STEM videos, interactive content, and a hands-on activity. Harvey’s blend of compelling online learning tools with hands-on fun is guaranteed to delight you and your students! “Watch out! It might get messy.”

Picking Apart the Owl Pellet
(Grades K–6) 205B, Music City Center
Science Focus: LS
Sponsor: Carolina Biological Supply Co.
Carolina Teaching Partner
“Whooo” isn’t fascinated by owl pellets? Use this simple product to teach students about food chains, mammalian anatomy, ecology, and more! Join us for an engaging hands-on workshop as we dissect owl pellets, explore Carolina’s Owl Pellet App, and share ways to incorporate this extremely popular item into your lessons.

Reclaiming the Metal
(Grades 6–8) 205C, Music City Center
Science Focus: PS1.B
Sponsor: LAB-AIDS® , Inc.
Mark Koker, LAB-AIDS, Inc., Ronkonkoma, N.Y.
In this activity from the SEPUP middle level physical science program, participants role-play a scenario involving pretreatment of copper containing liquid wastes from computer circuit board manufacturers. They examine trade-offs of metal replacement and chemical precipitation, techniques actually used in industrial applications, and in so doing, come to understand the science behind complex environmental issues.

Chemistry of Wine
(Grades 9–12) 207A, Music City Center
Science Focus: PS
Sponsor: Ward’s Science
Kelly Smith and Lisabeth Hoffman, VWR Science Education, Rochester, N.Y.
Ever wonder what is in that bottle of wine, other than grapes? Sugar content, acid content, and alcohol content are all qualities that are important. Scientific techniques such as refractometry, titration, and performing density measurements with a hydrometer all can be used to determine how much alcohol, sugar, and acid is present. Explore the scientific principles behind determining the perfect blend, and discover how this can be integrated easily into a high school classroom with our hands-on Chemistry of Wine Workshop.

Human Evolution in Living Color
(Grades 9–12) 207B, Music City Center
Science Focus: LS1.A, LS3, LS4, SEP1, SEP4, SEP6, SEP7
Sponsor: HHMI BioInteractive
Laura Bonetta, HHMI BioInteractive, Chevy Chase, Md.
Helen Snodgrass, YES North Forest, Houston, Tex.
Robin Bulleri, Carrboro High School, Carrboro, N.C.
Explore the evidence that the variation in human skin color is an evolutionary adaptation to the varying intensity of ultraviolet radiation in different parts of the world. Our engaging free classroom-ready resources weave together key concepts in biology, human biogeography, genetics, anatomy, and physiology.

Chemistry with Vernier
(Grades 9–College) 207C, Music City Center
Science Focus: PS, SEP
Sponsor: Vernier Software & Technology
Jack Randall (info@vernier.com), Vernier Software & Technology, Beaverton, Ore.
Use Vernier sensors to conduct a variety of chemistry experiments from our popular lab books in this engaging hands-on workshop. Collect and analyze data using LabQuest 2 and Logger Pro computer software. Explore the wide range of tools from Vernier that promotes understanding of chemistry concepts.
STEM/Engineering Activities Using Vernier Sensors with Arduino
(Grades 6–12) 207D, Music City Center
Science Focus: ETS, SEP
Sponsor: Vernier Software & Technology
Dave Vernier (info@vernier.com), Vernier Software & Technology, Beaverton, Ore.
Attend this engaging, hands-on workshop to explore how easy it is to use Vernier sensors with the inexpensive, easy-to-program Arduino microcontroller. Topics include an introduction to Arduino programming, calibrating sensors, and controlling outputs based on sensor readings. Learn how you can use Arduino for great STEM and engineering projects.

Science, Style, and Fun! Genes in a Bottle™ Kit
(Grades 6–College) 208A, Music City Center
Science Focus: LS3, SEP
Sponsor: Bio-Rad Laboratories
Leigh Brown (leigh_brown@bio-rad.com), Bio-Rad Laboratories, Hercules, Calif.
Isolate your own DNA and capture your unique essence in stylish helix-shaped necklaces! From biomolecules and cell structure to genetics and the chemistry of life, this workshop is perfect for all education levels, integrating multiple life science standards in a single lesson.

The GMO Debate Rages On!
(Grades 9–College) 208B, Music City Center
Science Focus: LS3
Sponsor: Bio-Rad Laboratories
Sherri Andrews (sherri_andrews@bio-rad.com), Bio-Rad Laboratories, Hercules, Calif.
Are GM crops a good thing? Do all countries have the same GM food labeling requirements? Learn more about GMOs and how to test for the presence of GM content in foods. Join a debate and learn how to bring this experience to your classroom.

New Inquiry Investigations for AP Physics 1 from Flinn Scientific
(Grades 9–12) 209A, Music City Center
Science Focus: PS
Sponsor: Flinn Scientific, Inc.
Mike Frazier and Gus Alvarez, Flinn Scientific, Inc., Batavia, Ill.
As the first school year of the new AP Physics 1 course, Flinn Scientific is sharing experiments correlated to this new curriculum framework. We will present two of our 16 new guided inquiry physics kit experiments. Each experience features pre-lab preparation and activities optimized to help you effectively guide students and provide maximum opportunities for inquiry. Handouts.

The REAL Story of the Animal Kingdom on Planet Earth
(Grades 5–8) 209B, Music City Center
Science Focus: LS
Sponsor: Shape of Life
Denise Ryan, Ryan+Forest.Hayes, Soquel, Calif.
Nancy Burnett, Shape of Life, Carmel Valley, Calif.
Learn from a founder of the Monterey Bay Aquarium how sharing the greatest story every told on planet Earth—the evolution of the animal kingdom, through classroom media, can captivate students. Please join Nancy Burnett as she shares her experience and exquisite short videos, readings, illustrations, and amazing free resources for your classroom. All Shape of Life short videos are derived from the popular PBS series produced by the Shape of Life team. CCSS and NGSS resources available for all attendees.

The Harnessed Atom: New Project Ideas, Tools, and Resources—Nuclear Science and Energy
(Grades 5–8) 209C, Music City Center
Science Focus: PS1, PS2, PS3, SEP
Sponsor: U.S. Dept. of Energy
Marie Westfall (marie.westfall@orau.org), Oak Ridge Associated Universities, Oak Ridge, Tenn.
Pete Xiques (peter.j.xiques@leidos.com), Leidos, Oak Ridge, Tenn.
Join in for free resources to teach integrated energy content and concepts! This interactive workshop on The Harnessed Atom curriculum materials for middle school includes lesson plans, project-based lessons, interactive games, hands-on activities, student collaboration ideas, and teacher resources.

Telescopes for Your Classroom
(Grades 4–College) 210, Music City Center
Science Focus: ESS, INF
Sponsor: Fisher Science Education
You love astronomy and want to motivate your students to keep looking up. Where do you start? Learn how different telescope designs help navigate the sky and investigate hands-on learning tools you can implement in your classroom. Then take the learning outside with observing projects and star parties.
Make Science Come to Life
(Grades 1–5) 211, Music City Center
Science Focus: GEN, NGSS
Sponsor: LEGO Education
Laura Jackson, Anderson (S.C.) School District Five
Did you know LEGO® bricks can provide an engaging platform for making science come to life? Using LEGO Education solutions, elementary students can explore, create, and share discoveries as they build solutions to real-world, standards-based projects and deeply engage with science practices and the engineering design process. Come experience a resource that develops students’ confidence to ask questions, find answers, and solve problems by putting discovery in their hands.

Leap into the Future with Hands-On Science Teaching
(Grades 5–College) 212, Music City Center
Science Focus: LS
Sponsor: Animalearn
Nicole Green (ngreen@animalearn.org), Animalearn, Jenkintown, Pa.
Examine the use of animals to teach anatomy and explore how by using other options, we can conserve resources, eliminate harmful chemicals, and promote habitat protection. Join us and try the latest alternatives using iPad apps, anatomy and clay, and more! Two participants will win a subscription to Froguts—a $299 value!

Let’s Get into Orbit: Charting a Course to the Stars
(Grades 8–12) 214, Music City Center
Science Focus: ESS, ETS
Sponsor: StellarXplorers
Bill Yucuis (yucuisb@yahoo.com), Retired Educator, Sun City Center, Fla.
Aaron Cannon (acannon@afa.org) and Stephen Gourley (stephen.k.gourley@gmail.com), StellarXplorers, Arlington, Va.
The Air Force Association (AFA) is currently using STK as part of a national space competition, called StellarXplorers. Students are currently preparing for this year’s finals, which will be held at the 2016 Space Symposium in April. Find out how your students can participate in next year’s exciting StellarXplorers.

Engaging Students in Authentic Science Experiences Using Digital Tools
(Grades K–12) 401 A/B, Music City Center
Science Focus: GEN
Sponsor: Discovery Education
Patti Duncan, Discovery Education, Silver Spring, Md.
In a student-centered learning environment, we want students to ask deep, meaningful questions; collaborate with their peers; arrive at meaningful conclusions; and solve real-world problems. Join us to learn about a variety of digital resources and instructional strategies to engage all students in authentic science experiences.

4:30–6:30 PM Special Session
National Geographic Channel Film Screening:
Breakthrough: More Than Human, Directed by Paul Giamatti
Grand Ballroom C2, Music City Center
The fusion of science and technology is making us better, stronger, faster, and smarter. How we think, feel, and experience the world—everything is changing. For more information, please visit www.natgeotv.com/breakthrough.

4:45–5:45 PM Meeting
CESI Membership Meeting
105A, Music City Center
Please join us for our annual CESI membership meeting where we will honor awardees, give CESI updates, and hand out door prizes.

—Courtesy of Jacob Slaton
5:00–5:30 PM Presentations

Bringing Science to Life with Safe Online Social Learning
(Grades 6–9) Cumberland 4, Omni

Science Focus: GEN, CCC

Donna Benson (@MySciLife; dbenson730@gmail.com) and Ruth Okoye (@moreruckus2; rokoye@sflinc.org), Source for Learning, Lancaster, Pa.

Discover how middle level students can take on a science “identity” and interact with others in a social learning context using MySciLife®.

STEM in Action: Learning Physics Through Projects
(Grades 11–College) Music Row 3, Omni

Krassi Lazarova (krassil@yahoo.com), Centenary College of New Jersey, Hackettstown

Find out how to use projects to facilitate learning in high school and college introductory physics courses. Hear about five different projects to incorporate into your physics courses: self-propelled vehicle, paper bridge, roller coaster, electric house, and science toys that can be adapted depending on the ability of students to work independently.

5:00–5:45 PM Networking Opportunity

Shell Reception
(By Invitation Only) Music City Ballroom, Renaissance

“Don’t simply retire from something; have something to retire to.” —Harry Emerson Fosdick

The NSTA Retired Advisory Board invites you to a vibrant and useful information-sharing session. Join your fellow colleagues and share your ideas about staying active both in and out of the profession.

Before and After Retirement—Practicalities and Possibilities
Saturday, April 2
9:30–10:30 AM
Omni Nashville Hotel, Music Row 3

For more information on the Retired Members Advisory Board, contact Linda Smith, chair, at elementary.science.teacher@gmail.com.
5:00–6:00 PM Presentations

NSTA Press® Session: Using Everyday Mysteries to Promote Literacy
(Grades 1–12) 101C, Music City Center
Science Focus: ETS, CCC1, CCC2
Richard Konicek-Moran (rkonicek@gmail.com), Professor Emeritus, UMass Amherst, Mass.
Andrea Allen (@KCScience; andrea.allen@knoxschools.org), Knox County Schools, Knoxville, Tenn.
Join us as we use the NSTA Press book *Everyday Science Mysteries* to reinforce literacy while teaching science concepts to either struggling or gifted readers.

The Smithsonian, STEM, and Your Classroom
(Grades 5–8) 103B, Music City Center
Science Focus: GEN
Beth Wilson (wilsone@si.edu), Martin Kelsey (@STEMin30; kehelmann@si.edu), and Matthew Horton (STEMin30@si.edu), Smithsonian National Air and Space Museum, Washington, D.C.
Maggy Benson (@NMNH; bensonm@si.edu), Smithsonian National Museum of Natural History, Washington, D.C.
Discover the techniques for involving your students in broadcasts and to extend the programming into your classroom.

Competency-Based Teaching Practices in Science
(Grades 6–College) 104A, Music City Center
Science Focus: GEN, SEP8
John-Patrick Clark (@jpgclark; john.clark@owensboro.kyschools.us), Owensboro High School, Owensboro, Ky.
Using research-based practices and community partnerships, discover how to plan instruction and use resources along with competency-based strategies to improve student understanding.

Children’s Books, STEM, and the Elementary Classroom: One Author’s Perspective
(Grades K–5) 104B, Music City Center
Science Focus: ESS3, LS1, PS2.A, PS2.B
Mark Weakland (@MarkWeakland; springwatermg@earthlink.net), Reading Specialist, Literacy Consultant, and Author, Hollsopple, Pa.
Join me as I discuss what to look for in nonfiction books, and how books, the NGSS, and science lessons can interact in a classroom.

Using Enduring Understandings to Drive Standards-Based Integrated Units
(Grades K–6) 106A, Music City Center
Science Focus: GEN
Christine Campanaro, Orange County Public Schools, Orlando, Fla.
This hands-on relevant presentation will teach you how to write integrated units and quality lesson activities across multiple content areas (STEM, ELA, CTE).

Engineering Architecture in the Classroom
(Grades K–8) Davidson A2/3, Music City Center
Science Focus: ETS, CCC6, CCC7, SEP
Nicole Gordon (ngordon@lindberghschools.ws) and Michael Kuhn (mkuhn@lindberghschools.ws), Lindbergh Schools, St. Louis, Mo.
Get out of the box to teach structure and function in architecture. Lessons, use of guest speakers, and field trip ideas will be shared. Use creativity, engineering, and science to engage students in planning, building, and design.

The SOFIA Airborne Astronomy Ambassador Program
(Grades 9–12) Acoustic, Omni
Science Focus: ESS1.A, INF, CCC, SEP
Babs Sepulveda (bsepulveda@lusd.net), Lincoln High School, Stockton, Calif.
I’ll describe the SOFIA Airborne Astronomy Ambassador Program and its impact on instruction. Activities that teach about light, handouts, and resources will be shared.

Integrating Multiple Concepts in Biology Using Cyanogenic Clover
(Grades 9–College) Cumberland 1, Omni
Chuck McWilliams (chuck.mcwilliams@mrhschools.net), MRH High School, St. Louis, Mo.
Learn how your students can participate in authentic science research involving the cyanogenesis of clover plants growing in their own backyard—supported by Washington University.
Incorporating 3D Printing into the Biology Curriculum
(Grades 12–College)
Andrew Vinal (@acvinal; acvinal@gmail.com), Wake Technical Community College, Raleigh, N.C.
Give your biology students a meaningful didactic experience by printing 3-D models of proteins using 3D printing. Emphasis will be placed on projects that explore the structure and function of proteins.

Framing Classroom Instruction to Best Support NGSS Learning
(Grades K–12)
Karen Travers Lynch, Measured Progress, Dover, N.H.
NGSS experts affirm properly framing classroom activities is key to NGSS instruction. This session will explore the concept of framing, providing details and implementation support.

5:00–6:00 PM Hands-On Workshops

STEM and the Science and Engineering Practices—Your New BFFs
(Grades K–6)
Rebecca McDowell (@bethethechange; beckymcdowell@gmail.com), Barrington (Ill.) 220 School District
Join in for an introduction to the engineering design process for newbies. Participate in hands-on exploration of the science and engineering practices...with air blasters!

Linking Lessons into a Storyline—Making It Happen
(Grades 5–8)
Mary Starr (@starrscience; mary@starrscience.com), Michigan Mathematics and Science Centers Network, Plymouth
Conceptual storylines require several features and processes for development. Learn about these and share your questions with others who are using these tools.

Photosynthesis and Cellular Respiration: A Hands-On Approach for Grades 6–12
(Grades 6–12)
Laura Robertson (robertle@etsu.edu), LaShay Jennings (jenningsjl@etsu.edu), Scott Honeycutt (honeycut@etsu.edu), Karin Keith (keithkj@etsu.edu), and Chihche Tai (ctai59@gmail.com), East Tennessee State University, Johnson City
Integrate the NGSS and CCSS ELA by using a cycle of science and ELA activities to help students learn about the flow of energy between photosynthesis and cellular respiration.
Shake It Up! Engineering for Earthquakes
(Grades 3–6)
104C, Music City Center
Science Focus: ETS, SEP6
Reeda Hart (hartr@nku.edu), Northern Kentucky University, Highland Heights
Experience the science behind earthquakes. Apply those concepts to engineer an earthquake-proof building. Take home a CD of lesson plans and resources.

Assessing the Youngest Learners: Finding the Science in Children’s Observations, Questions, and Actions
(Grades P–2)
104D, Music City Center
Caitlin Coe (coe@amnh.org), Ilana April (iapril@amnh.org), Natalie Tashler (ntashler@amnh.org), and Kristen Olson (kristen.kelly.olson@gmail.com), American Museum of Natural History, New York, N.Y.
“Can a Porcupine Get Hurted by a Cactus?” Learn how to construct meaning from “the darndest things” kids say and do by using a diverse set of assessment tools. Raffle prizes and resources for participants.

Teach Me Bridges: A STEAM Unit for Upper Elementary Students
(Grades 3–5)
104E, Music City Center
Science Focus: GEN, NGSS
Kendra Moore, New Market School, New Market, Ala.
Learn how to engage students through a free project-based unit that incorporates science, technology, engineering, art, and math into one massive bundle of bridge fun!

Curiosity, Discrepant Events, and Relevance: The Spirit of the Framework and the NGSS
(Grades 3–8)
105B, Music City Center
Science Focus: GEN, NGSS
John Zenchak (jjzenchak@noctrl.edu) and Mary Jean Lynch (mlynch@noctrl.edu), North Central College, Naperville, Ill.
Experience the spirit of the NGSS by engaging your curiosity with a unique discrepant event methodology that relates science content to your everyday life.

Drop, Stop, Don’t Pop! Launching into Engineering Design
(Grades 4–8)
106B, Music City Center
Science Focus: ETS1, SEP
Dennis Engle (@AMSTI-Athens; dennis.engle@athens.edu) and Patricia Maze (@AMSTI-Athens; patricia.maze@athens.edu), AMSTI-Athens, Ala.
Emily McGahee (@AMSTI-Athens; emily.mcghee@athens.edu), Athens State University, Athens, Ala.
Are you a daredevil? Explore the engineering design process as an engineer working for an amusement park and design the ride of your life!

Academic Literacy for All in Science
(Grades 1–8)
106C, Music City Center
Science Focus: LS
Kathryn Watkins (watkins@unm.edu) and Deborah Roberts-Harris (drober02@unm.edu), The University of New Mexico, Albuquerque
Encounter an instructional strategy that supports the development of language skills and dialogue in English as a Second Language students.

The Hydrofracking Boom as a “Teachable Moment” to Explore the Broader Energy Context Within the U.S.
(Grades 6–College)
Cumberland 6, Omni
Science Focus: ESS3
Don Duggan-Haas (dugganhaas@gmail.com), The Paleontological Research Institution, Ithaca, N.Y.
Eric Pyle (pyleej@jmu.edu), NSTA Director, Preservice Teacher Preparation, and James Madison University, Harrisonburg, Va.
Michael Hubenthal (michael.hubenthal@iris.edu), IRIS, Washington, D.C.
Leverage hydrofracking’s “buzz” to teach at the science/society interface. This impartial session introduces underpinning science and strategies for teaching controversial topics. Attendees will receive a copy of the book The Science Beneath the Surface: A Very Short Guide to the Marcellus Shale, a piece of Marcellus Shale, and a session handout with links to related resources. Note: Only the first 30 participants will receive a copy of the book.
Where big ideas become the next big thing.

By hosting Camp Invention, Club Invention or Invention Project, you are partnering with the only nationally recognized programs backed by The National Inventors Hall of Fame.

We provide educators the strategies and environment necessary to nurture curiosity into big ideas through STEM based curricula in an out of school time setting.

Programs for 1st through 8th grade students.
800.968.4332 | campinvention.org | inventionproject.org

Stop by our booth #1122 for more information!

To host a program in your community, send inquiries to campatmyschool@invent.org

In partnership with the United States Patent and Trademark Office
Putting the Science Literacy Puzzle Pieces All Together!
(Grades 6–12)
Science Focus: GEN, NGSS
Carolyn Pistorius (drcpistorius; pistorc@uah.edu), Rhonda Duvall (rhonda.duvall@uah.edu), and Reba Turk (reba.turk@uah.edu), The University of Alabama in Huntsville
Let’s take a look at how to get our students more scientifically literate. We will do a hands-on, inquiry-based science lesson and highlight how to add the CCSS Math and ELA.

Introducing Nanoscience to All Classrooms
(Grades 6–12)
Science Focus: GEN, SEP1, SEP3, SEP4, SEP7, SEP8
Lisa Del Muro (@delmuro_whsnuo; lisa.delmuro@d214.org), Wheeling High School, Wheeling, Ill.
Tanya Katovich (@tkatovich; tkatovich@d211.org), Hoffman Estates High School, Hoffman Estates, Ill.
Colleen Buzby (@buzbyrocks; colleen.buzby@gmail.com), Bridgewater-Raritan High School, Bridgewater, N.J.
Elizabeth Potter-Nelson (@mrspotternelson; e.potter.nelson@gmail.com), Antioch Community High School, Antioch, Ill.
There are 10 “things” every student should know about nanotechnology. Join us for innovative ways to integrate “these” things into your school curriculum.

DuPont Presents: Adding Some Color to Science
(Grades 9–12)
Science Focus: PS, CCC1, CCC2, SEP4
Tiffany Kauffman (@MrsTiffanyK; tkuffman@seymour-school.net), Seymour High School, Seymour, Mo.
JaMonica Marion (@msjjmarion; jjmarion@cps.edu), Chicago High School for Agricultural Sciences, Chicago, Ill.
Come discover pH is where it is at when it comes to flower color. This is a great hands-on activity that quickly demonstrates this awesome color change! Your students will love getting to the down and dirty of soil pH.

5:00–7:00 PM Networking Opportunity
APAST Business Meeting and Social
(By Invitation Only)
Stop by, enjoy refreshments, and catch up with fellow PAEMSTers. This is an excellent opportunity to find out what’s happening. Get more involved with APAST! For additional information, please visit www.apast.org.

5:30–6:00 PM Presentations
“Twittering” with My Grade 8 Science Classes
(Grades 7–9)
PJ Godwin (@godwinchem; pjgodwin@asfa.k12.al.us), Alabama School of Fine Arts, Birmingham
See how Twitter was used as an additional tool in my grade 8 science classroom!

Including Hands-On Instruction in a Science Lecture Course for Undergraduate Education Majors: Lessons Learned
(College)
Rachel Fiore (rfiore1@gsu.edu), Ben McGimsey (mcgimsey@phy-astr.gsu.edu), and John Wilson (wilson@phy-astr.gsu.edu), Georgia State University, Atlanta
Learn the labs we do and the strategies we use to bring labs into a lecture hall physical science course.
#askNSTA

What are the Next Generation Science Standards?

Where can I find free articles tailored to my grade level and subject area?

How can I find funds to attend an NSTA conference?

What does NSTA have for student teachers?

What are the Next Generation Science Standards?

The #askNSTA Lounge is the place in Nashville to learn more about NSTA Membership and become part of the group who is crafting the future of science education!

Come by booth #934 in the Exhibit Hall and ASK US ANYTHING!
Friday, 5:30–7:00 PM

5:30–7:00 PM Networking Opportunity
Learning Center Reception
(By Invitation Only) Broadway E, Omni

6:00–8:00 PM Networking Opportunity
National Middle Level Science Teachers Association
Members’ 25th Anniversary Celebration
(By Invitation Only) Legends D, Omni
For more information, please visit http://nmlsta.ning.com.

6:00–8:45 PM Networking Opportunity
NSTA Teacher Awards Gala (M-3)
(Ticket Required; $80) M-3 East/Center Blrm., Renaissance
Come enjoy a fabulous evening celebrating with this year’s
teacher award recipients! ALL of the teacher awards will
be presented in one grand evening. Join your colleagues in
recognition of this year’s winners. Evening attire is requested
to honor our teacher award recipients. A limited number of
tickets are available for this social event.

 NSTA is grateful to Northrop Grumman Foundation for sponsor-
ing this event.

6:30–8:00 PM Networking Opportunity
NESTA Friends of Earth Science Reception
Skyline Junior Ballroom, Hilton Garden Inn
Join us for a nice Earth science networking opportunity.
Appetizers, refreshments, and awards, including the AGI
Edward Roy Award. Visit old friends; make new ones. Visit
www.nestanet.org for more information.

7:00–9:00 PM Networking Opportunity
SCST Poster Session and Dessert Social
Fisk, Renaissance

9:00 PM–12 Midnight Networking Opportunity
President’s Mixer West Ballroom, Renaissance
DJ and Cash Bar

—Courtesy of Jacob Slaton
FIRST programs (K-12) jumpstart STEM learning through hands-on robotics fun while cleverly helping kids transfer classroom concepts to real-world applications. At the elementary level, student teams are challenged to research scientific problems and present solutions. Middle and high school kids design, build, program, and operate robots to play in a competitive field game. All are exposed to principles of fair play, inclusiveness, respect for others, teamwork, perseverance, and critical thinking. Best of all, **FIRST** enhances students’ desire to do better in school. Help prepare your students for citizenship and careers in the 21st century by starting a **FIRST** team today!

Start a FIRST® Tech Challenge team today –

Apply for a **FREE ROBOTICS KIT and REGISTRATION** ($2,000 value)
http://info.firstinspires.org/firsttechchallengegrant

www.firstinspires.org
Explore all four **FIRST** programs (K-12)

BOOTH # 255

Attend our Workshops (see program):

Utilize Robots to Engage Students with Hands-On, Project-Based Learning (Elementary/Middle School)
Thursday, March 31 » Music City Center, Room 110A » 10:00 – 11:30am

Build a Robot using an Android App – FIRST® Tech Challenge Extends STEM Learning Beyond the Classroom (Middle/High School)
Friday, April 1 » Music City Center, Room 107A » 4:00 – 5:30pm

FOR INSPIRATION & RECOGNITION OF SCIENCE & TECHNOLOGY
Session 1
Date: Thursday, Mar 31
Time: 2:00-3:30 PM
Room: Music City Center, 108

Inspire Students to Jump to the Inquiry Arc

Session 2
Date: Friday, Apr 1
Time: 12:00-1:30 PM
Room: Music City Center, 108

Analyzing and Interpreting Data Using TCI’s Bring Science Alive!

Session 3
Date: Saturday, Apr 2
Time: 10:00-11:30 AM
Room: Music City Center, 108

Modeling the Earth, Sun and Other Stars with Bring Science Alive!

teachtcicom

800-497-6138 info@teachtci.com © 2016 by Teachers’ Curriculum Institute
Friday, April 1

<table>
<thead>
<tr>
<th>Event</th>
<th>Location</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science in the Community Breakfast</td>
<td>Broadway E, Omni</td>
<td>7:30–8:00 AM</td>
</tr>
<tr>
<td>(M-2 Ticket Required: $18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMSE Alice J. Moses Breakfast</td>
<td>Legends F, Omni</td>
<td>7:30–9:30 AM</td>
</tr>
<tr>
<td>By Invitation Only, sponsored by Pearson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerospace Programs Advisory Board Meeting</td>
<td>Gibson Boardroom, Omni</td>
<td>8:30–10:30 AM</td>
</tr>
<tr>
<td>NSTA International Lounge</td>
<td>Mockingbird 1, Omni</td>
<td>9:00 AM–5:00 PM</td>
</tr>
<tr>
<td>Development Advisory Board Meeting</td>
<td>Executive Brdrm., Music City Center</td>
<td>9:30–10:30 AM</td>
</tr>
<tr>
<td>Polar Educators International Open Meeting</td>
<td>Mockingbird 3, Omni</td>
<td>10:00 AM–12 Noon</td>
</tr>
<tr>
<td>Urban Science Education Advisory Board Meeting</td>
<td>Gibson Boardroom, Omni</td>
<td>10:30 AM–12 Noon</td>
</tr>
<tr>
<td>Association of Science Materials Centers (ASMC) Advisors Meeting</td>
<td>Mockingbird 2, Omni</td>
<td>10:30 AM–1:00 PM</td>
</tr>
<tr>
<td>NSELA/ASTE Celebration Luncheon</td>
<td>Broadway A/B, Omni</td>
<td>12 Noon–2:00 PM</td>
</tr>
<tr>
<td>(Tickets Required Through NSELA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEPA Luncheon</td>
<td>Legends E, Omni</td>
<td>12 Noon–2:00 PM</td>
</tr>
<tr>
<td>By Invitation Only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Meet and Greet” the Presidents and Board/Council</td>
<td>Hall B, Music City Center</td>
<td>12:45–1:30 PM</td>
</tr>
<tr>
<td>Exhibits (Hall B) Entrance, Music City Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSTA District Director and Chapter/Associated Group Social in Honor of Wendell Mohling</td>
<td>Hall B, Music City Center</td>
<td>1:30–2:30 PM</td>
</tr>
<tr>
<td>SEPA Board Meeting</td>
<td>Mockingbird 3, Omni</td>
<td>2:00–3:30 PM</td>
</tr>
<tr>
<td>By Invitation Only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCST Business Meeting</td>
<td>Ryman One, Renaissance</td>
<td>3:30–5:00 PM</td>
</tr>
<tr>
<td>NSTA Recommends Meeting</td>
<td>Mockingbird 3, Omni</td>
<td>4:00–5:00 PM</td>
</tr>
<tr>
<td>Tennessee Science Education Leadership Association (TSELA) Meeting</td>
<td>Mockingbird 2, Omni</td>
<td>4:00–5:30 PM</td>
</tr>
<tr>
<td>National Geographic Channel Film Screening: Breakthrough: More Than Human, directed by Paul Giamatti</td>
<td>Grand Blrm. C2, Music City Center</td>
<td>4:30–6:30 PM</td>
</tr>
<tr>
<td>CESI Membership Meeting</td>
<td>105A, Music City Center</td>
<td>4:45–5:45 PM</td>
</tr>
<tr>
<td>Shell Reception</td>
<td>By Invitation Only</td>
<td>5:00–5:45 PM</td>
</tr>
<tr>
<td>APAST Business Meeting and Social</td>
<td>Broadway B, Omni</td>
<td>5:00–7:00 PM</td>
</tr>
<tr>
<td>By Invitation Only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning Center Reception</td>
<td>Broadway E, Omni</td>
<td>5:30–7:00 PM</td>
</tr>
<tr>
<td>By Invitation Only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Middle Level Science Teachers Association Members’ 25th Anniversary Celebration</td>
<td>Broadway, Renaissance</td>
<td>6:00–8:00 PM</td>
</tr>
<tr>
<td>By Invitation Only</td>
<td>Legends D, Omni</td>
<td>6:00–8:00 PM</td>
</tr>
<tr>
<td>NSTA Teacher Awards Gala</td>
<td>N-3 Ticket Required: $80</td>
<td>6:00–8:45 PM</td>
</tr>
<tr>
<td>(M-3 Ticket Required: $80)</td>
<td>East/Center Blrm., Renaissance</td>
<td></td>
</tr>
<tr>
<td>NESTA Friends of Earth Science Reception</td>
<td>Skyline Jr. Ballroom, Hilton Garden Inn</td>
<td>6:30–8:00 PM</td>
</tr>
<tr>
<td>SCST Poster Session and Dessert Social</td>
<td>Fisk, Renaissance</td>
<td>7:00–9:00 PM</td>
</tr>
<tr>
<td>President’s Mixer</td>
<td>West Ballroom, Renaissance</td>
<td>9:00 PM–12 Mid.</td>
</tr>
</tbody>
</table>
This dynamic event brings together educators and organizations who are actively implementing STEM programs in their schools or districts.

Come prepared to learn tactics that work, build your professional learning network, connect with effective outreach programs and partnerships, discover new resources, and build a strong curriculum.

For information and to register, visit www.nsta.org/stemforum
Index of Exhibitor Workshops

MCC stands for Music City Center

3D Molecular Designs (Booth #516)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Booth</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>2:00–3:30 PM</td>
<td>214, MCC</td>
<td>The Many Jobs of Proteins: Enzymes in the Spotlight (p. 86)</td>
<td></td>
</tr>
</tbody>
</table>

Activate Learning (Booth #1204)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Booth</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>10:00–11:30 AM</td>
<td>214, MCC</td>
<td>Making Critical Thinking More Than Just a Cliché Using Three-Dimensional Learning (p. 47)</td>
<td></td>
</tr>
</tbody>
</table>

AEOP eCYBERMISSION (Booth #1046)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Booth</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>4:00–5:30 PM</td>
<td>107B, MCC</td>
<td>“Hard” Doesn’t Mean “Bad” (p. 96)</td>
<td></td>
</tr>
</tbody>
</table>

Amplify (Booth #308)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Booth</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>8:00–9:30 AM</td>
<td>107B, MCC</td>
<td>Amplify Science for Grades K–5: Experience Three-Dimensional Teaching and Learning with the Newest Curriculum from The Lawrence Hall of Science (p. 23)</td>
<td></td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>10:00–11:30 AM</td>
<td>107B, MCC</td>
<td>Amplify Science for Grades 6–8: Experience Three-Dimensional Teaching and Learning with the Newest Curriculum from The Lawrence Hall of Science (p. 43)</td>
<td></td>
</tr>
</tbody>
</table>

ANATOMY IN CLAY® Learning System (Booth #926)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Booth</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>8:00–9:30 AM</td>
<td>212, MCC</td>
<td>Human Anatomy Lab: Building from the Inside Out (p. 27)</td>
<td></td>
</tr>
</tbody>
</table>

Animalearn (Booth #924)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Booth</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>4:00–5:30 PM</td>
<td>212, MCC</td>
<td>Leap into the Future with Hands-On Science Teaching (p. 100)</td>
<td></td>
</tr>
</tbody>
</table>

Arbor Scientific (Booth #743)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Booth</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>8:00–9:30 AM</td>
<td>202C, MCC</td>
<td>Cool Tools for Light and Color (p. 24)</td>
<td></td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>2:00–3:30 PM</td>
<td>202C, MCC</td>
<td>Cool Tools for Sound and Waves (p. 83)</td>
<td></td>
</tr>
</tbody>
</table>

Backyard Brains, Inc. (Booth #156)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Booth</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>12 Noon–1:30 PM</td>
<td>202C, MCC</td>
<td>Bringing Real Neuroscience and Neural Engineering into Your Classroom (p. 58)</td>
<td></td>
</tr>
</tbody>
</table>

Bedford, Freeman, & Worth Publishers (Booth #744)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Booth</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>8:00–9:30 AM</td>
<td>214, MCC</td>
<td>Living By Chemistry: What Shape Is That Smell? (p. 28)</td>
<td></td>
</tr>
</tbody>
</table>
Index of Exhibitor Workshops

Bio-Rad Laboratories, Inc. (Booth #152)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>8:00–9:30 AM</td>
<td>208A, MCC</td>
<td>How to Use Pop Culture in Your Life Science Class (p. 27)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>8:00–9:30 AM</td>
<td>208B, MCC</td>
<td>Preparing Tomorrow’s Scientists: Issues in Inquiry-Based Life Science Education (p. 27)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>10:00–11:30 AM</td>
<td>208A, MCC</td>
<td>Project-Based Learning for High School: Sequencing a Plant Species (p. 46)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>10:00–11:30 AM</td>
<td>208B, MCC</td>
<td>Investigate Photosynthesis and Cellular Respiration with Algae Beads (p. 46)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>2:00–3:30 PM</td>
<td>208B, MCC</td>
<td>Upgrade Your Chemotaxis Lab! (Focuses on AP Biology Big Ideas 1–4) (p. 84)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>2:00–3:30 PM</td>
<td>208A, MCC</td>
<td>Identify Patient Zero of a Zombie Apocalypse! (p. 84)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>4:00–5:30 PM</td>
<td>208A, MCC</td>
<td>Science, Style, and Fun! Genes in a Bottle™ Kit (p. 99)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>4:00–5:30 PM</td>
<td>208B, MCC</td>
<td>The GMO Debate Rages On! (p. 99)</td>
</tr>
</tbody>
</table>

BIOZONE International Ltd. (Booth #840)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>10:00–11:30 AM</td>
<td>202B, MCC</td>
<td>Biology for NGSS: A New Approach for a New Program (Grades 9–12) (p. 44)</td>
</tr>
</tbody>
</table>

Bright Schools Competition (Booth #1045)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>4:00–5:30 PM</td>
<td>202B, MCC</td>
<td>Engage Grades 6–8 Students in a Free STEM Competition Associated with Light and Sleep (p. 97)</td>
</tr>
</tbody>
</table>

Carolina Biological Supply Co. (Booth #118)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>8:00–9:30 AM</td>
<td>205A, MCC</td>
<td>Pushing and Pulling Your Teachers to NGSS (p. 26)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>8:00–9:30 AM</td>
<td>205B, MCC</td>
<td>Partners in Crime: Forensic Fingerprinting with the Professionals (p. 26)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>8:00–9:30 AM</td>
<td>204, MCC</td>
<td>Comparative Vertebrate Anatomy with Carolina’s Perfect Solution® Specimens (p. 24)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>9:00–10:30 AM</td>
<td>Grand Blrm. C2, MCC</td>
<td>Beyond The Flipped Classroom: A Pedagogical Pilgrimage (p. 33)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>10:00–11:30 AM</td>
<td>204, MCC</td>
<td>Hands-On Activities to Model Habitat Preference and Population Sampling (p. 44)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>10:00–11:30 AM</td>
<td>205B, MCC</td>
<td>Engineer Hands-On Chemistry Fun with a Carolina STEM Challenge®! (p. 44)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>10:00–11:30 AM</td>
<td>205A, MCC</td>
<td>Early Elementary Engineering with Smithsonian: What’s New with STC3? (p. 44)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>12 Noon–1:30 PM</td>
<td>205A, MCC</td>
<td>Modeling Beyond a Flashlight and Beach Ball (p. 58)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>12 Noon–1:30 PM</td>
<td>204, MCC</td>
<td>Introduction to Wisconsin Fast Plants® (p. 58)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>12 Noon–1:30 PM</td>
<td>205B, MCC</td>
<td>Top 10 for 2016: Genetics and Biotechnology Discoveries for Your Classroom (p. 58)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>2:00–3:30 PM</td>
<td>205B, MCC</td>
<td>Keep Calm and Chemistry On: Successful Lab Activities for the New Chemistry Teacher (p. 83)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>2:00–3:30 PM</td>
<td>205A, MCC</td>
<td>EQuiP Your District for NGSS (p. 83)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>2:00–3:30 PM</td>
<td>204, MCC</td>
<td>Hands-On Science with Classroom Critters (p. 83)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>4:00–5:30 PM</td>
<td>205A, MCC</td>
<td>Bring Visual Science into K–5 Classrooms—It’s a Game Changer! (p. 98)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>4:00–5:30 PM</td>
<td>205B, MCC</td>
<td>Picking Apart the Owl Pellet (p. 98)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>4:00–5:30 PM</td>
<td>204, MCC</td>
<td>Carolina’s Young Scientist™ Dissections with Carolina’s Perfect Solution® Specimen (p. 98)</td>
</tr>
</tbody>
</table>
Celestron (Booth #1218)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>2:00–3:30 PM</td>
<td>110A, MCC</td>
<td>Structure and (Fun)ction: Arthropod Body Parts and Evolution (p. 82)</td>
</tr>
</tbody>
</table>

Cogent Education (Booth #922)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>12 Noon–1:30 PM</td>
<td>212, MCC</td>
<td>Interactive Case Studies for the Biology Classroom (p. 61)</td>
</tr>
</tbody>
</table>

CPO Science/School Specialty Science (Booth #420)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>8:00–9:30 AM</td>
<td>201A, MCC</td>
<td>CPO’s Link™ Learning Module Optics with Light and Color: Use Light to Learn About Light (p. 24)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>12 Noon–1:30 PM</td>
<td>201A, MCC</td>
<td>Genetics: Crazy Traits and CPO’s New Link™ Learning Module (p. 57)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>2:00–3:30 PM</td>
<td>201A, MCC</td>
<td>CPO Science’s New Physics AP1 Link™ Module: Rotational Motion Using the CPO Rollercoaster (p. 82)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>4:00–5:30 PM</td>
<td>201A, MCC</td>
<td>CPO’s Link™ Wind Turbine Learning Module: A STEM Approach to Engineering and Design (p. 96)</td>
</tr>
</tbody>
</table>

Interactive Science

Interactive Science engages students in thinking, collaborating, and exploring. Experience the new *Interactive Science* at NSTA! Pearson Booth 612.

INTEGRATED
- Print, blended, and digital learning experiences

INTERACTIVE
- Problem-based, hands-on learning and engaging STEM activities

INTERCONNECTED
- Strong reading, writing, and math connections

Request samples, attend webinars! [InteractiveScience.com](https://www.interactiveScience.com)
Index of Exhibitor Workshops

Delta Education/School Specialty Science–FOSS (Booth #322)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room, MCC</th>
<th>Workshop Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>8:00–9:30 AM</td>
<td>201B, MCC</td>
<td>What Does Argumentation Look Like in an Elementary Classroom? (p. 24)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>10:00–11:30 AM</td>
<td>201B, MCC</td>
<td>What to Look for in Physical Science Learning Progressions—Experience FOSS K–5 (p. 43)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>12 Noon–1:30 PM</td>
<td>201B, MCC</td>
<td>Modeling Energy Flow in Ecosystems: Developing Models in Middle School Life Science (p. 57)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>2:00–3:30 PM</td>
<td>201B, MCC</td>
<td>Designing with FOSS: Engineering in Elementary Science (p. 83)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>4:00–5:30 PM</td>
<td>201B, MCC</td>
<td>Archaea and the Three Domains: Classification of Life for Middle School (p. 96)</td>
</tr>
</tbody>
</table>

Dinah.com (Booth #1246)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room, MCC</th>
<th>Workshop Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>8:00–9:30 AM</td>
<td>202B, MCC</td>
<td>Observing and Inferring in the Science Classroom: New Tips, Tools, and a Twist from Dinah Zike’s Notebooking Central (p. 24)</td>
</tr>
</tbody>
</table>

Discovery Education (Booth #642)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room, MCC</th>
<th>Workshop Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>8:00–9:30 AM</td>
<td>401 A/B, MCC</td>
<td>10 Creative Ways to Read, Write, and Think Like a Scientist (p. 28)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>10:00–11:30 AM</td>
<td>401 A/B, MCC</td>
<td>What Works? Science Techbook and Effective Professional Development (p. 47)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>12 Noon–1:30 PM</td>
<td>401 A/B, MCC</td>
<td>Bringing NGSS to the Classroom with Discovery Education (p. 61)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>2:00–3:30 PM</td>
<td>401 A/B, MCC</td>
<td>Personalizing Your Science Instruction (p. 87)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>4:00–5:30 PM</td>
<td>401 A/B, MCC</td>
<td>Engaging Students in Authentic Science Experiences Using Digital Tools (p. 100)</td>
</tr>
</tbody>
</table>

Disney Youth Programs (Booth #844)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room, MCC</th>
<th>Workshop Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>2:00–3:30 PM</td>
<td>212, MCC</td>
<td>A Peek Behind the Curtain: Disney Parks Approach to Physics and Energy (p. 86)</td>
</tr>
</tbody>
</table>

Educational Innovations, Inc. (Booths #1026/ #1126)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room, MCC</th>
<th>Workshop Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>8:00–9:30 AM</td>
<td>202A, MCC</td>
<td>What the Heck Happened?!? (p. 24)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>10:00–11:30 AM</td>
<td>202A, MCC</td>
<td>Fantastical Chemistry Demos for All Classrooms (p. 44)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>12 Noon–1:30 PM</td>
<td>202A, MCC</td>
<td>Cool! Can We Do That Again?!? (p. 57)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>2:00–3:30 PM</td>
<td>202A, MCC</td>
<td>Elementary Teacher Survival Kit (p. 83)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>4:00–5:30 PM</td>
<td>202A, MCC</td>
<td>Magnify Your Mind!…with The Private Eye® (p. 96)</td>
</tr>
</tbody>
</table>

FIRST® (Booth #255)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room, MCC</th>
<th>Workshop Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>4:00–5:30 PM</td>
<td>107A, MCC</td>
<td>Build a Robot Using an Android App: FIRST Tech Challenge Extends STEM Learning Beyond the Middle School and High School Classroom (p. 96)</td>
</tr>
</tbody>
</table>

Fisher Science Education (Booth #544)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room, MCC</th>
<th>Workshop Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>8:00–9:30 AM</td>
<td>210, MCC</td>
<td>Is Cancer in My DNA? (p. 27)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>10:00–11:30 AM</td>
<td>210, MCC</td>
<td>The STEM Design Challenge (p. 47)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>2:00–3:30 PM</td>
<td>210, MCC</td>
<td>A Better Approach to Chemistry (p. 86)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>4:00–5:30 PM</td>
<td>210, MCC</td>
<td>Telescopes for Your Classroom (p. 99)</td>
</tr>
</tbody>
</table>
Flinn Scientific, Inc. (Booth #333)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room</th>
<th>Workshop Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>8:00–9:30 AM</td>
<td>209A, MCC</td>
<td>Fantastic Physical Science Demonstrations from Flinn Scientific</td>
<td>27</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>10:00–11:30 AM</td>
<td>209A, MCC</td>
<td>Infusing Inquiry and Demonstrations into AP Biology</td>
<td>46</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>10:00–11:30 AM</td>
<td>Davidson C, MCC</td>
<td>Flinn Scientific’s Morning of Chemistry: Taking Over the Music City with Science</td>
<td>48</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>12 Noon–1:30 PM</td>
<td>209A, MCC</td>
<td>Flinn Scientific’s STEM Design Challenge™ “Build-It-Yourself” Lab Project</td>
<td>60</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>2:00–3:30 PM</td>
<td>209A, MCC</td>
<td>Flinn Scientific’s Exploring Chemistry™: Connecting Content through Experiments</td>
<td>86</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>4:00–5:30 PM</td>
<td>209A, MCC</td>
<td>New Inquiry Investigations for AP Physics 1 from Flinn Scientific</td>
<td>99</td>
</tr>
</tbody>
</table>

Frey Scientific/School Specialty Science (Booth #521)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room</th>
<th>Workshop Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>10:00–11:30 AM</td>
<td>201A, MCC</td>
<td>Solving the Mystery of STEM Using Forensic Science</td>
<td>43</td>
</tr>
</tbody>
</table>

G-Biosciences (Booth #1005)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room</th>
<th>Workshop Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>2:00–3:30 PM</td>
<td>209C, MCC</td>
<td>Biotech Is STEM !</td>
<td>86</td>
</tr>
</tbody>
</table>

HHMI BioInteractive (Booth #822)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room</th>
<th>Workshop Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>8:00–9:30 AM</td>
<td>207B, MCC</td>
<td>Welcome to the Anthropocene: Free Teaching Resources for a New Era</td>
<td>26</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>10:00–11:30 AM</td>
<td>207B, MCC</td>
<td>Patterns and Processes in Ecology</td>
<td>46</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>12 Noon–1:30 PM</td>
<td>207B, MCC</td>
<td>Inquiry-Based Ecology Using a Citizen Science Trail Camera Project</td>
<td>60</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>2:00–3:30 PM</td>
<td>207B, MCC</td>
<td>Using Primary Literature to Teach Data Literacy</td>
<td>84</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>4:00–5:30 PM</td>
<td>207B, MCC</td>
<td>Human Evolution in Living Color</td>
<td>98</td>
</tr>
</tbody>
</table>

Houghton Mifflin Harcourt (Booth #1240)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room</th>
<th>Workshop Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>12 Noon–1:30 PM</td>
<td>202B, MCC</td>
<td>Sparking Interest with Chemistry</td>
<td>58</td>
</tr>
</tbody>
</table>

It’s About Time (Booth #1140)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room</th>
<th>Workshop Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>8:00–9:30 AM</td>
<td>209C, MCC</td>
<td>Project-Based Inquiry Science™ (PBIS): Creating “Coherence and Science Storylines” for Middle School Science—Grades 6–8</td>
<td>27</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>10:00–11:30 AM</td>
<td>209C, MCC</td>
<td>Debunking the Myths of Project-Based Learning: Yes We CAN!</td>
<td>47</td>
</tr>
</tbody>
</table>

K’NEX Education® (Booth #607)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room</th>
<th>Workshop Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>8:30–9:30 AM</td>
<td>108, MCC</td>
<td>Forensic DNA Activities and More with K’NEX Education’s DNA, Replication, and Transcription Set</td>
<td>31</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>10:00–11:00 AM</td>
<td>108, MCC</td>
<td>Build, Program, and Control with K’NEX Education’s New Robotics Building System</td>
<td>42</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>11:30 AM–12:30 PM</td>
<td>108, MCC</td>
<td>Build, Program, and Control with K’NEX Education’s New Robotics Building System</td>
<td>56</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>1:30–2:30 PM</td>
<td>108, MCC</td>
<td>Off to the Races with K’NEX Education’s Forces, Energy, and Motion Set!</td>
<td>73</td>
</tr>
</tbody>
</table>
Index of Exhibitor Workshops

K’NEX Education®, continued

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>3:00–4:00 PM</td>
<td>108, MCC</td>
<td>Build, Program, and Control with K’NEX Education’s New Robotics Building System (p. 87)</td>
</tr>
</tbody>
</table>

LAB-AIDS®, Inc. (Booth #915)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>8:00–9:30 AM</td>
<td>205C, MCC</td>
<td>Photosynthesis and Respiration Shuffle (p. 26)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>10:00–11:30 AM</td>
<td>205C, MCC</td>
<td>Gas Exchange (p. 44)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>12 Noon–1:30 PM</td>
<td>205C, MCC</td>
<td>Gene Expression (p. 58)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>2:00–3:30 PM</td>
<td>205C, MCC</td>
<td>What Is a Species? (p. 84)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>4:00–5:30 PM</td>
<td>205C, MCC</td>
<td>Reclaiming the Metal (p. 98)</td>
</tr>
</tbody>
</table>

LaMotte Co. (Booth #1015)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>10:00–11:30 AM</td>
<td>107A, MCC</td>
<td>AP Environmental: Using Your Stream to Teach STEM-Based Skills (p. 43)</td>
</tr>
</tbody>
</table>

LEGO Education (Booths #341 / #358)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>10:00–11:30 AM</td>
<td>211, MCC</td>
<td>Make Science Come to Life (p. 47)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>12 Noon–1:30 PM</td>
<td>211, MCC</td>
<td>Make Science Come to Life (p. 60)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>2:00–3:30 PM</td>
<td>211, MCC</td>
<td>Make Science Come to Life (p. 86)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>4:00–5:30 PM</td>
<td>211, MCC</td>
<td>Make Science Come to Life (p. 100)</td>
</tr>
</tbody>
</table>

McGraw-Hill Education (Booth #1345)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>8:00–9:30 AM</td>
<td>107A, MCC</td>
<td>Science Is NOT a Spectator Sport! (p. 23)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>2:00–3:30 PM</td>
<td>202B, MCC</td>
<td>Science Vocabulary Has Kinetic Energy When It’s Moving (p. 83)</td>
</tr>
</tbody>
</table>

Measured Progress (Booth #304)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>8:00–9:30 AM</td>
<td>209B, MCC</td>
<td>Engage with NGSS Using STEM Gauge™ (p. 27)</td>
</tr>
</tbody>
</table>

Microsoft (Booth #1335)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>12 Noon–1:30 PM</td>
<td>110A, MCC</td>
<td>The Differentiated Classroom in One Package: Teaching Science Inquiry to Modern Learners Using Microsoft Surface and Apps (p. 57)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>4:00–5:30 PM</td>
<td>110A, MCC</td>
<td>Getting to Know Creative Coding Through Games and Apps (p. 96)</td>
</tr>
</tbody>
</table>

The MiniOne™ Electrophoresis (Booth #816)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>2:00–3:30 PM</td>
<td>107A, MCC</td>
<td>MiniOne™ Electrophoresis: Revolutionizing Biotechnology in Real Time (p. 82)</td>
</tr>
</tbody>
</table>

miniPCR (Booth #1333)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>10:00–11:30 AM</td>
<td>202C, MCC</td>
<td>Genes in Space: Send Your DNA Experiment to the International Space Station (ISS) (p. 44)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>4:00–5:30 PM</td>
<td>202C, MCC</td>
<td>DNA Crime Lab with miniPCR Technology (p. 97)</td>
</tr>
</tbody>
</table>
Index of Exhibitor Workshops

MSOE Center for BioMolecular Modeling (Booth #518)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr 1</td>
<td>12 Noon–1:30 PM</td>
<td>214, MCC</td>
<td>Telling Molecular Stories with David Goodsell’s Cellular Landscapes (p. 61)</td>
</tr>
</tbody>
</table>

Nutrients for Life Foundation (Booth #1226)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr 1</td>
<td>12 Noon–1:30 PM</td>
<td>209B, MCC</td>
<td>Feeding the World & Protecting the Environment (p. 60)</td>
</tr>
</tbody>
</table>

PASCO scientific (Booth #622)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr 1</td>
<td>8:00–9:00 AM</td>
<td>206 A/B, MCC</td>
<td>Engineering Bumpers and NGSS: Hands-On Physics with PASCO’s New Wireless Smart Cart! (p. 23)</td>
</tr>
<tr>
<td>Apr 1</td>
<td>11:00 AM–12 Noon</td>
<td>206 A/B, MCC</td>
<td>Project-Based Activities with Wireless Sensors to Meet Gas Laws and Stoichiometry Chemistry Standards (p. 55)</td>
</tr>
<tr>
<td>Apr 1</td>
<td>12:30–1:30 PM</td>
<td>206 A/B, MCC</td>
<td>Environmental Science Using Wireless Sensors (p. 70)</td>
</tr>
<tr>
<td>Apr 1</td>
<td>2:00–3:00 PM</td>
<td>206 A/B, MCC</td>
<td>Using Wireless Sensors in Enzyme Activity and Cellular Respiration Labs (p. 81)</td>
</tr>
<tr>
<td>Apr 1</td>
<td>3:30–4:30 PM</td>
<td>206 A/B, MCC</td>
<td>Sensor-Based Labs to Address NGSS Standards for Middle School Life, Earth, and Physical Science (p. 95)</td>
</tr>
</tbody>
</table>

Reimagine the classroom

FREE PASCO Workshops

- **8:00–10:00** Engineering Bumpers and NGSS: Hands-on Physics with PASCO’s new Wireless Smart Cart. 6 attendees will win a Smart Cart!
- **9:30–10:30** Wireless Spectrometry to Investigate Light Emission, Colored Solutions, Plant Pigments, Solution Concentration and Reaction Kinetics. 3 attendees will win a Wireless Spectrometer!
- **11–Noon** Project-based Activities with Wireless Sensors to Meet Gas Laws and Stoichiometry Chemistry Standards. 25 attendees will win a wireless sensor!
- **12:30–1:30** Environmental Science using PASCO’s Wireless Sensors. 25 attendees will win a wireless sensor!
- **2:00–3:00** Using Wireless Sensors in Enzyme Activity and Cellular Respiration Labs. 25 attendees will win a wireless sensor!
- **3:30–4:30** Sensor-based Labs to Address NGSS for Middle School Life, Earth and Physical Sciences. 25 attendees will win a wireless sensor!

Are you ready to unleash imagination?

Room #206 A/B
Index of Exhibitor Workshops

Pearson Education (Booth #612)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Room</th>
<th>Session Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday</td>
<td>8:00–9:30 AM</td>
<td>110B</td>
<td>Take Your Students On a Quest! A Real-World Problem-Based Learning Project That Incorporates All Three Dimensions of NGSS</td>
<td>24</td>
</tr>
<tr>
<td>Friday</td>
<td>10:00–11:30 AM</td>
<td>110B</td>
<td>New and Emerging Infectious Diseases: Host-Pathogen Relationships Highlight NGSS Core Concepts and the Value of Vaccination</td>
<td>43</td>
</tr>
<tr>
<td>Friday</td>
<td>12 Noon–1:30 PM</td>
<td>110B</td>
<td>The Best Test Prep Book Ever for AP Chemistry</td>
<td>57</td>
</tr>
<tr>
<td>Friday</td>
<td>2:00–3:30 PM</td>
<td>110B</td>
<td>New Tools, New Insights, and New Ways of Understanding Science with Miller and Levine Biology</td>
<td>82</td>
</tr>
<tr>
<td>Friday</td>
<td>4:00–5:30 PM</td>
<td>110B</td>
<td>Teaching Evolution in a Climate of Controversy—Even with NGSS, the Battles Continue</td>
<td>96</td>
</tr>
</tbody>
</table>

Perimeter Institute for Theoretical Physics (Booth #1219)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Room</th>
<th>Session Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday</td>
<td>12 Noon–1:30 PM</td>
<td>107B</td>
<td>Black Holes for Everyone: How You Can Teach Black Holes in Grade 9 Science</td>
<td>57</td>
</tr>
<tr>
<td>Friday</td>
<td>2:00–3:30 PM</td>
<td>107B</td>
<td>Black Holes for High School Physics</td>
<td>82</td>
</tr>
</tbody>
</table>

SAE International—A World In Motion Program (Booth #609)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Room</th>
<th>Session Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday</td>
<td>12 Noon–1:30 PM</td>
<td>209C</td>
<td>STEM Fun in the Elementary Classroom</td>
<td>60</td>
</tr>
</tbody>
</table>

Scholastic, Inc. (Booth #414)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Room</th>
<th>Session Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday</td>
<td>10:00–11:30 AM</td>
<td>212</td>
<td>Using Science Magazines to Engage Your Students</td>
<td>47</td>
</tr>
</tbody>
</table>

Science First®/STARLAB® (Booth #1114)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Room</th>
<th>Session Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday</td>
<td>2:00–2:30 PM</td>
<td>Booth #1114, Exh, Hall</td>
<td>The Change of Seasons</td>
<td>74</td>
</tr>
</tbody>
</table>

Shape of Life (Booth #1121)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Room</th>
<th>Session Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday</td>
<td>4:00–5:30 PM</td>
<td>209B</td>
<td>The REAL Story of the Animal Kingdom on Planet Earth</td>
<td>99</td>
</tr>
</tbody>
</table>

Simulation Curriculum Corp. (Booth #834)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Room</th>
<th>Session Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday</td>
<td>10:00–11:30 AM</td>
<td>209B</td>
<td>Pluto: New Horizons and Beyond</td>
<td>47</td>
</tr>
</tbody>
</table>

StellarXplorers (Booth #1022)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Room</th>
<th>Session Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday</td>
<td>4:00–5:30 PM</td>
<td>214</td>
<td>Let’s Get into Orbit: Charting a Course to the Stars</td>
<td>100</td>
</tr>
</tbody>
</table>

Teachers Curriculum Institute (Booth #256)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Room</th>
<th>Session Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday</td>
<td>12 Noon–1:30 PM</td>
<td>107A</td>
<td>Analyzing and Interpreting Data Using TCI’s Bring Learning Alive!</td>
<td>57</td>
</tr>
</tbody>
</table>

Texas Instruments (Booth #108)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Room</th>
<th>Session Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday</td>
<td>8:00–9:30 AM</td>
<td>110A</td>
<td>One Small Step...to Mars!</td>
<td>23</td>
</tr>
<tr>
<td>Friday</td>
<td>10:00–11:30 AM</td>
<td>110A</td>
<td>Zombie Apocalypse!</td>
<td>43</td>
</tr>
</tbody>
</table>
Index of Exhibitor Workshops

U.S. Department of Energy Office of Nuclear Energy (Booth #1253)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>4:00–5:30 PM</td>
<td>209C, MCC</td>
<td>The Harnessed Atom: New Project Ideas, Tools, and Resources—Nuclear Science and Energy (p. 99)</td>
</tr>
</tbody>
</table>

Vernier Software & Technology (Booth #134)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>8:00–9:30 AM</td>
<td>207C, MCC</td>
<td>Renewable Energy with KidWind and Vernier (p. 26)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>8:00–9:30 AM</td>
<td>207D, MCC</td>
<td>Advanced Physics with Vernier (p. 26)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>10:00–11:30 AM</td>
<td>207D, MCC</td>
<td>Physics with Vernier (p. 46)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>10:00–11:30 AM</td>
<td>207C, MCC</td>
<td>Biology with Vernier (p. 46)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>12 Noon–1:30 PM</td>
<td>207D, MCC</td>
<td>Integrating Chromebook with Vernier Technology (p. 60)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>12 Noon–1:30 PM</td>
<td>207C, MCC</td>
<td>Water Quality with Vernier (p. 60)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>2:00–3:30 PM</td>
<td>207C, MCC</td>
<td>Inquiry-Based Biology with Vernier (p. 84)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>2:00–3:30 PM</td>
<td>207D, MCC</td>
<td>iPad and Wireless Sensors with Vernier (p. 84)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>4:00–5:30 PM</td>
<td>207D, MCC</td>
<td>STEM/Engineering Activities Using Vernier Sensors with Arduino (p. 99)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>4:00–5:30 PM</td>
<td>207C, MCC</td>
<td>Chemistry with Vernier (p. 98)</td>
</tr>
</tbody>
</table>

Ward’s Science (Booth #142)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>8:00–9:30 AM</td>
<td>207A, MCC</td>
<td>Outbreaking Bad! (p. 26)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>10:00–11:30 AM</td>
<td>207A, MCC</td>
<td>Apply the Science of Energy, Motion, and Friction (p. 46)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>12 Noon–1:30 PM</td>
<td>207A, MCC</td>
<td>Fracking the CASE (p. 58)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>2:00–3:30 PM</td>
<td>207A, MCC</td>
<td>Grant Writing: Designing for Dollars (p. 84)</td>
</tr>
<tr>
<td>Friday, Apr 1</td>
<td>4:00–5:30 PM</td>
<td>207A, MCC</td>
<td>Chemistry of Wine (p. 98)</td>
</tr>
</tbody>
</table>

WhiteBox Learning (Booth #458)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 1</td>
<td>2:00–3:30 PM</td>
<td>209B, MCC</td>
<td>Project-Based STEM/Engineering (p. 86)</td>
</tr>
</tbody>
</table>
Schedule at a Glance Earth and Space Science

*MCC stands for Music City Center

Earth and Space Science

8:00–9:00 AM 5–9 Fisk Two, Renaissance ASTE Session: Are You Smarter Than a Rocket Scientist? Design a Spaceship (p. 22)
8:00–9:00 AM 5–12 103C, MCC Filters Aren’t Only for Coffee! How to Blend Multiple Curricular Materials Together into a Seamless STEM Unit on Water Quality and Filtration (p. 20)
8:00–9:00 AM 5–10 103B, MCC Bring New Life to the Geosciences: Opportunities for Connecting Student Learning to Real-World Applications (p. 20)
8:00–9:00 AM 6–12 106B, MCC Climate Change: Extremes or Norms? (p. 20)
8:00–9:00 AM 7–12 106A, MCC Evidence-Based Reasoning and the Big Bang Theory in the Classroom (p. 17)
8:00–9:00 AM 5–10 104E, MCC NASA: Putting the EM Spectrum Together (p. 20)
8:00–9:00 AM P–C Broadway E, Omni Featured Presentation: When the Sky Goes Dark: The All-American Total Eclipse of the Sun (p. 16)
8:00–9:30 AM 6–12 110A, MCC One Small Step…to Mars! (p. 23)
8:00–9:30 AM 6–12 207B, MCC Welcome to the Anthropocene: Free Teaching Resources for a New Era (p. 26)
9:30–10:30 AM 6–12 104E, MCC Stellar Evolution: From Star Formation to Catastrophic Destruction (p. 39)
9:30–10:30 AM 6–12 104D, MCC Using Density to Teach Earth Science Concepts (p. 39)
10:00–11:30 AM 12 107A, MCC AP Environmental: Using Your Stream to Teach STEM-Based Skills (p. 43)
10:00–11:30 AM 6–12 209B, MCC Pluto: New Horizons and Beyond (p. 47)
10:00–11:30 AM 7–C 202C, MCC Genes in Space: Send Your DNA Experiment to the International Space Station (ISS) (p. 44)
11:00 AM–12 Noon 6–C 103C, MCC Professional Development to Support Integrated Inquiry-Based Teaching in the Outdoors (p. 53)
11:00 AM–12 Noon 3–8 Davidson A2/3, MCC Rain Garden Design (p. 49)
11:00 AM–12 Noon 6–C Fisk One, Renaissance NARST Session: Does Your Professional Development Make a Difference? Teachers’ Retention of Discipline-Specific Science Content (p. 52)
11:00 AM–12 Noon 7–C Davidson B, MCC NESTA and HHMI Share: Multimedia Tools and Resources for Teaching Earth System Science (p. 53)
12 Noon–1:30 PM 9–10 107B, MCC Black Holes for Everyone: How You Can Teach Black Holes in Grade 9 Science (p. 57)
12 Noon–1:30 PM 9–12 209B, MCC Feeding the World & Protecting the Environment (p. 60)
12 Noon–1:30 PM 7–C 207C, MCC Water Quality with Vernier (p. 60)
12:30–1:30 PM K–C 206 A/B, Omni Teaching Environmental Sustainability with the Model My Watershed Application (p. 69)
12:30–1:30 PM 7–C Davidson B, MCC National Earth Science Teachers Association (NESTA) Shares: EarthScope Chronicles—The Newberry Volcano: A Volcano Story (p. 69)
12:30–1:30 PM 6–C Legends G, Omni Teaching Environmental Sustainability with the Model My Watershed Application (p. 69)
1:00–1:30 PM 4–12 103C, MCC Integrating Global STEM Education into All Aspects of the Curriculum (p. 72)
2:00–2:30 PM 5–8 Booth #1114, Exhibit Hall The Change of Seasons (p. 74)
2:00–3:00 PM 1–C Broadway E, Omni Award-Winning Share-a-thon: Featuring NSTA Distinguished Teachers (p. 76)
2:00–3:00 PM K–5 104B, MCC Advanced Science Learning; Teaching Elementary Earth Science Concepts Through Engineering Problems (p. 74)
2:00–3:00 PM P–5 104C, MCC Saving Our Island: Students Creating Change Over Time (p. 77)
2:00–3:00 PM K–C Davidson B, MCC National Earth Science Teachers Association (NESTA) Shares: Geology Share-a-Thon (p. 78)
2:00–3:00 PM 11–12 107B, MCC Black Holes for High School Physics (p. 82)
3:30–4:30 PM 6–12 Legends F, Omni Sailing with Maury into STEM and CCSS (p. 94)
3:30–4:30 PM 6–8 Broadway H, Omni Using Collaborative Web Tools to Support Three Dimensional Learning in Earth Science (p. 94)
3:30–4:30 PM K–12 106C, MCC Astronomy Activities for Your Classroom (p. 92)
3:30–4:30 PM 4–9 104E, MCC Get Ready for the Great American Eclipse! (p. 92)
Schedule at a Glance

Earth and Space Science

<table>
<thead>
<tr>
<th>Time</th>
<th>Session Location</th>
<th>Session Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:30–4:30 PM</td>
<td>6–12 Legends C, Omni</td>
<td>Decoding Starlight—From Photons to Pixels to Images: Using Science and Art</td>
<td>94</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>206 A/B, MCC</td>
<td>Sensor-Based Labs to Address NGSS Practices for Middle School Life, Earth, and Physical Science</td>
<td>95</td>
</tr>
<tr>
<td>4:00–5:30 PM</td>
<td>4–C 210, MCC</td>
<td>Telescopes for Your Classroom</td>
<td>99</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>K–5 104B, MCC</td>
<td>Children's Books, STEM, and the Elementary Classroom: One Author’s Perspective</td>
<td>102</td>
</tr>
<tr>
<td>4:00–5:30 PM</td>
<td>8–12 214, MCC</td>
<td>Let’s Get into Orbit/Charting a Course to the Stars</td>
<td>100</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>6–C Cumberland 6, Omni</td>
<td>The Hydrofracking Boom as a “Teachable Moment” to Explore the Broader Energy Context Within the U.S.</td>
<td>104</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>9–12 Acoustic, Omni</td>
<td>The SOFIA Airborne Astronomy Ambassador Program</td>
<td>102</td>
</tr>
</tbody>
</table>

Engineering, Technology, and the Application of Science

<table>
<thead>
<tr>
<th>Time</th>
<th>Session Location</th>
<th>Session Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–8:20 AM</td>
<td>6–C Ryman One, Renaissance</td>
<td>SCST Session: Completing the Circle: Using Innovative Co-Teaching Collaborations to Unite University Scientists, Science Teachers, and Their Middle School Students</td>
<td>15</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>5–12 103C, MCC</td>
<td>Filters Aren’t Only for Coffee! How to Blend Multiple Curricular Materials Together into a Seamless STEM Unit on Water Quality and Filtration</td>
<td>20</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>1–8 104D, MCC</td>
<td>Engaging Families in STEM</td>
<td>20</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>K–12 206 A/B, MCC</td>
<td>Engineering Bumpers and NGSS: Hands-On Physics with PASCO’s New Wireless Smart Cart!</td>
<td>23</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>6–8 Broadway H, Omni</td>
<td>Bumpers Save Lives</td>
<td>21</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>5–9 Fisk Two, Renaissance</td>
<td>ASTE Session: Are You Smarter Than a Rocket Scientist? Design a Spaceship</td>
<td>22</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>9–12 Music Row 5, Omni</td>
<td>DuPont Presents: The Science of Packaging</td>
<td>22</td>
</tr>
<tr>
<td>8:00–9:30 AM</td>
<td>7–C 207C, MCC</td>
<td>Renewable Energy with KidWind and Vernier</td>
<td>26</td>
</tr>
<tr>
<td>8:20–8:40 AM</td>
<td>C Ryman One, Renaissance</td>
<td>SCST Session: STEM Research Experiences for Preservice Science Teachers (p. 30)</td>
<td></td>
</tr>
<tr>
<td>8:40–9:00 AM</td>
<td>C Ryman One, Renaissance</td>
<td>SCST Session: Creating an Authentic Research Experience in a General Biology Lab Using the Experience of Publishing</td>
<td>32</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>1–12 Music Row 3, Omni</td>
<td>Safer STEM Activities Through Collaboration!</td>
<td>38</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>K–5 103A, MCC</td>
<td>Sound Through the Ages—From Cluckers to Pluckers</td>
<td>38</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>9–12 Music Row 5, Omni</td>
<td>DuPont Presents: Driving Science</td>
<td>41</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>K–12 Center Blrm., Renaissance</td>
<td>Science as Human Endeavor: Analyzing Historical Primary Sources from the Library of Congress</td>
<td>41</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>1–12 104A, MCC</td>
<td>Using Technology to Engage Parents and Differentiated Instruction</td>
<td>35</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>6–C Broadway J, Omni</td>
<td>Pi in the Sky</td>
<td>36</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>9–12 101E, MCC</td>
<td>Exploring Engineering Practices</td>
<td>38</td>
</tr>
<tr>
<td>10:00–11:00 AM</td>
<td>5–10 108, MCC</td>
<td>Build, Program, and Control with K’NEX Education’s New Robotics Building System</td>
<td>42</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>12 107A, MCC</td>
<td>AP Environmental: Using Your Stream to Teach STEM-Based Skills</td>
<td>43</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>K–2 205A, MCC</td>
<td>Early Elementary Engineering with Smithsonian: What’s New with STC3?</td>
<td>44</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>3–8 Davidson A2/3, MCC</td>
<td>Rain Garden Design</td>
<td>49</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>4–12 Legends F, Omni</td>
<td>D.E.S.I.G.N. (Developing Engineering Solutions Inspired by Graphic Novels)</td>
<td>54</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>4–8 106b, MCC</td>
<td>Biomimicry: The “Natural” Intersection of Biology and Engineering</td>
<td>53</td>
</tr>
<tr>
<td>11:20–11:40 AM</td>
<td>9–C Ryman One, Renaissance</td>
<td>SCST Session: Simple Mechanical Devices to Help Students Learn the Principles of Human Anatomy and Physiology</td>
<td>56</td>
</tr>
<tr>
<td>11:30 AM–12:30 PM</td>
<td>5–10 108, MCC</td>
<td>Build, Program, and Control with K’NEX Education’s New Robotics Building System</td>
<td>56</td>
</tr>
<tr>
<td>11:40 AM–12 Noon</td>
<td>9–C Ryman One, Renaissance</td>
<td>SCST Session: Spatial Ability and STEM Courses—Why Mental Manipulation Matters</td>
<td>56</td>
</tr>
<tr>
<td>12 Noon–1:30 PM</td>
<td>6–C 202C, MCC</td>
<td>Bringing Real Neuroscience and Neural Engineering into Your Classroom</td>
<td>58</td>
</tr>
<tr>
<td>12 Noon–1:30 PM</td>
<td>9–12 209A, MCC</td>
<td>Flinn Scientific’s STEM Design Challenge™ “Build-It-Yoursell” Lab Project</td>
<td>60</td>
</tr>
<tr>
<td>12 Noon–1:30 PM</td>
<td>9–C 205B, MCC</td>
<td>Top 10 for 2016: Genetics and Biotechnology Discoveries for Your Classroom</td>
<td>58</td>
</tr>
<tr>
<td>12:30–1:00 PM</td>
<td>8–12 Cumberland 5, Omni</td>
<td>Teaching Through the Lens of Nanotechnology</td>
<td>62</td>
</tr>
</tbody>
</table>
Schedule at a Glance

Engineering, Technology, and the Application of Science

<table>
<thead>
<tr>
<th>Time</th>
<th>Session Name</th>
<th>Room</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:30–1:00 PM</td>
<td>From the Gooey to the Digital: Multimodal Learning with Light and the Eye</td>
<td>106A, MCC</td>
<td>(p. 62)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Collaborate, Create, and Challenge: How a District and University Partnership Brought STEM to Elementary</td>
<td>P–5, C</td>
<td>(p. 69)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>ASTC Session: Engineering for Animals: A Powerful Way to Engage Students and Teachers in STEM Learning at the Zoo and in the Classroom</td>
<td>104A, MCC</td>
<td>(p. 66)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Up, Up, and Away! An Introduction to High-Altitude Ballooning</td>
<td>104A, MCC</td>
<td>(p. 66)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>The Role of a 21st-Century Zoo: How We Can Build Youth Environmental Literacy Together</td>
<td>K–C</td>
<td>(p. 66)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Using Crime Scenes to Get the Point Across the Curriculum</td>
<td>104C, MCC</td>
<td>(p. 69)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Bioengineering Challenges and Middle School Life Science</td>
<td>106A, MCC</td>
<td>(p. 68)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Inner City Greenhouses: Cross-Curricular Connections and Service Learning Projects</td>
<td>108, MCC</td>
<td>(p. 74)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Designing with FOSS: Engineering in Elementary Science</td>
<td>209B, MCC</td>
<td>(p. 83)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>A Peek Behind the Curtain: Disney Parks Approach to Physics and Energy</td>
<td>201A, MCC</td>
<td>(p. 86)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Project-Based STEM/Engineering</td>
<td>201B, MCC</td>
<td>(p. 86)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Build, Program, and Control with K*NEX Education’s New Robotics Building</td>
<td>209B, MCC</td>
<td>(p. 96)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Using Collaborative Web Tools to Support Three Dimensional Learning in Earth Science</td>
<td>201A, MCC</td>
<td>(p. 94)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Design That Matters: Meeting NGSS Through Community Engagement</td>
<td>209B, MCC</td>
<td>(p. 94)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>CPO’s Link™ Wind Turbine Learning Module: A STEM Approach to Engineering and Design</td>
<td>201B, MCC</td>
<td>(p. 96)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Build a Robot Using an Android App: FIRST® Tech Challenge Extends STEM Learning Beyond the Middle School and High School Classroom</td>
<td>201B, MCC</td>
<td>(p. 96)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Let’s Get into Orbit/Charting a Course to the Stars</td>
<td>214, MCC</td>
<td>(p. 100)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>STEM and the Science and Engineering Practices: Your New BFFs</td>
<td>101A/B, MCC</td>
<td>(p. 103)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>Engineering for Architecture</td>
<td>106B, MCC</td>
<td>(p. 102)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>Drop, Stop, Don’t Pop! Launching into Engineering Design</td>
<td>101C, MCC</td>
<td>(p. 104)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>Shake It Up! Engineering for Earthquakes</td>
<td>104C, MCC</td>
<td>(p. 104)</td>
</tr>
</tbody>
</table>

General Science Education

<table>
<thead>
<tr>
<th>Time</th>
<th>Session Name</th>
<th>Room</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–8:30 AM</td>
<td>Data Is Not a Four-Letter Word! Use NOAA Resources to Build Student Proficiency in Data Analysis</td>
<td>101E, MCC</td>
<td>(p. 15)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>NARST Session: Engaging in the Formative Assessment Design Cycle for the NGSS</td>
<td>101A/B, MCC</td>
<td>(p. 19)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>Using NGSS in a non-NGSS State</td>
<td>106B, MCC</td>
<td>(p. 18)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>NSELA Session: Building School and District Capacity for Understanding Student Thinking Through Formative Assessment</td>
<td>101C, MCC</td>
<td>(p. 18)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>NSTA Press® Session: Using Everyday Mysteries to Promote Literacy</td>
<td>105A, MCC</td>
<td>(p. 20)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>CSSS Session: How Do I Demonstrate That My Students Are Showing Growth?</td>
<td>104C, MCC</td>
<td>(p. 19)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>NSTA Press® Session: Engaging Students in Predict, Observe, Explain Sequences in Your Science Classroom</td>
<td>101C, MCC</td>
<td>(p. 20)</td>
</tr>
</tbody>
</table>
Schedule at a Glance General Science Education

8:00–9:00 AM K–C Music Row 1, Omni Professional Development Models: Showcasing and Sustaining Meaningful Practices and Collaborative Approaches Focusing on STEM and the NGSS for Teacher Leaders and PD Providers (p. 19)

8:00–9:00 AM K–12 Grand Blrm. C1, MCC NGSS@NSTA Forum: How Should Districts and Schools Focus Professional Development When Starting to Implement NGSS? (p. 18)

8:00–9:00 AM 1–12 Center Blrm., Renaissance Success on a Global Scale (p. 22)

8:00–9:00 AM 3–C Legends D, Omni The World of Google in Science (p. 19)

8:00–9:00 AM 6–12 Cumberland 6, Omni Out with the Old, In with the New (p. 18)

8:00–9:00 AM 6–8 Cumberland 4, Omni Ignite Science Writers (p. 18)

8:00–9:00 AM 7–C Broadway C, Omni Get Connected! Promoting Collaboration during Hands-On Science Lessons with Free Online Tools (p. 21)

8:00–9:00 AM 7–C Music City Blrm., Renaissance Teaching Science Through a Public Health Lens (p. 19)

8:00–9:00 AM K–12 West Blrm., Renaissance Creating and Evaluating Resources for Lessons That Fit the NGSS (p. 19)

8:00–9:30 AM 3–12 202B, MCC Observing and Inferring in the Science Classroom: New Tips, Tools, and a Twist from Dinah Zike’s Notebooking Central (p. 24)

8:00–9:30 AM K–5 107B, MCC Amplify Science for Grades K–5: Experience Three-Dimensional Teaching and Learning with the Newest Curriculum from The Lawrence Hall of Science (p. 23)

8:00–9:30 AM 6–8 209C, MCC Project-Based Inquiry Science™ (PBIS): Creating “Coherence and Science Storylines” for Middle School Science—Grades 6–8 (p. 27)
Schedule at a Glance General Science Education

8:00–9:30 AM K–5 201B, MCC What Does Argumentation Look Like in an Elementary Classroom? (p. 24)
8:00–9:30 AM 6–C 205B, MCC Partners in Crime: Forensic Fingerprinting with the Professionals (p. 26)
8:00–9:30 AM 8–C Broadway F, Omni High School Hands-On Hodge-Podge Share-a-Thon (p. 23)
8:00–9:30 AM K–12 401 A/B, MCC 10 Creative Ways to Read, Write, and Think Like a Scientist (p. 28)
8:00–9:30 AM K–12 107A, MCC Science Is NOT a Spectator Sport! (p. 23)
8:00–9:30 AM 6–8 209B, MCC Engage with NGSS Using STEM Gauge™ (p. 27)
8:00–9:30 AM K–2 205A, MCC Pushing and Pulling Your Teachers to NGSS (p. 26)
8:00–9:30 AM K–8 110B, MCC Take Your Students On a Quest! A Real-World Problem-Based Learning Project That Incorporates All Three Dimensions of NGSS (p. 24)
8:00–10:00 AM P–6 Grand Blrm. A, MCC Elementary Extravaganza (p. 28)
8:00–10:00 AM P–6 Grand Blrm. A, MCC Elementary Extravaganza (p. 28)
8:00–11:00 AM 6–C Legends B, Omni NGSS® Toolkit Pathway Session: Using the BSCS Instructional Model to Design Learning Sequences (p. 28)
8:20–8:40 AM C Ryman One, Renaissance SCST Session: STEM Research Experiences for Preservice Science Teachers (p. 30)
8:30–9:00 AM 7–12 Acoustic, Omni Integrating Literacy Techniques without Sacrificing Content (p. 30)
8:30–10:30 AM P–C Broadway A/B, Omni Exemplary Science Programs (ESP) Meeting Current Reform Efforts (p. 32)
9:00–10:30 AM K–C Legends A, Omni McREL Pathway Session: GreenSTEM: Transforming Your Existing Lessons to Be Community Relevant and Project Based (p. 32)
9:00–10:30 AM 6–12 Grand Blrm. C2, MCC Beyond The Flipped Classroom: A Pedagogical Pilgrimage (p. 33)
9:30–10:30 AM 6–12 106B, MCC Model My Watershed: Using Local Data to Make Local Decision (p. 39)
9:30–10:30 AM 6–12 Cumberland 5, Omni Forensics on the Fly (p. 36)
9:30–10:30 AM K–C Broadway G, Omni Differentiation with Explain Everything (p. 36)
9:30–10:30 AM 6–C Legends D, Omni Hollywood BAD Science (p. 37)
9:30–10:30 AM 5–9 Fisk One, Renaissance NARST Session: Implementing STEM Design Challenges at the Middle School Level (p. 38)
9:30–10:30 AM 6–12 Cumberland 3, Omni Using Systems Modeling to Facilitate Student Conceptual Development (p. 40)
9:30–10:30 AM K–C Davidson A2/3, MCC Teachers’ Voices in Building STEM Education Ecosystems and in STEM Leadership (p. 36)
9:30–10:30 AM K–C Music Row 1, Omni Effective Professional Development Approach for Teachers and Districts (p. 37)
9:30–10:30 AM 6–8 Music Row 4, Omni NSELA Session: Bring the Practice into Your Science Classrooms! (p. 38)
9:30–10:30 AM 1–C Fisk Two, Renaissance ASTE Session: The 50 Cent Microscope/Foldscope (p. 42)
9:30–10:30 AM P–C Music Row 2, Omni Authors Needed! Share Your Teaching Ideas in an NSTA Journal (p. 37)
9:30–10:30 AM K–6 106A, MCC Use Art to Increase Scientific Literacy in Elementary Students with Special Needs (p. 35)
9:30–10:30 AM 3–12 Music City Blrm., Renaissance Close Reading in Science: Applying CCSS ELA (p. 42)
9:30–10:30 AM 6–12 Broadway K, Omni Developing Critical Thinking, Reasoning, Inquiry, and Problem Solving through Literacy (p. 40)
9:30–10:30 AM P–11 West Blrm., Renaissance Developing Teachers into Master Educators and Leaders: National Board Certification (p. 38)
9:30–10:30 AM K–12 Broadway D, Omni How to Implement STEM and the NGSS into Your Classroom Through the Use of NSTA Competitions (p. 36)
9:30–10:30 AM K–12 Grand Blrm. C1, MCC NGSS@NSTA Forum: Using Three-Dimensional Standards to Plan Instruction and Assessment (p. 36)
9:30–10:30 AM 6–C 105A, MCC STEM Learning: An Integrated Teaching Model (p. 39)
9:30–10:30 AM 6–8 Cumberland 4, Omni Using Student-Created Digital Products in a Technology-Rich Science Learning Environment (p. 36)
9:30–10:30 AM 5–9 103C, MCC Constructing Science Explanations Using Reading and Writing Strategies to Support Grades 6–8 Students (p. 38)
10:00–11:30 AM K–12 401 A/B, MCC What Works! Science Techbook and Effective Professional Development (p. 47)
10:00–11:30 AM 5–12 201A, MCC Solving the Mystery of STEM Using Forensic Science (p. 43)
10:00–11:30 AM 1–5 211, MCC Make Science Come to Life (p. 47)
10:00–11:30 AM 6–8 209C, MCC Debunking the Myths of Project-Based Learning: Yes We CAN! (p. 47)
<table>
<thead>
<tr>
<th>Time</th>
<th>Session Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00–11:30 AM</td>
<td>Amplify Science for Grades 6–8: Experience Three-Dimensional Teaching and Learning</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>Making Critical Thinking More Than Just a Cliché Using Three-Dimensional Learning</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>Using Science Magazines to Engage Your Students</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>SCST Session: Building an Extended Inquiry Laboratory to Create a More Authentic</td>
</tr>
<tr>
<td></td>
<td>Research Experience for First-Year Students</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>Crime Scene Reconstruction: A Culminating Project for Forensic Science</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>Hybrid PLCs: Building Collaboration Among Teachers in Different Schools</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>Engaging Students with Literacy Strategies</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>Using Socio-Scientific Issues in the Classroom</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>Interdisciplinary Learning in a 21st-Century Classroom</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>Ready, Set, Read: Creatively Integrating True Reading into Your Science Lab</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>Interactive Notebooks, iPads, and the Flipped Classroom: Supporting Inquiry and</td>
</tr>
<tr>
<td></td>
<td>Literacy</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>That's a Good Question!</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>NSTA Press® Session: Linking the Uncovering Student Ideas in Science Series and</td>
</tr>
<tr>
<td></td>
<td>Everyday Science Mysteries to K–5 Language Literacy</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>The NSTA Learning Center: A Tool to Develop Preservice Teachers</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>The Best In Science Literature—Choosing It, Using It</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>NSEL A Session: Conductors of Change—How Science Leaders Can Facilitate</td>
</tr>
<tr>
<td></td>
<td>Harmony Among the Three Components of the NGSS</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>NGSS@NSTA Forum: Supporting Ongoing Changes in Students' Thinking; The Primer</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>That’s a Good Question!</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>NSTA Press® Session: Linking the Uncovering Student Ideas in Science Series and</td>
</tr>
<tr>
<td></td>
<td>Everyday Science Mysteries to K–5 Language Literacy</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>The Top 10 Safety Issues in the Science Classroom/Lab You Need to Know!</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>The Shell Science Teaching Award: Fueling Success with Students</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>Teach STEM Content and Spark Science Career Interest with Free Online Games</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>Scaffolding for Success: Three-Dimensional Learning in Action</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>Differentiating Science Practices Through Inquiry-Based Instruction</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>McREL Pathway Session: Curriculum Audit: Where Will You STEMify Your Curriculum?</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>Cut the Cord: How to Become Mobile in Your Classroom</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>Analyzing and Interpreting Data Using TCI’s Bring Learning Alive!</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>Make Science Come to Life</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>Bringing NGSS to the Classroom with Discovery Education</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>STEM Fun in the Elementary Classroom</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>The Differentiated Classroom in One Package: Teaching Science Inquiry to Modern</td>
</tr>
<tr>
<td></td>
<td>Learners Using Microsoft Surface and Apps</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>Integrating Chromebook with Vernier Technology</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>Modeling Beyond a Flashlight and Beach Ball</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>Instagram, Insta Assessment! Social Media-Inspired Classroom Assessment</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>50 Free Tech Tools for the Science Classroom</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>Developing 21st-Century Reasoning Skills Through an Authentic Interdisciplinary</td>
</tr>
<tr>
<td></td>
<td>STEM Research Experience</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>Integrate NGSS and CCSS with a Practical Reading Strategy: Do It, Learn It, Use It!</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>Find the Funds for STEM: Grant Writing 101</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>Helping Teachers and Students Learn Science Through Picture Books!</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>Fast Modes of Assessment</td>
</tr>
</tbody>
</table>
Schedule at a Glance

12:30–1:30 PM 4–12 Cumberland 4, Omni Understanding Car Crashes: Saving Lives with STEM Lessons (p. 66)
12:30–1:30 PM 9–12 Acoustic, Omni Poems, Texts, Hate Mail, and Other Ways to Incorporate Writing Standards into Science Curriculum (p. 64)
12:30–1:30 PM K–5 104B, MCC Engaging K–5 Students with a Schoolwide STEM Challenge: From Planning to Implementation to a Family STEM Night (p. 64)
12:30–1:30 PM K–12 Grand Bdrm. C1, MCC NGSS@NSTA Forum: Assessing Three-Dimensional Learning (p. 64)
12:30–1:30 PM 1–C Broadway D, Omni No Child Left Behind—Past, Present, and Future (p. 64)
12:30–1:30 PM 6–12 Acoustic, Omni Engaging the Natural Curiosities of Children in the Early Years (p. 69)
12:30–1:30 PM P–2/C 101E, MCC Engaging in Close Reading of a Text: How to Meet the CCSS while Teaching NGSS Content and Skills (p. 69)
<table>
<thead>
<tr>
<th>Time</th>
<th>Room</th>
<th>Session</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:00–3:00 PM</td>
<td>3–8 106B, MCC</td>
<td>Idea Builders: Integrating Engineering and Literature (p. 78)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>P–C 105A, MCC</td>
<td>Equity Through STEM (p. 77)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>K–5 106A, MCC</td>
<td>NGSS and Interdisciplinary Lesson Design in Elementary School (p. 74)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>6–8 Broadway J, Omni</td>
<td>Fostering a Schoolwide STEM Culture Among Staff and Students (p. 76)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>K–12 Center Blrm., Renaissance</td>
<td>Creating Meaning through the Crosscutting Concepts (p. 80)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>3–10 Legends F, Omni</td>
<td>Math as the Language of Science (p. 80)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>K–12 East Blrm., Renaissance</td>
<td>What Does It Look Like When NGSS Are Being Implemented? (p. 80)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>P–C Cumberland 4, Omni</td>
<td>Developing Your Professional Learning Network: How Twitter Will Impact Your Science Teaching (p. 76)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>P–6 106C, MCC</td>
<td>Story Starts with Science: Using Children’s Literature to Enhance Your Science Curriculum Content (p. 78)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>9–12 Cumberland 6, Omni</td>
<td>Research Goes to School: Nanoscience-Based Activities Transferable from the Professional Development Workshop to the STEM Classroom (p. 79)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>6–8 Broadway H, Omni</td>
<td>Why Are We the Way We Are? Supporting Middle School Students in Three-Dimensional Learning to Make Sense of Gene and Environmental Interactions (p. 78)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>5–8 103B, MCC</td>
<td>How to Master Scientists Inside Your Classroom with High Results (p. 77)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>6–12 103C, MCC</td>
<td>Authentic Interdisciplinary Learning Through Simulation (p. 77)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>6–8 Mockingbird 4, Omni</td>
<td>Tennessee Science Standards Review: Middle School Update and Feedback (p. 83)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>P–C 101D, MCC</td>
<td>NSTA Press® Session: Models and Approaches to STEM Professional Development (p. 74)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>6–8 101E, MCC</td>
<td>Let's Go Outside…to the Schoolyard and Beyond (p. 74)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>K–8 205A, MCC</td>
<td>EQuIP Your District for NGSS (p. 83)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>K–12 401 A/B, MCC</td>
<td>Personalizing Your Science Instruction (p. 87)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>K–C 207A, MCC</td>
<td>Grant Writing: Designing for Dollars (p. 84)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>9–12 209A, MCC</td>
<td>Flinn Scientific’s Exploring Chemistry™: Connecting Content through Experiments (p. 86)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>3–C 207D, MCC</td>
<td>iPad and Wireless Sensors with Vernier (p. 84)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>K–12 Legends A, Omni</td>
<td>McREL Pathway Session: STEM Models: Where Do I Start and How Do I Decide? (p. 82)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>K–12 202B, MCC</td>
<td>Science Vocabulary Has Kinetic Energy When It’s Moving (p. 83)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>1–5 211, MCC</td>
<td>Make Science Come to Life (p. 86)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>K–12 Grand Blrm. C1, MCC</td>
<td>NGSS@NSTA Forum: Designing or Adapting Curriculum and Instruction to Make It Three Dimensional (p. 81)</td>
<td></td>
</tr>
<tr>
<td>2:30–3:00 PM</td>
<td>9–12 Acoustic, Omni</td>
<td>Turning Your Students into Citizen Scientists (p. 87)</td>
<td></td>
</tr>
<tr>
<td>2:30–3:00 PM</td>
<td>P–C 101C, MCC</td>
<td>Creating Interactive Lessons for the Flipped Classroom (p. 87)</td>
<td></td>
</tr>
<tr>
<td>3:30–4:00 PM</td>
<td>6–C 101D, MCC</td>
<td>NSTA Press® Session: Beyond the Numbers: Making Sense of Statistics (p. 88)</td>
<td></td>
</tr>
<tr>
<td>3:30–4:00 PM</td>
<td>P–C Broadway G, Omni</td>
<td>Don’t Be a Crash Test Dummy! (p. 88)</td>
<td></td>
</tr>
<tr>
<td>3:30–4:00 PM</td>
<td>G 101D, MCC</td>
<td>Uncovering Student and Teacher Ideas in Science Using Probes (p. 89)</td>
<td></td>
</tr>
<tr>
<td>3:30–4:00 PM</td>
<td>K–5 Legends G, Omni</td>
<td>CSSS Session: Outstanding Science Tradebooks in the Classroom (p. 90)</td>
<td></td>
</tr>
<tr>
<td>3:30–4:00 PM</td>
<td>9–12 Mockingbird 4, Omni</td>
<td>Tennessee Science Standards Review: High School Update and Feedback (p. 90)</td>
<td></td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>P–C Davidson A2/3, MCC</td>
<td>Robert H. Carleton Lecture: Moving Toward NSTA’s Vision to Be the Leader in Science Education (p. 88)</td>
<td></td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>K–5 104D, MCC</td>
<td>K–5 Science Literacy: How to Make It Work (p. 92)</td>
<td></td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>6–12 Music Row 2, Omni</td>
<td>Enhancing Student Learning in Science Using Literacy Strategies (p. 91)</td>
<td></td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>9–12 Music Row 5, Omni</td>
<td>DuPont Presents: The Science of Keeping Food Fresh (p. 94)</td>
<td></td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>K–8 105A, MCC</td>
<td>CESI Session: Web 2.0 Tools for Science Teaching (p. 92)</td>
<td></td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>3–12 Fisk Two, Renaissance</td>
<td>ASTE Session: Using Hands-On Performance Assessment in K–12 Classrooms (p. 94)</td>
<td></td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>K–6 105B, MCC</td>
<td>Linking Science and Literacy for Improved Student Outcomes (p. 92)</td>
<td></td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>7–C Broadway D, Omni</td>
<td>Zoo Genetics: A Partnership Between Scientist and Teacher (p. 90)</td>
<td></td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>1–11 Music Row 1, Omni</td>
<td>Integrating STEM, STEAM, and Culturally Relevant Teaching into Teacher Preparation Programs to ELLs and Those with Disabilities (p. 90)</td>
<td></td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>K–12 103A, MCC</td>
<td>Using NGSS Tools and Resources in Your Classroom (p. 91)</td>
<td></td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>8–C 106C, MCC</td>
<td>Paintballs, Catapults, Art, and Science: A Cross Curriculum STEAM Project-Based Learning Experience (p. 94)</td>
<td></td>
</tr>
</tbody>
</table>

NSTA Nashville National Conference on Science Education
Schedule at a Glance General Science Education

3:30–4:30 PM K–5 104C, MCC Energize Your Elementary Students (p. 91)
3:30–4:30 PM 7–12 104A, MCC Renewable Energy Dashboard for Student Education (p. 89)
3:30–4:30 PM 4–7 106A, MCC Creativity, Curiosity, and Critical Thinking Combined: Using Nuggets of Science to Model Inquiry (p. 89)
3:30–5:30 PM 6–C Legends B, Omni NGSS Toolkit Pathway Session: Using a Tool and NGSS Performance Expectation Specifications to Develop Assessment Tasks (p. 95)
3:30–5:30 PM K–12 Cumberland 2, Omni CSSS Session: Are Crosscutting Concepts Intentional in Your Classroom? Building CCC Progression K–12 (p. 95)
4:00–4:30 PM 6–12 Cumberland 5, Omni Show Me What You Know! (p. 95)
4:00–4:30 PM K–5 104B, MCC Living Museum: A Way to Integrate Subjects Across the Curriculum (p. 95)
4:00–5:30 PM 6–9 107B, MCC “Hard” Doesn’t Mean “Bad” (p. 96)
4:00–5:30 PM 1–5 211, MCC Make Science Come to Life (p. 100)
4:00–5:30 PM K–5 205A, MCC Bring Visual Science into K–5 Classrooms—It’s a Game Changer! (p. 98)
4:00–5:30 PM K–12 202A, MCC Magnify Your Mind!...with The Private Eye® (p. 96)
4:00–5:30 PM 6–8 202B, MCC Engage Grades 6–8 Students in a Free STEM Competition Associated with Light and Sleep (p. 97)
5:00–5:30 PM 6–9 Cumberland 4, Omni Bringing Science to Life with Safe Online Social Learning (p. 101)
5:00–6:00 PM 5–8 103A, MCC Linking Lessons into a Storyline—Making It Happen (p. 103)
5:00–6:00 PM K–12 Music Row 1, Omni Framing Classroom Instruction to Best Support NGSS Learning (p. 103)
5:00–6:00 PM 6–12 104A, MCC Competency-Based Teaching Practices in Science (p. 102)
5:00–6:00 PM 3–8 105B, MCC Curiosity, Discrepant Events, and Relevance: The Spirit of the Framework and the NGSS (p. 104)
5:00–6:00 PM 3–5 104E, MCC Teach Me Bridges: A STEAM Unit for Upper Elementary Students (p. 104)
5:00–6:00 PM K–6 106A, MCC Using Enduring Understandings to Drive Standards-based Integrated Units (p. 102)
5:00–6:00 PM 1–8 106C, MCC Academic Literacy for All in Science (p. 104)
5:00–6:00 PM 6–12 103B, MCC Putting the Science Literacy Puzzle Pieces All Together! (p. 106)
5:00–6:00 PM 5–8 103B, MCC The Smithsonian, STEM, and Your Classroom (p. 102)
5:30–6:00 PM 7–9 Cumberland 4, Omni “Twittering” with My Grade 8 Science Classes (p. 106)

Informal Science Education

7:30–8:00 AM G Broadway E, Omni M-2: Science in the Community Breakfast (p. 15)
8:00–9:00 AM K–C Broadway J, Omni K–12 Science Resources and Programs from University STEM Centers (p. 18)
8:00–9:00 AM 1–8 104D, MCC Engaging Families in STEM (p. 20)
8:00–9:00 AM P–K East Blrm., Renaissance Empowering Communities by Engaging Caregivers: Developing Partnerships in Informal Learning Settings (p. 22)
8:00–9:00 AM P–C Broadway E, Omni Featured Presentation: When the Sky Goes Dark: The All-American Total Eclipse of the Sun (p. 16)
9:00–10:30 AM 6–12 Grand Blrm. C2, MCC Beyond The Flipped Classroom: A Pedagogical Pilgrimage (p. 33)
9:15–11:15 AM P–C Broadway E, Omni Science in the Community Share-a-Thon (p. 34)
9:30–10:30 AM P–12 Cumberland 1, Omni ASTC Session: Carnegie STEM Excellence Pathway: Journey to STEM Success (p. 36)
9:30–10:30 AM K–C Davidson A2/3, MCC Teachers’ Voices in Building STEM Education Ecosystems and in STEM Leadership (p. 36)
10:00–11:30 AM 3–10 212, MCC Using Science Magazines to Engage Your Students (p. 47)
10:00–11:30 AM 5–8 210, MCC The STEM Design Challenge (p. 47)
11:00 AM–12 Noon 4–8 207B, MCC Working in Concert: Successful Collaboration with Informal Centers (p. 52)
11:00 AM–12 Noon 4–12 Music City Blrm., Renaissance SCience Day Camp: Build Authentic Community Outreach in K–12 Schools (p. 52)
12 Noon–1:30 PM 7–C 207B, MCC Inquiry-Based Ecology Using a Citizen Science Trail Camera Project (p. 60)
12:30–1:30 PM 1–C 101D, MCC After-School STEM Is in Demand! (p. 63)
12:30–1:30 PM 3–8 Music Row 4, Omni ASTC Session: Engineering for Animals: A Powerful Way to Engage Students and Teachers in STEM Learning at the Zoo and in the Classroom (p. 66)
12:30–1:30 PM P–12 Cumberland 1, Omni The Role of a 21st-Century Zoo: How We Can Build Youth Environmental Literacy Together (p. 66)
12:30–1:30 PM K–6 105B, MCC Engage and Excite with Elementary Science Olympiad (p. 68)
2:00–3:00 PM 6–12 Music Row 2, Omni AMSE Session: Creating Positive School/Home Partnerships with Diverse Families (p. 77)
2:00–4:00 PM K–C 101 A/B, MCC Science in the Community Session: Interactive Forum on Science and Art (p. 87)
3:30–4:00 PM P–3 104B, MCC Little Learners, BIG Ideas: Learning on the Go, Community Partnerships for Early Childhood (p. 88)
3:30–4:30 PM 5–12 Music Row 3, Omni ASTC Session: Catalyzing Energy Education (p. 91)
3:30–4:30 PM 4–C Acoustic, Omni STEMSHOT: A Community-Sponsored Rocket Challenge (p. 90)
3:30–4:30 PM 6–12 Broadway K, Omni Design That Matters: Meeting NGSS Through Community Engagement (p. 94)
3:30–4:30 PM K–C 103B, MCC Developing STEM Partnerships You Can’t Live Without (p. 91)
4:00–5:00 PM 4–C 210, MCC Telescopes for Your Classroom (p. 99)
4:00–5:30 PM K–5 205A, MCC Bring Visual Science into K–5 Classrooms—It’s a Game Changer! (p. 98)
4:00–5:30 PM K–12 202A, MCC Magnify Your Mind!…with The Private Eye® (p. 96)
5:00–6:00 PM K–6 101 A/B, MCC STEM and the Science and Engineering Practices, Your New BFFs (p. 103)
5:00–6:00 PM 9–12 Acoustic, Omni The SOFIA Airborne Astronomy Ambassador Program (p. 102)
Schedule at a Glance

Informal Science Education

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:00–6:00 PM</td>
<td>K–C</td>
<td>Music Row 4, Omni</td>
<td>NSELA Session: Essential Elements of STEM Education: A Large Urban District’s Journey to STEM Success (p. 103)</td>
</tr>
</tbody>
</table>

Life Science

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–8:30 AM</td>
<td>9–C</td>
<td>Broadway D, Omni</td>
<td>Filters Aren’t Only for Coffee! How to Blend Multiple Curricular Materials Together into a Seamless STEM Unit on Water Quality and Filtration (p. 20)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>5–12</td>
<td>103C, MCC</td>
<td>The Pitfalls and Successes of Teaching Biotechnology and Statistics (p. 16)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>9–C</td>
<td>Legends G, Omni</td>
<td>Moving Peer Instruction (PI) and Process-Oriented Guided Inquiry Learning (POGIL) from College to High School Biology Classrooms (p. 22)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>7–10</td>
<td>Cumberland 3, Omni</td>
<td>Modeling-Infused Instruction to Prepare Students for Physics, Chemistry, and Biology (p. 18)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>5–10</td>
<td>104B, MCC</td>
<td>Abstract Concepts for the Concrete Mind: Techniques and Lessons to Engage Middle School Students and Provide a Valuable Purpose for Learning (p. 17)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>7–12</td>
<td>Legends E, Omni</td>
<td>Integrative 3-D Learning Through Investigating Bird Species Richness with Web-Based Maps (p. 22)</td>
</tr>
<tr>
<td>8:30–9:00 AM</td>
<td>6–9</td>
<td>106C, MCC</td>
<td>Using Issues as a Context to Enhance Students’ Three Dimensional Learning (p. 21)</td>
</tr>
<tr>
<td>8:30–9:00 AM</td>
<td>9–C</td>
<td>210, MCC</td>
<td>Is Cancer in My DNA? (p. 27)</td>
</tr>
<tr>
<td>8:30–9:00 AM</td>
<td>8–C</td>
<td>212, MCC</td>
<td>Human Anatomy Lab: Building from the Inside Out (p. 27)</td>
</tr>
<tr>
<td>8:30–9:30 AM</td>
<td>9–C</td>
<td>208B, MCC</td>
<td>Preparing Tomorrow’s Scientists: Issues in Inquiry-Based Life Science Education (p. 27)</td>
</tr>
<tr>
<td>8:30–9:30 AM</td>
<td>9–C</td>
<td>208A, MCC</td>
<td>How to Use Pop Culture in Your Life Science Class (p. 27)</td>
</tr>
<tr>
<td>8:30–9:30 AM</td>
<td>7–12</td>
<td>207A, MCC</td>
<td>Outbreaking Bad! (p. 26)</td>
</tr>
<tr>
<td>8:30–9:30 AM</td>
<td>9–12</td>
<td>204, MCC</td>
<td>Comparative Vertebrate Anatomy with Carolina’s Perfect Solution® Specimens (p. 24)</td>
</tr>
<tr>
<td>8:30–9:30 AM</td>
<td>9–12</td>
<td>205C, MCC</td>
<td>Photosynthesis and Respiration Shuffle (p. 26)</td>
</tr>
<tr>
<td>8:30–9:30 AM</td>
<td>9–C</td>
<td>101E, MCC</td>
<td>Open-Ended Inquiry-Based Instruction in Ecology (p. 30)</td>
</tr>
<tr>
<td>8:30–9:00 AM</td>
<td>C</td>
<td>Broadway D, Omni</td>
<td>Using Active Learning Strategies to Impact Non-Science Majors’ Critical-Thinking Skills (p. 30)</td>
</tr>
<tr>
<td>8:30–9:30 AM</td>
<td>7–12</td>
<td>108, MCC</td>
<td>Forensic DNA Activities and More with K’NEX Education’s DNA, Replication, and Transcription Set (p. 31)</td>
</tr>
<tr>
<td>8:40–9:00 AM</td>
<td>C</td>
<td>Ryman One, Renaissance</td>
<td>SCST Session: Creating an Authentic Research Experience in a General Biology Lab Using the Experience of Publishing (p. 32)</td>
</tr>
<tr>
<td>9:30–5:00 AM</td>
<td>9–C</td>
<td>Ryman One, Renaissance</td>
<td>SCST Session: How Prepared Are First-Year College Students to Learn About Cellular Respiration in Introductory Biology? (p. 34)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>9–12</td>
<td>101E, MCC</td>
<td>Exploring Engineering Practices (p. 38)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>8–C</td>
<td>Broadway C, Omni</td>
<td>Manipulative Mania: An Engaging, Student-centered Approach to Biology (p. 40)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>9–12</td>
<td>105B, MCC</td>
<td>Using Web-Based GIS to Investigate Rain Forest Conservation Issues in the Brazilian Amazon (p. 39)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>6–8</td>
<td>Legends C, Omni</td>
<td>Science Performance Tasks as the Application of Math and Language Arts (p. 37)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>9–C</td>
<td>Legends G, Omni</td>
<td>Wake Up Students with Activities on the Genetics of Sleep Cycles (p. 40)</td>
</tr>
<tr>
<td>9:50–10:10 AM</td>
<td>C</td>
<td>Ryman One, Renaissance</td>
<td>SCST Session: Creating the Chemistry in Cellular Respiration Concept Inventory: Our Progress (p. 42)</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>12</td>
<td>107A, MCC</td>
<td>AP Environmental: Using Your Stream to Teach STEM-Based Skills (p. 43)</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>9–12</td>
<td>209A, MCC</td>
<td>Infusing Inquiry and Demonstrations into AP Biology (p. 46)</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>6–C</td>
<td>208B, MCC</td>
<td>Investigate Photosynthesis and Cellular Respiration with Algae Beads (p. 46)</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>9–C</td>
<td>208A, MCC</td>
<td>Project-Based Learning for High School: Sequencing a Plant Species (p. 46)</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>6–12</td>
<td>207B, MCC</td>
<td>Patterns and Processes in Ecology (p. 46)</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>6–12</td>
<td>110A, MCC</td>
<td>Zombie Apocalypse! (p. 43)</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>6–8</td>
<td>205C, MCC</td>
<td>Gas Exchange (p. 44)</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>9–C</td>
<td>207C, MCC</td>
<td>Biology with Vernier (p. 46)</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>9–12</td>
<td>110B, MCC</td>
<td>New and Emerging Infectious Diseases: Host-Pathogen Relationships Highlight NGSS Core Concepts and the Value of Vaccination (p. 43)</td>
</tr>
<tr>
<td>Time</td>
<td>Group</td>
<td>Location</td>
<td>Presentation Title</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>K–12</td>
<td>204, MCC</td>
<td>Hands-On Activities to Model Habitat Preference and Population Sampling (p. 44)</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>7–C</td>
<td>202C, MCC</td>
<td>Genes in Space: Send Your DNA Experiment to the International Space Station (ISS) (p. 44)</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>9–12</td>
<td>202B, MCC</td>
<td>Biology for NGSS: A New Approach for a New Program (Grades 9–12) (p. 44)</td>
</tr>
<tr>
<td>11:00–11:20 AM</td>
<td>C</td>
<td>Ryman One, Renaissance</td>
<td>SCST Session: Undergraduate Biology Students' Conceptions of Extreme Spatial Scales (p. 48)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>2–5</td>
<td>103C, MCC</td>
<td>Professional Development to Support Integrated Inquiry-Based Teaching in the Outdoors (p. 53)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>9–12</td>
<td>Music Row 5, Omni</td>
<td>DuPont Presents: Tracking the Spread of Infectious Diseases—Human and Animal (p. 54)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>9–12</td>
<td>Cumberland 6, Omni</td>
<td>Creating an Inquiry-Based Classroom Through the Use of Technology (p. 50)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–12</td>
<td>103A, MCC</td>
<td>Cellular Respiration: Reducing Confusion Through Collaboration (p. 52)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>4–8</td>
<td>106B, MCC</td>
<td>Biomimicry: The “Natural” Intersection of Biology and Engineering (p. 53)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>9–12</td>
<td>Legends G, Omni</td>
<td>Moving Genes (p. 54)</td>
</tr>
<tr>
<td>11:20–11:40 AM</td>
<td>9–C</td>
<td>Ryman One, Renaissance</td>
<td>SCST Session: Simple Mechanical Devices to Help Students Learn the Principles of Human Anatomy and Physiology (p. 56)</td>
</tr>
<tr>
<td>11:30 AM–12 Noon</td>
<td>10–C</td>
<td>Cumberland 5, Omni</td>
<td>Who Did It? Inquiry-Based Forensic Serology and DNA Analysis in the Classroom (p. 56)</td>
</tr>
<tr>
<td>11:40 AM–12 Noon</td>
<td>9–C</td>
<td>Ryman One, Renaissance</td>
<td>SCST Session: Spatial Ability and STEM Courses—Why Mental Manipulation Matters (p. 56)</td>
</tr>
<tr>
<td>12 Noon–1:00 PM</td>
<td>7–C</td>
<td>207B, MCC</td>
<td>Inquiry-Based Ecology Using a Citizen Science Trail Camera Project (p. 60)</td>
</tr>
<tr>
<td>12 Noon–1:00 PM</td>
<td>8–C</td>
<td>214, MCC</td>
<td>Telling Molecular Stories with David Goodsell’s Cellular Landscapes (p. 61)</td>
</tr>
<tr>
<td>12 Noon–1:00 PM</td>
<td>6–C</td>
<td>202C, MCC</td>
<td>Bringing Real Neuroscience and Neural Engineering into Your Classroom (p. 58)</td>
</tr>
<tr>
<td>12 Noon–1:00 PM</td>
<td>8–C</td>
<td>212, MCC</td>
<td>Interactive Case Studies for the Biology Classroom (p. 61)</td>
</tr>
<tr>
<td>12 Noon–1:00 PM</td>
<td>5–8</td>
<td>201B, MCC</td>
<td>Modeling Energy Flow in Ecosystems: Developing Models in Middle School Life Science (p. 57)</td>
</tr>
<tr>
<td>12 Noon–1:00 PM</td>
<td>6–12</td>
<td>201A, MCC</td>
<td>Genetics: Crazy Traits and CPO’s New Link™ Learning Module (p. 57)</td>
</tr>
<tr>
<td>12 Noon–1:00 PM</td>
<td>K–12</td>
<td>204, MCC</td>
<td>Introduction to Wisconsin Fast Plants® (p. 58)</td>
</tr>
<tr>
<td>12 Noon–1:00 PM</td>
<td>9–C</td>
<td>205B, MCC</td>
<td>Top 10 for 2016: Genetics and Biotechnology Discoveries for Your Classroom (p. 58)</td>
</tr>
<tr>
<td>12 Noon–1:00 PM</td>
<td>9–12</td>
<td>205C, MCC</td>
<td>Gene Expression (p. 58)</td>
</tr>
<tr>
<td>12 Noon–1:00 PM</td>
<td>7–C</td>
<td>207C, MCC</td>
<td>Water Quality with Vernier (p. 60)</td>
</tr>
<tr>
<td>12:30–1:00 PM</td>
<td>8–12</td>
<td>Cumberland 5, Omni</td>
<td>Teaching Through the Lens of Nanotechnology (p. 62)</td>
</tr>
<tr>
<td>12:30–1:00 PM</td>
<td>5–8</td>
<td>106A, MCC</td>
<td>From the Goopy to the Digital: Multimodal Learning with Light and the Eye (p. 62)</td>
</tr>
<tr>
<td>12:30–1:00 PM</td>
<td>1–12</td>
<td>East Brm., Renaissance</td>
<td>Teaching Evolution Without Tears: Lessons from Darwin Day (p. 70)</td>
</tr>
<tr>
<td>12:30–1:00 PM</td>
<td>6–8</td>
<td>Cumberland 3, Omni</td>
<td>Applied Genetics: Fast Plant Genetics and Data Analysis for Introductory Life Science (p. 66)</td>
</tr>
<tr>
<td>12:30–1:00 PM</td>
<td>P–12</td>
<td>Cumberland 1, Omni</td>
<td>The Role of a 21st-Century Zoo: How We Can Build Youth Environmental Literacy Together (p. 66)</td>
</tr>
<tr>
<td>12:30–1:00 PM</td>
<td>6–C</td>
<td>Fisk Two, Renaissance</td>
<td>ASTE Session: Activities and Strategies for Teaching Difficult to Understand Plant Processes (p. 70)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>6–8</td>
<td>103A, MCC</td>
<td>Bioengineering Challenges and Middle School Life Science (p. 68)</td>
</tr>
<tr>
<td>1:00–1:30 PM</td>
<td>5–9</td>
<td>Broadway J, Omni</td>
<td>Designing and Implementing Effective Interdisciplinary Instructional Units (p. 72)</td>
</tr>
<tr>
<td>1:00–1:30 PM</td>
<td>4–12</td>
<td>103C, MCC</td>
<td>Integrating Global STEM Education into All Aspects of the Curriculum (p. 72)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>K–C</td>
<td>206 A/B, MCC</td>
<td>Using Wireless Sensors in Enzyme Activity and Cellular Respiration Labs (p. 81)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>K–8</td>
<td>Fisk Two, Renaissance</td>
<td>ASTE Session: Energize Your STEM Classroom! (p. 80)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>6–C</td>
<td>Legends G, Omni</td>
<td>FAB: Fusing Art and Biology to Enhance 21st-Century Skills (p. 80)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>P–5</td>
<td>104C, MCC</td>
<td>Saving Our Island: Students Creating Change Over Time (p. 77)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>8–12</td>
<td>Music Row 5, Omni</td>
<td>DuPont Presents: Photosynthesis and Respiration—It’s a Plant’s Life! (p. 80)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>7–C</td>
<td>Cumberland 1, Omni</td>
<td>How to Talk About Darwin (p. 76)</td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>6–10</td>
<td>105B, MCC</td>
<td>Modeling and the Three Dimensions of the NGSS in Middle School Genetics (p. 78)</td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>9–C</td>
<td>207C, MCC</td>
<td>Inquiry-Based Biology with Vernier (p. 84)</td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>9–C</td>
<td>208B, MCC</td>
<td>Upgrade Your Chemotaxis Lab! (Focuses on AP Biology Big Ideas 1–4) (p. 84)</td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>6–8</td>
<td>110A, MCC</td>
<td>Structure and (Fun)ction: Arthropod Body Parts and Evolution (p. 82)</td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>9–C</td>
<td>208A, MCC</td>
<td>Identify Patient Zero of a Zombie Apocalypse! (p. 84)</td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>7–C</td>
<td>107A, MCC</td>
<td>MiniOne™ Electrophoresis: Revolutionizing Biotechnology in Real Time (p. 82)</td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>9–C</td>
<td>207B, MCC</td>
<td>Using Primary Literature to Teach Data Literacy (p. 84)</td>
</tr>
</tbody>
</table>
Schedule at a Glance

<table>
<thead>
<tr>
<th>Time</th>
<th>Section</th>
<th>Location</th>
<th>Presentation Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:00–3:30 PM</td>
<td>8–C</td>
<td>214, MCC</td>
<td>The Many Jobs of Proteins: Enzymes in the Spotlight (p. 86)</td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>9–12</td>
<td>110B, MCC</td>
<td>New Tools, New Insights, and New Ways of Understanding Science with Miller and Levine Biology (p. 82)</td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>9–C</td>
<td>209C, MCC</td>
<td>Biotech Is STEM! (p. 86)</td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>9–12</td>
<td>205C, MCC</td>
<td>What Is a Species? (p. 84)</td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>K–12</td>
<td>204, MCC</td>
<td>Hands-On Science with Classroom Critters (p. 83)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>6–12</td>
<td>Legends E, Omni</td>
<td>Exploring Perception and the Brain: Hands-On NGSS-based Investigations from the Exploratorium (p. 94)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>K–5</td>
<td>101E, MCC</td>
<td>Regurgitation and Argumentation: Teaching Science Practices Using Owl Pellets (p. 91)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>6–8</td>
<td>206 A/B, MCC</td>
<td>Sensor-Based Labs to Address NGSS Practices for Middle School Life, Earth, and Physical Science (p. 95)</td>
</tr>
<tr>
<td>4:00–5:30 PM</td>
<td>9–C</td>
<td>208B, MCC</td>
<td>The GMO Debate Rages On! (p. 99)</td>
</tr>
<tr>
<td>4:00–5:30 PM</td>
<td>9–12</td>
<td>207B, MCC</td>
<td>Human Evolution in Living Color (p. 98)</td>
</tr>
<tr>
<td>4:00–5:30 PM</td>
<td>6–C</td>
<td>208A, MCC</td>
<td>Science, Style, and Fun! Genes in a Bottle™ Kit (p. 99)</td>
</tr>
<tr>
<td>4:00–5:30 PM</td>
<td>5–8</td>
<td>201B, MCC</td>
<td>Archaea and the Three Domains: Classification of Life for Middle School (p. 96)</td>
</tr>
<tr>
<td>4:00–5:30 PM</td>
<td>5–8</td>
<td>209B, MCC</td>
<td>The REAL Story of the Animal Kingdom on Planet Earth (p. 99)</td>
</tr>
<tr>
<td>4:00–5:30 PM</td>
<td>K–6</td>
<td>205B, MCC</td>
<td>Picking Apart the Owl Pellet (p. 98)</td>
</tr>
<tr>
<td>4:00–5:30 PM</td>
<td>K–5</td>
<td>204, MCC</td>
<td>Carolina’s Young Scientist™ Dissections with Carolina’s Perfect Solution® Specimen (p. 98)</td>
</tr>
<tr>
<td>4:00–5:30 PM</td>
<td>5–C</td>
<td>212, MCC</td>
<td>Leap into the Future with Hands-On Science Teaching (p. 100)</td>
</tr>
<tr>
<td>4:00–5:30 PM</td>
<td>9–12</td>
<td>110B, MCC</td>
<td>Teaching Evolution in a Climate of Controversy—Even with NGSS, the Battles Continue (p. 96)</td>
</tr>
<tr>
<td>4:00–5:30 PM</td>
<td>6–C</td>
<td>202C, MCC</td>
<td>DNA Crime Lab with miniPCR Technology (p. 97)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>K–5</td>
<td>104B, MCC</td>
<td>Children’s Books, STEM, and the Elementary Classroom: One Author’s Perspective (p. 102)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>6–12</td>
<td>103C, MCC</td>
<td>Photosynthesis and Cellular Respiration (LS1): A Hands-On Approach for Grades 6–12 (p. 103)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>P–2</td>
<td>104D, MCC</td>
<td>Assessing the Youngest Learners: Finding the Science in Children’s Observations, Questions, and Actions (p. 104)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>12–C</td>
<td>Legends G, Omni</td>
<td>Incorporating 3D Printing into Biology Curriculum (p. 103)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>1–8</td>
<td>106C, MCC</td>
<td>Academic Literacy for All in Science (p. 104)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>9–C</td>
<td>Cumberland 1, Omni</td>
<td>Integrating Multiple Concepts in Biology Using Cyanogenic Clover (p. 102)</td>
</tr>
</tbody>
</table>

Physical Science

<table>
<thead>
<tr>
<th>Time</th>
<th>Section</th>
<th>Location</th>
<th>Presentation Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–8:30 AM</td>
<td>9–12</td>
<td>Broadway J, Omni</td>
<td>Engaging Generation Z in Inquiry-Based Physics Using Media Technologies (p. 16)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>K–C</td>
<td>Broadway H, Omni</td>
<td>K–12 Science Resources and Programs from University STEM Centers (p. 18)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>6–8</td>
<td>104B, MCC</td>
<td>Abstract Concepts for the Concrete Mind: Techniques and Lessons to Engage Middle School Students and Provide a Valuable Purpose for Learning (p. 17)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>5–10</td>
<td>104E, MCC</td>
<td>NASA: Putting the EM Spectrum Together (p. 20)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>7–10</td>
<td>Cumberland 3, Omni</td>
<td>Modeling-Infused Instruction to Prepare Students for Physics, Chemistry, and Biology (p. 18)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>K–12</td>
<td>206 A/B, MCC</td>
<td>Engineering Bumpers and NGSS: Hands-On Physics with PASCO’s New Wireless Smart Cart! (p. 23)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>5–9</td>
<td>Fisk Two, Renaissance</td>
<td>ASTE Session: Are You Smarter Than a Rocket Scientist? Design a Spaceship (p. 22)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>9–C</td>
<td>Music Row 2, Omni</td>
<td>Using Relevance (Hawaiian and Modern Culture) to Teach College Prep Chemistry (p. 19)</td>
</tr>
<tr>
<td>8:00–9:30 AM</td>
<td>2–9</td>
<td>202A, MCC</td>
<td>What the Heck Happened?!? (p. 24)</td>
</tr>
<tr>
<td>8:00–9:30 AM</td>
<td>9–C</td>
<td>207D, MCC</td>
<td>Advanced Physics with Vernier (p. 26)</td>
</tr>
<tr>
<td>8:00–9:30 AM</td>
<td>9–12</td>
<td>209A, MCC</td>
<td>Fantastic Physical Science Demonstrations from Flinn Scientific (p. 27)</td>
</tr>
<tr>
<td>8:00–9:30 AM</td>
<td>6–12</td>
<td>201A, MCC</td>
<td>CPO’s Link™ Learning Module Optics with Light and Color: Use Light to Learn About Light (p. 24)</td>
</tr>
<tr>
<td>8:00–9:30 AM</td>
<td>6–C</td>
<td>202C, MCC</td>
<td>Cool Tools for Light and Color (p. 24)</td>
</tr>
</tbody>
</table>
8:00–9:30 AM 9–12 214, MCC Living By Chemistry: What Shape Is That Smell? (p. 28)
8:30–9:00 AM 9–12 Cumberland 5, Omni From Novice to Expert: Supporting Student Independence and Metacognition in Problem Solving (p. 30)
8:30–9:30 AM 7–C Davidson A1, MCC Featured Presentation: Prions: Discovering a Unifying Etiology for Neurodegenerative Disorders, Including Alzheimer’s and Parkinson’s Diseases (p. 31)
9:30–10:30 AM 9–12 101E, MCC Exploring Engineering Practices (p. 38)
9:30–10:30 AM 6–12 104E, MCC Stellar Evolution: From Star Formation to Catastrophic Destruction (p. 39)
9:30–10:30 AM 6–C Broadway J, Omni Pi in the Sky (p. 36)
9:30–10:30 AM 6–8 Legends C, Omni Science Performance Tasks as the Application of Math and Language Arts (p. 37)
9:30–10:30 AM K–5 103A, MCC Sound Through the Ages—From Cluckers to Pluckers (p. 38)
9:30–10:30 AM 9–12 Cumberland 6, Omni Create a Hot Air Balloon in Your Physics Class (p. 40)
9:30–10:30 AM 6–C 104B, MCC Adapting Chemistry Lessons to Fulfill the Spirit of the NGSS (p. 35)
9:30–10:30 AM 6–8 Legends E, Omni Waves in Three Dimensions (p. 40)
10:00–11:30 AM 3–12 202A, MCC Fantastical Chemistry Demos for All Classrooms (p. 44)
10:00–11:30 AM 9–C 207D, MCC Physics with Vernier (p. 46)
10:00–11:30 AM K–5 201B, MCC What to Look for in Physical Science Learning Progressions—Experience FOSS K–5 (p. 43)
10:00–11:30 AM 8–12 207A, MCC Apply the Science of Energy, Motion, and Friction (p. 46)
10:00–11:30 AM 4–8 210, MCC The STEM Design Challenge (p. 47)
10:00–11:30 AM 6–12 205B, MCC Engineer Hands-On Chemistry Fun with a Carolina STEM Challenge®! (p. 44)
11:00–11:30 AM P–2 104B, MCC NGSS for Early Childhood Learners (p. 49)
11:00 AM–12 Noon 6–10 Legends D, Omni CSI: Chemistry (p. 50)
11:00 AM–12 Noon K–C 206 A/B, MCC Project-Based Activities with Wireless Sensors to Meet Gas Laws and Stoichiometry Chemistry Standards (p. 55)
11:00 AM–12 Noon 6–8 Broadway H, Omni The Who, What, When, Where, and How of Waves (p. 54)
11:00 AM–12 Noon 6–C Fisk One, Renaissance NARST Session: Does Your Professional Development Make a Difference? Teachers’ Retention of Discipline-Specific Science Content (p. 52)
11:00 AM–12 Noon 9–12 Broadway C, Omni Brick, Puzzles, and the Alphabet = Understanding Chemistry (p. 53)
12 Noon–1:30 PM 8–12 207A, MCC Fracking the CASE (p. 58)
12 Noon–1:30 PM 11–12 110B, MCC The Best Test Prep Book Ever for AP Chemistry (p. 57)
12 Noon–1:30 PM 2–9 202A, MCC Cool! Can We Do That Again?!? (p. 57)
12 Noon–1:30 PM 9–12 202B, MCC Sparking Interest with Chemistry (p. 58)
12:30–1:00 PM 5–8 106A, MCC From the Groovy to the Digital: Multimodal Learning with Light and the Eye (p. 62)
12:30–1:00 PM 8–12 Cumberland 5, Omni Teaching Through the Lens of Nanotechnology (p. 62)
1:30–2:30 PM 5–9 108, MCC Off to the Races with K’NEX Education’s Forces, Energy, and Motion Set! (p. 73)
2:00–2:30 PM 10–12 103A, MCC A Different Type of PPT: Phenomena, Practices, and Teaching (p. 73)
2:00–3:00 PM 1–C Broadway E, Omni Award-Winning Share-a-thon: Featuring NSTA Distinguished Teachers (p. 76)
2:00–3:00 PM 4–5 104E, MCC Probeware and Practices: Partners for Elementary Science (p. 78)
2:00–3:00 PM P–5 104C, MCC Saving Our Island: Students Creating Change Over Time (p. 77)
2:00–3:00 PM 9–12 Broadway C, Omni Hollywood Physics (p. 78)
2:00–3:00 PM K–8 Fisk Two, Renaissance ASTE Session: Energize Your STEM Classroom! (p. 80)
2:00–3:30 PM 9–12 209A, MCC Flinn Scientific’s Exploring Chemistry™: Connecting Content through Experiments (p. 86)
2:00–3:30 PM 7–12 201A, MCC CPO Science’s New Physics AP1 Link™ Module: Rotational Motion Using the CPO Rollercoaster (p. 82)
2:00–3:30 PM 6–C 202C, MCC Cool Tools for Sounds and Waves (p. 83)
2:00–3:30 PM 1–8 202A, MCC Elementary Teacher Survival Kit (p. 83)
2:00–3:30 PM 6–12 212, MCC A Peek Behind the Curtain: Disney Parks Approach to Physics and Energy (p. 86)
2:00–3:30 PM 7–C 210, MCC A Better Approach to Chemistry (p. 86)
2:00–3:30 PM 11–12 107B, MCC Black Holes for High School Physics (p. 82)
2:00–3:30 PM 9–12 205B, MCC Keep Calm and Chemistry On: Successful Lab Activities for the New Chemistry Teacher (p. 83)
Schedule at a Glance

Physical Science

<table>
<thead>
<tr>
<th>Time</th>
<th>Group</th>
<th>Location</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:30–3:00 PM</td>
<td>9–12</td>
<td>103A, MCC</td>
<td>Creating and Sharing Three-Dimensional NGSS-Focused High School Chemistry Lessons in a Virtual Professional Learning Community (p. 87)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>4–C</td>
<td>Acoustic, Omni</td>
<td>STEMSHOT: A Community-Sponsored Rocket Challenge (p. 90)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>6–12</td>
<td>Cumberland 3, Omni</td>
<td>Demonstrations: Literacy and Assessment (p. 90)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>K–8</td>
<td>103C, MCC</td>
<td>Forces and Motion (PS2): An Integrated K–8 Hands-On Approach Supporting the NGSS and CCSS ELA (p. 91)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>6–8</td>
<td>206 A/B, MCC</td>
<td>Sensor-Based Labs to Address NGSS Practices for Middle School Life, Earth, and Physical Science (p. 95)</td>
</tr>
<tr>
<td>4:00–5:30 PM</td>
<td>9–C</td>
<td>207C, MCC</td>
<td>Chemistry with Vernier (p. 98)</td>
</tr>
<tr>
<td>4:00–5:30 PM</td>
<td>5–8</td>
<td>209C, MCC</td>
<td>The Harnessed Atom: New Project Ideas, Tools, and Resources—Nuclear Science and Energy (p. 99)</td>
</tr>
<tr>
<td>4:00–5:30 PM</td>
<td>6–8</td>
<td>205C, MCC</td>
<td>Reclaiming the Metal (p. 98)</td>
</tr>
<tr>
<td>4:00–5:30 PM</td>
<td>9–12</td>
<td>207A, MCC</td>
<td>Chemistry of Wine (p. 98)</td>
</tr>
<tr>
<td>4:00–5:30 PM</td>
<td>9–12</td>
<td>209A, MCC</td>
<td>New Inquiry Investigations for AP Physics 1 from Flinn Scientific (p. 99)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>11–C</td>
<td>Music Row 3, Omni</td>
<td>STEM in Action: Learning Physics through Projects (p. 101)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>6–12</td>
<td>Music Row 2, Omni</td>
<td>Powerful Free Simulations for Three-Dimensional NGSS (p. 103)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>K–5</td>
<td>104B, MCC</td>
<td>Children’s Books, STEM, and the Elementary Classroom: One Author’s Perspective (p. 102)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>9–12</td>
<td>Music Row 5, Omni</td>
<td>DuPont Presents: Adding Some Color to Science (p. 106)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>K–8</td>
<td>101E, MCC</td>
<td>Newton’s Nightmare: A Magnetic Mystery! (p. 103)</td>
</tr>
<tr>
<td>5:30–6:00 PM</td>
<td>C</td>
<td>Music Row 3, Omni</td>
<td>Including Hands-On Instruction in a Science Lecture Course for Undergraduate Education Majors: Lessons Learned (p. 106)</td>
</tr>
</tbody>
</table>
At Adventure Science Center’s Solar System Survey, visitors take a walk through our solar system and discover the relationships between the planets and their moons, how much a person would weigh on Jupiter or Saturn, and why we have seasons. Show your NSTA badge and receive half off general admission to Adventure Science Center. See page 12 of Volume 1 to learn more about this special offer.
Index of Participants

A
Abbott, Rebecca 23, 43
Adams, Krista 20, 78
Adams, Paul 76
Adkins, Robert 76
Albano, Milissa 62
Allan, Richard 44
Allen, Andrea 102
Alvarez, Gus 27, 99
Ammons, James 52
Andrews, Sarah 77
Andrews, Sherri 27, 46, 84, 99
Angle, Julie 30
Angotti, Lauren 73
Apfeldorf, Michael 41
April, Ilana 104
Archer, Erick 23
Arias, Anna 67
Arndt, Laura 32, 56
Artero, Jason 39, 92
Ashe, Becky 30
Ateh, Comfort 55

B
Badders, Bill 92
Baek, Jonathan 67
Bailey, Elsa 34
Baird, Kate 35
Baker, Carol 23
Bakshi, Leena 80
Bardar, Erin 69
Barnett, Tiffany 36
Barth, Amy 47
Bauer, Jennifer 70
Bauer, Jodi 60
Baxter, Tony 20
Bauer, Jodi 60
Baughman, Graham 86
Bayer, Irene 53, 78
Bazler, Judith 42
Beard, Todd 96
Beck, Joanna 94
Beister, Sarah 36, 97
Bell, Philip 18
Bennett, Allison 88
Benso, Maggy 72
Benson, Donna 101
Benson, Maggy 102
Benton, Erik 24, 57, 82, 96
Berenco, Minda 17
Berent, Rusti 84

C
Caffery, Pamela 38
Campanaro, Christine 102
Campbell, Brian 24, 43, 83
Campbell, Natacia 50
Campion, Laura 76
Cannon, Aaron 100
Cannon, Kristie 36
Cardello, Joseph 86
Carroll, Kristoffer 72
Carter, David 46
Carter, Sarah 34
Cartier, Renee 47, 87
Case, Lauren 23
Casey, Liam 26
Catalan, Juan 35
Cells, Meaghan 35
Chabebe, Natalia 16
Chadde, Joan Schumaker 20
Chan, Richard 82
Chase, Rachel 80
Christmann, Edwin 88
Cingel, Ana 40
Clark, John-Patrick 102
Clary, Renee 15, 32, 52
Cockerham, Cliff 23
Cody, Jennifer 20
Coe, Caitlin 104
Cohen, Tiffany 18
Coleman, Sarah 80
Collins, Lisa 16
Collins, Susan 79
Conneely, Bridget 60, 84
Conner, Laura 87
Converse, Mason 18
Cook, Kyla 42
Cooper, Sara 50
Cordeira, Kelly 19, 63
Cordell, Ralph 63
Cortinas, Summer 23
Coy, Stephanie 35
Cranen, John III 16
Creaden, Jason 90
Crowther, David 92
Cunningham, Suzanne 53

D
Dahlem, Joshua 94
Dalby, Timothy 22
Damelin, Daniel 18, 40
Daniels, Seely 80
Dass, Pradeep 32
Daugherty, Ellyn 86
Davis, Jeni 69
Davis, Michael 36
Dean, Kellie 50
Del Muro, Lisa 106
Dennstedt, Sherri 69
Dettwiler, Michele 54
Devine, Kelly 66
DeVore-Wedding, Bev 23, 91
DiRanna, Kathy 28, 70
Disch, Susan 18, 89
Dobler, Teresa 73
Donaldson, Katherine 40
Donkers, Kevin 57
Dorsey, Chad 103
Dotti, Kristen 30, 73
Dowling, Jeffrey 28
Ducreast, David 61
Duggan-Haas, Don 104
Duhon, Kyle 90
Duncan, Patti 28, 61, 100
Dunn, Tammy 95
Dupuis, Jason 77
Duvall, Rhonda 106
Dworken, Ben 80
Dykstra, Janet 27

E
Eberle, Megan 20
Eeds, Angela 46
Eilers, Alex 34
Eisenkraft, Arthur 37
Elder, Anastasia 15
Embry, Bonnie 21
Encalade, Laura 66, 76, 90
Eng, Thomas 96
Engle, Dennis 38, 104
Engstrom, Carleigh 42
Ervin, Jeremy 76
Esterly, Denice 61
Evans, Zoe 52
Everett, Jerry 30

F
Farah, Kimberly 56
Farmer, Tiffany Ellis 34, 63
Fassler, Amy 60
Feidler, Jeffrey 57
Feltner, Maryellen 54
Fennig, Vanessa 50
Fernezia, Paula 62
Fick, Sarah 67
Fiore, Rachel 106
Flynn, Suzanne 50
Fogleman, Jay 55
Fonner, Linda 91
Forbes, Leslie 64
Forshee, Lance 34, 42
<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forshe, Lance</td>
<td>32</td>
</tr>
<tr>
<td>Fortenberry, Chelsea</td>
<td>34</td>
</tr>
<tr>
<td>Fox, Josie</td>
<td>34</td>
</tr>
<tr>
<td>Fraknoi, Andrew</td>
<td>16</td>
</tr>
<tr>
<td>Franzen, Margaret</td>
<td>61, 86</td>
</tr>
<tr>
<td>Frazier, Mike</td>
<td>99</td>
</tr>
<tr>
<td>Frazier-Cantkier, Charlotte</td>
<td>18</td>
</tr>
<tr>
<td>French, Donald</td>
<td>32, 34, 42, 48</td>
</tr>
<tr>
<td>Froschauer, Linda</td>
<td>28</td>
</tr>
<tr>
<td>Fuerst, Sam</td>
<td>39</td>
</tr>
<tr>
<td>Fumagalli, Mike</td>
<td>81</td>
</tr>
<tr>
<td>Furtak, Erin</td>
<td>19</td>
</tr>
<tr>
<td>Gann, Courtney</td>
<td>72</td>
</tr>
<tr>
<td>Garban, D'Anne</td>
<td>20</td>
</tr>
<tr>
<td>Gardner, Grant</td>
<td>22, 48</td>
</tr>
<tr>
<td>Gardner, Grant M.</td>
<td>94</td>
</tr>
<tr>
<td>Gendreau, Harvey</td>
<td>23</td>
</tr>
<tr>
<td>Gensic, John</td>
<td>79</td>
</tr>
<tr>
<td>German, Susan</td>
<td>76</td>
</tr>
<tr>
<td>Gilbert, Amy</td>
<td>54</td>
</tr>
<tr>
<td>Gill, Susan</td>
<td>69</td>
</tr>
<tr>
<td>Giorgi, Gisele</td>
<td>23</td>
</tr>
<tr>
<td>Glasner, Lindsay</td>
<td>53</td>
</tr>
<tr>
<td>Glass, Margaret</td>
<td>91</td>
</tr>
<tr>
<td>Gleason, Christine</td>
<td>89</td>
</tr>
<tr>
<td>Glocke, Erin</td>
<td>20</td>
</tr>
<tr>
<td>Godwin, PJ</td>
<td>106</td>
</tr>
<tr>
<td>Goldberg, Rhoda</td>
<td>54</td>
</tr>
<tr>
<td>Goldin-Dubois, Denise</td>
<td>69</td>
</tr>
<tr>
<td>Gooch, Helen</td>
<td>57</td>
</tr>
<tr>
<td>Good, Stephanie</td>
<td>68</td>
</tr>
<tr>
<td>Gopal, Jyoti</td>
<td>32</td>
</tr>
<tr>
<td>Gordon, Nicole</td>
<td>102</td>
</tr>
<tr>
<td>Gottlieb, Jennifer</td>
<td>80</td>
</tr>
<tr>
<td>Gourley, Stephen</td>
<td>100</td>
</tr>
<tr>
<td>Graybill, Letitia</td>
<td>42</td>
</tr>
<tr>
<td>Green, Nicole</td>
<td>100</td>
</tr>
<tr>
<td>Griffin, Maureen</td>
<td>91</td>
</tr>
<tr>
<td>Griffith, Meg</td>
<td>46</td>
</tr>
<tr>
<td>Grunbaum, Mara</td>
<td>47</td>
</tr>
<tr>
<td>Hamilton, Frances</td>
<td>68</td>
</tr>
<tr>
<td>Hammersly, Ann</td>
<td>91</td>
</tr>
<tr>
<td>Harman, Pamela</td>
<td>95</td>
</tr>
<tr>
<td>Harmon, Charles</td>
<td>88</td>
</tr>
<tr>
<td>Harms, Sally</td>
<td>23</td>
</tr>
<tr>
<td>Harris, Christopher</td>
<td>64</td>
</tr>
<tr>
<td>Hart, Reeda</td>
<td>21, 104</td>
</tr>
<tr>
<td>Hartman, Matthew</td>
<td>96</td>
</tr>
<tr>
<td>Harvey, Janice</td>
<td>34</td>
</tr>
<tr>
<td>Hawkins, Margie</td>
<td>35</td>
</tr>
<tr>
<td>Hehr, Lynne</td>
<td>20</td>
</tr>
<tr>
<td>Henman, Karen</td>
<td>70</td>
</tr>
<tr>
<td>Herman, Deanna</td>
<td>66</td>
</tr>
<tr>
<td>Hershberger, Kimber</td>
<td>68</td>
</tr>
<tr>
<td>Hess, Melissa</td>
<td>39</td>
</tr>
<tr>
<td>Higgins, Carolyn</td>
<td>19</td>
</tr>
<tr>
<td>Hill, Jennifer</td>
<td>49</td>
</tr>
<tr>
<td>Hoekeng, Janet</td>
<td>27</td>
</tr>
<tr>
<td>Hoffman, Lisabeth</td>
<td>98</td>
</tr>
<tr>
<td>Holmes, Jay</td>
<td>40</td>
</tr>
<tr>
<td>Holzer, Margaret</td>
<td>53</td>
</tr>
<tr>
<td>Honeycutt, Scott</td>
<td>103</td>
</tr>
<tr>
<td>Hong, David</td>
<td>26</td>
</tr>
<tr>
<td>Hong, Huili</td>
<td>91</td>
</tr>
<tr>
<td>Hope, Jennifer</td>
<td>53</td>
</tr>
<tr>
<td>Horton, Matthew</td>
<td>102</td>
</tr>
<tr>
<td>Hottle, Stacia</td>
<td>72</td>
</tr>
<tr>
<td>Howarth, John</td>
<td>68</td>
</tr>
<tr>
<td>Hu, Barbara</td>
<td>40</td>
</tr>
<tr>
<td>Hubenthal, Michael</td>
<td>104</td>
</tr>
<tr>
<td>Humes, Caroline</td>
<td>23, 50</td>
</tr>
<tr>
<td>Hunnings, Douglas</td>
<td>18, 68, 89</td>
</tr>
<tr>
<td>Kalnite, Pini</td>
<td>66</td>
</tr>
<tr>
<td>Kanneko, Jean</td>
<td>35</td>
</tr>
<tr>
<td>Kasprisin, Andrew</td>
<td>37</td>
</tr>
<tr>
<td>Kastel, Dora</td>
<td>21, 36, 70</td>
</tr>
<tr>
<td>Katovich, Tanya</td>
<td>106</td>
</tr>
<tr>
<td>Katz, Phyllis</td>
<td>87</td>
</tr>
<tr>
<td>Kauffman, Tiffany</td>
<td>106</td>
</tr>
<tr>
<td>Keeley, Page</td>
<td>18, 52, 89</td>
</tr>
<tr>
<td>Keith, Karin</td>
<td>91, 103</td>
</tr>
<tr>
<td>Kelsey, Martin</td>
<td>102</td>
</tr>
<tr>
<td>Kenyon, Nancy</td>
<td>37</td>
</tr>
<tr>
<td>Kern, Cynthia</td>
<td>72</td>
</tr>
<tr>
<td>Kidd, Kristy</td>
<td>32</td>
</tr>
<tr>
<td>King, Pamela</td>
<td>41</td>
</tr>
<tr>
<td>Koga, Mary</td>
<td>19</td>
</tr>
<tr>
<td>Koker, Mark</td>
<td>26, 44, 58, 84, 98</td>
</tr>
<tr>
<td>Koller, Herb</td>
<td>47</td>
</tr>
<tr>
<td>Konicek-Moran, Richard</td>
<td>52, 102</td>
</tr>
<tr>
<td>Korodaj-Zellers, Natalie</td>
<td>77</td>
</tr>
<tr>
<td>Kovach, Gerard</td>
<td>63</td>
</tr>
<tr>
<td>Kovach-Ham, Juliet</td>
<td>53</td>
</tr>
<tr>
<td>Krajcik, Joseph</td>
<td>18, 53, 64, 78</td>
</tr>
<tr>
<td>Kraus, Rudolf</td>
<td>55</td>
</tr>
<tr>
<td>Kraves, Sebastian</td>
<td>44, 97</td>
</tr>
<tr>
<td>Krishnamurthi, Anita</td>
<td>63</td>
</tr>
<tr>
<td>Kruse, Brian</td>
<td>17, 34, 92</td>
</tr>
<tr>
<td>Kuhn, Bob</td>
<td>84</td>
</tr>
<tr>
<td>Kuhn, Michael</td>
<td>102</td>
</tr>
<tr>
<td>Kur, Judith</td>
<td>68</td>
</tr>
<tr>
<td>Kutina, Kimberly</td>
<td>34</td>
</tr>
<tr>
<td>Kuhn, Michael</td>
<td>102</td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Labov, Jay</td>
<td>36</td>
</tr>
<tr>
<td>LaFave, Nick</td>
<td>62</td>
</tr>
<tr>
<td>Lancaster, Lori</td>
<td>51</td>
</tr>
<tr>
<td>Lanese, Tina</td>
<td>34</td>
</tr>
<tr>
<td>Lau, Melissa</td>
<td>49</td>
</tr>
<tr>
<td>Lauer, Amy</td>
<td>62</td>
</tr>
<tr>
<td>Launius, J. Carrie</td>
<td>78</td>
</tr>
<tr>
<td>Lauren, Hillary</td>
<td>40</td>
</tr>
<tr>
<td>Lauterbach, Lynn</td>
<td>49</td>
</tr>
<tr>
<td>Layfield, R. Thomas</td>
<td>36</td>
</tr>
<tr>
<td>Lazarova, Krassi</td>
<td>101</td>
</tr>
<tr>
<td>Lee, Jane</td>
<td>78</td>
</tr>
<tr>
<td>Lee, Jason</td>
<td>42, 55</td>
</tr>
<tr>
<td>Leonard, Ruth</td>
<td>95</td>
</tr>
<tr>
<td>Lesseig, Kristin</td>
<td>38</td>
</tr>
<tr>
<td>Lester, Lindsay</td>
<td>49</td>
</tr>
<tr>
<td>Levine, Joseph</td>
<td>43, 82</td>
</tr>
<tr>
<td>Litster, Megan</td>
<td>30</td>
</tr>
<tr>
<td>Loesing, Mary</td>
<td>51</td>
</tr>
<tr>
<td>Logan-Hollis, Christine</td>
<td>64</td>
</tr>
<tr>
<td>Long, Cheryl</td>
<td>96</td>
</tr>
<tr>
<td>Long, Kathy</td>
<td>43</td>
</tr>
<tr>
<td>Long, Steve</td>
<td>36</td>
</tr>
<tr>
<td>LoRe, Sondra</td>
<td>30, 72</td>
</tr>
<tr>
<td>Lorrin, Russell</td>
<td>95</td>
</tr>
<tr>
<td>Lough, Tom</td>
<td>76</td>
</tr>
<tr>
<td>Love, Tyler</td>
<td>38</td>
</tr>
<tr>
<td>Lukens, Jeffrey</td>
<td>23, 43</td>
</tr>
<tr>
<td>Luna, Susan</td>
<td>92</td>
</tr>
<tr>
<td>Lynch, Karen</td>
<td>103</td>
</tr>
<tr>
<td>Lynch, Mary Jean</td>
<td>104</td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Macklem, Gregory</td>
<td>76</td>
</tr>
<tr>
<td>Maddox, Mary</td>
<td>23</td>
</tr>
<tr>
<td>Madrazo, Gerry, Jr.</td>
<td>19, 90</td>
</tr>
<tr>
<td>Madsen, Alex</td>
<td>79</td>
</tr>
<tr>
<td>Maeng, Jennifer</td>
<td>38, 54</td>
</tr>
<tr>
<td>MaKinster, James</td>
<td>22, 39</td>
</tr>
<tr>
<td>Mallya, Aarti</td>
<td>18</td>
</tr>
<tr>
<td>Maloney, James</td>
<td>18</td>
</tr>
<tr>
<td>Marcum-Dietrich, Nanette</td>
<td>39</td>
</tr>
<tr>
<td>Marion, JaMonica</td>
<td>106</td>
</tr>
<tr>
<td>Marshall, Robert</td>
<td>27, 47, 86, 99</td>
</tr>
<tr>
<td>Martinez, Bertha</td>
<td>23</td>
</tr>
<tr>
<td>Marzec, Colleen</td>
<td>72</td>
</tr>
<tr>
<td>Marzullo, Timothy</td>
<td>58</td>
</tr>
<tr>
<td>Mason, Kevin</td>
<td>74</td>
</tr>
<tr>
<td>Massey, Vicki</td>
<td>63</td>
</tr>
<tr>
<td>Mayer, Naomi</td>
<td>77</td>
</tr>
<tr>
<td>Mayes, Robert</td>
<td>62</td>
</tr>
<tr>
<td>Maze, Patricia</td>
<td>38, 104</td>
</tr>
<tr>
<td>McAlister, Brian</td>
<td>74</td>
</tr>
<tr>
<td>McAuliffe, Carla</td>
<td>40, 69, 78</td>
</tr>
<tr>
<td>McBeath, Deanna</td>
<td>62</td>
</tr>
<tr>
<td>McCormack, Alan</td>
<td>76</td>
</tr>
<tr>
<td>McCracken, Colleen</td>
<td>95</td>
</tr>
<tr>
<td>McDaniel, Colleen</td>
<td>26, 60</td>
</tr>
<tr>
<td>McDonald, Jim</td>
<td>39, 92</td>
</tr>
<tr>
<td>McDowell, Crystal</td>
<td>50</td>
</tr>
<tr>
<td>McDowell, Rebecca</td>
<td>103</td>
</tr>
<tr>
<td>McGahue, Emily</td>
<td>38, 104</td>
</tr>
<tr>
<td>McGimsey, Ben</td>
<td>106</td>
</tr>
<tr>
<td>McGinnis, Patty</td>
<td>97</td>
</tr>
<tr>
<td>McGough, Julie</td>
<td>77</td>
</tr>
<tr>
<td>McGrath, Edward</td>
<td>51</td>
</tr>
<tr>
<td>McKenna, Acacia</td>
<td>36</td>
</tr>
<tr>
<td>McMillan, Chuck</td>
<td>24</td>
</tr>
<tr>
<td>McRee, Nicole</td>
<td>17</td>
</tr>
<tr>
<td>Name</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>McWilliams, Chuck</td>
<td>102</td>
</tr>
<tr>
<td>Mead, Louise</td>
<td>78</td>
</tr>
<tr>
<td>Mendez, Flavio</td>
<td>50, 76</td>
</tr>
<tr>
<td>Meredith, Liz</td>
<td>76</td>
</tr>
<tr>
<td>Merriam, Sandra</td>
<td>32</td>
</tr>
<tr>
<td>Merritt, Karen</td>
<td>94</td>
</tr>
<tr>
<td>Metzgar, Vicki</td>
<td>9</td>
</tr>
<tr>
<td>Miguel, Audrey</td>
<td>69</td>
</tr>
<tr>
<td>Mika, Teresa</td>
<td>30</td>
</tr>
<tr>
<td>Miller, Kenneth</td>
<td>82, 96</td>
</tr>
<tr>
<td>Miller, Seth</td>
<td>68</td>
</tr>
<tr>
<td>Mills, Kathleen</td>
<td>43</td>
</tr>
<tr>
<td>Milne, Caroline</td>
<td>50</td>
</tr>
<tr>
<td>Milo, Heather</td>
<td>47</td>
</tr>
<tr>
<td>Minton, Jessica</td>
<td>90</td>
</tr>
<tr>
<td>Mirabelli, Sandra</td>
<td>69</td>
</tr>
<tr>
<td>Mirabello, Matthew</td>
<td>40</td>
</tr>
<tr>
<td>Moar, Susanne</td>
<td>50</td>
</tr>
<tr>
<td>Mohr, Chris Embry</td>
<td>52</td>
</tr>
<tr>
<td>Moore, Abby</td>
<td>66</td>
</tr>
<tr>
<td>Moore, Kendra</td>
<td>104</td>
</tr>
<tr>
<td>Moore, Teneshia</td>
<td>20</td>
</tr>
<tr>
<td>Motamed, Audrey</td>
<td>19</td>
</tr>
<tr>
<td>Motz, LaMoine</td>
<td>19</td>
</tr>
<tr>
<td>Muenz, Tara</td>
<td>39</td>
</tr>
<tr>
<td>Muller, Eric</td>
<td>34, 94</td>
</tr>
<tr>
<td>Murph, Marguerite</td>
<td>36</td>
</tr>
<tr>
<td>Myers, Alyce</td>
<td>79</td>
</tr>
<tr>
<td>Nagle, Barbara</td>
<td>68, 78</td>
</tr>
<tr>
<td>Nakagiri, Gary</td>
<td>64</td>
</tr>
<tr>
<td>Nelson, Tamara</td>
<td>38</td>
</tr>
<tr>
<td>Ng, Carolyn</td>
<td>34</td>
</tr>
<tr>
<td>Nguyen-Graff, Dorothy</td>
<td>21</td>
</tr>
<tr>
<td>Nicholas, Celeste</td>
<td>53, 78</td>
</tr>
<tr>
<td>Nielsen, Mark</td>
<td>26, 46</td>
</tr>
<tr>
<td>Novak, Deb</td>
<td>34</td>
</tr>
<tr>
<td>Novak, Michael</td>
<td>81</td>
</tr>
<tr>
<td>Nusser, Allyson</td>
<td>38</td>
</tr>
<tr>
<td>Nyberg, Lisa</td>
<td>77</td>
</tr>
<tr>
<td>Oakes, William</td>
<td>94</td>
</tr>
<tr>
<td>O’Connell, Holly</td>
<td>68</td>
</tr>
<tr>
<td>O’Connor, Dawn</td>
<td>80</td>
</tr>
<tr>
<td>Okoye, Ruth</td>
<td>101</td>
</tr>
<tr>
<td>Olafson, Eva</td>
<td>92</td>
</tr>
<tr>
<td>Olson, Julie</td>
<td>52</td>
</tr>
<tr>
<td>Olson, Kristen</td>
<td>22, 104</td>
</tr>
<tr>
<td>O’Neal, Diana</td>
<td>49</td>
</tr>
<tr>
<td>Ortmann, Lisa</td>
<td>49</td>
</tr>
<tr>
<td>Osoviecki, Aaron</td>
<td>78</td>
</tr>
<tr>
<td>Ostlund, Karen</td>
<td>76</td>
</tr>
<tr>
<td>Pagani, Michelle</td>
<td>26, 58</td>
</tr>
<tr>
<td>Pardue, Sally</td>
<td>31</td>
</tr>
<tr>
<td>Parfitt, Kim</td>
<td>46</td>
</tr>
<tr>
<td>Parker, Simone</td>
<td>90</td>
</tr>
<tr>
<td>Parmar, Mena</td>
<td>80</td>
</tr>
<tr>
<td>Parrish, Jennifer</td>
<td>22</td>
</tr>
<tr>
<td>Passow, Michael</td>
<td>40, 53, 69, 78, 92</td>
</tr>
<tr>
<td>Pastor, Ella</td>
<td>32</td>
</tr>
<tr>
<td>Paulson, Doug</td>
<td>95</td>
</tr>
<tr>
<td>Pea, Celestine</td>
<td>74</td>
</tr>
<tr>
<td>Peacock, Amy</td>
<td>94</td>
</tr>
<tr>
<td>Peacock, Jeremy</td>
<td>52, 94</td>
</tr>
<tr>
<td>Peake, Jeffrey</td>
<td>80</td>
</tr>
<tr>
<td>Pearson, Mindy</td>
<td>54</td>
</tr>
<tr>
<td>Pecore, John</td>
<td>22, 78</td>
</tr>
<tr>
<td>Peck-Brown, Deborah</td>
<td>78</td>
</tr>
<tr>
<td>Penchos, Jessica</td>
<td>57, 96</td>
</tr>
<tr>
<td>Pennington, Parker IV</td>
<td>92</td>
</tr>
<tr>
<td>Pepin, Glenda</td>
<td>41</td>
</tr>
<tr>
<td>Peterson, Erik</td>
<td>76</td>
</tr>
<tr>
<td>Peterson, Gina Gattavara</td>
<td>54</td>
</tr>
<tr>
<td>Peterson, Jeff</td>
<td>53</td>
</tr>
<tr>
<td>Peterson, Jodi</td>
<td>64</td>
</tr>
<tr>
<td>Peterson, Patricia</td>
<td>90</td>
</tr>
<tr>
<td>Petrova, Kitchka</td>
<td>74</td>
</tr>
<tr>
<td>Pettera, Jeff</td>
<td>40</td>
</tr>
<tr>
<td>Pistorius, Carolyn</td>
<td>106</td>
</tr>
<tr>
<td>Pisut, Dan</td>
<td>73</td>
</tr>
<tr>
<td>Plank, Larry</td>
<td>103</td>
</tr>
<tr>
<td>Pompea, Stephen</td>
<td>32</td>
</tr>
<tr>
<td>Pontius, Krista</td>
<td>54</td>
</tr>
<tr>
<td>Poodry, Frances</td>
<td>26</td>
</tr>
<tr>
<td>Pope, Damian</td>
<td>57, 82</td>
</tr>
<tr>
<td>Porter, Jenna</td>
<td>40</td>
</tr>
<tr>
<td>Porter, Karhonda</td>
<td>77</td>
</tr>
<tr>
<td>Potter-Nelson, Elizabeth</td>
<td>106</td>
</tr>
<tr>
<td>Powers, Donald</td>
<td>92</td>
</tr>
<tr>
<td>Price, Paul</td>
<td>48</td>
</tr>
<tr>
<td>Price-Colley, Kelly</td>
<td>49, 68</td>
</tr>
<tr>
<td>Price, Summer</td>
<td>74</td>
</tr>
<tr>
<td>Prusine, Stanley</td>
<td>31</td>
</tr>
<tr>
<td>Pullen, K. Renae</td>
<td>36</td>
</tr>
<tr>
<td>Putnam, Dwight “Buzz”</td>
<td>24, 83</td>
</tr>
<tr>
<td>Pyle, Eric</td>
<td>104</td>
</tr>
<tr>
<td>Ralph, Michael</td>
<td>66</td>
</tr>
<tr>
<td>Ralph, Shannon</td>
<td>66</td>
</tr>
<tr>
<td>Ramey, Kelly</td>
<td>30</td>
</tr>
<tr>
<td>Ramos, Martina</td>
<td>48</td>
</tr>
<tr>
<td>Ramsey, Katie</td>
<td>50</td>
</tr>
<tr>
<td>Randall, Jack</td>
<td>98</td>
</tr>
<tr>
<td>Rearden, Kristin</td>
<td>64</td>
</tr>
<tr>
<td>Reardon, Ryan</td>
<td>70, 81</td>
</tr>
<tr>
<td>Reddick, Kristie</td>
<td>82</td>
</tr>
<tr>
<td>Reese, Devin</td>
<td>72</td>
</tr>
<tr>
<td>Reid, Virginia</td>
<td>57, 96</td>
</tr>
<tr>
<td>Reiser, Brian</td>
<td>81</td>
</tr>
<tr>
<td>Reitz, William</td>
<td>54</td>
</tr>
<tr>
<td>Reizner, Whitney</td>
<td>76</td>
</tr>
<tr>
<td>Reynolds, Joy</td>
<td>20</td>
</tr>
<tr>
<td>Rhodes, Donna</td>
<td>77</td>
</tr>
<tr>
<td>Rhoton, Jack</td>
<td>19</td>
</tr>
<tr>
<td>Richards, Jennifer</td>
<td>30, 72</td>
</tr>
<tr>
<td>Richey, William</td>
<td>44</td>
</tr>
<tr>
<td>Rios, José</td>
<td>91</td>
</tr>
<tr>
<td>Roberts, Joshua</td>
<td>39</td>
</tr>
<tr>
<td>Roberts, Ken</td>
<td>37</td>
</tr>
<tr>
<td>Roberts, Scott</td>
<td>39, 92</td>
</tr>
<tr>
<td>Roberts-Harris, Deborah</td>
<td>104</td>
</tr>
<tr>
<td>Robertson, Laura</td>
<td>49, 91, 103</td>
</tr>
<tr>
<td>Robertson, Tom</td>
<td>61</td>
</tr>
<tr>
<td>Rogers, Amy Leigh</td>
<td>103</td>
</tr>
<tr>
<td>Roney, Chuck</td>
<td>27</td>
</tr>
<tr>
<td>Root-Bernstein, Robert</td>
<td>87</td>
</tr>
<tr>
<td>Roy, Kenneth</td>
<td>38, 51</td>
</tr>
<tr>
<td>Ruef, Kerry</td>
<td>96</td>
</tr>
<tr>
<td>Ruggiero, Karena</td>
<td>30</td>
</tr>
<tr>
<td>Ruggirello, Rachel</td>
<td>20</td>
</tr>
<tr>
<td>Rutland, Rick</td>
<td>46, 84</td>
</tr>
<tr>
<td>Ruud, Ruth</td>
<td>66</td>
</tr>
<tr>
<td>Ryack-Bell, Sandra</td>
<td>91</td>
</tr>
<tr>
<td>Ryan, Denise</td>
<td>99</td>
</tr>
<tr>
<td>Sabella, Susan</td>
<td>68</td>
</tr>
<tr>
<td>Saddler, Jillian</td>
<td>86</td>
</tr>
<tr>
<td>Sadler, Kim</td>
<td>32</td>
</tr>
<tr>
<td>Sadler, Philip</td>
<td>39</td>
</tr>
<tr>
<td>Sadowski-Fugitt, Leslie</td>
<td>66</td>
</tr>
<tr>
<td>Sahabi, Shannon</td>
<td>22</td>
</tr>
<tr>
<td>Sams, Aaron</td>
<td>33</td>
</tr>
<tr>
<td>Sandner, Lionel</td>
<td>69</td>
</tr>
<tr>
<td>Sarcu, Kristen</td>
<td>56</td>
</tr>
<tr>
<td>Sarquis, A. Mickey</td>
<td>58</td>
</tr>
<tr>
<td>Sarquis, Jerry</td>
<td>58</td>
</tr>
<tr>
<td>Sauvola, Rachel</td>
<td>80</td>
</tr>
<tr>
<td>Schaben, Chris</td>
<td>34</td>
</tr>
<tr>
<td>Schaefer, Patti</td>
<td>35</td>
</tr>
<tr>
<td>Schatz, Dennis</td>
<td>16, 34</td>
</tr>
<tr>
<td>Schisler, Laura</td>
<td>22, 54</td>
</tr>
<tr>
<td>Schoeffler, Anne Farley</td>
<td>74</td>
</tr>
<tr>
<td>Schoen-Giddings, Linda</td>
<td>90</td>
</tr>
<tr>
<td>Schreiner, James</td>
<td>64</td>
</tr>
<tr>
<td>Scarle, Charlotte</td>
<td>95</td>
</tr>
<tr>
<td>Selzick, Stephanie</td>
<td>50</td>
</tr>
<tr>
<td>Sepulveda, Babs</td>
<td>102</td>
</tr>
<tr>
<td>Serach, James</td>
<td>26</td>
</tr>
<tr>
<td>Shapiro, Lesley</td>
<td>69</td>
</tr>
<tr>
<td>Shea, Kelly</td>
<td>68</td>
</tr>
<tr>
<td>Sheffield, Sarah</td>
<td>70</td>
</tr>
<tr>
<td>Shelton, Tricia</td>
<td>81</td>
</tr>
<tr>
<td>Shiland, Thomas</td>
<td>73</td>
</tr>
<tr>
<td>Shore, Linda</td>
<td>92</td>
</tr>
<tr>
<td>Short, James</td>
<td>36, 95</td>
</tr>
<tr>
<td>Showalter, Steve</td>
<td>90</td>
</tr>
<tr>
<td>Shrand, Sophia</td>
<td>77</td>
</tr>
<tr>
<td>Siegel, Jeremy</td>
<td>50</td>
</tr>
<tr>
<td>Simmons, Patricia</td>
<td>39</td>
</tr>
<tr>
<td>Singh, Abha</td>
<td>49</td>
</tr>
<tr>
<td>Slavit, David</td>
<td>38</td>
</tr>
<tr>
<td>Smith, Ben</td>
<td>19, 46</td>
</tr>
<tr>
<td>Smith, Brian</td>
<td>73</td>
</tr>
<tr>
<td>Smith, John</td>
<td>41</td>
</tr>
<tr>
<td>Smith, Kelly</td>
<td>98</td>
</tr>
<tr>
<td>Smith, Lee Ann</td>
<td>90</td>
</tr>
<tr>
<td>Smith-Walters, Cindi</td>
<td>52</td>
</tr>
<tr>
<td>Sneed, Rebecca</td>
<td>30</td>
</tr>
<tr>
<td>Snodgrass, Helen</td>
<td>98</td>
</tr>
<tr>
<td>Snyder, Pamela Petzel</td>
<td>54</td>
</tr>
<tr>
<td>Sopiarz, Barbara</td>
<td>50</td>
</tr>
<tr>
<td>Southwick, Jesse</td>
<td>78</td>
</tr>
<tr>
<td>Spadoni, Donna</td>
<td>22</td>
</tr>
<tr>
<td>Stabile, Caroline</td>
<td>68</td>
</tr>
<tr>
<td>Stanley, Linda Gale</td>
<td>88</td>
</tr>
<tr>
<td>Starks, Andrea</td>
<td>18</td>
</tr>
<tr>
<td>Starr, Mary</td>
<td>27, 103</td>
</tr>
<tr>
<td>Staudt, Carolyn</td>
<td>39</td>
</tr>
<tr>
<td>Stefanick, Julie</td>
<td>54</td>
</tr>
<tr>
<td>Stimmer, Maryann</td>
<td>80</td>
</tr>
<tr>
<td>Stinger-Barnes, Patty</td>
<td>73</td>
</tr>
<tr>
<td>Stoyanoff, Megan</td>
<td>60</td>
</tr>
<tr>
<td>Stromholt, Shelley</td>
<td>18</td>
</tr>
<tr>
<td>Sturmer, Kelly</td>
<td>70</td>
</tr>
<tr>
<td>Su, Julius</td>
<td>18</td>
</tr>
<tr>
<td>Sukalo, Tracy</td>
<td>50</td>
</tr>
<tr>
<td>Surabian, Taryn</td>
<td>16</td>
</tr>
<tr>
<td>Swed, Steve</td>
<td>40</td>
</tr>
<tr>
<td>Sweeney, John</td>
<td>94</td>
</tr>
</tbody>
</table>

NSA Nashville National Conference on Science Education
<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweeten, Thayne</td>
<td>56</td>
</tr>
<tr>
<td>Sweetman, Sara</td>
<td>68</td>
</tr>
<tr>
<td>Swenson, Lisa</td>
<td>38</td>
</tr>
<tr>
<td>Sypolt, Shirley</td>
<td>76</td>
</tr>
<tr>
<td>Tahsler, Natalie</td>
<td>22, 104</td>
</tr>
<tr>
<td>Tai, Chihche</td>
<td>91, 103</td>
</tr>
<tr>
<td>Talford, Troy</td>
<td>70</td>
</tr>
<tr>
<td>Tanner, Brad</td>
<td>34</td>
</tr>
<tr>
<td>Taylor, Allison</td>
<td>34</td>
</tr>
<tr>
<td>Taylor, Daryl</td>
<td>37</td>
</tr>
<tr>
<td>Taylor, Julie</td>
<td>76</td>
</tr>
<tr>
<td>Teisan, June</td>
<td>15, 67</td>
</tr>
<tr>
<td>Texley, Juliana</td>
<td>50, 77</td>
</tr>
<tr>
<td>Thomas, Jeff A.</td>
<td>64</td>
</tr>
<tr>
<td>Thomas, Julie</td>
<td>78</td>
</tr>
<tr>
<td>Thompson, Douglas</td>
<td>80</td>
</tr>
<tr>
<td>Thompson, Meiko</td>
<td>30</td>
</tr>
<tr>
<td>Thompson, Stephen Ludwig</td>
<td>70</td>
</tr>
<tr>
<td>Tidrick, Jordan</td>
<td>49</td>
</tr>
<tr>
<td>Tierney, Susan</td>
<td>27</td>
</tr>
<tr>
<td>Tipton, Benita</td>
<td>69</td>
</tr>
<tr>
<td>Tirado, Shana</td>
<td>69</td>
</tr>
<tr>
<td>Town, Mike</td>
<td>36</td>
</tr>
<tr>
<td>Towne, Michael</td>
<td>52</td>
</tr>
<tr>
<td>Townes, Marcy</td>
<td>63</td>
</tr>
<tr>
<td>Townsend, Jeffery</td>
<td>80</td>
</tr>
<tr>
<td>Trautmann, Nancy</td>
<td>22, 39</td>
</tr>
<tr>
<td>Trochez, Jennifer</td>
<td>53</td>
</tr>
<tr>
<td>Troncale, Jennifer</td>
<td>53</td>
</tr>
<tr>
<td>Truesdell, Joel</td>
<td>19</td>
</tr>
<tr>
<td>Trumbauer, Tim</td>
<td>43</td>
</tr>
<tr>
<td>Trusedell, Jean</td>
<td>94</td>
</tr>
<tr>
<td>Tucker, Deborah</td>
<td>52, 94</td>
</tr>
<tr>
<td>Tugel, Joyce</td>
<td>18, 52</td>
</tr>
<tr>
<td>Tur, Reba</td>
<td>106</td>
</tr>
<tr>
<td>Turgeon, Brenda</td>
<td>64</td>
</tr>
<tr>
<td>Turngren, Laura</td>
<td>50</td>
</tr>
<tr>
<td>Tweed, Anne</td>
<td>82</td>
</tr>
<tr>
<td>Tyler, Rico</td>
<td>90</td>
</tr>
<tr>
<td>Tzou, Carrie</td>
<td>18</td>
</tr>
<tr>
<td>Upton, Amanda</td>
<td>36</td>
</tr>
<tr>
<td>Valadez, Jerry</td>
<td>64, 77</td>
</tr>
<tr>
<td>Venturino, Marielle</td>
<td>36</td>
</tr>
<tr>
<td>Vernier, Dave</td>
<td>99</td>
</tr>
<tr>
<td>Vernot, David</td>
<td>42</td>
</tr>
<tr>
<td>Vinal, Andrew</td>
<td>103</td>
</tr>
<tr>
<td>Vogt, Gina</td>
<td>61, 86</td>
</tr>
<tr>
<td>Wagner, Glenn</td>
<td>82</td>
</tr>
<tr>
<td>Walters, Verle</td>
<td>60, 84</td>
</tr>
<tr>
<td>Wang, Laura</td>
<td>30</td>
</tr>
<tr>
<td>Washell, Deana</td>
<td>95</td>
</tr>
<tr>
<td>Waterman, Ed</td>
<td>57</td>
</tr>
<tr>
<td>Watkins, Kathryn</td>
<td>104</td>
</tr>
<tr>
<td>Watkins, Michelle</td>
<td>22, 39</td>
</tr>
<tr>
<td>Wazlaw, Brian</td>
<td>51</td>
</tr>
<tr>
<td>Weakland, Mark</td>
<td>74, 102</td>
</tr>
<tr>
<td>Weir, Hillary</td>
<td>62</td>
</tr>
<tr>
<td>Weld, Jeff</td>
<td>32</td>
</tr>
<tr>
<td>Welker, Eric</td>
<td>92</td>
</tr>
<tr>
<td>Wendt, Stephanie</td>
<td>103</td>
</tr>
<tr>
<td>Westfall, Marie</td>
<td>99</td>
</tr>
<tr>
<td>Wheeler, Lindsay</td>
<td>38, 54</td>
</tr>
<tr>
<td>Whitesett, Sue</td>
<td>36</td>
</tr>
<tr>
<td>Whitworth, Brooke</td>
<td>38, 54</td>
</tr>
<tr>
<td>Wiechmann, Fred</td>
<td>68</td>
</tr>
<tr>
<td>Wiehagen, Michele</td>
<td>69</td>
</tr>
<tr>
<td>Wierman, Joshua</td>
<td>96</td>
</tr>
<tr>
<td>Wierman, Traci</td>
<td>23, 43</td>
</tr>
<tr>
<td>Willard, Ted</td>
<td>18, 36, 49, 64, 81</td>
</tr>
<tr>
<td>Willcox, Maia</td>
<td>21, 78</td>
</tr>
<tr>
<td>Williams, Jennifer</td>
<td>78</td>
</tr>
<tr>
<td>Williams, Kathleen</td>
<td>94</td>
</tr>
<tr>
<td>Williamson, Ellie</td>
<td>23</td>
</tr>
<tr>
<td>Wills, Erin</td>
<td>90</td>
</tr>
<tr>
<td>Wilson, Amanda</td>
<td>47</td>
</tr>
<tr>
<td>Wilson, Beth</td>
<td>102</td>
</tr>
<tr>
<td>Wilson, John</td>
<td>106</td>
</tr>
<tr>
<td>Windschitl, Mark</td>
<td>49</td>
</tr>
<tr>
<td>Wojnowski, Brenda</td>
<td>74</td>
</tr>
<tr>
<td>Womack, Brian</td>
<td>90</td>
</tr>
<tr>
<td>Xiques, Pete</td>
<td>99</td>
</tr>
<tr>
<td>Yan, Tomas</td>
<td>18</td>
</tr>
<tr>
<td>York, Megan</td>
<td>40</td>
</tr>
<tr>
<td>Young, Donna</td>
<td>39, 94</td>
</tr>
<tr>
<td>Yucuis, Bill</td>
<td>100</td>
</tr>
<tr>
<td>Zembal-Saul, Carla</td>
<td>20, 68</td>
</tr>
<tr>
<td>Zenchak, John</td>
<td>104</td>
</tr>
<tr>
<td>Zigelman, Erica</td>
<td>76</td>
</tr>
<tr>
<td>Zike, Dinah</td>
<td>24, 83</td>
</tr>
</tbody>
</table>
Advertisers

5eTek (Booth #1014), www.5eboard.com, 800-763-0589 ... 9
Accelerate Learning (Booth #520), www.accelerating.com, 800-531-0864 .. 59
AEOP eCYBERMISSION and GEMS (Booth #1046), www.usaep.org, 866-462-9237 65
Animalearn (Booth #924), www.thesciencebank.org, 800-729-2287 .. 12
Camp Invention (Booth #1122), www.campinvention.org, 800-968-4332 105
FIRST® (For Inspiration & Recognition of Science & Technology) (Booth #255), www.usfirst.org 109
Flinn Scientific, Inc. (Booth #333), www.flinnsci.com, 800-452-1261 .. 25
Kendall Hunt Publishing Co. (Booth #515), www.kendallhunt.com/PREK12, 800-542-6657 ... 51
McGraw-Hill Education (Booth #1345), www.mheonline.com, 800-334-7344 ... 1
National Association for the Education of Young Children, www.naeyc.org, 800-424-2460 11
NewPath Learning (Booth #637), www.newpathlearning.com, 800-507-0966 .. 81
Nutrients for Life Foundation (Booth #1226), www.nutrientsforlife.org, 800-962-9065 .. 125
OHAUS Corp. (Booth #634), www.ohaus.com, 800-672-7722 ... Cover 4
PASCO scientific (Booth #622), www.pasco.com, 800-772-8700 ... 119
Pearson Education (Booth #612) .. 110
Population Connection (Booth #1420), www.populationeducation.org, 800-767-1956 131
Renaissance Learning (Booth #540), www.renaissance.com, 800-338-4204 .. 67
Smithsonian National Air and Space Museum, www.airand.space.si.edu/STEMIN80 29
Society for Science & the Public (Booth #1057), www.societyforscience.org .. 75
Teachers’ Curriculum Institute (TCI) (Booth #256), www.teachtci.com, 800-497-6138 110
Texas Instruments (Booth #108), www.education.ti.com, 800-842-2737 .. 37
University of the Sciences in Philadelphia, www.usciences.edu, 888-996-8747 .. Cover 2
Vernier Software & Technology (Booth #134), www.vernier.com, 888-837-6437 ... Cover 3
VWR Science Education (Booth #142), www.wardsci.com/conference. ... 21, 93
Western Michigan (Booth #1052), www.wmich.edu/online/nsta ... 7

NSTA Ads

NGSS@NSTA (Booth #1034) www.nsta.org/ngss ... 4
NSTA Conferences (Booth #943, 2016 5th Annual STEM Forum), (Booth #935, Minneapolis),
(Booth #937, Portland), (Booth #939, Columbus), (Booth #933, Los Angeles),
www.nsta.org/conferences, 800-722-6782 ... 5, 17, 33, 41, 79, 85, 89, 97, 112
NSTA Member Services (Booth #934, NSTA Membership), www.nsta.org/membership, 800-722-6782 2, 55, 101, 107
NSTA Press®, store.nsta.org, 800-277-5300 ... 71
FREE Hands-On Workshops
No pre-registration or fee required.

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Room Number 207C</th>
<th>Room Number 207D</th>
</tr>
</thead>
<tbody>
<tr>
<td>THURSDAY 3/31</td>
<td>8:00–9:30 a.m.</td>
<td>Environmental Science with Vernier</td>
<td>Middle School Science with Vernier</td>
</tr>
<tr>
<td></td>
<td>10:00–11:30</td>
<td>Chemistry with Vernier</td>
<td>Integrating Chromebook™ with Vernier Technology</td>
</tr>
<tr>
<td></td>
<td>12:00–1:30 p.m.</td>
<td>Biology with Vernier</td>
<td>iPad® and Wireless Sensors with Vernier</td>
</tr>
<tr>
<td></td>
<td>2:00–3:30</td>
<td>Wind and Solar Energy Basics with Vernier</td>
<td>Explore Motion with Vernier Video Physics for iOS</td>
</tr>
<tr>
<td></td>
<td>4:00–5:30</td>
<td>Renewable Energy with KidWind and Vernier</td>
<td>Advanced Physics with Vernier</td>
</tr>
<tr>
<td>FRIDAY 4/1</td>
<td>8:00–9:30 a.m.</td>
<td>Renewable Energy with KidWind and Vernier</td>
<td>Advanced Physics with Vernier</td>
</tr>
<tr>
<td></td>
<td>10:00–11:30</td>
<td>Biology with Vernier</td>
<td>Physics with Vernier</td>
</tr>
<tr>
<td></td>
<td>12:00–1:30 p.m.</td>
<td>Water Quality with Vernier</td>
<td>Integrating Chromebook™ with Vernier Technology</td>
</tr>
<tr>
<td></td>
<td>2:00–3:30</td>
<td>Inquiry-Based Biology with Vernier</td>
<td>iPad® and Wireless Sensors with Vernier</td>
</tr>
<tr>
<td></td>
<td>4:00–5:30</td>
<td>Chemistry with Vernier</td>
<td>STEM / Engineering Activities using Vernier Sensors with Arduino</td>
</tr>
<tr>
<td>SATURDAY 4/2</td>
<td>8:00–9:30 a.m.</td>
<td>Chemistry with Vernier</td>
<td>Integrating Chromebook™ with Vernier Technology</td>
</tr>
<tr>
<td></td>
<td>10:00–11:30</td>
<td>Inquiry-Based Chemistry with Vernier</td>
<td>Elementary Science with Vernier</td>
</tr>
<tr>
<td></td>
<td>12:00–1:30 p.m.</td>
<td>Biology with Vernier</td>
<td>Physics with Vernier</td>
</tr>
<tr>
<td></td>
<td>2:00–3:30</td>
<td>Human Physiology with Vernier</td>
<td>Introductory Engineering-Design Projects with Vernier</td>
</tr>
</tbody>
</table>
Leading the Way
Reliability, durability, precision, and flexibility have made the OHAUS Scout the number one portable balance for twenty years.

Scout leads the way with the most features and applications for education—one second stabilization time, specific gravity determination, Mole calculation, slim space-saving stackable design, and Bluetooth®, USB, Ethernet, or RS232 connectivity options.

- Quick and Efficient Navigation with the Informative Color Touchscreen Display
- Fast Weighing Speed and High Resolution Deliver Repeatable and Reliable Results
- Superior Overload Protection & Stackable Storage Drive Overall Durability

Visit Booth #634 to learn more about The Next Generation of Scout Balances

Ingeniously Practical