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PROGRESSION 
Students at any grade level should be able to ask questions of each other about the texts they read, the features 
of the phenomena they observe, and the conclusions they draw from their models or scientific investigations. 
For engineering, they should ask questions to define the problem to be solved and to elicit ideas that lead to the 
constraints and specifications for its solution. As they progress across the grades, their questions should 
become more relevant, focused, and sophisticated. Facilitating such evolution will require a classroom culture 
that respects and values good questions, that offers students opportunities to refine their questions and 
questioning strategies, and that incorporates the teaching of effective questioning strategies across all grade 
levels. As a result, students will become increasingly proficient at posing questions that request relevant 
empirical evidence; that seek to refine a model, an explanation, or an engineering problem; or that challenge 
the premise of an argument or the suitability of a design. 
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GOALS 
By grade 12, students should be able to 

• Construct drawings or diagrams as representations of events or systems—for example, draw a picture 
of an insect with labeled features, represent what happens to the water in a puddle as it is warmed by 
the sun, or represent a simple physical model of a real-world object and use it as the basis of an 
explanation or to make predictions about how the system will behave in specified circumstances. 

• Represent and explain phenomena with multiple types of models—for example, represent molecules 
with 3-D models or with bond diagrams—and move flexibly between model types when different 
ones are most useful for different purposes. 

• Discuss the limitations and precision of a model as the representation of a system, process, or design 
and suggest ways in which the model might be improved to better fit available evidence or better 
reflect a design’s specifications. Refine a model in light of empirical evidence or criticism to improve 
its quality and explanatory power. 

• Use (provided) computer simulations or simulations developed with simple simulation tools as a tool 
for understanding and investigating aspects of a system, particularly those not readily visible to the 
naked eye. 

• Make and use a model to test a design, or aspects of a design, and to compare the effectiveness of 
different design solutions. 

 
PROGRESSION 
Modeling can begin in the earliest grades, with students’ models progressing from concrete “pictures” and/or 
physical scale models (e.g., a toy car) to more abstract representations of relevant relationships in later grades, 
such as a diagram representing forces on a particular object in a system. Students should be asked to use 
diagrams, maps, and other abstract models as tools that enable them to elaborate on their own ideas or findings 
and present them to others [15]. Young students should be encouraged to devise pictorial and simple graphical 
representations of the findings of their investigations and to use these models in developing their explanations 
of what occurred.  
 
More sophisticated types of models should increasingly be used across the grades, both in instruction and 
curriculum materials, as students progress through their science education. The quality of a student-developed 
model will be highly dependent on prior knowledge and skill and also on the student’s understanding of the 
system being modeled, so students should be expected to refine their models as their understanding develops. 
Curricula will need to stress the role of models explicitly and provide students with modeling tools (e.g., 
Model-It, agent-based modeling such as NetLogo, spreadsheet models), so that students come to value this 
core practice and develop a level of facility in constructing and applying appropriate models.  
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PROGRESSION 
Students need opportunities to design investigations so that they can learn the importance of such decisions as 
what to measure, what to keep constant, and how to select or construct data collection instruments that are 
appropriate to the needs of an inquiry. They also need experiences that help them recognize that the laboratory 
is not the sole domain for legitimate scientific inquiry and that, for many scientists (e.g., earth scientists, 
ethologists, ecologists), the “laboratory” is the natural world where experiments are conducted and data are 
collected in the field. 
 
In the elementary years, students’ experiences should be structured to help them learn to define the features to 
be investigated, such as patterns that suggest causal relationships (e.g., What features of a ramp affect the 
speed of a given ball as it leaves the ramp?). The plan of the investigation, what trials to make and how to 
record information about them, then needs to be refined iteratively as students recognize from their 
experiences the limitations of their original plan. These investigations can be enriched and extended by linking 
them to engineering design projects—for example, how can students apply what they have learned about 
ramps to design a track that makes a ball travel a given distance, go around a loop, or stop on an uphill slope. 
From the earliest grades, students should have opportunities to carry out careful and systematic investigations, 
with appropriately supported prior experiences that develop their ability to observe and measure and to record 
data using appropriate tools and instruments. 
 
Students should have opportunities to plan and carry out several different kinds of investigations during their 
K-12 years. At all levels, they should engage in investigations that range from those structured by the 
teacher—in order to expose an issue or question that they would be unlikely to explore on their own (e.g., 
measuring specific properties of materials)—to those that emerge from students’ own questions. As they 
become more sophisticated, students also should have opportunities not only to identify questions to be 
researched but also to decide what data are to be gathered, what variables should be controlled, what tools or 
instruments are needed to gather and record data in an appropriate format, and eventually to consider how to 
incorporate measurement error in analyzing data. Older students should be asked to develop a hypothesis that 
predicts a particular and stable outcome and to explain their reasoning and justify their choice. By high school, 
any hypothesis should be based on a well-developed model or theory. In addition, students should be able to 
recognize that it is not always possible to control variables and that other methods can be used in such cases—
for example, looking for correlations (with the understanding that correlations do not necessarily imply 
causality). 
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PROGRESSION 
At the elementary level, students need support to recognize the need to record observations—whether in 
drawings, words, or numbers—and to share them with others. As they engage in scientific inquiry more 
deeply, they should begin to collect categorical or numerical data for presentation in forms that facilitate 
interpretation, such as tables and graphs. When feasible, computers and other digital tools should be introduced 
as a means of enabling this practice. 
 
In middle school, students should have opportunities to learn standard techniques for displaying, analyzing, 
and interpreting data; such techniques include different types of graphs, the identification of outliers in the data 
set, and averaging to reduce the effects of measurement error. Students should also be asked to explain why 
these techniques are needed. 
 
As students progress through various science classes in high school and their investigations become more 
complex, they need to develop skill in additional techniques for displaying and analyzing data, such as x-y 
scatterplots or crosstabulations to express the relationship between two variables. Students should be helped to 
recognize that they may need to explore more than one way to display their data in order to identify and 
present significant features. They also need opportunities to use mathematics and statistics to analyze features 
of data such as covariation. Also at the high school level, students should have the opportunity to use a greater 
diversity of samples of scientific data and to use computers or other digital tools to support this kind of 
analysis. 
 
Students should be expected to use some of these same techniques in engineering as well. When they do so, it 
is important that they are made cognizant of the purpose of the exercise—that any data they collect and 
analyze are intended to help validate or improve a design or decide on an optimal solution. 
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GOALS 
By grade 12, students should be able to 

• Recognize dimensional quantities and use appropriate units in scientific applications of mathematical 
formulas and graphs. 

• Express relationships and quantities in appropriate mathematical or algorithmic forms for scientific 
modeling and investigations. 

• Recognize that computer simulations are built on mathematical models that incorporate underlying 
assumptions about the phenomena or systems being studied. 

• Use simple test cases of mathematical expressions, computer programs, or simulations—that is, 
compare their outcomes with what is known about the real world—to see if they “make sense.” 

• Use grade-level-appropriate understanding of mathematics and statistics in analyzing data. 
 
 
PROGRESSION 
Increasing students’ familiarity with the role of mathematics in science is central to developing a deeper 
understanding of how science works. As soon as students learn to count, they can begin using numbers to find 
or describe patterns in nature. At appropriate grade levels, they should learn to use such instruments as rulers, 
protractors, and thermometers for the measurement of variables that are best represented by a continuous 
numerical scale, to apply mathematics to interpolate values, and to identify features—such as maximum, 
minimum, range, average, and median—of simple data sets. 
 
A significant advance comes when relationships are expressed using equalities first in words and then in 
algebraic symbols—for example, shifting from distance traveled equals velocity multiplied by time elapsed to 
s = vt. Students should have opportunities to explore how such symbolic representations can be used to 
represent data, to predict outcomes, and eventually to derive further relationships using mathematics. Students 
should gain experience in using computers to record measurements taken with computer-connected probes or 
instruments, thereby recognizing how this process allows multiple measurements to be made rapidly and 
recurrently. Likewise, students should gain experience in using computer programs to transform their data 
between various tabular and graphical forms, thereby aiding in the identification of patterns. 
 
Students should thus be encouraged to explore the use of computers for data analysis, using simple data sets, at 
an early age. For example, they could use spreadsheets to record data and then perform simple and recurring 
calculations from those data, such as the calculation of average speed from measurements of positions at 
multiple times. Later work should introduce them to the use of mathematical relationships to build simple 
computer models, using appropriate supporting programs or information and computer technology tools. As 
students progress in their understanding of mathematics and computation, at every level the science classroom 
should be a place where these tools are progressively exploited. 
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• Identify gaps or weaknesses in explanatory accounts (their own or those of others). 
 
In their experience of engineering, students should have the opportunity to 

• Solve design problems by appropriately applying their scientific knowledge. 
• Undertake design projects, engaging in all steps of the design cycle and producing a plan that meets 

specific design criteria. 
• Construct a device or implement a design solution. 
• Evaluate and critique competing design solutions based on jointly developed and agreed-on design 

criteria. 
 
PROGRESSION FOR EXPLANATION 
Early in their science education, students need opportunities to engage in constructing and critiquing 
explanations. They should be encouraged to develop explanations of what they observe when conducting their 
own investigations and to evaluate their own and others’ explanations for consistency with the evidence. For 
example, observations of the owl pellets they dissect should lead them to produce an explanation of owls’ 
eating habits based on inferences made from what they find. 
 
As students’ knowledge develops, they can begin to identify and isolate variables and incorporate the resulting 
observations into their explanations of phenomena. Using their measurements of how one factor does or does 
not affect another, they can develop causal accounts to explain what they observe. For example, in 
investigating the conditions under which plants grow fastest, they may notice that the plants die when kept in 
the dark and seek to develop an explanation for this finding. Although the explanation at this level may be as 
simple as “plants die in the dark because they need light in order to live and grow,” it provides a basis for 
further questions and deeper understanding of how plants utilize light that can be developed in later grades. On 
the basis of comparison of their explanation with their observations, students can appreciate that an 
explanation such as “plants need light to grow” fails to explain why they die when no water is provided. They 
should be encouraged to revisit their initial ideas and produce more complete explanations that account for 
more of their observations. 
 
By the middle grades, students recognize that many of the explanations of science rely on models or 
representations of entities that are too small to see or too large to visualize. For example, explaining why the 
temperature of water does not increase beyond 100°C when heated requires students to envisage water as 
consisting of microscopic particles and that the energy provided by heating can allow fast-moving particles to 
escape despite the force of attraction holding the particles together. In the later stages of their education, 
students should also progress to using mathematics or simulations to construct an explanation for a 
phenomenon. 
 
PROGRESSION FOR DESIGN In some ways, children are natural engineers. They spontaneously 
build sand castles, dollhouses, and hamster enclosures, and they use a variety of tools and materials for their 
own playful purposes. Thus a common elementary school activity is to challenge children to use tools and 
materials provided in class to solve a specific challenge, such as constructing a bridge from paper and tape and 
testing it until failure occurs. Children’s capabilities to design structures can then be enhanced by having them 
pay attention to points of failure and asking them to create and test redesigns of the bridge so that it is stronger. 
Furthermore, design activities should not be limited just to structural engineering but should also include 
projects that reflect other areas of engineering, such as the need to design a traffic pattern for the school 
parking lot or a layout for planting a school garden box. 
 
In middle school, it is especially beneficial to engage students in engineering design projects in which they are 
expected to apply what they have recently learned in science—for example, using their now-familiar concepts 
of ecology to solve problems related to a school garden. Middle school students should also have opportunities 
to plan and carry out full engineering design projects in which they define problems in terms of criteria and 
constraints, research the problem to deepen their relevant knowledge, generate and test possible solutions, and 
refine their solutions through redesign. 
 
At the high school level, students can undertake more complex engineering design projects related to major 
local, national or global issues. Increased emphasis should be placed on researching the nature of the given 
problems, on reviewing others’ proposed solutions, on weighing the strengths and weaknesses of various 
alternatives, and on discerning possibly unanticipated effects. 
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PROGRESSION 
The study of science and engineering should produce a sense of the process of argument necessary for 
advancing and defending a new idea or an explanation of a phenomenon and the norms for conducting such 
arguments. In that spirit, students should argue for the explanations they construct, defend their interpretations 
of the associated data, and advocate for the designs they propose. Meanwhile, they should learn how to 
evaluate critically the scientific arguments of others and present counterarguments. Learning to argue 
scientifically offers students not only an opportunity to use their scientific knowledge in justifying an 
explanation and in identifying the weaknesses in others’ arguments but also to build their own knowledge and 
understanding. Constructing and critiquing arguments are both a core process of science and one that supports 
science education, as research suggests that interaction with others is the most cognitively effective way of 
learning [31-33]. 
 
Young students can begin by constructing an argument for their own interpretation of the phenomena they 
observe and of any data they collect. They need instructional support to go beyond simply making claims—
that is, to include reasons or references to evidence and to begin to distinguish evidence from opinion. As they 
grow in their ability to construct scientific arguments, students can draw on a wider range of reasons or 
evidence, so that their arguments become more sophisticated. In addition, they should be expected to discern 
what aspects of the evidence are potentially significant for supporting or refuting a particular argument. 
 
Students should begin learning to critique by asking questions about their own findings and those of others. 
Later, they should be expected to identify possible weaknesses in either data or an argument and explain why 
their criticism is justified. As they become more adept at arguing and critiquing, they should be introduced to 
the language needed to talk about argument, such as claim, reason, data, etc. Exploration of historical episodes 
in science can provide opportunities for students to identify the ideas, evidence, and arguments of professional 
scientists. In so doing, they should be encouraged to recognize the criteria used to judge claims for new 
knowledge and the formal means by which scientific ideas are evaluated today. In particular, they should see 
how the practice of peer review and independent verification of claimed experimental results help to maintain 
objectivity and trust in science. 
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PROGRESSION 
Any education in science and engineering needs to develop students’ ability to read and produce domain-
specific text. As such, every science or engineering lesson is in part a language lesson, particularly reading and 
producing the genres of texts that are intrinsic to science and engineering. 
 
Students need sustained practice and support to develop the ability to extract the meaning of scientific text 
from books, media reports, and other forms of scientific communication because the form of this text is 
initially unfamiliar— expository rather than narrative, often linguistically dense, and reliant on precise logical 
flows. Students should be able to interpret meaning from text, to produce text in which written language and 
diagrams are used to express scientific ideas, and to engage in extended discussion about those ideas. 
 
From the very start of their science education, students should be asked to engage in the communication of 
science, especially regarding the investigations they are conducting and the observations they are making. 
Careful description of observations and clear statement of ideas, with the ability to both refine a statement in 
response to questions and to ask questions of others to achieve clarification of what is being said begin at the 
earliest grades. Beginning in upper elementary and middle school, the ability to interpret written materials 
becomes more important. Early work on reading science texts should also include explicit instruction and 
practice in interpreting tables, diagrams, and charts and coordinating information conveyed by them with 
information in written text. Throughout their science education, students are continually introduced to new 
terms, and the meanings of those terms can be learned only through opportunities to use and apply them in 
their specific contexts. Not only must students learn technical terms but also more general academic language, 
such as “analyze” or “correlation,” which are not part of most students’ everyday vocabulary and thus need 
specific elaboration if they are to make sense of scientific text. It follows that to master the reading of scientific 
material, students need opportunities to engage with such text and to identify its major features; they cannot be 
expected simply to apply reading skills learned elsewhere to master this unfamiliar genre effectively. 
 
Students should write accounts of their work, using journals to record observations, thoughts, ideas, and 
models. They should be encouraged to create diagrams and to represent data and observations with plots and 
tables, as well as with written text, in these journals. They should also begin to produce reports or posters that 
present their work to others. As students begin to read and write more texts, the particular genres of scientific 
text—a report of an investigation, an explanation with supporting argumentation, an experimental procedure—
will need to be introduced and their purpose explored. Furthermore, students should have opportunities to 
engage in discussion about observations and explanations and to make oral presentations of their results and 
conclusions as well as to engage in appropriate discourse with other students by asking questions and 
discussing issues raised in such presentations. Because the spoken language of such discussions and 
presentations is as far from their everyday language as scientific text is from a novel, the development both of 
written and spoken scientific explanation/ argumentation needs to proceed in parallel. 
 
In high school, these practices should be further developed by providing students with more complex texts and 
a wider range of text materials, such as technical reports or scientific literature on the Internet. Moreover, 
students need opportunities to read and discuss general media reports with a critical eye and to read appropriate 
samples of adapted primary literature [40] to begin seeing how science is communicated by science 
practitioners. 
 
In engineering, students likewise need opportunities to communicate ideas using appropriate combinations of 
sketches, models, and language. They should also create drawings to test concepts and communicate detailed 
plans; explain and critique models of various sorts, including scale models and prototypes; and present the 
results of simulations, not only regarding the planning and development stages but also to make compelling 
presentations of their ultimate solutions.  


