What happens to tires when it’s cold?

When temperatures fall, they succumb to the pressure of winter.

$69
Wireless Pressure
PS-3203

Come see us in booth #500
FREE Inquiry-based workshops
Friday 11/11 Room B113

Modeling Climate Change: Dissolving Carbon Dioxide.  
8:00 - 9:00 am  
Rising temperatures are not the only impact of increased CO₂ emissions. The Earth’s oceans act as a buffer by dissolving excess CO₂ into solution. In this quick hands-on activity, create a model to investigate the effects of dissolved CO₂ using the wireless pH sensor and experience how easy inquiry can be.

Exploring Misconceptions: Speed & Velocity.  
9:30 - 10:30 am  
Speed and velocity are two ways to describe the motion of an object that students often confuse. In this workshop, you will use the wireless Smart Cart to collect real-time motion data and compare the graphs of the Smart Cart’s speed and velocity.

Exploring Misconceptions: Is there a Difference Between Heat and Temperature?  
11:00 am - 12:00 pm  
Are heat and temperature the same thing or are they different? This hands-on workshop using SPARKvue and wireless temperature sensors will provide you effective new ways to teach the concepts of heat and temperature, central to physical science.

PASCO Wireless Solutions
Save time and money in your science lab with

Wireless Temperature: PS-3201 $39
Wireless pH: PS-3204 $59
Wireless Conductivity: PS-3210 $69
Wireless Force Acceleration: PS-3202 $99
Wireless Light: PS-3213 $55
Wireless Current: PS-3212 $49
Wireless Voltage: PS-3211 $49

Collect and graph data in seconds. No additional hardware or interface is required!

www.pasco.com/wireless
How would you like a powerful electron microscope for each of your students?

MyScope™ Outreach is a free, online tool designed to make microscopy education and outreach accessible to a global user community.

Explore the fundamentals of microscopy:

**Magnification and optics**
- Visualize magnification levels.
- Focus and lenses.

**Scanning electron microscope**
- Learn how an SEM works and use the SEM simulator.
- Examine virtual samples and save or print your images to share.

**Scope it out at booth 408!**

MyScopeOutreach.org
Visit NSTA’s SCIENCE STORE
Exhibit Hall A

Offering the latest resources for science teachers, including new releases and best sellers!

• Fun NSTA-branded gear—unique hats, shirts, mugs, collectible pins, and more

• Everyone enjoys member pricing: 20% off bestseller NSTA Press® titles

• Traveling light? Ask about our NSTA gift cards – great gift ideas!

Download the conference app or follow #NSTA16 for special giveaways, contests, and more throughout the conference!

Visit www.nsta.org/store to make a purchase today, or call 800-277-5300.

STORE HOURS

Wednesday, Nov. 9
4:00 PM–7:00 PM

Thursday, Nov. 10
7:30 AM–5:30 PM

Friday, Nov. 11
7:30 AM–4:00 PM

Saturday, Nov. 12
8:00 AM–12 Noon
NSTA 2016 Area Conference on Science Education
Exploring Mountains: Guiding Science Teaching and Learning
Portland, Oregon • November 10–12, 2016

Conference Resources, cont.
- Business Services .................................................. 13
- Floor Plans .............................................................. 14
- NSTA Headquarters Staff ........................................... 18
- NSTA Officers, Board of Directors, Council, and
  Alliance of Affiliates ................................................ 19
- Future NSTA Conferences ........................................ 20
- Call for Sessions ...................................................... 20
- NSTA Los Angeles National Conference .............................. 21
- Professional Development Documentation
  Form .................................................................. following p. 32

Conference Program
- Conference Highlights ............................................. 22
- Conference Strands ................................................... 24
- NSTA Press® Sessions .............................................. 27
- Meetings and Networking Events ................................. 27
- Chemistry Day at NSTA ............................................. 28
- Middle School Chemistry Day ..................................... 28
- Engineering Day at NSTA ........................................... 29
- Elementary Day @ NSTA ............................................. 29
- Physics Day at NSTA ............................................... 30
- Short Courses ......................................................... 31
- Educational Trips ..................................................... 32
- NSTA Affiliate Sessions ........................................... 34
- Three Dimensions of NGSS ...................................... 36
- Wednesday Daily Program ........................................ 37
- Thursday Daily Program ........................................... 39
- Friday Daily Program ................................................ 71
- Saturday Daily Program ............................................ 105

Indexes
- Exhibitor List .......................................................... 114
- Index of Exhibitor Workshops ...................................... 126
- Schedule at a Glance .................................................. 132
- Index of Participants ................................................ 148
- Index of Advertisers ................................................... 160

NSTA Affiliates
- Association for Multicultural Science Education (AMSE)
- Association for Science Teacher Education (ASTE)
- Association of Science-Technology Centers (ASTC)
- Council for Elementary Science International (CESI)
- Council of State Science Supervisors (CSSS)
- National Association for Research in Science Teaching (NARST)
- National Middle Level Science Teachers Association (NMLSTA)
- National Science Education Leadership Association (NSELA)
- Society for College Science Teachers (SCST)
Welcome to Portland: Exploring Mountains: Guiding Science Teaching and Learning

Welcome to the NSTA Portland Area Conference. On behalf of the science education community in Oregon, we welcome you to Portland, a city filled with friendly people who love the environment, bicycling, and the outdoors; great food and drink; bridges; roses; and creative thinking.

The Conference Committee wants you to engage in exciting learning experiences focused on the NGSS and “Exploring Mountains: Guiding Science Teaching and Learning.” We have organized a wide variety of experiences across all grade levels and disciplines that will challenge you and help you grow your practice as a science educator and leader.

The conference is organized around these three strands:

- Base Camp: Collaborating to Integrate Elementary Science Instruction with Math and ELA
- The View from the Summit: Celebrating Science for All
- The View from All Angles: Connecting Three-Dimensional Science Instruction

From the exciting expert invited speakers to hands-on workshops, presentations, educational trips, an award ceremony at OMSI, short courses, and more, you are sure to find innovative ideas and practices that will assist you in preparing students for the Next Generation. We know that you will have a terrific learning experience. We hope that you meet other like-minded educators who will become friends and colleagues. We are all in this together!

We look forward to meeting you as you engage in the wonderful adventure of learning and growing! We are so excited that you are here.

2016 Portland Area Conference Committee Leaders
Bradford Hill, Susan Holveck, and Lori Lancaster

Portland Conference Committee

We at NSTA wish to express our heartfelt thanks to the members of the Oregon Science Teachers Association for the many hours of time they volunteered in planning this conference.

Conference Chairperson
Bradford Hill
Teacher
Southridge High School
9625 SW 125th Ave.
Beaverton, OR 97008
bradford_hill@beaverton.k12.or.us

Program Coordinator
Susan Holveck
OSTA President and Science Teacher On Special Assignment (TOSA) for Secondary Schools
Beaverton School District
16550 SW Merlo Rd.
Beaverton, OR 97003
susan_holveck@beaverton.k12.or.us

Local Arrangements Coordinator
Lori Lancaster
Communications Coordinator
Oregon Science Teachers Association
4110 SE Hawthorne Blvd., #1025
Portland, OR 97214-5246
communications@oregonscience.org

Local Arrangements Committee
Guides Manager
Maureen “Moe” Daschel
St. Mary’s Academy
Portland, OR
Manager of Services for People with Special Needs
Terry Shlaes
Lake Ridge High School
Lake Oswego, OR
Volunteers Manager
Stephen Scannell
Gresham High School
Gresham, OR

Program Committee
Strand Leader: Base Camp: Collaborating to Integrate Elementary Science Instruction with Math and ELA
Jodi Harnden
Sunridge Middle School
Pendleton, OR

Strand Leader: The View from the Summit: Celebrating Science for All
Marjorie “Midge” Yergen
NSTA Director, District XVII
West Valley Junior High School
Yakima, WA

Program Representatives
Alfonso Garcia Arriola
ACCESS Academy
Portland, OR

Steven Ruthford
Geneva Elementary School
Bellingham, WA

Conference Advisory Board Liaison
Carolyn Hayes
NSTA Retiring President
Retired Educator
Greenwood, IN
Welcome to NSTA’s 2016 Portland Area Conference on Science Education. The area theme of Exploring Mountains: Guiding Science Teaching and Learning serves to describe the opportunities to explore science professional development aligned to the most current science curriculum and enhanced with the most current technology. This conference will provide opportunities to explore and reach the highest pinnacles based on three themes that explore topics of current significance. These three strands are based on my theme for the year—Connect, Collaborate, Celebrate—Teachers are the Key.

In the strand: Base Camp COLLABORATING to Integrate Elementary Science Instruction with Mathematics and ELA, teachers will be able to provide students with tools they need to reach the summit to become scientifically literate students. Science education fosters creativity and natural curiosity especially with elementary students. Teachers will learn how to integrate content by bundling ELA standards, mathematics, and science to reach the whole child and improve the teaching and learning for all their students.

Ensuring that we have scientifically literate students is vital for ALL students. The strand: The View from the Summit: CELEBRATING Science for All will stress that all students (e.g. special education, English language learners, gifted and talented, poverty based, etc.) must have access to science and engineering learning opportunities that engage them in constructing meaning about the world around them. Successful applications of science and engineering practices and the understanding of how crosscutting concepts will be accomplished across a range of core ideas will demand a greater support for scientific literacy.

The third strand: The View from All Angles: CONNECTING Three-Dimensional Science Instruction emphasizes quality instruction based on research-based best practices for today’s learners. This strand connects the three dimensions of NGSS—crosscutting concepts, disciplinary core ideas, and science and engineering practices—to exemplify the intertwining nature of these dimensions necessary for high-quality instruction for all students.

I encourage you to take advantage of this dynamic opportunity to attend the many sessions that meet your needs. Climb those mountains of knowledge and reach the summit of exemplary teaching and learning. NSTA has provided the CONNECT, now you must provide the COLLABORATE and CELEBRATE. Enjoy—Learn—Share—Network with others. Teachers are the Key!

Mary Gromko
2016–2017 NSTA President

Sponsors and Contributors to the Portland Conference

NSTA, OSTA, and the Portland Planning Committee are extremely grateful to the following companies and associations for their generous contributions to the NSTA Portland Area Conference on Science Education.

**Sponsors**

- HHMI BioInteractive
- Oregon Science Teachers Association
- Southwest Airlines
- Texas Instruments
- Vernier Software & Technology

**Contributors**

- American Association of Physics Teachers (AAPT)
- American Chemical Society Education Division
- American Society for Engineering Education

The environment is important to science educators. These programs are recyclable and were printed on recycled paper.
The National Science Teachers Association is committed to meeting today’s environmental challenges by adopting eco-friendly practices both in our own day-to-day operations and at our conferences, workshops, and other events. In addition, we strongly encourage our contracted conference facilities to follow green practices as well. Here are some of the ways NSTA’s conference department has worked to minimize our impact on the environment:

**Conference Previews**
Gone are the days of bulky, newspaper-style advance programs. Our conference preview is a smaller size and includes highlights for our three area conferences. As an added bonus, this new preview is more environmentally friendly, as it dramatically reduces both our print and mailing requirements.

**Online Conference Information and Personal Scheduler**
Most of your conference arrangements can now be accomplished online (www.nsta.org/conferences). Register and make your housing reservations on the web. Program details are available to you on our website using the Session Browser/Personal Scheduler. Scheduling information on our website is up to date and more complete than that available through a printed piece.

**Final Conference Programs by E-Mail/Conference App**
All conference pre-registrants are sent an electronic version (PDF) of the final conference program by e-mail approximately one week prior to the conference, further reducing print and shipping requirements. Also, attendees are encouraged to use the NSTA Conference app, which provides all the tools necessary for a successful conference experience.

**Recycled Paper and Sustainable Print Services**
Conference previews and final conference programs are printed on recycled paper whenever possible. In addition, Walsworth Inc., the printer for our conference materials, is in strict compliance with all environmental laws and exceeds these standards in many areas. Wherever possible, Walsworth works to reduce and recycle waste, use reduced- or low-VOC chemicals, increase the recycled content of raw materials, and use soy- or vegetable-based inks. Walsworth has also obtained certifications with the Sustainable Forest Initiative (SFI) and the Forest Stewardship Council® (FSC) to ensure paper products are being harvested from environmentally responsible sources.

**Environmentally Friendly Exhibition Practices**
Our conference partner, Hargrove, Inc., offers many green product options and services in the production of our conference exhibitions, including 100% recyclable carpet and padding, recycled exhibit structures, a “reclaimer” that recycles 92% of all solvents the company uses in production of graphics, use of LP natural gas in 75–90% of show-site vehicles, and many biodegradable and recycled products such as trash bags and wastebaskets. Their green efforts are extended operationally with reductions in electricity, heating fuel, and water usage, as well as a move to 100% recyclable and biodegradable products.

**Oregon Convention Center’s Green Practices**
Built with sustainability in mind, the Oregon Convention Center (OCC) has long held a leadership role in green building and other environmentally responsible business practices. As a LEED-certified Platinum building, many green event components are already a part of the building design and sustainability operations. Under the direction of its in-house sustainability coordinator, OCC is continuously inspired to take its practices to the next level through these key areas of sustainability:
- OCC has an extensive waste reduction program that includes both front of house and back of house recycling and composting as well as a community partnership program that includes donating food and nonconsumable products to local nonprofits. Each year OCC recycles, composts, and donates over 500,000 pounds of material instead of putting it in the landfill.
- OCC incorporates leading-edge environmental design, energy efficiency, and equipment upgrades and operational practices to help reduce OCC’s impact on the climate by reducing its greenhouse gas emissions.
- Their storm water management program includes toxic reduction and water conservation. These expansive efforts contributed to our achieving a Salmon Safe Certification; the first convention center in the country to receive this certification.
- Work and contract opportunities with local and regional businesses are prioritized whenever possible.
- We choose locally grown, seasonal, and organic food and beverages as often as possible.

**“Go Green” at the Portland Conference!**
- Recycle your conference programs in the clearly marked recycle bins located throughout the Convention Center.
- Recycle or reuse your plastic badge holders—you can either turn them in at the NSTA Registration Counter or use them at future conferences.
- In advance of the conference, presenters are encouraged to post their presentations and handouts on the Session Browser/Personal Scheduler.
- If you prefer to bring handouts to your session, use double-sided printing and/or recycled paper.
- Walk or use public transportation when possible at the conference.
- Bring your own refillable water bottle to the conference.
- Evaluate sessions attended online.
Meeting Location and Times

The conference hotels are DoubleTree by Hilton Hotel Portland (headquarters), Courtyard by Marriott Portland, Crowne Plaza Portland–Downtown, Hilton Portland & Executive Tower, and Hotel Eastlund. Conference registration, exhibits, the Membership Booth, the NSTA Science Store, exhibitor workshops, and many sessions will be located at the Oregon Convention Center. Other sessions and events will be held at DoubleTree. The conference will begin on Thursday, November 10, at 8:00 AM, and end on Saturday, November 12, at 12 Noon.

Registration

Registration is required for participation in all conference activities and the exhibits. The lapel badge e-mailed to you with your confirmation, or issued to you at registration on-site, is your “ticket of admission” to the Exhibit Hall and all conference activities except those for which a separate fee is stated (short courses, educational trips, etc.).

The Registration Area, located in Hall A of the Convention Center, will be open during the following hours:

Wed., Nov. 9 5:00–7:00 PM
Thu., Nov. 10 7:00 AM–5:00 PM
Fri., Nov. 11 7:00 AM–5:00 PM
Sat., Nov. 12 7:30 AM–12 Noon

If you misplace your badge or tickets, present your personal ID at the Badge Pick-Up/Replacement Counter in the Registration Area and you will be issued replacements. Only one replacement badge will be issued.

Purchasing Ticketed Events

The Portland Planning Committee has scheduled a variety of ticketed events. Each of these events requires a separate fee and ticket. You may purchase tickets for these events, space permitting, in the Registration Area. See the Conference Program section (starting on page 31) for details. Note that some events may have required advance registration.

Ground Transportation to/from Airport

MAX Red Line light rail service connects Portland International Airport (PDX) and Portland City Center. Portland’s TriMet MAX Light Rail stops 300 times a day at the front door of the Convention Center, connecting riders to downtown, surrounding neighborhoods, attractions such as the Oregon Zoo, and the Portland International Airport. For directions on how to ride MAX Light Rail, visit bit.ly/2dVuMK2.

Free TriMet Pass!

Every Portland registrant and exhibitor will receive a coupon for one free TriMet conference pass, which will be available at the following locations:

- Preregistrants can redeem their TriMet coupon for the actual pass at the Program Pick-Up Area. Anyone who registers on-site will receive a pass at the “New Registration” counters.
- Exhibitors will receive their passes at the Exhibitor Registration counter.

This pass is good for the duration of the conference on a TriMet bus, the Portland Streetcar, or MAX Light Rail in the Portland metropolitan area. Depending on your selected hotel, you may need this pass to travel to the Convention Center.

You must have this pass with you at all times on TriMet transportation. You do not need it to board, but you may need to show the pass to a fare inspector. If you do not have your pass, the fine is $175. This pass will not be replaced if lost. If lost, the fare for an Adult TriMet pass is $2.50 for a two-hour ticket or $5/day.

For information on routes and schedules, check www.trimet.org and www.portlandstreetcar.org.

Getting Around Town

A small, personable downtown with half-size city blocks (200 feet vs. the standard 400-foot monsters) and plentiful public spaces make Portland an ideal city to explore on foot. And thanks to the MAX (trimet.org/max)—Portland’s award-winning light rail system with 84 stations and 52 miles of track—you can go from airport to hotel to Convention Center easily. MAX has five lines, all of which run through downtown. MAX trains run about every 15 minutes most of the day, every day. Or you may leisurely explore the city via the sleek Portland Streetcar (www.portlandstreetcar.org), which travels to the city’s hottest shopping districts—and includes an eastside line connecting the Convention Center to the popular Oregon Museum of Science and Industry (OMSI), great restaurants, and nightlife.
Registration, Travel, and Hotels

Lyft Offer
Lyft is offering $50 in free rides to and from the conference! Go to www.lyft.com/i/NSTA to download the free Lyft app. Enter the credit code “NSTA” in the payment section before requesting a Lyft to claim $50 IN FREE RIDES! *Valid for new accounts, $5 off 10 rides.

Parking
The Convention Center (www.oregoncc.org/visitors/parking-and-directions) garage opens daily at 6:00 AM. The maximum daily rate to park is $10. Overnight parking is prohibited. The parking garage offers four electric vehicle charging stations, two on each level. To access a map of nearby parking options, visit bit.ly/2dz9Ur4.

Airlines
NSTA has made arrangements with several major airlines and Amtrak to offer discounted fares to Portland conference attendees. Visit www.nsta.org/Portlandtravel for details.

Discounted Rental Cars
The toll-free number to contact an NSTA-designated car rental company is:
Enterprise 800-593-0505 16AH230
* go to www.enterprise.com and use “16AH230” in the “Optional: Coupon, Customer or Corporate Number” box, click on “search” and enter PIN “NST.”

— Courtesy of Jamie Francis/Travel Portland

CONFERENCE APP

Download our conference app for a social experience you don’t want to miss.

- Search sessions, exhibitors, and speakers to build a schedule of your favorites
- Access maps with pinpoint locations
- Take notes within app
- Bookmark an interesting speaker
- Share the play-by-play with social media channels
- Tweet a memorable quote from a session
- Access conference FAQs

Available for download on
iPhone + iPad
Android

Powered by:
1. **DoubleTree by Hilton Hotel Portland**  
   *(Headquarters Hotel)*  
   1000 NE Multnomah St.

2. **Courtyard by Marriott Portland Downtown/Convention Center**  
   435 NE Wasco St.

3. **Crowne Plaza Portland–Downtown Convention Center**  
   1441 NE 2nd Ave.

4. **Hilton Portland & Executive Tower**  
   921 SW 6th Ave.

5. **Hotel Eastlund**  
   1021 NE Grand Ave.

Complimentary TriMet passes will be provided. See page 7 for details. There will not be any shuttle service.

If you have questions or concerns regarding your housing, please contact Orchid Event Solutions (during business hours), Monday through Friday, 7:00 AM–7:00 PM PST at 877-352-6710 (toll-free) or 801-505-4611, or e-mail help@orchideventsolutions.com. After hours and on Saturday, call 801-505-4104.
NSTA Exhibits

The NSTA Exhibit Hall is a must-see! NSTA brings you the leading science education companies and organizations to showcase products, services, curricula, and much more. You’ll discover something new and exciting in the world of science teaching.

The lapel badge e-mailed to you with your confirmation, or issued to you at registration on-site, is your “ticket of admission” to the Exhibit Hall and all conference activities except those for which a separate fee is stated. Maps of the Exhibit Hall and other meeting rooms will be accessible via our Conference app (see page 13). See page 114 for a complete list of exhibitors and contact information.

Exhibit Hall Hours. Located in Hall A, exhibits will be open for viewing during the following hours:

- Thu., Nov. 10 11:00 AM–5:00 PM
- Fri., Nov. 11 9:00 AM–3:00 PM
- Sat., Nov. 12 9:00 AM–12 Noon

Did you know that NSTA offers Exclusive Exhibits Hall hours? During the hours listed below, there are no teacher sessions scheduled and it’s a perfect time to visit the exhibits and discover all the products and services companies and organizations have to offer.

- Thu., Nov. 10 11:00 AM–12:30 PM
- Fri., Nov. 11 1:30–3:00 PM

Lead Retrieval. NSTA exhibitors use lead retrieval, a paperless tracking system that allows them to receive fast, accurate information about conference attendees who have visited their booths. With the lead retrieval system, an exhibitor scans your badge as you visit the booth. This allows exhibitors to send information to you while the conference is still fresh in your mind.

Exhibitor Workshops. Exhibitor-sponsored workshops for science teachers are offered throughout the conference. These workshops give you an opportunity to use a variety of commercial instructional materials. Attendance is on a first-come, first-served basis. See page 126 for a complete listing of exhibitor workshops.

Exhibit Hall Beverage Break

Enjoy complimentary Iced Tea and Lemonade in the Exhibit Hall on Friday, from 1:15 to 3:00 PM. Coinciding with our exclusive Exhibit Hall hours, we welcome you to drop by for a refreshing beverage.

NSTA Science Store

Visit us at the NSTA Science Store to explore a wide selection of resources and gear you’ll love! You’ll find hundreds of books that uniquely blend accurate science content with sound teaching strategies for science educators of all grade ranges and disciplines. Not only do we have books covering a wide range of topics to help you sharpen your content knowledge and hone your teaching methods, but we also carry a complete line of NSTA gear you can’t find anywhere else—such as T-shirts, mugs, and pencils. We offer convenient free shipping when you place your order on-site at the conference. We’ve lined up a number of unique opportunities for conference-goers:

- Exclusive author signings and meet-and-greet opportunities
- Our latest books—Argument-Driven Inquiry in Physical Science; Inquiring Scientists, Inquiring Readers in Middle School; Disciplinary Core Ideas: Reshaping Teaching and Learning; and Uncovering Student Ideas in Earth and Environmental Science—and our new children’s books from NSTA Kids, including Next Time You See a Cloud; From Flower to Fruit; and Notable Notebooks: Scientists and Their Writings
- “I Love Science” and NSTA gear product lines to show your love of science and pride in teaching
- Member discounts of 20% on NSTA Press® items and 10% on books from other publishers for all attendees
- Daily book and gear specials, product giveaways, and more.

Meet the Presidents and Board/Council

Be sure to stop by Friday from 1:15 to 2:00 PM at the entrance to Hall A for a special session. Come “meet and greet” with your elected NSTA officers on your way to the exhibits. The President, President-Elect, and Retiring President along with your Board and Council members are looking forward to talking with you at the conference!
Wi-Fi in Convention Center
Complimentary Wi-Fi internet access is available in designated “zones” throughout the Convention Center. Service is intended for casual internet access, e-mail, etc. To access, choose “OCC Comp WiFi Zone”; no code required.
These zones are:
• Portland Roasting 1 coffee shop by the B meeting rooms
• the Stir lounge in the King Lobby
• Portland Roasting 2 coffee shop near the D meeting rooms
• Ginkoberry Concourse adjacent to Portland Roasting 2 coffee shop
• Holladay Lobby

OSTA Booth
The Oregon Science Teachers Association (OSTA) booth is located in Hall A near the NSTA Registration Area. Stop by and find out what is happening in science education in Oregon and what OSTA is doing beyond the conference to support science educators. We would love to meet you, and share with you what your professional organization is doing to support you, including the 2017 OSTA Fall conference that will be held at the PCC Sylvania Campus on October 13–14, 2017. Oregon teachers can also sign up for PDJ certificates toward licensure renewal.

WSTA Booth
The Washington Science Teachers Association (WSTA) booth is located in Hall A near the NSTA Registration Area. The booth will have membership forms and information about science activities in Washington. Clock hours will be available to our Washington Teachers. Please pick up a session verification form before you start your conference sessions. Then return to the booth at the end of your conference journey to pay and pick up your clock hour form! Stop by to say hello, learn how we can keep you up to date on the latest happenings in our area, and pick up some great commemorative items!

Presenters and Presiders Check-In
If you are presenting or presiding at a session, please check in at the Presenters/Presiders booth in the Registration Area.

Graduate Credit Opportunity
Portland conference attendees can earn one graduate-level credit in professional development through Portland State University. Visit bit.ly/2aoAWjw for complete details or visit the OSTA Booth. The fee is $180. For any questions, contact Terry Shlaes at shlaest@loswego.k12.or.us.

Help us with your feedback...and get a chance for a free Apple iPad mini 2
We’re giving you one more reason to evaluate conference sessions.

When you log on to www.nsta.org/portlandbrowser and fill out an evaluation by clicking on the “evaluate session” button below the session you attended, you get entered into a drawing for a chance to win an Apple iPad mini 2 Wi-Fi tablet courtesy of the NSTA Conference Department.

Your feedback helps us in creating the best conference experience for you and other attendees.

• WE’RE GIVING AWAY an APPLE iPAD MINI 2 Wi-Fi TABLET

• Scan QR code below to access our NSTA Conference App.
Help NSTA’s GREEN efforts by visiting the conference session browser to complete session evaluations online, November 9–29, 2016. During the conference, session evaluations can be completed on the computers at the Presenters/Presiders booth in the Registration Area. And this year, we’re giving away an Apple iPad mini 2 Wi-Fi tablet to one lucky attendee who completes a session evaluation! Remember, the more sessions you attend and evaluate, the more chances you have to win!

To evaluate a session, attendees should follow these steps:

- Visit the conference session browser and search for part of the session title or presenter’s name using the Find Keyword search option. Note: Our session evaluation system is designed to work from a computer and while it may work on smartphones/tablets, it is not really designed for them.
- Once you find the session you wish to evaluate, simply click the Evaluate Session button.
- Enter badge number (if you don’t remember your badge number, click “help me find my badge number”).
- When finished evaluating the session, click the Submit Evaluation button.
- Repeat this process for each session attended.

Concurrent session presenters may also complete evaluations for their own sessions in order to track professional development credit.

A Professional Development Documentation Form is included following page 32 to help attendees keep track of sessions/events attended that are NOT available for online session evaluation. This form can also be used to take notes on sessions attended that are available for online session evaluation.

Beginning December 6, 2016, an attendee can view his or her transcript at the NSTA Learning Center (learningcenter.nsta.org) by first logging on and then clicking “My Profile” under the Welcome. Here you’ll find a “Certificates” tab, which you can use to access your transcript. Attendees can also document credit for activities that are not being evaluated (e.g., Exhibit Hall visits, etc.). In addition, the NSTA Learning Center offers professional development experiences (online and face to face) for your long-term growth and professionalism.

Each attendee is responsible for tracking his or her own attendance at such events. The transcript can be printed here and presented to an administrator who requires documentation of participation in the conference. All information in these transcripts will be maintained (and can be accessed) indefinitely as part of an attendee’s individual profile.

Lost and Found
All lost-and-found items will be turned in at the Exhibitor Registration counter in the Convention Center.

First Aid Services
First Aid is located next to the Hall A/B junction in the Convention Center. Attendees in need of first aid can use any house phone to dial extension 7849 for the Security Office (this number is also listed on all house phones), or dial “0” for the receptionist.

Visitor Information Desk
The Visitor Information Desk is located in the MLK lobby of the Convention Center. The desk is open 8:00 AM to 5:00 PM every day of the conference to provide information about the city and assist with restaurant recommendations and reservations.
The NSTA Conference App

Navigate the conference from the palm of your hand! The NSTA Conference app provides all the tools necessary for a successful conference experience.

Features include the ability to view session and workshop listings by time and presenter; maps of the Convention Center, DoubleTree, and Exhibit Hall; social media plugins; and a note-taking tool. Scan the QR code or visit www.nsta.org/conferenceapp to download the app. Please make sure to create a CrowdCompass account when logging in to be able to export any notes taken within the app. Note: The NSTA Conference app does not sync to our online Personal Scheduler.

Membership Booth and the (UN)conference

Come by the membership booth located in Pre-Function A, outside of Hall A, to meet NSTA staff and board members to learn more about NSTA membership and become part of the group who is crafting the future of science education. Win great prizes, including airfare on Southwest Airlines to the 2017 NSTA Los Angeles National Conference on Science Education. We’ll be handing out our new #ONLYatNSTA tweetshirts—come by and get one while supplies last!

Also in Portland, we’re holding an NSTA (UN)conference, hosted by expert STEM educator, Dedric McGhee. Follow us on Twitter @NSTA or #NSTA16 to see updates!

Audiovisual Needs

NSTA will fulfill AV needs originally requested on the program proposals as long as the request is within the limits of equipment that NSTA provides. For any last-minute AV needs, presenters must arrange and pay for their own equipment. Audio Visual Production Solutions, the designated AV company on-site, will be located in the following rooms:

• A101, Conv. Center
• Portland Room, DoubleTree

Business Services

Self Service Business Center is located directly above the main MLK Lobby in the Convention Center. Services include computer access, faxing, copying, and computer printing. Contact information is also posted for the local UPS store that can provide additional services, including small individual shipping services. The center will be open during registration hours of the conference.

DoubleTree hotel guests can use the business center located on the hotel’s lobby level. It offers complimentary use of computers, with complimentary access to the internet. Documents can also be printed complimentary. Large copy or print needs can be arranged through FedEx Print Center, which is located at 1605 NE 7th Avenue, within blocks of the hotel. Open 24 hours a day, 7 days a week, this location also delivers completed copy jobs.
We believe teachers are the real miracles of modern science.

Teachers get up every morning knowing they have the potential to change the world – just by showing up in the classroom and inspiring a love of science. Yes, they may feel overworked and even underappreciated. But by some miraculous feat, they remain true to their mission, touching the lives of students by imparting the gifts of knowledge and curiosity. We know. Because Carolina equips them for the task.

Learn more about our commitment at www.carolina.com/withyou
Executive Office
David Evans, Executive Director
Michelle Butler, Executive Administrator and Manager

BOARD RELATIONS
Michelle Butler, Executive Administrator and Manager
Shawn Crowder, Administrative Coordinator

DATA ANALYTICS
Todd Wallace, Assistant Executive Director and CIO

HUMAN RESOURCES
Irene Dooley, Assistant Executive Director
Janine Smith, HR Benefits Manager and Generalist

LEARNING CENTER
Flavio Mendez, Assistant Executive Director
Amanda Wolfe, eLearning Engagement Specialist

NOMINATIONS AND TEACHER AWARDS PROGRAMS
Amanda Upton, Manager

OFFICE OF COMMUNICATIONS AND LEGISLATIVE AND PUBLIC AFFAIRS
Jodi Peterson, Assistant Executive Director, Legislative and Public Affairs
Cindy Workosky, Communications Specialist
Kate Falk, Senior Manager, Public Relations
Tim Weber, Assistant Executive Director, Web and News

PROFESSIONAL PROGRAMS
John Putnam, Assistant Executive Director
Wendy Binder, SPIR Project Director
Dayna Anderson, Program Manager
Alexandra Wakely, Administrative Coordinator, Services

PROGRAM INTEGRATION
Jennifer Horak, Assistant Executive Director
Ted Willard, Program Director, NGSS@NSTA

Conferences Division
Debore Howard, Associate Executive Director

CONFERENCES AND MEETINGS
Dina Weiss, Associate Director
Linda Crossley, Assistant Director/Managing Editor
Donna Fletcher, Conference Coordinator
Beverly Shaw, Conference Administrator
Christina Dierson, Project Editor
Kimberlyn McDonald, Registration Supervisor/Administrative Assistant
Jasmine Dandridge, Database Coordinator
Marcelo Nunez, Exhibit Services Coordinator

EXHIBITS/SALES
Jason Sheldrake, Assistant Executive Director
Kimberly Hotz, Senior Manager, Exhibitor Operations
Jeffrey LeGrand-Douglass, Account Manager
Beky Shoemaker, Advertising Production Manager
Danielle McNeill, Project Manager, NSTA Mailing List

Content Division
David Beacom, Associate Executive Director and Chief Content Officer
Emily Brady, Executive Administrator and Manager, NSTA Recommends

ART AND DESIGN
Will Thomas, Director
Joseph Butera, Senior Graphic Designer
Hima Bichali, Graphic Designer

E-PRODUCTS
Leisa Clark, Director/Producer
Kara Pantalena, Course Developer
Eleanore Dixon-Roche, e-Learning Multimedia Specialist

JOURNALS
Ken Roberts, Assistant Executive Director
Kate Sedor, Associate Editor
Luke Towler, Editorial Assistant

Science & Children
Linda Froshauer, Field Editor
Valynda Mayes, Managing Editor

Science Scope
Inez Fugate Liftig, Field Editor
Ken Roberts, Assistant Executive Director, Journals

The Science Teacher
Stephen C. Metz, Field Editor
Scott Stuckey, Managing Editor

Journal of College Science Teaching
Ann Cutler, Field Editor
Caroline Barnes, Managing Editor

Marketing, Social Media & eMessaging
Lauren Jonas, Assistant Executive Director
Jennifer Gulley, Marketing Manager
Korei Martin, Social Media Coordinator

NEW PRODUCTS
Tyson Brown, Director

NSTA PRESS
Claire Reinburg, Assistant Executive Director
Wendy Rubin, Managing Editor, Books (NSTA Press)
Amanda Van Beuren, Associate Editor
Donna Yudkin, Book Acquisitions Coordinator
Rachal Ledbetter, Associate Editor

NSTA Reports
Lynn Petrinjak, Editor
Debra Shapiro, Associate Editor

PRINTING AND PRODUCTION
Catherine Lorrain, Director
Jack Parker, Electronic Prepress

STRATEGIC INITIATIVES
Rick Bounds, Assistant Executive Director
Alison Thalmann, Senior Associate, Professional Development Relationships

Operations Division
Moir Fathy Baker, Deputy Executive Director, and CFO

BUSINESS & FINANCE
Brian Short, Assistant Executive Director
Diane Cash, Senior Manager, A/P and Internal Compliance
Elise Maka, Senior Manager, Inventory Control
Jodie Rozzell, Director of Grants and Contracts
Gaby Bathiche, Accountant
LaKeisha Hines, Accounting Associate
Shantee Young, Accounts Receivable Specialist

CHAPTER RELATIONS AND MEMBERSHIP
Teshia Birts, Senior Director of Membership Development and Chapter Relations
Shawn Crowder, Administrative Coordinator

CUSTOMER SERVICE
Nelly Guacheta, Director, Service Central
Cindy Thomas, Senior Manager
Sharlene Steward, Customer Service Representative, Data Entry/Pub Sales
Kiara Singleton, Customer Service Representative
LaToya Parks, Coordinator, CSR/Data Entry, Publication Sales
Kristen Reiss, Customer Service Representative, Publication Sales

FACILITIES AND OPERATIONS
Christine Gregory, Director
Rodney Palmer, Building Engineer
Donovan Parker, Assistant Manager, Mailing Services
Joe Harpe, Mailing Services Assistant

INFORMATION TECHNOLOGY
Ryan Foley, Assistant Executive Director, Systems Development and Chief Technology Officer
Mike Sullivan, Director, IT
Edwin Pearce, Manager, IT Support
Michelle Chauncey, Director of Quality Assurance and Database Integrity
Edward Hausknecht, Web and Database Developer
Martin Lopong, Manager, Web Development
NSTA Officers, Board of Directors, Council, and Alliance of Affiliates

NSTA Mission Statement

The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.

Officers and Board of Directors

- David Evans, Executive Director
- Mary Gromko, President
- David T. Crowther, President-Elect
- Carolyn Hayes, Retiring President
- Harold Pratt, Parliamentarian
- LeRoy Lee, Treasurer

- Jennifer S. Thompson, Preschool/Elementary
- Kenneth L. Huff, Middle Level
- Carrie Jones, High School Science Teaching
- Elizabeth Allan, College Science Teaching
- John Olson, Coordination and Supervision of Science Teaching
- Dennis Schatz, Informal Science
- Jerry D. Valadez, Multicultural/Equity
- Eric J. Pyle, Preservice Teacher Preparation
- Eric Brunsell, Professional Development
- John Tillotson, Research in Science Education

NSTA Officers, Board of Directors, Council, and Alliance of Affiliates

Council

- Mary Gromko, President
- Harold Pratt, Parliamentarian
- Jeanelle Day, District I
- Doug Hodum, District II
- Mary C. H. Weller, District III
- Mary L. Loesing, District IV
- Zoe Evans, District V
- Manley Midgett, District VI
- John F. Ammons, District VII
- Dennis Alan Casey, District VIII
- Brenda Walsh, District IX
- Shannon Hudson, District X
- J. Carrie Launius, District XI
- Natacia Campbell, District XII
- Norma Neely, District XIII
- Jennifer Gutierrez, District XIV
- Tom Cubbage, District XV
- Camille T. Stegman, District XVI
- Midge Yergen, District XVII
- Michael Bowen, District XVIII

Alliance of Affiliates

- Lisa Martin-Hansen, Chairperson and ASTE Affiliate Representative
- Sharon Delesbore, AMSE Affiliate Representative
- Margaret Glass, ASTC Affiliate Representative
- James McDonald, CESI Affiliate Representative
- Juan-Carlos Aguilar, CSSS Affiliate Representative
- Deborah Hanuscin, NARST Affiliate Representative
- Mary Lou Lipscomb, NMLSTA Affiliate Representative
- Bob Sotak, NSELA Affiliate Representative
- Brian Shmaefsky, SCST Affiliate Representative
- Deborah Murray, AEOP Budget and Project Manager
- Dimetrius Simon, AEOP Communications Coordinator
- Marcia Akeung, AEOP Logistics Coordinator
- Jarod Phillips, GEMS Project Manager
- Renee Wells, GEMS Administrative Assistant

NSTA Portland Area Conference on Science Education
Conference Resources • Future Conferences

All cities are subject to change pending final negotiation.

National Conferences on Science Education
Los Angeles, California
March 30–April 2, 2017
Atlanta, Georgia
March 15–18, 2018
St. Louis, Missouri
April 11–14, 2019
Boston, Massachusetts
March 26–29, 2020
Chicago, Illinois
April 8–11, 2021

6th Annual STEM Forum & Expo, hosted by NSTA
Gaylord Palms Resort, Kissimmee/Orlando, Florida
July 12–14, 2017

Area Conferences on Science Education
2016 Area Conferences
Columbus, Ohio—December 1–3

2017 Area Conferences
Baltimore, Maryland—October 5–7
Milwaukee, Wisconsin—November 9–11
New Orleans, Louisiana—November 30–December 2

Share Your Ideas!

NSTA’s Conferences on Science Education

Have an idea for an inspiring presentation or workshop on science education? Submit a session proposal today for...

6th Annual STEM Forum & Expo, hosted by NSTA
Gaylord Palms Resort/Kissimmee, Orlando, FL..................July 12–14

Proposal Deadline: 12/5/2016

2017 Area Conferences
Baltimore, MD.............October 5–7
Milwaukee, WI.............November 9–11
New Orleans, LA ........November 30–December 2

Proposal Deadline: 1/17/2017

2018 National Conference
Atlanta, GA ...............March 15–18

Proposal Deadline: 4/17/2017

To submit a proposal, visit
www.nsta.org/conferenceproposals
Over 1,200 sessions
Network with more than 10,000 educators
375+ exhibitors with cutting-edge resources
And much more!

“The conference provides a wealth of information from lesson plans to the latest science news. I leave each conference renewed and recharged!”

— Sharon Ruggieri, past conference attendee

Scientists in their natural habitat:

SUN • SURF

Science

LOS ANGELES

March 30–April 2 2017

CONFERENCE STRANDS

NGSS
The Next Generation of Science Teaching

2017
A STEM Odyssey

Science & Literacy Reloaded

Mission Possible
Equity for Universal Access

Stay up-to-date with conference information at
www.nsta.org/la
Conference Program • Highlights

Thursday, November 10

8:00–9:00 AM  First-Timer Conference Attendees’ Orientation .......................... 40
(Is This Your First NSTA Conference?)
9:15–10:30 AM General Session: Sean Carroll, sponsored by HHMI BioInteractive ... 44
10:30–11:30 AM Sean Carroll book signing in the NSTA Science Store .................. 44
11:00 AM–5:00 PM Exhibits (Exclusive hours: 11:00 AM–12:30 PM) ...................... 50
2:00–3:00 PM  Featured Presentation: Philip Bell ................................................. 56
4:30–6:00 PM  OSTA/WSTA Awards Program @ OMSI ................................. 65
6:00–9:00 PM  Teacher Evening at OMSI (M-1, $35) ......................................... 69

Friday, November 11

8:00 AM–1:30 PM Middle School Chemistry Day ........................................... 28
8:00 AM–4:30 PM Physics Day ........................................................................ 30
8:00 AM–5:00 PM Chemistry Day (For Grades 9–12) .................................... 28
8:00 AM–5:00 PM Elementary Day @ NSTA ............................................... 29
8:00 AM–6:00 PM Engineering Day ................................................................. 29
9:00 AM–3:00 PM Exhibits (Exclusive hours: 1:30–3:00 PM) ......................... 77
9:30–10:30 AM Featured Presentation: Deena Pierott ..................................... 77
11:00 AM–12 Noon Featured Presentation: Carla Zembal-Saul ..................... 83
1:15–2:00 PM Meet the Presidents and Board/Council ................................. 93
1:15–3:00 PM Exhibit Hall Beverage Break .................................................... 93
3:30–4:30 PM Featured Presentation: Dennis Schatz ................................. 96

Saturday, November 12

9:00 AM–12 Noon Exhibits ............................................................................. 108

---

Don’t forget to pick up your FREE TriMet pass! See page 7 for details.

Is This Your First NSTA Conference?

Yes, you say? Then you are invited to attend a special session on Thursday, 8:00–9:00 AM. Learn how you can gain the most from your conference experience and have fun doing it! See page 40 for details.

Win a round-trip Southwest ticket to the NSTA National Conference on Science Education in Los Angeles.

Thanks to the generosity of Southwest Airlines we’re giving away three round-trip tickets on Southwest Airlines for educators to attend the NSTA National Conference in LA, March 30–April 2, 2017!

The drawings will be held at:
- 4:00 PM, Thursday, Nov. 10
- 2:00 PM, Friday, Nov. 11
- 10:00 AM, Saturday, Nov. 12

Stop by the NSTA Membership booth for all the details! You need not be present to win.
Stellar Service
Makes a Measurable Difference

When you’re teaching students to collect and analyze scientific data, count on Vernier.

Innovative Technology
Experiments
Technical Support Team
Technical Information Library
Webinars
Grants

Workshops
Innovative Uses
Supporting Research
Newsletter
Warranty
Tech Tip Videos

When science teachers succeed, students succeed—and that makes all the difference.

Discover the Vernier difference at
www.vernier.com/stellar-service

Vernier Software & Technology
888-VERNIER (888-837-6437)
www.vernier.com
The Portland Conference Committee has planned the conference around these three strands, enabling you to focus on a specific area of interest or need. Strand events are identified by icons throughout the daily program.

**Base Camp: Collaborating to Integrate Elementary Science Instruction with Math and ELA**

Science education fosters the natural curiosity and creativity in students. By teaching science and laying the foundation, elementary teachers provide students with the tools they need to reach the summit to become scientifically literate adults. When teachers integrate content during instruction, they are modeling how the real world operates, allowing students to make meaning of the world they live in. Teachers choosing this strand will learn how to bundle science, mathematics, and ELA standards in a way that reaches the whole child and improves efficiency in the elementary classroom.

**The View from the Summit: Celebrating Science for All**

In a science- and technology-driven society, equity means that all students should have access to knowledge that will allow them to participate as productive citizens. Successful application of science and engineering practices and the understanding of how crosscutting concepts play out across a range of disciplinary core ideas will demand increased cognitive abilities of ALL students (e.g., special education, English language learners, gifted and talented). This strand will demonstrate how teachers can provide equitable science and engineering learning opportunities that engage students in constructing meaning about the world around them.

**The View from All Angles: Connecting Three-Dimensional Science Instruction**

The NRC *Framework* and the *Next Generation Science Standards* identified research-based best practices for today’s learners. Quality instruction incorporates the three dimensions of NGSS (crosscutting concepts, disciplinary core ideas, and science and engineering practices). Three-dimensional science learning produces scientifically literate and competent students. This strand will exemplify the intertwining nature of the three dimensions necessary for high-quality science instruction at all levels.
Base Camp: Collaborating to Integrate Elementary Science Instruction with Math and ELA

Thursday, November 10

8:00–9:00 AM
Differentiating K–6 Science Instruction to Enable All Students to Inquire, Explore, Participate, and Achieve Success

12:30–1:30 PM
Patterns of Survival

2:00–3:00 PM
Developing and Implementing NGSS-Focused Curricula in Gillette, Wyoming: Focus on Earth and Space Science as a Vehicle for Mathematics and Literacy Integration

3:30–4:30 PM
NGSS Storyline Coherence for Kindergarten: Phenomena and Context-Based Units of Study for Kindergarten

Friday, November 11

8:00–9:00 AM
Coyote vs. Road Runner: Why Acme Anvils Aren’t Needed

9:30–10:30 AM
Solving the Mystery of the Mega Flood with Fourth-Graders!

11:00 AM–12 Noon
Featured Presentation: Beyond the Blender Metaphor of Integration: NGSS as a Lever for Transforming Educational Opportunities for Elementary Learners
(Speaker: Carla Zembal-Saul)

12:30–1:30 PM
FieldSTEM Plus: An Integrated Learning Model

Saturday, November 12

9:30–10:30 AM
Goldilocks, an Engineer?

The View from All Angles: Connecting Three-Dimensional Science Instruction

Thursday, November 10

8:00–9:00 AM
The Re-Wilding Project!

12:30–1:30 PM
Inquiring Minds Want to Know

2:00–3:00 PM
Featured Presentation: How Should Districts and Schools Focus Professional Development When Starting to Implement NGSS?
(Speaker: Philip Bell)

3:30–4:30 PM
Problems and Phenomena: Engaging Your Students in Three-Dimensional NGSS Learning!

5:00–6:00 PM
Constructing Explanations in Biology—Getting from There to Here

Friday, November 11

8:00–9:00 AM
Three-Dimensional Formative Assessment

9:30–10:30 AM
Integrating Green Chemistry and Engineering Design into Every Classroom: Interactive Workshop for High School Educators

11:00 AM–12 Noon
Biology for the Next Generation: 3-D Teaching, Learning, and Assessment in the Biology Classroom

12:30–1:30 PM
Making Yogurt as an Engineering Design Project in Biology

3:30–4:30 PM
Teaching Engineering

5:00–6:00 PM
Reach Higher with Projectiles and the NGSS

Saturday, November 12

8:00 AM–12 Noon
SC-4: From Roots to STEM—Using Roots Instruments to Teach STEM
(Ticket Required: $41)

9:30–10:30 AM
Regurgitation and Argumentation: Teaching Science Practices Using Owl Pellets

11:00 AM–12 Noon
Student-Designed Research on Sleep, Memory, and Emotional Regulation
### The View from the Summit: Celebrating Science for All

**Thursday, November 10**

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:00–2:30 PM</td>
<td>A Transformational Model for Science Instruction in a 21st-Century Classroom</td>
</tr>
<tr>
<td>2:30–3:00 PM</td>
<td>Teaching, Integrating, Exploring Science (TIES): A Science Mentoring Program for Grade 5 Girls</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>Inclusion: Strategies for Helping Students with Disabilities in the Science Classroom</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>The nPower Girls: Cultivating Interest and Achievement in STEM</td>
</tr>
</tbody>
</table>

**Friday, November 11**

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00 AM</td>
<td>Infect Your Science Classroom with Math</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>Featured Presentation: Implicit Bias and Its Effect on Diverse Youth (Featured Speaker: Deena Pierott)</td>
</tr>
<tr>
<td>11:00 AM–5:30 PM</td>
<td>SC-2: Supporting the NGSS with Process-Oriented Guided Inquiry Learning (POGIL) (Ticket Required: $60)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Recipe for Research and Application: The Science of Food and Eating</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>Beyond Differential Instruction</td>
</tr>
</tbody>
</table>

**Saturday, November 12**

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00 AM</td>
<td>Constructing Equitable STEM Activities for All</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>Equity and Engagement of Economically Disadvantaged Students in STEM Project-Based Learning</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>Engaging Girls in STEAM</td>
</tr>
</tbody>
</table>

---

**Teacher Evening at OMSI**

Come attend a Private Evening Event at the Oregon Museum of Science and Industry

**Thursday, November 10, 6:00–9:00 PM**

*(Ticket Required) M-1 ticket: $35 on-site (per person)*

Ranked as one of the top science centers in the U.S., OMSI (www.omsi.edu) has an international reputation for its innovative exhibits and educational programs. Join us to explore OMSI exhibit halls, experience STEM programming as well as demonstrations and hands-on activities with museum educators. This evening experience will give teachers opportunities to engage in classroom-ready, hands-on activities, and take-away resources encouraging implementation of STEM activities in the classroom.

*Ticket cost includes museum admission and light appetizers. Tickets may be purchased at registration. Cash bar. Note: Transportation to and from the museum is not provided. OMSI is on the streetcar line about 15 minutes from the Convention Center. The cost is $2 to ride or use your TriMet pass and ride for free (given out at program pickup). For directions and parking, visit www.omsi.edu/visitor-info.*
NSTA Press Sessions

NSTA Press® books offer new classroom ideas and standards-based strategies, from Earth science to nanoscience and from preK to college. Join NSTA Press authors for these sessions linked to the topics of their books.

Thursday, November 10
8:00–9:00 AM  Argumentation in the Biology Science Classroom
12:30–1:30 PM  Solar Science = NGSS-Focused Solar Astronomy Experiences + Preparation for the All-American Total Solar Eclipse
2:00–3:00 PM  Outdoor Science with Birds, Books, and Butterflies
3:30–4:30 PM  Teaching for Conceptual Understanding in Science
5:00–6:00 PM  Inside or Out: The Perfect Place for Connecting Outdoor Science and Children’s Tradebooks

Friday, November 11
8:00–9:00 AM  Argument-Driven Inquiry in Chemistry: Lab Investigations for Grades 9–12
9:30–10:30 AM  Argument-Driven Inquiry in Biology: Lab Investigations for Grades 9–12
11:00 AM–12 Noon  Argument-Driven Inquiry in Physical and Life Science: Lab Investigations for Grades 6–8
12:30–1:30 PM  Argumentation in the Physical Science/Physics Science Classroom

Meetings and Social Functions

Thursday, November 10
OSTA/WSTA Awards Program @ OMSI
To purchase tickets, visit www.oregonscience.org/event-2288540.
Ticket Required, Off-site at OMSI ..................4:30–6:00 PM
M-1: Teacher Evening at Oregon Museum of Science and Industry
Ticket Required, Off-site at OMSI .................6:00–9:00 PM

Friday, November 11
Discover the NGSS Train-the-Trainer Workshop
Holladay, DoubleTree ......................... 8:00 AM–5:00 PM
North-West and Far West Regions Association of Science Teacher Educators Joint Business Meeting
Weidler/Halsey, DoubleTree .................12 Noon–1:00 PM

Friday, cont.
STEM Lighthouse Schools: The View from the Summit
Mt. St. Helens, DoubleTree ......................... 2:00–3:00 PM
North-West and Far West Regions Association of Science Teacher Educators Joint Meeting
Weidler/Halsey, DoubleTree ......................... 2:00–4:00 PM
The State of Science/STEM/STEAM Education in Oregon
Multnomah, DoubleTree .........................3:00–5:00 PM

Saturday, November 12
Discover the NGSS Train-the-Trainer Workshop
Holladay, DoubleTree ......................... 8:00 AM–5:00 PM
Energy is a crosscutting concept in all of the science disciplines. It can be used within chemistry as a framework to help students understand the properties and behavior of substances at multiple levels. The three sessions of Chemistry Day are designed to analyze, discuss, and reflect on diverse instructional strategies that actively engage students in thinking about energy transfer issues in chemistry at the macroscopic, symbolic, particulate, and atomic levels.

We will also illustrate how to diagnose and formatively assess student understanding. While these sessions can each stand alone, participants who join us for the day will experience how teachers can use different science practices (design, modeling, and argumentation) to help students develop and apply an energy lens to describe, explain, and predict chemical properties and phenomena. This Day of Chemistry has been developed by the American Chemical Society High School Chemistry Professional Development Leadership Group.

### Chemistry Day at NSTA

**Sponsored by the American Chemical Society**

**Energy as a Framework to Teach Chemistry at Multiple Levels**

*For Grades 9–12*

**Friday, November 11, 8:00 AM–5:00 PM**

*E145, Oregon Convention Center*

8:00–10:00 AM  **Energy in Chemistry—A Macroscopic View**

10:30 AM–12:30 PM  **Energy in Chemistry—A Particulate View**

3:00–5:00 PM  **Energy in Chemistry—An Atomic View**

### Middle School Chemistry Day

**Sponsored by the American Chemical Society**

**Middle School Chemistry—Big Ideas About the Very Small**

**Friday, November 11, 8:00 AM–1:30 PM**

*E146, Oregon Convention Center*

Come to one, two, or as many sessions as you like during this day of activities and information for teaching and learning middle school chemistry. Staff from the American Chemical Society will introduce participants to the free online resource middleschoolchemistry.com. Each of the four sessions will include hands-on activities and explanations from the website that participants can easily incorporate into their teaching to support their current textbook and curriculum. Handouts of the session activities will be available for all participants.

8:00–9:00 AM  **Solids, Liquids, Gases, and Changes of State**

9:30–10:30 AM  **Density: A Molecular View**

11:00 AM–12 Noon  **The Water Molecule and Dissolving**

12:30–1:30 PM  **Chemical Reactions: Breaking and Making Bonds**
Engineering Day at NSTA

Sponsored by the American Society for Engineering Education
Friday, November 11, 8:00 AM–6:00 PM
D139, Convention Center

The American Society for Engineering Education has put together a public/private partnership to develop ways of engaging elementary, middle school, and high school students and teachers in engineering. Participants will learn about innovative, hands-on, project-based engineering activities, courses, curriculum options, events, outreach programs, professional development, and competitions designed to increase the engineering and technological literacy of all students; encourage more and more diverse students to pursue engineering careers; and enable teachers to learn about and experience engineering. Presenters will share lessons learned and examples of inquiry and design activities that have been developed in partnership with K–12 science teachers for use in the classroom and in informal educational settings. The materials result from a collaboration of engineering educators and STEM professionals working with NASA, Teachengineering.org, Engineering is Elementary, and Colleges of Engineering across the nation who actively engage in K–12 engineering in collaboration with partner teachers and schools. All sessions will help teachers understand the new ETS Engineering Design portion of the Next Generation Science Standards (NGSS).

8:00–9:00 AM  
ASEE’s K–12 Outreach: Engineering, Go For It (eGFI), Teach Engineering, Link Engineering, and the National Science Digital Library

9:30–10:30 AM  
Engineering a Pathway to STEM: Advancing Elementary Level Engineering Education Through Innovative Programs and Partnerships

11:00 AM–12 Noon  
Cognitive and Noncognitive Experiences with Engineering Practices

12:30–1:30 PM  
Creatively Applying the “E” in STEM

3:30–4:30 PM  
Computer Science as a Bridge Between Concepts, Ideas, and Practice in Grades 6–12 Science Classrooms

5:00–6:00 PM  
Coupling Engineering Design Practices with CCSS ELA Writing

Elementary Day @ NSTA

Sponsored by the Oregon Science Teachers Association

Friday, November 11, 8:00 AM–5:00 PM
Multnomah, DoubleTree

Join Susan Holveck, Science TOSA for Secondary Science at the Beaverton School District, and distinguished guests as they present sessions that demonstrate the impact that teaching science at the elementary level has on equity, English language proficiency, academic achievement, and college and career readiness.

Elementary Day @ NSTA begins with a panel discussion, followed by a workshop and networking event covering both successes and impediments in teaching science in elementary school. Elementary Day @ NSTA is being organized by the Oregon Science Teachers Association (www.oregonscience.org/event-2349506).

8:00–10:00 AM  
Panel Discussion: Articulating the “Why”: Science in the Elementary Years

10:30 AM–12:30 PM  
Taking Stock and Planning for Three-Dimensional Science Teaching and Learning in Elementary Schools

3:00–5:00 PM  
The State of Science/STEM/STEAM Education in Oregon
**Physics Day at NSTA**

*Sponsored by the American Association of Physics Teachers (AAPT) and the Oregon Section of AAPT*

Friday, November 11, 8:00 AM–4:30 PM

E143, Oregon Convention Center

The American Association of Physics Teachers offers a full day of physics content. Physics Day consists of interactive hands-on workshops and sessions covering important physics topics for today's world. Each of these workshops or sessions is organized by experienced science educators and designed to deal with hard-to-express concepts that can be immediately applied in your classroom. Physics Day in Portland is being organized by the Oregon Section of the American Association of Physics Teachers.

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00 AM</td>
<td>Physics and Engineering in the Classroom and After-School Clubs I: Using Microcontrollers to Collect and Display Results in Fun and Exciting Ways</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>Physics and Engineering in the Classroom and After-School Clubs II: Using an Arduino to Collect Data and Control Motors</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>Physics and Engineering in the Classroom and After-School Clubs III: Student miniROVs in the Classroom, the Field, and in Student Competitions</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>Developing an Energy Policy for the U.S.</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>How to Make Holograms Using the Litiholo Home Holography Kit</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td></td>
</tr>
</tbody>
</table>

---

**UNI Overseas Placement Service for Educators**

“An incredible opportunity for science teachers to meet and interview with over 120 American K-12 schools from around the world.”

**Teachers: $50 All-In Registration Fee includes:**
- Access to UNI Overseas Recruiting Fair - Feb. 3-5, 2017
- UNI Employment Database
- UNI Staff Support and Publications

Visit us @ Booth 811 at the Minneapolis Area Conference


www.uni.edu/placement/overseas

UNI Career Services, Cedar Falls, Iowa USA 50614-0390
Phone: (319) 273-2083 Fax: (319) 273-6998
E-mail: overseas.placement@uni.edu
Admission to NSTA short courses is by ticket only. Tickets, if still available, may be purchased at the Ticket Sales Counter in the NSTA Registration Area.

NASA’s Exploration of the Solar System: Activities for Out-of-School Time (SC-1)
Christine Shupla (shupla@lpi.usra.edu), Lunar and Planetary Institute, Houston, Tex.
Brandy Laney (brandyb@springisd.org) Northgate Crossing Elementary School, Houston, Tex.
Meredith Harris (meredithaharris@me.com), Spring ISD, Houston, Tex.
Science Focus: ESS1.B, ESS2.D, INF, CCC1, CCC2, CCC4, SEP2, SEP3, SEP4
Level: Grades 2–6
Date: Thursday, November 10, 1:00–4:00 PM
Location: 3 Sisters/Mt. Bachelor, DoubleTree
Ticket Price: $18

Discover Jupiter’s unique personality traits, including its dynamic weather, mysterious interior, and amazing magnetic field. Join in as we compare the characteristics of planets through hands-on activities, compare their densities, weigh ourselves on other worlds, and use models to infer their structure and composition. This short course uses Explore Jupiter’s Family Secrets developed for the Juno mission now at Jupiter. This series of activities was written for informal educators, but addresses many of the questions and standards that teachers explore in the classroom.

Supporting the NGSS with Process-Oriented Guided Inquiry Learning (POGIL) (SC-2)
Mare Sullivan (joe.mare.sullivan@gmail.com), Seattle Pacific University, Seattle, Wash.
Julia Dudley (jjones@psd1.org), Pasco (Wash.) School District
Michelle Poletski (poletskim@newberg.k12.or.us), Newberg High School, Newberg, Ore.
Science Focus: GEN, NGSS
Level: Grades 6–12
Date: Friday, November 11, 11:00 AM–5:30 PM
Location: Mt. Hood, DoubleTree
Ticket Price: $60

In this short course, immerse yourself in collaborative learning to explore connections among POGIL strategies and the NGSS crosscutting concepts, disciplinary core ideas, and science and engineering practices. The small group collabor-
Conference Program  •  Educational Trips

Tickets for educational trips may be purchased (space permitting) at the Ticket Sales Counter in the NSTA Registration Area. Meet your educational trip leader at the Holladay Street entrance of the Oregon Convention Center 15 minutes prior to departure time.

Oregon National Primate Research Center Tour  
$17, by preregistration only
#T-1  Thurs., Nov. 10  8:30 AM–12:30 PM

The Oregon National Primate Research Center (ONPRC), one of seven national centers supported by the National Institutes of Health, is home to nearly 50 scientists who direct basic research focused on a variety of health issues, including diabetes, obesity, premature birth, aging, brain injury (stroke, multiple sclerosis, Huntington’s Disease), vaccine development, therapeutic uses of embryonic stem cells, contraception, fertility preservation, and assisted reproductive technologies.

Your visit to ONPRC will include an interactive presentation about current research projects and a discussion about the critical need for animal models in this work, as well as an overview of the animal care program at the Center. Following this presentation, we will visit the outdoor housed breeding colonies of rhesus macaques and Japanese macaques.

Note: Guests must be at least 10 years old. Ability to walk a half mile and climb stairs is important. Guests should wear comfortable walking shoes and dress for the weather. Photography is not permitted. No food or beverage provided on this trip.

Cascades Volcano Observatory Tour  
$33
#T-2  Thurs., Nov. 10  12:15–5:00 PM

The U.S. Geological Survey is responsible for assessing volcano hazards, monitoring volcanic activity, and issuing warnings of impending eruptions. During this tour, scientists provide an introduction to volcanic hazards and techniques for detection of volcanic unrest, short-range forecasting, and volcano mitigation. Participants will receive a tour of the seismic/operations room and research labs, and view volcano-monitoring equipment. Participants receive volcano posters and literature. Note: No food or beverage provided on this trip.

Columbia River Gorge Geology Tour  
$59
#F-1  Fri., Nov. 11  7:30 AM–5:00 PM

Come study the geology of the Columbia Gorge. Explore the evolution of this area through examination of the rocks and features. Examine Glacial Flood evidence and visit Rocky Butte, Multnomah Falls, Hood River Delta, the Cascade Locks, and various other scenic stops as time allows. Moderate hiking is required. Bring field clothing, water bottle, and any medication you might require. Note: This trip is not weather dependent. If it rains, we travel east, starting our stops at Hood River with one at Multnomah Falls on the west side. Nice weather, we start our outside stops right in Portland. Lunch included.

Evergreen Aviation & Space Museum  
$57
#F-2  Fri., Nov. 11  8:00 AM–2:00 PM

Evergreen Museum Campus allows for many opportunities to learn about the history of aviation and space flight…and much more. The Evergreen Aviation & Space Museum offers teachers many standards-focused history and STEM-centered programs, including Ground School (four forces of flight); history tours of both aviation and space museums; robotics, rockets, and Newton’s laws; space exploration; and engineering design challenges. Tour the one-and-only Spruce Goose, Howard Hughes’ famous transport seaplane; experience the Magic Planet; and see one of the fastest spy planes, the SR-71. Visit with our education specialists and discover a wide array of teacher resources and activities that you can take back to the classroom. There is no better way to learn about science, space, and aviation than at Evergreen.

Note: Bring your own snack and beverage, if needed, for the bus ride. Box lunch included. For more information, visit www.evergreenmuseum.org. Travel time is roughly 1.5 hours each way.

——Photo courtesy of Cascades Volcano Observatory

CANCELED

SOLD OUT

32

NSTA Portland Area Conference on Science Education
All attendees can evaluate concurrent teacher and exhibitor sessions online while simultaneously tracking professional development certification (based on clock hours). Use this form to keep track of all sessions/events attended during the 2016 Portland Area Conference. Sessions/events such as exhibit hall visits are not available for online evaluation. However, these events still qualify for professional development.

Beginning December 6, 2016, Portland conference transcripts can be accessed at the NSTA Learning Center (learningcenter.nsta.org) by logging on with your conference badge ID# and first clicking on “My Profile” under the “Welcome.” Here you’ll find a “Certificates” tab to access your transcript. Keep this form and use it to add the following activities to your Portland conference transcript. Completed transcripts can be printed from this website and presented to an administrator who requires documentation of participation in the conference. All information in these transcripts will be maintained (and can be accessed) indefinitely as part of an attendee’s individual profile.

Evaluate sessions by accessing the Portland session browser: www.nsta.org/portlandbrowser. You will need your badge number to evaluate sessions. See page 12 of the program for instructions. Note: Our session evaluation system is designed to work from a computer and while it may work on smartphones/tablets, it is not really designed for them.

Sample Questions:

1. I selected this session:
   a. for immediate classroom use.
   b. based on the reputation of the speaker.
   c. to improve my personal pedagogical knowledge/skill.
   d. to improve my STEM content knowledge.

2. The session met my needs.

3. The information presented was clear and well organized.

4. Safe practices were employed.

5. The session avoided commercial solicitation (n/a for exhibitor workshops and NSTA Press® sessions).

6. The session should be repeated at another NSTA conference.

Sample Responses:

1=Strongly Agree  2=Agree  3=Neutral  4=Disagree  5=Strongly Disagree

<p>| Wednesday, November 9 12 Noon–4:00 PM |</p>
<table>
<thead>
<tr>
<th>Start Time</th>
<th>End Time</th>
<th>Activity/Event Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We’re giving an Apple iPad mini 2 Wi-Fi tablet to one lucky attendee who evaluates sessions that he or she attends. The more sessions you attend and evaluate, the more chances you have to win!
<table>
<thead>
<tr>
<th>Thursday, November 10</th>
<th>8:00 AM–6:00 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Time</td>
<td>End Time</td>
</tr>
<tr>
<td>______________________</td>
<td>_________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Friday, November 11</th>
<th>7:30 AM–6:00 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Time</td>
<td>End Time</td>
</tr>
<tr>
<td>______________________</td>
<td>_________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Saturday, November 12</th>
<th>8:00 AM–5:00 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Time</td>
<td>End Time</td>
</tr>
<tr>
<td>______________________</td>
<td>_________</td>
</tr>
</tbody>
</table>
Rice Northwest Museum of Rocks & Minerals Tour  $28
#F-3  Fri., Nov. 11  8:30 AM–1:00 PM
The Rice Northwest Museum showcases not only fine rocks and minerals, but also fossils, meteorites, lapidary art, and gemstones from both the Pacific Northwest and all around the world. Home of the famed Alma Rose, a rare rhodochrosite crystal, the museum is housed in the former home of Richard and Helen Rice. Avid rock hounds, their home is now on the National Historic Registry with its fine display of Oregon Myrtlewood and bird’s eye maple throughout the interior. Participants will be guided by our curator through the 9,600-square-foot museum, which includes some of the finest mineral specimens in North America. Bring your cameras. Come see how our on-site school tours and Portable Programs can meet your classroom’s needs. Visit www.ricenorthwestmuseum.org for more information.

An In-Depth Tour of Vernier Software & Technology  $10
#F-4  Fri., Nov. 11  9:30 AM–3:15 PM
How do you create and produce world-class sensors, interfaces, and software? Find out on this in-depth tour of Vernier. Developing sensor technology for more than 130 countries, Vernier Software & Technology is a world leader in probeware with a reputation for extraordinary customer service. Participants are invited to tour the company with David Vernier, former physics teacher and founder of the company. Visit the on-site Technology Museum, discover a bit about the company’s history, see new products demonstrated, receive a bag of science goodies, and have a relaxing lunch provided courtesy of Vernier. Come check out Vernier’s LEED-certified building with cool science features such as solar panels, electrochromic windows, a saltwater aquarium, an augmented reality sandbox, and an indoor slide that is perfect for fun-loving science teachers.

15 minutes prior, participants will meet Angie, the Vernier rep, at the OCC entrance located on Holladay Street. Angie will distribute MAX passes for the trip via MAX Light Rail and accompany the participants and trip leaders to Vernier.

F-1: Columbia River Gorge Geology Tour

—Photo of the "Alma Rose" rhodochrosite, courtesy of the Rice Northwest Museum of Rocks & Minerals

—Photo courtesy of Julia Grieve/Travel Portland
Conference Program • Affiliate Sessions

Association for Multicultural Science Education (AMSE)
President: Sharon Delesbore

Thursday, November 10
2:00–3:00 PM Moving to Teacher as Facilitator: NGSS and Critical Pedagogy D136, OCC

Friday, November 11
8:00–9:00 AM Building an Equitable Science Classroom Community: Strategies by and for Teachers D137, OCC

Association for Science Teacher Education (ASTE)
President: Malcolm Butler

Thursday, November 10
3:30–4:30 PM Sharing Innovative Program Designs for Professional Development and Research in Science Education Oregon Blrm. 203, OCC

Saturday, November 12
11:00 AM–12 Noon Integrating ELA and Math with NGSS-Based Activities for Elementary Teachers D133/134, OCC

Association of Science-Technology Centers (ASTC)
Director: Margaret Glass

Friday, November 11
11:00 AM–12 Noon Informal Science Educators Networking Brown Bag Lunch D132, OCC

Council for Elementary Science International (CESI)
President: James T. McDonald

Friday, November 11
9:30–10:30 AM Integrating Science for Young Children with an Outdoor Focus Oregon Blrm. 203, OCC
11:00 AM–12 Noon Elementary Science Share-a-Thon Oregon Blrm. 203, OCC
## Council of State Science Supervisors (CSSS)

*President: Ellen Ebert*

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Thursday, November 10</strong></td>
<td></td>
<td><strong>12:30–1:00 PM</strong> Presidential Awards for Excellence in Mathematics and Science Teaching</td>
<td>D137, OCC</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Friday, November 11</strong> Science Starts with a Story, NGSS in Support of Language Acquisition for All Students</td>
<td>D138, OCC</td>
</tr>
</tbody>
</table>

## National Association for Research in Science Teaching (NARST)

*President: Mei-Hung Chiu*

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Friday, November 11</strong></td>
<td></td>
<td><strong>8:00–9:00 AM</strong> The Efficacy of Multi-Level Professional Development for Elementary, Middle School, and High School Teachers</td>
<td>D138, OCC</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Saturday, November 12</strong> Resisting Racist, Classist, Neoliberalism in Science Education</td>
<td>B119, OCC</td>
</tr>
</tbody>
</table>

## National Middle Level Science Teachers Association (NMLSTA)

*President: Mary Lou Lipscomb*

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Thursday, November 10</strong></td>
<td></td>
<td><strong>8:00–9:00 AM</strong> Calling All Middle Level Teachers!</td>
<td>E145, OCC</td>
</tr>
</tbody>
</table>

## National Science Education Leadership Association (NSELA)

*President: Keri Randolph*

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Thursday, November 10</strong></td>
<td></td>
<td><strong>12:30–1:30 PM</strong> Tools for Science Leaders, Part 1</td>
<td>D138, OCC</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Friday, November 11</strong> Tools for Science Leaders, Part 2</td>
<td>D138, OCC</td>
</tr>
</tbody>
</table>
### Three Dimensions of the Next Generation Science Standards (NGSS)

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEP1 Asking Questions and Defining Problems</td>
<td>CCC1 Patterns</td>
</tr>
<tr>
<td>SEP2 Developing and Using Models</td>
<td>CCC2 Cause and Effect: Mechanism and Explanation</td>
</tr>
<tr>
<td>SEP3 Planning and Carrying Out Investigations</td>
<td>CCC3 Scale, Proportion, and Quantity</td>
</tr>
<tr>
<td>SEP4 Analyzing and Interpreting Data</td>
<td>CCC4 Systems and System Models</td>
</tr>
<tr>
<td>SEP5 Using Mathematics and Computational Thinking</td>
<td>CCC5 Energy and Matter: Flows, Cycles, and Conservation</td>
</tr>
<tr>
<td>SEP6 Constructing Explanations and Designing Solutions</td>
<td>CCC6 Structure and Function</td>
</tr>
<tr>
<td>SEP7 Engaging in Argument from Evidence</td>
<td>CCC7 Stability and Change</td>
</tr>
<tr>
<td>SEP8 Obtaining, Evaluating, and Communicating Information</td>
<td></td>
</tr>
</tbody>
</table>

### Disciplinary Core Ideas

#### Disciplinary Core Ideas in Physical Science

<table>
<thead>
<tr>
<th>PS1: Matter and Its Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS1.B: Chemical Reactions</td>
</tr>
<tr>
<td>PS1.C: Nuclear Processes</td>
</tr>
<tr>
<td>PS2: Motion and Stability: Forces and Interactions</td>
</tr>
<tr>
<td>PS2.A: Forces and Motion</td>
</tr>
<tr>
<td>PS2.B: Types of Interactions</td>
</tr>
<tr>
<td>PS2.C: Stability and Instability in Physical Systems</td>
</tr>
<tr>
<td>PS3: Energy</td>
</tr>
<tr>
<td>PS3.A: Definitions of Energy</td>
</tr>
<tr>
<td>PS3.B: Conservation of Energy and Energy Transfer</td>
</tr>
<tr>
<td>PS3.C: Relationship Between Energy and Forces</td>
</tr>
<tr>
<td>PS3.D: Energy in Chemical Processes and Everyday Life</td>
</tr>
<tr>
<td>PS4: Waves and Their Applications in Technologies for Information Transfer</td>
</tr>
<tr>
<td>PS4.A: Wave Properties</td>
</tr>
<tr>
<td>PS4.B: Electromagnetic Radiation</td>
</tr>
<tr>
<td>PS4.C: Information Technologies and Instrumentation</td>
</tr>
</tbody>
</table>

#### Disciplinary Core Ideas in Life Science

<table>
<thead>
<tr>
<th>LS1: From Molecules to Organisms: Structures and Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS1.A: Structure and Function</td>
</tr>
<tr>
<td>LS1.B: Growth and Development of Organisms</td>
</tr>
<tr>
<td>LS1.D: Information Processing</td>
</tr>
<tr>
<td>LS2: Ecosystems: Interactions, Energy, and Dynamics</td>
</tr>
<tr>
<td>LS2.A: Interdependent Relationships in Ecosystems</td>
</tr>
<tr>
<td>LS2.B: Cycles of Matter and Energy Transfer in Ecosystems</td>
</tr>
<tr>
<td>LS2.C: Ecosystem Dynamics, Functioning, and Resilience</td>
</tr>
<tr>
<td>LS2.D: Social Interactions and Group Behavior</td>
</tr>
<tr>
<td>LS3: Heredity: Inheritance and Variation of Traits</td>
</tr>
<tr>
<td>LS3.A: Inheritance of Traits</td>
</tr>
<tr>
<td>LS3.B: Variation of Traits</td>
</tr>
<tr>
<td>LS4: Biological Evolution: Unity and Diversity</td>
</tr>
<tr>
<td>LS4.A: Evidence of Common Ancestry and Diversity</td>
</tr>
<tr>
<td>LS4.B: Natural Selection</td>
</tr>
<tr>
<td>LS4.C: Adaptation</td>
</tr>
<tr>
<td>LS4.D: Biodiversity and Humans</td>
</tr>
</tbody>
</table>

#### Disciplinary Core Ideas in Earth and Space Science

<table>
<thead>
<tr>
<th>ESS1: Earth's Place in the Universe</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESS1.A: The Universe and Its Stars</td>
</tr>
<tr>
<td>ESS1.B: Earth and the Solar System</td>
</tr>
<tr>
<td>ESS1.C: The History of Planet Earth</td>
</tr>
<tr>
<td>ESS2: Earth's Systems</td>
</tr>
<tr>
<td>ESS2.A: Earth Materials and Systems</td>
</tr>
<tr>
<td>ESS2.B: Plate Tectonics and Large-Scale System Interactions</td>
</tr>
<tr>
<td>ESS2.C: The Roles of Water in Earth's Surface Processes</td>
</tr>
<tr>
<td>ESS2.D: Weather and Climate</td>
</tr>
<tr>
<td>ESS2.E: Biogeology</td>
</tr>
<tr>
<td>ESS3: Earth and Human Activity</td>
</tr>
<tr>
<td>ESS3.A: Natural Resources</td>
</tr>
<tr>
<td>ESS3.B: Natural Hazards</td>
</tr>
<tr>
<td>ESS3.C: Human Impacts on Earth Systems</td>
</tr>
<tr>
<td>ESS3.D: Global Climate Change</td>
</tr>
</tbody>
</table>

#### Disciplinary Core Ideas in Engineering, Technology, and the Application of Science

<table>
<thead>
<tr>
<th>ETS1: Engineering Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETS1.A: Defining and Delimiting an Engineering Problem</td>
</tr>
<tr>
<td>ETS1.B: Developing Possible Solutions</td>
</tr>
<tr>
<td>ETS1.C: Optimizing the Design Solution</td>
</tr>
<tr>
<td>ETS2: Links Among Engineering, Technology, Science, and Society</td>
</tr>
<tr>
<td>ETS2.A: Interdependence of Science, Engineering, and Technology</td>
</tr>
<tr>
<td>ETS2.B: Influence of Engineering, Technology, and Science on Society and the Natural World</td>
</tr>
</tbody>
</table>
12 Noon–4:00 PM  Preconference Seminars

OSTA Preconference Seminar: Using Science to Promote Language and Literacy for All Elementary Students
(Grades K–6) Broadway, DoubleTree
$75; By Preregistration Through OSTA
Science Focus: GEN
Carol Biskupic Knight, Beaverton (Ore.) School District
Jennifer Whitten, Beaver Acres Elementary School, Beaverton, Ore.
This seminar builds off the Math Science Partnership Grant: Expansion of K–6 NGSS Science Instructional Specialists. Experience active engagement of phenomenon-based activities along with modeling by classroom teachers.

OSTA Preconference Seminar: Physics for the Next Generation
(Grades 9–12) Morrison, DoubleTree
$75; By Preregistration Through OSTA
Science Focus: PS
Bradford Hill, Chairperson, NSTA Portland Area Conference, and Southridge High School, Beaverton, Ore.
Matt McCollum, Southridge High School, Beaverton, Ore.
Stephen Scannell, Gresham High School, Gresham, Ore.
This hands-on seminar is driven by the recurring question: “How do we find and use patterns in nature to predict the future and understand the past?”

OSTA Preconference Seminar: Chemistry for the Next Generation
(Grades 9–12) Ross Island, DoubleTree
$75; By Preregistration Through OSTA
Science Focus: PS
Jomae Sica, Forest Grove High School, Forest Grove, Ore.
Lori Lancaster, Local Arrangements Coordinator, NSTA Portland Area Conference, and Oregon Science Teachers Association, Portland
Using knowledge of thermodynamics, engage in the practice of inquiry to collect data that will then inform a design of a hot or cold pack.

OSTA Preconference Seminar: Biology for the Next Generation
(Grades 9–12) Sellwood, DoubleTree
$75; By Preregistration Through OSTA
Science Focus: LS
Caitlin Everett, Beaverton (Ore.) School District
Experience the patterns approach of using inquiry experiments as a mode to learn content as well as how to integrate engineering and student-centered learning experiences, such as case studies and simulations, into instructional design.

OSTA Preconference Seminar: NGSS for Middle School Science Teachers
(Grades 6–8) Weidler, DoubleTree
$75; By Preregistration Through OSTA
Science Focus: GEN, NGSS
Susan Holveck, Program Coordinator, NSTA Portland Area Conference, and Beaverton (Ore.) School District
Berkeley Gadbaw, Raleigh Hills K–8, Portland, Ore.
This active, hands-on seminar is designed especially for middle school science teachers who want to experience what NGSS instruction and assessment look like in the classroom.
One of only two commuter aerial tramways in the U.S., the Portland Aerial Tram or OHSU Tram carries commuters between the city’s South Waterfront district and the main Oregon Health & Science University (OHSU) campus. A tram ride lasts three minutes and travels a horizontal distance of 3,300 feet.

The Portland Japanese Garden offers a scenic view of Mt. Hood while the Sun sets.
Thursday, November 10

8:00–8:30 AM  Presentation
Survival Science
(Grades 7–12)  B110, Convention Center
Science Focus: ETS, CCC, SEP

Alicia Ryan (aryan@cascade.k12.or.us), Cascade School District, Turner, Ore.
Cannibalize existing technology to engineer survival in a simulated disaster. Create novel uses for “trash” and scavenged items while reinforcing fundamental NGSS practices.

8:00–9:00 AM  Presentations
Bioplastic—Going from Synthetic to Natural Polymers
(Grades 6–12)  Morrison, DoubleTree
Science Focus: PS, CCC, SEP

Sherri Rukes (@SherriRukes; sherri.rukes@d128.org), Libertyville High School, Libertyville, Ill.
Many of the items that we use today are becoming more Earth friendly. Learn how a bioplastic is made and what plant materials are used. Take home a CD with information and activities.

Teachers Bridging School and Workplace: Summer in Industry
(Grades 6—College)  Oregon, DoubleTree
Science Focus: GEN, SEP

Paul Gibbins (@NC_Iowa_STEM; pgibbins@iastate.edu), North Central STEM Hub, Iowa State University, Ames
Business and education benefit from cross-pollinating educators on the job site through summer, extracting meaningful lessons for the classroom while adding value to worksite operations.

Engaging Students in Science Through Virtual Field Trips
(Grades K–11)  Ross Island, DoubleTree
Science Focus: GEN, SEP

Dacia Jones, Educational Consultant, Durham, N.C.
Use social media and internet resources to design a “virtual field trip” for your students that can integrate STEM, science, ELA, and social studies.

Science Area
A science area category is associated with each session. These categories are abbreviated on the Science Focus line for each session listing. On page 132, you will find the conference sessions grouped according to their assigned science area category.

The science areas and their abbreviations are:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS</td>
<td>Life Science</td>
</tr>
<tr>
<td>PS</td>
<td>Physical Science</td>
</tr>
<tr>
<td>ESS</td>
<td>Earth and Space Science</td>
</tr>
<tr>
<td>ETS</td>
<td>Engineering, Technology, and the Application of Science</td>
</tr>
<tr>
<td>GEN</td>
<td>General Science Education</td>
</tr>
<tr>
<td>INF</td>
<td>Informal Science Education</td>
</tr>
</tbody>
</table>

NGSS
See page 36 for a complete list of the NGSS codes used in this program.

Strands
The Portland Conference Committee has planned the conference around the following three strands, enabling you to focus on a specific area of interest or need. Strand events are identified by icons throughout the daily program. For strand descriptions, see page 24.

- **Base Camp: Collaborating to Integrate Elementary Science Instruction with Math and ELA**
- **The View from the Summit: Celebrating Science for All**
- **The View from All Angles: Connecting Three-Dimensional Science Instruction**

The following icons will be used throughout this program.

- **NSTA Press® Sessions**
- **NGSS@NSTA Forum Sessions**
- **INF Sessions highlighting STEM learning experiences that occur in out-of-school environments.**
Where Art and Science Meet
(Grades 6–12) B119, Convention Center
Science Focus: GEN, CCC
Anne Artz (@anneartz; aartz@ucsd.edu), The Preuss School UCSD, La Jolla, Calif.
Draw your students into learning by incorporating creative and artistic activities into your science classroom to promote student engagement across curricular subjects. Help your students see careers that incorporate scientific principles with artistic expression.

Incorporating CCSS for Literacy in Science and Technical Subjects into Introductory Chemistry Investigations
(Grades 9–12) C122, Convention Center
Science Focus: PS1.C, SEP
Angela Powers, Colorado State University–Pueblo
Carolyn Schwennsen (schwenn@yahoo.com), Cate School, Carpinteria, Calif.
We will model key science-related components of the CCSS and an approach for incorporating literacy skills into existing investigations within chemistry curricula.

Differentiating K–6 Science Instruction to Enable All Students to Inquire, Explore, Participate, and Achieve Success
(Grades K–6) D137, Convention Center
Science Focus: GEN, NGSS
Donna Knoell (dknoell@sbcglobal.net), Educational Consultant, Overland Park, Kans.
Discover ways to differentiate effectively to maximize student participation and learning, as well as to accommodate the needs of English language learners and the diverse range of student abilities in K–6 science classrooms.

Using Learning Progressions to Better Integrate Instruction and Assessment in Three Dimensions
(Grades K–8) D140, Convention Center
Science Focus: GEN, NGSS
Lauren Brodsky (brodsky@berkeley.edu), Eric Greenwald, and Andrew Falk, The Lawrence Hall of Science, University of California, Berkeley
Examine how short-term learning progressions (e.g., for an instructional unit) can help teachers monitor and support student progress toward three-dimensional performance expectations.

NMLSTA-Sponsored Session: Calling All Middle Level Teachers!
(Grades 5–9) E145, Convention Center
Science Focus: GEN
Terri Hebert (thebert@iusb.edu), Indiana University South Bend
The National Middle Level Science Teachers Association (NMLSTA) is an organization devoted to middle level science education. Join us to learn about NMLSTA membership opportunities.

Is This Your First NSTA Conference? First-Timer Conference Attendees’ Orientation
(General) Oregon Ballroom 203, Convention Center
Science Focus: GEN
NSTA Board and Council
Feeling overwhelmed by all there is to see and do at an NSTA conference on science education? Join us for an interactive exploration through the program, the conference app, and NSTA’s social media. By the end of the session, you will know just how to get the most from your conference experience in addition to building new networks with science colleagues.
8:00–9:00 AM  Hands-On Workshops
Advising Our High School Students Toward STEM Degrees and Careers
(Grades 9–College)  Hawthorne/Sellwood, DoubleTree
Science Focus: GEN
Kathryn Lenahan (lenahank@ohsu.edu), Oregon Health & Science University, Portland
Kristen Harrison (@pdxstem; collaboratory@pdxstem.org), Portland Metro STEM Partnership, Beaverton, Ore.
Find out how teachers, counselors, and community college advisers can empower high school students to successfully plan for degrees in STEM.

NASA Is with You When You Fly: Principles of Flight and Four Forces
(Grades K–12)  D131, Convention Center
Science Focus: ETS1, PS2, PS3.A, PS3.B, PS3.C, CCC1, CCC2, CCC4, CCC7, SEP1, SEP3, SEP4, SEP5, SEP6, SEP7
Barbara Buckner (@bbuckner; barbie.buckner@nasa.gov), NASA Armstrong Flight Research Center, Palmdale, Calif.
Come explore aeronautics, parts of an airplane, and four forces as you engage in hands-on, standards-focused STEM activities. Make real-world connections with NASA research.

The Re-Wilding Project!
(Grades 6–12)  D133/134, Convention Center
Science Focus: LS2.A, CCC, SEP
Susan Boudreau (sboudreau@orinda.k12.ca.us) and Marshall Sachs (msachs@orinda.k12.ca.us), Orinda Intermediate School, Orinda, Calif.
Middle school students bring back biodiversity to the school grounds with this inspiring and effective real-world environmental engineering project exploring the resilience of nature.

Need help navigating?
Feeling overwhelmed by all there is to see and do at an NSTA conference on science education? Join other first-time attendees for an interactive exploration through the conference program, the conference app, and NSTA’s social media. By the end of the session, you will know just how to get the most from your conference experience in addition to building new networks with science colleagues.

First-Timer Attendee Session  •  Thursday, November 10, 8:00–9:00 AM
Oregon Ballroom 203, Oregon Convention Center
Cancer Medicine Focus Enhances Biology Curriculum: Biomaterials
(Grades 9–College) D139, Convention Center
Science Focus: LS, CCC, SEP
Lynda Jones (jonesly@ohsu.edu), Mary Zelinski (zelinski@ohsu.edu), and Diana Gordon (gordondi@ohsu.edu), Oregon National Primate Research Center, Beaverton
Explore a free NGSS-focused biology activity that integrates concepts in cancer biology with preserving fertility in cancer patients through real-life medical examples and cutting-edge biomaterials technology.

Analyzing Supernova Remnants Using Spectroscopy, NASA Data, and STEM
(Grades 10–College) E141, Convention Center
Donna Young (dlyoung.nso@gmail.com), Chandra X-Ray Center, Bullhead City, Ariz.
Identify elements in the spectra of supernova remnants to determine the properties of collapsed and exploded stars using NASA X-ray archived data and analysis tools.

Teach Students to Read Like Scientists!
(Grades 4–8) E143, Convention Center
Science Focus: GEN
Ann Berg (aberg@c-ischools.org), Cambridge Middle School, Cambridge, Minn.
Explore strategies through interactive activities and discussion that support success in reading science nonfiction and, most importantly, scientific inquiry.

Cycles, Sinks, and Solutions: An NGSS-Focused Climate Change Unit
(Grades 5–9) E144, Convention Center
Science Focus: ESS3, CCC2, CCC5, CCC7, SEP4, SEP5, SEP7
Christine Geerer (@geererc; cggeerer@comcast.net) and Alex Gulyas (alexandra.gulyas@gpschools.org), Parcells Middle School, Grosse Pointe Farms, Mich.
Laura Mikesell (lmikesell3@gmail.com), Grosse Pointe Education Association, Grosse Pointe, Mich.
Measure school yard trees to calculate carbon sinks, create Excel graphs to analyze ice data, and engineer wind turbines in this STEM-enhanced climate change unit.

NESTA Shares: A Hands-On Approach to Creating an NGSS-Focused High School Earth and Space Science Course
(Grades 6–12) Oregon Ballroom 204, Convention Center
Science Focus: ESS, CCC, SEP
Cheryl Manning (@clbmanning; clbmanning@mac.com), Evergreen High School, Evergreen, Colo.
Experience how teachers are trained to use a set of flash cards with NGSS performance expectations, disciplinary core ideas, science and engineering practices, and crosscutting concepts to redesign curricula.
8:00–9:00 AM  Exhibitor Workshops

Martian Genetics: An Electrophoresis Exploration  
(Grades 6–College)  
A105, Convention Center

Science Focus: LS  
Sponsor: Edvotek Inc.  
Maria Dayton and Danielle Snowflack, Edvotek Inc., Washington, D.C.

Explore genetics with our “out of this world” workshop! Imagine being the first scientist to explore Mars and discovering extraterrestrials. How would you use biotechnology to learn about the Martians? Discover how DNA technology can be used to explore the relationship between genotype and phenotype. Fluorescent dyes simulate DNA fragments, eliminating post-electrophoresis staining and saving classroom time! Take home a free gift and entry in a LabStation™ giveaway.

Engineer Physical Science Excitement with a Carolina STEM Challenge®  
(Grades 6–12)  
A108/109, Convention Center

Science Focus: ETS, PS  
Sponsor: Carolina Biological Supply Co.

Bounce and race into hands-on activities that engage middle school and high school students. Apply creative problem-solving skills and engineering practices to chemistry and physical science challenges. Experience how Carolina makes it easy to bring STEM to your classroom.

Teach Next Gen Like Your Hair Is on Fire!  
(Grades K–2)  
B111/112, Convention Center

Science Focus: GEN, NGSS  
Sponsor: Delta Education/School Specialty Science  
Darrick Wood, Distance Learning Coordinator, Louisville, Ky.

Kathy Armstrong, Northside Elementary School, Midway, Ky.

Become legendary in your own time when you teach science in your classroom. Experience lessons from Delta Science Modules that incorporate the NGSS. Receive corresponding content readers, strategies, and resources that you can take back and use with your students tomorrow.

CPO’s Link™ with Car and Ramp: Force, Motion, and Variables  
(Grades 6–12)  
B113, Convention Center

Science Focus: PS2  
Sponsor: CPO Science/School Specialty Science  
Erik Benton, CPO Science/School Specialty Science, Nashua, N.H.

Kat Mills, School Specialty Science, Rosharon, Tex.

Learn to distinguish between dependent, manipulated, resultant, controlled, and independent variables. In this hands-on workshop, students discover variables while designing their own experiment. We will feature the Link learning module for car and ramp as we present a new “angle” on how to master confusing terminology using scientific investigations.

Gas Exchange  
(Grades 6–8)  
B116, Convention Center

Science Focus: LS1.C, PS3, CCC1, CCC4, SEP3, SEP5  
Sponsor: LAB-AIDS®, Inc.

Lisa Kelp, LAB-AIDS, Inc., Ronkonkoma, N.Y.

Teachers know their students have many misconceptions about respiration. In this activity from the SEPUP middle level life science program, participants use an acid-base indicator to determine the relative amount of carbon dioxide gas in a sample of their exhaled breath. They consider differences in individual response, explore qualitative vs. quantitative measures, and examine the structure of the lungs and their role in the process of respiration.

Wave Properties and Information Transfer  
(Grades 6–8)  
B117/118, Convention Center

Science Focus: PS4  
Sponsor: Delta Education/School Specialty Science—FOSS  
Virginia Reid and Jessica Penchos, The Lawrence Hall of Science, University of California, Berkeley

Engage in activities using lasers and optical fibers in the new FOSS Next Generation Edition Waves Course for Middle School. Explore properties of refraction and reflection that allow information transfer by fiber optic technology, and identify connections to the three dimensions of NGSS.
Experience Amplify Science: Grades K–1  
(Grades P–2) C124, Convention Center  
Science Focus: GEN, NGSS  
Sponsor: Amplify  
Traci Shields (amplifyscience@berkeley.edu) and Rebecca Abbott (amplifyscience@berkeley.edu), The Lawrence Hall of Science, University of California, Berkeley  
Immerse yourself in Amplify Science, a new curriculum developed by University of California Berkeley’s Lawrence Hall of Science. Experience the program’s rich, multi-modal, and problem-based approach. See how your K–1 students can engage with deep dives into understanding the natural and designed worlds.

8:30–9:00 AM Presentations  
“Keep on Rolling” with STEM  
(Grades 8–10) B110, Convention Center  
Science Focus: ETS1, PS3  
Robert Hill (bob.hill@lacenterschools.org) and Teridee Newman (teri.newman@lacenterschools.org), La Center High School, La Center, Wash.  
Learn how to use student-constructed rolling cars to develop multiple engineering lessons showing how one project can be modified and used for many concepts.

STEM in a Blender  
(Grades 3–6) D130, Convention Center  
Science Focus: ETS  
Matt Pederson (matthew_pederson@eatonville.wednet.edu), Tricia Whitted (trishw2010@gmail.com), and Amy Sturdivant (amy_sturdivant@eatonville.wednet.edu), Weyerhaeuser Elementary School, Eatonville, Wash.  
Learn how four dynamic elementary teachers design and implement an innovative program that integrates STEM, English language arts, and thematic units in a mixed-age environment.

Planning for Three-Dimensional Learning  
(Grades K–12) D138, Convention Center  
Science Focus: GEN, NGSS  
Cindy Fabbri (cfabbri@alaska.edu), University of Alaska Fairbanks  
A template for three-dimensional lesson planning will be shared. Participants will discuss examples and use the template to brainstorm lesson ideas for their classrooms.

9:15–10:30 AM General Session  
The Serengeti Rules: The Quest to Discover How Life Works, and Why It Matters  
(General) Oregon Ballroom 201/202, Convention Center  
Science Focus: LS  
Speaker sponsored by HHMI BioInteractive  
Sean Carroll (@SeanBiolCarroll; carrolls@hhmi.org), Vice President for Science Education, Howard Hughes Medical Institute, Chevy Chase, Md.  
Presider and Introduction: Mary Gromko, NSTA President, Colorado Springs, Colo.  
Platform Guests: Sean Carroll; Mary Gromko; Carolyn Hayes, NSTA Retiring President, and Retired Educator, Greenwood, Ind.; David Crowther, NSTA President-Elect, and University of Nevada, Reno; Midge Yergen, NSTA Director, District XVII, and West Valley Junior High School, Yakima, Wash.; Bradford Hill, Chairperson, NSTA Portland Area Conference, Past President, Oregon Science Teachers Association (OSTA), and Southridge High School, Beaverton, Ore.; Roy Beven, President, Washington Science Teachers Association (WSTA), and Northwest Evaluation Association (NWEA), Bellingham; Susan Holveck, Program Coordinator, NSTA Portland Area Conference, President, Oregon Science Teachers Association (OSTA), and Beaverton (Ore.) School District; Lori Lancaster, Local Arrangements Coordinator, NSTA Portland Area Conference, and Communications Coordinator, Oregon Science Teachers Association (OSTA), Portland; David Evans, NSTA Executive Director, Arlington, Va.  
Everything in nature is regulated—from the numbers of vital molecules in our bloodstream to the number of lions on an African savanna. Over the past 50 years, two revolutions have unfolded in biology in understanding the regulation of life at these two scales. Join Sean Carroll as he discusses the discovery of the “The Serengeti Rules,” the ecological rules that regulate the numbers and kinds of animals and plants in any given place, and how they are being applied to restore some of the greatest wildernesses on the planet.  

Hailed for his pioneering work in evolutionary developmental biology, Sean Carroll is an award-winning scientist, writer, educator, and executive producer. Dr. Carroll leads the Department of Science Education at the Howard Hughes Medical Institute and is the Allan Wilson Professor of Molecular Biology and Genetics at the University of Wisconsin–Madison.  

Join Sean for a book signing in the NSTA Science Store 10:30–11:30 AM, immediately following this session.
Gather evidence of 3-dimensional learning

STEM Gauge® is a formative assessment tool that supports instruction as you adjust your curriculum to the NGSS*. Each middle or elementary school STEM Gauge provides:

- 15 topic-based item sets
- Teacher’s Guide
- Formative Support Tools

Try it in your classroom:
go.measuredprogress.org/stem-gauge-free-topic

*NGSS is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards were involved in the production of this product, and do not endorse it. ©2016 Measured Progress. All rights reserved. Measured Progress and its logo are registered trademarks of Measured Progress, Inc. P0601.092616
9:30–10:30 AM  Exhibitor Workshops
Dive In with Magnetic Water Molecules
(Grades 5—College)  A103/104, Convention Center
Science Focus: PS, SEP
Sponsor: 3D Molecular Designs
Tim Herman (herman@msoe.edu), MSOE Center for Bio-
Molecular Modeling, Milwaukee, Wis.
Engaging water molecules enable you to use an inquiry approach
to explore why water is essential for life. Discover the physical
and chemical properties of water, states of matter, evaporation,
condensation, transpiration, erosion, and more, using interactive
water molecules with embedded magnets that mimic the polar
interactions in real water.

Left at the Scene of the Crime: Introduction to
Forensic Science
(Grades 6—College)  A105, Convention Center
Science Focus: LS
Sponsor: Edvotek Inc.
Danielle Snowflack and Maria Dayton, Edvotek Inc.,
Washington, D.C.
Explore genetic diversity using forensic science! Your
students become crime scene investigators as they analyze
biological evidence using DNA fingerprinting, a technique
that identifies people via genetic differences. Gel electropho-
resis is used to create DNA fingerprints from crime scene
and suspect samples. A match between samples suggests
which suspect committed the crime. Receive a free gift for
attending.

Science Storylines: Developing Three-Dimensional
Lessons That Build on Student Curiosity
(Grades 6–8)  A107, Convention Center
Science Focus: PS1, CCC2, CCC5, SEP1, SEP2, SEP6, SEP7
Sponsor: Activate Learning
Heather Milo, Activate Learning, Greenwich, Conn.
With NGSS being taken up by educators across the country,
it can be easy to lose sight of student interest and identity in
the search for NGSS-focused curricula. Join us for an engaging
workshop on storyline coherence as a means to not only have pedagogy meet the standards, but also build on students’ ideas
and questions about the natural world. This workshop targets
both middle school teachers and science education leaders.

Keep Calm and Chemistry On: Successful Lab Activi-
ties for the New Chemistry Teacher
(Grades 9–12)  A108/109, Convention Center
Science Focus: PS
Sponsor: Carolina Biological Supply Co.
Carolina Teaching Partner
Looking for lab activities that work every time, not just periodically? Explore easy, engaging, and safe chemistry activities that are sure to produce a reaction from your stu-
dents. Whether you’re new to chemistry or feeling out of
your element, you’ll learn ways to create excitement with
hands-on labs and demonstrations.

SEPs Made Easy
(Grades 2–5)  B111/112, Convention Center
Science Focus: GEN, SEP
Sponsor: Delta Education/School Specialty Science
Derrick Wood, Distance Learning Coordinator, Louisi-
dale, Ky.
Kathy Armstrong, Northside Elementary School, Mid-
way, Ky.
Experience lessons from Delta Science Modules that incor-
porate science and engineering practices. Receive a corre-
spanding content reader, strategies, and resources that you
can take back and use with your students next week.

Solving the Mystery of STEM Using Forensic Science
(Grades 6–12)  B113, Convention Center
Science Focus: GEN, NGSS
Sponsor: Frey Scientific/School Specialty Science
Erik Benton, CPO Science/School Specialty Science,
Nashua, N.H.
Kat Mills, School Specialty Science, Rosharon, Tex.
Conduct STEM-focused, beginning forensic activities that
connect scientific investigations to analysis and investigative
skills. Solve “cases” involving fingerprinting, blood spatter,
and document or fabric analysis. We’ll use a digital learning
environment with simple supplies to apply basic mathematic
principles, plus integrate reading and writing strategies.

Infusing Inquiry and Demonstrations into AP Biology
(Grades 9–12)  B114/115, Convention Center
Sponsor: Flinn Scientific, Inc.
Meg Griffith (mgriffith@flinnsci.com), Flinn Scientific, Inc.,
Batavia, Ill.
Join biologists from Flinn Scientific as we share inquiry strat-
eyes and techniques for AP, IB, and advanced-level biology
courses. Get tips for managing the inquiry process and see
demonstrations to help engage your students. Discover the benefits of FlinnPREP™, an online supplemental curriculum and assessment resource with engaging video content, animations, and text. Get more out of your prep time with automatic tracking of student progress. Handouts!

**Modeling Convection Currents and Plate Motion**  
*(Grades 6–8)  
B116, Convention Center*  
Sponsor: LAB-AIDS®, Inc.  
Lisa Kelp, LAB-AIDS, Inc., Ronkonkoma, N.Y.

Investigate and model convection currents using unique LAB-AIDS/SEPUP materials to develop an operational understanding between water temperature and its movement. The hands-on experience with convection in water coupled with the knowledge of Earth’s interior is combined to explain the motion of tectonic plates and how that motion causes major geological events.

**Engage Students in FOSS Next Generation**  
*(Grades K–5)  
B117/118, Convention Center*  
Science Focus: GEN, NGSS  
Sponsor: Delta Education/School Specialty Science–FOSS  
Diana Velez and Brian Campbell, The Lawrence Hall of Science, University of California, Berkeley

Join FOSS developers to learn about the FOSS Next Generation Elementary Program. We’ll introduce the instructional design, and illustrate how the system incorporates science-centered language development, notebooks, digital resources, formative assessments, and outdoor excursions into a coherent learning experience for students and teachers.

**Using Maggots, Flies, and Flesh to Solve a Mystery!**  
*(Grades 6–12)  
C120/121, Convention Center*  
Science Focus: GEN  
Sponsor: Texas Instruments  
Jeffrey Lukens, Sioux Falls (S.Dak.) School District

A decomposing corpse is found in a field. Four possible missing persons fit the description. But who is it? Using clues near the scene will help determine identity. Forensic anthropologist and director of the human ID lab of Colorado, Dr. Diane France helped to develop this free middle school and high school forensic science lesson.

**Experience Amplify Science: Grades 2–5**  
*(Grades 2–5)  
C124, Convention Center*  
Science Focus: GEN  
Sponsor: Amplify  
Traci Shields (amplifyscience@berkeley.edu) and Rebecca Abbott (amplifyscience@berkeley.edu), The Lawrence Hall of Science, University of California, Berkeley

Immerse yourself in Amplify Science, a new curriculum developed by University of California Berkeley’s Lawrence Hall of Science. Experience the program’s rich, multimodal, and problem-based approach. See how your grades 2–5 students can engage with deep dives into understanding the natural and designed worlds.
**Exploring the Genetics of Taste: SNP Analysis of the PTC Gene Using PCR**  
*(Grades 9–College)*  
*A105, Convention Center*

**Science Focus:** LS  
**Sponsor:** Edvotek Inc.  
**Danielle Snowflack** and **Maria Dayton**, Edvotek Inc., Washington, D.C.

Explore the relationship between genotype and phenotype using Phenylthiocarbamide (PTC). Some think PTC tastes bitter, while others find it tasteless. The ability to taste PTC has been linked to variations in a taste receptor gene. Learn how to use PCR to distinguish between PTC alleles. Receive a free gift for attending.

---

**An NGSS Approach to Engineering in the Upper Grade Bands**  
*(Grades 6–12)*  
*A106, Convention Center*

**Science Focus:** ETS, SEP2, SEP3, SEP7  
**Sponsor:** Houghton Mifflin Harcourt  
**Michael DiSpezio,** Author and STEM Specialist, North Falmouth, Mass.

Join educator, broadcast host, and Houghton Mifflin Harcourt author Michael DiSpezio for an engaging and informative workshop that addresses the NGSS approach to engineering and the engineering design process in the upper grade bands. In this hands-on session, you will work in multidisciplinary teams as you participate in several activities that profile and address a standards-based approach to engineering.

---

**Riding the Wave with TCI**  
*(Grades K–5)*  
*A107, Convention Center*

**Science Focus:** PS4  
**Sponsor:** TCI  
**Christy Sanders** *(info@teachtci.com)*, TCI, Mountain View, Calif.

With TCI’s Bring Science Alive! programs, participants will be fully immersed in a lesson learning the ideas of science by actually “doing” science rather than just memorizing facts. Using a powerful online learning system to develop a model of waves to describe patterns in terms of amplitude and wavelength, participants will experience learning from a student’s perspective. Leave with tools to implement hands-on, in-class investigations that work seamlessly with interactive technology.

---

**Waves, Waves, Waves: Building Models to Explain Phenomena**  
*(Grades K–5)*  
*A108/109, Convention Center*

**Science Focus:** PS4  
**Sponsor:** Carolina Biological Supply Co.  
**Carolina Teaching Partner**

The phenomena of waves can be explained by children through model building. Explore examples of how elementary students can share their learnings of how waves work through modeling. Discover how the new Carolina Building Blocks of Science leads to student success in only 30 minutes a day.

---

**Build Skills to Boost the Makerspace Experience for Young Scientists!**  
*(Grades K–3)*  
*B111/112, Convention Center*

**Science Focus:** ETS  
**Sponsor:** Delta Education/School Specialty Science  
**Kathy Armstrong,** Northside Elementary School, Midway, Ky.  
**Darrick Wood,** Distance Learning Coordinator, Louisville, Ky.

Makerspaces are popping up everywhere, providing a creative space to explore questions and solve problems. But for students in grades K–3, tackling STEM-related challenges requires a foundation in science investigation. Help young scientists build the skills needed for independent exploration in their makerspaces with programs like Science in a Nutshell.

---

**CPO’s Link™ Genetics Learning Modules: Crazy Chromosomes and Crazy Traits**  
*(Grades 6–12)*  
*B113, Convention Center*

**Science Focus:** LS  
**Sponsor:** CPO Science/School Specialty Science  
**Erik Benton,** CPO Science/School Specialty Science, Nashua, N.H.  
**Kat Mills,** School Specialty Science, Rosharon, Tex.

CPO Science’s Link learning modules for genetics use NGSS strategies in a real-time digital learning environment. Students can study the relationship between DNA, genes, mitosis, meiosis, traits, alleles, phenotypes, and genotypes. Heredity will come alive as you use hands-on models to create crazy creatures in a unique collaborative program.
“The Martian should be required reading for all middle and high school students, and it should serve as a call to action for improving science education.”

—Jacqueline Miller, Ph.D., senior research scientist at Education Development Center (EDC) and Thomas Max Roberts, Ph.D., postdoctoral fellow in plasma physics at Dartmouth College

THE MARTIAN: A Novel
by ANDY WEIR

Set in the not-so-distant future, The Martian tells the story of astronaut Mark Watney, who is stranded on Mars after a mission failure leads his crew and NASA to assume he is dead. Using his background in botany and engineering, Watney must find a way to survive until he can contact NASA and they can arrange a rescue mission. Once NASA realizes that Watney is, in fact, alive, a race begins to save his life.

This new edition has:
- Classroom-appropriate language
- Discussion questions and activities
- Q&A with Andy Weir.

ANDY WEIR was first hired as a programmer for a national laboratory at age fifteen and has been working as a software engineer ever since. He is also a lifelong space nerd and a devoted hobbyist of subjects like relativistic physics, orbital mechanics, and the history of manned spaceflight. The Martian is his first novel.

Broadway Books • TR
978-0-804-18935-4 • 400 pp.
$15.00 • Exam Copy: $3.00

Winner of the ALA Alex Award • A School Library Journal “Best Adult Book 4 Teens”

Now a major motion picture starring Matt Damon

To order an examination copy, go to: www.randomhouse.com/highschool/exam
Engaging Students in Authentic Science Experiences Using Digital Tools
(Grades K–12) B114/115, Convention Center
Science Focus: GEN, NGSS
Sponsor: Discovery Education
Patti Duncan, Discovery Education, Silver Spring, Md.
In a student-centered learning environment, we want students to ask deep, meaningful questions; collaborate with their peers; arrive at meaningful conclusions; and solve real-world problems. Join us to learn about a variety of digital resources and instructional strategies for engaging all students in authentic science experiences.

Calling All Carbons
(Grades 9–12) B116, Convention Center
Science Focus: ESS2.A, SEP2, SEP3, SEP4
Sponsor: LAB-AIDS®, Inc.
Jennifer Boldt, Solon High School, Solon, Iowa
The element of carbon is critical to life on Earth. All living organisms contain different and essential carbon-based molecules. Several Earth processes work together to cycle carbon from one carbon reservoir to another and to keep the amount in each reservoir stable. Join us to learn about and model different carbon transfer processes.

The Reflective Assessment Practice: Improving Science Achievement in 10 Minutes
(Grades K–5) B117/118, Convention Center
Science Focus: GEN
Sponsor: Delta Education/School Specialty Science–FOSS
Kathy Long, The Lawrence Hall of Science, University of California, Berkeley
Join FOSS developers to learn how assessment can become an integrated teaching tool that both teachers and students can embrace. Create a classroom culture of self motivation and growth mind-set by just adding a 10-minute reflective practice to your day.

Experience Amplify Science: Middle School
(Grades 6–8) C124, Convention Center
Science Focus: GEN, NGSS
Sponsor: Amplify
Traci Shields (amplifyscience@berkeley.edu) and Rebecca Abbott (amplifyscience@berkeley.edu), The Lawrence Hall of Science, University of California, Berkeley
Immerse yourself in Amplify Science, developed by University of California Berkeley’s Lawrence Hall of Science. Experience the program’s technology-enhanced and problem-based approach. See how your grades 6–8 students can engage with deep dives into understanding the natural and designed worlds.

11:00 AM–5:00 PM Exhibits
Hall A, Convention Center
As you enter the exhibit hall, enjoy musical entertainment courtesy of Southridge High School Brass Quintet, under the direction of Jeremy Zander. Did you know that NSTA offers Exclusive Exhibits Hall hours today from 11:00 AM to 12:30 PM? During these hours there are no teacher sessions scheduled and it’s a perfect time to visit the exhibits and discover all the products and services companies and organizations have to offer. Some exhibitors will offer materials for sale throughout the conference.

12:30–1:00 PM Presentations
It’s All Matter with Matter Tag
(Grades 4–9) Alaska/Idaho, DoubleTree
Science Focus: PS1
Amy Manhart (amanhart@tcsd.org), Jackson Hole Middle School, Jackson, Wyo.
Matter tag is an interactive tag game developed to help students understand a model of the kinetic theory teaching the states of matter and the phase changes of matter. This is great for all learners but especially for English language learners. Kids love it!

Biotechnology Education with a Focus on Careers
(Grades 9–College) B110, Convention Center
Science Focus: GEN, SEP
Sandra Porter (@digitalbio; sandra@digitalworldbiology.com), Digital World Biology LLC, Seattle, Wash.
Let’s discuss the benefits of participating in Bio-Link, a national community of industry partners and biotech educators at two-year colleges and high schools.

CSSS Session: Presidential Award for Excellence in Mathematics and Science Teaching
(Grades K–6) D137, Convention Center
Science Focus: GEN
Linda Jordan (jordan.linda1212@gmail.com), Council of State Science Supervisors, Nashville, Tenn.
The Presidential Awards for Mathematics and Science Teaching program has been in existence since 1983. This is the highest honor a science or math teacher can receive for exemplary instruction.
12:30–1:30 PM Presentations

Time Will Tell: Use of Time-Lapse Photography and Digital Storytelling to Observe Change  
(Grades 3–12) Morrison, DoubleTree
Science Focus: GEN, CCC
Roger Pence (rogpence@yahoo.com), Benicia High School, Benicia, Calif.
Observation of slow-moving events in time can be described using time-lapse photography and narrated via techniques used in digital storytelling. Explore methods, equipment, and applications. Resources and samples provided.

ISE Science in the Community Forum: Highlighting Programs and Practices That Bridge In-School and Out-of-School STEM Learning  
(General) Ross Island, DoubleTree
Science Focus: INF
Join us for a panel discussion with leading education professionals in the field who will share their unique viewpoints regarding programs and practices that bridge in-school and out-of-school STEM learning.

NGSS@NSTA Forum Session: Developing Coherent Storylines of NGSS Lessons  
(Grades K–12) B119, Convention Center
Science Focus: GEN, NGSS
Michael Novak, Northwestern University, Evanston, Ill.
This session will explore how to develop a coherent storyline for a unit where instead of students learning about science ideas, they are motivated by questions arising from phenomena to figure out these ideas and, in the process, incrementally build explanatory models.

Meet the Standards and Enhance Your Chemistry Classroom with Other People’s Money  
(Grades 9–12) C122, Convention Center
Science Focus: PS
Kenetia Thompson and Karen Kaleuati (k_kaleuati@acs.org), American Chemical Society, Washington, D.C.
Learn about grant opportunities available to high school chemistry teachers (including those from the American Chemical Society) and the process for writing a fundable proposal.

Embedded Assessment: Making Instructional Activities Opportunities for Formative Assessment  
(Grades K–8) D130, Convention Center
Science Focus: GEN, NGSS
Lauren Brodsky (brodsky@berkeley.edu), Eric Greenwald, and Andrew Falk, The Lawrence Hall of Science, University of California, Berkeley
We will share techniques for and worked examples of how to build formative assessment opportunities into students’ learning experiences, without stopping the flow of instruction.

NSELA-Sponsored Session: Tools for Science Leaders, Part 1  
(General) D138, Convention Center
Science Focus: GEN
Bob Sotak (@nselasscience; bobosotak@gmail.com), Science/STEM Education Consultant, Edmonds, Wash.
Come learn about the various tools and strategies that science leaders can use to enhance teaching and learning in their outreach.

Engaging Students in Place-Based Learning Through a Field STEM Experience  
(Grades 5–8) D140, Convention Center
Science Focus: ESS3, LS1, LS2, CCC1, CCC4, CCC5, CCC7, SEP1, SEP3, SEP4, SEP6, SEP7
Pamela Farr (pfarr@sheltonschools.org), Shelton (Wash.) School District
Wendy Boles (wboles@sheltonschools.org), Olympic Middle School, Shelton, Wash.
Daron Williams (daron@capitollandtrust.org), Capital Land Trust, Olympia, Wash.
Learn how a small/rural district is tackling three-dimensional instruction. We will share the program structure, discuss how it addresses the NGSS, and immerse you in the work.
Thursday, 12:30–1:30 PM

12:30–1:30 PM Hands-On Workshops

Designing Elementary Preservice Teacher Preparation Courses with a Focus on STEM-Rich Making Practices

(Grades K–9) Hawthorne/Sellwood, DoubleTree
Science Focus: GEN, NGSS
Jerry Valadez (jdvscience@yahoo.com), NSTA Director, Multicultural/Equity in Science Education, and California State University, Fresno
Fred Nelson (@fredn56; fnelson@csufresno.edu) and Emily Walter (emwalter@gmail.com), California State University, Fresno
Engage with integrated STEM activities and learn how teacher preparation courses based on these successful STEM-rich practices foster equity and access for underserved students.

Ocean Plastic Pollution: Examining Issues and Solutions in a Middle School Classroom

(Grades 6–8) D131, Convention Center
Science Focus: ESS3.C, LS2, PS1.A, CCC2, CCC6, SEP1
Mary Whaley (mwhaley@mbayaq.org), Monterey Bay Aquarium, Monterey, Calif.
Enrich your classroom with NGSS-focused activities on plastic pollution issues and solutions. Activities highlight physical and chemical properties of plastics, including density and buoyancy.

Inquiring Minds Want to Know

(Grades 6–12) D133/134, Convention Center
Science Focus: LS, PS, SEP
Anne Artz (@anneartz; aartz@ucsd.edu), Jason Flesock (jmfllesock@ucsd.edu), and Carla Petraglia (@CVPetraglia; carlavaldez1@gmail.com), The Preuss School UCSD, La Jolla, Calif.
We will demonstrate how to incorporate engineering principles into all areas of science. Join us to engage in sample lessons in physics, chemistry, and biology and gain a better understanding of what quality inquiry-based activities look like.

Patterns of Survival

(Grades K–2) D136, Convention Center
Science Focus: LS1.A, CCC1, SEP6, SEP8
Joey Scott (@joeyelle; jlehnhard@mbayaq.org), Monterey Bay Aquarium, Monterey, Calif.
What patterns do we see in animals that live in the rocky shore? Use free iPad applications to help primary students communicate explanations and patterns.

Making Science Accessible Through Technology: Using QR Codes and Video to Construct and Assess Student Comprehension

(Grades 6–12) D139, Convention Center
Science Focus: GEN, NGSS
Rebecca Krueger (rebecca.krueger@bellinghamschools.org), Squallium High School, Bellingham, Wash.
Anne Mortimer (anneemortimer@gmail.com), Mount Vernon High School, Mount Vernon, Wash.
Heather Farren (heatherfarren89@gmail.com), Mount Vernon (Wash.) School District No. 320
Use QR codes and video to build student comprehension with students of all levels. We’ll share English language learner strategies and you’ll leave with rubrics you can use immediately. Please bring your smartphone, iPhone, or laptop to this hands-on workshop.

Planning and Designing Safe and Sustainable Science Facilities That Meet the NGSS (Science Facilities 101)

(General) E141, Convention Center
Science Focus: GEN, NGSS
Juliana Texley (@Juliana.Texley; texleyj@cmich.edu), 2014–2015 NSTA President, and Central Michigan University, Mount Pleasant
So you want new science facilities? Does your curriculum define your science teaching facility? With more than 15 years of conducting visits and presentations of new/renovated school science facilities, the author team of NSTA Guide to Planning School Science Facilities (2nd ed.) will present the “basics” of science facility planning for safe, ergonomically designed, and sustainable facilities.

NSTA Press® Solar Science = NGSS-Focused Solar Astronomy Experiences + Preparation for the All-American Total Solar Eclipse

(Grades 5–9) E142, Convention Center
Science Focus: ESS
Dennis Schatz (schatz@pacsci.org), NSTA Director, Informal Science, and Pacific Science Center, Seattle, Wash.
Andrew Fraknoi, Foothill College, Los Altos Hills, Calif.
NSTA recently published Solar Science, a solar astronomy curriculum resource that is NGSS focused and prepares you for the 2017 solar eclipse. Come explore some of these effective learning experiences.
iPadography: Using Devices in the Classroom for More Than Just Photos
(Grades 1–8) E143, Convention Center
Stacey Holder (sholder@pleasantonusd.net), Fairlands Elementary School, Pleasanton, Calif.
Jenifer Perazzo (@overlandersafari; jperazzo@lbl.gov), Pleasanton (Calif.) Unified School District
Gain experience and ideas for incorporating photo-taking and editing apps into science lessons using time-lapse, photo collages, flip books, and more. Beginners welcome!

Taking STEM Outside
(Grades P–8) E144, Convention Center
Norie Dimeo-Ediger (dimeo-ediger@ofri.org), Oregon Forest Resources Institute, Portland
In addition to hitting STEM benchmarks, learn how outdoor and placed-based science lessons can enhance students’ knowledge of trees, forests, and the environment around them.

Epidemiology as the Next “Forensic Science” Capstone Course
(Grades 6–12) E146, Convention Center
Terrence Grant, The Catholic High School of Baltimore, Md.
Come learn how epidemiology can be an exciting capstone science course in the same way that forensic science captured student imaginations.

NESTA Shares: Earth and Space Science Share-a-Thon
(Grades K–12) Oregon Ballroom 204, Convention Center
Cheryl Manning (@clbmanning; clbmanning@mac.com), Evergreen High School, Evergreen, Colo.
Join more than 20 NESTA members and other education specialists as they share their favorite classroom activities. Lots of free handouts!

12:30–1:30 PM Exhibitor Workshops
Constructing and Crossing Cell Membranes
(Grades 8–12) A103/104, Convention Center
Sponsor: 3D Molecular Designs
Tim Herman (herman@msoe.edu) and Diane Munzenmaier (munzenmaier@msoe.edu), MSOE Center for BioMolecular Modeling, Milwaukee, Wis.
Hook biology and chemistry students with models that demonstrate the chemical and physical properties of water and the membranes that separate cells from the surrounding environment. Use hands-on teaching tools to explore diffusion, osmosis, and the transmembrane proteins that facilitate the transport of polar molecules across the cell membrane.

Outbreak! Zika Testing Using the Enzyme-Linked Immunosorbent Assay (ELISA)
(Grades 9–College) A105, Convention Center
Sponsor: Edvotek Inc.
Maria Dayton and Danielle Snowflack, Edvotek Inc., Washington, D.C.
The spread of the Zika virus has led to a public health crisis in the Americas. While most infections are mild, the virus can contribute to birth defects and neurological problems. In this workshop, you will perform a quick, easy ELISA that simulates Zika testing. Free gift/raffle entry for attending!

Gains in the Education of Mathematics and Science: What Can GEMS Do for You?
(Grades 5–12) A106, Convention Center
Sponsor: AEOP eCYBERMISSION
Jarod Phillips (aeopgems@nsta.org), Project Manager, GEMS, NSTA, Arlington, Va.
Receive an overview of the AEOP GEMS programs and find out how you can incorporate similar ideas and practices into your science classroom.
Hands-On Activities to Model Habitat Preference and Population Sampling  
(Grades K–12)       A108/109, Convention Center  
Science Focus: LS  
Sponsor: Carolina Biological Supply Co.  
Carolina Teaching Partner  
Watch and learn! First you’ll create a terrestrial model to observe how pill bugs respond to habitat change. Then you’ll use inquiry to develop experiments to observe the habitat preference of bess beetles, millipedes, and other insects. This engaging workshop gives you new inquiry-based tools to nurture students’ curiosity.

STEM-gineering  
(Grades 2–6)       B111/112, Convention Center  
Science Focus: ETS  
Sponsor: Delta Education/School Specialty Science  
Kathy Armstrong, Northside Elementary School, Midway, Ky.  
Darrick Wood, Distance Learning Coordinator, Louisville, Ky.  
Experience science lessons from Delta Science Modules that provide opportunities for students to be engaged in activities that incorporate Science, Technology, Engineering, and Math (STEM) and meet Technological Design Standards. You’ll receive make-and-take prototypes, strategies, and other workshop materials.

CPO’s Wind Turbine: A STEM Approach to Engineering and Design  
(Grades 6–12)       B113, Convention Center  
Science Focus: ETS  
Sponsor: CPO Science/School Specialty Science  
Erik Benton, CPO Science/School Specialty Science, Nashua, N.H.  
Kat Mills, School Specialty Science, Rosharon, Tex.  
CPO’s Link™ Wind Turbine learning module lets students learn in a real-time digital platform and engineer a wind turbine. Students build, test, and revise their designs. Link uses STEM activities and an NGSS approach, giving students an understanding of how to apply the engineering cycle in science class.

Climate Proxies  
(Grades 9–12)       B116, Convention Center  
Sponsor: LAB-AIDS®, Inc.  
Jennifer Boldt, Solon High School, Solon, Iowa  
How can scientists tell what Earth’s climate was like thousands of years before human measurements? This activity simulates the use of fossil ocean foraminifera, tiny organisms whose growth patterns are different in warm or cold water. We will analyze and graph samples of replicas of these organisms, and then determine relative warm and cold periods in the past 200,000 years. This activity is from EDC Earth Science, a new NSF-supported program from LAB-AIDS.

Science Practices: What Does Argumentation Look Like in an Elementary Classroom?  
(Grades K–5)       B117/118, Convention Center  
Science Focus: GEN  
Sponsor: Delta Education/School Specialty Science–FOSS  
Diana Velez and Brian Campbell, The Lawrence Hall of Science, University of California, Berkeley  
Join FOSS Next Generation Program developers to learn about science practices within the context of active investigations. Experience analyzing and interpreting data, constructing explanations, and engaging in argumentation from evidence as tools to deepen student learning within a FOSS lesson. Find out about transitioning to FOSS Next Generation.

Zombie Apocalypse!  
(Grades 6–12)       C120/121, Convention Center  
Science Focus: GEN  
Sponsor: Texas Instruments  
Jeffrey Lukens, Sioux Falls (Tex.) School District  
Be part of a zombie apocalypse! Learn about disease spread modeling using simulations and fun storylines about a zombie outbreak. Applicable for middle school and high school, this workshop is sure to scare you and your little zombies with its exciting Hollywood themes used to engage students learning science!

What Is Amplify Science?  
(Grades K–8)       C124, Convention Center  
Science Focus: GEN, NGSS  
Sponsor: Amplify  
Traci Shields (amplifyscience@berkeley.edu) and Rebecca Abbott (amplifyscience@berkeley.edu), The Lawrence Hall of Science, University of California, Berkeley  
Explore Amplify Science, the newest breakthrough curriculum from University of California Berkeley’s Lawrence Hall of Science for grades K–8. Discover how the immersive program, built from the ground up for NGSS, engages students as scientists and engineers to solve real-world problems.
1:00–1:30 PM  Presentations

Crafting a Cosmos
(Grades 5–9) Alaska/Idaho, DoubleTree
Science Focus: GEN, NGSS
Judy Sweeney (@judytsweeney1; judytsweeney@gmail.com), Universal American School, Dubai, United Arab Emirates
Join a middle school journey as students take the role of Earth engineers and share projects that connect practices, concepts, and performance tasks.

Students Reading Real Science: Primary Literature in the Classroom
(Grades 9–College) B110, Convention Center
Science Focus: GEN, SEP1, SEP2, SEP4, SEP6, SEP7, SEP8
Melissa McCartney (@SciClassroom; mmccartn@aaas.org), Science/AAAS, Washington, D.C.
View a demonstration of a web-based resource designed to make primary scientific articles (from the journal Science) accessible to students and teachers.

1:00–4:00 PM  Short Course
INF NASA’s Exploration of the Solar System: Activities for Out-of-School Time (SC-1)
Tickets Required; $18
(Grades 2–6) 3 Sisters/Mt. Bachelor, DoubleTree
Science Focus: ESS1.B, ESS2.D, INF, CCC1, CCC2, CCC4, SEP2, SEP3, SEP4
Christine Shupla (shupla@lpi.usra.edu), Lunar and Planetary Institute, Houston, Tex.
Brandy Laney (brandyb@springisd.org), Northgate Crossing Elementary School, Spring, Tex.
Meredith Harris (meredithaharris@me.com), Spring (Tex.) ISD
For description, see page 31.

2:00–2:30 PM  Presentations

Skynet Junior Scholars: See the Skies as Never Before
(Grades 4–12) Alaska/Idaho, DoubleTree
Science Focus: ESS, INF
Laura Orr, Ukiah High School, Ukiah, Ore.
The Skynet Junior Scholars Program connects youth to the world’s telescopes. Participants become scholars of the sky through use of a web-based portal, community forums, activities, resources, and guidance.

A Transformational Model for Science Instruction in a 21st-Century Classroom
(Grades 9–College) D137, Convention Center
Science Focus: GEN, NGSS
Paul Hampton (@DrPaul74; paul_hampton@beaverton.k12.or.us), Sunset High School, Portland, Ore.
A case study is presented where high school science teachers transform their instructional practices to meet the needs of marginalized students.
2:00–3:00 PM  Featured Presentation

How Should Districts and Schools Focus Professional Development When Starting to Implement NGSS?

(General) Oregon Ballroom 201, Convention Center
Science Focus: GEN, NGSS

Philip Bell (@philipbell; pbell@uw.edu), University of Washington, Seattle

Presider: Lynda Sanders, The View from All Angles: Connecting Three-Dimensional Science Instruction Strand Leaders, and Marshfield High School, Coos Bay, Ore.

Philip Bell will share his work designing a collection of open education resources called STEM Teaching Tools. This curriculum adaptation toolkit helps teachers develop equity-focused instructional materials that meet the NGSS. Hear how you can engage all students, especially emerging bilingual students, through curriculum adaptation, the development of formative assessments, and the use of discourse strategies. He will highlight how research-practice partnerships between school districts, education researchers, and scientists/engineers can support this kind of implementation work.

Philip Bell is a professor of the Learning Sciences and Human Development and holds the Shauna C. Larson Chair in Learning Sciences. He is executive director of the UW Institute for Science and Math Education focused on equity-focused innovation in K–12 STEM education, and is co-director of the Learning in Informal and Formal Environments (LIFE) Science of Learning Center.

Dr. Philip Bell’s research interests focus on how and why people learn across settings from cognitive and cultural perspectives, as well as scaffolding disciplinary STEM investigations in the classroom, culturally expansive curriculum and instruction, research-guided innovative learning technologies, digital technologies in youth culture, and design-based research in education and ethnography of learning. Currently, he is editing a series of research- and practice-based tools for science education called STEM Teaching Tools. The effort is providing resources for equity-focused improvements in science education.

He served on the committee of the NRC Framework for K–12 Science Education that was used to guide development of Next Generation Science Standards and was a member of the Board of Science Education with the National Academy of Sciences.
Data Is Not a “Four-Letter Word”: Use NOAA Resources to Build Student Proficiency in Data Analysis  
(Grades 5—12) D138, Convention Center  
Science Focus: ESS, CCC  
June Teisan (june.teisan@noaa.gov), NOAA Office of Education, Washington, D.C.  
Scientists at the National Oceanic and Atmospheric Administration collect a stunning array of data in their work. Learn how to access this treasure trove of archived and real-time data, and explore NOAA’s data-rich resources, lesson plans, and visualization tools to help you build student proficiency in scientific data analysis.

Balancing and Addressing Inequalities in the Middle School STEM Classroom  
(Grades 6—8) D140, Convention Center  
Science Focus: ETS2.B  
Christine Zarker Primomo (primomo@lwgms.org), Lake Washington Girls Middle School, Seattle, Wash.  
Lewis Maday-Travis (l.travis@seattleacademy.org), Seattle Academy of Arts and Sciences, Seattle, Wash.  
Learn and share how addressing inequity in STEM begins with classroom teachers incorporating identity development and a social justice framework to STEM education.

2:00–3:00 PM Hands-On Workshops

Argumentation in the Science Classroom  
(Grades K–12) Hawthorne/Sellwood, DoubleTree  
Science Focus: GEN, SEP  
Rebecca Burns (rebecca.burns@dpsnc.net), Sherwood Githens Middle School, Durham, N.C.  
Come to this hands-on workshop to learn how to incorporate this crosscutting concept into your curriculum.

Use NASA Design Challenges to Develop Critical Thinking  
(Grades 5—College) D131, Convention Center  
Science Focus: ETS1  
Kathleen Fredette, Maker School Network, Castaic, Calif.  
Explore the engineering design process through NASA design challenges. Experience design challenges through Project-Based Learning, NASA curricula, and metacognitive practices that support authentic learning.

Ocean Acidification as a Way to Teach Multidisciplinary Science and NGSS  
(Grades 8—12) D133/134, Convention Center  
Claudia Ludwig (@SystemsEd; cludwig@systemsbiology.org), Institute for Systems Biology, Seattle, Wash.  
Mari Knutson Herbert (@mari–herbert; knutsonm@lynden.wednet.edu), Lynden (Wash.) School District  
Explore a set of lessons that engage and guide students through their own research project on ocean acidification. Students build STEM and systems-thinking skills while learning how to make a difference.

Developing and Implementing NGSS-Focused Curricula in Gillette, Wyoming: Focus on Earth and Space Science as a Vehicle for Mathematics and Literacy Integration  
(Grades 1–6) D135, Convention Center  
Science Focus: ESS, CCC, SEP  
Ana Houseal (ahouseal@uwyo.edu), University of Wyoming, Laramie  
Let’s explore specific integrated ELA and mathematics activities embedded in an Earth and space science unit developed and implemented by teachers from Gillette, Wyoming. Exemplars will be provided.

AMSE-Sponsored Session: Moving to Teacher as Facilitator: NGSS and Critical Pedagogy  
(Grades 6—12) D136, Convention Center  
Science Focus: GEN, NGSS  
Melissa Campanella (melissa.rae.campanella@gmail.com), Noel Community Arts School, Denver, Colo.  
Explore how making the shift to teacher as facilitator can support all students to become cocreators of science knowledge.

Science from the Stratosphere: STEM Activities in the Infrared  
(Grades 6—12) D139, Convention Center  
Susan Oltman (@sueatsea; soltman@mountvernonschool.org), Mount Vernon Presbyterian School, Atlanta, Ga.  
Jo Dodds, Idaho Digital Learning Academy, Twin Falls  
Join two NASA SOFIA Science Ambassadors as they share specifics about flying with NASA and infrared astronomy, and present hands-on infrared activities to use in the classroom.
Science Facilities 102: The Architects Have Started Without Me...What Do I Do Now?  
(General) E141, Convention Center  
Science Focus: GEN, NGSS  
Juliana Texley (@JulianaTexley; texle1j@cmich.edu), 2014–2015 NSTA President, and Central Michigan University, Mount Pleasant  
Is your district planning for new science facilities? Are you involved? If not, you need to get involved before it is too late.  
In an advanced course (an extension of Science Facilities 101), the NSTA author team for NSTA Guide to Planning School Science Facilities (2nd ed.) will present more detailed information and examples of safe, ergonomically correct, and functional science facilities for STEM-based science. Budgeting, working with the architect, technology, and special adjacencies will be presented, and a packet will be distributed.

“Phenomenal” Strategies for Teaching NGSS  
(Grades 1–6) E145, Convention Center  
Science Focus: GEN, NGSS  
Sharon Angal (angals@hsd.k12.or.us), Quatama Elementary School, Hillsboro, Ore.  
Janet Rabe (rabej@hsd.k12.or.us), Farmington View Elementary School, Hillsboro, Ore.  
Sharing strategies behind using phenomena to develop a unit around a phenomenon, this session will support work toward a “phenomenal” NGSS unit for your class!

NSTA Press® Session: Outdoor Science with Birds, Books, and Butterflies  
(Grades P–8) E142, Convention Center  
Science Focus: GEN  
Steve Rich, University of West Georgia, Carrollton  
Outdoors or in, discover engaging lesson ideas with natural materials, children’s books, and citizen science. Join me for outdoor classroom basics, funding ideas, crosscutting concepts, and free seeds.

So Your Students Won’t Talk (Argue)?  
(Grades 5–College) E146, Convention Center  
Science Focus: GEN, NGSS  
Sharon Schleigh, East Carolina University, Greenville, N.C.  
Emphasis will be placed on a variety of strategies to get ALL of your students engaged in a scientific argument in your classroom.

NESTA Shares: Using the CLEAN Collection of Resources to Teach Energy and Climate  
(Grades 5–College) Oregon Ballroom 204, Convention Center  
Bring your device and use the CLEAN collection of resources to start creating age-appropriate units that teach students about climate and energy.
2:00–3:00 PM  Exhibitor Workshops

The Many Jobs of Proteins: Enzymes in the Spotlight  
(Grades 8–College)  A103/104, Convention Center
Science Focus: PS, CCC, SEP
Sponsor: 3D Molecular Designs
Tim Herman (herman@msoe.edu), MSOE Center for Bio-Molecular Modeling, Milwaukee, Wis.
Use 3-D physical representations to discover that proteins are linear sequences of amino acids that spontaneously fold into complex shapes following basic principles of chemistry. This hands-on workshop explores a specific class of proteins—enzymes—to introduce the concepts of substrate, active site, specificity, and competitive/noncompetitive inhibition.

Using Biotechnology to Diagnose HIV/AIDS  
(Grades 9–College) A105, Convention Center
Science Focus: LS
Sponsor: Edvotek Inc.
Danielle Snowflack and Maria Dayton, Edvotek Inc., Washington, D.C.
The Human Immunodeficiency Virus (HIV) causes acquired immune deficiency syndrome (AIDS), a serious disease that suppresses a patient’s immune system, leaving them susceptible to infections. In this simulation, we’ll perform two common tests (western blot, ELISA) used by doctors to diagnose an HIV infection. Attendees receive a free gift!

The HMH Science Dimensions of NGSS  
(Grades K–12) A106, Convention Center
Science Focus: GEN, CCC2, CCC6, SEP2, SEP3, SEP8
Sponsor: Houghton Mifflin Harcourt
Damon Smerchek, Houghton Mifflin Harcourt, Boston, Mass.
Take a walk through an all new, built from the ground up, NGSS K–12 science program produced by the educational solutions company that has been bringing you quality programs for over 180 years, Houghton Mifflin Harcourt. Be one of the first to see how HMH Science Dimensions has the tools to create a true NGSS classroom using print resources, innovative student experiences, and advanced technology via Google Classroom and Google Expeditions. Bring device to participate.

Integrating Literacy and Science: The Wow Factor  
(Grades P–5) A107, Convention Center
Science Focus: GEN, SEP7
Sponsor: Activate Learning
Ellen Mintz, Charleston County School District, Charleston, S.C.
Come engage in a hands-on investigation where your students explore, read, write, talk, and think critically about science. Address reading, writing, and math through science investigations. Create data tables and argue from evidence, as you give your students a reason to write beyond just “fill in the blank.”

Bring Visual Science into K–5 Classrooms—It’s a Game Changer!  
(Grades K–5) A108/109, Convention Center
Science Focus: GEN
Sponsor: Carolina Biological Supply Co.
Carolina Teaching Partner
Spark student interest and improve outcomes! Master teacher Harvey Bagshaw demonstrates engaging science instruction using Tigtag Science real-world STEM videos, interactive content, and a hands-on activity. Harvey’s blend of compelling online learning tools with hands-on fun is guaranteed to delight you and your students! “Watch out! It might get messy.”

Increase Your 3-D Vision of NGSS  
(Grades 3–5) B111/112, Convention Center
Science Focus: GEN, NGSS
Sponsor: Delta Education/School Specialty Science
Darrick Wood, Distance Learning Coordinator, Louisville, Ky.
Kathy Armstrong, Northside Elementary School, Midway, Ky.
Experience lessons from Delta Science Modules that incorporate the three dimensions of the NGSS. Tackle argumentation embedded in the session. Receive a corresponding content reader, strategies, and resources that you can take back and use with your students tomorrow.
Building Electric Circuits with CPO’s New Link™ Learning Module
(Grades 6–12) B113, Convention Center
Science Focus: ETS
Sponsor: CPO Science/School Specialty Science
Erik Benton, CPO Science/School Specialty Science, Nashua, N.H.
Kat Mills, School Specialty Science, Rosharon, Tex.
The new CPO’s Link Electric Motor learning module is a STEM- and NGSS-based approach to electromagnets, permanent magnets, commutators, and induction in a real-time tablet-based learning environment using hands-on equipment. The engineering cycle, observation, measurement, and experimentation are used to design and build electric motors with student-based activities.

Teaching Forensics with Real Crime Scene Investigation Techniques from Flinn Scientific
(Grades 9–12) B114/115, Convention Center
Science Focus: PS1.A, PS1.B
Sponsor: Flinn Scientific, Inc.
Meg Griffith (mgriffith@flinnsci.com), Flinn Scientific, Inc., Batavia, Ill.
Looking for innovative new ways to teach forensics? See demonstrations of products and laboratory activities that can get your students engaged in forensic science! We’ll feature professional-grade products used by real CSI teams with write-ups that make them ideal for classroom use. From footwear impression castings to fingerprints, there is always something left behind at a crime scene to be analyzed. Handouts for all activities.

Chemical Batteries
(Grades 6–8) B116, Convention Center
Science Focus: ESS3.B, PS, CCC2, CCC5, SEP1, SEP2, SEP3, SEP4
Sponsor: LAB-AIDS®, Inc.
Lisa Kelp, LAB-AIDS, Inc., Ronkonkoma, N.Y.
Although we live a battery-powered lifestyle, most of us (students included) have no idea how batteries actually work. In this hands-on workshop, we will engage in an activity from Issues and Physical Science from LAB-AIDS. Make a wet cell battery, explore the effect of using different metal electrodes on battery output, and consider ways to reduce the number of discarded batteries in the waste stream.

What Does Conceptual Modeling Look Like in an Elementary Classroom?
(Grades K–5) B117/118, Convention Center
Science Focus: PS
Sponsor: Delta Education/School Specialty Science–FOSS
Brian Campbell, The Lawrence Hall of Science, University of California, Berkeley
Join FOSS Next Generation Program developers to explore how students construct models within the context of physical science. Experience strategies within an active investigation to create and refine models about matter. Find out how student models can be used to guide future instruction within the FOSS program.

The Value of Writing Scientific Explanations in STEM
(Grades K–12) C120/121, Convention Center
Science Focus: GEN, NGSS
Sponsor: Accelerate Learning–STEMscopes
Pam Caffery, Accelerate Learning–STEMscopes, Brandon, Fla.
Claim-Evidence-Reasoning (CER) is a way for students to explain, in a scientific way, how their observations and data from an investigation are connected to science knowledge. Using a CER framework provides a scaffold for building the skill of argumentation and writing scientific explanations.

Stop Creating Lesson Plans—Start Creating Learning Experiences
(General) C125/126, Convention Center
Science Focus: GEN, NGSS
Sponsor: Van Andel Education Institute
Marty Coon (marty.coon@vai.org), Van Andel Education Institute, Grand Rapids, Mich.
Kimberly Newman (kimberly.newman@camas.wednet.edu), Camas High School, Camas, Wash.
Tim Renz (renzt@tukwila.wednet.edu), Foster High School, Tukwila, Wash.
Engage your students to think and act like scientists. Be the teacher that transforms everyday lesson plans into authentic, memorable learning experiences with inquiry-focused instruction. Come with a willingness to inspire learning; leave with strategies and tools to make it happen.
2:30–3:00 PM Presentations

INF Space-Age STEM: Virgin Galactic’s Virtual Connection, Mentorship, and Experimentation Hangouts (Grades 5–12) Alaska/Idaho, DoubleTree
Science Focus: ESS, INF
Marcia Fiamengo, NASA Jet Propulsion Laboratory, Pasadena, Calif.
Get involved in Virgin Galactic Future Astronauts, an aerospace engineering mentorship and group experimentation delivered free via Google Hangouts. Logistics, programs, and actual experiments will be shared.

3:30–4:30 PM Presentations

Leadership for Three-Dimensional Teaching and Learning: The Washington Science Fellows Program (Grades K–12) Alaska/Idaho, DoubleTree
Science Focus: GEN, NGSS
Vickei Hrdina (vickei.hrdina@esd112.org) and Stacy Meyer (stacy.meyer@esd112.org), Educational Service District 112, Vancouver, Wash.
Brian MacNevin (bmacnevin@nwesd.org), Northwest Educational Service District 189, Anacortes, Wash.
Mechelle LaLanne (@mechellencesd; mlalanne@mac.com), North Central ESD, Wenatchee, Wash.
Washington State Science Fellows are teacher leaders representing over 110 school districts across the state. Fellows develop and implement action plans to support transitioning to NGSS in their home districts. We will share the development of the program and examples of Fellows’ work, and give out a tool for helping others to operationalize three-dimensional science instruction and messaging in their home context.

How to Implement STEM and NGSS into Your Classroom Through the Use of NSTA Competitions (Grades K–12) Oregon, DoubleTree
Science Focus: GEN, NGSS
Sue Whitsett (swhitsett@nsta.org) AEOP Project Director, and Acacia McKenna (amckenna@nsta.org), Director, Competitions, NSTA, Arlington, Va.
Hear about various NSTA competitions and how they can bring STEM and the NGSS into the classroom, as well as give students and teachers a chance to earn recognition and prizes.

PolyWhat? Understanding What a Polymer Is (Polymer 101) (Grades 5–12) Ross Island, DoubleTree
Science Focus: PS, CCC, SEP
Sherri Rukes (@SherriRukes; sherri.rukes@d128.org), Libertyville High School, Libertyville, Ill.
Discover different strategies of introducing what a polymer is in ways you and your students can understand. Many examples and a CD of materials will be shared.

NGSS@NSTA Forum Session: Selecting Phenomena to Motivate Student Sensemaking (Grades K–12) B119, Convention Center
Science Focus: GEN, NGSS
Ted Willard (twillard@nsta.org), Program Director, NGSS@NSTA, NSTA, Arlington, Va.
The right phenomena are a key ingredient in successful three-dimensional teaching and learning. This session will focus on what makes some phenomena better than others and how to use them successfully in the classroom.
The Air We Breathe: Authentic Student Research on Indoor/Outdoor Air Quality
(Grades 9–12) C122, Convention Center
Science Focus: GEN, NGSS
Naomi Delaloye (naomi.delaloye@umontana.edu), University of Montana, Missoula
Learn about a model program that engages students in authentic research, a process that both boosts student interest in science and addresses the NGSS three dimensions.

Place-Based Earth Science: Using the Geology of Oregon
(Grades 4–10) D130, Convention Center
Science Focus: ESS2.B, ESS2.C
Jodie Harnden (jodie.harnden@pendleton.k12.or.us), Sunridge Middle School, Pendleton, Ore.
Kenneth Loomis (kloomis@tahomasd.us), Tahoma High School, Covington, Wash.
Oregon has it all...earthquakes, glaciers, beaches, volcanoes, high plains...why not use what is familiar to students (or not so familiar) to develop their understanding of the formation and features of Oregon and the impact this has on our economy, resources, population, recreation, and the future?

Design for Disaster: Using Three-Dimensional Learning/Literacy in the Service of Science
(Grades 6–8) D140, Convention Center
Science Focus: ESS2, ETS1
Lisa Ernst, Alice Fong Yu Alternative School, San Francisco, Calif.
Go in-depth with literacy tools in the study of earthquakes. Some of the tools include closed-reading, herringbone, pair share, small group discussion, planning, and writing.

NSTA Press® Session: Teaching for Conceptual Understanding in Science
(General) E142, Convention Center
Science Focus: GEN
Richard Konicek-Moran (rkonicek@gmail.com), Professor Emeritus, UMass Amherst, Mass.
Using the NSTA Press books Teaching for Conceptual Understanding in Science and Everyday Science Mysteries, find out what “conceptual understanding” means and how it is used in teaching the NGSS.

ASTE-Sponsored Session: Sharing Innovative Program Designs for Professional Development and Research in Science Education
(General) Oregon Ballroom 203, Convention Center
Science Focus: GEN, NGSS
Lisa Martin-Hansen (@lmartinhansen; l.martinhansen@cslub.edu), Stephen Adams (stephen.adams@cslub.edu), and Paul Burns (@burnspn; burnspn@gmail.com), California State University, Long Beach
Kristin Lesseig (kristin.lesseig@vancouver.wsu.edu) and Tamara Nelson (tnelson1@wsu.edu), Washington State University Vancouver
Lindsay Lightner (llightner@wsu.edu) and Judith Morrison (jmorrison@tricity.wsu.edu), Washington State University Tri-Cities, Richland
Patricia Morrell (morrell@up.edu), University of Portland, Ore.
Kathleen Nitta (nitta@gonzaga.edu), Gonzaga University, Spokane, Wash.
Donna Rainboth (drainbot@eou.edu), Eastern Oregon University, La Grande
Donna Ross (dross@mail.sdsu.edu) and Meredith Vaughn (mhoule@mail.sdsu.edu), San Diego State University, San Diego, Calif.
Science education leaders and researchers share information in an interactive poster session. All are welcome to engage in discussion with our presenters.
3:30–4:30 PM  Hands-On Workshops

3D Problems and Phenomena: Engaging Your Students in Three-Dimensional NGSS Learning!
(Grades 9–12) D133/134, Convention Center
Science Focus: GEN, NGSS
Amanda Rainwater, Bothell High School, Bothell, Wash.
Learn how to engage your students in solving real-world problems and investigating puzzling phenomena. Two example units will be shared.

Inclusion: Strategies for Helping Students with Disabilities in the Science Classroom
(Grades 7–12) D135, Convention Center
Science Focus: GEN, SEP1, SEP2, SEP3
Terry Shlaes (shlaest@loswego.k12.or.us), Lakeridge High School, Lake Oswego, Ore.
With the implementation of NGSS, CCSS, and other state and federal mandates, students with disabilities need to be in the general education science classroom to learn the concepts that they will be expected to know to graduate. Learn strategies to include these students successfully in your class. Examples of lessons with accommodations will be shared!

Inventing Is Just Plain Fun (for All)!
(Grades 4–12) D136, Convention Center
Science Focus: ETS1, SEP6
Anthony Perry (@tonyperry; aperry@mit.edu), The Lemelson-MIT Program, Cambridge, Mass.
Michael Lampert (@artofphysics; mlampert@aol.com), West Salem High School, Salem, Ore.
Don Domes, Retired CTE Engineering Teacher, Hillsboro, Ore.
Join us and get experience leading a design challenge and incorporating invention into your curriculum to provide authentic and engaging opportunities for all students.

NASA Earth Science: Real-World Connections to Data and Tools for Science Fairs
(Grades 8–12) D139, Convention Center
Science Focus: ESS, ETS1
Tassia Owen (tassia.owen@nasa.gov), NASA Goddard Space Flight Center, Greenbelt, Md.
Join me as I share how NASA Earth system science resources can be used to support educators and students as they prepare for science fair research projects. NASA develops new ways to observe and study Earth’s interconnected natural systems with long-term data records. Bring a laptop/tablet as we explore tools and resources in support of NGSS Earth’s system, weather and climate, and engineering design.

New POGIL Activities to Integrate Life Science
(Grades 6–College) E141, Convention Center
Science Focus: LS, CCC, SEP
Mare Sullivan (joe.mare.sullivan@gmail.com), Seattle Pacific University, Seattle, Wash.
Try out free Process-Oriented Guided Inquiry Learning (POGIL) activities that can help your students incorporate the NGSS science and engineering practices while mastering foundational concepts of experimental design, evolutionary biology, and developmental biology.

NASA’s Journey to Mars: Build a Mars Rover Using NASA’s Beginning Engineering Science and Technology (BEST) Curriculum
(Grades K–8) E143, Convention Center
Science Focus: ETS, CCC, SEP1, SEP2, SEP3, SEP4, SEP6, SEP8
Barbara Buckner (@bbuckner; barbie.buckner@nasa.gov), NASA Armstrong Flight Research Center, Palmdale, Calif.
Use the engineering design process to build and test a Mars Rover that can carry equipment and astronauts. Come learn about current NASA missions.

Evolution for Educators
(Grades 7–9) E144, Convention Center
Science Focus: LS4
Cheryl Ann Hollinger (cheryl.hollinger@richarddawkins.net), Teacher Institute for Evolutionary Science, Washington, D.C.
Middle school science teachers—come learn about innovative ready-to-use classroom resources that address NGSS middle school core ideas in evolution and natural selection.

NGSS Storyline Coherence for Kindergarten: Phenomena and Context-Based Units of Study for Kindergarten
(Kindergarten) E145, Convention Center
Science Focus: GEN, NGSS
Carol Biskupic Knight (carol_biskupic_knight@beaverton.k12.or.us), Beaverton (Ore.) School District
Lisa Hazel (lisa_hazel@beaverton.k12.or.us), Springville K–8 School, Portland, Ore.
Stephanie Wilkerson (wilkerss@hsd.k12.or.us), Hillsboro (Ore.) School District
NGSS-focused kindergarten units of study engage kindergartners in coherent, cohesive three-dimensional learning investigations centering on phenomena and relevant context with a literacy lens.
Zombies Don’t Stand a Chance Against STEM!
(Grades 6–College) E146, Convention Center
Science Focus: GEN
Jeffrey Lukens (jeffreylukens0613@gmail.com), Sioux Falls (S.Dak.) School District
Use the “Zombie Craze” to make STEM become “un-dead” in your science classroom! This is not only a hands-on session, but a brains-on session, as well!

NESTA and CEETEP Shares: Feeling Earth Move: GPS and How It Teaches Us About Future Earthquakes
(Grades 5–12) Oregon Ballroom 204, Convention Center
Robert Butler (butler@up.edu), University of Portland, Ore.
Roger Groom (rgroom@pps.net), Mt. Tabor Middle School, Portland, Ore.
Douglas Lownsbery (lownsbed@oregonstate.edu), Oregon State University, Corvallis
Join us for classroom activities about GPS-measured crustal motion. Learn how data analysis and quantitative skills are applied to the highly engaging topic of earthquakes. Free digital resources.

3:30–4:30 PM Exhibitor Workshop
Environmental Toxicology Using Edvotek’s New EZ-elegans
(Grades 8–College) A105, Convention Center
Science Focus: LS
Sponsor: Edvotek Inc.
Danielle Snowflack and Maria Dayton, Edvotek Inc., Washington, D.C.
Model organisms allow scientists to investigate biological questions that cannot be studied in humans. Learn how Edvotek’s EZ-elegans simplifies culturing *C. elegans* in your classroom. Then, explore effects of environmental factors on *C. elegans* using a simple locomotion assay. Integrate STEM concepts with data collection and statistics. Freebie/raffle entry for attending!

Group Work: Using Student Collaboration in the Middle School Science Classroom
(Grades 6–9) A106, Convention Center
Science Focus: GEN, SEP7, SEP8
Sponsor: AEOP eCYBERMISSION
Cheryl Long, eCYBERMISSION Outreach Specialist
NSTA, Arlington, Va.
Grades 6–9 students either love or loathe the idea of working in a group. The science and engineering practices in the NGSS involve students collectively making sense of the world around them by working in groups—plus group work enhances learning for all students. We will cover aspects of quality group work and how it can be beneficial to the middle school science class through hands-on activities. Discussion includes how the online STEM competition eCYBERMISSION sets up and uses groups for investigations.

The Best of Engineering for Elementary Students
(Grades 1–5) A108/109, Convention Center
Science Focus: ETS, SEP
Sponsor: Carolina Biological Supply Co.
Carolina Teaching Partner
What is engineering for elementary students? How do I know it when I see it? Participants will define engineering and experience the practices of engineering and science through lessons from the new Smithsonian Engineering and Science program developed from the ground up to meet the NGSS.
Liven Up Literacy with Science  
(Grades K–5)  B111/112, Convention Center  
Science Focus: GEN, NGSS  
Sponsor: Delta Education/School Specialty Science  
Kathy Armstrong, Northside Elementary School, Midway, Ky.  
Darrick Wood, Distance Learning Coordinator, Louisville, Ky.  
Use science to put some enthusiasm into your literacy program. Experience engaging lessons from Delta Science Modules that incorporate literacy skills. Receive corresponding a content reader, strategies, and resources that you can take back and use with your students next week.

CPO Science’s Link™ Module: Learning About Chemistry Models  
(Grades 6–12)  B113, Convention Center  
Science Focus: PS  
Sponsor: CPO Science/School Specialty Science  
Erik Benton, CPO Science/School Specialty Science, Nashua, N.H.  
Kat Mills, School Specialty Science, Rosharon, Tex.  
CPO’s new Link Chemistry Models module is an NGSS approach that lets students experience innovative activities to learn about atomic structure and the periodic table. We’ll use a digital learning environment with hands-on equipment to study bonding, isotopes, subatomic particles, ions, balancing equations, energy levels, and periodicity.

Reclaiming the Metal  
(Grades 6–8)  B116, Convention Center  
Science Focus: PS1.B, CCC5, SEP3, SEP7  
Sponsor: LAB-AIDS®, Inc.  
Lisa Kelp, LAB-AIDS, Inc., Ronkonkoma, N.Y.  
In this activity from the SEPUP middle level physical science program, participants role-play a scenario involving the pretreatment of copper containing liquid wastes from a computer circuit board manufacturer. They examine trade-offs of metal replacement and chemical precipitation, techniques actually used in industrial applications and, in so doing, come to understand the science behind complex environmental issues.

Evolutionary Evidence in the Fossil Record: Life Science with FOSS  
(Grades 6–8)  B117/118, Convention Center  
Science Focus: LS, SEP  
Sponsor: Delta Education/School Specialty Science–FOSS  
Virginia Reid and Jessica Penchos, The Lawrence Hall of Science, University of California, Berkeley  
What does the fossil record tell us about how life has changed over time? Explore evolutionary history through hands-on activities from the new FOSS Next Generation Edition Heredity and Adaptation Course for Middle School, and identify connections to the three dimensions of NGSS.

4:00–4:30 PM  Presentation  
iPrize: A Transdisciplinary Innovation Competition  
(Grades 6–12)  B110, Convention Center  
Science Focus: GEN, SEP8  
Ines Kuna (ines.kuna@vansd.org), Ian Hurst (@iTechPrep; @ihurst8; ian.hurst@vansd.org), and Isaiah Wyckoff (isaiah.wyckoff@vansd.org), Vancouver iTech Preparatory, Vancouver, Wash.  
Students design, develop, market, and present their own innovations in this Shark Tank–style innovation competition.

5:00–5:30 PM  Presentation  
LEARN with NASA (Long-Term Engagement in Authentic Research with NASA)  
(Grades 3–College)  B119, Convention Center  
Science Focus: ESS3, SEP4  
Jodie Harnden, Sunridge Middle School, Pendleton, Ore.  
Find out about LEARN, a research experience for teachers working on authentic science projects in air quality, aerosols, or climate with the guidance of NASA researchers.

Don’t forget to pick up your FREE TriMet pass!  
See page 7 for details.
5:00–6:00 PM  Presentations

Modeling to Promote Accountable Talk
(Grades 6–College)  Alaska/Idaho, DoubleTree
Science Focus: GEN, NGSS
Lynn Kim John, UCLA Center X, Los Angeles, Calif.
Review findings from a study of the use of talk moves in secondary science classrooms and learn how teachers need a deeper understanding of the Accountable Talk Framework in order to promote talk that leads to the conceptual understanding called forth by the NGSS.

Authors Needed! Publish Your Teaching Idea in an NSTA Journal
(General)  Morrison, DoubleTree
Science Focus: GEN
Ken Roberts (kroberts@nsta.org), Assistant Executive Director of Journals, NSTA, Arlington, Va.
Learn how to successfully prepare and submit an article for publication in an NSTA journal.

Moving Toward NGSS Through Project-Based Learning
(Grades 4–College)  Oregon, DoubleTree
Science Focus: GEN, NGSS
DJ West, Schoolcraft College, Livonia, Mich.
Explore how Problem-Based Learning or Project-Based Learning move toward the intent of NGSS by integrating all three areas of the standards. Leave with practical suggestions and resources for immediate implementation.

Unraveling NGSS Implementation: Key Points and Discussion
(Grades K–12)  Ross Island, DoubleTree
Science Focus: GEN, NGSS
Karen Whisler (whisler.karen@measuredprogress.org), Measured Progress, Dover, N.H.
A session for educators working to implement NGSS! Participants will learn valuable implementation pointers and have time to ask questions, discuss challenges, and share ideas.

INF Using the National Science Olympiad and STEM to Address NGSS Crosscutting Concepts and Content
(Grades 6–11)  B110, Convention Center
Donna Young (dlyoung.nso@gmail.com), Chandra X-Ray Center, Bullhead City, Ariz.
Find out how National Science Olympiad regional, state, and national competitions include STEM events and supporting resources that are easily incorporated into existing curricula to actively engage students.

Lessons from the Sky (A Teacher’s STEM Source)
(Grades 1–12)  C122, Convention Center
Science Focus: ESS, CCC, SEP
Michael Holst, Satellite Educators Association Student Coordinator, Chehalis, Wash.
From the Library of Satellites and Education Association, learn how to use the Lesson Plans Library, which is tooled to NGSS and NSES and incorporates environmental satellite-based data. The NOAA and NASA satellites will range across all sciences, STEM, math, and grade levels. This will be a great source to add to your tools.

The nPower Girls: Cultivating Interest and Achievement in STEM
(Grades 4–8)  D137, Convention Center
Science Focus: ESS, ETS, CCC3, CCC4, CCC5, CCC7, SEP1, SEP2, SEP6, SEP7
Vickei Hrdina (vickei.hrdina@esd112.org), Educational Service District 112, Vancouver, Wash.
Find out about several teacher initiatives from the nPower Girls professional development program, including sample STEM activities and research-based practices for getting—and keeping—girls engaged in STEM.
Record and Analyze Seismic Data in the Classroom with Free IRIS Software!
(Grades 6–College) D138, Convention Center
Science Focus: ESS2.B, ESS3.B, CCC1, SEP1, SEP4
Tammy Bravo (@IRIS_quakes; tkb@iris.edu), IRIS, Washington, D.C.
Monitor Earth from your classroom! Display real-time data from school seismographs or nearby professional seismometers. Students can determine earthquake locations, magnitudes, and more.

5:00–6:00 PM Hands-On Workshops

(Grades 3–9) Hawthorne/Sellwood, DoubleTree
Kay Phelps (khphelps@fortlewis.edu), Fort Lewis College, Durango, Colo.
View detailed taxonomy art from Cornell University, examine the science aptitude Harrison Observation Tool, and then engage in a structure and function STEAM lesson.

Looking for a Way to Teach Matter and Energy Through a Model-Based Approach?
(Grades 6–10) D131, Convention Center
Mary Margaret Welch (mmwelch323@gmail.com), Seattle (Wash.) Public Schools
Jenny Newell (jnnewell@seattleschools.org), Nathan Hale High School, Seattle, Wash.
Experience this research-based online curriculum to develop students’ thinking around human energy systems. It is designed to engage students in developing and using models, constructing explanation, and engaging in arguments from evidence.

Student Investigations: Get Good Questions!
(Grades 4–8) D140, Convention Center
Science Focus: LS2, CCC, SEP1
Katie-Lyn Bunney and Sarah Weaver (weave048@umn.edu), University of Minnesota Monarch Lab, Saint Paul
Transform student wonderings into authentic research questions. We will use citizen science data to actively engage participants in the process of effectively using a question throughout an investigation process.

Constructing Explanations in Biology—Getting from There to Here
(Grades 9–12) D133/134, Convention Center
Science Focus: LS
Veronica Zonick (zonick.veronica@measuredprogress.org) and Marie-Lise Bouscaren (bouscaren.marie-lise@measured-progress.org), Measured Progress, Bellingham, Wash.
With coaching, participants will adapt a typical biology class activity to meet the NGSS life science performance expectation for constructing explanations, and develop accompanying assessment plans.

Connect Chemistry to Your World with ChemClub
(Grades 9–12) D139, Convention Center
Science Focus: PS, INF
Karen Kaleuati (@ACSChebmClubs; k_kaleuati@acs.org), American Chemical Society, Washington, D.C.
The ACS ChemClub program provides fun and educational resources—all for FREE! Learn about the program, try out some of the activities, and take home a copy of the resources.

Light in the Deep Sea
(Grades 6–8) E141, Convention Center
Science Focus: PS4, CCC1, SEP4
Joey Scott (@joeyelle; jlehnhard@mbayaq.org), Monterey Bay Aquarium, Monterey, Calif.
Why are so many deep-sea creatures red? Explore the phenomenon in this lesson from the Monterey Bay Aquarium. NGSS connections and formative assessment probe included.
NSTA Press® Session: Inside or Out: The Perfect Place for Connecting Outdoor Science and Children’s Trade Books  
(Grades K–6)  
E142, Convention Center  
Science Focus: GEN  
Christine Anne Royce (@caroyce; caroyce@aol.com), Shippensburg University, Shippensburg, Pa.  
Engage in lessons that connect investigations in outdoor science topics with paired children’s literature to enhance the topic and integrate other discipline areas.

Communicating Science Through Narrative Writing  
(Grades 5–7)  
E143, Convention Center  
Science Focus: ESS, LS, PS  
Joan Swafford (jswafford08@gmail.com) and Janet Foster, Jefferson Middle School, Jefferson, Ore.  
During this interactive session, participants will become a water molecule, write a narrative, learn a feedback technique, and practice implementing applicable scientific vocabulary.

Curriculum for a Crowded Planet  
(Grades 6–8)  
E144, Convention Center  
Jennifer Wyld (@wyld_peace; wyldmama@gmail.com), Oregon State University, Corvallis  
Participate in hands-on activities that apply math and science skills to tackle major global challenges, including human population pressures, finite natural resources, and climate change.

Preparing Educators to Meet the Demands of NGSS Through a Three-Dimensional Professional Development Model  
(Grades K–6)  
E145, Convention Center  
Science Focus: GEN, NGSS  
Erika Hansen-Rudishauser and Carol Biskupic Knight (carol_biskupic_knight@beaverton.k12.or.us), Beaverton (Ore.) School District  
We will present a high-leverage professional development model framework to build capacity in educator leaders, moving NGSS implementation from the classroom to school/district levels.

NESTA and CEEFP Shares: Surviving the Shake: Engineering Activities for Earthquake Resilience  
(Grades 5–12)  
Oregon Ballroom 204, Convention Center  
Robert Butler (butler@up.edu), University of Portland, Ore.  
Roger Groom (rgroom@pps.net), Mt. Tabor Middle School, Portland, Ore.  
Douglas Lownsbery (lownsbed@oregonstate.edu), Oregon State University, Corvallis  
Join us for hands-on activities and visualizations that feature engineering solutions to earthquake hazards. Applicable anywhere, but especially focused on the Pacific Northwest. Free digital resources.
5:30–6:00 PM  Presentation
The AMS DataStreme Project: Comprehensive Earth Science Education for Teachers
(General) B119, Convention Center
Science Focus: ESS
James Brey, American Meteorological Society, Washington, D.C.
Come learn how AMS DataStreme courses provide a comprehensive look at our Earth system. The information can be easily adapted for use in your classroom!

6:00–9:00 PM  Networking Opportunity
Teacher Evening at Oregon Museum of Science and Industry (M-1)
(Tickets Required; $35) Oregon Museum of Science and Industry
Ranked as one of the top science centers in the U.S., Oregon Museum of Science and Industry (www.omsi.edu) has an international reputation for its innovative exhibits and educational programs. This evening experience will provide opportunities to engage in classroom-ready, hands-on activities, and take away resources encouraging implementation of STEM activities in the classroom. Ticket cost includes museum admission and light appetizers. Cash bar. Tickets, if available, may be purchased at registration.

Note: Transportation is not provided. OMSI is on the streetcar line about 15 minutes from the Convention Center. The cost is $2 to ride or you can use your TriMet pass and ride for free (given out at program pickup). For directions and parking, visit www.omsi.edu/visitor-info.

— Photo courtesy of Oregon Museum of Science and Industry
Just a 30-minute drive from Portland, Multnomah Falls plummets a cascade of icy water 611 feet. See page 32 for a Columbia River Gorge Geology Tour that includes a stop at the Falls.
8:00–8:30 AM   Presentation
Edible Labs
(Grades 6–12)       B110, Convention Center
Science Focus: GEN
**John Vaden**, Riverdale High School, Murfreesboro, Tenn.
Serve up new learning in your classroom. Edible labs allow teachers an innovative means of presenting science concepts such as DNA and density to diverse students using food.

---

**Evaluate Your Sessions Online!**
This year, we’re giving away an Apple iPad mini 2 Wi-Fi tablet to one lucky attendee who completes a session evaluation!

Remember, the more sessions you attend and evaluate, the more chances you have to win! (See page 12 for details.)

---

8:00–9:00 AM   Presentations
Let the Tablet Tell a Science (Digital) Story!
(Grades 3–12)       Morrison, DoubleTree
Science Focus: GEN, CCC
**Roger Pence** (rogpence@yahoo.com), Benicia High School, Benicia, Calif.
Discover how to use digital tablets for crafting science digital stories with popular video-editing apps while promoting science writing and visual literacy skills. Samples, live demonstration, and resources provided.

STEM P3: A Statewide Programs/Policy Partnership to Advance PreK–12 STEM Education
(General)       Oregon, DoubleTree
Science Focus: GEN, SEP
**Paul Gibbins** (@NC_Iowa_STEM; pgibbins@iastate.edu), North Central STEM Hub, Iowa State University, Ames Building a STEM culture across the state calls for systemic rather than piecemeal solutions, integrating classroom, community, and Capitol activities. Hear about a case study of Iowa STEM.

INF The Monarch Butterfly: Sophisticated Science
(Grades 4–9)       Ross Island, DoubleTree
Science Focus: LS2, INF, CCC1, SEP1, SEP4
**Sarah Weaver** (weave048@umn.edu) and **Katie-Lyn Bunney**, University of Minnesota Monarch Lab, Saint Paul Engage students with citizen science data to understand current monarch research and inspire authentic investigations. Go beyond the life cycle!

Using Data Proactively to Guide Differentiated Instruction
(Grades 9–12)       C122, Convention Center
Science Focus: GEN, CCC
**Brandon Rodriguez** (brodriguez209@gmail.com), NASA Jet Propulsion Laboratory, Pasadena, Calif.
See how the science staff used performance and perception data to identify and act upon trends for students before having to play instructional catch-up.

---

STEM in the Primary Classroom
(Grades K–2)       D130, Convention Center
Science Focus: GEN, SEP1, SEP3, SEP7
**Jen Gutierrez** (@jengutierrez18; jengutierrez@cox.net), NSTA Director, District XIV, and Arizona Dept. of Education, Phoenix
**Jennifer Thompson** (@jenjuneau; jenjuneauak@gmail.com), NSTA Director, Preschool/Elementary Science Teaching, and Harborview Elementary School, Juneau, Alaska
Supporting young children’s instinctive desire to explore STEM ideas and phenomena has lasting benefits. Come investigate how interdisciplinary STEM teaching and learning support all students.

Using Problem-Based Learning to Promote Authentic Research and Problem Solving and Excite Interest for Students of All Levels
(Grades 4–College)       D132, Convention Center
Science Focus: GEN
**Barney Peterson** (@BarneyPeterson; bpeterson@everettsd.org), James Monroe Elementary School, Everett, Wash.
**Gary Popiolkowski** (garypopr33@gmail.com), Chartiers-Houston Junior/Senior High School, Houston, Pa.
Discover how to use Problem-Based Learning to promote authentic research and problem-solving opportunities and excite interest for students of all ages.
AMSE-Sponsored Session: Building an Equitable Science Classroom Community: Strategies by and for Teachers  
(Grades 3–College) 
D137, Convention Center  
Science Focus: GEN, NGSS  
Deb Morrison (@educatordeb; educator.deb@gmail.com), University of Washington, Seattle  
Come explore research-based strategies for building justice-centered science classroom communities. Discussion centers on the strategies in reference to participants’ own teaching contexts.

NARST-Sponsored Session: The Efficacy of Multi-Level Professional Development for Elementary, Middle School, and High School Teachers  
(General) 
D138, Convention Center  
Science Focus: GEN, NGSS  
Caren Gough (caren.gough@stonybrook.edu), Stony Brook University, Old Bethpage, N.Y.  
How might multi-group professional development help to prepare elementary, middle school, and high school teachers to successfully connect the NGSS learning progressions across grade levels?

Sing for the Planet  
(Grades 3–8) 
D140, Convention Center  
Science Focus: ESS3, LS2  
Juliana Texley (@JulianaTexley; texle1j@cmich.edu), 2014–2015 NSTA President, and Central Michigan University, Mount Pleasant  
Celebrate science and environmental stewardship with the award-winning music of Pete Seeger and the Rivertown Kids and eight other free films with support materials.

8:00–9:00 AM Hands-On Workshops  
Science Practices: Effective, Fun, and Relevant  
(Grades 3–10) 
Hawthorne/Sellwood, DoubleTree  
Science Focus: GEN, CCC, SEP3, SEP4  
Steve Weinberg (weinberg@ntplx.net), Science Consultant, Boynton Beach, Fla.  
W. Tony Heiting, Science Consultant, Portland, Ore.  
Take part in a number of authentic and engaging investigatory activities that exemplify specific science practices such as planning and carrying out investigations and analyzing and interpreting data that are effective, fun, and relevant.

Engineering Water Wheels: A Three-Dimensional Approach for Integrating Science and Engineering  
(Grades 3–10) 
Weidler/Halsey, DoubleTree  
Science Focus: ETS  
David Crowther (crowther@unr.edu), NSTA President-Elect, and University of Nevada, Reno  
I’ll introduce the engineering design process in an integrated STEM activity to design a water wheel that will most efficiently lift a load of washers. This lesson uses the three dimensions of the NGSS and a learning cycle approach.

Promising Practices in STEM Education for English Language Learners  
(Grades K–8) 
D131, Convention Center  
Science Focus: GEN, INF, NGSS  
Jerry Valadez (jdvaladerez@yahoo.com), NSTA Director, Multicultural/Equity in Science Education, and California State University, Fresno  
Ana López (anaglopez4@gmail.com), Central Valley Science Project, Sanger, Calif.  
Engage with successful STEM-rich “making” practices and learn how to support English language learners as equity-minded teachers and leaders.

Three-Dimensional Formative Assessment  
(General) 
D133/134, Convention Center  
Science Focus: GEN, NGSS  
John Graves (@cjmogan; graves@montana.edu), Montana State University, Bozeman  
Learn strategies and techniques to create and use formative assessments that address the three dimensions of the NGSS.
Infect Your Science Classroom with Math
(Grades 6–College)  D135, Convention Center
Science Focus: GEN
Jeffrey Lukens (jeffreylukens0613@gmail.com), Sioux Falls (S.Dak.) School District
Integrating science and mathematics shouldn’t just be a good idea, it should be the law! Come learn how easy, important, and fun it is to collect and analyze data as a part of good, solid, and responsible science education.

Coyote vs. Road Runner: Why Acme Anvils Aren’t Needed
(Grades K–8)  D136, Convention Center
Christina Cid (c cid@highdesertmuseum.org) and Carolyn Nesbitt (cnesbitt@highdesertmuseum.org), High Desert Museum, Bend, Ore.
Wonder how animals thrive on eating toxic prey or why some animals play dead? Investigate adaptations and food webs using a specimen- and inquiry-based approach.

ASEE Session: ASEE’s K–12 Outreach: Engineering, Go For It (eGFI), Teach Engineering, Link Engineering, and the National Science Digital Library
(Grades K–12)  D139, Convention Center
Science Focus: ETS, SEP
The American Society for Engineering Education (ASEE) and its K–12 division will introduce teachers to innovative ways to add engineering into the K–12 classroom.

Using Recreational UAVs (Drones) for STEM Activities and Science Fair Projects
(Grades 6–12)  E141, Convention Center
Science Focus: ESS2, ESS3, ETS1, ETS2.A, PS2, CCC3, SEP1, SEP3, SEP4, SEP6, SEP7
Shelley Olds (@terraunbound; @UNAVCO; @ESIPfed; shelley.e.old@gmail.com), UNAVCO, Boulder, Colo.
Engage students in STEM using the “it” toy of the year—Unmanned Aerial Vehicles (UAVs or drones)! Try free teacher-developed activities for STEM learning.

NSTA Press® Session: Argument-Driven Inquiry in Chemistry: Lab Investigations for Grades 9–12
(Grades 9–12)  E142, Convention Center
Science Focus: PS, CCC, SEP
Victor Sampson (@drvictorsampson; victor.sampson@gmail.com), The University of Texas at Austin
Learn about Argument-Driven Inquiry and how it can help students learn how to use core ideas, crosscutting concepts, and science practices to explain natural phenomena.

AAPT Session: Physics and Engineering in the Classroom and After-School Clubs I: Using Micro-controllers to Collect and Display Results in Fun and Exciting Ways
(Grades 9–College)  E143, Convention Center
Science Focus: PS, INF
Greg Mulder, Linn-Benton Community College, Albany, Ore.
In this first of three hands-on workshops, we will explore using Arduino microcontrollers and VPython to collect and present data. No prior programming or electronics experience needed.

Get Ready for the Great American Eclipse!
(General)  E144, Convention Center
Science Focus: ESS1.B, CCC1, CCC3, SEP2, SEP4
Brian Kruse (bkruse@astrosociety.org), Astronomical Society of the Pacific, San Francisco, Calif.
David Johnson (djohnson@jeffnet.org), Oregon Science Teachers Association, Portland
Discover how to safely view the August 2017 total solar eclipse, and engage in three-dimensional modeling and data analysis to understand the pattern of eclipses.

ACS Middle Level Session: Solids, Liquids, Gases, and Changes of State
(Grades 6–8)  E146, Convention Center
Science Focus: PS1.A
James Kessler and Patricia Galvan (p_galvan@acs.org), American Chemical Society, Washington, D.C.
Explore solids, liquids, gases, and changes of state through hands-on activities and molecular animations from the free completely developed 5E lesson plans available at www.middleschoolchemistry.com.
NGSS? Got It Covered!
(Grades 9–12) E147/148, Convention Center
Science Focus: ETS, LS
Claudia Ludwig (@SystemsEd; cludwig@systemsbiology.org), Institute for Systems Biology, Seattle, Wash.
Mari Knutson Herbert (@mari.herbert; knutsonm@lynden.wednet.edu), Lynden (Wash.) School District
Bring engineering to your biology course. Engage students with a case study involving halophiles as indicators of ecosystem health. Challenge students to design, build, and use a data collection device, and collaborate to address an environmental issue.

8:00–9:00 AM Exhibitor Workshops
Let’s Get Helical: Exploring DNA Structure and Function with Physical Models
(Grades 9—College) A103/104, Convention Center
Science Focus: LS, CCC
Sponsor: 3D Molecular Designs
Tim Herman (herman@msoe.edu), MSOE Center for Bio-Molecular Modeling, Milwaukee, Wis.
DNA can be viewed as a macromolecule or a source of genetic information. Explore both features with interactive DNA models and a paper bioinformatics exercise focusing on the beta subunit of hemoglobin. Examine the mutation that leads to sickle cell disease and the regulation of fetal and adult hemoglobin expression.

Integrating Chromebook with Vernier Data-Collection Technology
(Grades 3–12) A105, Convention Center
Science Focus: GEN, SEP3, SEP4
Sponsor: Vernier Software & Technology
David Carter (info@vernier.com), Vernier Software & Technology, Beaverton, Ore.
Collecting and analyzing data helps students learn critical science concepts that increase test scores and promote science inquiry. In this hands-on workshop, learn how Vernier supports teachers who use Chromebook devices in their classroom. Experiments such as “Boyle’s Law,” “Grip Strength Comparison,” and “Ball Toss” will be conducted.

An NGSS Approach to Engineering in the Upper Grade Bands
(Grades 6–12) A106, Convention Center
Science Focus: ETS, SEP2, SEP3, SEP7
Sponsor: Houghton Mifflin Harcourt
Michael DiSpezio, Author and STEM Specialist, North Falmouth, Mass.
Join educator, broadcast host, and Houghton Mifflin Harcourt author Michael DiSpezio for an engaging and informative workshop that addresses the NGSS approach to engineering and the engineering design process in the upper grade bands. In this hands-on session, you will work in multidisciplinary teams as you participate in several activities that profile and address a standards-based approach to engineering.

Fun with Freewheelers! Teaching Science and Math with Manipulatives
(Grades 4–8) A107, Convention Center
Science Focus: ETS, PS
Sponsor: LEGO Education
Ty Stevenson (ty.stevenson@lego.com), LEGO Education, Boston, Mass.
Experience LEGO Education Simple and Powered Machines through hands-on activities with the materials. Students using this solution have the ability to design and build machines using motors to probe issues of force, friction, and measurement. Challenging students to apply math concepts including division and ratios, the curriculum extends beyond physical science. Explore concepts related to design, gearing ratios, and the application of math.
Comparative Vertebrate Anatomy with Carolina’s Perfect Solution® Specimens
(Grades 9–12) A108/109, Convention Center
Science Focus: LS
Sponsor: Carolina Biological Supply Co.
Carolina Teaching Partner
Explore animal diversity by comparing and contrasting anatomical adaptations of the pig, rat, dogfish, and frog. Participants use hands-on dissection to identify characteristics of these popular vertebrates. This is an excellent comparative dissection activity featuring Carolina’s Perfect Solution specimens.

Viruses—From Adenovirus to HIV to Zika
(Grades 9–12) B111/112, Convention Center
Science Focus: LS, SEP1, SEP6
Sponsor: HHMI BioInteractive
Mary Colvard, Retired Educator, Deposit, N.Y.
How are viruses the same…and different? How do they infect different hosts? Why do they cause disease in some hosts and not others? Explore free HHMI BioInteractive materials, including click and learns, hands-on activities, and videos that can engage your students in both asking and answering these questions.

Modeling Climate Change Impacts: Dissolving Carbon Dioxide
(Grades 9–12) B113, Convention Center
Science Focus: ESS3, PS
Sponsor: PASCO scientific
Presenter to be announced
Rising temperatures are not the only impact of increased CO₂ emissions. Earth’s oceans have acted as a buffer by dissolving excess CO₂ into solution. In this quick hands-on activity, create a model to investigate the effects of dissolved CO₂ using the wireless pH sensor and experience how easy inquiry can be.

Hands-On Integrated Science Activities for Middle School from Flinn Scientific
(Grades 6–8) B114/115, Convention Center
Science Focus: ESS2, LS1, PS1, PS4
Sponsor: Flinn Scientific, Inc.
Janet Hoekenga (jhoekenga@flinnsci.com), Flinn Scientific, Inc., Batavia, Ill.
Hands-on science leads to minds-on learning! Flinn Scientific presents relevant and age-appropriate activities for middle school—integrating life, Earth, and physical science topics. Workshop participants perform and observe experiments designed to capture the curiosity and engage the energy of adolescent students. Handouts for all activities.

Waves
(Grades 6–8) B116, Convention Center
Sponsor: LAB-AIDS®, Inc.
Lisa Kelp, LAB-AIDS, Inc., Ronkonkoma, N.Y.
Although we live in an EM waves–enabled lifestyle, most of us (students included) have no idea how they work. Join LAB-AIDS for a new middle level NGSS-based waves activity from SEPUP’s Issues and Physical Science program. Explore light properties by investigating colors of the visible spectrum and their energy levels using phosphorescent material. Activities exemplify the NGSS and show how SEPUP embeds the research-based practices and real issues to deliver powerful content learning.

STEM Literacy: Strategies for Making Complex Text Meaningful
(Grades K–12) C120/121, Convention Center
Science Focus: GEN, NGSS
Sponsor: Accelerate Learning–STEMscopes
Pam Caffery, Accelerate Learning–STEMscopes, Brandon, Fla.
Join us as we learn the power of using close reading strategies to engage students in reading, writing, and discussing the science text in collaborative groups, which can lead to student mastery and high achievement. Build the capacity for scientific literacy success in your STEM classroom!

Contagion! Track the Progress of Dangerous Viruses That Are Spreading Throughout the Country
(Grades 9–College) C123, Convention Center
Science Focus: LS
Sponsor: Bio-Rad Laboratories
Damon Tighe (damon_tighe@bio-rad.com), Bio-Rad Laboratories, Hercules, Calif.
Disease can spread like wildfire through populations. In this hands-on workshop, you will assume the role of an epidemiologist and use an ELISA assay to track viruses like HIV, Ebola, Zika, and SARS. See if you can find patient zero.
Implementing Science Seminars and Scientific Argumentation with Amplify Science  
(Grades 6–8)  
C124, Convention Center  
Science Focus: GEN, SEP7  
Sponsor: Amplify  
Traci Shields (amplifyscience@berkeley.edu) and Rebecca Abbott (amplifyscience@berkeley.edu), The Lawrence Hall of Science, University of California, Berkeley  
What is a science seminar? How do I effectively implement scientific argumentation in the classroom? Discover how the Amplify Science approach supports students as they gain expertise formulating written and oral arguments. Experience an authentic and powerful instructional sequence that supports students in formulating both oral and written arguments.

Stop Creating Lesson Plans—Start Creating Learning Experiences  
(General)  
C125/126, Convention Center  
Science Focus: GEN, NGSS  
Sponsor: Van Andel Education Institute  
Marty Coon (marty.coon@vai.org), Van Andel Education Institute, Grand Rapids, Mich.  
Kimberly Newman, Camas High School, Camas, Wash.  
Tim Renz (renzt@tukwila.wednet.edu), Foster High School, Tukwila, Wash.  
Engage your students to think and act like scientists. Be the teacher that transforms everyday lesson plans into authentic, memorable learning experiences with inquiry-focused instruction. Come with a willingness to inspire learning; leave with strategies and tools to make it happen.

8:00–10:00 AM  
Elementary Day @NSTA Panel  
Articulating the “Why”: Science in the Elementary Years  
(Grades K–6/College)  
Multnomah, DoubleTree  
Science Focus: GEN, NGSS  
Susan Holveck (susan_holveck@beaverton.k12.or.us), OSTA President; Program Coordinator, NSTA Portland Area Conference; and Beaverton (Ore.) School District  
Melissa Dubois, South Metro-Salem STEM Partnership, Klamath Falls, Ore.  
Teresa Goetter, Metzger Elementary School, Portland, Ore.  
Mary Gromko, OSTA President, Colorado Springs, Colo.  
Mark Lewis, Chief Education Office, Salem, Ore.  
Michael Ann McIlvenny, South Shore Elementary School, Albany, Ore.  
Peter McLaren, Next Gen Education, LLC, North Kings¬town, R.I.  
Salam Noor, Oregon Dept. of Education, Salem  
Bryan Rebar, University of Oregon, Eugene  
Moderator: Cristina Trecha, Portland State University, Portland, Ore.  
Principals and elementary teachers will learn why science instruction is important for students and why it is an equity issue if science is not taught.
Hands-On Workshop
ACS Session One: Energy in Chemistry—A Macroscopic View
(Grades 9–12) E145, Convention Center
Science Focus: PS3, SEP6
Marta Gmurczyk, American Chemical Society, Washington, D.C.
Shelly Belleau, University of Colorado Boulder
Chad Bridle (@sciencebridle; ebridle@gpsbulldogs.org), Grandville High School, Grandville, Mich.
Rebecca Stober, Mapleton Expeditionary School of the Arts, Denver, Colo.
Engage in design activities that can help students meaningfully understand energy transfer between systems with different temperatures by designing devices with specific properties and testing their properties. These activities have been developed to deepen students’ conceptual understanding about energy, heat, and temperature in macroscopic systems.

Meeting
Discover the NGSS Train-the-Trainer Workshop
(By Separate Registration Only) Holladay, DoubleTree
This workshop gives teacher leaders a solid understanding of the NGSS, tools for conducting teacher training, and the ongoing support they need to be leaders.

Presentation
Project-Based Instruction Is a Perfect Match for NGSS
(Grades 6–12) B110, Convention Center
Science Focus: ETS, SEP
Sandra Leiterman (@saleiterman; sleiterman9796@hotmail.com), University of Arkansas at Little Rock
Learn key components for designing and implementing effective project-based units, even if you’re the “lone wolf” trying it in your building.

Exhibits
Hall A, Convention Center
Did you know that NSTA offers Exclusive Exhibits Hall hours today from 1:30 to 3:00 PM? During these hours there are no teacher sessions scheduled and it’s a perfect time to visit the exhibits and discover all the products and services companies and organizations have to offer. Some exhibitors will offer materials for sale throughout the conference.

Featured Presentation
Implicit Bias and Its Effect on Diverse Youth
(General) Oregon Ballroom 201, Convention Center
Science Focus: GEN
Deena Pierott (@DeenaPierott; deena@iurbanteen.org), Founder and Chief Innovator, iUrban Teen, Vancouver, Wash.
Presider: Marjorie “Midge” Yergen, The View from the Summit: Celebrating Science for All Strand Leader; NSTA Director, District XVII; and West Valley Junior High School, Yakima, Wash.
How can we intentionally counteract the negative effects of implicit bias across students’ educational experiences? Implicit biases can impact youth’s interactions with each other and impede learning opportunities. Join Deena as she discusses both explicit and implicit biases and the role of educators in mitigating their effects both personally and in their classrooms.

Deena Pierott is a tireless advocate and a strong voice in support of diversity, equity, and inclusion. A 2013 White House Champion for Change, Deena founded iUrban Teen in 2011 in an effort to expose nontraditional STEM learners to career opportunities while encouraging high school graduation and extended learning. She has both corporate and public sector experience working for companies such as Exxon, Mattel Toys, Hughes Aircraft, the Urban League, and the City of Portland’s Environmental Services Bureau.

Recently, she created the Portland Metro Diversity Employment Network, which consists of over 90 human resources managers and corporate recruiters to create a whole new model for diversity recruiting and onboarding.
9:30–10:30 AM  Presentations

Yes! You Can Teach Computer Science with Scalable Game Design!
(Grades 4–8) Alaska/Idaho, DoubleTree
Science Focus: GEN, SE2P, SE2P5, SE2P6
Ryan Rasar (@RLRasar; rrasar@nvacademy.org), Nevada Virtual Academy, Las Vegas
In Scalable Game Design, students learn computational thinking patterns and 21st-century skills while coding video games and scientific simulations. NSF grant funded.

The Role of Community Partnerships in FieldSTEM Plus
(Grades K–12) Morrison, DoubleTree
Science Focus: GEN, NGSS
Pamela Farr (pfarr@sheltonschools.org), Shelton (Wash.) School District
Pacific Education Institute will showcase a rural school district model of K–12 FieldSTEM that engages all students in grade-level NGSS-focused science content.

Chemistry Concepts STEAM-ified
(Grades 5–College) Oregon, DoubleTree
Science Focus: PS
Julie Smith (julieta@president@gmail.com), Lennox Middle School, Lennox, Calif.
Use animations, online resources, and a paper chemistry set to make NGSS chemistry disciplinary core ideas accessible for all, including modeling atomic structure, periodic table organization, and chemical bonding.

Baby Carrots Are Killing You!
(Grades 7–College) Ross Island, DoubleTree
Science Focus: GEN, SEP7
Doug Fraser (fraser.biology@gmail.com), Science Author/Consultant, Nanaimo, B.C., Canada
Let’s examine myths and misconceptions and the role of social media in spreading good, bad, and bogus information, from vaccines and the Food Babe to GMOs.

INF Leveling the Playing Field: After-School STEM Coaching Model
(Grades K–12) B110, Convention Center
Science Focus: INF, SEP
Sandie Grinnell (grinnel@s.d.k12.or.us), Hillsboro (Ore.) School District
Paul Hanson (hansonsp@s.d.k12.or.us), Liberty High School, Hillsboro, Ore.
Join us as we share strategies for implementing a district-wide STEM coaching model, successes to be celebrated, and lessons learned along the way. Borrowing from the long-standing practice of stipending athletic coaches, Hillsboro School District has created a STEM coaching model with dedicated coaches specifically supporting after-school STEM programs at each of its schools.

Ecology and Biodiversity Labs: The Environment in Three Dimensions
(Grades 10–College) B119, Convention Center
Ben Smith (ben.smith@alumni.duke.edu), Palos Verdes Peninsula High School, Rolling Hills, Calif.
Explore engaging student-designed ecology and biodiversity lab and field investigations to enhance three-dimensional environmental science learning and teaching.

Basic Polymer Science for the Science Classroom
(Grades 6–12) C122, Convention Center
Science Focus: PS1.A, PS1.B, CCC6
Debbie Goodwin (nywin@hotmail.com), Retired High School Science Teacher, Chillicothe, Mo.
Simple demonstrations, labs, and activities bring STEM-relevant polymers into your curriculum. Concepts include formation, classification, structure, and properties. NGSS correlations will be shared as well as a CD of activities/information.

3-D Outdoor Learning Strategies
(Grades K–5) D130, Convention Center
Science Focus: GEN
Karen Stanfield, Cowan Road Elementary School, Milner, Ga.
Students remain highly engaged when their interest levels are piqued using a 3-D outdoor learning environment. We will discuss strategies for integrating required standards and a deeper understanding of NGSS.

Solving the Mystery of the Megaflood with Fourth-Graders!
(Grades P–6) D137, Convention Center
Science Focus: GEN, NGSS
Jennifer Whitten (jennifer.ann.whitten@gmail.com), Beaver Acres Elementary School, Beaverton, Ore.
Megafloods? A rebel geologist? Students in a grade 4 classroom puzzle over the complex phenomena of the Eastern Washington “scablands” while developing evidence-based explanations through activities, readings, and discussions.
Engage Your Students Through Conservation Connect (Grades 4–8) D138, Convention Center

Science Focus: LS, CCC4, SEP4

Randy Robinson (randy_robinson@fws.gov), U.S. Fish & Wildlife Service, Falls Church, Va.

Juliana Texley (@JulianaTexley; texlej@cmich.edu), 2014–2015 NSTA President, and Central Michigan University, Mount Pleasant

Hear about Conservation Connect, a new web-based video series produced by the U.S. Fish & Wildlife Service for middle school students.

9:30–10:30 AM Hands-On Workshops

Do I Really Want Them to Argue? (Grades 6–12) Hawthorne/Sellwood, DoubleTree

Science Focus: GEN, SEPs, SEp7

Leticia Perez, UCLA Center X, Los Angeles, Calif.

Leery of argumentation or how it fits into your classroom? Identify how data science and computational thinking can be used in conjunction with argumentation to support concept development.

Developing Project-Based Learning Units in Partnership with STEM Professionals: Real-World Project Examples (Grades 3–8) D131, Convention Center

Science Focus: GEN, SEP

Bryan Rebar (@RebarBryan; brebar@cas.uoregon.edu), University of Oregon, Eugene

Dara Brennan (@SPS_STEM; dara.brennan@springfield.k12.or.us), Springfield (Ore.) Public Schools

Grades 3–8 teachers will share projects they developed with inspiration and guidance from community partners who use STEM skills in their careers.

Integrating Green Chemistry and Engineering Design into Every Classroom: Interactive Workshop for High School Educators (Grades 9–12) D133/134, Convention Center

Science Focus: ETS1, PS

Jill Stoddard Tepe, University of Washington, Seattle

Join me as I bring together the principles of green chemistry and resources for lab activities that both teach and use green chemistry concepts.

GAUGE: A Novel NGSS-Based Grading System (Grades 6–12) D140, Convention Center

Science Focus: GEN, NGSS

David Midkiff (@midkiffwrites; dave.james.midkiff@gmail.com), Christina Iremonger (christina.iremonger@vansd.org), and Darby Meade (darby.meade@vansd.org), Vancouver Preparatory, Vancouver, Wash.

Gil Luna (gilbert.luna@vansd.org), Vancouver (Wash.) Public Schools

How do we convert standards-based scores into a single representative letter grade? Averaging can hide a student’s true knowledge and understanding.

Go Probe! Teaching Astronomy with Sensors and Apps (Grades 6–12) D136, Convention Center

Science Focus: ESS

Jenifer Perazzo (@overlandsafari; jperazzo@pleasantonusd.net), Pleasanton (Calif.) Unified School District

Stacey Holder (@StaceyAHolder; sholder@pleasantonusd.net), Fairlands Elementary School, Pleasanton, Calif.

Explore the built-in sensors on any device to enhance students’ observations and data collection skills. Use technology to model, create, collect, and communicate results.

ASEE Session: Engineering a Pathway to STEM: Advancing Elementary-Level Engineering Education Through Innovative Programs and Partnerships (Grades K–5) D139, Convention Center

Science Focus: ETS, INF

David Heil (dheil@davidheil.com), David Heil & Associates, Inc., Portland, Ore.

Discover how to provide quality STEM experiences in your school and community through two nationally recognized engineering programs—Engineering is Elementary and Family Engineering.

Do You See What I See? (Grades 6–12) E141, Convention Center

Science Focus: GEN, SEp2, SEp6, SEp7

Samantha Johnson (@SciInnovations; smjohnson@slzusd.org), Arroyo High School, San Lorenzo, Calif.

Come see modeling in action and engage in several modeling activities. Leave with a “goodies grab bag,” lesson plans, and strategies that can be implemented in your classroom as soon as you return.
NSTA Press® Session: Argument-Driven Inquiry in Biology: Lab Investigations for Grades 9–12  
(Grades 9–12) E142, Convention Center  
Science Focus: LS, CCC, SEP  
Victor Sampson (@drvictorsampson; victor.sampson@gmail.com), The University of Texas at Austin  
Jonathon Grooms (@drjongrooms; jgrooms@gwu.edu), The George Washington University, Washington, D.C.  
Learn about Argument-Driven Inquiry and how it can help students learn how to use core ideas, crosscutting concepts, and science practices to explain natural phenomena.

AAPT Session: Physics and Engineering in the Classroom and After-School Clubs II: Using an Arduino to Collect Data and Control Motors  
(Grades 9–College) E143, Convention Center  
Science Focus: PS, INF  
Greg Mulder, Linn-Benton Community College, Albany, Ore.  
In this second of three hands-on workshops, we will explore using Arduino microcontrollers and VPython to collect and present data. No prior programming or electronics experience needed.

ACS Middle Level Session: Density: A Molecular View  
(Grades 6–8) E146, Convention Center  
Science Focus: PS1.A  
James Kessler and Patricia Galvan (p_galvan@acs.org), American Chemical Society, Washington, D.C.  
Explore and identify materials based on density through hands-on activities and molecular models from the free completely developed 5E lesson plans available at www.middleschoolchemistry.com.

Learning About Global Climate Change in a Physics Course for Prospective Teachers  
(General) E147/148, Convention Center  
Science Focus: ESS3, PS  
Emily Van Zee, Oregon State University, Corvallis  
Participate in activities that explore the nature of light and thermal phenomena and their influence on local weather and global climate change.

CESI-Sponsored Session: Integrating Science for Young Children with an Outdoor Focus  
(Grades P–3) Oregon Ballroom 203, Convention Center  
Science Focus: GEN, SEP  
Jim McDonald (@jimscienceguy; jim.mcdonald@cmich.edu), CESI President, and Central Michigan University, Mount Pleasant  
I’ll present engaging activities that allow you to take children outside and easily integrate science, art, music, and social studies while using NGSS science practices.

9:30–10:30 AM Exhibitor Workshops

3D Printing for the BioScience Classroom  
(Grades 9–College) A103/104, Convention Center  
Science Focus: LS, PS, CCC, SEP  
Sponsor: MSOE Center for BioMolecular Modeling  
Tim Herman (herman@msoe.edu) and Mark Hoelzer (hoelzer@msoe.edu), MSOE Center for BioMolecular Modeling, Milwaukee, Wis.  
Recent advances in 3D printing technology make these amazing machines affordable for schools. Learn how 3D printing can be used to integrate NGSS science and engineering practices with crosscutting concepts and disciplinary core ideas by creating physical models of molecular structures in your biology or chemistry classroom!

Chemistry with Vernier  
(Grades 9–12) A105, Convention Center  
Science Focus: PS, SEP3, SEP4  
Sponsor: Vernier Software & Technology  
David Carter (info@vernier.com), Vernier Software & Technology, Beaverton, Ore.  
In this hands-on workshop, learn how Vernier supports chemistry teachers who want their students to use probe-ware. A variety of experiments from our popular chemistry lab books will be conducted. Learn how our innovative data-collection technology works across multiple platforms such as LabQuest 2, computer, Chromebook, and iPad.
FOLD-tastic Science Notebooks via Dinah Zike's Notebook Foldables
(General) A106, Convention Center
Science Focus: GEN
Sponsor: Dinah.com
Bob Stremme, Dinah.com, Plymouth Meeting, Pa.
Cut, fold, and more in this hands-on workshop as you construct Notebook Foldables that are sure to make your students’ science notebooks FOLD-tastic. Use basic classroom materials and depart with examples and ideas ready to use on Monday.

Discourse Tools for Equitable and Rigorous Talk
(Grades 5–8) A107, Convention Center
Science Focus: GEN, SEP8
Sponsor: Activate Learning
Heather Milo, Activate Learning, Greenwich, Conn.
The Framework promotes learning as a fundamentally social endeavor supported by collaborative and communicative norms. Yet, sustaining these norms requires all members to articulate, make sense of, and evaluate each other’s ideas, making discourse tools vitally important. Walk away with ready-to-use tools that foster productive talk around big science ideas!

Learning By Arguing: Claims, Evidence, and Reasoning
(Grades 6–8) A108/109, Convention Center
Science Focus: GEN
Sponsor: Carolina Biological Supply Co.
Carolina Teaching Partner
Middle school students naturally love to argue. How can we use scientific argumentation to produce real learning in the science classroom? Explore claims, evidence, and reasoning through practical, real-world applications. Experience phenomena as delivered in the new Smithsonian Science and Technology Concepts (STC) Middle School program.

Exploring Misconceptions: Speed and Velocity
(Grades 9–12) B113, Convention Center
Science Focus: PS2
Sponsor: PASCO scientific
Presenter to be announced
Speed and velocity are two ways to describe the motion of an object that students often confuse. In this workshop, you will use the wireless Smart Cart to collect real-time motion data and compare the graphs of the Smart Cart’s speed and velocity.

3-2-1 Blast Off!
(Grades 2–8) B114/115, Convention Center
Sponsor: Educational Innovations, Inc.
What student doesn’t like a burst of energy?! Join us for things that go bump in the day! Perfect for elementary or middle school teachers teaching energy or Newton’s laws. Make your own rockets to explore elastic, potential, and kinetic energy, and more. Lesson ideas, giveaways, and door prizes!

pH Scale and Math Modeling
(Grades 9–12) B116, Convention Center
Science Focus: PS1.B, CCC3, SEP3, SEP4, SEP5
Sponsor: LAB-AIDS®, Inc.
Brandon Watters, Vernon Hills High School, Vernon Hills, Ill.
What does pH actually measure? In this investigation, you will measure pH indirectly using indicators and absorption using the Lab-Master. Using their data participants generate a graph of absorbance vs. pH. This graph can be used to determine the pH of solutions, within the measured pH range. Join us for this activity from The Natural Approach to Chemistry program.

STEM and NGSS Inquiry in Chemistry—Effective, Efficient, Economical
(General) B117/118, Convention Center
Science Focus: PS
Sponsor: Pearson
Ed Waterman, Retired Educator, Fort Collins, Colo.
Learn how to transition to a STEM and NGSS student-centered chemistry classroom by implementing safe, simple, material-conserving, time-efficient, and effective inquiry activities in chemistry. Safety and differentiation are built in. Teach core content while fostering problem solving, creativity, and invention. Students design original experiments not possible with traditional methods.
Building the Skills of Argumentation and Collaboration in STEM
(Grades K–12) C120/121, Convention Center
Science Focus: GEN, SEP7
Sponsor: Accelerate Learning–STEMscopes
Pam Caffery, Accelerate Learning–STEMscopes, Brandon, Fla.
Engaging in argument from evidence is a practice of scientists and engineers that is a vital part of a STEM classroom. Join us as we model protocols and structures that you can use for successful implementation of consensus building and evidence-based argumentation into your classroom.

Investigate Photosynthesis and Cellular Respiration with Algae Beads
(Grades 8–College) C123, Convention Center
Science Focus: LS
Sponsor: Bio-Rad Laboratories
Damon Tighe (damon_tighe@bio-rad.com), Bio-Rad Laboratories, Hercules, Calif.
Use algae beads in a colorimetric assay to study both photosynthesis and cellular respiration in authentic inquiry investigations (AP Biology Big Idea 2: Labs 5 and 6). Learn how to extend this lab to study the effects of light intensity, light color, temperature, and other organisms on these processes.

Not Your Typical Classroom Experience: Amplify Science’s Digital Engineering Internships
(Grades 6–8) C124, Convention Center
Science Focus: ETS
Sponsor: Amplify
Traci Shields (amplifyscience@berkeley.edu) and Rebecca Abbott (amplifyscience@berkeley.edu), The Lawrence Hall of Science, University of California, Berkeley
Discover Amplify Science’s digital Engineering Internships—compelling, immersive classroom experiences. As students become interns at the firm Futura Engineering, teachers are able to facilitate an authentic opportunity for students to iterate and design solutions to real-world problems.

miniPCR PTC Taster Lab—From Genotype to Phenotype
(Grades 6–College) C125/126, Convention Center
Science Focus: LS1, LS3, LS4, CCC2, CCC3, SEP1, SEP2, SEP3, SEP4, SEP6, SEP7, SEP8
Sponsor: miniPCR
Ezequiel Alvarez Saavedra (team@minipcr.com) and Sebastian Kraves (team@minipcr.com), miniPCR, Cambridge, Mass.
Are you a super taster? Come explore the molecular genetics of taste at the DNA level! Learn how a single letter change in our DNA can transform our taste perception. In this classroom-friendly lab, students start from a cheek swab and use PCR, restriction enzymes, and electrophoresis to study their taste receptor genes.
10:30 AM–12:30 PM  Hands-On Workshops
Taking Stock and Planning for Three-Dimensional Science Teaching and Learning in Elementary Schools
(Grades K–6/College)  Multnomah, DoubleTree
Science Focus: GEN, NGSS
Susan Holveck (susan_holveck@beaverton.k12.or.us), Program Coordinator, NSTA Portland Area Conference, and Beaverton (Ore.) School District
Carol Biskupic Knight (carol_biskupic_knight@beaverton.k12.or.us), Beaverton (Ore.) School District
Noelle Gorbett (ngorbett@ttsd.k12.or.us), Tigard-Tualatin School District, Portland, Ore.
Andrew Byerley (@andybyerley; abyerley@fgsd.k12.or.us), Forest Grove (Ore.) School District
Calling all elementary teacher and administrators who want to learn implementation strategies for transforming their schools’ culture to be more inclusive of three-dimensional science teaching and learning.

ACS Session Two: Energy in Chemistry—A Particular View
(Grades 9–12)  E145, Convention Center
Science Focus: PS3, SEP2, SEP6, SEP7
Marta Gmurczyk, American Chemical Society, Washington, D.C.
Shelly Belleau, University of Colorado Boulder
Jennifer Keil (jenniferkeil11@gmail.com), Thornton High School, Thornton, Colo.
Chad Bridle (@sciencebridle; cbridle1@gpsbulldogs.org), Grandville High School, Grandville, Mich.
Rebecca Stober, Mapleton Expeditionary School of the Arts, Denver, Colo.
Engage in modeling activities focused on energy transfer during physical and chemical processes by building and analyzing particulate models of matter. These activities are designed to deepen students’ conceptual understanding of how kinetic and potential energy of particles change during phase changes and in chemical reactions, and how this information can be used to analyze changes in our surroundings.

11:00 AM–12 Noon  Featured Presentation
Beyond the Blender Metaphor of Integration: NGSS as a Lever for Transforming Educational Opportunities for Elementary Learners
(Grades P–5)  Oregon Ballroom 201, Convention Center
Science Focus: GEN, NGSS
Carla Zembal-Saul (@czem; czem@psu.edu), Penn State, University Park, Pa.
Presider: Jodie Harnden, Base Camp: Collaborating to Integrate Elementary Science Instruction with Math and ELA Strand Leader, and Sunridge Middle School, Pendleton, Ore.
A Framework for K–12 Science Education and the NGSS advance a compelling vision of integration on multiple fronts. In addition to performance expectations that weave together science and engineering practices with disciplinary core ideas and crosscutting concepts, there are clear opportunities to integrate science teaching and learning with literacy and mathematics instruction around reasoning about phenomena and arguing from evidence. Less frequently emphasized, however, are opportunities to involve language learners more centrally in the classroom community through science and engineering, leverage intersections between 3D instruction and authentic formative assessments, and support a more coherent approach to teacher learning across the professional continuum that includes administrators and informal or community educators. Join the conversation about how to make the most of this exciting time in education and intentionally move beyond the “chop it up and mix it together” (i.e., blender) metaphor of integration.

Carla Zembal-Saul is a professor of science education, co-director of elementary teacher education, and Kahn Professor of STEM Education at Penn State University. A former middle school science teacher with a background in biology, she is co-author of the book, What’s Your Evidence? Engaging K–5 Students in Constructing Explanations in Science.

Her research investigates instructional practices and tools that support preservice and practicing elementary teachers in engaging children productively in science practices and discourse with an emphasis on sense-making about natural phenomena. Carla is deeply invested in practitioner inquiry and video analysis of practice as mechanisms for advancing teacher learning and development.
11:00 AM–12 Noon  Presentations

Identity Crisis? From Science Teacher to District-Based Science Specialist  
(General)  Morrison, DoubleTree  
Science Focus: GEN  
Jennifer Mayo (@spacegirljenn; jennifer.kelley66@gmail.com), Einstein Fellow, NASA Headquarters, Washington, D.C.  
Attention will be paid to research from district-based science specialists with discussion centered around professional identity, leadership, and the changing role of teachers.

Dazzling Deceptions: Discrepant Events That Delight and Mystify!  
(Grades 4—College)  Oregon, DoubleTree  
Science Focus: GEN, NGSS  
Alan McCormack (amccorma@mail.sdsu.edu), 2010–2011 NSTA President, and San Diego State University, San Diego, Calif.  
Science experiences that seem contrary to “common sense” are great motivators for kids!

Understanding and Including the Crosscutting Concepts in NGSS Instruction  
(Grades K–12)  Ross Island, DoubleTree  
Science Focus: GEN, CCC  
Karen Whisler (whisler.karen@measuredprogress.org), Measured Progress, Dover, N.H. Crosscutting concepts may be the most challenging NGSS dimension to implement. This session will explore the CCCs and evaluate strategies for explicitly incorporating them into instruction.

Making Waves: Seismic Waves Activities and Demonstrations  
(Grades 5–12)  B110, Convention Center  
Science Focus: ESS2  
Lawrence Braile (braile@purdue.edu), Purdue University, West Lafayette, Ind.  
Hands-on activities and effective animations and software are used to demonstrate important seismic wave characteristics and propagation.

The NSTA Learning Center: A Tool to Develop Preservice Teachers  
(College)  B119, Convention Center  
Science Focus: GEN, NGSS  
Flavio Mendez (flavio_m@nsta.org), Assistant Executive Director, NSTA Learning Center, NSTA, Arlington, Va. Come learn how to use the NSTA Learning Center as an online textbook when teaching preservice science teachers.

Do You Need a New Science Lab?  
(Grades 6–12)  C122, Convention Center  
Science Focus: GEN  
Ruth Ruud (ruudruth61@gmail.com), Cleveland State University, Cleveland, Ohio  
Win a Shell Science Lab Makeover ($20,000 value) for your school! Are you a middle school or high school science teacher in need of a science lab makeover? Attend this Shell Science Lab presentation and learn how you can apply to win the Shell Science Lab Challenge. You will have an opportunity to actually begin to complete the application and have your questions answered.

Eureka! Science Trade Books—Good as Gold!  
(General)  D130, Convention Center  
Science Focus: GEN, SEP8  
Suzanne Flynn, Lesley University and Cambridge College, Carver, Mass.  
Juliana Texley (@JulianaTexley; texleyj@cmich.edu), 2014–2015 NSTA President, and Central Michigan University, Mount Pleasant  
Need great books for student learning? Explore and use NSTA Recommends and the Children’s Book Council Outstanding Science Trade Books. Door prizes—books, of course!
ASTC-Sponsored Session: Informal Science Educators Networking Brown Bag Lunch

(General)   D132, Convention Center
Science Focus: INF, SEP
Bring your own lunch and join us for a networking session to meet other informal science educators and discuss current issues in STEM education.

NSELA-Sponsored Session: Tools for Science Leaders, Part 2

(General)   D138, Convention Center
Science Focus: GEN
Bob Sotak (@nselascience; bobsotak@gmail.com), Science/STEM Education Consultant, Edmonds, Wash.
Come learn about the various tools and strategies that science leaders can use to enhance teaching and learning in their outreach.

Friday, 11:00 AM–12 Noon  Hands-On Workshops

Transitioning Instructional Materials for the NGSS (Grades K–12)   Hawthorne/Sellwood, DoubleTree
Science Focus: GEN, NGSS
Jennifer Childress (jchildress@achieve.org), Achieve, Inc., Washington, D.C.
Explore tools and resources that can help evaluate whether instructional materials are designed for the NGSS and help guide their revision if they aren’t.

Transforming Elementary Grade–Level Science Demonstrations from Ordinary to Inquiry (Grades 1–5)   D131, Convention Center
Science Focus: GEN
Mary Jean Lynch (mlynch@noctrl.edu) and John Zenchak (jjzenchak@noctrl.edu), North Central College, Naperville, Ill.
Join us and find out how to transform a typical science demonstration into an engaging inquiry activity.

Teaching Genetics and Evolution Through Context-Based Learning Involving Food Security Issues in Africa (Grades 8–College)   D133/134, Convention Center
Science Focus: LS4
Timothy Goodale (tagoodal@ncsu.edu), North Carolina State University, Raleigh
Using methods from an NSF-funded international study, this workshop will demonstrate the first of four units involving the teaching and learning of genetics and evolution through context-based methods surrounding food security issues in Africa.

3D Biology for the Next Generation: 3-D Teaching, Learning, and Assessment in the Biology Classroom (Grades 6–12)   D135, Convention Center
Science Focus: LS1, CCC1, SEP2, SEP6
Caitlin Everett (caitlin_everett@beaverton.k12.or.us), Beaverton (Ore.) School District
Have your students take part in the practices of modeling, designing solutions, and arguing from evidence. NGSS-focused lessons and assessments for the biology classroom will be shared.

Teaching Science Practices and the Nature of Science (Grades K–8)   D136, Convention Center
Science Focus: GEN, SEP
Randy Bell, Oregon State University, Corvallis
Participate in activities that make learning about science practices and the nature of science fun for your elementary students. You’ll receive free resources and lessons.

ASEE Session: Cognitive and Noncognitive Experiences with Engineering Practices (General)   D139, Convention Center
Science Focus: ETS1, SEP
Ann McMahon (@annpmcmahon; annpmcmahon@gmail.com), University of Washington Bothell
Engineering is a team sport. This workshop highlights the social/emotional learning opportunities within each engineering design challenge. Come to engineer AND build relationship skills.

Science, ELLs, and Three-Dimensional Learning for Grades 3–8 Life Science (Grades 3–8)   E141, Convention Center
Science Focus: LS, CCC, SEP
David Crowther (@drcrowther; crowther@unr.edu), NSTA President-Elect, and University of Nevada, Reno
Engage in a model lesson in life science with adaptations for English language learners and modeled through three-dimensional learning as advocated in the NGSS.
How to Engage Students in Three-Dimensional Learning Around NGSS: Two Examples Units
(Grades 9–12) E144, Convention Center
Science Focus: GEN, NGSS
Amanda Rainwater (arainwater@nsd.org) and Rachel Endelman (rendelman@nsd.org), Bothell High School, Bothell, Wash.
Learn how to engage your students in solving real-world problems and investigating puzzling phenomena. Two example units will be shared.

ACS Middle Level Session: The Water Molecule and Dissolving
(Grades 6–8) E146, Convention Center
Science Focus: PS1.A
James Kessler and Patricia Galvan (p_galvan@acs.org), American Chemical Society, Washington, D.C.
Explore the polarity of the water molecule and identify substances based on their solubility using hands-on activities and molecular animations from the free website www.middleschoolchemistry.com.

Dark Skies and Energy Education: Globe at Night Citizen Science Program Workshop
(Grades 5–College) E147/148, Convention Center
Science Focus: ESS, INF
Holly Bensel (hbensel@smschool.us), St. Mary’s School, Medford, Ore.
Laura Orr (laura.orr@ukiah.k12.or.us), Ukiah High School, Ukiah, Ore.
John Gibbs, Glencoe High School, Hillsboro, Ore.
We will spotlight a variety of hands-on, inquiry-based resources for developing the concept of dark skies, energy usage, and conservation across a range of curriculum.

CESI-Sponsored Session: Elementary Science Share-a-Thon
(Grades P–8) Oregon Ballroom 203, Convention Center
Science Focus: GEN, NGSS
Jim McDonald (@jimscienceguy; jim.mcdonald@cmich.edu), CESI President, and Central Michigan University, Mount Pleasant
Come see a variety of elementary science ideas that can be integrated with other subjects presented by CESI members. Walk away with handouts to implement in your classroom.
11:00 AM–12 Noon  Exhibitor Workshops

**Telling Stories with David Goodsell’s Watercolor Molecular Landscapes**  
(Grades 9–College)  
A103/104, Convention Center  
Science Focus: LS, CCC, SEP  
Sponsor: MSOE Center for BioMolecular Modeling  
Tim Herman (herman@msoe.edu), MSOE Center for BioMolecular Modeling, Milwaukee, Wis.  
Use these amazing landscapes to explore cell structure and illustrate where in the cell protein synthesis and other important processes occur. You can also tell molecular stories such as “Your Flu Shot in Action,” tracing the production of an antibody protein all the way to its release into the circulation.

**Biology with Vernier**  
(Grades 9–12)  
A105, Convention Center  
Science Focus: LS, SEP3, SEP4  
Sponsor: Vernier Software & Technology  
David Carter (info@vernier.com), Vernier Software & Technology, Beaverton, Ore.  
In this hands-on workshop, learn how Vernier supports biology teachers who want their students to use probeware. A variety of experiments from our popular biology lab books will be conducted. Learn how our innovative data-collection technology works across multiple platforms such as LabQuest 2, computer, Chromebook, and iPad.

**What's the Problem? Integrating Engineering into the Science Classroom Without Bridges and Rockets**  
(Grades 6–9)  
A106, Convention Center  
Science Focus: ETS, SEP  
Sponsor: AEOP eCYBERMISSION  
Problem solving is a skill that all science students must have, and it can be learned through engineering. Come learn some new ways to bring engineering ideas and problem solving into your grades 6–9 science classrooms beyond the old and stale examples of building bridges or rockets. Discussion includes the online STEM competition eCYBERMISSION and how you and your students can participate at no cost.

**Hands-On Tools for Teaching the Science of Solar Energy**  
(Grades P–12)  
A107, Convention Center  
Sponsor: Solar 4R Schools  
Parker Mullins (pmullins@b-e-f.org), Bonneville Environmental Foundation, Portland, Ore.  
Join in and engage in a hands-on activity involving renewable energy and electricity concepts. This workshop features a teacher from our Educator Lab curriculum design opportunity who will share experience with the program.

**Comparative Mammalian Organ Dissection with Carolina’s Perfect Solution® Specimens**  
(Grades 9–12)  
A108/109, Convention Center  
Science Focus: LS  
Sponsor: Carolina Biological Supply Co.  
Carolina Teaching Partner  
Come show us your surgical skills while you experience the superior quality of Carolina’s Perfect Solution specimens. Participants dissect a sheep brain, cow eye, pig heart, or pig kidney and observe internal and external structures. Use this excellent comparative dissection to gain a better understanding of these mammalian organs.

**Helping Students Understand Deep Time Using HHMI BioInteractive’s EarthViewer**  
(Grades 6–12)  
B111/112, Convention Center  
Science Focus: ESS, CCC4  
Sponsor: HHMI BioInteractive  
Mickey Laney-Jarvis, Grants Pass High School, Grants Pass, Ore.  
What did Earth look like 250 million years ago…or 4.5 billion years ago? What was the climate like in the deep past? Explore these questions and more with EarthViewer, HHMI BioInteractive’s interactive tool for exploring the science of Earth’s deep history.
Exploring Misconceptions: There’s a Difference Between Heat and Temperature?!?
(Grades 6–12) B113, Convention Center
Science Focus: PS
Sponsor: PASCO scientific
Presenter to be announced
Are heat and temperature the same thing or are they different? This hands-on workshop using SPARKvue and wireless temperature sensors will provide you with effective new ways to teach the concepts of heat and temperature, central to physical science.

Magnify Your Mind! … with The Private Eye®
(Grades K–12) B114/115, Convention Center
Science Focus: GEN
Sponsor: Educational Innovations, Inc.
Give your students a wallop of wonder and mystery—using a jeweler’s loupe, everyday objects, and a powerful inquiry process. Students investigate science topics with fresh perspective and surprise themselves as they write, draw, and theorize at sophisticated levels. Habits of close observation bloom, critical thinking soars, and NGSS and CCSS come to life. Take away this easy hands-on method—and magnify minds! Free starter kit.

Chemical Formula and Amino Acids
(Grades 9–12) B116, Convention Center
Science Focus: PS1.A, PS2.B, CCC3, SEP3, SEP4
Sponsor: LAB-AIDS®, Inc.
Brandon Watters, Vernon Hills High School, Vernon Hills, Ill.
What is the difference between subscripts and coefficients? What does “balancing” a chemical equation mean? Many students have trouble with these concepts. If a student does not fully understand the chemical formula, then moles, reactions, and stoichiometry are hopelessly confusing. Join us for intuitive lessons for all students to master the formula and gain a deeper understanding of chemistry.

Teaching Geoscience in an NGSS-Focused Curriculum
(General) B117/118, Convention Center
Science Focus: ESS
Sponsor: Pearson
Michael Wysession, Washington University in St. Louis, Mo.
A member of the NGSS writing team, Michael Wysession will talk about challenges and solutions to teaching Earth and space science (ESS) that meets the NGSS.

Using Maggots, Flies, and Flesh to Solve a Mystery!
(Grades 6–12) C120/121, Convention Center
Science Focus: GEN
Sponsor: Texas Instruments
Jeffrey Lukens, Sioux Falls (S.Dak.) School District
A decomposing corpse is found in a field. Four possible missing persons fit the description. But who is it? Using clues near the scene will help determine identity. Forensic anthropologist and director of the human ID lab of Colorado, Dr. Diane France helped to develop this free middle school and high school forensic science lesson.

The GMO Debate Rages On!
(Grades 9–College) C123, Convention Center
Science Focus: LS
Sponsor: Bio-Rad Laboratories
Damon Tighe (damon_tighe@bio-rad.com), Bio-Rad Laboratories, Hercules, Calif.
Are GM crops a good thing? Do all countries have the same GM food labeling requirements? Learn more about GMOs and how to test for the presence of GM content in foods. Join a debate and learn how to bring this experience to your classroom.

What Is Amplify Science?
(Grades K–8) C124, Convention Center
Science Focus: GEN, NGSS
Sponsor: Amplify
Traci Shields (amplifyscience@berkeley.edu) and Rebecca Abbott (amplifyscience@berkeley.edu), The Lawrence Hall of Science, University of California, Berkeley
Explore Amplify Science, the newest breakthrough curriculum from University of California Berkeley’s Lawrence Hall of Science for grades K–8. Discover how the immersive program, built from the ground up for NGSS, engages students as scientists and engineers to solve real-world problems.

CONNECTIONS: Three-Dimensional Learning by National Geographic Explorers
(Grades 1–5) C125/126, Convention Center
Science Focus: GEN, NGSS
Sponsor: National Geographic Learning | Cengage Learning
Tom Hinojosa, National Geographic Learning | Cengage Learning, Littleton, Colo.
See how National Geographic provides your students with new, relevant, and natural examples of the three dimensions of crosscutting concepts, disciplinary core ideas, and science and engineering practices through the research being done by explorers all around the world. Learn how to incorporate these models to guide your instruction and energize student interest in science.
11:00 AM–5:30 PM  Short Course
Supporting the NGSS with Process-Oriented Guided Inquiry Learning (POGIL) (SC-2)

Tickets Required; $60

Science Focus: GEN, NGSS
Mare Sullivan (joe.mare.sullivan@gmail.com), Seattle Pacific University, Seattle, Wash.
Julia Dudley (jjones@psd1.org), Pasco (Wash.) School District
Michelle Poletski (poletskim@newberg.k12.or.us), Newberg High School, Newberg, Ore.

For description, see page 31.

12 Noon–1:00 PM  Meeting
North-West and Far West Regions Association of Science Teacher Educators Joint Business Meeting

12:30–1:30 PM  Presentations
Strategies and Tools for Ensuring Each K–12 Student Has a STEM Future

Science Focus: GEN, SEP
Bob Sotak (bob.sotak@gmail.com), Science/STEM Education Consultant, Edmonds, Wash.
Brian Day (briangday@gmail.com), Everett (Wash.) Public Schools

Engage in strategies and tools used to implement a district- or school-wide STEM program, integrating science literacy across the curriculum to ensure each student a STEM future.

The NGSS@NSTA Hub

Science Focus: GEN, NGSS
Ted Willard (@Ted_NSTA; twillard@nsta.org), Program Director, NGSS@NSTA, NSTA, Arlington, Va.

Join me for a tour of the NGSS@NSTA Hub, a digital destination to support teaching and learning of the NGSS. Hear about the work of NGSS@NSTA curators—a group of educators from all across the U.S. working to identify resources that support the standards.

Deliver Your Science Content with iPads in Your 1:1 Classroom

Science Focus: GEN, NGSS
Diane Kasparie (dkasparie@quincynotredame.org), Quincy Notre Dame High School, Quincy, Ill.

Deliver your high-quality standards-based science curriculum to your students in your iPad 1:1 classroom to ensure genuine student learning, painlessly! BYOD!

Coral Reefs: Fragile Wonders Under Threat: Bring Vibrant Environmental Stewardship Lessons to Your Students with Free NOAA Resources

Science Focus: ESS, LS, PS, CCC
June Teisan (june.teisan@noaa.gov), NOAA Office of Education, Washington, D.C.

Coral reefs are a stunning global treasure, but these fragile ecosystems are under increasing threat from pollution, harmful fishing practices, and ocean acidification. Even areas far from coasts can impact marine health. Incorporate coral reefs into your existing curriculum—biology, chemistry, climate studies, and more—using lesson plans, demos, activities, and multimedia from the National Oceanic and Atmospheric Administration (NOAA).

Solids: The Neglected “State” of Chemistry

Science Focus: PS1.A, CCC6
Debbie Goodwin (nywin@hotmail.com), Retired High School Science Teacher, Chillicothe, Mo.

Use solids to make chemistry more relevant for students. Hands-on STEM activities using solid materials (metals/polymer/ceramics) make concepts easier to teach/learn. Receive NGSS correlations and take home a CD of information.
Science Is a Story: Using Kids’ Science Trade Books and the Internet to Explore Current Developments in Science
(Grades K–6)  D130, Convention Center
Science Focus: ETS
Pamela Turner (pstrst@pacbell.net), Author, Oakland, Calif.
Suzanne Flynn, Lesley University and Cambridge College, Carver, Mass.
Join award-winning science writers as they show how thinking of science as storytelling can help you integrate science with language arts through science trade books and the internet.

Making Yogurt as an Engineering Design Project in Biology
(Grades 9–12)  D137, Convention Center
Science Focus: ETS1, LS, SEP
Charlotte Denis, Forest Grove High School, Forest Grove, Ore.
Learn how students apply respiration knowledge to design yogurt for the school cafeteria. See how they create prototypes and test for pH, viscosity, and taste.

Developing Science Process Skills Through School Yard Investigations
(Grades 3–8)  D138, Convention Center
Science Focus: LS, INF
Phil Kahler (philk@tvja.org), Tualatin Valley Academy, Hillsboro, Ore.
Lindsay Glasner (@BirdSleuth; lig27@cornell.edu), The Cornell Lab of Ornithology, Ithaca, N.Y.
Meeting science practice standards goes hand in hand with student investigations and citizen science. We’ll inspire you to motivate your students with school yard projects and real data, such as The Cornell Lab of Ornithology’s citizen science project.

Connecting to the Coast and Ocean
(Grades 3–12)  Hawthorne/Sellwood, DoubleTree
Science Focus: ESS3.C
Cait Goodwin (cait.goodwin@oregonstate.edu), Oregon State University, Newport
Sara Roberts (@oceansciocommm; sara.shawroberts@aquarium.org), Oregon Coast Aquarium, Newport
Engage in hands-on activities featured in the Oregon Coast Education Program coastal education modules, and make connections to NGSS and outdoor experiences for students.

Squeezing In Time for STEM
(Grades K–5)  D131, Convention Center
Science Focus: PS, SEP4, SEP5
Leticia Perez, UCLA Center X, Los Angeles, Calif.
Discover how to use the NGSS to drive CCSS ELA and math instruction in the elementary classroom. Through hands-on science, investigate the phenomenon of surface tension and discuss how to design lessons that develop science, engineering, and mathematical practices.

Moon Mania: Modeling Lunar Phases
(Grades 6–8)  D132, Convention Center
Science Focus: ESS1.B, CCC1, CCC2, CCC4, SEP2, SEP4
Christine Shupla (shupla@lpi.usra.edu), Lunar and Planetary Institute, Houston, Tex.
Meredith Harris (meredithaharris@me.com), Spring ISD, Houston, Tex.
Brandy Laney (laneyscastle73@gmail.com), Northgate Crossing Elementary School, Spring, Tex.
Conduct innovative hands-on activities to build an understanding of the lunar cycle and explore kinesthetic models to assess student understanding of phases.

FieldSTEM Plus: An Integrated Learning Model
(Grades K–5)  D133/134, Convention Center
Science Focus: LS1, LS2, CCC4, CCC5, CCC7, SEP1, SEP4, SEP7, SEP8
Pamela Farr (pfarr@sheltonschools.org), Shelton (Wash.) School District
Come hear how a small rural school district has developed an integrated approach to K–5 science literacy that connects math, ELA, and science content with field experiences in the rich natural environment.
Recipe for Research and Application: The Science of Food and Eating
(Grades 7–College)  
D135, Convention Center
Science Focus: LS, CCC1, CCC2, CCC3, CCC5, CCC6, SEP1, SEP3, SEP4, SEP6, SEP7, SEP8
Alishia Huntoon (alishia.huntoon@oit.edu), Oregon Institute of Technology, Klamath Falls
Create an appetite for science in your classroom. Food and eating are integral to life. They offer an opportunity to better understand science with a topic students can readily relate to and apply.

Learning About Molecular Structures with Molecular Models
(Grades 9–College)  
D136, Convention Center
Science Focus: LS1, LS3, LS4, CCC6, SEP1, SEP2, SEP3, SEP4, SEP5
Sandra Porter (@digitalbio; sandra@digitalworldbiology.com), Digital World Biology LLC, Seattle, Wash.
Learn techniques for working with user-friendly iOS-based molecular modeling programs and authentic molecular models to study key features of protein and DNA structure.

ASEE Session: Creatively Applying the “E” in STEM
(Grades 5–9)  
D139, Convention Center
Science Focus: ETS1
Celeste Baine (celbaine@engineeringedu.com), Engineering Education Service Center, Springfield, Ore.
Get inspired and use creative engineering concepts to make a model hydraulic crane! This lesson plan can be used to extend students’ understanding of STEM concepts.

NSTA Press® Session: Argumentation in the Physical Science/Physics Classroom
(Grades 5–College)  
E142, Convention Center
Science Focus: PS
Sharon Schleigh (sharonpschleigh@gmail.com), East Carolina University, Greenville, N.C.
In this hands-on workshop, learn how to engage in scientific argumentation to support teaching in your classroom. Sample activities from the NSTA Press books provided.

AAPT Session: Developing an Energy Policy for the U.S.
(Grades 9–12)  
E143, Convention Center
Science Focus: PS
Pat Keeffe (pkeeffe@clatsopcc.edu), Clatsop Community College, Astoria, Ore.
Let me introduce you to a model that can be used to help students study energy and social issues. Discuss and research energy and social issues more effectively in your classroom.

STEAM Ahead for Climate Change
(Grades K–8)  
E144, Convention Center
Science Focus: GEN
Brian Ballenger (brballenger@gmail.com) and Blair Johnston (@ACSJohnston; blair.johnston@asheville.k12.nc.us), Vance Elementary School, Asheville, N.C.
We’ve transformed our school’s science culture! Passion is all you need to initiate the same revolution in your school. We’ll show you everything else.

ACS Middle Level Session: Chemical Reactions: Breaking and Making Bonds
(Grades 6–8)  
E146, Convention Center
Science Focus: PS1.B
James Kessler and Patricia Galvan (p_galvan@acs.org), American Chemical Society, Washington, D.C.
Explore the production of a gas, a precipitate, and changes in temperature through hands-on activities and molecular model animations from the free completely developed 5E lesson plans available at www.middleschoolchemistry.com.

Think It Through: Guiding Students to Authentically Solve Problems
(Grades 6–College)  
E147/148, Convention Center
Science Focus: GEN, CCC1, CCC2, SEP1, SEP3, SEP4, SEP6, SEP7, SEP8
Katie Busch (kabusch09@gmail.com), The University of Alabama at Birmingham
Join me for a simple yet powerful approach to training students to think and work like scientists and engineers to solve problems and design solutions.
Friday, 12:30–1:30 PM

**Exhibitor Workshops**

**Integrating Chromebook with Vernier Data-Collection Technology**  
(*Grades 3–12*)  
*A105, Convention Center*

Science Focus: GEN, SEP3, SEP4  
Sponsor: Vernier Software & Technology  
**David Carter** *(info@vernier.com)*, Vernier Software & Technology, Beaverton, Ore.

Collecting and analyzing data help students learn critical science concepts that increase test scores and promote science inquiry. In this hands-on workshop, learn how Vernier supports teachers who use Chromebook devices in their classrooms. Experiments such as “Boyle’s Law,” “Grip Strength Comparison,” and “Ball Toss” will be conducted.

**Bake for Good: Kids Learn-Bake-Share**  
(*Grades 4–7*)  
*A106, Convention Center*

Science Focus: GEN  
Sponsor: King Arthur Flour  
**Libby Treadway** *(libby.treadway@kingarthurflour.com)*,  
**Paula Gray** *(paula.gray@kingarthurflour.com)*, and  
**Amy Driscoll** *(amy.driscoll@kingarthurflour.com)*, King Arthur Flour Bake for Good: Kids Learn-Bake-Share Program, White River Junction, Vt.

The free Bake for Good: Kids program visits hundreds of schools each year, teaching kids in grades 4–7 to bake yeast bread from scratch. Kids take ingredients home to bake two loaves; one to donate, one to enjoy. They discover that math, science, reading, and baking know-how make something delicious!

**NGSS-Focused Interactive Digital Assessment for Middle School**  
(*Grades 6–8*)  
*A107, Convention Center*

Science Focus: GEN, NGSS  
Sponsor: Activate Learning  
**Heather Milo**, Activate Learning, Greenwich, Conn.  
**Patty Kreikemeier**, University of Wisconsin–Madison

Come experience the most recent developments in standards-based assessment research from the Wisconsin Center for Education Research at the University of Wisconsin. Participate in three-dimensional science instruction using formative assessment prompts to elicit (and build on) student preconceptions and summative assessment items to collect data on student progress toward the NGSS. All participants will qualify to pilot this new digital product in their classroom!

**Hands-On Science with Classroom Critters**  
(*Grades K–12*)  
*A108/109, Convention Center*

Science Focus: LS  
Sponsor: Carolina Biological Supply Co.

**Carolina Teaching Partner**

Add action and excitement to your science class with live organisms! Discover fun hands-on activities with pill/sow bugs, termites, bessbugs, and butterflies you can use in your labs. Learn about care and handling, as well as easy ways to introduce inquiry. Additional resources available online.

**The Biology of Skin Color: An NGSS-Focused Exploration**  
(*Grades 9–12*)  
*B111/112, Convention Center*

Science Focus: LS, SEP1, SEP4, SEP6  
Sponsor: HHMI BioInteractive  
**Sydney Bergman**, School Without Walls, Washington, D.C.

Why do people have different skin colors? What’s the relationship between skin color, UV radiation, selection, and adaptation? HHMI BioInteractive’s free, NGSS-focused resources (also available in Spanish) weave together key concepts in biogeography, human evolution, genetics, and anatomy and physiology to explore this phenomenon.

**What Is a Species**  
(*Grades 9–12*)  
*B116, Convention Center*

Sponsor: LAB-AIDS®, Inc.  
**Dawn Posekany**, Solon High School, Solon, Iowa

In this activity from the SEPUP high school biology program, learn about conditions that lead to speciation, including isolation due to temporal, geographical, and behavioral factors, and more. Then apply this knowledge to determine whether selected animal or plant pairs are in the early, mid, or late stages of speciation.
A Conceptual Framework for Teaching Global Change—NGSS Ready!

(General) B117/118, Convention Center
科学领域：GEN, NGSS
赞助：Pearson
约瑟夫·莱文，作者，波士顿，马萨诸塞州。

全球变化的跨学科科学与NGSS完美契合，但其复杂性可能会显得令人望而生畏。一个全新的概念框架组织和呈现系统模型、跨概念概念、核心思想和结构/功能关系的独特和灵活信息图形和故事板。预览即将到来的网站将提供什么，并提出建议！

支持卓越的STEM项目和通过STEM认证的教导

(General) C120/121, Convention Center
科学领域：GEN, NGSS
赞助：加速学习–STEMscopes
特里·塔利，加速学习–STEMscopes，德克萨斯州休斯顿。

你想成为STEM认证的教师吗？来了解更多信息，了解国家STEM教育研究所（NISE）的清晰定义成功的STEM项目以及STEM课堂教师的实践。STEM教师认证在课堂、校园和学区级别认可卓越。

1:00–4:00 PM 短期课程
写作在科学中：一个基于研究的方法，可以增强在两个领域中的学习（SC-3）

(Grades K–6) 3 Sisters/Mt. Bachelor, DoubleTree
科学领域：GEN
贝丝·鲁普·富尔维勒 (bruppfulwiler@comcast.net), 贝丝·鲁普·富尔维勒咨询，西雅图，华盛顿。

你想了解更多关于国家科学教师协会的STEM教育吗？

1:15–3:00 PM 展览厅饮料休息

Hall A, Convention Center

星期五，下午12:30–1:30 PM

《NSTA学习中心：免费专业发展资源和机会对教育者（General）》

弗拉维奥·梅内德斯（flavio_m@nsta.org), NSTA助理执行董事，NSTA学习中心，VA, Arlington。

当你在寻找在线专业学习资源时，是否感觉你的内容知识和技能有所提升？拥有超过12,000个资源(25%为免费)和优质的PD机会来协助教师们学习核心内容？NSTA学习中心有答案！免费资源和冰淇淋！
2:00–3:00 PM  Exhibitor Workshops

Integrating iPad with Vernier Data-Collection Technology
(Grades 3–12)  A105, Convention Center
Science Focus: GEN, SEP3, SEP4
Sponsor: Vernier Software & Technology
David Carter (info@vernier.com), Vernier Software & Technology, Beaverton, Ore.
Collecting and analyzing data help students learn critical science concepts that increase test scores and promote science inquiry. In this hands-on workshop, learn how Vernier supports teachers who use iPads in their classrooms. Experiments such as “Boyle’s Law,” “Grip Strength Comparison,” and “Ball Toss” will be conducted.

The HMH Science Dimensions of NGSS
(Grades 1–12)  A106, Convention Center
Science Focus: ETS2, LS1, CCC2, CCC6, SEP2, SEP3, SEP8
Sponsor: Houghton Mifflin Harcourt
Damon Smerchek, Houghton Mifflin Harcourt, Boston, Mass.
Take a walk through an all new, built from the ground up, NGSS K–12 science program produced by the educational solutions company that has been bringing you quality programs for over 180 years, Houghton Mifflin Harcourt. Be one of the first to see how HMH Science Dimensions has the tools to create a true NGSS classroom using print resources, innovative student experiences, and advanced technology via Google Classroom and Google Expeditions. Bring device to participate.

Analyzing and Interpreting Data Using TCI’s Bring Science Alive!
(Grades K–5)  A107, Convention Center
Science Focus: GEN, NGSS
Sponsor: TCI
Christy Sanders (info@teachtci.com), TCI, Mountain View, Calif.
Get your students to do more than just read a graph, chart, or statement. Participants will be immersed in a Bring Science Alive! classroom where students analyze and interpret data and construct an argument based on research.

Introduction to Wisconsin Fast Plants®
(Grades K–12)  A108/109, Convention Center
Science Focus: LS
Sponsor: Carolina Biological Supply Co.
Carolina Teaching Partner
Experience the versatility of Wisconsin Fast Plants. These small, quick-growing plants engage students, suit all learning levels, and let you integrate plant development, life cycle, environmental effects, genetics, and evolution into your instruction. Learn the basics for successful planting, flower dissection, and pollination.

Can We Save the World’s Coral Reefs Before They Disappear?
(Grades 6–12)  B111/112, Convention Center
Science Focus: ESS3, LS2, SEP1, SEP3, SEP6
Sponsor: HHMI BioInteractive
Cheryl Ann Hollinger, Teacher Institute for Evolutionary Science, Washington, D.C.
Coral reefs are threatened by human activities, including global ocean warming from climate change. What are researchers doing to try to conserve reef ecosystems? Find out how scientists are trying to find a solution and receive free classroom-ready resources from HHMI BioInteractive, suitable for middle school and high school students.

Bringing NGSS to the Classroom with Discovery Education
(Grades K–12)  B114/115, Convention Center
Science Focus: GEN, SEP
Sponsor: Discovery Education
Patti Duncan, Discovery Education, Silver Spring, Md.
One of the most important aspects of a quality NGSS curriculum is the opportunity for students to develop science and engineering practices. These types of skills are not explicitly taught, but must be developed by experience. Come learn how the Discovery Education Science Techbook brings these experiences to the forefront.

Cell Differentiation and Gene Expression
(Grades 9–12)  B116, Convention Center
Sponsor: LAB-AIDS®, Inc.
Dawn Posekany, Solon High School, Solon, Iowa
Students often have trouble conceptualizing how selective gene expression works. In this workshop, participants will use manipulatives to teach this concept and explain how it is connected to genetic engineering. Innovative activities are selected from the Science and Global Issues: Biology program from SEPUP and LAB-AIDS.
Transforming Science Education Through Inquiry-Based Learning and Narrative-Based Teaching  
(Grades 6–12)  B117/118, Convention Center  
Science Focus: GEN  
Sponsor: Pearson  
Joseph Levine, Author, Boston, Mass.  
Teaching through inquiry is challenging to implement because “inquiry” is rarely defined clearly, and content-based standards constrain the classroom time necessary to encourage scientific thinking and open-ended questioning. We will examine levels of inquiry and show how to harness the power of scientific storytelling to motivate and guide active student learning.

Zombie Apocalypse!  
(Grades 6–12)  C120/121, Convention Center  
Science Focus: GEN  
Sponsor: Texas Instruments  
Jeffrey Lukens, Sioux Falls (S.Dak.) School District  
Be part of a zombie apocalypse! Learn about disease spread modeling using simulations and fun storylines about a zombie outbreak. Applicable for middle school and high school, this workshop is sure to scare you and your little zombies with its exciting Hollywood themes used to engage students learning science!

How Do You Know What Fish Species You Are Eating? DNA Barcoding!  
(Grades 9–College)  C123, Convention Center  
Science Focus: GEN, NGSS  
Sponsor: Bio-Rad Laboratories  
Damon Tighe (damon_tighe@bio-rad.com), Bio-Rad Laboratories, Hercules, Calif.  
How many aquatic species are there in the world? DNA barcoding has shown that there may be more than were ever thought to exist. Can you be certain the sushi you are eating really is what you think it is? Many instances of fish mislabeling (sometimes even endangered species) have also been brought to light through DNA barcoding activities. Learn more about this fascinating topic and how you can apply it in your classroom.

The Framework and NGSS: Opportunity for Teacher Growth  
(Grades 9–12)  C124, Convention Center  
Science Focus: GEN, NGSS  
Sponsor: It’s About Time  
Looking at our past successful lessons through the lens of A Framework for K–12 Science Education and NGSS, we better understand what makes some lessons highly effective. Sharing these vital experiences is the path from being a great teacher some days to becoming a great teacher every day.

The STEM Design Challenge  
(Grades 3–8)  C125/126, Convention Center  
Sponsor: Fisher Science Education  
Join us to experience how you can easily create interactive experiments about force, energy, and motion in the classroom. Help your elementary and middle school students identify variables to test. Along the way, solve an engineering problem using realistic scientific processes. Finally, support your understanding with a creative and fun team competition that can expand after school.
2:00–3:00 PM  Meeting  
STEM Lighthouse Schools: The View from the Summit  
*Mt. St. Helens, DoubleTree*

2:00–4:00 PM  Meeting  
North-West and Far West Regions Association of Science Teacher Educators Joint Meeting  
*Weidler/Halsey, DoubleTree*

This meeting is for members of North-West and Far West Regions of the Association of Science Teacher Educators attending this conference. Members will share research and a joint business meeting will be held.

3:00–5:00 PM  Networking Opportunity  
The State of Science/STEM/STEAM Education in Oregon  
*(General)*  
*Multnomah, DoubleTree*

Science Focus: GEN, NGSS  
Susan Holveck *(susan_holveck@beaverton.k12.or.us)*, Program Coordinator, NSTA Portland Area Conference, and Beaverton (Ore.) School District  

In this networking event, participants will learn about various science, STEM, and STEAM projects that have been made possible by funding granted by the State of Oregon.

3:00–5:00 PM  Hands-On Workshop  
ACS Session Three: Energy in Chemistry—An Atomic View  
*(Grades 9–12)*  
*E145, Convention Center*

Science Focus: PS3, SEP7  
Marta Gmurczyk, American Chemical Society, Washington, D.C.  
Shelly Belleau, University of Colorado Boulder  
Jennifer Keil *(jenniferkeil11@gmail.com)*, Thornton High School, Thornton, Colo.  
Chad Bridle *(@sciencebridle; cbridle1@gpsbulldogs.org)*, Grandville High School, Grandville, Mich.  
Rebecca Stober, Mapleton Expeditionary School of the Arts, Denver, Colo.  

Engage in argumentation activities focused on energy transfer at the atomic level by building arguments based on evidence and scientific models and ideas. These activities are designed to deepen students’ conceptual understanding about atomic models of matter, quantization of energy, and atomic emission spectroscopy.

3:30–4:30 PM  Featured Presentation  
Are You Ready for the Astronomical Event of the Decade: The 2017 All-American Total Eclipse?  
*(General)*  
*Oregon Ballroom 201, Convention Center*

Science Focus: ESS  
Dennis Schatz *(schatz@pacsci.org)*, NSTA Director, Informal Science, and Pacific Science Center, Seattle, Wash.  
Presider: Alfonso Garcia Arriola, NSTA Portland Area Conference Program Committee Member, and ACCESS Academy, Portland, Ore.

For the first time in almost 40 years, the U.S. will experience a total solar eclipse—Monday, August 21, 2017. Interest will be high because the total phase of this “All-American” eclipse will only be seen in the U.S., with the partial phase of the eclipse visible to everyone in North America. Come learn more about this astronomical event of the decade, including when and where you need to go to see the total eclipse and the timing of both the total and partial phases for the entire U.S. Hear suggestions for how to make this a community-wide event, find out how to observe the eclipse safely, and get ideas for effective learning activities to use in both in-school and out-of-school settings.

Dennis Schatz is senior advisor at Pacific Science Center, where he has held a broad range of positions from director of the Planetarium in his early years to vice president for Exhibits and vice president for Education to senior vice president in more recent years. In the last five years, Dennis was a visiting scholar at the University of Queensland, Brisbane, Australia, followed by four years as a program director at the National Science Foundation (NSF). He has provided leadership to several of Pacific Science Center’s major initiatives, including Washington State LASER and Portal to the Public.

He is currently on the board of the National Science Teachers Association (NSTA) and is field editor for the new journal, Connected Science Learning, which is a joint effort of NSTA and the Association of Science-Technology Centers (ASTC) and features articles that deal with programs at the intersection of in-school and out-of-school learning.

Dennis has authored to date 23 science books for children, including his latest, The Amazing Squishy T. rex. His most recent teacher resource book is the NSTA Press® Solar Science, which has an Eclipse Observing Guide for the upcoming “All-American” total solar eclipse on August 21, 2017.
3:30–4:30 PM  Presentations

Climate Change Education and State Science Standards: A National Assessment
(Grades 7–12)  Alaska/Idaho, DoubleTree
Science Focus: ESS3, SEP4
Madeline Goodwin (@EcoScienceGirl; madeline.goodwin@gmail.com), The Evergreen State College, Olympia, Wash.
Discussion centers on an analysis of climate change concepts in state science standards, and a comparison with the concepts scientists and teachers deem most important.

Connecting CCSS and NGSS Through Close Reading
(Grades 4–12)  Morrison, DoubleTree
Science Focus: GEN, NGSS
Bobbi Hansen (chansen@sandiego.edu), University of San Diego, Calif.
Emphasis will be placed on ways for teachers to link NGSS with CCSS ELA via “close reading” teaching strategies.

The Multi-Level Classroom: Differentiation to Reach All Students in Science
(Grades 4–12)  Oregon, DoubleTree
Science Focus: GEN
DJ West (@djwest78; djwest78@gmail.com), Schoolcraft College, Livonia, Mich.
Explore a variety of strategies that teachers can effectively use to impact students that are at every level in their multi-level classroom. This is a practical workshop for immediate use.

Tsunami! Understanding the Generation, Propagation, and Hazards of Tsunamis
(Grades 5–12)  B110, Convention Center
Science Focus: ESS2.B
Lawrence Braile (braile@purdue.edu), Purdue University, West Lafayette, Ind.
Explore recent tsunamis (Indonesia and Japan), and a hands-on activity using a simple and inexpensive wave tank to understand tsunami generation, propagation, and hazards.

Globe at Night Citizen Science Program
(Grades 5–College)  B119, Convention Center
Science Focus: INF
Holly Bensel (hbensel@smshool.us), St. Mary’s School, Medford, Ore.
The Globe at Night campaign raises public awareness of the impact of light pollution. Come learn how to implement this program in your community.

Reaching the Limits: Population Ecology in Biology
(Grades 9–12)  C122, Convention Center
Science Focus: LS2.A, CCC, SEP
Amber Willis (asb9616@lausd.net), Downtown Magnets High School, Los Angeles, Calif.
Let me guide you through a population math lesson in which students plot, infer, and analyze data while integrating mathematical thinking and crosscutting concepts.

Strengthen Your STEM Lessons with NSTA High School Committee Activities
(Grades 8–12)  D130, Convention Center
Steve Wood (swood@d125.org), Adlai E. Stevenson High School, Lincolnshire, Ill.
A variety of lessons and activities will be presented to enrich your current curricula, connecting with the NGSS science and engineering practices. Resources available online.

Cross-Curricular Learning with a Science Focus: Optimizing Student Learning and Maximizing Efficiency of Instruction While Embracing All Aspects of STEM
(Grades K–6)  D137, Convention Center
Science Focus: GEN, NGSS
Donna Knoell, Educational Consultant, Overland Park, Kans.
Attention will be paid to effective ways to integrate cross-curricular learning with science instruction, to optimize student learning and maximize opportunities to deepen understanding, yielding added time for science exploration.

CSSS-Sponsored Session: Science Starts with a Story—NGSS in Support of Language Acquisition for All Students
(Grades P–5)  D138, Convention Center
Science Focus: GEN, NGSS
Richard Vineyard, Nevada Dept. of Education, Carson City
More than simply teaching science using children’s literature, Science Starts with a Story is about using stories to engage students of all ages in the pursuit of new learning.
Corrosion: Chemistry Made Simple, Relevant, and Fun  
(Grades 8–12)  
D140, Convention Center
Science Focus: PS, CCC, SEP
Andrew Nydam (andrewnydam@hotmail.com), Polymer Ambassador, Olympia, Wash.
Join in for labs, demonstrations, and examples that make reactivity, oxidation/reduction, and corrosion engineering exciting, practical, and easy to teach and learn. STEM connections and a CD of information will be shared.

3:30–4:30 PM Hands-On Workshop
Stretch Your Legs for Science!  
(Grades 1–12)  
Hawthorne/Sellwood, DoubleTree
Science Focus: LS
Kelly Schaeffer, The Cornell Lab of Ornithology, Ithaca, N.Y.
Explore citizen science through a mini bird walk. Enjoy bird identification tutorials, and experience how engaging and easy bird watching is!

Science and Literacy: It’s Elementary  
(Grades 1–5)  
D131, Convention Center
Science Focus: GEN, CCC
Kelly Chaney, University of Arkansas at Little Rock
Looking for ways to integrate ELA and science? Come learn creative ideas and activities you can use next week with your class.

Teaching Engineering  
(Grades 6–12)  
D133/134, Convention Center
Science Focus: ETS1, PS1
Michael Rockow (rockow42@q.com) and Mark Madland (madland_mark@salkeiz.k12.or.us), Leslie Middle School, Salem, Ore.
Design, build, and test heat shields while learning how to teach students about engineering design.

Beyond Differential Instruction  
(Grades 10–12)  
D135, Convention Center
Science Focus: PS1, SEP1, SEP2, SEP3, SEP4, SEP6, SEP5
Jacklyn Bonneau, Massachusetts Academy of Math & Science at WPI, Worcester
Differential instruction sometimes means less content for less able. This workshop is designed to see the same chemistry concept for everyone with just more scaffolding.

Partners in Science Share-a-Thon  
(Grades 9–12)  
Oregon Ballroom 203, Convention Center
Science Focus: GEN
Lori Lancaster (@SciLori; lancaster.ld@gmail.com), Local Arrangements Coordinator, NSTA Portland Area Conference, and Oregon Science Teachers Association, Portland
Pacific Northwest High School teachers share their research, discuss program benefits, and the new equipment that program funding has brought into the classroom.

ASEE Session: Computer Science as a Bridge Between Concepts, Ideas, and Practice in Grades 6–12 Science Classrooms  
(Grades 6–College)  
D139, Convention Center
Science Focus: GEN, NGSS
Mike Borowczak (@MBorowczak; mike@erebuslabs.com), Erebus Labs, Laramie, Wyo.
Andrea Burrows (@SciEdBurrows; aburrow1@uwyo.edu), University of Wyoming, Laramie
Experience activities that use computer science concepts to provide real-world context and applications to the three dimensions of the NGSS.

No-Hassle Messy Science with a Wow! Chemical Reactions  
(Grades K–8)  
E141, Convention Center
Elizabeth Andanen (eandanen@omsi.edu), OMSI, Portland, Ore.
Prepare to get messy! We will explore chemical reactions with hands-on chemistry experiments that use easy-to-find materials, cross-curricular connections, and in-depth explanations.

AAPT Session: How to Make Holograms Using the Litholo Home Holography Kit  
(Grades 9–College)  
E143, Convention Center
Science Focus: PS
Robert Brown (rob.brown@rockwellcollins.com), Rockwell Collins: Portland, Ore.
Learn to build a hologram, make hologram measurements, and derive actual holograph physical parameters.
Cancer Medicine Focus Enhances Biology Curriculum: Cryopreservation
(Grades 9–College) E144, Convention Center
Science Focus: LS, CCC, SEP
Lynda Jones (jonesly@ohsu.edu), Oregon National Primate Research Center, Beaverton
Explore a free NGSS-focused biology activity that integrates concepts in cancer biology with preserving fertility in cancer patients through real-life medical examples and cutting-edge cryopreservation technology.

How to Assess Three-Dimensional Learning in Your Classroom: Building Tasks That Elicit NGSS Practices
(Grades K–8) E147/148, Convention Center
Science Focus: GEN, NGSS
Philip Bell and Shelley Stromholt, University of Washington, Seattle
We will analyze assessment tasks and discuss strengths of these tasks and how they can be improved to better elicit three-dimensional science learning.

Friday, 3:30–4:30 PM

3:30–4:30 PM Exhibitor Workshops

Physics and Physical Science with Vernier
(Grades 7–12) A105, Convention Center
Science Focus: PS, SEP3, SEP4
Sponsor: Vernier Software & Technology
David Carter (info@vernier.com), Vernier Software & Technology, Beaverton, Ore.
In this hands-on workshop, you will learn how Vernier supports physics and physical science teachers who want their students to use probeware. A variety of experiments from our popular lab books will be conducted. Learn how our innovative data-collection technology works across multiple platforms such as LabQuest 2, computer, Chromebook, and iPad.

Autopsy: Forensic Dissection Featuring Carolina’s Perfect Solution® Pigs
(Grades 6–12) A108/109, Convention Center
Science Focus: GEN
Sponsor: Carolina Biological Supply Co.
Carolina Teaching Partner
Are you ready for a forensic dissection activity that is on the cutting edge? Engage students and revitalize your mammalian structure and function lessons with a real classroom autopsy. Participants dissect a Carolina’s Perfect Solution pig by modeling the protocols of a professional forensic pathologist. This exciting workshop features our exclusive Carolina’s Perfect Solution preserved specimens.

Trophic Cascades: A Force of Nature
(Grades 7–12) B111/112, Convention Center
Science Focus: LS2
Sponsor: HHMI BioInteractive
Samantha Johnson, Arroyo High School, San Lorenzo, Calif.
Trophic cascades are a fundamental concept in ecology that describe the relationships between organisms. Discover the new HHMI BioInteractive film and supporting activities that describe the classic experiments that first illustrated trophic cascades.

Energy Flow Through an Ecosystem
(Grades 9–12) B116, Convention Center
Sponsor: LAB-AIDS®, Inc.
Dawn Posekany, Solon High School, Solon, Iowa
Use an interactive card sort of organism cards and ecosystem events to predict the effect of different events on the food web and the ecosystem. Then construct an energy pyramid to examine how much energy is stored at each level of a food web.

Enzymes: Technology Inspired by Nature
(Grades 9–College) C123, Convention Center
Science Focus: PS
Sponsor: Bio-Rad Laboratories
Damon Tighe (damon_tighe@bio-rad.com), Bio-Rad Laboratories, Hercules, Calif.
With rising greenhouse gases, scientists look to nature for a biofuel solution. The star of this hands-on workshop is the cellobiase enzyme, an engine for cellulosic biofuel production. Use the inquiry-based approach to extract enzyme, test activity, and design experiments to study how pH, temperature, and concentrations affect reaction rates.
3:30–5:00 PM  Presentation
Equity in Science Education Roundtable
(General)  D132, Convention Center
Science Focus: GEN
Jerry Valadez (jdvscience@yahoo.com), NSTA Director, Multicultural/Equity in Science Education, and California State University, Fresno
The Equity in Science Education Roundtable includes conference participants in the development of a framework that NSTA will use in developing strategies for equity and inclusion.

5:00–5:30 PM  Presentations
Science Outside—No Box Needed
(Grades 5–10)  Morrison, DoubleTree
Science Focus: INF
Christina Porn (chris_porn@hotmail.com), Science Consultant, Erie, Colo.
Learning does not need to happen only in a classroom. Spark interest for science outside the classroom by providing unique experiences. Get the most out of your field trips by focusing on the pre- and post-trip experience.

Students Tell the Story of a Glacier Using Science, Math, and Literacy
(Grades 7–12)  D130, Convention Center
Science Focus: ESS, CCC
Joan Swafford, Jefferson Middle School, Jefferson, Ore.
Hear how middle school students are using math and science to interpret satellite images and tell the story of glaciers. Quantitative and qualitative data of glaciers are obtained by using satellite images within GoogleEarth.

Newton’s Laws on Gym Scooters
(Grades 5–9)  D138, Convention Center
Science Focus: PS2
Amy Manhart (amanhart@tcsd.org), Jackson Hole Middle School, Jackson, Wyo.
If you are willing to add some chaos in your classroom and the PE department doesn’t mind, PE scooters are a fabulous way to teach your student’s Newton’s laws of motion. Students love the physical activity but it can be crazy! This is a great Sheltered Instruction lesson.

What Does STEM Education Look Like in Grades 6–12 Science Classrooms?
(Grades 6–12)  D140, Convention Center
Science Focus: GEN, SEP1, SEP3, SEP6
Tamara Nelson (@tbuddhiker; tnelson1@wsu.edu), Washington State University Vancouver
Hear how 34 educators conceptualized and implemented STEM education. Discussion centers on ideas, challenges, and successes with STEM.
5:00–6:00 PM Presentations

Integrating Green Chemistry and Engineering Design into Every Classroom for High School Educators
(Grades 9–12) Oregon, DoubleTree
Science Focus: ETS1, PS
Jennifer Dean (jennifer.dean@camas.wednet.edu), Camas High School, Camas, Wash.
Mary Burt (strandmb@hotmail.com), Walla Walla High School, Walla Walla, Wash.
Presider: Nancy Simcox, University of Washington, Seattle
We will introduce green chemistry, engineering, and a toxicology curriculum developed by teachers, researchers, and government, featuring an activity demonstrating green chemistry integration into an existing curriculum.

Spark Students’ Curiosity with Chemistry!
(Grades K–12) Ross Island, DoubleTree
Science Focus: PS
Karen Kaleuati, American Chemical Society, Washington, D.C.
Did you know that the American Chemical Society (ACS) has resources for K–12 teachers, and you don’t need to be a member? Learn about these free resources, including games, lesson plans, grants, and more.

Teach Engineering Principles on the Cheap with Concrete
(Grades 7–12) B110, Convention Center
Science Focus: PS1.A, CCC6, SEP1, SEP3, SEP4
Debbie Goodwin (nywin@hotmail.com), Retired High School Science Teacher, Chillicothe, Mo.
Teach engineering using concrete and other composite materials. Discover inexpensive STEM projects that engage students using the #1 building material in the world. NGSS correlations will be shared.

Stories in the Secondary Science Classroom
(Grades 9–12) C122, Convention Center
Science Focus: GEN
Cynthia Cykert, Rogers High School, Newport, R.I.
Discussion centers on 13 fiction and nonfiction books to use in secondary science classrooms. Daily activities and long-term project ideas will be shared.

Perspectives on Time as a Means of Optimizing Science Instruction in a Diverse Classroom
(Grades 9–College) D137, Convention Center
Science Focus: GEN, NGSS
Paul Hampton (@DrPaul74; paul_hampton@beaverton.k12.or.us), Sunset High School, Portland, Ore.
Attention will be paid on how the effective use of instructional time can improve acquisition of science content, thereby meeting the needs of diverse students.

5:00–6:00 PM Hands-On Workshops

Smart Skies LineUp With Math
(Grades 5–8) Hawthorne/Sellwood, DoubleTree
Science Focus: PS, SEP5
Karen Crow Roark, NASA Ames Research Center, Mountain View, Calif.
Want to discover what it’s like to be an air traffic controller? Take student learning to new heights with the interactive simulator, LineUp With Math. Engage in proportional reasoning skills to resolve distance-rate time conflicts in realistic air traffic control problems. Bring a laptop/tablet.

Shared Goals in the New Science and Language Arts Standards for Grades 3–6
(Grades 3–6) D131, Convention Center
Laura Tucker (lauratucker98368@gmail.com), Consultant, Port Townsend, Wash.
Explore how students can effectively achieve these common goals during science instruction. Join in and experience an exemplary ocean science curriculum that involves supporting ideas with evidence.
3D Reach Higher with Projectiles and the NGSS  
(Grades 1–7)  
D133/134, Convention Center  
Science Focus: PS3.B, PS3.C, CCC1, CCC5, SEP  
Boost your students’ learning by using projectiles like straw rockets and other simple machines to understand ideas of motion, design, and graphing. Join in to feel more confident on terminology as well as practice the process.

Base Camp—Where Science and Literacy Standards Meet  
(Grades 3–6)  
D135, Convention Center  
Science Focus: ESS, SEP1, SEP6  
Christine Anne Royce (@caroyce; caroyce@aol.com), Shippensburg University, Shippensburg, Pa.  
Investigate a series of activities that help to integrate science and literacy skills through the use of children’s literature. A variety of science topic areas will be explored!

ASEE Session: Coupling Engineering Design Practices with CCSS ELA Writing  
(Grades 3–6)  
D139, Convention Center  
Science Focus: ETS1  
Patricia Morrell, University of Portland, Ore.  
In this interactive workshop, elementary teachers engage in engineering design practices tied to children’s literature and explore ways to explicitly integrate CCSS ELA with the activity.

Yes, You Can Teach Circuits and Programming!  
(Grades 6–12)  
E141, Convention Center  
Science Focus: ETS, SEP  
Lee Jones (lee.jones@dsd2.org), Dallas High School, Dallas, Ore.  
Whatever your background or training, you can teach programming and circuits with Arduino using simple project-based lessons. Bring a laptop/tablet (or share) with the Arduino IDE programming software installed.

Don’t Tell, Let Them Inquire with SOS Explorer: NOAA’s Science On a Sphere Data Visualization Tool  
(Grades 4–12)  
E144, Convention Center  
Science Focus: ESS  
Hilary Peddicord, NOAA Earth System Research Laboratory, Boulder, Colo.  
We will demonstrate and interact with NOAA Science On a Sphere data visualizations within SOS Explorer, a new interactive Earth display for personal computer.

Linking the Three Dimensions of Science Education Using the Framework and the NGSS  
(Grades 7–9)  
D140, Convention Center  
Science Focus: GEN, NGSS  
Christy Mathes (cmathes@ccsd.k12.wy.us), Campbell County School District, Gillette, Wyo.  
Ana Houseal (ahouseal@uwyo.edu), University of Wyoming, Laramie  
This session illuminates the power of integrating the dimensions of the Framework within a science classroom/curriculum.

5:30–6:00 PM  Presentations  
Using Issues-Based Culminating Projects to Bring STEM to Introductory Chemistry  
(Grades 8–12)  
D130, Convention Center  
Science Focus: ETS, PS1  
Angela Powers, Colorado State University–Pueblo  
Discover how culminating projects can integrate knowledge from STEM disciplines, broaden perspectives on global issues, and sharpen 21st-century skills within the chemistry curriculum.
#onlyatNSTA

Discover the Power of NSTA Membership

Only at NSTA can you get 20% NSTA Press books with award-winning content and strategies to fill your lesson plans! Check out our NSTA Book Club Membership when it’s time for you to renew your membership.

Join the conversation on Twitter and share your #onlyatNSTA moments with us. @nsta

www.nsta.org/membership
A kayaker paddles by the Hawthorne Bridge on the Willamette River.

—Photo courtesy of Travel Portland
8:00–9:00 AM Presentations

NOAA in Your Backyard: Free Professional Development and Local Educator Resources Are Closer Than You Think!
(Grades K–12) Alaska/Idaho, DoubleTree
Science Focus: GEN, NGSS
June Teisan (june.teisan@noaa.gov), NOAA Office of Education, Washington, D.C.
The National Oceanic and Atmospheric Administration (NOAA) has hundreds of facilities and professional communicators across the nation. Get connected to guest speakers, field trips, and local and national professional development opportunities.

Supporting Elementary Literacy Development Through Science: Three Key Strategies for Shifting Elementary Science Kits to Improve Literacy Skill Development
(Grades K–6) Morrison, DoubleTree
Science Focus: GEN, SEP2, SEP6
Jeff Ryan (jryan@oesd114.org) and Patricia Moore (pmoore@oesd114.org), Olympic Educational Service District 114, Bremerton, Wash.
Receive an overview of the process for transitioning a science kit to provide better opportunity for students to explain phenomena, engage in argument from evidence, develop and use models, and construct scientific explanations. We will highlight several literacy support strategies, the Ambitious Science Teaching Framework from the University of Washington, and some samples of modified elementary science units.

Animal Multimedia Inspires Learning and Engagement
(Grades K–12) Oregon, DoubleTree
Science Focus: LS, INF
Lindsay Glasner (@BirdSleuth; l27@cornell.edu), The Cornell Lab of Ornithology, Ithaca, N.Y.
Each spring and summer, birds, frogs, and insects are real “country” music singers! Come discover online resources, lessons, and apps that support STEM learning through animal sounds and videos.

Grey Matter: Learning and Teaching Science with the Brain in Mind
(General) Ross Island, DoubleTree
Science Focus: GEN, NGSS
Carolyn Hayes (@cahayes; cahayes@comcast.net), NSTA Retiring President, and Retired Educator, Greenwood, Ind.
Experience through science activities how discoveries in cognitive neuroscience are applied to NGSS teaching strategies and the principles of how students learn science.

Flipping, Cinematography, Podcasting, and Authoring: Nontraditional Teaching Strategies to Engage Students in the Science Classroom
(Grades 9–College) B119, Convention Center
Science Focus: GEN, SEP
Arlene Courtney, Western Oregon University, Monmouth
Discussion centers on the use of flipping, “movie-making,” podcasting, and Wiki-textbook generation for teaching science concepts to today’s students with emphasis on inexpensive, easy-to-use tools.

Advancing Scientific Literacy with Inquiry Lesson Plans Using Science Reading Materials
(Grades 9–12) C122, Convention Center
Science Focus: GEN, NGSS
Marta Gmurczyk, American Chemical Society, Washington, D.C.
Promote critical thinking using standards-based inquiry lesson plans based on high-interest, scientifically accurate articles about topics relevant to high school students’ everyday lives.

After-School STEM Clubs
(Grades 3–6) D130, Convention Center
Science Focus: INF, NGSS
Miriam Munck, Eastern Oregon University, La Grande
After-school STEM clubs excite students about STEM and broaden their knowledge. Find out how to get started and receive curriculum ideas.

The Art of Communicating Science: A Practical Toolkit
(Grades 6–12) D138, Convention Center
Science Focus: GEN
Cristina Veresan, Le Jardin Academy, Kailua, Hawaii
Help students effectively communicate their own or professional scientific research with narrative structure through engaging modules. Leave with a classroom-ready toolkit of lessons!
8:00–9:00 AM  Hands-On Workshops
Increase Student Engagement Through Educator Collaboration and Community Partnerships
(Grades K–12)  Hawthorne/Sellwood, DoubleTree
Science Focus: LS, CCC1, CCC4, CCC6, CCC7, SEP6, SEP8

LeeAnn Mikkelson (leeann.mikkelson@oregonstate.edu), Oregon State University, Corvallis
Steven Braun (stevenmatthewbraun@gmail.com), Aprovecho Center for Research and Education in Sustainability and Oregon Environmental Literacy Program, Cottage Grove
Foster environmental literacy and provide STEM learning opportunities for K–12 students using natural resources as a context for engagement by leveraging community partnerships and educator to educator professional development.

Let’s Get Physical—From Force and Friction to Water and Weather
(Grades P–3)  D131, Convention Center
Science Focus: PS1, PS2
Ruth Ruud (raudrruth61@gmail.com), Cleveland State University, Cleveland, Ohio
Juliana Texley (@Juliana.Texley; texle1j@cmich.edu), 2014–2015 NSTA President, and Central Michigan University, Mount Pleasant
Don’t look now, but the CCSS asks that you teach physical sciences as early as kindergarten, and the NGSS have specific goals for early primary. No more procrastinating! The good news is that you have your equipment. Come get easy activities, lit basics, and basic teacher background so that you can start right away!

Engaging Students Through Integrated Instruction Using Elementary GLOBE Storybooks
(Grades K–6)  D133/134, Convention Center
Science Focus: ESS, ETS1, CCC2, CCC5, SEP1, SEP3, SEP4, SEP6, SEP7, SEP8
Tina Harte, NASA Langley Research Center, Hampton, Va.
Elementary GLOBE develops integrated instruction through Earth science–based storybooks that engage the natural curiosity of students through a variety of learning activities and journaling experiences.

Constructing Equitable STEM Activities for All
(Grades 7–12)  D135, Convention Center
Science Focus: PS
Ann Haley Mackenzie (@annmackenzie; mackenah@miamioh.edu), Miami University, Oxford, Ohio
Explore two innovative STEM activities where two structures are built using equitable strategies for all.

Scientific Modeling and the NGSS
(Grades K–8)  D136, Convention Center
Science Focus: GEN, NGSS
Randy Bell (randy.bell@oregonstate.edu), Oregon State University, Corvallis
Participate in engaging activities designed to clarify and teach scientific modeling to elementary and middle school students. You’ll receive free resources and lessons.

DIG Field School: Paleontologists and Teachers Together in the Field
(Grades 3–12)  D139, Convention Center
Science Focus: ESS
Mark Watrin (mwatrin@comcast.net), Battle Ground (Wash.) School District No. 119
Brody Hovatter (bthor13@uw.edu), University of Washington, Seattle
DIG Field School puts teachers with University of Washington paleontologists in the field digging dinosaurs and fossil evidence for the Mesozoic extinction. Join in as we “sort microfossils” from the DIG box, provided by the Burke Museum.

What Do You Mean I Have to Teach Engineering?!?
(Grades 7–College)  E144, Convention Center
Science Focus: ETS1, PS
Gregory Dodd (gbldodd@gmail.com), Retired Educator, Pennsboro, W.Va.
We will focus on engineering design by engaging in a hands-on STEM activity on how a colorimeter works and how to design and use a simple colorimeter.
How to Make Science Instruction Compelling for Students: Designing Formative Assessments to Build on Learners’ Interests and Knowledge  
(Grades K–12)  
E145, Convention Center  
Science Focus: GEN, NGSS  
Shelley Stromholt (@sshellery; stromhos@uw.edu), University of Washington, Seattle  
Learn formative assessment approaches for discovering and building on students’ interests and knowledge in support of 3-D science learning.

Inquiry Matters: Identify Unknown Liquids  
(Grades 4–8)  
E146, Convention Center  
Science Focus: PSI.A, CCC6, SEP3, SEP4, SEP6  
Patricia Galvan (p_galvan@acs.org), American Chemical Society, Washington, D.C.  
Conduct simple tests on four clear, colorless household liquids to identify unknowns. Videos explain observations. Complete instructions will be provided and are available at www.inquiryinaction.org.

8:00–9:00 AM  Exhibitor Workshops

Genes, Genomes, and Personalized Medicine  
(Grades 9–College)  
A103/104, Convention Center  
Science Focus: LS, CCC, SEP  
Sponsor: MSOE Center for BioMolecular Modeling  
Tim Herman (herman@msoe.edu) and Diane Munzenmaier (munzenmaier@msoe.edu), MSOE Center for BioMolecular Modeling, Milwaukee, Wis.  
Introduce students to the science of genomics and personalized medicine with interactive DNA models and gene maps. We will tell a genomic story of how whole genome sequencing has been used to reach a molecular diagnosis of a disease.

Photosynthesis and Respiration: It’s a Plant’s Life!  
(Grades 9–12)  
B116, Convention Center  
Science Focus: LS, CCC3, SEP1, SEP3, SEP4, SEP5  
Sponsor: LAB-AIDS®, Inc.  
Paul Wesley Crawford, Sutherlin High School, Sutherlin, Ore.  
Help your students sprout and grow with a different approach to teaching photosynthesis and cellular respiration. Learn how to captivate students through inquiry activities that can challenge and excite them. Easily implement activities into your current biology or plant science class.

Modeling Earth, Sun, and Other Stars with Bring Science Alive!  
(Grades K–5)  
A107, Convention Center  
Science Focus: ESS  
Sponsor: TCI  
Christy Sanders (info@teachtci.com), TCI, Mountain View, Calif.  
Experience learning from a student’s perspective as you learn about the relationship between Earth, Sun, and other stars using a powerful online learning system. The lesson was entirely built on the NGSS.

Investigate Photosynthesis and Cellular Respiration with Algae Beads  
(Grades 8–College)  
C123, Convention Center  
Science Focus: LS  
Sponsor: Bio-Rad Laboratories  
Damon Tighe (damon_tighe@bio-rad.com), Bio-Rad Laboratories, Hercules, Calif.  
Use algae beads in a colorimetric assay to study both photosynthesis and cellular respiration in authentic inquiry investigations (AP Biology Big Idea 2: Labs 5 and 6). Learn how to extend this lab to study the effects of light intensity, light color, temperature, and other organisms on these processes.
Saturday, 8:00 AM–12 Noon

8:00 AM–12 Noon  Short Course
From Roots to STEM—Using Roots Instruments to Teach STEM (SC-4)
Tickets Required; $41
(Grades 4–8) Mt. Bachelor, DoubleTree
Science Focus: ETS2, CCC3, SEP1, SEP5
Nicholas Krissie (@krissie_nick; nicholas.krissie@oakland.k12.or.us), Lincoln Middle School, Oakland, Ore.
For description, see page 31.

8:00 AM–5:00 PM  Meeting
Discover the NGSS Train-the-Trainer Workshop
(By Separate Registration Only) Holladay, DoubleTree
This workshop gives teacher leaders a solid understanding of the NGSS, tools for conducting teacher training, and the ongoing support they need to be leaders.

8:30–9:00 AM  Presentation
Bringing Science to Life: Authentic Learning Experiences
(Grades 4–8) D140, Convention Center
Science Focus: ETS1
Courtney Lockridge (@soonerhorns; courtney.lockridge@piedmontschools.org), Piedmont (Okla.) Public Schools
Shawn Blankenship (@Blankenship_s; shawn.blankenship@piedmontschools.org), Piedmont Intermediate School, Piedmont, Okla.
Hear about examples of authentic learning experiences that have transformed STEM in the intermediate classroom using projects applying the engineering design model.

9:00 AM–12 Noon  Exhibits
Hall A, Convention Center
The NSTA Exhibit Hall is a must-see! NSTA brings you the leading science education companies and organizations to showcase products, services, curricula, and much more. You’ll discover something new and exciting in the world of science teaching. Some exhibitors will offer materials for sale.

9:30–10:30 AM  Presentations
Developing a Leadership PD Toolkit for the Next Generation of Science Education Leaders
(Grades K–12) Alaska/Idaho, DoubleTree
Science Focus: GEN
Gary Nakagiri (gnakagiri@gmail.com), SETI Institute, Hayward, Calif.
What are some relevant “tools” for your leadership toolkit? Experience and discuss their appropriate use with like-minded colleagues. Handouts, including a resource list, will be provided.

Magical Illusions and Scintillating Simulations for STEM
(Grades 3–College) Oregon, DoubleTree
Science Focus: LS, PS
Alan McCormack (amccorma@mail.sdsu.edu), 2010–2011 NSTA President, and San Diego State University, San Diego, Calif.
Storylines, discrepant events, and magic develop concepts in both physical and biological sciences, pique children’s interest and imagination, and build creative and logical thinking skills.

NARST-Sponsored Session: Resisting Racist, Classist, and Neoliberalism in Science Education
(General) B119, Convention Center
Science Focus: ETS2.B, INF
Jean Aguilar-Valdez (aguil@pdx.edu), Portland State University, Portland, Ore.
Neoliberalism in science education focuses on justifying the teaching of science to bolster the capitalistic competition and the market economy. Racist and classist repercussions result from this mind-set. Attention will be paid to ways to resist this attitude in science teaching and embrace a more critical, anti-racist approach to teaching science for social justice.

Engineer Your World: Integrating Engineering Design, Computational Thinking, and 21st-Century Skills
(Grades 9–12) C122, Convention Center
Science Focus: ETS, CCC1, CCC4, SEP
Cheryl Farmer (cheryl.farmer@mail.utexas.edu), The University of Texas at Austin
Learn about an innovative, research-based engineering curriculum that meets the NGSS, fosters computational thinking and 21st-century skill development, and builds engineering career awareness.
A Fun and Relevant Way to Teach Physical Science (Chemistry) Concepts  
(Grades 8–12)  
D130, Convention Center  
Science Focus: CCC, SEP, PS  
Andrew Nydam, Polymer Ambassador, Olympia, Wash.  
Labs and demonstrations will be shared that relate automobiles to the science and engineering practices in the new Framework. Content will focus on physical science core ideas as well as applications of science to the everyday world. Correlations to CCSS will be shared and handouts provided on a CD.

Equity and Engagement of Economically Disadvantaged Students in STEM Project-Based Learning  
(Grades 7–12)  
D137, Convention Center  
Science Focus: GEN, SEP  
Kama Almasi (kama.almasi@lincoln.k12.or.us) and Melissa Steinman (melissa.steinman@lincoln.k12.or.us), Waldport High School, Waldport, Ore.  
We created three career pathways and are using Project-Based Learning in STEAM/CTE fields to improve equity, engagement, and post-graduation success.

Engineering a Robot to Do the Job  
(Grades 3–5)  
3 Sisters, DoubleTree  
Science Focus: ETS1, PS, SEP1, SEP2, SEP3, SEP4, SEP5  
Karen Crow Roark (kcroark@gmail.com), NASA Ames Research Center, Mountain View, Calif.  
Let’s design and build a robot to help with a task, just like Robonaut! Engineer a bristle bot to move payloads from one location to another. Go through the steps of the engineering design process to determine the best method to move the payload.

How to Create Meaningful Student Dialogue  
(Grades 6–12)  
Hawthorne/Sellwood, DoubleTree  
Science Focus: GEN, SEP4, SEP6, SEP7, SEP8  
Samantha Johnson (@SciInnovations; smjohnson@slzusd.org), Arroyo High School, San Lorenzo, Calif.  
What does student talk in your classroom look like? The NGSS asks us to have our students evaluate and communicate information. Discussion centers on activities and strategies that build academic conversations, promote critical thinking, and deepen content understanding.

Cultural and Ecological Studies on Mount St. Helens  
(Grades 6–12)  
D138, Convention Center  
Tom Wolverton (@iTechPrep; twolvie@hotmail.com) and John Zingale (@iHistorywMrJZ; john.zingale@vansd.org), Vancouver iTech Preparatory, Vancouver, Wash.  
Abigail Groskopf (agroskopf@mshinstitute.org), Mount St. Helens Institute, Amboy, Wash.  
We will take a look into vertically aligned collaborative projects between our school and the Mount St. Helens Institute through cultural, social, and ecological lenses.

Engineering Design, 3D Printing, and Physics—Putting It All Together!  
(Grades 9–12)  
Mt. Hood, DoubleTree  
Science Focus: ETS, PS, CCC1, CCC2, CCC3, CCC4, CCC6, SEP2, SEP3, SEP4, SEP5, SEP6, SEP7, SEP8,  
Jacklyn Bonneau (bonneau@wpi.edu), Massachusetts Academy of Math & Science at WPI, Worcester, Mass.  
See how 3D printing enhances the design of physics labs and how the engineering cycle enhances the design of your 3D printing, along with enhanced learning in science!

Decode a Fish  
(Grades 3–5)  
D131, Convention Center  
Science Focus: LS1.A, CCC1, SEP6, SEP7  
Joey Scott (@joeyelle; jlehnard@mbayaq.org), Monterey Bay Aquarium, Monterey, Calif.  
What patterns do we observe in shapes of fishes from the same habitat? Discover fish traits through the concept of patterns from Monterey Bay Aquarium educators! Door Prizes!
Regurgitation and Argumentation: Teaching Science Practices Using Owl Pellets  
(Grades 2–5) D133/134, Convention Center  
Science Focus: LS, CCC5, CCC6, SEP1, SEP3, SEP4, SEP7  
José Ríos (jrios@u.washington.edu), University of Washington Tacoma  
According to the NGSS, claims and evidence are integral parts of the science practices. Come explore how you can use owl pellets to teach scientific argumentation.

Goldilocks, an Engineer?  
(Grades P–2) D135, Convention Center  
Science Focus: ETS1, PS2, SEP  
Margaret Giunta (giuntam@pcsb.org), Douglas L. Jamerson, Jr. Elementary School, Saint Petersburg, Fla.  
Fairy tales provide context for kindergarten-aged children to learn important science, math, and engineering design concepts.

A STEM Activity for Physics and Physical Science  
(Grades 7–12) D139, Convention Center  
Science Focus: PS, SEP1, SEP2, SEP3, SEP4, SEP5, SEP8  
John Currie (currie_98406@yahoo.com), Retired Physics Teacher, Mountlake Terrace, Wash.  
Engage in hands-on circuit-building activities, involving models of digital logic that your students can use to study electricity and some electronic components.

Seasons in the Sun  
(Grades 6–8) E141, Convention Center  
Science Focus: ESS1.B, CCC1, CCC2, CCC4, SEP2, SEP4  
Christine Shupla (shupla@lpi.usra.edu), Lunar and Planetary Institute, Houston, Tex.  
Nana Baffour (baffournana@aol.com), David Crockett Middle School, Richmond, Tex.  
Participate in data-rich activities, examining patterns in temperatures, modeling the reasons for seasons, and predicting patterns for the number of daylight hours for cities.

No-Hassle Messy Science with a Wow! Atoms, Molecules, and Density  
(Grades K–8) E143, Convention Center  
Elizabeth Andanen (eandanen@omsi.edu), OMSI, Portland, Ore.  
Prepare to get messy! We will explore atoms, molecules, and density with hands-on chemistry experiments that use easy-to-find materials, cross-curricular connections, and in-depth explanations.

Beet Armyworm Invasion: Breeding Better Plants with Natural Diversity  
(Grades 7–College) E144, Convention Center  
Tiffany Fleming (@btiscience; tfleming@cornell.edu), Boyce Thompson Institute for Plant Research, Ithaca, N.Y.  
With global climate change, the full potential of natural diversity in food crops must be harnessed. Get the latest buzz on plant research and a citizen science project that explores biodiversity, chemistry, plant breeding, agriculture, imaging technology, and insects.

Exploring the Science and Engineering Practices  
(Grades K–12) Hawthorne/Sellwood, DoubleTree  
Science Focus: GEN, SEP  
Ted Willard (@Ted_NSTA; twillard@nsta.org), Program Director, NGSS@NSTA, NSTA, Arlington, Va.  
Come explore science and engineering practices (such as constructing explanations and developing models) that are central to the vision of education described in the Framework and the NGSS.

Using Local Native Landscapes to Broaden Environmental Education: GLOBE Opportunities  
(Grades 3–College) E146, Convention Center  
Paul Ruscher (@paul_ruscher; ruscherp@lanecc.edu), Lane Community College, Eugene, Ore.  
The GLOBE program has recently developed implementation strategies for NGSS across the curriculum. An Oregon partnership is putting this into action in 2016 to support informal and K–12 science education.
**9:30–10:30 AM Exhibitor Workshops**

**Of All the Nerve: Modeling Neurotransmission**  
(Grades 9–College) A103/104, Convention Center  
Science Focus: LS, CCC, SEP  
Sponsor: MSOE Center for BioMolecular Modeling  
Tim Herman (herman@msoe.edu) and Diane Munzenmaier (munzenmaier@msoe.edu), MSOE Center for BioMolecular Modeling, Milwaukee, Wis.  
Construct models of cholinergic, dopaminergic, and GABAergic synapses. Explore the role of various ions in action potential generation and neurotransmitter release. Visualize neurotransmitter synthesis using 3D printed models. Handouts provided!

**Tracking the Spread of Infectious Diseases: Human and Animal**  
(Grades 9–12) B116, Convention Center  
Science Focus: LS, CCC3, SEP1, SEP3, SEP4, SEP7, SEP8  
Sponsor: LAB-AIDS®, Inc.  
Paul Wesley Crawford, Sutherlin High School, Sutherlin, Ore.  
Help students understand the spread of diseases in a human or animal population by using this engaging hands-on lab. Model how health organizations trace a disease while teaching important concepts of disease transmission and exponential growth.

**Build a Box: Engineering Food Dye Electrophoresis for NGSS**  
(Grades 7–College) C123, Convention Center  
Science Focus: ETS, PS, SEP  
Sponsor: Bio-Rad Laboratories  
Damon Tighe (damon_tighe@bio-rad.com), Bio-Rad Laboratories, Hercules, Calif.  
In this hands-on workshop, see great ways to engage your students in engineering practices to study something they encounter in their everyday lives—food dyes! Have students engineer a protocol to separate and identify dyes using an integrated do-it-yourself electrophoresis box. It’s a colorful way to introduce pipetting and electrophoresis skills in addition to chemistry and physics concepts.

**Three Dimensions in the Project-Based Classroom**  
(Grades 6–8) C124, Convention Center  
Science Focus: GEN, NGSS  
Sponsor: It’s About Time  
Mary Starr, Michigan Mathematics and Science Centers Network, Plymouth  
Meeting the NGSS is a shift in how we teach science. With well-designed, project-focused resources, you can make the shift and get your students, of all levels, engaged as they participate in realistic educational projects like real scientists do. Come experience it for yourself.

**11:00 AM–12 Noon Presentations**

**STEM Teaching Tools: Linking Research and Practice**  
(Grades K–12) Alaska/Idaho, DoubleTree  
Science Focus: GEN, NGSS  
Shelley Stromholt (@sshellery; stromhos@uw.edu), University of Washington, Seattle  
Learn about and use STEM teaching tools, a suite of accessible, bite-sized practice briefs aimed at specific aspects of science education with research- and practice-based ideas and actionable advice.

**Helping Children Understand the Impact of STEM and the Essential Integration of All STEM Disciplines: Explorations with Physical Structures, Plants, and Everyday Household Tools**  
(Grades 3–6) Oregon, DoubleTree  
Science Focus: GEN, NGSS  
Donna Knoell, Educational Consultant, Overland Park, Kans.  
Attention will be paid to strategies and activities to engage elementary students actively in STEM applications by constructing physical structures (bridges, ramps, etc.), by growing plants, and by exploring how everyday objects use simple machines for mechanical advantage.

**Science Teaching for Social Justice**  
(Grades 6–College) Ross Island, DoubleTree  
Science Focus: ETS2, CCC1, CCC2, SEP4, SEP7, SEP8  
Moses Rifkin (@RiPhysKin; mrifkin@universityprep.org), University Prep, Seattle, Wash.  
Teaching for social justice can be part of science education. Hear how a scientific exploration and analysis of who does science leads to questions of equity.

**A Unique Ice Core Investigation that Integrates the Three Dimensions of the NGSS and STEM**  
(Grades 7–College) B110, Convention Center  
Donna Young (dlyoung.nso@gmail.com), Chandra X-Ray Center, Bullhead City, Ariz.  
This open-ended investigation uses absolute and relative dating techniques and anomalies to date Icelandic and mid-latitude volcanoes, solar proton events, terrestrial events, and possibly supernovas.
Interactive Notebooks in the Secondary Science Classroom  
(Grades 9–12)  
Science Focus: GEN, NGSS  
Tiffany Allen, Campus High School, Wichita, Kans.  
Heard the hype about interactive notebooks, but unsure how to implement them in a secondary classroom? Gain insight from teachers successfully implementing this teaching structure.

A Picture-Perfect Approach to Connecting Reading Strategies and Science  
(Grades K–5)  
Science Focus: GEN, NGSS  
Kimberly Stilwell, Picture-Perfect Science, West Chester, Ohio  
Need ideas to connect literacy and science? Never before has it been so easy to interest students in reading and science. Picture-Perfect Science Lessons combine the appeal of children’s picture books with standards-based science content. Leave with ideas on how to begin the integration in your classroom.

Student-Designed Research on Sleep, Memory, and Emotional Regulation  
(Grades 9–College)  
Science Focus: ETS2, LS1.A, LS1.D, SEP  
Nancy Cowdin (nancy.cowdin@visi.org), Georgetown Visitation Preparatory School, Washington, D.C.  
High school science neurobiology students learn research methods by designing and conducting sleep research using ambulatory sleep monitors and psychometric measures of sleep quality.

NITARP: Bringing Real Astronomy Research into Classrooms  
(Grades 7–12)  
Science Focus: ESS  
Laura Orr (laura.orr@ukiah.k12.or.us), Ukiah High School, Ukiah, Ore.  
John Gibbs (gibbsj@hsd.k12.or.us), Glencoe High School, Hillsboro, Ore.  
Holly Bensel (hbensel@smschool.us), St. Mary’s School, Medford, Ore.  
NITARP stands for the NASA/IPAC Teacher Archive Research Program. The program partners small groups of educators with a mentor professional astronomer for a yearlong original research project using NASA’s vast archives of data from space- and ground-based telescopes.

Making Waves with Marine-Themed Project-Based Learning  
(Grades 4–12)  
Science Focus: ESS2.B, ESS2.C  
Cait Goodwin (cait.goodwin@oregonstate.edu), Oregon State University, Newport  
Kama Almasi (kama.almasi@lincoln.k12.or.us), Waldport High School, Waldport, Ore.  
From tsunamis to student-built underwater gliders, explore how marine topics can be used to engage diverse learners and make learning relevant while meeting NGSS requirements.

11:00 AM–12 Noon  Hands-On Workshop  
The STEAM Behind a NASA Mission, as Seen by a Teacher Who “Flew”  
(Grades 5–12)  
Science Focus: ESS, SEP8  
Kathleen Fredette (kathleen.fredette@ileadschools.org), Maker School Network, Castaic, Calif.  
Examine the collaborative STEAM professions required to make a NASA mission successful, such as NASA’s Stratospheric Observatory for Infrared Astronomy and how you can fly!

Science in the “Shark Tank”  
(Grades 5–10)  
Science Focus: GEN, SEP  
Debi Callies, Paradise Valley Unified School District, Phoenix, Ariz.  
Have your students present to the “Shark Tank.” Join me as we go through the process of a problem-solving task with a strong emphasis on justifying your decisions based on science concepts.
Intensifying STEM on the Oregon Trail
(Grades K–5)  
D131, Convention Center
Science Focus: ETS1, SEP1, SEP2, SEP3, SEP4, SEP6
Carolyn Nesbitt, High Desert Museum, Bend, Ore.
Josh Hayden, Buckingham Elementary School, Bend, Ore.
Tired of one-and-done field trips? High Desert Museum and local schools have created STEM-focused field experiences that expand resources to all students. This workshop focuses on STEM and social studies integration as part of a larger curriculum unit.

ASTE-Sponsored Session: Integrating ELA and Math with NGSS-Based Activities for Elementary Teachers
(Grades 3–5)  
D133/134, Convention Center
Science Focus: PS, CCC4, SEP3
William Veal (vealw@cofc.edu), College of Charleston, S.C.
Participants will be able to complete three activities that are based upon NGSS performance expectations and integrate ELA and math concepts and methods.

Engaging Girls in STEAM
(Grades 6–8)  
D135, Convention Center
Science Focus: ETS, SEP
Gillian Thomas, Julia Morgan School for Girls, Oakland, Calif.
Learn how to build a STEAM program that can empower girls to develop a passion for engineering, build self-confidence, and inspire girls to become tomorrow’s leaders in STEAM fields. I will share how to create this curriculum and explore resources. We will try out a design challenge to build a prosthetic arm using affordable everyday materials.

The “F” in STEM Is Not to Be Feared
(Grades 7–12)  
D136, Convention Center
Science Focus: ETS1, CCC, SEP
Michael Holst, NASA Endeavor STEM Fellow, Chehalis, Wash.
Are you finding “jitters” about incorporating engineering into your science program for “STEM-ification”? This presentation will present various “hows” and “ways” without adding an engineering course for grades 1–12 science programs. This presentation is intended for preservice and “soon-to-be” STEM teachers.

Using the World Issue of Food Security to Teach Multiple NGSS
(Grades 8–12)  
D139, Convention Center
Claudia Ludwig (@SystemsEd; cludwig@systemsbiology.org) and Jessica Day (@projectfeed1010; jday@systemsbiology.org), Institute for Systems Biology, Seattle, Wash.
Aquaponics can be used as an engaging and beneficial STEM experience in the classroom. Learn how to set up systems and how to connect meaningful curriculum to the experience for biology and environmental science courses.

Molecular Modeling as a Tool for Understanding Cancer and Other Types of Genetic Disease
(Grades 9–College)  
E144, Convention Center
Science Focus: LS1, LS3, LS4, CCC2, CCC6, SEP
Sandra Porter (@digitalbio; sandra@digitalworldbiology.com), Digital World Biology LLC, Seattle, Wash.
Use molecular modeling software to compare molecule structures and develop hypotheses to explain why some mutations in BRCA1 can lead to cancer.
Some exhibitors have classified their products by grade level and subject area. Subject areas are abbreviated here as follows:

- Biology/Life Science (B)
- Chemistry/Physical Science (C)
- Earth/Space Science (EA)
- Environmental Science (EN)
- Integrated/General Science (G)
- Physics/Physical Science (PH)
- Professional Development (PD)
- Technology Education (T)

3D Molecular Designs #708
1050 N. Market St., CC130A  B, C, EA, EN
Milwaukee, WI 53202 G, PD
Phone: 414-774-6562 K–12, College
E-mail: contactus@3dmoleculardesigns.com
Website: www.3dmoleculardesigns.com

Our innovative, hands-on kits and models focus on core ideas and crosscutting concepts in biology, chemistry, physical, and life sciences. We involve teachers in developing kits, writing materials, and field testing. Kits support STEM and the NGSS. Ask about our new Flow of Genetic Information and Phospholipid & Membrane Transport kits.

Activate Learning #901
44 Amogerene Crossway, Suite 7862 G
Greenwich, CT 06836 K–8
Phone: 646-502-5231
E-mail: info@activatelearning.com
Website: www.activatelearning.com

Activate Learning is a leading publisher of investigation-centered, K–8 science curricula. Active Science (K–5) uses activities to develop problem-solving and communication skills across content areas. IQWST is a rigorous, grades 6–8 science curriculum that challenges and supports students as they investigate questions, engage in scientific practices, and explain scientific phenomena.

AEOP eCYBERMISSION and GEMS #624
1840 Wilson Blvd. K–12
Arlington, VA 22201
Phone: 202-752-7208
E-mails: missioncontrol@ecybermission.com; aepgems@nsta.org
Website: www.usaeop.com

The National Science Teachers Association administers two U.S. Army STEM programs to engage students in real-world experiences. eCYBERMISSION is an online competition for students in grades 6–9 and GEMS is a summer STEM enrichment program held at specific U.S. sites for students and teachers in grades 5–12.
The ACS Education Division serves learners and educators by building communities and providing effective chemistry education resources, grants, communities, professional development opportunities, standards, and guidelines. Stop by our booth to find information that can support your efforts to provide innovative, relevant, and effective chemistry education from kindergarten through professional education.

American Meteorological Society  #401
1200 New York Ave. NW  EA
Washington, DC 20005  K–12
Phone: 202-737-1043
E-mail: amedu@ametsoc.org
Website: www.ametsoc.org/amsedu

Want to learn more about the geosciences? Now’s your chance! The AMS Education Program offers content-rich, professional development opportunities for teachers in the geosciences. Along with workshops in meteorology and oceanography, the AMS guides Local Implementation Teams to offer DataStreme Atmosphere, DataStreme Ocean, and DataStreme Earth’s Climate System (ECS).

Amplify  #609
55 Washington St.  B, EA, EN, G
Brooklyn, NY 11201  K–8
Phone: 800-823-1969
E-mail: info@amplify.com
Website: www.amplify.com

Amplify reimagines the way teachers teach and students learn. Our products lead the way in data-driven instruction and next-generation digital content. Amplify’s breakthrough science core curriculum was designed and built specifically for the NGSS. It includes immersive science and engineering experiences and has been proven to be effective in classrooms nationwide.

Arbor Scientific  #505
PO Box 2750
Ann Arbor, MI 48106-2750
Phone: 734-477-9370
E-mail: andrea@arborsci.com
Website: www.arborsci.com

For 30 years now, Arbor Scientific has scoured the planet to find unique classroom demonstrations and laboratory tools that teachers find as cool as their students. We pride ourselves on presenting only products that offer the best quality and best price, and then we layer that with knowledgeable customer service. We are proud that tens of thousands of teachers rely on Arbor Scientific for our wide selection of physics and physical science teaching equipment, our teaching guides, our demonstration videos, and our monthly free Cool Stuff enewsletter. Visit us to see what Cool Stuff is awaiting you at www.arborsci.com.

Ardusat  #918
341 S. Main St., Suite 111  B, C, EA, EN, G, PH, PD, T
Salt Lake City, UT 84111  K–12, College
Phone: 385-414-4779
E-mail: info@ardusat.com
Website: www.ardusat.com

Ardusat is a complete STEM program for schools looking for an interactive and effective STEM solution. Ardusat provides open curriculum resources mapped to local standards, and eHub where students build experiments and share their findings. Activities range from using an Arduino and sensors, to running experiments on satellites in space.

Art of STEM: Smart Fun for Tinkers & Makers  #421
7429 N. Leavitt St.  G, PD, T
Portland, OR 97203  PreK–12
Phone: 503-206-6214
E-mail: jruiz@artofstem.com
Website: www.artofstem.com

Art of STEM delivers smart fun for tinkers & makers with toys, books, games, logic games, science kits, and STEM problem solving activities. In-booth activities include 3D printing, Oculus Rift Virtual Reality free make-n-takes, and giveaways. Meet one of the 100 Women Leaders in STEM Saturday at 12 noon!

Bio Corp.  #908
3910 Minnesota St. SW  B
Alexandria, MN 56308  PreK–12
Phone: 320-763-9094
E-mail: billw@biologyproducts.com
Website: www.biologyproducts.com

Bio Corp. is here to provide superb specimens and reasonable pricing. We have rarely seen Bio Corp. specimens. Stop by our booth for a free sample!

Bio-Rad Laboratories, Inc.  #805
2000 Alfred Nobel Dr.  B
Hercules, CA 94547  6–12
Phone: 800-4-BIORAD (424-6723)
Website: www.bio-rad.com

Bio-Rad provides teachers with a completely supported life science experience. Starting with the highest quality reagents, Bio-Rad provides peace of mind each time teachers spend their precious lab budget. We focus on providing teachers with the best resources possible so they can focus on what they do best—teach!

Bright Schools Competition  #622
1840 Wilson Blvd.  B, EN
Arlington, VA 22201  6–8
Phone: 703-312-9282
E-mail: sbeistel@nsta.org
Website: www.brightschoolscampaign.org

The goal of the Bright Schools program is to create a learning experience that will help students, parents, and teachers better understand the link between light, sleep, and student health and performance. Through the Bright Schools Competition, students in grades 6–8 will select a topic related to light and sleep and select one of three exploration options (developing a prototype, creating an awareness campaign, or writing a research proposal) to create an original project.
Carolina Biological Supply Co.  #601
2700 York Rd.  All
Burlington, NC 27215  K–12, College
Phone: 800-334-5551
E-mail: carolina@carolina.com
Website: www.carolina.com

Carolina is a worldwide leader in providing educators with top-quality, innovative science and math materials, including our newest e-learning tools available at CarolinaScienceOnline.com. Carolina also serves the K–12 and college markets with everything to equip a science laboratory or classroom. Our Carolina™ Science catalog is free for educators and health professionals.

Cognitive Surplus  #405
10540 N. Midway Ave.  B, C, EA, EN, G, PH
Portland, OR 97203  K–12, College
Phone: 917-817-1227
E-mail: kristen@cognitive-surplus.com
Website: www.cognitive-surplus.com

Cognitive Surplus makes designer science gifts using sustainable materials. From vintage-inspired notebooks to drinkware, and T-shirts to tote bags, everything is designed to ignite your curiosity. Whether you’re looking for a birthday gift for your lab partner, or a present for your girlfriend, we’ve got your smarty-pants covered.

The Cornell Lab of Ornithology, #409
159 Sapsucker Woods Rd.  B, EN
Ithaca, NY 14850  K–12
Phone: 607-254-2489
E-mail: slm355@cornell.edu
Website: www.birdsleuth.org

With engaging hands-on activities and authentic scientific research opportunities, BirdSleuth is an ideal way to teach science content and build science process skills. Students are at the center of the action, making firsthand observations, collecting data, and sharing their results. Count on us to support inquiry learning in your classroom.

CPO Science/School  #610
Specialty Science
80 Northwest Blvd.
Nashua, NH 03063
Phone: 800-282-9560
E-mail: customerservice.cpo@schoolspecialty.com
Website: www.cposcience.com

CPO Science provides all the essential components for a hands-on, inquiry-based science program for grades 6–12. Students are truly engaged through hands-on learning, STEM projects, collaborative social learning, and real-world activities. CPO Science core and supplemental programs are ideal for differentiated instruction, helping students of all abilities succeed in science class and the world beyond.

Creative Discovery Museum  #521
321 Chestnut St.  B, EA, EN, G, T
Chattanooga, TN 37402  K–12
Phone: 423-290-4641
E-mail: jwr@cdmfun.org
Website: www.cdmfun.org

Creative Discovery Museum (Chattanooga, Tennessee) is working with the BioEnergy Science Center (BESC) in Oak Ridge, Tennessee, on a biofuels/alternative energies project called Farming For Fuels. Free materials, including curriculum, hands-on activities, “Road Trip Challenge” software app, website (www.learnbiofuels.org), and distance learning lesson information are available to educators! Come by our booth and see what free STEM materials might work well in your classroom!

Delta Education/School  #608
Specialty Science
80 Northwest Blvd.
Nashua, NH 03063
Phone: 800-258-1302
E-mail: customerservice.delta@schoolspecialty.com
Website: www.deltaeducation.com

Delta Education is your leading educational partner in providing hands-on, inquiry-based K–8 curriculum and instructional resources. With programs like FOSS® and DSM®, informational texts (Delta Science Content Readers), NGSS and STEM resources, we help you develop students who set a world-class standard for college and workforce readiness.

Discovery Education  #403
1 Discovery Place
Silver Spring, MD 20910
Phone: 312-722-4471
E-mail: amy_thrash@discovery.com
Website: www.discoveryeducation.com

Discovery Education is the global leader in standards-based digital content for K–12, transforming teaching and learning with award-winning digital textbooks, multimedia content, professional development, and the largest professional learning community of its kind. Discovery Education partners with districts, states, and like-minded organizations to captivate students, empower teachers, and transform classrooms with customized solutions that increase academic achievement. Discovery Education is powered by Discovery
Communications, the number one nonfiction media company in the world. Explore the future of education at www.discoveryeducation.com.

**Educational Innovations #709**
5 Francis J. Clarke Circle  B, C, EA, EN, Bethel, CT 06801  G, PH, T
Phone: 203-748-3224  PreK–12, College
E-mail: info@teachersource.com
Website: www.teachersource.com

At Education Innovations, “Teachers Serving Teachers” isn’t just our slogan—it’s our mission! We’re committed to offering SUPER! WOW! NEAT! science materials that bring out the scientist in everyone—colleagues, students, grandkids. We make science sizzle! NGSS correlations available online for many products.

**Educational Travel Services, Inc. #822**
PO Box 82605  B, EA, EN, PH, T
Portland, OR 97282  6–12
Phone: 503-653-3988
E-mail: judi@etsi.ws
Website: www.etsi.ws

Travel brings the classroom curriculum alive, inspiring students to learn through firsthand, interactive experiences. Educational Travel Services combines years of experience in the educational fields with a proven track record of providing unique science curriculum-based, customized educational travel experiences.

**Educurious, #419**
2815 Eastlake Ave, E, Suite 220  B
Seattle, WA 98102  9–12
Phone: 206-402-4489
E-mail: ssiegel@educurious.org
Website: www.educurious.org

Educurious provides blended project-based courses that engage students in developing solutions to real-world challenges. Our blended learning approach leverages an online platform to deliver curriculum and provide a space for collaboration. Educators, students, and experts team up on project work and incorporate 21st-century learning with today’s technology.

**Edvotek Inc. #504**
1121 5th St. NW  B, EN
Washington, DC 20001  6–12, College
Phone: 202-370-1500
E-mail: mariad@edvotek.com
Website: www.edvotek.com

Edvotek manufactures robust research-grade biotechnology education experiments, biologies, reagents, and equipment for high schools and colleges. Experiments include DNA fingerprinting, electrophoresis, forensics, PCR, molecular cloning, immunology, environmental science, and AP biology. Products offer hands-on investigations with options for student participation in inquiry-based extensions that merge science and education.

**ETA hand2mind #817**
500 Greenview Court  G
Vernon Hills, IL 60061  PreK–12
Phone: 800-445-5985
E-mail: info@hand2mind.com
Website: www.hand2mind.com

ETA hand2mind offers proven hands-on solutions for grades preK–12, with educational and supplemental materials that enrich teaching and engage students in math, science, and reading. Our offerings include both traditional manipulatives and interactive digital versions. In addition, save time and money with our custom solutions designed for your specific needs.

**ExploreLearning #800**
110 Avon St., Suite 300  G, PH, T
Charlottesville, VA 22902  K–12
Phone: 866-882-4141
E-mail: sales@explorelearning.com
Website: www.explorelearning.com

ExploreLearning Gizmos are interactive online simulations that drive conceptual understanding in math and science for students in grades 3–12—complete with inquiry lessons, assessment, and reporting!

**Exploring Robotics #404**
PO Box 1407  G, PH, PD, T
Phoenix, OR 97535  PreK–12, College
Phone: 541-535-5552
E-mail: linda@exploringrobotics.com
Website: www.exploringrobotics.com

Stop by to register to win a robot. We offer fun robots, comprehensive STEAM curriculum, and teacher professional development for K–12. Our robots: Cubelets, Dash-Dot, Ozobot, Scribbler, and Boe Bot are irresistible to students, as well as durable, economical, and easy to use for classes, clubs, and makerspaces.

**FEI Company #408**
5350 NE Dawson Creek Dr.  B, C, G, T
Hillsboro, OR 97124  6–12
Phone: 503-726-2691
E-mail: brian.johnson@fei.com
Website: www.fei.com

Created through a partnership of FEI and the Australian Microscopy & Microanalysis Research Facility (AMMRF), MyScopeOutreach.org is a free online tool that is designed for school-age children (K–12) to make microscopy education accessible to a global community.

**Fisher Science Education #716**
300 Industry Dr.,  B, C, EA, EN, PH, PD, T
Pittsburgh, PA 15275  K–12, College
Phone: 800-995-1177
E-mail: jse.custserv@thermofisher.com
Website: www.fishersci.com

Got STEM? We totally do! Fisher Science Education provides today’s teachers with the cutting-edge products they need to prepare their students for STEM careers.
Flinn Scientific, Inc.  
PO Box 219  
Batavia, IL 60510  
Phone: 800-452-1261  
E-mail: flinn@flinnsi.com  
Website: www.flinnsi.com

Flinn Scientific is the leader in science and laboratory chemical safety. Publisher of the world-renowned Flinn Science Catalog Reference Manual, Flinn develops and offers a full line of chemistry, biology, physics, life science, Earth science, physical science, and safety products for middle school and high school.

Frey Scientific/School Specialty Science  
80 Northwest Blvd.  
Nashua, NH 03063  
Phone: 800-225-3739  
E-mail: customercare.frey@schooldspecialty.com  
Website: www.freyscientific.schooldspecialty.com

Frey Scientific offers a complete line of supplies, equipment, technology, and lab design services for grades K–12. Frey also offers the CPO Science learning systems that are ideal for differentiated instruction. Secondary level supplemental science curriculum offerings are Inquiry Investigations® and iNeo/SCI®.

Genius Games  
4818 Washington Blvd.  
St. Louis, MO 63108  
Phone: 314-420-5210  
E-mail: john@gotgeniusgames.com  
Website: www.gotgeniusgames.com

Genius Games creates interactive tabletop games and books that are accurately themed around science concepts. Our products are designed to spark the scientific imagination in experts and novices alike through curiosity, play, and exploration. No matter the medium, we create positive science experiences that can last a lifetime.

Grand Classroom, Inc.  
PO Box 1766  
Charlottesville, VA 22906  
Phone: 434-975-2629  
E-mail: maryannchapman@grandclassroom.com  
Website: www.grandclassroom.com

Grand Classroom is a student educational travel company. As technology plays an increasing role in students' lives, we believe it is more important than ever to make sure our kids have a connection to the outdoors. By getting kids outside now, it will help preserve not only our National Parks, but will instill an appreciation of the outdoors.

Holbrook Academic Travel  
3540 NW 13th St.  
Gainesville, FL 32609  
Phone: 800-451-7111  
E-mail: sandydoss@holbrooktravel.com  
Website: www.holbrooktravel.com

For over 40 years, Holbrook has fostered faculty-led scientific field immersion in locations across the globe. Whether you seek a STEM global field expedition or wish to participate in our Professional Development series, we look forward to exploring our world with you.

Horace Mann  
1 Horace Mann Plaza  
Springfield, IL 62715  
Phone: 217-789-2500  
E-mail: thomas.patrick@horacemann.com  
Website: www.horacemann.com

Horace Mann is an insurance and financial services company that is committed to helping educators achieve financial success. We help identify existing resources and savings opportunities by reducing or eliminating student loan debt, securing classroom funding, and finding savings through insurance program reviews.

Houghton Mifflin Harcourt  
2700 La Frontera Blvd.  
Round Rock, TX 78681  
Phone: 512-721-7161  
E-mail: sergio.durante@hmhco.com  
Website: www.hmhco.com

Houghton Mifflin Harcourt is a global learning company committed to changing lives by fostering passionate, curious learners. HMH creates engaging, dynamic and effective educational content and experiences from early childhood to K–12 and beyond the classroom, serving more than 60 million students in more than 150 countries. Available through multiple media, our content meets the needs of students, teachers, parents, and lifelong learners, no matter where and how they learn.

Howard Hughes Medical Institute (HHMI)  
4000 Jones Bridge Rd.  
Chevy Chase, MD 20815  
E-mail: octaviani@hhmi.org  
Website: www.hhmi.org/biointeractive

HHMI’s BioInteractive team develops free resources based on real data, highlighting research-practices. Our short films, virtual labs, apps, and print materials combine important science with engaging presentation. These multimedia resources are developed, vetted, and field-tested by educators and scientists—and are free and tied to national curriculum standards.

It’s About Time  
333 N. Bedford Rd., Suite 110  
Mount Kisco, NY 10549  
Phone: 914-273-2233  
Email: csr@iat.com  
Website: www.iat.com

It’s About Time partners with educators to move STEM education forward with student-focused, project-based/problem-based programs—with the engineering process embedded throughout. IAT is the leading publisher of NSF funded middle school and high school science and math STEM programs.
Kendall Hunt Publishing Co.  #723
4050 Westmark Dr.  All
Dubuque, IA 52002  PreK–12
Phone: 563-589-1075
E-mail: lsteine@kendallhunt.com
Website: www.kendallhunt.com

Kendall Hunt publishes a variety of inquiry and research-based science curriculum. Our hands-on programs are available in print and digital formats and focus on biology, the environment; Earth and physical sciences; integrated science; chemistry; and forensics science, as well as STEM concepts like technology and engineering.

King Arthur Flour  #525
62 Fogg Farm Rd.  C, G
White River Junction, VT 05001  6–8
Phone: 802-526-1837
E-mail: libby.treadway@kingarthurflour.com
Website: www.kingarthurflour.com/bakeforgood/kids

The FREE Bake for Good: Kids program visits hundreds of schools each year, teaching kids in grades 4–7 to bake yeast bread from scratch. Kids take ingredients home to bake two loaves; one to donate, one to enjoy. They discover that math, science, reading, and baking know-how make something delicious!

LAB-AIDS®, Inc.  #617
17 Colt Court  B, C, EA, EN, G, PH, PD
Ronkonkoma, NY 11779  6–12
Phone: 604-325-1241
E-mail: metheridge@lab-aids.com
Website: www.lab-aids.com

At LAB-AIDS, we believe students should experience science and be encouraged to question how it relates to them and the world around them. We do this by providing students with hands-on activities that excite them in science, integrate math, and are relevant to their own lives.

LEGO Education  #904
501 Boylston St.  B, EA, G, PH, T
Suite 4103  PreK–12
Boston, MA 02116
Phone: 206-390-2829
E-mail: ty.stevenson@lego.com
Website: legoeducation.com

LEGO Education combines the unique excitement of LEGO® bricks with hands-on classroom solutions for science, technology, engineering, math, and literacy. Learn how our products can bring innovation to your classroom.

Lemelson-MIT Program  #411
77 Massachusetts Ave.  C, G, PH, T
Suite 10-110  8–12, College
Cambridge, MA 02139
Phone: 617-253-7301
E-mail: aperry@mit.edu
Website: lemelson.mit.edu/inventeams

The Lemelson-MIT Program celebrates inventors and inspires youth through a national grants initiative, InvenTeams. InvenTeams are comprised of high school students, educators, and mentors who receive up to $10,000 each to invent technological solutions to real-world problems of their own choosing.

Magic Masseuse  #519
8056 17th Ave. NE
Seattle, WA 98115

We strive to provide efficient and manageable pain management services with our state-of-the-art Tens machines.
We offer student dry-erase markerboards and response boards in class sets at unbeatable prices! They’re great for instant response and instant assessment Single- and double-sided available—perfect for science, math, language arts, graphing, handwriting, and more. Long-lasting, nontoxic, ultra-low-odor markers, and durable student erasers, too!

MaryRuth Books, Inc. #916
18660 Ravenna Rd. B
Chagrin Falls, OH 44023 PreK–6
Phone: 440-834-1105
E-mail: admin@maryruthbooks.com
Website: www.maryruthbooks.com

MaryRuth Books is a publisher of leveled books designed to help children develop the literacy skills needed to succeed in school and achieve their potential in life. Our nonfiction/informational titles, with original photography and a controlled vocabulary, are able to be read by a child and ideal for introducing children to basic scientific ideas.

McGraw-Hill Education #410
8787 Orion Place All
Columbus, OH 43240 PreK–12
Phone: 614-430-4000
Website: www.mheducation.com

McGraw-Hill Education is a learning science company that delivers personalized learning experiences that help students, parents, educators, and professionals improve results. McGraw-Hill Education has offices across North America, India, China, Europe, the Middle East, and South America, and makes its learning solutions available in nearly 60 languages.

Measured Progress #902
100 Education Way G, T
Dover, NH 03820 K–8
Phone: 800-431-8901
E-mail: sales@measuredprogress.org
Website: www.measuredprogress.org

A nonprofit organization, Measured Progress is a pioneer in authentic, standards-based assessments. For more than 30 years, we have been connecting the K–12 educational community with innovative and flexible assessment solutions.

Minerals Education Coalition #903
12999 E. Adam Aircraft Circle EA
Englewood, CO 80112 PreK–12, College
Phone: 303-948-4221
E-mail: mec@smenet.org

Products you use daily come from mining. Which minerals are used in creating technology and why? Visit the Minerals Education Coalition booth for free rock kits and posters to teach your students about the importance of mining and minerals. Visit www.MineralsEducationCoalition.org for SMART board lessons, activities, demonstrations, videos, and more.

The MiniOne™ Electrophoresis #518
7738 Arjons Dr. B, C, G, T
San Diego, CA 92126 6–12, College
Phone: 858-684-3190
E-mail: info@theminione.com
Website: www.theminione.com

Discover the MiniOne, the revolutionary electrophoresis system designed to simplify classroom management and engage students through hands-on experiments and real-time visualization of results. Students cast, run, and document DNA gels in one class period. Inquiry-based miniLabs immerse students in the scientific process as they test hypothesis to solve real-world problems.

miniPCR #815
1770 Massachusetts Ave. B
Cambridge, MA 02140 6–8, College
Phone: 781-990-8727
E-mail: seb@minipcr.com
Website: www.minipcr.com

Engage your students in hands-on, real-world DNA inquiry! The miniPCR DNA Discovery System is the complete biotechnology lab for K-12 and college educators. miniPCR thermal cycler, blueGel electrophoresis with built-in illuminator, and a micropipette all for $890—also available as separate components.

MoDRN: Molecular Design #917
Research Network
370 Prospect St. 6–12, College
New Haven, CT 06520
Phone: 203-436-9296
E-mail: karolina.mellor@yale.edu
Website: modrn.yale.edu

MoDRN is a Green Chemistry and Green Engineering initiative, which focuses on the rational design of chemicals and materials to reduce toxicity. MoDRN offers green chemistry teaching tools and resources.

MSOE Center for BioMolecular Modeling #710
1023 N. Broadway St.
Milwaukee, WI 53202
Phone: 414-277-2824
E-mail: herman@msoe.edu
Website: cbm.msoe.edu

As an instructional materials development laboratory, we create student-centered, hands-on kits and models for the molecular biosciences. Through our professional development experiences, teachers learn active teaching skills and are involved in developing and field-testing new kits. Ask about our outreach programs—SMART Teams and Science Olympiad Protein Modeling Event.

Nasco #512
4825 Stoddard Rd. B, C, EA, EN, G
Modesto, CA 95356 PreK–12, College
Phone: 209-545-1600
E-mail: mrosenblum@enasco.com
Website: www.enasco.com

We offer a comprehensive collection of classroom supplies and equipment that encourages hands-on exploration in middle school, secondary, and post-high school science programs. Our products include visual aids, interactive whiteboard materials, kits, and teacher resources for general science, biology, chemistry, physics, astronomy, and space, Earth science, education technology, and environmental studies.

Exhibitors
National Geographic Learning | Cengage Learning  #722
20 Channel Center St. K–12
Boston, MA 02210
Phone: 888-915-3276
E-mail: schoolcustomerservice@cengage.com
Website: www.ngl.cengage.com

National Geographic Learning, a part of Cengage Learning, provides quality preK–12, academic, and adult education instructional solutions for reading; science; social studies; mathematics; ESL/ELD; advanced, honors, and electives; career and technical education; and professional development. See our new catalog at NGL.Cengage.com/catalogs.

National Inventors Hall of Fame®/Camp Invention  #415
3701 Highland Park NW K–6
North Canton, OH 44720
Phone: 800-968-4332
E-mail: campinvention@invent.org
Website: invent.org/camp-invention

WHERE BIG IDEAS BECOME THE NEXT BIG THING™ Camp Invention is the only nationally recognized, nonprofit summer enrichment program for kindergartners through 6th-graders that is inspired by the greatest innovators around—the Inductees of the National Inventors Hall of Fame®. At Camp Invention, children are empowered to question, brainstorm, collaborate, and invent!

NatureBridge  #819
111 Barnes Point Rd. B, EA, EN, G, PD
Port Angeles, WA 98363 K–12
E-mail: info@naturebridge.org
Website: www.naturebridge.org

NatureBridge believes that fostering environmental literacy engages students and supports healthy communities for a sustainable future. We provide residential environmental science education programs for grades K–12 in the world’s best classrooms—our national parks. NatureBridge offers programs in: Olympic, Yosemite, Golden Gate, Santa Monica Mountains, and Prince William Forest.

NEA Auto and Home Insurance  #520
4804 NW Bethany Blvd. K–12
Portland, OR 97229
Phone: 971-226-8966
E-mail: shanacek@calcas.com
Website: www.calcas.com/shanacek

The National Education Association Auto and Home Insurance is designed and discounted to meet the needs of NEA members. Underwritten and endorsed by the NEA, California Casualty provides NEA members with great rates and superior customer service. California Casualty has uniquely tailored personal insurance policies. Call 877-626-2871 or visit calcas.com/nea for a rate comparison.

NOAA Office of Education  #515
1305 East-West Hwy. B, EA, EN, PD
Room 1W514 K–12
Silver Spring, MD 20910
Phone: 301-713-1208
E-mail: education@noaa.gov
Website: www.education.noaa.gov

NOAA is a federal science agency providing free information about weather, climate, oceans, coasts, fisheries, satellite data, and solar weather. Every day, NOAA’s science touches the lives of all Americans.

Novagrade  #714
25589 SW Canyon Creek Rd. B, EA, EN, G, T
Suite 700 6–12, College
Wilsonville, OR 97070
Phone: 503-510-7560
E-mail: sales@novagrade.com
Website: www.novagrade.com

Novagrade® produces the world’s highest quality digiscoping adapters that convert conventional microscopes into digital imaging systems by using the cameras and displays in student cell phones. Simultaneous viewing on the screen and ability to capture time lapse and slow motion video all contribute to a greatly enhanced level of engagement.

NGSS@NSTA  #618
1840 Wilson Blvd. K–12
Arlington, VA 22201
E-mail: ngss@nsta.org
Website: www.nsta.org/ngss

How can NSTA help you prepare for the Next Generation Science Standards? Stop by our booth to hear the latest news about state adoption and check out a sampling of NSTA resources dedicated to helping teachers understand and implement the new standards.
## Exhibitors

### NSTA Programs

<table>
<thead>
<tr>
<th>NSTA Professional Learning Opportunities</th>
<th>Booth #620</th>
<th>E-mails:</th>
<th>Website:</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td></td>
<td></td>
<td><a href="http://www.nsta.org">www.nsta.org</a></td>
</tr>
<tr>
<td>1840 Wilson Blvd.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arlington, VA 22201</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone: 703-312-9274</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-mail: <a href="mailto:awakely@nsta.org">awakely@nsta.org</a></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The NSTA Professional Learning Team supports science educators in school districts and institutions of higher education through a variety of face-to-face, online, and blended experiences tailored to their specific needs. The Learning Center is NSTA's professional learning portal designed to enhance the content and pedagogical knowledge of teachers of science.

### AEOP eCYBERMISSION and GEMS

- **Booth #624**
- **E-mails**: missioncontrol@ecybermission.com
- **Website**: www.usaeop.com

### Bright Schools Competition

- **Booth #622**
- **E-mail**: sbestel@nsta.org
- **Website**: www.brightschoolscompetition.org

### NGSS@NSTA

- **Booth #618**
- **E-mail**: ngss@nsta.org
- **Website**: www.nsta.org/ngss

### NSTA Membership

- **Located in Pre-Function A, outside Hall A**
- **E-mail**: membership@nsta.org
- **Website**: www.nsta.org/membership

### NSTA Professional Learning Opportunities

- **Booth #620**
- **E-mails**: jputnam@nsta.org; fmendez@nsta.org
- **Website**: www.nsta.org/conferences#more

### Shell Science Lab Challenge

- **Booth #625**
- **E-mail**: shellsciencelab@nsta.org
- **Website**: www.nsta.org/shell; www.nsta.org/shellsciencelab

### Toshiba/NSTA ExploraVision

- **Booth #623**
- **E-mail**: echinick@nsta.org
- **Website**: www.exploravision.org

### ORBIT Oregon

- **E-mail**: orbitoregon@gmail.com
- **Website**: www.orbitoregon.org

**The Big Eclipse** book, activity book, and eclipse viewers to jump-start eclipse lesson plans for spring of 2017! We’re all ready for the August 21, 2017 total solar eclipse over the United States and here to help schools prepare, too.

### Oregon Health Authority, Public Health Division

- **E-mail**: oregon.aware@state.or.us
- **Website**: www.healthoregon.org/antibiotics

**The Oregon Alliance Working for Antibiotic Resistance Education (AWARE) Coalition’s mission is to encourage the appropriate use of antibiotics and reduce the problem of antibiotic-resistant bacteria in Oregon. This curriculum, designed for grades 9 and 10 students, includes two 45–60 minute modules discussing viruses, bacteria, antibiotics, and antibiotic resistance.**

### Oregon National Primate Research Center

- **E-mail**: gordondi@ohsu.edu
- **Website**: www.ohsu.edu/onprc

Oregon National Primate Research Center’s education outreach program includes opportunities to tour the Center (for anyone age 10 and older), apprenticeships for high school and college-aged students, and many other opportunities to interact with researchers and animal care staff that support research we undertake to further medical progress.

### OSU Dept. of Chemistry

- **E-mail**: antia.bracha@oregonstate.edu
- **Website**: www.chemistry.oregonstate.edu

The Department of Chemistry at Oregon State University is a national leader in online education and offers a wide range of fully online and hybrid courses for high school, college, and postgraduate students. Our offerings include courses in GOB, general, organic, inorganic, environmental chemistry, and chemical education.

---

122

NSTA Portland Area Conference on Science Education
PASCO scientific  
#500  
10101 Foothills Blvd.  
Roseville, CA 95747  
Phone: 916-462-8208  
E-mail: kdecina@pasco.com  
Website: www.pasco.com  

PASCO scientific transforms science education and student learning with innovative solutions featuring wireless probeware, intuitive, award-winning software for all devices, quality lab equipment, core curriculum and world-class professional development. PASCO offers solutions for physics, biology, chemistry, Earth and environmental, and middle school science.

Pearson Education  
#508  
501 Boylston St.  
Boston, MA 02116  
Phone: 800-848-9500  
Website: www.pearson.com

Pearson is the world’s learning company. We’re inspired by the way education transforms lives. We help K–12 educators create better learning across all disciplines with our products and services. We’re dedicated to improving student outcomes and helping learners prepare for college and careers. Because where learning flourishes, so do people.

Pitsco Education  
#900  
915 E. Jefferson St.  
Pittsburg, KS 66762  
Phone: 800-358-4983  
E-mail: orders@pitsco.com  
Website: www.pitsco.com

Pitsco is your STEM resource. Every product we engineer, every activity we write, every curriculum we develop, and every solution we design is provided for the purpose of helping students around the world use their hands to engage their minds to learn and succeed—in the classroom and in life!
Exhibitors

Project Learning Tree  #802
2000 M St. NW, Suite 550  PD
Washington, DC 20036  PreK–12
Phone: 202-765-3641
E-mail: information@plt.org
Website: www.plt.org

Project Learning Tree is an award-winning environmental education program designed for teachers and other educators, parents, and community leaders working with youth from preschool through grade 12. Program activities that enhance math, science, and community service are available for each model, as well as unique specimen observation kits and lesson plan booklets. Come scope us out!

REcharge Labs®  #914
2010 E. Hennepin Ave., Bldg. 2  EN, T
Suite 101  K–12
Minneapolis, MN 55413
Phone: 651-917-0079
E-mail: michael@rechargelabs.org
Website: www.rechargelabs.org

REcharge Labs generates resources for learners to creatively explore wind and solar power. We engage and inspire today’s K–12 students, educators, makers, and tinkerers to become the innovative renewable energy leaders of tomorrow by offering effective hands-on activities and kits, educator professional development, online engineering design challenges, and lessons.

School Specialty Science  #614
80 Northwest Blvd.  B, C, EA, EN, G, PH
Nashua NH 03063  K–12
Website: www.schoolspecialtyscience.com

School Specialty Science brings together the very best curriculum with FOSS® and CPO Science; classroom resources, equipment, and furniture with Delta Education and Frey Scientific. Together, these effective teaching and learning solutions serve all the needs of preK–12 science teachers, curriculum specialists, and administrators.

Science First®/STARLAB®  #909
86475 Gene Lasserre Blvd.  B, C, EA,
Yulee, FL 32097  EN, G, PH
Phone: 904-225-5558  K–12, College
E-mail: helmut.albrecht@sciencefirst.com
Websites: www.sciencefirst.com; www.starlab.com

From grade school to graduate school, Science First, helps ignite science! Take your students to the stars or dive to the Earth’s center with StarLab, our portable planetarium. We specialize in STEM incorporated classroom products and activities and are the exclusive dealer in the U.S. for PHYWE products that test the minds of university and college students with state-of-the-art technology.

Seattle Pacific University  #522
3307 3rd Ave. W, Suite 111  PD
Seattle, WA 98119
Phone: 206-281-2091
E-mail: guidance@spu.edu
Website: www.spu.edu

Seattle Pacific University offers 40 graduate degree programs from a variety of disciplines. We are committed to “personalized” education in an effort to graduate students of “competence and character.”

Shell Science Lab Challenge  #625
1 Shell Plaza  B, C, EA, EN, G, PH, PD, T
Houston, TX 77252  K–12
Phone: 703-312-9217
E-mail: shellsciencelab@nsta.org
Website: www.nsta.org/shell

Come learn how to win $20,000 for your classrooms, $10,000 for your exemplary teaching, and $1,800 to attend the NSTA National Conference in Los Angeles March 30 through April 2, 2017.

Society for Science & the Public  #823
1719 N St. NW  All
Washington, DC 20036  6–12
Phone: 202-785-2255
E-mail: ssnyder@societyforscience.org
Website: www.societyforscience.org

Society for Science & the Public (SSP) is a nonprofit 501(c)(3) membership organization dedicated to public engagement in scientific research and education. Our vision is to promote the understanding and appreciation of science and the vital role it plays in human advancement: to inform, educate, and inspire.

Solar 4R Schools  #718
240 SW 1st Ave.  EA, EN, G, PH, PD, T
Portland, OR 97204  PreK–12
Phone: 503-553-3950
E-mail: solar4schools@b-e-f.org
Website: www.solar4schools.org

Solar 4R Schools, part of the Bonneville Environmental Foundation, is geared toward developing the next generation of energy leaders through innovative, hands-on professional development for K–12 educators and the provision of durable science kit materials.

Southern Science Supply  #804
2914 Oakleaf Dr.  B, C, EN, G, T
San Antonio, TX 78209
Phone: 210-887-0479
E-mail: carol@southernscienc supply.com
Website: www.southernscienc supply.com

Magnify what you do with the MicroSight Dlite and ProScope Microscopes. These magnificent microscopes are available in USB, Wi-Fi, and portable models and will allow you to see the world in brilliant detail. Many accessories are available for each model, as well as unique specimens.

Swift Optical Instruments, Inc.  #719
6508 Tri-County Pkwy.  B, G, T
Scheritz, TX 78154  6–12, College
Phone: 877-967-9438
E-mail: cynthia@swiftoptical.com
Website: www.swiftoptical.com

A leader in the manufacturing of microscopes, Swift Optical is excited to introduce you to our new Wi-Fi and tablet microscopes. Visit our booth to learn how easy, affordable, and fun it is to go digital and Wi-Fi in your classroom. Enter to win cool prizes!

Teachers Curriculum Institute (TCI)  #818
2440 W. El Camino Real, Suite 400  PreK–6
Mountain View, CA 94040
Phone: 650-390-6600
E-mail: ttran@teachtci.com
Website: www.teachtci.com

TCI is a K–12 publishing company that provides science and social studies textbooks. Teachers can have all the resources they need to create engaging and interactive experiences that meet both the Common Core State Standards and Next Generation Science Standards.

Texas Instruments  #701
PO Box 653011, MS 3817  All
Dallas, TX 75265  6–12, College
Phone: 800-TICARES (842-2737)
E-mail: ti-cares@ti.com
Website: education.ti.com

Texas Instruments (TI) provides free classroom activities that enhance math, science, and STEM curricula; technology that encourages students to develop a deeper understanding of concepts; and professional development that
maximizes your investment in TI technology. TI offers handhelds, software, apps for iPads, and data collection technology, designed to promote conceptual understanding, and formative assessment tools that gauge student progress.

Toshiba/NSTA ExploraVision  #623
1840 Wilson Blvd. T
Arlington, VA 22201 K–12
Phone: 800-Explor9
E-mail: technick@nsta.org
Website: www.exploravision.org

The ExploraVision K–12 competition challenges students in the U.S. and Canada to research a technology of interest and explore what that technology could be like 20 years from now. Up to $240,000 in savings bonds (at maturity) are awarded annually to student winners for the most innovative ideas that combine imagination with the tools of science.

Van Andel Education  #400
Institute Science Academy All
333 Bostwick Ave. NE K–12, College
Grand Rapids, MI 49503
Phone: 616-307-3766
E-mail: tobin.dhaseleer@vaii.org
Website: www.nexgeninquiry.org

NexGen Inquiry is a web-based instructional software that engages teachers and students in science and engineering practices to support NGSS implementation and the development of 21st-century skills. Built by teachers for teachers, NexGen Inquiry supports existing curriculum and includes professional development, interactive student journals, a professional community, and instructional resources.

Vernier Software & Technology  #801
13979 SW Millikan Way B, C, EA, EN, Beaverton, OR 97005 G, PH, PD, T
Phone: 888-837-6437 K–12, College
E-mail: info@vernier.com
Website: www.vernier.com

Vernier Software & Technology is a leading innovator of scientific data-collection technology. Focused on STEM, Vernier is dedicated to developing creative ways to teach and learn using hands-on science. Vernier creates easy-to-use and affordable science interfaces, sensors, and graphing/analysis software. Vernier’s technology-based solutions enhance STEM education, increase learning, and build students’ critical-thinking skills.

Visions in Education  #523
108 Stonington St. B, C, EA, EN, G, PH, T Hollister, MO 65672 9–12, College
Phone: 802-239-3010
E-mail: michelehammock@visions-in-education.com
Website: visions-in-education.com

VIE is an international school tour operator offering specialized tours throughout the U.S. and North America, South America, Europe, Asia, Africa, and more. VIE specializes in STEM youth educational travel. Our offices are located in Missouri and London.

Western Governors University  #511
4001 South 700 East, Suite 700 B, C, EA, Salt Lake City, UT 84107 G, PH, PD, T
Phone: 385-428-1000 K–12
E-mail: wgu@wgu.edu
Website: www.wgu.edu

Western Governors University is a private nonprofit university offering convenient, affordable, and flexible education—all online. The Teachers College at Western Governors University offers regionally, nationally, and NCATE accredited, competency-based bachelor’s and master’s degree programs either leading to licensure or for already licensed teachers.

WorldStrides  #414
218 W. Water St., Suite 400 B, C, EN, T Charlottesville, VA 22902 K–12, College
Phone: 434-951-8437
E-mail: briannea@worldstrides.org
Website: www.worldstrides.com

The industry leader, WorldStrides takes students of all ages and interests on worldwide journeys built to have lifelong impact. They focus on educational excellence by building interactivity into their travel programs, to encourage more genuine and memorable experiences. WorldStrides earns top ratings for customer focus, plus operational and safety expertise.
## Index of Exhibitor Workshops

### 3D Molecular Designs (Booth #708)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Room</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, Nov 10</td>
<td>9:30–10:30 AM</td>
<td>A103/104, Conv. Center</td>
<td>Dive In with Magnetic Water Molecules (p. 46)</td>
</tr>
<tr>
<td>Thursday, Nov 10</td>
<td>12:30–1:30 PM</td>
<td>A103/104, Conv. Center</td>
<td>Constructing and Crossing Cell Membranes (p. 53)</td>
</tr>
<tr>
<td>Thursday, Nov 10</td>
<td>2:00–3:00 PM</td>
<td>A103/104, Conv. Center</td>
<td>The Many Jobs of Proteins: Enzymes in the Spotlight (p. 59)</td>
</tr>
<tr>
<td>Friday, Nov 11</td>
<td>8:00–9:00 AM</td>
<td>A103/104, Conv. Center</td>
<td>Let’s Get Helical: Exploring DNA Structure and Function with Physical Models (p. 74)</td>
</tr>
</tbody>
</table>

### Accelerate Learning—STEMscopes (Booth #809)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Room</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, Nov 10</td>
<td>2:00–3:00 PM</td>
<td>C120/121, Conv. Center</td>
<td>The Value of Writing Scientific Explanations in STEM (p. 60)</td>
</tr>
<tr>
<td>Friday, Nov 11</td>
<td>8:00–9:00 AM</td>
<td>C120/121, Conv. Center</td>
<td>STEM Literacy: Strategies for Making Complex Text Meaningful (p. 75)</td>
</tr>
<tr>
<td>Friday, Nov 11</td>
<td>9:30–10:30 AM</td>
<td>C120/121, Conv. Center</td>
<td>Building the Skills of Argumentation and Collaboration in STEM (p. 82)</td>
</tr>
<tr>
<td>Friday, Nov 11</td>
<td>12:30–1:30 PM</td>
<td>C120/121, Conv. Center</td>
<td>Supporting Excellence in STEM Programs and Teaching Through STEM Certification (p. 93)</td>
</tr>
</tbody>
</table>

### Activate Learning (Booth #901)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Room</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, Nov 10</td>
<td>9:30–10:30 AM</td>
<td>A107, Conv. Center</td>
<td>Science Storylines: Developing Three-Dimensional Lessons That Build on Student Curiosity (p. 46)</td>
</tr>
<tr>
<td>Thursday, Nov 10</td>
<td>2:00–3:00 PM</td>
<td>A107, Conv. Center</td>
<td>Integrating Literacy and Science—The Wow Factor (p. 59)</td>
</tr>
<tr>
<td>Friday, Nov 11</td>
<td>9:30–10:30 AM</td>
<td>A107, Conv. Center</td>
<td>Discourse Tools for Equitable and Rigorous Talk (p. 81)</td>
</tr>
<tr>
<td>Friday, Nov 11</td>
<td>12:30–1:30 PM</td>
<td>A107, Conv. Center</td>
<td>NGSS-Focused Interactive Digital Assessment for Middle School (p. 92)</td>
</tr>
</tbody>
</table>

### AEOP eCYBERMISSION (Booth #624)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Room</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, Nov 10</td>
<td>3:30–4:30 PM</td>
<td>A106, Conv. Center</td>
<td>Group Work: Using Student Collaboration in the Middle School Science Classroom (p. 64)</td>
</tr>
<tr>
<td>Friday, Nov 11</td>
<td>11:00 AM–12 Noon</td>
<td>A106, Conv. Center</td>
<td>What’s the Problem? Integrating Engineering into the Science Classroom Without Bridges and Rockets (p. 87)</td>
</tr>
</tbody>
</table>

### Amplify (Booth #609)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Room</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, Nov 10</td>
<td>8:00–9:00 AM</td>
<td>C124, Conv. Center</td>
<td>Experience Amplify Science: Grades K–1 (p. 44)</td>
</tr>
<tr>
<td>Thursday, Nov 10</td>
<td>9:30–10:30 AM</td>
<td>C124, Conv. Center</td>
<td>Experience Amplify Science: Grades 2–5 (p. 47)</td>
</tr>
<tr>
<td>Thursday, Nov 10</td>
<td>11:00 AM–12 Noon</td>
<td>C124, Conv. Center</td>
<td>Experience Amplify Science: Middle School (p. 50)</td>
</tr>
<tr>
<td>Thursday, Nov 10</td>
<td>12:30–1:30 PM</td>
<td>C124, Conv. Center</td>
<td>What Is Amplify Science? (p. 54)</td>
</tr>
<tr>
<td>Friday, Nov 11</td>
<td>8:00–9:00 AM</td>
<td>C124, Conv. Center</td>
<td>Implementing Science Seminars and Scientific Argumentation with Amplify Science (p. 76)</td>
</tr>
<tr>
<td>Friday, Nov 11</td>
<td>9:30–10:30 AM</td>
<td>C124, Conv. Center</td>
<td>Not Your Typical Classroom Experience: Amplify Science’s Digital Engineering Internships (p. 82)</td>
</tr>
<tr>
<td>Friday, Nov 11</td>
<td>11:00 AM–12 Noon</td>
<td>C124, Conv. Center</td>
<td>What Is Amplify Science? (p. 88)</td>
</tr>
</tbody>
</table>
### Bio-Rad Laboratories (Booth #805)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Nov 11</td>
<td>8:00–9:00 AM</td>
<td>C123, Conv. Center</td>
<td>Contagion! Track the Progress of Dangerous Viruses That Are Spreading Throughout the Country (p. 75)</td>
</tr>
<tr>
<td>Friday, Nov 11</td>
<td>9:30–10:30 AM</td>
<td>C123, Conv. Center</td>
<td>Investigate Photosynthesis and Cellular Respiration with Algae Beads (p. 82)</td>
</tr>
<tr>
<td>Friday, Nov 11</td>
<td>11:00 AM–12 Noon</td>
<td>C123, Conv. Center</td>
<td>The GMO Debate Rages On! (p. 88)</td>
</tr>
<tr>
<td>Friday, Nov 11</td>
<td>12:30–1:30 PM</td>
<td>C123, Conv. Center</td>
<td>How to Use Pop Culture in Your Life Science Class (p. 93)</td>
</tr>
<tr>
<td>Friday, Nov 11</td>
<td>2:00–3:00 PM</td>
<td>C123, Conv. Center</td>
<td>How Do You Know What Fish Species You Are Eating? DNA Barcoding! (p. 95)</td>
</tr>
<tr>
<td>Friday, Nov 11</td>
<td>3:30–4:30 PM</td>
<td>C123, Conv. Center</td>
<td>Enzymes: Technology Inspired by Nature (p. 99)</td>
</tr>
<tr>
<td>Saturday, Nov 12</td>
<td>8:00–9:00 AM</td>
<td>C123, Conv. Center</td>
<td>Investigate Photosynthesis and Cellular Respiration with Algae Beads (p. 107)</td>
</tr>
<tr>
<td>Saturday, Nov 12</td>
<td>9:30–10:30 AM</td>
<td>C123, Conv. Center</td>
<td>Build a Box: Engineering Food Dye Electrophoresis for NGSS (p. 111)</td>
</tr>
</tbody>
</table>

### Carolina Biological Supply Co. (Booth #601)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, Nov 10</td>
<td>8:00–9:00 AM</td>
<td>A108/109, Conv. Center</td>
<td>Engineer Physical Science Excitement with a Carolina STEM Challenge® (p. 43)</td>
</tr>
<tr>
<td>Thursday, Nov 10</td>
<td>11:00 AM–12 Noon</td>
<td>A108/109, Conv. Center</td>
<td>Waves, Waves, Waves: Building Models to Explain Phenomena (p. 48)</td>
</tr>
<tr>
<td>Thursday, Nov 10</td>
<td>2:00–3:00 PM</td>
<td>A108/109, Conv. Center</td>
<td>Bring Visual Science into K–5 Classrooms—It’s a Game Changer! (p. 59)</td>
</tr>
<tr>
<td>Thursday, Nov 10</td>
<td>3:30–4:30 PM</td>
<td>A108/109, Conv. Center</td>
<td>The Best of Engineering for Elementary Students (p. 64)</td>
</tr>
<tr>
<td>Friday, Nov 11</td>
<td>8:00–9:00 AM</td>
<td>A108/109, Conv. Center</td>
<td>Comparative Vertebrate Anatomy with Carolina’s Perfect Solution® Specimens (p. 75)</td>
</tr>
<tr>
<td>Friday, Nov 11</td>
<td>9:30–10:30 AM</td>
<td>A108/109, Conv. Center</td>
<td>Learning By Arguing: Claims, Evidence, and Reasoning (p. 81)</td>
</tr>
<tr>
<td>Friday, Nov 11</td>
<td>11:00 AM–12 Noon</td>
<td>A108/109, Conv. Center</td>
<td>Comparative Mammalian Organ Dissection with Carolina’s Perfect Solution® Specimens (p. 87)</td>
</tr>
<tr>
<td>Friday, Nov 11</td>
<td>12:30–1:30 PM</td>
<td>A108/109, Conv. Center</td>
<td>Hands-On Science with Classroom Critters (p. 92)</td>
</tr>
<tr>
<td>Friday, Nov 11</td>
<td>2:00–3:00 PM</td>
<td>A108/109, Conv. Center</td>
<td>Introduction to Wisconsin Fast Plants® (p. 94)</td>
</tr>
<tr>
<td>Friday, Nov 11</td>
<td>3:30–4:30 PM</td>
<td>A108/109, Conv. Center</td>
<td>Autopsy: Forensic Dissection Featuring Carolina’s Perfect Solution® Pigs (p. 99)</td>
</tr>
</tbody>
</table>

### CPO Science/School Specialty Science (Booth #610)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, Nov 10</td>
<td>8:00–9:00 AM</td>
<td>B113, Conv. Center</td>
<td>CPO’s Link™ with Car and Ramp: Force, Motion, and Variables (p. 43)</td>
</tr>
<tr>
<td>Thursday, Nov 10</td>
<td>11:00 AM–12 Noon</td>
<td>B113, Conv. Center</td>
<td>CPO’s Link™ Genetics Learning Modules: Crazy Chromosomes and Crazy Traits (p. 48)</td>
</tr>
<tr>
<td>Thursday, Nov 10</td>
<td>12:30–1:30 PM</td>
<td>B113, Conv. Center</td>
<td>CPO’s Wind Turbine: A STEM Approach to Engineering and Design (p. 54)</td>
</tr>
<tr>
<td>Thursday, Nov 10</td>
<td>2:00–3:00 PM</td>
<td>B113, Conv. Center</td>
<td>Building Electric Circuits with CPO’s New Link™ Learning Module (p. 60)</td>
</tr>
<tr>
<td>Thursday, Nov 10</td>
<td>3:30–4:30 PM</td>
<td>B113, Conv. Center</td>
<td>CPO Science’s Link™ Module: Learning About Chemistry Models (p. 65)</td>
</tr>
</tbody>
</table>
# Index of Exhibitor Workshops

## Delta Education/School Specialty Science (Booth #608)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, Nov 10</td>
<td>8:00–9:00 AM</td>
<td>B111/112, Conv. Center</td>
<td>Teach Next Gen Like Your Hair Is on Fire!</td>
<td>43</td>
</tr>
<tr>
<td>Thursday, Nov 10</td>
<td>9:30–10:30 AM</td>
<td>B111/112, Conv. Center</td>
<td>SEPs Made Easy</td>
<td>46</td>
</tr>
<tr>
<td>Thursday, Nov 10</td>
<td>11:00 AM–12 Noon</td>
<td>B111/112, Conv. Center</td>
<td>Build Skills to Boost the Makerspace Experience for Young Scientists!</td>
<td>48</td>
</tr>
<tr>
<td>Thursday, Nov 10</td>
<td>12:30–1:30 PM</td>
<td>B111/112, Conv. Center</td>
<td>STEM-gineering</td>
<td>54</td>
</tr>
<tr>
<td>Thursday, Nov 10</td>
<td>2:00–3:00 PM</td>
<td>B111/112, Conv. Center</td>
<td>Increase Your 3-D Vision of NGSS</td>
<td>59</td>
</tr>
<tr>
<td>Thursday, Nov 10</td>
<td>3:30–4:30 PM</td>
<td>B111/112, Conv. Center</td>
<td>Liven Up Literacy with Science</td>
<td>65</td>
</tr>
</tbody>
</table>

## Delta Education/School Specialty Science–FOSS (Booth #608)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, Nov 10</td>
<td>8:00–9:00 AM</td>
<td>B117/118, Conv. Center</td>
<td>Wave Properties and Information Transfer</td>
<td>43</td>
</tr>
<tr>
<td>Thursday, Nov 10</td>
<td>9:30–10:30 AM</td>
<td>B117/118, Conv. Center</td>
<td>Engage Students in FOSS Next Generation</td>
<td>47</td>
</tr>
<tr>
<td>Thursday, Nov 10</td>
<td>11:00 AM–12 Noon</td>
<td>B117/118, Conv. Center</td>
<td>The Reflective Assessment Practice: Improving Science Achievement in 10 Minutes</td>
<td>50</td>
</tr>
<tr>
<td>Thursday, Nov 10</td>
<td>2:00–3:00 PM</td>
<td>B117/118, Conv. Center</td>
<td>What Does Conceptual Modeling Look Like in an Elementary Classroom?</td>
<td>60</td>
</tr>
<tr>
<td>Thursday, Nov 10</td>
<td>3:30–4:30 PM</td>
<td>B117/118, Conv. Center</td>
<td>Evolutionary Evidence in the Fossil Record: Life Science with FOSS</td>
<td>65</td>
</tr>
</tbody>
</table>

## Dinah.com (Booth #509)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Nov 11</td>
<td>9:30–10:30 AM</td>
<td>A106, Conv. Center</td>
<td>FOLD-tastic Science Notebooks via Dinah Zike’s Notebook Foldables</td>
<td>81</td>
</tr>
</tbody>
</table>

## Discovery Education (Booth #403)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, Nov 10</td>
<td>11:00 AM–12 Noon</td>
<td>B114/115, Conv. Center</td>
<td>Engaging Students in Authentic Science Experiences Using Digital Tools</td>
<td>50</td>
</tr>
<tr>
<td>Friday, Nov 11</td>
<td>2:00–3:00 PM</td>
<td>B114/115, Conv. Center</td>
<td>Bringing NGSS to the Classroom with Discovery Education</td>
<td>94</td>
</tr>
</tbody>
</table>

## Educational Innovations, Inc. (Booth #709)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Nov 11</td>
<td>9:30–10:30 AM</td>
<td>B114/115, Conv. Center</td>
<td>3-2-1 Blast Off!</td>
<td>81</td>
</tr>
<tr>
<td>Friday, Nov 11</td>
<td>11:00 AM–12 Noon</td>
<td>B114/115, Conv. Center</td>
<td>Magnify Your Mind!—With The Private Eye®</td>
<td>88</td>
</tr>
</tbody>
</table>

## Edvotek Inc. (Booth #504)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, Nov 10</td>
<td>8:00–9:00 AM</td>
<td>A105, Conv. Center</td>
<td>Martian Genetics: An Electrophoresis Exploration</td>
<td>43</td>
</tr>
<tr>
<td>Thursday, Nov 10</td>
<td>9:30–10:30 AM</td>
<td>A105, Conv. Center</td>
<td>Left at the Scene of the Crime: Introduction to Forensic Science</td>
<td>46</td>
</tr>
<tr>
<td>Thursday, Nov 10</td>
<td>11:00 AM–12 Noon</td>
<td>A105, Conv. Center</td>
<td>Exploring the Genetics of Taste: SNP Analysis of the PTC Gene Using PCR</td>
<td>48</td>
</tr>
<tr>
<td>Thursday, Nov 10</td>
<td>12:30–1:30 PM</td>
<td>A105, Conv. Center</td>
<td>Outbreak! Zika Testing Using the Enzyme-Linked Immunosorbent Assay (ELISA)</td>
<td>53</td>
</tr>
<tr>
<td>Thursday, Nov 10</td>
<td>2:00–3:00 PM</td>
<td>A105, Conv. Center</td>
<td>Using Biotechnology to Diagnose HIV/AIDS</td>
<td>59</td>
</tr>
<tr>
<td>Thursday, Nov 10</td>
<td>3:30–4:30 PM</td>
<td>A105, Conv. Center</td>
<td>Environmental Toxicology Using Edvotek’s New EZ-elegans</td>
<td>64</td>
</tr>
</tbody>
</table>
### Index of Exhibitor Workshops

**Fisher Science Education (Booth #716)**

- **Friday, Nov 11**  2:00–3:00 PM  C125/126, Conv. Center  The STEM Design Challenge (p. 95)

**Flinn Scientific, Inc. (Booth #501)**

- **Thursday, Nov 10**  9:30–10:30 AM  B114/115, Conv. Center  Infusing Inquiry and Demonstrations into AP Biology (p. 46)
- **Thursday, Nov 10**  2:00–3:00 PM  B114/115, Conv. Center  Teaching Forensics with Real Crime Scene Investigation Techniques from Flinn Scientific (p. 60)
- **Friday, Nov 11**  8:00–9:00 AM  B114/115, Conv. Center  Hands-On Integrated Science Activities for Middle School from Flinn Scientific (p. 75)

**Frey Scientific/School Specialty Science (Booth #612)**

- **Thursday, Nov 10**  9:30–10:30 AM  B113, Conv. Center  Solving the Mystery of STEM Using Forensic Science (p. 46)

**HHMI BioInteractive (Booth #615)**

- **Friday, Nov 11**  8:00–9:00 AM  B111/112, Conv. Center  Viruses—From Adenovirus to HIV to Zika (p. 75)
- **Friday, Nov 11**  11:00 AM–12 Noon  B111/112, Conv. Center  Helping Students Understand Deep Time Using HHMI BioInteractive’s EarthViewer (p. 87)
- **Friday, Nov 11**  12:30–1:30 PM  B111/112, Conv. Center  The Biology of Skin Color: An NGSS-Focused Exploration (p. 92)
- **Friday, Nov 11**  2:00–3:00 PM  B111/112, Conv. Center  Can We Save the World’s Coral Reefs Before They Disappear? (p. 94)
- **Friday, Nov 11**  3:30–4:30 PM  B111/112, Conv. Center  Trophic Cascades: A Force of Nature (p. 99)

**Houghton Mifflin Harcourt (Booth #619)**

- **Thursday, Nov 10**  11:00 AM–12 Noon  A106, Conv. Center  An NGSS Approach to Engineering in the Upper Grade Bands (p. 48)
- **Thursday, Nov 10**  2:00–3:00 PM  A106, Conv. Center  The HMH Science Dimensions of NGSS (p. 59)
- **Friday, Nov 11**  8:00–9:00 AM  A106, Conv. Center  An NGSS Approach to Engineering in the Upper Grade Bands (p. 74)
- **Friday, Nov 11**  2:00–3:00 PM  A106, Conv. Center  The HMH Science Dimensions of NGSS (p. 94)

**It's About Time (Booth #412)**

- **Friday, Nov 11**  2:00–3:00 PM  C124, Conv. Center  The Framework and NGSS: Opportunity for Teacher Growth (p. 95)
- **Saturday, Nov 12**  9:30–10:30 AM  C124, Conv. Center  Three Dimensions in the Project-Based Classroom (p. 111)

**King Arthur Flour (Booth #525)**

- **Friday, Nov 11**  12:30–1:30 PM  A106, Conv. Center  Bake for Good: Kids Learn-Bake-Share (p. 92)

**LAB-AIDS®, Inc. (Booth #617)**

- **Thursday, Nov 10**  8:00–9:00 AM  B116, Conv. Center  Gas Exchange (p. 43)
- **Thursday, Nov 10**  9:30–10:30 AM  B116, Conv. Center  Modeling Convection Currents and Plate Motion (p. 47)
- **Thursday, Nov 10**  11:00 AM–12 Noon  B116, Conv. Center  Calling All Carbons (p. 50)
- **Thursday, Nov 10**  12:30–1:30 PM  B116, Conv. Center  Climate Proxies (p. 54)
- **Thursday, Nov 10**  2:00–3:00 PM  B116, Conv. Center  Chemical Batteries (p. 60)
- **Thursday, Nov 10**  3:30–4:30 PM  B116, Conv. Center  Reclaiming the Metal (p. 65)
- **Friday, Nov 11**  8:00–9:00 AM  B116, Conv. Center  Waves (p. 75)
- **Friday, Nov 11**  9:30–10:30 AM  B116, Conv. Center  pH Scale and Math Modeling (p. 81)
## Index of Exhibitor Workshops

### LAB-AIDS®, Inc., continued

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Nov 11</td>
<td>11:00 AM–12 Noon</td>
<td>B116, Conv. Center</td>
<td>Chemical Formula and Amino Acids (p. 88)</td>
</tr>
<tr>
<td>Friday, Nov 11</td>
<td>12:30–1:30 PM</td>
<td>B116, Conv. Center</td>
<td>What Is a Species (p. 92)</td>
</tr>
<tr>
<td>Friday, Nov 11</td>
<td>2:00–3:00 PM</td>
<td>B116, Conv. Center</td>
<td>Cell Differentiation and Gene Expression (p. 94)</td>
</tr>
<tr>
<td>Friday, Nov 11</td>
<td>3:30–4:30 PM</td>
<td>B116, Conv. Center</td>
<td>Energy Flow Through an Ecosystem (p. 99)</td>
</tr>
<tr>
<td>Saturday, Nov 12</td>
<td>8:00–9:00 AM</td>
<td>B116, Conv. Center</td>
<td>Photosynthesis and Respiration: It’s a Plant’s Life! (p. 107)</td>
</tr>
<tr>
<td>Saturday, Nov 12</td>
<td>9:30–10:30 AM</td>
<td>B116, Conv. Center</td>
<td>Tracking the Spread of Infectious Diseases: Human and Animal (p. 111)</td>
</tr>
</tbody>
</table>

### LEGO Education (Booth #904)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Nov 11</td>
<td>8:00–9:00 AM</td>
<td>A107, Conv. Center</td>
<td>Fun with Freewheelers! Teaching Science and Math with Manipulatives (p. 74)</td>
</tr>
</tbody>
</table>

### miniPCR (Booth #815)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Nov 11</td>
<td>9:30–10:30 AM</td>
<td>C125/126, Conv. Center</td>
<td>miniPCR PTC Taster Lab—From Genotype to Phenotype (p. 82)</td>
</tr>
</tbody>
</table>

### MSOE Center for BioMolecular Modeling (Booth #710)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Nov 11</td>
<td>9:30–10:30 AM</td>
<td>A103/104, Conv. Center</td>
<td>3D Printing for the BioScience Classroom (p. 80)</td>
</tr>
<tr>
<td>Friday, Nov 11</td>
<td>11:00 AM–12 Noon</td>
<td>A103/104, Conv. Center</td>
<td>Telling Stories with David Goodsell’s Watercolor Molecular Landscapes (p. 87)</td>
</tr>
<tr>
<td>Saturday, Nov 12</td>
<td>8:00–9:00 AM</td>
<td>A103/104, Conv. Center</td>
<td>Genes, Genomes, and Personalized Medicine (p. 107)</td>
</tr>
<tr>
<td>Saturday, Nov 12</td>
<td>9:30–10:30 AM</td>
<td>A103/104, Conv. Center</td>
<td>Of All the Nerve: Modeling Neurotransmission (p. 111)</td>
</tr>
</tbody>
</table>

### National Geographic Learning | Cengage Learning (Booth #722)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Nov 11</td>
<td>11:00 AM–12 Noon</td>
<td>C125/126, Conv. Center</td>
<td>CONNECTIONS: Three-Dimensional Learning by National Geographic Explorers (p. 88)</td>
</tr>
</tbody>
</table>

### PASCO scientific (Booth #500)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Nov 11</td>
<td>8:00–9:00 AM</td>
<td>B113, Conv. Center</td>
<td>Modeling Climate Change Impacts: Dissolving Carbon Dioxide (p. 75)</td>
</tr>
<tr>
<td>Friday, Nov 11</td>
<td>9:30–10:30 AM</td>
<td>B113, Conv. Center</td>
<td>Exploring Misconceptions: Speed and Velocity (p. 81)</td>
</tr>
<tr>
<td>Friday, Nov 11</td>
<td>11:00 AM–12 Noon</td>
<td>B113, Conv. Center</td>
<td>Exploring Misconceptions: There Is a Difference Between Heat and Temperature? (p. 88)</td>
</tr>
</tbody>
</table>

### Pearson (Booth #508)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Nov 11</td>
<td>9:30–10:30 AM</td>
<td>B117/118, Conv. Center</td>
<td>STEM and NGSS Inquiry in Chemistry: Effective, Efficient, Economical (p. 81)</td>
</tr>
<tr>
<td>Friday, Nov 11</td>
<td>11:00 AM–12 Noon</td>
<td>B117/118, Conv. Center</td>
<td>Teaching Geoscience in an NGSS-Focused Curriculum (p. 88)</td>
</tr>
<tr>
<td>Friday, Nov 11</td>
<td>2:00–3:00 PM</td>
<td>B117/118, Conv. Center</td>
<td>Transforming Science Education Through Inquiry-Based Learning and Narrative-Based Teaching (p. 95)</td>
</tr>
</tbody>
</table>
### Index of Exhibitor Workshops

#### Solar 4R Schools (Booth #718)
- **Friday, Nov 11** 11:00 AM–12 Noon  A107, Conv. Center  Hands-On Tools for Teaching the Science of Solar Energy (p. 87)

#### TCI (Booth #818)
- **Thursday, Nov 10** 11:00 AM–12 Noon  A107, Conv. Center  Riding the Wave with TCI (p. 48)
- **Friday, Nov 11** 2:00–3:00 PM  A107, Conv. Center  Analyzing and Interpreting Data Using TCI’s Bring Science Alive! (p. 94)
- **Saturday, Nov 12** 8:00–9:00 AM  A107, Conv. Center  Modeling Earth, Sun, and Other Stars with Bring Science Alive! (p. 107)

#### Texas Instruments (Booth #701)
- **Thursday, Nov 10** 9:30–10:30 AM  C120/121, Conv. Center  Using Maggots, Flies, and Flesh to Solve a Mystery! (p. 47)
- **Thursday, Nov 10** 12:30–1:30 PM  C120/121, Conv. Center  Zombie Apocalypse! (p. 54)
- **Friday, Nov 11** 11:00 AM–12 Noon  C120/121, Conv. Center  Using Maggots, Flies, and Flesh to Solve a Mystery! (p. 88)
- **Friday, Nov 11** 2:00–3:00 PM  C120/121, Conv. Center  Zombie Apocalypse! (p. 95)

#### Van Andel Education Institute (Booth #400)
- **Thursday, Nov 10** 2:00–3:00 PM  C125/126, Conv. Center  Stop Creating Lesson Plans—Start Creating Learning Experiences (p. 60)
- **Friday, Nov 11** 8:00–9:00 AM  C125/126, Conv. Center  Stop Creating Lesson Plans—Start Creating Learning Experiences (p. 76)

#### Vernier Software & Technology (Booth #801)
- **Friday, Nov 11** 8:00–9:00 AM  A105, Conv. Center  Integrating Chromebook with Vernier Data-Collection Technology (p. 74)
- **Friday, Nov 11** 9:30–10:30 AM  A105, Conv. Center  Chemistry with Vernier (p. 80)
- **Friday, Nov 11** 11:00 AM–12 Noon  A105, Conv. Center  Biology with Vernier (p. 87)
- **Friday, Nov 11** 12:30–1:30 PM  A105, Conv. Center  Integrating Chromebook with Vernier Data-Collection Technology (p. 92)
- **Friday, Nov 11** 2:00–3:00 PM  A105, Conv. Center  Integrating iPad with Vernier Data-Collection Technology (p. 94)
- **Friday, Nov 11** 3:30–4:30 PM  A105, Conv. Center  Physics and Physical Science with Vernier (p. 99)
## Schedule at a Glance  Earth and Space Science

### Thursday

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00 AM</td>
<td>NESTA Shares: A Hands-On Approach to Creating an NGSS-Focused High School Earth and Space Science Course (p. 42)</td>
<td>6–12 Oregon Brm. 204, Conv. Center</td>
<td>NESTA Shares: A Hands-On Approach to Creating an NGSS-Focused High School Earth and Space Science Course (p. 42)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>Cycles, Sink, and Solutions: An NGSS-Focused Climate Change Unit (p. 42)</td>
<td>E144, Conv. Center</td>
<td>Cycles, Sink, and Solutions: An NGSS-Focused Climate Change Unit (p. 42)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>Analyzing Supernova Remnants Using Spectroscopy, NASA Data, and STEM (p. 42)</td>
<td>E141, Conv. Center</td>
<td>Analyzing Supernova Remnants Using Spectroscopy, NASA Data, and STEM (p. 42)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>Hands-On Integrated Science Activities for Middle School from Flinn Scientific (p. 75)</td>
<td>B114/115, Conv. Center</td>
<td>Hands-On Integrated Science Activities for Middle School from Flinn Scientific (p. 75)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>Modeling Convection Currents and Plate Motion (p. 47)</td>
<td>B116, Conv. Center</td>
<td>Modeling Convection Currents and Plate Motion (p. 47)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>Calling All Carbons (p. 50)</td>
<td>B116, Conv. Center</td>
<td>Calling All Carbons (p. 50)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Climate Proxies (p. 54)</td>
<td>B116, Conv. Center</td>
<td>Climate Proxies (p. 54)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Ocean Plastic Pollution: Examining Issues and Solutions in a Middle School Classroom (p. 52)</td>
<td>6–8 D131, Conv. Center</td>
<td>Ocean Plastic Pollution: Examining Issues and Solutions in a Middle School Classroom (p. 52)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Engaging Students in Place-Based Learning Through a Field STEM Experience (p. 51)</td>
<td>D140, Conv. Center</td>
<td>Engaging Students in Place-Based Learning Through a Field STEM Experience (p. 51)</td>
</tr>
<tr>
<td>1:00–4:00 PM</td>
<td>SC-1: NASA’s Exploration of the Solar System: Activities for Out-of-School Time (p. 55)</td>
<td>2–6 3 Sisters/Mt. Bachelor, DoubleTree</td>
<td>SC-1: NASA’s Exploration of the Solar System: Activities for Out-of-School Time (p. 55)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>Ocean Acidification as a Way to Teach Multidisciplinary Science and NGSS (p. 57)</td>
<td>8–12 D133/134, Conv. Center</td>
<td>Ocean Acidification as a Way to Teach Multidisciplinary Science and NGSS (p. 57)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>Chemical Batteries (p. 60)</td>
<td>B116, Conv. Center</td>
<td>Chemical Batteries (p. 60)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>Science from the Stratosphere: STEM Activities in the Infrared (p. 57)</td>
<td>D139, Conv. Center</td>
<td>Science from the Stratosphere: STEM Activities in the Infrared (p. 57)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>Data Is Not a “Four-Letter Word”: Use NOAA Resources to Build Student Proficiency in Data Analysis (p. 57)</td>
<td>5–12 D138, Conv. Center</td>
<td>Data Is Not a “Four-Letter Word”: Use NOAA Resources to Build Student Proficiency in Data Analysis (p. 57)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>Developing and Implementing NGSS-Focused Curriculum in Gillette, Wyoming: Focus on Earth and Space Science as a Vehicle for Mathematics and Literacy Integration (p. 57)</td>
<td>1–6 D135, Conv. Center</td>
<td>Developing and Implementing NGSS-Focused Curriculum in Gillette, Wyoming: Focus on Earth and Space Science as a Vehicle for Mathematics and Literacy Integration (p. 57)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>NESTA Shares: Using the CLEAN Collection of Resources to Teach Energy and Climate (p. 58)</td>
<td>5–C Oregon Brm. 204, Conv. Center</td>
<td>NESTA Shares: Using the CLEAN Collection of Resources to Teach Energy and Climate (p. 58)</td>
</tr>
<tr>
<td>2:30–3:00 PM</td>
<td>Space-Age STEM: Virgin Galactic’s Virtual Connection, Mentorship, and Experimentation Hangouts (p. 61)</td>
<td>5–12 Alaska/Idaho, DoubleTree</td>
<td>Space-Age STEM: Virgin Galactic’s Virtual Connection, Mentorship, and Experimentation Hangouts (p. 61)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>Building NGSS Models in Microsoft Office and Google Drive (p. 61)</td>
<td>K–12 Morrison, DoubleTree</td>
<td>Building NGSS Models in Microsoft Office and Google Drive (p. 61)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>Design for Disaster: Using Three-Dimensional Learning/Literacy in the Service of Science (p. 62)</td>
<td>6–8 D140, Conv. Center</td>
<td>Design for Disaster: Using Three-Dimensional Learning/Literacy in the Service of Science (p. 62)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>NASA Earth Science: Real-World Connections to Data and Tools for Science Fairs (p. 63)</td>
<td>8–12 D139, Conv. Center</td>
<td>NASA Earth Science: Real-World Connections to Data and Tools for Science Fairs (p. 63)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>Place-Based Earth Science: Using the Geology of Oregon (p. 62)</td>
<td>4–10 D130, Conv. Center</td>
<td>Place-Based Earth Science: Using the Geology of Oregon (p. 62)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>Evolution for Educators</td>
<td>7–9 E144, Conv. Center</td>
<td>Evolution for Educators</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>NESTA and CEETEP Shares: Feeling the Earth Move: GPS and How It Teaches Us About Future Earthquakes (p. 64)</td>
<td>5–12 Oregon Brm. 204, Conv. Center</td>
<td>NESTA and CEETEP Shares: Feeling the Earth Move: GPS and How It Teaches Us About Future Earthquakes (p. 64)</td>
</tr>
<tr>
<td>5:00–5:30 PM</td>
<td>LEARN with NASA (Long-Term Engagement in Authentic Research with NASA) (p. 65)</td>
<td>3–C B119, Conv. Center</td>
<td>LEARN with NASA (Long-Term Engagement in Authentic Research with NASA) (p. 65)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>Using the National Science Olympiad and STEM to Address NGSS Crosscutting Concepts and Content (p. 66)</td>
<td>6–11 B110, Conv. Center</td>
<td>Using the National Science Olympiad and STEM to Address NGSS Crosscutting Concepts and Content (p. 66)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>Lessons from the Sky (A Teacher’s STEM Source) (p. 66)</td>
<td>1–12 C122, Conv. Center</td>
<td>Lessons from the Sky (A Teacher’s STEM Source) (p. 66)</td>
</tr>
</tbody>
</table>
Schedule at a Glance
Earth and Space Science

**Friday**

5:00–6:00 PM 5–12 Oregon Brrm. 204, Conv. Center
NESTA and CEETEP Shares: Surviving the Shake: Engineering Activities for Earthquake Resilience (p. 68)

5:00–6:00 PM 4–8 D137, Conv. Center
The nPower Girls: Cultivating Interest and Achievement in STEM (p. 66)

5:00–6:00 PM 6–C D138, Conv. Center
Record and Analyze Seismic Data in the Classroom with Free IRIS Software! (p. 67)

5:00–6:00 PM 6–8 E144, Conv. Center
Curriculum for a Crowded Planet (p. 68)

5:00–6:00 PM 5–7 E143, Conv. Center
Communicating Science Through Narrative Writing (p. 68)

5:30–6:00 PM G B119, Conv. Center
The AMS DataStreme Project: Comprehensive Earth Science Education for Teachers (p. 69)

8:00–9:00 AM 6–12 E141, Conv. Center
Using Recreational UAVs (Drones) for STEM Activities and Science Fair Projects (p. 73)

8:00–9:00 AM 3–8 D140, Conv. Center
Sing for the Planet (p. 72)

8:00–9:00 AM G E144, Conv. Center
Get Ready for the Great American Eclipse! (p. 73)

8:00–9:00 AM 9–12 B113, Conv. Center
Modeling Climate Change Impacts: Dissolving Carbon Dioxide (p. 75)

9:30–10:30 AM 6–8 D136, Conv. Center
Go Probe! Teaching Astronomy with Sensors and Apps (p. 79)

9:30–10:30 AM G E147/148, Conv. Center
Learning About Global Climate Change in a Physics Course for Prospective Teachers (p. 80)

11:00 AM–12 Noon 5–C E147/148, Conv. Center
Dark Skies and Energy Education: Globe at Night Citizen Science Program Workshop (p. 86)

11:00 AM–12 Noon 6–12 B111/112, Conv. Center
Helping Students Understand Deep Time Using HHMI BioInteractive’s EarthViewer (p. 87)

11:00 AM–12 Noon G B117/118, Conv. Center
Teaching Geoscience in an NGSS-Focused Curriculum (p. 88)

12:30–1:30 PM 6–8 E141, Conv. Center
Moon Mania: Modeling Lunar Phases (p. 90)

12:30–1:30 PM 3–12 Hawthorne/Sellwood, DoubleTree
Connecting to the Coast and Ocean (p. 90)

12:30–1:30 PM 5–12 B119, Conv. Center
Corals Reefs: Fragile Wonders Under Threat: Bring Vibrant Environmental Stewardship Lessons to Your Students with Free NOAA Resources (p. 89)

2:00–3:00 PM 6–12 B111/112, Conv. Center
Can We Save the World’s Coral Reefs Before They Disappear? (p. 94)

3:30–4:30 PM G Oregon Brrm. 201, Conv. Center
Featured Presentation: Are You Ready for the Astronomical Event of the Decade: The 2017 All-American Total Eclipse? (p. 96)

3:30–4:30 PM 5–12 B110, Conv. Center
Tsunami! Understanding the Generation, Propagation, and Hazards of Tsunamis (p. 97)

3:30–4:30 PM K–8 E141, Conv. Center
No-Hassle Messy Science with a Wow! Chemical Reactions (p. 98)

5:00–5:30 PM 7–12 D130, Conv. Center
Students Tell the Story of a Glacier, Using Science, Math, and Literacy (p. 100)

5:00–6:00 PM 4–12 E144, Conv. Center
Don’t Tell, Let Them Inquire with SOS Explorer: NOAA’s Science On a Sphere Data Visualization Tool (p. 102)

5:00–6:00 PM 3–6 D135, Conv. Center
Base Camp: Where Science and Literacy Standards Meet (p. 102)

**Saturday**

8:00–9:00 AM 3–12 D139, Conv. Center
DIG Field School: Paleontologists and Teachers Together in the Field (p. 106)

8:00–9:00 AM K–5 A107, Conv. Center
Modeling Earth, Sun, and Other Stars with Bring Science Alive! (p. 107)

9:30–10:30 AM 7–C E144, Conv. Center
Beet Armyworm Invasion: Breeding Better Plants with Natural Diversity (p. 110)

9:30–10:30 AM 6–8 E141, Conv. Center
Seasons in the Sun (p. 110)

9:30–10:30 AM 3–C E146, Conv. Center
Using Local Native Landscapes to Broaden Environmental Education: GLOBE Opportunities (p. 110)

11:00 AM–12 Noon 7–C B110, Conv. Center
A Unique Ice Core Investigation that Integrates the Three Dimensions of the NGSS and STEM (p. 111)

11:00 AM–12 Noon 8–12 D139, Conv. Center
Using the World Issue of Food Security to Teach Multiple NGSS (p. 113)

11:00 AM–12 Noon 7–12 D138, Conv. Center
NITARP: Bringing Real Astronomy Research into Classrooms (p. 112)
## Schedule at a Glance  Earth and Space Science

<table>
<thead>
<tr>
<th>Time</th>
<th>Grade Level</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00 AM–12 Noon</td>
<td>5–12</td>
<td>3 Sisters, DoubleTree</td>
<td>The STEAM Behind a NASA Mission, as Seen by a Teacher Who “Flew” (p. 112)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>4–12</td>
<td>D140, Conv. Center</td>
<td>Making Waves with Marine-Themed Project-Based Learning (p. 112)</td>
</tr>
</tbody>
</table>

## Engineering, Technology, and the Application of Science

### Thursday

<table>
<thead>
<tr>
<th>Time</th>
<th>Grade Level</th>
<th>Room</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–8:30 AM</td>
<td>7–12</td>
<td>B110, Conv. Center</td>
<td>Survival Science (p. 39)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>K–12</td>
<td>D131, Conv. Center</td>
<td>NASA Is with You When You Fly: Principles of Flight and Four Forces (p. 41)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>6–12</td>
<td>A108/109, Conv. Center</td>
<td>Engineer Physical Science Excitement with a Carolina STEM Challenge® (p. 43)</td>
</tr>
<tr>
<td>8:30–9:00 AM</td>
<td>8–10</td>
<td>B110, Conv. Center</td>
<td>“Keep on Rolling” with STEM (p. 44)</td>
</tr>
<tr>
<td>8:30–9:00 AM</td>
<td>3–6</td>
<td>D130, Conv. Center</td>
<td>STEM in a Blender (p. 44)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>K–3</td>
<td>B111/112, Conv. Center</td>
<td>Build Skills to Boost the Makerspace Experience for Young Scientists! (p. 48)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–12</td>
<td>A106, Conv. Center</td>
<td>An NGSS Approach to Engineering in the Upper Grade Bands (p. 48)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>2–6</td>
<td>B111/112, Conv. Center</td>
<td>STEM-gineering (p. 54)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>6–12</td>
<td>B113, Conv. Center</td>
<td>CPO’s Wind Turbine: A STEM Approach to Engineering and Design (p. 54)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>6–12</td>
<td>B113, Conv. Center</td>
<td>Building Electric Circuits with CPO’s New Link™ Learning Module (p. 60)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>5–11/C</td>
<td>D131, Conv. Center</td>
<td>Use NASA Design Challenges to Develop Critical Thinking (p. 57)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>6–12</td>
<td>D139, Conv. Center</td>
<td>Science from the Stratosphere: STEM Activities in the Infrared (p. 57)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>5–C</td>
<td>Oregon Blrm. 204, Conv. Center</td>
<td>NESTA Shares: Using the CLEAN Collection of Resources to Teach Energy and Climate (p. 58)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>3–8</td>
<td>E144, Conv. Center</td>
<td>Engineering: Blow the Roof Off! (p. 58)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>8–12</td>
<td>D133/134, Conv. Center</td>
<td>Ocean Acidification as a Way to Teach Multidisciplinary Science and NGSS (p. 57)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>6–8</td>
<td>D140, Conv. Center</td>
<td>Balancing and Addressing Inequalities in the Middle School STEM Classroom (p. 57)</td>
</tr>
<tr>
<td>2:30–3:00 PM</td>
<td>5–6</td>
<td>D137, Conv. Center</td>
<td>Teaching, Integrating, Exploring Science (TIES): A Science Mentoring Program for Grade 5 Girls (p. 61)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>5–12</td>
<td>Oregon Blrm. 204, Conv. Center</td>
<td>NESTA and CEEETP Shares: Feeling the Earth Move: GPS and How It Teaches Us About Future Earthquakes (p. 64)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>4–12</td>
<td>D136, Conv. Center</td>
<td>Inventing Is Just Plain Fun (for All)! (p. 63)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>8–12</td>
<td>D139, Conv. Center</td>
<td>NASA Earth Science: Real-World Connections to Data and Tools for Science Fairs (p. 63)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>6–8</td>
<td>D140, Conv. Center</td>
<td>Design for Disaster: Using Three-Dimensional Learning/Literacy in the Service of Science (p. 62)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>K–8</td>
<td>E143, Conv. Center</td>
<td>NASA’s Journey to Mars: Build a Mars Rover Using NASA’s Beginning Engineering Science and Technology (BEST) Curriculum (p. 63)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>1–5</td>
<td>A108/109, Conv. Center</td>
<td>The Best of Engineering for Elementary Students (p. 64)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>4–8</td>
<td>D137, Conv. Center</td>
<td>The nPower Girls: Cultivating Interest and Achievement in STEM (p. 66)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>6–11</td>
<td>B110, Conv. Center</td>
<td>Using the National Science Olympiad and STEM to Address NGSS Crosscutting Concepts and Content (p. 66)</td>
</tr>
</tbody>
</table>

### Friday

<table>
<thead>
<tr>
<th>Time</th>
<th>Grade Level</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00 AM</td>
<td>3–10</td>
<td>Weidler/Halsey, DoubleTree</td>
<td>Engineering Water Wheels: A Three-Dimensional Approach for Integrating Science and Engineering (p. 72)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>9–12</td>
<td>E147/148, Conv. Center</td>
<td>NGSS? Got It Covered! (p. 74)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>4–8</td>
<td>A107, Conv. Center</td>
<td>Fun with Freewheelers! Teaching Science and Math with Manipulatives (p. 74)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>K–12</td>
<td>D139, Conv. Center</td>
<td>ASEE Session: ASEE’s K–12 Outreach: Engineering, Go For It (eGFI), Teach Engineering, Link Engineering, and the National Science Digital Library (p. 73)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>6–12</td>
<td>E141, Conv. Center</td>
<td>Using Recreational UIAVs (Drones) for STEM Activities and Science Fair Projects (p. 73)</td>
</tr>
</tbody>
</table>
### Schedule at a Glance

#### Engineering, Technology, and the Application of Science

<table>
<thead>
<tr>
<th>Time</th>
<th>Grade</th>
<th>Location</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00 AM</td>
<td>6–12</td>
<td>A106, Conv. Center</td>
<td>An NGSS Approach to Engineering in the Upper Grade Bands (p. 74)</td>
</tr>
<tr>
<td>8:30–9:00 AM</td>
<td>6–12</td>
<td>B110, Conv. Center</td>
<td>Project-Based Instruction Is a Perfect Match for NGSS (p. 77)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>9–12</td>
<td>D133/134, Conv. Center</td>
<td>Integrating Green Chemistry and Engineering Design into Every Classroom: Interactive Workshop for High School Educators (p. 79)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>2–8</td>
<td>B114/115, Conv. Center</td>
<td>3-2-1 Blast Off! (p. 81)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>6–8</td>
<td>C124, Conv. Center</td>
<td>Not Your Typical Classroom Experience: Amplify Science’s Digital Engineering Internships (p. 82)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>K–5</td>
<td>D139, Conv. Center</td>
<td>ASEE Session: Engineering a Pathway to STEM: Advancing Elementary Level Engineering Education Through Innovative Programs and Partnerships (p. 79)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>5–12</td>
<td>B110, Conv. Center</td>
<td>Making Waves: Seismic Waves Activities and Demonstrations (p. 84)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>G</td>
<td>D139, Conv. Center</td>
<td>ASEE Session: Cognitive and Noncognitive Experiences with Engineering Practices (p. 85)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>P–12</td>
<td>A107, Conv. Center</td>
<td>Hands-On Tools for Teaching the Science of Solar Energy (p. 87)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–9</td>
<td>A106, Conv. Center</td>
<td>What’s the Problem? Integrating Engineering into the Science Classroom Without Bridges and Rockets (p. 87)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>K–6</td>
<td>D130, Conv. Center</td>
<td>Science Is a Story: Using Kids’ Science Trade Books and the Internet to Explore Current Developments in Science (p. 90)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>9–12</td>
<td>D137, Conv. Center</td>
<td>Making Yogurt as an Engineering Design Project in Biology (p. 90)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>5–9</td>
<td>D139, Conv. Center</td>
<td>ASEE Session: Creatively Applying the “E” in STEM (p. 91)</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>1–12</td>
<td>A106, Conv. Center</td>
<td>The HMH Science Dimensions of NGSS (p. 94)</td>
</tr>
<tr>
<td>3:00–4:00 PM</td>
<td>9–12</td>
<td>B116, Conv. Center</td>
<td>Energy Flow Through an Ecosystem (p. 99)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>6–12</td>
<td>D133/134, Conv. Center</td>
<td>Teaching Engineering (p. 98)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>9–12</td>
<td>Oregon, DoubleTree</td>
<td>Integrating Green Chemistry and Engineering Design into Every Classroom for High School Educators (p. 101)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>6–12</td>
<td>E141, Conv. Center</td>
<td>Yes, You Can Teach Circuits and Programming! (p. 102)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>3–6</td>
<td>D139, Conv. Center</td>
<td>ASEE Session: Coupling Engineering Design Practices with CCSS ELA Writing (p. 102)</td>
</tr>
<tr>
<td>5:30–6:00 PM</td>
<td>8–12</td>
<td>D130, Conv. Center</td>
<td>Using Issues-Based Culminating Projects to Bring STEM to Introductory Chemistry (p. 102)</td>
</tr>
</tbody>
</table>

### Saturday

<table>
<thead>
<tr>
<th>Time</th>
<th>Grade</th>
<th>Location</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00 AM</td>
<td>7–C</td>
<td>E144, Conv. Center</td>
<td>What Do You Mean I Have to Teach Engineering? (p. 106)</td>
</tr>
<tr>
<td>8:00 AM–12 Noon</td>
<td>4–8</td>
<td>Mt. Bachelor, DoubleTree</td>
<td>SC-4: From Roots to STEM: Using Roots Instruments to Teach STEM (p. 108)</td>
</tr>
<tr>
<td>8:30–9:00 AM</td>
<td>4–8</td>
<td>D140, Conv. Center</td>
<td>Bringing Science to Life: Authentic Learning Experiences (p. 108)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>7–C</td>
<td>E144, Conv. Center</td>
<td>Beet Armyworm Invasion: Breeding Better Plants with Natural Diversity (p. 110)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>G</td>
<td>B119, Conv. Center</td>
<td>NARST-Sponsored Session: Resisting Racist, Classist, Neoliberalism in Science Education (p. 108)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>9–12</td>
<td>Mt. Hood, DoubleTree</td>
<td>Engineering Design, 3D Printing, and Physics Putting It All Together! (p. 109)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>3–5</td>
<td>3 Sisters, DoubleTree</td>
<td>Engineering a Robot to Do the Job (p. 109)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>P–2</td>
<td>D135, Conv. Center</td>
<td>Goldilocks, an Engineer? (p. 110)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>7–C</td>
<td>C123, Conv. Center</td>
<td>Build a Box: Engineering Food Dye Electrophoresis for NGSS (p. 111)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>8–12</td>
<td>D139, Conv. Center</td>
<td>Using the World Issue of Food Security to Teach Multiple NGSS (p. 113)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–C</td>
<td>Ross Island, DoubleTree</td>
<td>Science Teaching for Social Justice (p. 111)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>7–12</td>
<td>D136, Conv. Center</td>
<td>The “E” in STEM Is Not to Be Feared (p. 113)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>9–C</td>
<td>D137, Conv. Center</td>
<td>Student-Designed Research on Sleep, Memory, and Emotional Regulation (p. 112)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>K–5</td>
<td>D131, Conv. Center</td>
<td>Intensifying STEM on the Oregon Trail (p. 113)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–8</td>
<td>D135, Conv. Center</td>
<td>Engaging Girls in STEAM (p. 113)</td>
</tr>
</tbody>
</table>
### Life Science

#### Thursday

<table>
<thead>
<tr>
<th>Time</th>
<th>Location</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00 AM</td>
<td>6–12 D133/134, Conv. Center</td>
<td>The Re-Wilding Project! (p. 41)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>5–C E142, Conv. Center</td>
<td>NSTA Press® Session: Argumentation in the Biology Science Classroom (p. 42)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>9–C D139, Conv. Center</td>
<td>Cancer Medicine Focus Enhances Biology Curriculum: Biomaterials (p. 42)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>6–C A105, Conv. Center</td>
<td>Martian Genetics: An Electrophoresis Exploration (p. 43)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>6–8 B116, Conv. Center</td>
<td>Gas Exchange (p. 43)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>6–C A105, Conv. Center</td>
<td>Left at the Scene of the Crime: Introduction to Forensic Science (p. 46)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>9–12 B114/115, Conv. Center</td>
<td>Infusing Inquiry and Demonstrations into AP Biology (p. 46)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>9–C A105, Conv. Center</td>
<td>Exploring the Genetics of Taste: SNP Analysis of the PTC Gene Using PCR (p. 48)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–12 B113, Conv. Center</td>
<td>CPO’s Link™ Genetics Learning Modules: Crazy Chromosomes and Crazy Traits (p. 48)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>9–C A105, Conv. Center</td>
<td>Outbreak! Zika Testing Using the Enzyme-Linked Immunosorbent Assay (ELISA) (p. 53)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>8–12 A103/104, Conv. Center</td>
<td>Constructing and Crossing Cell Membranes (p. 53)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>K–2 D136, Conv. Center</td>
<td>Patterns of Survival (p. 52)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>6–12 D133/134, Conv. Center</td>
<td>Inquiring Minds Want to Know (p. 52)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>5–8 D140, Conv. Center</td>
<td>Engaging Students in Place-Based Learning Through a Field STEM Experience (p. 51)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>P–8 E144, Conv. Center</td>
<td>Taking STEM Outside (p. 53)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>6–12 E146, Conv. Center</td>
<td>Epidemiology as the Next “Forensic Science” Capstone Course (p. 53)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>6–8 D131, Conv. Center</td>
<td>Ocean Plastic Pollution: Examining Issues and Solutions in a Middle School Classroom (p. 52)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>8–12 D133/134, Conv. Center</td>
<td>Ocean Acidification as a Way to Teach Multidisciplinary Science and NGSS (p. 57)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>K–11 Oregon, DoubleTree</td>
<td>How Does Your Garden Grow? Creating and Maintaining Kid-Friendly, Bird-Friendly Gardens (p. 56)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>5–C Oregon Blrm. 204, Conv. Center</td>
<td>NESTA Shares: Using the CLEAN Collection of Resources to Teach Energy and Climate (p. 58)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>9–C A105, Conv. Center</td>
<td>Using Biotechnology to Diagnose HIV/AIDS (p. 59)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>8–C A105, Conv. Center</td>
<td>Environmental Toxicology Using Edvotek’s New EZ-elegans (p. 64)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>6–8 B117/118, Conv. Center</td>
<td>Evolutionary Evidence in the Fossil Record: Life Science with FOSS (p. 65)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>6–C E141, Conv. Center</td>
<td>New POGIL Activities to Integrate Life Science (p. 63)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>7–9 E144, Conv. Center</td>
<td>Evolution for Educators (p. 63)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>4–8 D140, Conv. Center</td>
<td>Student Investigations: Get Good Questions! (p. 67)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>6–11 B110, Conv. Center</td>
<td>Using the National Science Olympiad and STEM to Address NGSS Crosscutting Concepts and Content (p. 66)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>9–12 D133/134, Conv. Center</td>
<td>Constructing Explanations in Biology—Getting from There to Here (p. 67)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>6–8 E144, Conv. Center</td>
<td>Curriculum for a Crowded Planet (p. 68)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>5–7 E143, Conv. Center</td>
<td>Communicating Science Through Narrative Writing (p. 68)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>6–10 D131, Conv. Center</td>
<td>Looking for a Way to Teach Matter and Energy Through a Model-Based Approach? (p. 67)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>3–9 Hawthorne/Sellwood, DoubleTree</td>
<td>Inspired by 18th- and 19th-Century Naturalists: Recreating Vintage Wall Charts for Structure and Function Science That Incorporates Cultural Context, Lived Experiences, and Visual Art (p. 67)</td>
</tr>
<tr>
<td>Time</td>
<td>Location</td>
<td>Session Title</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>-------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>9–C</td>
<td>A103/104, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Let’s Get Helical: Exploring DNA Structure and Function with Physical Models</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(p. 74)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>9–C</td>
<td>A103/104, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contagion! Track the Progress of Dangerous Viruses that Are Spreading</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Throughout the Country (p. 75)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>K–8</td>
<td>D136, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coyote vs. Road Runner: Why Acme Anvils Aren’t Needed (p. 73)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>3–8</td>
<td>D140, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sing for the Planet (p. 72)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>9–12</td>
<td>B111/112, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viruses—From Adenovirus to HIV to Zika (p. 75)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>9–12</td>
<td>A108/109, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comparative Vertebrate Anatomy with Carolina’s Perfect Solution® Specimens</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(p. 75)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>9–C</td>
<td>A103/104, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hands-On Integrated Science Activities for Middle School from Flinn Scientific</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(p. 75)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>4–9</td>
<td>Ross Island, DoubleTree</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Monarch Butterfly: Sophisticated Science (p. 71)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>9–12</td>
<td>E147/148, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NGS? Got It Covered! (p. 74)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>6–8</td>
<td>B114/115, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Using the Case Studies as a Cumulative Review (p. 83)</td>
</tr>
<tr>
<td>8:30–9:00 AM</td>
<td>9–C</td>
<td>B119, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ecology and Biodiversity Labs: The Environment in Three Dimensions (p. 78)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>4–8</td>
<td>D138, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engage Your Students Through Conservation Connect (p. 79)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>9–12</td>
<td>A103/104, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NGSS? Got It Covered! (p. 74)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>9–C</td>
<td>A103/104, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comparative Mammalian Organ Dissection with Carolina’s Perfect Solution® Specimens (p. 87)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>8–C</td>
<td>D133/134, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Teaching Genetics and Evolution Through Context-Based Learning Involving Food Security Issues in Africa (p. 85)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>9–12</td>
<td>A105, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biology with Vernier (p. 87)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–8</td>
<td>E142, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NSTA Press® Session: Argument-Driven Inquiry in Biology: Lab Investigations for Grades 9–12 (p. 80)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>9–12</td>
<td>A108/109, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comparative Mammalian Organ Dissection with Carolina’s Perfect Solution® Specimens (p. 87)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>5–12</td>
<td>B119, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coral Reefs: Fragile Wonders Under Threat: Bring Vibrant Environmental Stewardship Lessons to Your Students with Free NOAA Resources (p. 89)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>9–C</td>
<td>D133/134, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FieldSTEM Plus: An Integrated Learning Model (p. 90)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>K–5</td>
<td>D137, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Making Yogurt as an Engineering Design Project in Biology (p. 90)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>9–12</td>
<td>B111/112, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Biology of Skin Color: An NGSS-Focused Exploration (p. 92)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>7–C</td>
<td>D135, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recipe for Research and Application: The Science of Food and Eating (p. 91)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>3–8</td>
<td>D138, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Developing Science Process Skills Through Schoolyard Investigations (p. 90)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>9–C</td>
<td>C123, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>How to Use Pop Culture in Your Life Science Class (p. 93)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>9–C</td>
<td>D136, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Learning About Molecular Structures with Molecular Models (p. 91)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>9–12</td>
<td>B116, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>What Is a Species (p. 92)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>6–12</td>
<td>B111/112, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Can We Save the World’s Coral Reefs Before They Disappear? (p. 94)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>9–12</td>
<td>B116, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cell Differentiation and Gene Expression (p. 94)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>1–12</td>
<td>A106, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The HMH Science Dimensions of NGSS (p. 94)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>K–12</td>
<td>A108/109, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction to Wisconsin Fast Plants® (p. 94)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>6–12</td>
<td>A108/109, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autopsy: Forensic Dissection Featuring Carolina’s Perfect Solution® Pigs (p. 99)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>9–12</td>
<td>C122, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reaching the Limits: Population Ecology in Biology (p. 97)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>8–12</td>
<td>D130, Conv. Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Strengthen Your STEM Lessons with the NSTA High School Committee Activities</td>
</tr>
</tbody>
</table>
## Schedule at a Glance
### Life Science

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:30–4:30 PM</td>
<td>9–C</td>
<td>E144, Conv. Center</td>
<td>Cancer Medicine Focus Enhances Biology Curriculum: Cryopreservation (p. 99)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>1–12</td>
<td>Hawthorne/Sellwood, DoubleTree</td>
<td>Stretch Your Legs for Science! (p. 98)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>9–12</td>
<td>B116, Conv. Center</td>
<td>Energy Flow Through an Ecosystem (p. 99)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>3–6</td>
<td>D131, Conv. Center</td>
<td>Shared Goals in the New Science and Language Arts Standards for Grades 3–6 (p. 101)</td>
</tr>
</tbody>
</table>

### Saturday

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00 AM</td>
<td>8–C</td>
<td>C123, Conv. Center</td>
<td>Investigate Photosynthesis and Cellular Respiration with Algae Beads (p. 107)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>K–12</td>
<td>Oregon, DoubleTree</td>
<td>Animal Multimedia Inspires Learning and Engagement (p. 105)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>K–12</td>
<td>Hawthorne/Sellwood, DoubleTree</td>
<td>Increase Student Engagement Through Educator Collaboration and Community Partnerships (p. 106)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>9–12</td>
<td>B116, Conv. Center</td>
<td>Photosynthesis and Respiration: It’s a Plant’s Life! (p. 107)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>9–C</td>
<td>A103/104, Conv. Center</td>
<td>Genes, Genomes, and Personalized Medicine (p. 107)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>9–C</td>
<td>A103/104, Conv. Center</td>
<td>Of All the Nerve: Modeling Neurotransmission (p. 111)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>6–12</td>
<td>D138, Conv. Center</td>
<td>Cultural and Ecological Studies on Mount St. Helens (p. 109)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>9–12</td>
<td>B116, Conv. Center</td>
<td>Tracking the Spread of Infectious Diseases: Human and Animal (p. 111)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>3–C</td>
<td>E146, Conv. Center</td>
<td>Using Local Native Landscapes to Broaden Environmental Education: GLOBE Opportunities (p. 110)</td>
</tr>
<tr>
<td>8:30–9:00 AM</td>
<td>8–10</td>
<td>B110, Conv. Center</td>
<td>Magical Illusions and Scintillating Simulations for STEM (p. 108)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>7–C</td>
<td>E144, Conv. Center</td>
<td>Beet Armyworm Invasion: Breeding Better Plants with Natural Diversity (p. 110)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>3–5</td>
<td>D131, Conv. Center</td>
<td>Decode a Fish (p. 109)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>9–C</td>
<td>D137, Conv. Center</td>
<td>Student-Designed Research on Sleep, Memory, and Emotional Regulation (p. 112)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>8–12</td>
<td>D139, Conv. Center</td>
<td>Using the World Issue of Food Security to Teach Multiple NGSS (p. 113)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>9–C</td>
<td>E144, Conv. Center</td>
<td>Molecular Modeling as a Tool for Understanding Cancer and Other Types of Genetic Disease (p. 113)</td>
</tr>
</tbody>
</table>

## Physical Science

### Thursday

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00 AM</td>
<td>10–C</td>
<td>E141, Conv. Center</td>
<td>Analyzing Supernova Remnants Using Spectroscopy, NASA Data, and STEM (p. 42)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>6–8</td>
<td>B117/118, Conv. Center</td>
<td>Wave Properties and Information Transfer (p. 43)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>6–8</td>
<td>B116, Conv. Center</td>
<td>Gas Exchange (p. 43)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>6–12</td>
<td>B113, Conv. Center</td>
<td>CPO’s Link™ with Car and Ramp: Force, Motion, and Variables (p. 43)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>6–12</td>
<td>A108/109, Conv. Center</td>
<td>Engineer Physical Science Excitement with a Carolina STEM Challenge® (p. 43)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>9–12</td>
<td>C122, Conv. Center</td>
<td>Incorporating CCSS for Literacy in Science and Technical Subjects into Introductory Chemistry Investigations (p. 40)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>K–12</td>
<td>D131, Conv. Center</td>
<td>NASA Is with You When You Fly: Principles of Flight and Four Forces (p. 41)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>6–12</td>
<td>Morrison, DoubleTree</td>
<td>Bioplastic—Going from Synthetic to Natural Polymers (p. 39)</td>
</tr>
<tr>
<td>8:30–9:00 AM</td>
<td>8–10</td>
<td>B110, Conv. Center</td>
<td>“Keep on Rolling” with STEM (p. 44)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>5–C</td>
<td>A103/104, Conv. Center</td>
<td>Dive In with Magnetic Water Molecules (p. 46)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>6–8</td>
<td>A107, Conv. Center</td>
<td>Science Storylines: Developing Three-Dimensional Lessons That Build on Student Curiosity (p. 46)</td>
</tr>
</tbody>
</table>
### Schedule at a Glance

#### Physical Science

<table>
<thead>
<tr>
<th>Time</th>
<th>Grade</th>
<th>Location</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00 AM–12 Noon</td>
<td>K–5</td>
<td>A107, Conv. Center</td>
<td>Riding the Wave with TCI (p. 48)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>K–5</td>
<td>A108/109, Conv. Center</td>
<td>Waves, Waves, Waves: Building Models to Explain Phenomena (p. 48)</td>
</tr>
<tr>
<td>12:30–1:00 PM</td>
<td>4–9</td>
<td>Alaska/Idaho, DoubleTree</td>
<td>It’s All Matter with Matter Tag (p. 50)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>9–12</td>
<td>C122, Conv. Center</td>
<td>Meet the Standards and Enhance Your Chemistry Classroom with Other People’s Money (p. 51)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>6–8</td>
<td>D131, Conv. Center</td>
<td>Ocean Plastic Pollution: Examining Issues and Solutions in a Middle School Classroom (p. 52)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>6–12</td>
<td>D133/134, Conv. Center</td>
<td>Inquiring Minds Want to Know (p. 52)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>8–12</td>
<td>A103/104, Conv. Center</td>
<td>Constructing and Crossing Cell Membranes (p. 53)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>8–12</td>
<td>D133/134, Conv. Center</td>
<td>Ocean Acidification as a Way to Teach Multidisciplinary Science and NGSS (p. 57)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>8–C</td>
<td>A103/104, Conv. Center</td>
<td>The Many Jobs of Proteins: Enzymes in the Spotlight (p. 59)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>K–5</td>
<td>B117/118, Conv. Center</td>
<td>What Does Conceptual Modeling Look Like in an Elementary Classroom?</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>6–8</td>
<td>B116, Conv. Center</td>
<td>Chemical Batteries (p. 60)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>9–12</td>
<td>B114/115, Conv. Center</td>
<td>Teaching Forensics with Real Crime Scene Investigation Techniques from Flinn Scientific (p. 66)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>6–12</td>
<td>D139, Conv. Center</td>
<td>Science from the Stratosphere: STEM Activities in the Infrared (p. 57)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>5–C</td>
<td>Oregon Blrm. 204, Conv. Center</td>
<td>NESTA Shares: Using the CLEAN Collection of Resources to Teach Energy and Climate (p. 58)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>9–12</td>
<td>C122, Conv. Center</td>
<td>Using Pop Culture and Polymers to Create Inquisitive Minds (p. 56)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>6–8</td>
<td>B116, Conv. Center</td>
<td>Reclaiming the Metal (p. 65)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>6–12</td>
<td>B113, Conv. Center</td>
<td>CPO Science’s Link™ Module: Learning About Chemistry Models (p. 65)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>5–12</td>
<td>Ross Island, DoubleTree</td>
<td>PolyWhat? Understanding What a Polymer Is (Polymer 101) (p. 61)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>6–10</td>
<td>D131, Conv. Center</td>
<td>Looking for a Way to Teach Matter and Energy Through a Model-Based Approach? (p. 67)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>9–12</td>
<td>D139, Conv. Center</td>
<td>Connect Chemistry to Your World with ChemClub (p. 67)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>6–8</td>
<td>E141, Conv. Center</td>
<td>Light in the Deep Sea (p. 67)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>5–7</td>
<td>E143, Conv. Center</td>
<td>Communicating Science Through Narrative Writing (p. 68)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>6–11</td>
<td>B110, Conv. Center</td>
<td>Using the National Science Olympiad and STEM to Address NGSS Crosscutting Concepts and Content (p. 66)</td>
</tr>
</tbody>
</table>

**Friday**

<table>
<thead>
<tr>
<th>Time</th>
<th>Grade</th>
<th>Location</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00 AM</td>
<td>9–12</td>
<td>E142, Conv. Center</td>
<td>NSTA Press® Session: <em>Argument-Driven Inquiry in Chemistry: Lab Investigations for Grades 9–12</em> (p. 73)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>6–12</td>
<td>E141, Conv. Center</td>
<td>Using Recreational UAVs (Drones) for STEM Activities and Science Fair Projects (p. 73)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>9–C</td>
<td>E143, Conv. Center</td>
<td>AAPT Session: Physics and Engineering in the Classroom and After-School Clubs 1: Using Microcontrollers to Collect and Display Results in Fun and Exciting Ways (p. 73)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>9–12</td>
<td>B113, Conv. Center</td>
<td>Modeling Climate Change Impacts: Dissolving Carbon Dioxide (p. 75)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>6–8</td>
<td>E146, Conv. Center</td>
<td>ACS Middle Level Session: Solids, Liquids, Gases, and Changes of State (p. 73)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>6–8</td>
<td>B116, Conv. Center</td>
<td>Waves (p. 75)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>4–8</td>
<td>A107, Conv. Center</td>
<td>Fun with Freewheelers! Teaching Science and Math with Manipulatives (p. 74)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>6–8</td>
<td>B114/115, Conv. Center</td>
<td>Hands-On Integrated Science Activities for Middle School from Flinn Scientific (p. 75)</td>
</tr>
<tr>
<td>8:00–10:00 AM</td>
<td>9–12</td>
<td>E145, Conv. Center</td>
<td>ACS Session One: Energy in Chemistry—A Macroscopic View (p. 77)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>9–12</td>
<td>D133/134, Conv. Center</td>
<td>Integrating Green Chemistry and Engineering Design into Every Classroom: Interactive Workshop for High School Educators (p. 79)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>9–12</td>
<td>B116, Conv. Center</td>
<td>pH Scale and Math Modeling (p. 81)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>6–12</td>
<td>C122, Conv. Center</td>
<td>Basic Polymer Science for the Science Classroom (p. 78)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>2–8</td>
<td>B114/115, Conv. Center</td>
<td>3-2-1 Blast Off! (p. 81)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>6–8</td>
<td>E146, Conv. Center</td>
<td>ACS Middle Level Session: Density: A Molecular View (p. 80)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>9–12</td>
<td>A105, Conv. Center</td>
<td>Chemistry with Vernier (p. 80)</td>
</tr>
<tr>
<td>Time</td>
<td>Session Details</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------------------------------------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td><strong>Exploring Misconceptions: Speed and Velocity</strong> (p. 81)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td><strong>STEM and NGSS Inquiry in Chemistry: Effective, Efficient, Economical</strong> (p. 81)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td><strong>3D Printing for the BioScience Classroom</strong> (p. 80)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td><strong>AAPT Session: Physics and Engineering in the Classroom and After-School Clubs II: Using an Arduino to Collect Data and Control Motors</strong> (p. 80)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td><strong>Chemistry Concepts STEAM-ified</strong> (p. 78)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td><strong>Learning About Global Climate Change in a Physics Course for Prospective Teachers</strong> (p. 80)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30 AM–12:30 PM</td>
<td><strong>ACS Session Two: Energy in Chemistry—A Particulate View</strong> (p. 83)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td><strong>ACS Middle Level Session: The Water Molecule and Dissolving</strong> (p. 86)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td><strong>Hands-On Tools for Teaching the Science of Solar Energy</strong> (p. 87)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td><strong>AAPT Session: Physics and Engineering in the Classroom and After-School Clubs III: Student miniROVs in the Classroom, the Field, and in Student Competitions</strong> (p. 86)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td><strong>NSTA Press® Session: Argument-Driven Inquiry in Physical and Life Science: Lab Investigations for Grades 6–8</strong> (p. 86)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td><strong>Chemical Formula and Amino Acids</strong> (p. 88)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td><strong>Exploring Misconceptions: There Is a Difference Between Heat and Temperature?</strong> (p. 88)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td><strong>Squeezing Time In for STEM</strong> (p. 90)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td><strong>Solids: The Neglected “State” of Chemistry</strong> (p. 89)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td><strong>ACS Middle Level Session: Chemical Reactions: Breaking and Making Bonds</strong> (p. 91)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td><strong>NSTA Press® Session: Argumentation in the Physical Science/Physics Science Classroom</strong> (p. 91)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td><strong>AAPT Session: Developing an Energy Policy for the U.S.</strong> (p. 91)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td><strong>Coral Reefs: Fragile Wonders Under Threat: Bring Vibrant Environmental Stewardship Lessons to Your Students with Free NOAA Resources</strong> (p. 89)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:00–5:00 PM</td>
<td><strong>ACS Session Three: Energy in Chemistry—An Atomic View</strong> (p. 96)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td><strong>AAPT Session: How to Make Holograms Using the Litholo Home Holography Kit</strong> (p. 98)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td><strong>Physics and Physical Science with Vernier</strong> (p. 99)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td><strong>No-Hassle Messy Science with a Wow! Chemical Reactions</strong> (p. 98)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td><strong>Strengthen Your STEM Lessons with the NSTA High School Committee Activities</strong> (p. 97)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td><strong>Corrosion: Chemistry Made Simple, Relevant, and Fun</strong> (p. 98)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td><strong>Beyond Differential Instruction</strong> (p. 98)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td><strong>Teaching Engineering</strong> (p. 98)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td><strong>Enzymes: Technology Inspired by Nature</strong> (p. 99)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td><strong>Energy Flow Through an Ecosystem</strong> (p. 99)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:00–5:30 PM</td>
<td><strong>Newton’s Laws on Gym Scooters</strong> (p. 100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td><strong>Teach Engineering Principles on the Cheap with Concrete</strong> (p. 101)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td><strong>Smart Skies LineUp With Math</strong> (p. 101)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td><strong>Integrating Green Chemistry and Engineering Design into Every Classroom for High School Educators</strong> (p. 101)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td><strong>Spark Students’ Curiosity with Chemistry!</strong> (p. 101)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td><strong>Shared Goals in the New Science and Language Arts Standards for Grades 3–6</strong> (p. 101)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td><strong>Reach Higher with Projectiles and the NGSS</strong> (p. 102)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td><strong>Old Polymer Labs with 21st-Century Learning</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td><strong>Using Issues-Based Culminating Projects to Bring STEM to Introductory Chemistry</strong> (p. 102)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## NSTA Portland Area Conference on Science Education

### Schedule at a Glance

#### Earth and Space Science

<table>
<thead>
<tr>
<th>Time</th>
<th>Room</th>
<th>Session Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00 AM</td>
<td>7–C E144, Conv. Center</td>
<td>What Do You Mean I Have to Teach Engineering? (p. 106)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>P–3 D131, Conv. Center</td>
<td>Let’s Get Physical: From Force and Friction to Water and Weather (p. 106)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>4–8 E146, Conv. Center</td>
<td>Inquiry Matters: Identify Unknown Liquids (p. 107)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>7–12 D135, Conv. Center</td>
<td>Constructing Equitable STEM Activities for All (p. 106)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>8–12 D130, Conv. Center</td>
<td>A Fun and Relevant Way to Teach Physical Science (Chemistry) Concepts (p. 109)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>7–12 D139, Conv. Center</td>
<td>A STEM Activity for Physics and Physical Science (p. 110)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>3–C Oregon, DoubleTree</td>
<td>Magical Illusions and Scintillating Simulations for STEM (p. 108)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>3–5 3 Sisters, DoubleTree</td>
<td>Engineering a Robot to Do the Job (p. 109)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>P–2 D135, Conv. Center</td>
<td>Goldilocks, an Engineer? (p. 110)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>7–C C123, Conv. Center</td>
<td>Build a Box: Engineering Food Dye Electrophoresis for NGSS (p. 111)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>K–8 E143, Conv. Center</td>
<td>No-Hassle Messy Science with a Wow! Atoms, Molecules, and Density (p. 110)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>8–12 D139, Conv. Center</td>
<td>Using the World Issue of Food Security to Teach Multiple NGSS (p. 113)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>7–C C123, Conv. Center</td>
<td>A Unique Ice Core Investigation that Integrates the Three Dimensions of the NGSS and STEM (p. 111)</td>
</tr>
</tbody>
</table>

#### Physical Science

<table>
<thead>
<tr>
<th>Time</th>
<th>Room</th>
<th>Session Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00 AM</td>
<td>3–C Oregon, DoubleTree</td>
<td>Experience Amplify Science: Grades 2–5 (p. 47)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>2–5 C124, Conv. Center</td>
<td>Experience Amplify Science: Grades K–6 (p. 44)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>6–12 C113, Conv. Center</td>
<td>Solving the Mystery of STEM Using Forensic Science (p. 46)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>2–5 B111/112, Conv. Center</td>
<td>SEPs Made Easy (p. 46)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>K–5 B117/118, Conv. Center</td>
<td>Engage Students in FOSS Next Generation (p. 47)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>6–12 C120/121, Conv. Center</td>
<td>Using Maggots, Flies, and Flesh to Solve a Mystery! (p. 47)</td>
</tr>
<tr>
<td>10:30–11:30 AM</td>
<td>G NSTA Science Store</td>
<td>Scan Carroll Booking Signing: The Serengeti Rules: The Quest to Discover How Life Works, and Why It Matters (p. 44)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>K–12 B114/115, Conv. Center</td>
<td>Engaging Students in Authentic Science Experiences Using Digital Tools (p. 50)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>K–5 B117/118, Conv. Center</td>
<td>The Reflective Assessment Practice: Improving Science Achievement in 10 Minutes (p. 50)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–8 C124, Conv. Center</td>
<td>Experience Amplify Science: Middle School (p. 50)</td>
</tr>
<tr>
<td>12:30–1:00 PM</td>
<td>9–C B110, Conv. Center</td>
<td>Biotechnology Education with a Focus on Careers (p. 50)</td>
</tr>
<tr>
<td>12:30–1:00 PM</td>
<td>K–6 D137, Conv. Center</td>
<td>CSSS Session: Presidential Award for Excellence in Mathematics and Science Teaching (p. 50)</td>
</tr>
</tbody>
</table>

### General Science Education

#### Thursday

<table>
<thead>
<tr>
<th>Time</th>
<th>Room</th>
<th>Session Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00 AM</td>
<td>K–6 D137, Conv. Center</td>
<td>Differentiating K–6 Science Instruction to Enable All Students to Inquire, Explore, Participate, and Achieve Success (p. 40)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>9–C Hawthorne/Sellwood, DoubleTree</td>
<td>Advising Our High School Students Toward STEM Degrees and Careers (p. 41)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>K–11 Ross Island, DoubleTree</td>
<td>Engaging Students in Science Through Virtual Field Trips (p. 39)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>6–C Oregon, DoubleTree</td>
<td>Teachers Bridging School and Workplace: Summer in Industry (p. 39)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>K–8 D140, Conv. Center</td>
<td>Using Learning Progressions to Better Integrate Instruction and Assessment in Three Dimensions (p. 40)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>G Oregon Blrm. 203, Conv. Center</td>
<td>Is This Your First NSTA Conference? First-Timer Conference Attendees’ Orientation (p. 40)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>4–8 E143, Conv. Center</td>
<td>Teach Students to Read Like Scientists! (p. 42)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>6–12 B119, Conv. Center</td>
<td>Where Art and Science Meet (p. 40)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>5–9 E145, Conv. Center</td>
<td>NMLSTA-Sponsored Session: Calling All Middle Level Teachers! (p. 40)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>K–2 B111/112, Conv. Center</td>
<td>Teach Next Gen Like Your Hair Is on Fire! (p. 43)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>P–2 C124, Conv. Center</td>
<td>Experience Amplify Science: Grades K–1 (p.44)</td>
</tr>
<tr>
<td>8:30–9:00 AM</td>
<td>K–12 D138, Conv. Center</td>
<td>Planning for Three-Dimensional Learning (p. 44)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>2–5 C124, Conv. Center</td>
<td>Experience Amplify Science: Grades 2–5 (p. 47)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>6–12 B113, Conv. Center</td>
<td>Solving the Mystery of STEM Using Forensic Science (p. 46)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>2–5 B111/112, Conv. Center</td>
<td>SEP's Made Easy (p. 46)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>K–5 B117/118, Conv. Center</td>
<td>Engage Students in FOSS Next Generation (p. 47)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>6–12 C120/121, Conv. Center</td>
<td>Using Maggots, Flies, and Flesh to Solve a Mystery! (p. 47)</td>
</tr>
<tr>
<td>10:30–11:30 AM</td>
<td>G NSTA Science Store</td>
<td>Scan Carroll Booking Signing: The Serengeti Rules: The Quest to Discover How Life Works, and Why It Matters (p. 44)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>K–12 B114/115, Conv. Center</td>
<td>Engaging Students in Authentic Science Experiences Using Digital Tools (p. 50)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>K–5 B117/118, Conv. Center</td>
<td>The Reflective Assessment Practice: Improving Science Achievement in 10 Minutes (p. 50)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–8 C124, Conv. Center</td>
<td>Experience Amplify Science: Middle School (p. 50)</td>
</tr>
<tr>
<td>12:30–1:00 PM</td>
<td>9–C B110, Conv. Center</td>
<td>Biotechnology Education with a Focus on Careers (p. 50)</td>
</tr>
<tr>
<td>12:30–1:00 PM</td>
<td>K–6 D137, Conv. Center</td>
<td>CSSS Session: Presidential Award for Excellence in Mathematics and Science Teaching (p. 50)</td>
</tr>
</tbody>
</table>
### Schedule at a Glance  General Science Education

<table>
<thead>
<tr>
<th>Time</th>
<th>Session Area</th>
<th>Location</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:30–1:30 PM</td>
<td>3–12</td>
<td>Morrison, DoubleTree</td>
<td>Time Will Tell: Use of Time-Lapse Photography and Digital Storytelling to Observe Change (p. 51)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>G</td>
<td>E141, Conv. Center</td>
<td>Planning and Designing Safe and Sustainable Science Facilities That Meet the NGSS (Science Facilities 101) (p. 52)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>K–9</td>
<td>Hawthorne/Sellwood, DoubleTree</td>
<td>Designing Elementary Preservice Teacher Preparation Courses with a Focus on STEM-Rich Making Practices (p. 52)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>1–8</td>
<td>E143, Conv. Center</td>
<td>iPadography: Using Devices in the Classroom for More Than Just Photos (p. 53)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>6–12</td>
<td>D139, Conv. Center</td>
<td>Making Science Accessible Through Technology: Using QR Codes and Video to Construct and Assess Student Comprehension (p. 52)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>K–5</td>
<td>B117/118, Conv. Center</td>
<td>Scientific Practices: What Does Argumentation Look Like in an Elementary Classroom? (p. 54)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>K–8</td>
<td>C124, Conv. Center</td>
<td>What Is Amplify Science? (p. 54)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>K–12</td>
<td>B119, Conv. Center</td>
<td>NGSS@NSTA Forum Session: Developing Coherent Storylines of NGSS Lessons (p. 51)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>6–12</td>
<td>C120/121, Conv. Center</td>
<td>Zombie Apocalypse! (p. 54)</td>
</tr>
<tr>
<td>1:00 - 1:30 PM</td>
<td>5–9</td>
<td>Alaska/Idaho, DoubleTree</td>
<td>Crafting a Cosmos (p. 55)</td>
</tr>
<tr>
<td>1:00 - 1:30 PM</td>
<td>9–C</td>
<td>B110, Conv. Center</td>
<td>Students Reading Real Science: Primary Literature in the Classroom (p. 55)</td>
</tr>
<tr>
<td>2:00–2:30 PM</td>
<td>9–C</td>
<td>D137, Conv. Center</td>
<td>A Transformational Model for Science Instruction in a 21st-Century Classroom (p. 55)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>K–12</td>
<td>Hawthorne/Sellwood, DoubleTree</td>
<td>Argumentation in the Science Classroom (p. 57)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>6–12</td>
<td>D136, Conv. Center</td>
<td>AMSE-Sponsored Session: Moving to Teacher as Facilitator: NGSS and Critical Pedagogy (p. 57)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>P–8</td>
<td>E142, Conv. Center</td>
<td>NSTA Press® Session: Outdoor Science with Birds, Books, and Butterflies (p. 58)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>G</td>
<td>E141, Conv. Center</td>
<td>Science Facilities 102: The Architects Have Started Without Me…What Do I Do Now? (p. 58)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>6–12</td>
<td>B110, Conv. Center</td>
<td>Using Digital Tools to Check for Understanding (p. 56)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>1–6</td>
<td>E145, Conv. Center</td>
<td>“Phenomenal” Strategies for Teaching NGSS (p. 58)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>3–8</td>
<td>Morrison, DoubleTree</td>
<td>Increasing Science Engagement and Achievement Through Content Literacy (p. 56)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>5–C</td>
<td>E146, Conv. Center</td>
<td>So Your Students Won’t Talk (Argue)? (p. 58)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>G</td>
<td>Oregon Blrm. 201, Conv. Center</td>
<td>Featured Presentation: How Should Districts and Schools Focus Professional Development When Starting to Implement NGSS? (p. 56)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>K–5</td>
<td>A108/109, Conv. Center</td>
<td>Bring Visual Science into K–5 Classrooms—It’s a Game Changer! (p. 59)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>3–5</td>
<td>B111/112, Conv. Center</td>
<td>Increase Your 3-D Vision of NGSS (p. 59)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>P–5</td>
<td>A107, Conv. Center</td>
<td>Integrating Literacy and Science—The Wow Factor (p. 59)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>K–12</td>
<td>C120/121, Conv. Center</td>
<td>The Value of Writing Scientific Explanations in STEM (p. 60)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>G</td>
<td>C125/126, Conv. Center</td>
<td>Stop Creating Lesson Plans—Start Creating Learning Experiences (p. 60)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>1–12</td>
<td>A106, Conv. Center</td>
<td>The HMH Science Dimensions of NGSS (p. 59)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>K–12</td>
<td>B119, Conv. Center</td>
<td>NGSS@NSTA Forum Session: Selecting Phenomena to Motivate Student Sensemaking (p. 56)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>7–12</td>
<td>D135, Conv. Center</td>
<td>Inclusion: Strategies for Helping Students with Disabilities in the Science Classroom (p. 63)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>9–12</td>
<td>D133/134, Conv. Center</td>
<td>Problems and Phenomena: Engaging Your Students in Three-Dimensional NGSS Learning! (p. 63)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>K</td>
<td>E145, Conv. Center</td>
<td>NGSS Storyline Coherence for Kindergarten: Phenomena and Context-Based Units of Study for Kindergarten (p. 63)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>G</td>
<td>E142, Conv. Center</td>
<td>NSTA Press® Session: Teaching for Conceptual Understanding in Science (p. 63)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>G</td>
<td>Oregon Blrm. 203, Conv. Center</td>
<td>ASTE-Sponsored Session: Sharing Innovative Program Designs for Professional Development and Research in Science Education (p. 62)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>6–C</td>
<td>E146, Conv. Center</td>
<td>Zombies Don’t Stand a Chance Against STEMI (p. 64)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>K–12</td>
<td>Oregon, DoubleTree</td>
<td>How to Implement STEM and NGSS into Your Classroom Through the Use of NSTA Competitions (p. 61)</td>
</tr>
</tbody>
</table>
Schedule at a Glance

**General Science Education**

### Friday

**3:30–4:30 PM**

| 9–12 | C122, Conv. Center | The Air We Breathe: Authentic Student Research on Indoor/Outdoor Air Quality (p. 62) |
| 3:30–4:30 PM | K–12 | Alaska/Idaho, DoubleTree | Leadership for Three-Dimensional Teaching and Learning: The Washington Science Fellows Program (p. 61) |
| 3:30–4:30 PM | K–5 | B111/112, Conv. Center | Liven Up Literacy with Science (p. 65) |
| 3:30–4:30 PM | K–12 | B119, Conv. Center | NGSS®/NSTA Forum Session: How Should Districts and Schools Focus Professional Development When Implementing NGSS? (p. 61) |
| 3:30–4:30 PM | 6–9 | A106, Conv. Center | Group Work: Using Student Collaboration in the Middle School Science Classroom (p. 64) |

**4:00–4:30 PM**

| 6–12 | B110, Conv. Center | iPrize: A Transdisciplinary Innovation Competition (p. 65) |

**5:00–6:00 PM**

| K–12 | Ross Island, DoubleTree | Unraveling NGSS Implementation: Key Points and Discussion (p. 66) |
| K–6 | E145, Conv. Center | Preparing Educators to Meet the Demands of NGSS Through a Three-Dimensional Professional Development Model (p. 68) |

### Saturday

**8:00–8:30 AM**

| 6–12 | B110, Conv. Center | Edible Labs (p. 71) |
| 8:00–9:00 AM | 3–12 | Morrison, DoubleTree | Let the Tablet Tell a Science (Digital) Story! (p. 71) |
| 8:00–9:00 AM | 3–10 | Hawthorne/Sellwood, DoubleTree | Science Practices: Effective, Fun, and Relevant (p. 72) |
| 8:00–9:00 AM | 9–12 | C122, Conv. Center | Using Data Proactively to Guide Differentiated Instruction (p. 71) |
| 8:00–9:00 AM | 4–C | D132, Conv. Center | Using Problem-Based Learning to Promote Authentic Research and Problem Solving and Excite Interest for Students of All Levels (p. 71) |
| 8:00–9:00 AM | K–8 | D131, Conv. Center | Promising Practices in STEM Education for English Language Learners (p. 72) |
| 8:00–9:00 AM | K–2 | D130, Conv. Center | STEM in the Primary Classroom (p. 71) |
| 8:00–9:00 AM | G | Oregon, DoubleTree | STEM P3: A Statewide Programs/Policy Partnership to Advance PreK–12 STEM Education (p. 71) |

**8:00–9:00 AM**

| G | D138, Conv. Center | NARST-Sponsored Session: The Efficacy of Multi-Level Professional Development for Elementary, Middle School, and High School Teachers (p. 72) |
| 8:00–9:00 AM | 3–C | D137, Conv. Center | AMSE-Sponsored Session: Building an Equitable Science Classroom Community: Strategies by and for Teachers (p. 72) |
| 8:00–9:00 AM | 6–C | D135, Conv. Center | Infect Your Science Classroom with Math (p. 73) |
| 8:00–9:00 AM | G | D133/134, Conv. Center | Three-Dimensional Formative Assessment (p. 72) |
| 8:00–9:00 AM | 6–8 | C124, Conv. Center | Implementing Science Seminars and Scientific Argumentation with Amplify Science (p. 76) |

**8:00–9:00 AM**

| 3–12 | A105, Conv. Center | Integrating Chromebook with Vernier Data-Collection Technology (p. 74) |
| 8:00–9:00 AM | K–12 | C120/121, Conv. Center | STEM Literacy: Strategies for Making Complex Text Meaningful (p. 75) |
| 8:00–9:00 AM | G | C125/126, Conv. Center | Stop Creating Lesson Plans—Start Creating Learning Experiences (p. 76) |
| 8:00–10:00 AM | K–6/C | Multnomah, DoubleTree | Articulating the “Why”: Science in the Elementary Years (p. 76) |
| 9:30–10:00 AM | K–5 | D130, Conv. Center | 3-D Outdoor Learning Strategies (p. 78) |
| 9:30–10:30 AM | 3–8 | D131, Conv. Center | Developing Project-Based Learning Units in Partnership with STEM Professionals: Real-World Project Examples (p. 79) |

**9:30–10:30 AM**

| 6–12 | Hawthorne/Sellwood, DoubleTree | Do I Really Want Them to Argue? (p. 79) |
| 9:30–10:30 AM | 6–12 | E141, Conv. Center | Do You See What I See? (p. 79) |
| 9:30–10:30 AM | K–12 | Morrison, DoubleTree | The Role of Community Partnerships in FieldSTEM Plus (p. 78) |
| 9:30–10:30 AM | 4–8 | Alaska/Idaho, DoubleTree | Yes! You Can Teach Computer Science with Scalable Game Design! (p. 78) |
| 9:30–10:30 AM | 9–12 | E144, Conv. Center | Teach an Old Dog New Tricks: Engaging Older Students in STEM |
| 9:30–10:30 AM | 6–12 | D140, Conv. Center | GAUGE: A Novel NGSS-Based Grading System (p. 79) |
| 9:30–10:30 AM | G | Oregon Blrm. 201, Conv. Center | Featured Presentation: Implicit Bias and Its Effect on Diverse Youth (p. 77) |
### Schedule at a Glance  General Science Education

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:30–10:30 AM</td>
<td>P–3 CST-sponsored session: Integrating Science for Young Children</td>
<td>Oregon Blrm. 203, Conv. Center</td>
</tr>
<tr>
<td></td>
<td>Solving the Mystery of the Megaflood with Fourth-Graders!</td>
<td>D137, Conv. Center</td>
</tr>
<tr>
<td></td>
<td>Learning By Arguing: Claims, Evidence, and Reasoning</td>
<td>A108/109, Conv. Center</td>
</tr>
<tr>
<td></td>
<td>Building the Skills of Argumentation and Collaboration in STEM (82)</td>
<td>C120/121, Conv. Center</td>
</tr>
<tr>
<td></td>
<td>Baby Carrots Are Killing You!</td>
<td>Ross Island, DoubleTree</td>
</tr>
<tr>
<td></td>
<td>FOLD-tastic Science Notebooks via Dinah Zike’s Notebook Foldables (81)</td>
<td>A106, Conv. Center</td>
</tr>
<tr>
<td></td>
<td>Discourse Tools for Equitable and Rigorous Talk</td>
<td>A107, Conv. Center</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>P–6 CESI-sponsored session: Integrating Science for Young Children with</td>
<td>B119, Conv. Center</td>
</tr>
<tr>
<td></td>
<td>an Outdoor Focus (80)</td>
<td>D130, Conv. Center</td>
</tr>
<tr>
<td></td>
<td>Solving the Mystery of the Megaflood with Fourth-Graders!</td>
<td>Morrison, DoubleTree</td>
</tr>
<tr>
<td></td>
<td>Learning By Arguing: Claims, Evidence, and Reasoning</td>
<td>D136, Conv. Center</td>
</tr>
<tr>
<td></td>
<td>CESI-sponsored session: Elementary Science Share-a-Thon (86)</td>
<td>Oregon Blrm. 203, Conv. Center</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>K–12 Magnify Your Mind!—With The Private Eye® (88)</td>
<td>B114/115, Conv. Center</td>
</tr>
<tr>
<td></td>
<td>Using Maggots, Flies, and Flesh to Solve a Mystery! (88)</td>
<td>C120/121, Conv. Center</td>
</tr>
<tr>
<td>10:30–12:30 PM</td>
<td>K–12 CONNECTIONS: Three-Dimensional Learning by National Geographic</td>
<td>C125/126, Conv. Center</td>
</tr>
<tr>
<td></td>
<td>SC-2: Supporting the NGSS with Process-Oriented Guided Inquiry Learning</td>
<td>Mt. Hood, DoubleTree</td>
</tr>
<tr>
<td></td>
<td>P–8 CESI-sponsored session: Elementary Science Share-a-Thon (86)</td>
<td>Oregon Blrm. 203, Conv. Center</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>K–12 Magnify Your Mind!—With The Private Eye® (88)</td>
<td>B114/115, Conv. Center</td>
</tr>
<tr>
<td></td>
<td>Using Maggots, Flies, and Flesh to Solve a Mystery! (88)</td>
<td>C120/121, Conv. Center</td>
</tr>
<tr>
<td></td>
<td>How to Engage Students in Three-Dimensional Learning Around NGSS:</td>
<td>E144, Conv. Center</td>
</tr>
<tr>
<td></td>
<td>Two Examples Units (86)</td>
<td>C125/126, Conv. Center</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>K–8 Squeezing Time In for STEM</td>
<td>C122, Conv. Center</td>
</tr>
<tr>
<td></td>
<td>Do You Need a New Science Lab?</td>
<td>C122, Conv. Center</td>
</tr>
<tr>
<td></td>
<td>Featured Presentation: Beyond the Blender Metaphor of Integration: NGSS</td>
<td>Oregon Blrm. 201, Conv. Center</td>
</tr>
<tr>
<td></td>
<td>as a Lever for Transforming Educational Opportunities for Elementary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Learners (83)</td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>4–C Dazzling Deceptions: Discrepant Events That Delight and Mystify!</td>
<td>Oregon, DoubleTree</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–12 Connection: Three-Dimensional Learning by National Geographic</td>
<td>Morrison, DoubleTree</td>
</tr>
<tr>
<td></td>
<td>SC-2: Supporting the NGSS with Process-Oriented Guided Inquiry Learning</td>
<td>Oregon Blrm. 201, Conv. Center</td>
</tr>
<tr>
<td></td>
<td>(POGIL) (89)</td>
<td></td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>4–12 Strategies and Tools for Ensuring Each K–12 Student Has a STEM</td>
<td>Alaska/Idaho, DoubleTree</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>6–12 The NGSS@NSTA Hub (89)</td>
<td>Oregon, DoubleTree</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>9–12 Squeezing Time In for STEM</td>
<td>D131, Conv. Center</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>1–5 Using Maggots, Flies, and Flesh to Solve a Mystery! (88)</td>
<td>E144, Conv. Center</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>6–C STEAM Ahead for Climate Change (91)</td>
<td>E147/148, Conv. Center</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>3–12 Integrating Chromebook with Vernier Data-Collection Technology (92)</td>
<td>A105, Conv. Center</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>6–12 Think It Through: Guiding Students to Authentically Solve Problems</td>
<td>E147/148, Conv. Center</td>
</tr>
<tr>
<td>1:00–4:00 PM</td>
<td>6–C NGSS-Focused Interactive Digital Assessment for Middle School (92)</td>
<td>A107, Conv. Center</td>
</tr>
<tr>
<td>1:00–4:00 PM</td>
<td>3 Sisters/Mt. Bachelor, DoubleTree</td>
<td>A106, Conv. Center</td>
</tr>
<tr>
<td></td>
<td>Supporting Excellence in STEM Programs and Teaching Through STEM</td>
<td>C120/121, Conv. Center</td>
</tr>
<tr>
<td></td>
<td>Certification (93)</td>
<td></td>
</tr>
<tr>
<td>3:15–2:00 PM</td>
<td>2–12 Meet the Presidents and Board/Council (93)</td>
<td>Oregon, DoubleTree</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>3–12 Integrating iPad with Vernier Data-Collection Technology (94)</td>
<td>A105, Conv. Center</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>6–12 Transforming Science Education Through Inquiry-Based Learning and</td>
<td>B117/118, Conv. Center</td>
</tr>
<tr>
<td></td>
<td>Narrative-Based Teaching (95)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>6–12 Bringing NGSS to the Classroom with Discovery Education (94)</td>
<td>A107, Conv. Center</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>9–12 The NSTA Learning Center: Free Professional Development Resources and</td>
<td>C122, Conv. Center</td>
</tr>
<tr>
<td></td>
<td>Certifications (93)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>9–12 The Framework and NGSS: Opportunity for Teacher Growth (95)</td>
<td>C124, Conv. Center</td>
</tr>
</tbody>
</table>
### Schedule at a Glance

#### General Science Education

<table>
<thead>
<tr>
<th>Time</th>
<th>Venue</th>
<th>Speaker(s)</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:00–3:00 PM</td>
<td>6–12</td>
<td>C120/121, Conv. Center</td>
<td>Zombie Apocalypse! (p. 95)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>K–5</td>
<td>A107, Conv. Center</td>
<td>Analyzing and Interpreting Data Using TCI's Bring Science Alive! (p. 94)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>9–C</td>
<td>C123, Conv. Center</td>
<td>How Do You Know What Fish Species You Are Eating? DNA Barcoding! (p. 95)</td>
</tr>
<tr>
<td>3:00–5:00 PM</td>
<td>G</td>
<td>Multnomah, DoubleTree</td>
<td>The State of Science/STEM/STEAM Education in Oregon (p. 96)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>4–12</td>
<td>Oregon, DoubleTree</td>
<td>The Multi-Level Classroom: Differentiation to Reach All Students in Science (p. 97)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>K–6</td>
<td>D137, Conv. Center</td>
<td>Cross-Curricular Learning with a Science Focus: Optimizing Student Learning and Maximizing Efficiency of Instruction While Embracing All Aspects of STEM (p. 97)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>P–5</td>
<td>D138, Conv. Center</td>
<td>CSSE-Sponsored Session: Science Starts with a Story, NGSS in Support of Language Acquisition for All Students (p. 97)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>6–C</td>
<td>D139, Conv. Center</td>
<td>ASEE Session: Computer Science as a Bridge Between Concepts, Ideas, and Practice in Grades 6–12 Science Classrooms (p. 98)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>4–12</td>
<td>Morrison, DoubleTree</td>
<td>Connecting CCSS and NGSS through Close Reading (p. 97)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>6–12</td>
<td>A108/109, Conv. Center</td>
<td>Autopsy: Forensic Dissection Featuring Carolina’s Perfect Solution® Pigs (p. 99)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>9–12</td>
<td>Oregon Blrm. 203, Conv. Center</td>
<td>Partners in Science Share-a-Thon (p. 98)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>1–5</td>
<td>D131, Conv. Center</td>
<td>Science and Literacy: It’s Elementary (p. 98)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>K–8</td>
<td>D136, Conv. Center</td>
<td>Embedded Assessment: Making Instructional Activities Opportunities for Formative Assessment (p. 51)</td>
</tr>
<tr>
<td>3:30 - 5:00 PM</td>
<td>G</td>
<td>D132, Conv. Center</td>
<td>Equity in Science Education Roundtable (p. 100)</td>
</tr>
<tr>
<td>5:00–5:30 PM</td>
<td>6–12</td>
<td>D140, Conv. Center</td>
<td>What Does STEM Education Look Like in Grades 6–12 Science Classrooms? (p. 100)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>9–12</td>
<td>C122, Conv. Center</td>
<td>Stories in the Secondary Science Classroom (p. 101)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>6–12</td>
<td>E141, Conv. Center</td>
<td>Yes, You Can Teach Circuits and Programming!</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>9–C</td>
<td>D137, Conv. Center</td>
<td>Perspectives on Time as a Means of Optimizing Science Instruction in a Diverse Classroom (p. 101)</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>8–12</td>
<td>Alaska/Idaho, DoubleTree</td>
<td>Old Polymer Labs with 21st-Century Learning</td>
</tr>
<tr>
<td>5:30–6:00 PM</td>
<td>7–9</td>
<td>D140, Conv. Center</td>
<td>Linking the Three Dimensions of Science Education Using the Framework and the NGSS (p. 102)</td>
</tr>
</tbody>
</table>

#### Saturday

<table>
<thead>
<tr>
<th>Time</th>
<th>Venue</th>
<th>Speaker(s)</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00 AM</td>
<td>9–C</td>
<td>B119, Conv. Center</td>
<td>Flipping, Cinematography, Podcasting, and Authoring: Nontraditional Teaching Strategies to Engage Students in the Science Classroom (p. 105)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>K–12</td>
<td>Oregon, DoubleTree</td>
<td>Animal Multimedia Inspires Learning and Engagement</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>9–12</td>
<td>C122, Conv. Center</td>
<td>Advancing Scientific Literacy with Inquiry Lesson Plans Using Science Reading Materials (p. 105)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>6–12</td>
<td>D138, Conv. Center</td>
<td>The Art of Communicating Science: A Practical Toolkit (p. 105)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>K–12</td>
<td>Alaska/Idaho, DoubleTree</td>
<td>NOAA in Your Backyard: Free Professional Development and Local Educator Resources Are Closer Than You Think! (p. 105)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>3–12</td>
<td>D139, Conv. Center</td>
<td>DIG Field School: Paleontologists and Teachers Together in the Field</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>K–12</td>
<td>D136, Conv. Center</td>
<td>Scientific Modeling and the NGSS (p. 106)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>G</td>
<td>Ross Island, DoubleTree</td>
<td>Grey Matter: Learning and Teaching Science with the Brain in Mind (p. 105)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>K–6</td>
<td>Morrison, DoubleTree</td>
<td>Supporting Elementary Literacy Development Through Science; Three Key Strategies for Shifting Elementary Science Kits to Improve Literacy Skill Development (p. 105)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>K–12</td>
<td>E145, Conv. Center</td>
<td>How to Make Science Instruction Compelling for Students: Designing Formative Assessments to Build on Learners' Interests and Knowledge (p. 107)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>6–12</td>
<td>Hawthorne/Sellwood, DoubleTree</td>
<td>How to Create Meaningful Student Dialogue (p. 109)</td>
</tr>
</tbody>
</table>
## Schedule at a Glance  General Science Education

### 9:30–10:30 AM  7–12  D137, Conv. Center
- Equity and Engagement of Economically Disadvantaged Students in STEM Project-Based Learning (p. 109)

### 9:30–10:30 AM  K–12  E145, Conv. Center
- Exploring the Science and Engineering Practices (p. 110)

### 9:30–10:30 AM  6–8  C124, Conv. Center
- Three Dimensions in the Project-Based Classroom (p. 111)

### 1:00 AM–12 Noon  K–5  D130, Conv. Center
- A Picture-Perfect Approach to Connecting Reading Strategies and Science (p. 112)

### 11:00 AM–12 Noon  3–6  Oregon, DoubleTree
- Helping Children Understand the Impact of STEM and the Essential Integration of All STEM Disciplines: Explorations with Physical Structures, Plants, and Everyday Household Tools (p. 111)

### 11:00 AM–12 Noon  K–12 Alaska/Idaho, DoubleTree
- STEM Teaching Tools: Linking Research and Practice (p. 111)

### 11:00 AM–12 Noon  9–12  C122, Conv. Center
- Interactive Notebooks in the Secondary Science Classroom (p. 112)

### 11:00 AM–12 Noon  5–10  Mt. Hood, DoubleTree
- Science in the “Shark Tank” (p. 112)

## Informal Science Education

### Thursday

#### 12:30–1:30 PM  G  Ross Island, DoubleTree
- ISE Science in the Community Forum: Highlighting Programs and Practices that Bridge In-School and Out-of-School STEM Learning (p. 51)

#### 1:00–4:00 PM  2–6  3 Sisters/Mt. Bachelor, DoubleTree

#### 2:30–3:00 PM  5–12  Alaska/Idaho, DoubleTree
- Space-Age STEM: Virgin Galactic’s Virtual Connection, Mentorship, and Experimentation Hangouts (p. 61)

#### 5:00–6:00 PM  6–11  B110, Conv. Center
- Using the National Science Olympiad and STEM to Address NGSS Crosscutting Concepts and Content (p. 66)

#### 5:00–6:00 PM  9–12  D139, Conv. Center
- Connect Chemistry to Your World with ChemClub (p. 67)

### Friday

#### 8:00–9:00 AM  K–8  D131, Conv. Center
- Promising Practices in STEM Education for English Language Learners (p. 72)

#### 8:00–9:00 AM  4–9  Ross Island, DoubleTree
- The Monarch Butterfly: Sophisticated Science (p. 71)

#### 8:00–9:00 AM  9–C  E143, Conv. Center
- AAPT Session: Physics and Engineering in the Classroom and After-School Clubs I: Using Microcontrollers to Collect and Display Results in Fun and Exciting Ways (p. 73)

#### 9:30–10:30 AM  K–12  B110, Conv. Center
- Leveling the Playing Field: After-School STEM Coaching Model (p. 78)

#### 9:30–10:30 AM  9–C  E143, Conv. Center
- AAPT Session: Physics and Engineering in the Classroom and After-School Clubs II: Using an Arduino to Collect Data and Control Motors (p. 80)

#### 9:30–10:30 AM  K–5  D139, Conv. Center
- ASEE Session: Engineering a Pathway to STEM: Advancing Elementary Level Engineering Education Through Innovative Programs and Partnerships (p. 79)

#### 11:00 AM–12 Noon  9–C  E143, Conv. Center
- AAPT Session: Physics and Engineering in the Classroom and After-School Clubs III: Student miniROVs in the Classroom, the Field, and in Student Competitions (p. 86)

#### 11:00 AM–12 Noon  G  D132, Conv. Center
- ASTC-Sponsored Session: Informal Science Educators Networking Brown Bag Lunch (p. 85)

#### 11:00 AM–12 Noon  5–C  E147/148, Conv. Center
- Dark Skies and Energy Education: Globe at Night Citizen Science Program Workshop (p. 86)

#### 12:30–1:30 PM  3–8  D138, Conv. Center
- Developing Science Process Skills Through Schoolyard Investigations (p. 90)

#### 2:00–3:00 PM  3–8  C125/126, Conv. Center
- The STEM Design Challenge (p. 95)

#### 3:30–4:30 PM  5–C  B119, Conv. Center
- Globe at Night Citizen Science Program (p. 97)

#### 5:00–5:30 PM  5–10  Morrison, DoubleTree
- Science Outside: No Box Needed (p. 100)
### Schedule at a Glance

**Informal Science Education**

**Saturday**

<table>
<thead>
<tr>
<th>Time</th>
<th>Session 1</th>
<th>Location</th>
<th>Session 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00 AM</td>
<td>K–12</td>
<td>Oregon, DoubleTree</td>
<td>Animal Multimedia Inspires Learning and Engagement (p. 105)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>3–6</td>
<td>D130, Conv. Center</td>
<td>After-School STEM Clubs (p. 105)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>3–C</td>
<td>E146, Conv. Center</td>
<td>Using Local Native Landscapes to Broaden Environmental Education: GLOBE Opportunities (p. 110)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>G</td>
<td>B119, Conv. Center</td>
<td>NARST-Sponsored Session: Resisting Racist, Classist, Neoliberalism in Science Education (p. 108)</td>
</tr>
</tbody>
</table>
### Index of Participants

<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbott, Rebecca</td>
<td>44, 47, 50, 54, 82, 88</td>
</tr>
<tr>
<td>Adams, Stephen</td>
<td>62</td>
</tr>
<tr>
<td>Aguilar-Valdez, Jean</td>
<td>108</td>
</tr>
<tr>
<td>Allen, Tiffany</td>
<td>112</td>
</tr>
<tr>
<td>Almasi, Kama</td>
<td>109, 112</td>
</tr>
<tr>
<td>Andanen, Elizabeth</td>
<td>98, 110</td>
</tr>
<tr>
<td>Angal, Sharon</td>
<td>58</td>
</tr>
<tr>
<td>Armstrong, Kathy</td>
<td>43, 46, 48, 54, 59, 65</td>
</tr>
<tr>
<td>Arriola, Alfonso Garcia</td>
<td>96</td>
</tr>
<tr>
<td>Arzt, Anne</td>
<td>40, 52</td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Abbott, Rebecca</td>
<td>44, 47, 50, 54, 82, 88</td>
</tr>
<tr>
<td>Byrness, Andrew</td>
<td>83</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Caffery, Pam</td>
<td>60, 82</td>
</tr>
<tr>
<td>Callies, Debi</td>
<td>112</td>
</tr>
<tr>
<td>Campanella, Melissa</td>
<td>57</td>
</tr>
<tr>
<td>Campbell, Brian</td>
<td>47, 54, 60</td>
</tr>
<tr>
<td>Carroll, Sean</td>
<td>44</td>
</tr>
<tr>
<td>Carter, David</td>
<td>80, 87, 92, 94, 99</td>
</tr>
<tr>
<td>Chaney, Kelly</td>
<td>98</td>
</tr>
<tr>
<td>Childress, Jennifer</td>
<td>85</td>
</tr>
<tr>
<td>Coon, Marty</td>
<td>60</td>
</tr>
<tr>
<td>Courtney, Arlene</td>
<td>105</td>
</tr>
<tr>
<td>Cowdine, Nancy</td>
<td>112</td>
</tr>
<tr>
<td>Crawford, Paul</td>
<td>107, 111</td>
</tr>
<tr>
<td>Crowther, David</td>
<td>44, 85</td>
</tr>
<tr>
<td>Currie, John</td>
<td>110</td>
</tr>
<tr>
<td>Cykert, Cynthia</td>
<td>101</td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Daschel, Maureen</td>
<td>61</td>
</tr>
<tr>
<td>Day, Brian</td>
<td>89</td>
</tr>
<tr>
<td>Day, Jessica</td>
<td>113</td>
</tr>
<tr>
<td>Dayton, Maria</td>
<td>43, 46, 48, 53, 59, 64</td>
</tr>
<tr>
<td>Dean, Jennifer</td>
<td>101</td>
</tr>
<tr>
<td>Delaloye, Naomi</td>
<td>62</td>
</tr>
<tr>
<td>Denis, Charlotte</td>
<td>90</td>
</tr>
<tr>
<td>Dimeo-Ediger, Norie</td>
<td>53</td>
</tr>
<tr>
<td>DiSpezio, Michael</td>
<td>48</td>
</tr>
<tr>
<td>Dodd, Gregory</td>
<td>106</td>
</tr>
<tr>
<td>Dodds, Jo</td>
<td>57</td>
</tr>
<tr>
<td>Domes, Don</td>
<td>63</td>
</tr>
<tr>
<td>Driscoll, Amy</td>
<td>92</td>
</tr>
<tr>
<td>Dudley, Julia</td>
<td>89</td>
</tr>
<tr>
<td>Duncan, Patti</td>
<td>50, 94</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Eisenkraft, Arthur</td>
<td>95</td>
</tr>
<tr>
<td>Endelman, Rachel</td>
<td>86</td>
</tr>
<tr>
<td>Evans, David</td>
<td>44</td>
</tr>
<tr>
<td>Everett, Caitlin</td>
<td>85</td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Fabbri, Cindy</td>
<td>44</td>
</tr>
<tr>
<td>Falk, Andrew</td>
<td>40, 51</td>
</tr>
<tr>
<td>Farmer, Cheryl</td>
<td>108</td>
</tr>
<tr>
<td>Farr, Pamela</td>
<td>51, 90</td>
</tr>
<tr>
<td>Farren, Heather</td>
<td>52</td>
</tr>
<tr>
<td>Fiamengo, Marcia</td>
<td>61</td>
</tr>
<tr>
<td>Fleming, Tiffany</td>
<td>110</td>
</tr>
<tr>
<td>Flesock, Jason</td>
<td>52</td>
</tr>
<tr>
<td>Flynn, Suzanne</td>
<td>84, 90</td>
</tr>
<tr>
<td>Foster, Janet</td>
<td>68</td>
</tr>
<tr>
<td>Fraknoi, Andrew</td>
<td>52</td>
</tr>
<tr>
<td>Fredette, Kathleen</td>
<td>57, 112</td>
</tr>
<tr>
<td>Fulwiler, Betsy Rupp</td>
<td>93</td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Galvan, Patricia</td>
<td>80, 86, 91, 107</td>
</tr>
<tr>
<td>Geer, Christine</td>
<td>42</td>
</tr>
<tr>
<td>Gibbins, Paul</td>
<td>39, 71</td>
</tr>
<tr>
<td>Gibbs, John</td>
<td>86, 112</td>
</tr>
<tr>
<td>Giunta, Margaret</td>
<td>110</td>
</tr>
<tr>
<td>Glasner, Lindsay</td>
<td>56, 90, 105</td>
</tr>
<tr>
<td>Gmurczyk, Marta</td>
<td>83, 96, 105</td>
</tr>
<tr>
<td>Goodale, Timothy</td>
<td>85</td>
</tr>
<tr>
<td>Goodwin, Cait</td>
<td>90, 112</td>
</tr>
<tr>
<td>Goodwin, Debbie</td>
<td>89, 101</td>
</tr>
<tr>
<td>Goodwin, Madeline</td>
<td>97</td>
</tr>
<tr>
<td>Gorbett, Noelle</td>
<td>83</td>
</tr>
<tr>
<td>Gordon, Diana</td>
<td>42</td>
</tr>
<tr>
<td>Grant, Terrence</td>
<td>53</td>
</tr>
<tr>
<td>Gray, Paula</td>
<td>92</td>
</tr>
<tr>
<td>Greenwald, Eric</td>
<td>40, 51</td>
</tr>
<tr>
<td>Griffith, Meg</td>
<td>46, 60</td>
</tr>
<tr>
<td>Gromko, Mary</td>
<td>44</td>
</tr>
<tr>
<td>Groom, Roger</td>
<td>64, 68</td>
</tr>
<tr>
<td>Grooms, Jonathon</td>
<td>80</td>
</tr>
<tr>
<td>Groskopf, Abigail</td>
<td>109</td>
</tr>
<tr>
<td>Gulya, Alex</td>
<td>42</td>
</tr>
<tr>
<td>Gutierrez, Jen</td>
<td>71</td>
</tr>
<tr>
<td>Gutierrez, Marlene</td>
<td>56</td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Hampton, Paul</td>
<td>55, 101</td>
</tr>
<tr>
<td>Hansen, Bobbi</td>
<td>97</td>
</tr>
<tr>
<td>Hansen-Rudishauser, Erika</td>
<td>68</td>
</tr>
<tr>
<td>Harnden, Jodie</td>
<td>62, 65, 83</td>
</tr>
<tr>
<td>Harris, Meredith</td>
<td>55, 90</td>
</tr>
<tr>
<td>Harrison, Kristen</td>
<td>41</td>
</tr>
<tr>
<td>Hayden, Josh</td>
<td>113</td>
</tr>
<tr>
<td>Hayes, Carolyn</td>
<td>44, 105</td>
</tr>
<tr>
<td>Hazel, Lisa</td>
<td>63</td>
</tr>
<tr>
<td>Hebert, Terri</td>
<td>40</td>
</tr>
<tr>
<td>Herbert, Mari Knutson</td>
<td>57</td>
</tr>
<tr>
<td>Herman, Tim</td>
<td>46, 53, 59, 80, 87, 107, 111</td>
</tr>
<tr>
<td>Hill, Bradford</td>
<td>37, 44</td>
</tr>
<tr>
<td>Hill, Robert</td>
<td>44</td>
</tr>
<tr>
<td>Hinojosa, Tom</td>
<td>88</td>
</tr>
<tr>
<td>Hoelzer, Mark</td>
<td>80</td>
</tr>
<tr>
<td>Holder, Stacey</td>
<td>53</td>
</tr>
<tr>
<td>Hollinger, Cheryl Ann</td>
<td>63, 94</td>
</tr>
<tr>
<td>Holst, Michael</td>
<td>66, 113</td>
</tr>
<tr>
<td>Holveck, Susan</td>
<td>44, 83, 96</td>
</tr>
<tr>
<td>Houseal, Ana</td>
<td>57, 102</td>
</tr>
<tr>
<td>Hoverter, Brody</td>
<td>106</td>
</tr>
<tr>
<td>Hrdina, Vickei</td>
<td>61, 66</td>
</tr>
<tr>
<td>Huntoon, Alishia</td>
<td>91</td>
</tr>
<tr>
<td>Hurst, Ian</td>
<td>65</td>
</tr>
<tr>
<td>J</td>
<td></td>
</tr>
<tr>
<td>John, Lynn Kim</td>
<td>66</td>
</tr>
<tr>
<td>Johnson, Samantha</td>
<td>99, 109</td>
</tr>
<tr>
<td>Johnston, Blair</td>
<td>91</td>
</tr>
<tr>
<td>Jones, Dacia</td>
<td>39</td>
</tr>
<tr>
<td>Jones, Lee</td>
<td>102</td>
</tr>
<tr>
<td>Jones, Lynda</td>
<td>42, 99</td>
</tr>
<tr>
<td>Jordan, Linda</td>
<td>50</td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>Kahler, Phil</td>
<td>90</td>
</tr>
<tr>
<td>Kaleuati, Karen</td>
<td>51, 67, 101</td>
</tr>
<tr>
<td>Kasparie, Diane</td>
<td>89</td>
</tr>
<tr>
<td>Keefe, Pat</td>
<td>91</td>
</tr>
<tr>
<td>Keil, Jennifer</td>
<td>83, 96</td>
</tr>
<tr>
<td>Kelp, Lisa</td>
<td>43, 47, 60, 65</td>
</tr>
<tr>
<td>Kessler, James</td>
<td>80, 86, 91</td>
</tr>
<tr>
<td>Knight, Carol Biskup</td>
<td>37, 63, 68, 83</td>
</tr>
<tr>
<td>Knoell, Donna</td>
<td>40, 97, 111</td>
</tr>
<tr>
<td>Konicek-Moran, Richard</td>
<td>62</td>
</tr>
<tr>
<td>Kraves, Sebastian</td>
<td>82</td>
</tr>
<tr>
<td>Kreikemeier, Patty</td>
<td>92</td>
</tr>
<tr>
<td>Krissie, Nicholas</td>
<td>108</td>
</tr>
<tr>
<td>Krueger, Rebecca</td>
<td>52</td>
</tr>
<tr>
<td>Kuna, Ines</td>
<td>65</td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>LaLanne, Mechelle</td>
<td>61</td>
</tr>
<tr>
<td>Lampert, Michael</td>
<td>63</td>
</tr>
<tr>
<td>Lancaster, Lori</td>
<td>37, 44, 98</td>
</tr>
<tr>
<td>Laney, Brandy</td>
<td>55, 90</td>
</tr>
<tr>
<td>Laney-Jarvis, Mickey</td>
<td>87</td>
</tr>
<tr>
<td>Lenahan, Kathryn</td>
<td>41</td>
</tr>
<tr>
<td>Lesseig, Kristin</td>
<td>62</td>
</tr>
<tr>
<td>Levine, Joseph</td>
<td>93, 95</td>
</tr>
<tr>
<td>Lightner, Lindsay</td>
<td>62</td>
</tr>
<tr>
<td>Linnen, Linda</td>
<td>56</td>
</tr>
<tr>
<td>Name</td>
<td>Pages</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Lockridge, Courtney</td>
<td>108</td>
</tr>
<tr>
<td>Long, Cheryl</td>
<td>64, 87</td>
</tr>
<tr>
<td>Long, Kathy</td>
<td>50</td>
</tr>
<tr>
<td>Loomis, Kenneth</td>
<td>62</td>
</tr>
<tr>
<td>Lownsbery, Douglas</td>
<td>64, 68</td>
</tr>
<tr>
<td>Ludwig, Claudia</td>
<td>57, 113</td>
</tr>
<tr>
<td>Lukens, Jeffrey</td>
<td>47, 54, 64, 88, 95</td>
</tr>
<tr>
<td>Lynch, Mary Jean</td>
<td>85</td>
</tr>
<tr>
<td>Mackenzie, Ann Haley</td>
<td>106</td>
</tr>
<tr>
<td>MacNevin, Brian</td>
<td>61</td>
</tr>
<tr>
<td>Maday-Travis, Lewis</td>
<td>57</td>
</tr>
<tr>
<td>Madland, Mark</td>
<td>98</td>
</tr>
<tr>
<td>Manhart, Amy</td>
<td>50, 100</td>
</tr>
<tr>
<td>Manning, Cheryl</td>
<td>42, 53, 58</td>
</tr>
<tr>
<td>Marshall, Robert</td>
<td>95</td>
</tr>
<tr>
<td>Martin-Hansen, Lisa</td>
<td>62</td>
</tr>
<tr>
<td>Mathes, Christy</td>
<td>102</td>
</tr>
<tr>
<td>Mayo, Jennifer</td>
<td>84</td>
</tr>
<tr>
<td>McCartney, Melissa</td>
<td>55</td>
</tr>
<tr>
<td>McCollum, Matt</td>
<td>37</td>
</tr>
<tr>
<td>McCormack, Alan</td>
<td>84, 108</td>
</tr>
<tr>
<td>McDonald, Jim</td>
<td>80, 86</td>
</tr>
<tr>
<td>McKenna, Acacia</td>
<td>61</td>
</tr>
<tr>
<td>McMahon, Ann</td>
<td>85</td>
</tr>
<tr>
<td>Mendez, Flavio</td>
<td>84, 93</td>
</tr>
<tr>
<td>Meyer, Stacy</td>
<td>61</td>
</tr>
<tr>
<td>Mikesell, Laura</td>
<td>42</td>
</tr>
<tr>
<td>Mikkelsen, LeeAnn</td>
<td>106</td>
</tr>
<tr>
<td>Mills, Kat</td>
<td>43, 46, 48, 54, 60, 65</td>
</tr>
<tr>
<td>Milo, Heather</td>
<td>46, 81, 92</td>
</tr>
<tr>
<td>Mintz, Ellen</td>
<td>59</td>
</tr>
<tr>
<td>Moore, Patricia</td>
<td>105</td>
</tr>
<tr>
<td>Morrell, Patricia</td>
<td>62, 102</td>
</tr>
<tr>
<td>Morrison, Judith</td>
<td>62</td>
</tr>
<tr>
<td>Mortimer, Anne</td>
<td>52</td>
</tr>
<tr>
<td>Mulder, Greg</td>
<td>80, 86</td>
</tr>
<tr>
<td>Mullins, Parker</td>
<td>87</td>
</tr>
<tr>
<td>Munck, Miriam</td>
<td>105</td>
</tr>
<tr>
<td>Munzenmaier, Diane</td>
<td>53, 107, 111</td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Nakagiri, Gary</td>
<td>108</td>
</tr>
<tr>
<td>Neill, Holly</td>
<td>102</td>
</tr>
<tr>
<td>Nelson, Fred</td>
<td>52</td>
</tr>
<tr>
<td>Nelson, Tamara</td>
<td>62, 100</td>
</tr>
<tr>
<td>Nesbitt, Carolyn</td>
<td>113</td>
</tr>
<tr>
<td>Newell, Jenny</td>
<td>67</td>
</tr>
<tr>
<td>Newman, Kimberly</td>
<td>60</td>
</tr>
<tr>
<td>Newman, Teriice</td>
<td>44</td>
</tr>
<tr>
<td>Nitta, Kathleen</td>
<td>62</td>
</tr>
<tr>
<td>Novak, Michael</td>
<td>51</td>
</tr>
<tr>
<td>Nydam, Andrew</td>
<td>98, 109</td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Oltman, Susan</td>
<td>57</td>
</tr>
<tr>
<td>Orr, Laura</td>
<td>86, 112</td>
</tr>
<tr>
<td>Ostlund, Karen</td>
<td>58</td>
</tr>
<tr>
<td>Owen, Tasia</td>
<td>63</td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Peddicord, Hilary</td>
<td>102</td>
</tr>
<tr>
<td>Pederson, Matt</td>
<td>44</td>
</tr>
<tr>
<td>Pence, Roger</td>
<td>51, 71</td>
</tr>
<tr>
<td>Penchos, Jessica</td>
<td>43, 65</td>
</tr>
<tr>
<td>Perazzo, Jennifer</td>
<td>53</td>
</tr>
<tr>
<td>Perez, Leticia</td>
<td>90</td>
</tr>
<tr>
<td>Perry, Anthony</td>
<td>63</td>
</tr>
<tr>
<td>Peterson, Barney</td>
<td>71</td>
</tr>
<tr>
<td>Petraglia, Carla</td>
<td>52</td>
</tr>
<tr>
<td>Phelps, Kay</td>
<td>67</td>
</tr>
<tr>
<td>Phillips, Jarod</td>
<td>53</td>
</tr>
<tr>
<td>Poletski, Michelle</td>
<td>89</td>
</tr>
<tr>
<td>Popiolkowski, Gary</td>
<td>71</td>
</tr>
<tr>
<td>Porn, Christina</td>
<td>100</td>
</tr>
<tr>
<td>Porter, Sandra</td>
<td>50, 91, 113</td>
</tr>
<tr>
<td>Posekany, Dawn</td>
<td>92, 94, 99</td>
</tr>
<tr>
<td>Powers, Angela</td>
<td>40, 102</td>
</tr>
<tr>
<td>Primomo, Christine</td>
<td>57</td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Rabe, Janet</td>
<td>58</td>
</tr>
<tr>
<td>Rainboth, Donna</td>
<td>62</td>
</tr>
<tr>
<td>Rainwater, Amanda</td>
<td>63, 86</td>
</tr>
<tr>
<td>Reid, Virginia</td>
<td>43, 65</td>
</tr>
<tr>
<td>Renz, Tim</td>
<td>60</td>
</tr>
<tr>
<td>Rich, Steve</td>
<td>58</td>
</tr>
<tr>
<td>Riedinger, Kelly</td>
<td>51, 85</td>
</tr>
<tr>
<td>Rifkin, Moses</td>
<td>111</td>
</tr>
<tr>
<td>Rios, José</td>
<td>110</td>
</tr>
<tr>
<td>Roark, Karen Crow</td>
<td>101, 109</td>
</tr>
<tr>
<td>Roberts, Ken</td>
<td>66</td>
</tr>
<tr>
<td>Roberts, Sara</td>
<td>90</td>
</tr>
<tr>
<td>Robinson, Priscilla</td>
<td>81</td>
</tr>
<tr>
<td>Rockow, Michael</td>
<td>98</td>
</tr>
<tr>
<td>Rodriguez, Brandon</td>
<td>71</td>
</tr>
<tr>
<td>Ross, Donna</td>
<td>62</td>
</tr>
<tr>
<td>Royce, Christine</td>
<td>68, 102</td>
</tr>
<tr>
<td>Rufen, Kerry</td>
<td>88</td>
</tr>
<tr>
<td>Rukes, Sherri</td>
<td>39, 56, 61</td>
</tr>
<tr>
<td>Ruscher, Paul</td>
<td>110</td>
</tr>
<tr>
<td>Ruud, Ruth</td>
<td>84, 106</td>
</tr>
<tr>
<td>Ryan, Alicia</td>
<td>39</td>
</tr>
<tr>
<td>Ryan, Jeff</td>
<td>105</td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Saavedra, Ezequiel</td>
<td>82</td>
</tr>
<tr>
<td>Sachs, Marshall</td>
<td>41</td>
</tr>
<tr>
<td>Sampson, Victor</td>
<td>80, 86</td>
</tr>
<tr>
<td>Sanders, Christy</td>
<td>48, 94, 107</td>
</tr>
<tr>
<td>Sanders, Lynda</td>
<td>56</td>
</tr>
<tr>
<td>Scannell, Stephen</td>
<td>37</td>
</tr>
<tr>
<td>Schaeffer, Kelly</td>
<td>98</td>
</tr>
<tr>
<td>Schatz, Dennis</td>
<td>52, 96</td>
</tr>
<tr>
<td>Schleigh, Sharon</td>
<td>42, 58, 91</td>
</tr>
<tr>
<td>Schwennsen, Carolyn</td>
<td>40</td>
</tr>
<tr>
<td>Scott, Joey</td>
<td>52, 67, 109</td>
</tr>
<tr>
<td>Shields, Traci</td>
<td>44, 47, 50, 54, 82, 88</td>
</tr>
<tr>
<td>Shlaes, Terry</td>
<td>63</td>
</tr>
<tr>
<td>Shupla, Christine</td>
<td>55, 90, 110</td>
</tr>
<tr>
<td>Sica, Jomaé</td>
<td>37</td>
</tr>
<tr>
<td>Smerchek, Damon</td>
<td>59, 94</td>
</tr>
<tr>
<td>Snowflack, Danielle</td>
<td>43, 46, 48, 53, 59, 64</td>
</tr>
<tr>
<td>Sotak, Bob</td>
<td>51, 85, 89</td>
</tr>
<tr>
<td>Starr, Mary</td>
<td>111</td>
</tr>
<tr>
<td>Steinman, Melissa</td>
<td>109</td>
</tr>
<tr>
<td>Stilwell, Kimberly</td>
<td>112</td>
</tr>
<tr>
<td>Stober, Rebecca</td>
<td>83, 96</td>
</tr>
<tr>
<td>Stremme, Bob</td>
<td>81</td>
</tr>
<tr>
<td>Stromholt, Shelley</td>
<td>99, 107, 111</td>
</tr>
<tr>
<td>Sturdivant, Amy</td>
<td>44</td>
</tr>
<tr>
<td>Sullivan, Mare</td>
<td>63, 89</td>
</tr>
<tr>
<td>Swafford, Joan</td>
<td>68, 100</td>
</tr>
<tr>
<td>Sweeney, Judy</td>
<td>55</td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Talley, Terry</td>
<td>93</td>
</tr>
<tr>
<td>Tavernier, Lyle</td>
<td>61</td>
</tr>
<tr>
<td>Teisan, June</td>
<td>57, 89, 105</td>
</tr>
<tr>
<td>Texley, Juliana</td>
<td>52, 88, 106</td>
</tr>
<tr>
<td>Thomas, Gillian</td>
<td>113</td>
</tr>
<tr>
<td>Thompson, Jennifer</td>
<td>71</td>
</tr>
<tr>
<td>Thompson, Kenetia</td>
<td>51</td>
</tr>
<tr>
<td>Tighe, Damon</td>
<td>82, 88, 93, 95, 99, 107, 111</td>
</tr>
<tr>
<td>Treadway, Libby</td>
<td>92</td>
</tr>
<tr>
<td>Tucker, Laura</td>
<td>101</td>
</tr>
<tr>
<td>Turner, Pamela</td>
<td>90</td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Vaden, John</td>
<td>71</td>
</tr>
<tr>
<td>Valadez, Jerry</td>
<td>52, 100</td>
</tr>
<tr>
<td>Van Zee, Emily</td>
<td>80</td>
</tr>
<tr>
<td>Vaughn, Meredith</td>
<td>62</td>
</tr>
<tr>
<td>Veal, William</td>
<td>113</td>
</tr>
<tr>
<td>Velez, Diana</td>
<td>47, 54</td>
</tr>
<tr>
<td>Veresan, Cristina</td>
<td>105</td>
</tr>
<tr>
<td>Vineyard, Richard</td>
<td>97</td>
</tr>
<tr>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Walter, Emily</td>
<td>52</td>
</tr>
<tr>
<td>Waterman, Ed</td>
<td>81</td>
</tr>
<tr>
<td>Watrin, Mark</td>
<td>106</td>
</tr>
<tr>
<td>Watters, Brandon</td>
<td>81, 88</td>
</tr>
<tr>
<td>Weaver, Sarah</td>
<td>67, 71</td>
</tr>
<tr>
<td>Welch, Mary Margaret</td>
<td>67</td>
</tr>
<tr>
<td>West, DJ</td>
<td>66, 97</td>
</tr>
<tr>
<td>Whaley, Mary</td>
<td>52</td>
</tr>
<tr>
<td>Whisler, Karen</td>
<td>66, 84</td>
</tr>
<tr>
<td>Whitsett, Sue</td>
<td>61</td>
</tr>
<tr>
<td>Whitted, Tricia</td>
<td>44</td>
</tr>
<tr>
<td>Whitten, Jennifer</td>
<td>37</td>
</tr>
<tr>
<td>Wilkerson, Stephanie</td>
<td>63</td>
</tr>
<tr>
<td>Willard, Ted</td>
<td>61, 89, 110</td>
</tr>
<tr>
<td>Williams, Daron</td>
<td>51</td>
</tr>
<tr>
<td>Willis, Amber</td>
<td>97</td>
</tr>
<tr>
<td>Wolverton, Tom</td>
<td>109</td>
</tr>
<tr>
<td>Wood, Darrick</td>
<td>43, 46, 48, 54, 59, 65</td>
</tr>
<tr>
<td>Wood, Steve</td>
<td>97</td>
</tr>
<tr>
<td>Wyckoff, Isaiah</td>
<td>65</td>
</tr>
<tr>
<td>Wyld, Jennifer</td>
<td>68</td>
</tr>
<tr>
<td>Wysession, Michael</td>
<td>88</td>
</tr>
<tr>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Yergen, Midge</td>
<td>44</td>
</tr>
<tr>
<td>Young, Donna</td>
<td>42, 66, 111</td>
</tr>
<tr>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>Zander, Jeremy</td>
<td>50</td>
</tr>
<tr>
<td>Zelinski, Mary</td>
<td>42</td>
</tr>
<tr>
<td>Zembal-Saul, Carla</td>
<td>83</td>
</tr>
<tr>
<td>Zenckh, John</td>
<td>85</td>
</tr>
<tr>
<td>Zingale, John</td>
<td>109</td>
</tr>
<tr>
<td>Zonick, Veronica</td>
<td>67</td>
</tr>
</tbody>
</table>
Notes
Advertisers

Carolina Biological Supply Co. (Booth #601), www.carolina.com, 800-334-5551 .................................................. 17
FEI Company (Booth #408), www.fei.com, 503-726-2691 ................................................................. 1
Measured Progress (Booth #902), www.measuredprogess.org, 800-431-8901 .................................................. 45
OHAUS Corp. (Booth #705), www.ohaus.com, 800-672-7722 ................................................................. Cover 4
PASCO scientific (Booth 500), www.pasco.com, 800-772-8700 ................................................................. Cover 2
Penguin Random House, penguinrandomhouse.com, 800-733-3000 ................................................................. 49
UNI Overseas Placement Services for Educators, www.uni.edu/placement/overseas .................................................. 30
Vernier Software & Technology (Booth #801), www.vernier.com, 888-837-6437 .................................................. Cover 3, 23

NSTA Ads

NSTA Conferences, www.nsta.org/conferences, 800-722-6782 ................................................................. 8, 11, 20, 21, 22, 26, 41
NSTA Member Services (NSTA Membership Booth), www.nsta.org/membership, 800-722-6782 ........................................ 103, 123
Enter to win a LabQuest Stream™ or Go Wireless® Temp at **Booth 801**!

FREE Hands-On Workshops
No pre-registration or fee required.

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Room Number</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRIDAY</td>
<td>8:00–9:00 a.m.</td>
<td>A 105</td>
<td>Integrating Chromebook™ with Vernier Data-Collection Technology</td>
</tr>
<tr>
<td></td>
<td>9:30–10:30</td>
<td></td>
<td>Chemistry with Vernier</td>
</tr>
<tr>
<td></td>
<td>11:00 a.m.–12:00 p.m.</td>
<td></td>
<td>Biology with Vernier</td>
</tr>
<tr>
<td></td>
<td>12:30–1:30</td>
<td></td>
<td>Integrating Chromebook™ with Vernier Data-Collection Technology</td>
</tr>
<tr>
<td></td>
<td>2:00–3:00</td>
<td></td>
<td>Integrating iPad® with Vernier Data-Collection Technology</td>
</tr>
<tr>
<td></td>
<td>3:30–4:30</td>
<td></td>
<td>Physics and Physical Science with Vernier</td>
</tr>
</tbody>
</table>
Make Learning An Adventure

The Next Generation represents the most advanced Scout yet! Featuring the only touchscreen display on the market and a technologically intuitive design, the redesigned Scout STX helps turn your classroom into an interactive science center experience. Visit OHAUS in booth 705 to pick up ideas for hands-on experiments that will stick with your students, even after the final bell has rung.

- 4.3” touchscreen models available for fast setup, high visibility, and easy weighing
- Superior overload protection stands up to the rigors of classroom use, while stackable storage saves space
- One second stabilization time for faster weighing and ensured repeatability and reliability
- Multiple connectivity options are designed for flexibility in today’s technology-driven classroom; you can even display the screen wirelessly to your class

Visit OHAUS in booth 705 to learn more