San Antonio

Next Generation Science: Learning, Literacy, and Living

NSTA 2013
National Conference on Science Education

2
Friday, April 12
With TI, you can now offer every student a one-to-one learning experience, every day of the year, from middle grades to high school. TI offers free classroom activities for Life, Physical and Earth Sciences as well as Biology, Chemistry and Physics. TI-Nspire™ CX handhelds support nearly 60 Vernier Software & Technology™ sensors for data collection in the field and lab. And TI-Nspire™ Navigator’s classroom management tools provide visibility into students’ learning to enable formative and summative assessment. TI-Nspire CX handhelds also are permitted on many college entrance and AP* science exams.

» Visit TI Booth #118. Attend a TI in-booth session for your chance to win** a TI-Nspire CX handheld and TI-Nspire™ Teacher Software.

*AP is a registered trademark of the College Entrance Examination Board which was not involved in the production of and does not endorse this product. Policy subject to change. Visit www.collegeboard.com.

**See contest rules at the TI booth. ©2013 Texas Instruments AD1032
Portland, OR OCTOBER 24–26
Professional Development Strands
- Bridging Elementary and Secondary Science with the Common Core
- Bridging to the Highly Anticipated Next Generation Science Standards—What’s in It for Me?
- Building Bridges Within STEM Education

Charlotte, NC NOVEMBER 7–9
Professional Development Strands
- Engineering: Promoting the “E” in STEM
- Merging Literacy into Science Instruction
- Accelerating the Skills of Digital Learners

Denver, CO DECEMBER 12–14
Professional Development Strands
- PreK–8 Science: A Playground for Literacy and Mathematics
- Engineering the Engineering: Connecting the Why to the How
- Exploring STEM: Inside and Out

FOR UPDATES AND INFORMATION, VISIT
www.nsta.org/conferences
Membership in NSTA delivers all the best professional development and resources a science educator needs.

- Members select one or more of the idea-packed, peer-reviewed journals designed for all grade levels. *Science and Children* (grades K–6); *Science Scope* (grades 6–9); *The Science Teacher* (grades 9–12), or *Journal of College Science Teaching*.
- **NSTA National and Area Conferences** are the world’s largest gathering of science educators—an unparalleled professional development opportunity.
- **The NSTA Learning Center** offers year-round, face-to-face and online-learning opportunities with leading education providers.
- **NSTA Listserver Email Subscriptions** allow members to join any of 13 electronic lists to gain knowledge from industry professionals who gather online to share valuable information.
- **Members save with discounts** on insurance, Learning Center products, books, digital content and conference registration.
- And stay informed with our publications; **NSTA Reports**, **NSTA Book Beat**, **SciLinks** web content and our E-newsletters.

For more information or to become a member, visit www.nsta.org/membership or call 1.800.722.6782
The environment is important to science educators. These programs are recyclable and were printed on recycled paper.
Friday, April 12

Workshops

8:00am–9:00am Hands-on Hydropower
9:30am–11:30am Wind Energized Classroom
12:30pm–2:00pm WindWise Science Curriculum
2:30pm–3:30pm Renewable Power, Vernier & KidWind Gear
4:00pm–5:30pm Exploring Circuits by Hacking Toys

Saturday, April 13

Workshops

8:00am–9:30am Wind Energy for K–4
10:00am–11:30am Solar Energy: Hands-on!
12:00pm–2:00pm Wind Energized Classroom
2:30pm–4:00pm WindWise Science Curriculum
4:30pm–5:30pm Renewable Power, Vernier & KidWind Gear

Hi! We’re KidWind.

We put on teacher workshops, write innovative wind energy curriculum, build hands-on clean energy exploration kits, and host student wind turbine design competitions.

Visit us at Booth #1826

Hi! We’re KidWind. We put on teacher workshops, write innovative wind energy curriculum, build hands-on clean energy exploration kits, and host student wind turbine design competitions.

Visit us at Booth #1826
Conference Program • Highlights

Friday, April 12

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30–9:00 AM</td>
<td>High School Breakfast (M-2): Fuk K. Li</td>
<td>15</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>Teacher Insights from the NGSS Writing Team—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elementary Level</td>
<td>20</td>
</tr>
<tr>
<td>8:00–10:00 AM</td>
<td>Elementary Extravaganza</td>
<td>35</td>
</tr>
<tr>
<td>8:30–9:30 AM</td>
<td>Featured Presentation: Paul A. Stokstad</td>
<td>36</td>
</tr>
<tr>
<td>8:30–9:30 AM</td>
<td>Featured Presentation: Mireya Mayor</td>
<td>37</td>
</tr>
<tr>
<td>9:00 AM–12 Noon</td>
<td>NSTA ESP Symposium</td>
<td>38</td>
</tr>
<tr>
<td>9:00 AM–5:00 PM</td>
<td>Exhibits</td>
<td>39</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>Teacher Insights from the NGSS Writing Team—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Life Sciences (Middle/High School)</td>
<td>43</td>
</tr>
<tr>
<td>10:30 AM–12 Noon</td>
<td>Science Seminar: Susan L. Mooberry</td>
<td>55</td>
</tr>
<tr>
<td>10:30 AM–12 Noon</td>
<td>Science Seminar: Louis L. Jacobs</td>
<td>55</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>Teacher Insights from the NGSS Writing Team—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physical Sciences (Middle/High School)</td>
<td>59</td>
</tr>
<tr>
<td>12 Noon–2:00 PM</td>
<td>NSELA/ASTE Luncheon (M-3): Heidi Schweingruber</td>
<td>72</td>
</tr>
<tr>
<td>12 Noon–2:00 PM</td>
<td>NSTA/NMLSTA Middle Level Luncheon (M-4):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Warren Phillips</td>
<td>73</td>
</tr>
<tr>
<td>12:15–1:45 PM</td>
<td>SCST Marjorie Gardner Lecture: Kimberly D. Tanner</td>
<td>74</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Teacher Insights from the NGSS Writing Team—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Earth and Space Sciences (Middle/High School)</td>
<td>78</td>
</tr>
<tr>
<td>1:30–3:00 PM</td>
<td>Science Seminar: Deborah J. Thomas</td>
<td>85</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>Featured Presentation: Next Generation Science Standards Town Hall Meeting: Stephen L. Pruitt</td>
<td>86</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>AGU Lecture: Andrew Dessler</td>
<td>87</td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>NSTA Chapter and District Meet and Greet in Honor of Wendell Mohling</td>
<td>95</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>Robert H. Carleton Lecture: Michael J. Padilla</td>
<td>100</td>
</tr>
<tr>
<td>3:30–5:30 PM</td>
<td>NSTA/NSELA Issues Forum</td>
<td>108</td>
</tr>
<tr>
<td>6:00–8:45 PM</td>
<td>NSTA Teacher Awards Gala (M-5)</td>
<td>118</td>
</tr>
<tr>
<td>6:00 PM–12 Mid</td>
<td>Special Evening Session: A Festival of Award-winning Film Classics and Inspiring Legends, Part II</td>
<td>120–121</td>
</tr>
</tbody>
</table>

Mission Statement

The mission of NSTA is to promote excellence and innovation in science teaching and learning for all. The ideas and opinions expressed in the conference sessions, and in any handout materials provided, are those of the presenter. They are not those of the National Science Teachers Association nor can any endorsement by NSTA be claimed.
The San Antonio Conference Committee has planned the conference around these four strands, enabling you to focus on a specific area of interest or need. Strand events are identified by icons throughout the daily program.

See the following pages for a list of sessions and events for each strand.

Next Generation Assessments: Effectively Measuring Student Learning
Use of assessments to measure students’ understanding of science concepts is becoming increasingly important for science teachers across the country. Administrators and policy makers use assessments to determine how well their schools are preparing the next generation. Student learning is effectively measured when curriculum, instruction, and assessment are aligned. A variety of assessment strategies can provide feedback to inform teaching and learning. Assessments should be used to adjust course content and rigor, teaching techniques, and learning strategies to improve student science achievement. Moreover, assessment data should be used to craft appropriate professional development and student interventions. This strand will deepen participants’ understanding of assessments and their impact on teaching and learning.

Next Generation Elementary Science: Building the Foundation
One of the primary roles of elementary teachers is to build a strong foundation for science. Research indicates that many elementary educators feel unprepared to deliver effective science instruction. Foundational practices in the elementary classroom, laboratory, and field include building background knowledge, teaching scientific and engineering practices, integrating content, and developing scientific literacy. This strand will expand participants’ implementation of research-based best practices for teaching science.

Next Generation Special Populations: Meeting the Needs of Diverse Learners
Special student populations—including limited English proficient, special education, economically disadvantaged, and culturally diverse—are traditionally underserved in science instruction. In order to meet student needs, teachers must have the tools necessary to effectively differentiate and accommodate for individual needs. This strand will strengthen participants’ knowledge of differentiated instruction, Response to Intervention, federally defined subpopulations, accessibility to a guaranteed and viable curriculum, and children’s rights and safety in special populations.

Next Generation Technology: Putting the “T” in STEM
As educators we must prepare all learners for a future we can only imagine. Appropriate and effective technology must be integrated with instruction to support Science, Technology, Engineering, and Mathematics (STEM) learning. The use of technology enhances students’ scientific and engineering practices, and fosters the development of scientific literacy. This strand provides opportunities for science educators to experience appropriate use and integration of technology in teaching and learning, and increases their confidence in incorporating these tools into their practices.
Conference Program • Conference Strands

Next Generation Special Populations: Meeting the Needs of Diverse Learners

Friday, April 12

8:00–8:30 AM
A Little PDA Goes a Long Way: Content Literacy Strategies

8:00–9:00 AM
The Do’s and Don’t’s of the Flipped Classroom: Best Practices

9:30–10:30 AM
Diverse Science Tools for Diverse Science Learners

11:00 AM–12 Noon
Deduce to Reduce English Language Learners’ Frustration with Science Text

12:30–1:30 PM
STEM Comes to Preschool
Team Teaching in the Science Classroom

12:30–3:30 PM
Short Course: Squishy Circuits, Toy Engineering, and More! (By Ticket: SC-11)

2:00–3:00 PM
Adapting Space Adventures: Using Real NASA Data to Engage Students with Special Needs

4:00–4:30 PM
Aprendiendo Ciencias: Acquiring and Expanding Scientific Language and Literacy

5:00–6:00 PM
Photosynthesis: The Musical!

Download our NEW conference app for NSTA’s National Conference on Science Education: San Antonio – a social experience you don’t want to miss

- Search sessions, exhibitors, and speakers to build a schedule of your favorites
- Access maps with pinpoint locations
- Take notes within app
- Bookmark an interesting speaker
- Share the play-by-play with social media channels
- Win prizes and have a blast playing ‘Click’, a unique scavenger hunt photo game
- Tweet a memorable quote from a session
- Access conference FAQs

Available for download on

iPhone + iPad
Android
Blackberry

Please note that your conference app scheduler will not sync with the Personal Conference Scheduler found on NSTA’s website.

Powered by:
Next Generation Technology: Putting the “T” in STEM

Friday, April 12

8:00–9:00 AM
Digitize the Learning Experience and Take IT Mobile

8:30–9:30 AM
Featured Presentation: What a Difference a Measurement Makes
(Speaker: Paul A. Stokstad)

9:30–10:30 AM
Going Beyond Data Collection: Sharing in a Science Classroom

11:00 AM–12:30 PM
Google Me This: How to Make Collaboration Work in a Wiki World

2:00–3:00 PM
Tech Talk: A Terabyte of Ideas in an Hour

3:30–4:30 PM
STEM Digital: Digital Cameras as Scientific Instruments

5:00–5:30 PM
Designing and Developing STEM Collaborative Field Studies

Next Generation Elementary Science: Building the Foundation

Friday, April 12

8:00–9:00 AM
Fee Fi Fo Fum! Getting Elementary Students Excited About Plants!

8:00–10:30 AM
Short Course: Maury Morning of Oceanography (By Ticket: SC-6)

9:30–10:30 AM
Investigating Soil in the Elementary Classroom

11:00 AM–12 Noon
Magical Illusions and Scintillating Simulations for Science—It’s Showtime!

12:30–1:30 PM
Circuits to Go!

1:00–4:30 PM
Short Course: Real-Life Science Learning on a Budget (By Ticket: SC-12)

2:00–3:00 PM
Let It Slide!

5:00–6:00 PM
Growing a Garden of Learners

Next Generation Assessments: Effectively Measuring Student Learning

Friday, April 12

8:00–9:00 AM
Activities That Lead to Conceptual Understanding of Chemistry Content

11:00 AM–12 Noon
Formative Assessment in Middle Grades Science

12:30–1:30 PM
Using the Nation’s Report Card (NAEP) to Improve Science Education

2:00–3:00 PM
Go Hands On with the Nation’s Report Card: Do HOTs, Observe ICT Simulations, and Learn About Linking NAEP to TIMSS Results

3:30–4:30 PM
The Nation’s Report Card Will Provide the First National Test of How Well Students Do in Technology and Engineering Literacy

5:00–6:00 PM
Photographs for Assessment—“Take a Picture When…”: Digital Photography Makes It Easy to Engage Elementary Students in Assessment
Meet LabQuest® 2

The most powerful, connected, and versatile data-collection device available for STEM education.

AWARD-WINNING TECHNOLOGY

LabQuest 2 and the Connected Science System win Worlddidac Award

LabQuest 2 wins a Readers’ Choice Award from eSchool Media

READ THE REVIEWS:

Tech & Learning – “Vernier’s LabQuest 2 can build interest in science, make experiments come alive, and deepen understanding of complex concepts. The affordable handheld tool supports student-centered, inquiry-based learning...and critical analysis as budding scientists use real tools to conduct real-time investigations....” – Carol S. Holzberg, Ph.D.

Scholastic Administrator's Tech Tools – Grade: A, “A bargain. LabQuest is a modern-day science lab that fits in the palm of a hand.” – Brian Nadel

Looking for data-collection solutions for iPad® and other mobile devices?

Discover the Connected Science System®
You can collect, view, analyze, and annotate data from a LabQuest 2 on an iPad®, Android™ tablet, or other mobile device that has a supported browser. www.vernier.com/css

Read the full reviews of LabQuest 2 and the Connected Science System at www.vernier.com/labq2

Vernier Software & Technology | www.vernier.com | 888-VERNIER (888-837-6437)
Follow us on Twitter and become our fan on Facebook
In San Antonio, NGSS takes center stage. This conference is a premier event for science educators to join NGSS writers, reviewers, contributors, and others to explore this landmark document. Don’t miss the multitude of events and sessions to learn more about NGSS and plan next steps for implementation.

Teacher Insights from the Writing Team and Town Hall Meeting

Join K–12 teachers who are writers of the Next Generation Science Standards for an exploration of the development of NGSS—from teachers for teachers. In four back-to-back sessions, writing team members will share the thinking and ideas that went into writing this landmark document, and the challenges they experienced along the way. Individual sessions focus on elementary, life science, physical science, and Earth and space science and will explore what NGSS will mean for classroom science teachers.

The four sessions will culminate with a Town Hall Meeting with Stephen L. Pruitt, vice president for Content, Research, and Development at Achieve, Inc. This interactive forum will be an opportunity for teachers to ask questions and discuss the next steps in the implementation of NGSS.

Teacher Insights from the NGSS Writing Team and Town Hall Meeting

Friday, April 12, 8:00 AM–3:00 PM • Texas Ballroom F, Grand Hyatt

<table>
<thead>
<tr>
<th>Time</th>
<th>Session Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00 AM</td>
<td>Next Generation Science Standards: Teacher Insights from the Writing Team—Elementary Level (NGSS @ NSTA) (p. 20)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>Next Generation Science Standards: Teacher Insights from the Writing Team—Life Sciences (Middle/High School) (NGSS @ NSTA) (p. 43)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>Next Generation Science Standards: Teacher Insights from the Writing Team—Physical Sciences (Middle/High School) (NGSS @ NSTA) (p. 59)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Next Generation Science Standards: Teacher Insights from the Writing Team—Earth and Space Sciences (Middle/High School) (NGSS @ NSTA) (p. 78)</td>
</tr>
</tbody>
</table>

A complete list of NGSS @ NSTA sessions scheduled on Friday is on page 26. See Volume 3 for a list of NGSS @ NSTA sessions scheduled on Saturday.
NSTA’s Exemplary Science Programs (ESP) series identifies people and places where the reforms recommended have emerged. The exemplary include: 1) Exemplary Science in Grades PreK–4; 2) Exemplary Science in Grades 5–8; 3) Exemplary Science in Grades 9–12; 4) Exemplary Science: Best Practices in Professional Development; 5) Inquiry: The Key to Exemplary Science; 6) Exemplary Science in Informal Education Settings; and 7) Exemplary Science for Resolving Societal Challenges.

The series was conceived by Robert E. Yager (1982–1983 NSTA President), who continues ESP searches and ways of recognizing classroom successes while also encouraging more to try!

The ESP Symposium is described on page 38.

Coordinator: Brenda Wojnowski, WAI Education Solutions, Dallas, Tex.

Promoting Inquiry with Preservice Elementary Teachers
Thomas R. Lord, NSTA Director, College Science Teaching, and Retired Educator, Lewes, Del.

More Emphasis on Teacher Quality
Susan B. Koba, Retired Educator, Omaha, Neb.

Creating a Pipeline to STEM Careers
Anton Puvirajah and Lisa M. Martin-Hansen, Georgia State University, Atlanta
Geeta Verma, University of Colorado, Denver

Bringing Science to College
Sondra B. Akins, William Paterson University, Wayne, N.J.

“Who Ate Our Corn?”
Craig Wilson, USDA/Hispanic Serving Institutions National Program and Texas A&M University, College Station

Sowing the Seeds of Future Success
Timothy P. Scott, Texas A&M University, College Station

The Talent Marketplace—Where Science Careers Are Made
S. Anders Hedberg, Hedberg Consulting, LLC, Ottsville, Pa.

Developing Students’ Authentic Inquiry Skills
Judith A. Scheppler, Illinois Mathematics and Science Academy®, Aurora

Preparing Students for Careers That Do Not Yet Exist
Glenn “Max” McGee, Illinois Mathematics and Science Academy®, Aurora

Securing a “Voice”
David L. Brock, Roland Park Country School, Baltimore, Md.

Stop Talking, Start Listening
Peter Veronesi, The College at Brockport, N.Y.

Revising Majors Biology: A Departmental Journey
Elizabeth Allan, NSELA President, and University of Central Oklahoma, Edmond

Revising an Old Strategy with New Frameworks
Teddie Phillipson-Mower, University of Louisville, Ky.

Ways to Interest More Students in Science Careers
Claudia Khoury-Bowers, Kent State University at Stark, North Canton, Ohio
Vicki McCamon, Joseph Welty Middle School, New Philadelphia, Ohio

Success with Science Outdoors
Beth Ann Krueger, Central Arizona College–Aravaipa Campus, Winkelman

Implementing the Jigsaw Technique to Enhance Learning
Santhiya N. Baviskar, University of Arkansas–Fort Smith

Inspiring the Next Generation of Scientists
Gerard J. Putz, Science Olympiad, Oakbrook Terrace, Ill.
Jennifer L. Wirt, New Jersey Science Olympiad, Livingston

Developing Inquiry Skills
Robert Wolfe, Bradley University, Peoria, Ill.

Why STEM—Why Now?
Karen Charles, RTI International, Research Triangle Park, N.C.
Conference Program • Special Programs

NSTA Press Sessions
NSTA Press® books offer new classroom ideas and standards-based strategies. Join NSTA Press authors for these sessions linked to the topics of their books.

Friday, April 12
8:00–9:00 AM
Classroom Activities to Accompany Stop Faking It! Force & Motion

9:30–10:30 AM
Brain-powered Science Teaching and Learning with Discrepant Events

Classroom Activities to Accompany Stop Faking It! Energy

11:00 AM–12 Noon
Ways to Approach Doing POE Exercises in Your Classroom

Picture-Perfect Science Lessons: Using Picture Books to Guide Inquiry

12:30–1:30 PM
Uncovering K–12 Students’ (and Teachers’) Ideas About Matter and Energy

2:00–3:00 PM
Rise and Shine: A Practical Guide for the Beginning Science Teacher

3:30–4:30 PM
Good-Bye MSDS, Hello SDS

Visualizing the World of Atoms and Molecules: Virtual Technologies That Wow Students

5:00–6:00 PM
Five E(z) Guidelines for Designing Research-informed Science Lesson Sequences

Elementary Extravaganza • Friday, 8:00–10:00 AM
Ballroom B, Convention Center

This Extravaganza is not to be missed! Join elementary groups of professionals for an exceptional opportunity—more than 100 presenters will provide ideas. Engaging hands-on activities, strategies to excite and encourage your students, a preview of the best trade books available, information about award opportunities, contacts with elementary science organizations, sharing with colleagues, and much more will be available to participants.

Come grab some coffee, enter to win prizes, and walk away with a head full of ideas and arms full of materials! For a complete list of Extravaganza participants, please pick up a program at the door.

NSTA San Antonio National Conference on Science Education
Visit NSTA’s SCIENCE BOOKSTORE

STORE HOURS
Wednesday 5:00 PM–8:00 PM
Thursday 7:00 AM–6:00 PM
Friday 7:00 AM–5:00 PM
Saturday 7:30 AM–12 Noon

ENJOY ALL OF THESE AND MORE:

• Award-winning books filled with best practices, science content, teaching tips, and lesson plans.
• New books hot off the press: Inquiring Scientists, Inquiring Readers; Scientific Argumentation in Biology; NSTA Kids books; Everyday Engineering; to name a few.
• Meet many of your favorite authors at sessions and book signings.
• T-shirts, totes, and other science gifts to take back to your classroom.
• All attendees get member pricing—20% off all NSTA Press® products.

Take advantage of FREE Shipping!
6:30–8:30 AM Breakfast
AMSE Alice J. Moses Breakfast
(By Invitation Only)
Salon A, Marriott Rivercenter

7:30–9:00 AM High School Breakfast
Curiosity Counts! Engaging Your Students in Exploration (M-2)
(Tickets Required: $45)
Alamo Salon A, Marriott Riverwalk

Fuk K. Li, Manager, NASA Mars Exploration Program, and Director, JPL Mars Exploration Directorate, NASA’s Jet Propulsion Laboratory, Pasadena, Calif.

From the “Seven Minutes of Terror” of landing on Mars to roving on the surface, NASA’s Mars rover Curiosity is a symbol of the human quest to understand the unknown. Learn about how Curiosity has transformed our understanding so far, the power of balancing risk with reward, and how to accept challenges that stretch the limits of what is currently possible. Inspire your students to connect to their own curiosity through authentic STEM-based experiences that inspire innovation and discovery in the classroom…and that just may lead them to become the rover drivers, inventors, and discoverers of the future!

Dr. Fuk Li is director for the Mars Exploration Directorate at NASA’s Jet Propulsion Laboratory. He joined JPL in 1979 and has been involved in radar remote-sensing activities. He has developed a number of system analysis tools for spaceborne synthetic aperture radar system design, and participated in the development of and applications for interferometric synthetic aperture radar.

Dr. Li became the deputy director of JPL’s Solar System Exploration Program Directorate in 2001 and deputy director for the Mars Exploration Directorate in 2004. He is currently also NASA’s Mars Exploration Program Manager.

Tickets, if still available, must be purchased at the Ticket Sales Counter in the NSTA Registration Area before 3:00 PM on Thursday.

7:30–10:00 AM Breakfast

Next Steps Networking Forum
Salon C, Marriott Rivercenter

Join Next Steps for breakfast and thought-provoking dialogue. Bring best practices and experiences to share and take away inspiration, ideas, and encouragement! $20 at the door; RSVP: evercoe@earthforce.org.

The ideas and opinions expressed in the conference sessions, and in any handout materials provided, are those of the presenter. They are not those of the National Science Teachers Association nor can any endorsement by NSTA be claimed.

Science Area
A science area category is associated with each session. These categories are abbreviated in heavy type at the right immediately following the session title. On page 131, you will find the conference sessions grouped according to their assigned science area category.

The science areas and their abbreviations are:

- (Bio) = Biology/Life Science
- (Chem) = Chemistry/Physical Science
- (Earth) = Earth/Space Science
- (Env) = Environmental Science
- (Gen) = Integrated/General Science
- (Phys) = Physics/Physical Science

Glossary
STEM stands for Science, Technology, Engineering, and Mathematics.

Strands
The San Antonio Conference Committee has planned the conference around the following four strands, enabling you to focus on a specific area of interest or need. Strand events are identified by icons throughout the daily program. For strand descriptions, see page 6.

- Next Generation Assessments: Effectively Measuring Student Learning
- Next Generation Elementary Science: Building the Foundation
- Next Generation Special Populations: Meeting the Needs of Diverse Learners
- Next Generation Technology: Putting the “T” in STEM

The following icons will be used throughout this program.

- Global Conversations in Science Education Conference
- NGSS@NSTA Sessions
- NSTA Press® Sessions
- PDI Professional Development Institutes
A Little PDA Goes a Long Way: Content Literacy Strategies

Pamela T. Bell (pbell@gdn.edu), Gordon College, Barnesville, Ga.

An effective comprehension enhancement method, known as Professional Development Alternatives (PDA), can improve the comprehension of all students. This system involves various pre-, during, and post-reading strategies that can help all students understand and retain the material presented. Join me to learn more about this method and receive a handbook of PDA strategies.

Developing the Mind’s Eye: Assessing Spatial Thinking

Hilarie B. Davis (hilarie@techforlearning.org), Technology for Learning Consortium, North Kingstown, R.I.

Did learning Geographic Information Systems (GIS) make a difference in students’ spatial thinking? Yes! Try out and take away our pre/post performance task (National Research Council’s Learning to Think Spatially).

Interdisciplinary Space Exploration with NASA and WWT

Mari M. Westerhausen, Monterey Park School, Phoenix, Ariz.

Join your NASA Ambassador in exploring technology for interdisciplinary space units that integrate STE(A)M (Science, Technology, Engineering, Arts/Architecture, and Math) concepts using NASA Heliophysics and Solar System resources and the Microsoft® WorldWide Telescope.

Activities That Lead to Conceptual Understanding of Chemistry Content

Deanna M. Cullen (deannacullen@whitehallschools.net), Whitehall High School, Whitehall, Mich.

Join me for activities that explore three levels of representation and provide formative assessments to reveal student misconceptions, helping to develop deep conceptual understanding of chemistry content.

Digitize the Learning Experience and Take IT Mobile

Ben Smith (ben@edtechinnovators.com) and Jared Mader (jared@edtechinnovators.com), York, Pa.

Join us as we share how to use iPads and other mobile devices in the science classroom. Come learn how to put your content on your students’ devices.
<table>
<thead>
<tr>
<th>Time</th>
<th>Featured Speakers/Special Events</th>
<th>Next Generation Science Standards</th>
<th>Featured Speakers/Special Events</th>
<th>Featured Speakers/Special Events</th>
</tr>
</thead>
</table>
| 8:00 AM| **Elementary Extravaganza** 8:00–10:00 AM
Ballroom B, Conv. Center | **NGSS Session**
Teacher Insights from the Writing Team: Elementary Level
(NGSS @ NSTA)
8:00–9:00 AM
Texas Ballroom F, Grand Hyatt | **Featured Presentation**
8:30–9:30 AM
Grand Ballroom C2, Conv. Center
Speaker: Paul A. Stokstad | **Featured Presentation**
8:30–9:30 AM
Grand Ballroom C1, Conv. Center
Speaker: Mireya Mayor |
| 9:00 AM| **NSTA ESP Symposium**
ESP: Unique Features of Programs That Meet "More Emphasis"
Features in the NSES
9:00 AM – 12 Noon
215, Conv. Center | **NGSS Session**
Teacher Insights from the Writing Team: Life Sciences
(Middle/High School) (NGSS @ NSTA)
9:10–10:10 AM
Texas Ballroom F, Grand Hyatt | **Science Seminar**
10:30 AM – 12 Noon
Grand Ballroom C2, Conv. Center
Speaker: Susan L. Mooberry | **Science Seminar**
10:30 AM – 12 Noon
Grand Ballroom C1, Conv. Center
Speaker: Louis L. Jacobs |
| 10:00 AM| **SCST Marjorie Gardner Lecture**
12:30–1:30 PM
Bowie C, Grand Hyatt
Speaker: Kimberly D. Tanner | **NGSS Session**
Teacher Insights from the Writing Team: Physical Sciences
(Middle/High School) (NGSS @ NSTA)
12:30–1:30 PM
Texas Ballroom F, Grand Hyatt | **Science Seminar**
12:30–1:30 PM
Grand Ballroom C2, Conv. Center
Speaker: Eloy Rodriguez | **Science Seminar**
12:30–1:30 PM
Grand Ballroom C1, Conv. Center
Speaker: Deborah J. Thomas |
| 11:00 AM| **AGU Lecture**
2:00–3:00 PM
Grand Ballroom C1, Conv. Center
Speaker: Andrew Dessler | **NGSS Town Hall Meeting**
(NGSS @ NSTA)
2:00–3:00 PM
Grand Ballroom C2, Conv. Center
Speaker: Stephen L. Pruitt | **NSTA Chapter and District Meet and Greet in Honor of Wendell Mohling**
2:00–3:30 PM
Exhibit Hall, Conv. Center | |
| 12 Noon| **Robert H. Carleton Lecture on NGSS**
(NGSS @ NSTA)
3:10–4:30 PM
Grand Ballroom C1, Conv. Center
Speaker: Michael J. Padilla | **NSTA/NSELA Issues Forum**
(NGSS @ NSTA)
3:30–5:30 PM
Lone Star Ballroom A, Grand Hyatt | | |
| 1:00 PM| | | | |
| 2:00 PM| | | | |
| 3:00 PM| | | | |
| 4:00 PM| | | | |
| 5:00 PM| | | | |
| 6:00 PM| | | | |
| 7:00 PM| | | | |
| 8:00 PM| | | | |
SESSION 5
Your Students Stuck Inside? No Problem; Bring the Outside In! (Env)
(Elementary) 208, Convention Center
José M. Rios (jrios@u.washington.edu), University of Washington, Tacoma
Bad weather outside? No problem! Come learn how to make and use Environmental Education (EE) centers to teach important science content and inquiry skills.

SESSION 6
Interactive Science Notebooks: Putting the Next Generation Practices into Action (Gen)
(Elementary–Middle Level) 212A, Convention Center
Kellie M. Marcarelli (kmarcarelli@sandi.net), Knox Middle School, San Diego, Calif.
We’ll highlight notebooking strategies that reinforce the eight practices outlined in the Next Generation Science Standards to prepare students for college and careers.

SESSION 7
ASTC Session: Online Astronomy Teacher Professional Development—Project Share and The New York Times Knowledge Network (Earth)
(Informal Education) 213A, Convention Center
Keely Finkelstein (keelyf@astro.as.utexas.edu), The University of Texas at Austin
Project Share (Texas) and The New York Times Knowledge Network offer McDonald Observatory and StarDate astronomy content to online teacher professional development communities.
SESSION 8 (three presentations)
(College) Bowie C, Grand Hyatt

SCST Session: Using Bean Beetles to Encourage Inquiry in a Nonmajors Early College High School Course
(Bio) Betsy Morgan (elizabeth.r.morgan@lonestar.edu), Lone Star College—Kingwood, Tex.
Brian R. Shmaefsky (brian.r.shmaefsky@lonestar.edu), SCST President, and Lone Star College—Kingwood, Tex.

Join us as we discuss the outcomes of a semester-long inquiry experiment using bean beetles, and similarities and differences between nonmajors and majors as well as early college high school students and traditional college students.

SCST Session: Critical Thinking and Case Studies: What’s the Connection?
(Bio) Heide Hlawaty (hhlawaty@metropolitan.edu), Metropolitan College of New York, N.Y.

The learning of science in an experiential learning format should incorporate both the doing of science to learn it and supporting the development of learners’ critical thinking and deep learning talents. Using case study narratives in a human biology course, we’ll evaluate elements of critical thinking.

SCST Session: Thriving or Just Surviving: Helping Freshman Science Majors Find Their Game
(Bio) Kerry L. Cheesman (kcheesma@capital.edu), Capital University, Columbus, Ohio

A significant percentage of students coming to college have not mastered the essential study skills needed to do well during their first year, leading to high rates of withdrawals or movement to majors in nonscience fields. Hear how our seminar for first-year science students has shown an increase in grades in biology and chemistry courses for those who take the seminar.

SESSION 9

Writing to Learn Through Science Notebooks/Journals in Elementary and Secondary Classrooms
(Gen) Crockett C, Grand Hyatt

Nancy K. Magnuson (nmagnuson@fsu.edu) and Melanie Hester (mhester@admin.fsu.edu), Florida State University School, Tallahassee

Find out how students can benefit from using science notebooks in K–12 classrooms. Lots of take-home resources!

SESSION 10

Be Part of MERITO (Multicultural Education for Resource Issues Threatening Oceans)
(Informal Education) Crockett D, Grand Hyatt

Rocio Lozano (rocio.lozano@noaa.gov), NOAA Office of National Marine Sanctuaries, Silver Spring, Md.

Come delve into how ocean education has been enhanced for multicultural communities via focused needs assessments. MERITO provides programs to motivate culturally diverse students to pursue careers in marine sciences.

SESSION 11

Reinforce Scientific and Engineering Practices Through Clinical Research with Virtual Clinical Trials
(Bio) Lone Star Blrm. C, Grand Hyatt

Kristi G. Bowling (kristi.bowling@rice.edu), Rice University, Houston, Tex.

Lynn Lauterbach (lynnlauterbach@gmail.com), Loveland, Colo.

Experience this free online game that engages high school students in scientific and biomedical engineering practices through the design and evaluation of virtual clinical trials.

SESSION 12

Migrant Students Experience Success Through a University Partnership
(Gen) Lone Star Ballroom E, Grand Hyatt

Kate A. Baird (kabaird@iupuc.edu), Indiana University—Purdue University Columbus

Stephanie S. Coy and Debra Thomas (thomasd@bcsc.k12.in.us), Bartholomew Consolidated School Corp., Columbus, Ind.

Preservice teachers are brought together with children of migrant workers to support science inquiry. Candidate compassion and enthusiasm provide service to ELL students who are vulnerable of falling between the cracks.

SESSION 13

NARST Session: The Interaction of Knowledge About and Teaching of Nature of Science
(General) Presidio C, Grand Hyatt

Judith S. Lederman (ledermanj@iit.edu), Norman G. Lederman (ledermann@iit.edu), and Stephen A. Bartos (sbartos@iit.edu), Illinois Institute of Technology, Chicago

Join us as we address research-based approaches to successfully teach nature of science (NOS). Participants will be actively engaged in classroom-tested model activities.
SESSION 14
Creating a STEM School District (Gen)
(General) Seguin A, Grand Hyatt
Bob Sotak (bsotak@mac.com), Everett (Wash.) Public Schools
We will share strategies and tools we used to design a STEM school district, impacting all K–12 students and articulating with local colleges and universities.

SESSION 15
Enhancing Self-efficacy in Elementary Science Teaching: Effects of a Multi-Year, Whole-School Professional Learning Program (Gen)
(General) Texas Ballroom C, Grand Hyatt
Bev Marcum (bmarcum@csuchico.edu), California State University, Chico
Come learn how elementary teachers increased their self-efficacy for teaching science as inquiry as a result of a three-year whole-school professional learning program.

Come to FLINN SCIENTIFIC’s Morning of Chemistry

The Teaching of Chemistry
By Bob Becker, Kirkwood High School, Kirkwood, MO
Friday, April 12, 2013 • 10:00 a.m. – 11:45 a.m.
Grand Ballroom C1, Henry B. Gonzalez Convention Center

Demonstrations are the chemistry teacher’s most effective tool in bringing abstract concepts to life. Award-winning teacher Bob Becker has discovered that many of his favorite demonstrations also help illustrate his philosophy of teaching.

The core beliefs Bob holds about his students, about the art of communication, and about respect and empathy are reflected quite effectively in the color changes, flames, and KABOOMS of his demos. Come and see 21 of Bob’s favorite demonstrations, and how they illustrate The Teaching of Chemistry. All science teachers—not just chemistry teachers—will enjoy this one-of-a-kind presentation. Handouts will be provided.

FLINN SCIENTIFIC, INC
1-800-452-1261 flinn@flinnsci.com
www.flinnsci.com/moc2013
SESSION 16
Next Generation Science Standards: Teacher Insights from the Writing Team—Elementary Level (Gen) (Elementary)
Texas Ballroom F, Grand Hyatt
Vanessa Westbrook (vanedani_61@yahoo.com), Chairperson, NSTA San Antonio National Conference, and Westbrook Consulting, Austin, Tex.
Betsy O’Day (betsy.oday@gmail.com), Hallsville Intermediate School, Hallsville, Mo.
Jaymee Herrington (jaymee174@yahoo.com), American Institute for Research, Washington, D.C.
Mariel Milano, Orange County Public Schools, Orlando, Fla.
Jacqueline R. Smalls (jacquelinesmalls@hotmail.com), Langley STEM Education Campus, Washington, D.C.

Join elementary teachers who are writers of the highly anticipated Next Generation Science Standards for an exploration of the development of NGSS—from teachers for teachers. Writers will share the thinking and ideas that went into writing this landmark document and the challenges they experienced along the way. This session will address life science, physical science, and Earth and space science and will explore what NGSS will mean for classroom science teachers.

SESSION 17
NSELA Session: Scaffolding Toward Argumentation: A Framework for K–12 Science Education and Its Implications for Inquiry (Gen)
Travis A, Grand Hyatt
Douglas J. Llewellyn (dlllewellyn@sjfc.edu), St. John Fisher College, Rochester, N.Y.

Walk away with activities that scaffold students toward making claims and offering supportive evidence to justify their claims, thus fostering scientific reasoning skills.

SESSION 18
SYM-1 Follow-Up Session: Get Real! Use Real-Time NOAA Data to Understand Our Changing World (Env)
Conf. Room 3/4, Marriott Rivercenter
Peg Steffen (peg.steffen@noaa.gov), NOAA National Ocean Service, Silver Spring, Md.

Learn about data, tools, interactive maps, and new lesson plans to help students investigate coastal ecosystems and economies, and how climate change may impact the coast.

SESSION 19 (two presentations)
(Middle Level–High School) Conf. Room 15, Marriott Rivercenter
Integrating Probes in the Interactive Notebook (Gen)
Jen MacColl (jmaccoll@usd.org), Chaparral High School, Scottsdale, Ariz.

Integrating probes in the Interactive Notebook allows students to take risks, stimulate thinking, and experience cognitive dissonance. Probing questions allow teachers to recognize students’ prior knowledge and misconceptions, and make valuable instructional decisions.

Using Role-Play to Increase Student Understanding of Abstract Biological Concepts (Gen)
Jen MacColl (jmaccoll@usd.org), Chaparral High School, Scottsdale, Ariz.

Integrating role-play by creating videos can make abstract and challenging concepts visible and help students construct an awareness of their own understanding.

SESSION 20
Physics Education Insights by Milken Educators (Phys)
Salon B, Marriott Rivercenter
Fred R. Myers (myersf@glastonburyus.org) and Ken Roy (royk@glastonburyus.org), Glastonbury (Conn.) Public Schools

Join us for this two-part session. In “Temporary Personal Radioactivity,” we’ll discuss an analysis of radiation emitted by a person injected with radioactive material for a particular medical diagnosis and share some related human aspects of the story. In “Hands-On Physics—Are You ‘Courting’ Safety?!,” we’ll share strategies on how to make physics activities safer in an effort to reduce exposure to liability issues.

SESSION 21
PDI WISP Pathway Session: Reading and Writing the News (Gen)
Conf. Room L, Marriott Rivercenter
Wendy Saul (wendysaul@gmail.com), Alan Newman (newmanal@umsl.edu), and Laura Pearce (laura_1249@yahoo.com), University of Missouri—St. Louis

Enhancing science literacy through science journalism has been the goal of this NSF-funded project. The effective measure of science engagement has become a highlight.
Find Your Way to the NSTA Avenue #1114

Pick up your “NSTA Passport” to guide you through member benefits, products, services, programs, and partners—free gifts, too!

Share with Others

- **NSTA Membership.** Learn about NSTA member benefits, pick up sample journals, and ask about our student chapters and other ways we support young professionals. Take charge of your professional development to become the best teacher you can be.

Enhance Your Skills

- **NSTA Learning Center.** Select high-quality online learning opportunities to build content knowledge. Use our suite of tools for self-assessment and to document your progress. Examples include:
 - **Web Seminars.** Update your content knowledge with free, 90-minute, online presentations and join the discussion. Voice questions and share in rich conversations with the presenters and other educators.
 - **SciGuides.** Use these online resources, aligned with the national standards, to locate lessons organized by grade level and specific content themes to add to your classroom instruction.
 - The **New Science Teacher Academy** supports second-through fifth-year science teachers during the often challenging initial years by enhancing confidence and teacher content knowledge.

Expand Your Mind

- **NGSS @ NSTA.** Find out what’s new, connect and collaborate with colleagues on NGSS, and get the resources you need to help prepare for the Next Generation Science Standards.

Add Your Voice

- **Science Matters,** our major public awareness campaign about science education and science literacy, is designed to rekindle a national sense of urgency and action among schools and families. Register to receive our monthly e-newsletter.
- The **John Glenn Center for Science Education.** NSTA has embarked on a $43 million national campaign to make excellence in science teaching and learning a reality for all. The funding will support a series of forward-thinking programs and a state-of-the-art facility designed to promote leadership, learning, and advocacy in science education.

Distinguish Yourself

- **Learn about NSTA’s 17 awards programs** for science teachers, K–College, such as the **Shell Science Lab Challenge,** which provides science laboratory equipment and professional development support to winning teachers from middle schools and high schools with limited resources. Learn how to win a $20,000 lab makeover support package.

Student Competitions:

- **Toshiba/NSTA ExploraVision®** is a team-based K–12 student competition that awards up to $240,000 in savings bonds annually.
- **THE DUPONT CHALLENGE®** Science Essay Competition for grades 7–12 students awards cash prizes and an expenses-paid trip to Disney World® and the Kennedy Space Center.
- **The Siemens We Can Change the World Challenge,** a premier national environmental sustainability competition for grades K–12 students, requires creative solutions that impact our planet. More than $300,000 in scholarships and prizes is awarded.
- **eCYBERMISSION** is an online, STEM-related (Science, Technology, Engineering, and Mathematics) competition for students in grades 6–9.
SESSION 22
Transforming Chemistry Instruction Through Modeling Experiences (Chem)
(General) Alamo Salon B, Marriott Riverwalk
Tasha M. Frick (tmf3d@mtmail.mtsu.edu) and Heather L. Barker (hlb3g@mtmail.mtsu.edu), Middle Tennessee State University, Murfreesboro
Following an overview of modeling instruction, the role of classroom discourse will be highlighted, including results based on classroom observations and teacher interviews.

SESSION 23
The Do’s and Don’t’s of the Flipped Classroom: Best Practices (Bio)
(Middle Level–College) Alamo Salon C, Marriott Riverwalk
James Schreiner (jschreiner@bbchs.org) and Tony Swafford (tswafford@bbchs.org), Bradley-Bourbonnais Community High School, Bradley, Ill.
Having “flipped” for two years, we have insight into what works and what doesn’t. Join us as we share our experiences to help facilitate implementation in your classroom.

SESSION 24 (two presentations)
(Middle Level–High School) Alamo Salon E, Marriott Riverwalk
Santhi Stripped of Her Silver: Using an Olympic Case Study as the Basis for a Biotechnology Lab Sequence (Bio)
Jeff Newton, Lakes Community High School, Lake Villa, Ill.
Experience a lab activity that uses the case study of a female Olympian disqualified due to her XY genotype. This activity teaches students about biotechnology and gender determination.

Driven to Learn: How Questions Can Drive Instruction (Gen)
Brandon Watters (bwatters@lakeseagles.com), Lakes Community High School, Lake Villa, Ill.
Kari Parnin (kparnin@hinsdale86.org), Hinsdale South High School District 86, Darien, Ill.
Is your classroom driven? Based on research from Northwestern University, learn how our school has taken inquiry-style instruction to the next level using driving questions.

SESSION 25 (two presentations)
(High School) Alamo Salon F, Marriott Riverwalk
Presider: Sean R. Carmody (sean.r.carmody@vanderbilt.edu), Vanderbilt University, Nashville, Tenn.
Race, Socioeconomic Status, and the Medical Ethics of Cancer Research (Bio)
Sean R. Carmody (sean.r.carmody@vanderbilt.edu), Tonja Dandy, and Kimberly Mulligan (kimberly.x.mulligan@vanderbilt.edu), Vanderbilt University, Nashville, Tenn.
Brian Harrell (brian.harrell@mnps.org), Stratford STEM Magnet High School, Nashville, Tenn.
Cancer affects every American. Emphasis will be placed on the roles of race and socioeconomic status on student views of cancer and medical ethics.

Progress Monitoring and Standards-based Instruction (Bio)
Amy K. Elliott (aelliott@lakeseagles.com), Lakes Community High School, Lake Villa, Ill.
See how high school biology students become a part of the formative assessment process. Use or adapt this tried-and-true template for effectively communicating learning targets to students at the onset of a unit and empower them to track their progress throughout. Learn how both content and college-readiness skills can be easily managed and monitored in a very practical way for both teacher and students.

SESSION 26
Addressing Misconceptions During the First Two Weeks of Chemistry (Chem)
(High School) Travis, Marriott Riverwalk
Matthew L. Brodeur (brodeur.ml@easthartford.org) and Nicole L. Pikul (shea.nl@easthartford.org), East Hartford High School, East Hartford, Conn.
Learn how to confront common misconceptions early in the course and increase your students’ curiosity and interest while previewing core chemistry content.
8:00–9:00 AM Workshops

Understanding and Studying Clouds in the Elementary Classroom *(Earth)* *(Elementary–High School)*
001A, Convention Center
Deanna TeBockhorst (deanna@atmos.colostate.edu), Colorado State University, Fort Collins
Preston M. Lewis, Jr. (preston.lewis@nasa.gov), NASA Langley Research Center, Hampton, Va.
Todd Ellis (todd.ellis@oneonta.edu), SUNY Oneonta, N.Y.
Detect how clouds influence the world around us, gaining a deeper understanding of clouds and tools for understanding the "scientific language" of the atmosphere.

The IRIS In-Class Project: Free Seismology Learning Sequences Accompanied by Online Professional Development *(Earth)* *(Middle Level–High School)*
001B, Convention Center
Michael Hubenthal (hubenthal@iris.edu) and Tammy Bravo (tkb@iris.edu), IRIS, Washington, D.C.
Explore a collection of hands-on 5E (Engage, Explore, Explain, Elaborate, and Evaluate) learning sequences featuring videos, animations, and visualizations. Topics range from earthquakes to Earth structure, and in-depth explorations of individual subtopics.

Fee Fi Fo Fum! Getting Elementary Students Excited About Plants *(Bio)* *(Preschool–Elementary)*
202A, Convention Center
Steven C. Smith (mrs smith@purdue.edu), Purdue University, West Lafayette, Ind.
Amy J. Smith (smitha@frankfort.k12.in.us), Blue Ridge Primary School, Frankfort, Ind.
Kristen Poindexter (kpoindexter@msdwt.k12.in.us), Spring Mill Elementary School, Indianapolis, Ind.
How do you get students excited about plants? With a giant seed and some magic beans, of course! Join us as we share hands-on activities about plants.

STEMScopes

Online STEM Curriculum

- Science, Technology, Engineering, and Mathematics
- Elementary K-5 ★ Middle School 6-8 ★ Biology, Chemistry, and Physics

- ★ Online science curriculum developed by Rice University
- ★ Covers all science concepts and skills using inquiry-based, hands-on activities
- ★ Based on the 5E model + intervention and acceleration

Visit us at stemscopes.com to try a sample today!

- Inquiry-based
- Cross-curricular
- Assessments
- Virtual Investigations
- PBLs

www.stemscopes.com
email: stemscopes@rice.edu
phone: 713.348.5433
Telling the Science Story: Finding a Common Ground Between the Common Core and NRC Framework/NGSS

(Elementary) 213B, Convention Center

Christine A. Royce (caroyce@aol.com), Shippensburg University, Shippensburg, Pa.

Lessons that integrate literacy strategies and science concepts will be modeled with participants and an overview of research and connection to Common Core State Standards provided.

Simple Machines Made Simple

(Phys) (Elementary–Middle Level) 216A, Convention Center

Julie A. Horner (julie.horner@msichicago.org) and Kevin Conley (kevin.conley@msichicago.org), Museum of Science and Industry, Chicago, Ill.

Learn how to teach simple machines using everyday classroom objects and materials. Free lesson plans and prizes!

Science Fair with Flair: Using Desk Drawer Materials

(Gen) (Preschool–Elementary) 217A, Convention Center

Jude Kesl (judekesl@gmail.com), Milwaukee (Wis.) Public Schools

Presider: Lisa Martin, Milwaukee (Wis.) Public Schools

Develop testable questions using materials found in most teachers’ desk drawers. These questions can be used for early childhood and elementary science fair projects.

DuPont Session: DuPont Presents “Driving Science”

(Phys) (High School) Bonham B, Grand Hyatt

Dorothy Moss (dmoss@clemson.edu) and Glenda Pepin (gpepin@clemson.edu), Clemson University, Greenville, S.C.

Drivers, start your engines! Engineers, scientists, engine specialists, and pit crew members make that statement possible. Join us in this workshop as we examine STEM in motorsports through hands-on investigations and multimedia resources.

The Problem with Plastics

(Gen) (Middle Level) Bonham C, Grand Hyatt

Andrea Swensrud (scienceed@kqed.org), KQED, San Francisco, Calif.

Sarah Carter (scarter@tpt.org), Twin Cities Public Television, St. Paul, Minn.

Explore the properties of plastics, the impact they have on our environment, and alternatives for their use through engaging media and hands-on lessons.

Cell Phones in Science Class!

(Gen) (High School–College/Informal) Bonham D, Grand Hyatt

Rob Lamb (rlamb@psdr3.org), Pattonville High School, Maryland Heights, Mo.

Jennifer Hope (jmhope@mckendree.edu), Mckendree University, St. Louis, Mo.

Presider: Rob Lamb

Using simple technology to analyze and create infographics can hook your students and increase skills of interpretation when it comes to charts, graphs, and data tables.

Show Me the Data!

(Gen) (General) Bowie B, Grand Hyatt

CJ Thompson (cthompson@rice.edu), Lisa Webber (lwebber@rice.edu), and Lara Arch (larch1@rice.edu), Rice University, Houston, Tex.

Instead of memorizing “rules,” inquire into the best way to represent data. Leave this workshop with a different perspective and a student-centered lesson!

Terrific Science Games for Middle Schools

(Gen) (Middle Level/Supervision) Lone Star Ballroom A, Grand Hyatt

Rodelio A. Abuan (odie@scienterrificgames.com), Sam Houston High School, Houston, Tex.

Ma Corazon Abuan (ma.corazonabuan@yahoo.com), Spring, Tex.

Learn to make your own science games and puzzles that are fun and engaging, enhance science lessons, promote deeper understanding of concepts, increase learning retention, improve skills in identifying, classifying, comparing/contrasting, and application and problem solving. The games and puzzles can be used for individual or group tutorials and use cheap, durable, and very affordable materials.

Drawings Add to Data…and Students Like to Do Them!

(Gen) (Informal Education) Lone Star Ballroom B, Grand Hyatt

Phyllis Katz (pkatz15@gmail.com), Retired Educator, Silver Spring, Md.

Even stick figures will do. Let’s draw and consider effective science learning and teaching with a unique coding system. Join me for thoughtful fun.
Planning and Designing Safe, Sustainable, and Flexible Facilities for Inquiry/Project-based Science (Science Facilities 101) (Gen) (General)
LaMoine L. Motz (llmotz@comcast.net), 1988–1989 NSTA President, and Science Education and Facilities Specialist, White Lake, Mich.
Juliana Texley (jtexley@att.net), NSTA President-Elect-Elect, and Palm Beach State College, Boca Raton, Fla.
Sandra West Moody (sw04@txstate.edu), Texas State University, San Marcos
Presider: LaMoine L. Motz

So you want new science facilities? Does your curriculum define your science teaching facility? With more than 15 years of conducting visits and presentations of new and renovated school science facilities, the author team of NSTA Guide to Planning School Science Facilities (2nd ed.) will show you the “basics” of science facility planning, design, and budgeting for safe and sustainable facilities. See page 47 for “Science Facilities 102” session.

Global Connections: Forests of the World (Env) (Informal Education)
Jaclyn Stallard (jstallard@plt.org) and Al Stenstrup (astenstrup@plt.org), Project Learning Tree, Washington, D.C.

The forests of the world are changing. Project Learning Tree’s new secondary module, Global Connections: Forests of the World, explores this vital component of Earth’s natural systems. Take home an activity module and poster sets.

Come Get Online Access and Answers to NGSS

Where can I access the Next Generation Science Standards online? What does a performance expectation look like? These questions and more will be answered at NSTA's first-ever face-to-face tutorials on NGSS.

NGSS writers and other experts will give 20-minute tutorials on NGSS at the top of each hour and then answer questions and lead informal discussions. You’ll get a chance to access and view the standards online, become oriented to and familiar with the NGSS architecture, and have an opportunity to discuss NGSS in an informal environment.

Come for 20 minutes or the entire hour. No need to register; just drop in to these FREE events hosted by NSTA.
NSTA Press® Session: Classroom Activities to Accompany Stop Faking It! Force & Motion (Phys) (Elementary—High School) Texas Ballroom D, Grand Hyatt
Bill Robertson (wrobert9@ix.netcom.com), Bill Robertson Science, Inc., Woodland Park, Colo.
In response to teacher demand, there is now a set of classroom activities on force and motion to accompany the Stop Faking It! Force & Motion book. The learning cycle is incorporated in an easy-to-use, teacher-friendly, research-based curriculum for upper elementary and conceptually based high school lessons that can help your students understand force and motion concepts. Join the author for activities from the book. Lame jokes quite possible.

Playing Games to Learn Complex Environmental Science Concepts (Env) (High School) Texas Ballroom E, Grand Hyatt
Kristen R. Dotti (kristen_dotti@yahoo.com), Christ School, Arden, N.C.
Playing the role of a coal-fired power plant owner, students learn cap-and-trade principles, sulfur-reduction techniques, cost-cutting measures, and the terminology of the industry.

A Lab Exercise Using the MODELING Method (Phys) (High School) Salon J, Marriott Rivercenter
Douglas Johnson (djohnson44@ameritech.net), West High School, Madison, Wis.
Experience how a single lab can deliver several important lessons and address a misconception or two while empowering students and deepening their understanding.

Don’t miss these Friday NGSS-related sessions

Next Generation Science Standards: Teacher Insights from the Writing Team—Elementary Level (page 20)

Next Generation Science Standards: Teacher Insights from the Writing Team—Life Sciences (Middle/High School) (page 43)

Next Generation Science Standards: Teacher Insights from the Writing Team—Physical Sciences (Middle/High School) (page 59)

Next Generation Science Standards: Teacher Insights from the Writing Team—Earth and Space Sciences (Middle/High School) (page 78)

Featured Presentation: Next Generation Science Standards Town Hall Meeting
Speaker: Stephen L. Pruitt (page 86)

Robert H. Carleton Lecture: Meeting the Challenge of the Next Generation Science Standards
Speaker: Michael J. Padilla (page 100)

NSTA/NSELA Issues Forum (page 108)

Equal Access to Science: Universal Design and Students with Disabilities (Gen) (Middle Level—High School) Salon M, Marriott Rivercenter
Lyla M. Crawford (lylac@uw.edu), University of Washington, Spokane
Rachel Zimmerman Brachman (rachel.zimmerman-brachman@jpl.nasa.gov), NASA Jet Propulsion Laboratory, Pasadena, Calif.
Full inclusion of students with disabilities in STEM involves both accommodation strategies for students and universal design of instruction that enhances learning for all students.

Modeling Biology: Energy in an Ecosystem (Bio) (High School) Alamo Salon D, Marriott Riverwalk
Angela C. Gard (gardangelaO@gmail.com), North Carolina State University, Raleigh
Rebecca M. Stanley (rstanley@ncnewschools.org), North Carolina New Schools Project, Raleigh
Perform a classroom simulation to understand energy in an ecosystem. This guided inquiry approach will explore the differences between modeling and traditional instruction by analyzing results through graphs, diagrams, and class discussion.
What Works Workshops for 21st-Century Classrooms

Houghton Mifflin Harcourt Workshop Schedule
Henry B. Gonzales Convention Center, Room 204B

Thursday, April 11

7:30–9:00 am: Session 2234
STEM Challenges for the Classroom, Part 1.
Author—Michael DiSpezio

9:30–11:00 am: Session 2233
Connecting to Chemistry: Igniting Student Motivation with STEM Examples and Ideas.
Author—Michael DiSpezio

11:30–1:00 pm: Session 2240
That’s Amazing! Explore the Bizarre, Cool, and Exciting World of Project-Based Biology.
Author—Mike Heithaus

Friday, April 12

12:00–1:30 pm: Session 2241
Ecology Adventures: Motivating Students through Project-Based Learning.
Author—Mike Heithaus

2:00–3:30 pm: Session 2231
Extra, Extra! Read All About It! Taking Biology from the News to the Classroom.
Author—Stephen Nowicki

4:00–5:30 pm: Session 2235
More STEM Challenges for the Classroom, Part 2.
Author—Michael DiSpezio

Saturday, April 13

8:00–9:30 am: Session 2236
Misconception Mania: Exciting and Engaging Ways to Address Common Misunderstandings in K-8 Science.
Author—Michael DiSpezio

10:00–11:30 am: Session 2230
Extra, Extra! Read All About It! Taking Biology from the News to the Classroom.
Author—Stephen Nowicki

12:00–1:30 pm: Session 2237
Meeting the Needs of Today’s Physics Students.
National Consultant—Dave Kowal

2:00–3:30 pm: Session 2238
From Big Bird to Bird Brains—How Fun with Our Feathered Friends Helps Students Learn Science.
Author—Steve Nowicki

4:00–5:30 pm: Session 2232
Differentiating Instruction in Today’s Chemistry Classroom.
National Consultant—Dave Kowal

Meet Our Authors and Get a Signed Copy of Their Books.

Elizabeth Rusch
Elizabeth Rusch is an award-winning children’s author and has written two books for HMH’s highly-acclaimed Scientists in the Field series. Elizabeth will be signing copies of her book The Mighty Mars Rovers: The Incredible Adventures of Spirit and Opportunity.

Booth Signing: Friday, April 12
Time: 3:15 PM

Stephen Nowicki
Dr. Stephen Nowicki is the author of Holt McDougal Biology. Dr. Nowicki is a Professor in the Departments of Biology, Psychology, and Neurobiology at Duke University and is currently the Dean and Vice Provost for Undergraduate Education. Dr. Nowicki will be signing copies of Holt McDougal Biology.

Booth Signing: Saturday, April 13
Time: 12:00 PM

Visit Houghton Mifflin Harcourt at Booth #1526

Win a Mini Tablet!

Guests that attend any of our workshops or in-booth activities can enter to win one of two mini tablets* that will be raffled off during the conference.

*Prize is to be used for educational/classroom purposes. Applicable laws and policies may restrict educators from accepting certain items, including raffle and contest prizes. Each prizewinner must obtain approval from the appropriate school authority for the acceptance of the prize and is responsible for notifying Houghton Mifflin Harcourt immediately if approval is denied. Must be a current educator to qualify for the drawing. Only one entry per person will be accepted. Winners do not need to be present to win.
Hands-On Hydropower (Gen)
(Grades 4–12) 007C, Convention Center
Sponsor: KidWind Project
Joseph T. Rand (joe@kidwind.org) and Michael Arquin, KidWind Project, St. Paul, Minn.
Join KidWind as we explore hydropower—we have finally developed a hydropower system that meets our standards. It is easy to build, low cost, allows for a variety of experiments, and doesn’t make a huge mess! Plus, you can use the same gear to explore wind power! Lots of great physics and environmental science concepts can be explored in this robust kit.

NASA’s Next Generation Science Classroom (Earth)
(Grades K–5) 103B, Convention Center
Sponsor: NASA Science Mission Directorate E/PO
Ruth Paglierani and Kyle W. Fricke, University of California, Berkeley
Andi Nelson and Lindsay M. Bartolone, Adler Planetarium, Chicago, Ill.
Sheri Klug Boonstra, Arizona State University, Tempe
Kristin Wegner, University Corporation for Atmospheric Research, Boulder, Colo.
Ginger J. Butcher, Sigma Space, Greenbelt, Md.
Dorian W. Janney, NASA Goddard Space Flight Center, Greenbelt, Md.
Pamela K. Harman, SETI Institute, Mountain View, Calif.
Brandon Lawton and Dan McCallister, Space Telescope Science Institute, Baltimore, Md.
Edgar A. Bering, University of Houston, Tex.
Lauren Brodsky, The Lawrence Hall of Science, University of California, Berkeley
Georgia Bracey, Southern Illinois University, Edwardsville.
Participate in inquiry-based hands-on science activities that you can use with your students. These resources focus on crosscutting concepts aligned with the Next Generation Science Standards, and cover the spectrum of Earth and space science topics. The activities and hundreds more are freely available through NASA Wavelength, a new digital library for educators.

Turn Your Science Classroom into a STEM Classroom with a WebCam Laboratory (Gen)
(Grades 6–12) 205, Convention Center
Sponsor: It’s About Time
David Birchler, IAT Interactive, LLC, Mount Kisco, N.Y.
Bring discovery-based science lessons into your classroom using a webcam. WebCam Laboratory allows you to easily observe the natural world. Would you like to measure the size of a crater or the length of single-celled organisms? Want to analyze the movement of a pendulum? With WebCam Laboratory, it’s just a click away!
Science, Fashion, and Fun! Genes in a Bottle™ Kit

(Bio)

(Grades 6—College) 217C, Convention Center

Sponsor: Bio-Rad Laboratories

Leigh Brown, Bio-Rad Laboratories, Hercules, Calif.

Isolate your own DNA and capture your unique essence in our stylish NEW helix-shaped necklaces! From cell structure to genetics to the chemistry of life, this workshop is perfect for all education levels, integrating multiple life science standards in a single lesson.

8:00–9:00 AM

Science, Fashion, and Fun! Genes in a Bottle™ Kit

(Bio)

Sponsor: Bio-Rad Laboratories

Leigh Brown, Bio-Rad Laboratories, Hercules, Calif.

Isolate your own DNA and capture your unique essence in our stylish NEW helix-shaped necklaces! From cell structure to genetics to the chemistry of life, this workshop is perfect for all education levels, integrating multiple life science standards in a single lesson.

8:00–9:15 AM Exhibitor Workshop

Science, the Literacy Connection, and the Common Core

(Grades K—6) 214B, Convention Center

Sponsor: Delta Education/School Specialty Science

Tom Graika, Consultant, Lemont, Ill.

Johanna Strange, Consultant, Richmond, Ky.

We’ll show you various strategies and Delta products that can help integrate reading and language arts into your science programs. Learn how your students can experience the enjoyment of learning science and make the literacy connection with Delta Science Modules. Receive a workshop packet and related Delta materials.

Play Click! A Photo Scavenger Hunt at NSTA

Sponsored by Ward’s Science

Download the NSTA App to Play and Win up to $600 in STEM Products!

All it takes is a smart phone or tablet, and a desire to explore the NSTA conference, and you could win the latest STEM products from Ward’s Science.

Here’s how it works:

• Download the NSTA App in your app store

• Complete challenges by snapping photos of yourself at the show, at Ward’s Science booth and workshops, and having fun in San Antonio!

• Earn points for each challenge, or for being the first to earn badges.

1st Prize

A Ward’s DataHub unit of your choice. A $600 value.

2nd Prize

3rd Prize

TeacherGeek Advanced Rubber Band Racer, Classroom 10-Pack. A $150 value.

Named by Teachers

Ward’s Science
8:00–9:30 AM Exhibitor Workshops

The Next Generation of Science Virtual Labs for the Entire Science Curriculum—No Cleanup Required! (Chem)
(Grades 9–12) 006B, Convention Center
Sponsor: Pearson
Brian Woodfield, Brigham Young University, Provo, Utah
Brian Woodfield, author and creator of Pearson’s innovative Virtual Lab series, will demo some of his latest eye-popping virtual labs, which are so visually realistic you have to see them to believe them. Whether you are short on time or short on lab materials, virtual labs give you the flexibility to experiment and meet your students where they are in the digital world.

Achievable Inquiry in AP* Biology (Bio)
(Grades 9–12) 006C, Convention Center
Sponsor: PASCO scientific
Presenter to be announced
Discover how probeware transforms traditional labs into quick, quantitative inquiry labs. Engage in hands-on activities with PASCO’s intuitive SPARKvue® software and easy-to-use probes. Select from two labs to try from our new Advanced Biology through Inquiry manual that addresses the new College Board Curriculum.

*AP is a registered trademark of the College Board, which was not involved in the production of, and does not endorse, this product.

Renewable Energy Exploration with SPARKscience and iPad (Env)
(Grades 6–8) 006D, Convention Center
Sponsor: PASCO scientific
Presenter to be announced
In this hands-on workshop, you’ll investigate energy output from a solar cell and wind turbine under varying environmental conditions. This standards-based, state-of-the-art solution jointly designed by PASCO and Horizon Fuel Cell Technology supports your Earth or environmental science program. Data will be collected with iPads using SPARKvue® HD.

Introducing Simple Machines into the Elementary Classroom with LEGO® Bricks (Phys)
(Grades 1–3) 007A, Convention Center
Sponsor: LEGO Education
Experience firsthand how you can develop your grades 1–3 students’ understanding of science, engineering, and mathematics concepts using the Simple Machines set from LEGO Education. Participants will explore gears by building a model out of LEGO bricks and completing the corresponding classroom activity from the Simple Machines Activity Pack.

Hard Doesn’t Mean Bad—Helping Students Understand That Facing Challenges Is a Good Thing (Gen)
(Grades 6–9) 007B, Convention Center
Sponsor: eCYBERMISSION
Sue Whitsett (missioncontrol@nsta.org), eCYBERMISSION Outreach Manager, NSTA, Arlington, Va.
How many times have you heard your grades 6–9 students say, “This is too hard” or “My data doesn’t support my hypothesis so I failed” or “I’m no good at science”? Many students are ready to give up if they feel that something is too difficult or if they don’t succeed immediately. Since many scientific discoveries come from challenges, it’s important that students learn how to embrace these challenges and become more comfortable with science. Participants will “do” science and walk away with some lesson plans and resources to take back along with information on a new NSTA competition, eCYBERMISSION, that can provide both rigor and relevance in the classroom.

Living By Chemistry: Create a Table (Chem)
(Grades 9–12) 007D, Convention Center
Sponsor: W.H. Freeman of Bedford, Freeman & Worth (BFW) Publishing Group
Jeffrey Dowling (jeffrey.dowling.contractor@bfwpub.com), HPHLP Representing Bedford, Freeman & Worth Publishing Group, Hamilton, N.J.
Angy Stacy, University of California, Berkeley
Teach rigorous chemistry with guided inquiry! Let’s explore activities that introduce the periodic table and other core chemistry concepts through an historical context. Take home free sample lessons and materials from the Living By Chemistry curriculum.
Maximize Your Conference Experience!

While at the conference, don’t forget to:

Pick up your badge holder, your copy of the daily programs, and other materials ahead of time, if possible. Take some time to finalize your daily schedules. Keep your smartphone handy if you’ve created a calendar on it.

Evaluate the sessions you attend so that they can be added to your transcript.

Divide and conquer if you’re attending with friends or colleagues. You can only be at one place at a time, so agree on what to attend and how to share notes and materials from sessions.

Evaluate the sessions you attend so that they can be added to your transcript.

There will be booths at registration staffed by local teachers. They’ll have lots of information on science education activities and happenings in your city and state.

Check out our new NSTA Conference app. Search sessions to build a schedule that integrates your calendar; access maps of the Convention Center, hotels, and Exhibit Hall; share the play-by-play with social media channels; and much more.

Put your cell phone on mute during sessions.

Attend a session or two on a topic that’s unfamiliar to you.

Keep a log or journal of the sessions you attended, people you met, and new ideas. Update your homepage, Facebook, tweets, or class Wiki/blog with a summary of what you are learning at the conference. Update your conference transcript.

Introduce yourself to teachers at the sessions or events. The value of a face-to-face conference is meeting and interacting with real people.

Get to the sessions early. Sometimes the smaller rooms fill up quickly.

Attend a session or two on a topic that’s unfamiliar to you.
The Science Behind West Nile Virus Infections
(Bio)
(Grades 9—College)
008A, Convention Center
Sponsor: Howard Hughes Medical Institute
Jason Crean, Lyons Township High School, Western Springs, Ill.
Laura Bonetta, Howard Hughes Medical Institute, Chevy Chase, Md.
2012 was the worst year for West Nile virus infections since 2003. To understand why, researchers are studying the many factors that allow West Nile virus to infect multiple hosts and to spread in a population. Take home free classroom-ready resources from HHMI to teach students about infectious diseases and, in particular, ones that are spread by mosquitoes. These resources are easily adapted for various levels of high school curricula, ranging from introductory biology courses through honors, AP, and IB biology.

Space Camp® and 21st-Century Learning: The Crossroads of Formal and Informal Education
(Gen)
(Grades K–12)
008B, Convention Center
Sponsor: Space Camp
Marcia Lindstrom, Space Camp, Huntsville, Ala.
Specialty camps—especially those dedicated to encouraging the study of science, technology, engineering, and math—are uniquely positioned to provide 21st-century learning skills to young people in the areas of learning/innovation and life/career skills. This workshop explains how Space Camp is bridging the gap between formal and informal education.

Pairing Gizmos with Common Core ELA—A Perfect Duo!
(Phys)
(Grades 6—12)
101B, Convention Center
Sponsor: ExploreLearning
Corey Peloquin (corey.peloquin@explorefl.com), ExploreLearning, Charlottesville, Va.
Pamela Caffery (pamela.caffery@sdhc.k12.fl.us), Hillsborough County Public Schools, Tampa, Fla.
Experience the perfect combination of ExploreLearning’s Gizmos with hands-on inquiry and the Common Core State Standards (CCSS) for English Language Arts & Literacy in History/Social Studies, Science, and Technical Subjects. Gain a classroom perspective on how to integrate CCSS through the use of a 5E (Engage, Explore, Explain, Elaborate, and Evaluate) instructional model. Take home a complete unit that has been teacher tested and student approved.

Exploring Alternative Energy and Careers in STEM
(Env)
(Grades 9—12)
102A, Convention Center
Sponsor: Fisher Science Education
Robert Marshall, Carnegie Science Center, Pittsburgh, Pa.
As a renewable energy source, solar energy proves to be a vast and inexhaustible resource that’s a clean alternative to fossil fuels. Hydrogen is also useful as a compact energy source in fuel cells/batteries, and many companies are working to develop technologies involving hydrogen energy. Join Robert Marshall, an educator from Carnegie Science Center’s award-winning STEM Center, as he shares information and methods you can use to introduce these options to your students.

Bring Simple Machine Concepts to Life with Real-World Models!
(Phys)
(Grades 3—6)
102B, Convention Center
Sponsor: K’NEX Education
Presenter to be announced
Explore that common expression “simple machines make work easier” and investigate hands-on strategies to help students understand simple machine technologies. Build and use K’NEX® simple machine models and discover that simple machines make work easier by multiplying force and distance as well as changing the direction of force. Standards-aligned STEM concepts related to simple machines will be emphasized. Drawing for a K’NEX Education Simple Machine Set!

Fantastic Physical Science Demonstrations from Flinn
(Phys)
(Grades 6—12)
103A, Convention Center
Sponsor: Flinn Scientific, Inc.
Janet Hoekenga (jhoekenga@flinnsci.com) and Joan Berry (jberry@flinnsci.com), Flinn Scientific, Inc., Batavia, Ill.
Amaze your students with quick demonstrations that teach common physical science topics, including sound, color dynamics, energy, pressure, density, rotation, and scientific inquiry. More than a dozen effective demonstrations will be performed.

Color, Spectrophotometry, and Teaching the Structure of the Atom
(Chem)
(Grades 9—12)
203A, Convention Center
Sponsor: LAB-AIDS, Inc.
Mark Koker, LAB-AIDS, Inc., Ronkonkoma, N.Y.
How do we teach topics—such as electron configurations that were graduate school material a generation ago—so that high school students can learn and understand them? Walk away with some effective ways to teach the structure of the
atom. Using a user-friendly spectrophotometer from the new program *A Natural Approach to Chemistry*, explore how light interacts with dyes. Then use unique spectrum cards to show how atoms, color, and spectra are related, making a conceptual bridge between a core chemical technology—making dyes—and the fundamental structure of the atom.

What’s Soil Got to Do with It? *(Bio)*
(Grades K–6) 204A, Convention Center
Sponsor: Nutrients for Life Foundation
Nancy Bridge (info@nutrientsforlife.org), Olympia High School, Orlando, Fla.
How do plants grow? Plant seeds of success and teach biological concepts through hands-on activities by growing plants in your classroom. The standards and inquiry-based Nutrients for Life elementary curriculum and supplemental materials will be provided as we explore properties of soil and how plant growth affects soil.

REAL School Gardens: Life Science Comes Alive *(Gen)*
(Grades K–5) 204B, Convention Center
Sponsor: REAL School Gardens
Ellen Robinson (erobinson@realschoolgardens.org) and **Scott Feille** (sfeille@realschoolgardens.org), REAL School Gardens, Fort Worth, Tex.
Food chains, environments, and interdependence allow students to ground themselves in these concepts by studying the complex web of life that exists just outside the classroom doors. Learn about opportunities to partner with REAL School Gardens and leave newly equipped to make the life sciences come alive for your students.

Exploring Feline Anatomy with Carolina’s Perfect Solution® Cats *(Bio)*
(Grades 9–12) 206A, Convention Center
Sponsor: Carolina Biological Supply
Carolina Teaching Partner
Perform a guided dissection featuring Carolina’s Perfect Solution cats and get the “inside story” on the highest quality preserved specimens available. Learn skinning techniques, review vertebrate anatomy, discover the structures shared by cats and humans, and develop a greater appreciation for the complexity of life. Features Carolina’s Perfect Solution preserved cats.

Engineer Excitement in Your Classroom with a Carolina STEM Challenge *(Phys)* *(Grades 6–12)* 206B, Convention Center
Sponsor: Carolina Biological Supply
Carolina Teaching Partner
Catapult, float, and race your way into hands-on activities that you can use to engage your middle and high school students. At the same time, you can foster both critical-thinking and creative problem-solving skills. Come experience how Carolina makes it easy to incorporate STEM into your classroom. Free handouts and door prizes!

Carolina Chemistry Investigations for Advanced Chemistry *(Chem)* *(Grades 9–12)* 207B, Convention Center
Sponsor: Carolina Biological Supply
Carolina Teaching Partner
Bring inquiry to your classroom with new Carolina chemistry activities and see your classroom come alive. Carolina’s new labs help students develop essential chemistry practices, understand core chemistry concepts, and learn chemistry through inquiry per the new AP Chemistry curriculum. Experience three different activities in this hands-on workshop. Handouts/free giveaways!

Chase Your Curiosity and Develop Critical Skills with Discovery Education Science Techbook *(Gen)* *(Grades K–12)* 209, Convention Center
Sponsor: Discovery Education
Brad Fountain, Discovery Education, Silver Spring, Md.
Students are born with a natural curiosity. The resources and instructional strategies utilized in Science Techbook inspire curiosity and develop critical skills in every student. Learn how to use these resources to enhance thinking, collaborating, and problem solving.

K–8 Science with Vernier *(Gen)* *(Grades K–8)* 210A, Convention Center
Sponsor: Vernier Software & Technology
Verle Walters (info@vernier.com) and **David Carter** (info@vernier.com), Vernier Software & Technology, Beaverton, Ore.
Learn how easy it is to measure temperature, gas pressure, magnetic field, and more. In this hands-on workshop, you can try experiments from our popular *Elementary Science with Vernier* and *Middle School Science with Vernier* lab books using sensors on LabQuest 2 or a computer using our low-cost Go! products.
Friday, 8:00–9:30 AM

Engineering with Vernier (Phys) (Grades 7–College) 210B, Convention Center
Sponsor: Vernier Software & Technology
David L. Vernier (info@vernier.com), Vernier Software & Technology, Beaverton, Ore.
This is a two-part workshop. The first half will be oriented toward middle school. It will demonstrate the use of Vernier sensors with the LEGO®’s MINDSTORM® NXT robotics kit. The second half will demonstrate projects using LabVIEW™, for use with first-year college or high school students.

Physics from the NRC Framework: Exploring NGSS and Newton’s Laws (Phys) (Grades 9–12) 211, Convention Center
Sponsor: Ward’s Science
Jill Lewis, VWR Education, Rochester, N.Y.
High school physics gets a makeover in this hands-on lab demonstrating how to tie Newton’s laws to modern-day applications and technology. Learn how to use digital tools and guided inquiry lessons to introduce students to the fun of physics, while satisfying science and engineering practice developing and using models.

Perimeter Institute: Classroom Activities for Dark Matter (Phys) (Grades 11–12) 212B, Convention Center
Sponsor: Perimeter Institute for Theoretical Physics
Greg Dick (contact@perimeterinstitute.ca), Dave Fish (contact@perimeterinstitute.ca), and Damien Pope (contact@perimeterinstitute.ca), Perimeter Institute for Theoretical Physics, Waterloo, Ont., Canada
Are you looking for ways to connect your students with current physics research? Join us as we explore how uniform circular motion can be used to introduce students to dark matter. The Mystery of Dark Matter multimedia resource is the product of collaboration between classroom teachers and Perimeter Institute researchers.

The Private Eye® Way to Magnify Minds: How to Fire Up STEM and Common Core State Standards’ Literacy Goals (Gen) (General) 214A, Convention Center
Sponsor: Educational Innovations, Inc.
Kerry Ruef and David Melody, The Private Eye Project, Lyle, Wash.
Dandelions! Crickets! Eyeballs! Use a jeweler’s loupe, everyday objects, simple questions, and thinking by analogy to magnify thought…and develop the essential skills of scientist, writer, and artist in all your students. Engage creative and critical thinking as students write, draw, and theorize with this acclaimed program. Free loupes and lessons!

Genetics: Crazy Traits and Adaptation Survivor (Bio) (Grades 6–12) 214D, Convention Center
Sponsor: CPO Science/School Specialty Science
Scott W. Eddleman and Nathan Olsson, CPO Science/School Specialty Science, Nashua, N.H.
Students learn new vocabulary when they experience genetics. Concepts like traits, alleles, phenotypes, genotypes, and heredity will come alive as you create crazy creatures with a unique kit and study the resulting population. Take away STEM activities and an understanding of how to incorporate science and engineering practices in lessons.
You Be The Chemist Challenge (Chem) (Grades 5–8) Salon E, Marriott Rivercenter
Sponsor: The Dow Chemical Co.
John Rice and Suzette Bucher, Chemical Educational Foundation®, Arlington, Va.
The Chemical Educational Foundation (CEF), a national nonprofit organization, and The Dow Chemical Company have partnered together to introduce CEF’s You Be The Chemist (YBTC) educational programs. These innovative programs offer a “challenge” that introduces students to the central role of chemistry in everyday life by providing educators with inquiry-based and easy-to-use activities. Join us and participate in this fun, innovative academic competition engaging grades 5–8 in experiment demonstrations learning chemistry concepts, scientific discoveries, and laboratory safety. National YBTC Challenge competitions are exciting events, encouraging the collaboration of industry members, schools, and community organizations. A student from YOUR school could be the next winner. Attend this enjoyable hands-on work shop to learn more!

8:00–10:00 AM Workshop
Elementary Extravaganza (Gen) (Preschool–Middle Level) Ballroom B, Convention Center
Organizer: Linda Froschauer (fro2@mac.com), 2006–2007 NSTA President, and Field Editor, Science & Children, Westport, Conn.
This Extravaganza is not to be missed! Join elementary groups of professionals for an exceptional opportunity—more than 100 presenters will provide ideas. Engaging hands-on activities, strategies to excite and encourage your students, a preview of the best trade books available, information about award opportunities, contacts with elementary science organizations, sharing with colleagues, and much more will be available to participants. Come grab some coffee, enter to win prizes, and walk away with a head full of ideas and arms full of materials! Visit bit.ly/WpogHG for a complete list of Extravaganza participants or please pick up a program at the door.

This event is sponsored in part by Carolina Biological Supply; Delta Education/School Specialty; Houghton Mifflin Harcourt; and Science Companion, Chicago Educational Publishing Company.

8:00–10:00 AM Exhibitor Workshop
Using Science Notebooks to Impact Student Learning with FOSS (Gen) (Grades K–6) 214C, Convention Center
Sponsor: Delta Education/School Specialty Science–FOSS
Virginia Reid, The Lawrence Hall of Science, University of California, Berkeley
Ellen Mintz, Charleston County Schools, Charleston, S.C.
Learn how we implement science notebooks in the new FOSS editions. Through active investigations from the new editions, you’ll discover how science notebooks can impact student achievement by providing a tool for developing conceptual understanding, exposing evidence of learning, and guiding instruction.

8:00–10:30 AM Short Course
Maury Morning of Oceanography (SC-6) (Grades 6–8) Salon del Rey A, Hilton
Tickets Required: $23
Kevin Tambara (tambarak@einsteinfellows.org), Einstein Fellow, National Science Foundation, Arlington, Va.
Carol A. Kraft (carol.kraft@rps205.com), Rockford Environmental Science Academy, Rockford, Ill.
For description, see Volume 1, page 59.

8:00–11:00 AM Short Courses
Be a Winner! Get a Grant and Your Students Win, Too! (SC-7) (Elementary–High School) La Corona, Hilton
Tickets Required: $32
Kitchka Petrova (kpetrova7@dadeschools.net), Ponce de Leon Middle School, Coral Gables, Fla.
Patty McGinnis, NSTA Director, Middle Level Science Teaching, and Arcola Intermediate School, Eagleville, Pa.
For description, see Volume 1, page 59.

The STEM Innovation Equation: Nine Keys to Improving STEM Education in America’s Schools (SC-8) (K–12/Administration) Salon del Rey C, Hilton
Tickets Required: $48
Diana Laboy-Rush, AuthenticSTEM, Portland, Ore.
For description, see Volume 1, page 60.
8:00 AM–12 Noon Workshop

PDI BSCS-I Pathway Session: Using Models to Enhance How Students Learn Science (Bio)
(Elementary–High School) Conf. Room 1/2, Marriott Rivercenter
Rebecca Kruse (rkruse@bscs.org) and Brooke Bourdélat-Parks (bbparks@bscs.org), BSCS, Colorado Springs, Colo.
In this session, participants will explore the highly anticipated NGSS Practice 2, Developing and Using Models, through key activities of the Toward High School Biology curriculum. We’ll explore the fundamental “atom rearrangement” conceptual model of chemical reactions and learn how the model applies to explaining growth and repair in living organisms.

8:00 AM–1:00 PM NSTA Symposium

Flight of the Monarch Butterflies (SYM-2)
(Grades K–12) Conf. Room 17/18, Marriott Rivercenter
Tickets Required: $54
Jim O’Leary, Maryland Science Center, Baltimore
Grant Bowers and Kelly Nail, University of Minnesota, St. Paul
For description, see Volume 1, page 57.

8:00 AM–5:00 PM Short Course

Meeting the Next Generation Engineering Practices with Exemplary Resources (SC-9)
(Elementary–High School) Salon del Rey B, Hilton
Tickets Required: $50
Peter Y. Wong (pwong@mos.org), Yvonne M. Spicer, and Michelle Dileo (mdileo@mos.org), Museum of Science, Boston, Mass.
Linda M. Morris (linda.m.morris@dartmouth.edu), U.S. Ice Drilling Program, Dartmouth Thayer School of Engineering, Hanover, N.H.
Jay Johnson, Ice Drilling Design and Operations, University of Wisconsin–Madison
For description, see Volume 1, page 60.

8:30–9:00 AM Presentation

SESSION 1

Integrating Science and the Common Core State Standards (Gen)
(Elementary–High School) Crockett A, Grand Hyatt
Mary L. Loesing (mloesing@ccscli.org), Connetquot Central School District, Bohemia, N.Y.
Theresa A. Curry (theresa_curry@manhasset.k12.ny.us), Manhasset High School, Manhasset, N.Y.
Receive an overview of the Common Core Learning Standards and discover different ways that these standards can be incorporated into the science curriculum.

8:30–9:30 AM Featured Presentation

What a Difference a Measurement Makes (Gen)
(General) Grand Ballroom C2, Convention Center
Paul A. Stokstad (stokstad@pasco.com), President, PASCO scientific, Roseville, Calif.
Presider: Martha Griffin, NSTA Director, District XIII, and Pasadena ISD, Sugar Land, Tex.
Started as a high school science project 50 years ago, the result today is PASCO scientific. Join Paul Stokstad, the science fair student who founded PASCO, as he shares how his STEM education shaped the mission of PASCO to provide students with the tools to do science, rather than just to learn about science. Paul will recount the journey of how PASCO made its way from a college dorm room to a garage to a world-class science education company.

Paul Stokstad’s fascination with scientific discovery began early. His science fair project built during his junior year in high school became the impetus for founding PASCO scientific.

From its humble beginnings in a college dorm room, PASCO has grown to become a global leader in developing technology-based solutions for hands-on science, serving educators and students in more than 100 countries around the world.

Since founding PASCO scientific in 1964, Paul has worked tirelessly to create innovative ways to teach and learn science. His recognitions include an honorary doctor of science from Andrews University in 2000 and a Distinguished Service Citation from the American Association of Physics Teachers in 2007. Paul received his bachelor’s degree in physics and master of engineering degree from Dartmouth College.
8:30–9:30 AM Featured Presentation

My Wild Life (Gen)
(General) Grand Ballroom C3, Convention Center

Mireya Mayor, National Geographic Emerging Explorer, Miami, Fla.
Presider: Jo Williams, President, Gay, Lesbian, Bisexual, and Transgender Science Teachers Association, Round Rock, Tex.

Relive with Mireya Mayor her wild ride as this daughter of Cuban immigrants blossoms from NFL cheerleader to Fulbright Scholar to field scientist to National Geographic TV correspondent and most recently, to PhD recipient. Mireya shares many behind-the-scenes stories of expeditions around the world and retraces the expedition where she discovered the tiny new species that enabled huge leaps in local conservation and science.

Mireya Mayor’s fascination with the wild began early. Her journey to the remote jungles of Guyana at the age of 22 has since blossomed into a career as a National Geographic wildlife correspondent. In 2005, Mireya received two Emmy Award nominations for her work on the television series Ultimate Explorer, and she was named an “Emerging Explorer” by the National Geographic Society in 2007. She hosts the series Wild Nights with Mireya Mayor on National Geographic’s channel Wild!

An NFL cheerleader-turned-scientist, Mireya divides her time between research in the rain forests of Madagascar, lecturing at schools and universities, and traveling the world as a wildlife correspondent. In 2000, Mireya codiscovered a new species of mouse lemur in Madagascar and eventually convinced the African island nation’s leaders to declare the new species’ habitat a national park.

Mireya is a Fulbright scholar, National Science Foundation Fellow, and published author with a PhD in anthropology from Stony Brook University.

Speaker is sponsored by National Geographic Learning.

8:30–11:30 AM Short Course

Science Is Cool: Bringing Climate Science to the Elementary Classroom (SC-10) (Elementary–Middle Level) La Reina, Hilton
Tickets Required: $26
Susan Kelly (susan.kelly@montana.edu) and Christine Foreman (cforeman@montana.edu), Montana State University, Bozeman
Louise Huffman (lhuffman@andrill.org), ANDRILL Science Management Office, Lincoln, Neb.
Walter Woolbaugh (walter@montana.com), Montana Public Schools and Montana State University, Bozeman
Brent C. Christner (xner@lsu.edu), Louisiana State University, Baton Rouge
For description, see Volume 1, page 60.

9:00–11:30 AM Exhibitor Workshop

DNA Detectives—Who Killed Jose? (Bio) (Grades 9–College) 217B, Convention Center
Sponsor: Bio-Rad Laboratories
Leigh Brown, Bio-Rad Laboratories, Hercules, Calif.
In this hands-on lab, we’ll solve a theatrical crime scene using biotechnology skills such as DNA gel electrophoresis, restriction digestion, and pipetting. Learn about the Innocence Project and how the wrongly accused can be exonerated.
9:00 AM–12 Noon NSTA ESP Symposium

ESP: Unique Features of Programs That Meet “More Emphasis” Features in the NSES (Gen)

The Standards offered Four Goals/Justifications for Science in K–6 Settings, namely that all students would: 1) Experience the richness and excitement of knowing about and understanding the natural world; 2) Use appropriate scientific processes and principles in making personal decisions; 3) Engage intelligently in public discourse and debate about matters of scientific and technological concern; and 4) Increase their economic productivity through the use of the knowledge, understandings, and skills of the scientifically literate person in their careers.

NSTA’s Exemplary Science Programs (ESP) series identifies people and places where the reforms recommended have emerged. The exemplary include: 1) Exemplary Science in Grades PreK–4; 2) Exemplary Science in Grades 5–8; 3) Exemplary Science in Grades 9–12; 4) Exemplary Science: Best Practices in Professional Development; 5) Inquiry: The Key to Exemplary Science; 6) Exemplary Science in Informal Education Settings; and 7) Exemplary Science for Resolving Societal Challenges.

The series was conceived by Robert E. Yager (1982–1983 NSTA President), who continues ESP searches and ways of recognizing classroom successes while also encouraging more to try!

Coordinator: Brenda Wojnowski, WAI Education Solutions, Dallas, Tex.

Symposium Participants:

Promoting Inquiry with Preservice Elementary Teachers
Thomas R. Lord (treeveslord@gmail.com), NSTA Director, College Science Teaching, and Retired Educator, Lewes, Del.

More Emphasis on Teacher Quality
Susan B. Koba (skoba@cox.net), Retired Educator, Omaha, Neb.

Creating a Pipeline to STEM Careers
Anton Puvirajah (apuvirajah@gsu.edu) and Lisa M. Martin-Hansen (lmartinhansen@gsu.edu), Georgia State University, Atlanta
Geeta Verma (geeta.verma@ucdenver.edu), University of Colorado, Denver

Bring School Science to College
Sondra B. Akins (akins@wpunj.edu), William Paterson University, Wayne, N.J.

“Who Ate Our Corn?”
Craig Wilson (cwilson@science.tamu.edu), USDA/Hispanic Serving Institutions National Program and Texas A&M University, College Station

Sowing the Seeds of Future Success
Timothy P. Scott (tim@science.tamu.edu), Texas A&M University, College Station

The Talent Marketplace—Where Science Careers Are Made
S. Anders Hedberg (anders@hedbergconsultingllc.com), Hedberg Consulting, LLC, Ottsville, Pa.

Developing Students’ Authentic Inquiry Skills
Judith A. Scheppler (quella@imsa.edu), Illinois Mathematics and Science Academy®, Aurora

Preparing Students for Careers That Do Not Yet Exist
Glenn “Max” McGee (maxmcgee@imsa.edu), Illinois Mathematics and Science Academy®, Aurora

Securing a “Voice”
David L. Brock (brockda@spcs.org), Roland Park Country School, Baltimore, Md.

Stop Talking, Start Listening
Peter Veronesi (pveronesi@brockport.edu), The College at Brockport, N.Y.

Revising Majors Biology: A Departmental Journey
Elizabeth Allan (eallan@uco.edu), NSELA President, and University of Central Oklahoma, Edmond

Revising an Old Strategy with New Frameworks
Teddie Phillipson-Mower (t.phillipsonmower@louisville.edu), University of Louisville, Ky.

Ways to Interest More Students in Science Careers
Claudia Khoure-Bowers (cmkhoure@kent.edu), Kent State University at Stark, North Canton, Ohio
Vicki McCamon (mccamon@npschools.org), Joseph Welty Middle School, New Philadelphia, Ohio

Success with Science Outdoors
Beth Ann Krueger (beth.krueger@centralaz.edu), Central Arizona College–Aravaipa Campus, Winkelman

Implementing the Jigsaw Technique to Enhance Learning
Sandhya N. Baviskar (sandhya.baviskar@uafs.edu), University of Arkansas–Fort Smith

Inspiring the Next Generation of Scientists
Gerard J. Putz (gjputz@sbglobal.net), Science Olympiad, Oakbrook Terrace, Ill.
Jennifer L. Wirt (scitchr24@yahoo.com), New Jersey Science Olympiad, Livingston

Developing Inquiry Skills
Robert Wolfe (rjwolffe@fsmail.bradley.edu), Bradley University, Peoria, Ill.

Why STEM—Why Now?
Karen Charles (kcharles@rti.org), RTI International, Research Triangle Park, N.C.
9:00 AM–5:00 PM Exhibits
Exhibit Hall B, Convention Center
The NSTA Exhibit Hall is a must-see! NSTA brings you the leading science education companies and organizations to showcase products, services, curricula, and much more. You’ll discover something new and exciting in the world of science teaching. Some exhibitors will offer materials for sale.

9:00 AM–5:00 PM Networking Opportunity
NSTA International Lounge
Republic C, Grand Hyatt
Please stop by the NSTA International Lounge to relax or meet colleagues while you’re at the conference. The lounge is open Thursday through Saturday, 9:00 AM–5:00 PM.

9:30–10:00 AM Presentation
SESSION 1
Measuring Minority Students’ Learning in Science and Technology (Chem) (General) Alamo Salon B, Marriott Riverwalk
Terrell L. Strayhorn (strayhorn.3@osu.edu), The Ohio State University, Columbus
Increasing the number of racial/ethnic minorities in STEM fields is a national priority. To achieve this goal, educators use a number of pedagogical techniques to promote development of students’ scientific and technical learning, although little is known about how to do so. In this session, I will demonstrate effective ways to measure such learning, present data from a multi-school study, and offer recommendations for increasing learning in this domain.

NSTA Student Chapter Showcase and Lounge
A three-day showcase featuring interactive sessions presented by NSTA Student Chapter faculty advisors, student leaders, and members—highlighting campus and community activities, hands-on demonstrations, discussion groups, and more. Between sessions, the room will serve as a lounge for preservice teachers, new teachers, and faculty advisors to meet, network, and share ideas. Refreshments available!

April 11-13 11:00 AM – 3:00 PM (daily)
Henry B. Gonzalez Convention Center
Executive Assembly
9:30–10:30 AM Presentations

SESSION 1
National Marine Sanctuaries—Bringing Ocean Technology into Your Classroom (Earth)
(Informal Education) 003A, Convention Center
Tracy Hajduk (tracy.hajduk@noaa.gov), NOAA Office of National Marine Sanctuaries, Silver Spring, Md.
National Marine Sanctuary lessons bring ocean science to classrooms. Come see how more than 100 lessons, real-time research expeditions, and telepresence can bring science exploration to your students.

SESSION 2
A Robotic WISSARD Integrates STEM into Your Classroom! (Earth)
(General) 101A, Convention Center
Betty Trummel (boop82@aol.com), Husmann Elementary School, Crystal Lake, Ill.
Ross D. Powell (rpowell@niu.edu), Northern Illinois University, DeKalb
WISSARD stands for Whillans Ice Stream Subglacial Access Research Drilling. This STEM project will have students excited about cutting-edge Antarctic geoscience. Scientists and engineers have created a robot to explore under the ice shelf.

SESSION 3
Going Beyond Data Collection: Sharing in a Science Classroom (Gen)
(General) 207A, Convention Center
Ben Smith (ben@edtechinnovators.com) and Jared Mader (jared@edtechinnovators.com), York, Pa.
This model lesson will demonstrate how students can collect and share data and produce a digital report. Bring your own device to participate as a student or come observe all the action.

SESSION 4
Teach STEM? NASA Explorer Schools Can Help! (Gen)
(Middle Level–High School) 212A, Convention Center
Rob LaSalvia, NASA Glenn Research Center, Cleveland, Ohio
President: Jodie Rozzell, Director, NASA Explorer Schools, NSTA, Arlington, Va.
NASA Explorer Schools is NASA’s classroom-based gateway to middle school and high school classrooms—inspiring students and teachers to participate in NASA’s mission through inquiry-based experiences.

SESSION 5
ASTC Session: Excite Kids Through Effective Science, Technology, Engineering, and Math Messaging (Phys)
(Informal Education) 213A, Convention Center
Tricia Berry (triciaberry@txgcp.org), The University of Texas at Austin
Explore research-based messaging, imagery, and best practices to engage diverse students in science, technology, engineering, and mathematics and to excite them to pursue STEM careers.

SESSION 6
Kindergarten Engagement Lessons (Gen)
(Preschool–Elementary) 213B, Convention Center
Andrea Zdinak Andretta, Norwalk (Conn.) Public Schools
Kindergartners are easily engaged. Let’s look at how the inquiry process is accessible for these young learners, beginning with planned engagement lessons.

SESSION 7
A Matter of Fact (Phys)
(Elementary) 216A, Convention Center
Stephanie Williams (stephwil@greenville.k12.sc.us) and Reginald Williams (rswilla@greenville.k12.sc.us), Alexander Elementary School, Greenville, S.C.
Matter is a difficult concept for students to understand. Join us and engage in activities that reinforce matter vocabulary and concepts.

SESSION 8
Science Reviews: Point by Point (Gen)
(Elementary—Middle Level) 216B, Convention Center
Shirley M. Willingham (shirlwil@hotmail.com), Houston Academy, Houston, Tex.
Using games and slide shows can add zest to your review time and keep students involved. Receive tips to make creating reviews faster and easier.
SESSION 9 (two presentations)
(High School–College) Bowie C, Grand Hyatt

SCST Session: Tuning Biology in Texas: Aligning Competencies and Expectations for the Biology Degree (Bio)
Lee E. Hughes (lhughes@unt.edu), University of North Texas, Denton
Linda W. Crow (lcrow@lonestar.edu), Lone Star College–Montgomery, Conroe, Tex.
Marisela Rodriguez (marisela.rodriguez@laredo.edu), Laredo Community College, Laredo, Tex.

A committee of biology faculty members from across Texas participated in a “tuning” process during 2011 and 2012. The recommendations of this committee will be presented, including the key competencies and learning outcomes expected for a student entering the degree program from high school and for completion of a bachelor’s degree in biology.

SCST Session: Increasing the Diversity and Quality of Biology Graduates (Bio)
Claire Sandler and Joe Salvatore (joesalva@umich.edu), University of Michigan, Ann Arbor

Engage and assess through science notebooking. Students write thoughts, get feedback before “publishing” work, make reference guides of concepts, and take ownership of their work.

SESSION 10 (two presentations)
(General) Crockett A, Grand Hyatt

Students as Scientists (Gen)
Aimee M. Schludecker (aschludecker@msddecatur.k12.in.us), Decatur Central High School, Indianapolis, Ind.
Mary Anne Hammonds (mhammonds@msddecatur.k12.in.us), Decatur Middle School, Indianapolis, Ind.

Promising Practices Bridge the Gap: A STEM High School Needs Assessment (Gen)
Loretta W. Harvey (lharvey@shawnee.edu) and Kenneth W. Carlson (kcarlson@shawnee.edu), Shawnee State University, Portsmouth, Ohio

An external needs assessment will be used to identify student and teacher needs in a STEM high school in rural Appalachia, promising practices that support STEM education.

SESSION 11
Supporting All Learners (Gen)
(General—High School) Crockett B, Grand Hyatt

Crystal L. Marsh and Nickoleta Lytras (nickoleta.lytras@salkschool.org), Salk School of Science, New York, N.Y.

Each student has unique learning strengths and needs. This session will help you identify those needs and provide strategies to help each student succeed.
SESSION 12
Exploring the Wonder of Science and Children’s Literature for the Next Generation (Gen)
(General) Crockett C, Grand Hyatt
Sally C. Mayberry and Alison Conant (edsresearcher@aol.com), Florida Gulf Coast University, Fort Myers
This session was created to introduce effective children’s literature and promote science and literature content integration to ensure success for the next generation.

SESSION 13
No Child Left Behind: An Update on the Federal Education Law (Gen)
(General) Lone Star Ballroom B, Grand Hyatt
Jodi Peterson (jpeterson@nsta.org), Assistant Executive Director, Legislative & Public Affairs, NSTA, Arlington, Va.
No Child Left Behind (aka the Elementary and Secondary Education Act) has had a major impact on K–12 education. In this session, we will examine the current status of NCLB, its effect on science education, where Congress and the Administration are headed in regard to education policy, and more.

SESSION 14
Science Teacher Preparation Revisited (Gen)
(Informal Education) Lone Star Ballroom C, Grand Hyatt
Marvin Druger (mdruger@syr.edu), 1994–1995 NSTA President, and Syracuse University, Syracuse, N.Y.
Emphasis will be placed on developing a new model for science teacher preparation that improves on current practices. Your input is encouraged.

SESSION 15
Engaging the Elementary School Community in Innovative and Meaningful STEM Activities (Gen)
(General) Lone Star Ballroom E, Grand Hyatt
Prent Klag (klag@suu.edu), Southern Utah University, Cedar City
Bolster community support, build excitement, and broaden partnerships by involving elementary schools, businesses, universities, and governmental agencies in innovative and meaningful STEM activities.

SESSION 16
NSTA Press® Session: Brain-powered Science Teaching and Learning with Discrepant Events (Gen)
(Middle Level–High School) Mission A, Grand Hyatt
Thomas P. O’Brien (tobrien@binghamton.edu), Binghamton University, Binghamton, N.Y.
Engaging, dual-purpose minds-on activities (and cartoons) explore the question: What does research on learning tell us about the desired direction for “next generation” teaching (Curriculum–Instruction–Assessment)?

SESSION 17
Effective Professional Development with NSTA Resources (Gen)
(Supervision/Administration) Mission B, Grand Hyatt
Steve Rich (bflywriter@comcast.net), NSTA Director, Professional Development, and West GYSTC, Carrollton, Ga.
Professional development providers will get tips from the PD committee on the effective use of NSTA Press® books and other resources that boost teachers’ content knowledge and pedagogy.

SESSION 18
NARST Session: Reaching More Students by Providing Visual Contextualization During Assessments (Gen)
(General) Presidio C, Grand Hyatt
Angi Shelton (angi@temple.edu), Virginia Beach, Va.
Emphasis will be placed on results from contextualized virtual assessments and participants will have an opportunity to experience the assessments and get involved.

SESSION 19
Using Formative Assessment Data to Improve Student Achievement (Env)
(High School–College) Seguin A, Grand Hyatt
Don Carmichael (dcarmichael@d125.org), Jason Carlson (jcarlson@d125.org), and Lisa Thoss, Adlai E. Stevenson High School, Lincolnshire, Ill.
Presider: Steven Wood (swood@d125.org), Adlai E. Stevenson High School, Lincolnshire, Ill.
Explore the use of student performance data to create review materials tailored to the needs of each student.

SESSION 20
Trends in Credit Attainment of High School Students in Science and Math Courses in Texas (Gen)
(General) Texas Ballroom C, Grand Hyatt
Liang Zeng (zengl@utpa.edu) and G. Harold Poelzer (hpoelzer@utpa.edu), The University of Texas–Pan American, Edinburg
Hear about trends in credit attainment of high school students in required and non-required science and math courses in Texas from 1997 to 2011.
SESSION 21
Next Generation Science Standards: Teacher Insights from the Writing Team—Life Sciences (Middle/High School) (Bio)
(Middle Level–High School) Texas Ballroom F, Grand Hyatt
Vanessa Westbrook (vanedani_61@yahoo.com), Chairperson, NSTA San Antonio National Conference, and Westbrook Consulting, Austin, Tex.
Kevin Fisher (kfisher56@msn.com), Lewisville ISD, Flower Mound, Tex.
Join middle school and high school life science teachers who are writers of the highly anticipated Next Generation Science Standards for an exploration of the development of NGSS—from teachers for teachers. Writers will share the thinking and ideas that went into writing this landmark document and the challenges they experienced along the way. This session will address and explore life science from the secondary perspective (grades 6–12) and what NGSS will mean for classroom science teachers.

SESSION 22
NSELA Session: Tools for Leaders (Gen)
(General) Travis A, Grand Hyatt
Darlene Ryan (dryan@chccs.k12.nc.us), Glenwood Elementary School, Chapel Hill, N.C.
Susan Koba (skoba@cox.net), Retired Educator, Omaha, Neb.
Jo Anne Vasquez (jvasquez@helios.org), 1996–1997 NSTA President, and Helios Education Foundation, Phoenix, Ariz.
Brenda Wojnowski (bwojnowski@gmail.com), WAI Education Solutions, Dallas, Tex.
The various tools and strategies shared with science leaders in this session support them in their work to enhance teaching and learning in their context. Session includes small groups for further discussion of an idea/tool presented by the panel. Handouts!

SESSION 23
AMSE Session: The Literacy STEM Connection (Gen)
(Middle Level–High School) Conf. Room 6, Marriott Rivercenter
Barbara Mammen (bmammen@stevens.edu), Stevens Institute of Technology, Hoboken, N.J.
Donna Darden-Irons (ddarden@camden.k12.nj.us), Morgan Village Family School, Camden, N.J.
Ivy Foster-Maye (imaye@camden.k12.nj.us), Veterans Memorial Family School, Camden, N.J.
Emphasis will be placed on promoting literacy for all students through the use of instructional strategies that integrate STEM content, science inquiry, the engineering design process, and 21st-century skills.

SESSION 24
Deploying iPads One to One in a High School (Gen)
(High School/Supervision) Conf. Room 15, Marriott Rivercenter
Shawn M. Carlson (scarlson@csd3.org), Boothbay Region High School, Boothbay Harbor, Maine
Join me as I share approaches used by our high school in deploying iPads to all students.

SESSION 25
Are You Certain? Teaching Error Analysis and Other Experimental Skills in the Physics Classroom (Phys)
(Middle Level–College) Salon B, Marriott Rivercenter
David Bonner (dbonner@hinsdale86.org), Hinsdale South High School, Darien, Ill.
For students to learn from experiments, they must first learn how to do experiments. Join me for practical insights and examples for teaching experimental skills.

SESSION 26
Science, Reading, and Math, Oh My! Courage to Integrate (Gen)
(General) Salon F, Marriott Rivercenter
Jewlana D. Smith-Hunter (smithhunter@fultonschools.org), Seaborn Lee Elementary School, College Park, Ga.
Tear down the walls of isolation and welcome integration. Find out how to effectively teach science, reading, and math standards while meeting diverse learners’ needs.
SESSION 27
Invertebrates as the “Backbone” of an Elementary Science Curriculum (Bio)
(Preschool–Middle Level) Alamo Salon E, Marriott Riverwalk
Ilana April (iapril@amnh.org), Jennifer Belfiore (jbelfioe@amnh.org), and Caitlin Van Ness, American Museum of Natural History, New York, N.Y.
Discover how studying live invertebrates helps young children make connections to “big ideas” such as biodiversity, habitats, stewardship, and scientific practice.

SESSION 28 (two presentations)
(High School) Alamo Salon F, Marriott Riverwalk
Teaching and Learning About the Human Nature of Science Within the Learning Cycle (Bio)
Rachel A. Beattie (rbcreative8@gmail.com), Lincoln-Way East High School, Frankfort, Ill.
Join me as I share standards- and research-based lessons to confront student preconceptions about the roles of subjectivity, creativity, observation, and inference in developing the DNA model.

Standards- and Research-based Lessons for the High School Biology Classroom (Bio)
Rachel A. Beattie (rbcreative8@gmail.com), Lincoln-Way East High School, Frankfort, Ill.
Through presenter-designed formative assessment probes, you’ll discover standards- and research-based lessons designed to confront student preconceptions about biology concepts at the high school level.

SESSION 29
Write Your Way to Success: Grant Writing Strategies for You and Your Chemistry Students (Chem)
(High School) Travis, Marriott Riverwalk
Kenetia K. Thompson (k_thompson2@acs.org), Michael Mury, Marta Gmuczyk, and Karen M. Kaleuati (k_kaleuati@acs.org), American Chemical Society, Washington, D.C.
Looking to fund your innovative ideas? We will give you pointers for writing a fundable proposal and share grant opportunities from the American Chemical Society.

9:30–10:30 AM Workshops

What’s Up? Classroom Activities from the Association of Astronomy Educators, Session I: Sun, Earth, and Planets (Earth)
(General) 001A, Convention Center
Jacob Noel-Storr (jake@cis.rit.edu), Rochester Institute of Technology, Rochester, N.Y.
Wendy M. Van Norden (wendy.m.vannorden@nasa.gov), NASA Goddard Space Flight Center, Greenbelt, Md.
Led by master astronomy teachers from the Association of Astronomy Educators (AAE), join us for classroom-ready, hands-on astronomy activities that really work.

Weather Headlines: A Tool for Science Learning (Earth)
(Middle Level–High School) 001B, Convention Center
Lisa Gardiner (lisagard@ucar.edu), University Corporation for Atmospheric Research, Boulder, Colo.
Becca Hatheway (hatheway@ucar.edu) National Center for Atmospheric Research, Boulder, Colo.
News stories about extreme weather provide a forum for learning atmospheric science. Explore activities and resources that allow students to consider weather in new ways.

NASA CERES S’COOL Project: Become a S’COOL Cloud Observer! (Earth)
(Elementary–Middle Level) 002, Convention Center
Preston M. Lewis, Jr. (preston.lewis@nasa.gov), NASA Langley Research Center, Hampton, Va.
Brian Butera, Turn of River Middle School, Stamford, Conn.
Engage your class in making real-world cloud and weather observations. Become a NASA S’COOL cloud observer and learn more about clouds wherever you are!

Diverse Science Tools for Diverse Science Learners (Gen)
(General) 201, Convention Center
Deanna Boyd (sherrise77@gmail.com), Renaissance Middle School, Fairburn, Ga.
Experience a hands-on demonstration of science tools, including science notebooks, foldables, vocabulary strategies, and various differentiation techniques. Free materials and information will be distributed!
Investigating Soil in the Elementary Classroom
(Davida Buehler (dbuehler@geosociety.org), The Geological Society of America, Boulder, Colo.)
Join The Geological Society of America as we discover the components of soil and the various properties through numerous inquiry-based activities.

Literacy (Prose and Poetry) as a Component of Science Teaching
(Kathryn T. Watkins (watkins@unm.edu), The University of New Mexico, Albuquerque)
Come explore various ways to use prose and poetry to teach students characteristics of living organisms.

An Amazing Beginning: Starting Interactive Science Notebooks with Your Students!
(Elizabeth L. Ridgeway (ridgewae@highlands.k12.fl.us), Lake Country Elementary School, Lake Placid, Fla.)
Learn to set up notebooks; integrate reading, writing, and art; and start using notebooks as an assessment tool in your classroom now. Handouts!

“Life begins at retirement.”
—Author Unknown
Join the NSTA Retired Advisory Board for an insightful information-sharing session. Fellow colleagues will share ideas about staying active both in and out of the profession.

Before and After Retirement: Practicalities and Possibilities
Saturday, April 13
9:30–10:30 AM
Grand Hyatt San Antonio
Bonham E
For more information on the Retired Members Advisory Board, contact Rebecca Bell, chair, at rbell153@gmail.com.
NESTA Session: National Earth Science Teachers Association Geology Share-a-Thon (Earth)
(Elementary—High School) Ballroom A, Convention Center
Michelle Harris (michelle.harris@apsva.us), Wakefield High School, Arlington, Va.
Roberta M. Johnson (rmjohnsn@nestanet.org), NESTA and University at Albany, Boulder, Colo.
Margaret A. Holzer (mholzer@monmouth.com), Chatham High School, Chatham, N.J.
Sharon Katz Cooper (scooper@oceanleadership.org), Deep Earth Academy, Consortium for Ocean Leadership, Washington, D.C.
Becky J. Cox (beckyc@utm.edu), The University of Tennessee at Martin
Emily J. Fuger (efuger@sciencesocieties.org), Soil Science Society of America, Madison, Wis.
Paige Valderrama Graff (paige.v.graff@nasa.gov), Jacobs ESCG/NASA Johnson Space Center, Houston, Tex.
Timothy McCollum (tmcollum@eiu.edu), Eastern Illinois University, Charleston
H. Michael Mogil (hmogil@weatherworks.com), How The Weatherworks, Naples, Fla.
Shelley Olds (olds@unavco.org), UNAVCO, Boulder, Colo.
Michael J. Passow (michael@earth2class.org), Dwight Morrow High School, Englewood, N.J.
Carole J. Reesink (cjreesink@muscanet.com), Retired Educator, Muscatine, Iowa
Randy Russell (rrussell@ucar.edu), University Corporation for Atmospheric Research, Boulder, Colo.
Jennifer Savage (jsavage@seti.org), SETI Institute, Mountain View, Calif.
Denise R. Smith, East Ward Elementary School, Killeen, Tex.
Join more than 20 NESTA members and other education specialists as they share their favorite classroom activities. Lots of free handouts!

DuPont Session: DuPont Presents “The Science of Food Safety” (Bio)
(Middle Level—High School) Bonham B, Grand Hyatt
Lisa Paige Bynum (lphynum@volusia.k12.fl.us), Heritage Middle School, Deltona, Fla.
Explore food safety issues such as food-borne illness, Salmonella poisoning, chemical additives, and packaging to prevent microbial growth, slow oxidation of fresh fruit, and enhance nutrient content.

Water Water Everywhere…But Would You Swim in the Passaic River? (Gen)
(Middle Level) Bonham C, Grand Hyatt
Lynn B. Tarant (ltarant@paterson.k12.nj.us), Paterson Education Fund, Paterson, N.J.
Sarah Sterling-Laldee (patersonstem@gmail.com), School No. 2, Paterson, N.J.
Sugeiry V. Lopez (lopez.sugeiry@gmail.com), YMCA of Paterson, N.J.
Presider: Shalumiel Hill (shalumiel_hill@yahoo.com), YMCA of Paterson, N.J.
Teachers and interns engage middle school students in becoming agents of change in their local community with the importance of water quality and Great Falls being named a National Historic Site.

Connecting the Circuit: Inquiry, Literacy, and the Brain (Gen)
(Supervision/Administration) Bonham D, Grand Hyatt
Wayne Snyder (wayne.snyder@cgu.edu), Claremont Graduate University, Claremont, Calif.
Presider: Jeff DeGlopper, Milwaukee Academy of Science, Milwaukee, Wis.
Engage in a “batteries and bulbs” guided inquiry, demonstrating the power of inquiry and predictions, and analyzing examples and non-examples and student writing…while relating these to brain-based research.

CSSS Session: Science Ideas and Practices: Assessing Both Simultaneously (Gen)
(Supervision/Administration) Bonham E, Grand Hyatt
Deborah Tucker (deborahlt@aol.com), Science Education Consultant, Napa, Calif.
Grant M. Gardner (grantmgardner@msn.com), Assessment Services, Inc., Pepperell, Mass.
Hands-on performance tasks that are used as formative or summative tools assess both core ideas and practices. Join us and explore the benefits of these unique assessment tasks.

Using a “Strengths-based” Approach to Teaching Science to Students with Disabilities (Gen)
(General) Bowie B, Grand Hyatt
Sami Kahn (samikahn@mail.usf.edu), University of South Florida, Tampa
During this hands-on workshop, participants will model strategies that not only accommodate students with disabilities’ challenges, but also challenge students to reach their scientific potential.
Neuroscience for Your Biology Classroom (Bio) (High School–College/Inf.) Lone Star Brm. A, Grand Hyatt
Dina Markowitz (dina_markowitz@urmc.rochester.edu) and Susan Holt, University of Rochester, N.Y.
Would you like to use simple, hands-on, active learning lessons to introduce neuroscience concepts into your biology curriculum? Join us and experience two sample neuroscience activities from the University of Rochester’s Life Sciences Learning Center. Handouts and information on support for field testing in your classroom will be provided.

The Architects Have Started Without Me: What Do I Do Now? (Science Facilities 102) (Gen) (General) Presidio A/B, Grand Hyatt
LaMoine L. Motz (llmotz@comcast.net), 1988–1989 NSTA President, and Science Education and Facilities Specialist, White Lake, Mich.
Juliana Texley (jtexley@att.net), Palm Beach State College, Boca Raton, Fla.
Sandra West Moody (sw04@txstate.edu), Texas State University, San Marcos
Presider: LaMoine L. Motz
Is your district designing new science facilities but you’re not involved? You need to get involved before it is TOO LATE! In this advanced course on science facility planning and design (an extension of the Science Facilities 101 session, page 25), the NSTA author team for NSTA Guide to Planning School Science Facilities (2nd ed.) will present more detailed information and examples of functional and flexible science facilities for inquiry/project-based science. We’ll look at budgeting, working with the architect, space requirements, technology, flexibility, safety, new types of spaces, and special adjacencies. Take home a packet.

Wetlands and Watersheds—An Inquiry Approach! (Env) (General) Republic B, Grand Hyatt
Judith Lucas-Odom (judyps23@yahoo.com), Showalter Intermediate, Chester, Pa.
Water is a precious commodity! We will explore how to keep it viable using inquiry activities in a wetland/watershed environment.

NSTA Press® Session: Classroom Activities to Accompany Stop Faking It! Energy (Phys) (Elementary—High School) Texas Ballroom D, Grand Hyatt
Bill Robertson (wrobert9@ix.netcom.com), Bill Robertson Science, Inc., Woodland Park, Colo.
In response to teacher demand, I’m developing a set of classroom activities on energy to accompany the Stop Faking It! Energy book. The learning cycle is incorporated in an easy-to-use, teacher-friendly, research-based curriculum for upper elementary and conceptually based high school lessons that can help your students truly understand energy concepts. Join me for activities from the upcoming book.

Mobile Science: Unlock the Potential of iPads in the Field (Env) (General) Texas Ballroom E, Grand Hyatt
Katy Scott (kscott@mbayaq.org), Monterey Bay Aquarium, Monterey, Calif.
Come see how the Monterey Bay Aquarium uses iPads in the field to help K–12 students access and create a wealth of information.

SYM-1 Follow-Up Session: Get Muddy! How to Adopt One of Our Nation’s Estuaries and Get Your Students Excited About Data (Gen) (Middle Level–High School) Conf. Room 3/4, Marriott Rivercenter
Bree Murphy (bree.murphy@noaa.gov), NOAA National Estuarine Research Reserve System, Silver Spring, Md.
Peg Steffen (peg.steffen@noaa.gov), NOAA National Ocean Service, Silver Spring, Md.
Join us and get to know your “home” estuary! We will be leading a fun, interactive game of trivia about our nation’s estuaries and you can win valuable prizes! We’ll introduce our new curriculum for middle and high school students about estuaries, the world’s most productive marine ecosystems. This curriculum is loaded with low-cost hands-on activities and data-related activities you can do in your classroom as well as a wealth of other multimedia resources that are all free and downloadable online.

Meltdown: Using a Nuclear Disaster to Teach Science (Gen) (High School) Conference Room 16, Marriott Rivercenter
Laurie A. Hayes (lhayes@cart.org), Angela Thornton (athernton@cart.org), and Todd Bristol (tbristol@cart.org), Center for Advanced Research and Technology, Clovis, Calif.
Using the Fukushima Japan meltdown as a model, you will engage in hands-on activities that can integrate physics, chemistry, and biology into the science classroom.
Aaron Osowiecki (aosowiecki@gmail.com) and Jesse Southwick (jesse.southwick@gmail.com), Boston Latin School, Boston, Mass.
Assess your students’ understanding of work, energy, friction, and Newton’s first law of motion using an inexpensive rubber band slingshot.

Interactive Word Walls Come to Life (Gen) (Middle Level–High School) Salon M, Marriott Rivercenter
Nancy J. Rodriguez (nancy.rodriguez@esc20.net), Education Service Center, Region 20, San Antonio, Tex.
Lisa Duran (lisa.duran@harlandale.net), Harlandale ISD, San Antonio, Tex.
Presider: Sandy Botello, Education Service Center, Region 20, San Antonio, Tex.
Are your English language learner students struggling with science vocabulary and content? Join us as we create and interact with organized word walls. Learn ways to incorporate organized word walls and vocabulary into daily activities.

McREL Pathway Session: Designing Effective Science Lessons—Revealing and Addressing Preconceptions (Gen) (General) Salon K, Marriott Rivercenter
Anne Tweed (atweed@mcrel.org), 2004–2005 NSTA President, and McREL, Denver, Colo.
Students can provide the right word, definition, or formula… yet still hold inaccurate preconceptions. If “correct” answers can result in insufficient evidence of understanding, then how can teachers reveal and address student misconceptions to determine if students really understand science concepts? Come learn about an instructional process that you can use to reveal prior knowledge, address misconceptions, and build on what students already understand. Handouts.

Stretch Your Legs for Science (Bio) (General) Alamo Salon C, Marriott Riverwalk
Jennifer Fee (jms327@cornell.edu), Cornell Lab of Ornithology, Ithaca, N.Y.
Bird Cramer, Peachtown Elementary School, Aurora, N.Y.
Pamela Evans (pevans@charleston.k12.il.us), Jefferson Elementary School, Charleston, Ill.
Care for a little more exercise than running between sessions? Come join us for a mini bird walk! After a quick tutorial on bird identification, we’ll head outside for a quick citizen science count. You’ll experience just how engaging and easy it can be to get going with citizen science!

Tangible Models and Augmented Reality: New Technology for High School Biology Classrooms (Bio) (High School) Alamo Salon D, Marriott Riverwalk
Matt D. Silbergliit (msilber@wested.org) and Jodi Davenport (jdavenport@wested.org), WestEd, Oakland, Calif.
Autumn Chapman (autleaf46@yahoo.com), Alameda, Calif.
Explore new DNA, protein, and virus models, along with augmented reality apps. Take home models, links to apps, and activities to use in your classes.
9:30–10:30 AM Exhibitor Workshops

NASA’s Next Generation Science Classroom

(Earth)

(Grades 6–8) 103B, Convention Center

Sponsor: NASA Science Mission Directorate E/PO

Cassie Soeffing, Institute for Global Environmental Strategies, Arlington, Va.

Ruth Paglierani and **Kyle W. Fricke,** University of California, Berkeley, Calif.

Andi Nelson and **Lindsay M. Bartolone,** Adler Planetarium, Chicago, Ill.

Sheri Klug Boonstra, Arizona State University, Tempe

Kristin Wegner, University Corporation for Atmospheric Research, Boulder, Colo.

Ginger J. Butcher, Sigma Space, Greenbelt, Md.

Dorian W. Janney, NASA Goddard Space Flight Center, Greenbelt, Md.

Pamela K. Harman, SETI Institute, Mountain View, Calif.

Brandon Lawton and **Dan McCallister,** Space Telescope Science Institute, Baltimore, Md.

Edgar A. Bering, University of Houston, Tex.

Todd Ellis, SUNY Oneonta, N.Y.

Lauren Brodsky, The Lawrence Hall of Science, University of California, Berkeley

Georgia Bracey, Southern Illinois University, Edwardsville

Participate in inquiry-based hands-on science activities that you can use with your students. These resources focus on crosscutting concepts aligned with the highly anticipated Next Generation Science Standards and cover the spectrum of Earth and space science topics. The activities and hundreds more are freely available through NASA Wavelength, a new digital library for educators.

Celebrating Your Lifetime Dedication

By invitation only, join your fellow NSTA Life Members for a breakfast filled with memories as well as meaning. Catch up with old friends, make new ones, trade war stories, and discuss ways to share your talents and vitality with the science education community.

NSTA Life Members’ Buffet Breakfast

Sunday, April 14

7:00–9:00 AM

Grand Hyatt San Antonio, Bowie B/C

Tickets are required (M-11: $50 on-site) and, if still available, must be purchased at the NSTA Registration Area by 3:00 PM on **Saturday, April 13**.

Participation is limited to NSTA life members only.
Earth and Space Science—More Pertinent Today, More Important in the Next Generation Science Standards (Earth) (Grades 6–12) 205, Convention Center
Sponsor: It’s About Time
Ann Benbow, American Geosciences Institute, Alexandria, Va.
Recent developments and the increasing societal importance of Earth-related issues have created a need for understanding Earth’s systems. See how the American Geosciences Institute’s new edition of EarthComm, and its project-based Earth systems approach can help you implement the practices and goals of NGSS.

9:30–11:00 AM Presentation
SESSION 1
NMLSTA Session: NMLSTA Share-a-Thon (Phys) (Middle Level) Texas Ballroom A/B, Grand Hyatt
Rajeev Kumar Swami (chem276@yahoo.com), NMLSTA President, and Central State University, Wilberforce, Ohio
Todd F. Hoover (thoove2@bloomu.edu), Bloomsburg University of Pennsylvania, Bloomsburg
Timothy A. Laubach (laubach@ou.edu), University of Oklahoma, Norman
Patty McGinnis, NSTA Director, Middle Level Science Teaching, and Arcola Intermediate School, Eagleville, Pa.
Leanne K. Moorman (lmoorman@windstream.net), Columbus (Ohio) City Schools
Middle level science teachers will share tested-and-tried activities from their classrooms with fellow teachers. Come receive complete activities that can be used to motivate middle grade students.

9:30–11:30 AM Exhibitor Workshop
Wind-energized Classroom (Gen) (Grades 4—12) 007C, Convention Center
Sponsor: KidWind Project
Joseph T. Rand (joe@kidwind.org) and Michael Arquin, KidWind Project, St. Paul, Minn.
Join KidWind as we explore classroom wind turbine activities. Play with simple devices you can build for less than $5 to advanced turbines that explore generators, gearboxes, and airfoils. Learn about curricula, student design challenges, and web tools to make your classroom come alive with wind-powered science.

9:30 AM–12:30 PM Workshop
PDI
WISP Pathway Session: Integrating Science and Literacy—A Journey, Not a Destination (Gen) (General) Salon L, Marriott Rivercenter
Carrie Launius (jlaunius@hazelwoodschools.org), Hazelwood School District, Florissant, Mo.
Kristin T. Rearden (k.rearden@ustk.edu) and Amy D. Broemmel (broemmel@utk.edu), University of Tennessee, Knoxville
Sarah C. Campbell (sarah@sarahccampbell.com), Author/Photographer, Jackson, Miss.
Suzanne Flynn (suzannemflynn@earthlink.net), Lesley University, Cambridge, Mass.
Terry Catasus Jennings (ltjennings@verizon.net), Author, Reston, Va.
Darcy Pattison (darcy@darcypattison.com), Little Rock, Ark.
Wendy Saul, University of Missouri—St. Louis
Melissa Stewart, Acton, Mass.
Mike Szydlowski (mszydlow@columbia.k12.mo.us), Columbia (Mo.) Public Schools
Juliana Texley (jtexley@att.net), Palm Beach State College, Boca Raton, Fla.
Catherine Thimmesh (cthimmesh@comcast.net), Houghton Mifflin Harcourt, Eden Prairie, Minn.
Peggy Thomas (pegtwrite@aol.com), Middleport, N.Y.
Diana Wiig (dwiig@uwyo.edu), University of Wyoming, Laramie
Sallie Wolf (salwolf@comcast.net), Oak Park, Ill.
Presider: Suzanne Flynn
Interact with noted authors, science educators, and NSTA program managers as they share strategies for integrating science and literacy using high-quality science trade books.

10:00–10:30 AM Presentation
SESSION 1
Teaching Climate and Energy: The CLEAN Collection of Peer-reviewed Climate and Energy Learning Resources (Env) (Informal Education) Crockett D, Grand Hyatt
Tamara S. Ledley, TERC, Cambridge, Mass.
Anne U. Gold (anne.u.gold@colorado.edu), University of Colorado at Boulder
The CLEAN collection of climate and energy learning resources helps you teach with confidence. See materials, teaching tips, and standard alignments at cleanet.org. Learn more!
10:00–11:15 AM Exhibitor Workshop

Identifying, Clarifying, and Designing Experiments
(Grades K–8)
214B, Convention Center

Sponsor: Delta Education/School Specialty Science

Johanna Strange, Consultant, Richmond, Ky.

Tom Graika, Consultant, Lemont, Ill.

Having trouble getting students ready for science fairs and STEM performances? Learn an effective method for teaching students to design experiments from simple investigations. The same process can help students crystallize engineering ideas. Delta products will be featured and resources will be provided.

10:00–11:30 AM Exhibitor Workshops

Take a Swipe at Microbes!
(Grades 7–12)
006A, Convention Center

Sponsor: LaMotte Co.

Ken Rainis, Precision Microslides, Cottonwood, Ariz.

Excite students with fun and safe ways to become scientific explorers of microbes in air, water, food, and on surfaces. As scientists, students will use technology to identify the microbes that they find. As engineers, they will design methods to collect data using BioPaddles™. As mathematicians, they will quantify microbes in CFU/cm² units. Engage students in thinking about the real-world connections of microbes and life. Come microbe hunting with us! Takeaways!

The Next Generation Science Standards: What They Mean for Earth and Space Science
(Grades K–12)
006B, Convention Center

Sponsor: Pearson

Michael Wysession, Washington University in St. Louis, Mo.

The Next Generation Science Standards represent a bold new direction for K–12 science in America, but also pose many challenges and questions. Professor Michael Wysession, a lead author of NGSS, will talk about the implications for teaching, assessment, and professional development in American Earth and space science education.

Equip Your iPad or Android Tablet for Science with SPARKvue® HD, a Full-featured Science Application
(Grades K–12)
006C, Convention Center

Sponsor: PASCO scientific

Presenter to be announced

Explore PASCO’s science application for the iPad and Android Tablet. SPARKvue HD offers a suite of display and analytical tools, all within an integrated learning environment—including reflection prompts, journaling, and more. The app also supports the growing collection of SPARKlabs, integrating rich content with live data collection and analysis.

Exploring Basic Optics
(Grades 9–12)
006D, Convention Center

Sponsor: PASCO scientific

Presenter to be announced

Explore the behavior of light with PASCO’s basic optics components. Using lenses, a multifunction light box, prisms, and a ray table, see how easily quantitative measurements are made in a guided inquiry exploration. Demonstrations of color mixing and a sensor-based diffraction of light experiment are visualized using SPARKvue® software.
Enhancing the Elementary Classroom Through Robotics (Gen)
(Grades 2–5) 007A, Convention Center
Sponsor: LEGO Education
Learn how your students can explore science and math concepts with LEGO Education WeDo Robotics by building moving models out of LEGO® bricks and programming the models using a graphical programming platform developed specifically for elementary students. Participants will discover key science, math, engineering, and literacy concepts by completing an actual classroom activity from the LEGO Education WeDo Robotics Set and Activity Pack.

Volcanoes and the Ring of Fire (Earth)
(Grades 5–12) 007B, Convention Center
Sponsor: Simulation Curriculum Corp.
Herb Koller (hkoller@simcur.com), Simulation Curriculum Corp., Minnetonka, Minn.
What are volcanoes and where are they found? What volcanoes in the United States pose an immediate threat? See on the big screen how The Layered Earth can answer these questions with the help of our ready-to-use lessons.

Teaching AP Chemistry with Molecular-Level Visualization and Simulation Tools (Chem)
(Grades 6–College) 007D, Convention Center
Sponsor: Wavefunction, Inc.
Paul Price (sales@wavefun.com), Trinity Valley School, Fort Worth, Tex.
Indispensable in many college chemistry courses, molecular modeling is also an effective learning tool for the high school classroom. Bring your laptop (Windows or Mac OS X) to this hands-on workshop and learn how to support your teaching of AP Chemistry with the powerful recent release of Odyssey High School Chemistry.

HHMI’s The Day the Mesozoic Died Classroom Resources (Earth)
(Grades 7–College) 008A, Convention Center
Sponsor: Howard Hughes Medical Institute
Cindy Gay, Steamboat Springs High School, Steamboat Springs, Colo.
Jeremy Conn, Goshen High School, Goshen, Ohio
View HHMI’s The Day the Mesozoic Died, a new short film that can enrich your teaching of the nature and power of the scientific method. The film traces the uncovering of key clues that led to the stunning discovery that an asteroid struck Earth 66 million years ago, triggering a mass extinction of animals, plants, and even microorganisms. Take home free lessons, tips, and activities that address key concepts presented in the film, emphasizing the connections among all science disciplines.

The Basics of Flipped Learning, Getting Started: A Panel Discussion of Experts (Gen)
(Grades 9–12) 008B, Convention Center
Sponsor: Carolina Biological Supply
Jon Bergmann and Aaron Sams, Flipped Learning Network, Lake Forest, Ill.
Learn from this panel of experts (who’ve been through the school of hard knocks) how to actively transfer responsibility and ownership of learning to students through flipped learning. The result—improved student understanding of key concepts. Explore new tools, techniques, and resources to overcome challenges and successfully implement flipped learning.

Experiences from a Professional Development Opportunity in Costa Rica (Bio)
(Grades 5–12) 101B, Convention Center
Sponsor: Tropical Ecology Assessment and Monitoring Network
Peggy Lubchenco, Tropical Ecology Assessment and Monitoring Network, Goleta, Calif.
Jenn Boyd, Westlake High School, Westlake Village, Calif.
Beth Platt, Smithtown High School West, Smithtown, N.Y.
Last summer, 16 biology teachers participated in fieldwork at the Tropical Ecology Assessment and Monitoring (TEAM) Network site in Costa Rica. Come see how they translate their field experiences with camera-trapping and satellite-image interpretation into curriculum and student projects. TEAM will also demonstrate its newly created, extremely useful educational portal.

Go Green and Bring STEM Concepts to Life with the K’NEX® Education Renewable Energy Set! (Phys)
(Grades 5–9) 102B, Convention Center
Sponsor: K’NEX Education
Presenter to be announced
Address critical STEM concepts in the middle school classroom and gain instructional models that can enhance your students’ understanding of these concepts in this hands-on workshop. K’NEX and the lessons provided in the teacher’s guide use hands-on exploration in conjunction with an engaging, inquiry-based approach to learning. Students work together as they build, investigate, discuss, and evaluate concepts, ideas, and designs. Drawing for a K’NEX Education Renewable Energy Set!
New Advanced Inquiry Labs for AP Biology from Flinn Scientific (Bio) (Grades 10–12) 103A, Convention Center
Sponsor: Flinn Scientific, Inc.
Maureen Hunt (mhunt@flinnsci.com) and Jennifer Sternberg (jsternberg@flinnsci.com), Flinn Scientific, Inc., Batavia, Ill.
Four big ideas, more great labs! The revised AP Biology curriculum integrates scientific inquiry and reasoning through a series of student-directed, inquiry-based laboratory investigations. Join Flinn Scientific as we model the inquiry process and demonstrate activities from our new guided inquiry labs for AP Biology. We will share proven strategies for improving students’ ability to generate meaningful questions, design experiments, and analyze scientific evidence. Handouts provided for all activities include alignment with the new AP Biology curriculum.

Biomes and Invasive Species (Bio) (Grades 9–12) 203A, Convention Center
Sponsor: LAB-AIDS, Inc.
Mark Koker, LAB-AIDS, Inc., Ronkonkoma, N.Y.
How do the characteristics of a biome determine the plant and animal life found there? How do nonnative species survive to become invasive species? In this activity from the SEPU high school biology program, Science and Global Issues: Biology, students match a set of organism cards to proper climate/biome cards, then use literacy strategies to consider the impact of invasive species.

Making Science Fun: MyBotanicPlanet.com (Bio) (Grades K–5) 204A, Convention Center
Sponsor: TruGreen’s MyBotanicPlanet.com
Julie (Inspector Nectar) Baltz (julie.baltz@memphisbotanicgarden.com) and Drew (Flavor Flores) Massengale (drew.massengale@memphisbotanicgarden.com), Memphis Botanic Garden, Memphis, Tenn.
Learn how to make K–5 science more fun. Creatively capture the persona of educational characters in TruGreen’s MyBotanicPlanet.com. Become Flavor Flores to take your students on a remarkable journey as they discover that some of their favorite flavors come from plants. Or engage as Inspector Nectar to help students follow clues as they learn about pollination.

NGSS and Scientific Practices—More Than Photoshopping Models’ Flaws (Phys) (Grades 6–9) 204B, Convention Center
Sponsor: Sangari Active Science
Joe Krajcik, Michigan State University, East Lansing
What comes to mind when you hear the word “model”? Solar system mobiles? Cells in pie plates? The new standards require going beyond the models used in science for years! Come engage in modeling activities for middle schoolers and unpack how to think about models you use now in ways consistent with the highly anticipated NGSS.

Carolina Investigations™ for AP Biology Labs (Bio) (Grades 9–12) 206A, Convention Center
Sponsor: Carolina Biological Supply
Carolina Teaching Partner
Looking for a seamless transition to the new curriculum? Enrich your students’ experience in AP Biology with unique solutions from Carolina. This hands-on workshop introduces you to new resources designed for the revised College Board AP Biology curriculum, while enhancing your ability to introduce inquiry into your classroom.

Integrating Common Core Writing, Speaking, and Listening Strategies into Science Instruction (Gen) (Grades K–5) 206B, Convention Center
Sponsor: Carolina Biological Supply
Carolina Teaching Partner
Explore ways to provide students with Common Core writing, speaking, and listening strategies through inquiry-based instruction. These skills lead to better understanding in writing, speaking, and reading science.

High School Biology in a Digital World: Critical Thinking Trumps Information Overload (Bio) (Grades 9–12) 209, Convention Center
Sponsor: Discovery Education
Join Wendy Raymond, Discovery Education senior biology consultant, in exploring the excitement of biology education in a digital world. Learn why some students with the best high school science grades often struggle in college courses and what might be done to provide a stronger high school science foundation.
Physics with Vernier
(Phys)
(Grades 9–College)
210A, Convention Center
Sponsor: Vernier Software & Technology
David L. Vernier (info@vernier.com) and Verle Walters (info@vernier.com), Vernier Software & Technology, Beaverton, Ore.
Experiments such as sound waves and motion of a cart on a ramp from our popular Physics with Vernier lab book will be performed. A variety of new physics accessories such as the Diffraction Apparatus will be available to try as well. Conduct these experiments using LabQuest 2 and LabQuest Mini.

Inquiry-based Biology with Vernier
(Bio)
(Grades 9–College)
210B, Convention Center
Sponsor: Vernier Software & Technology
Mike Collins (info@vernier.com), Vernier Software & Technology, Beaverton, Ore.
Rick Rutland, Five Star Education Solutions, LLC, San Antonio, Tex.
Do you need to add inquiry labs to your biology course? Vernier has done the work for you with our new book, Investigating Biology through Inquiry. In this hands-on workshop, you will learn how to conduct a biology inquiry investigation using sensors with our LabQuest 2.

Put the “E” in STEM: Science and Engineering Practices in Action
(Phys)
(Grades 6–12)
211, Convention Center
Sponsor: Ward’s Science
Joe Simmons, VWR Education, Rochester, N.Y.
Are you ready to race? Come build a rubber band racer as outlined in a guided inquiry activity incorporating science and engineering practices into a fun physical science lesson. Each participant will build, race, and keep his or her own vehicle while satisfying science and engineering practice developing and using models.

Unleashing Your Students’ Inner Inventor—Robots, Video Games, and DIY!
(Gen)
(Grades 7–College)
212B, Convention Center
Sponsor: SparkFun Electronics
Lindsay Craig (linz.craig@sparkfun.com) and Brian Huang, SparkFun Electronics, Boulder, Colo.
Create a musical instrument or a video game controller while learning real-world STEM skills. This workshop shows how easily students can create fun electronic projects.

What the Heck Happened?!
(Gen)
(Grades 3–10)
214A, Convention Center
Sponsor: Educational Innovations, Inc.
Discrepant events seize students’ attention, and Educational Innovations has real jaw-droppers! Mom and Dad will hear about these at the dinner table. Door prizes and freebies!

Car and Ramp: Using a Graph to Predict Speed with the CPO Science Data Collector
(Phys)
(Grades 6–12)
214D, Convention Center
Sponsor: CPO Science/School Specialty Science
Erik Benton and Nathan Olsson, CPO Science/School Specialty Science, Nashua, N.H.
Combine a unique data collector and photogate system with a car and ramp experiment for a series of inquiry-based investigations. Speed, acceleration, and Newton’s laws are uncovered while developing a theory based on your own graph used to predict the speed of the car at any point on the ramp.

Flinn Scientific Morning of Chemistry: The Chemistry of Teaching
(Chem)
(Grades 6–12)
Grand Ballroom C1, Convention Center
Sponsor: Flinn Scientific, Inc.
Bob Becker (flinn@flinnsci.com), Kirkwood High School, Kirkwood, Mo.
Come to the Flinn Scientific “Morning of Chemistry” and see award-winning teacher Bob Becker present 20 exciting chemical demonstrations. Color changes and KABOOOMS bring chemistry to life—and illustrate valuable teaching principles. Don’t miss this unique presentation. Handouts!

10:00 AM–12 Noon
Exhibitor Workshop
Worm and Squirm Your Way into Behavior Labs
(Bio)
(Grades 9–College)
217C, Convention Center
Sponsor: Bio-Rad Laboratories
Sherri Andrews, Bio-Rad Laboratories, Hercules, Calif.
How do genes influence behavior? Use the model organism C. elegans (a nematode) to answer this question in an engaging activity that compares normal and mutant worm behavior. We will explore worm taste preferences in a simple and fast chemotaxis assay, and examine the connection of our worm mutant to human diseases. Come see this great alternative AP fruit fly behavior lab!
10:30 AM–12 Noon Science Seminar
The Bat Flower Plant: New Hope for Treating Cancer?
(Bio)

Susan L. Mooberry (mooberry@uthscsa.edu), Professor of Pharmacology, The University of Texas Health Science Center, San Antonio

Presider: Mary Poarch, Local Arrangements Coordinator, NSTA San Antonio National Conference, and North East ISD, San Antonio, Tex.

Focusing on identifying more effective drugs for the treatment of cancer, Dr. Mooberry’s laboratory has isolated a large group of compounds from the tropical bat flower plant that show promising properties. She will discuss the initial discovery of these compounds, how they work against cancer cells, and the efforts underway to select one that might have potential to help people with cancer.

Dr. Susan Mooberry’s research is dedicated to the discovery of more effective therapies for the treatment of cancer, with a primary focus on breast cancer. There are several aspects to her work, including drug discovery, identification of the mechanisms of drug action, the nature of drug resistance, identifying rational drug combinations, and elucidation of the cellular pathways through which drugs work to kill cancer cells. Dr. Mooberry’s drug discovery program identifies new anticancer agents from natural products and from small-molecule chemical libraries.

She holds seven patents on new classes of agents with potential use against cancer and has a patent pending. One of these agents was clinically developed and tested at the Cancer Therapy & Research Center (CTRC) Institute for Drug Development.

Recipient of the President’s Council Excellence Award by the Health Science Center for her outstanding research accomplishments, she is the co-leader of the Experimental Therapeutics Program of the CTRC at the University of Texas Health Science Center at San Antonio. She is also the principal investigator of grants from the National Cancer Institute and the Department of Defense Prostate Cancer program. In 2010, Dr. Mooberry was inducted into the San Antonio Woman’s Hall of Fame.

She earned her PhD in pharmacology at the Medical University of South Carolina in Charleston.

10:30 AM–12 Noon Science Seminar
Icons and Innovation in Paleontology (Gen)

Louis L. Jacobs (jacobs@smu.edu), Professor of Earth Sciences, and President, Institute for the Study of Earth and Man, Southern Methodist University, Dallas, Tex.

Presider: Deb Thrall, President-Elect, New Mexico Science Teachers Association, Albuquerque

Fossils have long been a gateway to science for learners of all ages because of the imaginative appeal of ancient creatures, lost worlds, extinction, and the evolution of our own species. Like all sciences, paleontology has made great strides in recent years. Paleontology has been reinvigorated by new discoveries focused on innovative ways to visualize fossils and search for biomolecules that relate to issues of broader societal and scientific relevance. Based on personal field and laboratory studies, Louis will highlight new directions in this field, including a fresh look at the most prominent icon of modern geology—the puzzle-like fit of Africa and South America.

Louis Jacobs is a vertebrate paleontologist who utilizes the fossil record to answer significant questions about Earth and life history. His fieldwork is currently focused on the iconic, puzzle-like fit of Africa and South America, as viewed through the rocks and fossils of coastal Angola. Internationally recognized for his fossil discoveries, seven fossil species have been named for him, including Malawisaurus, which he discovered in Malawi.

At present, he is a professor in Southern Methodist University’s Roy M. Huffington Department of Earth Sciences in Dallas and president of the Institute for the Study of Earth and Man at SMU. He also serves on the National Park Service Science Committee Advisory Board.

Among his publications are Quest for the African Dinosaurs: Ancient Roots of the Modern World, Lone Star Dinosaurs, and Cretaceous Airport, as well as more than 100 scientific papers and edited volumes.

Louis received his PhD in geology from The University of Arizona in 1977.
10:30 AM–12 Noon Exhibitor Workshop
Exploring STEM with K’NEX® (Gen)
(Grades 3–6) 102A, Convention Center
Sponsor: Fisher Science Education
Robert Marshall, Carnegie Science Center, Pittsburgh, Pa.
STEM is all about preparing the future workforce of America. K’NEX Education provides the ideal way to engage your students in an experiential learning environment focused on STEM. Join Robert Marshall, an educator from Carnegie Science Center’s award-winning STEM Center, and learn how you can incorporate activities that encourage student innovation, cognitive learning, and an aptitude for science. One participant will walk away with a set of K’NEX Education products.

10:30 AM–1:30 PM Meeting
Next Steps Advisory Board Meeting
(By Invitation Only) Conference Room 10, Marriott Rivercenter

10:00–11:30 AM Presentation
SESSION 1
Teaching College-Level Anatomy and Physiology in High Schools Through a Concurrent Enrollment Program (Bio)
(Grades College) 102B, Grand Hyatt
Murray S. Jensen (mjensen@umn.edu), University of Minnesota, Minneapolis
Join me for an overview of the University of Minnesota’s concurrent enrollment program through which a four-credit, freshmen-level anatomy and physiology course is offered at more than 20 area high schools.

11:00 AM–12 Noon Meeting
Discovery Education Focus Group on the New Health/Wellness Program fit 4 the classroom
Valero, Marriott Riverwalk
Eat, network, and share your ideas about fit4theclassroom.com and STEM integration for K–6 classrooms. First 25 to register receive prizes…and everyone gets lunch! To register, visit fit4theclassroom.eventbrite.com.

11:00 AM–12 Noon Presentations
SESSION 1
NASA INSPIRE: A Five-Year Retrospective on Online Learning (Earth)
(Middle Level–High School) 003A, Convention Center
Bradford Davey (brad@techforlearning.org) and Hilarie B. Davis (hilarie@techforlearning.org), Technology for Learning Consortium Inc., North Kingstown, R.I.
INSPIRE stands for Interdisciplinary National Science Project Incorporating Research and Education Experience. Examine the effects of online learning on students’ interest in NASA and STEM. After five years, much has been learned and will be shared.

SESSION 2
Magical Illusions and Scintillating Simulations for Science—It’s Showtime! (Gen)
(Elementary–Middle Level/Informal) 202A, Convention Center
Alan J. McCormack (amccorma@mail.sdsu.edu), 2010–2011 NSTA President, and San Diego State University, San Diego, Calif.
Storylines, discrepant events, and magic develop concepts in both physical and biological sciences, pique children’s interest and imagination, and build creative and logical thinking skills.
SESSION 3
 Formative Assessment in Middle Grades Science (Gen)
 (Middle Level) 202B, Convention Center
 David A. Young (dayoung7@gmail.com), Fayetteville High School, Fayetteville, Ark.
 Join me as I present several standards-based investigations for the middle grades. I’ll demonstrate how formative assessment may be done as students work through these investigations.

SESSION 4
 CESI Session: Strong STEMs Need Strong Sprouts! (Bio)
 (Preschool–Elementary) 212A, Convention Center
 Julie V. McGough (mrmagoojulie2@att.net), Valley Oak Elementary School, Fresno, Calif.
 Use STEM to construct a plant and use marbles to show the process of photosynthesis! Make abstract science concepts concrete!

SESSION 5
 ASTC Session: Creating Virtual Fieldwork Experiences (VFES): Place-based, Technology-rich Professional Development for Formal and Informal Educators (Gen)
 (Informal Education) 213A, Convention Center
 Don Duggan-Haas (dad55@cornell.edu) and Richard A. Kissel (rak256@cornell.edu), Museum of the Earth, Paleontological Research Institution, Ithaca, N.Y.
 Creating VFES engages educators in a collaborative close study of local environments and yields educational resources useful for catalyzing, extending, or sometimes replacing actual fieldwork.

SESSION 6
 Managing Science in the Early Childhood Setting (Gen)
 (Preschool–Elementary) 213B, Convention Center
 Andrea Zdinak Andretta, Norwalk (Conn.) Public Schools
 Join a kindergarten teacher and an English language learner coordinator for a discussion on how to incorporate science into the already busy day without dropping other subjects.

SESSION 7 (two presentations)
 Hot Warm-ups (Elementary–Middle Level) 216B, Convention Center
 Meshelle M. Smith (meshelle.smith@humble.k12.tx.us), Woodland Hills Elementary School, Kingwood, Tex.
 Take home easy-to-implement warm-ups that engage students as soon as they sit down!

Capturing Students’ Attention in the Classroom and Beyond! (Gen)
 Anne Durrance (anne.durrance@gmail.com), G.W. Long Elementary School, Skipperville, Ala.
 Walk away with super tips and techniques for using blogging and social networking to inform, encourage, and challenge young learners (and their families) outside the classroom.

SESSION 8
 Using Video to Enhance Confidence in Teaching Engineering (Gen)
 (Elementary) Crockett A, Grand Hyatt
 Melissa Higgins (mhiggins@mos.org), Museum of Science, Boston, Mass.
 Find out how using classroom videos to model effective engineering instruction can increase elementary educators’ confidence in and ability to teach engineering and technology.

SESSION 9
 Embedding Explicit Literacy Strategies into Science Instruction to Support Struggling Learners (Gen)
 (General) Crockett C, Grand Hyatt
 Maya Israel (misrael@illinois.edu), University of Illinois at Urbana-Champaign, Champaign
 Join me as I highlight evidence-based ways of embedding literacy instruction within science lessons with attention to balancing explicit instruction and inquiry to support diverse learners.

SESSION 10
 Focusing On Wildlife Conservation: Developing Public Service Announcements for Critically Endangered Species (General)
 (Env) Crockett D, Grand Hyatt
 Christine Marie Mazza (cmazza4@schools.nyc.gov), New York City Dept. of Education, Flushing, N.Y.
 Andrea Drewes (adrewes@wcs.org), Wildlife Conservation Society/Bronx Zoo, Bronx, N.Y.
 Hear how the New York City Department of Education and the Wildlife Conservation Society have partnered to work with teachers and students to use iPads to create and publish public service announcements for critically endangered species.
SESSION 11
Tips and Resources for First-Year Chemistry Teachers (Chem)
(High School–College) Lone Star Ballroom A, Grand Hyatt
Wai S. Chan (waisum.chan@yahoo.com), William P. Clements
High School, Sugar Land, Tex.
Don’t be anxious and worried about teaching chemistry! Be
prepared to enjoy your chemistry teaching experience with
useful resources and tips in this session.

SESSION 12
The Rube Goldberg Machine Contest: Invention in
the Classroom (Gen)
(Middle Level–College) Lone Star Ballroom E, Grand Hyatt
Shawn S. Jordan (shawn.s.jordan@asu.edu), Arizona State
University, Mesa
Rube Goldberg Machine Contests challenge middle school,
high school, and college students to build complex inventions
that complete simple tasks while linking STEM and the arts.

SESSION 13
CSI Web Adventures: Engage Your Students in Scientific Methods and Techniques Applied to Solve Crimes (Bio)
(General) Lone Star Ballroom F, Grand Hyatt
Kristi G. Bowling (kristi.bowling@rice.edu), Rice University,
Houston, Tex.
Lynn Lauterbach (lynnlauterbach@gmail.com), Loveland,
Colo.
Developed with CBS and the American Academy of Forensics,
this free award-winning website provides rookie training plus
cases for students to solve.

SESSION 14
The Shell Science Lab Challenge: Equipment for Your Lab! (Chem)
(Middle Level–High School) Mission A, Grand Hyatt
Eric V. Crossley (ecrossley@nsta.org), Director, Science
Education Competitions, NSTA, Arlington, Va.
Learn how you can receive amazing prize packages, including
new science lab equipment, NSTA memberships, and more!

SESSION 15
What Teachers Told Us (Gen)
(Informal Education) Mission B, Grand Hyatt
Mary Ann Wojton (mwojton@mail.cosi.org), COSI, Colum-
bus, Ohio
Find out what teachers want from informal science provid-
ers. Results from COSI’s Teacher Needs Analysis will be
shared as well as programs that we are doing that meet the
needs of teachers.

SESSION 16
NARST Session: Finding Science in the Everyday: Balancing Demonstration and Contextualization in the Chemistry Classroom (Chem)
(High School/Supervision) Presidio C, Grand Hyatt
Catherine E. Milne (cem4@nyu.edu), NYU Steinhardt,
New York, N.Y.
How can stories of everyday experiences provide motive
and context for students to explore multimedia explanatory
models of simple kinetic molecular theory and associated
topics? Join us and find out!
SESSION 17
Integrating Engineering and Science Learning (Gen)
(Injector—Middle Level) Texas Ballroom C, Grand Hyatt
Arthur H. Camins (arthurcamins@gmail.com), Stevens Institute of Technology, Hoboken, N.J.
Learn about the successes and challenges of our NSF Math Science Partnership grant to integrate engineering and science learning in grades 3–8.

SESSION 18
The Science of Service Learning: One School’s Journey to Promote Science Knowledge Through Service (Env)
(General) Texas Ballroom E, Grand Hyatt
Jennifer C. Williams (jenniferwilliams@newmanschool.org), Lisa Coulon (lisacoulon@newmanschool.org), and Elaine T. Sevin (elaninesevin@newmanschool.org), Isidore Newman School, New Orleans, La.
Hear how Isidore Newman School implemented science-based service learning programs that increase student understanding of coastal issues facing communities along the Gulf Coast.

SESSION 19
Next Generation Science Standards: Teacher Insights from the Writing Team—Physical Sciences (Middle/High School) (Chem)
(Middle Level—High School) Texas Ballroom F, Grand Hyatt
Vanessa Westbrook (vanedani_61@yahoo.com), Chairperson, NSTA San Antonio National Conference, and Westbrook Consulting, Austin, Tex.
Julie M. Pepperman (jjpep@att.net), Maryville, Tenn.
Craig T. Gabler (cgabler@esd113.org), Educational Service District 113, Tumwater, Wash.
Join middle school and high school physical science teachers who are writers of the highly anticipated Next Generation Science Standards for an exploration of the development of NGSS—from teachers for teachers. Writers will share the thinking and ideas that went into writing this landmark document and the challenges they experienced along the way. This session will address and explore physical science from the secondary perspective (grades 6–12) and what NGSS will mean for classroom science teachers.

SESSION 20
Write for an NSTA Journal (Gen)
(General) Travis A, Grand Hyatt
Ken Roberts, Assistant Executive Director, Journals, NSTA, Arlington, Va.
Meet with the editors to learn how to properly prepare and submit a manuscript to one of NSTA’s journals. The editors will be available at the end of the session to discuss and critique your article ideas.

SESSION 21
Inquiry Writing for Diverse Learners via Common Core (Gen)
(General/Informal Ed) Travis D, Grand Hyatt
Analorena Sanchez (alsanchez@washoeschools.net), Glenn Duncan STEM Academy, Reno, Nev.
Learn how a STEM Academy has infused writing inquiry into the curriculum, which proves results for diverse learners. Lesson handouts and door prizes!

SESSION 22
SYM-1 Follow-Up Session: Teaching About Climate Change—Here and Now (Gen)
(General) Conference Room 3/4, Marriott Rivercenter
Frank Niepold (frank.niepold@noaa.gov), NOAA, Silver Spring, Md.
During this NOAA session, teaching about climate change and related subjects will be explored using reviewed collections of excellent educational resources.

SESSION 23
AMSE Session: Enhancing a STEM Culture Through Multidisciplinary Education and Research Teams (Gen)
(High School) Conference Room 6, Marriott Rivercenter
Preston D. Robinson III (probinson@jackson.k12.ms.us), Jackson Public Schools
Constance Martin (constance.m.martin@jsums.edu), Jackson State University, Jackson, Miss.
Come learn how to enhance an academic pipeline for training and mentoring K–12 students and undergraduate students for STEM careers.
SESSION 24 (two presentations)
(Middle Level–High School) Conf. Room 15, Marriott Rivercenter
21st-Century Science Classroom (Gen)
Mark Prosise (mprosise@lakeseagles.com) and Brandon Watters (bwatters@lakeseagles.com), Lakes Community High School, Lake Villa, Ill.

iPads, iPad probes, HDTVs, and more are now a part of regular instruction. Discover innovative teaching and learning that fully embraces this technological age.

Urban Students Creating Media (Gen)
Nicole Hesson (nicole.hesson@temple.edu), Haverford College, Ardmore, Pa.

Why not get students involved in creating their own? Come learn how to engage students in creating their own media.

SESSION 25
The 3 Es: Easy, Exciting, inExpensive Physics (Phys)
(Middle Level–College) Salon B, Marriott Rivercenter
Kathy Mirakovits (kmirakovits@portageps.org) and Lindsey McConney (lmconney@portageps.org), Portage Northern High School, Portage, Mich.

Experiments and equipment for physics don’t always have to be expensive or complex. Join us for easy, fun ways to excite students about physics.

SESSION 26
The 50 Best Physics Demos to Do Before You Die… (Phys)
(Middle Level–High School) Salon E, Marriott Rivercenter
Peter Hopkinson (phopkinson@shaw.ca), Retired Educator, Burnaby, B.C., Canada

Well maybe not quite 50, but as many as we can fit into an hour…and they really are the best!

SESSION 27
Outdoor Science Pathway Session: Integrating Mathematics and Science (Gen)
(Elementary–Middle Level) Salon F, Marriott Rivercenter
Jessica Jetton (jjetton@forsyth.k12.ga.us), Forsyth County Schools, Cumming, Ga.

Would your principal support teaching science outdoors if you could integrate mathematics? Come get some support to make this happen.

SESSION 28 (two presentations)
(Middle Level–High School) Salon J, Marriott Rivercenter
Teaching Physical Science Principles Through the Design of an Underwater Robot (Phys)
Jason C. Sayres (jason.sayres@stevens.edu), Stevens Institute of Technology, Hoboken, N.J.

Let’s discuss underwater robotic projects as vehicles for teaching physical science principles, how they differ from land-based robotics projects, and what unique challenges are involved.

Tiering Your Objectives to Meet the Needs of Every Learner (Phys)
Tony A. Losinger (tlosinger@sequoits.com) and Sarah Fay (sfay@sequoits.com), Antioch Community High School, Antioch, Ill.

Come learn about and receive multiple examples of how to tier your classroom objectives around the needs of each learner.

SESSION 29
Send the Right Message: Excite and Engage Kids in STEM with Your Words, Images, and Real-World Connections (Chem)
(Informal Education) Alamo Salon B, Marriott Riverwalk
Tricia Berry (triciaberry@txgcp.org), The University of Texas at Austin

Learn the latest research about engaging girls in STEM and explore research-based best practices in messaging that connect diverse populations to the excitement of STEM.

SESSION 30
A Multiplayer Online Game That Fosters Engagement and Learning in STEM (Bio)
(General) Alamo Salon E, Marriott Riverwalk
Susannah Gordon-Messer (sgmesser@mit.edu) and Louisa Rosenheck (louisa@mit.edu), MIT, Cambridge, Mass.

Immerse yourself in MIT’s game world that engages biology students and provides real-time teacher feedback about student learning. Sign up your class to play!

SESSION 31
Forensic Anthropology: Teaching the Skeletal System (Bio)
(Middle Level–High School) Alamo Salon F, Marriott Riverwalk
Alison B. Seymour (seymoura@pvpusd.k12.ca.us), Ridgecrest Intermediate School, Rancho Palos Verdes, Calif.

Hands-on lessons incorporating science, math, history, and English language arts (ELA) for middle school and high school students will be presented with teaching strategies, student examples, and handouts.
11:00 AM–12 Noon Workshops

Incorporating ASL in Astronomy Education—for Deaf and Hearing Students (Informal Education) 001A, Convention Center
Jacob Noel-Storr (jake@cis.rit.edu) and Greyson Watkins, Rochester Institute of Technology, Rochester, N.Y.
We will involve participants in kinesthetic and American Sign Language–based astronomy activities designed to create integrated learning experiences.

Exploring Seafloor Spreading with Data from the Integrated Ocean Drilling Program (IODP) (Earth) (Middle Level–High School) 001B, Convention Center
Barbara J. Simon-Waters (barbarasimonwaters@gmail.com), Morehead City, N.C.
Join me as I present the activity “The Race Is On…with Seafloor Spreading,” which was developed during the Deep Earth Academy workshop. Real-time science in the classroom!

Modeling the Night Sky (Earth) (Elementary–Middle Level) 002, Convention Center
Mary Kay Hemenway (marykay@astro.as.utexas.edu), The University of Texas at Austin
Model planetary motions in a timescale model of the solar system and receive a printed copy of the NASA-supported StarDate “The Solar System.”

Exploring the Hubble Universe (Earth) (Middle Level–College) 101A, Convention Center
Keely D. Finkelstein (keelyf@astro.as.utexas.edu), The University of Texas at Austin
Participants will be engaged in a hands-on demonstration of a new interactive education application for smart devices (e.g. iPhones and iPads) called “HubbleU,” which contains educational materials on the Big Bang and our own galaxy. Receive a free copy of a “dark energy” poster from McDonald Observatory.

Deduce to Reduce English Language Learners’ Frustration with Science Text (Gen) (Elementary–Middle Level) 201, Convention Center
Maria Cieslak (mariacieslak@yahoo.com), Francine Gollmer (sgollmer@aol.com), and Michael Coop, Gene Ward Elementary School, Las Vegas, Nev.
Discover interactive tasks using cooperative learning, graphic organizers, and a Backward Assessment Model. Come, play, and learn!

Understanding Our Finite World (Env) (Elementary–Middle Level) 208, Convention Center
Pamela Wasserman (pwasserman@popconnect.org), Population Connection, Washington, D.C.
Discover insightful hands-on activities to teach about Earth’s carrying capacity and sustainable ways to meet people’s needs in a world of seven billion and growing.

Showing Young Children the Art of Science (Phys) (Preschool–Elementary) 216A, Convention Center
James M. Dettmer, Rainbow Station at Three Chopt, Richmond, Va.
Let’s explore how using hands-on materials for artistic creation and scientific inquiry can teach physical science and develop a passion for lifelong learning.

Science + Writing = Learning (Gen) (Elementary–Middle Level) 217A, Convention Center
Julie Alexander (jualexan@columbia.k12.mo.us), Columbia (Mo.) Public Schools
Explore math and literacy integration through hands-on activities. Student work examples, motivation of reluctant writers, assessment methods, and modifications for special needs students provided.
NESTA Session: National Earth Science Teachers Association Oceans and Atmosphere Share-a-Thon (Earth) (Elementary—High School) Ballroom A, Convention Center
Michelle Harris (michelle.harris@apsva.us), Wakefield High School, Arlington, Va.
Roberta M. Johnson (rmjohnson@nestanet.org), NESTA and University at Albany, Boulder, Colo.
Margaret A. Holzer (mholzer@monmouth.com), Chatham High School, Chatham, N.J.
Sharon Katz Cooper (scooper@oceanleadership.org), Deep Earth Academy, Consortium for Ocean Leadership, Washington, D.C.
Becky J. Cox (beckyc@utm.edu), The University of Tennessee at Martin
Lisa Gardiner (lisagard@ucar.edu) and Becca Hatheway (hatheway@ucar.edu), University Corporation for Atmospheric Research, Boulder, Colo.
Paige Valderrama Graff (paige.v.graff@nasa.gov), Jacobs ESCG/NASA Johnson Space Center, Houston, Tex.
Preston M. Lewis, Jr. (preston.lewis@nasa.gov), NASA Langley Research Center, Hampton, Va.
Timothy McCollum, Eastern Illinois University, Charleston
H. Michael Mogil (hmmogil@weatherworks.com), How The Weatherworks, Naples, Fla.
Michael J. Passow (michael@earth2class.org), Dwight Morrow High School, Englewood, N.J.
Jean Pennycook (jean.pennycook@gmail.com), Penguin Science.com, Fresno, Calif.
Carole J. Reesink (creesink@muscanet.com), Retired Educator, Muscatine, Iowa
Rosemarie Sanders (rose.sanders@me.com), Longfellow Middle School, White Plains, N.Y.
Jennifer Savage (jsavage@seti.org), SETI Institute, Mountain View, Calif.

Join more than 20 NESTA members and other education specialists as they share their favorite classroom activities. Lots of free handouts!

DuPont Session: DuPont Presents “The Science of Packaging” (Middle Level—High School) Bonham B, Grand Hyatt
Timothy Dalby (tdalby@wilmingtonfriends.org), Wilmington Friends School, Wilmington, Del.
Peggy Yavalla, DuPont, Wilmington, Del.
Participants will be introduced to a brief history of polymers and how they are used. Hands-on activities will illustrate the variables that must be considered as we design a package to preserve dry dog food.

Then and Now: Documenting Student Understanding (Gen) (Middle Level) Bonham C, Grand Hyatt
Claudia Khoury-Bowers (cmkhour@kent.edu) and Jessica Allen (fallen35@kent.edu), Kent State University at Stark, North Canton, Ohio
Find out how to elicit students’ prior knowledge on a topic and demonstrate their growth in understanding following instruction.

Teaching Newton’s Three Laws with Coaster Cars (Phys) (Middle Level) Bonham D, Grand Hyatt
Kasie L. Sattler, Wrightstown Middle School, Wrightstown, Wis.
Sharon A.L. Hushek (sharon.hushek@franklin.k12.wi.us), Ben Franklin Elementary School, Franklin, Wis.
Mary K. Fassbender (mary.fassbender@franklin.k12.wi.us) and Beth Gorak, Forest Park Middle School, Franklin, Wis.
Get a hands-on approach to teaching Newton’s three laws using wooden coaster cars.

NSELA Session: Take the Lead: Ensure Your Students Can Master the Science Practices (Gen) (Supervision/Administration) Bonham E, Grand Hyatt
Deborah Tucker (deboraht@ao.com), Science Education Consultant, Napa, Calif.
Grant M. Gardner (grantmgardner@msn.com), Assessment Services, Inc., Pepperell, Mass.
Leaders in science education use multiple assessment strategies. Try out a hands-on performance task and add this form of assessment to your repertoire.

T.I.P.S. for Success in Using Formative Assessments (Gen) (Elementary—High School) Bowie B, Grand Hyatt
Susanne L. Hokkanen (susanne.hokkanen@gmail.com), Colin Powell Middle School, Matteson, Ill.
Caryn Meirs (caryn.meirs@gmail.com), Half Hollow Hills Central School District, Melville, N.Y.
Learn how to use the T.I.P.S. (Think, Information, Process, and Solution) format and Socratic discussion to help identify and measure student understanding.
NSTA Press® Session: Ways to Approach Doing POE Exercises in Your Classroom
(General) Lone Star Ballroom B, Grand Hyatt
G. Michael Bowen (gmbowen@yahoo.com), Mount Saint Vincent University, Halifax, N.S., Canada
Using example activities from the NSTA book, Predict, Observe, Explain: Activities Enhancing Scientific Understanding, the authors will demonstrate how to effectively engage students in POE activities to develop their conceptual understanding. Handouts!

Gray Matter: Learning and Teaching Science with the Brain in Mind
(General) Lone Star Ballroom C, Grand Hyatt
Carolyn A. Hayes (caahayes@comcast.net), Indiana University School of Medicine, Indianapolis
Experience via science activities how discoveries in cognitive neuroscience are applied to the NSES teaching standards and the principles of how students learn science.

Lake St. Clair—Use or Abuse?
(Informal Education) Republic B, Grand Hyatt
Christine Geerer (christine.geerer@gpschools.org), Laura M. Mikesell (laura.mikesell@gpschools.org), and Alexandra Gulyas (alexandra.gulyas@gpschools.org), Parcells Middle School, Grosse Pointe Woods, Mich.
Come join an entertaining and highly interactive role-play that uncovers sources of point and nonpoint pollution in our lake. Easily adaptable to your watershed.

NSTA Press® Session: Picture-Perfect Science Lessons: Using Picture Books to Guide Inquiry
(Elementary) Texas Ballroom D, Grand Hyatt
Emily Morgan (emily@pictureperfectscience.com), Picture-Perfect Science, LLC, West Chester, Ohio
Karen Ansberry (karen@pictureperfectscience.com), Mason (Ohio) City Schools
Join the authors of NSTA’s award-winning Picture-Perfect Science series to learn how to use picture books to teach science and reading together!

WestEd Pathway Session: Assessment-centered Teaching
(General) Conference Room 12, Marriott Rivercenter
Kathy DiRanna (kdirann@wested.org), WestEd, Santa Ana, Calif.
Come learn about a portfolio process that designs assessment plans before teaching a unit, interprets student work for patterns, and modifies instruction/assessment based on student work.

Switch It Up! How to Use Reflective Teaching to Keep Your Students Engaged and Learning
(Middle Level–High School) Conf. Room 16, Marriott Rivercenter
Shannon Mittleman, Decatur (Ill.) Public Schools
Elizabeth Bartimus (ebartimus@dps61.org), Johns Hill Magnet School, Decatur, Ill.
Come get inspired by a veteran science teacher who is always striving to find new, exciting ways to engage her students in science. Never be afraid to change…live for it!

Connecting Science to Poetry, Music, and Art: A Student-centered Lesson in Making Mathematical Models from Nature
(General) Salon A, Marriott Rivercenter
Diane D. Walker (dianewalker2005@gmail.com), New Mexico Highlands University, Rio Rancho
This hands-on workshop presents an innovative model for using conceptual and creative knowledge from science, math, and literacy to provide interesting, appropriate, and relevant curricular connections.

McREL Pathway Session: Designing Effective Science Instruction—The Role of Science Discourse
(General) Salon K, Marriott Rivercenter
Anne Tweed (atweed@mcrel.org), 2004–2005 NSTA President, and McREL, Denver, Colo.
To learn science concepts, students need to talk about their ideas to clarify their thinking. Learn how to use inquiry questioning strategies to get students to discuss in class and make sense of their learning experiences. Participants will practice using question stems to elicit scientific understanding and learn how to incorporate them into lessons. Handouts!

Inquiry in the Garden: Integrating Open-ended Living Projects in Science Teaching and Learning
(Middle Level–High School) Salon M, Marriott Rivercenter
Dawn Wiseman (dwiseman@ualberta.ca) and Tracy Onuczko (tracy.onuczko@ualberta.ca), University of Alberta, Edmonton, Canada
Come explore the potential for hands-on inquiry across the sciences in this session that uses a school garden as a living resource.
Engage Your Students with NOAA’s Coral Reef Resources

(Bio)

(Informal Education) Alamo Salon C, Marriott Riverwalk

Britta Culbertson (britta.culbertson@noaa.gov), Einstein Fellow, NOAA Office of Education, Washington, D.C.

Grab your students’ attention by incorporating coral reefs into your existing curriculum. Several NOAA resources will be highlighted, including demos, labs, activities, and multimedia.

11:00 AM–12 Noon Exhibitor Workshops

NASA’s Next Generation Science Classroom (Earth)

(Grades 10–12) 103B, Convention Center

Sponsor: NASA Science Mission Directorate E/PO

Ruth Paglierani and Kyle W. Fricke, University of California, Berkeley, Calif.

Andi Nelson and Lindsay M. Bartolone, Adler Planetarium, Chicago, Ill.

Sheri Klug Boonstra, Arizona State University, Tempe

Kristin Wegner, University Corporation for Atmospheric Research, Boulder, Colo.

Ginger J. Butcher, Sigma Space, Greenbelt, Md.

Dorian W. Janney, NASA Goddard Space Flight Center, Greenbelt, Md.

Pamela K. Harman, SETI Institute, Mountain View, Calif.

Brandon Lawton and Dan McCallister, Space Telescope Science Institute, Baltimore, Md.

Edgar A. Bering, University of Houston, Tex.

Todd Ellis, SUNY Oneonta, N.Y.

Lauren Brodsky, The Lawrence Hall of Science, University of California, Berkeley

Georgia Bracey, Southern Illinois University, Edwardsville

Linda Lee Smith, NASA EPO, Pittsgrove, N.J.

Participate in inquiry-based hands-on science activities that you can use with your students. These resources focus on crosscutting concepts aligned with the highly anticipated Next Generation Science Standards and cover the spectrum of Earth and space science topics. The activities and hundreds more are freely available through NASA Wavelength, a new digital library for educators.

Enzymes—Group 1: The Builders

(Bio)

(High School) Alamo Salon D, Marriott Riverwalk

Suzanne M. Cunningham (scunning@purdue.edu), Purdue University, West Lafayette, Ind.

High school students become model “Maniacs” or LEGO® “Lunatics” as they synthesize the sugar glucose. Various concepts assist students to visualize polymerization and enzyme specificity.

Project-Based Inquiry Science: PBISTM—Exemplifying Blending Practices, Core Ideas, and Crosscutting Concepts

(Grades 6–8) 205, Convention Center

Sponsor: It’s About Time

Blending Practices, Core Ideas, and Crosscutting Concepts may seem overwhelming, but PBIS provides the learning environment to support students and teachers in making it happen. Come experience Project Science as you work with others to complete a middle school science investigation that blends modeling, asking questions, and other science engineering practices while developing core ideas. Take home the activity idea as well as a better understanding of PBIS.
NSTA E-newsletters

Accessible, Informative, + FREE

NSTA Express *
Delivers the latest news, events, classes, seminars, and happenings in the science education world.

The STEM Classroom
Provides a forum for ideas and resources middle and high school teachers need to support science, technology, engineering, and math disciplines.

NSTA’s Book Beat
Each issue highlights selected topics in science education, new NSTA Press books, sample chapters and lessons.

Leaders Letter
Includes professional development resources, networking opportunities, and national news for leaders in the science education community.

NSTA Scientific Principals
Offers elementary school principals new ideas, and practical applications for science curricula.

Encouraging Young Scientists
Provides resources and ideas for making science fun and relevant for young children in the classroom.

Science Class
With separate editions for elementary, middle, and high school teachers, this newsletter provides theme-based content along with pertinent resources.

SIGN UP TODAY
www.nsta.org/publications/enewsletters.aspx

*Delivered weekly. All others are sent monthly.
11:00 AM–12:30 PM Presentation
SESSION 1

Google Me This: How to Make Collaboration Work in a Wiki World (Gen)
(General) 207A, Convention Center
Ben Smith (ben@edtechinnovators.com) and Jared Mader (jared@edtechinnovators.com), York, Pa.
Come take a behind-the-scenes look at how to create a collaborative work environment in your science classroom using web-based tools.

11:00 AM–3:00 PM Networking Opportunity
NSTA Student Chapter Showcase and Lounge
Executive Assembly, Convention Center
A three-day showcase featuring interactive sessions presented by NSTA Student Chapter faculty advisors, student leaders, and members highlighting campus and community activities, hands-on demonstrations, discussion groups, and more. In between sessions, the room will serve as a lounge for preservice teachers, new teachers, and faculty advisors to meet, network, and share ideas.

12 Noon–1:30 PM Luncheon
Fueling Instructional Transformation with Digital Textbooks: A Lunch Panel Discussion Hosted by Discovery Education
(By Invitation Only) Salon D, Marriott Rivercenter
If you’re interested in attending, please contact Laura Wenograd at laura_wenograd@discovery.com or 240-662-3118 for details.

12 Noon–1:30 PM Exhibitor Workshops

A Tour for Your Inclusion Classes—How to Make It Work! (Env)
(Grades 5–8) 006A, Convention Center
Sponsor: LaMotte Co.
Adah Stock, Retired Educator, San Antonio, Tex.
You are a general education teacher with an inclusion classroom of diversified learners, including special education, English language learners, limited English proficiency, special minorities such as gifted/talented, and students with physical disabilities. How do you prepare an exciting and safe lab experience that everyone can relate to? LaMotte’s Tour materials can be easily modified to make your day easier and engage your students. We’ll share easy modifications to help you meet these special needs. Takeaways, resources, and a door prize!

Planet Diary: Using Current Events to Engage Your Students in Science (Gen)
(Grades 3–12) 006B, Convention Center
Sponsor: Pearson
Jack Hankin, Planet Diary Author and Creator, Pacifica, Calif.
Join Jack Hankin, author and creator of Pearson’s acclaimed Planet Diary website (www.planetdiary.com) and see how easy it is to integrate science current events into your upper elementary, middle, or high school curriculum. Planet Diary features weekly reports on important environmental issues and includes in-depth student activities. In addition, Jack will show how the companion Planet Diary Facebook page can bring social media into your science classroom in a meaningful way.
Human Physiology with PASCO
(Bio) (Grades 9–College) 006C, Convention Center
Sponsor: PASCO scientific
Presenter to be announced
Participate in PASCO’s innovative lab activities that use EKG, blood pressure, heart rate, and skin temperature sensors. Bring your lectures to life by using reliable sensors and PASCO’s intuitive SPARKvue® software. SPARKvue HD is now available on the iPad and select Android tablets.

STEM: Meeting the Standards in Your Classroom
(Gen) (Grades 6–12) 006D, Convention Center
Sponsor: PASCO scientific
Presenter to be announced
Experience hands-on, problem-solving STEM modules that engage students in scientific and engineering practices included in A Framework for K–12 Science Education. Not only do these modules incorporate specific Disciplinary Core Ideas and Crosscutting Concepts, they also support the Common Core State Standards for Literacy, Reading, and Math.

LEGO MINDSTORMS® Education EV3: Robotics in the Middle School Classroom—Getting Started
(Eng) (Grades 6–8) 007A, Convention Center
Sponsor: LEGO Education
Robotics is a proven and effective way to capture students’ attention and keep them engaged in hands-on science, technology, engineering, and math lessons. This session is for educators just getting started with new LEGO MINDSTORMS Education EV3 or considering how to incorporate MINDSTORMS into the classroom. Learn firsthand how LEGO Education MINDSTORMS EV3 can get your students excited as they model real-life mechanisms and solve real-world challenges, all while building the critical-thinking and creative problem-solving skills that will serve them well for a lifetime.

An Evening of Just Physics
Friday, April 12th, 2013
Grand Ballroom C3 – Convention Center
For more information visit us at PASCO booth #132

Come for the food, fun, Physics, and Free T-shirt!
Integrating Multimedia and SIOP Strategies in Science to Meet the Needs of ELL Students (Gen) (Grades K–12) 007B, Convention Center
Sponsor: Edusmart Science
Franki Dockens (franki@edusmart.com), Edusmart Science, League City, Tex.
Edusmart Science is an interactive, multimedia science resource for grades K–8 and high school biology. Edusmart Science’s design integrates research-based strategies included in the Sheltered Instruction Observation Protocol (SIOP) model—with rich animation/graphics and clear, concise narrated text that research indicates is effective for all students, but especially beneficial for English language learners.

Exploring the Molecular World: Scientifically Accurate Visualization and Simulation Tools (Chem) (Grades 6–College) 007D, Convention Center
Sponsor: Wavefunction, Inc.
Paul Price (sales@wavefun.com), Trinity Valley School, Fort Worth, Tex.
The 3-D visualization of modern software is uniquely suited to help students develop an intuitive grasp of the molecular basis of chemistry. Bring your laptop (Windows or Mac OS X) to this hands-on workshop and learn how to support your teaching with the powerful recent releases of Odyssey High School Chemistry and Odyssey AP Chemistry.

EarthViewer—4.6 Billion Years of Earth History at Your Fingertips (Earth) (Grades 6–College) 008A, Convention Center
Sponsor: Howard Hughes Medical Institute
Heather Olins, Harvard University, Boston, Mass.
Mark Nielsen, Howard Hughes Medical Institute, Chevy Chase, Md.
Got an iPad? Download HHMI’s free EarthViewer iOS app and join us in an exploration of Earth’s deep history. Inspired by the focus on crosscutting concepts in the highly anticipated Next Generation Science Standards, this app describes environmental conditions throughout Earth history, and how they were shaped by biology and geology. For example, oxygen is only produced biologically, but the amount of oxygen in the atmosphere is controlled by geological processes. Learn about the many exciting features of this one-of-a-kind app and how to use it in the classroom.

Launching Literacy with Science Starters (Gen) (Grades K–8) 008B, Convention Center
Sponsor: Scientific Minds, LLC
Kathy Reeves, Scientific Minds, LLC, Orange, Tex.
Help students build a solid foundation in science while acquiring literacy skills! This workshop includes easy-to-implement best practices training in simultaneously teaching reading, writing, and science—plus strategies for ELL. Take home one month of FREE access to the Science Starters. Elementary grades include Spanish.

Shaken Up: Teaching About Childhood Sports Injuries and the Brain (Bio) (Grades 6–College) 101B, Convention Center
Sponsor: Society for Neuroscience
Edward Bilsky (ebilsky@une.edu), University of New England, Biddeford, Maine
Bring a hands-on lesson plan about the prevention and detection of brain injuries into your classroom to engage your students in brain science. Head injuries can cause long-term damage and affect war veterans as well as youth and professional athletes. The vulnerability of the developing brain makes injuries from childhood sports especially interesting.

DNA Replication and Transcription—No More Gumdrops and Toothpicks! (Bio) (Grades 5–12) 102B, Convention Center
Sponsor: K’NEX Education
Presenter to be announced
Join us as we use K’NEX® to build and explore functional DNA models that actually stay together. Twist DNA ladders to make a helix, replicate it, and transcribe the model to form mRNA. Color-coded nucleotides enable quick changes of the C, G, A, T, and U bases to produce new sequences. Standards-aligned STEM concepts will be emphasized. Aligned to science education standards for grades 5–12, it is also an excellent elementary demonstration tool. Drawing for a K’NEX Education DNA Replication and Transcription Set!

Favorite Biology Lab Activities and Games from Flinn (Bio) (Grades 9–College) 103A, Convention Center
Sponsor: Flinn Scientific, Inc.
Maureen Hunt (mhunt@flinnsci.com) and Jennifer Sternberg (jsternberg@flinnsci.com), Flinn Scientific, Inc., Batavia, Ill.
Students learn better and faster when they are actively involved in hands-on activities that are not only fun, but that create learning opportunities along the way. We’ll
share some inquiry-based labs, interactive demonstrations, and collaborative games you can use to motivate your students. We’ll focus on core topics like cell biology, genetics, ecology, and more—you’re sure to find a Flinn Favorite that works for you! Handouts for all activities!

Mastering the Chemical Formula: An Effective Way to Teach Subscripts and Coefficients *(Chem)*
(Grades 9–12)
*Sponsor: LAB-AIDS, Inc.
Mark Koker, LAB-AIDS, Inc., Ronkonkoma, N.Y.*
What is the difference between subscripts and coefficients? What does “balancing” a chemical equation mean? Many students have trouble with these fundamental chemistry concepts. If a student does not fully understand the chemical formula, then moles, reactions, and stoichiometry are hopelessly confusing. Join us for some elegant, intuitive, and well-differentiated lessons from the new high school program, *A Natural Approach to Chemistry*, that enables students of all levels to master the chemical formula and thereby move confidently into a deeper understanding of chemistry.

Fun, Fabulous Foldables® *(Gen)*
(Grades K–8)
*Sponsor: McGraw-Hill Education
Dinah Zike, Dinah-Might Adventures, LP, San Antonio, Tex.*
Experience how these 3-D graphic organizers can transform your science lesson into an engaging, interactive learning experience. These interactive tools offer endless possibilities for collecting data, building understanding, and assessing student comprehension.
Ecology Adventures: Motivating Students Through Project Based Learning (Bio) (Grades 4–8) 204B, Convention Center Sponsor: Houghton Mifflin Harcourt
Mike Heithaus, Florida International University, North Miami
Do you want to get your students out in the field doing science but can’t take a field trip? Join Houghton Mifflin Harcourt author Mike Heithaus to learn how you can use exciting new video-based lessons to take your class on scientific adventures! Using high-paced video and exciting research, students are challenged to develop their own hypotheses, join research teams as they collect data, and then conduct their own data collection and analysis. Leave with one of the projects to do with your students.

Comparative Vertebrate Anatomy with Carolina’s Perfect Solution® Specimens (Bio) (Grades 6–12) 206A, Convention Center Sponsor: Carolina Biological Supply Carolina Teaching Partner
Explore animal diversity by comparing and contrasting anatomical adaptations of the pig, rat, shark, and frog. Use hands-on dissection to identify characteristics of these popular vertebrates. This is an excellent comparative dissection activity featuring our very best Carolina’s Perfect Solution specimens. Free dissection supplies and great door prizes!

The Integration of Common Core Reading Informational Text and Writing in Science to Raise Achievement Scores K–8 (Gen) (Grades K–8) 206B, Convention Center Sponsor: Carolina Biological Supply Carolina Teaching Partner
Explore the possibilities for integration of practices-based inquiry science with reading and writing, and leave with classroom strategies to meet the demands of the Common Core State Standards. Learn how practices-based inquiry science instruction increases student achievement on assessments in reading, writing, and mathematics.

Hands-On Science with Classroom Critters (Bio) (Grades K–12) 207B, Convention Center Sponsor: Carolina Biological Supply Carolina Teaching Partner
Add excitement to your science class with live organisms! Animals broaden students’ inquiry-based explorations and increase their interest in science. Discover fun, simple hands-on activities that you can use in your classes. Organism care and handling information will be presented. Receive free product samples and literature.

STEM Is Virtually Everywhere at Discovery (Gen) (Grades K–12) 209, Convention Center Sponsor: Discovery Education
Lance Roueux, Discovery Education, Silver Spring, Md.
Learn about the many ways you can make effective STEM instruction a reality in your school through Discovery Education. From STEM-focused virtual field trips to STEM Connect to our global professional learning community, we’ll help you uncover and discover STEM resources and content you can use in your classroom.

Chemistry with Vernier (Chem) (Grades 9–College) 210A, Convention Center Sponsor: Vernier Software & Technology
Jack Randall (info@vernier.com), Vernier Software & Technology, Beaverton, Ore.
Rick Rutland, Five Star Education Solutions, LLC, San Antonio, Tex.
Experiments such as acid-base titration and Boyle’s law from our popular Chemistry with Vernier and Advanced Chemistry with Vernier lab books will be performed in this hands-on workshop. Conduct these experiments using LabQuest 2 and LabQuest Mini. See our Mini GC Plus gas chromatograph and SpectroVis Plus spectrophotometer in action!

Connected Science System®: Leveraging Vernier Technology with Mobile Devices in the Classroom (Gen) (Grades 3–College) 210B, Convention Center Sponsor: Vernier Software & Technology
Matt Anthes-Washburn (info@vernier.com) and Robyn Johnson (info@vernier.com), Vernier Software & Technology, Beaverton, Ore.
With the increased prevalence of mobile devices in the classroom, students have more opportunities for technology-enhanced science investigation. Vernier Data Share enables students in Bring-Your-Own Device (BYOD) environments to collect data from one or more sensors and then individually analyze and annotate the data on smartphones, tablets, computers, and more.
For more than a century, the OHAUS name has been synonymous with high-quality, durable and reliable mechanical and electronic scales and balances.

Heritage and History
A trusted supplier with American roots, OHAUS has been a leader in the weighing industry since the introduction of the Harvard Trip Balance. Our long-standing commitment to the education community has resulted in products and services that enhance science teaching.

Industry Leader
As an ISO 9001:2008 manufacturer, OHAUS manufactures products that are designed to meet national and international safety requirements which ensure compliance with legal or operational requirements and help improve student and teacher safety.

Ingenious Portfolio
OHAUS manufactures high quality, easy-to-use weighing equipment that offers a broad range of solutions with features that are relevant and meaningful in the science classroom.

Service and Support
OHAUS offers complete, thorough and friendly customer service, technical support, and online resources for teachers. We support our products with some of the longest warranties in the market.
Wind Power and Alternative Energy: Exploring Energy Core Concepts
(Phys) (Grades 6–12)
211, Convention Center
Sponsor: Ward’s Science
Jill Lewis, VWR Education, Rochester, N.Y.
Design, build, and evaluate your own windmill as you learn how to lead a lesson on developing and using models that satisfies science and engineering practices. Using affordable materials and a guided inquiry lesson, you’ll design, construct, test, and discuss applications for wind energy.

Got MoticNet?...Then Connect!
(Chem) (Grades 8–College)
212B, Convention Center
Sponsor: Swift Optical Instruments, Inc.
David Doty (david@swiftoptical.com) and Cynthia Syver- son-Mercer (cynthia@swiftoptical.com), Swift Optical Instruments, Inc., Schertz, Tex.
Looking for a way to engage, motivate, and have real-time interaction with your students? MoticNet is created to do just that! This software application system and classroom management tool is designed to be used in a teaching environment where microscopes are used for laboratory or experiment use. Teachers are able to observe and manipulate images from their students’ microscopes as well as surveil and operate the students’ computers in real-time. Focus on teaching and you make connections with your students!

Fantastical Chemistry Demos for All Classrooms
(Phys) (General)
214A, Convention Center
Sponsor: Educational Innovations, Inc.
Bill Richey, Xenia High School, Xenia, Ohio
These super fun and exciting chemistry demonstrations can be used by all teachers at any level to get a classroom of students excited about the amazing world of chemistry. These easy and practical demonstrations will truly show your students what we already know—that science is fun! Freebies!

A STEM Approach to Teaching Electricity and Magnetism
(Phys) (Grades 6–12)
214D, Convention Center
Sponsor: CPO Science/School Specialty Science
Scott W. Eddleman and Nathan Olsson, CPO Science/School Specialty Science, Nashua, N.H.
Explore how electricity and magnetism are related through hands-on experiences. Apply your knowledge to engineering a wind turbine…and build, test, and revise your model so that it generates as much power as possible. Take away STEM activities and an understanding of how to apply the Engineering Cycle in science classes.

The NRC Framework and the Highly Anticipated Next Generation Science Standards (M–3)
(Tickets Required: $60)
Presidio A/B, Grand Hyatt
Heidi Schweingruber (hschweingruber@nas.edu), Deputy Director, Board on Science Education, National Research Council, Washington, D.C.
The NRC Framework and the Next Generation Science Standards (NGSS) have significant implications for assessment, particularly given the three-dimensional standards that are proposed. This session will provide an overview of a new NRC consensus study by the Board on Testing and Assessment and the Board on Science Education that will be focusing on a broad framework for how best to assess the performance expectations that form the basis of NGSS. The study is designed to run parallel with the development of NGSS and will provide conceptual guidance for test developers and for private and public investments into testing science in accordance with the NRC Framework and the NGSS. This session will provide a platform for discussing issues related to testing from your perspectives.

Heidi Schweingruber is deputy director of the Board on Science Education (BOSE) at the National Research Council (NRC). In this role, she oversees many of the projects in the BOSE portfolio. She also collaborates with the director and board to develop new projects. She codirected the study that resulted in A Framework for K–12 Science Education (2011), which is the first step in revising national standards for K–12 science education.

Heidi served as study director for a review of NASA’s pre-college education programs completed in 2008 and codirected the study that produced the 2007 report Taking Science to School: Learning and Teaching Science in Grades K–8. She served as an editor on the NRC report Mathematics Learning in Early Childhood: Paths to Excellence and Equity (2009). Heidi has coauthored two award-winning books for practitioners that translate findings of NRC reports for a broader audience: Ready, Set, Science! Putting Research to Work in K–8 Science Classrooms (2008) and Surrounding by Science (2010).

Tickets, if still available, must be purchased at the Ticket Sales Counter in the NSTA Registration Area before 3:00 PM on Thursday.
12 Noon–2:00 PM
NSTA/NMLSTA Middle Level Luncheon

Using Brain-based Teaching Strategies to Improve Student Learning (M-4)

(Tickets Required: $60)
Alamo Salon A, Marriott Riverwalk

Warren Phillips (a1science@yahoo.com), Workshop Presenter and Science/Technology Teacher, Halifax, Mass.

Using the latest brain information from fMRIs (functional MRI) and other research, teachers must adjust their teaching strategies to how the student learns. This presentation will focus on the 20 teaching strategies in my book *Science Worksheets Don’t Grow Dendrites*. I’ll share sample lessons involving music (using Sing-A-Long Science®), movement, humor, manipulatives, storytelling, and visualization to create unforgettable experiences that will be stored in students’ amygdala and hippocampus.

A National Board Certified Teacher, Warren Phillips was inducted into the National Teachers Hall of Fame in 2010. A Massachusetts science teacher for 38 years, he earned a BA in Earth Sciences and Geography, an MA in Teaching Physical Sciences, and an MEd in Instructional Technology.

Among his many accomplishments, Warren was selected as a finalist for the Massachusetts Presidential award in 2001, 2002, and 2003; grand prize winner in Time For Kids/Chevrolet Teaching Excellence Award in 2002; and Disney Middle School Teacher of The Year in 2004.

Warren recorded and produced three CDs of science songs entitled Sing-A-Long Science. From these songs, he developed a musical entitled The Science Secret.

Warren is coauthor with Marcia Tate of a brain-based book about teaching strategies entitled Science Worksheets Don’t Grow Dendrites. He is also a contributor to NSTA’s Exemplary Science in Grades 5–8.

Tickets, if still available, must be purchased at the Ticket Sales Counter in the NSTA Registration Area before 3:00 PM on Thursday.

12:15–1:45 PM
Science Seminar

Nature’s Medicinal Remedies in the Treatment of Diabetes and Cancer (Bio)

Grand Ballroom C2, Convention Center

Eloy Rodriguez (er30@cornell.edu), James A. Perkins Professor, Dept. of Plant Biology and Environmental Toxicology, Cornell University, Ithaca, N.Y.

As many Americans strive to live a century, it is clear that diet and natural medicines (phytochemicals) are essential for controlling diabetes and preventing cancer growth. Join Dr. Rodriguez as he presents recent findings from his Cornell laboratory of novel natural drugs from the tropics and deserts of the Americas that inhibit liquid tumors (leukemia) and solid tumors (breast cancer). He will also touch on ways to present research on cancer and natural drug therapies to K–12 students interested in science, health, and medical careers.

An internationally known research scientist and endowed professor at Cornell University, Dr. Eloy Rodriguez has devoted his professional life to the chemical biology, ecology, and medicinal chemistry/toxicology of natural small molecules and glycoproteins from plants and arthropods that are important in human and animal health and medicine.

His research involves the discovery of novel natural medicines from the Amazon, Caribbean, and the deserts of Mexico and the U.S. The medicines are used in the treatments of various cancer cell lines and infectious diseases. In collaboration with Dr. Richard Wrangham at Harvard, he established the discipline of zoopharmacognosy (animal self-medication with plants) and chemo-ornithology (chemical ecology of bird-insect-plant interactions) with David Rosane from the City University of New York (CUNY).

Dr. Rodriguez has also developed various educational science programs for K–16 students, especially minority students, at Cornell and University of California, Irvine. A Mexican-American, Dr. Rodriguez serves as a faculty advisor for the Science Organization of Latinos at Cornell University.

He holds a PhD in phytochemistry and plant biology from the University of Texas, Austin. He later received medical postdoctoral training in medicinal botany at the University of British Columbia. Before joining the faculty at Cornell, Dr. Rodriguez was an assistant professor of Ecology and Evolutionary Biology at the University of California, Irvine.
12:30–1:00 PM Exhibitor Workshop

Welcome to the Neighborhood: An Overview of the Solar System (Earth) (Grades 5–8) Booth #1500, Exhibit Hall, Convention Center
Sponsor: Science First®/STARLAB®
Nathaniel Bell (info@sciencefirst.com), Science First/STARLAB, Yulee, Fla.
In this “in dome” workshop, we’ll demonstrate how you can introduce your students to our neighborhood—the solar system.

12:30–1:30 PM SCST Marjorie Gardner Lecture

Beyond Assessing Knowledge: Card Sorting, Superheroes, and Moving Toward Measuring Biological Expertise (Bio) (Informal Education)
Kimberly D. Tanner (kdtanner@sfsu.edu), San Francisco State University, San Francisco, Calif.
This interactive lecture will engage the audience in thinking about expert and novice thinking in biology, integrating ideas from science education, and cognitive psychology.

12:30–1:30 PM Presentations

SESSION 1 (two presentations)
(Preschool–Middle Level) 201, Convention Center
STEM Comes to Preschool (Gen) Sally C. Moomaw (sally.moomaw@uc.edu), University of Cincinnati, Ohio
Learn about STEM activities that were implemented in an urban special education preschool. Children used multiple modalities to experiment with birdsong patterns, inclines, and pendulums.

Team Teaching in the Science Classroom (Gen) Beverly S. Owens (bsowens@clevelandcountyschools.org), Schiele Museum of Natural History, Gastonia, N.C.
Bruce E. Bridges (bebridges@clevelandcountyschools.org), Crest Middle School, Shelby, N.C.
Brian E. Soash (besoash@clevelandcountyschools.org) and How can science teachers differentiate instruction to meet the needs of all learners? Explore methods of team teaching that can be used in science instruction.

SESSION 2

Using the Nation’s Report Card (NAEP) to Improve Science Education (Gen) (General) 202B, Convention Center
Hector Ibarra (hibarraia@gmail.com), National Assessment Governing Board Member, Iowa City, Iowa
The Nation’s Report Card provides information that helps teachers assess student progress and develop ways to improve science education. Links to previously used test questions are provided. A snapshot of test results of Texas and the states surrounding Texas will be presented. Take away a comprehensive NAEP folder along with information on how to incorporate state performance results in your classroom and school district.
SESSION 3
CESI Session: Meaningful and Creative Inquiry (Gen)
212A, Convention Center
Hans Persson (hanper@hanper.se), Nacka, Sweden
Creativity and variety are powerful tools to raise both pupils’ and teachers’ interest in science and to keep the interest alive.

SESSION 4
ASTC Session: Climate Change Action Planning, Green Teams, and Project Based Learning (PBL): Best Practices from Schools (Informal Education)
213A, Convention Center
Jen Kretser (j.kretser@wildcenter.org), The Wild Center, Tupper Lake, N.Y.
Tammy Morgan, Lake Placid (N.Y.) Central School District
Want to reduce your school’s carbon footprint and engage students in climate science? Discover how to use your school campus as a teaching tool to create opportunities for real-world learning. DVD and materials provided.

SESSION 5 (two presentations)
(Preschool–Elementary) 216A, Convention Center
Magic with Science (Phys)
Pamela Pape (ppape@jackson.k12.ms.us), Key Elementary School, Jackson, Miss.
After studying simple machines and forces, students present a magic show based on Chris Oxlade’s books Science Magic with Machines and Science Magic with Forces.

Inquiry and Exploration with Inclined Planes and Forces of Motion (Phys)
Sandi Castro, Del Valle (Tex.) ISD
Lisa Adams (ms_blossom@yahoo.com), Round Rock (Tex.) ISD
Explore ideas for enhancing student understanding of inclined planes, force and motion, and material properties.

Hear ye, hear ye, submit a session proposal
2014 National Conference on Science Education
Leading a Science Revolution • Boston, Massachusetts • April 3–6, 2014

Share Your Know-How
Want to present at NSTA Boston 2014? You are not too late!
There is still time to submit a session proposal before the Monday, April 15, deadline.

www.nsta.org/conferences
SESSION 6 (two presentations)
(Elementary—Middle Level) 216B, Convention Center
How Can We Engage Students in the Scientific and Engineering Practices? Teachers Making the Transition to Framework Practices Through Graduated Investigations (Gen)
Donald DeRosa, Boston University, Boston, Mass.
Through progressively more independent activities in immersive professional development, we’re developing the new framework practices for engineering and science for teachers of grades K–8.

It All Starts with a Question! (Gen)
Kristin T. Rearden (kreatden@utk.edu) and Amy D. Broemmel (broemmel@utk.edu), University of Tennessee, Knoxville
Scientific contributions from elementary-aged youth have been instrumental throughout history, from naming clouds to finding fossils. Engage young scientists through activities based on these biographies.

SESSION 7
Does Evidence-based Inquiry Improve Logical Reasoning? (Gen)
(General) Crockett B, Grand Hyatt
Kim M. Hawtin (kim.hawtin@mnps.org), Wright Middle School, Nashville, Tenn.
Heather J. Johnson (heather.j.johnson@vanderbilt.edu), Vanderbilt University, Nashville, Tenn.
Join us for a discussion of an action research study that tested to see if instruction in and experience with evidence-based scientific inquiry improves grade 8 students’ general logical reasoning.

SESSION 8
Get That Textbook Out of My Classroom! (Gen)
(General) Crockett C, Grand Hyatt
Sarah R. Young, Einstein Fellow, National Science Foundation, Arlington, Va.
Move away from textbooks and into a library. Come learn how to use recent young adult literature to teach physical science skills and content to your students.

SESSION 9 (two presentations)
(General) Crockett D, Grand Hyatt
Using Technology to Connect Field Studies to the Classroom (Env)
Timothy R. Gay, Boston Latin School, Boston, Mass.
Join me and find out how to integrate technology and field studies into the laboratory component of a high school science course.

Wind Energy—How Much and at What Price? (Env)
Sean D. Johnson (seanjohnson@uchicago.edu) and Dylan Hatt, The University of Chicago, Ill.
Join us for this hands-on experience using model wind turbines, Google Maps, and National Renewable Energy Laboratory data to evaluate the feasibility and pricing of renewable electricity.

SESSION 10
Using Super Mario Bros. to Teach Calculus-based Kinematics (Phys)
(High School–College) Lone Star Ballroom A, Grand Hyatt
Jeffrey C. Nordine (jnordine@trinity.edu), Trinity University, San Antonio, Tex.
Gain an introduction to an inquiry-oriented strategy for using a popular video game to teach AP Physics students about 2-D kinematics and the derivative.
SESSION 11
Forensic Science in Your Classroom! (Gen) (Informal Education) Lone Star Ballroom C, Grand Hyatt
Karalyn S. Ramon, Loyola High School of Los Angeles, Calif.
Learn how to incorporate the most popular and exciting scientific field into your classroom. Gain hands-on experience solving realistic crime scene scenarios using actual forensic techniques.

SESSION 12
Computer Games, Simulations, and Virtual Labs for STEM Education (Gen) (Informal Education) Lone Star Ballroom E, Grand Hyatt
Randy M. Russell, University Corporation for Atmospheric Research, Boulder, Colo.
Teresa A. Eastburn, National Center for Atmospheric Research, Boulder, Colo.
Join us for a broad review of computer games, simulations, and virtual labs for STEM education from many different sources.

SESSION 13
Toshiba/NSTA ExploraVision (Gen) (General) Mission A, Grand Hyatt
Eric V. Crossley (ecrossley@nsta.org), Director, Science Education Competitions, NSTA, Arlington, Va.
ExploraVision is a K–12 competition that motivates students and challenges them to think creatively about scientific innovation 20 years into the future. Discover how students can win up to $240,000 in savings bonds for envisioning new technologies. Learn how ExploraVision supports classroom goals; illustrates connections between science and technology; and offers recognition, computers, and other prizes for schools, students, teachers, and mentors. Session participants have a chance to win a Toshiba product!

SESSION 14 (two presentations)
(General) Mission B, Grand Hyatt
Presider: Marta Fortis (fortismarta@gmail.com), University of Puerto Rico, San Juan
Developing Creativity Skills in the Science Classroom (Gen)
Mary Tsotsis (giakts@yahoo.com), International School of Boston, Cambridge, Mass.
Walk away with examples of learning activities and assessment for developing creativity skills in your science classroom.

Action Research: A Teachers’ Professional Development Strategy to Meet the Needs of Diverse Learners (Gen)
Sandra Beltran (sabeltranr@gmail.com), Maria Ortiz, Myrna Hernandez, and Minnuette Rodriguez, University of Puerto Rico, San Juan
Master science teachers are using action research as an effective professional development strategy to focus on the learning of students with special needs.

SESSION 15
NARST Session: Students Reflecting on Science Learning—Assignments, Assessments, and Rubrics (Gen) (General) Presidio C, Grand Hyatt
Jim McDonald (mcdon1jt@cmich.edu), Central Michigan University, Mount Pleasant
What are effective ways to get students to reflect on their science learning? Sample assessments, reflections, assignments, and rubrics will be shared. Handouts!

SESSION 16
STEM Share-a-Thon (Gen) (Elementary–High School) Texas Ballroom A/B, Grand Hyatt
Lisa Damien-Marvin (ldamian@mac.com), Camden Hills Regional High School, Rockport, Maine
Coit Hendley, Eleanor Roosevelt High School, Greenbelt, Md.
Ella Bowling (ella.bowling@mason.kyschools.us), Mason County Middle School, Maysville, Ky.
Evan Mirenberg (jmetro39@aol.com), P.S. 188 Michael E. Berdy School, Brooklyn, N.Y.
Presider: Amanda Upton (aupton@nsta.org), Manager, Nominations and Teacher Awards Program, NSTA, Arlington, Va.
Come learn about the latest STEM classroom initiatives by the PASCO STEM Educator Award winners! Teachers will present their winning ideas at the elementary, middle school, and high school levels.
SESSION 17
Integrating Science and Mathematics Using the “Hook” of CSI (Gen)
Kathy Mirakovits (kmirakovits@portageps.org), Portage Northern High School, Portage, Mich.
Science and mathematics come to life when students learn forensic science. Integrate all sciences, mathematics, and community professionals for a successful and exciting science experience.

SESSION 18
NSTA Press® Session: Uncovering K–12 Students’ (and Teachers’) Ideas About Matter and Energy (Chem)
Page Keeley (pagekeeley@gmail.com), 2008–2009 NSTA President, Jefferson, Maine
Joyce Tugel (jtugel@mmsa.org), Maine Mathematics and Science Alliance, Augusta
Examine and discuss a variety of formative assessment techniques to uncover common misconceptions and learning difficulties related to core ideas and scientific practices regarding matter and energy.

SESSION 19
Building a Strong Foundation for Energy Literacy Through Integration of Instruction Across Content Areas and Grade Levels with “Energy Day”! (Gen)
Deborah Shiflett-Fitton (dfitton@capelightcompact.org), Cape Light Compact, Barnstable, Mass.
Sally Andreola (sallyandreolal@msn.com), Cape Light Compact, Brewster, Mass.
Nancy Gifford (ngifford@monomoy.edu) Melinda Forist (mforist@monomoy.edu), and Sally Rutledge (srutledge@monomoy.edu), Harwich Middle School, Harwich, Mass.
Presider: Deborah Shiflett-Fitton
Explore the concept of “Energy Day” with this award-winning, innovative, and interactive model that uses interdisciplinary and multi-grade level tools to turn a middle school into an energy learning laboratory for an entire school day.

SESSION 20
Next Generation Science Standards: Teacher Insights from the Writing Team— Earth and Space Sciences (Middle/High School) (Earth)
Vanessa Westbrook (vanedani_61@yahoo.com), Chairperson, NSTA San Antonio National Conference, and Westbrook Consulting, Austin, Tex.
Kenneth L. Huff (kenneth.huff@roadrunner.com), Mill Middle School, Williamsville, N.Y.
Mary C. Colson (mcolson@moorheadschools.org), Horizon Middle School, Moorhead, Minn.
Join Earth and space science teachers who are writers of the highly anticipated Next Generation Science Standards for an exploration of the development of NGSS—from teachers for teachers. Writers will share the thinking and ideas that went into writing this landmark document and the challenges they experienced along the way. This session will address and explore Earth and space sciences from the secondary perspective (grades 6–12) and what NGSS will mean for classroom science teachers.

SESSION 21
What Every Science Educator Needs to Know About Students with Special Needs (Gen)
Jennifer L. Purcell-Coleman, University of Arkansas, Fayetteville
Join me for rationales and strategies delivered through presentation and discussion for the integration of students of special education in the science classroom with implications for teacher education.

SESSION 22
Socratic Science Circles (Gen)
Lara Arch (larch1@rice.edu), Rice University, Houston, Tex.
Participate in a Socratic Science Circle and discuss how to implement them in your classroom for various lengths of time, multiple purposes, and a variety of learners.

SESSION 23
Becoming an Effective Teacher (Gen)
Remy Dou (douremy@gmail.com), Einstein Fellow, National Science Foundation, Arlington, Va.
Great lessons are not enough to recruit future STEM scientists. It will take a combination of competent academic programs and changes in the scientific culture—and children’s context also must be taken into account.
SESSION 24
SYM-1 Follow-Up Session: A Changing Climate Here and Now (Earth)
(General) Conference Room 3/4, Marriott Rivercenter
Frank Niepold (frank.niepold@noaa.gov), NOAA, Silver Spring, Md.
A climate scientist from NOAA will help explain current weather events in the context of a changing global environment.

SESSION 25
AMSE Session: Engineering—It Is Elementary (Gen)
(Elementary–Middle Level) Conf. Room 6, Marriott Rivercenter
Bobby J. Jeanpierre (bjeanpie@bellsouth.net), University of Central Florida, Orlando
This session reports on K–8 teachers’ experiences making sense out of the new engineering practices using the Museum of Science’s Engineering is Elementary® design process. Take home examples of engineering design lessons developed by teachers for their classrooms.

SESSION 26
“Nuclear”ification: A Smorgasbord of Classroom Applications and Resources (Gen)
(High School) Conference Room 15, Marriott Rivercenter
Jenelle D. Hopkins (jhopkins@interact.ccsd.net), Centennial High School, Las Vegas, Nev.
Mark Klawiter (mkklawit@mtu.edu), Michigan Technological University, Houghton
Join us for nuclear science content (physical sciences, Earth science, biological sciences) with cross-curricular ties to social studies and history, political science, literature, and the arts.

SESSION 27
The Magnet Lab: Magnets Is What We Do! (Phys)
(Elementary) Salon B, Marriott Rivercenter
Carlos R. Villa (villa@magnet.fsu.edu), National High Magnetic Field Laboratory, Tallahassee, Fla.
If you see only one session on magnets and magnetism, get it from the pros right here! Aimed at elementary students, this session will cover magnetism completely.

President’s Reception
Saturday, April 13, 7:00–8:15 PM
Salon E, Marriott Rivercenter
Cost: $65
(By ticket only: M-10; Evening/cocktail attire suggested)
The cost of the ticket includes:
• Heavy hors d’oeuvres, a pasta station, cheese display, and assorted desserts;
• Reserved seating at the President’s Evening Featured Presentation by David Hanson (in Salon I) 8:30–9:30 PM

Please join us for the President’s Mixer—9:45 PM–12 Midnight in Salon E (DJ and cash bar).
SESSION 28
Video Analysis and Science Inquiry (Phys) (High School) Salon J, Marriott Rivercenter
Thomas H. Letkewicz (letkewicz@bdusd.org) and Dylan Ziegler (zieglerd@bdusd.org), Beaver Dam High School, Beaver Dam, Wis.
Learn how to use video analysis to gather and analyze data on motions that are difficult to examine under traditional methods. Various resources will be shared.

SESSION 29
Get Moving! The Chemistry Edition (Chem) (Middle Level–High School) Alamo Salon B, Marriott Riverwalk
Brian J. Ciuffreda (bciuffreda@princetoncharter.org) and Mark F. Schlawin (mschlawin@princetoncharter.org), Princeton Charter School, Princeton, N.J.
Propel new learning in your science classroom. Discover some chemistry-related, standards-based physical activities and "kinesthetic clue" mnemonic devices used at one of New Jersey's top-performing middle schools.

SESSION 30
Forensic Analysis of Pollen (Bio) (General) Alamo Salon E, Marriott Riverwalk
Anthony J. Bertino (abertino@nycap.rr.com) and Patricia Nolan Bertino (nolanp@nycap.rr.com), Retired Educators, Scotia, N.Y.
Increase student interest/knowledge in math, literacy, and technology and discover how pollen is used to solve crimes. Take home PowerPoint, lab activities, 5E (Engage, Explore, Explain, Elaborate, and Evaluate) materials, and case studies.

SESSION 31
Integrating Bioethical Case Studies into the Science Curriculum (Bio) (Middle Level–High School) Alamo Salon F, Marriott Riverwalk
Terry Maksymowych (tjmaksymowych@ndapa.org), Academy of Notre Dame de Namur, Villanova, Pa.
The study of bioethics in the science classroom can encourage scientific literacy as well as the development of critical-thinking and problem-solving skills.

SESSION 32
Tasty Chemistry: The Chemistry of Food (Chem) (Middle Level–High School) Travis, Marriott Riverwalk
Sherri Conn Rukes, Libertyville High School, Libertyville, Ill.
Polymers are found all around us. This presentation will give you a better understanding of why some polymers are used in cooking, what polymers are in food, as well as what polymers are in the tools we use to cook with. Take home a CD of the activities and information.

12:30–1:30 PM Workshops
Silent Earthquakes Beneath Your Feet? How a Magnitude 7 Earthquake Can Occur Without Being Felt by Anyone! (Earth) (Middle Level–High School) 001A, Convention Center
Shelley Olds (olds@unavco.org), UNAVCO, Boulder, Colo.
Nancy West (nancywwest@gmail.com), Quarter Dome Consulting, LLC, Fort Collins, Colo.
Patrick J. McQuillan (mcquillan@iris.edu), IRIS, Washington, D.C.
Explore the world beneath the Pacific Northwest and discover how new science has detected “slow earthquakes” using high-precision GPS and seismic data.

Weather or Not: K–4 Connections for Weather Units (Earth) (Elementary) 001B, Convention Center
Lynne H. Hehr (lhehr@uark.edu) and John G. Hehr (jghehr@uark.edu), University of Arkansas, Fayetteville
Weather! Weather! What’s the weather…and how can the science of it be tied to language arts, math, and social studies in my classroom? Explore ways of looking at weather from an interactive, integrated standpoint! Loads of resource materials will be highlighted.

Understanding the Solar System with Active Modeling (Earth) (Elementary—Middle Level) 002, Convention Center
Nancy L. Balter (nancybalter@yahoo.com), Gardena, Calif.
Memorizing the planet names isn’t enough. We’ll model the relative planet distances in the solar system (outside!) and the moon’s phases for a conceptual understanding.
Hands-On/Minds-On Science: Meeting the Needs of Diverse Learners in a Collaborative Setting
(General) 101A, Convention Center
Maribeth A. Lowe (mlowe@greenecountyschools.com) and Leah Talbert (ltalbert@greenecountyschools.com), William Monroe High School, Stanardsville, Va.
An exciting, interactive presentation demonstrating how the use of high-tech and low-tech materials can give your students the best learning experience.

Circuits to Go!
(Phys) 202A, Convention Center
Cherubim Cannon (cherubimcannon@aol.com) and Janice Porter (porter42b@aol.com), P.S. 005 Dr. Ronald McNair, Brooklyn, N.Y.
Gary F. Benenson (benenson@ccny.cuny.edu), City College of New York, N.Y.
Generate excitement in your classroom and make your own switches from office supplies and use them to control lights and buzzers. Students can make these circuits and take them home!

Getting Started with the T and E in STEM
(General) 213B, Convention Center
Deborah L. Dempsey (deb@bhstemed.us) and Carolyn DeCristofano (carolyn@bhstemed.us), Blue Heron STEM Education, Plympton, Mass.
You know it’s important to integrate engineering and technology into elementary science, but where do you begin if you’ve never done this before? Start here!

Inquiry Activities for K–4—Strike While the Iron Is Hot!
(Phys) 215, Convention Center
Elise B. Burns (eburns@pascack.k12.nj.us), Pascack Hills High School, Montvale, N.J.
Children ages K–4 are more open minded and curious than at any other age. Behold a wealth of activities to engage them with basic physical science ideas that cost nearly nothing and teach them real science!

POWER ON! Argumentation Strategies for the Elementary Science Classroom
(General) 217D, Convention Center
Tina Garrett (tgarrett@garlandisd.net), Becky Orsini (rorsini@garlandisd.net), and Mary Huschle, Garland (Tex.) ISD
Do your students need guidance engaging in scientific discussion and/or debate? Participants will use CER frames to actively engage in cooperative activities to learn argumentation strategies.

NESTA Session: National Earth Science Teachers Association Earth System Science Share-a-Thon
(Elementary–High School) Ballroom A, Convention Center
Michelle Harris (michelle.harris@apsva.us), Wakefield High School, Arlington, Va.
Robert M. Johnson (rmjohnson@nestanet.org), NESTA and University at Albany, Boulder, Colo.
Margaret A. Holzer (mholzer@monmouth.com), Chatham High School, Chatham, N.J.
Filla Baliwag (baliwag@agieweb.org), American Geosciences Institute, Alexandria, Va.
Kathryn A. Barclay (kathrynbarclay65@aol.com), Dulles Middle School, Sugar Land, Tex.
Tammy Bravo (tkb@iris.edu), IRIS, Washington,D.C.
Sharon Katz Cooper (Scooper @oceanaleadership.org), Deep Earth Academy, Consortium for Ocean Leadership, Washington, D.C.
Becky J. Cox (beckyc@utm.edu), The University of Tennessee at Martin
Mark Francke (mark.francke@cmich.edu), Central Michigan University, Mount Pleasant
Lisa Gardiner (lisagard@ucar.edu) and Becca Hatheway (hatheway@ucar.edu), University Corporation for Atmospheric Research, Boulder, Colo.
Paige Valderrama Graff (paige.v.graff@nasa.gov), Jacobs ESCG/NASA Johnson Space Center, Houston, Tex.
Teresa J. Kennedy and Michael Odell, The University of Texas at Tyler
Timothy McCollum, Eastern Illinois University, Charleston
H. Michael Mogil (hmmogil@weatherworks.com), How The Weatherworks, Naples, Fla.
Shelley Olds (olds@unavco.org), UNAVCO, Boulder, Colo.
Michael J. Passow (michael@earth2class.org), Dwight Morrow High School, Englewood, N.J.
Join more than 20 NESTA members and other education specialists as they share their favorite classroom activities. Lots of free handouts!

DuPont Session: DuPont Presents “Investigating Photovoltaic Cells”
(Middle Level–High School) Bonham B, Grand Hyatt
Wes Crawford, Sutherland High School, Sutherland, Ore.
Amy Tomlinson (atomlinson@southcentralunified.org), Sandy Creek Public Schools, Fairfield, Neb.
Scott Stone (scott.stone@catnet.genmo.us), Centralia High School, Centralia, Mo.
Come learn how to power a motor using photovoltaic cells and design experiments to investigate various factors that affect the cells’ ability to transform light energy into electricity.
Deep Science Learning with Sims: Incorporating Interactive Simulations Effectively with Hands-On Investigations and Argumentation (Gen) (Middle Level) Bonham C, Grand Hyatt

Suzanna J. Loper, Arial Krakowski, Andrew Falk, and Carissa Romano, The Lawrence Hall of Science, University of California, Berkeley

Discover how to design learning experiences that integrate online simulations into a rich science learning experience that includes hands-on investigation, reading, writing, and scientific argumentation.

Middle School Chemistry: Big Ideas About the Very Small (Chem) (Middle Level) Bonham D, Grand Hyatt

James H. Kessler (jkhessler@acs.org), American Chemical Society, Washington, D.C.

Conduct hands-on activities about solids, liquids, and gases from the free resource middleschoolchemistry.com. The 5E (Engage, Explore, Explain, Elaborate, and Evaluate) lessons and molecular animations are freely available for use in the classroom.

Practical Technology for Environmental Field Studies (Env) (College) Bonham E, Grand Hyatt

Billy Bennett (william.bennett@eku.edu) and Melinda Wilder (melinda.wilder@eku.edu), Eastern Kentucky University, Richmond

Explore several appropriate technologies that enhance environmental field investigations. Presenters will share instructional methods and student work samples from inservice teacher courses.

How Dirty Is Your Windshield? Formative Assessment via 3-D Graphic Organizers (Gen) (General) Bowie B, Grand Hyatt

Robert Stremme, Eastern University, St. Davids, Pa.

What is your students’ visibility with concepts in the classroom? Learn how to use 3-D interactive organizers as authentic, relevant, and formative assessment tools.

Got the iPads, Now Let’s Get “Appy”! (Gen) (Elementary—High School) Lone Star Ballroom F, Grand Hyatt

Beth S. Guzzetta (tangent_one@yahoo.com) and Anthony J. Tepedino (ttepedino@allendalecolumbia.org), Allendale Columbia School, Rochester, N.Y.

Come learn about numerous available educational science iPad apps plus other ways to integrate technology into your classroom using the iPad.

Ocean Plastic Pollution: Examining Issues and Solutions in a Middle School Classroom (Env) (Middle Level) Republic B, Grand Hyatt

Mary C. Whaley (mwhaley@mbayaq.org), Monterey Bay Aquarium, Monterey, Calif.

Enrich your middle school classroom with hands-on standards-based activities focusing on issues and solutions surrounding plastic pollution. Activities will highlight physical and chemical properties of plastics, including density and buoyancy.

10 Things Everyone Should Know About the Atmosphere (Phys) (Elementary—High School) Conf. Room 16, Marriott Rivercenter

Brian Jones, Cherie Bornhorst, Sheila Ferguson (sferguso@lamar.colostate.edu), and Sue Ellen Kempton, Colorado State University, Fort Collins

Join the Little Shop of Physics to explore the science of weather and climate concepts through inquiry-based hands-on activities that can be adapted for any grade level!

Designing Engineers—From Kids to Careers (Gen) (General) Salon A, Marriott Rivercenter

Arthur W. Bowman (awbowman@nsu.edu), Norfolk State University, Norfolk, Va.

Emphasis will be placed on how use of the design process to prepare children for careers in engineering as well as elementary design briefs are key to success.

Outdoor Science Pathway Session: Teaching Outdoor Science Through Trade Books (Env) (Elementary—Middle Level) Salon F, Marriott Rivercenter

Christine A. Royce (caroyce@aol.com), Shippensburg University, Shippensburg, Pa.

Find out how outdoor lessons and environmental concepts can be enhanced with appropriate children’s literature from the coauthor of Teaching Science Through Trade Books.
Scientific thinking encompasses not only the nature of science and a scientific way of knowing, but also how students must be able to think this way in their science classroom every day and know its relevance to their daily lives. This means not just completing a two-week unit about the nature of science, but being able to apply that knowledge. Learn how to design your instruction to promote student inquiry and scientific thinking that leads to understanding. Handouts and sample lessons.

CRASH Science! Investigating the Dangers of Distracted Driving (Gen) (Middle Level–High School)
Salon M, Marriott Rivercenter

Griff Jones (gjones@coe.ufl.edu) and Linda C. Jones (lcjones@coe.ufl.edu), University of Florida, Gainesville

Learn how to use easy-to-implement biology- and physics-related hands-on inquiry activities and dramatic crash videos to teach students about the dangers of distracted driving.

Fun Science to Stimulate Inquiry (Bio) (Middle Level–College)
Alamo Salon C, Marriott Riverwalk

John W. Fedors (jfedors@wavecable.com), Science Activities, Lincoln, Calif.

Join me for hands-on activities in diffusion, passive transport, simulated cell organelles, MRI, hydrophilic/hydrophobic properties, intimate microbes, energy transfer, and forensics.

Bird Islands: Exploring Biodiversity Using Interactive Geospatial PDFs to Address the New Frameworks (Bio) (Middle Level–High School)
Alamo Salon D, Marriott Riverwalk

Carol Burch (cburch129@gmail.com), Hannibal High School, Hannibal, N.Y.

Nancy Trautmann (nmt2@cornell.edu), Cornell Lab of Ornithology, Ithaca, N.Y.

James G. MaKinster (makinster@hws.edu), Hobart and William Smith Colleges, Geneva, N.Y.

Bring your laptop/iPad for hands-on spatial inquiry of bird populations. Interactive PDF maps inspire students to learn the meaning of biodiversity, species richness, endemism, and abundance.

Engineering the Future: A Practical Approach to STEM for High School (Gen) (Grades 8–12)
205, Convention Center

Sponsor: It’s About Time

Lee Pulis, Museum of Science, Boston, Mass.

STEM—it’s a real need. Engineering the Future is a real answer. See how the Museum of Science, Boston has packaged a solution that makes implementing STEM easy. Learn how Engineering the Future’s four real-world projects give students an opportunity to see how engineering is part of their everyday world.

WindWise Science Curriculum (Gen) (Grades 4–12)
007C, Convention Center

Sponsor: KidWind Project

Joseph T. Rand (joe@kidwind.org) and Michael Arquin, KidWind Project, St. Paul, Minn.

Interested in bringing wind energy science to your physics, technology, biology, environmental science, and Earth science classrooms? This workshop features a hands-on exploration of the WindWise Curriculum developed at KidWind. Participants will receive curricular and other materials to help them start this project in their classrooms. Visit www.kidwind.org for more information.

Squishy Circuits, Toy Engineering, and More! (SC-11) (Elementary–Middle Level)
Salon del Rey C, Hilton

Tickets Required: $23

Didey Muniz (dideymuniz@mail.utexas.edu), Women in Engineering Program, The University of Texas at Austin

Katelyn Wamsted (katelyn@girlstart.org), Girlstart, Austin, Tex.

Melissa R. Cigarroa (melissa@wowscienceelaredo.org), Informal Science Learning Associates (ISLA) of Laredo, Tex.

Karen A. Peterson (kpeterson@edlabgroup.org), National Girls Collaborative Project, Lynnwood, Wash.

For description, see page 61.
12:30–4:30 PM Workshop
PDI
BSCS-I Pathway Session: Analyzing and Interpreting Data in Your Classroom
(Generals)
(Elementary–High School)
Conf: Room 1/2, Marriott Rivercenter
Jody Bintz (jbintz@bscs.org) and **Connie J. Hvidsten** (chvidsten@bscs.org), BSCS, Colorado Springs, Colo.

Come learn how to help students interpret and reason about data and observations (NGSS practice 4). During this session, we will share a common experience, analyze video of teaching and learning, and consider ways to support students to think scientifically in your classroom!

1:00–1:30 PM Presentations
SESSION 1
My Big Backyard
(Elementary)
208, Convention Center
Marcia N. Segers (marcia.segers@trussvillecityschools.com) and **Angela Shorter** (angela.shorter@trussvillecityschools.com), Paine Primary School, Trussville, Ala.

Take young naturalists on a worldwide backyard excursion! Incorporate research, technology, and communication skills through hands-on/minds-on activities to develop environmentally conscious citizens.

SESSION 2
I Draw to Assess; Do You? Creative Formative Assessment Strategies
(Elementary–High School)
Crockett A, Grand Hyatt
Trinity J. Ayres, Calgary (Alta.) Catholic School District, Canada

Learn creative formative assessment strategies that establish student knowledge about a topic and show students’ development as they continue their learning.

1:00–2:00 PM Meeting
Lifelines for Climate Change Education Meeting
(By Invitation Only)
Conference Room 7, Marriott Rivercenter
Visit www.globalsystemsscience.org/lifelines for information.

1:00–2:30 PM Exhibitor Workshops
If You Want TEKS in Their Minds, Put FOSS in Their Hands (Texas Edition)
(Generals)
(Grades K–8)
214B, Convention Center
Sponsor: Delta Education/School Specialty Science–FOSS
Linda De Lucchi, **Kathy Long**, **Brian Campbell** and **Diana Velez**, The Lawrence Hall of Science, University of California, Berkeley

Join FOSS developers to get a sneak preview of the upcoming FOSS edition designed just for Texas educators and students. Each FOSS investigation is designed to provide multiple exposures to Texas Essential Knowledge and Skills (TEKS) using seamlessly integrated strategies that center on active investigation and include notebooks, formative assessment, and digital technology.

Taking Science Outdoors with FOSS K–6
(Generals)
(Grades K–6)
214C, Convention Center
Sponsor: Delta Education/School Specialty Science–FOSS
Erica Beck Spencer and **Joanna Snyder**, The Lawrence Hall of Science, University of California, Berkeley

FOSS now reaches beyond the classroom and into your school yard and local environment. Learn how FOSS, 3rd Edition engages children in meaningful outdoor science learning experiences. Participate in outdoor investigations that can apply, extend, and expand classroom content and concepts to the real world. Take home a copy of *Taking FOSS Outdoors*.

What Colors Your World? Quick, Easy, and Cheap Biotech Activities for Biology and Chemistry
(Generals)
(Grades 9–College)
217B, Convention Center
Sponsor: Bio-Rad Laboratories
Kirk Brown, Tracy High School, Tracy, Calif.

In this hands-on workshop, learn how natural and synthetic pigments can be extracted and separated based upon their molecular properties. The use of biotechnology separation techniques cuts across the chemistry and biology curricula, and these techniques are easy to bring into the classroom.
1:00–3:00 PM Workshop

PDI WISP Pathway Session: Taking Little Ones from Questions to Claims: K–3 Inquiry Using the SWH (Gen)
(Preschool–Elementary) Salon L, Marriott Rivercenter
Lori Norton-Meier, University of Louisville, Ky.
Jay Staker (jstaker@iastate.edu), Iowa State University, Ames
Harness the wonder of children to explore their world by linking science to literacy. The Science Writing Heuristic (SWH) approach brings reading, writing, and inquiry together for learning.

1:00–3:00 PM Exhibitor Workshop

Ecology to Enzymes to Industry (AP Big Idea 4) (Bio)
(Grades 9–College) 217C, Convention Center
Sponsor: Bio-Rad Laboratories
Damon Tighe, Bio-Rad Laboratories, Hercules, Calif.
In this inquiry-based hands-on workshop, learn to use ecological knowledge of the kingdom Fungi to find and characterize novel cellobiase enzymes for application in cellulosic biofuel production. The enzyme cellobiase is easy to extract from mushrooms, and a colorimetric system for assaying activity can be used to determine how pH, temperature, and concentrations affect the rate of reaction.

1:00–4:30 PM Short Course

Real-Life Science Learning on a Budget (SC-12) (Elementary)
La Corona, Hilton
Tickets Required: $36
Carolyn Lowe (clowe@nmu.edu), North Michigan University, Marquette
For description, see page 61.

1:30–3:00 PM Science Seminar

When the World Was Warm—Looking Back to the Future (Earth) (General)
Grand Ballroom C3, Convention Center
Deborah J. Thomas (dthomas@ocean.tamu.edu), Associate Professor, Dept. of Oceanography, Texas A&M University, College Station
Presider: Jennipher Green, Program Representative, NSTA San Antonio National Conference, and The University of Texas at San Antonio
The sediments that have accumulated in the ocean basins preserve an archive of Earth’s climate history. Scientific ocean drilling has made possible the investigation of this climate record, revealing a period of global greenhouse warmth that peaked 50 million years ago. This interval represents an analog for future greenhouse warmth and provides the unique opportunity to investigate how the different components of the climate system may respond to global warming. Join Dr. Thomas in a discussion of how we reconstruct ocean circulation and its role in global climate during an ancient greenhouse climate state.

A faculty member in the Department of Oceanography at Texas A&M University since 2004, Dr. Deborah Thomas specializes in the investigation of past climate, using the chemical composition of marine sediments recovered by the Integrated Ocean Drilling Program to reconstruct environmental conditions during intervals of extreme global warmth.

Dr. Thomas has been involved in scientific ocean drilling for nearly 20 years, beginning with her research as an undergraduate at Brown University. Since then she has sailed on several expeditions aboard the Integrated Ocean Drilling Program’s vessel JOIDES Resolution and published extensively on the sediments recovered during these expeditions.

Furthermore, scientific ocean drilling has provided Dr. Thomas with the unique opportunity to work with amazing K–12 educators through the Consortium for Ocean Leadership’s Deep Earth Academy teacher training programs.

She received a PhD in geological sciences from The University of North Carolina at Chapel Hill.
Friday, 1:30–3:00 PM

1:30–3:00 PM Exhibitor Workshop

Exploring STEM Careers: Water and Our Environment (Env)
(Grades 6–12) 102A, Convention Center
Sponsor: Fisher Science Education
Robert Marshall, Carnegie Science Center, Pittsburgh, Pa.
With global population growth creating a rise in demand, access to clean water is becoming increasingly important. Learn how you can bring this real-world issue to life for your middle and high school students. Gain hands-on experience in this technology-focused environmental workshop, led by Robert Marshall, a STEM educator from Carnegie Science Center, one of the nation’s leading hands-on science museums. Handouts and door prizes!

2:00–3:00 PM Featured Presentation

Next Generation Science Standards Town Hall Meeting (Gen)
Grand Ballroom C2, Convention Center
Stephen L. Pruitt, Vice President for Content, Research, and Development, Achieve, Inc., Washington, D.C.
Presider: Jacqueline R. Smalls, Langley STEM Education Campus, Washington, D.C.
The Next Generation Science Standards (NGSS) are due for release in early 2013. What are the next steps after the NGSS are completed? How will they affect science education, including classroom instruction, professional development, curriculum materials, and state assessments? Join Stephen for a Town Hall Meeting on NGSS. This interactive forum will be an opportunity for teachers to ask questions and discuss the next steps in the implementation of NGSS.

With private funding from the Carnegie Corporation—the National Research Council and Achieve, Inc., with support from NSTA and the American Association for the Advancement of Science, have embarked on a two-step cooperative process. The first step, the NRC Framework, was released in July 2011. The next step is the development of the actual standards, a process led by Achieve involving science experts, science teachers, states, and other science education partners.

Vice president for Content, Research, and Development at Achieve, Stephen Pruitt is leading the development of the Next Generation Science Standards. He began his career as a high school chemistry teacher in Georgia, where he taught for 12 years.

In 2003, he joined the Georgia Department of Education as the program manager for Science. He served in that role for four years before becoming director of Academic Standards, in which he oversaw the continued implementation of the Georgia Performance Standards in all content areas. In 2008, he became the associate superintendent of Assessment and Accountability, responsible for directing all state assessments and overseeing the No Child Left Behind accountability process. In April 2009, Stephen became chief of staff to state School Superintendent Kathy Cox, coordinating the work of the agency, and a variety of projects such as Georgia's third-ranked Race to the Top application.

Stephen earned his PhD of philosophy in chemistry education from Auburn University.
2:00–3:00 PM American Geophysical Union (AGU) Lecture

The Climate Science Debate: What Does the Science Tell Us and Why People on Both Sides Are So Angry About It (Env) (General)

Grand Ballroom C1, Convention Center

Andrew Dessler (adessler@tamu.edu), Professor of Atmospheric Sciences, Texas A&M University, College Station

Join Dr. Andrew Dessler as he reviews the state of the science of climate change and discusses why climate scientists are so worried about this problem. Also, he will weigh in on the polarized debate over climate change and why there is such an enormous split over both the scientific reality of the problem and the policy options.

A climate scientist who studies both the science and politics of climate change, Dr. Andrew Dessler is presently professor of Atmospheric Sciences at Texas A&M University. His research revolves around climate feedbacks, in particular how water vapor and clouds act to amplify warming from the carbon dioxide that humans emit.

In 2012, he received the AGU’s Ascent Award from the atmospheric sciences section to reward exceptional achievement by a mid-career scientist. During the last year of the Clinton Administration, Dr. Dessler served as a Senior Policy Analyst in the White House Office of Science and Technology Policy.

His authorship includes The Science and Politics of Global Climate Change: A Guide to the Debate and Introduction to Modern Climate Change. In recognition of his work on outreach, in 2011 he was named a Google Science Communication Fellow.

He holds a PhD in chemistry from Harvard University and completed postdoctoral work at NASA’s Goddard Space Flight Center. In addition, Dr. Dessler spent nine years on the research faculty of the University of Maryland.

Speaker is sponsored by American Geophysical Union.
SESSION 5
Not Your Grandfather’s Writing Tablet! (Gen) (Preschool–Middle Level) 215, Convention Center
Glenda L. Ogletree, Armstrong Atlantic State University, Savannah, Ga.
Jaime Berry (jlb110@shsu.edu), Sam Houston State University, Huntsville, Tex.
Emphasis will be placed on student-created science concept maps using interactive tablets (like iPads) integrated with nonfiction informational content books.

SESSION 6
Critical Skills Supporting Science and Engineering Innovation (Gen) (Elementary–Middle Level) 216B, Convention Center
Nicole Riegel (nriegel@growstem.org) and Patricia Lucido (plucido4405@gmail.com), SySTEMic Innovations, Excelsior Springs, Mo.
Experience how to incorporate 21st-century skills, Common Core mathematics standards, and language arts standards into science and engineering practices.

SESSION 7 (three presentations) (General) Bowie C, Grand Hyatt
Presider: Julie McIntosh, The University of Findlay, Ohio
SCST Session: Promoting Students’ Understanding and Awareness of Sustainability Issues and the Nature of Science Through Mandatory Online Discussions (Gen)
Renee M. Clary (rclary@geosci.msstate.edu), Mississippi State University, Mississippi State, Miss.
James Wandersee, Alumni Professor Emeritus, Louisiana State University, Baton Rouge
Attention will be paid to research involving time optimization for student understanding of climate change issues. We’ll discuss our findings from mandatory six-week online discussion units focusing on biodiversity and climate change, in which a majority of students achieved greater awareness of sustainability complexity and the nature of science.

SCST Session: Beginning a Learning Assistant Program in Science Courses as Experienced by Boston University (Phys)
Kathryn E. Spilios (kspilios@bu.edu), Boston University, Boston, Mass.
Nicholas Hammond (nicholas.hammond@rochester.edu), University of Rochester, N.Y.
Join us as we report on the Boston University experience of adopting learning assistants for introductory science courses, and the outcomes based on interview and survey data.

SCST Session: Promoting Environmental Literacy Through the New Core Standards (Env)
Gwynne Rife (rife@findlay.edu) and Julie McIntosh (mcintosh@findlay.edu), The University of Findlay, Ohio
Join us as we explore environmental literacy standards and see how they align to the new science core standards. These literacy standards (Ocean Literacy, Great Lakes Literacy, and State Environmental Literacy Plans, for example) can be met by introducing preservice teachers to environmental guides and trade books as tools to teach standards through literacy.
SESSION 8
Constructing an Electronic Cosmic Ray Detector to Observe, Record, and Analyze Cosmic Rays in Your Classroom (Gen)
Mark R. Malone (mmalone@uccs.edu), University of Colorado, Colorado Springs
Find out how to use simple department store materials coupled with an inexpensive USB video camera to view and record cosmic rays on a laptop computer. Show students how to observe and analyze video images.

SESSION 9
Collaborative Teaching for Collaborative Learning in the Lab (Gen)
Shawtwain Hall, Riverdale, Ga.
Think labs are only for the critical thinkers? Learn how to employ collaborative teaching strategies to help learners who struggle to become successful in the science lab. Handouts!

CANCELED

You’re invited...
to the NSTA Member Orientation

Your Total Membership Experience starts with this conference but continues all year long as you share your thoughts, lend your voice, and become a true partner in science education with your professional membership association! Join us for an introduction to your membership experience. An exceptional opportunity to meet your colleagues, make new friends, and enjoy refreshments!

Friday, April 12 • 3:30–5:00 PM
Grand Hyatt San Antonio • Lone Star Ballroom D
Compliments of GEICO Insurance.
SESSION 10 (two presentations)
(Elementary—High School) Crockett C, Grand Hyatt
Structured Writing in Science Doesn’t Have to Be Boring (Gen)
Karen Gentsch (kgentsch@etbu.edu), East Texas Baptist University, Marshall
Let’s focus on practical strategies for increasing writing in the science classroom. Specific ways to implement a variety of writing strategies to help students better understand content will be demonstrated.

Read It, Write It, Talk It: Practical Strategies for Addressing Literacy Development in Science Instruction (Gen)
Michelle Friend (mefh@stanford.edu), Brian M. Donovan (briand79@stanford.edu), Jonathan Osborne, Diego X. Roman, Mike Metz, and Alexis Patterson, Stanford University, Stanford, Calif.
We will present literacy development strategies that we have been using with science teachers at a large urban district.

SESSION 11
Be a “Flipper” for Ocean Literacy (Env)
(Gen) Crockett D, Grand Hyatt
Amy Larrison Gillan (agillan@saintmarys.edu), Saint Mary’s College at Notre Dame, Ind.
Daniel Smith (dsmith28@nd.edu), University of Notre Dame, Ind.
Optimize for students the relevance of the world of water by “flipping” the classroom, drawing upon existing online ocean and Great Lakes literacy resources.

SESSION 12
Find the Fund$ for STEM: Grant Writing 101 (Gen)
(Elementary—High School) Lone Star Blrm. E, Grand Hyatt
June Teisan (jtteisan@gmail.com), Harper Woods (Mich.) Schools
Don’t let $$ worries limit your dreams for building innovative STEM programs that infuse cutting-edge technologies! Come see numerous examples of grant-funded science initiatives and learn tips and tricks to win grant dollars. Create AMAZING tech-rich learning opportunities for your students!

SESSION 13
ASTE Session: Engineering a Solar Panel Sun Tracker (Gen)
(Elementary) Mission A, Grand Hyatt
Bryan Hubbard (bhubbard@purdue.edu), Purdue University, West Lafayette, Ill.
Nancy Tyrie (ntyrie@lsc.k12.in.us) and Erin Doherty (edoherty@lsc.k12.in.us), Sunnyside Middle School, Lafayette, Ind.
Brighten your lesson plans! Learn how to design and build a solar panel device that tracks the Sun to maximize solar efficiency throughout the day and the four seasons.

SESSION 14
Elementary Preservice Teachers—Can I Teach Science? (Gen)
(General) Mission B, Grand Hyatt
Pamela G. Christol and April D. Adams (adams001@nsuok.edu), Northeastern State University, Broken Arrow, Okla.
In this session, two professors explain how the “Draw A Science Teacher” instrument is used to gain insight into how a content-centered science course affects elementary preservice teachers’ perceptions of their ability to teach science.

SESSION 15
The NSTA Learning Center: A Tool to Develop Preservice Teachers (Gen)
(General) Presidio C, Grand Hyatt
Al Byers (abyers@nsta.org), Assistant Executive Director, e-Learning and Government Partnerships, NSTA, Arlington, Va.
Come learn about a new online system to assist professors in creating customized e-textbooks using Learning Center interactive and e-print resources for their preservice teachers.
SESSION 16 (two presentations)
(Chem) Bernadette Ezeliora and Irene O. Nweke, Ebonyi State University, Abakaliki, Nigeria
Students are guided by their teacher in the process of test scoring their scripts. It was observed that student involvement in test scoring enhanced their understanding and achievement in chemistry.

Involving Students in Test Scoring in the Classroom Enhances Understanding and Achievement in Chemistry Among Secondary School Students
(Chem) Bernadette Ezeliora, Irene O. Nweke, Margaret N. Anugwo, and Bernadine O. Ezezue, Ebonyi State University, Abakaliki, Nigeria
Join us as we review findings from a study to determine the effect of students’ involvement in test scoring in senior secondary school on their understanding and achievement in chemistry. Sixty students were involved in test scoring of chemistry scripts of their fellow students, guided by the teacher on the procedure of marking guide.

SESSION 17
Engineering Tasks for Your K–8 Classroom: A Strategy for Weaving Objectives from Across Your Curriculum into a Design Challenge
(General) Texas Ballroom C, Grand Hyatt
Ann P. McMahon (annpmcmahon@gmail.com), K–12 Engineering Educator, St. Louis, Mo.
Create your own engineering design tasks that integrate learning objectives from all curricular areas. This session is presented by a K–12 science teacher who is also an engineer.

SESSION 18
NSTA Press® Session: Rise and Shine: A Practical Guide for the Beginning Science Teacher
(Middle Level–High School) Texas Ballroom D, Grand Hyatt
Linda Froschauer (jfro2@mac.com), 2006–2007 NSTA President, and Field Editor, Science & Children, Westport, Conn.
Mary L. Bigelow (tramaire@gmail.com), Retired Educator, Middletown, Pa.
Are you new to science teaching? Do you mentor new teachers? We’ll share strategies to help new teachers be successful from the very first day.

SESSION 19
Bringing an Art Museum’s Forensic Science Experience into the Special Education Science Classroom
(General) Texas Ballroom E, Grand Hyatt
Carol L. Jones (caroljones8710@yahoo.com), Lawrence Technological University, Southfield, Mich.
Diane Krzyniak (momkrzy@mi.rr.com), Marshall Upper Elementary School, Westland, Mich.
Presider: P.J. Niehaus (niehaus_p@msn.com), Washtenaw Community College, Ann Arbor, Mich.
Through a grant written by Lawrence Technological University, special education and regular education teachers who had special education students came together to deepen their science content knowledge and improve their pedagogy, resulting in a forensic science experience developed for middle school special education students that addresses many of the national standards. Join us as we share this easily duplicated experience.

SESSION 20
NMLSTA Session: Science for the At-Risk Student
(Middle Level–High School) Travis A, Grand Hyatt
Scott E. Diamond (scott.diamond@fayette.kyschools.us), The Learning Center at Linlee, Lexington, Ky.
Giftedness is a risk factor for truancy and dropping out. In this session, I’ll show you how to use science and STEM to address the motivational needs of low-income, ethnically diverse populations of at-risk youth. A focus on student ownership of valued roles turns potential dropouts into career and college-ready individuals.

SESSION 21
The Scientific Method vs. Scientific Practices—Who Will Survive?
(Middle Level) Travis D, Grand Hyatt
Brian P. Short, Director, Science Education Competitions, NSTA, Arlington, Va.
What is meant by the scientific method and how does this compare to the new “scientific practices” found in the NRC Framework? Come to this session and learn how to use the scientific method in the grades 6–9 classroom and find out how students can also use this method outside of the classroom. Information will also be provided on how the new NSTA competition, eCYBERMISSION, uses the scientific method.
SESSION 22
Tesla Tales (Phys) (General) Salon B, Marriott Rivercenter
Carlos R. Villa (villa@magnet.fsu.edu), National High Magnetic Field Laboratory, Tallahassee, Fla.
Take a journey through the history of electromagnetic discovery. Learn how to recreate the experiments of some of history’s greatest scientists in your classroom.

SESSION 23
Flex-paced Flipped Mastery Physics (Phys) (High School) Salon J, Marriott Rivercenter
Robert A. White (rwhite@bbchs.org) and Bill L. Sadler (bsadler@bbchs.org), Bradley-Bourbonnais Community High School, Bradley, Ill.
Lecture becomes homework. Valuable class time is spent actively forming an individual, deep understanding of physics topics in a mastery environment.

SESSION 24
Food Biology: Scientific Inquiry Through Food Production (Bio) (Middle Level–High School) Alamo Salon F, Marriott Riverwalk
Dave M. Oberbillig (doberbillig@mcps.k12.mt.us), Hellgate High School, Missoula, Mont.
Food is a basic human need that we consciously seek each day. Food biology addresses biology concepts and content through Project Based Learning (PBL) while students connect with community by producing fresh organic food. By producing food, students consider good nutrition and environmental health…and they get to spend productive time outdoors.

SESSION 25
Chemical Web Experiment (Chem) (High School) Travis, Marriott Riverwalk
Hans van Dijk (a.j.van.dijk@vu.nl) and Lisette van Rens (e.m.m.van.rens@vu.nl), VU University Amsterdam, Netherlands
Hear how preuniversity students performed an online experiment—synthesis of methyl orange—at the Free University Amsterdam (VU). No applet! Real online chemistry!

2:00–3:00 PM Workshops
Ice Core Records—From Volcanoes to Supernovas (Earth) (General) 001A, Convention Center
Donna L. Young (donna@aarso.org), NASA/SAO/CXC, Bullhead City, Ariz.
Use absolute and relative dating techniques with high-resolution ice core data and historic volcanic eruptions to correlate and date supernova events with nitrate anomalies.

Are Earth’s Features Unique? (Earth) (Middle Level–High School) 001B, Convention Center
Lynda Sanders (lyndas@coos-bay.k12.or.us), Marshfield High School, Coos Bay, Ore.
Pat Gram (pat gram38@gmail.com), Retired Educator, Aurora, Ohio
Rurik J. Johnson (rurik_johnson@rdale.org), Plymouth Middle School, Plymouth, Minn.
We often have students make observations without scaffolding this skill. This NASA activity helps students make better observations and develops writing skills.

Teaching Science Academic Vocabulary for Comprehension and Retention (Earth) (Elementary–Middle Level) 002, Convention Center
Cindy Lasseter (lasseter431@gmail.com), Luling (Tex.) ISD
Teaching science academic vocabulary for comprehension and retention is challenging. Let’s explore effective research-based strategies using a blended learning model to teach academic vocabulary.

NASA: Inquiry Activities for Learning About Light and the Electromagnetic Spectrum and Multiwavelength Astronomy (Earth) (Middle Level–High School/Informal) 101A, Convention Center
Edna K. DeVore (edvore@seti.org), SETI Institute, Mountain View, Calif.
Experience inquiry activities for learning about visible and invisible light using simple classroom technologies. Standards-based lessons, colorful posters, and spectrosopes will be distributed and multiwavelength astronomical applications presented.
Adapting Space Adventures: Using Real NASA Data to Engage Students with Special Needs (Earth)
(Elementary—Middle Level) 201, Convention Center
Kathy Costello (kacoste@siue.edu) and Ellen J. Reilly (ejreilly@charter.net), Southern Illinois University, Edwardsville

All students can be scientists! Learn strategies to help your gifted and other-abled students use real NASA space probe data to conduct authentic inquiry activities.

Let It Slide! (Phys)
(Preschool—Elementary) 202A, Convention Center
Travis Sloane (tsloane@schools.nyc.gov), East Side Elementary School, New York, N.Y.
James L. Neujahr (jneujahr@ccny.cuny.edu), City College of New York, N.Y.
Tami Elaine Blasdell-Victor, Garcia-Leza EC/ PK Center, Houston, Tex.

Experience how four- and five-year-olds have explored gravity and friction by trying to redesign sleds to go down ramps, using low-cost and recycled materials.

Go Hands On with the Nation’s Report Card: Do HOTs, Observe ICT Simulations, and Learn About Linking NAEP to TIMSS Results (Gen)
(Elementary—High School) 202B, Convention Center
Presider: Hector Ibarra (hibarraia@gmail.com), National Assessment Governing Board Member, Iowa City, Iowa

Receive results of the recently released Nation’s Report Card Hands On Tasks and Interactive Computer Tasks. Use HOTs activities (equipment and questions) that can be incorporated in your classroom. Information on the linking studies between NAEP and TIMSS provides an indication of how student achievement in the U.S. compares to other nations. A comprehensive NAEP folder including information on the International Data Explorer is provided.

Engineering a Pollinator (Bio)
(Elementary—Middle Level) 208, Convention Center
Donna Rainboth (drainboth@eou.edu) and Miriam Munck (mmunck@eou.edu), Eastern Oregon University, Pendleton

Explore pollination while engaging in an elementary engineering challenge. Learn botany and pollination content while engineering a hand pollinator. Lesson focuses on an authentic problem.

Brushbots in the STEM Elementary Classroom (Phys)
(Elementary) 216A, Convention Center
Karen N. Umeda (karen_umeda@notes.k12.hi.us) and Lynn K. Lum, Hawaii Dept. of Education, Honolulu
Alan S. Nakagawa (alannakagawa@me.com), Hawaii State Dept. of Education, Kamuela
Ryan Saito (ryan_saito@notes.k12.hi.us), Honolulu, Hawaii

Empower yourself to effectively teach STEM in the elementary classroom. Apply scientific and engineering practices as you create and redesign a Brushbot. Join us in an engaging activity and take home this mini robot!

Interactive Student Notebooks (Gen)
(Elementary—Middle Level) 217A, Convention Center
Seneca J. Gilbreath (senecag@gmail.com), Austin (Tex.) ISD

Identify strategies for using interactive student notebooks to differentiate and scaffold curriculum, promote student self-evaluation and peer evaluation, and encourage student inquiry and student engagement.

A 5E Learning Cycle Integrating Science, Health, Physical Education, Math, and Language Arts (Gen)
(Elementary) 217D, Convention Center
Brenda Turgeon, Purdue University Calumet, Hammond, Ind.

Engage in an integrated 5E (Engage, Explore, Explain, Elaborate, and Evaluate) learning cycle for the primary grades that uses inexpensive materials to teach students about health and the spread of disease.

NESTA Session: Climate Change Classroom Toolkit (Earth)
(Middle Level—High School) Ballroom A, Convention Center
Roberta M. Johnson (rjohnson@nestanet.org), NESTA and University at Albany, Boulder, Colo.
Michael J. Passow (michael@earth2class.org), Dwight Morrow High School, Englewood, N.J.

Explore the scientific foundations of what we know about climate change, greenhouse gases, and energy consumption through hands-on and data-rich classroom activities from NESTA.
DuPont Session: Shuffle It Up! Understanding Photosynthesis and Respiration (Bio) (Middle Level–High School) Bonham B, Grand Hyatt

Donna Parker (dcall@zoomnet.net), Present 712 Educator, Lewis Center, Ohio
JoAnn Pfeiffer (joannpf@frontier.com), Federal Hocking SEconary Schools, Stewart, Ohio

Students have major misconceptions about photosynthesis and cellular respiration. Explore these topics at the micro (cellular) and macro (ecosystem) levels using a computer simulation and a hands-on activity.

Life—Here? There? Elsewhere? (Gen) (Middle Level) Bonham C, Grand Hyatt
Pamela K. Harman (pharman@seti.org), SETI Institute, Mountain View, Calif.

Investigate the phenomenon of life through introductory exobiology and planetology activities for grades 7–8. Explore life detection methods in simulated extrasolar conditions that lead to a spacecraft design.

Energy: Its Forms and Transformations (Phys) (Middle Level) Bonham D, Grand Hyatt
Sharon A.L. Hushek (sharon.hushek@franklin.k12.wi.us), Ben Franklin Elementary School, Franklin, Wis.
Mary K. Fassbender (mary.fassbender@franklin.k12.wi.us) and Beth Gorak, Forest Park Middle School, Franklin, Wis.

Learn easy and fun hands-on energy transformation activities. Walk away with activities ready to teach how to identify light, sound, and electrical, chemical, thermal, and solar energy transformations.

NARST Session: Developing a Critical Eye for Reading Media Reports of Science: Bridging the Science/English Divide to Advance Scientific Literacy (Gen) (Middle Level–High School) Bonham E, Grand Hyatt

Billy McClune (w.mcclune@qub.ac.uk), Queen’s University, Belfast, U.K.

Promote critical reading of science in the news by learning from the outcomes of interdisciplinary curricular developments that brought together teachers of science and English.

Using Protocols to Examine Student Work (Gen) (General) Bowie B, Grand Hyatt
Dena Lind, Brooklyn Botanic Garden, Brooklyn, N.Y.

Using protocols, participants work together to examine student work. Find out how middle school science teachers in New York City improved instruction by examining student artifacts together.

Facing the Future: Global Connections and Sustainability (Env) (Middle Level–High School) Republic B, Grand Hyatt
Pamela Whiffen (pwhwr@aol.com), NASA Educator Ambassador, Phoenix, Ariz.

Explore inquiry-based hands-on materials that explore sustainable resource uses and the implications for future quality of life. Take home a CD-ROM.

WestEd Pathway Session: Common Core Science Literacy (Gen) (General) Conference Room 12, Marriott Rivercenter
Jody Sherriff (jskidmo@wested.org), WestEd, Santa Ana, Calif.

Build science literacy learning experiences that meet the Next Generation Science Standards, Common Core State Standards, and English language arts. Explore how inquiry coupled with oral language, writing, and reading contribute to student understanding.

Benthic Macroinvertebrates (Env) (Middle Level–College) Conf. Room 16, Marriott Rivercenter
David W. Allard (david.allard@tamut.edu), Texas A&M University, Texarkana
Robert Williams, BLOCKS Project, The University of Texas, Belmont

Plumb the depths of information on common benthic macroinvertebrates as well as find out how to collect and identify them.

SYM-2 Follow-Up Session: Monarch Life Cycles and Raising Monarchs in Captivity (Env) (Elementary–High School) Conf. Room 17/18, Marriott Rivercenter
Grant Bowers and Kelly Nail, University of Minnesota, St. Paul
Presider: Jim O’Leary, Maryland Science Center, Baltimore

Observe live monarchs throughout their life cycle to learn about their biology and how you can raise these fascinating organisms in your classroom!

Building STEM Education Through Robotics Competitions for All Levels and Budgets (Gen) (Elementary–Middle Level/Inf.) Salon A, Marriott Rivercenter
Caryn Meirs (caryn.meirs@gmail.com), Half Hollow Hills Central School District, Melville, N.Y.
Susanne L. Hokkanen (susanne.hokkanen@gmail.com), Colin Powell Middle School, Matteson, Ill.

Join us for some hands-on time with the robots and answers to questions about start-ups for all ages and budget levels!
Outdoor Science Pathway Session: Even More Math and Science Integration (Env) (Elementary—Middle Level) Salon F, Marriott Rivercenter
Jessica Jetton (jjetton@forsyth.k12.ga.us), Forsyth County Schools, Cumming, Ga.
Steve Rich (bflywriter@comcast.net), NSTA Director, Professional Development, and West GYSTC, Carrollton, Ga.
Practical strategies and resources will shore up your collection of ideas for getting students learning in the school yard with memorable lessons.

McREL Pathway Session: Designing Effective Science Instruction—Learning Goals That Clearly Align to Instructional Activities (Gen) (General) Salon K, Marriott Rivercenter
Cyndi Long (clong@mcrel.org), McREL, Denver, Colo.
Anne Tweed (atweed@mcrel.org), 2004–2005 NSTA President, and McREL, Denver, Colo.
Trying to cover too much science content is the largest barrier to developing student conceptual understanding. Find out how to make decisions about essential learning goals, learning progressions that support those goals, and the criteria for student success. Review sample learning progressions before creating one of your own. A sample rubric will then be generated that matches your learning progression. Take home handouts with templates.

Using the Graphing Calculator to Model Data (Gen) (Middle Level—High School) Salon M, Marriott Rivercenter
Melanie Hester (mhester@admin.fsu.edu), Florida State University School, Tallahassee
Join me for this hands-on workshop that uses graphing technology to model data. Math and science are connected by emphasizing data collection and mathematical trends.

Butterfly Bonanza (Bio) (Elementary—High School) Alamo Salon C, Marriott Riverwalk
Nancy R. Sale (nancysale@dadeschools.net), Lillie C. Evans K–8 Center, Miami, Fla.
Butterfly Bonanza provides a road map to success for implementing a native butterfly habitat. Take home a starter kit that will enable you to immediately set up a habitat at your school. In addition, there will be door prizes and a DVD will be shared.

The Natural Selection of M&M’s® (Bio) (High School) Alamo Salon D, Marriott Riverwalk
Katherine A. Larson (kberanek2004@yahoo.com), Hoover High School, Des Moines, Iowa
Whitney Leverich (leverich@iastate.edu), Iowa State University, Ames
Sweeten up your science lessons! Learn how to use M&M’s and inquiry-based practices to promote the understanding of natural selection.

2:00–3:00 PM Exhibitor Workshop
Active Physics—Ahead of Its Time in Capturing the Essence of NGSS and STEM (Phys) (Grades 6–12) 205, Convention Center
Sponsor: It’s About Time
Learn from author Dr. Arthur Eisenkraft how this proven program implements STEM and the essence of the highly anticipated Next Generation Science Standards. Understand the benefits of the Engineering Design Cycle and learn how physicists, teachers, and science educators designed this project-driven course, recognized for the positive impact it has on students of all levels.

2:00–3:30 PM Networking Opportunity
NSTA Chapter and District Meet and Greet in Honor of Wendell Mohling Exhibit Hall, Convention Center
Enjoy light refreshments while meeting and networking with colleagues and representatives from all of NSTA’s 18 Districts. Learn more about events, initiatives, and happenings in your district directly from your representatives in an informal setting.
2:00–3:30 PM Exhibitor Workshops

NGSS, STEM, and Scientific Literacy—What Now?
(General) 006B, Convention Center
Sponsor: Pearson
Michael Wysession, Washington University in St. Louis, Mo.
Michael Padilla, 2005–2006 NSTA President, and Clemson University, Clemson, S.C.
Zipporah Miller, Author, Bowie, Md.
Kelly McGrath, Pearson, Boston, Mass.
Join an interactive discussion panel of Pearson science authors who have been part of the writing teams for the Next Generation Science Standards. Participants will get an opportunity to ask questions about the Next Generation Science Standards and how NGSS will affect science teaching and learning.

Earth Science Investigation: Modeling Ocean Circulation and Layers of the Atmosphere
(Earth) (Grades 6–8) 006C, Convention Center
Sponsor: PASCO scientific
Presenter to be announced
With PASCO’s new Density Circulation Model, modeling large-scale events is easy. Experience how density-driven circulation leads to natural layering, large-scale vertical currents, and atmospheric turbulence. This hands-on workshop utilizes SPARKvue® HD for iPad and select Android tablets to enhance your teaching practice and improve student understanding of core topics.

AP Physics—Friction
(Phys) (Grades 9–12) 006D, Convention Center
Sponsor: PASCO scientific
Presenter to be announced
In this standards-based probeware lab activity from PASCO’s new Advanced Physics Teacher Guide, you’ll explore the physics of friction. In this hands-on workshop, learn how to meet AP lab requirements and build a deeper student understanding of the required content, using PASCO’s new Capstone application and 850 Universal Interface.

LEGO MINDSTORMS® Education EV3: Robotics in the Middle School Classroom—Advancing Your Program
(Gen) (Grades 6–8) 007A, Convention Center
Sponsor: LEGO Education
Are you already using LEGO Education NXT MINDSTORMS in your classroom and looking for ways to expand its use to further engage students and cover even more curriculum concepts? If so, this hands-on session is designed for you. Participants will experience the new LEGO MINDSTORMS Education EV3 platform through an interactive sample lesson from the enhanced curriculum. See firsthand the robust capabilities and the cross-curricular applications that the third generation of LEGO MINDSTORMS Education has to offer.

They Come from Outer Space
(Earth) (Grades 5–12) 007B, Convention Center
Sponsor: Simulation Curriculum Corp.
Herb Koller (hkoller@simcur.com), Simulation Curriculum Corp., Minnetonka, Minn.
In ancient times, comets were seen as omens of disaster. Today, possible collisions with rogue asteroids cause concern. Join us on the big screen to learn about near-Earth asteroids and bright comets and the ready-to-use lesson included with the award-winning Starry Night.

Pollution and Acid Rain Activities
(Env) (Grades 6–12) 007D, Convention Center
Sponsor: Science Take-Out
Susan Holt (contact@sciencetakeout.com), Science Take-Out, Pittsford, N.Y.
Join us for two simple hands-on activities. In Pollution Investigation, we’ll address what is causing the pollution in Big Lake. We’ll conduct and analyze simulated water tests for nitrates, PCBs, E. coli, and lead. In Acid Rain and Buffers, we’ll explore why some lakes are more susceptible to the effects of acid rain.

HHMI’s The Making of the Fittest: The Coevolution of Genes and Culture in Your Classroom
(Bio) (Grades 9–College) 008A, Convention Center
Sponsor: Howard Hughes Medical Institute
Keri Shingleton, Holland Hall, Tulsa, Okla.
Laura Bonetta, Howard Hughes Medical Institute, Chevy Chase, Md.
Join us for the NSTA premiere of HHMI’s latest short film, The Coevolution of Genes and Culture! Today, only about a third of human adults worldwide can digest lactose, the main sugar in milk. This film tells the fascinating story of how this trait evolved in the last 10,000 years of human history—a story that brings together archaeological and genetic evidence. Learn about and receive free brand-new resources to help you bring this memorable example of recent human evolution into your classroom. Materials are appropriate for all levels of biology, including middle school, high school, and undergraduate.
AP Biology: Strategies for Teaching Within the New Framework (Free Samples) (Bio)
(Grades 9–College)
008B, Convention Center
Sponsor: BIOZONE International
Jason Crean, Lyons Township High School, Western Springs, Ill.
Tracey Greenwood, BIOZONE International, Hamilton, New Zealand
BIOZONE presents innovative approaches to teaching AP Biology within the thematic framework of the four big ideas. This workshop will demonstrate the pedagogical basis of BIOZONE’s resources. Join us and discover how to use hands-on, concept-based activities that build on prior knowledge and foster inquiry in students of all capabilities. Take home free samples.

Science the National Geographic Way! (Bio)
(Grades K–5)
101B, Convention Center
Sponsor: National Geographic
Tom Hinojosa, National Geographic Learning, Monterey, Calif.
Join us as we show you how to teach science using free online technology tools and the science notebooking process. We will explore how National Geographic Learning inspires students to care about the planet through inquiry and relevant content.

Bring the Excitement of Hands-On Learning to Your Middle School Classroom! (Phys)
(Grades 5–9)
102B, Convention Center
Sponsor: K’NEX Education
Presenter to be announced
Build and investigate simple machine models, take measurements, and gather data to determine work input, work output, mechanical advantage, gear ratios, effort forces, resistance forces, and more. The exercises and explorations illustrate engineering and scientifically rich content through the use of models. Applying understandings of these models to real-world examples of machines leads to a better understanding of design and systems of machines in practical use. Standards-aligned STEM concepts will be emphasized. Drawing for a K’NEX® Education Exploring Machines Set!

New Guided Inquiry Labs for AP Chemistry from Flinn Scientific (Chem)
(Grades 10–12)
103A, Convention Center
Sponsor: Flinn Scientific, Inc.
Irene Cesa (icesa@flinnsci.com) and Scott Stahler (stahler@flinnsci.com), Flinn Scientific, Inc., Batavia, Ill.
This interactive, hands-on workshop can help you implement the revised laboratory investigations and curriculum framework for AP Chemistry! Join Flinn Scientific as we present two new guided inquiry chemistry experiments that support the integrated learning objectives and applied science practice skills your students need for success. Pre-lab preparation and preliminary activities for each investigation have been optimized so teachers can effectively guide students and provide maximum opportunities for inquiry. Handouts provided for all activities!

Distillation: Simple and Fascinating Experiments in the Chemistry of Aromas and Smells (Chem)
(Grades 9–12)
203A, Convention Center
Sponsor: LAB-AIDS, Inc.
Mark Koker, LAB-AIDS, Inc., Ronkonkoma, N.Y.
We distill water to purify it, or so we think. So why does the clear distillate from apple cider smell like apples? Join us for this signature activity from the new high school program, A Natural Approach to Chemistry. Using a clever test tube distillation apparatus, distill the essence of vanilla and the scent of mint. Distillation is a crucial process in chemical engineering and technology, yet few students ever get to explore the process.

Build It! Increase Student Engagement with the Anatomy in Clay® Learning System (Bio)
(Grades 6–College)
204A, Convention Center
Sponsor: Anatomy in Clay Learning System
Teri Fleming, Houston, Tex.
Join us for a hands-on workshop to promote project-based learning and success in your classroom. Join an award-winning educator and pick up tips to help your students truly understand how their bodies work. This curriculum can allow students to explore many different aspects of the human body.
Extra, Extra! Read All About It! Taking Biology from the News to the Classroom
(Grades 9–12) 204B, Convention Center
Sponsor: Houghton Mifflin Harcourt
Steve Nowicki, Duke University, Durham, N.C.
Join Holt McDougal Biology author Steve Nowicki in an interactive session as he presents a variety of strategies for bringing the real world into your classroom. Emphasis will be placed on using a full range of media resources to connect current events, recent scientific discoveries, and fun quirks of nature with your biology classroom and the everyday lives of your students.

Introduction to Protozoa
(Grades 6–12) 206A, Convention Center
Sponsor: Carolina Biological Supply
Carolina Teaching Partner
Immerse your students in another world! The low-maintenance microorganisms showcased in this workshop are ideal for classroom inquiry, and the activities are designed for all learning levels. Learn about feeding, digestion, growth, and movement of these single-celled organisms…and pick up expert tips on care and maintenance. Free sample cultures and activities.

Engineering, Technology, and the Application of K–8 Science
(Grades K–8) 206B, Convention Center
Sponsor: Carolina Biological Supply
Carolina Teaching Partner
Ready to prepare your district’s students for STEM careers? Using practical applications of science skills from practices-based inquiry lessons, come learn to integrate engineering processes into best practices.

Flipping Out Over Chemistry!
(Grades 9–12) 207B, Convention Center
Sponsor: Carolina Biological Supply
Carolina Teaching Partner
Learn how to flip your chemistry classroom to increase individualized instruction and improve student understanding of key concepts. You’ll explore a blend of digital and hands-on activities that allow students to review content as “homework” and use valuable classroom time for inquiry activities, assignments, and tests. Free materials and giveaways!

Siemens STEM Academy: Top Free STEM Resources for Your Classroom
(Grades K–12) 209, Convention Center
Sponsor: Discovery Education
Kyle Schutt, Discovery Education, Silver Spring, Md.
Do you want to boost STEM learning in your classroom? Are you looking for tools and resources that you can use in your classroom immediately? Explore 10 dynamic websites that can help you make STEM a part of your class every day, including the Siemens STEM Academy (siemensstemacademy.com), a site with free resources, webinars, and professional development opportunities. Walk away with a wealth of free tools and resources for your classroom.

Biology with Vernier
(Grades 9–College) 210A, Convention Center
Sponsor: Vernier Software & Technology
Mike Collins (info@vernier.com), Vernier Software & Technology, Beaverton, Ore.
Rick Rutland, Five Star Education Solutions, LLC, San Antonio, Tex.
Experiments such as transpiration, cell respiration, and EKG from our popular Biology with Vernier and Advanced Biology with Vernier lab books will be performed in this hands-on workshop. You will be able to try these experiments using LabQuest 2 and LabQuest Mini. Our Investigating Biology through Inquiry lab book will also be on display.

STEM Activities Using Vernier Technology
(Phys)
(Grades 6–12) 210B, Convention Center
Sponsor: Vernier Software & Technology
Robyn Johnson (info@vernier.com) and David L. Vernier (info@vernier.com), Vernier Software & Technology, Beaverton, Ore.
Taking STEM education from buzzword to classroom implementation can be challenging. In this workshop, we will introduce you to several STEM activities appropriate for middle school and high school students that make use of Vernier technology. The activities will model an approach you can use to implement STEM education into your curriculum.
Hands-On Help for the New AP Biology Labs (Bio)
(Grades 9–12) 211, Convention Center
Sponsor: Ward’s Science
Jana Penders (jana.penders@vwr.com), VWR Education, Rochester, N.Y.
Prepare your students for success and meet new AP Biology standards with Ward’s AP Biology Investigations, exclusively designed to match the four big ideas and seven science practices. Get advice and share ideas on how to add student lead inquiry to your labs.

Creating a Digital Strategy for STEM (Bio)
(Grades 7–College) 212B, Convention Center
Sponsor: Swift Optical Instruments, Inc.
David Doty (david@swiftoptical.com), Swift Optical Instruments, Inc., Schertz, Tex.
Discover the strategies needed to create a digital STEM program for your school. Lab development, lesson plans, assessment, and teaching techniques will be demonstrated and modeled using Swift digital microscopes and Motic software. Leave with all you need to create a three- to five-year implementation plan and keys to sustaining your STEM program, including professional development.

Elementary Teacher Survival Kit (Gen)
(Grades 1–6) 214A, Convention Center
Sponsor: Educational Innovations, Inc.
Ken Byrne, Educational Innovations, Inc., Bethel, Conn.
This hands-on workshop—chock-full of easy-to-do science inquiry lessons—enables new and veteran teachers to expand their bag of tricks. Using discrepant events, these activities give students a sense of mystery and awe. Topics include energy, air pressure, scientific method, data collection, and graphing. Door prizes and giveaways!

Chemistry and the Atom: Fun with Atom Building Games! (Phys)
(Grades 6–12) 214D, Convention Center
Sponsor: CPO Science/School Specialty Science
Scott W. Eddleman and Nathan Olsson, CPO Science/School Specialty Science, Nashua, N.H.
Understanding abstract concepts about atoms can be difficult. Use our model to experience innovative games and activities that present students with opportunities to grasp atomic structure and its connection to the periodic table. Take away STEM activities and an understanding of how to incorporate science and engineering practices in your lessons.

Friday, 2:00–3:30 PM

2:30–3:00 PM Presentation
SESSION 1
Educational Apps for the 21st-Century Classroom and Beyond (Gen)
(General) Lone Star Ballroom F, Grand Hyatt
Jennifer R. Hargrove, Cherokee Middle School, Springfield, Mo.
Join us as we showcase apps (smartphone, iPad, iPod) that students and teachers can use as an additional educational tool for the 21st-century learner.

2:30–3:30 PM Exhibitor Workshop
Renewable Power, Vernier, and KidWind Gear (Phys)
(Grades 4–12) 007C, Convention Center
Sponsor: KidWind Project
Joseph T. Rand (joe@kidwind.org) and Michael Arquin, KidWind Project, St. Paul, Minn.
Interested in using Vernier data collection equipment to explore wind power and solar thermal and photovoltaic technology? This hands-on workshop, in partnership with Vernier, will let you explore concepts like voltage, current, power, energy, and device efficiency using Vernier equipment and KidWind renewable energy gear.
3:00–4:30 PM Exhibitor Workshops

A Sneak Preview of FOSS Earth History, 2nd Edition for Middle School (Earth) (Grades 5–8) 214C, Convention Center
Sponsor: Delta Education/School Specialty Science—FOSS
Jessica Penchos, Virginia Reid, and Larry Malone, The Lawrence Hall of Science, University of California, Berkeley
What evidence from rocks lets us draw conclusions about the history of our planet and consider implications for the future? Explore Earth history concepts from the NRC Framework with hands-on activities and multimedia. Preview the revised FOSS Earth History Course, including new features, strategies, content, and materials.

Engineer the Tools for Inquiry of Candy Food Dyes (Bio) (Grades 6–9) 217B, Convention Center
Sponsor: Bio-Rad Laboratories
Leigh Brown, Bio-Rad Laboratories, Hercules, Calif.
What’s in your candy? In this hands-on workshop, extract colorful food dyes from candy…and separate and identify them using a STEM-integrated, do-it-yourself electrophoresis box. This inquiry-based activity is a great way to introduce pipetting, electrophoresis, and solution-making skills in addition to chemistry, physics, and engineering concepts.

3:00–5:00 PM Meetings

NSTA International Advisory Board Meeting
Goliad, Grand Hyatt
AMSE Membership Meeting
Conference Room 10, Marriott Rivercenter

3:30–4:30 PM Robert H. Carleton Lecture

Meeting the Challenge of the Next Generation Science Standards (Gen) (General) Grand Ballroom C1, Convention Center
Michael J. Padilla (padilla@clemson.edu), 2005–2006 NSTA President, and Professor of Science Education, Clemson University, Clemson, S.C.
Presider: Pamela G. Christol, Program Representative, NSTA San Antonio National Conference, and Northeastern State University, Broken Arrow, Okla.
With the advent of the highly anticipated Next Generation Science Standards, teachers and their students will be challenged to take their games to the next level. Will your students be ready to think more deeply about the science to be learned? What specific challenges will you and your students face? How can you prepare for the increased expectations?

Dr. Michael J. Padilla is a professor of science education and former director of the Eugene T. Moore School of Education at Clemson University. In recent years, he has focused on the issue of English Language Learners through the University of Georgia’s Center for Latino Achievement and Success in Education, which he directed.

Michael began teaching in an underserved school bordering Detroit’s automobile plants, and his experiences working with this population influenced his future endeavors as an educator. After becoming a university professor in Canada, he moved to the University of Georgia, where he spent 29 years serving as an associate dean and director of the School of Teacher Education.

Throughout his career, Dr. Padilla has never forgotten his roots as a middle and secondary school science teacher, using those experiences to enhance his work at the university level, to lead professional organizations, and to provide leadership through grants and projects. In addition to serving as NSTA president in 2005, he has worked on numerous NSTA committees and served on the NSTA board of directors.

Dr. Padilla is widely published, including coauthor of a textbook series on topics such as Astronomy, Cells and Heredity, and Weather and Climate.

His recognitions include the 2012 NSTA Robert H. Carleton Award for National Leadership, the NSTA Distinguished Service to Science Education Award, and the Walter B. Hill Service Award for Distinguished Achievement in Public Service at the University of Georgia.

He holds a PhD in science education from Michigan State University.

3:00–4:30 PM Exhibitor Workshops

3:30–4:30 PM Robert H. Carleton Lecture

SESSION 1

Learning Science By Creating a Newspaper (Gen) (Elementary—Middle Level) 216B, Convention Center
Kristen M. Sumrall (kmcurry@olemiss.edu) and William J. Sumrall (sumrall@olemiss.edu), The University of Mississippi, University, Miss.
Presider: Jerilou Moore, The University of Mississippi, University, Miss.
Come learn how to develop a science-based newspaper in an elementary classroom using the writing process and inverted-pyramid writing design. An eight-day unit plan is described.
SESSION 1
A Project-based Approach to Weather and Climate (Earth) (Middle Level–High School) 003A, Convention Center
Mark J. Powers (mpowers@vuhs.org), Vergennes High School, Vergennes, Vt.
Learn how to put authentic projects into your weather and climate units. We’ll share our experiences and you’ll leave with lesson plans, fresh ideas, and lots of resources.

SESSION 2
The Nation’s Report Card Will Provide the First National Test of How Well Students Do in Technology and Engineering Literacy (Gen) (Middle Level) 202B, Convention Center
Cornelia Orr (cornelia.orr@ed.gov), National Assessment Governing Board, U.S. Dept. of Education, Washington, D.C.
Presider: Hector Ibarra (hibarraia@gmail.com), National Assessment Governing Board Member, Iowa City, Iowa
More than ever, your students will need to be skilled in technology to compete in an increasingly global economy. In 2014, the National Assessment of Educational Progress will provide the U.S. with its first-ever assessment in Technology and Engineering Literacy (TEL). Find out what NAEP will ask of our students and how it will measure student performance. Video scenarios and examples will be shown.

NSTA Student Chapter and Student Members Reception
NSTA joins forces with the University of Missouri to present a student reception that’s never been seen before! Mizzou leaders will also provide insight and hands-on demonstrations on activities and programs presented in the local community. This will be an excellent opportunity for preservice and new teachers alike. Also, learn how you can establish (or improve) an NSTA student chapter on your campus and the benefits of doing so. Refreshments included.
SESSION 3
STEM Digital: Digital Cameras as Scientific Instruments (Informal Education) 207A, Convention Center
Morton M. Sternheim (mort@umassk12.net) and Rob Snyder (snyder@umassk12.net), UMass Amherst, Mass.
Digital cameras can produce scientific data. Free Mac/Windows software reveals intensities of colors in images and measures distances, angles, areas, and changes over time.

SESSION 4
CESI Session: Sport and Science Through Practical and Digital Solutions in the Classroom (Gen) (Elementary–Middle Level) 212A, Convention Center
Roger J. Carter (rocarr65@gmail.com), Gullingeskolan, Spånga, Stockholm, Sweden
Amy Lindau (amyli@bredband.net), Norra Ängbyskolor, Bromma, Sweden
Emma Dobson (dobson.emma@gmail.com), Europaskolan, Stockholm, Sweden
Anne Vestlund (annzan@mbox301.tele2.se), Carlssons Skola, Stockholm, Sweden
A team of Swedish teachers will discuss their efforts at combining digital and practical activities within the fields of sports and science. Examples will be given on how these fields can be used for younger students to enhance their knowledge of science.

SESSION 5
ASTC Session: The Uniqueness of Community: Exploring Opportunities Through Collaboration in an Elementary Science Program (Gen) (Elementary) 213A, Convention Center
Terri Hebert (terri.hebert@gmail.com), Indiana University South Bend
By recognizing a community’s uniqueness through collaborative opportunities, a top-notch elementary science program was established. Join me as I share the steps involved.

SESSION 7
Combining Interactive Whiteboards and Clicker Technology to Inform Instruction (Gen) Crockett A, Grand Hyatt
Eric D. LeMoine (eric_lemoine@beaverton.k12.or.us), Kin-naman Elementary School, Aloha, Ore.
See how interactive whiteboards and student-response system "clickers" can be used as formative assessment tools to inform instruction. Leave with digital examples to adapt to your teaching!

SESSION 8
Effective Use of Informal Science Resources in the School Classroom (Gen) (General) Crockett B, Grand Hyatt
Lynn M. Arcuri, Darrell Jones (djones@naturemuseum.org) and Sophie McNeill, Peggy Notebaert Nature Museum, Chicago, Ill.
The Chicago Academy of Sciences’ Peggy Notebaert Nature Museum provides an in-depth look at how to best use the resources available at your local informal science institution.

SESSION 9
Science Literacy: New Approaches to Critical Thinking for the 21st Century (Gen) (Middle Level–High School/Informal) Crockett C, Grand Hyatt
Laura Pearce (laura_1249@yahoo.com) and Wendy Saul (ewendsaul@gmail.com), University of Missouri—St. Louis
Through the connections of science and journalism, our NSF-funded project—SciJourn—has developed innovative new approaches for enhancing science literacy among teens.

SESSION 10
21st-Century STEM Education Leaders in Action (Gen) (General) Crockett D, Grand Hyatt
Anthonette Peña (apena@trianglecoalition.org), Triangle Coalition for Science and Technology Education, Arlington, Va.
Meet current Einstein Fellows and hear how their work on Next Generation Science Standards, Common Core State Standards, and other national policy initiatives are changing the conversations in Washington, D.C.

SESSION 11
ASTE Session: Inquiry Centers: Nurturing and Assessing Students’ Science Process Skills (Gen) (Elementary—Middle Level/College) Mission A, Grand Hyatt
Aaron D. Isabelle (aaronsisabelle@gmail.com) and Thais B.P. da Cunha (dacunha@newpaltz.edu), SUNY New Paltz, N.Y.
Using an inquiry center approach, students construct and interact with their classmates’ centers, while teachers support and assess the development of students’ process skills.
SESSION 12
Catch That Drop—Because Every Drop Counts!
(General)
Mission B, Grand Hyatt
Noah Newman (noah.newman@colostate.edu), Colorado State University, Fort Collins
Margaret A. Holzer (mholzer@monmouth.com), Chatham High School, Chatham, N.J.
Collect precipitation data in the Community Collaborative Rain, Hail and Snow (CoCoRaHS) Network, a fun science project for students of all ages. Find out how to use this data in your classroom.

SESSION 13
The NSTA Learning Center: Free Professional Development Resources and Opportunities for Educators
(General)
Presidio B, Grand Hyatt
Flavio Mendez (fmendez@nsta.org), Senior Director, NSTA Learning Center, NSTA, Arlington, Va.
Al Byers (abyers@nsta.org), Assistant Executive Director, e-Learning and Government Partnerships, NSTA, Arlington, Va.
Lost when it comes to finding online professional development resources to enhance your content knowledge and skills? With more than 9,100 resources (25% of which are free) and quality PD opportunities to assist educators with core subject content, the NSTA Learning Center has the answers! Walk away with free resources and ICE CREAM!

SESSION 14
Research Worth Reading: 2012 Research Selected by NSTA Affiliates
(General)
Presidio C, Grand Hyatt
Kathryn Scantlebury (kscantle@udel.edu), NSTA Director, Multicultural/Equity in Science Education, and University of Delaware, Newark
Each year, the NSTA Research Committee works with NSTA affiliates to identify research that teachers should read. This session will share the identified research of 2012.

SESSION 15 (two presentations)
Integrating Climate Change for Elementary Preservice Teachers: Tales from the Field
(General)
Seguin A, Grand Hyatt
Christopher Dobson (dobsonc@gvsu.edu) and Heather Miller (millehea@gvsu.edu), Grand Valley State University, Allendale, Mich.
Join us as we share successes and challenges of integrating life and Earth science concepts by biologists and geologists in a two-instructor course for elementary preservice teachers on climate change.

A Self-Efficacy Inquiry: Constructing Foundational Practices with Preservice Elementary Teachers
(General)
Michele L. White (mwhite@kutztown.edu) and Krista Varano (varano@kutztown.edu), Kutztown University of Pennsylvania, Kutztown
Explore the development of preservice teacher self-efficacy through methods courses to prepare teacher candidates for inspiring math and science practices in the classroom.

SESSION 16
Engineering Collaboration in the K–8 Classroom: Using Engineering Tasks to Facilitate 21st-Century Social Skills
(General)
Texas Ballroom C, Grand Hyatt
Ann P. McMahon (annpmcmahon@gmail.com), K–12 Engineering Educator, St. Louis, Mo.
Engineering is a collaborative learning experience. A K–12 science teacher who is also an engineer presents strategies for facilitating the social skills of engineering practice.

SESSION 17
NSTA Press® Session: Good-Bye MSDS, Hello SDS
(General)
Texas Ballroom D, Grand Hyatt
Ken R. Roy (safesci@sbcglobal.net), Glastonbury (Conn.) Public Schools
OSHA has adopted the Globally Harmonized System of Classification and Labeling of Chemicals. Learn how it will impact on laboratory safety requirements in your school, including how Material Safety Data Sheets (MSDS) will be called Safety Data Sheets (SDS).
SESSION 18
Helping Gifted Learners (and All Your Other Students) Excel with D.I. (Gen)
Keven Youngblood, Cherokee Middle School, Springfield, Mo.
We’ll focus on differentiating instruction with parallel curriculum (and other strategies) to challenge the whole spectrum of student strengths in your science classroom.

SESSION 19
NSTA Press® Session: Visualizing the World of Atoms and Molecules: Virtual Technologies That Wow Students (Gen)
Gail Jones, North Carolina State University, Raleigh
Amy R. Taylor, University of North Carolina, Wilmington
Explore virtual labs that model inquiry with cold viruses, zooming across the universe, and use touch technology to feel atoms and molecules.

SESSION 20
Teaching Science to ELLs (Phys)
Alan D. Dorado, Unidad Educativa Monte Tabor Nazaret, Samborondon, Ecuador
Let me introduce you to a strategy that uses peer instruction and inquiry-based learning to facilitate learning science to English language learners.

SESSION 21
Order of Magnitude Estimates in Urban Transportation (Env)
Sean D. Johnson (seanjohnson@uchicago.edu) and Dylan Hatt, The University of Chicago, Ill.
Come learn about a classroom exploration of urban public transit built upon students’ everyday experiences, order-of-magnitude estimates, and Google maps.

SESSION 22 (two presentations)
Remote Operating Vehicles in Space and the Sea: Exploration Technology in Miniature (Gen)
Randi Wold-Brennon, Hawaii Academy of Arts and Sciences, Pahoa
Learn how to partner with scientists so your students can modify robotics kits to sample ocean water, video moon-like terrains, and monitor critters in forests.

Serious Games for Learning: WaterLife, Where Rivers Meet the Sea (Gen)
Peg Steffen (peg.steffen@noaa.gov), NOAA National Ocean Service, Silver Spring, Md.
Interactive simulations can help teachers engage digital students with science content. See how NOAA and partner Montgomery Community College have translated estuary science into a serious game for middle school students.
SESSION 23
Outdoor Science Pathway Session: Growing Curricular Inclusion in an Outdoor Classroom
(Env)
(Elementary–Middle Level)
Salon F, Marriott Rivercenter
Darleen Horton, Cane Run Elementary Environmental Magnet School, Louisiville, Ky.
Go on a virtual tour of an outdoor classroom where learning comes alive through standards-based inquiry learning using the elements of the natural world.

SESSION 24
Exploring the 2012 ACS Guidelines and Recommendations for Teaching High School Chemistry
(Chem)
(Middle Level–High Sch./Supv.)
Alamo Salon C, Marriott Riverwalk
Terri M. Taylor, American Chemical Society, Washington, D.C.
Roxana Allen (rallen@sjs.org), St. John’s School, Houston, Tex.
Emphasis will be placed on strategies for teaching high school chemistry. Come see how the 2012 ACS Guidelines and Recommendations for Teaching High School Chemistry are a useful resource for strengthening high school chemistry programs.

SESSION 25
Wriggling Diversity into the Classroom: Vermiculture as a Tool for Including Gender and Cultural Sensitivity Discussion
(Bio)
(General)
Alamo Salon E, Marriott Riverwalk
Christina N. Dragon (christina.dragon@gmail.com), Johns Hopkins Bloomberg School of Public Health, Baltimore, Md.
Inquiry based, scientific method driven, and guaranteed to keep class discussion lively! Worms work toward connecting students with big concepts like gender, diversity, and multiculturalism.

SESSION 26
Using Fiction to Teach Science Facts
(Bio)
(Middle Level–High School)
Alamo Salon F, Marriott Riverwalk
Emily A. Meyer (emeyer@regisjesuit.com), Regis Jesuit High School, Girls Division, Aurora, Colo.
Students love stories—come hear ideas on how we have used movies, books, and magazine articles to engage students in the biology classroom.

SESSION 28
Solids: The Neglected “State” of Chemistry
(Chem)
(High School)
Travis, Marriott Riverwalk
Debbie Goodwin (nywin@hotmail.com), Chillicothe High School, Chillicothe, Mo.
Andrew G. Nydam (andrewnydam@hotmail.com), Retired Educator, Olympia, Wash.
Use the “stuff” of the everyday world to make science relevant. Hands-on activities using solid materials (ceramics, metals, polymers) make concepts easier to teach/learn. Handouts!

Friday, 3:30–4:30 PM
Workshops
Pulsating Variable Stars and the H-R Diagram
(Earth)
(General)
001A, Convention Center
Donna L. Young (donna@aavso.org), NASA/SAO/CXC, Bullhead City, Ariz.
Plot pulsating variable stars on an Hertzsprung–Russell diagram to determine regions of instability where stars are transitioning from main sequence stars to giants and supergiants.

NASA Triad: Bringing NASA Resources to the Secondary Science Classroom
(Earth)
(Middle Level)
001B, Convention Center
Ann E. Benbow (aeb@agiweb.org) and Colin Mably (cmably@aol.com), American Geosciences Institute, Alexandria, Va.
Join us and hear about NASA Triad, a partnership among the American Geosciences Institute, NASA, and Arizona State University to bring NASA resources to U.S. secondary science teachers.
The Little Spacecraft That Could—DID! MESSENGER Mission Accomplished
(Elementary—Middle Level) 002, Convention Center
Nancy Tashima (tashima@aloha.net), Onizuka Space Center, Kailua-Kona, Hawaii
MESSENGER ends its orbit of Mercury. The story it tells about this planet has been both surprising and inspiring. Find out what we learned!

NASA’s MMS Mission: Using iPads to Create Space Weather Forecasts
(Middle Level—High School/Informal) 101A, Convention Center
Carol Coryea (ccoryea@access.k12.wv.us), Paw Paw (W.Va.) Schools
Todd Ensign (todd.ensign@ivv.nasa.gov), NASA IV&V Facility, Fairmont, W.Va.
Use iPads to download NASA heliophysics data allowing students to create space weather forecasts. Receive a STEM educational guide and learn how to build the MMS (Magnetospheric Multiscale) spacecraft with LEGO®.

The Foundation of Living Things: The Cell for Elementary Students
(Elementary—Middle Level) 208, Convention Center
Kerrie McDaniel, Western Kentucky University, Bowling Green
Elementary teachers, increase your understanding of basic cell parts and gain strategies for helping your students understand the parts of the cell using hands-on activities.

Super Science Stations
(Elementary) 213B, Convention Center
Letta L. Vaughan (lvaughan@garlandisd.net) and Mary Beth Eager (meeager@garlandisd.net), Garland (Tex.) ISD
Karri L. Dawes (kdawes@garlandisd.net), Nita Pearson Elementary School, Rowlett, Tex.
Get ideas for organizing stations and for using them in the classroom to engage students and maximize science learning.

Reading and Writing Science Using Exciting Polymer Activities and Children’s Literature
(Preschool—Middle Level) 215, Convention Center
Cora S. Salumbides, Jefferson Union High School District, Daly City, Calif.
Engage in hands-on activities using polymers. Effective reading and writing techniques will be introduced while providing samples of actual student work done in the classroom. You’ll be encouraged to share your favorite reading and writing techniques applicable to the polymer activities introduced in this workshop.

Show Your True Colors!
(Elementary) 216A, Convention Center
Gary F. Benenson (benenson@ccny.cuny.edu), City College of New York, N.Y.
Donna Johnson (djohnson11@schools.nyc.gov), P.S. 021 Crispus Attucks School, Brooklyn, N.Y.
Cherubim Cannon (cherubimcannon@aol.com) and Shawndel Stewart (mstewart3@gmail.com), P.S. 005 Dr. Ronald McNair, Brooklyn, N.Y.
Use LEDs to add and subtract colors! Learn about circuits, optics, and elastic energy as you explore these simple, inexpensive methods of color mixing.

Reaching Underserved Student Populations Through an Inquiry-based Discrepant Event Approach
(Elementary—Middle Level) 217A, Convention Center
John J. Zenchak (jjzenchak@noctrl.edu) and Mary Jean Lynch (mlynch@noctrl.edu), North Central College, Naperville, Ill.
Underserved student populations can benefit from a unique discrepant event approach, followed by a structured exploration activity. Experience the entire process that can engage students.

Finding Time to Teach the Science Through Integration and PBL
(Elementary) 217D, Convention Center
Sharon Schleigh (sharon.schleigh@purduecal.edu), Purdue University Calumet, Hammond, Ind.
Review the teaching of science as an integrated learning event using a Project Based Learning (PBL) approach. Critique classroom examples and engage in a lesson that promotes science through integration in the elementary classroom.

NESTA Session: Let’s Get Well Grounded!
(Elementary—High School) Ballroom A, Convention Center
Roberta M. Johnson (rmjohnson@nestanet.org), NESTA and University at Albany, Boulder, Colo.
Michael J. Passow (michael@earth2class.org), Dwight Morrow High School, Englewood, N.J.
This NESTA workshop presents multiple exemplary activities for the geology classroom that bring fundamental concepts in Earth science to life for your students. Handouts!
DuPont Session: Linking Home and School with P.A.S.S. (Portable Affordable Simple Science)
(Gen)

(Bonham C, Grand Hyatt)

Renee G. O’Leary, Holy Angels School, Newark, Del.
Peggy Vavalla *(vavallme@comcast.net)*, DuPont, Wilmington, Del.

Discover simple multisensory hands-on early childhood/elementary explorations (preK–2) in zippered plastic bags. Walk away with sample lesson plans, bags, and follow-up.

All Systems Checked!
(Gen)

(Bonham C, Grand Hyatt)

Regina B. Snyder, Driscoll Middle School, Corpus Christi, Tex.
Jane Lee-Rhodes *(jane.lee-rhodes@ccisd.us)*, Kaffie Middle School, Corpus Christi, Tex.

Learn how to integrate graphic organizers and hands-on activities, focusing on basic ideas about systems, order, and organization. Free session booklet and door prizes.

NMLSTA Session: Classroom Activities to Highlight the Eight Essential Practices of Science and Engineering
(Gen)

(Bonham E, Grand Hyatt)

Mary Lou Lipscomb *(lipscomb@imsa.edu)* and **Liz Martinez** *(emartinez@imsa.edu)*, Illinois Mathematics and Science Academy, Aurora

The NRC Framework considers eight practices as essential. Engage in activities and relate them to the practices and 21st-century skills.

The Science-Social Studies Connection: Warm-Ups for Exploring Global Issues
(Gen)

(Bowie B, Grand Hyatt)

Linda C. Jones *(lcjones@coe.ufl.edu)*, University of Florida, Gainesville

Learn how to use inexpensive, time-efficient, and engaging whole-class and small group lesson warm-up activities to infuse a global perspective into your science classes.

Bird’s Eye View: Exploring Human Impacts on the Environment Across the Globe Using Google Earth
(Env)

(Republic B, Grand Hyatt)

James G. MaKinster *(makinster@hws.edu)*, Hobart and William Smith Colleges, Geneva, N.Y.
Nancy Trautmann *(nmt2@cornell.edu)*, Cornell Lab of Ornithology, Ithaca, N.Y.
Carol Burch *(cburch129@gmail.com)*, Hannibal High School, Hannibal, N.Y.

Bring your laptop to explore paired current and historical satellite imagery in Google Earth, see landscape change over time, and predict impacts on biological communities.

Iron Teacher
(Gen)

(Conference Room 16, Marriott Rivercenter)

Sean Herberts and Jessica Krim *(jessikrim@gmail.com)*, Southern Illinois University, Edwardsville

Are you game for a competition designed to test your creativity in designing an inquiry lesson around three mystery objects within a limited amount of time?

SYM-2 Follow-Up Session: Classroom Lessons with Monarchs
(Env)

(Conf. Room 17/18, Marriott Rivercenter)

Grant Bowers and **Kelly Nail**, University of Minnesota, St. Paul

Presider: Jim O’Leary, Maryland Science Center, Baltimore

After a brief overview of the monarch’s life cycle, we will demonstrate different activities and lessons involving monarchs. Take-home instructions will be available!

WISP Pathway Session: Science-related Research in the Middle School
(Gen)

(Rebecca Cook *(resco@hazelwoodschools.org)*, Hazelwood West Middle School, Hazelwood, Mo.

Attention will be paid to effective instructional practices that help students develop research skills such as searching, assessing, and using relevant and reliable science information.

My-Pad, Your-Pad. Why-Pad? iPad!
(Chem)

(Lone Star Ballroom F, Grand Hyatt)

Joshua J. Marsh, Martha M. Day *(martha.day@wku.edu)*, and **Taylor Clements** *(taylor.clements@jefferson.kyschools.us)*, Western Kentucky University, Bowling Green

Presider: Martha M. Day

Experience the benefits and application of using new and advanced technology in a mock paper-free classroom.
Stretch Your Digital Dollar: Affordable Strategies for Integrating Cell Phones into the Classroom
Gen
(Middle Level–High School)
Salon M, Marriott Rivercenter
Katy Scott (kscott@mbayaq.org), Monterey Bay Aquarium, Monterey, Calif.
Donated and student cell phones are a powerful no-cost solution to technology integration. Combined with free web-based applications, they provide a more interactive learning experience.

Simulating Chemical Reactions with Stop-Motion Animation
Chem
(Middle Level–High School)
Alamo Salon A, Marriott Riverwalk
Dan Ratliff, Breck School, Minneapolis, Minn.
Using stop-motion animation and video editing, learn to engage your students in a dynamic hands-on model of a chemical reaction.

Evidence of Evolution: Using Real Fossil Data from the Deep Sea
Bio
(High School)
Alamo Salon D, Marriott Riverwalk
Sharon Katz Cooper (scooper@oceanleadership.org), Deep Earth Academy, Consortium for Ocean Leadership, Washington, D.C.
Heath J. Mills (hmills@ocean.tamu.edu), Texas A&M University, College Station
Investigate super high-resolution fossil evidence, spanning tens of millions of years, with engaging data that are hard to dismiss and super fun to work with!

3:30–4:30 PM Exhibitor Workshop
Active Chemistry: Ahead of Its Time in Capturing the Essence of NGSS and STEM
Chem
(Grades 6–12)
205, Convention Center
Sponsor: It’s About Time
Before NGSS or STEM, Dr. Arthur Eisenkraft recognized the need and developed this proven program that can help you implement STEM and the essence of the Next Generation Science Standards. See the Engineering Design Cycle and learn how chemists, teachers, and science educators designed a true project-driven course for the next generation of students of all levels.

3:30–5:00 PM Meeting
SCST Business Meeting
Bowie C, Grand Hyatt

3:30–5:00 PM Reception
GEICO/NSTA Member Orientation Reception
Lone Star Ballroom D, Grand Hyatt
Your “Total Membership Experience” starts with this conference but continues all year long as you share your thoughts, lend your voice, and become a true partner in science education with your professional membership association! Join us for an introduction to your membership experience! This is an exceptional opportunity to meet your colleagues, make new friends, and enjoy refreshments!

3:30–5:30 PM Presentation
SESSION 1
NSTA/NSELA Issues Forum
Gen
(General)
Lone Star Ballroom A, Grand Hyatt
Elizabeth Allan (eallan@uco.edu), NSELA President, and University of Central Oklahoma, Edmond
Heidi Schweingruber, National Academy of Sciences, Washington, D.C.
Vicki Massey (vgmassey@cox.net), NSTA Director, District XIV, and Mesa (Ariz.) Public Schools
Patricia Simmons, NSTA Retiring President, and North Carolina State University, Raleigh
John Kriekard (jkriekard@msn.com), Science Foundation Arizona, Phoenix
Jacqueline R. Smalls (jacquelinesmalls@hotmail.com), Langley STEM Education Campus, Washington, D.C.
The forum will begin with a panel of experts sharing their perspectives on transitioning to NGSS and identifying ways to support and enhance change. Participants will be asked to provide input. Panelists include representatives from school administration and higher education, curriculum specialists, and educators. Steven Pruitt and Heidi Schweingruber will provide a national policy perspective.

4:00–4:30 PM Presentation
SESSION 1
Aprendiendo Ciencias: Acquiring and Expanding Scientific Language and Literacy
Phys
(Elementary)
201, Convention Center
Maria-Antonieta Avila and Cynthia E. Lima (cyrenepa@aol.com) and The University of Texas at Austin
The purpose of this study is to highlight how scientific literacy is fostered in elementary bilingual classrooms.
Take the Plunge with the New Project WET 2.0

(Sponsor: Project WET Foundation
Laurina Lyle (laurina.lyle@projectwet.org), Project WET Foundation, Bozeman, Mont.
Have you experienced Project WET 2.0? Project WET Foundation released the Curriculum and Activity Guide 2.0 in 2011 with new activities and free resources through our Portal and Discover Water websites. Now offering online courses, Project WET will debut water-related webinars this summer. Come explore our new materials firsthand with refreshments.

Make Learning Part of the Grade

(Sponsor: Pearson
Jocelyn McRae, Pearson, Boston, Mass.
Mastering is the most effective and widely used online assessment and tutorial system for AP, honors, and elective science subjects. Mastering coaches students through personalized learning experiences while collecting diagnostic information to support data-driven, just-in-time teaching. Find out how Mastering—Pearson’s powerful online homework and tutorial system—can help boost student performance in honors and AP courses.

Equip Your iPad or Android Tablet for Science with SPARKvue® HD, a Full-featured Science Application

(Sponsor: PASCO scientific
Presenter to be announced
Explore PASCO’s science application for the iPad and Android tablet. SPARKvue HD offers a suite of display and analytical tools, all within an integrated learning environment—including reflection prompts, journaling, and more. The app also supports the growing collection of SPARKlabs, integrating rich content with live data collection and analysis.

STEM: Air Bags—Project-based Chemistry Activities

(Sponsor: PASCO scientific
Presenter to be announced
Participate in an engineering design challenge that integrates PASCO probeware technology in this hands-on workshop. These project-based activities incorporate the engineering process to creatively engage students while addressing chemistry content. The chemistry concepts uncovered during the activities will aid in the design, testing, and evaluation of student-built air bags.

Machines and Mechanisms in the Classroom and Beyond

(Sponsor: LEGO Education
Learn how the LEGO Education Simple and Motorized Mechanisms set engages students to build and explore machines and mechanisms, investigate motorized machines, calibrate and capture wind, and study gearing mechanisms. In this workshop, participants will build a hammer model using LEGO® bricks, complete a Bricks in Space activity, and discuss curriculum connections for the classroom.

Physical Science with iPads, Smartphones, and Technology That Your Students Use Every Day

(Sponsor: Arbor Scientific
Ben Pearson, Arbor Scientific, Ann Arbor, Mich.
Use NeuLog™ sensors to perform experiments to cover the fundamental physical science concepts, such as forces, motion, light, chemical reactions, and more. Each experiment will collect and stream digital data to be viewed and analyzed on smartphones, tablets, and computers. The experiments and demonstrations will touch on STEM and physical science core ideas being incorporated into the Next Generation Science Standards. Drawing for a set of NeuLog sensors.

Exploring Circuits by Hacking Toys

(Sponsor: KidWind Project
Joseph T. Rand (asia@kidwind.org) and Michael Arquin (asia@kidwind.org), KidWind Project, St. Paul, Minn.
Figure out how circuits, sensors, and gears work by looking at the guts of sound and battery-operated toys. Hack into the toys and make them produce sounds and motions the manufacturer never intended. This is a great workshop for teachers looking for way to introduce basic circuitry, motion, and gears into the classroom in a way the students are sure to enjoy!
Experience two simple hands-on activities. In **Homeostasis**, we’ll use lab simulations, graphic organizers, and analogies to understand how negative feedback mechanisms are used to maintain homeostasis. In **Diabetes**, we’ll analyze simulated blood plasma samples collected during a glucose tolerance test to determine if your patient has Type 1 or Type 2 diabetes.

Paleoclimate and How It Helps Us Understand Current Climate Change—Featuring HHMI’s New DVD Changing Planet: Past, Present, Future (Env)
(Grades 9—College) 008A, Convention Center
Sponsor: Howard Hughes Medical Institute
Chris Hedeen, Oregon City High School, Oregon City, Ore.
Mark Nielsen, Howard Hughes Medical Institute, Chevy Chase, Md.

The story of Earth’s past climate is written in the rocks. Take a trip with us into the past to understand how—and why—climate has changed throughout Earth history. We will present classroom-ready resources from HHMI’s latest holiday lectures that illustrate Earth’s natural mechanism for modulating climate and the chemical signals that tell us about past climate. Understanding what has happened in the past gives us an important perspective for understanding current climate change and what the future may hold. Participants will be among the first to receive HHMI’s latest **Holiday Lectures on Science DVD**.

Supporting Independent Student Research and Successfully Navigating SSP Competitions (Gen)
(Grades 6—12) 008B, Convention Center
Sponsor: Society for Science & the Public
Michele Glidden (sciedu@societyforscience.org), **Janet Raloff** (sciedu@societyforscience.org), **Sharon Snyder** (sciedu@societyforscience.org), and **Caitlin Sullivan** (sciedu@societyforscience.org), Society for Science & the Public, Washington, D.C.

Join us for an overview of the ins and outs of Society for Science & the Public competitions, including the Intel International Science and Engineering Fair, Intel Science Talent Search, and Broadcom MASTERS. We’ll have time for Q&A and a discussion on how SSP can better support teachers. We’ll also showcase **Science News for Kids** articles matched with curriculum units.
Fast and Furious—Measuring Speed (Phys)
(Grades 6–8)
203A, Convention Center
Sponsor: LAB-AIDS, Inc.
Mark Koker, LAB-AIDS, Inc., Ronkonkoma, N.Y.
In this activity from the SEPUP middle level series, *Issues and Physical Science*, which explores Newton’s laws in a context of motor vehicle safety, participants are challenged to design an investigation to measure the speed of a moving cart as a function of its release point from a curved ramp. Participants will carry out the experiment, discuss the role of speed in automobile collisions, and conclude by examining distance versus motion graphs.

Forces and Motion (Phys)
(Grades K–9)
204A, Convention Center
Sponsor: Artec Educational
Paul Pooler, Artec Educational, Torrance, Calif.
Get blown away with Artec Educational as you explore the properties of air, air pressure, forces, and motion. Engage your students with vacuums, air-powered cars, and affordable and easy-to-use materials sure to peak their curiosity. Activities link to the highly anticipated Next Generation Science Standards. Handouts and take-home activities provided.

More STEM Challenges for the Classroom, Part 2 (Phys)
(Grades 4–8)
204B, Convention Center
Sponsor: Houghton Mifflin Harcourt
Join Michael DiSpezio for an additional assortment of inexpensive and easily repeatable classroom STEM challenges. Engage in construction of a navigational quadrant, straw-n-clip truss, and working model of a flushing toilet. You will even construct your own musical instrument from a set of modified drinking straws. Come join in and expand your engineering repertoire with these additional STEM challenges for the classroom.

Picking Apart the Owl Pellets’ Potential (Bio)
(Grades K–8)
206A, Convention Center
Sponsor: Carolina Biological Supply
Carolina Teaching Partner
Owl pellets are a simple product used to teach topics such as food chains, mammalian anatomy, ecology, and more! Join us for this engaging hands-on workshop as we dissect owl pellets, explore Carolina’s Owl Pellet app, and share ways to incorporate this extremely popular product into your lessons.

The Common Core + Mathematics + Next Generation Science (Gen)
(Grades K–5)
206B, Convention Center
Sponsor: Carolina Biological Supply
Carolina Teaching Partner
Learn how to foster elementary students’ literacy growth and strengthen their mathematical knowledge. This workshop will focus on Common Core State Standards for math and how to integrate them into inquiry-based science instruction.

Decoding Human Genetics with Inquiries in Science® (Bio)
(Grades 9–12)
207B, Convention Center
Sponsor: Carolina Biological Supply
Carolina Teaching Partner
Help your students solve the mystery of genetics using hands-on guided inquiry learning. Improve students’ understanding of abstract concepts such as genetic inheritance, nucleic acids, genetic disorders, and biotechnology. The Inquiries in Science Biology Series makes teaching challenging topics effortless. Free teacher materials and door prizes!

Chemistry In-the-Bag (Chem)
(Grades 5–12)
211, Convention Center
Sponsor: Ward’s Science
Paul Schneeberger, VWR Education, Rochester, N.Y.
Learn how to easily incorporate fun and exciting inquiry activities into your classrooms using our In-the-Bag Inquiry Activity series. These easy-to-perform demonstrations are designed to engage students with guided inquiry exercises to help further explore and understand the concept. You’ll perform three different demonstrations and two learning activities.
Create a Digital WiFi Classroom…. Using the New Moticam X and Moticonnect App! (Gen) (Grades 7–College) 212B, Convention Center
Sponsor: Swift Optical Instruments, Inc.
David Doty (david@swiftoptical.com), Swift Optical Instruments, Inc., Schertz, Tex.
Go digital…using STEM and WiFi technology. Transform your labs, lesson plans, and activities into digital formats. Engage your students by incorporating Motic software, the new WiFi Moticam X, and Swift microscopes into your lessons. Learn how to integrate digital WiFi technology, student assessment, and motivation into your current curriculum. BYOD!

3-2-1 Blast Off! (Gen) (Grades 3–9) 214A, Convention Center
Sponsor: Educational Innovations, Inc.
Tami O’Connor, Educational Innovations, Inc., Bethel, Conn.
Get a burst of energy! Join us for things that go bump in the day! Perfect for teaching energy or Newton’s laws to elementary and middle school students. Door prizes and freebies!

Light and Optics: A Series of EnLIGHTening Experiments! (Phys) (Grades 6–12) 214D, Convention Center
Sponsor: CPO Science/School Specialty Science
Erik Benton, CPO Science/School Specialty Science, Nashua, N.H.
Experience CPO’s Optics with Light and Color kit with LED flashlights, a laser, lenses, a mirror, and more. Try color mixing, relate it to human vision, and examine different spectra. We make studying light exciting! Take away STEM activities and an understanding of how to apply the Engineering Cycle in science classes.

5:00–5:30 PM Presentations

SESSION 1
Designing and Developing STEM Collaborative Field Studies (Gen) (General) 207A, Convention Center
Thomas R. Baker (trbaker@gmail.com), Esri, Leawood, Kans.
Come discover how to use free online resources originally conceived for the Pathfinder Science collaborative network, now built and modernized to support STEM collaborative inquiry with student mobile devices.

SESSION 2
NASA’s Know Your Earth Project (Earth) (General) 212A, Convention Center
Brian A. Campbell (brian.a.campbell@nasa.gov), Sigma Space Corp., Wallops Island, Va.
NASA’s Know Your Earth Project is vital to informing the public about how Earth works and how NASA research increases our understanding of our home planet.

5:00–5:45 PM Reception
Shell Reception (By Invitation Only) Salon J/K, Marriott Rivercenter
SESSION 1
A Different Approach to Earth Science Education (Earth) (Middle Level–High School) 003A, Convention Center
Kimberly Warschaw (kimberly.warschaw@apsva.us) and Michelle Harris (michelle.harris@apsva.us), Wakefield High School, Arlington, Va.
Come learn how to teach Earth science using a spiraling curriculum that has been shown to help multiple learning styles. Handouts!

SESSION 2
CTAG: What Is It? (Gen) (General) 101A, Convention Center
Rajeev Kumar Swami (chem276@yahoo.com), NMLSTA President, and Central State University, Wilberforce, Ohio
The State of Ohio implemented Closing the Achievement Gap (CTAG) to help African-American men achieve proficiency in science and other core subjects. This session focuses on the results from the two-year program and describes the collaboration of state representatives, on-site coordinators, and core content teachers at schools and universities involved in this effective initiative.

SESSION 3
Photosynthesis: The Musical! (Bio) (Middle Level–High School) 201, Convention Center
Christine Hart (chart@k12mcsd.net), Monticello High School, Monticello, N.Y.
Katherine Hart Dunn, Highlands Middle School, White Plains, N.Y.
Katherine A. Morrow, Sullivan County B.O.C.E.S., Liberty, N.Y.
In this noteworthy session, you’ll walk away with an entertaining and engaging technique to teach photosynthesis (photolysis and the carbon cycle) to diverse learners through a fun, interactive musical.

SESSION 4
Growing a Garden of Learners (Bio) (Preschool–Elementary) 204A, Convention Center
Julie V. McGough (mrmagojulie2@att.net), Valley Oak Elementary School, Fresno, Calif.
Prepare the environment, sow some seeds of thought, and dig deeper to understand how plants work while integrating the Common Core State Standards!

SESSION 5 (two presentations) (Elementary–Middle Level) 216B, Convention Center
Integrating Science and Poetry with English Language Learners (Gen) (Elementary–Middle Level) 216B, Convention Center
Jesse Gainer (jg51@txstate.edu), Texas State University, San Marcos
Nancy Valdez-Gainer (nancy.valdez-gainer@austinisd.org), Blazier Elementary School, Austin, Tex.
Join us as we highlight the learning potential for English language learners when science content is integrated with poetry and expository writing instruction.

The Nature Classroom: Your Door to Integrating Science and More (Gen) (Elementary–Middle Level) 216B, Convention Center
Ingrid Stressenger (ingridstressinger@gmail.com), Pond Cove Elementary School, Cape Elizabeth, Maine
Nature provides the perfect venue for integration. Science, art, and poetry unite in a rich and engaging single or yearlong unit in any setting.

SESSION 6 (two presentations) (Elementary–Middle Level) Bonham C, Grand Hyatt
Interdisciplinary Unit Focusing on Water Rights and Access for Middle-Schoolers (Gen) (Elementary–Middle Level) Bonham C, Grand Hyatt
Amanda Cortese (acortese@newworldprep.org) and Tara Brennan (tararosebrennan@gmail.com), New World Preparatory Charter School, Staten Island, N.Y.
Tracy Hogan, Adelphi University, Garden City, N.Y.
John A. Craven (jcraven@fordham.edu), Fordham University, New York, N.Y.
Address individual needs of middle school students through an interdisciplinary unit focusing on water rights and access. Join us as we share our interdisciplinary curriculum in which students explore access to safe clean drinking water while developing their skills in argumentation and reasoning.

A Little GPS Goes a Longitudinal Way: Using Field-based Apps to Study Earth’s Magnetic Field (Gen) (Elementary–Middle Level) Bonham C, Grand Hyatt
Kathryn Buckley (keb42@georgetown.edu), Robert H. Adams Middle School, Holliston, Mass.
Use GPS apps, Google Earth, and a compass to investigate properties of Earth’s magnetic field and apply this data to ecological and geographical studies.
SESSION 7
Teaching Through the Windshield: Using Embedded Formative Assessments in the Classroom
(Elementary—High School) Bowie B, Grand Hyatt
Peggy K. Perdue (peggy_perdue@fcasd.edu), Dorseyville Middle School, Pittsburgh, Pa.
Keep your students moving forward using these easy, quick, low-cost assessment techniques. Walk away with more than 20 fun ways to check student understanding!

SESSION 8
AP Chemistry Activities for Conceptual Understanding
(High School—College) Crockett A, Grand Hyatt
Deanna M. Cullen (deannacullen@whitehallschools.net), Whitehall High School, Whitehall, Mich.
Introduce AP Chemistry topics like electrochemistry, kinetics, and equilibrium using common experiences with formative assessments that identify misconceptions and provide a common reference for discussion.

SESSION 9 (two presentations)
(Gen) Crockett B, Grand Hyatt
Science Notebooks—Moving from Mechanical to Insightful Use
(Lori Fulton (fultonl@hawaii.edu), University of Hawai‘i at Manoa, Honolulu
When used insightfully, science notebooks help students develop scientific understandings. Let’s examine strategies that help teachers move from mechanical to insightful use.

Argument Writing in the Science Classroom
Crystal L. Marsh and Marsha S. Wallace (marswall@hotmail.com), Salk School of Science, New York, N.Y.
Find out how to guide your students through writing successful persuasive papers and how to organize collegial conversations in your classroom.

SESSION 10
Enhancing Teacher Leaders in Elementary Science
(Elementary) Crockett C, Grand Hyatt
Chris T. Campbell (ccampbell@lincolnschools.org), NSTA Director, District VII, and Einstein Fellow, National Science Foundation, Arlington, Va.
Teacher leaders can have a significant impact on student learning and school improvement. Learn reasons for building a leadership cadre at the elementary level and practical advice for training and valuing teacher leaders.

SESSION 11
An Arctic Connection: A Teacher Exchange Program Among U.S. and Swedish Educators
(Env) Crockett D, Grand Hyatt
Betty Trummel (boop82@aol.com), Husmann Elementary School, Crystal Lake, Ill.
A chance meeting at an NSTA conference developed into a successful exchange program among Swedish and U.S. teachers. Come hear about its focus—sustainable development and environmental education.

SESSION 12
Start Your Own STEM Center in Your Elementary Classroom!
(General) Lone Star Ballroom E, Grand Hyatt
Karl Topper (karltopper@gmail.com), Dillon Valley Elementary School, Dillon, Colo.
Learn how you can transform your classroom into a STEM learning center in which students become excited to learn. You will gain insights on how this model is used to support a literacy-based STEAM (Science, Technology, Engineering, Arts, and Mathematics) program—LSTEAM.

SESSION 13
The Crazy Fun of Giving 1,200 Teenagers iPads
(General) Lone Star Ballroom F, Grand Hyatt
Lara L. Sharp (lara.sharp@lwcharterschools.com), Lake Wales High School, Lake Wales, Fla.
Learn how my school gave every student an iPad and how we used them in class.

SESSION 14
Standards-based Grading That Works
(Supervision/Administration) Presidio C, Grand Hyatt
Dan Carroll (thedancarroll@hotmail.com), Yorktown High School, Arlington, Va.
Find out how to revolutionize your grading system to keep students motivated and empower them to take control of their learning while you keep administrators and parents happy.
SESSION 15
NSTA Press® Session: Five E(z) Guidelines for Designing Research-informed Science Lesson Sequences
(Earth)
(Secondary) Texas Ballroom D, Grand Hyatt
Thomas P. O’Brien (tobrien@binghamton.edu), Binghamton University, Binghamton, N.Y.
William Banko (wbanko@knowingscience.com), Knowing Science LLC, Armonk, N.Y.
Experience an engaging 5E (Engage, Explore, Explain, Elaborate, and Evaluate) cycle—Metric Measurement, Models, and Moon Matters—that also explores the analogy between the work of scientists and K–5 teachers.

SESSION 16
Investigating Climate Change Issues with Google Earth and Web-based Activities
(Env)
(General) Texas Ballroom E, Grand Hyatt
Alec M. Bodzin (amb4@lehigh.edu), David Anastasio, Dork O. Sahagian, Chris Dempsey, and Denise Bressler, Lehigh University, Bethlehem, Pa.
Lori Cirucci (lcirucci@beth.k12.pa.us), Broughal Middle School, Bethlehem, Pa.
Learn about inquiry-based activities that incorporate Google Earth and web-based tools to investigate local and global environmental issues related to climate change.

SESSION 17 (two presentations)
(General) Salon B, Marriott Rivercenter
Mobile Phone and iPad Apps: Engaging Students in Science and Engineering Through Gaming
(Phys) Mariana Rutigliano, Iridescent, Los Angeles, Calif.
Gaming grabs students’ interest in STEM. Hear how Iridescent is using phone and iPad apps to teach complex STEM topics to students worldwide.

Collaborative Connections Among Physical Science, Math, and Engineering
(Phys) Katheryn Kennedy (katheryn.kennedy@stevens.edu), Stevens Institute of Technology, Hoboken, N.J.
Explore a physical science lesson with related engineering challenges that engages elementary and high school teams in content, inquiry, collaboration, and other 21st-century skills.

SESSION 18
Incorporate the History of Chemistry into Your Teaching with the New PBS Television Program Mystery of Matter: Search for the Elements!
(Chem)
(Middle Level–College) Alamo Salon B, Marriott Riverwalk
Christine Brown (cvbrown@edc.org), Education Development Center, Inc., Waltham, Mass.
Preview a new PBS program about the history of chemistry and explore how to use it to engage students and deepen their scientific understanding.

SESSION 19
Frog’s Blood vs. Human Blood: Comparing RBC as a Means to Understand Cellular Respiration and SA/V
(Bio)
(High School) Alamo Salon F, Marriott Riverwalk
Michael J. Lazaroff (mjvlazaroff@gmail.com), Staples High School, Westport, Conn.
Students compare RBC under the microscope and discover connections to SA/V, cellular respiration, endothermic and ectothermic metabolisms, and the evolution of body systems.

SESSION 20
Basic Polymer Chemistry for the High School Classroom
(Chem)
(High School) Travis, Marriott Riverwalk
Debbie Goodwin (nywin@hotmail.com), Chillicothe High School, Chillicothe, Mo.
Andrew G. Nydam (andrewnydam@hotmail.com), Retired Educator, Olympia, Wash.
Simple demonstrations, labs, and activities bring polymers into your curriculum and make it relevant. Concepts include formation, classification, structure, and properties. Handouts!
5:00–6:00 PM Workshops

Teaching Climate Science Through Data and Visualizations (Earth)
(Informal Education) 001A, Convention Center
Frank Niepold (frank.niepold@noaa.gov), NOAA, Washington, D.C.
Gary Randolph (randolph@globe.gov), Julie S. Malmberg (malmberg@globe.gov), and Jessica N. Mackaro (jmackaro@globe.gov), The GLOBE Program, Boulder, Colo.
Engage students in research and exploration of Earth system science, specifically focused on climate, using data and visualizations available through NASA, NOAA, CLEANet, and GLOBE websites.

Discovering Air Quality in Your Area Using NASA Data Visualization Tools (Earth)
(Middle Level–High School) 001B, Convention Center
Preston M. Lewis, Jr. (preston.lewis@nasa.gov), NASA Langley Research Center, Hampton, Va.
What’s in the air we breathe? This workshop focuses on integrating advanced technologies to provide students with experience working with authentic air quality data.

Dust Hunt! Modeling How Stars and Planets Form (Earth)
(Intermediate) 002, Convention Center
Keely D. Finkelstein (keelyf@astro.as.utexas.edu), The University of Texas at Austin
Perform hands-on activities involving models of how planets and stars form, and engage in an investigation of dust and how it is a vital ingredient of the universe and to life itself. Receive a printed copy of the NASA-supported StarDate “The Solar System.”

Photographs for Assessment—“Take a Picture When...”: Digital Photography Makes It Easy to Engage Elementary Students in Assessment (Gen)
(Preschool–Middle Level) 202B, Convention Center
Phyllis Katz (p Katz15@gmail.com), Retired Educator, Silver Spring, Md.
This workshop will give participants experience in creating prompts and using a sample assessment procedure for both student- and teacher-generated digital photographs.

Making Science Meaningful with Mealworms (Bio)
(Elementary) 208, Convention Center
Tracey K. Graham (indiansprings18@yahoo.com), Westgate Elementary School, Columbus, Ohio
Use mealworms in the classroom to engage students and learn a lot of science in the process!

The Science Solution in the Literacy Block (Gen)
(Elementary) 213B, Convention Center
Pamela S. Bauser (pam.bauser@ketteringschools.org), Holly Clark (holly.clark@ketteringschools.org), Debbie Morton, and Rachel Williams (rachel.williams@ketteringschools.org), Southdale Elementary School, Kettering, Ohio
Be part of an interactive inquiry lesson. Learn how to infuse science into the balanced literacy block using mentor texts to impact student writing.

Connecting Science, Technology, and Engineering (Gen)
(Elementary–Middle Level) 215, Convention Center
Karen E. Johnson (karen.johnson@adams12.org) and Jessica A. Noffsinger (jessica.noffsinger@adams12.org), STEM Magnet Lab School, Northglenn, Colo.
Find out how to integrate engineering and technology into your science curriculum. Leave with resources of sample activities, curricula, rubrics, and resources that foster the integration of STEM at upper elementary and middle grades.

Physical Science, Technology, and Action Research in K–8 Classrooms (Chem)
(Elementary–Middle Level) 216A, Convention Center
Lisa R. Wear (wearlr@rss.k12.nc.us), Horizon Unlimited, Science and Technology Center, Salisbury, N.C.
Presider: Fred Williams (williamsjf@rss.k12.nc.us), Horizon Unlimited, Science and Technology Center, Salisbury, N.C.
Discover how teacher teams use Vernier sensor technology to increase academic achievement in physical science. Engage in hands-on experiments designed to maximize participation and learning.
MoonKAM: Exploring Lunar Images (Gen) (Elementary—Middle Level) 217A, Convention Center
Leesa Hubbard (leesa@sallyridescience.com), Teacher in Residence, Sally Ride Science, San Diego, Calif.
Learn about the exciting GRAIL mission. GRAIL stands for the Gravity Recovery And Interior Laboratory. Find out what your students can do with images from cameras by MoonKAM (Knowledge Acquired by Middle school students) and walk away with hands-on activities using lunar images.

STEM After the Bell Rings: Engineering for All Students (Gen) (Elementary) 217D, Convention Center
Melissa Higgins (mhiggins@mos.org), Museum of Science, Boston, Mass.
Learn how the hands-on nature of engineering activities provides unique opportunities to meet the needs of diverse populations in extended day and other out-of-school-time settings.

DuPont Session: Bringing Literacy and Science Together: B.L.A.S.T. for Success at School and Home (Gen) (Elementary) Bonham B, Grand Hyatt
Renee G. O’Leary, Holy Angels School, Newark, Del.
Peggy Vavalla (vavallme@comcast.net), DuPont, Wilmington, Del.
Discover simple multisensory hands-on elementary (grades 2–5) explorations using fairy tales as catalysts with take-home and language arts follow-up. Receive sample plans and materials.

Super Models, Super Thinkers, Super Scientists (Gen) (General) Bonham E, Grand Hyatt
Katie McDilda (kmcdilda@wvstateu.edu), West Virginia State University, Institute
Tina J. Cartwright (tina.cartwright@marshall.edu), Marshall University, Huntington, W.Va.
Create a climate of investigation by making and analyzing “super models.” Maximize student learning through creating, questioning, thinking, and talking.

But I’m Not a Reading Teacher...Using Complex Texts to Enrich the Science Classroom (Env) (Middle Level—High School) Republic B, Grand Hyatt
Dawn Staples-Knox (dstaplesknox@gmail.com), Searspoint District High School, Searspoint, Maine
Apply literacy strategies to use in your classroom. Showcasing Silent Spring in an environmental unit, this approach enriches the content and pushes students to think.

Terrific Science Games for High Schools (Gen) (High School/Supv.) Conf. Room 3/4, Marriott Rivercenter
Rodelio A. Abuan (odie@scienterrificgames.com), Sam Houston High School, Houston, Tex.
Ma Corazon Abuan (ma.corazonabuan@yahoo.com), Spring, Tex.
Learn to make your own science games and puzzles that are fun and engaging, enhance science lessons, promote deeper understanding of concepts, increase learning retention, and improve skills in classifying, comparing, and problem solving. The games and puzzles can be used for individual or group tutorials and use cheap, durable, and very affordable materials.

Feel the Pressure—Modeling Heart Health (Bio) (General) Conference Room 16, Marriott Rivercenter
Carson E. Krook (cekrook@bisd.us), Dr. Juliet V. Garcia Middle School, Brownsville, Tex.
Presider: Victor Gonzalez, Faulk Middle School, Brownsville, Tex.
Pump up your science classroom with this low-cost hands-on lab that models the working human heart.

The Marshmallow Challenge: Using an Engineering Design Exercise to Get Kids Thinking Critically (Gen) (General) Salon F, Marriott Rivercenter
Mary Lou Blanchette Smith (msmith@eastconn.org), EASTCONN, Hampton, Conn.
Using spaghetti, string, tape, and a marshmallow, build the tallest freestanding structure. It’s not just what you do, but what you don’t do, that assures success!
A Very “Cool” Way to Establish Scientific Norms—Liquid Nitrogen!
(Gen)
(Middle Level–High School)
Salon M, Marriott Rivercenter
Andrew B. West *(andrew.west@wku.edu)* and Jaclyn Morguelan, Western Kentucky University, Bowling Green
Walk away with strategies for using liquid nitrogen to help students interact like scientists. Experience the strategies and get hands-on experience with multiple liquid nitrogen demonstrations.

Student-friendly Microscale Chemistry Using Polymers
(Chem)
(Middle Level–High School)
Alamo Salon A, Marriott Riverwalk
Cora S. Salumbides, Jefferson Union High School District, Daly City, Calif.
Erlinda I. Bernardo *(lynnebernardo@yahoo.com)*, Centro Escolar University, Manila, Philippines
Experience this fun and friendly way to teach basic chemistry concepts such as neutralization using slime, properties of matter, and molecular structure using polymers.

What Makes Kids Want to Learn? Food!
(Bio)
(Middle Level–High School)
Alamo Salon D, Marriott Riverwalk
Laurie A. Hayes *(lhayes@cart.org)*, Center for Advanced Research and Technology, Clovis, Calif.
Susan E. Hartley *(semumford-hartley@aps.k12.co.us)*, Hinkley High School, Aurora, Colo.
Serve up science with this hands-on workshop that explores integrating food science and nutrition into your curriculum. Free materials and door prizes!

5:00–7:00 PM
Exhibitor Workshop
Just Physics
(Phys)
(Grades K–12)
Grand Ballroom C3, Convention Center
Sponsor: PASCO scientific
Presenter to be announced
PASCO presents the 11th annual evening of “Just Physics,” featuring food, fun, live physics demonstrations, and a free T-shirt.

5:30–7:00 PM
Reception
NSTA Student Chapter and Student Members Reception
Travis C/D, Grand Hyatt
No ticket required; open to all preservice teachers and those who work with them.

If your institution has an NSTA Student Chapter, bring examples of the work of your chapter, best practices, and stories to share with students at institutions that don’t yet have an NSTA Student Chapter! If your school does not yet have an NSTA Student Chapter, come hear your future colleagues’ best practices and learn about starting and running a successful chapter at your school! Refreshments and hors d’oeuvres will be served as you network with your peers.

5:30–7:30 PM
Reception
NSELA/NGSS Reception for High School Teachers
Texas Ballroom F, Grand Hyatt
Calling all high school teachers! Please join BFW Publishers for a reception immediately following the NSELA Next Generation Science Standards sessions. Visit highschool.bfwpub.com for more information.

6:00–8:45 PM
NSTA Teacher Awards Gala
(Tickets Required: $70)
M–5
Salon H/I, Marriott Rivercenter
Enjoy a fabulous evening celebrating with this year’s teacher award recipients! ALL of the teacher awards will be presented in one grand evening. Join your colleagues in recognition of this year’s winners at the NSTA Teacher Awards Gala. Evening attire is requested to honor our teacher award recipients. A limited number of tickets are available for this social event.

Tickets, if still available, must be purchased at the Ticket Sales Counter in the NSTA Registration Area before 3:00 PM on Thursday.
6:30–8:00 PM Reception
NESTA Friends of Earth Science Reception
Lone Star Ballroom D, Grand Hyatt

7:00–9:00 PM Social
SCST Dessert Social and Poster Session
Texas Ballroom C, Grand Hyatt
This is a continuation of the Thursday evening session featuring cinematic jewels and the creative use of video technology to inform, inspire, motivate, entertain, and provoke thought. The screenings will be interspersed with commentary, discussion, and some live demonstrations. There will be humor, wonder, and perplexity mixed with a lot of information on a wide range of topics. Pick up ideas and content that will broaden your knowledge and that you can use in your teaching. The audience will help select from this extensive and enticing menu of course excerpts:

* The Feynman Lectures on Nanotechnology • Soap Bubbles and the Forces That Mold Them with Tik Liem • NOVA: The Odyssey of Life—The Photographer’s Secrets with Lennart Nilsson • The Plankton Chronicles with Christian Sardet • An Introduction to the Periodic Table •
 The Elements Video Project • The World of Chemistry demonstrations by
 Don Showalter • Lucky Accidents, Great Discoveries, and the Prepared Mind with Hubert N. Alyea • Once Upon a Christmas Cheery in the Lab of Shakkashiri
Dozens of door prizes directly related to this session will be raffled off throughout the entire evening right up to 12 Midnight. Come and go, stay as long as you wish. Bring your dinner.

- For the Love of Physics with MIT’s Walter Lewin
- Chaos and the Double Pendulum with Steven Strogatz
- Universe (Academy Award Nominee, 1960)
- The Aqua Vase with Harry Wong
- Modeling from The Search for Solutions
- Perpetual Ocean
- Mousetrap Fission
- The Little Match Boy
- Choreography of the Dance of the Pendulums
- The Spangler Effect with Steve Spangler
- “Knowledge or Certainty” with Jacob Bronowski
- Mr. Wizard’s World with Don Herbert
- Beavers (IMAX)
- The Making of Proteus with David Lebrun
- Broomstick Pulleys and Some Surprises with Verne Rockcastle
- Osprey: Incredible Predator
- Minds of Our Own
- Pale Blue Dot with Carl Sagan
- A Celebration of Birds with Roger Tory Peterson
- The Rise and Fall of the Great Lakes
- Marine Flowers by Kazuo Okada
- Heartbeat of a Volcano by Bert van Bork
- a dozen choice internet sites for great science videos
National Earth Science Teachers Association Events at 2013 San Antonio NSTA Conference

All NESTA sessions are in the Henry B. Gonzalez Convention Center, Ballroom A unless otherwise indicated

Friday, April 12

- 9:30 – 10:30 am NESTA Geology Share-a-Thon
- 11:00 am – noon NESTA Oceans and Atmospheres Share-a-Thon
- 12:30 – 1:30 pm NESTA Earth System Science Share-a-Thon
- 2:00 – 3:00 pm American Geophysical Union Lecture, “The climate science debate: What does the science tell us and why people on both sides are so angry about it”, Prof. Andrew Dessler, Texas A&M University (Grand Ballroom C1)

- 2:00 – 3:00 pm Climate Change Classroom Toolkit
- 3:30 – 4:30 pm Let’s Get Well Grounded!
- 6:30 – 8:00 pm Friends of Earth Science Reception (Grand Hyatt Hotel, Lone Star D)

Saturday, April 13

- 8:00 – 9:00 am Activities Across the Earth System
- 11:00 – noon NESTA Space Science Share-a-Thon
- 12:30 – 1:30 pm NOAA-Sponsored NESTA Advances in Earth and Space Science Lunchtime Lecture, Mark Neilson, Howard Hughes Medical Institute – “If these rocks could talk: Earth’s climate in the deep past”

- 2:00 – 3:00 pm Our Changing Planet
- 3:30 – 4:30 pm NESTA Rock and Mineral Raffle
- 5:00 – 6:00 pm NESTA Annual Membership Meeting

NESTA gratefully acknowledges co-sponsorship of our events by the following organizations:
Meetings and Social Functions

Friday, April 12

AMSE Alice J. Moses Breakfast
By Invitation Only
Salon A, Marriott Rivercenter 6:30–8:30 AM

High School Breakfast (M-2)
(Tickets Required: $45)
Alamo Salon A, Marriott Riverwalk 7:30–9:00 AM

Next Steps Networking Forum
Tickets are required; $20 at the door
Salon C, Marriott Rivercenter 7:30–10:00 AM

NSTA Aerospace Programs Advisory Board Meeting
Conf. Suite 514, Marriott Rivercenter 8:30–10:30 AM

NSTA International Lounge
Republic C, Grand Hyatt 9:00 AM–5:00 PM

NSTA Student Chapter Showcase and Lounge
Executive Assembly, Conv. Center 11:00 AM–3:00 PM

Discovery Education Focus Group on the New Health/Wellness Program fit 4 the classroom
(Registration Required)
Valero, Marriott Riverwalk 11:00 AM–12 Noon

Fueling Instructional Transformation with Digital Textbooks: A Luncheon Panel Discussion Hosted by Discovery Education
By Invitation Only
Salon D, Marriott Rivercenter 12 Noon–1:30 PM

SEPA Luncheon
By Invitation Only
Lone Star Ballroom D, Grand Hyatt 12 Noon–2:00 PM

NSELA/ASTE Luncheon (M-3)
(Tickets Required: $60)
Presidio B, Grand Hyatt 12 Noon–2:00 PM

NSELA/NMLSTA Middle Level Luncheon (M-4)
(Tickets Required: $60)
Alamo Salon A, Marriott Riverwalk 12 Noon–2:00 PM

Lifelines for Climate Change Education Meeting
By Invitation Only
Conference Room 7, Marriott Rivercenter .. 1:00–2:00 PM

Gay, Lesbian, Bisexual, and Transgender Science Teachers Association Annual Meeting
Bonham, Marriott Riverwalk 2:00–3:00 PM

NSTA Chapter and District Meet and Greet in Honor of Wendell Mohling
Exhibit Hall, Convention Center 2:00–3:00 PM

NSTA International Advisory Board Meeting
Goliad, Grand Hyatt 3:00–5:00 PM

AMSE Membership Meeting
Conf. Room 10, Marriott Rivercenter 3:00–5:00 PM

GEICO/NSTA Member Orientation Reception
Lone Star Ballroom D, Grand Hyatt 3:30–5:00 PM

SCST Business Meeting
Bowie C, Grand Hyatt 3:30–5:00 PM

Shell Reception
By Invitation Only
Salon J/K, Marriott Rivercenter 5:00–5:45 PM

NSTA Student Chapter and Student Members Reception
No Ticket Required; Open to All Preservice Teachers and Those Who Work with Them
Travis C/D, Grand Hyatt 5:30–7:00 PM

NSELA/NGSS Reception for High School Teachers
Texas Ballroom F, Grand Hyatt 5:30–7:30 PM

NSTA Teacher Awards Gala (M-5)
(Tickets Required: $70)
Salon H/I, Marriott Rivercenter 6:00–8:45 PM

NSELA Friends of Earth Science Reception
Lone Star Ballroom D, Grand Hyatt 6:30–8:00 PM

SCST Dessert Social and Poster Session
Texas Ballroom C, Grand Hyatt 7:00–9:00 PM
Index of Exhibitor Workshops

Achieve3000® (Booth #1641)
Friday, April 12 4:00–5:30 PM 101B, Conv. Center Experience the Future of Digital Science from National Geographic and Achieve3000® (p. 110)

Anatomy in Clay® Learning System (Booth #829)
Friday, April 12 2:00–3:30 PM 204A, Conv. Center Build It! Increase Student Engagement with the Anatomy in Clay® Learning System (p. 97)

Arbor Scientific (Booth #831)
Friday, April 12 4:00–5:30 PM 007B, Conv. Center Physical Science with iPads, Smartphones, and Technology That Your Students Use Every Day (p. 109)

Artec Educational (Booth #1726)
Friday, April 12 4:00–5:30 PM 204A, Conv. Center Forces and Motion (p. 111)

Bio-Rad Laboratories (Booth #825)
Friday, April 12 8:00–9:00 AM 217C, Conv. Center Science, Fashion, and Fun! Genes in a Bottle™ Kit (p. 29)
Friday, April 12 9:00–11:30 AM 217B, Conv. Center DNA Detectives—Who Killed Jose? (p. 37)
Friday, April 12 10:00 AM–12 Noon 217C, Conv. Center Worm and Squirm Your Way into Behavior Labs (p. 54)
Friday, April 12 1:00–2:30 PM 217B, Conv. Center What Color Is Your World? Quick, Easy, and Cheap Biotech Activities for Biology and Chemistry (p. 84)
Friday, April 12 1:00–3:00 PM 217C, Conv. Center Ecology to Enzymes to Industry (AP Big Idea 4) (p. 85)
Friday, April 12 3:00–4:30 PM 217B, Conv. Center Engineer the Tools for Inquiry of Candy Food Dyes (p. 100)

BIOZONE International (Booth #1634)
Friday, April 12 2:00–3:30 PM 008B, Conv. Center AP Biology: Strategies for Teaching Within the New Framework (Free Samples) (p. 97)

Carolina Biological Supply (Booth #404)
Friday, April 12 8:00–9:30 AM 206A, Conv. Center Exploring Feline Anatomy with Carolina's Perfect Solution® Cats (p. 33)
Friday, April 12 8:00–9:30 AM 207B, Conv. Center Carolina Chemistry Investigations for Advanced Chemistry (p. 33)
Friday, April 12 8:00–9:30 AM 206B, Conv. Center Engineer Excitement in Your Classroom with a Carolina STEM Challenge (p. 33)
Friday, April 12 10:00–11:30 AM 008B, Conv. Center The Basics of Flipped Learning, Getting Started: A Panel Discussion of Experts (p. 52)
Friday, April 12 10:00–11:30 AM 206A, Conv. Center Carolina Investigations™ for AP Biology Labs (p. 53)
Friday, April 12 10:00–11:30 AM 206B, Conv. Center Integrating Common Core Writing, Speaking, and Listening Strategies into Science Instruction (p. 53)
Friday, April 12 12 Noon–1:30 PM 207B, Conv. Center Hands-On Science with Classroom Critters (p. 70)
Friday, April 12 12 Noon–1:30 PM 206A, Conv. Center Comparative Vertebrate Anatomy with Carolina's Perfect Solution® Specimens (p. 70)
Friday, April 12 12 Noon–1:30 PM 206B, Conv. Center The Integration of Common Core Reading Informational Text and Writing in Science to Raise Achievement Scores K–8 (p. 70)
Friday, April 12 2:00–3:30 PM 206B, Conv. Center Engineering, Technology, and the Application of K–8 Science (p. 98)
Friday, April 12 2:00–3:30 PM 206A, Conv. Center Introduction to Protozoa (p. 98)
Friday, April 12 2:00–3:30 PM 207B, Conv. Center Flipping Out Over Chemistry! (p. 98)
Friday, April 12 4:00–5:30 PM 206B, Conv. Center The Common Core + Mathematics + Next Generation Science (p. 111)
Friday, April 12 4:00–5:30 PM 207B, Conv. Center Decoding Human Genetics with Inquiries in Science® (p. 111)
Friday, April 12 4:00–5:30 PM 206A, Conv. Center Picking Apart the Owl Pellets’ Potential (p. 111)
Index of Exhibitor Workshops

CPO Science/School Specialty Science (Booth #215)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, April 12</td>
<td>8:00–9:30 AM</td>
<td>214D, Conv. Center</td>
<td>Genetics: Crazy Traits and Adaptation Survivor (p. 34)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>10:00–11:30 AM</td>
<td>214D, Conv. Center</td>
<td>Car and Ramp: Using a Graph to Predict Speed with the CPO</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>12 Noon–1:30 PM</td>
<td>214D, Conv. Center</td>
<td>A STEM Approach to Teaching Electricity and Magnetism (p. 72)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>2:00–3:30 PM</td>
<td>214D, Conv. Center</td>
<td>Chemistry and the Atom: Fun with Atom Building Games! (p. 99)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>4:00–5:30 PM</td>
<td>214D, Conv. Center</td>
<td>Light and Optics: A Series of EnLIGHTening Experiments! (p. 112)</td>
</tr>
</tbody>
</table>

Delta Education/School Specialty Science (Booth #213)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, April 12</td>
<td>8:00–9:15 AM</td>
<td>214B, Conv. Center</td>
<td>Science, the Literacy Connection, and the Common Core (p. 29)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>10:00–11:15 AM</td>
<td>214B, Conv. Center</td>
<td>Identifying, Clarifying, and Designing Experiments (p. 51)</td>
</tr>
</tbody>
</table>

Delta Education/School Specialty Science–FOSS (Booth #213)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, April 12</td>
<td>8:00–10:00 AM</td>
<td>214C, Conv. Center</td>
<td>Using Science Notebooks to Impact Student Learning with FOSS (p. 35)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>10:30 AM–12:30 PM</td>
<td>214C, Conv. Center</td>
<td>FOSS Formative Assessment: Making Student Thinking Visible (p. 56)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>1:00–2:30 PM</td>
<td>214C, Conv. Center</td>
<td>Taking Science Outdoors with FOSS K−6 (p. 84)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>3:00–4:30 PM</td>
<td>214C, Conv. Center</td>
<td>If You Want TEKS in Their Minds, Put FOSS in Their Hands (Texas Edition) (p. 84)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>1:00–2:30 PM</td>
<td>214B, Conv. Center</td>
<td>A Sneak Preview of FOSS Earth History, 2nd Edition for Middle School (p. 100)</td>
</tr>
</tbody>
</table>

Discovery Education (Booth #1135)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, April 12</td>
<td>8:00–9:30 AM</td>
<td>209, Conv. Center</td>
<td>Chase Your Curiosity and Develop Critical Skills with Discovery Education</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>10:00–11:30 AM</td>
<td>209, Conv. Center</td>
<td>High School Biology in a Digital World: Critical Thinking Trumps Information</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>12 Noon–1:30 PM</td>
<td>209, Conv. Center</td>
<td>STEM Is Virtually Everywhere at Discovery (p. 70)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>2:00–3:30 PM</td>
<td>209, Conv. Center</td>
<td>Siemens STEM Academy: Top Free STEM Resources for Your Classroom (p. 98)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>4:00–5:30 PM</td>
<td>209, Conv. Center</td>
<td>Discovery Education Science Techbook—Myths Busted (p. 111)</td>
</tr>
</tbody>
</table>

The Dow Chemical Co. (Booth #699)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, April 12</td>
<td>8:00–9:30 AM</td>
<td>Salon E, Marriott Rivercenter</td>
<td>You Be The Chemist Challenge (p. 35)</td>
</tr>
</tbody>
</table>

eCYBERMISSION (Booth #1128)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, April 12</td>
<td>8:00–9:30 AM</td>
<td>007B, Conv. Center</td>
<td>Hard Doesn’t Mean Bad—Helping Students Understand That Facing Challenges Is a Good Thing (p. 30)</td>
</tr>
</tbody>
</table>

Educational Innovations, Inc. (Booth #926)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, April 12</td>
<td>8:00–9:30 AM</td>
<td>214A, Conv. Center</td>
<td>The Private Eye® Way to Magnify Minds: How to Fire Up STEM and Common Core State Standards’ Literacy Goals (p. 34)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>10:00–11:30 AM</td>
<td>214A, Conv. Center</td>
<td>What the Heck Happened?! (p. 54)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>12 Noon–1:30 PM</td>
<td>214A, Conv. Center</td>
<td>Fantastical Chemistry Demos for All Classrooms (p. 72)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>2:00–3:30 PM</td>
<td>214A, Conv. Center</td>
<td>Elementary Teacher Survival Kit (p. 99)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>4:00–5:30 PM</td>
<td>214A, Conv. Center</td>
<td>3-2-1 Blast Off! (p. 112)</td>
</tr>
</tbody>
</table>

Edusmart Science (Booth #1037)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, April 12</td>
<td>12 Noon–1:30 PM</td>
<td>007B, Conv. Center</td>
<td>Integrating Multimedia and SIOP Strategies in Science to Meet the Needs of ELL Students (p. 68)</td>
</tr>
</tbody>
</table>

ExploreLearning (Booth #1426)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, April 12</td>
<td>8:00–9:30 AM</td>
<td>101B, Conv. Center</td>
<td>Pairing Gizmos with Common Core ELA—A Perfect Duo! (p. 32)</td>
</tr>
</tbody>
</table>
Index of Exhibitor Workshops

Fisher Science Education (Booth #916)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, April 12</td>
<td>8:00–9:30 AM</td>
<td>102A, Conv. Center</td>
<td>Exploring Alternative Energy and Careers in STEM (p. 32)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>10:30 AM–12 Noon</td>
<td>102A, Conv. Center</td>
<td>Exploring STEM with K’NEX® (p. 56)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>1:30–3:00 PM</td>
<td>102A, Conv. Center</td>
<td>Exploring STEM Careers: Water and Our Environment (p. 86)</td>
</tr>
</tbody>
</table>

Flinn Scientific, Inc. (Booth #726)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, April 12</td>
<td>8:00–9:30 AM</td>
<td>103A, Conv. Center</td>
<td>Fantastic Physical Science Demonstrations from Flinn (p. 32)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>10:00–11:30 AM</td>
<td>103A, Conv. Center</td>
<td>New Advanced Inquiry Labs for AP Biology from Flinn Scientific (p. 53)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>12 Noon–1:30 PM</td>
<td>Grand Blrm. C1, Conv. Center</td>
<td>Flinn Scientific Morning of Chemistry: The Chemistry of Teaching (p. 54)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>2:00–3:30 PM</td>
<td>103A, Conv. Center</td>
<td>Favorite Biology Lab Activities and Games from Flinn (p. 68)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>4:00–5:30 PM</td>
<td>103A, Conv. Center</td>
<td>New Guided Inquiry Labs for Advanced Placement® Chemistry from Flinn Scientific (p. 97)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>12 Noon–1:30 PM</td>
<td>Grand Blrm. C1, Conv. Center</td>
<td>How to Design a Safe and Efficient Science Laboratory from Flinn (p. 110)</td>
</tr>
</tbody>
</table>

Houghton Mifflin Harcourt (Booth #1526)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, April 12</td>
<td>12 Noon–1:30 PM</td>
<td>204B, Conv. Center</td>
<td>Ecology Adventures: Motivating Students Through Project Based Learning (p. 70)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>2:00–3:30 PM</td>
<td>204B, Conv. Center</td>
<td>Extra, Extra! Read All About It! Taking Biology from the News to the Classroom (p. 98)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>4:00–5:30 PM</td>
<td>204B, Conv. Center</td>
<td>More STEM Challenges for the Classroom, Part 2 (p. 111)</td>
</tr>
</tbody>
</table>

Howard Hughes Medical Institute (Booth #347)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, April 12</td>
<td>8:00–9:30 AM</td>
<td>008A, Conv. Center</td>
<td>The Science Behind West Nile Virus Infections (p. 32)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>10:00–11:30 AM</td>
<td>008A, Conv. Center</td>
<td>HHMI’s The Day the Mesozoic Died Classroom Resources (p. 52)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>12 Noon–1:30 PM</td>
<td>008A, Conv. Center</td>
<td>EarthViewer—4.6 Billion Years of Earth History at Your Fingertips (p. 68)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>2:00–3:30 PM</td>
<td>008A, Conv. Center</td>
<td>HHMI’s The Making of the Fittest: The Coevolution of Genes and Culture in Your Classroom (p. 96)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>4:00–5:30 PM</td>
<td>008A, Conv. Center</td>
<td>Paleoclimate and How It Helps Us Understand Current Climate Change. Featuring HHMI’s New DVD Changing Planet: Past, Present, Future (p. 110)</td>
</tr>
</tbody>
</table>

It’s About Time (Booth #715)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, April 12</td>
<td>8:00–9:00 AM</td>
<td>205, Conv. Center</td>
<td>Turn Your Science Classroom into a STEM Classroom with a WebCam Laboratory (p. 28)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>9:30–10:30 AM</td>
<td>205, Conv. Center</td>
<td>Earth and Space Science—More Pertinent Today, More Important in the Next Generation Science Standards (p. 50)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>11:00 AM–12 Noon</td>
<td>205, Conv. Center</td>
<td>Project-Based Inquiry Science: PBISTM—Exemplifying Blending Practices, Core Ideas, and Crosscutting Concepts (p. 64)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>12:30–1:30 PM</td>
<td>205, Conv. Center</td>
<td>Engineering the Future: A Practical Approach to STEM for High School (p. 83)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>2:00–3:00 PM</td>
<td>205, Conv. Center</td>
<td>Active Physics—Ahead of Its Time in Capturing the Essence of the NGSS and STEM (p. 95)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>3:30–4:30 PM</td>
<td>205, Conv. Center</td>
<td>Active Chemistry: Ahead of Its Time in Capturing the Essence of the NGSS and STEM(p. 108)</td>
</tr>
</tbody>
</table>

K’NEX Education (Booth #1102)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Workshop Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, April 12</td>
<td>8:00–9:30 AM</td>
<td>102B, Conv. Center</td>
<td>Bring Simple Machine Concepts to Life with Real-World Models! (p. 32)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>10:00–11:30 AM</td>
<td>102B, Conv. Center</td>
<td>Go Green and Bring STEM Concepts to Life with the K’NEX® Education Renewable Energy Set! (p. 52)</td>
</tr>
</tbody>
</table>
K’NEX Education, cont.

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday</td>
<td>12 Noon–1:30 PM</td>
<td>102B, Conv. Center</td>
<td>DNA Replication and Transcription—No More Gumdrops and Toothpicks! (p. 68)</td>
</tr>
<tr>
<td>Friday</td>
<td>2:00–3:30 PM</td>
<td>102B, Conv. Center</td>
<td>Bring the Excitement of Hands-On Learning to Your Middle School Classroom! (p. 97)</td>
</tr>
<tr>
<td>Friday</td>
<td>4:00–5:30 PM</td>
<td>102B, Conv. Center</td>
<td>It’s Off to the Races with K’NEX® Education’s Forces, Energy, and Motion Set! (p. 110)</td>
</tr>
</tbody>
</table>

KidWind Project (Booth #1826)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday</td>
<td>8:00–9:00 AM</td>
<td>007C, Conv. Center</td>
<td>Hands-On Hydropower (p. 28)</td>
</tr>
<tr>
<td>Friday</td>
<td>9:30–11:30 AM</td>
<td>007C, Conv. Center</td>
<td>Wind-energized Classroom (p. 50)</td>
</tr>
<tr>
<td>Friday</td>
<td>12:30–2:00 PM</td>
<td>007C, Conv. Center</td>
<td>WindWise Science Curriculum (p. 83)</td>
</tr>
<tr>
<td>Friday</td>
<td>2:30–3:30 PM</td>
<td>007C, Conv. Center</td>
<td>Renewable Power, Vernier, and KidWind Gear (p. 99)</td>
</tr>
<tr>
<td>Friday</td>
<td>4:00–5:30 PM</td>
<td>007C, Conv. Center</td>
<td>Exploring Circuits by Hacking Toys (p. 109)</td>
</tr>
</tbody>
</table>

LAB-AIDS, Inc. (Booth #1216)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday</td>
<td>8:00–9:30 AM</td>
<td>203A, Conv. Center</td>
<td>Color, Spectrophotometry, and Teaching the Structure of the Atom (p. 32)</td>
</tr>
<tr>
<td>Friday</td>
<td>10:00–11:30 AM</td>
<td>203A, Conv. Center</td>
<td>Biomes and Invasive Species (p. 53)</td>
</tr>
<tr>
<td>Friday</td>
<td>12 Noon–1:30 PM</td>
<td>203A, Conv. Center</td>
<td>Mastering the Chemical Formula: An Effective Way to Teach Subscripts and Coefficients (p. 69)</td>
</tr>
<tr>
<td>Friday</td>
<td>2:00–3:30 PM</td>
<td>203A, Conv. Center</td>
<td>Distillation: Simple and Fascinating Experiments in the Chemistry of Aromas and Smells (p. 97)</td>
</tr>
<tr>
<td>Friday</td>
<td>4:00–5:30 PM</td>
<td>203A, Conv. Center</td>
<td>Fast and Furious—Measuring Speed (p. 111)</td>
</tr>
</tbody>
</table>

LaMotte Co. (Booth #526)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday</td>
<td>10:00–11:30 AM</td>
<td>006A, Conv. Center</td>
<td>Take a Swipe at Microbes! (p. 51)</td>
</tr>
<tr>
<td>Friday</td>
<td>12 Noon–1:30 PM</td>
<td>006A, Conv. Center</td>
<td>A Tour for Your Inclusion Classes—How to Make It Work! (p. 66)</td>
</tr>
</tbody>
</table>

LEGO Education (Booth #805)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday</td>
<td>8:00–9:30 AM</td>
<td>007A, Conv. Center</td>
<td>Introducing Simple Machines into the Elementary Classroom with LEGO® Bricks (p. 30)</td>
</tr>
<tr>
<td>Friday</td>
<td>10:00–11:30 AM</td>
<td>007A, Conv. Center</td>
<td>Enhancing the Elementary Classroom Through Robotics (p. 52)</td>
</tr>
<tr>
<td>Friday</td>
<td>12 Noon–1:30 PM</td>
<td>007A, Conv. Center</td>
<td>LEGO MINDSTORMS® Education EV 3: Robotics in the Middle School Classroom—Getting Started (p. 67)</td>
</tr>
<tr>
<td>Friday</td>
<td>2:00–3:30 PM</td>
<td>007A, Conv. Center</td>
<td>LEGO MINDSTORMS® Education EV 3: Robotics in the Middle School Classroom—Advancing Your Program (p. 96)</td>
</tr>
<tr>
<td>Friday</td>
<td>4:00–5:30 PM</td>
<td>007A, Conv. Center</td>
<td>Machines and Mechanisms in the Classroom and Beyond (p. 109)</td>
</tr>
</tbody>
</table>

McGraw-Hill Education (Booth #705)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday</td>
<td>12 Noon–1:30 PM</td>
<td>204A, Conv. Center</td>
<td>Fun, Fabulous Foldables® (p. 69)</td>
</tr>
</tbody>
</table>

NASA Science Mission Directorate E/PO (Booth #1716)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday</td>
<td>8:00–9:00 AM</td>
<td>103B, Conv. Center</td>
<td>NASA’s Next Generation Science Classroom (p. 28)</td>
</tr>
<tr>
<td>Friday</td>
<td>9:30–10:30 AM</td>
<td>103B, Conv. Center</td>
<td>NASA’s Next Generation Science Classroom (p. 49)</td>
</tr>
<tr>
<td>Friday</td>
<td>11:00 AM–12 Noon</td>
<td>103B, Conv. Center</td>
<td>NASA’s Next Generation Science Classroom (p. 64)</td>
</tr>
</tbody>
</table>

National Geographic Learning (Booth #229)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday</td>
<td>2:00–3:30 PM</td>
<td>101B, Conv. Center</td>
<td>Science the National Geographic Way! (p. 97)</td>
</tr>
</tbody>
</table>

Nutrients for Life Foundation (Booth #1413)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday</td>
<td>8:00–9:30 AM</td>
<td>204A, Conv. Center</td>
<td>What’s Soil Got to Do with It? (p. 33)</td>
</tr>
</tbody>
</table>
Index of Exhibitor Workshops

PASCO scientific (Booths #129 and #132)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 12</td>
<td>8:00–9:30 AM</td>
<td>006C, Conv. Center</td>
<td>Achievable Inquiry in AP* Biology (p. 30)</td>
</tr>
<tr>
<td>Friday, Apr 12</td>
<td>8:00–9:30 AM</td>
<td>006D, Conv. Center</td>
<td>Renewable Energy Exploration with SPARKscience and iPad (p. 30)</td>
</tr>
<tr>
<td>Friday, Apr 12</td>
<td>10:00–11:30 AM</td>
<td>006D, Conv. Center</td>
<td>Exploring Basic Optics (p. 51)</td>
</tr>
<tr>
<td>Friday, Apr 12</td>
<td>10:00–11:30 AM</td>
<td>006C, Conv. Center</td>
<td>Equip Your iPad or Android Tablet for Science with SPARKvue® HD, a Full-featured Science Application (p. 51)</td>
</tr>
<tr>
<td>Friday, Apr 12</td>
<td>12 Noon–1:30 PM</td>
<td>006C, Conv. Center</td>
<td>Human Physiology with PASCO (p. 67)</td>
</tr>
<tr>
<td>Friday, Apr 12</td>
<td>12 Noon–1:30 PM</td>
<td>006D, Conv. Center</td>
<td>STEM: Meeting the Standards in Your Classroom (p. 67)</td>
</tr>
<tr>
<td>Friday, Apr 12</td>
<td>2:00–3:30 PM</td>
<td>006C, Conv. Center</td>
<td>Earth Science Investigation: Modeling Ocean Circulation and Layers of the Atmosphere (p. 96)</td>
</tr>
<tr>
<td>Friday, Apr 12</td>
<td>2:00–3:30 PM</td>
<td>006D, Conv. Center</td>
<td>AP Physics—Friction (p. 96)</td>
</tr>
<tr>
<td>Friday, Apr 12</td>
<td>4:00–5:30 PM</td>
<td>006C, Conv. Center</td>
<td>Equip Your iPad or Android Tablet for Science with SPARKvue® HD, a Full-featured Science Application (p. 109)</td>
</tr>
<tr>
<td>Friday, Apr 12</td>
<td>4:00–5:30 PM</td>
<td>006D, Conv. Center</td>
<td>STEM: Air Bags—Project-based Chemistry Activities (p. 109)</td>
</tr>
<tr>
<td>Friday, Apr 12</td>
<td>5:00–7:00 PM</td>
<td>Grand Ballrm. C3, Conv. Center</td>
<td>Just Physics (p. 118)</td>
</tr>
</tbody>
</table>

Pearson (Booth #200)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 12</td>
<td>8:00–9:30 AM</td>
<td>006B, Conv. Center</td>
<td>The Next Generation of Science Virtual Labs for the Entire Science Curriculum—No Cleanup Required! (p. 30)</td>
</tr>
<tr>
<td>Friday, Apr 12</td>
<td>10:00–11:30 AM</td>
<td>006B, Conv. Center</td>
<td>The Next Generation Science Standards: What They Mean for Earth and Space Science (p. 51)</td>
</tr>
<tr>
<td>Friday, Apr 12</td>
<td>12 Noon–1:30 PM</td>
<td>006B, Conv. Center</td>
<td>Planet Diary: Using Current Events to Engage Your Students in Science (p. 66)</td>
</tr>
<tr>
<td>Friday, Apr 12</td>
<td>2:00–3:30 PM</td>
<td>006B, Conv. Center</td>
<td>NGSS, STEM, and Scientific Literacy—What Now? (p. 96)</td>
</tr>
<tr>
<td>Friday, Apr 12</td>
<td>4:00–5:30 PM</td>
<td>006B, Conv. Center</td>
<td>Make Learning Part of the Grade (p. 109)</td>
</tr>
</tbody>
</table>

Perimeter Institute for Theoretical Physics (Booth #1002)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 12</td>
<td>8:00–9:30 AM</td>
<td>212B, Conv. Center</td>
<td>Perimeter Institute: Classroom Activities for Dark Matter (p. 34)</td>
</tr>
</tbody>
</table>

Project WET Foundation (Booth #1336)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 12</td>
<td>4:00–5:30 PM</td>
<td>006A, Conv. Center</td>
<td>Take the Plunge with the New Project WET 2.0 (p. 109)</td>
</tr>
</tbody>
</table>

REAL School Gardens (Booth #1535)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 12</td>
<td>8:00–9:30 AM</td>
<td>204B, Conv. Center</td>
<td>REAL School Gardens: Life Science Comes Alive (p. 33)</td>
</tr>
</tbody>
</table>

Sangari Active Science (Booth #534)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 12</td>
<td>10:00–11:30 AM</td>
<td>204B, Conv. Center</td>
<td>NGSS and Scientific Practices—More Than Photoshopping Models’ Flaws (p. 53)</td>
</tr>
</tbody>
</table>

Science First®/STARLAB® (Booth #1500)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 12</td>
<td>12:30–1:00 PM</td>
<td>Booth #1500, Exhibit Hall</td>
<td>Welcome to the Neighborhood: An Overview of the Solar System (p. 74)</td>
</tr>
</tbody>
</table>

Science Take-Out (Booth #1531)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 12</td>
<td>2:00–3:30 PM</td>
<td>007D, Conv. Center</td>
<td>Pollution and Acid Rain Activities (p. 96)</td>
</tr>
<tr>
<td>Friday, Apr 12</td>
<td>4:00–5:30 PM</td>
<td>007D, Conv. Center</td>
<td>Homeostasis and Diabetes (p. 110)</td>
</tr>
</tbody>
</table>

Scientific Minds, LLC (Booth #1142)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 12</td>
<td>12 Noon–1:30 PM</td>
<td>008B, Conv. Center</td>
<td>Launching Literacy with Science Starters (p. 68)</td>
</tr>
</tbody>
</table>

Simulation Curriculum (Booth #814)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, Apr 12</td>
<td>10:00–11:30 AM</td>
<td>007B, Conv. Center</td>
<td>Volcanoes and the Ring of Fire (p. 52)</td>
</tr>
<tr>
<td>Friday, Apr 12</td>
<td>2:00–3:30 PM</td>
<td>007B, Conv. Center</td>
<td>They Come from Outer Space (p. 96)</td>
</tr>
</tbody>
</table>
Index of Exhibitor Workshops

Society for Neuroscience (Booth #1400)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, April 12</td>
<td>12 Noon–1:30 PM</td>
<td>101B, Conv. Center</td>
<td>Shaken Up: Teaching About Childhood Sports Injuries and the Brain (p. 68)</td>
</tr>
</tbody>
</table>

Society for Science & the Public (Booth #1101)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, April 12</td>
<td>4:00–5:30 PM</td>
<td>008B, Conv. Center</td>
<td>Supporting Independent Student Research and Successfully Navigating SSP Competitions (p. 110)</td>
</tr>
</tbody>
</table>

Space Camp® (Booth #1916)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, April 12</td>
<td>8:00–9:30 AM</td>
<td>008B, Conv. Center</td>
<td>Space Camp and 21st-Century Learning: The Crossroads of Formal and Informal Education (p. 32)</td>
</tr>
</tbody>
</table>

SparkFun Electronics (Booth #1735)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, April 12</td>
<td>10:00–11:30 AM</td>
<td>212B, Conv. Center</td>
<td>Unleashing Your Students' Inner Inventor—Robots, Video Games, and DIY! (p. 54)</td>
</tr>
</tbody>
</table>

Swift Optical Instruments, Inc. (Booth #335)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, April 12</td>
<td>12 Noon–1:30 PM</td>
<td>212B, Conv. Center</td>
<td>Got MoticNet?...Then Connect! (p. 72)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>2:00–3:30 PM</td>
<td>212B, Conv. Center</td>
<td>Creating a Digital Strategy for STEM (p. 99)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>4:00–5:30 PM</td>
<td>212B, Conv. Center</td>
<td>Create a Digital WiFi Classroom…. Using the New Moticam X and MoticConnect App! (p. 112)</td>
</tr>
</tbody>
</table>

Tropical Ecology Assessment and Monitoring Network (Booth #1541)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, April 12</td>
<td>10:00–11:30 AM</td>
<td>101B, Conv. Center</td>
<td>Experiences from a Professional Development Opportunity in Costa Rica (p. 52)</td>
</tr>
</tbody>
</table>

TruGreen's MyBotanicPlanet.com (Booth #1433)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, April 12</td>
<td>10:00–11:30 AM</td>
<td>204A, Conv. Center</td>
<td>Making Science Fun: MyBotanicPlanet.com (p. 53)</td>
</tr>
</tbody>
</table>

Vernier Software & Technology (Booth #100)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, April 12</td>
<td>8:00–9:30 AM</td>
<td>210B, Conv. Center</td>
<td>Engineering with Vernier (p. 34)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>8:00–9:30 AM</td>
<td>210A, Conv. Center</td>
<td>K–8 Science with Vernier (p. 33)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>10:00–11:30 AM</td>
<td>210A, Conv. Center</td>
<td>Physics with Vernier (p. 54)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>10:00–11:30 AM</td>
<td>210B, Conv. Center</td>
<td>Inquiry-based Biology with Vernier (p. 54)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>12 Noon–1:30 PM</td>
<td>210B, Conv. Center</td>
<td>Connected Science System®; Leveraging Vernier Technology with Mobile Devices in the Classroom (p. 70)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>12 Noon–1:30 PM</td>
<td>210A, Conv. Center</td>
<td>Chemistry with Vernier (p. 70)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>2:00–3:30 PM</td>
<td>210A, Conv. Center</td>
<td>Biology with Vernier (p. 98)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>2:00–3:30 PM</td>
<td>210B, Conv. Center</td>
<td>STEM Activities Using Vernier Technology (p. 98)</td>
</tr>
</tbody>
</table>

W.H. Freeman of Bedford, Freeman & Worth (BFW) Publishers (Booth #934)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, April 12</td>
<td>8:00–9:30 AM</td>
<td>007D, Conv. Center</td>
<td>Living By Chemistry: Create a Table (p. 30)</td>
</tr>
</tbody>
</table>

Ward's Science (Booth #1316)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, April 12</td>
<td>8:00–9:30 AM</td>
<td>211, Conv. Center</td>
<td>Physics from the NRC Framework; Exploring NGSS and Newton’s Laws (p. 34)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>10:00–11:30 AM</td>
<td>211, Conv. Center</td>
<td>Put the “E” in STEM; Science and Engineering Practices in Action (p. 54)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>12 Noon–1:30 PM</td>
<td>211, Conv. Center</td>
<td>Wind Power and Alternative Energy; Exploring Energy Core Concepts (p. 72)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>2:00–3:30 PM</td>
<td>211, Conv. Center</td>
<td>Hands-On Help for the New AP Biology Labs (p. 99)</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>4:00–5:30 PM</td>
<td>211, Conv. Center</td>
<td>Chemistry In-the-Bag (p. 111)</td>
</tr>
</tbody>
</table>
Index of Exhibitor Workshops

Wavefunction, Inc. (Booth #1725)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, April 12</td>
<td>10:00–11:30 AM</td>
<td>007D, Conv. Center</td>
<td>Teaching AP Chemistry with Molecular-Level Visualization and Simulation Tools</td>
<td>52</td>
</tr>
<tr>
<td>Friday, April 12</td>
<td>12 Noon–1:30 PM</td>
<td>007D, Conv. Center</td>
<td>Exploring the Molecular World: Scientifically Accurate Visualization and Simulation Tools</td>
<td>68</td>
</tr>
</tbody>
</table>
Biology/Life Science

8:00–9:00 AM H Alamo Salon E, Marr. Riverwalk
Santhi Stripped of Her Silver: Using an Olympic Case Study as the Basis for a Biotechnology Lab Sequence (p. 22)

8:00–9:00 AM H Alamo Salon F, Marr. Riverwalk
Race, Socioeconomic Status, and the Medical Ethics of Cancer Research (p. 22)

8:00–9:00 AM H Alamo Salon F, Marr. Riverwalk
Progress Monitoring and Standards-based Instruction (p. 22)

8:00–9:00 AM P–E 202A, Conv. Center
Fee Fi Fo Fum! Getting Elementary Students Excited About Plants! (p. 23)

8:00–9:00 AM C Bowie C, Grand Hyatt
SCST Session: Using Bean Beetles to Encourage Inquiry in a Nonmajors Early College High School Course (p. 18)

8:00–9:00 AM C Bowie C, Grand Hyatt
SCST Session: Critical Thinking and Case Studies: What’s the Connection? (p. 18)

8:00–9:00 AM H Alamo Salon D, Marr. Riverwalk
Modeling Biology: Energy in an Ecosystem (p. 26)

8:00–9:00 AM H–C/I Lone Star Blrm. C, Grand Hyatt
Reinforce Scientific and Engineering Practices Through Clinical Research with Virtual Clinical Trials (p. 18)

8:00–9:00 AM M–C Alamo Salon C, Marr. Riverwalk
The Do’s and Don’ts of the Flipped Classroom: Best Practices (p. 22)

8:00–9:00 AM 6–C 202A, Conv. Center
Science, Fashion, and Fun! Genes in a Bottle™ Kit (p. 29)

8:00–9:30 AM 9–12 206A, Conv. Center
Exploring Feline Anatomy with Carolina’s Perfect Solution® Cats (p. 33)

8:00–9:30 AM 6–12 214D, Conv. Center
Genetics: Crazy Traits and Adaptation Survivor (p. 34)

8:00–9:30 AM 9–C 008A, Conv. Center
The Science Behind West Nile Virus Infections (p. 32)

8:00–9:30 AM 9–12 205B, Conv. Center
Achievable Inquiry in AP* Biology (p. 30)

8:00 AM–12 Noon E–H Conf. Rm. 1/2, Marr. Rivercenter
BSCS-I Pathway Session: Using Models to Enhance How Students Learn Science (p. 36)

9:00–11:30 AM 9–C 217B, Conv. Center
DNA Detectives—Who Killed Jose? (p. 37)

9:30–10:30 AM M–H Texas Ballroom F, Grand Hyatt
Next Generation Science Standards: Teacher Insights from the Writing Team—Life Sciences (Middle/High School) (NGSS @ NSTA) (p. 43)

9:30–10:30 AM H–C Bowie C, Grand Hyatt
SCST Session: Tuning Biology in Texas: Aligning Competencies and Expectations for the Biology Degree (p. 41)

9:30–10:30 AM C Bowie C, Grand Hyatt
SCST Session: Increasing the Diversity and Quality of Biology Graduates (p. 41)

9:30–10:30 AM M–H Bonham B, Grand Hyatt
DuPont Session: DuPont Presents “The Science of Food Safety” (p. 46)

9:30–10:30 AM G Alamo Salon C, Marr. Riverwalk
Stretch Your Legs for Science (p. 48)

9:30–10:30 AM H Alamo Salon F, Marr. Riverwalk
Standards- and Research-based Lessons for the High School Biology Classroom (p. 44)

9:30–10:30 AM H Alamo Salon F, Marr. Riverwalk
Teaching and Learning About the Human Nature of Science Within the Learning Cycle (p. 44)

9:30–10:30 AM P–M Alamo Salon E, Marr. Riverwalk
Invertebrates as the “Backbone” of an Elementary Science Curriculum (p. 44)

9:30–10:30 AM H–C/I Lone Star Blrm. C, Grand Hyatt
Neuroscience for Your Biology Classroom (p. 47)

9:30–10:30 AM H Alamo Salon D, Marr. Riverwalk
Tangible Models and Augmented Reality: New Technology for High School Biology Classrooms (p. 48)

9:30–10:30 AM E 208, Conv. Center
Literacy (Prose and Poetry) as a Component of Science Teaching (p. 45)

10:00–11:30 AM 7–12 206A, Conv. Center
Take a Swipe at Microbes! (p. 51)

10:00–11:30 AM 9–12 206A, Conv. Center
Carolina Investigations™ for AP Biology Labs (p. 53)

10:00–11:30 AM K–S 204A, Conv. Center
Making Science Fun: MyBotanicPlanet.com (p. 53)

10:00–11:30 AM 10–12 103A, Conv. Center
New Advanced Inquiry Labs for AP Biology from Flinn Scientific (p. 53)

10:00–11:30 AM 9–C 210B, Conv. Center
Inquiry-based Biology with Vernier (p. 54)

10:00–11:30 AM 9–12 209, Conv. Center
High School Biology in a Digital World: Critical Thinking Trumps Information Overload (p. 53)
<table>
<thead>
<tr>
<th>Time</th>
<th>Session ID</th>
<th>Location</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00–11:30 AM</td>
<td>5</td>
<td>101B, Conv. Center</td>
<td>Experiences from a Professional Development Opportunity in Costa Rica (p. 52)</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>9–12</td>
<td>203A, Conv. Center</td>
<td>Biomes and Invasive Species (p. 53)</td>
</tr>
<tr>
<td>10:00 AM–12 Noon</td>
<td>9–C</td>
<td>217C, Conv. Center</td>
<td>Worm and Squirm Your Way into Behavior Labs (p. 54)</td>
</tr>
<tr>
<td>11:00–11:30 AM</td>
<td>H–C</td>
<td>Bowie C, Grand Hyatt</td>
<td>Teaching College-Level Anatomy and Physiology Within High Schools Through a Concurrent Enrollment Program (p. 56)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>G</td>
<td>Alamo Salon E, Marr. Riverwalk</td>
<td>A Multiplayer Online Game That Fosters Engagement and Learning in STEM (p. 60)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>G</td>
<td>Lone Star Blrm. F, Grand Hyatt</td>
<td>CSI Web Adventures: Engage Your Students in Scientific Methods and Techniques Applied to Solve Crimes (p. 58)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>M–H</td>
<td>Alamo Salon F, Marr. Riverwalk</td>
<td>Forensic Anthropology: Teaching the Skeletal System (p. 60)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>I</td>
<td>Alamo Salon C, Marr. Riverwalk</td>
<td>Engage Your Students with NOAA's Coral Reef Resources (p. 64)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>P–E</td>
<td>212A, Conv. Center</td>
<td>CESI Session: Strong STEMs Need Strong Sprouts! (p. 57)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>H</td>
<td>Alamo Salon D, Marr. Riverwalk</td>
<td>Enzymes—Group 1: The Builders (p. 64)</td>
</tr>
<tr>
<td>12 Noon–1:30 PM</td>
<td>K–12</td>
<td>207B, Conv. Center</td>
<td>Hands-On Science with Classroom Critters (p. 70)</td>
</tr>
<tr>
<td>12 Noon–1:30 PM</td>
<td>9–C</td>
<td>103A, Conv. Center</td>
<td>Favorite Biology Lab Activities and Games from Flinn (p. 68)</td>
</tr>
<tr>
<td>12 Noon–1:30 PM</td>
<td>6–C</td>
<td>101B, Conv. Center</td>
<td>Shaken Up: Teaching About Childhood Sports Injuries and the Brain (p. 68)</td>
</tr>
<tr>
<td>12 Noon–1:30 PM</td>
<td>6–12</td>
<td>206A, Conv. Center</td>
<td>Comparative Vertebrate Anatomy with Carolina’s Perfect Solution® Specimens (p. 70)</td>
</tr>
<tr>
<td>12 Noon–1:30 PM</td>
<td>5</td>
<td>102B, Conv. Center</td>
<td>DNA Replication and Transcription—No More Gumdrops and Toothpicks! (p. 68)</td>
</tr>
<tr>
<td>12 Noon–1:30 PM</td>
<td>9–C</td>
<td>006C, Conv. Center</td>
<td>Human Physiology with PASCO (p. 67)</td>
</tr>
<tr>
<td>12 Noon–1:30 PM</td>
<td>4–8</td>
<td>204B, Conv. Center</td>
<td>Ecology Adventures: Motivating Students Through Project Based Learning (p. 70)</td>
</tr>
<tr>
<td>12:15–1:45 PM</td>
<td>G</td>
<td>Grand Blrm. C2, Conv. Center</td>
<td>Nature’s Medicinal Remedies in the Treatment of Diabetes and Cancer (p. 73)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>M–H</td>
<td>Alamo Salon D, Marr. Riverwalk</td>
<td>Bird Islands: Exploring Biodiversity Using Interactive Geospatial PDFs to Address the New Frameworks (p. 83)</td>
</tr>
<tr>
<td>1:00–1:30 PM</td>
<td>E</td>
<td>208, Conv. Center</td>
<td>My Big Backyard (p. 84)</td>
</tr>
<tr>
<td>1:00–3:00 PM</td>
<td>9–C</td>
<td>217C, Conv. Center</td>
<td>Ecology to Enzymes to Industry (AP Big Idea 4) (p. 85)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>E–M</td>
<td>208, Conv. Center</td>
<td>Engineering a Pollinator (p. 93)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>M–H</td>
<td>Bonham B, Grand Hyatt</td>
<td>DuPont Session: Shuffle It Up! Understanding Photosynthesis and Respiration (p. 94)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>E–H</td>
<td>Alamo Salon C, Marr. Riverwalk</td>
<td>Butterfly Bonanza (p. 95)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>M–H</td>
<td>Alamo Salon F, Marr. Riverwalk</td>
<td>Food Biology: Scientific Inquiry Through Food Production (p. 92)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>H</td>
<td>Alamo Salon D, Marr. Riverwalk</td>
<td>The Natural Selection of M&M’s® (p. 95)</td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>K–5</td>
<td>101B, Conv. Center</td>
<td>Science the National Geographic Way! (p. 97)</td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>6–12</td>
<td>206A, Conv. Center</td>
<td>Introduction to Protozoa (p. 98)</td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>9–C</td>
<td>210A, Conv. Center</td>
<td>Biology with Vernier (p. 98)</td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>6–12</td>
<td>204A, Conv. Center</td>
<td>Build It! Increase Student Engagement with the Anatomy in Clay® Learning System (p. 97)</td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>9–12</td>
<td>211, Conv. Center</td>
<td>Hands-On Help for the New AP Biology Labs (p. 99)</td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>9–C</td>
<td>008B, Conv. Center</td>
<td>AP Biology: Strategies for Teaching Within the New Framework (Free Samples) (p. 97)</td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>9–C</td>
<td>008A, Conv. Center</td>
<td>HHMI’s The Making of the Fittest: The Coevolution of Genes and Culture in Your Classroom (p. 96)</td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>9–12</td>
<td>204B, Conv. Center</td>
<td>Extra, Extra! Read All About It! Taking Biology from the News to the Classroom (p. 98)</td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>7–C</td>
<td>212B, Conv. Center</td>
<td>Creating a Digital Strategy for STEM (p. 99)</td>
</tr>
<tr>
<td>3:00–4:30 PM</td>
<td>6–9</td>
<td>217B, Conv. Center</td>
<td>Engineer the Tools for Inquiry of Candy Food Dyes (p. 100)</td>
</tr>
</tbody>
</table>
Schedule at a Glance

Biology/Life Science

- **3:30–4:30 PM**
 - **M–H**
 - **Alamo Salon F, Marr. Riverwalk**
 - Using Fiction to Teach Science Facts (p. 105)

- **3:30–4:30 PM**
 - **G**
 - **Alamo Salon E, Marr. Riverwalk**
 - Wriggling Diversity into the Classroom: Vermiculture as a Tool for Including Gender and Cultural Sensitivity Discussion (p. 105)

- **3:30–4:30 PM**
 - **E–M**
 - **208, Conv. Center**
 - The Foundation of Living Things: The Cell for Elementary Students (p. 106)

- **4:00–5:30 PM**
 - **6–12 007D, Conv. Center**
 - Homeostasis and Diabetes (p. 110)

- **4:00–5:30 PM**
 - **K–S**
 - **206A, Conv. Center**
 - Decoding Human Genetics with Inquiries in Science® (p. 111)

- **4:00–5:30 PM**
 - **P–E**
 - **202A, Conv. Center**
 - Growing a Garden of Learners (p. 113)

- **5:00–6:00 PM**
 - **P–E 202A, Conv. Center**
 - Photosynthesis: The Musical! (p. 113)

- **5:00–6:00 PM**
 - **M–H**
 - **201, Conv. Center**
 - Frog's Blood vs. Human Blood: Comparing RBC as a Means to Understand Cellular Respiration and SA/V (p. 115)

- **5:00–6:00 PM**
 - **G Conf. Room 16, Marr. Rivercenter**
 - Feel the Pressure—Modeling Heart Health (p. 117)

- **5:00–6:00 PM**
 - **E 208, Conv. Center**
 - Making Science Meaningful with Mealworms (p. 116)

- **5:00–6:00 PM**
 - **M–H Alamo Salon D, Marr. Riverwalk**
 - What Makes Kids Want to Learn? Food! (p. 118)

Chemistry/Physical Science

- **8:00–9:00 AM**
 - **H 202B, Conv. Center**
 - Activities That Lead to Conceptual Understanding of Chemistry Content (p. 16)

- **8:00–9:00 AM**
 - **G Alamo Salon B, Marr. Riverwalk**
 - Transforming Chemistry Instruction Through Modeling Experiences (p. 22)

- **8:00–9:00 AM**
 - **H Travis, Marr. Riverwalk**
 - Addressing Misconceptions During the First Two Weeks of Chemistry (p. 22)

- **8:00–9:30 AM**
 - **9–12 203A, Conv. Center**
 - Color, Spectrophotometry, and Teaching the Structure of the Atom (p. 32)

- **8:00–9:30 AM**
 - **9–12 006B, Conv. Center**
 - The Next Generation of Science Virtual Labs for the Entire Science Curriculum—No Cleanup Required! (p. 30)

- **8:00–9:30 AM**
 - **9–12 007D, Conv. Center**
 - Living By Chemistry: Create a Table (p. 30)

- **8:00–9:30 AM**
 - **5–8 Salon E, Marr. Rivercenter**
 - You Be The Chemist Challenge (p. 35)

- **8:00–9:30 AM**
 - **9–12 207B, Conv. Center**
 - Carolina Chemistry Investigations for Advanced Chemistry (p. 33)

- **9:30–10:00 AM**
 - **G Alamo Salon B, Marr. Riverwalk**
 - Measuring Minority Students’ Learning in Science and Technology (p. 39)

- **9:30–10:00 AM**
 - **H Travis, Marr. Riverwalk**
 - Write Your Way to Success: Grant Writing Strategies for You and Your Chemistry Students (p. 44)

- **10:00–11:30 AM**
 - **6–12 Grand Ballroom C1, Conv. Center**
 - Flinn Scientific Morning of Chemistry: The Chemistry of Teaching (p. 54)

- **10:00–11:30 AM**
 - **6–C 007D, Conv. Center**
 - Teaching AP Chemistry with Molecular-Level Visualization and Simulation Tools (p. 52)

- **11:00 AM–12 Noon**
 - **M–H Texas Ballroom F, Grand Hyatt**
 - Next Generation Science Standards: Teacher Insights from the Writing Team—Physical Sciences (Middle/High School) (NGSS @ NSTA) (p. 59)

- **11:00 AM–12 Noon**
 - **I Alamo Salon B, Marr. Riverwalk**
 - Send the Right Message: Excite and Engage Kids in STEM with Your Words, Images, and Real-World Connections (p. 60)

- **11:00 AM–12 Noon**
 - **H–C Lone Star Blrm. A, Grand Hyatt**
 - Tips and Resources for First-Year Chemistry Teachers (p. 58)

- **11:00 AM–12 Noon**
 - **M–H Mission A, Grand Hyatt**
 - The Shell Science Lab Challenge: Equipment for Your Lab! (p. 58)

- **11:00 AM–12 Noon**
 - **H/S Presidio C, Grand Hyatt**
 - NARST Session: Finding Science in the Everyday: Balancing Demonstration and Contextualization in the Chemistry Classroom (p. 58)

- **12 Noon–1:30 PM**
 - **4–C 214A, Conv. Center**
 - Fantastical Chemistry Demos for All Classrooms (p. 72)

- **12 Noon–1:30 PM**
 - **9–C 210A, Conv. Center**
 - Chemistry with Vernier (p. 70)

- **12 Noon–1:30 PM**
 - **6–C 007D, Conv. Center**
 - Exploring the Molecular World: Scientifically Accurate Visualization and Simulation Tools (p. 68)

- **12 Noon–1:30 PM**
 - **9–12 203A, Conv. Center**
 - Mastering the Chemical Formula: An Effective Way to Teach Subscripts and Coefficients (p. 69)

- **12:30–1:30 PM**
 - **G Texas Ballroom D, Grand Hyatt**
 - NSTA Press® Session: Uncovering K–12 Students’ (and Teachers’) Ideas About Matter and Energy (p. 78)

- **12:30–1:30 PM**
 - **M Bonham D, Grand Hyatt**
 - Middle School Chemistry: Big Ideas About the Very Small (p. 82)

- **12:30–1:30 PM**
 - **M–H Travis, Marr. Riverwalk**
 - Tasty Chemistry: The Chemistry of Food (p. 80)

- **12:30–1:30 PM**
 - **M–H Alamo Salon B, Marr. Riverwalk**
 - Get Moving! The Chemistry Edition (p. 80)

- **2:00–3:00 PM**
 - **H Travis, Marr. Riverwalk**
 - Chemical Web Experiment (p. 92)
Schedule at a Glance Chemistry/Physical Science, cont.

2:00–3:00 PM C Seguin A, Grand Hyatt Involving Students in Test Scoring in the Classroom Enhances Understanding and Achievement in Chemistry Among Secondary School Students (p. 91)
2:00–3:00 PM C Seguin A, Grand Hyatt Involving Students in Test Scoring in the Classroom for Better Understanding and Achievement in Algebra (p. 91)
2:00–3:30 PM 9–12 203A, Conv. Center Distillation: Simple and Fascinating Experiments in the Chemistry of Aromas and Smells (p. 97)
2:00–3:30 PM 10–12 103A, Conv. Center New Guided Inquiry Labs for Advanced Placement® Chemistry from Flinn Scientific (p. 97)
2:00–3:30 PM 9–12 207B, Conv. Center Flipping Out Over Chemistry! (p. 98)
3:30–4:30 PM H Travis, Marr. Riverwalk Solids: The Neglected “State” of Chemistry (p. 105)
4:00–5:30 PM 9–12 006D, Conv. Center STEM: Air Bags—Project-based Chemistry Activities (p. 109)
4:00–5:30 PM 5 211, Conv. Center Chemistry In-the-Bag (p. 111)
5:00–6:00 PM H Travis, Marr. Riverwalk Basic Polymer Chemistry for the High School Classroom (p. 115)
5:00–6:00 PM H–C Crockett A, Grand Hyatt Student-friendly Microscale Chemistry Using Polymers (p. 118)
5:00–6:00 PM M–H Alamo Salon A, Marr. Riverwalk Incorporate the History of Chemistry into Your Teaching with the New PBS Television Program Mystery of Matter: Search for the Elements! (p. 115)
5:00–6:00 PM E–M 216A, Conv. Center Physical Science, Technology, and Action Research in K–8 Classrooms (p. 116)

Earth/Space Science

8:00–9:00 AM E–H 001A, Conv. Center Understanding and Studying Clouds in the Elementary Classroom (p. 23)
8:00–9:00 AM G 101A, Conv. Center Interdisciplinary Space Exploration with NASA and WWT (p. 16)
8:00–9:00 AM I 213A, Conv. Center ASTC Session: Online Astronomy Teacher Professional Development—Project Share and The New York Times Knowledge Network (p. 17)
8:00–9:00 AM M–H 003A, Conv. Center Developing the Mind’s Eye: Assessing Spatial Thinking (p. 16)
8:00–9:00 AM M–H 001B, Conv. Center The IRIS In-Class Project: Free Seismology Learning Sequences Accompanied by Online Professional Development (p. 23)
8:00–9:00 AM K–5 103B, Conv. Center NASA’s Next Generation Science Classroom (p. 28)
9:30–10:30 AM 6–8 103B, Conv. Center NASA’s Next Generation Science Classroom (p. 49)
9:30–10:30 AM G 001A, Conv. Center What’s Up? Classroom Activities from the Association of Astronomy Educators, Session I: Sun, Earth, and Planets (p. 44)
9:30–10:30 AM G 101A, Conv. Center A Robotic WISSARD Integrates STEM into Your Classroom! (p. 40)
9:30–10:30 AM E 202A, Conv. Center Investigating Soil in the Elementary Classroom (p. 45)
9:30–10:30 AM I 003A, Conv. Center National Marine Sanctuaries—Bringing Ocean Technology into Your Classroom (p. 40)
9:30–10:30 AM E–M 002, Conv. Center NASA CERES S’COOL Project: Become a S’COOL Cloud Observer! (p. 44)
10:00–11:30 AM 7–C 008A, Conv. Center HHMI’s The Day the Mesozoic Died Classroom Resources (p. 52)
10:00–11:30 AM 5 007B, Conv. Center Volcanoes and the Ring of Fire (p. 52)
10:00–11:30 AM G 006B, Conv. Center The Next Generation Science Standards: What They Mean for Earth and Space Science (p. 51)
11:00 AM–12 Noon 10–12 103B, Conv. Center NASA’s Next Generation Science Classroom (p. 64)
Schedule at a Glance Earth/Space Science, cont.

<table>
<thead>
<tr>
<th>Time</th>
<th>Session Title</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00 AM–12 Noon</td>
<td>Exploring the Hubble Universe</td>
<td>Conv. Center</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>Modeling the Night Sky</td>
<td>Conv. Center</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>NASA INSPIRE: A Five-Year Retrospective on Online Learning</td>
<td>Conv. Center</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>Exploring Seafloor Spreading with Data from the Integrated Ocean Drilling Program (IODP)</td>
<td>Conv. Center</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>Incorporating ASL in Astronomy Education—for Deaf and Hearing Students</td>
<td>Conv. Center</td>
</tr>
<tr>
<td>12 Noon–1:30 PM</td>
<td>EarthViewer—4.6 Billion Years of Earth History at Your Fingertips</td>
<td>Booth #1500, Exh. Hall</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Next Generation Science Standards: Teacher Insights from the Writing Team—Earth and Space Sciences (Middle/High School) (NGSS @ NSTA)</td>
<td>Conv. Center</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Silent Earthquakes Beneath Your Feet? How a Magnitude 7 Earthquake Can Occur Without Being Felt by Anyone!</td>
<td>Conv. Center</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>SYM-1 Follow-Up Session: A Changing Climate Here and Now</td>
<td>Conv. Center</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Weather or Not: K–4 Connections for Weather Units</td>
<td>Conv. Center</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Hands-On/Minds-On Science: Meeting the Needs of Diverse Learners in a Collaborative Setting</td>
<td>Conv. Center</td>
</tr>
<tr>
<td>1:30–3:00 PM</td>
<td>When the World Was Warm—Looking Back to the Future</td>
<td>Conv. Center</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>Teaching Science Academic Vocabulary for Comprehension and Retention</td>
<td>Conv. Center</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>Adapting Space Adventures: Using Real NASA Data to Engage Students with Special Needs</td>
<td>Conv. Center</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>NASA: Inquiry Activities for Learning About Light and the Electromagnetic Spectrum and Multiwavelength Astronomy</td>
<td>Conv. Center</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>Ice Core Records—From Volcanoes to Supernovas</td>
<td>Conv. Center</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>Jurassic Expedition: Paleontology Field School</td>
<td>Conv. Center</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>NESTA Session: Climate Change Classroom Toolkit</td>
<td>Conv. Center</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>They Come from Outer Space</td>
<td>Conv. Center</td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>Earth Science Investigation: Modeling Ocean Circulation and Layers of the Atmosphere</td>
<td>Conv. Center</td>
</tr>
<tr>
<td>3:00–4:30 PM</td>
<td>A Sneak Preview of FOSS Earth History, 2nd Edition for Middle School</td>
<td>Conv. Center</td>
</tr>
<tr>
<td>3:00–4:30 PM</td>
<td>NESTA Session: Let’s Get Well Grounded!</td>
<td>Conv. Center</td>
</tr>
<tr>
<td>3:00–4:30 PM</td>
<td>Pulsating Variable Stars and the H-R Diagram</td>
<td>Conv. Center</td>
</tr>
<tr>
<td>3:00–4:30 PM</td>
<td>NASA Triad: Bringing NASA Resources to the Secondary Science Classroom</td>
<td>Conv. Center</td>
</tr>
<tr>
<td>3:00–4:30 PM</td>
<td>A Project-based Approach to Weather and Climate</td>
<td>Conv. Center</td>
</tr>
<tr>
<td>3:00–4:30 PM</td>
<td>NASA’s MMS Mission: Using iPads to Create Space Weather Forecasts</td>
<td>Conv. Center</td>
</tr>
<tr>
<td>3:00–4:30 PM</td>
<td>The Little Spacecraft That Could—DID! MESSENGER Mission Accomplished</td>
<td>Conv. Center</td>
</tr>
<tr>
<td>5:00–5:30 PM</td>
<td>NASA’s Know Your Earth Project</td>
<td>Conv. Center</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>A Different Approach to Earth Science Education</td>
<td>Conv. Center</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>Discovering Air Quality in Your Area Using NASA Data Visualization Tools</td>
<td>Conv. Center</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>NSTA Press® Session: Five E(z) Guidelines for Designing Research-informed Science Lesson Sequences</td>
<td>Conv. Center</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>Teaching Climate Science Through Data and Visualizations</td>
<td>Conv. Center</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>Dust Hunt! Modeling How Stars and Planets Form</td>
<td>Conv. Center</td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
<td>Location</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>Playing Games to Learn Complex Environmental Science Concepts (p. 26)</td>
<td>Texas Ballroom E, Grand Hyatt</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>Your Students Stuck Inside? No Problem; Bring the Outside In! (p. 17)</td>
<td>208, Conv. Center</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>Global Connections: Forests of the World (p. 25)</td>
<td>Republic B, Grand Hyatt</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>SYM-1 Follow-Up Session: Get Real! Use Real-Time NOAA Data to Understand Our Changing World (p. 20)</td>
<td>Conf. Room 3/4, Marr. Rivercenter</td>
</tr>
<tr>
<td>8:00–9:30 AM</td>
<td>Renewable Energy Exploration with SPARKscience and iPad (p. 30)</td>
<td>6–8 006D, Conv. Center</td>
</tr>
<tr>
<td>8:00–9:30 AM</td>
<td>Exploring Alternative Energy and Careers in STEM (p. 32)</td>
<td>9–12 102A, Conv. Center</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>Using Formative Assessment Data to Improve Student Achievement (p. 42)</td>
<td>Seguin A, Grand Hyatt</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>Mobile Science: Unlock the Potential of iPads in the Field (p. 47)</td>
<td>Texas Ballroom E, Grand Hyatt</td>
</tr>
<tr>
<td>10:00–10:30 AM</td>
<td>Teaching Climate and Energy: The CLEAN Collection of Peer-reviewed Climate and Energy Learning Resources (p. 50)</td>
<td>Crockett D, Grand Hyatt</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>The Science of Service Learning: One School’s Journey to Promote Science Knowledge Through Service (p. 59)</td>
<td>Texas Ballroom E, Grand Hyatt</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>Understanding Our Finite World</td>
<td>208, Conv. Center</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>Lake St. Clair—Use or Abuse?</td>
<td>Republic B, Grand Hyatt</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>Focusing On Wildlife Conservation: Developing Public Service</td>
<td>Crockett D, Grand Hyatt</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>A Tour for Your Inclusion Classes—How to Make It Work!</td>
<td>006A, Conv. Center</td>
</tr>
<tr>
<td>12 Noon–1:30 PM</td>
<td>Ocean Plastic Pollution: Examining Issues and Solutions in a Middle School Classroom (p. 82)</td>
<td>Texas Ballroom E, Grand Hyatt</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Wind Energy—How Much and at What Price?</td>
<td>Crockett D, Grand Hyatt</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Using Technology to Connect Field Studies to the Classroom</td>
<td>Crockett D, Grand Hyatt</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Practical Technology for Environmental Field Studies</td>
<td>Bonham E, Grand Hyatt</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>Outdoor Science Pathway Session: Teaching Outdoor Science Through Trade Books (p. 82)</td>
<td>Salon F, Marr. Rivercenter</td>
</tr>
<tr>
<td>1:30–3:00 PM</td>
<td>Exploring STEM Careers: Water and Our Environment</td>
<td>102A, Conv. Center</td>
</tr>
<tr>
<td>1:30–3:00 PM</td>
<td>The Climate Science Debate: What Does the Science Tell Us and Why People on Both Sides Are So Angry About It (p. 87)</td>
<td>Conf. Rm 17/18, Conv. Center</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>Outdoor Science Pathway Session: Even More Math and Science Integration (p. 95)</td>
<td>Salon F, Marr. Rivercenter</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>Facing the Future: Global Connections and Sustainability</td>
<td>Republic B, Grand Hyatt</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>Benthic Macroinvertebrates</td>
<td>Conf. Room 16, Marr. Rivercenter</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>Be a “Flipper” for Ocean Literacy</td>
<td>Crockett D, Grand Hyatt</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>SYM-2 Follow-Up Session: Monarch Life Cycles and Raising Monarchs in Captivity (p. 94)</td>
<td>Grand Blrm. C1, Conv. Center</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>SYM-2 Follow-Up Session: Classroom Lessons with Monarchs</td>
<td>Conf. Rm 17/18, Marr. Rivercenter</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>SCST Session: Promoting Environmental Literacy Through the New Core Standards (p. 88)</td>
<td>Salon F, Marr. Rivercenter</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>Pollution and Acid Rain Activities</td>
<td>007D, Conv. Center</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>SYM-2 Follow-Up Session: Classroom Lessons with Monarchs</td>
<td>Conf. Rm 17/18, Marr. Rivercenter</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>Outdoor Science Pathway Session: Growing Curricular Inclusion in an Outdoor Classroom (p. 105)</td>
<td>salon F, Marr. Rivercenter</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>STEM Digital: Digital Cameras as Scientific Instruments</td>
<td>207A, Conv. Center</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>Paleoclimate and How It Helps Us Understand Current Climate Change</td>
<td>Conf. Room 6, Marr. Rivercenter</td>
</tr>
<tr>
<td>4:00–5:30 PM</td>
<td>Order of Magnitude Estimates in Urban Transportation</td>
<td>9–C 008A, Conv. Center</td>
</tr>
<tr>
<td>4:00–5:30 PM</td>
<td>Paleoclimate and How It Helps Us Understand Current Climate Change</td>
<td>006A, Conv. Center</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>But I’m Not a Reading Teacher…Using Complex Texts to Enrich the Science Classroom (p. 117)</td>
<td>Republic B, Grand Hyatt</td>
</tr>
</tbody>
</table>
Environmental Science, cont.

Integrated/General

5:00–6:00 PM G Texas Ballroom E, Grand Hyatt Investigating Climate Change Issues with Google Earth and Web-based Activities (p. 115)

5:00–6:00 PM G Crockett D, Grand Hyatt An Arctic Connection: A Teacher Exchange Program Among U.S. and Swedish Educators (p. 114)

8:00–8:30 AM E–H 201, Conv. Center A Little PDA Goes a Long Way: Content Literacy Strategies (p. 16)

8:00–9:00 AM M/S Lone Star Blrm. A, Grand Hyatt Terrific Science Games for Middle Schools (p. 24)

8:00–9:00 AM I Lone Star Blrm. B, Grand Hyatt Drawings Add to Data…and Students Like to Do Them! (p. 24)

8:00–9:00 AM M–H Conf. Room 15, Marr. Rivercenter Integrating Probes in the Interactive Notebook (p. 20)

8:00–9:00 AM G Travis A, Grand Hyatt NSELA Session: Scaffolding Toward Argumentation: A Framework for K–12 Science Education and Its Implications for Inquiry (p. 20)

8:00–9:00 AM H–C/I Bonham D, Grand Hyatt Cell Phones in Science Class!? (p. 24)

8:00–9:00 AM G Bowie B, Grand Hyatt Show Me the Data! (p. 24)

8:00–9:00 AM C/S Lone Star Blrm. E, Grand Hyatt Migrant Students Experience Success Through a University Partnership (p. 18)

8:00–9:00 AM E–M 212A, Conv. Center Interactive Science Notebooks: Putting the Next Generation Practices into Action (p. 17)

8:00–9:00 AM M–H Salon M, Marr. Rivercenter Equal Access to Science: Universal Design and Students with Disabilities (p. 26)

8:00–9:00 AM M Bonham C, Grand Hyatt The Problem with Plastics (p. 24)

8:00–9:00 AM M–H Alamo Salon E, Marr. Riverwalk Driven to Learn: How Questions Can Drive Instruction (p. 22)

8:00–9:00 AM E 213B, Conv. Center Telling the Science Story: Finding a Common Ground Between the Common Core and NRC Framework/NGSS (p. 24)

8:00–9:00 AM G Presidio A/B, Grand Hyatt Planning and Designing Safe, Sustainable, and Flexible Facilities for Inquiry/Project-based Science (Science Facilities 101) (p. 25)

8:00–9:00 AM E–M 217A, Conv. Center Science Fair with Flair: Using Desk Drawer Materials (p. 24)

8:00–9:00 AM E–H Crockett C, Grand Hyatt Writing to Learn Through Science Notebooks/Journals in Elementary and Secondary Classrooms (p. 18)

8:00–9:00 AM G Texas Ballroom C, Grand Hyatt Enhancing Self-efficacy in Elementary Science Teaching: Effects of a Multi-Year, Whole-School Professional Learning Program (p. 19)

8:00–9:00 AM G Seguin A, Grand Hyatt Creating a STEM School District (p. 19)

8:00–9:00 AM M–H/I Salon L, Marr. Rivercenter WISP Pathway Session: Reading and Writing the News (p. 20)

8:00–9:00 AM G Presidio C, Grand Hyatt NARST Session: The Interaction of Knowledge About and Teaching of Nature of Science (p. 18)

8:00–9:00 AM M–H 6–12 205, Conv. Center Turn Your Science Classroom into a STEM Classroom with a WebCam Laboratory (p. 28)

8:00–9:00 AM 4 007C, Conv. Center Hands-On Hydropower (p. 28)

8:00–9:00 AM G 207A, Conv. Center Digitize the Learning Experience and Take IT Mobile (p. 16)

8:00–9:00 AM E Texas Ballroom F, Grand Hyatt Next Generation Science Standards: Teacher Insights from the Writing Team—Elementary Level (NGSS @ NSTA) (p. 20)

8:00–9:15 AM K–6 214B, Conv. Center Science, the Literacy Connection, and the Common Core (p. 29)

8:00–9:30 AM G 214A, Conv. Center The Private Eye® Way to Magnify Minds: How to Fire Up STEM and Common Core State Standards’ Literacy Goals (p. 34)

8:00–9:30 AM K–5 204B, Conv. Center REAL School Gardens: Life Science Comes Alive (p. 33)

8:00–9:30 AM K–12 008B, Conv. Center Space Camp and 21st-Century Learning: The Crossroads of Formal and Informal Education (p. 32)

8:00–9:30 AM 6–9 007B, Conv. Center Hard Doesn’t Mean Bad—Helping Students Understand That Facing Challenges Is a Good Thing (p. 30)

8:00–9:30 AM K–8 210A, Conv. Center K–8 Science with Vernier (p. 33)

8:00–9:30 AM K–12 209, Conv. Center Chase Your Curiosity and Develop Critical Skills with Discovery Education Science Techbook (p. 33)

8:00–10:00 AM P–M Ballroom B, Conv. Center Elementary Extravaganza (p. 35)
<table>
<thead>
<tr>
<th>Time</th>
<th>Session Area</th>
<th>Session Location</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00–10:00 AM</td>
<td>K–6</td>
<td>214C, Conv. Center</td>
<td>Using Science Notebooks to Impact Student Learning with FOSS (p. 35)</td>
</tr>
<tr>
<td>08:30–9:30 AM</td>
<td>E–H</td>
<td>Crockett A, Grand Hyatt</td>
<td>Integrating Science and the Common Core Standards (p. 36)</td>
</tr>
<tr>
<td>08:30–9:30 AM</td>
<td>G</td>
<td>Grand Blrm. C3, Conv. Center</td>
<td>My Wild Life (p. 37)</td>
</tr>
<tr>
<td>08:30–9:30 AM</td>
<td>G</td>
<td>Grand Blrm. C2, Conv. Center</td>
<td>What a Difference a Measurement Makes (p. 36)</td>
</tr>
<tr>
<td>09:00 AM–12 Noon</td>
<td>G</td>
<td>215, Conv. Center</td>
<td>ESP: Unique Features of Programs That Meet “More Emphasis” Features in the NSES (p. 38)</td>
</tr>
<tr>
<td>09:30–10:30 AM</td>
<td>G</td>
<td>207A, Conv. Center</td>
<td>Going Beyond Data Collection: Sharing in a Science Classroom (p. 40)</td>
</tr>
<tr>
<td>09:30–10:30 AM</td>
<td>M–H</td>
<td>Conf. Room 6, Marr. Rivercenter</td>
<td>AMSE Session: The Literacy STEM Connection (p. 43)</td>
</tr>
<tr>
<td>09:30–10:30 AM</td>
<td>G</td>
<td>Salon K, Marr. Rivercenter</td>
<td>McREL Pathway Session: Designing Effective Science Lessons—Revealing and Addressing Preconceptions (p. 48)</td>
</tr>
<tr>
<td>09:30–10:30 AM</td>
<td>G</td>
<td>Travis A, Grand Hyatt</td>
<td>SYM-1 Follow-Up Session: Get Muddy! How to Adopt One of Our Nation’s Estuaries and Get Your Students Excited About Data (p. 47)</td>
</tr>
<tr>
<td>09:30–10:30 AM</td>
<td>G</td>
<td>Salon F, Marr. Rivercenter</td>
<td>Science, Reading, and Math, Oh My! Courage to Integrate (p. 43)</td>
</tr>
<tr>
<td>09:30–10:30 AM</td>
<td>P–E</td>
<td>213B, Conv. Center</td>
<td>Kindergarten Engagement Lessons (p. 40)</td>
</tr>
<tr>
<td>09:30–10:30 AM</td>
<td>H</td>
<td>Conf. Room 16, Marr. Rivercenter</td>
<td>Meltdown: Using a Nuclear Disaster to Teach Science (p. 47)</td>
</tr>
<tr>
<td>09:30–10:30 AM</td>
<td>G</td>
<td>Texas Ballroom C, Grand Hyatt</td>
<td>Trends in Credit Attainment of High School Students in Science and Math Courses in Texas (p. 42)</td>
</tr>
<tr>
<td>09:30–10:30 AM</td>
<td>M–H</td>
<td>Salon M, Marr. Rivercenter</td>
<td>Interactive Word Walls Come to Life (p. 48)</td>
</tr>
<tr>
<td>09:30–10:30 AM</td>
<td>H–C/S</td>
<td>Crockett A, Grand Hyatt</td>
<td>Promising Practices Bridge the Gap: A STEM High School Needs Assessment (p. 41)</td>
</tr>
<tr>
<td>09:30–10:30 AM</td>
<td>G</td>
<td>Bowie B, Grand Hyatt</td>
<td>Using a “Strengths-based” Approach to Teaching Science to Students with Disabilities (p. 46)</td>
</tr>
<tr>
<td>09:30–10:30 AM</td>
<td>G</td>
<td>Mission B, Grand Hyatt</td>
<td>Effective Professional Development with NSTA Resources (p. 42)</td>
</tr>
<tr>
<td>09:30–10:30 AM</td>
<td>G</td>
<td>Presidio B, Grand Hyatt</td>
<td>The Architects Have Started Without Me: What Do I Do Now? (Science Facilities 102) (p. 47)</td>
</tr>
<tr>
<td>09:30–10:30 AM</td>
<td>M</td>
<td>Bonham C, Grand Hyatt</td>
<td>Water Water Everywhere... But Would You Swim in the Passaic River? (p. 46)</td>
</tr>
<tr>
<td>09:30–10:30 AM</td>
<td>E–M</td>
<td>216B, Conv. Center</td>
<td>Science Reviews: Point by Point (p. 40)</td>
</tr>
<tr>
<td>09:30–10:30 AM</td>
<td>G</td>
<td>201, Conv. Center</td>
<td>Diverse Science Tools for Diverse Science Learners (p. 44)</td>
</tr>
<tr>
<td>09:30–10:30 AM</td>
<td>I</td>
<td>Lone Star Blrm. C, Grand Hyatt</td>
<td>Science Teacher Preparation Revisited (p. 42)</td>
</tr>
<tr>
<td>09:30–10:30 AM</td>
<td>E</td>
<td>217D, Conv. Center</td>
<td>An Amazing Beginning: Starting Interactive Science Notebooks with Your Students! (p. 45)</td>
</tr>
<tr>
<td>09:30–10:30 AM</td>
<td>G</td>
<td>Crockett C, Grand Hyatt</td>
<td>Exploring the Wonder of Science and Children’s Literature for the Next Generation (p. 42)</td>
</tr>
<tr>
<td>09:30–10:30 AM</td>
<td>G</td>
<td>Crockett A, Grand Hyatt</td>
<td>Students as Scientists (p. 41)</td>
</tr>
<tr>
<td>09:30–10:30 AM</td>
<td>G</td>
<td>212A, Conv. Center</td>
<td>Teach STEM! NASA Explorer Schools Can Help! (p. 40)</td>
</tr>
<tr>
<td>09:30–10:30 AM</td>
<td>G</td>
<td>Lone Star Blrm. E, Grand Hyatt</td>
<td>Engaging the Elementary School Community in Innovative and Meaningful STEM Activities (p. 42)</td>
</tr>
<tr>
<td>09:30–10:30 AM</td>
<td>H/S</td>
<td>Conf. Room 15, Marr. Rivercenter</td>
<td>Deploying iPads One to One in a High School (p. 43)</td>
</tr>
<tr>
<td>09:30–11:30 AM</td>
<td>4</td>
<td>007C, Conv. Center</td>
<td>Wind-energized Classroom (p. 50)</td>
</tr>
<tr>
<td>09:30 AM–12:30 PM</td>
<td>G</td>
<td>Salon L, Marr. Rivercenter</td>
<td>WISP Pathway Session: Integrating Science and Literacy—A Journey, Not a Destination (p. 50)</td>
</tr>
<tr>
<td>10:00–11:15 AM</td>
<td>K–8</td>
<td>214B, Conv. Center</td>
<td>Identifying, Clarifying, and Designing Experiments (p. 51)</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>K–5</td>
<td>206B, Conv. Center</td>
<td>Integrating Common Core Writing, Speaking, and Listening Strategies into Science Instruction (p. 53)</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>3–10</td>
<td>214A, Conv. Center</td>
<td>What the Heck Happened?! (p. 54)</td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>K–12 006C, Conv. Center Equip Your iPad or Android Tablet for Science with SPARKvue® HD, a Full-featured Science Application (p. 51)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>7–C 212B, Conv. Center Unleashing Your Students’ Inner Inventor—Robots, Video Games, and DIY! (p. 54)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>2–5 007A, Conv. Center Enhancing the Elementary Classroom Through Robotics (p. 52)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>9–12 008B, Conv. Center The Basics of Flipped Learning, Getting Started: A Panel Discussion of Experts (p. 52)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30 AM–12 Noon</td>
<td>G Grand Blrm. C3, Conv. Center Icons and Innovation in Paleontology (p. 55)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30 AM–12 Noon</td>
<td>3–6 102A, Conv. Center Exploring STEM with K’NEX® (p. 56)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30 AM–12:30 PM</td>
<td>K–6 214C, Conv. Center FOSS Formative Assessment: Making Student Thinking Visible (p. 56)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>6–8 205, Conv. Center Project-Based Inquiry Science: PBISTM™—Exemplifying Blending Practices, Core Ideas, and Crosscutting Concepts (p. 64)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>G Salon K, Marr. Rivercenter McREL Pathway Session: Designing Effective Science Instruction—the Role of Science Discourse (p. 63)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>E–M Salon F, Marr. Rivercenter Outdoor Science Pathway Session: Integrating Mathematics and Science (p. 60)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>G Conf. Rm 3/4, Marr. Rivercenter SYM-I Follow-Up Session: Teaching About Climate Change—Here and Now (p. 59)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>G Conf. Room 12, Marr. Rivercenter WestEd Pathway Session: Assessment-centered Teaching (p. 63)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>G Travis A, Grand Hyatt Write for an NSTA Journal (p. 59)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>G 213A, Conv. Center ASTC Session: Creating Virtual Fieldwork Experiences (VFEs): Place-based, Technology-rich Professional Development for Formal and Informal Educators (p. 57)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>E Texas Ballroom D, Grand Hyatt NSTA Press® Session: Picture-Perfect Science Lessons: Using Picture Books to Guide Inquiry (p. 63)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>H Conf. Room 6, Marr. Rivercenter AMSE Session: Enhancing a STEM Culture Through Multidisciplinary Education and Research Teams (p. 59)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>E–M 216B, Conv. Center Hot Warm-ups (p. 57)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>P–E 213B, Conv. Center Managing Science in the Early Childhood Setting (p. 57)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>E–M 201, Conv. Center Deducing to Reduce English Language Learners’ Frustration with Science Text (p. 61)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>E–M 216B, Conv. Center Capturing Students’ Attention in the Classroom and Beyond! (p. 57)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>G Salon A, Marr. Rivercenter Connecting Science to Poetry, Music, and Art: A Student-centered Lesson in Making Mathematical Models from Nature (p. 63)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>G Lone Star Blrm. B, Grand Hyatt NSTA Press® Session: Ways to Approach Doing POE Exercises in Your Classroom (p. 63)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>G Lone Star Blrm. E, Grand Hyatt The Rube Goldberg Machine Contest: Invention in the Classroom (p. 58)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>G Crockett C, Grand Hyatt Embedding Explicit Literacy Strategies into Science Instruction to Support Struggling Learners (p. 57)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>G Texas Ballroom C, Grand Hyatt Integrating Engineering and Science Learning (p. 59)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>M–H Conf. Room 15, Marr. Rivercenter Urban Students Creating Media (p. 60)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>E–M 217A, Conv. Center Science + Writing = Learning (p. 61)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>E Crockett A, Grand Hyatt Using Video to Enhance Confidence in Teaching Engineering (p. 57)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>G Lone Star Blrm. C, Grand Hyatt Gray Matter: Learning and Teaching Science with the Brain in Mind (p. 63)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>E–M/I 202A, Conv. Center Magical Illusions and Scintillating Simulations for Science—It’s Showtime! (p. 56)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>M Bonham C, Grand Hyatt Then and Now: Documenting Student Understanding (p. 62)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>H Conf. Rm 15, Marr. Rivercenter 21st-Century Science Classroom (p. 60)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>I Mission B, Grand Hyatt What Teachers Told Us (p. 58)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>S Bonham E, Grand Hyatt NSELA Session: Take the Lead: Ensure Your Students Can Master the Science Practices (p. 62)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>E–H Bowie B, Grand Hyatt T.I.P.S. for Success in Using Formative Assessments (p. 62)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>E/I Travis D, Grand Hyatt Inquiry Writing for Diverse Learners via Common Core (p. 59)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>M 202B, Conv. Center Formative Assessment in Middle Grades Science (p. 57)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
<td>Location/Room</td>
<td>Title</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>M–H</td>
<td>Conf. Room 16, Marr. Rivercenter</td>
<td>Switch It Up! How to Use Reflective Teaching to Keep Your Students Engaged and Learning</td>
</tr>
<tr>
<td>11:00 AM–12:30 PM</td>
<td>G</td>
<td>207A, Conv. Center</td>
<td>Google Me This: How to Make Collaboration Work in a Wiki World</td>
</tr>
<tr>
<td>12 Noon–1:30 PM</td>
<td>8–C</td>
<td>212B, Conv. Center</td>
<td>Got MoticNet?...Then Connect!</td>
</tr>
<tr>
<td>12 Noon–1:30 PM</td>
<td>6–8</td>
<td>007A, Conv. Center</td>
<td>LEGO MINDSTORMS® Education EV3: Robotics in the Middle School Classroom—Getting Started</td>
</tr>
<tr>
<td>12 Noon–1:30 PM</td>
<td>3–C</td>
<td>210B, Conv. Center</td>
<td>Connected Science System®: Leveraging Vernier Technology with Mobile Devices in the Classroom</td>
</tr>
<tr>
<td>12 Noon–1:30 PM</td>
<td>K–8</td>
<td>204A, Conv. Center</td>
<td>Fun, Fabulous Foldables®</td>
</tr>
<tr>
<td>12 Noon–1:30 PM</td>
<td>K–8</td>
<td>206B, Conv. Center</td>
<td>The Integration of Common Core Reading Informational Text and Writing in Science to Raise Achievement Scores K–8</td>
</tr>
<tr>
<td>12 Noon–1:30 PM</td>
<td>3–12</td>
<td>006B, Conv. Center</td>
<td>Planet Diary: Using Current Events to Engage Your Students in Science</td>
</tr>
<tr>
<td>12 Noon–1:30 PM</td>
<td>K–12</td>
<td>209, Conv. Center</td>
<td>STEM Is Virtually Everywhere at Discovery</td>
</tr>
<tr>
<td>12 Noon–1:30 PM</td>
<td>K–8</td>
<td>008B, Conv. Center</td>
<td>Launching Literacy with Science Starters</td>
</tr>
<tr>
<td>12 Noon–1:30 PM</td>
<td>6–12</td>
<td>006D, Conv. Center</td>
<td>STEM: Meeting the Standards in Your Classroom</td>
</tr>
<tr>
<td>12 Noon–1:30 PM</td>
<td>K–8</td>
<td>007B, Conv. Center</td>
<td>Integrating Multimedia and SIOP Strategies in Science to Meet the Needs of ELL Students</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>I</td>
<td>213A, Conv. Center</td>
<td>ASTC Session: Climate Change Action Planning, Green Teams, and Project Based Learning (PBL): Best Practices from Schools</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>G</td>
<td>Salon K, Marr. Rivercenter</td>
<td>McREL Pathway Session: Engaging Students in Inquiry for Developing Scientific Thinking</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>E–H</td>
<td>Texas Ballroom A/B, Grand Hyatt</td>
<td>NARST Session: Students Reflecting on Science Learning—Assignments, Assessments, and Rubrics</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>E–M</td>
<td>Conf. Room 6, Grand Hyatt</td>
<td>AMSE Session: Engineering—It Is Elementary</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>G</td>
<td>212A, Conv. Center</td>
<td>CESI Session: Meaningful and Creative Inquiry</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>E–H</td>
<td>Lone Star Blrm. F, Grand Hyatt</td>
<td>Got the iPads, Now Let’s Get “Appy”!</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>E/S</td>
<td>213B, Conv. Center</td>
<td>Getting Started with the T and E in STEM</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>G</td>
<td>Travis A, Grand Hyatt</td>
<td>What Every Science Educator Needs to Know About Students with Special Needs</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>E–H</td>
<td>Mission B, Grand Hyatt</td>
<td>Developing Creativity Skills in the Science Classroom</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>G</td>
<td>Salon A, Marr. Rivercenter</td>
<td>Designing Engineers—From Kids to Careers</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>G</td>
<td>Mission B, Grand Hyatt</td>
<td>Action Research: A Teachers’ Professional Development Strategy to Meet the Needs of Diverse Learners</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>G</td>
<td>Texas Ballroom C, Grand Hyatt</td>
<td>Integrating Science and Mathematics Using the “Hook” of CSI</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>I</td>
<td>Lone Star Blrm. C, Grand Hyatt</td>
<td>Forensic Science in Your Classroom!</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>M</td>
<td>Bonham C, Grand Hyatt</td>
<td>Deep Learning with Sims: Incorporating Interactive Simulations Effectively with Hands-On Investigations and Argumentation</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>M–H</td>
<td>Salon M, Marr. Rivercenter</td>
<td>CRASH Science! Investigating the Dangers of Distracted Driving</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>G</td>
<td>Crockett B, Grand Hyatt</td>
<td>Does Evidence-based Inquiry Improve Logical Reasoning?</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>G</td>
<td>Bowie B, Grand Hyatt</td>
<td>How Dirty Is Your Windshield? Formative Assessment via 3-D Graphic Organizers</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>H</td>
<td>Conf. Room 15, Marr. Rivercenter</td>
<td>“Nuclear”ification: A Smorgasbord of Classroom Applications and Resources</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>E</td>
<td>217D, Conv. Center</td>
<td>POWER ON! Argumentation Strategies for the Elementary Science Classroom</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>I</td>
<td>Travis D, Grand Hyatt</td>
<td>Becoming an Effective Teacher</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>P</td>
<td>201, Conv. Center</td>
<td>STEM Comes to Preschool</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>E–M</td>
<td>216B, Conv. Center</td>
<td>It All Starts with a Question!</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>G</td>
<td>Travis C, Grand Hyatt</td>
<td>Socratic Science Circles</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>I</td>
<td>Lone Star Blrm. E, Grand Hyatt</td>
<td>Computer Games, Simulations, and Virtual Labs for STEM Education</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>E–H</td>
<td>Texas Ballroom E, Grand Hyatt</td>
<td>Building a Strong Foundation for Energy Literacy Through Integration of Instruction Across Content Areas and Grade Levels with “Energy Day”!</td>
</tr>
<tr>
<td>Time</td>
<td>Location</td>
<td>Presenter/Session Title</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>G Mission A, Grand Hyatt</td>
<td>Toshiba/NSTA ExploraVision (p. 77)</td>
<td></td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>G Crockett C, Grand Hyatt</td>
<td>Get That Textbook Out of My Classroom! (p. 76)</td>
<td></td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>M 201, Conv. Center</td>
<td>Team Teaching in the Science Classroom (p. 74)</td>
<td></td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>E 202B, Conv. Center</td>
<td>Using the Nation's Report Card (NAEP) to Improve Science Education (p. 74)</td>
<td></td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>8–12 205, Conv. Center</td>
<td>Engineering the Future: A Practical Approach to STEM for High School (p. 83)</td>
<td></td>
</tr>
<tr>
<td>12:30–2:00 PM</td>
<td>4 007C, Conv. Center</td>
<td>WindWise Science Curriculum (p. 83)</td>
<td></td>
</tr>
<tr>
<td>12:30–4:30 PM</td>
<td>E–H Conf. Rm 1/2, Marr. Rivercenter</td>
<td>BSCS-I Pathway Session: Analyzing and Interpreting Data in Your Classroom (p. 84)</td>
<td></td>
</tr>
<tr>
<td>1:00–1:30 PM</td>
<td>E–H Crockett A, Grand Hyatt</td>
<td>I Draw to Assess; Do You? Creative Formative Assessment Strategies (p. 84)</td>
<td></td>
</tr>
<tr>
<td>1:00–2:30 PM</td>
<td>9–C 217B, Conv. Center</td>
<td>What Color Is Your World? Quick, Easy, and Cheap Biotech Activities for Biology and Chemistry (p. 84)</td>
<td></td>
</tr>
<tr>
<td>1:00–2:30 PM</td>
<td>K–6 214C, Conv. Center</td>
<td>Taking Science Outdoors with FOSS K–6 (p. 84)</td>
<td></td>
</tr>
<tr>
<td>1:00–2:30 PM</td>
<td>K–8 214B, Conv. Center</td>
<td>If You Want TEKS in Their Minds, Put FOSS in Their Hands (Texas Edition) (p. 84)</td>
<td></td>
</tr>
<tr>
<td>1:00–3:00 PM</td>
<td>P–E Salon L, Marr. Rivercenter</td>
<td>WISP Pathway Session: Taking Little Ones from Questions to Claims: K–3 Inquiry Using the SWH (p. 85)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>G Grand Blrm. C2, Conv. Center</td>
<td>Next Generation Science Standards Town Hall Meeting (p. 86)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>G Salon K, Marr. Rivercenter</td>
<td>McREL Pathway Session: Designing Effective Science Instruction—Learning Goals That Clearly Align to Instructional Activities (p. 95)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>G Conf. Room 12, Marr. Rivercenter</td>
<td>WestEd Pathway Session: Common Core Science Literacy (p. 94)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>M–H Travis A, Grand Hyatt</td>
<td>NMLSTA Session: Science for the At-Risk Student (p. 91)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>G Presidio C, Grand Hyatt</td>
<td>The NSTA Learning Center: A Tool to Develop Preservice Teachers (p. 90)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>M–H Texas Ballroom D, Grand Hyatt</td>
<td>NSTA Press® Session: Rise and Shine: A Practical Guide for the Beginning Science Teacher (p. 91)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>E 212A, Conv. Center</td>
<td>CESST Session: Integrating Quality Children’s Literature to Promote Science and Digital Literacies (p. 87)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>H–C Bowie C, Grand Hyatt</td>
<td>SCST Session: Promoting Students’ Understanding and Awareness of Sustainability Issues and the Nature of Science Through Mandatory Online Discussions (p. 88)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>M–H Bonham E, Grand Hyatt</td>
<td>NARST Session: Developing a Critical Eye for Reading Media Reports of Science: Bridging the Science/English Divide to Advance Scientific Literacy (p. 94)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>G Mission B, Grand Hyatt</td>
<td>Elementary Preservice Teachers—Can I Teach Science? (p. 90)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>G Texas Ballroom E, Grand Hyatt</td>
<td>Bringing an Art Museum’s Forensic Science Experience into the Special Education Science Classroom (p. 91)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>P–M 215, Conv. Center</td>
<td>Not Your Grandfather’s Writing Tablet! (p. 88)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>E–H 202B, Conv. Center</td>
<td>Go Hands On with the Nation’s Report Card: Do HOTs, Observe ICT Simulations, and Learn About Linking NAEP to TIMSS Results (p. 93)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>M–H Salon M, Marr. Rivercenter</td>
<td>Using the Graphing Calculator to Model Data (p. 95)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>E–H Crockett C, Grand Hyatt</td>
<td>Read It, Write It, Talk It: Practical Strategies for Addressing Literacy Development in Science Instruction (p. 90)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>E 217D, Conv. Center</td>
<td>A 5E Learning Cycle Integrating Science, Health, Physical Education, Math, and Language Arts (p. 93)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>E–M 217A, Conv. Center</td>
<td>Interactive Student Notebooks (p. 93)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>M Bonham C, Grand Hyatt</td>
<td>Life—Here? There? Elsewhere? (p. 94)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>E–H Crockett C, Grand Hyatt</td>
<td>Structured Writing in Science Doesn’t Have to Be Boring (p. 90)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>E–H Lone Star Blrm. E, Grand Hyatt</td>
<td>Find the Fund$ for STEM: Grant Writing 101 (p. 90)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>E–M/I Salon A, Marr. Rivercenter</td>
<td>Building STEM Education Through Robotics Competitions for All Levels and Budgets (p. 94)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>G Bowie B, Grand Hyatt</td>
<td>Using Protocols to Examine Student Work (p. 94)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>E Mission A, Grand Hyatt</td>
<td>ASTE Session: Engineering a Solar Panel Sun Tracker (p. 90)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>G Texas Ballroom C, Grand Hyatt</td>
<td>Engineering Tasks for Your K–8 Classroom: A Strategy for Weaving Objectives from Across Your Curriculum into a Design Challenge (p. 91)</td>
<td></td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>G Crockett A, Grand Hyatt</td>
<td>Constructing an Electronic Cosmic Ray Detector to Observe, Record, and Analyze Cosmic Rays in Your Classroom (p. 89)</td>
<td></td>
</tr>
</tbody>
</table>
Schedule at a Glance Integrated/General Science, cont.

<table>
<thead>
<tr>
<th>Time</th>
<th>Location</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:00–3:00 PM</td>
<td>E–M 216B, Conv. Center</td>
<td>Critical Skills Supporting Science and Engineering Innovation (p. 88)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>G Travis D, Grand Hyatt</td>
<td>The Scientific Method vs. Scientific Practices—Who Will Survive? (p. 91)</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>G 207A, Conv. Center</td>
<td>Tech Talk: A Terabyte of Ideas in an Hour (p. 87)</td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>6–8 007A, Conv. Center</td>
<td>LEGO MINDSTORMS® Education EV: Robotics in the Middle School Classroom—Advancing Your Program (p. 96)</td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>G 006B, Conv. Center</td>
<td>NGSS, STEM, and Scientific Literacy—What Now? (p. 96)</td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>K–12 209, Conv. Center</td>
<td>Siemens STEM Academy: Top Free STEM Resources for Your Classroom (p. 98)</td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>K–8 206B, Conv. Center</td>
<td>Engineering, Technology, and the Application of K–8 Science (p. 98)</td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>1–6 214A, Conv. Center</td>
<td>Elementary Teacher Survival Kit (p. 99)</td>
</tr>
<tr>
<td>2:30–3:00 PM</td>
<td>G Lone Star Blrm. F, Grand Hyatt</td>
<td>Educational Apps for the 21st-Century Classroom and Beyond (p. 99)</td>
</tr>
<tr>
<td>2:30–3:30 PM</td>
<td>4 007C, Conv. Center</td>
<td>Renewable Power, Vernier, and KidWind Gear (p. 99)</td>
</tr>
<tr>
<td>3:30–4:00 PM</td>
<td>E–M 216B, Conv. Center</td>
<td>Learning Science By Creating a Newspaper (p. 104)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>G Grand Blrm. C1, Conv. Center</td>
<td>Meeting the Challenge of the Next Generation Science Standards (NGSS @ NSTA) (p. 100)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>P–M 215, Conv. Center</td>
<td>Reading and Writing Science Using Exciting Polymer Activities and Children’s Literature (p. 106)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>C Seguin A, Grand Hyatt</td>
<td>Integrating Climate Change for Elementary Preservice Teachers: Tales from the Field (p. 103)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>E 213B, Conv. Center</td>
<td>Super Science Stations (p. 106)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>M Bonham E, Grand Hyatt</td>
<td>NMLSTA Session: Classroom Activities to Highlight the Eight Essential Practices of Science and Engineering (p. 107)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>M Bonham C, Grand Hyatt</td>
<td>All Systems Checked! (p. 107)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>E–M 217A, Conv. Center</td>
<td>Reaching Underserved Student Populations Through an Inquiry-based Discrepant Event Approach (p. 106)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>G Presidio C, Grand Hyatt</td>
<td>Research Worth Reading: 2012 Research Selected by NSTA Affiliates (p. 103)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>G Texas Ballroom D, Grand Hyatt</td>
<td>NSTA Press® Session: Good-Bye MSDS, Hello SDS (p. 103)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>E 217D, Conv. Center</td>
<td>Finding Time to Teach the Science Through Integration and PBL (p. 106)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>G Texas Ballroom E, Grand Hyatt</td>
<td>Helping Gifted Learners (and All Your Other Students) Excel with D.I. (p. 104)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>G Mission B, Grand Hyatt</td>
<td>Catch That Drop—Because Every Drop Counts! (p. 103)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>G Crockett B, Grand Hyatt</td>
<td>Effective Use of Informal Science Resources in the School Classroom (p. 102)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>G Conf. Room 16, Marr. Rivercenter</td>
<td>Iron Teacher (p. 107)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>G Crockett D, Grand Hyatt</td>
<td>21st-Century STEM Education Leaders in Action (p. 102)</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>E–M 212A, Conv. Center</td>
<td>CESI Session: Sport and Science Through Practical and Digital Solutions in the Classroom (p. 102)</td>
</tr>
</tbody>
</table>
Schedule at a Glance

Biology/Life Science

3:30–4:30 PM
- G Presidio B, Grand Hyatt
 - The NSTA Learning Center: Free Professional Development Resources and Opportunities for Educators (p. 103)
- E–M Salon L, Marr. Rivercenter
 - WISP Pathway Session: Science-related Research in the Middle School (p. 107)
- G Lone Star Blrm. A, Grand Hyatt
 - NSTA/NSELA Issues Forum (NGSS @ NSTA) (p. 108)

4:00–5:30 PM
- G 213A, Conv. Center
 - Create a Digital WiFi Classroom…. Using the New Moticam X and Moticonnect App! (p. 112)
- 6–12 008B, Conv. Center
 - Supporting Independent Student Research and Successfully Navigating SSP Competitions (p. 110)
- 206B, Conv. Center
 - The Common Core + Mathematics + Next Generation Science (p. 111)
- 606C, Conv. Center
 - Equip Your iPad or Android Tablet for Science with SPARKvue® HD, a Full-featured Science Application (p. 109)

5:00–6:00 PM
- G 207A, Conv. Center
 - Designing and Developing STEM Collaborative Field Studies (p. 112)
- E–M 217A, Conv. Center
 - MoonKAM: Exploring Lunar Images (p. 117)
- S Presidio C, Grand Hyatt
 - Standards-based Grading That Works (p. 114)
- M Bonham C, Grand Hyatt
 - Interdisciplinary Unit Focusing on Water Rights and Access for Middle-Schoolers (p. 113)
- M Bonham E, Grand Hyatt
 - Super Models, Super Thinkers, Super Scientists (p. 117)
- E 213B, Conv. Center
 - The Science Solution in the Literacy Block (p. 116)
- E 217D, Conv. Center
 - STEM After the Bell Rings: Engineering for All Students (p. 117)
- E–M 216B, Conv. Center
 - Teaching Through the Windshield: Using Embedded Formative Assessments in the Classroom (p. 114)
- G Crockett C, Grand Hyatt
 - Enhancing Teacher Leaders in Elementary Science (p. 114)
- G Crockett C, Grand Hyatt
 - The Nature Classroom: Your Door to Integrating Science and More (p. 113)
- G Crockett C, Grand Hyatt
 - Science Notebooks—Moving from Mechanical to Insightful Use (p. 114)
- E–H Bowie B, Grand Hyatt
 - Integrating Science and Poetry with English Language Learners (p. 113)
- G Crockett B, Grand Hyatt
 - Argument Writing in the Science Classroom (p. 114)
- E 213B, Conv. Center
 - The Science Solution in the Literacy Block (p. 116)
- G 217A, Conv. Center
 - Designing and Developing STEM Collaborative Field Studies (p. 112)
- G 217A, Conv. Center
 - The NSTA Learning Center: Free Professional Development Resources and Opportunities for Educators (p. 103)
- G Lone Star Blrm. A, Grand Hyatt
 - NSTA/NSELA Issues Forum (NGSS @ NSTA) (p. 108)
- G 213A, Conv. Center
 - Create a Digital WiFi Classroom…. Using the New Moticam X and Moticonnect App! (p. 112)
- 6–12 008B, Conv. Center
 - Supporting Independent Student Research and Successfully Navigating SSP Competitions (p. 110)
- 206B, Conv. Center
 - The Common Core + Mathematics + Next Generation Science (p. 111)
- 606C, Conv. Center
 - Equip Your iPad or Android Tablet for Science with SPARKvue® HD, a Full-featured Science Application (p. 109)

NSTA San Antonio National Conference on Science Education

143
Schedule at a Glance
Physics/Physical Science

<table>
<thead>
<tr>
<th>Time</th>
<th>Location</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00 AM</td>
<td>H Salon J, Marr. Rivercenter</td>
<td>A Lab Exercise Using the MODELING Method (p. 26)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>G Salon B, Marr. Rivercenter</td>
<td>Physics Education Insights by Milken Educators (p. 20)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>E–M 216A, Conv. Center</td>
<td>Simple Machines Made Simple (p. 24)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>H Bonham B, Grand Hyatt</td>
<td>DuPont Session: DuPont Presents “Driving Science” (p. 24)</td>
</tr>
<tr>
<td>8:00–9:00 AM</td>
<td>E–H Texas Ballroom D, Grand Hyatt</td>
<td>NSTA Press® Session: Classroom Activities to Accompany Stop Faking It! Force & Motion (p. 26)</td>
</tr>
<tr>
<td>8:00–9:30 AM</td>
<td>9–12 211, Conv. Center</td>
<td>Physics from the NRC Framework: Exploring NGSS and Newton’s Laws (p. 34)</td>
</tr>
<tr>
<td>8:00–9:30 AM</td>
<td>1–3 007A, Conv. Center</td>
<td>Introducing Simple Machines into the Elementary Classroom with LEGO® Bricks (p. 30)</td>
</tr>
<tr>
<td>8:00–9:30 AM</td>
<td>11–12 212B, Conv. Center</td>
<td>Perimeter Institute: Classroom Activities for Dark Matter (p. 34)</td>
</tr>
<tr>
<td>8:00–9:30 AM</td>
<td>7–C 210B, Conv. Center</td>
<td>Engineering with Vernier (p. 34)</td>
</tr>
<tr>
<td>8:00–9:30 AM</td>
<td>6–12 101B, Conv. Center</td>
<td>Pairing Gizmos with Common Core ELA—A Perfect Duo! (p. 32)</td>
</tr>
<tr>
<td>8:00–9:30 AM</td>
<td>6–12 103A, Conv. Center</td>
<td>Fantastic Physical Science Demonstrations from Flinn (p. 32)</td>
</tr>
<tr>
<td>8:00–9:30 AM</td>
<td>6–12 206B, Conv. Center</td>
<td>Engineer Excitement in Your Classroom with a Carolina STEM Challenge (p. 33)</td>
</tr>
<tr>
<td>8:00–9:30 AM</td>
<td>3–6 102B, Conv. Center</td>
<td>Bring Simple Machine Concepts to Life with Real-World Models! (p. 32)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>E–H Texas Ballroom D, Grand Hyatt</td>
<td>NSTA Press® Session: Classroom Activities to Accompany Stop Faking It! Energy (p. 47)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>E 216A, Conv. Center</td>
<td>A Matter of Fact (p. 40)</td>
</tr>
<tr>
<td>9:30–10:30 AM</td>
<td>M–C Salon B, Marr. Rivercenter</td>
<td>Are You Certain? Teaching Error Analysis and Other Experimental Skills in the Physics Classroom (p. 43)</td>
</tr>
<tr>
<td>9:30–11:00 AM</td>
<td>G Texas Ballroom A/B, Grand Hyatt</td>
<td>NMLSTA Session: NMLSTA Share-a-Thon (p. 50)</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>5–9 102B, Conv. Center</td>
<td>Go Green and Bring STEM Concepts to Life with the K’NEX® Education Renewable Energy Set! (p. 52)</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>9–12 006D, Conv. Center</td>
<td>Exploring Basic Optics (p. 51)</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>6–9 204B, Conv. Center</td>
<td>NGSS and Scientific Practices—More Than Photoshopping Models’ Flaws (p. 53)</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>9–C 210A, Conv. Center</td>
<td>Physics with Vernier (p. 54)</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>6–12 211, Conv. Center</td>
<td>Put the “E” in STEM: Science and Engineering Practices in Action (p. 54)</td>
</tr>
<tr>
<td>10:00–11:30 AM</td>
<td>6–12 214D, Conv. Center</td>
<td>Car and Ramp: Using a Graph to Predict Speed with the CPO Science Data Collector (p. 54)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>P–E 216A, Conv. Center</td>
<td>Showing Young Children the Art of Science (p. 61)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>M–C Salon B, Marr. Rivercenter</td>
<td>The 3 Es: Easy, Exciting, inExpensive Physics (p. 60)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>M–H Salon J, Marr. Rivercenter</td>
<td>Tiering Your Objectives to Meet the Needs of Every Learner (p. 60)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>M–H Salon J, Marr. Rivercenter</td>
<td>Teaching Physical Science Principles Through the Design of an Underwater Robot (p. 60)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>M–H Salon E, Marr. Rivercenter</td>
<td>The 50 Best Physics Demos to Do Before You Die… (p. 60)</td>
</tr>
<tr>
<td>11:00 AM–12 Noon</td>
<td>M Bonham D, Grand Hyatt</td>
<td>Teaching Newton’s Three Laws with Coaster Cars (p. 62)</td>
</tr>
<tr>
<td>12 Noon–1:30 PM</td>
<td>6–12 214D, Conv. Center</td>
<td>A STEM Approach to Teaching Electricity and Magnetism (p. 72)</td>
</tr>
<tr>
<td>12 Noon–1:30 PM</td>
<td>6–12 211, Conv. Center</td>
<td>Wind Power and Alternative Energy: Exploring Energy Core Concepts (p. 72)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>E 202A, Conv. Center</td>
<td>Circuits to Go! (p. 81)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>E 215, Conv. Center</td>
<td>Inquiry Activities for K—4—Strike While the Iron Is Hot! (p. 81)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>H Salon J, Marr. Rivercenter</td>
<td>Video Analysis and Science Inquiry (p. 80)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>H Conf. Room 16, Marr. Rivercenter</td>
<td>10 Things Everyone Should Know About the Atmosphere (p. 82)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>P–E 216A, Conv. Center</td>
<td>Inquiry and Exploration with Inclined Planes and Forces of Motion (p. 75)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>H–C Lone Star Birm. A, Grand Hyatt</td>
<td>Using Super Mario Bros. to Teach Calculus-based Kinematics (p. 76)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>E 216A, Conv. Center</td>
<td>Magic with Science (p. 75)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>G Salon B, Marr. Rivercenter</td>
<td>The Magnet Lab: Magnets Is What We Do! (p. 79)</td>
</tr>
<tr>
<td>12:30–1:30 PM</td>
<td>M–H Bonham B, Grand Hyatt</td>
<td>DuPont Session: DuPont Presents “Investigating Photovoltaic Cells” (p. 81)</td>
</tr>
<tr>
<td>Time</td>
<td>Room</td>
<td>Location</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>--------------</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>G</td>
<td>Bowie C, Grand Hyatt</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>G</td>
<td>Salon B, Marr. Rivercenter</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>M</td>
<td>Bonham D, Grand Hyatt</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>E–M</td>
<td>216A, Conv. Center</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>P–E</td>
<td>202A, Conv. Center</td>
</tr>
<tr>
<td>2:00–3:00 PM</td>
<td>H</td>
<td>Salon J, Marr. Rivercenter</td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>6–12</td>
<td>205, Conv. Center</td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>5–9</td>
<td>102B, Conv. Center</td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>9–12</td>
<td>006D, Conv. Center</td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>6–12</td>
<td>214D, Conv. Center</td>
</tr>
<tr>
<td>2:00–3:30 PM</td>
<td>6–12</td>
<td>210B, Conv. Center</td>
</tr>
<tr>
<td>3:30–4:30 PM</td>
<td>E</td>
<td>216A, Conv. Center</td>
</tr>
<tr>
<td>4:00–4:30 PM</td>
<td>E</td>
<td>201, Conv. Center</td>
</tr>
<tr>
<td>4:00–5:30 PM</td>
<td>4</td>
<td>007C, Conv. Center</td>
</tr>
<tr>
<td>4:00–5:30 PM</td>
<td>3–5</td>
<td>007A, Conv. Center</td>
</tr>
<tr>
<td>4:00–5:30 PM</td>
<td>6–12</td>
<td>214D, Conv. Center</td>
</tr>
<tr>
<td>4:00–5:30 PM</td>
<td>5–9</td>
<td>102B, Conv. Center</td>
</tr>
<tr>
<td>4:00–5:30 PM</td>
<td>6–8</td>
<td>203A, Conv. Center</td>
</tr>
<tr>
<td>4:00–5:30 PM</td>
<td>8–C</td>
<td>007B, Conv. Center</td>
</tr>
<tr>
<td>4:00–5:30 PM</td>
<td>K–9</td>
<td>204A, Conv. Center</td>
</tr>
<tr>
<td>4:00–5:30 PM</td>
<td>4–8</td>
<td>204B, Conv. Center</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>G</td>
<td>Salon B, Marr. Rivercenter</td>
</tr>
<tr>
<td>5:00–6:00 PM</td>
<td>G</td>
<td>Salon B, Marr. Rivercenter</td>
</tr>
<tr>
<td>5:00–7:00 PM</td>
<td>K–12</td>
<td>Grand Blrm. C3, Conv. Center</td>
</tr>
</tbody>
</table>
Index of Participants

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abuan, Ma Corazon 24, 117</td>
<td>Abuan, Rodelio A. 24, 117</td>
<td>Adams, April D. 90</td>
<td>da Cunha, Thais B.P. 102</td>
</tr>
<tr>
<td>Adams, Lisa 75</td>
<td>Alexander, Julie 61</td>
<td>Allen, Elizabeth 38, 108</td>
<td>Dalby, Timothy 62</td>
</tr>
<tr>
<td>Akins, Sondra B. 38</td>
<td>Allan, Jessica 62</td>
<td>Allen, Roxana 105</td>
<td>Damien-Marvin, Lisa 77</td>
</tr>
<tr>
<td>Anastasio, David 115</td>
<td>Andreola, Sally 78</td>
<td>Andrews, Sherri 54</td>
<td>Dand, Tonja 22</td>
</tr>
<tr>
<td>Andreotta, Andrea Zdinak 40, 57</td>
<td>Anugwo, Margaret N. 91</td>
<td>April, Ilana 44</td>
<td>Darden-Irons, Donna 43</td>
</tr>
<tr>
<td>Berry, Tricia 40, 60</td>
<td>Arch, Cara 24, 78</td>
<td>April, Tami 23, 81</td>
<td>Davenport, od 48</td>
</tr>
<tr>
<td>Bertino, Patricia Nolan 80</td>
<td>Ark, Nancy 33</td>
<td>Arroyo, Michael 112</td>
<td>Davis, Hilairie B. 16, 56</td>
</tr>
<tr>
<td>Beyer, Ted 54</td>
<td>Bressler, Denise 115</td>
<td>Ayres, Trinity J. 84</td>
<td>Dawes, Karri L. 106</td>
</tr>
<tr>
<td>Bigelow, Mary L. 91</td>
<td>Bristo, Todd 47</td>
<td>Avila, Maria-Antonieta 108</td>
<td>Day, Martha M. 107</td>
</tr>
<tr>
<td>Bilsky, Edward 68</td>
<td>Brock, David L. 38</td>
<td>Ayres, Jody A. 44</td>
<td>DeCristofano, Carolyn 81</td>
</tr>
<tr>
<td>Bintz, Jody 84</td>
<td>Broderick, Brooke 36</td>
<td>Broida, Jen 52</td>
<td>DeGlopper, Jeff 46</td>
</tr>
<tr>
<td>Birchler, David 28</td>
<td>Bowles, Elizabeth 53</td>
<td>Bracey, Georgia 28, 49, 64</td>
<td>DeLucchi, Linda 84</td>
</tr>
<tr>
<td>Blasdell-Victor, Tami Elaine 93</td>
<td>Bowles, Grant 36, 94, 107</td>
<td>Brachman, Rachel Zimmermann 26</td>
<td>Dempsey, Chris 115</td>
</tr>
<tr>
<td>Bodzin, Alec M. 115</td>
<td>Bowling, Ella 77</td>
<td>Bredin, Beverly 23</td>
<td>Dempsey, Debora L. 81</td>
</tr>
<tr>
<td>Bonetta, Laura 32, 96</td>
<td>Bowling, Kristi G. 18, 58</td>
<td>Brennan, Tara 113</td>
<td>DeRosa, Donald 76</td>
</tr>
<tr>
<td>Bonner, David 43</td>
<td>Bowman, Arthur W. 82</td>
<td>Bressler, Denise 115</td>
<td>Dessler, Andrew 87</td>
</tr>
<tr>
<td>Boonstra, Sheri Klug 36</td>
<td>Boyd, Deanna 44</td>
<td>Boyle, Jennifer 52</td>
<td>Dettmer, James M. 61</td>
</tr>
<tr>
<td>Bourdelé-Parks, Brooke 36</td>
<td>Boyd, Jenn 52</td>
<td>Brevard, Denise 115</td>
<td>DeVore, Edna K. 92</td>
</tr>
<tr>
<td>Bravo, Tammy 23, 81</td>
<td>Bridges, Nancy 33</td>
<td>Bridges, Bruce E. 74</td>
<td>Diamond, Scott E. 91</td>
</tr>
<tr>
<td>Brennan, Tara 113</td>
<td>Bridge, Nancy 33</td>
<td>Brisco, Todd 47</td>
<td>Dick, Greg 34</td>
</tr>
<tr>
<td>Bressler, Denise 115</td>
<td>Bridge, Cindy 52</td>
<td>Brock, David L. 38</td>
<td>Diles, Michelle 36</td>
</tr>
<tr>
<td>Brennan, Carla 13</td>
<td>Bristo, Todd 47</td>
<td>Brodeur, Matthew L. 22</td>
<td>DiRanna, Kathy 63</td>
</tr>
<tr>
<td>Brennan, Tara 113</td>
<td>Broderick, Brooke 36</td>
<td>Broadbent, Matthew 22</td>
<td>DiSpezio, Michael 111</td>
</tr>
<tr>
<td>Brown, Christine 115</td>
<td>Brown, Kirk 84</td>
<td>Brooks, Lauren 28, 49, 64</td>
<td>Dobson, Christopher 103</td>
</tr>
<tr>
<td>Brown, Mary C. 78</td>
<td>Brown, Leonard 29, 37, 100</td>
<td>Broo, Sandy 48</td>
<td>Dobson, Emma 102</td>
</tr>
<tr>
<td>Brown, Christine 115</td>
<td>Bucher, Suzette 25</td>
<td>Broders, Samuel 25</td>
<td>Dockens, Franki 68</td>
</tr>
<tr>
<td>Brown, Mary C. 78</td>
<td>Buckley, Kathryn 113</td>
<td>Broderick, Brooke 36</td>
<td>Doherty, Erin 90</td>
</tr>
<tr>
<td>Brown, Mary C. 78</td>
<td>Buechler, David 45</td>
<td>Brons, Jonathan 28, 49, 64</td>
<td>Donovan, Brian M. 90</td>
</tr>
<tr>
<td>Brown, Mary C. 78</td>
<td>Burch, Carol 83, 107</td>
<td>Burns, Elise 81</td>
<td>Dorado, Alan D. 104</td>
</tr>
<tr>
<td>Burns, Elise 81</td>
<td>Butcher, Ginger J. 28, 49, 64</td>
<td>Byers, Al 90, 103</td>
<td>Dotti, Kristen R. 26</td>
</tr>
<tr>
<td>Byers, Al 90, 103</td>
<td>Byers, Al 90, 103</td>
<td>Byrne, Ken 99</td>
<td>Doty, David 72, 99, 112</td>
</tr>
<tr>
<td>Byrne, Ken 99</td>
<td>Caffery, Pamela 32</td>
<td>Camp, Brian 56, 84</td>
<td>Dou, Remy 78</td>
</tr>
<tr>
<td>Caffery, Pamela 32</td>
<td>Camins, Arthur H. 59</td>
<td>Campbell, Brian 56, 84</td>
<td>Dowling, Jeffrey 30</td>
</tr>
<tr>
<td>Campbell, Brian 56, 84</td>
<td>Campbell, Brian A. 112</td>
<td>Campbell, Brian 112</td>
<td>Dragon, Christina N. 105</td>
</tr>
<tr>
<td>Campbell, Brian 112</td>
<td>Campbell, Chris T. 114</td>
<td>Campbell, Sarah C. 50</td>
<td>Drewes, Andrea 57</td>
</tr>
<tr>
<td>Campbell, Sarah C. 50</td>
<td>Cannon, Cherubim 81, 106</td>
<td>Carlsson, Jason 42</td>
<td>Druger, Marvin 42</td>
</tr>
<tr>
<td>Cannon, Cherubim 81, 106</td>
<td>Carlson, David 42</td>
<td>Carlson, Jason 42</td>
<td>Duggan-Haas, Don 57</td>
</tr>
<tr>
<td>Carlson, Jason 42</td>
<td>Carlson, S 56, 84, 106</td>
<td>Carlson, Shawn 28, 49</td>
<td>Duncan, Patti 33</td>
</tr>
<tr>
<td>Carlson, Shawn 28, 49</td>
<td>Carmichael, Don 42</td>
<td>Carmody, Sean R. 22</td>
<td>Dunn, Katherine Hart 113</td>
</tr>
<tr>
<td>Carmichael, Don 42</td>
<td>Carroll, Dan 114</td>
<td>Carr, David 33</td>
<td>Duran, Lisa 48</td>
</tr>
<tr>
<td>Carroll, Dan 114</td>
<td>Carter, Roger J. 102</td>
<td>Carter, Sarah 24</td>
<td>Durrance, Anne 57</td>
</tr>
<tr>
<td>Carter, Roger J. 102</td>
<td>Carter, Sarah 24</td>
<td>Carter, Sarah 24</td>
<td>Eager, Mary Beth 106</td>
</tr>
<tr>
<td>Carter, Sarah 24</td>
<td>Carter, Sarah 24</td>
<td>Carter, Sarah 24</td>
<td>Eastburn, Teresa A. 77</td>
</tr>
<tr>
<td>Carter, Sarah 24</td>
<td>Carter, Sarah 24</td>
<td>Carter, Sarah 24</td>
<td>Eddleman, Scott W. 34, 72, 99</td>
</tr>
<tr>
<td>Carter, Sarah 24</td>
<td>Carter, Sarah 24</td>
<td>Carter, Sarah 24</td>
<td>Elliott, Amy K. 22</td>
</tr>
<tr>
<td>Carter, Sarah 24</td>
<td>Carter, Sarah 24</td>
<td>Carter, Sarah 24</td>
<td>Ellis, Todd 23, 49, 64</td>
</tr>
<tr>
<td>Carter, Sarah 24</td>
<td>Carter, Sarah 24</td>
<td>Carter, Sarah 24</td>
<td>Ellis, Todd 23, 49, 64</td>
</tr>
<tr>
<td>Name</td>
<td>Pages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graham, Tracey K.</td>
<td>116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graika, Tom</td>
<td>29, 51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gram, Pat</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green, Jennifer</td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greenwood, Tracey</td>
<td>97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Griffin, Martha</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gulyas, Alexandra</td>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guzzetta, Beth S.</td>
<td>82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hajduk, Tracy</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hammond, Nicholas</td>
<td>88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hammonds, Mary Anne</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hankin, Jack</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hargrove, Jennifer R.</td>
<td>99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harman, Pamela K.</td>
<td>28, 49, 64, 94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harrell, Brian</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harrington, Elizabeth S.</td>
<td>101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harris, Michelle</td>
<td>46, 62, 81, 113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hart, Christine</td>
<td>113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hartley, Susan E.</td>
<td>118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harvey, Loretta W.</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heathway, Becca</td>
<td>44, 62, 81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hatt, Dylan</td>
<td>76, 104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hawtin, Kim M.</td>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hayes, Carolyn A.</td>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hayes, Laurie A.</td>
<td>47, 118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hebert, Teri</td>
<td>102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hedberg, S. Anders</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hedeen, Chris</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hehr, John G.</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hehr, Lynne H.</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heithaus, Mike</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemenway, Mary Kay</td>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hendley, Coit</td>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herberts, Sean</td>
<td>107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hernandez, Myrna</td>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herrington, Jaynee</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hesson, Nicole</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hester, Melanie</td>
<td>18, 95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higgins, Melissa</td>
<td>57, 117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hill, Shalumic</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hinojoa, Tom</td>
<td>97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hlawaty, Heide</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoekenga, Janet</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hogan, Tracy</td>
<td>113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hokkanen, Susanne L.</td>
<td>62, 94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holt, Susan</td>
<td>47, 96, 110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holzer, Margaret A.</td>
<td>46, 62, 81, 103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoover, Todd F.</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hope, Jennifer</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hopkins, Jenelle D.</td>
<td>79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hopkinson, Peter</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horner, Julie A.</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horton, Darleen</td>
<td>105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huang, Brian</td>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hubbard, Bryan</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hubbard, Leesa</td>
<td>117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hubenthal, Michael</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huff, Kenneth L.</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huffman, Louise</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hughes, Lee E.</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hunt, Maureen</td>
<td>53, 68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Husc, Mary</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hushak, Sharon A.L.</td>
<td>62, 94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hvidsten, Connie J.</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ibarra, Hector</td>
<td>74, 93, 101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isabelle, Aaron D.</td>
<td>102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Israel, Maya</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jacobs, Louis L.</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Janney, Dorian W.</td>
<td>28, 49, 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeanpierre, Bobby J.</td>
<td>79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jennings, Terry Catasus</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jensen, Murray S.</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jetton, Jessica</td>
<td>60, 93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnson, Donna</td>
<td>106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnson, Douglas</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnson, Heather J.</td>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnson, Jay</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnson, Karen E.</td>
<td>116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnson, Roberta M.</td>
<td>46, 62, 81, 93, 106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnson, Robyn</td>
<td>70, 98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnson, Rurik J.</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnson, Sean D.</td>
<td>76, 104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jones, Brian</td>
<td>82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jones, Carol L.</td>
<td>91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jones, Darrell</td>
<td>102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jones, Gail</td>
<td>104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jones, Griff</td>
<td>83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jones, Linda C.</td>
<td>83, 107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jordan, Shawn S.</td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kahn, Sami</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kalenati, Karen M.</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Katz, Phyllis</td>
<td>24, 116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keeley, Page</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kelly, Susan</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kempston, Sue Ellen</td>
<td>82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kennedy, Katheryn</td>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kennedy, Teresa J.</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kesl, Jude</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kessler, James H.</td>
<td>82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Khourey-Bowers, Claudia</td>
<td>38, 62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kisel, Richard A.</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klag, Prent</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klawitter, Mark</td>
<td>79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koba, Susan B.</td>
<td>38, 43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koker, Mark</td>
<td>32, 53, 69, 97, 111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koller, Herb</td>
<td>52, 96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kraft, Carol A.</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krajick, Joe</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krakowski, AriaI</td>
<td>82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kretser, Jen</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kriebard, John</td>
<td>108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krim, Jessica</td>
<td>107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krook, Carson E.</td>
<td>117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krueger, Beth Ann</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kruse, Rebecca</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krzyzaniak, Diane</td>
<td>91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboy-Rush, Diana</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamb, Rob</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Larson, Katherine A.</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LaSalvia, Rob</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lasseter, Cindy</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laubach, Timothy A.</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lauterbach, Lynn</td>
<td>18, 58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lawton, Brandon</td>
<td>28, 49, 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lazaroff, Michael J.</td>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lederman, Judith S.</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lederman, Norman G.</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ledley, Tamara S.</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee-Rhodes, Jane</td>
<td>107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Letkewicz, Thomas H.</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leverich, Whitney</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lewis, Jill</td>
<td>34, 72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lewis Jr., Preston M.</td>
<td>23, 44, 62, 116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li, Fuk K.</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lima, Cynthia E.</td>
<td>108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lind, Dena</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lindau, Amy</td>
<td>102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lindstrom, Marcia</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipscomb, Mary Lou</td>
<td>107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Llewellyn, Douglas J.</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loesing, Mary L.</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long, Cyndi</td>
<td>83, 95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long, Kathy</td>
<td>56, 84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loper, Suzanna J.</td>
<td>82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lopez, Sugeiry V.</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lord, Thomas R.</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Losinger, Tony A.</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lowe, Carolyn</td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lowe, Maribeth A.</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubchenco, Peggy</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lucas-Odom, Judith</td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lucido, Patricia</td>
<td>88</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Index of Participants

M
Mably, Colin 105
MacColl, Jen 20
Mackaro, Jessica N. 116
Mader, Jared 16, 40, 66, 87
Magnuson, Nancy K. 18
MaKinsten, James G. 83, 107
Maksymowych, Terry 80
Malmberg, Julie S. 116
Malone, Larry 100
Malone, Mark R. 89
Mamen, Barbara 43
Marcarelli, Kellie M. 17
Marcum, Bev 19
Markowitz, Dina 47
Marsh, Crystal L. 41, 114
Marsh, Joshua J. 107
Marshall, Robert 32, 56, 86
Marti, Lisa 24
Martin, Constance 59
Martinez, Liz 107
Martin-Hansen, Lisa M. 38
Massengale, Drew (Flavor Flores) 53
Massey, Vicki 108
Mayberry, Sally C. 42
Mayor, Mireya 37
Mazza, Christine Marie 57
McCallister, Dan 28, 49, 64
McCannon, Vicki 38
McCune, Billy 94
McCollum, Timothy 46, 62, 81
McConney, Lindsey 60
McCormack, Alan J. 56
McDaniel, Kerrie 106
McDaid, Terri 91
McDaid, Katie 117
McDonald, Jim 77
McGee, Glenn “Max” 38
McGinnis, Patty 35, 50
McGough, Julie V. 57, 113
McGrath, Kelly 96
McIntosh, Julie 88
McMahon, Ann P. 91, 103
McNeill, Sophie 102
McQuillan, Patrick J. 80
McRae, Jocelyn 109
Meir, Caryn 62, 94
Melody, David 34
Mendez, Flavio 103
Metz, Mike 90
Meyer, Emily A. 105
Mikesell, Laura M. 63
Milano, Mariel 20
Miller, Heath 103
Miller, Zipora 96
Mills, Heath J. 108
Milne, Catherine E. 58
Mintz, Ellen 35
Mirakosits, Kathy 60, 78
Miremburg, Evan 77
Mittelman, Shannon 63
Mogil, H. Michael 46, 62, 81
Mooberry, Susan L. 55
Moody, Sandra West 25, 47
Moomaw, Sally C. 74
Moore, Jerilou 100
Moorman, Leanne K. 50
Moore, Jerilou 100
Moore, emo 41
Morsi, Becki 81
Ortiz, Maria 77
Osborne, Jonathan 90
Osowicki, Aaron 48
Owen, Beverley S. 74, 87

P
Padilla, Michael J. 96, 100
Pagliarani, Ruth 28, 49, 64
Pape, Pamela 75
Parker, Donna 94
Parnin, Kari 22
Passow, Michael J. 46, 62, 81, 93, 106
Patterson, Alexis 90
Pattison, Darcy 50
Pearce, Laura 20, 102
Pearson, Ben 109
Peloquin, Corey 32
Peña, Anthonette 102
Penchosa, Jessica 100
Penders, Jana 99
Pennycook, Jean 62
Pepi, Glenda 24
Pepperman, Julie M. 59
Perdue, Peggy K. 114
Persson, Hans 75
Petersen, Jodi 42
Petersen, Karen A. 83
Petrowa, Kitchka 35
Pfeiffer, JoAnn 94
Phillips, Warren 73
Phillipson-Mower, Teddie 38
Pikul, Nicole L. 22
Platt, Beth 52
Poarch, Mary 55
Poehlman, G. Harold 42
Pointker, Kristen 23
Pooler, Paul 111
Pope, Damien 34
Pope, Jessica 30, 52, 67, 96, 109
Porter, Janice 81
Powell, Ross D. 40
Powers, Mark J. 101
Price, Paul 52, 68
Prosie, Mark 60
Pruitt, Stephen L. 86, 108
Pulis, Lee 83
Purcell-Coleman, Jennifer L. 78
Putz, Gerard J. 38
Puvirajah, Anton 38

R
Rainbird, Donna 93
Rainis, Ken 51
Raloff, Janet 110
Ramon, Karalyn S. 77
Rand, Joseph T. 28, 50, 83, 99, 109
Randall, Jack 70
Randel, Cary 116
Rating, Dan 108
Raymond, Wendy 53
Readen, Kristin T. 50, 76
Reesink, Carole J. 46, 62
Reeves, Kathy 68
Reid, Virginia 35, 100
Reilly, Ellen J. 93
Rice, John 35
Rich, Steve 42, 95
Richey, Bill 72
Ridgeway, Elizabeth L. 45
Riegel, Nicole 88
Rife, Gwynne 88
Rios, José M. 17
Roberts, Ken 59
Robertson, Bill 26, 47
Robinson, Ellen 33
Robinson III, Preston D. 59
Rodriguez, Eloy 73
Rodriguez, Marisela 41
Rodriguez, Minnutee 77
Rodriguez, Nancy J. 48
Roman, Diego X. 90
Romano, Carissa 82
Rosenheck, Louisa 60
Rougeux, Lance 70
Roy, Ken R. 20, 103
Royce, Christine A. 24, 82
Rozell, Jodie 40
Ruef, Kerry 34
Rukes, Sherri Conn 80
Russell, Randy M. 46, 77
Rutigliano, Mariana 115
Rutland, Rick 54, 70, 98
Rutledge, Sally 78
Ryan, Darlene 43

S
Sadler, Bill L. 92
Sahagian, Dork O. 115
Saito, Ryan 93
Sale, Nancy R. 95
Salumbides, Cora S. 106, 118
Salvatore, Joe 41
Sams, Aaron	52
Sanchez, Ana	59
Sanders, Lynda	92
Sanders, Rosemarie	62
Sandler, Claire	41
Sattler, Kasie L.	62
Saul, Wendy	20, 50, 102
Savage, Jennifer	46, 62
Sayes, Jason C.	60
Scantlebury, Kathryn	103
Scheppeler, Judith A.	38
Schlavin, Mark F.	80
Schleigh, Sharon	106
Schluender, Aimee M.	41
Schildecker, Sharon	106
Schlawin, Mark F.	80
Scheppler, Judith A.	38
Scantlebury, Kathryn	103
Scott, Katy	47, 108
Scott, Timothy P.	38
Schweingruber, Heidi	72, 108
Schutt, Kyle	98
Schultz, Greg	28, 49, 64
Schreiner, James	22
Schneeberger, Paul	111
Schludecker, Aimee M.	41
Schleigh, Sharon	106
Schlawin, Mark F.	80
Scheppler, Judith A.	38
Scantlebury, Kathryn	103
Sayes, Jason C.	60
Scantlebury, Kathryn	103
Scott, Katy	47, 108
Scott, Timothy P.	38
Segers, Marcia N.	84
Sevin, Elaine T.	59
Seymour, Alison B.	60
Sharp, Lara L.	114
Shelton, Angi	42
Shreffler, Jody	94
Shiflett-Fitton, Deborah	78
Silberglied, Matt D.	48
Simmons, Joe	54
Simmons, Patricia	108
Simon-Waters, Barbara J.	61
Sloane, Travis	93
Smalls, Jacqueline R.	20, 86, 108
Smith, Amy J.	23
Smith, Ben	16, 40, 66, 87
Smith, Daniel	90
Smith, Denise R.	46
Smith, Linda Lee	64
Smith, Mary Lou Blanchette	117
Smith, Meshelle M.	57
Smith, Steven C.	23
Smith-Hunter, Jewlana D.	43
Snyder, Joanna	84
Snyder, Regina B.	107
Snyder, Rob	102
Snyder, Sharon	110
Snyder, Wayne	46
Soash, Brian E.	74
Soeffing, Cassie	28, 49, 64
Sotak, Bob	19
Southwick, Jesse	48
Spencer, Erica Beck	84
Spicer, Yvonne M.	36
Spilios, Kathlyn E.	88
Stacy, Angy	30
Stahler, Scott	97
Staker, Jay	85
Stallard, Jaclyn	25
Stanley, Rebecca M.	26
Staples-Knox, Dawn	117
Starr, Mary	64
Steffen, Peg	20, 47, 104
Steenstrup, AI	25
Sterling-Laldee, arah	46
Sternberg, Jennifer	53, 68
Sternheim, Morton M.	102
Stewart, Melissa	50
Stewart, Shawned	106
Stock, Adah	66
Stokstad, Paul A.	36
Stone, Scott	81
Strange, Johanna	29, 51
Strayhorn, Terrell L.	39
Streinme, Robert	82
Streseneger, Ingrid	113
Sullivan, Caitlin	110
Sumrall, Kristen M.	100
Sumrall, William J.	100
Swafford, Tony	22
Swami, Rajeev Kumar	50, 113
Sweet, Michael	73
Swensrud, Andrea	24
Syverson-Mercer, Cynthia	72
Szylowski, Mike	50
Talbert, Leah	81
Tambara, Kevin	35
Tanner, Kimberly D.	74
Tarant, Lynn B.	46
Tashima, Nancy	106
Taylor, Amy R.	104
Taylor, Terri M.	105
TeBockhorst, Deanna	23
Teisan, June	77, 90
Tepedino, Anthony J.	82
Texley, Juliana	25, 47, 50
Thimmesh, Catherine	50
Thomas, Deborah J.	85
Thomas, Deborah	85
Thomas, Jeff A.	87
Thomas, Peggy	50
Thompson, CJ	24
Thompson, Kenetta K.	44
Thornton, Angela	47
Thom, Lisa	42
Thrall, Deb	55
Tigue, Damon	85
Tomlinson, Amy	81
Topp, Karl	114
Trautmann, Nancy	83, 107
Trummel, Betty	40, 114
Tsotsis, Mary	77
Tucker, Deborah	46, 62
Tweed, Anne	48, 63, 95
Tyrie, Nancy	90
Umeda, Karen N.	93
Upton, Amanda	77
Valdez-Gainer, Nancy	113
van Dijk, Hans	92
Van Ness, Caitlin	44
Van Norden, Wendy M.	44
van Rens, Lisette	92
Varano, Krista	103
Vasquez, Jo Anne	43
Vaughan, Leta L.	106
Vavalla, Peggy	62, 107, 117
Velez, Diana	84
Verma, Geeta	38
Vernier, David L.	34, 54, 98
Veronesi, Peter	38
Vestlund, Anne	102
Villa, Carlos R.	79, 92
Waber, Duane	111
Walker, Diane D.	63
Wallace, Marsha S.	114
Walters, Verle	33, 54
Wamsted, Katelyn	83
Wandersee, James	88
Warnert, Kathy	110
Warschaw, Kimberly	113
Wasserman, Pamela	61
Watkins, Grewyn	61
Watkins, Kathryn	45
Watters, Brandon	22, 60
Wear, Lisa R.	116
Webber, Lisa	24
Wegner, Kristin	28, 49, 64
Wenograd, Laura	66
West, Andrew B.	118
West, Nancy	80
Westbrook, Vanessa	20, 43, 59, 78
Westerhausen, Mari M.	16
Whaley, Mary C.	82
Whiffen, Pamela	94
White, Michele L.	103
White, Robert A.	92
Whitsett, Sue	30
Wig, Diana	50
Wilder, Melinda	82
Williams, Fred	116
Williams, Jennifer C.	59
Williams, Jo	37
Williams, Rachel	116
Williams, Reginald	40
Williams, Robert	94
Williams, Stephanie	40
Willingham, Shirley M.	40
Wilson, Craig	38
Wirt, Jennifer L.	38
Wiseman, Dawn	63
Wojnowski, Brenda	38, 43
Wolton, Mary Ann	58
Wolf, Sallie	50
Wolfe, Robert	38
Wong, Peter Y.	36
Wood, Steven	42
Woodfield, Brian	30
Woolbaugh, Walter	37
Wysession, Michael	51, 96

| Umeda, Karen N. | 93 |
| Upton, Amanda | 77 |

Y	149	
Y	Youker, Christy	87
Young, David A.	57	
Young, Donna L.	92, 105	
Young, Sarah R.	76	
Yougblood, Keven	104	

Z	Zenchak, John J.	106
Z	Zeng, Liang	42
Z	Ziegler, Dylan	80
Z	Zike, Dinah	69
Advertisers

Flinn Scientific, Inc. (Booth #726), www.flinnsci.com, 800-452-1261 .. 19
Houghton Mifflin Harcourt School Publishers (Booth #1526), www.hmheducation.com .. 27
KidWind Project (Booth #1826), www.kidwind.org .. 4
National Earth Science Teachers Association (Booth #1210), www.nestanet.org .. 122
OHAUS Corp. (Booth #426), www.ohaus.com, 800-672-7722 .. 71
PASCO scientific (Booths #129 and #132), www.pasco.com, 800-772-8700 .. 67
The Royal Society of Chemistry (Booth #1840), www.rsc.org/teachers .. Cover 3
STEMscopes, Rice University (Booth #1510), www.stemscopes.com .. 23
Texas Instruments, Inc. (Booth #118), education.ti.com, 800-TI-CARES (842-2737) .. Cover 2
Vernier Software & Technology (Booth #100), www.vernier.com, 888-837-6437 .. 9

NSTA Ads

NGSS @ NSTA .. 25
NSTA (Booth #1114, NSTA Avenue), www.nsta.org .. 29
NSTA Avenue (Booth #1114), www.nsta.org/sanantonio .. 21
NSTA Chapter Relations (Booth #1114, NSTA Avenue), 800-722-6782, www.nsta.org/chapters .. 39, 101
NSTA Conferences (Booth #1026, Portland) (Booth #1028, Charlotte) (Booth #1030, Denver)
(Booth #1032, Boston), www.nsta.org/conferences .. Cover 4, 1, 7, 17, 31, 69, 75, 79
NSTA Member Services (Booth #1114, NSTA Avenue), www.nsta.org/membership, 800-722-6782 .. 2, 45, 49, 89
NSTA Press®, http://store.nsta.org, 800-277-5300 .. 65
NSTA Science Store, http://store.nsta.org .. 13
Learn Chemistry
Enhancing learning and teaching with the RSC

Tools and resources from the Royal Society of Chemistry to build students’ and teachers’ confidence and advance their understanding in chemistry

- Quickly and easily find a wide range of engaging resources including experiments, worksheets, videos, simulations and games
- Explore core topics and the relevance of chemistry in context with exciting interactive tools
- Discuss teaching issues that matter to you and share best practice on our online forum

Find out more at Booth 1840, or visit http://rsc.li/learn-chemistry
NSTA’s 2013 STEM Forum & Expo
St. Louis, Missouri
May 15–18

* Evening Exhibits Preview & Reception—May 15

Panel Discussions including over 30 noted speakers

- What is a STEM School and What Does it Look Like
- Common Core and Next Generation Science Standards
- State STEM networks—How Are They Working to Change STEM Education?
- STEM in Urban Science Education and Engaging—and Keeping—More Girls and Minorities in STEM
- Public/Private Partnerships, Out-of-School and Informal Programs that Excite Students about the World of STEM
- Putting the “T” and “E” in Your STEM Program
- A Whole School Approach to STEM: What You Need to Know
- Promising STEM Programs: Four to Watch

Educator, Administrator, and Exhibitor Sessions

For updates, more information, and to register:
www.nsta.org/conferences/2013stl